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ABSTRACT

We present a general framework for solving mixed variational formulations of

partial differential equations. The method relates the theories of least squares finite

element methods, approximating solutions to elliptic boundary value problems, and ap-

proximating solutions to symmetric saddle point problems. A general preconditioning

strategy for the proposed framework is also given that utilizes the theory of multilevel

preconditioners. One of the main advantages of the method is that an inf − sup condi-

tion is automatically satisfied at the discrete level for standard choices of test and trial

spaces. Another benefit is that the method allows for the use of nonconforming trial

spaces. In addition, the framework allows the freedom to choose the inner product on

the test space, which is useful when solving PDEs, or first order systems of PDEs, with

parameters and/or discontinuous coefficients. The proposed iterative solver does not

require explicit bases for the trial spaces as well. Applications of the method to sec-

ond order elliptic interface problems, reaction diffusion equations, and time-harmonic

Maxwell’s equations are presented. Numerical results in 2D and 3D, for both convex

and non-convex domains, are given to support the methodology, including problems

with discontinuous or highly oscillatory coefficients, low regularity of the solution, and

boundary layers.

xii



Chapter 1

INTRODUCTION

Mixed variational formulations for partial differential equations arise naturally

when modeling physical systems. Some examples include diffusion through hetero-

geneous porous media, electromagnetism, elasticity, acoustics, and fluid flow. When

approximating the physical quantities from these systems, such as the flux of the so-

lution or the electric and magnetic fields, it is beneficial to obtain estimates that are

robust with respect to the parameters associated with the system. Furthermore, it is

important to obtain these robust estimates in the presence of numerical challenges,

such as discontinuities in the material coefficients, low regularity data, or low regular-

ity solutions (perhaps near the boundary). Recently, there has been a lot of research

in the direction of applying least squares finite element methods to these problems

[27, 28, 29, 41, 42, 43, 44, 65, 66, 73]. The methodology described in this thesis pro-

vides a unified theory of least squares methods for solving a large class of PDEs that

can be written as mixed variational formulations. Furthermore, the theory will utilize

efficient conforming and nonconforming approximation spaces, multilevel techniques,

and residual error estimation.

We are interested in approximating the solution to PDEs which can be written

as: Find p ∈ Q such that

b(v, p) = 〈F, v〉 for all v ∈ V. (1.0.1)

In the above equation, V and Q are infinite dimensional Hilbert spaces, F is a bounded,

linear functional on V , and b(·, ·) is a bilinear form defined on V × Q̃ (the space Q̃ is an

infinite dimensional Hilbert space that contains Q). Instead of solving (1.0.1) directly,

1



we consider a “saddle point reformulation”. More specifically, by denoting a(·, ·) as

the inner product on V , we obtain the following saddle point reformulation of problem

(1.0.1): Find (w = 0, p) ∈ V ×Q such that

a(w, v) + b(v, p) = 〈F, v〉 for all v ∈ V,

b(w, q) = 0 for all q ∈ Q.

Under appropriate assumptions on b(·, ·) and the linear functional F , the p component

of the solution to the saddle point reformulation solves the original problem, see Chap-

ter 2. One advantage of solving the saddle point problem instead of (1.0.1) directly

resides in the fact that we can construct and utilize discrete finite element trial spaces

that have desirable approximability properties. Another advantage is that we are free

to choose the inner product on V that we use in the saddle point reformulation. This

fact is of particular importance when studying PDEs with parameters, and/or discon-

tinuous coefficients. In addition, we can apply the classical approximation theory for

symmetric saddle point systems.

The proposed method for solving problems of the form (1.0.1) is related to the

Saddle Point Least Squares (SPLS) method introduced in [20]. The SPLS method

combines the theory and discretization techniques for approximating solutions to ellip-

tic boundary value problems with the theory of approximating solutions to symmetric

saddle point problems [5, 11, 12, 25, 37, 39, 40, 54, 75, 80, 83]. The benefits of this

approach are that a discrete inf − sup condition is automatically satisfied for natural

choices of test and trial spaces and the implentation of the proposed solver does not

require explicit bases for the trial spaces. The SPLS framework has been applied to

div− curl systems [20], as well as second order problems [21], using conforming finite

element spaces for both the test and trial spaces.

The approach taken in this thesis can be viewed as an extended version of the

original SPLS method. The essential difference is that the new framework allows for the

possibility of nonconforming trial spaces. This will allow for better approximation of

the physical quantities associated with the PDE, especially in the case of discontinuous

coefficients. The benefits from the original SPLS method carry over in that a discrete

2



inf − sup condition is automatically satisfied for particular choices of test and trial

spaces, and explicit bases for the trial spaces are not needed. If the solution space Q is

of L2 type, the extended framework reduces to the original SPLS framework (Chapter

6 provides an application of the method for this case). We also combine the approach

with multilevel preconditioning techniques in order to address particular challenges of

the PDE to be solved due to discontinuous coefficients or multidimensional domains.

The method can also be viewed as a new Discontinuous Petrov-Galerkin (DPG)

method, which was introduced by Demkowicz and Gopalakrishnan and is currently

undergoing an intensive study, see e.g., [49, 50, 51]. While both methods have strong

connections with least squares and minimum residual techniques, the proposed dis-

cretization process stands apart from the DPG approach due to the different ways in

which the trial and test spaces are chosen. In the approach presented in this thesis, a

discrete test space is chosen first. The trial space is then built from the test space using

the action of the continuous differential operator associated with the problem in order

to satisfy a discrete inf − sup condition. In the DPG method, the order of building the

spaces is reversed. In addition, we focus on the discrete inf − sup condition first and

the approximability properties second, while the DPG method reverses the focus. For

these reasons, this approach can be thought of as a dual to the DPG method.

This thesis is organized as follows. Chapter 2 describes the extended SPLS

framework and its connection with the original SPLS method. In Chapter 3, a variant

of the framework that utilizes the theory of elliptic preconditioning is introduced and

analyzed. Chapters 4 and 5 involve the application of the framework to second order

elliptic interface problems and reaction diffusion equations, respectively. The applica-

tion of the framework to the time-harmonic Maxwell equations is presented in Chapter

6. A discussion of future work, including other possible applications for the method,

is presented in Chapter 7.

3



Chapter 2

THE SADDLE POINT LEAST SQUARES THEORY

In this chapter, we will introduce and analyze the extended SPLS framework.

Recall the abstract variational problems of interest: Find p ∈ Q such that

b(v, p) = 〈F, v〉 for all v ∈ V. (2.0.1)

In the original SPLS framework [20], the form b(·, ·) is defined on V ×Q. In constrast,

we will assume that b(·, ·) is defined on V × Q̃, where Q ⊂ Q̃ is a closed subspace. This

extension of the form b(·, ·) is essential for the discretization of the problem, and it will

be the main assumption that allows for the possibility of a nonconforming trial space.

While the general structure of the approach presented in this chapter and the original

SPLS approach share their similarities, different techniques are required to analyze the

approximability properties of the chosen discrete trial spaces due to the definition and

assumptions on the form b(·, ·). In addition, there are subtle differences between the

proposed iterative solver and the analysis of its convergence properties. For simplicity,

we will refer to the methodology presented as the SPLS method instead of the extended

SPLS method for the remainder of the thesis. This chapter is published in [15].

This chapter is organized as follows. In Section 2.1, we will introduce the ab-

stract theory for the SPLS method and discuss the solvability of problem (2.0.1). The

abstract discretization theory is presented in Section 2.2. Several choices for the dis-

crete trial spaces are analyzed in Section 2.3. In Section 2.4, an Uzawa Conjugate

Gradient algorithm is outlined to solve the corresponding discrete formulation. The

convergence properties of the algorithm are also analyzed. Section 2.5 briefly discusses

the special case in which the extended framework coincides with the original SPLS

method.
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2.1 The Saddle Point Least Squares Approach

We let V and Q̃ be two infinite dimensional Hilbert spaces equipped with inner

products a(·, ·) and (·, ·)Q̃, respectively, and assume that Q is a closed subspace of Q̃

equipped with the induced inner product. We further assume that the inner products

induce the norms | · |V := a(·, ·)1/2 and ‖ · ‖Q̃ := (·, ·)1/2

Q̃
. The dual spaces of V and Q̃

will be denoted by V ∗ and Q̃∗, respectively. The dual pairings on V ∗ × V and Q̃∗ × Q̃

will both be denoted by 〈·, ·〉. With the inner product a(·, ·), we associate the operator

A : V → V ∗ defined by

〈Au, v〉 = a(u, v) for all u, v ∈ V.

We assume that b(·, ·) : V × Q̃→ R is a bilinear form satisfying

sup
p∈Q̃

sup
v∈V

b(v, p)

|v|V ‖p‖Q̃
= M <∞, (2.1.1)

and the inf − sup condition

inf
p∈Q

sup
v∈V

b(v, p)

|v|V ‖p‖Q̃
= m > 0. (2.1.2)

Note that while we assume that b(·, ·) is continuous on V × Q̃, the inf − sup condition

is assumed on V ×Q. This assumption is essential to discuss the solvability of problem

(2.0.1). With the form b(·, ·), we associate the linear operators B : V → Q̃ and

B∗ : Q̃→ V ∗ defined by

(Bv, q)Q̃ = b(v, q) = 〈B∗q, v〉 for all v ∈ V, q ∈ Q̃.

Here, the operator B is defined through the inner product on Q̃, while the operator

B∗ is defined through the duality pairing on V ∗ × V . We also define

V0 := {v ∈ V | b(v, q) = 0, for all q ∈ Q̃} = Ker(B).

The solvability of problem (2.0.1) is well known and was first studied by Aziz

and Babuška. The following Lemma can be found in [5].
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Lemma 2.1.1. (Babuška) Let b(·, ·) be a bilinear form satisfying (2.1.1) and (2.1.2)

and F ∈ V ∗. Then problem (2.0.1) has a unique solution p ∈ Q if and only if F

satisfies the compatibility condition

〈F, v〉 = 0 for all v ∈ V0. (2.1.3)

Instead of solving problem (2.0.1) directly, we adopt a “saddle point reformu-

lation”. More specifically, with problem (2.0.1) we associate the following symmetric

saddle point problem by introducing an auxiliary variable w: Find (w, p) ∈ V ×Q such

that

a(w, v) + b(v, p) = 〈F, v〉 for all v ∈ V,

b(w, q) = 0 for all q ∈ Q.
(2.1.4)

Throughout this thesis, the variable w will always refer to the variable introduced for

the purposes of the saddle point reformulation. The following Proposition can be found

in [17, 48] and is essential to the SPLS approach.

Proposition 2.1.2. In the presence of the continuous inf − sup condition (2.1.2) and

the compatibility condition (2.1.3), we have that p is the unique solution of (2.0.1) if

and only if (w = 0, p) is the unique solution of (2.1.4).

For the rest of this chapter, we assume that the compatibility condition (2.1.3)

holds. Consequently, problem (2.0.1) has a unique solution.

2.2 Saddle Point Least Squares Discretization

In this section, we discuss the abstract theory for the discretization of the SPLS

approach. Let Vh ⊂ V and Mh ⊂ Q̃ be finite dimensional approximation spaces,

and consider the restrictions of the forms a(·, ·) and b(·, ·) to Vh × Vh and Vh ×Mh,

respectively. We define the operator Ah to be the discrete analog of the operator A

from the previous section, i.e., Ah satisfies

〈Ahuh, vh〉 = a(uh, vh) for all uh, vh ∈ Vh.

6



We also define the discrete operators Bh : Vh →Mh and B∗h :Mh → V ∗h by

(Bhvh, qh)Q̃ = b(vh, qh) = 〈B∗hqh, vh〉 for all vh ∈ Vh, qh ∈Mh.

Similar to the way the operator B is defined at the continuous level in Section 2.1, the

operator Bh is defined using the inner product on Mh and not with the duality on

M∗
h ×Mh. We assume the discrete inf − sup condition

inf
ph∈Mh

sup
vh∈Vh

b(vh, ph)

|vh|V ‖ph‖Q̃
= mh > 0, (2.2.1)

holds for the pair of spaces (Vh,Mh) and define

Mh := sup
ph∈Mh

sup
vh∈Vh

b(vh, ph)

|vh|V ‖ph‖Q̃
≤M <∞. (2.2.2)

With the above setting, we can define the discrete Schur complement

Sh :Mh →Mh as

Sh := BhA
−1
h B∗h.

The following lemma can be found in [7].

Lemma 2.2.1. The operator Sh is a symmetric and positive definite operator satisfying

(Shph, ph)Q̃ = sup
vh∈Vh

b(vh, ph)
2

|vh|2V
.

Consequently, m2
h,M

2
h ∈ σ(Sh) and

σ(Sh) ⊂ [m2
h,M

2
h ].

We define

Vh,0 := {vh ∈ Vh | b(vh, qh) = 0 for all qh ∈Mh},

to be the kernel of the discrete operator Bh and fh ∈ V ∗h to be the restriction of F to

Vh, i.e.,

〈fh, vh〉 := 〈F, vh〉 for all vh ∈ Vh.
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Lemma 2.2.2. If b(·, ·) satisfies (2.2.1) and Vh,0 ⊂ V0, then the compatibility condition

(2.1.3) implies the discrete compatibility condition

〈fh, vh〉 = 0 for all vh ∈ Vh,0,

and the discrete problem of finding ph ∈Mh such that

b(vh, ph) = 〈fh, vh〉 for all vh ∈ Vh, (2.2.3)

has a unique solution.

Similar to the formulation at the continuous level, instead of working with prob-

lem (2.2.3) directly, we associate (2.2.3) with the following discrete saddle point prob-

lem: Find (wh, ph) ∈ Vh ×Mh such that

a(wh, vh) + b(vh, ph) = 〈fh, vh〉 for all vh ∈ Vh,

b(wh, qh) = 0 for all qh ∈Mh.
(2.2.4)

Remark 2.2.3. In general, (2.1.3) may not hold on Vh,0 and problem (2.2.3) may not

be well-posed. However, if the bilinear form b(·, ·) satisfies (2.2.1) then the problem of

finding (wh, ph) ∈ Vh ×Mh satisfying (2.2.4) does have a unique solution. Solving for

ph from (2.2.4), we obtain

Shph = Bh(A
−1
h B∗h)ph = BhA

−1
h fh. (2.2.5)

Since the Hilbert transpose of Bh is A−1
h B∗h, the component ph of the solution to (2.2.4)

is the least squares solution of problem (2.2.3).

The above remark justifies the least squares terminology in the approach. We

call the component ph of the solution (wh, ph) of (2.2.4) the saddle point least squares

approximation to the solution p of the original problem (2.0.1).

2.3 Choices of Discrete Spaces

In this section, we describe two pairs of discrete spaces, based on the same

constructions introduced in [20], which satisfy the discrete inf − sup condition (2.2.1).
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For both pairs of spaces, we let Vh ⊂ V be a finite element approximation space, and

assume the action of B, defined in Section 2.1, is easy to obtain at the continuous level.

The trial space Mh in both cases will be constructed from the test space Vh.

2.3.1 No Projection Trial Space

We first consider the case when Mh is given by

Mh := BVh,

where the inner product on Mh is chosen to coincide with the inner product on Q̃.

Note that for vh ∈ Vh

b(vh, qh) = (Bvh, qh)Q̃ for all qh ∈Mh.

This implies Vh,0 ⊂ V0. Also, a discrete inf − sup condition holds. Indeed, for a generic

ph = Bwh ∈Mh, where wh ∈ V ⊥h,0, we have

inf
ph∈Mh

sup
vh∈Vh

b(vh, ph)

|vh|V ‖ph‖Q̃
= inf

wh∈V ⊥h,0
sup
vh∈Vh

(Bvh, Bwh)Q̃
|vh|V ‖Bwh‖Q̃

≥ inf
wh∈V ⊥h,0

‖Bwh‖2
Q̃

|wh|V ‖Bwh‖Q̃

= inf
wh∈V ⊥h,0

‖Bwh‖Q̃
|wh|V

:= mh,0. (2.3.1)

Thus, both variational formulations (2.2.3) and (2.2.4) have a unique solution

ph ∈Mh. Furthermore, using Proposition 2.1.2 for the discrete pair of spaces (Vh,Mh),

the pair (wh = 0, ph) is the solution of (2.2.4).

If p is the solution of (2.0.1) and ph is the solution of (2.2.3) (or (0, ph) is the

solution of (2.2.4)), then from (2.0.1) and (2.2.3) we obtain

0 = b(vh, p− ph) = (Bvh, p− ph)Q̃ for all vh ∈ Vh.

Thus, ph is the orthogonal projection of p onto Mh which gives us

‖p− ph‖Q̃ = inf
qh∈Mh

‖p− qh‖Q̃. (2.3.2)
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This result is optimal, and in contrast with the standard approximation estimates for

saddle point problems, it does not depend on mh,0.

2.3.2 Projection Type Trial Space

For the second type of trial space, we first let M̃h ⊂ Q̃ be a finite dimensional

subspace equipped with the inner product (·, ·)h, and define the representation operator

Rh : Q̃→ M̃h by

(Rhp, qh)h := (p, qh)Q̃ for all qh ∈ M̃h. (2.3.3)

Here, we can view Rhp as the Riesz representation of qh → (p, qh)Q̃ as a functional on

(M̃h, (·, ·)h).

Remark 2.3.1. In the case where (·, ·)h coincides with the inner product on Q̃, Rh is

the standard orthogonal projection onto M̃h.

Since the space M̃h is finite dimensional, there exist constants k1, k2 such that

k1‖qh‖Q̃ ≤ ‖qh‖h ≤ k2‖qh‖Q̃ for all qh ∈ M̃h. (2.3.4)

We further assume that the equivalence is uniform with respect to h, i.e., the constants

k1, k2 are independent of h. Using the operators Rh and B, we define Mh as

Mh := RhBVh ⊂ M̃h ⊂ Q̃.

The following proposition gives a sufficient condition on Rh to ensure that a dis-

crete inf − sup condition is satisfied and relates the stability of the families of spaces

{(Vh, BVh)} and {(Vh, RhBVh)}.

Proposition 2.3.2. Assume that

‖Rhqh‖h ≥ c̃ ‖qh‖Q̃ for all qh ∈ BVh, (2.3.5)

with a constant c̃ independent of h. Then Vh,0 ⊂ V0. Furthermore, the stability of the

family {(Vh, BVh)}, meaning mh,0 defined in (2.3.1) satisfies mh,0 > c0 > 0 for some

constant c0 independent of h, implies the stability of the family {(Vh, RhBVh)}.
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Proof. Let vh ∈ Vh,0. For any ph ∈Mh,

0 = b(vh, ph) = (Bvh, ph)Q̃ = (RhBvh, ph)h.

Taking ph = RhBvh gives us ‖RhBvh‖h = 0, and the inclusion Vh,0 ⊂ V0 follows from

(2.3.5). For the stability result, consider a generic function ph = RhBwh ∈Mh, where

wh ∈ V ⊥h,0. We obtain

mh = inf
ph∈Mh

sup
vh∈Vh

b(vh, ph)

|vh|V ‖ph‖h
= inf

wh∈V ⊥h,0
sup
vh∈Vh

(Bvh, RhBwh)Q̃
|vh|V ‖RhBwh‖h

= inf
wh∈V ⊥h,0

sup
vh∈Vh

(RhBvh, RhBwh)h
|vh|V ‖RhBwh‖h

≥ inf
wh∈V ⊥h,0

‖RhBwh‖2
h

|wh|V ‖RhBwh‖h

≥ c̃ inf
wh∈V ⊥h,0

‖Bwh‖Q̃
|wh|V

= c̃ mh,0,

where mh,0 is defined in (2.3.1).

In practice, this result is beneficial as the no projection type trial space is usually

easier to analyze. As a consequence of Proposition 2.3.2, under assumption (2.3.5)

both variational formulations (2.2.3) and (2.2.4) have a unique solution ph ∈ Mh.

Furthermore, using Proposition 2.1.2 for the discrete pair of spaces (Vh,Mh), the pair

(wh = 0, ph) is the solution of (2.2.4). The following result shows under condition

(2.3.5) that ph is a quasi-optimal solution to the original problem (2.0.1).

Proposition 2.3.3. If p is the solution of (2.0.1), ph is the solution of (2.2.3) (or

(0, ph) is the solution of (2.2.4)), and Rh satisfies (2.3.5), then

‖p− ph‖Q̃ ≤ C inf
qh∈Mh

‖p− qh‖Q̃,

where C depends only on c̃ of (2.3.5) and the equivalence of norms constants of (2.3.4).

Proof. Under the assumptions on p and ph, we obtain

0 = b(vh, p− ph) = (Bvh, p− ph)Q̃ for all vh ∈ Vh.
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In turn, this implies

(Bvh, p−Qhp)Q̃ = (Bvh, ph −Qhp)Q̃ for all vh ∈ Vh, (2.3.6)

where Qh is the orthogonal projection onto Mh. Note that

‖ph −Qhp‖h = sup
qh∈Mh

|(ph −Qhp, qh)h|
‖qh‖h

. (2.3.7)

Using (2.3.5) and (2.3.6), we obtain

sup
qh∈Mh

|(ph −Qhp, qh)h|
‖qh‖h

= sup
wh∈V ⊥h,0

|(ph −Qhp,RhBwh)h|
‖RhBwh‖h

= sup
wh∈V ⊥h,0

|(ph −Qhp,Bwh)Q̃|
‖RhBwh‖h

= sup
wh∈V ⊥h,0

|(p−Qhp,Bwh)Q̃|
‖RhBwh‖h

≤ sup
wh∈V ⊥h,0

‖p−Qhp‖Q̃ ‖Bwh‖Q̃
‖RhBwh‖h

≤ 1

c̃
‖p−Qhp‖Q̃.

