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ABSTRACT

Whole genome assemblies are regularly becoming available for more organisms

due to the reduced time and costs of DNA sequencing. Multiple assemblies may be

created for the same species with one being selected as the reference genome to guide

wet-lab and bioinformatics studies. To select the most complete, continuous, and

accurate assembly for an organism of interest, improved methods for quality assessment

of assemblies is necessary. Currently, most methods to evaluate genome assembly

quality focus on completeness or continuity only. If accuracy is assessed, a high quality

reference genome for the organism of interest is often required for a direct sequence

comparison.

Here, we emphasize the need for assembly quality assessment by using as a case

study the creation of multiple genome assemblies for the Chinese hamster (CH) and

Chinese hamster ovary (CHO) cells, the preferred platform for therapeutic protein pro-

duction. The highest quality assembly, CH PICR, was created from combining multiple

assemblies where the primary, base assembly was developed from long-read sequencing

data. CH PICR was selected through manual quality assessment, annotated, and made

available on the NCBI RefSeq database as the new reference genome.

We then describe the development of a novel tool, EvalDNA (Evaluation of De

Novo Assemblies) to facilitate the evaluation of mammalian genome assembly quality

and the selection of the reference genome. EvalDNA overcomes the requirement of an

additional genome assembly by using a machine-learning model to integrate a variety

of quality metrics into a single, comprehensive quality score. The provided model can

explain approximately 86% of the variation in reference-based quality scores in the

test data, consisting of different draft chromosome assemblies with real/simulated er-

rors. EvalDNA also distinguishes itself from current assembly evaluation tools because
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EvalDNA quality scores generated by the same model are comparable across different

organisms.

EvalDNA was used to evaluate the novel assemblies of the CH genome. The

resulting scores showed that CH PICR was of the highest quality, agreeing with the

manual quality evaluation. This observation confirms EvalDNA’s ability to score as-

semblies from organisms not used in the training data. EvalDNA’s ability to compare

assemblies from different assemblers and organisms is also examined.

Finally, we demonstrate the benefits of having an improved CH reference genome

assembly in CHO cell genetic engineering. Successful gene knock-downs and knock-outs

in CHO cells can prevent the expression of difficult-to-remove host cell proteins (HCPs).

HCPs, if not removed, can cause problems in the stability, safety, and efficacy of the

biotherapeutic protein being produced. Here, the CH PICR reference genome was used

to identify new knockout targets with similar predicted functions and characteristics

as several difficult-to-remove HCPs.
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Chapter 1

BACKGROUND AND SIGNIFICANCE

A genome is the entire genetic information of an organism, including genes and

non-coding DNA. An organism’s genome can be sequenced using high-throughput DNA

sequencing technology. Due to limitations of the current sequencing technology, the

genome needs to be fragmented before it can be sequenced. Thus, DNA sequencing

produces many short pieces of DNA, called sequencing reads, that need to be put

together to form a whole genome assembly. Because of errors in sequencing reads and

errors that can occur in the assembly process, there has been a significant push to design

more accurate sequencing technology and assembly methods. Now, genome assemblies

are regularly becoming available for more organisms with a greater than three-fold

increase in NCBI’s RefSeq assembly database since August of 2015 [1] (Table 1.1).

Table 1.1: Assemblies in the NCBI RefSeq Databases in August 2015 [1] and in
February 2019 (counts taken on February 7th, 2019). The ‘All’ taxonomic
group contains viruses and viroids, invertebrates, and protists in addition
to the groups listed here. The total assemblies and species counts for Feb.
2019 were determined from the ‘assembly summary refseq.txt’ file located
at ftp://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY REPORTS/.

Taxonomic Group NCBI RefSeq Aug. 2015 NCBI RefSeq Feb. 2019
Archaea 414 810
Bacteria 34,514 143,385
Fungi 167 283
Plants 62 94
Mammals 94 127
All 40,390 (for 12,964 species) 153,355 (for 53,048 species)
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1.1 DNA Sequencing and Whole Genome Assembly

DNA sequencing, the process in which nucleotide sequences of DNA fragments

are determined, is the first step towards generating a genome assembly. The increased

availability of whole genome assemblies is the direct result of the reduced monetary and

time costs of DNA sequencing. The cost to create a high-quality ‘draft’ assembly for

the human genome in 2006 was approximately $14 million. This cost was drastically

decreased to $4,000 by 2015, and was as low as $1,000–$1,500 in 2016 [2].

Today, two of the most commonly used sequencing methods are Illumina’s

sequencing-by-synthesis method and Pacific Biosciences’ (PacBio) Single-Molecule Real-

Time sequencing method. In Illumina sequencing, the DNA to be sequenced is frag-

mented into pieces often 200-600 base pairs (bp) long. These pieces are hybridized

to flow cells using adapters and then amplified to create clusters of template strands.

Next, fluorescently-tagged nucleotide bases with attached reversible terminators are

added to the flow cell. The base that pairs with the next base on the template strand

is incorporated, while the terminator assures that only one base is added each round.

At the end of a round, the terminator is cleaved allowing the next nucleotide to be

added. Each base emits a specific flourescent signal when incorporated that is identified

by the sequencing machine as an A,C,T, or G (Figure 1.1).

Illumina sequencing outperforms many other types of sequencing in cost, through-

put, and read accuracy (∼0.1% error rate) [3]. However, Illumina sequencing produces

short reads that are typically only 100-300 bp long. To mitigate the limitations of short

reads, a method called paired-end sequencing is frequently used, where each DNA frag-

ment results in two reads. One read is sequenced from the beginning of the fragment

and the other read is sequenced from the end. This technique facilitates the assembly

process by providing information about the distance between reads. Another method

to overcome the short-read limitation of Illumina sequencing is mate-pair sequencing

where the ends of a longer DNA strand, around 1 to 10 kbp, are sequenced. Mate-pair

sequencing information helps to connect contigs during the assembly process (Figure

1.2). Although the sequence between the mate-pair reads is unknown, the distance
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Figure 1.1: Illumina’s sequencing-by-synthesis method. The first step shows a
fluorescently-tagged thymidine (T) nucleotide, with a reversible termi-
nator, being added to the template DNA strand. More nucleotides get
incorporated in subsequent rounds, emitting specific flourescent signals
for A,C,T, or G. Image courtesy of Illumina, Inc.

is known and can be used to link two contigs. The sequence created by linking and

ordering two or more contigs is called a scaffold.

PacBio sequencing is another prevalent sequencing method. In PacBio’s Single-

Molecule Real-Time (SMRT) sequencing (Figure 1.3), the DNA to be sequenced is

sheared often into 5-35 kilobase (kbp) pieces [4] and each DNA fragment is ligated to

a chip called a SMRT cell. The DNA strand then diffuses into a zero-mode waveguide

(ZMW) unit where a single polymerase for replication is located. Next, the four types

of nucleotides each with a unique fluorophore attached are added to the SMRT cell. As

each base is added to the DNA strand by the polymerase, there is a detectable pulse

of light that indicates which base was incorporated [3].

PacBio sequencing, in contrast to Illumina, produces long reads with a relatively

high error rate. Although the PacBio error rate (∼13%) [3] is much higher than that of

Illumina, the errors are randomly distributed and thus, can be corrected by increasing

sequencing coverage. Assemblers that use PacBio reads only often recommend having
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Figure 1.2: Contigs can be joined and ordered into a scaffold over gaps when there
is enough evidence from paired-end and mate-pair sequencing.

at least 50x sequencing coverage (for the so-called P5C3 chemistry) of the genome to

produce high quality assemblies [6, 7, 8]. Error-correction is highly recommended before

assembly to avoid the generation of misassemblies [9]. Once error-corrected, PacBio’s

longer reads often lead to better assemblies as they are able to resolve repetitive regions

and lead to fewer gap regions [8].

The differences in read length and sequencing error rate between these two

sequencing methods impact the subsequent genome assembly process. Longer and

more accurate reads can improve assembler output, especially when building an as-

sembly de novo i.e. without an existing reference genome [10]. Because the benefits of

each sequencing method, the highly accurate reads of Illumina and the long reads of

PacBio, are complementary to one another, methods to integrate Illumina and PacBio

sequencing data have been developed. For instance, errors in PacBio reads can be

resolved prior to assembly by using highly accurate Illumina reads [9, 11]. In addition,

merging assemblies created from the different sequencing methods has been shown to
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Figure 1.3: PacBio’s Single-Molecule Real-Time (SMRT) sequencing method. A)
A single molecule of DNA polymerase is attached at the bottom of a
ZMW. The nano-scale size of the ZMW enables the detection of a sin-
gle nucleotide as it is added to the DNA strand. B) A cytosine (C) is
incorporated into the DNA strand, followed by an adenine (A), with an
example time trace of fluorescence intensity. Image [5] is used with per-
mission from The American Association for the Advancement of Science
(see Appendix D).

further improve the quality of the final assembly [12]. The Metassembler tool itera-

tively updates a starting assembly based on pair-wise alignments to other assemblies

[12]. Conflicts between assemblies are resolved by selecting the local sequence with the

best compression–expansion (CE) statistic [13].

1.2 Reference Genome Assemblies

Due to advances in both DNA sequencing methods and genome assembly algo-

rithms, multiple genome assemblies may be created for the same species. Before the

advent of PacBio sequencing, most assemblies were created using Illumina sequencing

reads only. More recently, reads from PacBio sequencing and Illumina sequencing are

often combined through a variety of algorithms to address the short read length limi-

tation of Illumina and the high error rate of PacBio [9, 14, 15]. However, the standard

procedure is to select one genome assembly for a species as the reference genome. This
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reference genome will become an important tool to study and/or manipulate the ge-

netics of an organism. Therefore, the selected reference assembly should be the one

that is the closest to the organism’s true genome, i.e. the one of highest quality.

Reference genome assemblies are frequently used to guide wet lab experiments.

For instance, to measure the expression of coding and noncoding RNAs in a genome

using DNA microarrays, probes need to be designed to be complementary to the se-

quences of the areas of interest. In addition, most genetic engineering techniques, such

as gene knockdowns and knockouts, require the sequence of the genome to be known.

While the target gene’s sequence could be determined through targeted sequencing,

the sequence of the whole genome would still be necessary for certain genetic engineer-

ing methods to mitigate possible off-target effects. For example, the CRISPR-Cas9

genetic engineering system [16, 17, 18] cleaves based on a specific nucleotide sequence,

which results in the deletion or addition of nucleotides knocking out the target gene.

However, if this target sequence occurs multiple places in the genome, breaks and

mutations would be incorporated multiple times which could cause unintended genes

and/or regulatory regions to be disrupted.

Reference assemblies are also used in a significant portion of bioinformatics

work. Genome annotations rely on the correct reference sequence for both ab initio

prediction of genes and the alignment of mRNA data. Comparative genomic studies,

such as finding homologs or syntenic gene regions, benefit greatly from having avail-

able reference genomes of the organisms being compared [19, 20, 21]. Additionally,

RNA-sequencing data analysis regularly involves the mapping of sequencing reads to

a reference genome to quantify gene expression and identify transcript variants [22].

1.3 Reference Assembly for Chinese Hamster Ovary (CHO) Cells

1.3.1 CHO cells

Chinese hamster ovary (CHO) cells are the preferred platform for the produc-

tion of biotherapeutic monoclonal antibodies (mAbs). CHO cells were isolated from

a female Chinese hamster in 1957 by Dr. Theodore Puck, who was able to establish
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the cells in culture [23]. The first recombinant therapeutic produced from a mam-

malian cell host, tissue plasminogen activator, was produced from CHO cells and was

approved for clinical use in 1987 [24]. Now, the majority of recombinant biotherapeutic

proteins are produced from CHO cells. Between 2014 and 2018, 57 of the 68 (85%) ap-

proved monoclonal antibodies (mAbs) were produced by CHO cell systems [25]. These

mAbs are used to treat a variety of diseases, with the majority targeting cancer and

autoimmune disorders.

CHO cells are used for biotherapeutic production largely because of their high

growth rate, ease of genetic manipulation, resistance to viral infection, and ability to

form glycosylation patterns similar to those found in humans. They are also easily

adapted to suspension culture enabling scale-up using bioreactors [24]. In addition,

they already have approval as a host cell for therapeutic protein production facilitating

the approval of new biotherapeutics produced from CHO cells.

1.3.2 Chinese hamster (CH) genome as the reference for CHO cells

Despite the multiple benefits of using CHO cells, there is still the potential

to produce safer therapeutics more efficiently through the study and manipulation of

CHO cell genetics. To facilitate these studies, a ‘gold-standard’ reference genome for

CHO cells is necessary. However, a variety of different CHO cell lines are used in the

biopharmaceutical industry and each cell line has a unique genome because they are

subject to frequent, spontaneous chromosomal rearrangements. One CHO cell line’s

genome cannot effectively represent the others and there can even be differences among

cells within a population derived from the same cell line [26, 27].

The Chinese hamster (CH) genome, from which CHO cells were derived, may

be an appropriate stable reference genome for CHO cell lines [28]. Therefore, after

the sequencing of the CHO-K1 cell line in 2011, efforts have been directed towards the

sequencing, assembly, and annotation of the CH genome. Illumina sequencing was used

to create the 2013 RefSeq CH genome assembly [27] and the 2013 chromosome-sorted

assembly (CSA) [29]. The most recent CH genome assembly, described in Chapter 2,
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was built using a hybrid approach that integrated the previous Illumina sequencing

data with new PacBio sequencing data [30].

One of the main advantages of using the CH genome assembly as a reference for

CHO cells is that it enables the comparison of CHO cell lines. This advantage is demon-

strated by Feichtenger et al. [31], where reads from whole genome sequencing, bisulfite

sequencing, and CHIP-seq of six CHO cell lines were mapped to the CH genome.

SNPs/indels, structural variants, histone modifications, and methylated regions across

the six cell lines could then be compared in reference to a stable genome. In addition,

the annotated CH genome was able to provide biological and functional insights about

the differences, i.e. were the differences in genes, promoter regions, intergenic regions,

or transcriptional start sites. Another study used the CH genome to compare patterns

of chromosome evolution and instability among CHO cell lines [32]. Overall, examina-

tion of differences among the genomes of CHO cell lines and the Chinese hamster can

lead to a better understanding of CHO cellular pathways and facilitate the engineering

of these pathways to increase CHO cell growth and biotherapeutic protein production

and secretion [33, 34, 35].

Other uses of the CH genome assembly for studying CHO cells have been demon-

strated. The CH genome has been used for the identification of novel microRNAs in

CHO cells that were evolutionarily conserved [36]. In addition, transcriptome and

genome data from CH was used to investigate which auxotrophies were present in the

Chinese hamster and which were CHO cell-line specific to better understand CHO

metabolic processes [37]. Chromosomal and regulatory information about potential

gene integration sites has also been gained from the 2013 CH genome [38].

Despite their proven benefits in the study CHO cells, the 2013 CH genome

assemblies are still far from complete. CSA, while separated into chromosomes, con-

tains approximately 10% of unknown sequence (gaps) and is split into 28,749 scaffolds.

The 2013 RefSeq assembly had less unknown sequence (∼2%), but is split into 52,710

scaffolds and does not contain chromosome assignments for those scaffolds. The 2013

RefSeq assembly has a slightly better N50 (explained in the next section) of 1,558 kbp
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than CSA (1,237 kbp) and was subsequently annotated by the NCBI RefSeq pipeline in

2014. A higher quality CH reference assembly would improve the accuracy of mapping

sequencing reads from CHO cells and provide a more complete annotation of genes

and regulatory elements, enhancing comparisons among CHO cell lines. In addition, a

more continuous assembly of the CH genome would further increase the understanding

of the chromosomal context of integration sites [39] and could help find possible stable

positions for gene insertion through the identification of conserved regions among the

genomes of CH and CHO cells.

1.4 Assembly Quality Evaluation

1.4.1 Overview

Comprehensive evaluation of assembly quality is essential to identify the most

appropriate reference assembly for a species and be aware of possible limitations regard-

ing the chosen assembly’s quality. Many scientists incorrectly assume that reference

genomes are complete and correct. However, reference genomes for higher eukaryotes

are commonly only high-quality drafts due to their genome size and complexity [40].

It is often difficult to generate a perfectly complete and continuous assembly, i.e. com-

bine all scaffolds and contigs into one sequence, with high confidence. These combined

sequences can also contain misassemblies that are difficult to identify and correct.

Metrics that evaluate the completeness and continuity of an assembly reflect

how much of the organism’s actual genome is represented and in how many separate

sequences. Completeness and continuity metrics include the total size of the reference

assembly, the number of scaffolds/contigs that make up this assembly, and the N50

metric. The N50 metric is the length of the longest scaffold where the total length

of that scaffold plus all longer scaffolds is more than half the length of the genome

(Figure 1.4). Another useful metric is the percentage of the assembly that is made up

of gaps. Gaps are regions of the assembly where the sequence is unknown, but they

are incorporated into assemblies as placeholders to combine contigs into scaffolds when

possible.
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Figure 1.4: An example of the N50 metric for a 10,000 bp assembly.

Assembly accuracy describes how similar the sequence of the assembly is to the

true genome sequence of the organism. Measuring the accuracy of an assembly is more

challenging than measuring the completeness or continuity, especially when no other

assemblies exist for the organism of interest. If a highly accurate reference assembly

does exist, accuracy of an assembly can be determined through direct sequence com-

parison. However, high-quality reference genomes are rare for high-order eukaryotes

and would not exist for the sequencing of novel organism genomes.

Several methods have been developed to gain insights into the accuracy of an

assembly that do not need a reference assembly. The most commonly used method is

to map raw sequencing reads (either reads used in the assembly or reads from the same

organism) to the assembly. Error-free reads represent the true sequence of the genome,

just in many separate pieces, and they should map perfectly onto a genome if the

genome is perfectly assembled. Therefore, errors in read mapping or the lack of read

mapping to an area of the assembly often suggest a potential underlying misassembled

sequence.

1.4.2 Current tools for assembly evaluation

While single metrics have been developed to describe specific quality aspects of

an assembly, there is a need for tools that comprehensively evaluate assemblies based

on both accuracy and completeness. Looking at one metric alone can sometimes be
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misleading. For instance, a high N50 value means more contigs were joined together

into larger scaffolds and suggests a more complete assembly. The N50 is often used to

measure the quality of a genome, but this value does not take into account whether

the contigs were joined together correctly [41]. Also, most of the single metrics used

to evaluate genome assemblies only examine the continuity or completeness of an as-

sembly, while good quality assessment needs to examine all three quality aspects of an

assembly; completeness, continuity, and accuracy.

Tools that examine accuracy include QUAST (Quality Assessment Tool for

Genome Assemblies) [42] and CQAT (Contig Quality Assessment Tool) [43]. These

tools require a high quality reference assembly for the organism of interest. Refer-

ence independent tools that use the read-mapping approach described above include

Amosvalidate [44], ALE [45], FRCbam [46], and SURankCO [47]. Despite the benefits

of these tools, the resulting quality assessments are not comparable across different

species. If a standard method for quality assessment of assemblies was to be estab-

lished, the results should ideally be comparable among all species or at least among

species of the same taxonomic class. This would provide a way to quantitatively assess

how similar or dissimilar an assembly’s quality is to ’gold-standard’ assemblies such as

the human reference genome.

1.5 Project Goals

The overall purpose of this work is to provide a high quality reference genome

for CH and CHO cells to support the manufacturing of biotherapeutic proteins, and

to facilitate reference genome selection and comparison through the development of a

quality evaluation tool for mammalian genome assemblies. This work has been divided

into three main objectives:

1. To create and annotate genome assemblies for the Chinese hamster and to

establish the highest quality assembly as the new reference for CHO cells (Chapter

2) - A hybrid approach, using Illumina and PacBio sequencing data, was used to

build improved Chinese hamster genome assemblies. The quality of the assemblies
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was assessed to select the highest quality assembly, PICR, to be the new CH reference

assembly. Annotation, gap analysis, and chromatin state analysis of PICR was also

completed.

2. To develop a pipeline for comprehensive genome assembly evaluation that does

not require an existing reference genome and apply the pipeline to the CH genomes as

proof-of-concept (Chapter 3) - A novel machine learning-based tool, EvalDNA, was

developed to evaluate genome assemblies based on accuracy, completeness, and con-

tinuity. EvalDNA does not require a reference genome and the resulting scores are

comparable across different species. The meta-assemblies for the Chinese hamster, de-

scribed in Chapter 1, were scored using EvalDNA and compared against the existing

CH genome assemblies as well as the reference genomes of various model organisms.

3. To use the new high quality CH reference assembly to facilitate the identifica-

tion of problematic lipases and knock-out target sites (Chapter 4) - Lipase proteins from

the CHO-K1 genome assembly were compared to known problematic lipases to iden-

tify additional lipases that could possibly cause problems if they exist in the final drug

product. Several sequences/annotations of lipases from the CHO-K1 assembly were

corrected using the new CH PICR reference assembly, facilitating the identification of

target sites for gene knock-outs.
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Chapter 2

A REFERENCE GENOME OF THE CHINESE HAMSTER BASED ON
A HYBRID ASSEMBLY STRATEGY

2.1 Preface

This section is adapted from Rupp, MacDonald, Li, Dhiman et al, 2018 with

permission (see Appendix C). Existing Illumina sequencing data along with new PacBio

sequencing data were used to develop multiple improved genome assemblies for the

Chinese hamster (CH). The highest quality assembly was selected to be the reference

genome for CH and Chinese hamster ovary (CHO) cells. This work was the result

of an international collaboration among members of the CHO genome community. I

carried out the annotation and comparison of the PICR and IPCR genome assemblies.

Genome assembly and manual quality assessment were completed by Oliver Rupp, gap

analysis was completed by Shangzhong Li, and the chromatin state and gene structure

analyses were completed by Heenan Dhiman.

2.2 Abstract

Accurate and complete genome sequences are essential in biotechnology to facil-

itate genome-based cell engineering efforts. The current genome assemblies for Crice-

tulus griseus, the Chinese hamster, are fragmented and replete with gap sequences and

misassemblies, consistent with most short-read assemblies. Here, we completely rese-

quenced C. griseus using single molecule real time sequencing and merged this with

Illumina-based assemblies. This hybrid approach generated a more continuous and

complete genome assembly than either technology alone, reducing the number of scaf-

folds by >28-fold, with 90% of the sequence in the 122 longest scaffolds. Most genes

are now found in single scaffolds, including up- and downstream regulatory elements,
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enabling improved study of non-coding regions. With >95% of the gap sequence filled,

important Chinese hamster ovary cell mutations have been detected in draft assembly

gaps. This new assembly will be an invaluable resource for future basic and pharma-

ceutical research.

2.3 Introduction

For decades, Chinese hamster ovary (CHO) cells have been the primary recom-

binant protein production host across the biopharmaceutical industry [48]. Charac-

teristics, such as glycosylation, fast growth, and ease of genetic manipulation, help

explain their prevalence. The history of CHO cells dates back to the 1950s, when

ovarian connective tissue was harvested from the Chinese hamster and derivative cells

spontaneously became immortal [49]. Since then, CHO has diverged into different ad-

herent and suspension cell lines, such as CHO-K1, CHO-S, and CHO DG44 [27]. CHO

cell protein production capacity has been greatly improved through decades of refine-

ments in bioprocessing strategies, media optimization, and engineering of transgenes

and expression vectors. However, little engineering was done on the host cell itself,

which remained poorly characterized for decades. Increasing demands on quantities

of difficult-to-express proteins, protein quality, and time-to-market now require new

strategies that involve cell engineering.

To facilitate CHO cell research and development, the community relies on pub-

lished genomes for the CHO-K1 cell line and the parent Chinese hamster, sequenced

using short-read Illumina technologies [27, 29, 50, 51]. These resources have enhanced

the use of transcriptomics, proteomics, genetic engineering, and other technologies

[33, 52, 53] to understand and engineer desired traits in cells. However, to improve the

accuracy in such endeavors, there is a need for genomic resources with a far more con-

tinuous sequence and less pervasive gaps. The acquisition of such continuous sequences

is now possible with third-generation sequencing technologies, such as single molecule

real time (SMRT) sequencing technology [54], which provide mean read lengths that

are more than an order of magnitude larger than earlier sequencing technologies. The
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reads can span repetitive elements, resulting in longer contigs and minimal gaps within

scaffolds [55, 56, 57]. Long-read sequencing facilitates the creation of mammalian

genome assemblies that approach the current quality of the human genome.

To obtain a higher quality reference assembly of the Chinese hamster (CH), we

have resequenced CH liver tissue using long-read SMRT technology at 45x coverage.

Assemblies generated with Illumina or SMRT sequencing data were merged with the

existing publicly available assemblies. Assembly merging yielded four candidate assem-

blies, which were evaluated for completeness and accuracy using 80 quality metrics.

Merging the platform-specific assemblies resulted in a more continuous, accurate, and

complete genome assembly than using either technology alone. The final assembly

presented is the most continuous Chinese hamster genome to date, with the number

of scaffolds reduced to fewer than 3%-6% the number in earlier works, and the mean

contig length 16-29 fold longer. The new genome shows substantial improvement in

gene completeness and the extent of flanking non-coding DNA, thereby enabling the

identification of promoters and enhancers. Finally, 95% of the sequence gaps were

filled, exposing hundreds of cell line-specific mutations in coding regions of the genome

for several CHO cell lines. For example, an important single nucleotide polymorphism

(SNP) in the glycosyltransferase, xylosyltransferase 2 (Xylt2), which impacts glyco-

sylation and which was hidden in gaps in previous assemblies, can now be detected.

