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ABSTRACT

Censored measurements are a particular form of output nonlinearity in which the

measured output is a continuous function of the state within a certain dynamic range,

and is constant outside this range. Such measurements can take the form of output

saturation, dead zone, occlusion, and limit of detection. Common systems that may

produce censored measurements include low cost inertial sensors with limited dynamic

range, imagers with fixed field of view, chemical and biological measurements with

limit-of-detection constraints, analog to digital converters, and received signal strength

from transmission sources. Estimating the true state of the underlying dynamic sys-

tem via these censored outputs is a challenging problem that is often overlooked or

avoided. Traditional optimal state estimators such as the Kalman filter become biased

when presented with the output nonlinearity induced by censored measurements. As a

consequence, when output feedback is implemented using these estimators the result-

ing closed-loop system may become unstable if the system output approaches or enters

the censored region.

The Tobit Kalman filter is a novel adaptation of the classical standard Kalman

filter for optimal state estimation in the presence of output censoring. With known cen-

soring limits, using a Tobit Kalman filter will result in stable, unbiased state estimation

despite censoring. This allows for the application of new and traditional control tech-

niques for system regulation. In this defense new developments of the Tobit Kalman

filter and its applications towards control will be reviewed. It will be shown that the

Tobit Kalman estimator is a stable unbiased estimator under certain constraints. It

will be demonstrated that a Tobit Kalman observer can be used in conjunction with

linear output feedback techniques to perform set-point control to values that may not
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be directly measureable. Applications of such capability towards novel vision based

target tracking and mobile receiver localization and control will be explored.

Novel estimation techniques in the presence of output censoring will be intro-

duced, including the use of multiple fields of view and variable censoring limits. It will

be shown that the Tobit Kalman filter can be used to effectively alter censoring limits

in order to meet desired state estimation specifications. Advantages of time varying

control of censoring limits include minimization of state estimation uncertainty vs. ac-

tuation cost, autonomous tracking of multiple targets, and optimal power consumption

for measurement systems.

Continuation of this work will be to optimally distribute multiple censoring

limits, with seamless integration of differing censoring models, in order minimize state

uncertainty over a given region. Optimal control laws will be formulated to alter the

trajectory of censoring limits in order to minimize total state uncertainty while tracking

multiple states over a given time. Extension to non-linear estimation and control will

be performed.
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Chapter 1

INTRODUCTION TO CENSORED DATA ESTIMATION

Consider a basic outdoor thermometer not uncommon to any backyard deck

or patio. Mercury filled, small, and fixed with a simple scale of zero to one hundred

degrees. This simple and inexpensive device has its uses, but it also has its limitations.

The temperature may drop to well below zero on a cold winter night, and in summer

the temperature may rise well above one hundred on a sunny afternoon. In either case,

the thermometer cannot give a more accurate reading than either of its extremes. If

the thermometer stays at zero for long enough, intuition leads us to believe that the

true temperature actually colder. Likewise, a thermometer saturated at one hundred

degrees is more than enough to indicate that it isn’t pleasant outside. Examples such as

this are so commonplace and routine in one’s daily environment that the implications

of the underlying sensor limitations are largely ignored.

This simple scenario presented above is a classic example of censored data. The

thermometer only presents a limited dynamic range from which measurements can be

taken. Too hot or too cold and information is lost, only the limits can be measured,

and the true signal has to be inferred. Using the simple thermometer to control room

temperature is a typical example of engineering away from the problem. Intuition

says that if my measurement limits are between two values, then if I keep my area of

interest, in this case room temperature, well below the maximum and well above the

minimum, then this censoring will not present itself.

The question is, can this be done better?

First it is shown how systems with these censoring limitations were handled

previously. Then the Tobit Kalman Filter is derived and it will be shown that signals
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can be estimated even when they approach and exceed censoring limits. It is shown

that this filter is a stable estimator. Going beyond the estimation itself, it is shown

that these estimates can be used in closed-loop feedback to accomplish stable control,

even with censored measurements. Set points can be reached even if they are in the

censored region, given certain restrictions. This means that not only can a device such

as the limited thermometer be used to estimate air temperatures below zero or above

one hundred, but one could even use it to control room temperatures into these regions

as well. Other motivating examples apart from this one are discussed in detail.

1.1 What is Censored Data?

Censored data is data in which regions exist where the true underlying signal

cannot be directly measured. Censored measurements are differentiated from miss-

ing measurements by the fact that when the true state enters a censored region a

measurement is returned, however this measurement is deterministic and biased. The

thermometer for example, has two censored regions. When the true air temperature is

below zero the thermometer only returns zero, and when the true air temperature is

above one hundred the thermometer can only return one hundred. When the true air

temperature is between zero and one hundred then a continuous measurement can be

made that is unbiased.

Figure 1.1: Left Censored Data. When the true signal (green) is below the censoring
limit, the censoring limit itself is returned as a measurement (magenta).
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Censoring may take many different forms. For a single dimensional variable,

right censoring occurs when there is only one censoring limit in which all true values

above this limit result in measurement of the limit itself. Likewise, left censoring occurs

when all true values below the censoring limit result in measurement of the limit itself.

Left and right censoring is very common in engineering practice. For example, using

a simple electric circuit with a five volt DC power input may result in the ability to

only read electrical signals up to five volts. Thus any generated electrical signal, such

as that created by common sensors like accelerometers and magnetometers, may be

clipped (censored) at five volts. The true signal, if measured without censoring, may

be on the order of zero to eight volts. Saturation censoring occurs when both left

and right censoring are present at one time, with a region of continuous measurement

between. The thermometer is an example of saturation censoring. Deadzone censoring

is akin to saturation censoring, except the roles of the censored and uncensored regions

are reversed. That is, there is some upper limit above which a measurement can be

made, and some lower limit below which a measurement can be made, and a region in

between in which a censored value is returned. This type of censoring is common in

joystick controls, in which a small area about the neutral position is forced to zero, in

order to enforce that there exists a region in which no control is generated. Occlusion

censoring occurs in two-dimensions when there exists a closed region in which the true

signal cannot be measured. This type of censoring can occur in a vision based system

when a target is known to be behind an object, but cannot be directly observed. Frame

censoring is akin to occlusion censoring, except the roles of the censored and uncensored

regions are reversed. This type of censoring can also occur in a vision based system,

when the target exits the field of view. The different types of censoring are presented

in table 1.1.

1.2 Basic Handling of Censored Data

The question now arises, what to do if censored data is encountered? The most

basic approach to handling censored data in practical applications is to accept them
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Table 1.1: Methods of Censoring and Their Definition

Censoring Method Mathematical Definition

Right Censored yt =

{
βxt + ut, βxt + ut < T
T, βxt + ut ≥ T

Left Censored yt =

{
βxt + ut, βxt + ut > T
T, βxt + ut ≤ T

Saturation yt =


βxt + ut, Tl < βxt + ut < Th
Tl, βxt + ut ≤ Tl
Th, βxt + ut ≥ Th

Deadzone yt =

{
βxt + ut, βxt + ut < Tl or βxt + ut > Th
Tc, Tl < βxt + ut < Th

as they are. This means giving no preferential treatment to the one measurement

over any other, whether censoring is present or not. This approach has the benefit of

being computationally and algorithmically very simple. There are no special logical

arguments, no additional knowledge to be known beforehand or to be inferred online,

and no change to any algorithms that may have been developed with a no-censoring

assumption. However this assumption can lead to some very damaging results, because

as to be discussed in detail, including censored measurements without special consid-

eration leads to biased estimation of the underlying signal. In short this is due to the

fact that censored data measurements not only represent measurements of the true

signal directly at the censoring limit, but also all measurements of the true signal in

the censored region. Thus, fundamentally, censored measurements must be weighted

differently then uncensored measurements when included in any signal estimation algo-

rithm. Failure to do so leads to biases in signal estimation, which may lead to unstable

control if the signal is used in an output feedback system.