Hence,

‖Qhp− ph‖Q̃ ≤
1

k1

‖Qhp− ph‖h ≤
1

c̃k1

‖p−Qhp‖Q̃,

from (2.3.4), (2.3.7), and the above estimate. Thus,

‖p− ph‖Q̃ ≤ ‖p−Qhp‖Q̃ + ‖Qhp− ph‖Q̃

≤
(

1 +
1

c̃k1

)
‖p−Qhp‖Q̃

= C inf
qh∈Mh

‖p− qh‖Q̃.

Remark 2.3.4. The no projection trial space described in Section 2.3.1 can be viewed

as a special case of the projection type trial space when Rh = I and the (·, ·)h inner

product coincides with the inner product on Q̃. Hence, in what follows we will equip the

trial space Mh with the inner product (·, ·)h for both the no projection and projection

type spaces for simplicity.
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2.4 An Iterative Solver

When solving (2.2.4) on (Vh,Mh = BVh) or (Vh,Mh = RhBVh), a global linear

system might be difficult to assemble as simple local bases may be hard to compute for

the space Mh, especially for the projection type. Nevertheless, it is possible to solve

(2.2.4) without an explicit basis forMh by using an Uzawa type iteration process, such

as the Uzawa Conjugate Gradient (UCG) algorithm [31, 88].

Algorithm 2.4.1. (UCG) Algorithm

Step 1: Set p0 = 0 ∈Mh. Compute w1 ∈ Vh, q1, d1 ∈Mh by

a(w1, v) = 〈fh, v〉 − b(v, p0) for all v ∈ Vh,

(q1, q)h = b(w1, q) for all q ∈Mh, d1 := q1.

Step 2: For j = 1, 2, . . . , compute hj, αj, pj, wj+1, qj+1, βj, dj+1 by

(UCG1) a(hj, v) =− b(v, dj) for all v ∈ Vh

(UCGα) αj =− (qj, qj)h
b(hj, qj)

(UCG2) pj = pj−1 + αj dj

(UCG3) wj+1 = wj + αj hj

(UCG4) (qj+1, q)h = b(wj+1, q) for all q ∈Mh

(UCGβ) βj =
(qj+1, qj+1)h

(qj, qj)h

(UCG6) dj+1 = qj+1 + βjdj.

Remark 2.4.2. Instead of taking the initial iterate p0 = 0 in Step 1 of the UCG

algorithm for each level of refinement of a suitable mesh for the problem to be solved,

if the refinements are nested we can take an approach in which p0 = 0 on the coarsest

mesh, but for all successive refinements p0 is chosen as the extension of the final iterate

from the previous level [8, 9, 10, 17, 22, 30, 32]. This approach will be referred to as

the UCG Cascadic algorithm.

Note that at each iteration step, one inversion involving the form a(·, ·) is re-

quired. Hence, a basis for Vh is needed. We will now show that an explicit basis for
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Mh is not needed in the algorithm. More specifically, we will show q1 and qj+1 in Steps

1 and UCG4 can be computed through the action of the operators B and Rh. For the

no projection choice of trial space outlined in Section 2.3.1, Step UCG4 and the second

equation of Step 1 can be written as

(qj+1, q)Q̃ = b(wj+1, q) = (Bwj+1, q)Q̃ for all q ∈Mh.

This implies

qj+1 = Bwj+1.

Also, for the choice of a projection type trial space outlined in Section 2.3.2,

(qj+1, q)h = b(wj+1, q) = (Bwj+1, q)Q̃ = (RhBwj+1, q)h for all q ∈Mh.

Hence, qj+1 is given by

qj+1 = RhBwj+1.

Remark 2.4.3. The steps involving the updates for the pj’s in Algorithm 2.4.1 re-

cover the steps of the standard Conjugate Gradient Algorithm [59] for solving problem

(2.2.5). Due to assumption (2.2.1), Sh is a symmetric, positive definite operator, see

Lemma 2.2.1. Consequently, the iterates pj converge to the solution ph with a rate of

convergence that depends on the condition number of Sh, which is

κ(Sh) =
M2

h

m2
h

≤ M2

m2
h

.

Theorem 2.4.4. If (wh, ph) is the discrete solution of (2.2.4) and (wj+1, pj) is the jth

iteration for Algorithm 2.4.1, then (wj+1, pj)→ (wh, ph) and

1

M2
‖qj+1‖h ≤ ‖pj − ph‖h ≤

1

m2
h

‖qj+1‖h,

mh

M2
‖qj+1‖h ≤ ‖wj+1 − wh‖V ≤

M

m2
h

‖qj+1‖h.
(2.4.1)

Proof. By induction over j, we obtain

a(wj+1, vh) + b(vh, pj) = 〈fh, vh〉 for all vh ∈ Vh.
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Combining this with the first equation of (2.2.4) gives us

a(wj+1 − wh, vh) = b(vh, ph − pj) for all vh ∈ Vh. (2.4.2)

Note that σ(Sh) ⊂ [m2
h,M

2
h ] from Lemma 2.2.1. Hence,

mh‖qh‖h = (Shqh, qh)
1/2
h ≤Mh‖qh‖h for all qh ∈Mh. (2.4.3)

By substituting vh = A−1
h B∗h(ph − pj) into (2.4.2),

|wj+1 − wh|2V = (Sh(ph − pj), ph − pj)h = ‖ph − pj‖2
Sh
.

The above equality and (2.4.3) gives us

mh‖ph − pj‖h ≤ |wj+1 − wh|V ≤Mh‖ph − pj‖h. (2.4.4)

From Step UCG4, the second equation of (2.2.4), and (2.4.2) we obtain

qj+1 = Bhwj+1 = Bh(wj+1 − wh) = Sh(ph − pj).

Thus,

m2
h‖ph − pj‖h ≤ ‖Sh(ph − pj)‖h = ‖qj+1‖h ≤M2

h‖ph − pj‖h. (2.4.5)

The inequalities (2.4.1) follow from (2.4.4) and (2.4.5) and the fact that Mh ≤ M .

From Remark 2.4.3 and the standard estimate for the convergence rate of the conjugate

gradient algorithm [31, 59], we obtain the estimate

‖ph − pj‖Sh ≤ 2

(
Mh −mh

Mh +mh

)j
‖ph − p0‖Sh .

Hence, pj → ph. From (2.4.1), we conclude that wj+1 → wh as well.

The first equation in (2.4.1) entitles ‖qj+1‖h as an efficient and uniform iteration

error estimator for Algorithm 2.4.1. Furthermore, Theorem 2.4.4 says that the iteration

error satisfies

‖pj − ph‖Q̃ ≤
1

k1m2
h

‖qj+1‖h.
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Thus, if the discretization error order of convergence is known, e.g., ‖p− ph‖ = O(hα),

and an estimate for mh is also available, the iteration error can match the discretization

error by imposing the stopping criteria

‖qj+1‖h ≤ cm2
hh

α.

Remark 2.4.5. The SPLS discretization method for solving the general mixed problem

(2.0.1) is related with the Bramble-Pasciak least squares approach presented in [34]. The

Bramble-Pasciak least squares discretization can be formulated as: Find ph ∈Mh such

that

b(A−1
h B∗hqh, ph) = 〈fh, A−1

h B∗hqh〉 = b(A−1
h fh, qh) for all qh ∈Mh. (2.4.6)

We note that the above problem is equivalent to the Schur complement problem (2.2.5).

While we arrive at essentially the same normal equation for solving (2.2.3), the saddle

point approach is more direct. Also, in [34], to iteratively solve (2.4.6) bases for both

the test and trial spaces are needed. In contrast, we solve the coupled saddle point

problem (2.2.4) using Algorithm 2.4.1, which avoids the need of a basis for the trial

space.

2.5 A Special Case

In some applications, such as in the case of the time-harmonic Maxwell equations

presented in Chapter 6, the space Q coincides with Q̃, and the theory presented in this

chapter reduces to the framework introduced in [20]. In regards to this case, the

following general estimate was proved in [20].

Theorem 2.5.1. Let b : V × Q → R satisfy (2.1.1) and (2.1.2) and assume that

F ∈ V ∗ is given and satisfies (2.1.3). Assume that p is the solution of (2.0.1) and

Vh ⊂ V , Mh ⊂ Q are chosen such that the discrete inf − sup condition (2.2.1) holds.

If (wh, ph) is the solution of (2.2.4), then the following error estimate holds:

1

M
|uh|V ≤ ‖p− ph‖Q ≤

M

mh

inf
qh∈Mh

‖p− qh‖Q. (2.5.1)

16



Chapter 3

SADDLE POINT LEAST SQUARES PRECONDITIONING

In this chapter, we present a general way to precondition the discrete saddle

point reformulation arising from the SPLS method of Chapter 2. When solving (2.2.4)

by Algorithm 2.4.1, the process requires the exact inversion of the operator Ah associ-

ated with the inner product a(·, ·) on Vh. This can be seen by writing Step 1 and Step

UCG1 in operator form as

w1 = A−1
h (fh −B∗hp0), and hj = A−1

h B∗dj,

respectively. A key observation of the SPLS framework is that the ph component to

the solution of problem (2.2.4) is independent of the choice of inner product on Vh. On

this premise, the goal of this chapter is to construct an equivalent form on Vh, which

will be denoted ã(·, ·), where the action of the operator Ã−1
h associated with this new

form is assumed to be fast and easy to implement, such as a suitable preconditioner for

Ah. With this form, we can introduce a preconditioned discrete saddle point problem:

Find (wh, ph) ∈ Vh ×Mh such that

ã(wh, vh) + b(vh, ph) = 〈fh, vh〉 for all vh ∈ Vh,

b(wh, qh) = 0 for all qh ∈Mh.

The main benefit of this approach to preconditioning is that we can analyze the above

saddle point problem in the same way as (2.2.4). This chapter is published in [13, 14].

This chapter is organized as follows. Section 3.1 describes the general theory

for constructing the preconditioned form ã(·, ·) and the resulting saddle point system.

In Section 3.2, the no projection and projection type trial spaces are revisited and the

stability is discussed when using the new form ã(·, ·). An Uzawa type iterative solver is
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outlined in Section 3.3 to solve the preconditioned saddle point system. In Section 3.4,

an analogous result to Theorem 2.5.1 is proved. Section 3.5 provides an application of

the approach that utilizes the theory of multilevel preconditioners.

3.1 The General Preconditioning Technique

In this section, we develop a general preconditioning strategy to approximate

the solution of (2.0.1) based on the saddle point reformulation (2.2.4) and elliptic

preconditioning of the operator associated with the inner product on Vh. First, we

consider an operator Ph : V ∗h → Vh that is equivalent to A−1
h in the following sense. We

assume Ph satisfies

〈g, Phf〉 = 〈f, Phg〉 for all f, g ∈ V ∗h , (3.1.1)

and

m2
1|vh|2V ≤ a(PhAhvh, vh) ≤ m2

2|vh|2V for all vh ∈ Vh, (3.1.2)

for positive constants m1,m2.

Remark 3.1.1. Assuming that m2
1,m

2
2 are the smallest and the largest eigenvalues of

PhAh, respectively, inequality (3.1.2) gives us the condition number of PhAh satisfies

κ(PhAh) =
m2

2

m2
1

. (3.1.3)

With the operator Ph : V ∗h → Vh, we define the form ã : Vh × Vh → R by

ã(uh, vh) := a((PhAh)
−1uh, vh) for all uh, vh ∈ Vh. (3.1.4)

Proposition 3.1.2. Under assumptions (3.1.1) and (3.1.2), the form ã(·, ·) is sym-

metric and equivalent with a(·, ·) on Vh × Vh.

Proof. For symmetry, it suffices to prove that the operator PhAh is symmetric with

respect to the a(·, ·) inner product. This follows from the definition of the operator Ah

and (3.1.1) as

a(PhAhuh, vh) = 〈Ahvh, PhAhuh〉 = 〈Ahuh, PhAhvh〉 = a(uh, PhAhvh),
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for any uh, vh ∈ Vh. The equivalence follows from (3.1.2) and (3.1.4) as

1

m2
2

|vh|2V ≤ ã(vh, vh) ≤
1

m2
1

|vh|2V for all vh ∈ Vh, (3.1.5)

and the fact that |vh|2V = a(vh, vh).

By Proposition 3.1.2, ã(·, ·) defines an equivalent inner product on Vh. We define

|vh|P := ã(vh, vh)
1/2,

to be the norm induced by the inner product ã(·, ·). Also, with the ã(·, ·) inner product

we define the operator Ãh : Vh → V ∗h by

〈Ãhuh, vh〉 := ã(uh, vh) for all uh, vh ∈ Vh.

Using the definitions of Ah, Ãh, and ã(·, ·), we obtain

〈Ãhuh, vh〉 = ã(uh, vh) = a((PhAh)
−1uh, vh) = 〈Ah(PhAh)−1uh, vh〉,

for any uh, vh ∈ Vh. This implies

Ãh = Ah(PhAh)
−1 = P−1

h .

Hence, we can view ã(·, ·) as a “preconditioned” version of the form a(·, ·).

Using the ã(·, ·) inner product on Vh, we consider the discrete saddle point

problem: Find (wh, ph) ∈ Vh ×Mh such that

ã(wh, vh) + b(vh, ph) = 〈fh, vh〉 for all vh ∈ Vh,

b(wh, qh) = 0 for all qh ∈Mh.
(3.1.6)

We call problem (3.1.6) the preconditioned saddle point least squares formulation of

(2.0.1). Using that Vh ⊂ V and Mh ⊂ Q̃ satisfy (2.2.1) and (2.2.2), we obtain

m̃h := inf
ph∈Mh

sup
vh∈Vh

b(vh, ph)

|vh|P ‖ph‖Q̃
≥ m1mh > 0, (3.1.7)

and

M̃h := sup
ph∈Mh

sup
vh∈Vh

b(vh, ph)

|vh|P ‖ph‖Q̃
≤ m2Mh ≤ m2M. (3.1.8)

19



Hence, (3.1.6) has a unique solution. The Schur complement associated with problem

(3.1.6) is

S̃h = BhÃ
−1
h B∗h = BhPhB

∗
h.

Solving for ph from (3.1.6), we obtain

S̃h ph = Bh(PhB
∗
h) ph = BhPhfh. (3.1.9)

We call the component ph of the solution (wh, ph) of (3.1.6) the preconditioned saddle

point least squares approximation of the solution p of the original mixed prolem (2.0.1).

Remark 3.1.3. In the approach taken in this chapter, we note that we are not pre-

conditioning the full Schur Complement Sh = BhA
−1
h B∗h. We are essentially replacing

the exact solve needed in Step 1 and Step UCG1 of Algorithm 2.4.1 with the action of

a suitable preconditioner on the right side.

3.2 The Discrete Spaces

In this section, we show for both the no projection trial space and the projection

type trial space described in Sections 2.3.1 and 2.3.2 that an inf − sup condition holds

when Vh is equipped with the ã(·, ·) inner product. Furthermore, we will show that

similar approximability properties hold as in the previous chapter.

3.2.1 No Projection Trial Space

Recall that the no projection trial space is defined as

Mh = BVh.

From (2.3.1) and (3.1.5), we obtain

inf
ph∈Mh

sup
vh∈Vh

b(vh, ph)

|vh|P ‖ph‖Q̃
≥ m1mh,0.

Hence, an inf − sup condition is satisfied. Also, since the space Vh,0 is independent

of the norm on Vh, we have Vh,0 ⊂ Vh. Furthermore, the approximability result from

Section 2.3.1, namely

‖p− ph‖Q̃ = inf
qh∈Mh

‖p− qh‖Q̃,
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is still valid.

3.2.2 Projection Type Trial Space

The projection type trial space is defined as

Mh = RhBVh,

where Rh : Q̃→ M̃h satisfies

(Rhp, qh)h = (p, qh)Q̃ for all qh ∈ M̃h,

and M̃h is a finite dimensional subspace of Q̃. Using that Vh,0 is independent of the

norm on Vh, if Rh satisfies (2.3.5) then Proposition 2.3.2 is still valid with an inf − sup

constant satisfying

inf
ph∈Mh

sup
vh∈Vh

b(vh, ph)

|vh|P ‖ph‖h
≥ m1c̃ mh,0.

Furthermore, Proposition 2.3.3 still holds, and we have

‖p− ph‖Q̃ ≤
(

1 +
1

c̃k1

)
inf

qh∈Mh

‖p− qh‖Q̃.

3.3 An Iterative Solver

We use a modified version of Algorithm 2.4.1 to solve (3.1.6) by replacing the

form a(·, ·) by ã(·, ·) in Step 1 and Step UCG1. With this modification, we obtain

the following Uzawa Preconditioned Conjugate Gradient (UPCG) algorithm for mixed

methods.

Algorithm 3.3.1. (UPCG) Algorithm for Mixed Methods

Step 1: Choose any p0 ∈Mh. Compute w1 ∈ Vh, q1, d1 ∈Mh by

ã(w1, vh) = 〈fh, vh〉 − b(vh, p0) for all vh ∈ Vh

q1 = Bhw1, d1 := q1.
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Step 2: For j = 1, 2, . . . , compute hj, αj, pj, wj+1, qj+1, βj, dj+1 by

(PCG1) ã(vh, hj) =− b(vh, dj) for all vh ∈ Vh

(PCGα) αj =− (qj, qj)h
b(hj, qj)

(PCG2) pj = pj−1 + αj dj

(PCG3) wj+1 = wj + αj hj

(PCG4) qj+1 =Bhwj+1,

(PCGβ) βj =
(qj+1, qj+1)h

(qj, qj)h

(PCG6) dj+1 = qj+1 + βjdj.

Remark 3.3.2. Instead of taking the initial iterate p0 = 0 in Step 1 of the UPCG

algorithm for each level of refinement of a suitable mesh for the problem to be solved,

if the refinements are nested we can take an approach in which p0 = 0 on the coarsest

mesh, but for all successive refinements p0 is chosen as the extension of the final iter-

ate from the previous level. This approach will be referred to as the UPCG Cascadic

algorithm.

Note that in operator form the first equation of Step 1 and Step PCG1 are

w1 = Ph(fh −B∗hp0), and hj = −Ph(B∗hdj).

For any preconditioner Ph and trial spaceMh that is not defined via a global projection,

the actions of Ph, Bh, and B∗h do not involve inversion processes. Section 3.5 gives an

example for the case when Ph is given as the BPX preconditioner [35]. Similar to

Remark 2.4.3, we have the following.

Remark 3.3.3. Algorithm 3.3.1 recovers in particular the steps of the Conjugate Gra-

dient algorithm for solving problem (3.1.9). Due to the discrete inf − sup condition

(2.2.1) and the assumptions (3.1.1) and (3.1.2) on the preconditioner Ph, the Schur

complement S̃h is a symmetric, positive definite operator. Consequently, the conjugate

22



iterations pj converge to the solution ph of (3.1.9), and the rate of convergence depends

on the condition number of S̃h, which is

κ(S̃h) =
M̃2

h

m̃2
h

.

The following result is analogous to Theorem 2.4.4.

Theorem 3.3.4. If (wh, ph) is the discrete solution of (3.1.6) and (wj, pj−1) is the jth

iteration for Algorithm 3.3.1, then (wj, pj−1)→ (wh, ph) and

1

M2

1

m2
2

‖qj‖h ≤ ‖pj−1 − ph‖h ≤
1

m2
h

1

m2
1

‖qj‖h,

mh

M2

m2
1

m2
2

‖qj‖h ≤ |wj − wh|V ≤
M

m2
h

m2
2

m2
1

‖qj‖h.
(3.3.1)

Proof. By induction over j, we obtain

ã(wj, vh) + b(vh, pj−1) = 〈f, vh〉 for all vh ∈ Vh.

Combining this with the first equation of (3.1.6) gives us

ã(wj − wh, vh) = b(vh, ph − pj−1) for all vh ∈ Vh. (3.3.2)

Note that σ(S̃h) ⊂ [m̃2
h, M̃

2
h ]. Hence,

m̃h‖qh‖h = (S̃hqh, qh)
1/2
h ≤ M̃h‖qh‖h for all qh ∈Mh. (3.3.3)

By substituting vh = Ã−1
h B∗h(ph − pj−1) into (3.3.2),

|wj − wh|2P = (S̃h(ph − pj−1), ph − pj−1)h = ‖ph − pj−1‖2
S̃h
.

The above equality, (3.1.5), and (3.3.3) give us

m1m̃h‖ph − pj−1‖h ≤ |wj − wh|V ≤ m2M̃h‖ph − pj−1‖h. (3.3.4)

From Step PCG4, the second equation of (3.1.6), and (3.3.2), we obtain

qj = Bhwj = Bh(wj − wh) = S̃h(ph − pj−1).
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Thus,

m̃2
h‖ph − pj−1‖h ≤ ‖S̃h(ph − pj−1)‖h = ‖qj‖h ≤ M̃2

h‖ph − pj−1‖h. (3.3.5)

The inequalities (3.3.1) follow from (3.3.4), (3.3.5), and the fact that m̃h ≥ mhm1 and

M̃h ≤ Mm2. From Remark 3.3.3 and the standard estimate for the convergence rate

of the conjugate gradient algorithm, we obtain

‖ph − pj‖S̃h ≤ 2

(
M̃h − m̃h

M̃h + m̃h

)j

‖ph − p0‖S̃h . (3.3.6)

Hence, pj → ph. From (3.3.1), we conclude that wj → wh as well.

The following estimates are a direct consequence of (3.1.3), (3.1.7), (3.1.8),

(3.3.6), and the formula κ(S̃h) =
M̃2
h

m̃2
h
.