Thus, this resource will serve as an important reference genome for researchers across

the biotechnology industry and scientific community.

2.4 Materials and Methods

2.4.1 Sequencing

2.4.1.1 Illumina sequencing

Short-read data from CH liver tissue were generated using Illumina’s sequencing

technology in two previously published studies. These included chromosome separated

paired-end libraries and mate-pair short-read data [29], and whole-genome libraries
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with different insert sizes [27]. The size and coverage of the two sequencing libraries

are shown in Table 2.1.

Table 2.1: Overview of the different Illumina sequencing libraries

2013 RefSeq assembly [27]
Insert size Bases (Gbp) Number of read-pairs Mean read length
180 92.62 497,911,030 93.00
500 61.52 330,723,818 93.00
800 26.64 143,168,236 93.00
2000 30.34 188,590,215 80.55
5000 14.64 88,225,147 83.00
10000 12.48 75,094,089 83.00
20000 2.42 15,063,393 80.00
CSA assembly [29]
Insert size/chromosome Bases (Gbp) Number of read-pairs Mean read length
180 / chr1 34.30 111,436,801 153.97
180 / chr2 33.10 107,485,431 154.06
180 / chr3 19.96 65,249,415 153.03
180 / chr4 10.34 34,434,540 150.00
180 / chr5 9.26 30,834,375 150.00
180 / chr6 10.66 35,519,916 150.00
180 / chr7 5.22 20,881,069 125.00
180 / chr8 7.62 30,451,947 125.00
180 / chr9,10 18.74 61,114,204 153.37
180 / chrx 11.06 35,424,777 156.00
4,500 10.48 51,509,899 101.73
6,000 16.30 63,722,909 132.70
6,200 14.52 71,488,589 101.50

2.4.1.2 Pacific biosciences SMRT sequencing

Preparation of Chinese hamster tissue - Five female Chinese hamsters

(strain 17 A/gy) were raised under certified conditions. At 10 weeks of age, the in-

dividuals were euthanized by CO2 asphyxiation and verified by puncture wound to

the abdomen. Livers were removed and cut into multiple pieces, flash frozen in liquid

nitrogen, and stored at -80 degrees C until further processing.
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High-molecular-weight genomic DNA extraction - High-molecular-weight

(HMW) genomic DNA extraction and purification from randomized liver samples were

performed using the MagAttract HMW DNA Kit (Qiagen Inc., Venlo, Netherlands)

as per the manufacturer’s instructions. HMW DNA was confirmed using a Fragment

Analyzer (Advanced Analytical Technologies Inc., Ankeny, IA).

SMRT library preparation from genomic DNA samples - HMW DNA

(10 µg aliquots) were converted into SMRTbell templates using the Pacific Biosciences

RS DNA Template Preparation Kit 1.0 (Pacific Biosciences, Menlo Park, CA) as per

the manufacturer’s instructions. In summary, samples were end-repaired and ligated

to blunt adapters. Exonuclease treatment was performed to remove unligated adapters

and damaged DNA fragments. Samples were purified using 0.6x AMPureXP beads

(Beckman Coulter Inc., Brea, CA). The purified SMRTbell libraries were eluted in 10

µl of elution buffer. Eluted SMRTbell libraries were size-selected on BluePippin (Sage

Science Inc., Beverly, MA) to eliminate library fragments below 5 kbp. Final library

quantification and sizing was carried out on a Fragment Analyzer (Advanced Analytical

Technologies Inc.) using 1 µl of library. SMRTbell templates were aliquoted, shipped,

and prepared for sequencing at the University of Delaware Sequencing & Genotyping

Center and the Johns Hopkins University Deep Sequencing and Microarray Core.

SMRT sequencing on the Pacific Biosciences RSII - The amount of

primer and polymerase required for the binding reaction was determined using the SM-

RTbell concentration and library insert size. Primers were annealed and polymerase

was bound to SMRTbell templates using the DNA/Polymerase Binding Kit P5 and

P6 (Pacific Biosciences). Sequencing was performed using DNA sequencing reagent

C3 and C4 (Pacific Biosciences) with Pacific Biosciences RSII sequencers and SMRT

Cell V3 (Pacific Biosciences) at the University of Delaware Sequencing & Genotyp-

ing Center (DBI) and the Johns Hopkins University Deep Sequencing and Microarray

Core (JHU). RSII loading efficiency was optimized for each individual library utilizing
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a standardized titration protocol. Over the course of the project, data capture time

for the sequencing runs was initially set at 4 hr. This time was extended to 6 hr after

software upgrades.

SMRT data metrics - The two sequencing centers ran a total of 202 SMRT

cells (92 DBI, 110 JHU). A total of 65 SMRT cells were run using P5/C3 chemistry,

whereas 137 SMRT cells were run using P6/C4 chemistry. After filtering and adapter

trimming, a total yield of 107.45 Gbp was generated from 13.49 million sequence reads

or approximately 45x coverage of the 2.4 Gbp genome. The mean read length calculated

from all generated reads was 11.55 kbp. N50 read length calculated from all generated

reads was 15.9 kbp.

2.4.1.3 SMRT read error-correction

Before assembly, SMRT reads were error-corrected (SMRT reads have on average

15% errors before correction). As insufficient SMRT coverage was obtained for self-

correction of SMRT reads, we used Illumina paired-end reads [27, 29] for SMRT read

error correction. The Illumina reads were preprocessed with the ALLPATHS-LG error-

correction module for fragment libraries [19]. The reads from the same pair were joined

and error-corrected, and gaps were filled if possible. This preprocessing resulted in a

longer, single, and error-free read for each read pair.

Two different tools for PacBio read error correction were then tested with dif-

ferent parameters: proovread [58] and LoRDEC [59]. The tools were tested separately

and in combination. The best results were achieved when, in the first step, proovread

was run on the initial reads with a single iteration. All Illumina reads were mapped to

all SMRT reads (allowing for multi-mappings) using the modified version of BWA in

the proovread tool. Then, the bam2cns algorithm in proovread was applied to correct

the reads based on the majority decision of the Illumina mappings. In the second step,

the proovread results were further processed with LoRDEC. Using the corrected reads,
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LoRDEC created a de Bruijn graph from the Illumina reads, mapped the nodes (k-

mers of size 85 bp) to the SMRT reads, and corrected the unmapped regions following

a path in the de Bruijn graph.

2.4.2 Genome size estimation

Genome size was estimated by the k-mer frequency of the Illumina read data

using (1) all Illumina whole-genome paired-end libraries with an insert-size of 500 bp,

(2) the libraries with an insert size of 800 bp, and (3) a combination of sets one and

two. Jellyfish [60] was used to count the frequencies for k-mers of 17, 25, and 31 bp.

The GCE tool [61] was used to estimate the genome size.

2.4.3 Genome assembly

The final genome assembly was conducted in two stages. In the first stage, four

different assemblies were built with different tools and library combinations using the

raw Illumina or the error-corrected SMRT reads. In the second stage, the four primary

assemblies were iteratively merged in four different orders using the Metassembler tool

[12] (Figure 2.1). Various quality metrics were used to assess the quality of the eight

assemblies (four primary assemblies and four meta-assemblies). These metrics were

further used to rank the assemblies and select the assembly with the best overall rank.

Finally, the PICR was used as the reference assembly after polishing by correcting the

single detected misassembly and minor gap filling from the PIRC assembly (see the

“PIRC to PICR whole genome alignment” section in the Supplementary Materials).

2.4.3.1 Primary assemblies

Assembly 1: Illumina-based chromosome-sorted assembly (CSA) - The

ten chromosome sorted libraries were assembled separately (each also using data from

a whole-genome mate-pair library) with the ALLPATHS-LG tool [19]. The resulting

scaffolds were filtered for possible contaminations of other chromosomes. The final

assembly has been previously published [29] and is available at the NCBI assembly
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Figure 2.1: Overview of the complete assembly workflow. First, two primary as-
semblies were built, using all Illumina reads (I) or Pacific Biosciences
SMRT reads (P). In addition, previously published assemblies were col-
lected, which were based on chromosome separated reads (C) or the
whole genome 2013 RefSeq (R). The four assemblies were then itera-
tively merged in four different orders, creating four metassemblies (IPCR,
IPRC, PICR, PIRC). The best assembly of all eight assemblies was cho-
sen based on a panel of 80 metrics.
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archive (accession: GCA 000448345.1).

Assembly 2: Whole-genome Illumina assembly (2013 RefSeq) - The

2013 RefSeq CH genome [27] was built using different paired-end and mate-pair Illu-

mina libraries. The libraries were assembled by SOAPdenovo2 [62]. The assembly is

accessible at the NCBI assembly archive (accession: GCA 000419365.1).

Assembly 3: Whole-genome and chromosome-sorted assembly (Illu-

mina) - Sequence data originating from the published chromosome-sorted Illumina

libraries [29] and 2013 RefSeq whole-genome Illumina libraries [27] were combined and

assembled with the ALLPATHS-LG tool (version 51927) [19].

Assembly 4: Pacific Biosciences SMRT assembly - The ALLPATHS-

LG tool was used to merge and error-correct overlapping paired-end Illumina reads,

and these reads were further extracted and converted into FASTA format to aid in

the SMRT error-correction process. The error-corrected SMRT reads were assembled

following the HGAP-3 pipeline [63] without the error-correction step. For better control

over the workflow, we used the customizable makefile-based smrtmake workflow [64].

2.4.3.2 Merged assemblies

The four primary assemblies were iteratively merged with the Metassembler

[12] tool. For each meta-assembly, one assembly is selected as the primary assembly.

The scaffolds of a second assembly are subsequently mapped to the primary scaffolds

using NUCmer [65]. A CE (compression/expansion) statistic, based on the distance

of mate-pair reads, is computed for both assemblies. Primary scaffolds are joined and

gaps are closed with the sequence of the second assembly. If the CE statistics of the

primary scaffolds indicate potential errors, the sequence in this area is replaced by the

sequence in the second assembly. The resulting scaffolds are then used as primary

scaffolds for the next iteration. Changes to the default parameters were applied for the
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merging step (asseMerge). The minimal range for finding links between scaffolds was

increased to 50,000 and the minimal coverage of the secondary scaffold was lowered to

1x. The minimal gap size for closure was lowered to 1 bp (asseMerge –e 50000 –L 1

–t 1). The order in which the assemblies are merged influences the result of the final

meta-assembly, and four different orders were tested (Table 2.2).

Table 2.2: Four different orders were used to merge the four initial assemblies with
the Metassembler tool. PICR starts with the PacBio SMRT assembly,
after which the Illumina assembly is merged into it, followed by the CSA
assembly and the 2013 RefSeq assembly

Base assembly Added in step 1 Step 2 Step 3 Name
PacBio SMRT Illumina CSA RefSeq PICR
PacBio SMRT Illumina RefSeq CSA PIRC
Illumina PacBio SMRT CSA RefSeq IPCR
Illumina PacBio SMRT RefSeq CSA IPRC

2.4.4 Chromosome assignment

Scaffolds were assigned to chromosomes using the chromosome-sorted library

coverage, computed for 1 kbp regions. Specifically, for each 1 kbp region of each scaf-

fold, the coverage of each chromosome library was computed. If at least 90% of the

1 kbp region of a scaffold showed a normalized coverage between 0.5 and 2 of the

same chromosome, the scaffold was assigned to this chromosome. Scaffolds assigned

to the pooled chromosome 9 and 10 library and all unassigned scaffolds were mapped

to the mouse genome using NUCmer [65]. Yang et al. [66] and Wlaschin & Hu [67]

described the localization of the Chinese hamster chromosomes on the mouse chromo-

somes. This information was used to assign the mapped scaffolds to a chromosome by

manually comparing the mapped position with the localization from Yang et al. [66]

and Wlaschin & Hu [67].
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2.4.5 Gene prediction and annotation with Maker

We completed the annotation of the PICR and IPCR meta-assemblies using

Maker v2.31.8 [68]. Chinese hamster ESTs (40 million reads) from SRA (SRR823966)

were assembled using Trinity v2.0.6 [69]. The resulting transcripts were aligned to

the previously published CH transcriptome assembly [27], which had used Trinity v.

r2011-08-20. NUCmer [65] was used for the alignment with default parameters. A total

of 91,027 transcripts were found in both transcriptomes and used as evidence for gene

prediction within Maker. In addition, all proteins from the 2014 RefSeq annotation

(GCF000419365.1) of the hamster genome were used as evidence.

Repeat masking was done within the Maker pipeline. To identify repeat regions,

we used RepeatMasker version open-4.0.6 [70] with Dfam v2.0 (2015-09-23), a database

of eukaryotic transposable element and other repetitive DNA sequence alignments, and

the RepeatMasker database (release 2015-08-07, derived from RepBase v20.08). Once

repeat masking was completed, BLAST v2.2.28 [71] and exonerate v2.2.0 [72] were run

within Maker for evidence-based alignments and SNAP v2006-07-28 [73] and Augustus

v3.2.2 [74] were run for ab initio gene prediction.

The resulting annotation only included genes with more than one type of evi-

dence supporting the prediction, that is, both an ab initio prediction and an evidence-

based alignment. Functional annotation of Maker’s output was done as described in

“Support Protocol 3: Assigning putative gene function” of “Genome Annotation and

Curation Using MAKER and MAKER-P” [75]. BLAST was used (e-value < 0.001) to

search each predicted gene against the Swiss-Prot release-2016-02 database, where the

best hit was used to assign a putative function to the gene product.

2.4.6 Gap analysis

2.4.6.1 Identification of the filled-gap sequence

We aligned the 2013 CH RefSeq genome sequence to the PICR CH genome se-

quence using NUCmer [65] to identify gap sequence (see Figure 2.14). Briefly, NUCmer

clusters a set of maximally exact matches as an anchor and then extends alignments
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between the clustered matches. Gaps are represented using letters N in the genome,

and since they differ between the 2013 RefSeq and PICR meta-assembly, the MUMmer

alignments stop at gaps larger than 89 bp. This means that if two fragments that

flank both ends of a gap are found on the same PICR scaffold in the same orientation,

the sequence between the two matches corresponds to the sequence of the gap. Since

sequence errors may occur near gap regions, we consider matches flanking a gap if the

distance between the fragment and the gap is less than 10 bp. When the gap is shorter

than 90 bp, MUMmer clusters the gap together with the two matches on both ends

and only reports the merged long fragment as mapping. In this case, we first used the

show-aligns method in MUMmer to output the alignment details between the 2013 CH

RefSeq and PICR, and then we extracted the corresponding gap sequence by parsing

the alignments. The gap analysis was performed using PICR and 2013 RefSeq hamster

assembly, except for the gap in the Xylt2 gene, which was visualized using the 2011

RefSeq CHO-K1 genome assembly [50].

2.4.6.2 Identification of genes with gaps and mutations

We called variants in whole-genome resequencing data from various CHO cell

lines [31, 27, 76]. GATK v3.5 [77, 78, 79] was used with the GATK manual recom-

mended parameters. We also called variants using the reads from the 2013 RefSeq

assembly project [27] to identify and filter false-positive variants. Pybedtools [80, 81]

identified genes with gaps in their coding regions. Gene ontology (GO) term analysis

was performed using DAVID [82, 83].

First, to identify classes of genes with gaps in the 2013 RefSeq assembly, we

mapped all CH genes to their human homologs. The functional enrichment analysis

for all the 2,252 genes with coding gap regions was performed using the human genes

with CH homologs as the background gene set. Second, to identify classes of genes

with a higher frequency of mutations in gaps, we looked for over-representation of the

132 genes with variants in coding gaps, while using the 2,252 gap-filled genes as the

background. GO terms with a p-value smaller than 0.01 were visualized using REViGO
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[84]. Code for the gap analysis can be acquired from:

https://github.com/LewisLabUCSD/assembly gaps.

2.5 Results

2.5.1 Platform-specific assemblies of the Chinese hamster genome

2.5.1.1 Pooled Illumina assembly

In two previous and independent studies, the CH genome assembly was gen-

erated using Illumina sequencing data from liver tissue DNA that was acquired from

the same hamster colony that was used for deriving CHO cells in 1957. The 2013

RefSeq assembly originated from whole-genome libraries with varying insert sizes [27].

A second assembly, CSA, created from chromosome sorted sequencing libraries is also

publicly available [29]. The different libraries combined yielded about two billion read

pairs with read lengths from 99 to 150 bp, totaling 442.22 Gbp (Table 2.1). K-mer-

based genome size estimations of different libraries and k-mers ranged between 2.55

Gbp and 2.75 Gbp.

We de novo assembled the pooled Illumina reads from both previous assemblies

using ALLPATHS-LG. This Illumina assembly contained 2.39 Gbp of scaffolds with

2.66% gaps. The scaffold N50 number (the minimal number of scaffolds needed to

cover 50% of the assembled genome) was 128, with an N50 length (length of the N50

scaffold) of 5.95 Mbp (Table 2.3), which was much greater than the previously published

assemblies.

2.5.1.2 Pacific Biosciences SMRT assembly sequencing assembly

Pacific Biosciences SMRT (PacBio SMRT) sequencing yielded a 107.45 Gbp to-

tal sequence from 13.49 million subreads, corresponding to ∼45x coverage of the 2.4

Gbp genome (after filtering and adapter trimming). Pooled and corrected Illumina

reads were used to correct sequencing errors of the SMRT reads. Specifically, overlap-

ping paired-end reads were merged and error-corrected as part of the ALLPATHS-LG

[19] assembly process. This process created about 836 million single reads, with a
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Table 2.3: Assembly metrics of the Illumina scaffolds and PacBio SMRT curated
assembly compared to the previously published assemblies.

2013 RefSeq CSA Pooled Illum. Curated PacBio
scaffolds SMRT contigs

Scaffolds [#] 52,710 28,749 17,373 1,659
Length [Gbp] 2.36 2.33 2.39 2.31
Min length [bp] 201 830 898 100,560
Max length [Mbp] 8.32 14.66 25.84 16.08
Mean length [kbp] 44.78 81.14 137.45 1,394.69
Median length [bp] 363 1,927 2,063 693,156
N50 length [kbp] 1,558.30 1,236.52 5,951.71 2,906.73
N50 [#] 450 501 128 223
N90 length [kbp] 395.29 180.69 1,003.29 623.9
N90 [#] 1,558 2,251 468 884
Total N gaps [#] 166,152 290,660 110,314 0
Total N [%] 2.49 10.45 2.66 0

mean size of 171 bp and a total of 143.75 Gbp. These were reused in the SMRT

error-correction, which was done in two steps using proovread [58] and LoRDEC [59],

leading to a reduction in the indel-ratio (the number of insertion/deletions divided by

the number of matches in the alignments against the Illumina contigs) from 0.18 to 0.04

(see Supplementary Materials section for more details). SMRT reads were assembled

using HGAP [63], resulting in the assembly hereafter referred as the PacBio SMRT

assembly. After removal of duplicate contigs (see Supplementary Materials), the as-

sembly resulted in 2.3 Gbp of non-redundant sequence with an N50 scaffold number of

223 and an N50 length of 2.9 Mbp (Table 2.3).

2.5.2 A highly contiguous meta-assembly is obtained by merging draft

assemblies

Recent studies have highlighted the improvements in SMRT-only assemblies

compared with Illumina-only assemblies [55, 56, 57, 85, 86]. Here, we found that both

the pooled Illumina assembly (with mixed read length) and the PacBio SMRT-only

assembly resulted in substantially improved assembly statistics compared with the

two published CH genome assemblies (Table 2.3), with an order of magnitude fewer
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scaffolds and 2-4x larger N50 values. However, the longer PacBio SMRT reads and the

larger Illumina insert libraries should provide unique strengths that can be captured

through assembly merging. Therefore, we aligned the scaffolds and contigs from four

independent assemblies: the Illumina-based CSA [29], the 2013 RefSeq assembly [27],

the pooled Illumina assembly developed here, and our de novo uncurated PacBio SMRT

assembly. The Metassembler tool [12] uses the first assembly provided as the base and

subsequently merges additional assemblies. The tool was applied to the four assemblies

using four different orders of merging, resulting in four different meta-assemblies (Table

2.2).

All meta-assemblies showed considerable improvement over all initial draft as-

semblies (Table 2.4), with far fewer N50 scaffolds (only 32–34 compared with 223 for

the PacBio SMRT and 128–501 for the Illumina-based assemblies), and a significant

decrease in the gap sequence compared with the Illumina-only assemblies. Improve-

ments in many metrics in all the intermediate merging stages show that all four initial

draft assemblies contribute toward the improvement of the final assemblies (Figure 2.2).

However, the meta-assemblies starting with the PacBio SMRT assembly outperformed

the ones starting with the Illumina assembly in almost all metrics.

Table 2.4: Assembly metrics of the four merged assemblies.

PICR PIRC IPCR IPRC
Scaffolds [#] 1,829 1,825 2,317 2,304
Length [Gbp] 2.37 2.37 2.36 2.36
Min length [bp] 568 568 915 915
Max length [Mbp] 80.58 80.58 66.35 66.35
Mean length [kbp] 1,295.21 1,298.43 1,019.33 1,024.64
Median length [bp] 37,019 38,181 13,201 14,241
N50 length [kbp] 20,188.72 19,582.71 21,744.88 21,262.79
N50 [#] 32 33 33 34
N90 length [kbp] 4,400.57 4,422.38 3,545.61 3,650.27
N90 [#] 121 122 122 122
Total N gaps [#] 3,237 3,250 72,528 72,536
Total Ns [%] 0.12 0.12 1.13 1.13
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Figure 2.2: Assembly metrics at the different stages of the metassemblies. Improve-
ment in all stages of the metassembly can be seen in most of the metrics.

To validate the accuracy of each assembly, the chromosome-sorted sequencing

libraries [29] were aligned to the scaffolds. Misassemblies can be easily identified by

decreased read coverage from one chromosome and a rise in coverage from another

(Figure 2.3). Manual inspection of all scaffolds larger than 1 Mbp showed only one

scaffold with a clear misassembly in the PacBio SMRT-starting (PICR and PIRC)

meta-assemblies and 11 in the meta-assemblies starting with Illumina scaffolds (IPCR

and IPRC), whereas the 2013 RefSeq assembly has >24 (Figure 2.4). Inspection of the

chromosome coverage at the error region in PICR (Figure 2.5) showed a 30 kbp region

that contained low and mixed coverage, along with scaffolding gaps. This region was

manually cut, and two new scaffolds were created. Ultimately, 96.6% of the sequence

could be unambiguously assigned to a specific chromosome (Table 2.5).
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Figure 2.3: Normalized coverage plots identify misassembly sites. CH chromosomes
were previously sorted and sequenced separately [29], and reads were
aligned to each scaffold. Each color indicates aligned reads from different
chromosomes. The top image shows a scaffold in which the normalized
coverage shows all reads were from a single chromosome. The bottom
plot shows a clear assembly error in which the first 10 Mbp are covered
by a different chromosome (pink) than the remaining part (blue).

Table 2.5: Number and size of scaffolds assigned to each chromosome.

Chromosome Number of scaffolds Bases [Mbp]
1 73 549.76
2 35 463.59
3 42 281.86
4 24 231.54
5 56 188.78
6 9 155.90
7 13 134.49
8 24 96.66
9 15 18.79
10 2 32.58
X 48 134.88
unassigned 1,489 80.08
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Figure 2.4: Chromosome-sorted reads were realigned to all scaffolds larger than 1
Mbp in the 2013 RefSeq assembly. From these, 24 scaffolds were identified
that had more than 5% of the scaffold not associated with the primary
chromosome.
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Figure 2.5: Zoomed chromosome coverage plot at the assembly error region of PICR
scaffold 7. A 30 kbp region (pink bar) with low and mixed coverage and
assembly gap (blue bars) is clearly visible.

2.5.3 The best assembly is identified using 80 assembly metrics

To quantify and compare the quality of the eight assemblies (the four initial

assemblies and the four meta-assemblies), we computed 80 different metrics (see Ap-

pendix B) that were split into six classes covering different aspects of assembly quality

(Figures 2.2, 2.6, and 2.7a). The assemblies were ranked in each class individually.

The PICR meta-assembly had the best overall rank in four of the six classes, followed

by PIRC with two best overall ranks. Based on this evaluation, PICR was chosen for

further analyses.

The PICR meta-assembly has substantially longer contigs (contiguous sequences

with “N”-regions smaller than 100 bp) than the previous RefSeq assembly and even

assemblies of some model organisms, such as the rat (Rattus norvegicus, assembly

Rnor 6.0). In addition, PICR is approaching the continuity observed in the mouse ref-

erence assembly, GRCm38.p5 (Figure 2.7b and more information in the Supplementary

Materials section).