An alternative approach to handling censored data is to drop the censored
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measurements from consideration, equating a censored measurement with a missed

measurement. This method essentially classifies all censored measurements as invalid

measurements. There are two major deficiencies with this approach. One is that

uncensored measurements are heavily favored, resulting biased estimation of the true

signal. The second is that the information inherent in a censored measurement is being

lost. A censored measurement contains information about what region the true signal

resides in. Depending on the characteristics of the measurement process this informa-

tion can be used to estimate the underlying true signal, and at the very least inform

about where the signal is not. A missed measurement however fundamentally contains

no information. However, the advantage of using this dropped measurement approach

over the naive approach presented previously is that good estimation results can still

be performed if one has a good model of how the signal is evolving. This is because

with a dropped measurement an open-loop prediction can be performed to estimate

the signal over time. Instead of relying on accurate signal measurements to estimate

the true signal at all times and in all of space, one can take sporadic uncensored mea-

surements and predict using the signal model when missing or dropped measurements

are encountered. As shown by [24], and as will be discussed further, this approach can

also lead to heavily biased results and unstable feedback control.

A third approach, which largely removes the estimation problem from consider-

ation, is to engineer the system away from known censoring regions. As was discussed

with the air-conditioning example, if one assumes that room temperature will only

fluctuate between a certain pre-defined range, and sensors are used to measure accu-

rately within this range, then it can be assumed that censoring cannot occur and is not

taken into consideration. Often a trade-off is consciously made in order to achieve such

a result. For example, in measuring an electrical signal, one can implement a divider

to restrict the input range of a given signal, however at the expensive of measurement

resolution. So one may be able to guarantee that censored measurements cannot not

be generated, but the resulting uncensored measurements may lose precision and be

subjected to an increased signal to noise ratio, leading to a system which may become
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intractable.

1.3 Naive Output Feedback with Censored Measurements

Consider a typical output feedback controller structure given below in figure 1.2.

The creation, use, and performance of a such a linear controller structure is explored in

detail in chapter four. Consider now however, the implications of keeping the controller

and plant structure the same, and the introduction of a censoring block on the output

feedback line, as shown in figure 1.3.

Figure 1.2: Typical output feedback configuration with desired reference, controller
with estimator, plant to be controlled, and output feedback.

One would expect that, if the controller and plant are not modified accordingly,

then different results are generated between the two systems given the same reference.

After all, the output ”seen” by the two controllers is now different. The first, uncen-

sored, closed loop system will follow the principals of linear systems given that the

controller is correctly designed for the given plant. The second, censored, closed loop

system now has an un-modeled nonlinear function on the output line. Therefore, as

is shown in later discussion, a naive linear controller and estimator produce biased

estimates of the states to be controlled. These biased state estimates then feed into

the plant, whose outputs may again become censored, and the cycle repeats. If not
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Figure 1.3: Typical output feedback configuration, with the addition of censoring on
the plant output.

accounted for by choice of a more appropriate controller and state estimation algo-

rithm, then unstable control can be generated quite rapidly. This dissertation explains

the process of how output censoring may cause the state estimates to become biased,

how an unbiased state estimator for censored data can be created, how that estimator

can compensate for output censoring present in a closed loop controller, and for which

systems and circumstances the new censoring compensated closed loop estimator and

controller is stable. Furthermore, performance of closed loop controllers with censoring

is demonstrated, with examples of how censoring invariably degrades controller per-

formance compared to an optimal uncensored system. Novel control techniques using

parameters thus far never seen before in control theory are introduced. First however,

background material regarding classical estimation techniques for uncensored linear

systems is presented.
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Chapter 2

INTRODUCTION TO KALMAN FILTERING

In this chapter some basic concepts of state estimation is discussed. Classical

estimation using Kalman filer is introduced. The first approach to using the Kalman

filter with censored data is presented, in which a filter is derived for the express purpose

of tracking multiple identical objects which exit an imager field of view.

2.1 The Kalman Filter

The Kalman filter, named after Rudolph E. Kalman, developed during the late

1950s and early 1960s with contributions by Richard S. Bucy, as a means for recursive

estimation of unknown system states given a series of noisy state measurements. Being

a recursive estimator means that the Kalman filter encapsulates all past information

of the state’s time history into a finite set of variables that are only dependent on the

current and previous state estimates and state estimate covariances. In other words,

an optimal unbiased estimate of the unknown state can be predicted without the need

to keep all past measurements in memory. Only the previous state estimate and state

estimate covariance is needed to calculate the current state estimate and state esti-

mate covariance given an up-to-date measurement. This property makes the Kalman

filter attractive for a large number of engineering applications. It’s recursive nature

results in a low, fixed memory footprint, with a small and deterministic computational

complexity. The Kalman filter is built off an underlying Bayesian Model which can be

applied to a large number of systems and diverse applications. Given an assumed lin-

ear state-space model, with known parameters, the Kalman filter recursively produces

optimal unbiased state estimates.
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2.1.1 Defining the System Model and Filter Terms

In order to derive the Kalman filter framework it is first necessary to define the

system model that is to estimated. Start with a typical linear continuous time state

space formulation as shown in 2.1.

ẋ = Ax + Bu + Gw

y = Cx + Du + Hv
(2.1)

This is a linear system in which evolution of state x is a linear combination

of the current state with input u and process disturbance w. Likewise, output y is

a linear function of current state x with input u and output disturbance v. System

matrices A,B,G,C,D,H are linear and may or may not be time varying.

In discrete time a system of similar formulation is given by 2.2

xk+1 = Axk + Buk + Gwk

yk = Cxk + Duk + Hvk

(2.2)

For the purposes of the following discussion only consider the discrete time case

with time invariant system matrices and the following assumptions :

• There is no input to the system; u = 0

• Initial condition of x(0) = x0 with covariance P0

• Process disturbance w is uncorrelated zero mean white noise; E
[
wkw

T
k

]
= Q

• Output disturbance v is uncorrelated zero mean white noise; E
[
vkv

T
k

]
= R

The goal of the Kalman filter estimation problem is to find the best estimate of

xk given past measurements yk−1,yk−2, ...,yk0 .

2.1.2 The Two Stages

The Kalman filter can be thought of as a two stage process. First, a prediction

stage is run in which a priori state estimates and state estimate covariances are calcu-

lated based off the system model and the previous state estimates. Second, the Update
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stage is performed in which the state measurements are taken, an error is calculated

between that which was observed and that which was expected, a new weighting factor

(Kalman gain) is calculated, and the a posteriori state estimate and state error covari-

ances are calculated. The update stage effectively ”updates” the a priori prediction to

the a posteriori estimate given the new information from the observed measurement,

and is sometimes referred to as the ”correction” stage.

The a priori state estimate is given by :

x̂k|k−1 = E
[
xk|k−1|{yk−1,yk−2, ...,yk0}

]
= Ax̂k−1|k−1

Pk|k−1 = E
[(

xk − x̂k|k−1
) (

xk − x̂k|k−1
)T]

= APk−1|k−1A
T + Q

(2.3)

The a priori state estimate is purely a function of the previous state estimate

and system model, and is not a function of y, for measurements at the current time-step

have yet to be taken. The update stage begins by the calculation of the innovation,

followed by the calculation of the optimal Kalman gain, and concluding with the update

of the a posteriori state estimate. The innovation process is carried out when the

current measurement zk is taken and the innovation ỹk is calculated according to 2.4.

ỹk = zk −Cx̂k|k−1 (2.4)

The innovation term represents the new information gained by the taking of

measurement zk. The optimal Kalman gain is then calculated by 2.5.