Proposition 3.3.5. The condition number of the Schur complement

S̃h = BhPhB
∗
h satisfies

κ(S̃h) ≤
M2

h

m2
h

m2
2

m2
1

= κ(Sh) · κ(PhAh). (3.3.7)

Consequently, the convergence rate ρh for ‖pj − ph‖S̃h in (3.3.6) satisfies

ρh ≤
Mh

mh

m2

m1
− 1

Mh

mh

m2

m1
+ 1

.

The first equation in (3.3.1) entitles ‖qj+1‖h as an efficient and uniform iteration

error estimator for Algorithm 3.3.1. Furthermore, Theorem 3.3.4 says that the iteration

error satisfies

‖pj − ph‖Q̃ ≤
1

k1m2
1

1

m2
h

‖qj+1‖h.

Thus, if the discretization error order of convergence is known, e.g., ‖p− ph‖ = O(hα),

and an estimate for mh is also available, the iteration error can match the discretization

error by imposing the stopping criteria

‖qj+1‖h ≤ cm2
hh

α,

just as in the non-preconditioned approach of Chapter 2.
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Remark 3.3.6. The preconditioned SPLS discretization method for solving the general

mixed problem (2.0.1) is related with the Bramble-Pasciak preconditioned least squares

approach presented in [34]. In our notation, the Bramble-Pasciak least squares dis-

cretization can be formulated as: Find ph ∈Mh such that

b(A−1
h B∗hqh, ph) = 〈fh, A−1

h B∗hqh〉 = b(A−1
h fh, qh) for all qh ∈Mh.

With a suitable preconditioner Ph replacing A−1
h , the problem becomes: Find ph ∈Mh

such that

b(PhB
∗
hqh, ph) = b(Phfh, qh) for all qh ∈Mh. (3.3.8)

We note that (3.3.8) is equivalent to the Schur complement problem (3.1.9). In [34], to

iteratively solve (3.3.8) bases for both the test and trial spaces are needed. In contrast,

we solve the coupled preconditioned saddle point problem (3.1.6) using Algorithm 3.3.1,

which avoids the need of a basis for the trial space.

3.4 A Special Case

In this section, we prove an analogous result to Theorem 2.5.1 for the case when

Q coincides with Q̃ and Vh is equipped with the | · |P norm. The proof, as in the case

of Theorem 2.5.1, is based on the Xu-Zikatanov argument, see [93].

Theorem 3.4.1. Let b : V × Q → R satisfy (2.1.1) and (2.1.2) and assume F ∈ V ∗

is given and satisfies (2.1.3). Assume that Vh ⊂ V , Mh ⊂ Q are chosen such that the

discrete inf − sup condition (2.2.1) holds. If p is the solution of (2.0.1) and (wh, ph) is

the solution of (3.1.6), then the following error estimate holds:

1

M

1

m2
2

|wh|V ≤ ‖p− ph‖Q ≤
M

mh

m2

m1

inf
qh∈Mh

‖p− qh‖Q.

Proof. Define the operator Th : Q → Q by Thp = ph. Note that Th is linear and

idempotent. To show the latter, consider the problem: Find (w∗h, p
∗
h) ∈ Vh ×Mh such

that

ã(w∗h, vh) + b(vh, p
∗
h) = b(vh, ph) for all vh ∈ Vh,

b(w∗h, qh) = 0 for all qh ∈Mh.
(3.4.1)
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Since b satisfies (2.2.1), the inf − sup condition (3.1.7) is satisfied. Thus, problem

(3.4.1) has a unique solution. Since (w∗h, p
∗
h) = (0, ph) solves the problem, we conclude

Thph = ph which gives us T 2
h = Th. From Kato [61] and Xu and Zikatanov [93], this

implies

‖I − Th‖L(Q,Q) = ‖Th‖L(Q,Q).

Using the above equality, we obtain

‖p− ph‖Q = ‖(I − Th)p‖Q = ‖(I − Th)(p− qh)‖Q ≤ ‖Th‖ ‖p− qh‖Q, (3.4.2)

for an arbitrary qh ∈Mh.

We now estimate ‖Th‖. First, define Ṽ ⊥h,0 to be the orthogonal complement of

Vh,0 with respect to the ã(·, ·) inner product. From the first equation of (3.1.6) and the

fact p solves (2.0.1), we obtain

b(vh, ph) = b(vh, p)− ã(wh, vh). (3.4.3)

Also, (3.1.8) holds since b(·, ·) satisfies (2.1.1). Hence, from (3.1.7), (3.1.8), and (3.4.3)

we obtain

‖Thp‖Q ≤
1

mhm1

sup
vh∈Vh

b(vh, Thp)

|vh|P

=
1

mhm1

sup
vh∈Ṽ ⊥h,0

b(vh, ph)

|vh|P

=
1

mhm1

sup
vh∈Ṽ ⊥h,0

b(vh, p)− ã(wh, vh)

|vh|P

≤ Mm2

mhm1

‖p‖Q. (3.4.4)

The right inequality now follows from (3.4.2) and (3.4.4). For the left inequality, note

that

|uh|P = sup
vh∈Vh

ã(wh, vh)

|vh|P
= sup

vh∈Vh

b(vh, p− ph)
|vh|P

≤M m2‖p− ph‖Q,

and

|wh|V ≤ m2|wh|P .
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3.5 Application of a Multilevel Preconditioner

In order to illustrate the applicability of the theory presented thus far, we outline

a choice for Ph based on multilevel preconditioning techniques. More specifically, we

consider the case when Ph is given by the BPX preconditioner with a diagonal scaling,

see [35, 94]. Assume that we have a nested sequence of approximation spaces

V1 ⊂ V2 ⊂ · · · ⊂ VJ = Vh,

and let {φk1, φk2, . . . , φknk} denote the nodal basis for Vk. For fh ∈ V ∗h , the action of Ph

is given by

Phfh =
J∑
k=1

nk∑
i=1

〈fh, φki 〉
a(φki , φ

k
i )
φki . (3.5.1)

It is known that for V = H1
0 (Ω) and a nested sequence {Vk} of piecewise linear func-

tions that, under standard mesh uniformity conditions, Ph is a preconditioner for Ah

satisfying (3.1.1) and (3.1.2), see [35, 60, 90, 91, 94]. Similarly, we can consider the

standard BPX preconditioner in which

Phfh =
J∑
k=1

h2−d
k

nk∑
i=1

〈fh, φki 〉φki , (3.5.2)

for fh ∈ V ∗h . In the above expression, hk refers to the mesh size for each level of

refinement k. For the remainder of this thesis, we will refer to the preconditioner in

(3.5.2) as the standard BPX preconditioner and the preconditioner described in (3.5.1)

as the scaled BPX preconditioner.

In the case of the scaled BPX preconditioner, the first equation in Step 1 of

Algorithm 3.3.1 becomes

w1 = Ph(fh −B∗hp0) =
J∑
k=1

nk∑
i=1

〈fh, φki 〉 − b(φki , p0)

a(φki , φ
k
i )

φki . (3.5.3)

Furthermore, the iterates for hj in Step PCG1 are given by

hj = −
J∑
k=1

nk∑
i=1

b(φki , dj)

a(φki , φ
k
i )
φki . (3.5.4)
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This implies

b(hj, qj) = −
J∑
k=1

nk∑
i=1

b(φki , dj)b(φ
k
i , qj)

a(φki , φ
k
i )

, (3.5.5)

in Step PCGα. Thus, the implementation of Algorithm 3.3.1 does not involve matrix

inversion. Similarly, no matrix inversion is required with the standard BPX precondi-

tioner as well.

3.5.1 Implementation of the BPX Preconditioners

In this section, we will discuss the implementation of the BPX preconditioners

described in Section 3.5. We note that while any elliptic preconditioner can be used

for Ph, such as multigrid [36], we choose to show the details of the BPX precondition-

ers to emphasize the simplicity of implementation when dealing with mixed methods

preconditioning.

First, we define Tk ∈ RnJ×nk as the matrix representation of the nodal basis

{φk1, φk2, . . . , φknk} for Vk in terms of the nodal basis {φJ1 , φJ2 , . . . , φJnJ} for VJ . In [91],

it was shown that the implementation of the standard/scaled BPX preconditioners

depends entirely on the transformation matrices Tk. More specifically, the algebraic

form of the BPX preconditioners is given by

Ph =
J∑
k=1

TkRkT
t
k, (3.5.6)

where Rk = h2−d
k I corresponds to the standard BPX preconditioner and Rk = D−1

k ,

where

Dk = diag
(
a(φk1, φ

k
1), a(φk2, φ

k
2), . . . , a(φknk , φ

k
nk

)
)
,

corresponds to the scaled BPX preconditioner. The following algorithm gives the action

of Ph in (3.5.6) on a given vector in α ∈ RnJ .

Algorithm 3.5.1. (BPX)

Set αJ = α;

for k = J − 1 : 1

αk = (T k+1
k )Tαk+1;
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end

Set β1 = R1α1;

for k = 2 : J

βk = Rkαk + T kk−1βk−1;

end

Phα = βJ

3.5.2 Computational Complexity of the Proposed UPCG Algorithm

In this section, we discuss the complexity of Algorithm 3.3.1 when Ph is given as

the BPX preconditioner described in Section 3.5.1. From Step 1 or Step 2 of Algorithm

3.3.1, we observe at each step that the number of operations depends on the complexity

of Ph and the dimension of the test space Vh, say n = nh. A preconditioner Ph is of

optimal complexity if O(n) operations are needed to compute its action, where n is

the dimension of Vh. Preconditioners such as BPX, and even multigrid, are of optimal

complexity. For the BPX preconditioner defined in (3.5.1) (or (3.5.2)), this is because

for each k (using a standard refinement strategy, such as in 2D splitting each triangle

into four smaller triangles) we have nk = O(αk) for some α > 1 depending on the

dimension of the domain. Here, n = nJ is the dimension of Vh. In this case, the action

of Ph needs

O

(
J∑
k=1

nk

)
= O

(
J∑
k=1

αk

)
= O(αJ) = O(n),

operations. Using that the action of Bh is the action of a differential operator (most

often of first order) on a finite element function in Vh, we can conclude from formulas

(3.5.3), (3.5.4), and (3.5.5) that the rest of the operations in Step 1 or Step 2 of

Algorithm 3.3.1 sum up to at most O(n) operations.

Regarding the global complexity and optimality of the algorithm, it is known

that if the condition number of the symmetric, positive definite operator S̃h, defined

in (3.1.9), is independent of h then the number of iterations of the UPCG algorithm is

bounded independent of h. Thus, if Ph is an optimal complexity preconditioner which

is also a uniform preconditioner, i.e., the constants m1,m2 in (3.1.2) are independent of
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h, and the discrete inf − sup constant mh of (2.2.1) is independent of h, then Algorithm

3.3.1 is optimal. That is, to achieve a certain accuracy, it needs a number of operations

that is proportional to the dimension of the space Vh.
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Chapter 4

SPLS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS

To illustrate the SPLS discretization and preconditioning techniques described

thus far, we will apply the method to the second order elliptic problem −div(A∇u) = f in Ω,

u = 0 on ∂Ω,
(4.0.1)

where A is a symmetric matrix whose entries are discontinuous, with possibly large

jumps, across an interface. These interface problems have applications in a variety of

different fields. In material science, they arise in the study and design of composite

materials built from essentially different components, see [6, 23, 55, 64]. In fluid dy-

namics, they model several layers of fluids with different viscosities or diffusion through

heterogeneous porous media [26, 53]. In addition, the elliptic interface problem is used

to model stationary heat conduction problems with a conduction coefficient that is

discontinuous across a smooth internal interface [58], as well as in biological systems

[62].

In the SPLS approach for problem (4.0.1), we will directly target the flux A∇u,

which, in practice, is a more important physical quantity than the solution itself. At the

discrete level, the projection type trial space of Section 2.3.2 will be the primary focus,

and it falls into the noncomforming setting. One benefit of this type of trial space is that

we obtain a higher order of approximation for the flux compared with standard finite

element techniques using piecewise linear functions. To this end, the SPLS approach

using the projection type trial space is related to Gradient Recovery, a widely used

and effective post-processing technique, see [1, 24, 45, 56, 57, 79, 87, 95, 96, 97]. The

benefit of the SPLS approach is that we can approximate the flux well without the
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need of post-processing and higher order convergence is obtained through the iterative

process itself. This chapter is published in [13, 14, 15].

Throughout this chapter, L2(Ω) will denote the space of square integrable func-

tions with the inner product

(u, v) =

∫
Ω

uv,

and corresponding norm

‖u‖ =

(∫
Ω

|u|2
)1/2

= (u, u)1/2.

We will also denote by (·, ·) and ‖ · ‖ the inner product and norm of the vector-valued

product space L2(Ω)d. We further define the Sobolev space H1
0 (Ω) as the closure of

C∞0 (Ω), the space of smooth compactly supported functions in Ω, with respect to the

norm

‖u‖H1(Ω) := (‖u‖2 + ‖∇u‖2)1/2.

This chapter is organized as follows. Section 4.1 describes how problem (4.0.1)

fits into the SPLS framework. The discretization and choices of discrete trial spaces

are outlined in Section 4.2. Section 4.3 discusses the stability of the proposed discrete

spaces using a piecewise linear test space. Lastly, Section 4.4 presents numerical results,

with and without preconditioning, to show the performance of the SPLS method and

the benefits of the projection type of trial space.

4.1 SPLS for a Second Order Elliptic Interface Problem

Let Ω ⊂ Rd be a bounded polygonal domain with {Ωj}Nj=1 a partition of Ω and

nj be the outward unit normal vector to ∂Ωj. Define Γkm := ∂Ωk ∩ ∂Ωm to be the

interface between Ωk and Ωm for 1 ≤ k < m ≤ N . Given f ∈ L2(Ω), we consider the

problem of finding u ∈ H1
0 (Ω) such that

−div(A∇u) = f in Ω, (4.1.1)

with the continuity of the co-normal derivative condition

JA∇u · nKΓkm = (Ak∇uk · nk + Am∇um · nm)
∣∣
Γkm

= 0 for all k < m.
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We assume the matrix A is symmetric and satisfies

amin|ξ|2e ≤ 〈A(x)ξ, ξ〉e ≤ amax|ξ|2e for all x ∈ Ω, ξ ∈ Rd, (4.1.2)

for positive constants amin ≤ amax. In the above, 〈·, ·〉e and | · |e denote the standard

Euclidean inner product and norm for vectors in Rd, respectively.

Remark 4.1.1. While the theory in this chapter will be focused on the case when the

entries of the matrix A are discontinuous, we note that the theory can be adapted to

the case when the entries of A are continuous functions. We discuss this further in

Section 4.4.5.

A standard variational formulation for (4.1.1) is: Find u ∈ H1
0 (Ω) such that

(A∇u,∇v) = (f, v) for all v ∈ H1
0 (Ω). (4.1.3)

Changing the variable of interest to the flux p := A∇u, we rewrite the above formula-

tion as: Find p = A∇u, with u ∈ H1
0 (Ω), such that

(p,∇v) = (f, v) for all v ∈ H1
0 (Ω). (4.1.4)

To fit (4.1.4) into the abstract formulation (2.0.1), we let V := H1
0 (Ω), Q̃ := L2(Ω)d,

Q := A∇V , and define b : V × Q̃→ R by

b(v,q) := (q,∇v) for all v ∈ V,q ∈ Q̃.

We also define F ∈ V ∗ by

〈F, v〉 := (f, v) for all v ∈ V.

We consider the weighted inner product

a(u, v) := (A∇u,∇v) for all u, v ∈ V,

on V . On Q̃, we define the weighted inner product

(p,q)Q̃ := (p, A−1q) for all p,q ∈ Q̃.
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In this setting, the operator B : V → Q̃ is given by

Bv = A∇v for all v ∈ V.

Hence,

V0 = Ker(B) = {v ∈ V |Bv = 0} = {v ∈ H1
0 (Ω)|A∇v = 0} = {0},

and the compatibility condition (2.1.3) is automatically satisfied. Using the Cauchy-

Schwarz inequality, the continuity constant satisfies

M = sup
q∈Q̃

sup
v∈V

b(v,q)

|v|V ‖q‖Q̃

= sup
q∈Q̃

sup
v∈V

(q,∇v)

|v|V ‖q‖Q̃

= sup
q∈Q̃

sup
v∈V

(q, A∇v)Q̃
|v|V ‖q‖Q̃

≤ sup
v∈V

‖A∇v‖Q̃
(A∇v,∇v)1/2

= 1. (4.1.5)

Also, the inf − sup constant satisfies

m = inf
q=A∇u∈Q

sup
v∈V

b(v,q)

|v|V ‖q‖Q̃

= inf
u∈V

sup
v∈V

(A∇u,∇v)

(A∇u,∇u)1/2 (A∇v,∇v)1/2

≥ 1.

(4.1.6)

Consequently, the variational problem (4.1.4) is well-posed and suitable for SPLS dis-

cretization and preconditioning.

Remark 4.1.2. Defining a(u, v) := (∇u,∇v) is also a suitable choice for the inner

product on V as the p component of the solution to the saddle point reformulation is

independent of the norm on V . The choice does, however, have an effect on the number

of iterations of Algorithms 2.4.1 and 3.3.1. A more thorough discussion of this will be

given in Section 4.4.2.
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4.2 SPLS Discretization for Second Order Elliptic Interface Problems

At the discrete level, we take Vh ⊂ V = H1
0 (Ω) to be the space of continuous

piecewise polynomials of degree k with respect to the interface-fitted triangular mesh

Th for the test space. Several choices for the discrete trial space are now discussed.

4.2.1 No Projection Trial Space

Following Section 2.3.1, we consider the case when the trial space Mh is given

by

Mh := BVh = A∇Vh,

equipped with the inner product from Q̃. By a similar argument used to show (4.1.6),

we obtain

mh := inf
qh=A∇uh∈Mh

sup
vh∈Vh

b(vh,qh)

|vh|V ‖qh‖Q̃
≥ 1. (4.2.1)

Thus, we do have stability in this case. The discrete mixed variational formulation is:

Find ph = A∇uh, with uh ∈ Vh, such that

(ph,∇vh) = (A∇uh,∇vh) = (f, vh) for all vh ∈ Vh.

The discrete saddle point reformulation, using the a(·, ·) inner product, is: Find

(wh,ph = A∇uh) such that

(A∇wh,∇vh) + (ph,∇vh) = (f, vh) for all vh ∈ Vh,

A∇wh = 0.

4.2.2 Projection Type Trial Space

First, we define M̃h ⊂ Q̃ = L2(Ω)d to be

M̃h :=
N⊕
i=1

AMh,0|Ωi ,

where N is the number of subdomains and where each component of Mh,0|Ωi consists

of continuous piecewise polynomials of degree k with respect to the mesh Th,i := Th|Ωi
with no restrictions on the boundary. Two different choices for the projection type
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trial space, based on the inner product chosen for the space M̃h, are given. The first

is outlined in this section. The second is outlined in Section 4.3.1.

For the first type of projection trial space, we equip M̃h with the inner product

(Aq̃h, Ap̃h)h =
N∑
i=1

(Aq̃h, Ap̃h)Q̃,Ωi for all Aq̃h, Ap̃h ∈ M̃h.

Here, (·, ·)Q̃,Ωi is the inner product on Q̃ restricted to the subdomain Ωi. Using the

definition of Rh given in (2.3.3), we conclude that Rhp is the orthogonal projection of

p onto M̃h with respect to the (·, ·)Q̃ inner product. In turn, this implies Rhp|Ωj is

the orthogonal projection onto M̃h|Ωj = AMh,0|Ωj with respect to the (·, ·)Q̃,Ωj inner

product. We define the trial space as

Mh := R orth
h A∇Vh.

Remark 4.2.1. In general, Mh constructed in this way is not contained in Q. For

simplicity, we will consider the case when A = I in 3D. For any vh ∈ Vh, the vector

field qh = R orth
h ∇vh ∈ L2(Ω)3 can be decomposed as

qh = ∇u+ϕ,

for some u ∈ H1
0 (Ω) and ϕ ∈ L2(Ω)3 such that div(ϕ) = 0 [63, Theorem 4.23]. Taking

vh to be a nodal basis function, we can verify numerically that qh = R orth
h ∇vh is not

curl free. Hence, qh 6∈ Q = ∇H1
0 (Ω).

The discrete mixed variational formulation in this case is: Find ph = R orth
h A∇uh,

with uh ∈ Vh, such that

(ph,∇vh) = (R orth
h A∇uh,∇vh) = (f, vh) for all vh ∈ Vh.

The discrete saddle point reformulation in this case is: Find (wh,ph = R orth
h A∇uh)

such that

(A∇wh,∇vh) + (ph,∇vh) = (f, vh) for all vh ∈ Vh,

R orth
h A∇wh = 0.

(4.2.2)
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4.3 Piecewise Linear Test Space

In this section, we discuss the stability for the family of spaces {(Vh,Mh)},

where Mh is as outlined in Section 4.2.2, for the case when the matrix A is diagonal

and has constant coefficients. For simplicity, we assume Ω ⊂ R2 is a polygonal domain

separated into two subdomains by a smooth interface Γ ⊂ Ω. The results can easily be

extended to N subdomains as well as polyhedral domains in R3. We also assume that

the triangular mesh Th is locally quasi-uniform. In what follows, the index i = 1, 2 will

refer to the corresponding subdomain of Ω. Let {z1,i, . . . , zNi,i} be the set of all nodes

of Th,i and assume all triangles adjacent to zj,i are of regular shape and their area is of

order h2
j,i. In this notation, the mesh size of Th = Th,1 ∪ Th,2 is

h := max{h1,1, h2,1, . . . , hN1,1, h1,2, h2,2, . . . , hN2,2}.