2.5.4 Polishing the final assembly

2.5.4.1 Chromosomes are assigned using reads from flow-sorted DNA

To assign each scaffold to a chromosome, we aligned all chromosome-sorted reads

to the PICR meta-assembly. 307 scaffolds were uniquely assigned to a chromosome,
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Figure 2.6: Ranks of the assemblies for all metrics in all classes.

accounting for 94% of the genome (or 2.23 Gbp). Unassigned scaffolds and scaffolds as-

signed to the unseparated CH chromosome 9 and 10 library were instead mapped to the

mouse genome. Scaffolds that could be aligned uniquely were assigned to a CH chromo-

some based on published CH chromosome localization [67, 66]. Fifteen scaffolds (18.79

Mbp) could be assigned to chromosome 9 and 2 scaffolds (32.58 Mbp) to chromosome

10. A detailed list of assigned scaffold numbers and sizes is shown in Table 2.5. The

final PICR assembly and the associated raw PacBio SMRT sequencing read data are

available under NCBI BioProject PRJNA389969. The existing Illumina assemblies are

available under NCBI BioProjects PRJNA167053 (2013 RefSeq) and PRJNA189319

(CSA). Illumina sequencing data for BioProject PRJNA167053 are available from the

32



Figure 2.7: The PICR assembly ranked against other mammalian assemblies. (a)
The PICR assembly was compared to the other candidate assemblies of
C. griseus based on 80 different assembly metrics. This shows for each
test how the assemblies compare. The best assembly for each test is
plotted on the outer rim, while the worst is near the center. Eighty tests
were defined in six different categories. On average, the PICR assembly
was the most highly ranked with the PIRC assembly closely following.
(b) Weighted histogram of the contig lengths for the PICR assembly (red)
compared to the Ensemble mouse (salmon), rat (purple), and the prior
CH 2013 RefSeq assemblies (green).
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Sequence Read Archive under SRP020466.

2.5.4.2 Repeat masking, gene prediction, and annotation

We annotated the PICR and IPCR meta-assemblies using the Maker annotation

tool [68]. Due to the similarity of the PICR and PIRC assemblies, we decided to

compare the annotation of PICR and IPCR. This comparison demonstrated the impact

of using assemblies built from different sequencing methods as the primary assembly in

Metassembler. Repeat-masker [70] masked approximately 5.5 million repeats in PICR

and 5.7 million in IPCR (Table 2.6).

Table 2.6: Number of repeats by class masked in PICR and IPCR assemblies prior
to annotation.

Repeat class PICR IPCR
Simple repeats 2,237,638 2,516,964
Low complexity repeats 271,488 274,248
Long terminal repeats 625,480 601,600
LINEs 882,602 858,268
SINEs 1,282,452 1,227,136
Satellites 8,436 14,714
Retro-tranposons 3,998 4,422
DNA repeat elements 146,430 170,094
RNA repeats 4,940 4,828
Other 23,522 22,470
Unknown 48,586 44,368
Total masked 5,535,572 5,739,112

The Maker annotation yielded ∼1,300 more genes and transcripts in PICR

than in IPCR (Table 2.7). Functional annotations were assigned for 23,153 tran-

scripts/proteins in PICR, but only for 21,839 transcripts/proteins in IPCR. The an-

notations of PICR and IPCR demonstrate that beginning assembly merging with the

PacBio SMRT assembly, rather than the Illumina assembly, led to the identification

and functional annotation of more genes.

The predicted proteins from PICR were searched using BLAST (e-value< 0.001)

against the proteins from IPCR and vice versa to compare the annotation of the two
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assemblies. A total of 24,578 proteins in PICR have a BLAST hit in IPCR and 22,970

of these proteins have a functional annotation assigned from the top BLAST hit against

the Swiss-Prot database. Only 23,420 proteins in IPCR had a BLAST hit in PICR.

Analysis of the 236 proteins found in IPCR, but not in PICR, showed that

most of these genes were not functionally annotated or were duplicates or isoforms

of genes in PICR. Some proteins unique to the IPCR assembly include the protease

carboxypeptidase Q (Cpq), the histone H3 threonine kinase haspin (Gsg2), the antiox-

idant sulfiredoxin-1 (Srxn1), and the possible ortholog of DNA-directed RNA poly-

merase III subunit RPC9 (Crcp). Analysis of the 367 proteins found in PICR, but

not in IPCR, showed that about half were not functionally annotated. Proteins of

interest unique to the PICR meta-assembly include posphatidylglycerophosphate (pgp

or pgs1), which is involved in phospholipid biosynthesis in mammalian cells [87], and

two DNA repair-related proteins: breast cancer type 1 susceptibility protein (Brca1)

and nonhomologous end-joining factor 1 (NHEJ1). In addition, Bcl-2-like protein 10

(Bcl2l10), a signaling molecule involved in apoptosis, and stress-associated endoplasmic

reticulum protein 1 (Serp1) are both in PICR, but not IPCR. MicroRNAs targeting

these two proteins in CHO cells have been developed [88].

2.5.4.3 NCBI annotations

To help us select the next CH reference assembly, NCBI completed a ‘light’

annotation of PICR, IPCR, and 2013 RefSeq assemblies (more information can be

found in the Supplementary Materials section). In December 2018 after PICR was

submitted to NCBI as the new Chinese hamster reference genome, NCBI ran their full

RefSeq annotation pipeline on the PICR (2018 RefSeq) genome. Summary statistics

of the 2018 RefSeq annotation of the PICR assembly is provided in Table 2.8.
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Table 2.7: Gene and transcript information from the Maker annotation of the PICR
and IPCR genome assemblies.

All genes PICR IPCR
Gene count 24,686 23,410
Transcript count 24,948 23,656
Transcripts per gene 1.01 1.01
Avg. length transcript 17,615.04 18,089.17
Total length transcript 439,460,104 427,917,413
Avg. coding length 1,324.93 1,316.11
Total coding length 33,054,355 31,133,905
Avg. exons per transcript 7.49 7.54
Total exons 186,939 178,277
Complete transcripts
Transcript count 18,476 17,557
Avg. length transcript 18,908.94 19,434.05
Med. length transcript 8,236 8,228
Total length transcript 349,361,499 341,203,668
Avg. coding length 1,334.19 1,317.74
Med. coding length 981 966
Total coding length 24,650,545 23,135,510
Avg. exons per transcript 7.49 7.48
Total exons 138,358 131,262
Incomplete transcripts
Transcript count 6,472 6,099
Avg. length transcript 13,921.29 14,217.70
Med. length transcript 8,128 8,692
Total length transcript 90,098,605 86,713,745
Avg. coding length 1,298.49 1,311.43
Med. coding length 933 942
Total coding length 8,403,810 7,998,395
Avg. exons per transcript 7.51 7.71
Total exons 48,581 47,015

2.5.4.4 The PICR meta-assembly has more contiguous genes and non-

coding regulatory elements

In the previous genome assemblies, many genes were fragmented or separated

from their functional genomic elements (e.g. promoters, enhancers, or regions of active

or repressed transcription). Thus, efforts to define the chromatin states of genes and
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Table 2.8: Gene and transcript information from the December 2018 RefSeq annota-
tion of the PICR genome assembly.

Feature PICR (2018 RefSeq)
Gene count 27,161
Transcript count 56,106
Transcripts per gene 2.08
Avg. length transcript 3,068
Avg. exons per transcript 11.14
Avg. coding length 1,984
Total exons 247,246
Total introns 219,551
Transcript types
Total mRNA 46,750
Total miRNA 291
Total tRNA 485
Total lncRNA 5,891
Total snoRNA 606
Total snRNA 871
Total guide RNA 42
Total rRNA 21

their regulatory units were error-prone [31]. We therefore recalculated the chromatin

states for the PICR assembly using the ChiPSeq-derived histone mark reads obtained

by Feichtinger et al. In comparison with the previously deduced chromatin states, the

emission profile of the new chromatin states matched better with those obtained for

the well-assembled human epigenome [89] (Figure 2.8a).

To test whether the continuity of genes and their regulatory regions is improved

in the PICR meta-assembly, we extracted a shortlist of 1,538 mitochondria-associated

genes, localized to 1,654 sites in the mouse genome. We mapped the sequences between

the mouse transcription start site (TSS) and the transcription end site (TES) against

the PICR meta-assembly, the 2013 RefSeq assembly [27], and CSA [29]. Genes were

considered present if both the TSS and TES were found on the same scaffold. Due

to the high variance in untranslated regions (UTRs) across species, few genes were

identified (Figure 2.8b), demonstrating the importance of a species-specific genome.
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We subsequently searched for both the start and the end of the coding sequences on

the same scaffold (Figure 2.8c). Of the complete genes found in PICR (1,011), 85%

were annotated and localized to 900 unique locations. The corresponding sequences in

PICR were elongated to include UTRs, 5 kbp upstream and 1.5 kbp downstream, to

capture potential regulatory regions, such as promoters or repressive elements. These

elongated sequences were mapped against the previously published Chinese hamster

genomes and again checked for presence on a single scaffold (Figure 2.8d).

Several genes had their elongated sequence not properly assembled in earlier

assemblies, despite having the coding sequence on a single scaffold in each of the three

assemblies (see Supplementary Materials section for details). Examples for three genes,

Rab4b, a member of the Ras family of oncogenes, the mitochondrial ribosome protein

MRPL27, and TIMM50, a translocase responsible for targeting proteins into the mito-

chondria, are shown. In all cases, the scaffold in the CSA assembly contained histone

marks for active transcription or a genic enhancer, but lacked flanking enhancers and

promoter regions. In the new assembly, these are now correctly annotated (Figure 2.8e).

The correct assembly of coding and non-coding regions is of increasing importance to

better understand their regulatory function and enable engineering applications. A

browser with all PICR scaffolds, the preliminary annotation, and the chromatin states

throughout a batch culture is available at http://cgr-referencegenome.boku.ac.at/jb/.

2.5.5 Pervasive gaps are filled by SMRT sequencing

The 2013 RefSeq assembly [27] contains 166,152 gaps with a total length of

58.8 Mbp, representing 2.5% of the entire genome. The PICR meta-assembly has

eliminated most gaps with only 3,238 remaining (Figure 2.9a). These gaps account for

2.9 Mbp, or 0.1%, of the genome. By aligning the 2013 RefSeq assembly to PICR using

MUMmer3.0 [65], we identified the missing sequence for 125,812 (76%) of the RefSeq

gaps (Figure 2.9b). The sequence for a subset of RefSeq gaps was not identified in

the PICR meta-assembly. Of this subset, 90% could not be unambiguously identified
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Figure 2.8: Importance of the correct assembly of genes and non-coding regions. (a)
Chromatin states defined by histone marks: Left: histone marks for CSA
assembly [29], [31]; center: histone marks for PICR assembly; right: hi-
stone marks from the Human Epigenome Project [89] (b) 1,538 genes
associated with mitochondria were blasted from TSS to TES against the
CSA and 2013 RefSeq assemblies. The number of hits completely found
on a single scaffold is displayed for each assembly. (c) Mouse coding
sequences were blasted against CH assemblies from translation start to
end. (d) The 1,011 complete genes found in PICR were extended 5 kbp
upstream and 1.5 kbp downstream to include promoters and other reg-
ulatory non-coding regions and blasted against existing assemblies. (e)
Chromatin states around three genes as found in the previously pub-
lished CSA-based chromatin state model [31] (top for each gene) and the
PICR assembly (bottom for each gene), showing promoter and regulatory
elements in addition to active transcription
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because the flanking fragments did not both align to the new assembly, likely due in

part to misassemblies in the 2013 RefSeq assembly (Figure 2.9).

The elimination of most gaps in the PICR meta-assembly enables more accurate

and complete genome editing and genomic analyses since 2,252 genes in the PICR meta-

assembly had their 2013 RefSeq assembly gaps filled. We called variants from whole-

genome resequencing data for 13 representative resequenced CHO cell lines [31, 27] to

identify genes that have newly discovered mutations in the RefSeq coding gaps. Each

sample has approximately 300 mutations in coding gaps, 90% of which are SNPs (Table

2.9). Across 13 cell lines, 885 novel variants in coding gaps were found in 134 genes

(Figure 2.9c).

Gene classes with the highest gap filling success included genes associated with

protein binding, RNA binding, and transcription (Supporting Information Figure 2.15),

including genes containing zinc finger motifs and ribosomal genes. Previously, such

genes were replete with gaps due to their conserved domains shared across many other

genes in the genome. We further explored which genes had coding mutations in their

filled gaps. The top GO terms for these 225 genes are also enriched in DNA binding

and transcription (Supporting Information Figure 2.16). In summary, the gaps in the

previous assembly could potentially confound genomic studies in CHO, especially those

involving mutations associated with DNA or RNA binding, including transcription

factors.

2.5.5.1 An important mutation in Xylt2 is found within a filled sequence

gap

Beyond their importance in biopharmaceutical production, CHO cells were fun-

damental to cell biology and biochemistry research for many decades. For exam-

ple, genetic screens of many CHO cell lines were used to identify glycosyltransferases

[90, 91, 92, 93] and genetic mapping efforts were deployed to identify causal mutations.

The pgsA745 cell line [76] has been used for decades in the glycobiology field due to

its deficiencies in glycosaminoglycan synthesis [94], due to a truncation of the Xylt2
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protein [95]. However, upon variant calling from whole-genome resequencing data for

the pgsA745 cell line using the 2013 RefSeq assembly, we failed to identify the causal

mutation, whereas a G->T SNP encoding a premature stop codon was found in exon

1 of Xylt2 when using the PICR genome assembly (Figure 2.9d). This mutation was

previously missed since the 2013 RefSeq assembly has a gap of 447 bp that spanned the

first exon on scaffold NW 003613846.1. However, this gap was filled in PICR, enabling

the identification of the mutation. Thus, filling of the gap sequence leads to a valuable

improvement to genomic studies, including the identification of causal variants in CHO

cell lines.

2.6 Discussion

For 60 years, CHO cells have been invaluable for biomedical research and fun-

damental to the study of several biological processes, such as glycosylation [96] and

DNA repair [97]. In addition, for >30 years, they have been the host cell of choice

for the production of most biotherapeutics. Although the aforementioned research was

carried out without genomic resources, new opportunities are arising with published

CH and CHO genome sequences [27, 29, 50, 51]. However, the draft nature of these

genome sequences poses challenges for many applications. Here, we present a major

step forward in further facilitating the adoption of cutting-edge technologies for cell

line development and engineering.

The primary outcome here is a substantially improved reference genome se-

quence for the Chinese hamster. Specifically, the N50 of the PICR meta-assembly

is 13x the length of the 2013 RefSeq assembly N50, and we reduced the number of

scaffolds to 1/29 the number in 2013 RefSeq. Furthermore, we demonstrated that the

initial PICR assembly only had one detected misassembly, whereas the 2013 RefSeq

assembly had at least 24 >1 Mbp scaffolds with cross-chromosome misassemblies (Fig-

ure 2.4). Finally, we eliminated more than 95% of the gap sequence in the 2013 RefSeq

assembly, and provide a more complete and contiguous view of the genomic sequence

of the Chinese hamster.
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Figure 2.9: Important variants are located in sequence gaps in previous assemblies.
(a) >95% of sequence gaps were filled in the PICR metassembly (inset
shows the log frequency of gaps to highlight the low frequency of PICR
gaps not visible in the normal histogram). (b) The missing sequence in
gaps in the 2013 RefSeq assembly was identified by aligning 2013 RefSeq
sequence flanking the gaps to the PICR sequence. (c) Across 13 cell lines,
we found 65,842 SNP and indel mutations in the 2013 RefSeq gap regions,
and 1.3% of these were found in coding regions. (d) A legacy CHO
cell line, pgsA745, identified Xylt2 as the glycosyltransferase responsible
for the first step in glycosaminoglycan biosynthesis, as this cell line is
deficient in this process. Because of a gap in the 2013 Refseq assembly,
only in the new PICR metassembly can the causal variant be identified.
A G->T mutation introduces an early stop codon in exon 1, resulting in
a loss in Xylt2 activity. The genotype is shown for a variety of CHO cell
lines with only pgsA745 showing the early stop codon.
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Various aspects of the genome assembly were improved by merging the different

datasets and data types. First, merging the Illumina reads from two different genome

sequencing efforts resulted in a higher quality genome than the starting assemblies.

Second, further improvements in the assembly attributes were achieved by merging the

single-platform assemblies. Previously, assembly merging with Metassembler was found

to modestly improve the starting assemblies [98]. Here, we obtained large gains in the

N50, with the PICR meta-assembly being approximately 4-fold more continuous than

the starting assemblies. Medium and longer scaffolds were successfully merged, thus

reducing the number of N50 and N90 scaffolds. However, by including Illumina-based

assemblies, many short scaffolds remained, as seen in the lower median scaffold length

in the PICR meta-assembly compared with the curated PacBio SMRT assembly. The

merged assembly thus benefited both from the longer reads from the PacBio SMRT

contigs and the longer scaffolds from the large insert size libraries used for the Illumina

assemblies. It is anticipated that the use of optical mapping and chromatin interaction

mapping [55] would further extend the scaffolds and span large repeat regions, resulting

in more complete chromosomal maps for the Chinese hamster.

Despite the absence of genomic resources, CHO-based bioprocessing has ad-

vanced substantially for ∼30 years. Massive improvements in protein titer were pre-

dominantly achieved through media and process optimization. Systematic optimization

of CHO cell lines itself has lagged behind Escherichia coli and Pichia pastoris and has

only recovered traction with the comparatively late release of draft genomes. The

availability of genomic data now enables improved control over product quality and

more predictable culture phenotypes. For example, more contiguous and complete se-

quences will facilitate the identification of sites for targeted integration of transgenes,

enabling more reproducible productivity across clones [99] and reducing the burden

of stability testing. In addition, the elimination of gap sequence regions enables the

improved identification of genomic variants and design of genome editing tools. Fur-

thermore, by sequencing through repetitive elements, endogenous retroviral elements

can be deleted. This could substantially reduce the retroviral particles secreted in
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mammalian cell culture [100, 101], increase biopharmaceutical safety, and decrease

the burden of adventitious agent testing and purification. Comparable efforts have

successfully cleaned up similar elements in the porcine genome [102].

The full benefit of this more continuous genome will become apparent as novel

genome-editing tools are applied to control cell phenotypes. These include efforts to

delete larger tracts of the sequence, including genes, promoters, and other regulatory

elements using paired gRNAs that remove the entire sequence rather than only intro-

ducing frameshifts [103]. Thus, genes can be removed or promoters can be replaced

with synthetic or inducible elements. Furthermore, with more complete regulatory el-

ement sequences, one could use CRISPRa/i to regulate gene expression levels. Finally,

tools can be deployed that modify the methylation of endogenous promoters to activate

or silence gene expression [104, 105]. Overall, these strategies enhance our control over

cell phenotype. As demonstrated, these precision engineering tools are highly depen-

dent on the availability of a continuous and well-assembled genome, as presented here,

to the entire scientific and industrial community.
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2.9 Supplementary Materials

2.9.1 Additional information on SMRT sequencing and assembly

2.9.1.1 Sequencing and error-correction

Following sequencing of the Chinese hamster, reads were corrected using Illu-

mina reads. To show the correction quality, a sample of 25,000 randomly selected

PacBio reads in all three states of correction (raw, after step 1, and final) were mapped

to the Illumina contigs. For each read, the indel-ratio (number of indels divided by

the number of matches) was computed. The raw reads showed an indel-ratio of 0.18,

which could be reduced to 0.06 after the first step and was further reduced to 0.04 in

the final step (See Figure 2.10).

2.9.1.2 PacBio SMRT metassembly curation

Assembly of the PacBio reads using HGAP resulted in a final assembly con-

taining 110,954 contigs with 3.80 Gbp total genome sequence. The N50 number was

655 contigs with a N50 length of 995.27 kbp. This assembly was about 50% larger

than the expected genome size. The weighted histogram of the contig lengths (i.e. the

number of contigs, weighted by the total number of bases in the contigs) in Figure

2.11) shows a clear bimodal characteristic with two peaks at about 20 kbp and 3.5

Mbp and a local minimum at about 100 kbp. The total size of all contigs falling into

the second mode (i.e. contigs ≥ 100 kbp) is 2.3 Gbp (N50 number: 223 and N50 size:

2.9 Mbp, see Table 2.10). Realigning the complete assembly back to itself, showed that

80,138 contigs (0.97 Gbp) were completely (≥ 90%) contained in larger contigs (some

with rearrangements or larger insertions or deletions). These duplicated contigs may

have resulted from poorly corrected reads. Nonetheless, the complete assembly was

used for further steps and analyses, since the Metassembly algorithm only merges the

best-aligning scaffolds (longest alignment, highest percent identity, etc.) while contigs

with poorer alignment are discarded. For example, in the first iteration of the merging,

about 1.3 Gbp were discarded from the PacBio SMRT assembly, while about 20 Mbp

were discarded from the Illumina assembly.
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Figure 2.10: Distribution of the indel-ratios (number of indels per matched base) of
the raw (red) and error-corrected PacBio reads (green: indel-ratio after
first correction step, blue: final indel-ratio).

2.9.1.3 Assembly quality metrics

To identify the best of the eight different assemblies, 80 different metrics were

computed, where each metric falls in one of six classes. The assemblies were ranked for

each metric and the mean rank over all metrics in each class was computed. For the
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Figure 2.11: Weighted contig length histogram of the PacBio SMRT metassembly
shows a clear bimodal distribution (logarithmic length of the contigs is
on the x-axis, sum of the length of all contigs per bin on the y-axis).
The total size of the second mode is close to the estimated genome
size. About 73% of the second mode contigs (about 66% in size) can be
completely aligned to the contigs from the first mode.

Table 2.10: Assembly metrics of the complete PacBio SMRT metassembly and the
contigs larger than 100 kbp or smaller than 100 kbp.

PacBio SMRT Mode-2 Mode-1
metassembly (contigs ≥ 100 kbp) (contigs < 100 kbp)

Contigs [#] 110,954 1,659 109,295
Length [Gbp] 3.8 2.31 1.49
Min. length [bp] 290 100,560 290
Max. length [Mbp] 16.08 16.08 0.09
Mean length [kbp] 34.28 1,394.69 13.63
Med. length [bp] 12,460 693,156 12,285
N50 length [kbp] 995.27 2,906.73 18.52
N50 [#] 655 223 28,878
N90 length [kbp] 12.76 623.9 8.07
N90 [#] 54,054 884 74,583

final decision, the mean rank of all class-ranks was computed. The assembly with the

smallest overall rank was selected as the best overall assembly. Results for each metric

in each class can be found in Appendix B.

Class: contig/scaffold numbers. Common assembly statistics, such as N50, L50,
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longest contig/scaffold, number of contigs/scaffolds and percentage of gaps in the scaf-

folds, are used as metrics (Table B.1).

Class: sequence content. For each pair of assemblies, one assembly is mapped to

the other assembly using NUCmer [65]. The total number of bases in the first assembly

that are not covered by a least one contig of the second assembly is used as a metric of

the second assembly. This metric counts the sequence that is missing in the assembly

compared to another CH assembly (Table B.2).

Class: feature content. One method to estimate the completeness of an assembly is

to count the number of expected features on the genome. Two tools are available that

identify the positions of protein-coding genes from a predefined database. The first

tool, CEGMA [106], searches 248 core eukaryotic genes on the genome and reports the

number of complete and fragmented genes. These number are used as a metric. A sec-

ond tool, BUSCO [107], uses a similar method. Instead of 248 core genes that could be

used for all eukaryotes, BUSCO has a list of genes for different taxonomic levels. The

complete and fragmented numbers of the eukaryotic, metazoan and vertebrata were

used as metrics. Additionally to these tools, a list of 22,387 mouse coding sequences

(CDS) were mapped to the different assemblies using GMAP [108] in chimeric mode.

A CDS was classified as “complete” if the coverage reported by GMAP was greater

than 95% and the identity was greater than 75%. If the coverage was below 25% or the

identity was below 75%, the CDS was classified as “missing”. If GMAP reported more

than one location for a CDS, it was classified as “chimeric”. The rest of the CDSs were

classified as “fragmented” (Table B.3).

Class: chromosome sorted read coverage. The chromosome sorted libraries are

mapped to the assemblies using smalt [109]. The mean coverage of all chromosome

libraries is computed for 1 kbp regions. The mean coverage of each library is com-

puted by finding the peak in the density plot of all 1 kbp regions. This coverage is

used to normalize the chromosome coverages for each 1 kbp region. Each region is

then classified into 5 classes bases on the normalized coverages. The first class “low

coverage” was applied if the normalized coverage of all chromosomes was below 0.5.
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The second class “high coverage” was applied, if at least one coverage was above 2. If

exactly one normalized coverage was between 0.5 and 2 the 1 kbp region was classified

as “normal coverage”, and if two or more coverages were between 0.5 and 2, the class

“ambiguous” was applied. For each scaffold, the “normal coverage” 1 kbp regions from

each chromosome were counted. The chromosome with the most 1 kbp regions was

used as the correct chromosome for this scaffold, while all other “normal coverage” 1

kbp regions were re-classified as “false chromosome” (Table B.4).

Class: remap statistics. The mappings from the previous class (chromosome sorted

read coverage) were also used to compute the percentage of reads that could be mapped

back to the scaffolds. All five whole-genome paired-end libraries with an insert-size of

180 were also included. The libraries were mapped with the same tool and parame-

ter as the chromosome separated libraries. This metric can be used to estimate the

completeness of an assembly. The numbers were computed for each library separately

(Table B.5).