Kk = Pk|k−1C
T
k

(
CkPk|k−1C

T + R
)−1 (2.5)

Finally, the update procedure is completed by correcting the a priori prediction

with the optimally weighted innovation to produce the a posteriori state estimate and
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state covariance for the current time step.

x̂k|k = x̂k|k−1 + Kkỹk

Pk|k = E
[(

xk − x̂k|k
) (

xk − x̂k|k
)T]

= (I−KkC) Pk|k−1

(2.6)

The complete Kalman filter can be written more compactly in the following

recursive form :

x̂k|k =Ax̂k−1|k−1 +
((
APk−1|k−1A

T +Q
)
CT
) (

C
(
APk−1|k−1A

T +Q
)
CT +R

)−1 (
zk −CAx̂k−1|k−1

)
Pk|k=

(
I−

((
APk−1|k−1A

T +Q
)
CT
) (

C
(
APk−1|k−1A

T +Q
)
CT +R

)−1
C
) (

APk−1|k−1A
T +Q

)
(2.7)

Assuming that the initial conditions for state and state covariance are accurate,

and the system is correctly modeled, then the Kalman filter produces optimal unbiased

state estimates x̂k|k given noisy measurements zk. An interesting consequence of the

Kalman filter definition is that state error covariance Pk|k, therefore Kalman gain K,

is not dependent on observed measurements. Thus, if the system is time invariant,

then Kalman gain K and state error covariance Pk|k converge to steady state values.

These values may be calculated a head of time by solving the discrete time algebraic

Ricatti equation. This enables the filter performance and feasibility to be characterized

beforehand. Knowledge of the steady values of the Kalman filter also allows direct im-

plementation of these steady state parameters, instead of the time varying covariances

and gains shown above. Although optimal performance cannot be achieved with a

steady state filter, the reduced computational complexity is often desired in practical

application of the Kalman filter.

Now it is demonstrated through example how the Kalman filter can used in

novel ways, in particular in application towards computer vision based target tracking.

2.2 Using the Kalman Filter for Tracking Multiple Similar Targets

2.2.1 Introduction

Vision-based tracking provides a unique set of advantages, but also introduces

a new set of challenges. A particularly significant set of problems arise when tracking
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multiple objects of similar or identical appearance over long periods of time. Examples

of such scenarios include the identification and tracking of windows on a building fa-

cade, similar vehicles in a large convoy, or birds in a flock. Identity confusion, which is

identified here as the inadvertent switch from the tracking of one object to another ob-

ject of similar appearance, is possible, as there is little to distinguish between individual

objects aside from the physics of their motion and previous measurements. Character-

istics that would typically be used by traditional trackers, such as color, shape, and

features, cannot be relied upon to uniquely identify individual objects, as these are

shared traits. Tracking algorithms that rely primarily upon brute force detection and

matching between sample frames are subject to large errors when encountered with

missing or erroneous data. The tracking performance is further degraded when objects

of interest leave the field of view or become occluded. When occluded objects are

reintroduced to the image frame, they must be correctly identified in order to continue

to propagate their estimated motion, otherwise they must be treated as new entities.

There has been a large amount of previous work done for tracking objects in

computer vision, signal and image processing and radar applications [10, 32]. In-

spired by tracking problems in video streams where there exists complicated scenarios

such as interacting humans, animals, insects and objects in crowded environments

[20, 33, 29, 17, 22] , previous vision research as led to the development of many tech-

niques to mitigate these issues. Filtering techniques for tracking objects in imagery

include Kalman filters, Particle filters [14] , optical flow, image segmentation via active

contours and supervised learning [32]. In [21] target tracking was done for a stationary

system. The measurements where linked to the estimates together via a “validation

region” derived from Kalman filter covariances. Unlike [21] , this work addresses the

complication of a moving camera, and particularly seeks to mitigate the complication

of objects exiting and reentering the image frame. For dealing with such systems where

data can be missing for periods of time, papers such as [24] access the statistical con-

vergence properties of the estimate error covariance and give expected arrival rate of

observations to guarantee convergence.
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A modified Kalman filter algorithm is derived for the tracking of multiple similar

objects when imaged from a moving camera. The definition of objects of interest can

vary depending on the underlying vision algorithm employed, and are only represented

in the filtering process by their x,y position and velocities respectively. As such, an

object of interest can be represented by the center of mass of various geometric shapes

(such as rectangles or windows), or could be feature points detected using advanced

computer vision algorithms such as SIFT, SURF [4], etc. Assume that the objects

of interest are relatively stationary in the scene and that the camera is moving with

inertia. Due to the generic definition of the objects of interest, the vision algorithm for

the detection of the objects is not of concern. This formulation is robust to erroneous,

spurious, and missing detections, regardless of the underlying detection system.

Three key modifications are proposed to the standard Kalman filter structure.

The first involves the use of error thresholding between estimate and measurement for

the purpose of identifying erroneous detection or occlusion. The second is the use of

linear prediction for propagating object state estimation in such circumstances. The

third modification is the estimation of the dynamics of valid measurements and their

use as an exogenous feedback term for corrections to the state estimation of occluded

objects. The propagation of state estimation using these modifications can then be used

to match measurements to predictions and maintain identity between similar objects

within the scene.

Figure 2.1: Camera moving w.r.t. static objects in the scene. The purple rectangles
represent the identical objects to be tracked.
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2.2.2 Algorithm Overview

From here on forward, define a measurement as a detected object of interest in

video frame k. Due to the formulation of the filter, the terms ”object of interest” and

”point of interest” is used interchangeably. An occluded point is defined as an object

of interest that is either estimated to be outside the field of view, is hidden within

the field of view by some obstacle, or has otherwise failed to be detected by the vision

algorithm. A spurious point is defined as a detected object that is only present for a

short period of time, and may or may not be desired for tracking. An erroneous point

is a false detection by the vision algorithm which may or may not be spurious, or a

valid detection that is unwanted for tracking. As previously explained, the objects to

track could vary depending on a large expanse of applications, and is determined by

the vision algorithm. In this solution the objects to track are identified by single points

in the image plane. There are many associations single points may represent, whether

it be center of mass of a contour, the corner of a window or feature points from a SURF

, SIFT or Harris detector. Various sets used in this paper are defined in Table 2.1 .

Table 2.1: Variables and their Usage

Set Name Definition

Y Kalman estimates (Ordered)
M Candidate measurements (Unordered)
Y ⊂ Y Kalman estimates with match (ordered)
M ⊂M Measurements with match (ordered)
Y − Y Occluded or missing Kalman estimates
M−M Spurious measurements
T Error Thresholds (Ordered)

At time step k = 1 it is assumed that the location of N objects desired for tracking is

determined by an independent algorithm and are stored in set M. The tracking and

identification algorithm begins with the initialization of N parallel Kalman filters, with

14



a one to one mapping of Kalman filters to set M. Furthermore, set Y = M, creating

a trivial bijective mapping from estimation to measurement.

The initial ordering of these objects is maintained throughout tracking, and is

the basis for the avoidance of identity confusion. The process for the identification and

tracking of the objects of interest can be decomposed into three fundamental phases

of Prediction, Measurement, and Update.

In the prediction phase the N Kalman filters use the Kalman state estimates

from iteration k − 1 to update Y, based on the standard Kalman filter prediction

procedure.

The vision algorithm is then run on frame k to begin the measurement phase,

with L detected objects being stored in M in an unpredictable order. An injective

mapping is then created from Y →M, matching Kalman estimates to nearest candi-

date measurements. A second injective mapping is created from M → Y , to ensure

candidate measurements are mapped to only one Kalman estimate. Finally, error

thresholding is applied to remove invalid pairings, resulting in a bijective mapping

from Y → M. Any measurements that are not paired with an estimate are declared

as spurious measurements, and any estimates that are not paired are declared oc-

cluded/missing. The bijective mapping thus establishes an order among a subset of

the new measurements which is correspondent to a subset of the Kalman estimates,

allowing their associated Kalman filters to continue to the update phase and avoiding

identity confusion amongst the objects of interest.

Lastly, the recently ordered set of measurements are used to update the Kalman

filter state estimations. Kalman estimates that have a corresponding measurement are

updated with the standard Kalman filter update formulation, creating an estimation

for object state at k + 1. Estimates that are declared as occluded are updated with a

linear prediction based on their most recent state estimation. Additionally, occluded

objects are updated with an exogenous input u dependent on the state estimates of

the non-occluded objects.
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2.2.3 Mathematical Formulation

Here the mathematical formulation to account for spurious, erroneous, and oc-

cluded objects is described. Each object of interest is tracked using its own Kalman

filter, as is explained in section 2.2.