We take Vh to be the space consisting of piecewise linear polynomials with

respect to Th vanishing on the boundary of Ω. Hence, each component of Mh,0|Ωi
consists of continuous linear piecewise polynomials with respect to the mesh Th,i. Let

{Φi
1, ...,Φ

i
2Ni
} denote a nodal basis for Mh,0|Ωi and assume that Φi

j = (φij, 0)T and

Φi
Ni+j

= (0, φij)
T for j = 1, . . . , Ni. Here, {φi1, . . . , φiNi} denotes the nodal basis for

the space of continuous piecewise linear polynomials with respect to Th,i. With this

notation, we note that {AΦ1
j}

2N1
j=1 ∪ {AΦ2

j}
2N2
j=1 is a basis for M̃h. We define MAi to be

the Gram matrix of the set {AΦi
j}

2Ni
j=1 with respect to the (·, ·)Q̃ inner product and

Hi := diag
(
h2

1,i, h
2
2,i, . . . , h

2
Ni,i

)
. Lastly, we let

Di =

 a11Hi

a22Hi

 ,
where a11, a22 are the entries of the matrix A.

Lemma 4.3.1. Under the assumptions of Section 4.3, we have that for i = 1, 2

〈MAiγ,γ〉e ≤ c 〈Diγ,γ〉e for all γ ∈ R2Ni . (4.3.1)

Consequently,

〈M−1
Ai
γ,γ〉e ≥ c〈D−1

i γ,γ〉e for all γ ∈ R2Ni , (4.3.2)
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where c is independent of h, a11, and a22.

Proof. We will prove the result when i = 1. The case when i = 2 is identical. Let

γ ∈ R2N1 and define qh :=

2N1∑
j=1

γjΦ
1
j . Note that

〈MA1γ, γ〉e = (Aqh,qh) = ‖Aqh‖2
Q̃

=
∑
τ∈Th

‖Aqh‖2
τ,Q̃
. (4.3.3)

If τ = [z1τ , z2τ , z3τ ], then

qh
∣∣
τ

=


3∑
j=1

γjτφ
1
jτ

3∑
j=1

γ(j+N1)τφ
1
jτ

 .

Hence,

‖Aqh‖2
τ,Q̃
≤ c |τ |

(
a11

3∑
j=1

γ2
jτ + a22

3∑
j=1

γ2
(j+N1)τ

)
. (4.3.4)

Using (4.3.3), (4.3.4), and the fact that each coefficient γk can repeat at most three

times, we obtain

〈MA1γ,γ〉e ≤ c

(
a11

N1∑
j=1

h2
j,1γ

2
j + a22

N1∑
j=1

h2
j,1γ

2
j+N1

)
= c 〈D1γ,γ〉e .

The estimate (4.3.2) follows from (4.3.1).

We now show that (2.3.5) is satisfied for the operator R orth
h defined in Section

4.2.2.

Lemma 4.3.2. Under the assumptions of Section 4.3, there exists a constant c, inde-

pendent of h, a11, and a22, such that

‖R orth
h A∇vh‖h ≥ c ‖A∇vh‖Q̃ for all vh ∈ Vh. (4.3.5)

Proof. First, note that {AΦ1
1, . . . , AΦ1

2N1
} and {AΦ2

1, . . . , AΦ2
2N2
} are nodal bases for

M̃h|Ω1 and M̃h|Ω2 , respectively. Define vih := vh|Ωi for vh ∈ Vh. For a fixed A∇vh with

vh ∈ Vh, we define the dual vectors G1
h ∈ R2N1 ,G2

h ∈ R2N2 by

(G1
h)i := (A∇v1

h, AΦ1
i )Q̃ = (A∇v1

h,Φ
1
i ) i = 1, ..., 2N1,
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(G2
h)i := (A∇v2

h, AΦ2
i )Q̃ = (A∇v2

h,Φ
2
i ) i = 1, ..., 2N2,

and let

R orth
h A∇vh =



2N1∑
i=1

αiAΦ1
i in Ω1,

2N2∑
i=1

βiAΦ2
i in Ω2.

Thus, α = (α1, α2, . . . , α2N1)
T and β = (β1, β2, . . . , β2N2)

T are solutions to

MA1 α = G1
h, and MA2 β = G2

h,

respectively. Using (4.3.2), we obtain

‖R orth
h A∇vh‖2

h =

2N1∑
i,j=1

αi αj
(
AΦ1

i ,Φ
1
j

)
+

2N2∑
i,j=1

βi βj
(
AΦ2

i ,Φ
2
j

)
=
〈
M−1

A1
G1
h,G

1
h

〉
e

+
〈
M−1

A2
G2
h,G

2
h

〉
e

≥ c1

〈
D−1

1 G1
h,G

1
h

〉
e

+ c2

〈
D−1

2 G2
h,G

2
h

〉
e
.

We recall by definition of H1, H2 that we have hi,1 = hi+N1,1 for i = 1, . . . , N1 and

hi,2 = hi+N2,2 for i = 1, . . . , N2. Hence,

〈
D−1

1 G1
h,G

1
h

〉
e

=

N1∑
i=1

h−2
i,1

[
a11

(
∂v1

h

∂x
, φ1

i

)2

+ a22

(
∂v1

h

∂y
, φ1

i

)2
]

=

N1∑
i=1

∑
τ⊂supp(φ1i )

h−2
i,1 (1, φ1

i )
2
τ

a11

∣∣∣∣∣∂v1
h

∂x

∣∣∣∣∣
2

τ

+ a22

∣∣∣∣∣∂v1
h

∂y

∣∣∣∣∣
2

τ


≥ c1‖A∇v1

h‖2
Ω1,Q̃

.

Similarly, we can show 〈
D−1

2 G2
h,G

2
h

〉
e
≥ c2‖A∇v2

h‖2
Ω2,Q̃

.

Thus,

‖R orth
h A∇vh‖2

h ≥ c
(
‖A∇v1

h||2Ω1,Q̃
+ ‖A∇v2

h‖2
Ω2,Q̃

)
= c‖A∇vh‖2

Q̃
,

as desired.
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As a consequence of Lemma 4.3.2, equation (4.2.1), and Proposition 2.3.2, we

obtain the following result.

Theorem 4.3.3. Let Ω ⊂ R2 be a polygonal domain and {Th} be a family of locally

quasi-uniform meshes for Ω. For each h, let Vh be the space of continuous linear

functions with respect to the mesh {Th} that vanish on ∂Ω and Mh = R orth
h BVh. Then

the family of spaces {(Vh,Mh)} is stable.

4.3.1 Second Type of Projection Trial Space

For simplicity, we present the second type of projection trial space for the case

when N = 1 (no interface). Using the same space M̃h as defined in Section 4.2.2, we

will consider an inner product on M̃h related with lumping the mass matrix. More

specifically, using the set {Φi} as described in Section 4.3, we define the following inner

product:

(AΦi, AΦj)h := δij(1, AΦi).

Note that (∑
i

(p, AΦi)Q̃
(1, AΦi)

AΦi, AΦj

)
h

= (p, AΦj)Q̃ for all AΦj ∈ M̃h.

This implies Rh : Q̃→ M̃h is given by

Rhp =
∑
i

(p, AΦi)Q̃
(1, AΦi)

AΦi =
∑
i

(p,Φi)

(1, AΦi)
AΦi,

from (2.3.3). For the application to the elliptic interface problem, we simply apply Rh

locally on each subdomain with respect to the (·, ·)h inner product as in Section 4.2.2.

We define the trial space in this case as

Mh := R lump
h A∇Vh.

Remark 4.3.4. Similar to the justification given in Remark 4.2.1, we can show in

general that Mh 6⊂ Q = ∇H1
0 (Ω).
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The problem to be solved using this projection type trial space is identical to

(4.2.2). The following lemma is analogous to 4.3.2.

Lemma 4.3.5. Under the assumptions of Section 4.3, there exists a constant c, inde-

pendent of h, a11, and a22, such that

‖R lump
h A∇vh‖h ≥ c ‖A∇vh‖Q̃ for all vh ∈ Vh. (4.3.6)

Proof. Using the same notation from the proof of Lemma 4.3.2, we obtain

‖R lump
h A∇vh‖2

h =

2N1∑
j=1

(A∇v1
h, AΦ1

j)
2
Q̃

(1, AΦ1
j)

2
(1, AΦ1

j) +

2N2∑
j=1

(A∇v2
h, AΦ2

j)
2
Q̃

(1, AΦ2
j)

2
(1, AΦ2

j)

=

2N1∑
j=1

(A∇v1
h,Φ

1
j)

2

(1, AΦ1
j)

+

2N2∑
j=1

(A∇v2
h,Φ

2
j)

2

(1, AΦ2
j)

≥ c1

〈
D−1

1 G1
h,G

1
h

〉
e

+ c2

〈
D−1

2 G2
h,G

2
h

〉
e
,

where

(G1
h)i := (A∇v1

h, AΦ1
i )Q̃ = (A∇v1

h,Φ
1
i ) i = 1, ..., 2N1,

(G2
h)i := (A∇v2

h, AΦ2
i )Q̃ = (A∇v2

h,Φ
2
i ) i = 1, ..., 2N2.

From the same techniques to estimate
〈
D−1

1 G1
h,G

1
h

〉
e

and
〈
D−1

2 G2
h,G

2
h

〉
e

as in the

proof of Lemma 4.3.2, the result follows.

As a consequence of Lemma 4.3.5, we have the following result.

Theorem 4.3.6. Let Ω ⊂ R2 be a polygonal domain and {Th} be a family of locally

quasi-uniform meshes for Ω. For each h, let Vh be the space of continuous linear

functions with respect to the mesh {Th} that vanish on ∂Ω and Mh = R lump
h BVh.

Then the family of spaces {(Vh,Mh)} is stable.

4.4 Numerical Results

In this section, we present results from applying the SPLS discretization on

second order elliptic PDE of the form (4.1.1) with and without preconditioning. For
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all examples, Ω will be a bounded polygonal or polyhedral domain and the test space

Vh ⊂ H1
0 (Ω) will be the space of continuous piecewise linear polynomials with respect

to the quasi-uniform, or locally quasi-uniform, meshes Th. We consider all types of

trial spaces presented in this chapter: the no projection type presented in Section

4.2.1 and the projection types presented in Sections 4.2.2 and 4.3.1. In the case of no

preconditioning, we use Algorithm 2.4.1. In the case of preconditioning, for Step 1 and

Step PCG1 of Algorithm 3.3.1, we consider the cases when Ph is given by the scaled

BPX preconditioner, described in Section 3.5, and a V-cycle multigrid preconditioner

with a Gauss-Seidel smoother. For a thorough analysis of these preconditioners for

elliptic interface problems, we refer to [36, 90, 92].

Based on the first inequalities of (2.4.1) and (3.3.1), we used a stopping criterion

of

‖qj‖h ≤ c0h
2,

on each level for the case of convex domains and uniform refinement. This is because

the maximum possible order for the discretization error ‖A∇u− R orth
h A∇uh‖Q̃, using

the projection onto continuous piecewise linear polynomials, would be order two. In

the two dimensional case with non-uniform refinement, we used a stopping criterion of

‖qj‖h ≤ c0N
−2
dof ,

on each level where Ndof is the number of degrees of freedom. In practice, we notice

that we cannot achieve order two. This could be because on each subdomain we

approximate, in a weighted L2 norm, a possibly smooth component of the flux, but use

subspaces of continuous piecewise linear functions as approximation spaces component

wise.

Remark 4.4.1. We note that while the flux A∇u is targetted for the SPLS discretiza-

tion of the interface problem, the primal variable u can be approximated along the

process simultaneously by separately storing the uj part of the iterates pj = A∇uj,

pj = R orth
h (A∇uj), or pj = R lump

h (A∇uj), which serve as a proxy pj, and follow the
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updates for pj as in the algorithm. However, for the piecewise linear approximation

we consider here, we do not observe a higher order of approximation for the primal

variable.

In all examples presented, the constant c will denote the size of the jump in

the coefficients of the matrix A. The level of mesh refinement will be denoted by k.

Furthermore, error = ‖A∇u − ph‖Q̃ for all examples, where the SPLS solution ph

depends on the type of trial space used.

4.4.1 Example With Intersecting Interfaces

For the first example, we consider Ω = (0, 1)× (0, 1) with the interface

Γ := Ω ∩ {(x, y) | x = 1/2 or y = 1/2} as considered in [24]. The family of interface-

fitted, locally quasi-uniform meshes {Th} was obtained by a standard uniform refine-

ment strategy starting with a uniform coarse mesh. We computed f such that for

A(x, y) = a(x, y)I2, where a(x, y) =

1 if (x, y) ∈ [0, 1/2]2 ∪ [1/2, 1]2,

c if (x, y) ∈ Ω \ ([0, 1/2]2 ∪ [1/2, 1]2),

the exact solution is

u(x, y) = a(x, y)−1 sin(2πx) sin(2πy).

Table 4.1 shows results for c = 1/10, 1/100, and 1/1000 using SPLS discretization

without preconditioning for both types of projection type trial spaces.

We observe higher order convergence for the flux for both types of projection trial

spaces. Furthermore, the method is robust with respect to the jump in the coefficients

of the matrix A. Table 4.2 shows results for the no projection trial space and both

types of projection trial spaces using the scaled BPX preconditioner. As expected, the

same order of convergence for the flux is observed in this case, along with a similar

error, as the approximability properties of the trial spaces are independent of the norm

on Vh. The same robustness properties are also observed. Table 4.3 shows results

using the multigrid preconditioner with the no projection trial space as well as the
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Mh = R orth
h A∇Vh

level k
h = 2−k

c = 1/10 c = 1/100 c = 1/1000
error rate it error rate it error rate it

1 5.177 1 15.686 1 49.383 1
2 1.258 2.041 4 3.812 2.041 4 12.001 2.041 4
3 0.339 1.893 7 1.026 1.893 8 3.231 1.893 10
4 0.097 1.868 11 0.281 1.868 13 0.885 1.868 16
5 0.025 1.877 17 0.076 1.880 22 0.240 1.880 28

Mh = R lump
h A∇Vh

level k
h = 2−k

c = 1/10 c = 1/100 c = 1/1000
error rate it error rate it error rate it

1 4.344 1 13.162 1 41.437 1
2 1.766 1.299 3 5.281 1.317 4 16.626 1.317 4
3 0.610 1.534 4 1.815 1.541 7 5.705 1.543 9
4 0.209 1.547 6 0.630 1.526 8 1.971 1.533 15
5 0.072 1.526 7 0.218 1.528 11 0.686 1.522 16

Table 4.1: Intersecting interface problem without preconditioning.

lump projection trial space. Compared with using the scaled BPX preconditioner, we

observe similar error and order of convergence and see a decrease in iterations.

Remark 4.4.2. We note that while combining the trial space Mh = R orth
h A∇V with

the scaled BPX preconditioner obtains the same order of convergence for the flux as in

the case of no preconditioning, a drawback to this choice is having to invert local mass

matrices in each iteration. When using the other types of trial spaces with precondi-

tioning, the resulting versions of Algorithm 3.3.1 do not involve matrix inversion.

4.4.2 Effects of Choosing a Different Inner Product on V

In reference to Remark 4.1.2, we demonstrate the benefit of choosing the weighted

inner product on V = H1
0 (Ω) in comparison to the inner product a(u, v) := (∇u,∇v).

To illustrate this, we consider the interface problem of Section 4.4.1 using SPLS dis-

cretization without preconditioning for both types of projection type trial spaces. Table

4.4 collects the results using the different inner product for c = 1/10, 1/100, and 1/1000.
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Mh = A∇Vh
level k
h = 2−k

c = 1/10 c = 1/100 c = 1/1000
error rate it error rate it error rate it

1 7.045 1 21.349 1 67.209 1
2 3.933 0.841 3 11.918 0.841 3 37.520 0.841 4
3 2.025 0.957 7 6.137 0.957 8 19.320 0.957 9
4 1.020 0.989 10 3.092 0.989 12 9.733 0.989 13
5 0.511 0.997 13 1.549 0.997 15 4.876 0.997 16

Mh = R orth
h A∇Vh

level k
h = 2−k

c = 1/10 c = 1/100 c = 1/1000
error rate it error rate it error rate it

1 5.177 1 15.686 1 49.383 1
2 1.258 2.041 4 3.812 2.041 4 12.001 2.041 4
3 0.339 1.893 10 1.026 1.893 12 3.231 1.893 13
4 0.093 1.868 24 0.281 1.868 26 0.885 1.868 31
5 0.025 1.877 48 0.076 1.880 59 0.240 1.880 66

Mh = R lump
h A∇Vh

level k
h = 2−k

c = 1/10 c = 1/100 c = 1/1000
error rate it error rate it error rate it

1 4.344 1 13.162 1 41.437 1
2 1.743 1.317 3 5.282 1.317 3 16.627 1.317 3
3 0.599 1.540 6 1.815 1.541 8 5.710 1.542 9
4 0.208 1.526 14 0.627 1.534 18 1.971 1.534 23
5 0.073 1.515 23 0.218 1.521 32 0.685 1.525 45

Table 4.2: Intersecting interface problem with scaled BPX preconditioner.

In comparison with Table 4.1, we see a significant increase in the number of

iterations when this inner product is chosen. This is due to the fact that κ(Sh), which

is related to the convergence of Algorithm 2.4.1, is influenced by the size in the jump

of coefficients. A similar behavior can be observed in the case of preconditioning as

the factor κ(Sh) appears in (3.3.7). Choosing the weighted inner product eliminates

the influence of the jump in the coefficients from κ(Sh) in all choices for the trial space

as seen in estimates (4.1.5), (4.1.6), (4.3.5) and (4.3.6).
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Mh = A∇Vh
level k
h = 2−k

c = 1/10 c = 1/100 c = 1/1000
error rate it error rate it error rate it

1 7.045 1 21.349 1 67.209 1
2 3.933 0.841 2 11.918 0.841 2 37.520 0.841 2
3 2.025 0.957 2 6.137 0.957 3 19.320 0.957 3
4 1.020 0.989 3 3.092 0.989 3 9.733 0.989 4
5 0.511 0.997 4 1.549 0.997 4 4.876 0.997 4

Mh = R lump
h A∇Vh

level k
h = 2−k

c = 1/10 c = 1/100 c = 1/1000
error rate it error rate it error rate it

1 4.344 1 13.162 1 41.437 1
2 1.796 1.304 4 5.281 1.317 6 16.626 1.317 7
3 0.606 1.536 4 1.815 1.541 7 5.704 1.543 10
4 0.208 1.541 6 0.629 1.528 8 1.972 1.532 15
5 0.072 1.522 8 0.218 1.527 12 0.686 1.523 17

Table 4.3: Intersecting interface problem with multigrid preconditioner.

Mh = R orth
h A∇Vh

level k
h = 2−k

c = 1/10 c = 1/100 c = 1/1000
error rate it error rate it error rate it

1 5.177 4 15.686 4 49.383 4
2 1.261 2.037 10 3.947 1.990 12 15.827 1.641 11
3 0.339 1.895 16 1.070 1.883 27 3.607 2.133 29
4 0.097 1.802 17 0.307 1.803 33 0.985 1.873 63
5 0.027 1.849 22 0.086 1.832 44 0.295 1.738 76

Mh = R lump
h A∇Vh

level k
h = 2−k

c = 1/10 c = 1/100 c = 1/1000
error rate it error rate it error rate it

1 4.506 3 30.796 2 99.170 2
2 1.963 1.199 5 6.404 2.265 8 20.605 2.267 10
3 0.622 1.658 8 1.937 1.725 15 7.758 1.409 16
4 0.216 1.528 8 0.664 1.545 17 2.099 1.886 38
5 0.074 1.546 11 0.231 1.521 19 0.736 1.512 38

Table 4.4: Intersecting interface problem with inner product (∇uh,∇vh).
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4.4.3 Example With Gradient Singularity at the Origin

For the second example, we solved (4.1.1) for a problem where the gradient of

the solution is singular at the origin, see [78]. The domain Ω = (−1, 1)2 is decomposed

as Ω2 := {(x, y) ∈ Ω | 0 < θ(x, y) < π/2} and Ω1 := Ω \ Ω2, where θ(x, y) is the angle

in polar coordinates of the point (x, y). We computed f such that for

A(x, y) = a(x, y)I2, where a(x, y) =

1 if (x, y) ∈ Ω1,

c if (x, y) ∈ Ω2,

the exact solution, given in polar coordinates, is u(r, θ) = rλ(1− r)2µ(θ) where

µ(θ) =

cos(λ(θ − π/4)) if (x, y) ∈ Ω2,

b cos(λ(π − |θ − π/4|)) otherwise,

and

λ =
4

π
arctan

(√
3 + c

1 + 3c

)
, b = −c

sin
(
λπ

4

)
sin
(
λ3π

4

) .
By using a similar standard uniform refinement strategy as in Section 4.4.1, Table 4.5

summarizes results using both types of projection trial spaces for c = 10 and c = 100.

Using uniform meshes, we observe a convergence rate less than one.

To better handle the singularity of the gradient, a family of interface-fitted,

locally quasi-uniform meshes {Th} was obtained by a graded refinement strategy de-

pending on a refinement parameter κ [18, 19]. The refinement is done by splitting each

triangle into four smaller triangles. In particular, we divide every edge that contains

the singular point (the origin in this case) under a fixed ratio κ such that the edge

containing the singular point is κ times the other segment. In the case κ = 1, we

recover the uniform refinement. Numerical results using graded meshes with κ = 0.22

are summarized in Table 4.6 for c = 10 and c = 100. Figure 4.1 depicts the mesh

generated (at the final level of refinement) using the graded refinement strategy for

κ = 0.22, as well as the x component of the computed flux, for the case of c = 10.
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Figure 4.1: Mesh and x component of the computed flux for gradient singularity
problem.
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Mh = R orth
h A∇Vh

level k
h = 2−k

c = 10 c = 100
error rate it error rate it

1 2.318 3 21.653 4
2 0.785 1.562 7 8.244 1.393 10
3 0.419 0.906 10 4.820 0.774 18
4 0.249 0.751 19 3.032 0.669 35
5 0.150 0.730 29 1.915 0.663 64

Mh = R lump
h A∇Vh

level k
h = 2−k

c = 10 c = 100
error rate it error rate it

1 2.212 1 20.549 3
2 0.805 1.457 3 8.287 1.310 9
3 0.460 0.807 6 5.271 0.653 13
4 0.276 0.738 8 3.365 0.647 24
5 0.167 0.722 12 2.131 0.659 36

Table 4.5: Gradient singularity problem on uniform meshes.