Class: CE-statistics. To identify potential erroneous regions based on CE-statistics

and coverage, the tool REAPR [110] was run with pooled mate-pair libraries that

showed a similar insert-size distribution with a mean of about 5.5 kbp. REAPR iden-

tifies four kinds of regions, false coverage distribution (FCD) error, FCD error over a

gap, low coverage, and low coverage over a gap. The false coverage distribution (FCD)

error is the difference between the observed coverage of correctly paired mate-pairs to

the expected coverage. If this number is below a threshold, the region is reported. If

the overall coverage is too low, the region is reported as “low coverage”. The number

and total bases of the reported regions were used as metrics (Table B.6).

2.9.2 Comparison to the mouse and rat genomes

Repeat-masked and unmasked Mus musculus and Rattus norvegicus genomes

were downloaded from Ensembl (Release 86). The repeat-masked PICR scaffolds

larger than 1 Mbp were mapped to the chromosome sequences of mouse and rat us-

ing NUCmer [65] with –maxmatch option. The delta-filter -1 tool was applied to the
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mapping results to get the best one-to-one matching of the scaffolds. The results

were converted to the DAGchainer input-format, and DAGchainer [111] was applied

to compute chains of consecutive mapping. The unmasked genomes were split at each

‘N’-stretch larger or equal to 100 bp to construct contig sequences for the contig length

comparison.

2.9.2.1 Contig sizes

Although the Mus musculus and Rattus norvegicus genomes are available at

the chromosome level, they differ at contig level. The mouse assembly consists of

445 contigs (continuous sequences with N-stretches less than 100 bp), whereas the rat

chromosomes are split into 32,025 contigs. The PICR metassembly shows a continuity

between that of the mouse and the rat assemblies, with 4,517 contigs (following splitting

contigs at gaps > 100 bp to enable consistent comparison among the assemblies). The

same pattern can be seen with other metrics as shown in Table 2.11 and in the weighted

histogram of contigs length in Figure 2.7b.

Table 2.11: Contig size metrics for the PICR assembly compared to Ensembl mouse
and rat chromosome contigs and to the 2013 RefSeq CH contigs. For all
assemblies, chromosomes and scaffolds were split at all ‘N’-stretches at
least 100 bp long to enable consistent comparison between assemblies.

PICR Mouse Rat 2013 RefSeq
Contigs [#] 4,517 445 32,025 117,912
Length [Gbp] 2.37 2.65 2.65 2,31
Min length [bp] 104 562 84 201
Max length [Mbp] 14.60 91.93 2.18 0.76
Mean length [kbp] 523.81 5,949.87 82.85 19.55
Median length [bp] 52,173 26,251 36,272 1,134
N50 length [kbp] 2,446.66 32,813.18 200.97 84.26
N50 [#] 270 25 3,665 8,297
N90 length [kbp] 418.89 8,381.66 44.49 20.86
N90 [#] 1,148 82 14,494 28,528
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2.9.2.2 CH PICR to mouse and rat alignments

The repeat-masked PICR scaffolds larger than 1 Mbp were mapped to the

repeat-masked mouse and rat chromosomes with NUCmer and the best one-to-one

alignment was computed with delta-filter. The alignments were chained together us-

ing DAGchainer. The alignment to the mouse chromosomes contained 295,367 single

alignments with a mean length of 592.90 bp and a mean identity of 85.39% covering

175.1 Mbp (6.65%) of the mouse genome. The chaining created 465 chains with a mean

length of 5.0 Mbp, covering 2.33 Gbp (88.74%). The alignment to the rat chromosomes

contained 277,685 single alignments with a mean length of 584.40 bp and a mean iden-

tity of 85.41% covering 162.2 Mbp (5.84%) of the rat genome. The chaining created

1,196 chains with a mean length of 2.0 Mbp, covering 2.41 Gbp (86.91%). Detailed

visualizations are shown in Figure 2.12 for the mouse alignment and Figure 2.13 for

the rat alignment.

2.9.2.3 Blasting of mouse sequences for UTR and non-coding assembly

analysis

The mitochondria mediates a variety of metabolic processes that impact main-

tenance of cellular physiology and homeostasis. Around 1,538 nuclear genes (at 1,654

unique locations) associated with energy metabolism were extracted from the Mus

musculus assembly (GRCm38.p5) and checked for homology within CH genome as-

semblies: CSA Cgr1.0 [29], 2013 RefSeq C griseus v1.0 (criGri1) [27] and PICR, using

NCBI-BLAST-2.6.0+ [112]. These genes comprise of nuclear genes linked to the mi-

tochondrial Gene Ontology, components of the OXPHOS pathway, and genes in the

MitoCarta [113] and QIAGEN (Mouse Mitochondrial Energy Metabolism PCR Array

– Version 4.0) lists for mitochondrial energy metabolism.

The analysis was done in three steps to estimate the existence of essential ge-

nomic sequences in the three CH assemblies. Primarily keeping the mouse genome as

reference, complete genic sequences from TSS-TES were analyzed followed by consid-

ering sequences without mouse specific UTRs (start of the first CDS to the end of the
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Figure 2.12: NUCmer alignments of the PICR scaffolds to the mouse chromosomes.
The PICR scaffolds are ordered by chromosome and position of the
longest alignment to the mouse genome.

last CDS). The genes reporting homologous regions with the presence of first and last

position of the sequence on the same scaffold in respective assemblies were counted

using custom scripts by parsing tabular output of BLASTn reports. For each gene,

the hit with first position was flagged as “Start”, last position as “Stop” (split genes)

54



Figure 2.13: NUCmer alignments of the PICR scaffolds to the rat chromosomes. The
PICR scaffolds are ordered by chromosome and position of the longest
alignment to the mouse genome.

and if both start and end are on the same hit (complete intact gene), it was flagged as

“Both”. Keeping the scaffold information along with the flags, for all the genes each

of the hit with “Start” flag was checked for the scaffold information in “Stop” flagged

hits. If a match was found or if the gene had a hit flagged “Both”, the gene along with
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its coordinates was noted. All such identified genic locations were then compared for

different assemblies and venn diagrams were plotted (Figure 2.8).

As the most genic locations were found complete (split or in a single stretch but

on the same scaffold) in PICR, it was chosen for further analysis. These 1,011 genic

locations correspond to 948 unique genes in the mouse annotation. 858 of those could

be found in the PICR annotation at 900 genic locations. Nucleotide sequences were

extracted for these 900 locations extending the gene to include the regulatory regions (5

kbp upstream TSS to 1.5 kbp downstream TES). These sequences were then analyzed

for sequence homology with the other two CH assemblies to find complete genes along

with correctly assembled regulatory regions. For details, see the online supplementary

materials for the manuscript (www.ncbi.nlm.nih.gov/pmc/articles/PMC6045439).

The six histone modification marks generated earlier, for PF-MCB CHO-K1

cells sampled twice a day until 9 days, were aligned to the PICR assembly. Based on

those alignments an 11-state model was trained as described before [31] and chromatin

states were annotated by comparing the emission profiles, displaying enrichment of

each histone mark in a state, to the 18-state model deduced from human epigenomes

[89]. Genes annotated on the scaffold margins, with plausibly truncated regulatory in-

formation, were identified from the CSA annotation [29, 31] and corresponding pattern

of chromatin states was observed in both CSA and PICR genomes.

2.9.3 NCBI ‘light’ annotation

The PICR, IPCR, and the 2013 RefSeq CH assemblies were sent to NCBI to

undergo a light version of the NCBI annotation pipeline and to gain further insight

into the quality of PICR and IPCR regarding gene content. Evidence used in this

pipeline included approximately 500 million RNA sequencing reads from CHO cells

(SRP066355 [bioproject PRJNA302601] and SRP073484 [bioproject PRJNA318886]).

The transcripts and proteins from GenBank and RefSeq for the Chinese hamster, as

well as known RefSeq proteins from human and mouse, were used as evidence.
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After the evidence was aligned to the assembly sequences, Gnomon [114] merged

overlapping alignments into precursor models. Next, a Hidden Markov Model (HMM)

was used to develop ab initio gene models and to extend models that were missing a

stop or start codon. Gnomon was then run a second time to incorporate alignments of

the precursor models to a set of the NCBI nr database. Last of all, some of the resulting

gene models were corrected if the evidence from the pipeline strongly suggested that

the assembly is wrong.

In addition, external to the pipeline, 30,782 mouse RefSeq transcripts were

aligned to PICR, IPCR, and 2013 RefSeq. The best sequence alignments were used to

determine the number of transcripts that aligned (≥ 75% identity) to one scaffold, the

number split over two or more scaffolds, the number with no alignments above ≥ 75%

identity, and the number with no alignments that cover ≥ 95% of the coding sequences

(CDS).

Gene and transcript metrics from the ”light” version of the NCBI pipeline are

shown in Table 2.12. The PICR and IPCR assemblies have fewer partial genes, cor-

rected coding regions, and genes with premature stops, suggesting that these two as-

semblies are of higher quality than the 2013 RefSeq assembly. Results of the alignment

of mouse transcripts from RefSeq are shown in Table 2.13. PICR has more aligned

mouse transcripts than IPCR which suggests a more complete assembly regarding gene

content. While PICR and 2013 RefSeq have a similar number of aligned transcripts,

PICR has approximately 3-fold fewer split alignments.

2.9.4 GO term analysis of genes with filled gaps

Gap sequences were identified by aligning flanking sequence from the 2013 Ref-

Seq genome to the PICR assembly (Figure 2.14). To identify which biological processes

were over-represented among the genes with filled gaps, we performed functional GO

term analysis of the 2,252 genes using DAVID [82, 83]. The top GO terms are enriched

in protein binding, RNA binding, and transcription molecular functions (Figure 2.15).

Gene functional classification results show that these genes are enriched in zinc finger
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Table 2.12: NCBI annotation of the 2013 RefSeq (C griseus v1.0), PICR, and IPCR
assemblies. *The larger number of CDSs for the 2013 RefSeq assembly
is a result of the pipeline rules for making alternative variants, which
allow more variants for the assembly that NCBI considers the reference
(currently 2013 RefSeq). Because NCBI does not create alternative vari-
ants for genes that are corrected, this rule does not impact the direct
comparison of the corrected CDSs.

Assembly
Gene prediction 2013 RefSeq PICR IPCR
Total genes 27,982 26,931 25,802
Protein-goding 20,678 20,668 20,074
Partial 2,576 526 516
Total CDS 32,329* 27,205 25,884
Corrected CDS 2,039 963 1,021

have premature stops 747 332 521
have frameshifts 1,583 752 670

Transcripts with no support 105 217 173
Transcript with partial support 5,710 4,192 4,763

Table 2.13: NCBI alignment of mouse coding transcripts from RefSeq (NM prefix)
to the 2013 RefSeq, PICR, and IPCR CH genome assemblies.

Assembly
Mouse transcript alignments 2013 RefSeq PICR IPCR
Number of coding transcripts 30,782 30,782 30,782
Aligned 29,146 29,131 28,832
Unaligned 1,636 1,651 1,948
Split alignment 1,479 424 486
Corrected CDS 2,039 963 1,021
<95% CDS coverage 10,445 5,342 6,655

and ribosomal genes. These classes of genes were likely to have filled gaps because

they often have highly homologous sequence across the gene families, thus leading to

difficulties in resolving their sequence in assemblies based on short reads. In addition,

some of the genes locate to repetitive regions in the genome. We further explored

which classes of genes had gaps with mutations in several representative resequenced

genomes. The top GO terms for these 225 genes were also enriched in DNA binding
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Figure 2.14: Strategy for 2013 RefSeq and PICR gap comparison. Matches around
and including gaps were used to identify the corresponding region in
the PICR genome. Numbers in the figure represent the amount of the
specific gaps we identified.

and transcription (Figure 2.16). In summary, the gaps in the previous assembly could

potentially confound genomic studies in CHO, especially if variants are associated with

genes involved in DNA or RNA binding, including transcription factors.

2.9.5 PIRC to PICR whole genome alignment

Based on the whole genome alignment of PICR and PIRC using NUCmer [65]

and the analysis with dnadiff, 16,305 SNPs and indels and 4,909 structural differences

were found. Overlapping structural differences were merged resulting in 4,130 regions

for further analysis. These regions with the corresponding regions in the PIRC were

further analyzed by identifying gaps and possible errors (based on REAPR and read-

coverage analysis). We identified:

1. 17 regions with error in the PICR assembly and correct sequence in the PIRC
assembly
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Figure 2.15: GO term analysis of genes with coding gaps. Enriched GO terms were
identified using DAVID. 2,252 genes with coding gaps were searched
against the whole human GO term sets. The top 5 GO terms with
FDR corrected p-value smaller than 0.05 are visualized using REVIGO.
Circle size represents the relative gene set size of each GO term com-
pared to the whole human gene sets. This analysis indicates genes
related to transcription or translational regulation may be difficult to
fully assemble only using Illumina reads, as some classes of transcription
factors and other oligonucleotide binding proteins have highly conserved
or repetitive sequences (e.g. zinc finger proteins).
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Figure 2.16: GO term analysis of genes with mutations in their coding gaps. Enriched
GO terms were identified using DAVID. 134 genes with variants in their
coding gaps were searched against all of the 2,252 genes with coding
gaps. GO terms with an FDR-corrected p-value smaller than 0.05 were
shown in the figure using REVIGO. Circle size represents the relative
gene set size of each GO term compared to the whole human gene sets.
This analysis indicates genes related to transcription regulation tend to
have more mutations than the other genes with coding gaps.
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2. 59 regions with gaps in the PICR assembly and correct sequence in the PIRC
assembly

3. 388 regions with gaps in the PICR assembly and error in the PIRC assembly

4. 2719 regions with gaps in the both assemblies

5. 122 regions with correct sequence in the PICR assembly

6. 165 regions in the PICR assembly without unique corresponding PIRC regions

7. 665 regions with error in the PICR assembly and errors or gaps in the PIRC
assembly

Regions 1) and 2) are possible candidates for error correction in the PICR

assembly. For 3), gaps in the PICR could be closed but possible errors could be

introduced. The corresponding PIRC regions were identified by aligning the bases

300 bp upstream and downstream of the PICR regions to the PIRC scaffolds. Both

upstream and downstream regions needed to match uniquely to the scaffolds to identify

the regions.

Additionally, four candidates for scaffolding were found (based on manual in-

spection of the alignment). The possible scaffolding order is shown below. The chro-

mosome of the scaffolds is shown in brackets. The PIRC scaffold that joins the PICR

scaffolds is shown in parentheses.

picr_1193[unplaced] + picr_241[unplaced] (pirc_235)

picr_121[X] + reverse(picr_25[X]) (pirc_16)

reverse(picr_1260[unplaced]) + picr_153[8] (pirc_154)

reverse(picr_653[unplaced]) + picr_167[9] (pirc_168)

A detailed list of the PICR to PIRC alignment with annotated assembly gaps

and errors is included in the online supplementary material for the manuscript

(www.ncbi.nlm.nih.gov/pmc/articles/PMC6045439).
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Chapter 3

EVALDNA: A MACHINE LEARNING-BASED TOOL FOR THE
COMPREHENSIVE EVALUATION OF MAMMALIAN GENOME

ASSEMBLY QUALITY

3.1 Preface

This section is adapted from MacDonald and Lee, 2019 (currently in submission

to Nucleic Acids Research). In this chapter, we describe the design and development of

a novel computational pipeline that evaluates genome assembly quality. The pipeline,

EvalDNA, can assess the accuracy of an assembly without requiring a reference genome

and also produces results that are comparable across different species, setting it apart

from existing assembly evaluation tools. I developed the pipeline and the model, and

completed subsequent testing on Chinese hamster genome assemblies and human chro-

mosome 14 assemblies. This project was completed under Dr. Kelvin Lee’s guidance.

3.2 Abstract

We present a novel tool, called EvalDNA (Evaluation of De Novo Assemblies),

which assists in the model development for quality scoring of genome assemblies and

does not require an existing reference genome for accuracy assessment. EvalDNA

calculates a list of quality metrics from an assembled sequence and applies a model

created from supervised machine-learning methods to integrate the various metrics into

a comprehensive quality score. A well-tested, accurate model for scoring mammalian

genome sequences is provided as part of EvalDNA. This random forest regression model

evaluates an assembled sequence based on continuity, completeness, and accuracy, and

was able to explain 86% of the variation in reference-based quality scores within the

testing data.
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EvalDNA with this mammalian model was applied to human chromosome 14 as-

semblies from the GAGE study to rank genome assemblers and to compare EvalDNA to

two other quality evaluation tools. In addition, EvalDNA was used to evaluate several

genome assemblies of the Chinese hamster (CH) genome to help establish a better ref-

erence genome for the biopharmaceutical manufacturing community. EvalDNA scores

also enabled the quality comparison of the selected CH reference genome to the refer-

ence assemblies of other organisms at both the full assembly and chromosome levels.

3.3 Introduction

Whole genome assemblies are becoming available for an increasing number of

organisms due to the reduced time and monetary costs of DNA sequencing. There has

been more than a 3-fold increase in the number of assemblies in NCBI’s RefSeq database

since August of 2015 [1] (Table 1.1). As of February 2019, there was a total 153,355

assemblies in NCBI RefSeq, consisting of 53,048 unique species. Multiple assemblies

are often created for the same species by using different sequencing and/or assembly

methods. However, a single genome assembly is typically selected as a reference genome

to guide wet-lab and bioinformatics studies. To select the most complete, continuous,

and accurate assembly for an organism of interest, comprehensive quality assessment of

assemblies is necessary. Researchers should also be aware of any limitations posed by

the level of completeness, continuity, and accuracy of their selected reference assembly.

Genome quality is usually assessed by metrics such as gap percent, N50, and

the number of scaffolds that make up the assembly. However, these metrics only reflect

the completeness and continuity of an assembly, and not the accuracy. For example,

the best assembly is often considered the one with the highest N50, but the N50 metric

increases even when contigs are joined incorrectly [44, 41].

One way to evaluate the accuracy of an assembly is to compare it to an existing

reference assembly for the organism of interest through a direct sequence comparison.

The assembly evaluation tools QUAST [42] and CQAT (Contig Quality Assessment

Tool) [43] use this method. However, many de novo assemblies, those built without
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the use of a reference, do not have a suitable assembly available for comparison. In

addition, the quality of the alignment between genome assemblies should be assessed,

using tools such as ThurGood [115], as errors in alignment can impact the assembly

quality assessment.

To overcome this issue, several methods for quality evaluation that do not re-

quire an existing reference assembly have been developed. These methods include gene

homology methods such as those executed by CEGMA (Core Eukaryotic Genes Map-

ping Approach) [116] and the more recent BUSCO (Benchmarking Universal Single-

Copy Orthologs) [107] programs. The results of these tools reflect the completeness and

accuracy of a genome based on expected gene content. However, they only examine

the accuracy of well-conserved genes and their copy numbers, rather than the whole

genome.

The majority of other reference-independent quality assessment tools use infor-

mation from mapping sequencing reads back to the genome of interest. Low mapping

quality or read coverage can indicate errors in the assembly. Tools using this approach

include Amosvalidate [44], ALE [45], FRCbam [46], SURankCO [47], and REAPR

[117]. Amosvalidate was the first automated pipeline for misassembly detection that

used read mapping information. However, the pipeline, designed in 2008, uses an older

assembly format that is not produced by current assemblers. ALE (Assembly Likeli-

hood Estimator) uses Bayesian statistics to determine the probability of an assembly

being correct given a set of reads. The resulting ALE score can be used to compare

different assemblies of the same genome, but the authors state that ALE should not

be used to compare assemblies across organisms [45]. FRCbam provides a feature re-

sponse curve for an assembly instead of a numeric score. The curve shows the trade-off

between the accuracy and the continuity of the assembly. Similar to ALE, FRCbam

can only be used to compare different assemblies of the same organism. SuRankCo

uses supervised machine learning where the training data includes metrics from read

mapping to rank, rather than score, scaffolds/contigs within a single assembly. REAPR

examines the quality of an assembly base-by-base and provides multiple quality metrics
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derived from read mapping.

Despite the development of these important tools, there is still need for a

reference-independent tool that provides a single quality score reflecting the complete-

ness, continuity, and accuracy of an assembly and can be used to compare assemblies

from different organisms. Here, we present a novel pipeline called EvalDNA (Evalua-

tion of De Novo Assemblies) to address this need. EvalDNA assists in the modeling of

genome quality through supervised machine learning, and uses the subsequent model

to estimate a single, comprehensive quality score for a given assembled sequence. The

quality score being learned is based on the number of differences in an alignment be-

tween a training sequence and its reference, calculated using DNAdiff [65].

EvalDNA calculates completeness and continuity metrics, and uses output from

SAMtools [118] and REAPR [117] to generate accuracy metrics. A user-specified

model, developed from supervised machine learning, is then used to estimate the qual-

ity score using a subset of these metrics. We developed and tested a model for scoring

mammalian assemblies which is provided as part of EvalDNA. The resulting scores

from EvalDNA can be used to directly compare chromosome sequences within a single

assembly, compare multiple genome assemblies from the same organism, and even com-

pare assemblies from different organisms as long as each assembled sequence is scored

using the same model.

EvalDNA was applied to human chromosome 14 assemblies from the GAGE

study [119] to rank genome assemblers and to compare EvalDNA to two other reference-

independent quality evaluation tools, ALE and FRCbam. In addition, EvalDNA was

run on several existing Chinese hamster (CH) genome assemblies to compare its results

to that of a manual ranking of the assemblies described in Rupp et al. [30] as well as

rankings from ALE and FRCbam. This comparison provided insight regarding the

performance of EvalDNA on organisms that were not used in the training data and

confirmed that EvalDNA can be used to select the highest quality assembly. Scores for

each chromosome from the 2018 CH PICR reference genome were also estimated using

EvalDNA and compared to chromosomes from the previous CH reference assembly and
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the reference assemblies for human, mouse, rat, and cow.

Finally, error simulation of PICR chromosomes and scaffolds was done to ex-

amine how the EvalDNA score changes as the amount of errors within an assembled

sequence increases and to assess EvalDNA’s potential to score scaffolds. The mam-

malian model’s potential to score plant genomes was also briefly examined by applying

EvalDNA to several versions of the rice genome assembly.

3.4 Methods

3.4.1 Overview of the EvalDNA tool

Users have two options when using EvalDNA. If the sequence of interest is

from a mammalian genome, the user can use EvalDNA with the provided mammalian

assembly quality scoring model. This option would require the user to run the EvalDNA

metric calculation pipeline to collect quality metrics for the sequence of interest and

then provide the resulting list of metrics to the ’run model’ script to get the final

quality score. Here, we focus mainly on this type of usage.

The second option is to create a new scoring model based on a set of assembled

sequences each with a reference sequence. These assembled sequences could be derived

from organisms with a high quality reference genome that are related to the organ-

ism of interest. A script is provided to align each of the training sequences to their

corresponding reference sequence to get the target quality score. However, scaling of

the scores may still be required (see the ‘Reference-based quality scoring’ section). A

model would need to be trained on this data and finalized in R, and then loaded into

the ’run model’ script. More on this second type of usage can be found in the EvalDNA

documentation.

The EvalDNA metric calculation pipeline is written in Python. General steps

are shown in Figure 3.1. The pipeline requires a configuration file, the sequence(s)

of interest in FASTA format, and either a set of paired-end DNA sequencing reads

in FASTQ format or a BAM file containing the reads mapped to the sequence(s) of

interest. If the raw reads are provided, EvalDNA will run SMALTmap [120], which is
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the recommended read mapper for REAPR, to map the reads to the provided sequence,

creating the BAM file. If the BAM file is provided, EvalDNA can skip the SMALTmap

step.

Figure 3.1: The computational workflow of EvalDNA. EvalDNA requires the assem-
bly of interest in FASTA format, a configuration file, and Illumina paired
read data in either FASTQ or BAM file format. EvalDNA first calculates
contiguity and completeness metrics, and then calculates accuracy met-
rics based on the output from running REAPR and SAMtools. This part
of EvalDNA produces a list of metrics that will be given to the scoring
model (written in R) which will estimate the overall quality score for the
assembly.

The pipeline calculates the metrics that are used in the mammalian models as

well as additional metrics which are still insightful. The selection of metrics used in

the model is described in the subsection ‘Feature Selection’. The pipeline first calcu-

lates a set of commonly used completeness/contiguity metrics, including percent gaps,

N50, and the number of scaffolds/contigs. It then executes REAPR [117], followed by

SAMtools stats [118] to calculate various metrics reflecting the accuracy of the given

sequence(s). Metrics used in model development are normalized by chromosome length.
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3.4.2 Training Data

Training data, collected from rat, mouse, and human assembly builds, were

used to develop a supervised machine learning model that can estimate reference-based

scores for genome assembly quality. Each training instance consists of a set of quality

metrics for a single chromosome, xi = [x1, x2, ...xd] (see Quality Metrics section), and

its corresponding quality score, yi (see Quality Scoring section). Chromosomes from

publicly available assemblies and chromosomes with simulated errors were used, total-

ing 416 training instances. The training data included 276 chromosomes taken directly

from publicly available assembly builds, 140 chromosomes with simulated errors, and

17 chromosomes with simulated gaps. The feature set before feature selection consists

of 13 assembly quality metrics. Definitions of the metrics in the training data can be

found in Appendix B.

3.4.2.1 Assembly versions

Chromosomes from the current and previous builds of the rat (Rnor6) and

mouse (GRCm38) reference genomes were downloaded from corresponding organisms’

directory on ftp://ftp.ncbi.nlm.nih.gov/genomes/. For instance, mouse chromosome 1

from build37.2 was downloaded from

ftp://ftp.ncbi.nlm.nih.gov/genomes/M musculus/ARCHIVE/BUILD.37.2/CHR 01/.