Focusing on a single object, begin with a constant velocity model, which is

based off the assumption of static objects being imaged by a camera moving with

inertia. Assume a high sampling rate with respect to the motion of the camera, and

as such instantaneous changes in velocity are not expected.

Using a standard discrete Kalman filter the constant velocity model can be

written as

xi(k + 1|k) = Axi(k|k) + w(k) (2.8)

with xi denoting the state of the ith object that is being tracked and k representing

discrete time. As for the covariance and Kalman gains; P(k|k) is the posterior error

covariance matrix, S(k) the innovation covariance, K(k) the Kalman gain. R is the

measurement noise covariance and Q is the process noise covariance [5].

pi(w) = N(0, Q)

pi(v) = N(0, R)

ei(k) = xi(k)− xi(k|k)

Pi(k|k) = E(ei(k)ei(k)T)

(2.9)

with xi(k|k) =
[
xi ∆xi yi ∆yi

]
containing the filter’s estimate of location and

velocity of the ith object being tracked, and

A =


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

 (2.10)

to complete the constant velocity model.
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The Kalman estimation equations are

yi(k) = Cxi(k) + v(k) (2.11)

with C =

1 0 0 0

0 0 1 0

.

The measurement phase consists of two portions, one being the detection of

objects using a computer vision algorithm, and the second being the mapping of these

measurements to existing Kalman estimates. It is not assumed that the vision algo-

rithm returns the detected objects in a consistent order between frame iterations, and

therefore to correctly propagate the Kalman filter estimations over time it is necessary

to perform a matching routine between detected points of interest and their associated

filter.

Let Y be the set of Kalman estimates from the previous prediction phase, and

M be the set of candidate measurements. First, create an injective mapping from

Y →M {yi,mj} where j = arg minj ‖yi−mj‖2. The set of all measurements mj with

a mapping from Y is denoted M. Next, create an injective mapping from M → Y

{mj, yi} where i = arg mini ‖yi −mj‖2. The set of Kalman estimates with a mapping

fromM is denoted Y . There now exists a bijective mapping between Y andM. Define

two subsets Y ⊂ Y , M ⊂ M where yk ∈ Y,mk ∈ M ⇐⇒ ‖yk − mk‖2 < Ti, where

Ti is the threshold defined by the threshold function. The bijective mapping between

Y and M now defines the pairing of Kalman estimates with their associated trusted

measurement. The set Y−Y is the set of Kalman estimates with missing or occluded

measurements, and the set M−M is the set of spurious measurements.

In general, the procedure above is defined for when the individual Kalman filters

have converged. If a given Kalman filter has not yet converged, as is the case in first few

iterations, then it is not valid to match current measurements to Kalman estimations.

Therefore, in these instances match current measurements to previous measurements

in order to maintain order. The same algorithm structure is applied, except for the

17



substitution of mi(k − 1) for yi(k) in Y. This relies upon the assumption that mea-

surements are initially not moving with high dynamics, and occlusion or dropouts are

not present. This algorithm, illustrated in Fig. 2.2, also prevents identity confusion

between nearby Kalman estimates, assuming reasonable bounds on displacement error.

Figure 2.2: In the left frame the bijective mapping results in a match between Kalman
estimates (A,B,C,D), and their nearest measurement. The match for
estimate C is removed due to error thresholding. Kalman filters A,B,D
proceed with standard Kalman filter correction using their associated
measurements, while Kalman filter C proceeds with linear prediction +
feedback. In the right frame Kalman filters A and C are matched to
the same measurement through the first injective mapping. The second
injective mapping causes pairing with Kalman estimate A to remain,
while Kalman estimate C is declared occluded.

The constant velocity model and Kalman filter track objects satisfactorily unless

there are spurious points, dropouts or occlusions. Through the bijective mapping

and error thresholding, a point that is spurious, missing or occluded does not present

a suitable measurement for the associated Kalman filter. In this case the system

propagates as a linear system using its previous state estimation. The pairing between

yk and mk is applied to threshold Ti as defined by,

‖yk −mk‖2 < Ti (2.12)

where Ti is a linearly increasing value when objects are occluded for extended periods

of time. This allows objects that are occluded for several frames to be subjected to a

more lenient threshold and accepted as candidate objects upon reintroduction into the

field of view.

Ti = To + α ∗Oi(k) (2.13)
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To is the default error threshold, Oi(k) is equal to the number of frames object i is

occluded in a given sequence, and α is a scaling factor.

The spurious measurements are treated as outliers and removed from being

inputs to the system to prevent the Kalman filter from converging erroneously and to

avoid identity confusion. The advantage to this method is that occlusions are not

propagated to the Kalman updates because they fail to meet the error threshold.

Kalman filter objects that have missing measurements are updated with the current

linear model and the update step of the Kalman filter is reduced to,

x(k|k) = x(k|k− 1)

P(k|k) = P(k|k− 1)
(2.14)

as shown in [8]. This allows the Kalman filter to propagate without deteriorating the

values of the estimates, although reaction to changing dynamics is diminished.

The threshold provided a mechanism such that the object’s motion model is

resistant to spurious or occluded points. However, in the event that some objects

in the set to be tracked are partially occluded, the states of the other non-occluded

objects can assist in providing updates on dynamics of the occluded objects which are

otherwise unobservable. The operating assumption here is of planar and or distant

objects, resulting in a large correlation between all of the tracked objects velocities.

If these assumptions are not valid, this feedback can be carried out using 6-DOF

information about the camera motion if it is available.

Introduced now is the technique of using the correlation of the objects’ velocities

to infer how occluded objects are behaving. As seen in Fig. 2.3 if a standard Kalman

filter was used to update occluded points, and the camera changed its heading velocity

to the opposite direction, the Kalman filter would continue to propagate the estimates

toward the direction of the initial velocity. The solution to this problem is to use the

information of the other objects trajectories to assist the occluded ones by way of an

input term u which uses values of states from the parallel Kalman filters.
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Figure 2.3: Four centers of mass initially move coherently to the right. The two
right centers of mass become occluded and continue propagation to the
right. The four centers of mass then coherently change direction back to
the left. Without feedback correction, the estimates of the right centers
of mass are unaffected and continue propagating to the right, leading
to large errors upon reintroduction into the frame and possible identity
confusion.
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The definition of B and u matricies

xi(k|k− 1) = Axi(k− 1|k− 1) + Bui(k) + w(k) (2.15)

B = diag(µ, 1, µ, 1) with µ ≈ 0.

ui(k) =


xi − 1

N−1

∑
n 6=i xn

∆xi − 1
N−1

∑
n 6=i ∆xn

yi − 1
N−1

∑
n 6=i yn

∆yi − 1
N−1

∑
n 6=i ∆yn

 εi ∀yi ∈ Y (2.16)

The ui(k) is an error between the occluded state and the mean of all the other

non occluded states. If this vector is increasing or is large then the occluded system

relies on the ui(k) to propagate the system.

The function εi is dependent on whether or not Kalman estimate i is declared

occluded.

εi =

1, if i is within the frame

0, otherwise

(2.17)

The purpose of εi is to ensure that the control input for object i is only used should

that object become occluded. If object i is occluded, then the state estimates of the

non-occluded objects are used as feedback to correct state estimation for object i. This

approach works well if motion is primarily translational and objects are not occluded for

extended periods of time. If these assumptions fail, good performance can be obtained

using feedback based on 6-DOF information about the camera motion.

2.2.4 Experimental Results

Experiments to validate filter performance were performed using OpenCV 2.3.1

on Mac OS X. Simulation data was generated using OpenCV drawing functions, with

multiple scenarios being used to evaluate the tracking of object points under various

conditions. Truth data was saved for each scenario for use in later analysis. No artificial
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noise was generated when making the simulated data, in order to evaluate the filter

performance solely on controlled parameters.