Mh = R orth
h A∇Vh

level k
c = 10 c = 100

error rate it error rate it
1 1.769 3 16.633 5
2 0.985 0.845 6 8.776 0.922 14
3 0.272 1.859 11 2.540 1.789 22
4 0.094 1.535 12 0.899 1.498 32
5 0.031 1.599 16 0.301 1.579 43

Mh = R lump
h A∇Vh

level k
c = 10 c = 100

error rate it error rate it
1 1.873 1 17.459 4
2 0.991 0.918 3 8.852 0.980 10
3 0.321 1.628 5 2.971 1.575 14
4 0.121 1.406 6 1.153 1.366 15
5 0.044 1.460 8 0.429 1.425 21

Table 4.6: Gradient singularity problem on graded meshes.
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As in the previous example, we observe higher order convergence for the flux

for each type of projection trial space. In addition, the method is robust with respect

to the jump in the coefficients.

4.4.4 Example of an Interface Problem in 3D

For the third example, we consider Ω ⊂ R3 the unit cube with interface

Γ := Ω ∩ {(x, y, z) |x = 1/2}. We computed f such that for

A(x, y, z) = a(x, y, z)I3, where a(x, y, z) =

1 if x < 1
2
,

c if x ≥ 1
2
,

the exact solution is

u(x, y, z) =

c x(x− 1
2
)y(y − 1)z(z − 1) if x < 1

2
,

(x− 1
2
)(x− 1)y(y − 1)z(1− z) if x ≥ 1

2
.

Table 4.7 shows the results for c = 100, 1000, and 10000 for both types of projection

type trial spaces. As in the 2D examples, we observe higher order convergence for the

flux, and the method is robust with respect to the jump in the coefficients. Table 4.8

shows results for the no projection trial space and the lump projection trial space with

the scaled BPX preconditioner. We observe a similar convergence rate and error for the

flux as well as robustness with respect to the jump in the coefficients. Table 4.9 shows

results using a multigrid preconditioner and the same types of trial spaces as in the

scaled BPX preconditioner case. Compared with using the scaled BPX preconditioner,

we obtain similar error and order of convergence and see a decrease in the number of

iterations.

4.4.5 Flux Recovery for Highly Oscillatory Coefficients

In reference to Remark 4.1.1, we will apply the SPLS discretization to an ex-

ample where the entries of A are smooth functions. In particular, we will illustrate

the advantage of SPLS discretization on an example where the matrix A has highly

oscillatory coefficients. In this chapter, we proved (4.3.5) and (4.3.6) for the case when
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Mh = R orth
h A∇Vh

level k
h = 2−k

c = 100 c = 1000 c = 10000
error rate it error rate it error rate it

1 5.177 1 15.686 1 49.383 1
2 1.258 2.041 4 3.812 2.041 4 12.001 2.041 4
3 0.339 1.893 7 1.026 1.893 8 3.231 1.893 10
4 0.097 1.868 11 0.281 1.868 13 0.885 1.868 16
5 0.025 1.877 17 0.076 1.880 22 0.240 1.880 28

Mh = R lump
h A∇Vh

level k
h = 2−k

c = 100 c = 1000 c = 10000
error rate it error rate it error rate it

1 4.344 1 13.162 1 41.437 1
2 1.766 1.299 3 5.281 1.317 4 16.626 1.317 4
3 0.610 1.534 4 1.815 1.541 7 5.705 1.543 9
4 0.209 1.547 6 0.630 1.526 8 1.971 1.533 15
5 0.072 1.526 7 0.218 1.528 11 0.686 1.522 16

Table 4.7: 3D interface problem without preconditioning.

Mh = A∇Vh
level k
h = 2−k

c = 100 c = 1000 c = 10000
error rate it error rate it error rate it

1 0.837 1 8.337 1 83.334 1
2 0.572 0.549 2 5.700 0.549 3 56.972 0.549 4
3 0.320 0.838 6 3.188 0.838 8 31.864 0.838 11
4 0.165 0.953 11 1.647 0.953 15 16.462 0.953 18
5 0.083 0.987 19 0.831 0.988 24 8.302 0.988 29

Mh = R lump
h A∇Vh

level k
h = 2−k

c = 100 c = 1000 c = 10000
error rate it error rate it error rate it

1 0.837 1 8.337 1 83.334 1
2 0.312 1.426 1 2.995 1.477 2 29.774 1.485 5
3 0.120 1.374 4 1.139 1.395 8 11.390 1.386 14
4 0.046 1.397 8 0.414 1.458 20 4.141 1.460 29
5 0.017 1.436 13 0.148 1.485 32 1.463 1.500 57

Table 4.8: 3D interface problem with scaled BPX preconditioner.
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Mh = A∇Vh
level k
h = 2−k

c = 100 c = 1000 c = 10000
error rate it error rate it error rate it

1 0.837 1 8.337 1 83.334 1
2 0.572 0.549 1 5.700 0.549 1 56.972 0.549 2
3 0.320 0.838 2 3.188 0.838 2 31.864 0.838 3
4 0.165 0.953 3 1.647 0.953 4 16.462 0.953 4
5 0.083 0.987 3 0.831 0.988 4 8.302 0.988 5

Mh = R lump
h A∇Vh

level k
h = 2−k

c = 100 c = 1000 c = 10000
error rate it error rate it error rate it

1 0.837 1 8.337 1 83.334 1
2 0.314 1.404 1 2.995 1.481 3 29.775 1.484 6
3 0.115 1.452 3 1.139 1.391 5 11.389 1.386 10
4 0.044 1.384 3 0.414 1.459 9 4.141 1.460 16
5 0.015 1.517 5 0.148 1.490 12 1.464 1.500 26

Table 4.9: 3D interface problem with multigrid preconditioner.

the matrix A is diagonal and has constant coefficients. This is an improvement upon

the same estimates compared with the case where A has smooth variable coefficients.

For this case, it was proved in [15] that

‖RhA∇vh‖h ≥ c
amin
amax

‖A∇vh‖Q̃ for all vh ∈ Vh,

where c is independent of h, Rh can be taken as either R orth
h or R lump

h , and amin and

amax are as defined in (4.1.2).

We solved (4.1.1) on Ω = (0, 1)× (0, 1) with A = a(x, y)I2, where

a(x, y) =
1

4 + P (sin(2πx/ε) + sin(2πy/ε))
.

We computed f such that the exact solution is given by

u(x, y) =

√
4− P 2

2
(x2 + y2) exp

(
1

x3 − x
+

1

y3 − y

)
.

This is a small modification of a similar example presented in [76]. Table 4.10 shows

results for various values of ε using both types of projection type trial spaces. In all

computations, we chose P = 1.8.
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Mh = R orth
h A∇Vh

level k
h = 2−k

ε = 0.2 ε = 0.1 ε = 0.05
error rate it error rate it error rate it

4 5.32e-05 1.692 1 6.74e-05 2.530 1 3.43e-04 1.462 1
5 1.47e-05 1.856 1 2.20e-05 1.617 1 3.61e-05 3.250 1
6 3.90e-06 1.915 1 6.61e-06 1.732 1 9.93e-06 1.863 1
7 1.04e-06 1.909 1 1.79e-06 1.884 1 3.03e-06 1.713 1

Mh = R lump
h A∇Vh

level k
h = 2−k

ε = 0.2 ε = 0.1 ε = 0.05
error rate it error rate it error rate it

4 1.10e-04 1.442 1 1.23e-04 1.687 1 2.93e-04 1.546 1
5 3.45e-05 1.677 1 4.79e-05 1.369 1 5.25e-05 3.483 1
6 9.63e-06 1.843 1 1.57e-05 1.609 1 2.17e-05 1.276 1
7 2.59e-06 1.896 1 4.44e-06 1.822 1 7.30e-06 1.571 1

Table 4.10: Results for highly oscillatory coefficients example.

The numerical results show almost O(h2) order of approximation for the flux

on meshes that are small enough to capture the high frequency of the coefficients due

to the size of ε. The method is also robust with respect to the size of ε. Figure 4.2

shows the x component of A∇u with the x component of the approximated flux from

the SPLS method.

4.4.6 A Comparison With the Standard PCG Method

In this section, we compare the performance of the preconditioned SPLS method,

using the no projection trial space, with directly applying the standard Preconditioned

Conjugate Gradient method for the matrix equation arising from the variational form

(4.1.3). We consider (4.1.1) with Ω = (0, 1)× (0, 1), A = I, and where f is computed

such that the exact solution is u(x, y) = x(1−x)y(1−y). We apply the standard PCG

method, UPCG (Algorithm 3.3.1), and UPCG cascadic algorithms with the choice

for Ph the standard BPX preconditioner given in (3.5.2). Table 4.11 compares the

performance of the UPCG algorithm, as well as the cascadic version, with the standard

PCG algorithm. In the table, error = ‖∇u − ∇uh‖. We see the performance of the
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Figure 4.2: x component of the exact and computed flux for highly oscillatory coef-
ficients example.
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UPCG algorithm is comparable with standard PCG. In addition, there is a significant

reduction in the number of iterations using the cascadic approach.

level k
h = 2−k

PCG UPCG UPCG cascadic
error rate it error rate it error rate it

1 0.045 0.000 1 0.045 0.000 2 0.045 0.000 2
2 0.024 0.903 5 0.024 0.896 4 0.025 0.837 2
3 0.012 0.974 7 0.012 0.944 5 0.013 0.952 3
4 0.006 0.991 8 0.006 1.016 7 0.007 0.974 3
5 0.003 0.996 9 0.003 0.988 8 0.003 0.994 3
6 0.001 1.002 11 0.001 1.012 10 0.002 1.002 3

Table 4.11: Comparison on unit square example.

For the next example, we consider a simple interface problem where

Ω = (0, 1)× (0, 1) with interface Γ := Ω∩{(x, y)| x = 1/2}. We computed f such that

for

A(x, y) = a(x, y)I2, where a(x, y) =

β if x ≥ 1
2
,

1 if x < 1
2
,

the exact solution is

u(x, y) =

β x(x− 1
2
)y(y − 1) if x < 1

2
,

(x− 1
2
)(x− 1)y(1− y) if x ≥ 1

2
.

In this case, the preconditioner is taken to be the scaled BPX preconditioner given in

(3.5.1). Table 4.12 compares the performance of the UPCG algorithm, as well as the

cascadic version, with the standard PCG algorithm for β = 10. Table 4.13 compares

the same algorithms for β = 100. In both tables, error = ‖A∇u − A∇uh‖Q̃. From

Tables 4.12 and 4.13, we see a similar behavior in the performance of the UPCG and

standard PCG algorithms as in the previous example.

4.4.7 Remarks on the SPLS Method

In the case of no preconditioning, we observe for both convex and non-convex

domains that the approximation of the flux is super-linear, and the method works
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level k
h = 2−k

PCG UPCG UPCG cascadic
error rate it error rate it error rate it

1 0.244 0.000 1 0.255 0.000 1 0.254 0.000 1
2 0.127 0.939 4 0.133 0.936 3 0.132 0.939 3
3 0.064 0.985 6 0.067 0.986 5 0.068 0.963 3
4 0.032 0.995 7 0.034 0.989 6 0.034 0.978 3
5 0.016 1.000 9 0.017 1.001 8 0.017 0.999 3
6 0.008 0.999 10 0.008 0.996 9 0.009 1.007 3

Table 4.12: Comparison on interface example with β = 10.

level k
h = 2−k

PCG UPCG UPCG cascadic
error rate it error rate it error rate it

1 2.427 0.000 1 2.439 0.000 2 2.439 0.000 2
2 1.265 0.940 4 1.271 0.940 5 1.271 0.940 4
3 0.639 0.985 6 0.642 0.985 7 0.642 0.985 5
4 0.320 0.994 7 0.322 0.996 9 0.322 0.996 6
5 0.160 1.000 9 0.161 0.999 11 0.161 0.999 5
6 0.080 0.999 10 0.081 0.999 12 0.081 0.999 6

Table 4.13: Comparison on interface example with β = 100.

well no matter the size of the jump discontinuity. Also, we notice that the number

of iterations depends on the size of the jump as well as h in the case of the interface

problems even with (4.1.5), (4.1.6), (4.3.5) and (4.3.6) independent of the coeffficients

of the matrix A and h. This can partly be due to fact that the stopping criteria depends

on the matrix A, as inherited by choice of the ‖ · ‖h norm on the trial space, as well as

h.

In the case of preconditioning, we observe that the approximation of the flux

is super-linear for the case of using a projection type trial space, as in the case of no

preconditioning. The number of iterations depends on the size of the jump as well

as the mesh size h. According to Remark 3.3.3 and estimate (3.3.7), the number of

iterations of Algorithm 3.3.1 depends on the condition number of the Schur comple-

ment of the unpreconditioned problem κ(Sh) and the condition number of the elliptic

preconditioner κ(PhAh). From Proposition 2.3.5, Lemma 4.3.2, and estimates (4.1.5),
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(4.2.1), we obtain

κ(Sh) ≤
M2

m2
h

≤ c,

with c independent of the size of the jump and the mesh size. For both the BPX and

multigrid preconditioners we used in our numerical experiments, according to [92],

κ(PhAh) ≤ cmin

{
cd(h),

amax
amin

}
,

where cd(h) = | log h|2 when d = 2 and cd(h) = h−1 when d = 3 (d refers to the

dimension). Combining (3.3.7) with the above two inequalities, we obtain

κ(S̃h) ≤ C min

{
cd(h),

amax
amin

}
.

We also note that a slight dependence on h is also due to the imposed stopping criterion

as described in the case of no preconditioning.
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Chapter 5

SPLS FOR REACTION DIFFUSION EQUATIONS

In this chapter, we will apply the SPLS method to reaction diffusion problems

of the form  −ε∆u+ cu = f in Ω,

u = 0 on ∂Ω,
(5.0.1)

for non-negative constants ε and c. A particular problem of interest is the reaction dom-

inated case in which ε � 1. These types of equations arise in heat transfer problems

in thin domains [2] as well as when using small step sizes are used in implicit time dis-

cretizations of parabolic reaction diffusion type problems [71]. The solutions to these

problems are characterized by exponential boundary layers of width O(ε1/2 ln(1/ε))

[81], which pose a challenge numerically.

Finite element methods for these types of problems have been intensively stud-

ied, see e.g., [47, 67, 68, 69, 70, 71, 72, 81, 82]. Some of these references include

least-squares approaches. In [71], a mixed method approach is given by introducing a

new variable for ∇u, rewriting (5.0.1) as a first order system, and utilizing H(div; Ω)

conforming spaces. We consider an approach in which we adopt the use of graph

type trial spaces. The advantage of this is no new variables are introduced, and the

formulation involves H1 type spaces and piecewise linear approximation.

The chapter is organized as follows. In Section 5.1, we detail the steps to fit

(5.0.1) into the SPLS framework. Section 5.2 involves the discretization and choices of

discrete trial spaces using a piecewise linear test space. The stability of the proposed

discrete spaces is discussed in Section 5.3. In Section 5.4, we describe the construction

of a Shishkin mesh, which is a specific type of mesh used to resolve the boundary layers
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exhibited by the solutions for small ε. Lastly, numerical results are given in Section

5.5 to support and show the performance of the SPLS approach.

5.1 SPLS for Reaction Diffusion Equations

In this section, we will describe how to apply the general SPLS theory to problem

(5.0.1). A standard variational formulation for (5.0.1) is: Find u ∈ H1
0 (Ω) such that

(ε∇u,∇v) + (cu, v) = (f, v) for all v ∈ H1
0 (Ω). (5.1.1)

To fit this equation into the SPLS framework, we let V := H1
0 (Ω), Q̃ := L2(Ω)×L2(Ω)d,

and Q be the graph of the operator ε∇ : H1
0 (Ω)→ L2(Ω)d, i.e.,

Q := G(ε∇) =
{

( v
ε∇v ) | v ∈ H1

0 (Ω)
}
.

Since the operator ε∇ is bounded from H1
0 (Ω) to L2(Ω)d, the space Q is closed by the

Closed Graph Theorem. We define the bilinear form b : V × Q̃→ R as

b(v, ( qq )) := (cq, v) + (q,∇v) for all v ∈ V, ( qq ) ∈ Q̃,

and the linear functional F ∈ V ∗ as

〈F, v〉 := (f, v) for all v ∈ H1
0 (Ω).

With this setting, the SPLS formulation of (5.1.1) is: Find p = ( u
ε∇u ) ∈ Q such that

b(v,p) = (cu, v) + (ε∇u,∇v) = (f, v) for all v ∈ V. (5.1.2)

On V , the inner product that we consider is

a(u, v) = (ε∇u,∇v) + (cu, v) for all u, v ∈ V,

which gives rise to the norm

|v|V =
(
‖c1/2v‖2 + ‖ε1/2∇v‖2

)1/2
.

On Q̃, we consider the inner product

(( qq ) , ( pp ))Q̃ = (cq, p) + (ε−1q,p) for all ( qq ) , ( pp ) ∈ Q̃.

59



The corresponding norm is

‖ ( qq ) ‖Q̃ =
(
‖c1/2q‖2 + ‖ε−1/2q‖2

)1/2
.

The operator B : V → Q̃ is given by

Bv = ( v
ε∇v ) for all v ∈ V.

In the setting, the compatibility condition (2.1.3) is automatically satisfied as

V0 = Ker(B) = {v ∈ H1
0 (Ω) |Bv = 0} = {0}.

In addition, we obtain

sup
v∈V

b(v, ( u
ε∇u ))

|v|V
= sup

v∈V

(ε∇u,∇v) + (cu, v)

(‖c1/2v‖2 + ‖ε1/2∇v‖2)1/2

≥ ‖c1/2u‖2 + ‖ε1/2∇u‖2

(‖c1/2u‖2 + ‖ε1/2∇u‖2)1/2

= ‖ ( u
ε∇u ) ‖Q̃,

(5.1.3)

for any ( u
ε∇u ) ∈ Q. This implies the inf − sup condition on V ×Q. For the continuity

of the bilinear form b(·, ·), note that

b(v, ( qq )) = (cq, v) + (q,∇v)

= (c1/2q, c1/2v) + (ε−1/2q, ε1/2∇v)

≤ ‖c1/2q‖ ‖c1/2v‖+ ‖ε−1/2q‖ ‖ε1/2∇v‖

≤ (‖c1/2q‖2 + ‖ε−1/2q‖2)1/2(‖c1/2v‖2 + ‖ε1/2∇v‖2)1/2

= |v|V ‖ ( qq ) ‖Q̃,

(5.1.4)

by the Cauchy-Schwarz inequality for any v ∈ V and ( qq ) ∈ Q̃. Thus, the variational

problem (5.1.2) is suitable for SPLS discretization.

5.2 SPLS Discretization for Reaction Diffusion Problems

In this section, we will discuss possible choices for the discrete spaces as well

as their stability. The choices for the trial space will be based on the no projection

and projection type spaces outlined in Section 2.3.1 and 2.3.2. For the discrete test

space, we take Vh ⊂ V = H1
0 (Ω) to be the space of continuous piecewise polynomials

of degree k with respect to the mesh Th.
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5.2.1 No Projection Trial Space

Following Section 2.3.1, we consider the case when the trial space Mh is given

by

Mh := BVh =

 I

ε∇

Vh,

where I : Vh → Vh is the identity operator and the inner product is chosen to coincide

with the inner product on Q̃. By a similar argument used to show (5.1.3), we obtain

sup
vh∈Vh

b
(
vh,
( uh
ε∇uh

))
|vh|V

≥
∥∥ ( uh

ε∇uh
) ∥∥

Q̃
, (5.2.1)

for any
( uh
ε∇uh

)
∈ Mh. Thus, we do have stability in this case. Furthermore, the

stability is independent of the parameters c and ε.

Remark 5.2.1. Having the stability constant independent of the parameters associated

with the problem is particularly beneficial when dealing with the case of small ε, the case

presented in this chapter, or the case of reaction diffusion problems with discontinuous

coefficients. Preliminary results for the latter case will be discussed in Chapter 7.

The discrete mixed variational formulation in this case becomes: Find

ph =
( uh
ε∇uh

)
, with uh ∈ Vh, such that

b(vh,ph) = (ε∇uh,∇vh) + (cuh, vh) = (f, vh) for all vh ∈ Vh.

The discrete saddle point reformulation to be solved is: Find
(
wh,ph =

( uh
ε∇uh

))
such

that

ε(∇wh +∇uh,∇vh) + c(wh + uh, vh) = (f, vh) for all vh ∈ Vh,( wh
ε∇wh

)
= 0.

5.2.2 Projection Type Trial Space

For the projection type trial space, we first define M̃h ⊂ Q̃ = L2(Ω) × L2(Ω)d

to be

M̃h := Mh,0 × εMh,0,
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where Mh,0 consists of continuous piecewise polynomials of degree k with respect to

the mesh Th with no restrictions on the boundary. The space Mh,0 is the vector-valued

product space in which each component consists of continuous piecewise polynomials

of degree k. Two different choices for the projection type trial space, based on the

inner product chosen for M̃h, are given in a similar way as the previous chapter. The

first is outlined in this section. The second is outlined in Section 5.3.1.