The FASTA files for each chromosome contained both assembled scaffolds and unplaced

scaffolds. Chromosomes from the current human reference genomes (GRCh38) and two

assembly builds of another human genome (NA19240) were also used. The NA19240

assembly builds were selected as a training data source because they were built from

sequencing reads from a single person. Therefore, differences between reads sequenced

from that person’s DNA and the assembly are most likely due to errors in the assembly,

rather than true differences among individuals. Deciphering what a sequence difference

means in an assembly built from a pool of individuals (such as GRCh38) would be more

difficult. Assembly build information can be found in Supplementary Materials section.
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3.4.2.2 Simulated chromosomes

SINCsimulator [121] was run on a subset of the chromosomes described above

to generate errors in the existing chromosomes. Differing levels of single nucleotide

polymorphisms (SNPs), insertions/deletions (indels) and copy number variants were

provided to generate chromosomes with differing levels of quality. This resulted in 123

chromosomes with simulated errors. A custom script was used to simulate gaps in 17

chromosomes as well. Both of these steps were done to ensure the model was trained

on chromosomes of lower quality than ones that would be submitted to NCBI RefSeq

or GenBank.

3.4.2.3 Quality metrics

Quality metrics for each training chromosome were calculated using the met-

ric portion of the EvalDNA pipeline. Basic metrics reflecting the completeness and

continuity of the chromosome assembly, which include gap percent, N50, N90, scaf-

fold/contig number, and average scaffold length, were collected first.

Several external programs were then run to collect metrics reflecting the accu-

racy of the assembly. SMALTmap within REAPR maps user-provided reads to the

assembly of interest. REAPR then scans the assembly base-by-base identifying possi-

ble errors based on the alignment file. The number of bases in each error type, such as

bases in clipped reads or low coverage regions, is converted into a percent of the total

number of bases to normalize by assembly/chromosome length. Finally, SAMtools is

used to calculate the number of read pairs that aligned to the assembly in the expected

orientation and distance from one another. These proper read pairs were divided by

the number of reads mapped to the assembly to create a proper pair percent metric.

Further details on the complete set of metrics and any corresponding normal-

ization can be found in the Supplementary Materials.

70



3.4.2.4 Sequencing reads

As described in the previous section, several of the quality metrics in the feature

set are derived from mapping sequencing reads to each chromosome sequence. 20.5

giga base pairs (Gbp) of Illumina paired-end read sequencing data from ERR319183,

ERR316497, ERR316496, and ERR319170 (Bioproject PRJEB2922) was used as input

for the metric calculation portion of EvalDNA for all rat assemblies. The insert size was

consistent among these runs, ranging from 473 to 475 base pairs (bp), a requirement

for REAPR. 25.7 Gbp of Illumina paired-end read sequencing data from ERR1856364

(Bioproject PRJEB19654, insert size 550 bp) [122] was used for the mouse assemblies.

20.2 Gbp of Illumina paired-end read data from the NA19240 human sequencing run

SRR2103647 (Bioproject PRJNA288807, insert size 350 bp) was used for the evaluation

of both GRCh38 and NA19240 assemblies.

All reads were trimmed using trim-galore with a quality score cut-off of 26.

These reads were used to calculate the accuracy metrics in the training data for the

mammalian models. We strongly recommend using at least 10x coverage of reads with

an insert size of approximately 350-550 bp when scoring a novel assembled sequence

with the mammalian model to stay consist with the amount and insert size of the reads

used to create the training data.

3.4.2.5 Reference-based quality scoring

A reference-based quality score for each training instance was calculated based

on the NUCmer[65] alignment to the most recent build of the corresponding chromo-

some. For example, each build of chromosome 1 (query) from the rat genome assembly

was aligned to the Rnor6 build chromosome 1 (reference). This method works based

on the assumption that more recent builds of an assembly are more accurate. This

assumption is supported by the general quality metrics of the assemblies as well as the

continuous improvements in DNA sequencing and assembly methods.

For each NUCmer alignment, the number of bases differing between the two

sequences were found using DNAdiff. This value was used in the following equation to
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get the percent of matching (or correct) bases:

percent matching bases =
length of reference− total differences

length of reference
∗ 100 (3.1)

Using this method, the self-to-self alignment for each chromosome from the most

recent assembly will have a percent of matching bases of 100. However, in reality, not

all the chromosomes from the most recent build of an assembly will be of identical

quality and neither will chromosomes from different organism assemblies. Therefore,

this ’percent of matching bases’ value cannot directly be used as the score, and in-

stead requires two rounds of scaling; one among the chromosomes in a single assembly

(internal scaling) and another to scale between organisms (external scaling).

Internal scale factors were determined by calculating the distance between each

chromosome and the ideal set of metrics using Euclidean distance. This ideal set of

metrics are metrics that would be produced from a perfectly accurate, continuous, and

complete sequence, i.e. gap percent is 0, normN50 is 100, error free bases is 100 etc.

The best chromosome (i.e. the one with the lowest distance from the ideal chromosome

metrics) for each organism kept the score of 100, while the other chromosomes ’percent

of matching bases’ values were scaled based on differences in the distances from the

ideal metrics.

A similar process was used to determine the external scale factors. The distances

between each organism’s best chromosome and the ideal chromosome metrics were used

to determine the best overall chromosome. This best chromosome was chromosome 2

from human NA19240 and kept its score of 100. Again, the distances were used to

scale the other organisms’ chromosomes to get the final quality score.

This method allows scores from across species to be compared and also provides

context for the EvalDNA score. A chromosome with an EvalDNA quality score higher

than 100, for instance, is predicted to be of higher quality than the chromosomes from

the human reference assembly as well as chromosomes of NA19240, a more recent

Illumina/PacBio hybrid assembly of the human genome.
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3.4.3 Model development

A randomly selected 20% of the training data was set aside as test data. The

quality metrics and the associated reference-based score of each chromosome in the re-

maining 80% of the training data were used to train several models that can estimate

the quality score given the set of quality metrics of an assembled sequences. Model

development steps included feature selection, using supervised machine learning to cre-

ate regression models, and model selection based on performance measures. Regression

models rather than classification models were created because the reference-based qual-

ity scores (target variable) consist of continuous rather than discrete values. Thus, we

were trying to find some function f that maps the input X onto the output Y, where f

can be represented by the function: w0 + w1x1 + w2x2 + w3x3... + wdxd. The weight,

wi, for each quality metric, xi, were the values being learned.

3.4.3.1 Feature selection

To determine which of the 13 quality metrics (features) calculated by EvalDNA

were correlated with the target quality scores in the training data, the Pearson corre-

lation (r) for each metric was calculated (Table 3.1). Metrics that were not correlated

with quality scores in the training data (-0.1 < r < 0.1) were removed from the model.

These included metrics based on the contig number and REAPR’s values for ’fragment

coverage distribution (FCD) error within contigs’ and ’collapsed repeats’.

The presence of multicollinearity/redundancy among the metrics was identified

by calculating the Pearson correlation value between each pair of metrics (Figure 3.2).

Since multicollinearity among metrics can reduce the accuracy of a model, metrics were

further filtered by calculating the joint mutual information using the ’jmim’ function

of the Praznik R package [123] and the percent increase in MSE from the importance

function of the randomForest R package [124]. Calculation of joint mutual informa-

tion among the remaining metrics showed that metrics based on REAPR’s ’low read

coverage’ and ’FCD error over gap’ shared redundant information with other metrics

regarding the target score value and could be removed. The %INCMSE importance
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Table 3.1: The Pearson correlation coefficients between each metric and the reference-
based quality score in the training data that was used to create mammalian
model.

Quality Metric Pearson Correlation
normN50 0.570
gap perc -0.300
prop pair perc 0.204
FCD err in contig -0.099
FCD err over gap -0.295
low fc in contig -0.521
low fc over gap -0.579
links -0.594
clip -0.476
coll repeat -0.071
low read cov -0.402
error free bases 0.701
norm contig number 0.025

metric from the randomForest R library [124] was also examined to see which metrics

caused the smallest increase in mean squared error (MSE) when replaced by a randomly

permuted variable in a random forest regression model. This method suggested that

the ’proper pair percent’ and ’FCD error over gap’ metrics could be removed. Results

of these feature selection methods are provided in the Supplementary Materials.

Subsets of the remaining features (normN50, gap perc, clip, error free bases,

links, low fc over gap, low fc in contig) were used to generate linear regression models

to see which metrics produce high performing models (Figure 3.3). This procedure was

carried out by the ’regsubsets’ function (exhaustive search) from the R leaps package

[125]. The six best performing models all produced an r-squared of 0.74 with the top

two models having the smallest residual sum of squares values. NormN50, gap perc,

clip, error free bases, low fc over gap, and low fc in contig were chosen as the metrics

for subsequent modeling of the quality score. Low fc in contig was chosen rather than

links because while links has a negative correlation with quality score (Table 3.1), it

is given a positive weight within the linear regression model. This suggests that there
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Figure 3.2: Pearson correlation among all metrics. Cells with an X denote metrics
with insignificant correlation. Dark blue represents a stronger positive
correlation, while dark red represents a stronger negative correlation.

may still be concerns with multicollinearity when using the links metric. Summary

statistics and histograms for the selected metrics are shown in Table 3.2 and Figure

3.4.

3.4.3.2 Training of regression models

Model training and testing was carried out using R statistical software [126].

All models tested were from the Caret R package [127]. The full set of training data
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Figure 3.3: Results from regsubsets function for the leaps R package. Each row is
a general linear model created from a subset of the features listed along
the x-axis. Shaded cells indicated features included in that row’s model.
The models are ordered and shaded based on their r-squared value given
along the y-axis.

was randomly split into two subsets where 80% of the data became the training set

and 20% became the testing set. This split resulted in 333 training instances and 83

testing instances.

First, a general linear model using the selected metrics was trained using re-

peated cross-validation (CV) with 10 folds and 10 repeats. An elastic net model was

also trained where cross-validation was used to tune the alpha and lambda hyper-

parameters. The penalization for elastic net falls between that of Lasso and Ridge

regression depending on the alpha and lambda values. The alpha is the elastic net
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Table 3.2: Summary statistics for the quality metrics selected to be included in the
mammalian genome scoring model along with the reference-based quality
score that the model will be estimating.

Metric Norm.
N50

Gap % Clip Error
Free
Bases

Low FC
Contig

Low FC
Gap

Quality
Score

Min. 0.74 0.00 0.01 15.86 0.03 0.00 -79.25
1st Quantile 12.10 0.71 0.025 51.97 0.16 0.004 23.81
Median 22.77 4.04 0.032 55.34 0.59 0.23 51.83
Mean 40.16 5.43 0.08 55.73 1.60 1.65 50.55
3rd Quantile 67.12 7.57 0.06 62.02 2.35 2.17 80.68
Max. 100.00 43.34 0.34 68.04 15.94 11.67 100.00

Figure 3.4: Histograms for each selected genome assembly metric as well as the
reference-based score (bottom left) from the training data for the mam-
malian model.

77



mixing parameter (0 ≥ α ≤ 1), where alpha = 0 would be ridge regression and al-

pha = 1 would be lasso regression. The lambda parameter determines the amount of

coefficient shrinkage (regularization penalty).

In addition, other types of supervised machine learning models were tested.

Models tested included K-Nearest Neighbors (KNN) regression, Random Forest (RF)

regression, and Support Vector Machines (SVMs) with linear and polynomial kernels.

10-fold cross-validation with 5 repeats was used to tune the KNN model. 10-fold cross-

validation was used to tune the RF model and 5-fold cross-validation was used to tune

the SVMs. More information about the models and the parameter tuning results are

provided in the Supplementary Materials.

3.4.3.3 Model selection

The root mean squared error (RMSE) and r-squared values for each model type

were calculated on the test data (Table 3.3). These values reflect each model’s perfor-

mance on the test set. More specifically, the r-squared values reflect the proportion

of the reference-based quality score that can be explained by each model, while the

RMSE values reflect the differences between the reference-based quality scores and

those predicted by each model.

Table 3.3: The r-squared and RMSE values for each type of regression model that
was tested to select the best performing model (highlighted in bold) to be
the mammalian model.

Regression Model RMSE R-squared
General Linear 16.413 0.775
Elastic Net 16.520 0.773
K-Nearest Neighbors 13.615 0.840
Random Forest 12.697 0.860
SVM (Linear) 17.190 0.774
SVM (Polynomial) 14.363 0.843

The best performing model was random forest regression with 500 trees and an

mtry value (number of variables tested at each split) of 2. This model produced a
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RMSE of 12.697 and an r-squared of 0.860 when applied to the testing data (Figure

3.5). The random forest model was retrained on the full data to develop the final model

that would be used to predict the quality scores of mammalian genome assemblies.

Figure 3.5: Random forest model results on test data. Estimated quality scores for
the test instances are plotted against the reference-based quality scores
of the test instances. A 100% accurate model would produce the blue
line with an r-squared equal to 1. The line of best fit for the plotted data
is shown as the red line and has an r-squared of 0.8597.

Once the final model was selected, we wanted to confirm that the source of

the assembled sequences in the training set did not impact the ability of the model to

predict quality scores. There were no clear patterns regarding the residuals of the scores

versus organism source (data point shapes) or regarding the residuals of the scores
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versus the generation method of the chromosomes i.e. if they were real, simulated, or

had gaps added (data point colors) (Figure 3.6). This observation suggested that the

model’s ability to predict quality scores of instances within the training/testing data

was not impacted by organism or generation methods.

Figure 3.6: Random forest model results on test data with species information. The
plot shows the reference-based quality scores versus the EvalDNA quality
scores of the test data with species (data point shapes) and sources (data
point colors) denoted.
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3.4.4 EvalDNA pipeline application

3.4.4.1 Application to Chinese hamster genome assemblies

EvalDNA was applied to new assemblies of the Chinese hamster genome using

the mammalian model. Chromosomes from each meta-assembly described in Rupp

et al. [30] as well as the previous RefSeq assembly [27] and the chromosome-sorted

assembly (CSA) [29] were scored. EvalDNA was also used to score each assembly

as a whole with no chromosome separation information provided and including any

unplaced contigs.

Illumina reads from SRR954916, SRR954917, and SRR954918 [27] (sequencing

project PRJNA167053) were trimmed using a quality cutoff of 26 and a length cutoff

of 90 (with the paired option) in Trim Galore [128]. A random subset of trimmed

pairs, totaling 20 Gbp, was selected as input for EvalDNA. These sequencing runs

were chosen because they had an insert size ( 500 bp) similar to the reads used in the

training data.

3.4.4.2 Comparison to other quality evaluation tools

The manual ranking of the Chinese hamster genome assemblies from Rupp et

al. [30] were compared to rankings from EvalDNA, FRCbam, and ALE. Normalized

EvalDNA scores, scaled between 0 and 1, for the CH genome assemblies were compared

to normalized ALE scores. FRCbam and ALE were run using the same Illumina reads

used for EvalDNA (described previously). For ALE, the BAM file was created using

Bowtie2 [129] with the ’-very-sensitive’ parameter instead of SMALTmap. For an un-

known reason, ALE was unable to run when given BAM files created with SMALTmap.

FRCbam was run using the BAM files created with the SMALTmap tool within

EvalDNA. FRCbam required tuning for the CE-max and CE-min parameters for each

set of chromosomes (i.e. chromosome 8 from all assemblies had the same CE-max and

CE-min). Estimation of these parameters was done by first graphing the CE-stats

distribution provided by FRCbam without specifying the parameters and then using
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the 0.95 and 0.05 quantile values from a fitted normal curve as the CE-max and CE-

min, respectively. Finally, for each set of chromosomes, the smallest CE-max value

was selected to be the CE-max value and the highest CE-min was selected to be the

CE-min value.

3.4.4.3 Quality scoring of GAGE assemblies

The human chromosome 14 assemblies were downloaded from the GAGE dataset

website (http://gage.cbcb.umd.edu/data/index.html). EvalDNA was run on each as-

sembly to estimate its quality score and subsequently, rank the assemblers. 20.1 Gbp

of trimmed paired-end reads from SRR2103647 was given as input. The reads were

quality trimmed using Trim Galore (quality cutoff of 26) to ensure high quality reads.

The EvalDNA results were used to rank the assemblies and the rankings were compared

to those reported in the ALE and FRCbam papers.

ALE was run on the assemblers using identical parameters to those stated in the

supplementary information for the ALE paper. We were able to replicate their ranking

of the assemblers, and additionally scored the CABOG assembly. We also reran ALE

with the same parameters, but with a more recent version of Bowtie2 (version 2.3.3.1).

EvalDNA and ALE scores were normalized to be between 0 and 1 for comparison.

3.4.4.4 Scoring of other assemblies

EvalDNA was run on chromosomes from the cow reference genome assembly

(ARS-UCD1.2, GCF 002263795.1). Illumina reads from SRR5753530 were trimmed

using a quality cutoff of 26 and a length cutoff of 90 (with the paired option) in Trim

Galore. These reads, totaling 20.4 Gbp, were selected to use as input for EvalDNA.

Read pairs had an insert size of 600 bp.

EvalDNA was also run on several Japanese rice (Oryza sativa ssp. Japonica)

assemblies as well as the chromosomes from the reference assembly (Os-Nipponbare-

Reference-IRGSP-1.0, GCF 001433935.1). The older versions of rice assemblies exam-

ined were GCA 000005425.2 and GCA 000149285.1. All assemblies and the sequencing
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reads used were from rice of the Nipponbare cultivar. Illumina reads (250 bp long) from

SRR547960, SRR547961, SRR547959, SRR547963, and SRR547962 were trimmed us-

ing the same parameters for the other organisms. The sequencing reads consisted of

11.5 Gbp and was used as input for EvalDNA. Read pairs had an insert size (450 bp)

similar to the reads used in the training data.

3.4.4.5 Error simulation and scoring of PICR chromosomes and scaffolds

Single nucleotide errors were simulated from 5-30%, in increments of 5%, in each

chromosome from CH PICR using a custom script. Errors at the same rates were also

simulated in scaffolds of various lengths from CH PICR chromosome 1. Errors could

be simulated in any location, except for gap regions, across the length of the sequence.

3.5 Results

3.5.1 Evaluating assemblers used in the GAGE study

EvalDNA with the mammalian model was used to score and rank the differ-

ent assemblies of human chromosome 14 from the GAGE study [119]. The rankings

were compared to rankings generated during the original benchmarking tests for ALE

and FRCbam [45, 46] as well as the ranking generated by running ALE with an up-

dated version of Bowtie [129] (Figure 3.7 A). Normalized EvalDNA scores (scaled to be

between [0,1]) were compared to the two sets of normalized ALE scores (Figure 3.7B).

EvalDNA and FRCbam selected ALLPaths-LG [19] as the best assembler, while

the ALE runs ranked ALLPaths-LG as the second best with the CABOG assembler

[130] ranking first. EvalDNA ranked the assembly produced by Velvet [131] as the

lowest quality assembly, which is not surprising since it is made up of approximately

45% gaps. The Velvet assembly was ranked second to last by the ALE runs and third

to last by FRCbam.

One key difference among the rankings is that EvalDNA ranked the ABySS

[132] assembly much higher (second place) than either ALE or FRCbam (last place).

ALE and FRCbam most likely ranked ABySS the lowest because the assembly is highly
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Figure 3.7: Comparison of quality evaluation methods on human chromosome 14 as-
semblies from the GAGE study. A) The EvalDNA ranking of assemblers
used to build the human chromosome 14 assembly are compared to the
rankings from ALE and FRCbam. The highest quality assembly is given
a rank of 1. B) EvalDNA and ALE scores for the human chromosome
14 assemblies were normalized (scaled to be between [0, 1]). ALE paper
scores were calculated using the same parameters and version of Bowtie
described in Clark et al. The ALE redone scores were calculated with an
updated version of Bowtie.

fragmented. However, the ABySS assembly is also one of the more accurate assemblies

with fewer scaffold misjoins, inversions, relocations, and indels than the other assem-

blies [119]. ABySS also has a very low gap percent (0.53%). This observation suggests

that EvalDNA’s mammalian model may value accuracy and completeness (in regards
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to the lack of gaps) over continuity more so than ALE or FRCbam. In addition, ex-

amining the normalized EvalDNA scores does show that ABySS, while second in the

ranking, scored only slightly better than the CABOG, MSR-CA [133], and BAMBUS2

[134] assemblers.

3.5.2 Scoring of Chinese hamster assemblies for reference assembly selec-

tion

In 2018, four assemblies for the Chinese hamster (CH) were built using PacBio

sequencing data and existing Illumina data. Manual ranking of these new assemblies

as well as two Illumina-only assemblies from 2013 was completed to select the best ref-

erence genome for CH and Chinese hamster ovary (CHO) cells [30]. The two Illumina-

only assemblies included the 2013 CH RefSeq assembly (GCF 000419365.1) [27] and

the 2013 chromosome sorted assembly (CSA, GCA 000448345.1) [29]. EvalDNA results

were compared to this ranking to evaluate its performance on real assemblies outside

of those used in the training data and if it could be used to select the best assembly

to be the new reference genome.

EvalDNA with the mammalian model was used to score the six different CH

assembly versions (Table 3.4) as well as each chromosome from the assemblies (Table

3.5). Scaffolds and contigs were assigned to chromosomes based on the coverage of

reads mapped from each of the CSA chromosomes. For CSA, sequencing was done

on chromosomes after they were individually isolated using flow cytometry. However,

chromosomes 9 and 10 could not be separated due to their size similarity [29]. There-

fore, for each assembly, scaffolds could be assigned to chromosomes 9 and 10, but not

separately, and these chromosomes together are given a single score. The full CH

assemblies were also assessed by FRCbam and ALE.

EvalDNA and the manual ranking selected PICR as the CH assembly with the

highest overall quality (Figure 3.8A), with PIRC a close second. FRCbam ranked

PICR and PIRC as the highest, but the curves were too close to distinguish between

them (Figure 3.9). All four evaluation methods agreed that CSA was of the poorest
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Table 3.4: The EvalDNA quality scores for the CH genome assemblies.

Assembly Mammalian Model Model Without N50
PICR (2018 RefSeq) 70.22 88.47
PIRC 70.20 88.41
IPCR 57.56 59.29
IPRC 57.57 59.22
2013 RefSeq 58.72 64.35
CSA 43.21 40.60

Table 3.5: The EvalDNA quality scores for each chromosome from the CH genome
assemblies. The highest score for each chromosome is highlighted in bold.

Chromosome PICR PIRC IPCR IPRC RefSeq CSA
1 72.04 71.91 60.11 59.26 59.58 41.51
2 71.00 71.20 58.76 57.37 56.92 49.90
3 65.37 65.42 55.56 54.51 55.21 39.55
4 68.75 68.63 54.71 56.01 56.15 42.49
5 68.02 68.21 40.01 63.13 56.38 47.48
6 68.21 68.24 62.77 56.70 56.40 50.27
7 68.95 68.66 55.89 54.77 55.80 46.44
8 63.99 63.84 52.21 56.45 54.47 52.83

9 10 48.31 52.32 39.53 51.92 47.62 47.27
X 53.30 52.51 49.30 53.14 48.72 30.44

quality. However, EvalDNA and ALE both scored RefSeq higher than IPCR and

IPRC, while the manual ranking and FRCbam had this order switched. Examining

the ALE and EvalDNA normalized scores more closely (Figure 3.8B) show that these

three assemblies are very similar regarding quality (within 0.05 normalized units). The

difference in quality may be too small for EvalDNA to meaningfully distinguish between

these assemblies.

The accuracy of EvalDNA scores and ranking of CH assemblies was also con-

firmed by calculating the number of differences between each CH assembly and the

’reference’ genome (PICR). This method allows each assembly to get a score, calcu-

lated the same way the training instances were scored with the exception of not being
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Figure 3.8: Comparison of quality evaluation methods on CH genome assemblies.
A) Comparison of the EvalDNA ranking of the multiple CH genome
assemblies to a manual ranking, and rankings from ALE and FRCbam.
The highest quality assembly is given a rank of 1. B) EvalDNA and ALE
scores for the CH assemblies as well as the rankings given in Rupp et al.
were normalized (scaled to be between [0, 1]).
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Figure 3.9: The FRCbam results (FRCurves) for the CH genome assemblies. Thresh-
olds of the number of allowed errors (features) are shown along the x-
axis. Only contigs (starting with the longest) whose sum of features is
less than this threshold can be used to compute the genome coverage,
which is shown on the y-axis.

scaled (see ”Quality Scoring” section in Methods). The difference between each as-

sembly’s score and a score of 100 (PICR’s score from aligning PICR to itself) should

be similar to the difference between the corresponding assembly’s EvalDNA score and

PICR’s EvalDNA score. The differences were indeed similar (Table 3.6), confirming

that EvalDNA can be used to accurately evaluate assemblies from organisms that were

not used in the training set.
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Table 3.6: Differences between each CH assembly EvalDNA score and PICR’s
EvalDNA score compared to the differences between NUCmer scores (de-
rived from NUCmer alignments of each assembly to PICR).