In this implementation, each individual object of interest is assigned its own

Kalman filter. If N points of interest are being tracked, then N parallel Kalman filters

are automatically initialized and run. While it is possible to structure the estimation

procedure as one large Kalman filter, there are many advantages to the parallel frame-

work described. Primarily, it is more computationally efficient to run multiple parallel

Kalman filters as opposed to one large filter. Also, it is easier to drop or add objects of

interest when Kalman filters are independent and parallel. Two experiments were run

to validate the propositions of this paper. The first involves dynamic movement of the

objects of interest within the camera frame, with no occlusions. This was to validate

the ideal performance of the filter, verify the constant velocity modeling assumption,

and to verify the matching algorithm correctly maintained the identities of individual

objects without confusion. The second experiment involves dynamic movement of the

objects of interest, with the added complication of partial occlusion from the frame and

reintroduction of the occluded objects. This was to correctly verify the behavior of the

feedback correction term and its application to the tracking of occluded and otherwise

unobservable objects. In this experiment, four squares of identical size and color move

at a velocity of one pixel per frame in both the x and y direction. Corner detection was

run using a Shi-Tomasi algorithm, and the detected corners were identified as objects

of interest. In each frame, a random number of spurious detections (up to a limit

of 100) at random locations were added to the set of candidate measurements M, as

shown in Fig. 3.1. Despite the ideal nature of the simulated data, the corner detec-

tion algorithm does not return the detected corners in the same order between frames.

Without any identity preserving mechanism, individual corners may easily be confused

with each other and result in erroneous and unstable Kalman filter updates. As seen

in Figs. 2.5 and 2.6, the Filter performance and error convergence are excellent under

these conditions. In this next experiment four squares are moved right, horizontally

across the image frame, simulating a camera moving towards the left in reference to
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Figure 2.4: Visual representation of the candidate measurements returned by the
underlying vision algorithm in one frame. Sixteen points of interest are
desired for tracking, corresponding to the four corners of four rectangles
moving in unison, and are determined by the initialization procedure. In
each frame, the vision algorithm returns any number of unordered candi-
date measurements. The mapping algorithm proposed ignores spurious
measurements, pairs Kalman estimates with appropriate new measure-
ments, and declares which Kalman estimates have an occluded or missing
measurement.

the stationary objects of interest. The center of mass of each square is detected using a

modified OpenCV rectangle detector. As the right two squares move horizontally out

of the frame their centers of masses become occluded. Using traditional filtering, the

right two occluded rectangles would continue to propagate horizontally to the right,

even if in truth the squares reversed direction and began movement towards the left,

shown in Fig. 2.3. This would eventually cause very large errors upon re-entry of the

right two rectangles into the field of view, and may potentially lead to confusion as

to how each center of mass may be identified. Using the given formulation, once the

right two centers of mass became occluded they would be linearly propagated to right,

and remain identical in behavior to the standard Kalman filter. However, if the left

centers of mass, which remain visible, change velocity, the exogenous feedback term u
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Figure 2.5: No occlusion. Filter performance while tracking x position of interest
point 1 as it moves from top left of frame to bottom right with constant
velocity (see previous figure).

begins correcting the estimated location of the occluded points. The error upon re-

entry between estimate and measurement is then much lower, and identity confusion

is avoided, as shown in Fig.2.7 and 2.8.

This experiment shows the performance characteristics of a standard Kalman

filter with no measurement mapping versus the proposed modified Kalman filter. In

each scenario the top left corner of a rectangle was tracked as the rectangle was moved

diagonally across the frame. At every twenty frames, for three consecutive frames, the

measurement was purposefully substituted with an erroneous constant value, in order

to simulate the failure of the detection algorithm and the presence of an erroneous

disturbance to the filter. The original filter follows this disturbance, and then re-

converges back to truth when the measurements are valid again. However, in the

modified Kalman filter, the disturbance is detected, rejected, and linear prediction

is followed instead until a valid measurement returns. This results in no error, for

the filter has converged before the disturbance appears, and the linear prediction is
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Figure 2.6: No occlusion. Filter error while tracking x position of interest point 1 as
it moves from top left of frame to bottom right with constant velocity.

accurate (see Fig. 2.9 ) .

2.2.5 Conclusions

As the simulation results show, the proposed Kalman filter tracking algorithm

successfully tracks objects of interest even in the presence of spurious and missing mea-

surements and partial occlusion. Traditional filtering does not take advantage of the

coherent motion of stationary interest points when imaged from a moving camera, and

as such is ill suited for the estimation of data which is occluded. By using selective

linear prediction and incorporating the dynamics of valid measurements as feedback

to the state estimation of occluded interest points the filter is able to successfully es-

timate the position and velocity of multiple similar objects, even when not directly

within in the field of view. Furthermore, the proposed mapping algorithm between

unordered candidate measurements and ordered Kalman estimates successfully main-

tains the identity of each tracked object for correct filter propagation, even when those

objects are of similar or identical appearance.
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Figure 2.7: Dynamic motion, with occlusion. Filter error while tracking interest
point 1 as it move horizontally left and leaves the image frame. Mea-
surement becomes occluded (A), and returns to the field of view some
time later (B). While occluded, error is prevented from accumulating by
feedback term u. Without feedback, the standard Kalman filter contin-
ues to propagate a linear estimation while object measurements are not
available (C). After reintroduction into the frame the point is correctly
mapped to Kalman filter 1 and the estimate converges.
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Figure 2.8: Dynamic motion, with occlusion. Filter error while tracking interest
point 1 as it move horizontally left and leaves the image frame. Without
feedback, the standard Kalman filter error grows unbounded, as linear
estimation is propagated while in truth the object as changed velocity.
With feedback, the error is kept small and reacts to changes in velocity
of non-occluded objects, and after reintroduction into field of view the
error converges.
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Figure 2.9: Comparison between standard and modified Kalman filters under spu-
rious object detection. During this experiment, at periodic intervals,
measurement of the object is manually disturbed to a constant value.
Since the object is moving within the frame, this causes the standard
Kalman filter error to grow upon each disturbance interval, as the spuri-
ous measurement is erroneously used as input to the Kalman filter. With
the proposed modifications, the mapping algorithm and error threshold-
ing prevent the erroneous measurement from being used to propagate the
Kalman filter, and instead a linear prediction is used for updating. Since
the filter has converged before introduction of the spurious measurement,
the linear prediction results in no loss of accuracy.
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Chapter 3

THE TOBIT KALMAN FILTER

3.1 Kalman Filtering With Censored Measurements

Kalman Filter [15] has become ubiquitous in tracking and estimation. Many

estimation applications, especially those using low cost commercial of-the-shelf sensors

(COTS), are subject to a specific type of measurement nonlinearity called censoring.

When censored measurements are introduced into the standard Kalman filter, the

estimates become biased.

A similar measurement nonlinearity which has been previously considered is

intermittent measurement. A formulation of the Kalman filter designed for the in-

termittent measurement case is presented in [25, 16]. This formulation reduces to a

linear estimator when measurements are missing. The estimator in [25] provides the

minimum state error variance filter given all past observations and arrival sequences,

and is an improvement on Jump Least Square (JLS) theory [27] which gives a mini-

mum state error variance filter assuming only the observations and the knowledge of

the previous arrival. Both of these previous formulations relied on the assumption

that missed measurements were uncorrelated with the state value. The problem with

this solution in a censored measurement model is that the censored measurement is

correlated to the state value. More specifically it is correlated to the state value as is it

relates to the threshold between censored and non censored regions, the measurement

model and the noise on the measurement. Tobit model censoring may be formulated

as an intermittent measurement problem, but because the dropped measurements are

correlated with the state values, the result remains a biased estimate of the state.

One difficulty in using a Kalman filter for censored measurements is that the

measurement noise is not Gaussian near the censoring region. If the state variable is a
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constant near the censored region, noise on the measurements causes some of the mea-

surements to be censored, and the standard Kalman filter produces a biased estimate

of the state because the Kalman filter assumption of zero mean white Gaussian noise

is no longer valid. Past work has been done to design estimators from the likelihood

function that work when the Gaussian observation noise is state-dependent. The work

in [28] created an iterative Kalman filter to solve the nonlinear least square problem of

the likelihood function. In the censored measurement case a linear Kalman filter can

be interpolated.