For the first type of projection trial space, we equip M̃h with the inner product

induced from Q̃. Using the definition of Rh given in (2.3.3), we obtain Rh ( qq ) is the

orthogonal projection of ( qq ) onto M̃h with respect to the (·, ·)Q̃ inner product. More

specifically, we have that

Rh

q
q

 =

Q1
hq

Q2
hq

 ,

where Q1
h : L2(Ω) → Mh,0 is the orthogonal projection with respect to the weighted

inner product (·, ·)c and Q2
h : L2(Ω)d →Mh,0 is the orthogonal projection with respect

to the weighted inner product (·, ·)ε−1 . We now define the projection type trial space

as

Mh := R orth
h BVh,

where the elements are given by

R orth
h Bvh =

 Q1
hvh

Q2
h(ε∇vh)

 .

Remark 5.2.2. In general, Mh constructed in this way is not contained in Q. The

reasoning is similar with the discussion of the orthogonal projection type trial space

of the previous chapter in Remark 4.2.1. A similar justification holds for the lump

projection trial space outlined in Section 5.3.1.

The discrete mixed variational formulation in this case is: Find ph = R orth
h Buh,

with uh ∈ Vh, such that

b(vh,ph) = (f, vh) for all vh ∈ Vh,
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where b(·, ·) is defined in Section 5.1. The SPLS discretization (2.2.4) to be solved is:

Find (wh,ph = R orth
h A∇uh) such that

a(wh, vh) + b(vh,ph) = (f, vh) for all vh ∈ Vh,

R orth
h A∇wh = 0.

(5.2.2)

5.3 Piecewise Linear Test Space

In this section, we discuss the stability for the family of spaces {(Vh,Mh)},

where Mh is as outlined in Section 5.2.2. For simplicity, we assume Ω ⊂ R2 is a

polygonal domain. The results can be extended to polyhedral domains in R3. We also

assume that the triangular mesh Th is locally quasi-uniform. Let {z1, . . . , zN} be the set

of all nodes of Th and assume all triangles adjacent to zj are of regular shape and their

area is of order h2
j . In this notation, the mesh size of Th is h := max{h1, h2, . . . , hN}.

Remark 5.3.1. We note that while the analysis done in this section assumes that

the mesh Th is locally quasi-uniform, the Shishkin type mesh, that will be outlined in

Section 5.4, does not satisfy this property. Nevertheless, the analysis presented in this

section can be applied to reaction diffusion problems in which the solutions do not

exhibit boundary layers, such as the problem presented in Section 5.5.1 or the interface

problem presented in Chapter 7. A rigorous analysis of the stability of the family of

spaces {(Vh,Mh)} on Shishkin type meshes, where Mh is of projection type, will be

conducted in the near future.

We take Vh to be the space consisting of piecewise linear polynomials with re-

spect to Th vanishing on the boundary of Ω. Also, we take Mh,0 to consist of continuous

linear piecewise polynomials with respect to the mesh Th. Let {φ1, . . . , φN} denote a

nodal basis for Mh,0 with respect to the mesh Th and {Φ1, ...,Φ2N} denote a nodal

basis for Mh,0, where Φj = (φj, 0)T and ΦN+j = (0, φj)
T for j = 1, . . . , N . With this

notation, {φj}Nj=1∪{εΦj}2N
j=1 is a basis for M̃h. We further define Mε to be the matrix
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whose entries are (εΦi, εΦj)ε−1 = (εΦi,Φj) and H := diag (h2
1, h

2
2, . . . , h

2
N). Lastly, we

let

Dε =

 εH

εH

 .
Lemma 5.3.2. Under the assumptions of Section 5.3,

〈Mεγ,γ〉e ≤ C 〈Dεγ,γ〉e for all γ ∈ R2N . (5.3.1)

Consequently,

〈M−1
ε γ,γ〉e ≥ C〈D−1

ε γ,γ〉e for all γ ∈ R2N , (5.3.2)

where c is independent of h and ε.

Proof. Let γ ∈ R2N and define qh :=
2N∑
j=1

γjΦj. Note that

〈Mεγ,γ〉e = (εqh,qh) = ‖εqh‖2
ε−1 =

∑
τ∈Th

‖εqh‖2
τ,ε−1 . (5.3.3)

If τ = [z1τ , z2τ , z3τ ], then

qh
∣∣
τ

=


3∑
j=1

γjτφjτ

3∑
j=1

γ(j+N)τφjτ

 .

Hence,

‖εqh‖2
τ,ε−1 ≤ C |τ |

(
ε

3∑
j=1

γ2
jτ + ε

3∑
j=1

γ2
(j+N)τ

)
. (5.3.4)

Using (5.3.3), (5.3.4), and the fact that each coefficient γk can repeat at most three

times, we obtain

〈Mεγ,γ〉e ≤ C

(
ε

N∑
j=1

h2
jγ

2
j + ε

N∑
j=1

h2
jγ

2
j+N

)
= C 〈Dεγ,γ〉e .

The estimate (5.3.2) follows from (5.3.1).

We now show that (2.3.5) is satisfied for the operator R orth
h defined Section 5.2.2.
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Lemma 5.3.3. Under the assumptions of Section 5.3, there exists a constant C, in-

dependent of h and ε, such that

‖R orth
h

( vh
ε∇vh

)
‖h ≥ C ‖

( vh
ε∇vh

)
‖Q̃ for all vh ∈ Vh. (5.3.5)

Proof. For a fixed
( vh
ε∇vh

)
, with vh ∈ Vh, we define the vector Gh ∈ R2N by

(Gh)i := (ε∇vh, εΦi)ε−1 = (ε∇vh,Φi) i = 1, ..., 2N.

Recall that

R orth
h

 vh

ε∇vh

 =

 Q1
hvh

Q2
h(ε∇vh)

 ,

where Q1
h and Q2

h are defined in Section 5.2.2. Note that Q1
hvh = vh and let

Q2
h(ε∇vh) =

2N∑
i=1

αiεΦi

Thus, α = (α1, α2, . . . , α2N)T is a solution to

Mε α = Gh.

Using (5.3.2), we obtain

‖R orth
h

( vh
ε∇vh

)
‖2
h = ‖c1/2vh‖2 +

2N∑
i,j=1

αi αj (εΦi,Φj)

= ‖c1/2vh‖+
〈
M−1

ε Gh,Gh

〉
e

≥ C
(
‖c1/2vh‖+

〈
D−1
ε Gh,Gh

〉
e

)
.

From the definition of the matrix H, we recall hi = hi+N for i = 1, . . . , N . Thus,

〈
D−1
ε Gh,Gh

〉
e

=
N∑
i=1

h−2
i

[
ε

(
∂vh
∂x

, φi

)2

+ ε

(
∂vh
∂y

, φi

)2
]

=
N∑
i=1

∑
τ⊂supp(φi)

h−2
i (1, φi)

2
τ

ε∣∣∣∣∣∂vh∂x
∣∣∣∣∣
2

τ

+ ε

∣∣∣∣∣∂vh∂y
∣∣∣∣∣
2

τ


≥ C‖ε∇vh‖2

ε−1 .
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Hence,

‖R orth
h

( vh
ε∇vh

)
‖2
h ≥ C

(
‖c1/2vh‖2 + ‖ε∇vh‖2

ε−1

)
= C‖

( vh
ε∇vh

)
‖Q̃.

As a consequence of Lemma 5.3.3, equation (5.2.1), and Proposition 2.3.2, we

obtain the following result.

Theorem 5.3.4. Let Ω ⊂ R2 be a polygonal domain and {Th} be a family of locally

quasi-uniform meshes for Ω. For each h, let Vh be the space of continuous linear

functions with respect to the mesh {Th} that vanish on ∂Ω and Mh = R orth
h BVh. Then

the family of spaces {(Vh,Mh)} is stable.

5.3.1 Second Type of Projection Trial Space

In this section, we consider an inner product on M̃h that is related with lumping

the mass matrix and the theory presented in Section 4.3.1. Let ( qhqh ) , ( phph ) ∈ M̃h be

two arbitrary elements. We can write

qh =
2N∑
i=1

αiεΦi, and ph =
2N∑
i=1

βiεΦi,

for some α = (α1, α2, . . . , α2N) and β = (β1, β2, . . . , β2N). We consider the following

inner product on M̃h:

(( qhqh ) , ( phph ))h := (cqh, ph) +
2N∑
i=1

αiβi(1, εΦi).

For simplicity, we will denote

(qh,ph)lump :=
2N∑
i=1

αiβi(1, εΦi),

for the second part of the (·, ·)h inner product. Note that for any q ∈ L2(Ω)d(
2N∑
i=1

(q, εΦi)ε−1

(1, εΦi)
εΦi, εΦj

)
lump

= (q, εΦj)ε−1 for all εΦj ∈Mh,0.
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Using (2.3.3), we conclude Rh : Q̃→ M̃h is given by

Rh

q
q

 =

 Q1
hq

Q lump
h q

 ,

where

Q lump
h q =

2N∑
i=1

(q, εΦi)ε−1

(1, εΦi)
εΦi =

2N∑
i=1

(q,Φi)

(1,Φi)
Φi.

We define the projection type trial space in this case as

Mh := R lump
h BVh.

The problem to be solved using this projection type trial space is identical to (5.2.2).

The following lemma is analogous to 5.3.3.

Lemma 5.3.5. Under the assumptions of Section 5.3, there exists a constant C, in-

dependent of h and ε, such that

‖R lump
h

( vh
ε∇vh

)
‖h ≥ C ‖

( vh
ε∇vh

)
‖Q̃ for all vh ∈ Vh. (5.3.6)

Proof. Using the same notation from the proof of Lemma 5.3.3, we obtain

‖R lump
h

( vh
ε∇vh

)
‖2
h = ‖c1/2vh‖2 +

2N∑
i=1

(ε∇vh, εΦi)
2
ε−1

(1, εΦi)2
(1, εΦi)

= ‖c1/2vh‖2 +
2N∑
i=1

(ε∇vh,Φi)
2

(1, εΦi)

≥ C
(
‖c1/2vh‖2 +

〈
D−1
ε Gh,Gh

〉
e

)
,

where

(Gh)i := (ε∇vh, εΦi)ε−1 = (ε∇vh,Φi) i = 1, ..., 2N.

From the same techniques used to estimate 〈D−1
ε Gh,Gh〉e as in the proof of Lemma

5.3.3, the result follows.

As a consequence of Lemma 5.3.5, we obtain the following result.

Theorem 5.3.6. Let Ω ⊂ R2 be a polygonal domain and {Th} be a family of locally

quasi-uniform meshes for Ω. For each h, let Vh be the space of continuous linear

functions with respect to the mesh {Th} that vanish on ∂Ω and Mh = R lump
h BVh.

Then the family of spaces {(Vh,Mh)} is stable.
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5.4 The Construction of a Shishkin Mesh

In this section, we describe the construction of a Shishkin mesh [86] for the unit

square. These types of meshes are widely used when dealing with reaction dominated

diffusion problems in order to resolve the boundary layers exhibited by the solution of

the problem. This type of mesh will be used in Sections 5.5.2, 5.5.3, and 5.5.4. We

will follow the outline given in [81] to construct a Shishkin mesh for a solution that

exhibits boundary layers on all sides of the unit square.

We first assume N is an integer multiple of 8. This parameter will refer to

the number of mesh intervals in the x and y directions. The mesh itself is the tensor

product of two one-dimensional Shishkin meshes Tx × Ty. The process for obtaining

Tx (and Ty) is as follows. The interval [0, 1] is first decomposed into three subintervals

[0, λ], [λ, 1− λ], and [1− λ, 1], where

λ = min

{
1

4
, 2

√
ε

c∗
lnN

}
with 0 < c∗ < c. (5.4.1)

The intervals [0, λ] and [1−λ, 1] are then partitioned into N/4 subintervals of length
4λ

N
,

while the interval [λ, 1−λ] is partitioned into N/2 subintervals of length
2(1− 2λ)

N
. The

triangular mesh is obtained by drawing diagonals from the top left to bottom right of

each quadrilateral. Figure 5.1 shows an example of the Shishkin mesh generated using

ε = 10−4 and c∗ =
√

1/2 for N = 16, 32, respectively.

5.5 Numerical Results

In this section, we present results from applying the SPLS discretization tech-

niques on second order elliptic PDE of the form (5.0.1). For all of the examples pre-

sented, Ω is a bounded polygonal domain, and the test space Vh ⊂ H1
0 (Ω) is taken to

be the space of continuous piecewise linear polynomials with respect to the Shishkin

mesh Th, unless otherwise noted. We consider all types of trial spaces presented in this

chapter: the no projection type presented in Section 5.2.1 and the projection types
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Figure 5.1: Example of a Shishkin mesh using N = 16, 32 subintervals.
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presented in Sections 5.2.2 and 5.3.1. Also, we note that while the theory in this chap-

ter considers c a non-negative constant, the theory extends to the case where c is a

smooth positive function satisfying

0 < c0 ≤ c(x) ≤ c1 for all x ∈ Ω,

for constants c0 and c1.

For the singularly perturbed problems, we measure the SPLS solution in a bal-

anced norm instead of the norm on Q̃. This is due to the fact that for small ε the L2

part of the norm (on Q̃) dominates, leading to an unbalanced norm not adequate to

accurately measure the error, see [71, 81]. More specifically, we measure

error =
(
‖u− uh‖2 + ε1/2‖∇u−∇uh‖2

)1/2
,

for the no projection type trial space and measure

error =
(
‖u− uh‖2 + ε1/2‖∇u−Rh∇uh‖2

)1/2
,

for the projecton type trial spaces. In the above equation, Rh can be taken as either

the orthogonal projection described in Secton 5.2.2 or the lump projection described

in Section 5.3.1.

When using a Shishkin mesh, we used a stopping criterion of

‖qj‖h ≤ c0(N−1 lnN),

for the no projection type of trial space. This is because standard Galerkin methods for

(5.1.1) obtain a covergence rate of O(N−1 lnN) using piecewise linear approximation

[71, 81]. When using a Shishkin mesh and a projection type trial space, we used a

stopping criterion of

‖qj‖h ≤ c0(N−1 lnN)2.

The convergence rates when using a Shishkin mesh are computed under the assumption

that we have a convergence rate of O((N−1 lnN)r). More specifically, if (N1, eN1)
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and (N2, eN2) correspond to the number of partitions in the Shishkin mesh and the

discretization error for two consecutive levels of refinement, then

r =
ln eN1 − ln eN2

ln(N−1
1 lnN1)− ln(N−1

2 lnN2)
.

5.5.1 Basic Unit Square Problem

For the first example, we solved (5.0.1) on the unit square with c = 1, ε = 1,

and f computed such that the exact solution is given by

u(x, y) = x(1− x)y(1− y).

The family of locally quasi-uniform meshes {Th} was obtained through a standard

uniform refinement strategy starting with a uniform coarse mesh. Here, the mesh size

is h = 2−k where k is the level of refinement. Based on the first inequality of (2.4.1),

we used a stopping criterion of

‖qj‖h ≤ c0h
2,

on each level, and the error is computed in the Q̃ norm. Results for all three types

of trial spaces are shown in Table 5.1. We see O(h) convergence for the no projection

trial space and super-linear convergence for both types of projection type trial spaces.

level k
Mh = BVh Mh = R orth

h BVh Mh = R lump
h BVh

error rate it error rate it error rate it
1 0.045 1 0.0100 3 0.0202 3
2 0.024 0.903 1 0.0034 1.569 7 0.0090 1.168 6
3 0.012 0.974 1 0.0010 1.735 8 0.0035 1.364 8
4 0.006 0.993 1 3.1e-04 1.724 10 0.0013 1.440 13
5 0.003 0.998 1 8.9e-05 1.785 12 0.0004 1.471 16

Table 5.1: Results for basic unit square example.
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5.5.2 Example With Boundary Layers on All Sides

For this example, we solved (5.0.1) on the unit square with variable coefficient

c = 2(1 + x2 + y2) and f computed such that the exact solution is given by

u(x, y) = x(1− x)
(

1− e−y/
√
ε
)(

1− e(y−1)/
√
ε
)

+ y(1− y)
(

1− e−x/
√
ε
)(

1− e(x−1)/
√
ε
)
,

as considered in [67]. For this example, the family of Shishkin meshes {Th} was obtained

as in Section 5.4 with λ in (5.4.1) computed with c∗ =
√

1/2 and the number of

subintervals in the x and y directions taken to be N = 16, 32, 64, 128, and 256. Table

5.2 shows results for no projection trial space for a variety of values for ε. We observe

O(N−1 lnN) convergence. Tables 5.3 and 5.4 display results for the orthogonal and

lump projection type trial spaces. In this case, we observe O((N−1 lnN)2) convergence.

Furthermore, for all three types of trial spaces we observe the order of convergence is

robust with repect to ε.

Mh = BVh

N
ε = 1 ε = 10−2 ε = 10−4

error rate it error rate it error rate it
16 0.019 1 0.068 1 0.132 1
32 0.009 1.472 1 0.034 1.471 1 0.088 0.854 1
64 0.005 1.356 1 0.017 1.356 1 0.054 0.946 1
128 0.002 1.286 1 0.009 1.285 1 0.032 0.984 1
256 0.001 1.239 1 0.004 1.239 1 0.018 0.996 1

N
ε = 10−8 ε = 10−12 ε = 10−16

error rate it error rate it error rate it
16 0.133 1 0.134 1 0.134 1
32 0.089 0.859 1 0.089 0.859 1 0.089 0.860 1
64 0.055 0.951 1 0.055 0.951 1 0.055 0.951 1
128 0.032 0.988 1 0.032 0.988 1 0.032 0.988 1
256 0.018 0.999 1 0.018 0.999 1 0.018 0.999 1

Table 5.2: Results for example with boundary layers on all sides and no projection
trial space.
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Mh = R orth
h BVh

N
ε = 1 ε = 10−2 ε = 10−4

error rate it error rate it error rate it
16 0.0027 3 0.0177 4 0.073 5
32 0.0008 2.490 3 0.0054 2.509 4 0.038 1.417 8
64 0.0003 2.203 3 0.0018 2.190 4 0.016 1.708 12
128 9.0e-05 2.022 3 0.0005 2.191 5 0.006 1.903 19
256 3.1e-05 1.907 3 0.0002 1.910 5 0.002 1.978 28

N
ε = 10−8 ε = 10−12 ε = 10−16

error rate it error rate it error rate it
16 0.073 4 0.073 5 0.073 6
32 0.038 1.419 6 0.038 1.419 8 0.038 1.419 10
64 0.016 1.710 9 0.016 1.711 12 0.016 1.711 16
128 0.006 1.903 12 0.006 1.906 19 0.006 1.906 25
256 0.002 1.972 17 0.002 1.981 28 0.002 1.981 40

Table 5.3: Results for example with boundary layers on all sides and orthogonal pro-
jection.

Mh = R lump
h BVh

N
ε = 1 ε = 10−2 ε = 10−4

error rate it error rate it error rate it
16 0.0048 4 0.0281 5 0.099 3
32 0.0017 2.222 4 0.0088 2.455 6 0.058 1.148 4
64 0.0006 2.042 4 0.0028 2.197 6 0.027 1.515 6
128 0.0002 1.933 4 0.0010 2.052 7 0.010 1.839 8
256 7.3e-05 1.860 4 0.0003 1.898 7 0.003 1.972 11

N
ε = 10−8 ε = 10−12 ε = 10−16

error rate it error rate it error rate it
16 0.100 4 0.100 5 0.100 7
32 0.058 1.153 7 0.058 1.153 9 0.058 1.154 11
64 0.027 1.524 10 0.027 1.524 13 0.027 1.524 17
128 0.010 1.855 14 0.010 1.856 21 0.010 1.856 27
256 0.003 2.015 21 0.003 2.016 32 0.003 2.016 44

Table 5.4: Results for example with boundary layers on all sides and lump projection.
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5.5.3 Example With Nonhomogeneous Boundary Condition

For this example, we solved (5.0.1) on the unit square with variable coefficient

c = 1 + x2y2exy/2 and f computed such that the exact solution is

u(x, y) = x3(1 + y2) + sin(πx2) + cos(πy/2)

+ (x+ y)
(
e−2x/

√
ε + e2(x−1)/

√
ε + e−3y/

√
ε + e3(y−1)/

√
ε
)
,

as considered in [71]. The family of Shishkin meshes {Th} is obtained as in Section

5.5.2. Table 5.5 shows results for the no projection trial space and various values of

ε. We observe O(N−1 lnN) convergence and that the order is robust with respect to

ε. Figure 5.2 shows the exact solution and numerical approximation for ε = 10−4,

respectively.

Mh = BVh

N
ε = 1 ε = 10−2 ε = 10−4

error rate it error rate it error rate it
16 0.205 1 1.082 1 2.009 1
32 0.103 1.468 1 0.595 1.273 1 1.666 0.398 1
64 0.051 1.355 1 0.306 1.303 1 1.220 0.610 1
128 0.026 1.286 1 0.154 1.273 1 0.791 0.804 1
256 0.013 1.239 1 0.077 1.235 1 0.472 0.921 1

N
ε = 10−8 ε = 10−12 ε = 10−16

error rate it error rate it error rate it
16 1.989 1 1.988 1 1.988 1
32 1.652 0.394 1 1.652 0.394 1 1.652 0.394 1
64 1.212 0.607 1 1.212 0.607 1 1.212 0.607 1
128 0.786 0.802 1 0.786 0.802 1 0.786 0.802 1
256 0.470 0.920 1 0.470 0.920 1 0.470 0.920 1

Table 5.5: Results for non-homogeneous example with no projection trial space.