Assembly EvalDNA
score

NUCmer
score

Difference from
PICR EvalDNA
score

Difference from
PICR NUCmer
score

PICR 70.22 100 0 0
PIRC 70.20 99.11 0.03 0.9
IPCR 57.56 85.20 12.5 14.80
IPRC 57.57 85.24 12.64 14.76
RefSeq 58.72 85.31 11.50 14.69
CSA 43.21 63.43 27.00 36.57

3.5.3 Comparing CH assembly quality to other organism reference assem-

blies

The PICR assembly was selected to be the new Chinese hamster reference as-

sembly (GCF 003668045.1) [30]. EvalDNA scores for the PICR chromosomes were

compared to scores from the 2013 CH RefSeq assembly and the reference assemblies

for human (GCF 000001405.38), mouse (GCF 000001635.20), rat (GCF 000001895.5),

and cow (GCF 002263795.1). The majority of the PICR CH assembly chromosomes

are of higher quality than those of the 2013 CH RefSeq assembly and the rat reference

assembly (Figure 3.10a). Several chromosomes also scored as high as those from the

mouse reference assembly.

EvalDNA was also run on each chromosome from the rice (Oryza sativa) ref-

erence genome (GCF 001433935.1) (Figure 3.10a). While the model was trained us-

ing mammalian data, the results of EvalDNA with this model on rice also seem rea-

sonable. Two older versions of the rice assembly, Build4.0 (GCA 000005425.2) and

OrySat Sep2003 (GCA 000149285.1), were scored. Build4.0 scored within 1 unit of

the most recent version, while OrySat Sep2003 scored significantly lower (more than

30 units). The similar scores between Build4.0 and the most recent reference is not
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Figure 3.10: EvalDNA quality scores for chromosomes from various genome assem-
blies. A) EvalDNA quality scores for chromosomes from CH PICR,
CH 2013 RefSeq, and the mouse, rat, human, cow, and rice reference
genome assemblies. B) EvalDNA quality scores for the same chromo-
somes but calculated using a model that does not include the normalized
N50 metric.

surprising because the accuracy of Build4.0 was already high with an error rate esti-

mated to be less than one per 10,000 nucleotides and possibly as low as 0.15 errors per

10,000 nucleotides [135]. Results of the rice assemblies are given in Table 3.7.

Table 3.7: The EvalDNA scores of various Japanese rice assemblies (all three are of
the Nipponbare cultivar).

Assembly EvalDNA score
IRGSP-1.0 (reference) 81.81

Build4.0 82.44
OrySat Sep2003 50.82
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The scores allow comparison of assemblies across organisms in regards to con-

tinuity, completeness, and accuracy. Changing the model to only examine a subset of

these categories can give more specific insight into where an assembly excels or needs

improvement. For instance, we scored the chromosomes with a different random forest

regression model which does not include the normalized N50 metric (Figure 3.10b).

This model, described in the Supplementary Materials, enables comparisons across or-

ganisms based on completeness and accuracy only. The model shows a large increase

in the accuracy and completeness of the 2018 CH PICR reference assembly over the

2013 CH RefSeq assembly. In addition, because each chromosome of the cow and rice

assemblies contains just a single scaffold, the original model scored each chromosome

from these organisms much higher than the model that does not use the normalized

N50 metric (Figure 3.10). The disparity among the scores predicted between these two

models does confirm that scores from different models are not directly comparable.

3.5.4 EvalDNA scores correlate with error simulation rates, but not lin-

early

To examine how changes in the amounts of errors within an assembly affect the

EvalDNA score, we ran EvalDNA on versions of the CH PICR chromosomes which

contained varying amounts of randomly generated single nucleotide errors. Single nu-

cleotide changes were simulated from 5% to 30% in increments of 5%.

Each simulated chromosome was scored by EvalDNA (Figure 3.11a). Similar

trends across all chromosomes are seen, and the scores do not linearly decrease as the

amount of errors increase. On average, the quality score decreases slightly (1 unit)

between a 0% error rate and a 5% error rate and then decreases an average of 10 units

between 5% and 10% error rates. An even larger score decrease (average of 34 units)

occurs as the simulated error rates change from 10% to 15%. The scores decrease an

average of 17 units from 15-20%, 3 units from 20-25%, and 2 units from 25-30%.

Assessment of the EvalDNA scores with respect to error rates alone is difficult
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Figure 3.11: The impact of error rates on the EvalDNA quality scores of CH PICR
chromosomes. A) Changes in EvalDNA quality scores due to simulation
errors. B) Changes in scaled EvalDNA quality scores due to simulation
errors. Scores were scaled so that the maximum score for a chromosome
became 100.

because none of the PICR chromosomes are perfectly accurate, complete, and contin-

uous before error simulation. The chromosomes with 10% simulated error rate have

scores anywhere from 35 to 65 depending on the continuity and completeness of the

chromosome. However, a near perfect chromosome or assembly will have a score above
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100 and insights can be gained from scaling all the scores so that maximum score for

each chromosome is 100 (Figure 3.11b). From scaling, we can see that a perfectly com-

plete and continuous chromosome with a score around 89 corresponds with an error

rate of approximately 10%. This means that a chromosome or assembly that is not

fully complete and continuous with a score of 89 or above will have a percent error rate

lower than 10%. Since most mammalian assemblies are far from being fully continuous

and complete, a score of 89 will often mean an error rate of much lower than 10%.

Even the chromosomes from the current human reference genome assembly (GRCh38)

in the training set have scores ranging from approximately 85 to 100, and GRCh38 has

an estimated error rate of 1 in 100,000 bases (0.001%) [136]. Recommended guidelines

for how to categorize an assembly based on the reference-based quality scores from the

training data are provided in Figure 3.12.

3.5.5 EvalDNA application on scaffolds

Varying levels of single nucleotide errors were randomly generated in several

scaffolds from PICR chromosome 1 to examine how well EvalDNA with the mammalian

model works on scaffolds. To minimize false mapping, EvalDNA was run using only

reads that mapped to the original scaffold with an identity of 0.75 (at least 75% of the

bases needed to match).

The error simulation results suggest that EvalDNA’s ability to estimate quality

scores for scaffolds depends on the amount of errors and the scaffold length (Figure

3.13). The score decreases in a similar manner as the chromosomes did for all length

scaffolds with 0-10% errors simulated. As the percent of errors increases beyond 10%,

the impact of length on the scores becomes apparent. The scores show the expected

decreasing trend for scaffolds longer than 5 Mbp, although at a slower rate than the

chromosome scores. The expected decreasing trend is not observed for scaffolds shorter

than 1 Mbp and for only some of the scaffolds between 1 Mbp and 5 Mbp long.

Therefore, a model specifically trained on scaffolds in these length ranges would be

beneficial for short scaffold scoring.
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Figure 3.12: Recommended guidelines for EvalDNA quality score interpretation from
the reference-based scores of the training data instances.

3.6 Discussion

Here, we presented a novel pipeline, called EvalDNA, for genome quality assess-

ment that does not require a reference genome. We also developed a model, trained on

mammalian assembly data, to be used within EvalDNA. The model evaluates an assem-

bly based on completeness, continuity, and accuracy by using the normN50, gap perc,

clip, error free bases, low fc over gap, and low fc in contig metrics.

The EvalDNA parison of CH chromosomes to those from other organisms’ ref-

erencipeline with this mammalian model was able to accurately estimate the qual-

ity scores of Chinese hamster genome assemblies and enabled the compe genome as-

semblies. EvalDNA can also be used to examine the output of different assemblers
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Figure 3.13: The impact of error rates on the EvalDNA quality scores of CH PICR
scaffolds. A) Changes in EvalDNA quality scores due to simulation
errors. B) Changes in scaled EvalDNA quality scores due to simulation
errors. Scores were scaled so that the maximum score for each scaffold
became 100.

as demonstrated on the human chromosome 14 data. Often assembler accuracy is

tested using sequencing reads simulated from a given assembly [137, 138, 139, 140],

but EvalDNA could be used as an additional assembler evaluation method that exam-

ines assembler performance on real sequence data.
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While EvalDNA with the mammalian model appeared to weigh accuracy over

continuity more so than existing tools such as ALE and FRCbam, the model without

the normalized N50 metric can be used to score assemblies completely independent of

continuity if needed. This model may be useful for situations such as genome anno-

tation, where the accuracy and completeness of an assembly is more important than

continuity. A model without the normalized N50 metric could also be useful when

comparing chromosomes from different assemblies where the method of how the scaf-

folds/contigs were assigned to a chromosome may differ and may impact the quality

score. However, it is important to note that scores from different models should not

be directly compared.

3.6.1 Benefits of a comparable genome assembly score

EvalDNA provides the ability to assign a comprehensive quality score to all

assemblies and all chromosomes made available online. A researcher would be able to

easily select the best available assembly for their organism of interest from viewing these

scores, and even choose the best version of a specific chromosome. More confidence

could also be given to findings derived from a high scoring reference genome than

findings from a lower scoring reference genome.

The assigned quality score would also be comparable across organisms scored by

the same model. The scores would provide insight into how a chosen assembly compares

to “gold-standard”genomes, such as the human reference assembly, in terms of overall

quality. Because EvalDNA can only be used to compare assemblies from different

organisms if the assemblies were scored using the same model, the applicability of the

mammalian model across all species should be examined in more depth. Initial results

on the rice assembly do suggest that the mammalian model could work to assess plant

genome assemblies, but more study is needed.
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3.6.2 Applying EvalDNA to scaffolds

The principles used within EvalDNA can be applied to scaffolds as well. How-

ever, the mammalian model has been created specifically for whole and chromosome

level assemblies. The training data for the mammalian model was generated using the

mapping defaults of SMALTmap within REAPR. This only required reads to have at

least 50% of bases match the reference to be mapped. For scaffolds, this threshold

causes a significant amount of incorrect read mapping as reads from anywhere in the

genome could map to the scaffold and therefore, a higher mapping stringency is needed.

Initial results of the mammalian model on scaffolds longer than 5 Mbp seemed promis-

ing, but did require increasing the mapping stringency to 0.75 (75% bases need to map).

Therefore, while the model can be applied to scaffolds longer than 5 Mbp if a higher

percent mapping threshold is specified, the resulting quality score will not necessarily

be directly comparable to the scores of chromosomes or whole genome assemblies.

3.6.3 Model improvement

The current model on average predicts the score within 13 units of the real score

and is able to explain 86% of the variation in quality scores. Therefore, there is potential

for model improvement. First, increasing the number of chromosome instances in the

training set would help the model become more precise. In addition, the model may

benefit from the addition of quality metrics not tested here. The new metrics may be

able to capture the remaining 14% of the score quality not captured by the current

model.

3.6.4 Long-read sequencing

Currently, high quality paired-end Illumina reads are required to use EvalDNA.

A future goal is to extend EvalDNA to use longer reads, such as those from PacBio

or Oxford Nanopore sequencing, to assess accuracy either alone or along with Illumina

data. This improvement will require the development of metrics that reflect the accu-

racy of an assembly based on the mapping of long reads. Possible metrics could include
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the percent of high quality mapped long reads or the total length of structural variants

identified from the long read mapping.

3.7 Conclusions

We developed and tested a novel pipeline, called EvalDNA, for the evaluation of

genome assembly quality that does not require a reference genome. A model, which can

be used within the pipeline, was created using supervised machine-learning. The model

examines the accuracy, continuity, and completeness of either an assembled genome or

chromosome, and was able to predict reference-based quality scores of assemblies with

an accuracy of approximately 86%.

EvalDNA will allow scientists working with multiple genome assembly versions

to identify the most appropriate one to be their reference genome, as well as examine

which chromosomes may need to be improved. EvalDNA also enables quality com-

parison against other organism assemblies, such as high quality reference human and

mouse assemblies. EvalDNA scores could become the new standard for the assessment

and comparison of genome assembly quality.

3.8 Availability of Data and Materials

EvalDNA and the mammalian model are available on GitHub:

Project name: EvalDNA

Project home page: https://github.com/bioinfoMMS/EvalDNA

Operating system(s): Linux

Programming language: Python v2.7.13 or later, R statistical software v3.5.1

or later

Other requirements: REAPR v1.0.18, SAMtools v0.1.19, R libraries: Caret

v6.0-81 and randomForest v4.6-14

License: GNU GPLv3
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The genome assemblies and paired-end read data are available from NCBI As-

sembly and the Sequence Read Archive (SRA) respectively.

3.9 Supplementary Materials

Table 3.8: Build information for each assembly used as a source of the training data
chromosomes.

Organism Recent Build Recent Build Previous builds
(RefSeq ID) Release Date (newest - oldest)

Human GRCh38p.12
(GCF 000001405.38)

December 2017 None Used

Human NA19420 NA19240 3.0
(GCA 001524155.4)

July 2017 NA19240 1.0

Mouse (Mus musculus) GRCm38.p1
(GCF 000001635.2)

March 2012 37.2, 36.1, 35.1, 34.1,
33.1, 30

Rat (Rattus norvegicus) Rnor 6.0
(GCF 000001895.5)

July 2016 Rnor 5.0 (5.1), 4.1,
3.1, 2.1

Model Testing

Information about all the models that were examined as well as their RMSE

and r-squared values are provided in this section.

1. General linear model with scaling

(a) Model:

quality score = 51.5306 + (normN50 * 15.4496) + (gap perc * -8.2674) +
(clip * -11.1747) + (error free bases * 8.0580) + (low fc over gap * -1.2670)
+ (low fc in contig * -2.1865)

(b) Results on test data:

RMSE = 16.413
R-Squared = 0.774
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Figure 3.14: Performance of the general linear regression model on test data. The
estimated quality scores of the test instances are plotted against the
reference-based quality scores of the test instances.

2. Elastic Net - Caret train method ’glmnet’ with scaling

(a) Model:

alpha = 0.1
lambda = 0.677
quality score = 51.5306 + (normN50 * 14.9386) + (gap perc * -7.6894) +
(clip * -10.4590) + (error free bases * 8.3534) + (low fc over gap * -1.5006)
+ (low fc in contig * -2.3295)

(b) Results on test data:

RMSE = 16.521
R-square = 0.773
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Figure 3.15: Performance of the elastic net regression model on test data. The
estimated quality scores are plotted against the reference-based quality
scores of the test instances.

3. K-Nearest Neighbors (KNN) regression

(a) Tuning parameters

RMSE was used to select the model with the most optimal k value. The
final value used for the model was k = 5 (Table 3.9).

(b) Results on test data:

RMSE = 13.615
R-square = 0.840
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Table 3.9: Results for tuning the value of k for KNN regression.

k RMSE R-squared MAE
5 11.753 0.873 8.459
7 12.006 0.868 8.598
9 12.463 0.860 8.922

Figure 3.16: Performance of the KNN regression model on test data. The estimated
quality scores are plotted against the reference-based quality scores of
the test instances.

4. Random forest (rf) regression

(a) Tuning parameters
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RMSE was used to select the model with the most optimal mtry value. The
final value used for the model was mtry = 2 (Table 3.10).

Table 3.10: Results for tuning the value of mtry for random forest regression.

mtry RMSE R-squared MAE
2 11.358 0.883 8.099
4 11.500 0.879 8.127
6 11.869 0.871 8.157

(b) Results on test data: See section 3.4.3.3 ’Model Selection’.

5. Support Vector Machines with Linear Kernel

(a) Tuning parameters

’C’ was held constant at a value of 1

(b) Results on Test Data:

RMSE = 17.190
R-square = 0.774

103



Figure 3.17: Performance of the SVM regression model with a linear kernel on test
data. The estimated quality scores are plotted against the reference-
based quality scores of the test instances.

6. Support Vector Machines (SVM) regression with Polynomial Kernel

(a) Tuning parameters:

RMSE was used to select the optimal value of C, degree, and scale for the
Polynomial Kernel SVM. The final values used for the model were degree =
2, scale = 0.1 and C = 0.25.
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Table 3.11: Results for tuning the value of C for SVM regression with a polynomial
basis function kernel.

Degree Scale C RMSE R-squared MAE
1 0.001 0.25 29.499 0.646 24.060
1 0.001 0.50 26.973 0.652 21.646
1 0.001 1.00 24.083 0.670 18.797
1 0.010 0.25 20.392 0.694 15.301
1 0.010 0.50 18.777 0.709 13.829
1 0.010 1.00 18.045 0.715 13.306
1 0.100 0.25 17.470 0.721 12.947
1 0.100 0.50 17.408 0.719 12.853
1 0.100 1.00 17.406 0.718 12.802
2 0.001 0.25 26.966 0.652 21.641
2 0.001 0.50 24.073 0.670 18.789
2 0.001 1.00 21.103 0.688 15.963
2 0.010 0.25 18.558 0.716 13.672
2 0.010 0.50 17.585 0.728 13.017
2 0.010 1.00 16.854 0.743 12.477
2 0.100 0.25 16.039 0.791 11.802
2 0.100 0.50 16.466 0.792 11.842
2 0.100 1.00 16.288 0.794 11.639
3 0.001 0.25 25.233 0.662 19.923
3 0.001 0.50 22.089 0.682 16.894
3 0.001 1.00 19.880 0.699 14.798
3 0.010 0.25 17.643 0.731 13.050
3 0.010 0.50 16.777 0.749 12.363
3 0.010 1.00 16.079 0.769 11.939
3 0.100 0.25 19.824 0.778 11.562
3 0.100 0.50 20.101 0.788 11.267
3 0.100 1.00 18.799 0.800 10.645

(b) Results on test data:

RMSE = 14.363
R-square = 0.843
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Figure 3.18: Performance of the SVM regression model with a polynomial kernel on
test data. The estimated quality scores are plotted against the reference-
based quality scores of the test instances.

3.9.1 Model without the normalized N50 metric

A random forest regression model using the same metrics as the main mam-

malian model, except for normN50, was developed. Parameters were tuned for using

10-fold cross validation. The lowest value of RMSE was used to select the best value of

mtry, which was mtry = 3 (Table 3.12) for a random forest with 500 trees. The model

was applied to test data and produced a R-squared value of 0.817 and an RMSE of

14.483 (Figure 3.19).
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Table 3.12: Results for tuning the value of mtry for random forest regression model
with no N50 metric.

k RMSE R-squared MAE
2 12.758 0.852 9.404
3 12.554 0.855 9.181
5 12.793 0.852 9.130

Figure 3.19: Performance of the random forest regression model without the
normN50 metric on test data. The estimated quality scores are plotted
against the reference-based quality scores of the test instances. A 100%
accurate model would produce the blue line with an r-squared equal to
1. The line of best fit for the plotted data is shown as the red line and
has an r-squared of 0.817.

107



Chapter 4

BIOINFORMATIC ANALYSIS OF CHINESE HAMSTER OVARY
HOST CELL PROTEIN LIPASES

4.1 Preface

This section is adapted from MacDonald, Hamaker, and Lee, 2018 with permis-

sion (see Appendix C). We describe the identification of possible problematic lipases

and the correction of several misassemblies and misannotations in CHO-K1 lipase se-

quences using the most recent CH genome, PICR [30] (described in Chapter 2). Overall,

this chapter highlights several benefits of having a high-quality reference genome for CH

and CHO cells. I carried out the identification and bioinformatics analyses of the po-

tential problematic lipases and their gene-editing targets. Nathaniel Hamaker carried

out Sanger sequencing to confirm the CHO-K1 Lpl and Pnlip gene family corrections

as well as helped with the visualization of gene corrections.

4.2 Introduction

Chinese hamster ovary (CHO) cells are the preferred platform for biotherapeu-

tic protein production. Monoclonal antibodies (mAbs) alone are predicted to reach

global sales of 125 billion USD in 2020 [141] and are used to treat many oncological,

immunological and cardiovascular diseases. During the production of therapeutic pro-

teins by CHO cells, host cell proteins (HCPs) are also secreted by the cells. Certain

HCPs, if not removed during subsequent purification processes, have been shown to

cause immunogenic responses in patients [142] and others can shorten the shelf life of

the final drug product through a variety of mechanisms including polysorbate degrada-

tion [143, 144, 145, 146]. HCPs, therefore, need be reduced to minimal levels, typically

1–100 ppm, in final mAb formulations [147]. While most HCPs are removed from the
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therapeutic product during downstream purification steps, certain difficult-to-remove

HCPs can remain [148]. Several types of lipases have been identified as problematic

HCPs, especially regarding the stability of the mAb product.

Lipoprotein lipase (LPL) has been identified as a particularly difficult-to-remove

impurity in CHO cell mAb production that possesses polysorbate 20 (PS-20) and

polysorbate 80 (PS-80) degradation activity [143, 149]. PS20 and PS80 are surfac-

tants often added to the drug product as protection from degradation during storage

[150, 151]. It has been hypothesized that LPL is able to degrade PS20 and PS80 be-

cause polysorbates share structural similarities to triglycerides, the natural substrate

of LPL. In particular, they share an ester bond which LPL hydrolyzes within triglyc-

erides to form fatty acids and alcohol molecules [152]. Part of the reason LPL may be

especially difficult to remove in a variety of processes producing a variety of products

is that LPL has been shown to associate with multiple mAbs in protein A affinity chro-

matography and also to co-elute in non-affinity polishing columns used in subsequent

steps of protein purification [148, 153].

Two other lipases have also displayed polysorbate degrading activity and have

been identified in CHO cell-derived drug products. Group XV lysosomal phospholipase

A2 (LPLA2 or PLA2G15) was found in the drug product of several mAb-producing

cell lines at less than 1 ppm. Even at these low levels, LPLA2 was associated with the

hydrolysis of PS20 and PS80 [154]. The rate of polysorbate hydrolysis was shown to

be both time and concentration dependent.

Putative phospholipase B-like 2 (PLBL2 or PLBD2) is another difficult-to-

remove HCP that has been shown to co-elute with several biotherapeutic antibodies

during the protein A chromatography purification process [155]. PLBL2 has been as-

sociated with the degradation of PS-20 in a sulfatase drug product [144]. In addition,

drug material used in Lebrikizumab clinical trials was found to contain 34-328 ng of

CHO PLBL2 per mg of product, and approximately 90% of patients in the clinical trial

developed an immune response against PLBL2 [142]. PLBL2 also displayed variable
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expression during an extended culture of 136 days [149], a characteristic of difficult-

to-remove HCPs because purification processes may not adequately remove the wide

range of expression levels reached over time.

Genome editing techniques have been used to knock out a variety of different

genes in CHO cell lines. For instance, clustered regularly interspaced short palindromic

repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has been used to knock out

methyltransferase genes in CHO cells to stabilize therapeutic protein productivity [156]

and a fucosyltransferase gene to prevent the fucosylation of the target biotherapeutic

[157]. CRISPR/Cas9 has also been used to knock out a difficult-to-remove HCP impu-

rity. A successful knock-out of Lpl using CRISPR/Cas9 was shown to decrease PS80

degradation by 41-47% percent and PS20 degradation by 44-57% [143]. Other genome

editing techniques such as transcription activator-like effector nucleases (TALENs) and

zinc-finger nucleases (ZFNs) have also been used to effectively knock out genes in CHO

cells [158, 159, 160].

While unknown, it is possible that other lipases with similar enzymatic activity

to LPL, LPLA2, and PLBL2 could result in polysorbate degradation and/or immuno-

genic responses if they exist in the final drug product. Here, we identified potentially

problematic lipases based on an analysis of the CHO-K1 and Chinese hamster (CH)

genomes, and protein sequence similarity to LPL, LPLA2, and PLBL2. Several mis-

assemblies and/or misannotations in the sequences of CHO-K1 lipases were identified

and corrected using the most recent CH genome [30], highlighting the importance of

accurate and complete reference genomes. The corrected sequences were then exam-

ined to identify conserved regions that could be targeted to knock out multiple lipases

simultaneously. We also compared the newly corrected CH/CHO-K1 lipase protein se-

quences to their human orthologs to understand the extent to which any of the lipases

may be immunogenic in humans.
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4.3 Methods

4.3.1 Protein and CDS alignments of LPL, PLBL2, and LPLA2 from var-

ious CH and CHO assemblies

Protein and mRNA sequences of LPL, PLBL2, and LPLA2 were extracted from

CHO-K1 Refseq [50], 2013 CH RefSeq [27], and the updated PICR CH assembly [30],

to compare sequence differences between CHO-K1 and CH, and to examine changes

among different CH assembly versions. Protein alignment was done using MUSCLE

[161] and mRNA alignment was done using ClustalO [162] using the default parameters.

For mRNA alignments, only the coding sequence (CDS) regions from each transcript

were used because untranslated regions (UTRs) are difficult to annotate correctly [163,

164]. An error in the CHO-K1 LPL protein sequence was identified and corrected

using the MUSCLE alignment to the CH PICR, mouse, rat, and human orthologs.

The corrected CHO-K1 LPL sequence and the original CHO-K1 sequences for PLBL2

and LPLA2 were used in further analyses. The RefSeq IDs for the CHO-K1 transcripts

and proteins used in this project are listed in Table 4.1.

4.3.2 Identification of lipases similar to LPL, PLBL2, and LPLA2

An extensive list of lipase enzymes was compiled from searching EMBL-EBI’s

QuickGO database [165] with the GO term, lipase activity (GO:0016298). Corre-

sponding protein sequences for the identified lipases were extracted from the PICR

and CHO-K1 assemblies. BLASTP [166] was used to query LPL, PLBL2, and LPLA2

against this list to identify the most similar proteins with lipase activity. Hits with an

E-value < 0.001 were further examined by full sequence alignment with the query (LPL,

PLBL2, or LPLA2). For proteins with more than one hit with an E-value < 0.001,

a phylogenetic tree of the protein sequences was created using the neighbor-joining

algorithm within JalView [167] with PAM250 as the position specific matrix.
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Table 4.1: List of all genes/proteins used from the RefSeq annotation of the CHO-K1
assembly, GCF 000223135.1.