Censoring can be generalized as an output nonlinearity, and general output

nonlinearities can be addressed using the Extended Kalman filter (EKF) or the particle

filter. However, the state-measurement equation for censoring has a sharp discontinuity

at the threshold value of the censoring region, which is a problem for the EKF as the

gradient does not exist at this discontinuity. The particle filter formulated for partially

observed Gaussian state space models is presented in [3]. Particle filters are much

more computationally expensive than an extended Kalman filter or linear Kalman

filter because they require the use of a weighted set of samples called particles to

generate the posteriori distribution p(xk|y1:k). Furthermore, the sharp discontinuity

in the measurement model for censored data means that a large number of particles

are necessary to adequately model the system in this region. The method described

in this paper avoids the use of numerical approximation methods such as the particle

filter by directly computing the relevant posteriori distributions from the censored data

measurement model. The resulting filter has a similar computational burden to the

standard Kalman filter, which allows it to be used in computation-limited environments

such as embedded systems.

3.2 Classical Tobit Regression

Despite many obvious examples of censored data in estimation and tracking, the

Tobit model has not received much attention in the field of signal processing or control

theory. It has been widely used, however, in the fields of medicine and economics. The
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model was first proposed in 1958 by James Tobin as a regression model for household

expenditure data [30], a dependent variable which could not be observed below a certain

limit. The standard Tobit model formulation is

yt =

 βxt + ut, βxt + ut > T

T, βxt + ut ≤ T
(3.1)

Where β ∈ R1×n is vector of constants, xt ∈ Rn×1 is the input vector at time

t, yt is a scalar output, ut Gaussian random number with zero mean and variance

σ2
u. The use of ordinary least squares to estimate the β or σu from the output would

be inconsistent because the entire population of the dependent variable is not being

observed. Many methods have been devised to solve for the parameters of the Tobit

model, including Tobin’s original maximum likelihood estimator. An analysis of the

method and the consistency of the estimates is presented in [1].

The Tobit model has been extensively studied in the field of Econometrics, and

there exist many methods to identify Tobit model parameters and compute expecta-

tions of censored data sequences.[11, 19, 2, 7, 1, 26, 23]. Most of these methods require

knowledge of the entire measurement history; a recursive estimator such as the Kalman

Filter has not previously been developed for this type of measurement nonlinearity.

3.3 From the Kalman Filter to the Tobit Kalman Filter

3.3.1 Problem Formulation

To define the censoring problem consider the evolution of a scalar output state

sequence as,

xk = Axk−1 + wk−1

y∗k = Cxk + vk

yk =

 y∗k, y∗k > T

T, y∗k ≤ T

(3.2)

xk ∈ Rn×1 is the state vector and yk is the scalar measurement . The A ∈ Rn×n is the

state transition matrix and the C ∈ R1×n is the measurement state transition matrix.

The wk and vk are Gaussian random vectors with zero mean, they have covariance Q ∈
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Rn×n and R = σ2, respectively. Where σ is the standard deviation of the measurement

noise. The Kalman filter is optimal in the Gaussian sense; however when the noise

distribution on yk is a censored Gaussian, the filter is not only suboptimal; but because

the noise is correlated to the state value, the system violates the assumptions of the

Kalman filter. The closer the state is to the threshold value the more censored the

Gaussian distribution on yk becomes.

3.3.2 Problem Formulation in the Tobit Case

Using Equation 3.2, define yk as the censored observation and y∗k as the latent

variable. The probability distribution of a censored variable with normally distributed

noise is:

f(yk|xk) =
1

σ
φ(
yk − Cxk

σ
)u(yk − T ) + δ(T − yk)Φ(

T − Cxk
σ

) (3.3)

where

φ(
yk − Cxk

σ
) =

1√
2π
e−

(yk−Cxk)
2

2σ2 (3.4)

and

Φ(
yk − Cxk

σ
) =

∫ yk

−∞

1√
2π
e−

(zk−Cxk)
2

2σ2 dzk (3.5)

are the probability density function and the cumulative distribution function of a Gaus-

sian random variable whose mean is Cxk. δ is the Dirac delta function. The u(α) is

a step function and is equal to u(α) = 1 when α ≥ 0 and u(α) = 0 when α < 0.

The delta function at T − yk is present when measurements at the censoring limit are

recorded, this function is absent in a truncated model.

The likelihood function for the standard Tobit model is,

L =
∏
y∗k≤T

[1− Φ(
Cxk − T

σ
)]
∏
y∗k≥T

σ−1φ(
yk − Cxk

σ
) (3.6)

as formulated by Tobin in his pioneering work [30].
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The mean of the measurements is given by:

E(yk|yk > T, xk, σ) = σ−1 1

1− Φ(T−Cxk
σ

)

∫ +∞

T

zφ( z−Cxk
σ

)dz

= Cxk + σλ((T − Cxk)/σ)

(3.7)

This differs from the true value of the latent variable by a bias of σλ((T −

Cxk)/σ) where λ(α) = φ(α)
[1−Φ(α)]

is the inverse Mills ratio (IMR) [1].

The expected measured value when censored measurements are included is:

E[yk|xk|k−1, σ] = P [yk > T |xk|k−1, σ]E[yk|yk > T, xk|k−1, σ]

+P [yk = T |xk|k−1, σ]E[yk|yk = T, xk|k−1, σ]

= Φ(Cxk−T
σ

)[Cxk + σλ((T − Cxk)/σ)]

+Φ(T−Cxk
σ

)T

(3.8)

The variance of the expected measured value is derived in [6] and can be written

as:

V ar[yk|yk > T, xk, σ] =

E[y2
k|yk > T, xk, σ]− [E[yk|yk > T, xk, σ]]2

(3.9)

E[y2
k|yk > T, xk, σ] = σ−1 1

1− Φ(T−Cxk
σ

)

∫ +∞

T

z2φ( z−Cxk
σ

)dz (3.10)

so

V ar[yk|yk > T, xk, σ] = σ2[1− ð(
T − Cxk

σ
)] (3.11)

where

ð(T−Cxk
σ

) = λ(T−Cxk
σ

)[λ(T−Cxk
σ

)− (T−Cxk
σ

)] (3.12)

Note that V ar[yk|xk, σ] = V ar[yk|yk > T, xk, σ] since V ar[yk|yk < T, xk, σ] = 0.
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3.3.3 Problem Formulation in the Bayesian Sense

The Bayesian derivation of the Kalman filter can be found in several sources,

including [5]. The Bayesian filter under a Markov assumption computes the state esti-

mate x̂k of the true state xk at time k given measurements yk. The Markov assumption

states,

P (xk|yk...y0, xk−1...x0) = P (xk|yk, xk−1) (3.13)

and the conditional probability of the measurements is,

P (yk|yk−1...y0, xk...x0) = P (yk|xk) (3.14)

For a Kalman filter, of interest is how the measurements are projected on the

state estimates and future state estimates. The distribution of interest is

P (xk|yk−1) =

∫
P (xk|xk−1)P (xk−1|yk−1)dxk−1 (3.15)

which is the predict step of the filter; the update state may be written as

P (xk|yk) =
P (yk|xk)P (xk|yk−1)

P (yk|yk−1)
(3.16)

The recursion in equations 3.15 and 3.16 result in the Kalman filter when the

noise on the measurement model and the process model are jointly Gaussian. To

compute the value of E(xk|yk) the Kalman filter computes the minimum mean squared

error estimate which is,

x̂k = E(xk|yk) = x̄k +K(yk − ȳk) (3.17)

Where ȳk and x̄k are the mean values of the measurements and states respec-

tively .

In the censored measurement model however the noise is a censored Gaussian

in the measurement equations, resulting in the distribution given by Equation 3.3.
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This noise function results in a nonlinear relationship between the measurements and

state values, and Equation 3.17 does not hold. In the next section, an alternative

update schedule which recursively calculates E(xk|yk) for Tobit censored measurements

is developed.