5.5.4 Example With Boundary Layers on Two Sides

For the last example, we solved 5.0.1 on the unit square with c = 2 and f

computed such that the exact solution is given by

u(x, y) = y(1− y)
(

1− e−x/
√
ε
)(

1− e(x−1)/
√
ε
)
,
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Figure 5.2: Exact and SPLS solution for ε = 10−4.
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as considered in [67]. Due to the nature of the solution, we expect boundary layers

at x = 0 and x = 1. To this end, we construct the family of Shishkin meshes {Th}

such that the subintervals in the x direction are partitioned as described in Section 5.4

using c∗ =
√

1/2 and N = 16, 32, 64, 128, 256, while the partition in the y direction is

uniform with N subintervals. Figure 5.3 shows the mesh generated with ε = 10−4 and

N = 16, 32, respectively.

Table 5.6 shows results for the no projection trial space for various values of ε.

As in the previous two examples, we observe O(N−1 lnN) convergence in the balanced

norm. Tables 5.7 and 5.8 display results for the orthogonal and lump projection type

spaces, respectively. We observe O((N−1 lnN)2) convergence in the balanced norm as

in Section 5.5.2. Furthermore, the order of convergence is robust with respect to ε.

Mh = BVh

N
ε = 1 ε = 10−2 ε = 10−4

error rate it error rate it error rate it
16 0.0094 1 0.040 1 0.091 1
32 0.0047 1.472 1 0.020 1.460 1 0.062 0.839 1
64 0.0024 1.356 1 0.010 1.353 1 0.038 0.935 1
128 0.0012 1.286 1 0.005 1.285 1 0.022 0.978 1
256 0.0006 1.239 1 0.002 1.238 1 0.013 0.993 1

N
ε = 10−8 ε = 10−12 ε = 10−16

error rate it error rate it error rate it
16 0.091 1 0.091 1 0.091 1
32 0.061 0.835 1 0.061 0.835 1 0.061 0.835 1
64 0.038 0.934 1 0.038 0.934 1 0.038 0.934 1
128 0.022 0.977 1 0.022 0.977 1 0.022 0.977 1
256 0.013 0.993 1 0.013 0.993 1 0.013 0.993 1

Table 5.6: Results for example with boundary layers on two sides and no projection
trial space.

5.5.5 Remarks on the SPLS Approach

In this chapter, we presented an approach to solving reaction diffusion equations

that utilizes graph type trial spaces. We observe that the method performs well no
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Figure 5.3: Shishkin mesh used for example with boundary layers at x = 0 and x = 1
for N = 16, 32.
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Mh = R orth
h BVh

N
ε = 1 ε = 10−2 ε = 10−4

error rate it error rate it error rate it
16 0.0015 2 0.0110 3 0.050 4
32 0.0005 2.378 2 0.0032 2.573 4 0.025 1.469 7
64 0.0002 2.126 2 0.0011 2.149 4 0.010 1.780 12
128 5.6e-05 1.976 2 0.0004 1.982 4 0.004 1.941 19
256 1.9e-05 1.882 2 0.0001 1.884 4 0.001 1.988 29

N
ε = 10−8 ε = 10−12 ε = 10−16

error rate it error rate it error rate it
16 0.050 3 0.050 4 0.050 5
32 0.025 1.464 6 0.025 1.464 7 0.025 1.464 9
64 0.010 1.777 9 0.010 1.779 12 0.010 1.779 14
128 0.004 1.932 12 0.004 1.942 19 0.004 1.942 23
256 0.001 1.962 17 0.001 1.989 29 0.001 1.990 41

Table 5.7: Results for example with boundary layers on two sides and orthogonal
projection.

Mh = R lump
h BVh

N
ε = 1 ε = 10−2 ε = 10−4

error rate it error rate it error rate it
16 0.0024 3 0.0161 4 0.068 3
32 0.0008 2.202 3 0.0051 2.442 5 0.038 1.226 4
64 0.0003 2.032 3 0.0017 2.131 5 0.016 1.637 6
128 0.0001 1.928 3 0.0006 1.972 5 0.006 1.900 8
256 3.8e-05 1.857 3 0.0002 1.974 6 0.002 1.911 10

N
ε = 10−8 ε = 10−12 ε = 10−16

error rate it error rate it error rate it
16 0.067 4 0.067 4 0.067 5
32 0.038 1.231 7 0.038 1.231 8 0.038 1.231 9
64 0.016 1.650 10 0.016 1.650 14 0.016 1.650 15
128 0.006 1.947 15 0.006 1.948 21 0.006 1.948 28
256 0.002 2.028 21 0.002 2.035 33 0.002 2.035 44

Table 5.8: Results for example with boundary layers on two sides and lump projection.

matter the size of ε, and we obtain convergence rates of O((N−1 lnN)2) using just

piecewise linear approximation and the projection type trial spaces. These rates of
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convergence are similar to those obtained by Lin and Stynes in [71], where a mixed finite

element approach was taken involving H(div; Ω) conforming spaces. One of the main

advantages of the SPLS approach presented in this chapter is that the implementation,

compared with their approach, is simpler due to the use of piecewise linear spaces. Also,

when using the projection type spaces we obtain O((N−1 lnN)2) without the need to

post-process the solution, which is the approach taken in [67] to obtain higher order

convergence for ε1/4∇u in the L2 norm.
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Chapter 6

SPLS FOR TIME-HARMONIC MAXWELL’S EQUATIONS

Efficient approximation of the time-harmonic Maxwell equations is of significant

importance to practical applications, such as analog signal packages. For Maxwell’s

equations, one needs a robust methodology independent of frequency. In this chap-

ter, we will apply the SPLS framework to the time-harmonic Maxwell equations. In

the process, an efficient iterative solver is constructed that is able to simultaneously

approximate the electric and magnetic field solutions to the equations. Furthermore,

standard finite element spaces are utilized to obtain a simple to implement version of

Algorithm 2.4.1. This chapter is published in [16].

Let Ω ⊂ R3 be a polyhedral domain with boundary Γ. Consider two positive

functions

ε, µ ∈ L∞(Ω), ε1 > ε ≥ ε0 > 0, µ1 > µ ≥ µ0 > 0 in Ω.

We seek a solution to the time-harmonic Maxwell problem given by the equations

∇× h− λ ε e = j in Ω, (6.0.1a)

∇× e + λµh = m in Ω, (6.0.1b)

(µh) · n = 0 on Γ, (6.0.1c)

e× n = 0 on Γ, (6.0.1d)

where h and e are the magnetic and electric vector fields, j and m are the electric and

magnetic current densities, ε is the electric permittivity, µ is the magnetic permeability,

and λ = −iω. Here, ω ∈ R is given and represents the frequency of propagation of the

electromagnetic waves. The boundary conditions correspond to a region surrounded

by a perfect conductor.
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There are many methods designed to efficiently approximate (6.0.1), see [75]

and the references therein. Most of these methods use curl-conforming edge elements.

In [77], an interior penalty DG method based on a mixed variational formulation was

introduced. Many other techniques, including adaptive methods for (6.0.1), starting

with the work in [52], have been investigated in the last two decades. The SPLS

approach for discretizing (6.0.1) is similar with the work of Bramble and Pasciak in

[33]. We assume L2 type spaces for the magnetic and electric vector fields and start from

a natural weak formulation as presented in [33]. For discretization, we require that the

test spaces be H1-conforming with suitable boundary conditions. We depart from the

Bramble-Pasciak least squares method in the way the discrete trial spaces are chosen.

Namely, the discrete trial spaces are built using the action of the continuous first order

differential operator B associated with problem (6.0.1). Both the no projection and

projection type trial spaces will be analyzed.

In addition to the advantages that are characteristic to the SPLS method, the

main contribution of the proposed discretization for the time-harmonic Maxwell equa-

tions resides in investigating the stability of the proposed families of discretization

spaces. For the no projection discrete trial space, we investigate the numerical stabil-

ity of the proposed family of discrete spaces, see Section 6.4. For the projection type

trial space, we prove that the stability is at least as good as the stability in the no

projection case, see Section 2.3.2 and Theorem 6.4.2.

The chapter is organized as follows. In Section 6.1, we will review some basic

material of the Sobolev spaces needed for the analysis of the problem. In Section 6.2,

we discuss the weak variational formulation of (6.0.1) and the connection between the

weak formulation and the original formulation. In Section 6.3, we apply the abstract

discretization theory of Chapter 2 to the operator B associated with Maxwell’s equa-

tions. Starting with a common test space, we propose three ways to choose the trial

space and investigate the stability and approximability of the corresponding pairs of

discrete spaces. Numerical results to support the SPLS approach to the discretization

of Maxwell’s equations are presented in Section 6.5.
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6.1 Notation and Background

Throughout this chapter, if V is a space of scalar valued functions, then V := V 3

will be the vector-valued product space endowed with the product topology. Also,

we will denote the inner product and norm on L2(Ω) and L2(Ω) by (·, ·) and ‖ · ‖,

respectively. We define the three Sobolev spaces

H1(Ω) := {u ∈ L2(Ω) | ∇u ∈ L2(Ω)},

H(div; Ω) := {u ∈ L2(Ω) | ∇ · u ∈ L2(Ω)},

H(curl; Ω) := {u ∈ L2(Ω) | ∇ × u ∈ L3(Ω)}.

We also define H0(div; Ω) as the closure of C∞0 (Ω) in the norm

‖u‖H(div;Ω) :=
(
‖u‖2 + ‖∇ · u‖2

)1/2
,

and H0(curl; Ω) as the closure of C∞0 (Ω) in the norm

‖u‖H(curl;Ω) :=
(
‖u‖2 + ‖∇ × u‖2

)1/2
.

For more details on these Sobolev spaces, we refer to [54, 75].

The representation of the dual space of H1
0 (Ω) as a space of distributions will

be denoted H−1(Ω). Similarly, we will need the space H̃−1(Ω) := H1(Ω)∗ which is not

a space of distributions. We will also use the following Gelfand triples

H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω), and H1(Ω) ⊂ L2(Ω) ⊂ H̃−1(Ω). (6.1.1)

Lastly, duality products on V ∗ × V will be denoted using 〈·, ·〉, unsubscripted unless

otherwise needed.

6.2 Variational Formulation of the Problem

In this section, we follow the approach of [33] and derive the variational formu-

lation of (6.0.1). By writing all the complex functions that appear in (6.0.1) using the

real and imaginary parts, one may conclude that both the real and imaginary parts

satisfy a related real-valued problem to the (6.0.1) system, see Remark 2.2 of [33].
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More specifically, (h, e, j,m) satisfies the (6.0.1) system with λ = −iω if and only if

(<(h),=(e),<(j),=(m)) and (−=(h),<(e),−=(j),<(m)) satisfy

∇× h− ω ε e = j in Ω, (6.2.1a)

∇× e− ω µh = m in Ω, (6.2.1b)

(µh) · n = 0 on Γ, (6.2.1c)

e× n = 0 on Γ. (6.2.1d)

Thus, we can restrict our considerations only to real functions and a real parameter ω.

Without loss of generality, we can assume that all Hilbert spaces in this chapter are

real Hilbert spaces.

Strong solutions of (6.2.1) are thought of in the following spaces:

h ∈ X1(µ) := H(curl; Ω) ∩ {h ∈ L2(Ω) | ∇ · (µh) ∈ L2(Ω), (µh) · n = 0},

e ∈ X2(ε) := H0(curl; Ω) ∩ {e ∈ L2(Ω) | ∇ · (ε e) ∈ L2(Ω)}.

If (h, e) is a strong solution to (6.2.1), then we necessarily have

∇ · (ε e) = −ω−1∇ · j, ∇ · (µh) = −ω−1∇ ·m. (6.2.2)

For this reason, it is natural to assume j and m satisfy

j ∈ H(div; Ω), m ∈ H0(div; Ω).

Lastly, we assume that ω is not a Maxwell eigenvalue, i.e., if j = 0 and m = 0, then

the only solution of (6.2.1) in X1(µ) ∩X2(ε) is h = 0, e = 0.

To define the global differential operators associated with (6.2.1), we first define

the following spaces and inner products:

L2
β(Ω) := {u : Ω→ R | β1/2 u ∈ L2(Ω)}, (u, v)β := (β u, v), β ∈ {µ, ε}.

Next, following the notation of [33], we consider the following four operators:

curl1 : L2
µ(Ω)→ H−1(Ω) 〈curl1h,φ〉 := (h, µ−1∇× φ)µ = (h,∇× φ), φ ∈ H1

0(Ω),
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curl2 : L2
ε(Ω)→ H̃−1(Ω) 〈curl2e,ψ〉 := (e, ε−1∇×ψ)ε = (e,∇×ψ), ψ ∈ H1(Ω),

div1,µ : L2
µ(Ω)→ H̃−1(Ω) 〈div1,µh.ψ〉 := −(h,∇ψ)µ = −(µh,∇ψ), ψ ∈ H1(Ω),

div2,ε : L2
ε(Ω)→ H−1(Ω) 〈div2,εe, φ〉 := −(e,∇φ)ε = −(ε e,∇φ), φ ∈ H1

0 (Ω).

Note that curl1 is the distributional curl acting on elements of L2
µ(Ω) ≡ L2(Ω) and

that div2,ε = ∇ · (ε · ), with the divergence operator taken in the sense of distributions

acting on L2(Ω) vector fields. The two remaining operators cannot be understood as

distributional differentiation operators. We also need the two multiplication operators

µ : L2
µ(Ω)→ H−1(Ω) µ e := (e, ·)µ = (µ e, ·) : H1

0(Ω)→ R,

ε : L2
ε(Ω)→ H̃−1(Ω) ε e := (e, ·)ε = (ε e, ·) : H1(Ω)→ R.

These are multiplication operators followed by compact inclusions in the corresponding

right side of the Gelfand triples in (6.1.1).

We now define the global operators associated with (6.2.1). We let

Q := L2
µ(Ω)× L2

ε(Ω) ≡ Q∗,

endowed with its weighted product norm and inner product and

V := H1
0(Ω)×H1(Ω)×H1(Ω)×H1

0 (Ω),

endowed with the norm

|(φ,ψ, ψ, φ)|2V := ‖∇φ‖2 + ‖ψ‖2 + ‖∇ψ‖2 + ‖ψ‖2 + ‖∇ψ‖2 + ‖∇φ‖2.

The inner product that induces the norm on V is denoted by a(·, ·). Let

v = (φ,ψ, ψ, φ) and p = (h, e). We define the bilinear form b(·, ·) : V ×Q→ R by

b(v,p) = b((φ,ψ, ψ, φ), (h, e))

:= (∇×φ− ωµψ − µ∇ψ, h) + (−ωεφ+∇×ψ − ε∇φ, e).
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With the form b(·, ·), we associate the operators B : V → Q and B∗ : Q → V ∗ given

by the matrix operators

B :=

 µ−1∇× −ω −∇ 0

−ω ε−1∇× 0 −∇

 , B∗ :=


curl1 −ωε

−ωµ curl2

div1,µ 0

0 div2,ε

 .

Following Section 2 of [33], the weak form of equations (6.2.1), incorporating

the information of (6.2.2), is

B∗

 h

e

 = F, (6.2.3)

where

F :=


j

m

−ω−1∇ ·m

−ω−1∇ · j

 .

All boundary conditions in (6.2.1) are hidden in the dualization process for the defini-

tion of B∗ (see [33] for details). The corresponding variational formulation of (6.2.3)

is: Find p = (h, e) ∈ Q such that

b(v,p) = 〈F,v〉 for all v = (φ,ψ, ψ, φ) ∈ V. (6.2.4)

The relevant information that we need for solving (6.2.1) via the weak formulation

(6.2.3) or (6.2.4) is concentrated in the following theorem proved in [33].

Theorem 6.2.1. Assume that ω is not a Maxwell eigenvalue. The operator

B∗ : Q → V ∗ is injective and has closed range. If j ∈ H(div; Ω) and m ∈ H0(div; Ω),

then (j,m,−ω−1∇ ·m,−ω−1∇ · j)> is in the range of B∗, and the unique solution of

(6.2.3), or (6.2.4), is a strong solution of (6.2.1).

The previous theorem allows us to approximate the solution of (6.2.1) by dis-

cretizing the mixed weak formulation (6.2.4) using the SPLS approach.
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6.3 Discretization for Maxwell’s Equations

In this section, we apply the SPLS discretization theory to the operator B

associated with Maxwell’s equations. We recall that B : V → Q is given by the matrix

operator

B :=

 µ−1∇× −ω −∇ 0

−ω ε−1∇× 0 −∇

 .
Let Th be a shape regular tetrahedralization of Ω, and consider the lowest order finite

element spaces

Hh := {uh ∈ C(Ω) | uh|K ∈ P1 ∀K ∈ Th},

and

H0
h := Hh ∩H1

0 (Ω).

We define the product space

Vh := H0
h ×Hh ×Hh ×H0

h, (6.3.1)

as the test space.

Note that

B(Vh) ⊂ P0(Th)6 +H6
h ⊂ P1(Th)6,

where Pk(Th) is the space of discontinuous piecewise Pk functions (polynomials of

degree k) on the tetrahedral partition Th. For the remainder of this chapter, we will

assume that the coefficients µ, ε are continuous functions. The case where µ, ε are

discontinuous will be analyzed in the near future.

6.3.1 No Projection Trial Space

As outlined in Section 2.3.1, we define the no projection type trial space as

Mh = B(Vh),

where the inner product on Mh is taken to be the inner product on Q. Recall that

the inner product on Q contains the weight µ for the first three components and the
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weight ε for the last three. A discrete inf − sup condition for the pair (Vh,Mh) holds

as described in the abstract case, see (2.3.1). The approximability in this case is given

by (2.3.2). In the next section, we will address the stability of the pair (Vh,Mh).

6.3.2 Orthogonal Projection Space

We start with defining the space M̃h := H6
h equipped with the inner product

on Q. With the orthogonal projection

R orth
h : Q −→ H6

h,

we define the orthogonal projection trial space by

Mh := R orth
h (B(Vh)) ⊂ H6

h.

A discrete inf − sup condition for the pair (Vh,Mh) holds as described in Section 2.3.2

and an estimate for approximability is given by (2.5.1). The (numerical) stability of

the pair (Vh,Mh) will be analyzed via the estimate (2.3.5) in the next section.

6.3.3 Lump Projection Space

For this trial space, we start with defining M̃h := H6
h as in the previous section,

but equip M̃h with a different inner product related with lumping the mass matrix. To

be more precise, given the nodal Lagrange basis {ϕ1, . . . , ϕN} of Hh and the function

β ∈ {ε, µ}, the β−weighted lumped mass matrix is the diagonal matrix with elements

di :=

∫
Ω

βϕi =
N∑
j=1

∫
Ω

β ϕi ϕj. (6.3.2)

For functions uh, vh ∈ Hh, the associated inner product is defined by

(uh, vh)β,lump =

(
N∑
j=1

ujϕj,

N∑
i=1

viϕi

)
β,lump

:=
N∑
i=1

ui di vi,

where di is given in (6.3.2). The inner product (·, ·)Q,lump in M̃h is then defined

by lumping the mass matrices of each of the six components. The lump orthogonal
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projection with respect to the inner product (·, ·)Q,lump is denoted R lump
h : Q −→ H6

h.

The corresponding trial space is defined as

Mh := R lump
h (B(Vh)) ⊂ H6

h.

As with the other trial spaces, we discuss the discrete stability for the pair (Vh,Mh)

in the next section.

6.4 Stability and Numerical Stability of the Proposed Discretizations

From Proposition 2.3.2, the stability of the trial spaces defined in Sections 6.3.2

and 6.3.3 follows from the stability of the no projection trial space of Section 6.3.1 if

condition (2.3.5) is satisfied. The investigation of stability in the no projection case is

equivalent with building a stable right inverse for the operator B restricted to the space

Vh. This problem is difficult even when B is a simpler first order differential operator,

such as the divergence operator [4, 84, 85]. To this end, we will estimate the inf − sup

constant mh numerically for the pair (Vh, B(Vh)). While we believe that stability can

be shown under certain conditions for the mesh Th, an investigation of such conditions

is not explored in this thesis.

In order to estimate mh for the pair (Vh, B(Vh)), we use that mh is the square

root of the Schur complement Sh associated with the discrete saddle point system

(2.2.4), see e.g., [7]. The action of Sh can be computed by slightly modifying Algorithm

2.4.1, and a standard power method for the Schur complement can be used to obtain

estimates for the eigenvalues of Sh. We consider Th for the unit cube obtained by

uniform refinement, splitting each cube into eight cubes of half side and then splitting

each small cube into six tetrahedra by a standard procedure. To see the behavior of

mh = mh(ω), we applied this technique for four levels of uniform refinement, ε = µ = 1,

and various ω.

From Table 6.1, we see the stability of mh depends on ω, but even in the worse

case of ω = 1 we still have mh ≥ O(h), where h = 2−k and k is the level of refinement.

For small values of ω > 0, we notice stability with respect to both h and ω. In order
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level
ω = 1 ω = 2 ω = 4 ω = 16 ω = 64 ω = 256
mh mh mh mh mh mh

1 0.1003 0.1976 0.1145 1.6253 6.4516 25.7893
2 0.0697 0.1172 1.1185 0.5075 2.858 10.9398
3 0.0465 0.0766 1.0072 1.1426 2.5893 14.7614
4 0.0271 0.9991 1.0150 1.2425 3.6897 17.2878

Table 6.1: Approximations of mh(ω) for the no projection trial space.

to discuss stability for the other choices of trial spaces, we will prove estimate (2.3.5).

Then, by Proposition 2.3.2, the stability is at least as good as the stability for the no

projection case.

Let {ϕ1, . . . , ϕN} be the nodal Lagrange basis of Hh and Mh,β be the mass

matrix with entries (ϕi, ϕj)β, where β ∈ {ε, µ}. We will also let Dh,β be the diagonal

matrix with entries

di =

∫
Ω

βϕi.