Gene Name Gene Symbol(s) RefSeq Transcript RefSeq Protein
Lipoprotein lipase Lpl XM 003499928.3 XP 003499976.1
Group XV lysoso-
mal phospholipase
A2

Lpla2, Pla2g15 XM 003504311.3 XP 003504359.1

Lipase H (isoform
2)

Liph XM 016976547.1 XP 016832036.1

Endothelial lipase Lipg XM 007646318.2 XP 007644508.2
Hepatic triacylglyc-
erol lipase

Lipc XM 003495063.2 XP 003495111.2

Lipase I Lipi XM 007640048.2 XP 007638238.1
Phospholipase A1
member A

Pla1a XM 007649760.2 XP 007647950.1

Pancreatic lipase
related protein 1

Pnliprp1 XM 007655147.2 XP 007653337.1

Pancreatic lipase
related protein 2

Pnliprp2 XM 016963761.1 XP 016819250.1

Pancreatic triacyl-
glycerol lipase

Pnlip
(LOC100751227)

XM 003515145.3 XP 003515193.2

Phosphatidylcholine-
sterol acyltrans-
ferase

Lcat XM 003504283.3 XP 003504331.1

Phospholipase
B-like 1b

Plbl1 (Plbd1 ) XM 003504424.2 XP 003504472.1

Phospholipase
B-like 2

Plbl2 (Plbd2 ) XM 003510812.3b XP 003510860.1

4.3.3 Correction of lipase protein and gene sequences

Errors in the CHO-K1 protein sequences were detected by aligning each protein

sequence with their orthologs in human, mouse, rat, and CH PICR. The human, mouse,

and rat sequences were extracted from UniProt [168] release 2018 1. Once an error

was identified, the type and location of the error was characterized by examining the

transcript alignment against mouse and PICR using SnapGene (www.snapgene.com).

Most errors involved a missing or incomplete exon at the 5’ end of the gene. In these

cases, the ‘correct’ exon from mouse that corresponded with the erroneous exon in
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CHO-K1 was realigned to the CHO-K1 gene to correct the CHO-K1 gene annotation.

Realignment of the newly modified CHO-K1 protein sequence against human, mouse,

rat, and CH PICR orthologs was done to validate the correction.

The correction for CHO-K1 PNLIPRP2 was more complicated and benefited

significantly from the updated PICR genome. Alignment to PNLIPRP2 mouse, rat,

and human protein orthologs showed that the protein sequence for CHO-K1 PNLIPRP2

was missing a segment of amino acids at the 5’ end. Visualization of Pnliprp2 on

its scaffold, NW 003617188.1, showed that the gene was incomplete because it was

located directly on the end of the scaffold. PICR was used to find the neighboring gene,

Pnliprp1 (XM 007655147.2), which was located on CHO-K1 scaffold, NW 003617412.1.

The two scaffolds were realigned to the longer PICR scaffold, picr 24, to confirm that

these two scaffolds should be merged in the CHO-K1 genome. The mouse transcript

(NM 011128.2) was then aligned to determine that the entire first exon of Pnliprp2

was located in the NW 003617412.1 scaffold. Finally, the sequence in CHO-K1 that

aligned to the mouse exon was used to correct the gene and protein sequence for

PNLIPRP2. Exact boundaries were identified using the mouse and golden hamster

(XM 005085339.3) exons.

4.3.4 Determination of expression levels of lipases of interest

Each gene was checked for expression in CHO-K1 cells using data from GEO:

GSE75094 [169]. The expression levels were visualized on the ‘CHO-K1 mRNA expres-

sion data’ browser on CHOgenome.org [170] using the FPKM (Fragments Per Kilobase

of transcript per Million mapped reads) and SAM (Sequence Alignment/Map) cover-

age tracks. Genes that appeared with any amount of expression in CHO cells were

examined further.

4.3.5 Determination of conserved regions in each grouping of lipases

Conserved regions among each of the three groups of BLAST hits (one group

per LPL, LPLA2, and PLBL2) were located from the protein alignments. The DNA
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sequences underlying the conserved regions were examined as well and used as the

query in BLASTn to search against the non-redundant sequence set for CH species ID

(10029) to identify possible off-target effects of using the conserved regions as knock-

out targets. The PICR assembly was also queried to ensure there were no additional

hits when assembly improvements were considered.

4.3.6 Examining the immunogenicity potential of similar lipases

Human protein sequences for LPL, LPLA2, and PLBL2 were extracted from

UniProt release 2018 1 and aligned against the corresponding CHO-K1 and PICR

protein sequences to calculate percent identity. The percent identity of PLBL2, which

is known to be immunogenic, was then used to select a threshold of 80% identity to

assess the possible immunogenicity of the BLAST hits of LPL, LPLA2, and PLBL2.

The percent identity with their human orthologs were determined, and if the percent

identity was lower than that of PLBL2 and its human ortholog, it was flagged as having

the potential to cause immunogenic responses.

4.4 Results

4.4.1 Sequence differences among the CH and CHO-K1 Assemblies

Alignments of the protein sequences across the different CH and CHO-K1 as-

semblies for LPLA2 and PLBL2 showed very little difference. However, the protein

sequence for LPL isoform X1 from CH RefSeq has 11 additional amino acids at the

3’ end, but the X2 isoform is the same length as the PICR protein (Figure 4.1). The

protein sequence of LPL from CHO-K1 is missing one amino acid as shown by the

gap in the alignment at position 24, which is then followed by an unknown amino acid

at position 25 (Figure 4.1). These errors are also reflected in the mRNA coding se-

quence alignments (Figure 4.2), which show that the CHO-K1 LPL sequence is missing

four guanines. The existence of these nucleotides in CHO-K1 LPL were confirmed by

Sanger sequencing. If an sgRNA for a CRISPR/Cas9 knock-out was designed to target

this region of Lpl based on the CHO-K1 genome sequence alone, it would be missing

114



Figure 4.1: Alignment of LPL protein sequence from CHO-K1 RefSeq, 2013 CH Ref-
Seq (isoforms X1 and X2), and the updated CH genome, PICR. Positions
24–25 are in red to highlight the error in the CHO-K1 LPL sequence. The
difference between CH RefSeq LPL isoform X1 and X2 is shown in purple.

four nucleotides. This would greatly decrease the binding affinity of the sgRNA to this

region in the gene and thus, the knock-out efficiency.

There were no differences in the protein sequences for LPLA2 among the differ-

ent assemblies (Figure 4.3). Three unknown amino acids exist in the PLBL2 2013 CH

RefSeq sequence at base positions 43-46, but alignment to the CHO-K1 and CH PICR

sequences suggest that these do not actually exist (Figure 4.4).
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Figure 4.2: The beginning (positions 1-125 in Lpl CHO-K1) of the coding sequence
alignment of Lpl from CHO-K1 RefSeq, 2013 CH RefSeq, and PICR.

Figure 4.3: Protein alignment of LPLA2 from the CHO-K1 RefSeq, 2103 CH RefSeq,
and PICR annotations.
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Figure 4.4: Protein alignment of PLBL2 from the CHO-K1 RefSeq, 2013 CH RefSeq,
and PICR annotations.
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Figure 4.5: Phylogenetic tree derived from the multiple sequence alignment of LPL
to its significant BLASTp hits using the neighbor joining algorithm
(PAM250) in JalView. Distances of each branch are labeled.

4.4.2 Identification and sequence correction of HCPs related to LPL

BLASTP hits with significant alignment (E-value < 0.001) to LPL from CH

and CHO-K1 included LIPC, LIPG, LIPH, LIPI, PLA1A, PNLIP, PNLIPRP1, and

PNLIPRP2. All of these lipases belong to the pancreatic lipase gene family [171],

which is composed of members with triglyceride lipase activity (EC 3.1.1.3) and the

closely related lipoprotein lipase (EC 3.1.1.34) [172]. LPL is most related to the LIPG

(endothelial lipase) and LIPC (hepatic lipase) proteins, and then to the PNLIP proteins

(pancreatic lipases) (Figure 4.5). The similarity of these eight proteins to LPL at the

sequence level suggests that they could potentially degrade PS20 and PS80.

Five of these genes (Lipi, Liph, Pla1a, Pnliprp2, and Pnliprp1 ) had evidence

that supported their expression in CHO-K1 cells from the CHOgenome.org browser.

Pnliprp1 and LipH have also previously been identified as differentially expressed in

sodium butyrate treated CHO cells when compared to non-treated cells [173]. In

addition, a higher than 1.5 fold change in expression of Pnliprp1 was observed between

a low-producing and a high-producing cell line [174]. Three of the five genes (Pnliprp2,
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Figure 4.6: View of the Pnliprp2 gene split over two scaffolds, NW 003617188 and
NW 003617412, in the CHO-K1 assembly. This is confirmed with align-
ment of the mouse Pnliprp2 gene (NM 011128.2) to the scaffolds. Align-
ment to the first exon in golden hamster Pnliprp2 (XM 005085339.3)
helped to determine the exact boundaries of the exon in CHO-K1. Align-
ments are shown at the top of the figure in red.

Pnliprp1, and Lipi) had errors in their annotations for the CHO-K1 genome, which

could be seen in the multiple sequence alignment against the corresponding protein in

mouse, rat, human, and CH PICR. All three genes had a missing exon at the 5’ end.

Lipi was missing the first exon, most likely because the 5’ end of the gene overlapped

with another gene, Rbm11, located on the antisense DNA strand, which may have

complicated the annotation. The CHO-K1 Pnliprp2 did not contain the first exon

because the gene was split over two scaffolds in the CHO-K1 genome. The longer

scaffold length in the PICR assembly allowed the two CHO-K1 scaffolds to be merged

and the gene to be resolved (Figure 4.6). Not only was PICR able to correct the

Pnliprp2 gene, but the longer scaffold length in PICR enabled the PNLIP family of

lipases to be ordered within the CHO-K1 genome. This section of genes was originally

split over three scaffolds (Figure 4.7). It is unclear why Pnliprp1 had a missing exon

in its annotation. Sanger sequencing confirmed the joining of the scaffolds.

Once the sequence errors were resolved, the five genes similar to Lpl and ex-

pressed in CHO-K1 cells were aligned (Figure 4.8). The alignment shows that the six
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Figure 4.7: View of the Pnlip lipase genes, positioned and ordered in a single su-
perscaffold in CHO-K1. Part of the PICR scaffold, picr 24 (2,501,648–
2,752,160), is aligned above in red, showing the overlap across the three
CHO-K1 scaffolds. The LOC100762115 gene is an uncharacterized rela-
tive of the Pnlip gene.

proteins all share the same active site residues which make up the well-known catalytic

triad [175]. Regions around the first two active site residues are well conserved, partic-

ularly the ‘RITGLDP’ peptide (highlighted in Figure 4.8). This peptide could provide

a target location to simultaneously knock down, knock out, or purify the potentially

troublesome HCPs. The underlying DNA sequence, however, is not well conserved

(Figure 4.9) and therefore, multiple targets will need to be designed and tested for

their off-target effects for knock-down and knock-out studies.

4.4.3 Identification of HCPs related to PLBL2

PLBL2 only had a single significant BLASTp hit which was PLBL1. They share

36.33% identity and have 51.76% positive scoring amino acid replacements. Align-

ment against mouse, rat, and human suggested that there were no errors in either

CDS or protein sequence. Alignment of PLBL2 and PLBL1 show that they share the

same set of active site residues where five of six align exactly (Figure 4.10). The ac-

tive sites were identified from the annotation of human PLBL2 and PLBL1 proteins
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Figure 4.8: Protein sequence alignment of LPL, positions 1–318, to the five similar
lipases expressed in CHO-K1 cells. Active sites are highlighted in green
(LPL positions: 159 S, 183 D, and 268 H). The potential target conserved
peptide, ‘RITGLDP’, is highlighted within the red box.

Figure 4.9: The CDS from the various LPL related lipases that code for the conserved
‘RITGLDP’ peptide.
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Figure 4.10: Protein sequence alignment of PLBL2 and PLBL1. Active sites (PLBL2
positions: 240 C, 257 H, 260 W, 301 T, 423 N, 454 R) are highlighted
in green. The four conserved peptides ‘FSSYPG’, ‘DDFYIL’, ‘NSG-
TYNNQ’, and ‘SYNIPF’ are highlighted within the red boxes

(http://genomewiki.ucsc.edu/index.php/Phospholipases PLBD1 and PLBD2). How-

ever, the exact function or substrates of PLBL2 and PLBL1 are unknown.

Four conserved potential target regions between PLBL2 and PLBL1 are the

peptides ‘FSSYPG’, ‘DDFYIL’, ‘NSGTYNNQ’, and ‘SYNIPF’ (Figure 4.10). The

‘DDFYIL’ is the most conserved on the DNA level (Figure 4.11a) and can be ex-

tended to contain the ‘NGG’ PAM sequence (Figure 4.11b). This PAM sequence

is necessary in the single guide RNA (sgRNA) target site for the most commonly

used type of CRISPR/Cas9, Streptococcus pyogenes. The extended target site, N’-

GATGACTTCTACATCCTNNGCAG-C’, also appears to have no off-target hits with

less than seven base mismatches when querying the CHO-K1, 2013 CH RefSeq, and
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Figure 4.11: Conserved CDS for CHO-K1 PLBL2 and PLBL1 lipases. A) The CDS
for the ‘DDFYIL’ peptide that is conserved in the CHO-K1 PLBL2 and
PLBL1 lipases, B) the CDS sequence can be extended in the alignment
to contain a ‘NGG’ PAM sequence at the 3’ end that is required for the
sgRNA target site of the most commonly used type of CRISPR/Cas9
system.

PICR genome assemblies. However, it should be noted that no evidence to date has

been found that suggests the Plbl1 gene is expressed in CHO-K1 cells.

4.4.4 Identification of HCPs related to LPLA2

The CHO-K1 LPLA2 protein shared significant similarity with the CHO-K1

LCAT (Lecithin-Cholesterol Acyltransferase) protein. This similarity has been de-

scribed previously: LPLA2 and LCAT are closely related acyltransferases [176] and

are members of the α − β hydrolase family [177, 178]. LPLA2 transfers fatty acids

from glycerophospholipids to lipophilic alcohols, while LCAT transfers fatty acids from

glycerophospholipids to cholesterol [176]. The alignment between LPLA2 and LCAT

reflects this functional similarity as they share 48.8% protein sequence similarity (68.6%

positive scoring amino acid replacements) and the same active site residues making up

the catalytic triad (Figure 4.12). LCAT appears to be expressed in CHO-K1 cells
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Figure 4.12: Protein sequence alignment of LPLA2 and LCAT. Active sites (LPLA2
positions: 198 S, 360 D, 392 H) are highlighted in green. The conserved
peptides ‘LEAKLDKP’ and ‘FISLGAPWGG’ are highlighted within
the red boxes.

on the CHOgenome.org RNA browser and has been previously described as differen-

tially expressed between sodium butyrate treated and non-treated CHO cells [173].

The peptide ‘LEAKLDKP’ shared between LPLA2 and LCAT could be used as a

gene editing target to knock out the expression of both (highlighted in Figure 4.12).

This peptide is also well conserved at the DNA level (Figure 4.13) and no off-target

effects were found in the CHO-K1, CH, and PICR genomes, using the sequence N’-

CTNGAAGCNAAGCTGGANAAACCA-C’ as the BLASTn query. Another potential

target is the ‘FISLGAPWGG’ peptide, but this is not as well conserved at the DNA

level.

4.4.5 CHO-K1 lipase similarity to their human orthologs

It has been hypothesized that the more dissimilar the protein sequences of CH

are to their human orthologs, the more likely the CH protein can cause an immuno-

genic response in a patient [179, 180]. LPL and LPLA2 have an identity of 93.47%
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Figure 4.13: CDS for the ‘LEAKLDKP’ peptide that is well conserved in the CHO-
K1 LPLA2 and LCAT lipases.

and 88.59%, respectively, with their human orthologs. There has been no evidence

of immunogenic responses against either LPL or LPLA2. PLBL2 is more different

from its human ortholog with an identity of 78.95% and it has been shown to cause

immunogenic responses in patients [142]. Using 80% identity as the threshold cutoff,

we compared the sequences of the other related lipases identified here to their hu-

man orthologs. Three proteins did not meet the threshold: LIPI (62.18% identity),

PNLIPRP2 (76.97% identity), and PLBL1 (76.35% identity). These differences sug-

gest that these proteins may be more likely to cause immunogenic responses than the

other lipases if not removed during the purification process. PLA1A and LIPH isoform

X2 were just above the cutoff of at 80.92% and 81.92% identity, respectively. LCAT

(89.32%) and PNLIPRP1 (86.30%) were above the threshold.

4.5 Discussion

Sequence errors are a reality for all draft genome assemblies based on existing

technology. De novo assemblies of human genomes built from short sequencing alone

have been shown to be missing millions of bases of duplicated sequence and common re-

peats, and missing thousands of coding exons [181]. Many of these errors are corrected

in later rounds of resequencing which reach an adequate coverage depth, producing

more finished assemblies [182]. Reference genomes need to be improved beyond the

125



draft status to avoid making incorrect inferences in reference-guided studies. For in-

stance, accurate and complete assemblies and annotations are key to perform effective

genetic engineering techniques.

Here, we show the advantage of having a significantly higher quality reference

genome for CHO cell lines. The new PICR reference assembly enabled the identification

and the correction of errors in the sequence of the difficult-to-remove host cell protein,

LPL, and the similar PNLIPRP2 protein. The PICR assembly, along with the accurate

mouse genome, enabled us to correct two other proteins similar to LPL, PNLIPRP1

and LIPI. The sequences underlying these annotation errors have been corrected in the

PICR sequence, indicating that a new NCBI RefSeq annotation for PICR will have the

correct sequences and coordinate boundaries for the LPL, PNLIPRP2, PNLIPRP1,

and LIPI genes/proteins. Correct gene and protein sequences allowed us to identify

significantly similar lipases to three known difficult-to-remove HCPs: LPL, PLBL2,

and LPLA2. Our findings are summarized in Table 4.2. Functional and sequence

similarity suggest that these related lipases have the potential to cause similar issues if

present in the final drug product. Within each grouping of lipases, conserved regions

were identified that could serve as targets for the mitigation of the negative impacts

of these lipases. An sgRNA could be designed to target the DNA that codes for

the ‘LEAKLDKP’ conserved peptide in LPLA2 and LCAT, knocking out both genes

simultaneously. Even if the DNA sequences underlying the conserved peptides are not

identical among the genes of interest, multiple different guide RNAs can be applied to

target the same location. Multiplexing of CRISPR/Cas9 has previously been successful

in CHO cells to knock out three genes simultaneously [157, 183]. It has also been able

to target up to 62 retroviral elements in porcine kidney cells [102] and primary purified

porcine cells [184]. Targeting the same region would provide consistency in the knock-

outs, removing any positional impacts of where the inserted or deleted nucleotide(s)

occur. For instance, targeting the LPL group of lipases at the ‘RITGLDP’ peptide

identified here would knock out all lipases directly near their second active site residue.

While this approach will prevent the catalytic activity of the targeted lipases,
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Table 4.2: Summary of findings for LPL, PLBL2, LPLA2 including the related lipases,
conserved peptides, and whether the comparison to the corresponding hu-
man ortholog suggests the similar lipases could cause an immunogenic
response in patients. Proteins shown to be expressed in CHO-K1 cells are
highlighted in bold.

Known HCP Similar lipases Conserved peptides
(N’ to C’ )

Does protein se-
quence identity to
human ortholog
suggest immuno-
genicity?

LPL LIPC, LIPG, LIPH,
LIPI, PLA1A, PN-
LIP, PNLIPRP1,
PNLIPRP2

RITGLDP Yes for LIPI, PN-
LIPRP2

PLBL2 PLBL1 DDFYIL,
FSSYPG, NSG-
TYNNQ, SYNIPF

Yes

LPLA2 LCAT LEAKLDKP,
FISLGAPWGG

No

it is important to note frame-shift mutations from knocking out the lipases can still

result in expression of some peptides of the target protein. In theory, these fragments

could still have the ability to bind to the product and/or cause immunogenic effects if

not purified from the final drug product. A full gene deletion approach as described

in Zheng et al. [185] could mitigate this concern. This approach consists of targeting

two sequences on either side of the gene of interest, which when cut and repaired can

remove the entire sequence between the targets. Multiple, simultaneous gene deletions

using a combination of CRISPR/Cas9 and CRISPR/Cpf1 systems have been carried

out in CHO cells with no deletion size limitations within 2-150 kb [186]. Thus, it is

feasible that sets of several problematic lipase genes could be fully deleted using this

multiplex approach.

In addition, alignment of protein sequences to human orthologs can provide in-

sights into the possible immunogenicity of an HCP. Here, we discovered that LIPI, PN-

LIPRP2, and PLBL1 (if expressed) are the most different from their human orthologs

127



and may have the most potential to be immunogenic if not removed during purification

processes. This work shows the immense value of having access to the highest quality

reference genomes and annotations when carrying out genetic engineering studies.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The Chinese hamster genome was reassembled using existing Illumina data and

new PacBio sequencing data through a variety of methods. Manual quality ranking

of the candidate assemblies determined that the best assembly was PICR, which was

created by merging multiple CH assemblies using a set of contigs assembled from PacBio

sequence data as the starting assembly for the merging process. The PICR assembly

is a significant improvement over the 2013 CH assemblies, consisting of 43-fold fewer

scaffolds and a 13-fold higher N50 length than the 2013 RefSeq CH assembly. In

addition, more than 95% of the gap sequence in the CH genome assembly was filled,

facilitating the detection of previously unknown CHO cell mutations. This greatly

improved reference genome assembly will be a highly beneficial resource for CHO-

related research.

In addition, a novel tool that comprehensively evaluates genome assemblies was

created to facilitate reference genome selection. The reference-independent quality

scoring system in EvalDNA enables comparison of assemblies for a single species and

provides insights into how complete, continuous, and accurate a genome assembly is

in relation to assemblies from other species. Another benefit of using EvalDNA for

accuracy assessment over other existing tools is that quality assessment based on align-

ments to a reference are biased towards the reference sequence because the reference

is assumed to be correct. EvalDNA results, since they are independent of a reference

assembly, are not biased in this regard.

EvalDNA uses a model created from supervised machine-learning methods to es-

timate an assembly’s quality score. A model, specifically created to assess mammalian
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assembly quality, was built from training data consisting of quality metrics from pub-

licly available mammalian chromosome assemblies, including those from the human,

mouse, and rat reference genomes. This random forest model was able to accurately

(r-squared of 0.86) estimate the reference-based quality scores of the test data.

EvalDNA and this mammalian model was tested on the CH genome assem-

blies as well as assemblies of human chromosome 14 from the GAGE study. The

results of EvalDNA for the CH genome assemblies agreed with the results from two

other reference-independent quality assessment tools (ALE and FRCbam). The highest

(PICR) and lowest (CSA) scoring CH assemblies were also in agreement with the man-

ual rankings described in Chapter 2. The applicability of EvalDNA to assess assembler

output was also demonstrated by scoring various human chromosome 14 assemblies.

Discrepancy in the ranking of assemblers among EvalDNA, ALE, and FRCbam sug-

gested that the mammalian model weighs accuracy and completeness over continuity

more so than the other quality assessment tools.

Overall, a tool, such as EvalDNA, that integrates quality metrics in a consistent

manner across different species could become the new standard for the assessment

and comparison of genome assembly quality. Directly comparable results would enable

quick selection of reference assemblies for newly-sequenced organisms as well as quick

assessment of quality in comparison to “gold-standard” reference genomes. In addition,

a standardized meaning of high quality in the field of genome informatics is still being

established as sequencing and assembly technology continues to improve [187, 188, 40].

The single comprehensive quality score produced by EvalDNA per genome assembly

could become an easy way to define, or at least partially define, high quality.

Finally, several benefits of having an available, high-quality reference genome

assembly for genetic engineering target selection were demonstrated. The newly es-

tablished CH and CHO cell reference assembly PICR (RefSeq 2018) was able to cor-

rect several misassemblies/misannotations in lipase gene sequences from the CHO-K1

assembly. Specifically, PICR enabled the correction of sequence errors in the Lpl, Pn-

liprp2, Pnliprp1, and Lipi genes. The corrected sequences were then used to identify
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target sites for the simultaneous knock-out of lipases with possible enzymatic activity

similar to three known problematic lipases, LPL, LPLA2, and PLBL2.

5.2 Recommendations for Future Work

5.2.1 Further improvement of the Chinese hamster genome assembly

While the PICR CH genome assembly is significantly more continuous than the

2013 CH RefSeq assembly, PICR has yet to reach the highest level of continuity found

in the best mammalian reference assemblies. The final PICR (2018 RefSeq) assembly

is split into 1,830 scaffolds and 4,825 contigs, a huge improvement over the 52,710

scaffolds and 218,862 contigs of the 2013 RefSeq assembly. However, more continuous

mammalian assemblies have been built. For example, the reference assembly for human

is split into 472 scaffolds and 998 contigs, and the reference assembly for mouse consists

of only 162 scaffolds and 605 contigs. Human and mouse scaffolds have also been

ordered and orientated on a chromosome-scale, a current shortcoming of the PICR

genome.