3.3.4 The Tobit Kalman Filter

The previous section reviewed the basis of the Kalman filter using Bayes’ rule.

In this section the optimal Kalman formulation for Tobit censored measurements is

derived. The derivation is similar to the derivation for the standard Kalman filter;

however,the censoring results in new definitions for the measurement residual, and

consequently for the optimal Kalman gain and the state estimate covariance. Below is

the notation for the hidden Markov model with the state xk ∈ Rn×1 being hidden and

yk ∈ Rm×1 being the measurement on the system.

xk = Axk−1 + wk−1

y∗k = Cxk + vk

yk =

 y∗k, y∗k > T

T, y∗k ≤ T

(3.18)

The matrix A ∈ Rn×n is the state transition matrix and C ∈ Rm×n is the

measurement model. The noise wk and vk are zero mean white Gaussian noise with

covariance matrix Q ∈ Rn×n and R ∈ Rm×m respectively.

3.3.4.1 The Predict Stage

The prior estimate of the state and it’s probability distribution may be written

P(xk|k−1) ∼ N (E(xk|k−1),Var(xk|k−1)) (3.19)

where xk|k−1 ∈ Rn×1 is the state estimate vector of xk given all estimates and mea-

surements up to time k − 1. The predict equation of the state may be written as

E(xk|k−1) = E(Axk−1|k−1 + wk) = Axk−1|k−1 (3.20)
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xk−1|k−1is the estimate of xk−1. The state error covariance given measurements

and state information up to time k − 1 may be written as

cov(xk|k−1 − xk) = cov(Axk−1|k−1 + wk −Axk−1)

= AVar(xk−1|k−1)AT + Q

= AΨk−1|k−1A
T + Q

(3.21)

where Q is the model covariance matrix and Ψk−1|k−1 is the previous a posteriori

estimate of the state error covariance.

3.3.4.2 The Update Stage

The optimal Kalman filter must minimize the state error covariance, Ψk|k. The

update stage corrects the state estimate using current measurements. The update step

reduces the state error covariance, whereas the predict step results in a widening of

the state error covariance. The Kalman correction step to obtain the current estimate

given all observations up to time k may be written as

xk|k = xk|k−1 + Kk(yk − E(yk)) (3.22)

The value of E(yk) was calculated for a scalar case for a censored value in Equa-

tion 3.8; in this notation E(yk) ∈ Rm×1 is a vector, each scalar component can be cen-

sored at any given time and have different threshold limits T = [T (1), T (2), ..., T (m)]

with T (l), yk(l) representing the lth component of arrays T and yk respectively.

To find Kk in Equation 3.22 minimize the state error covariance,

Ψk|k = cov(xk − xk|k)

= cov(xk − xk|k−1 −Kk(yk − E(yk)))
(3.23)

A Bernoulli random variable is introduced to model the occurrence of a cen-

sored measurements versus an actual measurement. The variable pk(l) = 1 when the
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measurement is not censored and pk(l) = 0 when the measurement is equal to the

threshold value. The measurement model can be written as

pk(l) =

 1, Cxk(l) + ut(l) > T (l)

0, Cxk(l) + ut(l) ≤ T (l)
(3.24)

At any given time step the measurement represents the state by Cxk(l) + uk(l)

with probability E(pk(l)). In matrix notation the Bernoulli random matrix is diagonal

pk ∈ Rm×m so the measurements arrive by the following equation

yk = pk(Cxk + vk) + (Im×m − pk)T (3.25)

where Im×m is is the identity matrix. Substituting into Equation 3.22 yields

Ψk|k = cov(xk − xk|k)

= cov(xk − xk|k−1 −Kk(pk(Cxk + vk)+

(Im×m − pk)T− E(yk)))

(3.26)

To simplify the notation in the derivation set the Kalman error to

Gk = pk(Cxk + vk) + (Im×m − pk)T− E(yk) (3.27)

so the covariance of the state estimate becomes

Ψk|k = E((xk − xk|k−1 −KkGk)(xk − xk|k−1 −KkGk)T)

= Ψk|k−1 − E((xk − xk|k−1)GT
k )KT

k

−KkE(Gk(xk − xk|k−1)T) + KkE(GkG
T
k )KT

k

(3.28)

with

Ψk|k−1 = E((xk − xk|k−1)(xk − xk|k−1)T) (3.29)

Rxek = E((xk − xk|k−1)GT
k ) (3.30)
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Reek = E(GkG
T
k ) (3.31)

Next take the trace and the derivative of equation 3.28 and set the result equal

to zero to find the optimal Kalman gain.

Tr(Ψk|k) = Tr(Ψk|k−1)− 2Tr(RxekK
T
k )

+Tr(KkReekK
T
k )

d
dKk

Tr(Ψk|k = −2Tr(Rxek) + 2Tr(KkReek)

Kk = RxekR
−1
eek

(3.32)

which results in the familiar projection equation. In a standard linear Kalman filter

the values of Rxe and Ree are functions of Ψ, H and R. Because measurements are

not linearly related to the state vector in or around a censored region explicit values

for Rxe and Ree must be found. The function for Rxe is,

Rxek = E((xk − xk|k−1)((Cxk + vk)Tpk+

TT(Im×m − pk)− E(yk)T))

= E(xkx
T
k CTpk) + E(xkv

T
k pk) + E(xkT

T(Im×m − pk))

−E(xk)E(yk)T − E(xk|k−1x
T
k CTpk)− E(xk|k−1v

T
k pk)+

E(xk|k−1T
T(Im×m − pk))− E(xk|k−1)E(yk)T)

(3.33)

The probability of the measurement being non censored is a function of the

distance between the latent measured variable and the threshold value. The expected

value of pk(l, l) may be written as

E(pk(l, l)) = Φ(
Cxk(l)− T (l)

σ(l)
) (3.34)

Where Cxk(l) is the lth element of the measurement vector and σ(l) is the

variance of the noise on that element. In principle this requires knowledge of the true

state value. The following assumption allows us to relax this dependence and use the

estimated state value instead.
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Assumption 1

Assume that the state prediction permits a sufficiently accurate estimate of the

probability of censoring:

E(pk(l, l)) = Φ(Cxk(l)−T (l)
σ(l)

) ≈ Φ(
Cxk|k−1(l)−T (l)

σ(l)
) (3.35)

Assumption 2

For simplicity, assume no cross-dependence in the measurements. Consequently,

R is diagonal and:

cov(yk(d), yk(l)) = 0 ∀ d, l (3.36)

3.3.4.3 The Update Stage, continued

The above assumptions allows us to estimate pk at each iteration and obtain

values of Rxe and Ree without the knowledge of xk. Where Assumptions 1 and 2 hold,

E(pk) = Diag


Φ(

Cxk|k−1(1)−T (1)

σ(1)
)

Φ(
Cxk|k−1(2)−T (2)

σ(2)
)

...

Φ(
Cxk|k−1(m)−T (m)

σ(m)
)

 . (3.37)

Revisiting Rxek , and using E(xk|k−1v
T
k ) = 0n×n since vk is uncorrelated white

Gaussian noise and E(xk|k−1) = xk|k−1, E(xk) = xk|k−1 and

E(xkx
T
k ) = E((xk − E(xk|k−1))(xk − E(xk|k−1))T)

+E(xk)E(xk)T

= Ψk|k−1 + xk|k−1x
T
k|k−1

(3.38)
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Rxek = (Ψk|k−1 + xk|k−1x
T
k|k−1)CTE(pk)

+xk|k−1T
T(Im×m − E(pk))− xk|k−1E(yk)T

−xk|k−1x
T
k|k−1C

TE(pk)

+xk|k−1T
T(Im×m − E(pk)) + xk|k−1E(yk)T)

= Ψk|k−1C
TE(pk)T

(3.39)

Repeat the above steps for Rxe to compute Ree

Reek = E(pk)C(Ψk|k−1 + xk|k−1x
T
k|k−1)CTE(pk)

+E(pkvkv
T
k pk) + E(pk)Cxk|k−1T

T(Im×m − E(pk))

−E(pk)Cxk|k−1E(yk)T + (Im×m − E(pk))TxT
k|k−1C

TE(pk)

+(Im×m − E(pk))TTT(1− E(pk))− (Im×m − E(pk))TE(yk)T

−E(yk)xT
k|k−1C

TE(pk)− E(yk)(Im×m − E(pk))TT

+E(yk)E(yk)T

= E(pk)CΨk|k−1C
TE(pk)T + E(pkvkv

T
k pk)T

(3.40)

where E(pkvkv
T
k pk)T is related to the scalar Equation 3.11. If Assumption 2 holds,

this is a diagonal matrix written as:

E(pkvkv
T
k pk)T = Diag


V ar[yk(1)|xk|k−1(1), σ(1)]

V ar[yk(2)|xk|k−1(2), σ(2)]
...