Since the mesh Th is uniform, we can assume that (1, ϕi) ≈ h3. Also, without loss of

generality we assume

0 < β0 < β < β1 in Ω.

In what follows, 〈·, ·〉e will denote the standard euclidean inner product on RN .

Lemma 6.4.1. Under the assumptions from this section,

〈Mh,β γ,γ〉e ≤ c
β1

β0

〈Dh,β γ,γ〉e for all γ ∈ RN , (6.4.1)

with a constant c independent of h. Consequently,

〈M−1
h,β γ,γ〉e ≥ c

β0

β1

〈D−1
h,β γ,γ〉e for all γ ∈ RN , (6.4.2)

with a constant c independent of h.

Proof. For any γ = (γ1, γ2, . . . , γN) ∈ RN , let

ph :=
N∑
j=1

γj ϕj.
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Using that ‖ph‖ ≈ h3

N∑
i=1

γ2
i , we obtain

〈Mh,βγ,γ〉e =
N∑

i,j=1

γiγj(ϕi, ϕj)β = ‖ph‖2
β ≤ β1 ‖ph‖2 ≤ cβ1 h

3

N∑
i=1

γ2
i .

Since h3 ≈ (1, ϕi) and β0(1, ϕ) ≤ (1, ϕ)β, it follows

〈Mh,βγ,γ〉e ≤ c
β1

β0

N∑
i=1

(1, ϕi)β γ
2
i = c

β1

β0

〈Dh,β γ,γ〉e,

which proves (6.4.1). Estimate (6.4.2) follows.

Theorem 6.4.2. If R orth
h : Q −→ H6

h is the orthogonal projection, then

‖R orth
h qh‖Q ≥ c̃ ‖qh‖Q for all qh ∈ B(Vh), (6.4.3)

with a constant c̃ independent of h.

Proof. Since B(Vh) ⊂ P0(Th)6 + H6
h ⊂ P1(Th)6, it suffices to prove that the estimate

(6.4.3) holds component-wise on P1(Th), i.e.,

‖Qh,β qh‖β ≥ c̃ ‖qh‖β for all qh ∈ P1(Th),

where Qh,β : L2
β(Ω) → Hh is the orthogonal projection with respect to the L2

β-inner

product. In what follows, the constant c that appears is generic and may be different

at different occurrences, but is always independent of h. Let qh ∈ P1(Th) and q̃h denote

the dual vector of qh, i.e.,

q̃h = ((qh, ϕ1)β, · · · , (qh, ϕN)β)T .

We define α = (α1, · · · , αN)T ∈ RN such that

Qh,β qh =
N∑
i=1

αi ϕi.

Hence, α = M−1
h,β q̃h. Using (6.4.2), we obtain

‖Qh,β qh‖2
β = 〈Mh,βα, α〉e = 〈M−1

h,β q̃h, q̃h〉e ≥ c
β0

β1

〈D−1
h,β q̃h, q̃h〉e. (6.4.4)
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From the definition of Dh,β, it follows that

〈D−1
h,β q̃h, q̃h〉e =

N∑
i=1

(qh, ϕi)
2
β

(1, ϕi)β
≥ β2

0

β1

N∑
i=1

(qh, ϕi)
2

(1, ϕi)
. (6.4.5)

From the uniformity of the mesh, the spectral properties of the local mass matrix, and

the fact that qh is linear on all tetrahedra of Th, we obtain

N∑
i=1

(qh, ϕi)
2

(1, ϕi)
≥ c‖qh‖2 ≥ c

1

β1

‖qh‖2
β. (6.4.6)

Combining (6.4.4), (6.4.5), and (6.4.6) gives us

‖Qh,β qh‖β ≥ c

(
β0

β1

)3/2

‖qh‖β,

as desired.

A similar result can be obtained for the lump projection.

Theorem 6.4.3. If R lump
h : Q −→ H6

h is the lump projection, then

‖R lump
h qh‖Q,lump ≥ c̃ ‖qh‖Q for all qh ∈ B(Vh), (6.4.7)

with a constant c̃ independent of h.

Proof. Similar to the proof of Theorem 6.4.2, it suffices to prove that the estimate

(6.4.7) holds component-wise on P1(Th), i.e.,

‖Q lump
h,β qh‖β,lump ≥ c̃ ‖qh‖β for all qh ∈ P1(Th),

where Q lump
h,β : L2

β(Ω) → Hh is the orthogonal projection with respect to the lumped

L2
β-inner product. Let qh ∈ P1(Th). Using the definition of the lumped inner product,

we obtain

‖Q lump
h,β qh‖2

β,lump =

(
N∑
j=1

(qh, ϕj)β
(1, ϕj)β

ϕj,
N∑
i=1

(qh, ϕi)β
(1, ϕi)β

ϕi

)
β,lump

=
N∑
j=1

(qh, ϕj)
2
β

(1, ϕj)β

≥ β2
0

β1

N∑
j=1

(qh, ϕj)
2

(1, ϕj)
.
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Combining the above estimate with (6.4.6) gives us

‖Q lump
h,β qh‖β,lump ≥ c

β0

β1

‖qh‖β.

6.5 Numerical Results

In this section, we report some numerical results when approximating the solu-

tion of (6.2.1) using the SPLS method. In all cases, we considered Th to be a tetra-

hedralization of Ω and the test space Vh was taken to be the finite element space of

piecewise linear functions as defined in (6.3.1). Algorithm 2.4.1 was implemented for

all three types of trial spaces for various frequencies ω using five levels of refinement

from the original coarse mesh. Since the sequence of meshes are nested, we employed

the cascadic-multilevel approach that was outlined in Remark 2.4.2. The stopping cri-

terion was based on (2.4.1) with best upper estimates for O(‖p− ph‖). For examples

on non-convex domains, we used a zero vector as the initial guess p0 on each level.

6.5.1 Numerical Results on the Unit Cube

First, we discretized (6.2.1) on the unit cube with coefficients µ = ε = 1. The

data was chosen such that the exact solution is

h = (x(1− x), y(1− y), z(1− z))T ,

e = (y(1− y)z(1− z), x(1− x)z(1− z), y(1− y)x(1− x))T .

We performed numerical tests for various values of ω ∈ R. Tables 6.2 and 6.3 show

results for the no projection trial space and both projection type trial spaces for ω = 1

and ω = 16, respectively. Table 6.4 shows results for the lump projection trial space for

ω = 100. Table 6.5 displays results for the lump projection trial space and ω = 1000.

In regards to small ω, Table 6.6 shows results for all three types of trial spaces for

ω = 1/1000.

We see that the approximation for the orthogonal projection trial space is better

than the no projection trial space, and the approximation using the lump projection
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trial space is similar with the approximation using the orthogonal projection space for

ω = 1, 16. We also notice that the solver based on the lump projection performs well

for large values of ω. Also, the method is robust with respect to values of ω that are

small.

Mh = BVh
level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 0.1192 0.0269 1
k=2 0.0561 1.09 0.0135 1.00 1
k=3 0.0265 1.08 0.0062 1.12 1
k=4 0.0127 1.07 0.0028 1.14 2
k=5 0.0064 0.98 0.0014 1.00 2

Mh = R orth
h BVh

level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 0.1169 0.0245 1
k=2 0.0337 1.79 0.0091 1.43 2
k=3 0.0133 1.34 0.0042 1.13 2
k=4 0.0048 1.46 0.0013 1.67 3
k=5 0.0012 1.97 0.0003 2.04 5

Mh = R lump
h BVh

level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 0.1202 0.0257 1
k=2 0.0416 1.53 0.0109 1.23 2
k=3 0.0132 1.65 0.0042 1.39 3
k=4 0.0044 1.58 0.0011 1.97 4
k=5 0.0013 1.80 0.0003 1.86 6

Table 6.2: Numerical results for ω = 1 on unit cube.

6.5.2 Numerical Results on a 3D L-Shaped Domain

We also tested the approach on a three dimensional L-shaped domain where the

e component of the exact solution for (6.2.1) is not smooth. More precisely, we defined

Ψ = (1− x2)(1− y2)(z − z2) r2/3 sin(2θ/3),
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Mh = BVh
level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 0.1163 0.0361 3
k=2 0.0651 0.84 0.0314 0.20 6
k=3 0.0396 0.71 0.0209 0.59 8
k=4 0.0236 0.75 0.0215 0.74 9
k=5 0.0136 0.80 0.0069 0.85 13

Mh = R orth
h BVh

level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 0.0084 0.0226 3
k=2 0.0067 0.34 0.0155 0.54 7
k=3 0.0054 0.30 0.0077 1.01 9
k=4 0.0027 0.99 0.0026 1.56 12
k=5 0.0009 1.54 0.0007 1.97 18

Mh = R lump
h BVh

level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 0.0819 0.0287 4
k=2 0.0449 0.87 0.0227 0.34 6
k=3 0.0168 1.42 0.0107 1.09 10
k=4 0.0053 1.66 0.0027 1.98 14
k=5 0.0016 1.75 0.0008 1.75 19

Table 6.3: Numerical results for ω = 16 on unit cube.

Mh = R lump
h BVh

level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 0.0820 0.0295 8
k=2 0.0463 0.83 0.0245 0.27 11
k=3 0.0192 1.27 0.0072 1.76 31
k=4 0.0072 1.41 0.0024 1.61 44
k=5 0.0025 1.51 0.0006 2.10 81

Table 6.4: Numerical results with lump projection, ω = 100.

where (r, θ) are the polar coordinates in the xy-plane. For µ = 1 and ε = 1, we

computed the data such that the exact solution is

e = ∇(Ψ), and h = (x(1− x)(1 + x), y(1− y)(1 + y), z(1− z))T .
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Mh = R lump
h BVh

level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 0.0820 0.0295 12
k=2 0.0463 0.82 0.0264 0.26 18
k=3 0.0192 1.27 0.0074 0.74 62
k=4 0.0073 1.40 0.0017 2.11 147
k=5 0.0027 1.45 0.0005 1.69 234

Table 6.5: Numerical results with lump projection, ω = 1000.

Mh = BVh
level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 30.2359 0.0218 1
k=2 9.3185 1.70 0.0152 0.52 2
k=3 2.5041 1.90 0.0054 1.50 3
k=4 0.6396 1.97 0.0028 0.94 2
k=5 0.1609 1.99 0.0015 0.95 2

Mh = R orth
h BVh

level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 36.0886 0.0208 4
k=2 10.2212 1.82 0.0097 1.10 6
k=3 2.5759 1.99 0.0028 1.81 6
k=4 0.6445 1.99 0.0007 1.95 5
k=5 0.1611 2.00 0.0003 1.26 4

Mh = R lump
h BVh

level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 36.2702 0.0220 6
k=2 10.2365 1.82 0.0122 0.85 10
k=3 2.5761 1.99 0.0034 1.85 9
k=4 0.6443 2.00 0.0009 1.92 6
k=5 0.1611 2.00 0.0003 1.38 5

Table 6.6: Numerical results for ω = 1/1000 on unit cube.

Note that e 6∈ H1(Ω). We implemented Algorithm 2.4.1 using both uniform and non-

uniform refinement strategies for all three types of discrete trial spaces. The family of

locally quasi-uniform meshes {Th} used for discretization in the case of non-uniform
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refinement was obtained by a graded refinement strategy using the simple coordinate

transformation

xj := xj · |xj|−1+1/q j = 1, 2,

as shown in [2, 3]. Note that if q = 1, we recover the case of uniform refinement. The

results for uniform refinement and the no projection and orthogonal projection type

trial spaces are shown in Table 6.7 for ω = 1. Table 6.8 displays results for all three

types of trial spaces and non-uniform refinement with ω = 1. Table 6.9 shows results

for the no projection type trial space and non-uniform refinement with ω = 10. In the

case of non-uniform refinement, the parameter q in the coordinate transformation was

chosen to be q = 0.9 for the no projection discrete trial space and q = 0.55 for the

projection type trial spaces. Figure 6.1 shows the mesh generated on the fifth level

of refinement using both q = 0.9 and q = 0.55. From the figure, we see that q = 0.9

results in only a slight shift of the coodinates.

Mh = BVh
level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 0.2838 0.2672 2
k=2 0.1607 0.82 0.1595 0.74 1
k=3 0.0834 0.95 0.0852 0.90 2
k=4 0.0423 0.98 0.0441 0.95 1
k=5 0.0212 1.00 0.0229 0.95 3

Mh = R orth
h BVh

level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 0.2465 0.2108 2
k=2 0.0765 1.69 0.0718 1.55 2
k=3 0.0225 1.77 0.0342 1.07 2
k=4 0.0062 1.86 0.0155 1.14 3
k=5 0.0021 1.59 0.0086 0.86 5

Table 6.7: Non-convex domain example with uniform refinement and ω = 1.

The regularity of the h component of the solution is higher than the regularity

of the e component. This is reflected in the approximation of the solution using the

projection type spaces as shown in Table 6.7 and Table 6.8. Also, we obtain an order
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Figure 6.1: Non-uniform refinement with q = 0.9 (top) and q = 0.55 (bottom).
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Mh = BVh
level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 0.2783 0.2699 2
k=2 0.1634 0.77 0.1628 0.73 3
k=3 0.0862 0.92 0.0872 0.90 4
k=4 0.0439 0.97 0.0449 0.96 6
k=5 0.0221 0.99 0.0230 0.97 8

Mh = R orth
h BVh

level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 0.2400 0.2856 2
k=2 0.1554 0.63 0.1783 0.68 4
k=3 0.0764 1.02 0.0587 1.60 6
k=4 0.0266 1.52 0.0169 1.79 7
k=5 0.0081 1.72 0.0049 1.79 9

Mh = R lump
h BVh

level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 0.2980 0.2864 2
k=2 0.1564 0.93 0.1536 0.90 5
k=3 0.0821 0.93 0.0479 1.68 7
k=4 0.0281 1.54 0.0132 1.85 11
k=5 0.0088 1.67 0.0040 1.73 13

Table 6.8: Non-convex domain example with non-uniform refinement and ω = 1.

Mh = BVh
level k ‖h− hh‖ Conv. Rate ‖e− eh‖ Conv. Rate # of iter
k=1 0.3203 0.3422 7
k=2 0.2945 0.12 0.2685 0.35 16
k=3 0.1689 0.80 0.1463 0.88 30
k=4 0.0819 1.04 0.0766 0.93 45
k=5 0.0388 1.08 0.0395 0.96 64

Table 6.9: Non-convex domain example with non-uniform refinement and ω = 10.

of convergence for ‖e − eh‖ that is higher than 2/3 even though e /∈ H2/3(Ω) due to

the use of graded meshes.
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6.6 Remarks on the SPLS Approach

In this chapter, we proposed a new least squares discretization method for the

time-harmonic Maxwell equations written as a first order system. The approximability

of the proposed method depends on how well the solution p can be represented as

p = Bw. The higher the regularity of the representant function w, the better the

SPLS approximation ph of p becomes. For the no projection choice of trial space, the

discretization error ‖p−ph‖ is independent of the inf − sup constantmh associated with

the SPLS discrete system. Using the projection type trial spaces, the approximability

is better if compared with other finite element approximation techniques that rely

on piecewise linear approximation functions. In addition, the method is robust with

respect to the frequency parameter ω, and it is efficient for solving problems on both

convex and non-convex domains.

The fact that the operators B and B∗ depend on the parameters ε, µ, ω affects

the stability of the problem at the continuous and discrete levels. Indeed, since the

operator B depends on ω the condition number of the discrete Schur complement

depends on ω. Consequently, the number of iterations for Algorithm 2.4.1 depends

on ω. From Table 6.2 through Table 6.6 and Tables 6.8 and 6.9, we can see that the

number of iterations increases as ω →∞ and h→ 0. Still, for a large range of values

of ω we obtain an order of convergence to be close to or higher than one with just

piecewise linear approximation.
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Chapter 7

CONCLUSION AND FUTURE DIRECTIONS

In this thesis, we considered a saddle point least squares method to solve second

order elliptic PDEs, as well as first order systems of PDEs, written as mixed variational

formulations. In Chapter 2, the theory described connected the area of approximat-

ing the solutions of elliptic problems with the area of approximating the solutions to

symmetric saddle point problems. The main advantage of the framework, and distin-

guishing characteristic from the original SPLS method, is the allowance of the choice

of working with nonconforming trial spaces with desirable approximability properties.

In Chapter 3, a general preconditioned approach to solving mixed variational

formulations was presented. The method relies on the classical theory of symmetric

saddle point problems and on the theory of preconditioning symmetric, positive definite

operators. The main idea was to replace the inner product on the discrete test space,

that arises naturally through the saddle point reformulation, with an equivalent inner

product that gives rise to efficient elliptic inversion or preconditioning. A major benefit

of this is that we were able to analyze the resulting preconditioned formulation in a

similar manner as the formulation in Chapter 2, and the approximability properties of

the discrete trial spaces do not depend on the chosen norm on the test space.

We applied the SPLS framework with and without preconditioning to the dis-

cretization of second order elliptic interface problems in Chapters 4. The proposed

method is easy to implement using Uzawa type algorithms, and the adoption of non-

conforming trial spaces leads to higher order approximation if compared with stan-

dard finite element (non-mixed) techniques based on linear element approximation. In

addition, the method works well when solving second order problems with variable

coefficients, including highly oscillatory coefficients, and problems where the solution

100



has less regularity. In the case of preconditioning, the problem reduces to elliptic pre-

conditioning associated with inner products on the test spaces, usually of H1 type. We

plan to further combine the SPLS discretization method with known multilevel and

adaptive techniques [1, 8, 17, 38, 46, 74, 89].

In Chapter 5, we applied the SPLS framework to reaction diffusion equations

with an emphasis on the reaction dominated case. The method, using the projection

type trial spaces, leads to higher order approximation as seen in Chapter 4. We plan to

provide a more thorough analysis of the method when specifically using Shishkin type

meshes in the near future. In addition, we plan to apply the preconditioning theory of

Chapter 3 to reaction diffusion equations, as well as combine the theory and techniques

of Chapter 4 to reaction diffusion equations with discontinuous coefficients. In regards

to the latter, preliminary numerical results have been obtained for a simple interface

problem. More specifically, we solved −div(A∇u) + cu = f in Ω,

u = 0 on ∂Ω,

on the unit square with c = 1 and f computed such that for

A(x, y) = a(x, y)I2, where a(x, y) =

1 if x < 1/2,

µ if x ≥ 1/2,

the exact solution is given by

u(x, y) =

µx(x− 1/2)y(y − 1) if x < 1/2,

(x− 1/2)(x− 1)y(1− y) if x ≥ 1/2.

Table 7.1 shows results for µ = 10, 100, 1000 using a family of interface-fitted, locally

quasi-uniform meshes {Th} obtained through a standard uniform refinement strategy

with a mesh size of h = 2−k. We observe similar results compared with the interface

problems presented in Chapter 4. We also plan to apply the SPLS approach to reaction

diffusion equations where the coefficient c is discontinuous.
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Mh = BVh

level k
µ = 10 µ = 100 µ = 1000

error rate it error rate it error rate it
1 0.255 1 2.448 1 24.368 1
2 0.133 0.943 1 1.272 0.944 1 12.665 0.944 1
3 0.067 0.986 1 0.642 0.986 1 6.340 0.986 1
4 0.034 0.986 1 0.322 0.996 1 3.206 0.996 1
5 0.017 0.999 1 0.161 0.999 1 1.604 0.999 1

Mh = R orth
h BVh

level k
µ = 10 µ = 100 µ = 1000

error rate it error rate it error rate it
1 0.140 1 1.331 2 13.246 2
2 0.040 1.794 2 0.379 1.810 4 3.771 1.812 6
3 0.011 1.804 3 0.106 1.843 6 1.043 1.854 13
4 0.004 1.682 3 0.029 1.849 8 0.286 1.864 20
5 0.001 1.768 4 0.008 1.863 11 0.078 1.884 25

Mh = R lump
h BVh

level k
µ = 10 µ = 100 µ = 1000

error rate it error rate it error rate it
1 0.134 1 1.287 1 12.808 3
2 0.055 1.289 2 0.508 1.341 5 5.055 1.341 8
3 0.020 1.478 3 0.181 1.490 9 1.798 1.491 20
4 0.007 1.517 4 0.063 1.520 12 0.625 1.524 28
5 0.002 1.522 5 0.022 1.521 15 0.217 1.525 39

Table 7.1: Results for reaction diffusion interface example.

In Chapter 6, we proposed a new least squares discretization method for the

time-harmonic Maxwell equations written as a first order system. The approach follows

the methodology in [33], but different spaces are chosen at the discrete level. The SPLS

approach provides good approximations for both the electric and magnetic fields, and

the method is robust with respect to the frequency parameter ω. Furthermore, the

projection type trial spaces provide a better approximation compared with the no

projection trial space. We plan to further investigate whether the SPLS method can

be applied to solving Maxwell’s equations with different types of boundary conditions
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and combine the preconditioning techniques of Chapter 3 with the SPLS discretization

of Maxwell’s equations. We also plan to further investigate the stability of the families

of spaces presented.

An application of particular interest for the SPLS method is the Helmholtz

equation

∆u+ k2u = −f,

where k represents the wave number. As seen in Chapters 4 and 5, the stability of the

families of discrete spaces, through the approach taken in this thesis, is independent

of the parameters associated with the given PDE. With similar techniques, we plan on

investigating how the Helmholtz equation fits into the SPLS framework for low and

high wave number. In addition, we plan to explore the application of the SPLS method

to the Stokes system written as a first order system, as well as linear elasticity.
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[5] A. Aziz and I. Babuška. Survey lectures on mathematical foundations of the finite
element method. The Mathematical Foundations of the Finite Element Method
with Applications to Partial Differential Equations, A. Aziz, editor, 1972.
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