There are several methods that could be used to gain more information about

the order, orientation, and distance of contigs/scaffolds in regards to one another, and

thus, enable the development of an even more continuous CH assembly. One method is

to use data from optical mapping of the CH genome to combine and position contigs.

Optical mapping involves digesting long DNA molecules (>100 kbp long) by restriction

enzymes. The DNA molecules are then flourescently stained and imaged to enable the

estimation of distances between cut-sites [189]. The resulting optical map of fragment

sizes can be compared to fragment sizes from a simulated digestion of the genome of

interest created using the known cut-site for the restriction enzyme. Each resulting

fragment size in the simulated digestion should match a fragment size in the optical

map, providing the fragment’s location in the genome [190]. However, errors are often

found in optical maps including errors in the estimation of fragment size, missing or

additional cut-sites, or even missing fragments [189].
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A more recently developed approach uses Hi-C sequencing data, which consists

of chromatin interactions within and between chromosomes, to scaffold contigs. Ge-

nomic regions on the same chromosome are found to interact more often than regions

on different chromosomes. In addition, the probability of an interaction occurring de-

creases exponentially as the distance between the regions on the chromosome increases

[191]. Therefore, the amount of interactions between regions of a genome can provide

information on the organization of contigs and scaffolds [192, 193].

Hi-C data has been used in combination with other scaffolding techniques to

achieve the most continuous assemblies to-date. Hi-C and optical mapping data was

used with long-read sequence data to assemble the goat (Capra hircus) genome [194].

The resulting assembly is split into 31 chromosome-sorted scaffolds, where chromo-

somes 1-29 are made up of a single scaffold and chromosome X is made up of two

scaffolds. The addition of Hi-C and long-read sequencing data enabled about a 20-fold

improvement in continuity over the previous goat genome assembly, which was built

using short-read sequencing and optical mapping data [195]. More recently, Hi-C with

Chicago [196], a form of Hi-C where chromatin interactions can occur up to several 100

kbp apart, was used to assemble the water buffolo (Bubalus bubalis) genome, reaching

one scaffold per chromosome [197].

5.2.2 Improvement of EvalDNA

The accuracy of the EvalDNA mammalian model described in Chapter 3 could

be increased by adding more chromosome instances to the training data. These chromo-

somes could be from other well-studied mammalian genomes or be modified versions

of the currently used chromosomes through gap or error simulation. The accuracy

could also possibly be improved by adding more metrics to the model. These metrics

could be derived from the mapping of long reads back to the assembly of interest. For

instance, one type of metric that may improve the model would be one that reflects the

amount of collapsed or incorrectly assembled repeats. Currently, REAPR’s collapsed

repeat metric, derived from short-read mapping, is not included in the model because
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it did not significantly correlate with the reference-based quality score. Because identi-

fying and resolving misassembled repeats in a genome assembly is easier if longer reads

are available [198], a metric representing misassembled repeats derived from long-read

mapping may better correlate with the assembly quality score than one derived from

short-read mapping. The importance of each metric in estimating the quality score

should be confirmed using feature selection methods before it is added to the model.

Another future goal to enhance EvalDNA is to extend its capability to score

shorter assembled sequences such as scaffolds. Initial examination of the current mam-

malian model on scaffolds showed that the model performed reasonably well (similar to

its performance on chromosomes) for scaffolds 5 Mbp or longer with up to 10% errors

simulated. However, the accuracy metrics for the model needed to be derived from

mapping only the reads that met a stringency threshold of 0.75 (75% or more of the

bases in a read need to match the reference sequence). Performance of EvalDNA on

shorter scaffolds may be improved by creating a scaffold-specific model for EvalDNA

that is trained on scaffolds from mouse, rat, and human assembly builds and where a

read mapping stringency of ∼0.75 is used to calculate the REAPR metrics.

In-depth examination is also needed to determine which taxonomic groups the

current mammalian model can accurately score. Ideally, a model would be able to

accurately score genome assemblies from species across different taxonomic groups

to enable quality comparison among all genome assemblies. In addition to assessing

the mammalian model’s performance on mammalian genome assemblies, we briefly

examined its applicability to plant genome assemblies. EvalDNA with the mammalian

model was used to score several rice (Oryza sativa) genome assemblies and provided

reasonable scores in comparison to the mammalian assemblies and with respect to

current knowledge of the assemblies. Scoring more non-mammalian assemblies as well

as completing error simulation tests, similar to those done for the Chinese hamster

genome, could help determine EvalDNA’s applicability to other species.
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5.2.3 Simultaneous knock-out of CHO cell lipases

The identification of conserved genetic engineering target sites in possibly prob-

lematic lipases described in Chapter 4 facilitates the simultaneous knock-out of these

genes. There are a variety of gene-editing tools that could be used, including CRISPR-

systems, zinc finger nucleases, and TALENs, each with their own set of target design

requirements. Here, we focused on identifying regions within lipase genes that could

be targeted by sgRNAs of CRISPR-systems. For lipases with conserved sites at the

DNA level, one sgRNA could be designed to simultaneously guide CRISPR-systems to

each of those genes. For instance, we found that the peptide “LEAKLDKP” shared

between the Lpla2 and Lcat genes is well conserved at the DNA level with a sequence

of 5’-CTNGAAGCNAAGCTGGANAAACCA-3’ (’N’ bases are not conserved). We

also found no potential off-target effects for this site in the CHO-K1, CH, and PICR

genomes. However, future experiments are required to assess the impact of the non-

conserved bases in the target site on knock-out efficiency.

For lipases with conserved sites only at the protein level, a multiplexed CRISPR-

system could be designed to contain more than one sgRNA. Each sgRNA would target

the underlying DNA sequence of the conserved protein region in each lipase. Multiplex-

ing has successfully been used in CHO cells to knock out three genes simultaneously

[141, 183] and it may be beneficial to apply a similar approach to one or more of the

groups of lipase genes identified in Chapter 4 to create novel cell lines. Each target

site would need to be searched against the CHO-K1 and CH genomes to assess to

possibility of off-target effects. In addition, there are a variety of methods available to

form the array of sgRNAs, which differ with respect to the number of sgRNAs that

can be expressed, editing efficiency, and cloning efficiency [199]. The best method for

knocking out each group of CHO cell lipases would need to be investigated.

5.3 Concluding Remarks

The work presented here provides the biomanufacturing community with a sig-

nificantly improved reference assembly for CHO cells and the genomics community
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with a novel tool for the evaluation of genome assembly quality. We demonstrated how

the increased continuity, completeness, and accuracy of the new CH reference genome

could facilitate future study and genetic engineering of CHO cells, subsequently lead-

ing to more efficient and safer production of biotherapeutics. The selection of the new

CH reference assembly was completed through the manual quality assessment of mul-

tiple draft assemblies, demonstrating the need for automated reference-independent

quality assessment methods. The development of the EvalDNA pipeline fulfilled this

need, producing comprehensive quality scores that enable the easy comparison of draft

genome assemblies from the same species for reference assembly selection. In addition,

EvalDNA scoring of the novel CH reference assembly showed that this assembly has

surpassed the quality of the rat reference genome and is approaching the quality of

the “gold-standard” mouse reference genome. Last of all, the ability of EvalDNA to

produce scores comparable across species is a significant step toward establishing a

standard method for assembly quality evaluation.
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S. Goldstein, M. Haimel, G. Hall, D. Haussler, J. B. Hiatt, I. Y. Ho, J. Howard,
M. Hunt, S. D. Jackman, D. B. Jaffe, E. D. Jarvis, H. Jiang, S. Kazakov, P. J.
Kersey, J. O. Kitzman, J. R. Knight, S. Koren, T.-W. Lam, D. Lavenier, F. Lavi-
olette, Y. Li, Z. Li, B. Liu, Y. Liu, R. Luo, I. MacCallum, M. D. MacManes,
N. Maillet, S. Melnikov, D. Naquin, Z. Ning, T. D. Otto, B. Paten, O. S. Paulo,
A. M. Phillippy, F. Pina-Martins, M. Place, D. Przybylski, X. Qin, C. Qu, F. J.
Ribeiro, S. Richards, D. S. Rokhsar, J. G. Ruby, S. Scalabrin, M. C. Schatz, D. C.

154



Schwartz, A. Sergushichev, T. Sharpe, T. I. Shaw, J. Shendure, Y. Shi, J. T.
Simpson, H. Song, F. Tsarev, F. Vezzi, R. Vicedomini, B. M. Vieira, J. Wang,
K. C. Worley, S. Yin, S.-M. Yiu, J. Yuan, G. Zhang, H. Zhang, S. Zhou, and
I. F. Korf, “Assemblathon 2: evaluating de novo methods of genome assembly in
three vertebrate species,” GigaScience, vol. 2, no. 1, p. 10, 2013.

[189] L. Mendelowitz and M. Pop, “Computational methods for optical mapping.,”
GigaScience, vol. 3, no. 1, p. 33, 2014.

[190] N. Nagarajan, T. D. Read, and M. Pop, “Scaffolding and validation of bacte-
rial genome assemblies using optical restriction maps.,” Bioinformatics, vol. 24,
no. 10, pp. 1229–1235, 2008.

[191] J.-M. Belton, R. P. McCord, J. H. Gibcus, N. Naumova, Y. Zhan, and J. Dekker,
“Hi-C: a comprehensive technique to capture the conformation of genomes.,”
Methods, vol. 58, no. 3, pp. 268–276, 2012.

[192] J. N. Burton, A. Adey, R. P. Patwardhan, R. Qiu, J. O. Kitzman, and J. Shen-
dure, “Chromosome-scale scaffolding of de novo genome assemblies based on
chromatin interactions.,” Nature Biotechnology, vol. 31, no. 12, pp. 1119–1125,
2013.

[193] J. Ghurye, M. Pop, S. Koren, D. Bickhart, and C.-S. Chin, “Scaffolding of long
read assemblies using long range contact information,” BMC Genomics, vol. 18,
no. 1, p. 527, 2017.

[194] D. M. Bickhart, B. D. Rosen, S. Koren, B. L. Sayre, A. R. Hastie, S. Chan,
J. Lee, E. T. Lam, I. Liachko, S. T. Sullivan, J. N. Burton, H. J. Huson, J. C.
Nystrom, C. M. Kelley, J. L. Hutchison, Y. Zhou, J. Sun, A. Crisà, F. A. Ponce
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Appendix A

GLOSSARY OF TERMS

An alphabetical listing of technical terms and tools used in this dissertation.

1. ALE (Assembly Likelihood Estimator) - an assembly quality evaluation tool
that uses Bayesian statistics to determine the probability of an assembly being
correct given a set of reads.

2. ALLPATHS-LG - a whole-genome shotgun assembler that uses short sequenc-
ing reads (such as Illumina reads).

3. Assembly Quality - the accuracy, continuity, and completeness of an assembly,
i.e. how close the assembly is to the organism’s true genome.

4. BLAST (Basic Local Alignment Search Tool) - a tool that finds regions
of similarity between a query (a nucleotide or protein sequence) and a specified
database of sequences.

5. BUSCO (Benchmarking Universal Single-Copy Orthologs) -– a tool that
evaluates an assembly regarding gene content. Output metrics are based on the
expectation of finding single-copy orthologs in the organism’s genome.

6. Caret - a R library for machine learning that includes various regression, classi-
fication and clustering algorithms.

7. CEGMA (Core Eukaryotic Genes Mapping Approach) - an older tool
that is similar to BUSCO and evaluates an assembly regarding gene content.

8. Clipped Reads - reads that require bases to be removed to be able to map to
the reference sequence. The removed bases are considered ‘soft-clipped’.

9. ClustalO (Clustal Omega) - a tool for multiple sequence alignment that uses
guide trees and HMM profiles to generate the alignments.

10. Compression-Expansion (CE) Statistic - a metric based on the comparison
between the mean insert size of mate pairs spanning a base in the assembly and
the expected mean insert size (the mean of the insert sizes of all the mate pairs).
A large and positive CE value indicates an insertion, where a negative value
indicates a deletion.
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11. Contig - one piece of continuous DNA, assembled from DNA reads.

12. Copy Number Variation (CNV) - variation in the number of repeat regions
(could be a copied gene) in a genome assembly.

13. CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Re-
peats and CRISPR-associated protein) - CRISPR/Cas-systems were adapted
from the genome editing systems of bacteria. The CRISPR/Cas complex in-
cludes a guide RNA that targets a specific DNA sequence and a Cas enzyme
which cuts the DNA at that site. CRISPR-Cas9, one of the most commonly
used CRISPR/Cas systems, uses the Cas9 enzyme to cleave the DNA, but other
Cas enzymes can be used such as Cpf1. As the cell’s DNA repair machinery
repairs the cut site, nucleotides are often added or deleted which can knock-out
or knock-down the gene being targeted.

14. DAVID (Database for Annotation, Visualization and Integrated Dis-
covery) - a set of web-accessible tools for functional annotation analysis of gene
lists including GO term enrichment analysis and the identification of functionally
related gene groups.

15. Delta-filter - a tool within the MUMmer package that filters the alignment files
from NUCmer based on alignment length, identity, uniqueness and/or consis-
tency.

16. De Novo Assembly - an assembly created without a reference genome.

17. De Novo Metrics - quality metrics that can be calculated without a reference
genome.

18. Dnadiff - a tool within the MUMmer package that identifies differences between
aligned sequences.

19. E-value - a statistic used by BLAST which represents the probability that an
alignment (or a BLAST hit) could occur by chance. It depends on the alignment
score and the size of the database being searched.

20. Elastic Net Regression - a type of penalized linear regression model. The
penalization for elastic net falls between that of Lasso and Ridge regression de-
pending on the alpha and lambda hyper-parameters.

21. EvalDNA (Evaluation of De Novo Assemblies) - a pipeline to evaluate
genome assembly quality using machine learning methods and without a reference
genome. The pipeline was developed in this project.

22. FASTA - file format for representing nucleotide or protein sequences.

23. Fragment - refers to paired-end reads and the sequence between them.
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24. Fragment Coverage (FC) - the number of fragments mapping over a base in
the assembly.

25. FRCbam - an assembly quality evaluation tool that produces a feature response
curve (FRC). The FRC shows the trade-off between the accuracy and the con-
tinuity of the assembly. More specifically, the FRC shows the coverage (y-axis)
along the genome from contigs (starting with the longest) whose sum of errors
(features) is less than a specified threshold (x-axis).

26. Gap - unknown sequence/bases in a genome assembly, which are represented as
N’s in FASTA files.

27. Gene Annotation - the identification of the location and structure of genes
within an assembly.

28. GMAP - a tool for aligning and mapping coding sequences (CDSs) to a genome.
The tool can be used to identify the intron–exon structure of genes.

29. Gene Ontology (GO) terms - a hierarchical and controlled set of terms about
gene and gene product function. GO provides a way to consistently represent
gene and gene product features among all species.

30. HGAP (Hierarchical Genome Assembly Process) - a whole-genome as-
sembler that uses long-read sequencing data (i.e. PacBio reads). HGAP corrects
errors on the longest reads using shorter reads from the same library before as-
sembling the reads. HGAP can also be given already corrected PacBio reads to
assemble.

31. Host Cell Proteins (HCPs) - proteins expressed from the host cell that is not
the biotherapeutic. Most (>99%) are removed during the purification process.
Small amounts of certain HCPs can cause safety and stability problems for the
drug product if not removed.

32. Indel - refers to either an insertion (addition) or deletion in a DNA sequence.

33. Jalview - software for the visualization and editing of multiple sequence align-
ments.

34. Jellyfish - a tool that counts k-mers (substrings of DNA sequences of length k)
in a genome. Results can be used for genome size estimation.

35. K-Nearest Neighbors (KNN) Regression - calculates distances between the
features of a new data instance and the features in other training instances to
predict the new instance’s target score.
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36. Lasso Regression - a type of penalized linear regression with L1 regularization,
meaning that the penalty term is the sum of the absolute value of the coefficients.
One feature among highly correlated features will be randomly chosen to stay in
the model and the coefficients of the others will be set to 0.

37. LoRDEC - a tool for error-correction of long reads from PacBio sequencing. The
tool builds a De Bruijn Graph (DBG) representing low error rate short reads. A
path that corrects the sequence of the long read is identified for each error found
on the long read.

38. Maker - an open-source pipeline for genome annotation. Maker annotates genes
based on ab-initio gene predictions and alignments of protein and EST sequences
to a genome.

39. Metassembler - a tool that iteratively updates a starting assembly based on
pair-wise alignments to other assemblies. Conflicting regions between assemblies
are resolved by using the local sequence with the best Compression–Expansion
(CE) statistic. Different assembly merge orders produce different final assemblies.

40. MUMmer - an open source software package for the fast alignment of large
nucleotide and protein sequences.

41. MUSCLE (Multiple Sequence Comparison by Log-Expectation) - a tool
for multiple sequence alignment, specifically created for aligning three or more
protein sequences.

42. N50 Length - the length of the scaffold where the total length of that scaffold
plus all longer scaffolds is equal to or is more than half the length of the genome.

43. NUCmer - a tool within the MUMmer package that is used to align closely
related nucleotide sequences.

44. Ordinary Least Squares (OLS) - a method for estimating the unknown pa-
rameters (coefficients of the features) in a linear regression model. The goal is to
minimize the sum of the squares of the differences between the observed responses
in the training data and those predicted by the linear model.

45. Orthologs - homologous genes found in different species that evolved from the
same ancestral gene

46. Paired Reads - two reads, one from each end of a fragment.

47. PAM250 - a PAM (Point Accepted Mutation) substitution matrix is used for
scoring alignments between sequences. Each cell in the matrix contains a value
reflecting relatedness between the amino acids of each substitution. The align-
ment score is the sum of the scores for each pair of aligned amino acids. The
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PAM250 matrix represents 250% change in the amino acids over a certain amount
of molecular evolution.

48. Penalized Linear Regression – type of Ordinary Least Squares (OLS) linear
regression, where models that are more complex are penalized to avoid over-
fitting.

49. Proovread - a tool for error-correction of long reads from PacBio sequencing
using short-reads or unitigs (high-quality assembly fragments). Proovread maps
short reads to the long read and identifying the consensus sequence. The short-
reads can be remapped to this consensus sequence. Because more short reads
may be able to map after the first-round of errors have been corrected, additional
error-corrections may be completed.

50. Properly Paired Reads - paired reads that are in the expected orientation and
distance apart when mapped to the reference genome.

51. Pybedtools - a python wrapper for the BEDTools suite. BEDtools include tools
that can count, intersect, merge, and complement genomic intervals from BED,
BAM, and GFF/GTF files.

52. Random Forest - an ensemble machine learning method for either classifica-
tion or regression that is based on multiple decision trees. The output is either
the mode class (classification) or mean prediction/calculation (regression) of the
individual trees.

53. Reads - pieces of sequenced DNA, which are outputs of the sequencing machine.

54. Read Coverage - the number of reads mapping over a certain base in the
assembly.

55. REAPR (Recognition of Errors in Assemblies using Paired Reads) -
a tool that uses mapped paired end reads to produce a variety of metrics that
reflect the accuracy of an assembly. The tool does not require a reference genome.

56. Reference Assembly - the main set of DNA sequences used to represent the
genome of an organism. The highest quality assembly for an organism should be
used as the reference.

57. REViGO - a web server that reduces long lists of GO terms into representative
subset determined by clustering algorithms. REVIGO can also generate a variety
of visualizations of this subset of GO terms.

58. Ridge Regression - a type of penalized OLS linear regression with L2 regular-
ization, meaning that the penalty term is the sum of the square of the coefficients.
The coefficients cannot be zero in Ridge regression (no features are eliminated),
but will be shrunk by the same factor.
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59. SAM (Sequence Alignment/Map)/BAM (Binary Alignment/Map) -
the file format used to store large sequence alignments including the mapping of
sequencing reads to a reference genome.

60. SAMtools - a suite of tools for manipulating and using alignments in the SAM
format, including a method to calculate read pair statistics from SAM files.

61. Scaffold - a sequence formed from more than one contig that could be connected
and ordered, possibly over a gap.

62. SINC Simulator - a tool that simulates SNPs, indels, and CNVs in a given
FASTA sequence.

63. Single Nucleotide Polymorphism (SNP) - a variation in a single nucleotide
in a sequence from the reference sequence.

64. Supervised Machine Learning - machine learning where the model is learned
from labeled training data. Labeled training data consists of a set of features
(inputs) and the output value to be predicted/calculated in the model.

65. Support Vector Machine (SVM) Regression - a method to learn the optimal
hyperplane, given labeled training data, for scoring new samples.

66. Testing Set - the set of data instances used to assess the accuracy of a machine
learning model.

67. Training Set - the set of data instances used to learn parameters of a machine
learning model.
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Appendix B

QUALITY METRICS FOR CH ASSEMBLIES FOR CHAPTER 2

80 different quality metrics were calculated for each of the Chinese hamster

assemblies described in Chapter 2. The descriptions and results for each metric, sep-

arated into multiple tables by class type, are provided in this appendix. All data was

collected by Oliver Rupp. Rankings derived from this data were used to select the

new Chinese hamster reference assembly (Chapter 2) and were also used to evaluate

EvalDNA’s performance on the CH assemblies (Chapter 3).
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Appendix C

QUALITY METRIC DEFINITIONS FOR CHAPTER 3

All of the quality metrics examined during feature selection in Chapter 3 are

described here. Metrics are converted into percentage of bases per assembled sequence

or normalized by assembly length if needed. Note that not all of the metrics were

included in the final quality scoring model due to multicollinearity or lack of significant

correlation with the reference-based quality score in the training data.

1. Normalized N50 length - N50 length normalized by total sequence length.

normN50 =
N50 length

total length
∗ 100, 0 ≤ N50 length ≤ 100 (C.1)

2. Gap percent - percent of total bases which are gaps (N’s).

gap percent =
total gap length

total length
∗ 100, 0 ≤ gap percent ≤ 100 (C.2)

3. Normalized contig count - Number of separate pieces (scaffolds/contigs) the se-
quence of interest is split into normalized by the sequence length in megabases
(Mbp).

norm contig =
total contigs

total length
∗ 1, 000, 000, 0 < norm contig < 1, 000, 000

(C.3)

4. Links - percent of total bases impacted by link errors called by REAPR. These
bases are located in regions where a significant proportion of the reads mapped
to this region also mapped elsewhere.

links =
bases in link regions

total length
∗ 100, 0 ≤ links ≤ 100 (C.4)
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5. Collapsed repeats - percent of total bases impacted by the collapsed repeat errors
called by REAPR.

collapsed repeats =
bases in collapsed repeats

total length
∗ 100,

0 ≤ collapsed repeats ≤ 100

(C.5)

6. Clips - percent of total bases impacted by the clip errors called by REAPR. These
bases are located in regions where a significant proportion of the reads had to be
clipped to map to this region.

clip =
bases in clip regions

total length
∗ 100, 0 ≤ clip ≤ 100 (C.6)

7. Low read coverage - percent of total bases impacted by the low read coverage
errors called by REAPR. These bases are in regions with low coverage of proper
paired reads.

low read coverage =
bases in low read coverage regions

total length
∗ 100,

0 ≤ low read coverage ≤ 100

(C.7)

8. Properly paired read percent - percent of mapped reads that are properly paired
as determined by SAMtools.

proper pair percent =
reads in proper pairs

total reads mapped
∗ 100,

0 ≤ proper pair percent ≤ 100

(C.8)

9. Error free bases - percent of bases called by REAPR as error free. A base is called
error free if it has at least 5x coverage of perfect and unique mapped reads.

error free bases =
total error free bases

total length
∗ 100, 0 ≤ error free bases ≤ 100

(C.9)

10. Fragment coverage distribution (FCD) errors in contig - percent of bases in re-
gions that REAPR marks as an FCD error within a contig (the region does not
contain any gaps).

FCD err in contig =
bases in FCD error contig regions

total length
∗ 100,

0 ≤ FCD err in contig ≤ 100

(C.10)
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11. FCD errors over gap - percent of bases in regions that REAPR marks as an FCD
error and the region contains a gap.

FCD err over gap =
bases in FCD error gap regions

total length
∗ 100,

0 ≤ FCD err over gap ≤ 100

(C.11)

12. Low fragment coverage (FC) in contig - percent of bases in regions that REAPR
marks as having low fragment coverage and the region does not contain any gaps.

low fc in contig =
bases in low FC contig regions

total length
∗ 100,

0 ≤ low fc in contig ≤ 100

(C.12)

13. Low fragment coverage (FC) over gap - percent of bases in regions that REAPR
marks as having low fragment coverage and the region contains a gap.

low fc over gap =
bases in low FC gap regions

total length
∗ 100,

0 ≤ low fc over gap ≤ 100

(C.13)
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Appendix D

REPRINT PERMISSIONS

D.1 Reprint Permissions for Figure 1.1 from Chapter 1

Publication: Figure from John Eid, Adrian Fehr, Jeremy Gray et al. Real-time DNA

sequencing from single polymerase molecules. Science. 2009 Jan 2.

Permission: This is a License Agreement between Madolyn L. MacDonald and The

American Association for the Advancement of Science provided by the Copyright Clear-

ance Center.
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