V ar[yk(m)|xk|k−1(m), σ(m)]

 (3.41)

where V ar[yk(i)|xk|k−1(i), σ(i)] is calculated according to Equation 3.11. Substituting

this optimal Kalman gain into Equation 3.28 yields the simplified covariance update

equations:

Ψk|k = (Im×m − E(pk)KkC)Ψk|k−1 (3.42)
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The complete Tobit Kalman filter is:

xk|k−1 = Axk−1|k−1

Φk|k−1 = AΨk−1|k−1A
T + Q

xk|k = xk|k−1 + RxekR
−1
eek

(yk − E(yk))

Ψk|k = (Im×m − E(pk)RxekR
−1
eek

C)Ψk|k−1

(3.43)

where Rxek is given by Equation 3.39, Reek is given by Equation 3.40, E(yk) is given

by Equation 3.8, and E(pk) is given by Equation 3.37.

3.3.5 Equivalence to the Standard Kalman Filter

The Tobit Kalman filter converges to the standard Kalman filter when the state

value is far away from the censoring region,

lim
xk|k−1−T

σ
→∞



Φ(
Cxk|k−1−T

σ
) = [1 1 ...]T

E(yk) = Cxk|k−1

R = σ2

Rxe = CΨk|k−1

Ree = CΨk|k−1C
T + R

Ψk|k = (Im×m −KkC)Ψk|k−1

(3.44)

so this formulation is a generalization of a standard Kalman filter. For state estimates

close to the censoring region the convergence is proportional to the distance to the

censoring limit and the measurement noise.

3.3.6 Estimation with the Tobit Kalman Filter

In this section the results from two experiments show the potential of the To-

bit Kalman filter. The first simulation is estimating constant value in the uncensored

region with a measurement noise large enough to cause a large proportion of measure-

ments to be censored. The next simulation is a Brownian motion model which have

disturbances as well as additive noise. The Tobit Kalman filter is compared to the

the intermittent measurements Kalman filter which is outlined in [16] . This filter
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operates as a Kalman filter until a missing measurement occurs, then it only predicts

the current state and covariance matrix and does not perform the a posteriori up-

date; so xk|k = xk|k−1 and Ψk|k = Ψk|k−1. The filter compared to here treats censored

measurements as missing measurements. Also used as a comparison is the standard

Kalman filter that treats censored values as regular measurements.

3.3.6.1 A Note on Computation

A Kalman filter for censored data has been derived by making an assumption

on the predictability of the amount of censorship. It is important to note that this

formulation only requires the extra complexity of computing m normal PDFs and m

normal CDFs at each iteration. These extra computations only need to be performed

once per iteration, after the predict stage.

3.3.6.2 Estimate a Constant Value

This example estimates a constant value of -.1 near a censoring region, with

noise σ = .1. The initial conditions are x0 = .1 and Ψ0 = .05, with Q = 10−14.

As shown in Figure 3.1 the Tobit Kalman filter converges to the true value. All

other methods are biased with their estimates remaining in the uncensored region.

In Figure 3.2 the experiment is repeated with a constant value of +0.1 with the

same noise value and initial conditions. Even when the value is above the censoring

limit, the other two methods result in a biased estimate, while the Tobit Kalman filter

is unbiased.

3.3.6.3 Brownian Motion

Brownian motion often leads to saturation issues in both MEMS sensors and

tracking with computer vision. The model is simple yet shows the tracking performance

of the proposed method in a disturbance-driven model. The data are generated from,

y∗k = αy∗k−1 + ηk (3.45)
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Choose α = .999 to dampen the natural divergence of the model, keeping it

close to the censoring limit. η is a normally distributed random variable with variance

0.01, and the measurements have noise σ = .05 and are left-censored at T = 0. The

initial conditions are x0 = .05 and Ψ0 = .05.

As shown in Figure 3.3, the standard Kalman filter’s estimates converge to the

censoring limit when the measurements are censored for a sufficient period. The Inter-

mittent Measurements Kalman Filter only updates when measurements are not cen-

sored, resulting in an unstable covariance matrix as described in [16]. The divergence

in the state error covariance matrix for the Intermittent Measurements formulation can

be seen between samples 350 and 400. By comparison, the state error covariance of the

Tobit Kalman filter grows much more slowly. Its size remains bounded by the distance

from the estimated latent variable position from the censoring limit even during long

periods of censored measurements.

3.3.6.4 Oscillator

The following example has dynamics following Equation 5.40 with the state

space matrices

A = α

cos(ω) −sin(ω)

sin(ω) cos(ω)

 (3.46)

C =
[
1 0

]
(3.47)

This experiment shows a robust tracking ability with a known model and un-

known disturbance that enters the system through wk. In this example, α = 1, the

disturbance is normally distributed with variance of 0.01 and is uncorrelated to the

measurement noise which is normally distributed with variance of 0.1. The initial

conditions are x0 = [0 0]T and Ψ0 = .05I2x2

Figure 3.4 show that when the measurements are being censored the output of

the Tobit Kalman filter closely tracks the actual values while the Kalman filter for
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the intermittent measurements method has a positive bias due to its placing heavy

emphasis on stray non censored data. Around sample 1350 in the figure the intermit-

tent measurements Kalman filter quickly converges to a stray measurement due to an

inflated Ψ, caused by the update stage not being computed for several samples. The

Tobit Kalman filter would accept this noise measurement as spurious an not converge

to it rapidly.

In the second half of Figure 3.4 the estimate of the unmeasured second state is

plotted against its true value.

3.4 Estimation with a Time-Varying Censoring Limit

The question is now put forward, what happens if the censoring limit is time-

varying? As mentioned briefly in the preceding derivation, the structure of the Kalman

filter formulations for time-varying and time-invariant systems are identical. The time-

invariant system, and subsequent filter, is a special-case of the more general time

varying system, in which system matrices are constant over time. Thus, use of the

time-invariant system allows for the dropping of time indices from the system ma-

trices, permitting cleaner notation and convergence to steady state values under the

appropriate conditions.

The Tobit Kalman filter also does not have a change in formulation between

time-varying and time-invariant systems, in accordance with the standard Kalman

filter. This duality also extends to the censoring limit T . However, unlike the standard

Kalman filter, it will be shown that the presence of censoring means that it cannot

be assumed that a time-invariant Tobit Kalman filter converges to a steady state.

However, if control of censoring limit T is possible, without error, then a predictable

steady Tobit Kalman filter can be achieved. Thus far been assumed that the censoring

limit is known a priori with no error. Consideration of a filter with a time-varying

stochastic censoring limit is considered to be beyond the scope of this work and is a

topic of considerable future research.
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3.4.1 The Steady State Kalman Filter

It is well known that with time invariant systems with white stationary process

noise and white stationary measurement noise, the standard Kalman filter gain and

covariance may converge to steady state values, given certain conditions.

Given the LTI system

xk+1 = Axk + Gwk

yk = Cxk + vk

(3.48)

With

E(wkw
T
k ) = Q

E(vkv
T
k ) = R

(3.49)

Summarizing the Kalman filter definition given previously, then

x̂k+1|k+1 = Ax̂k+1|k + Kk+1

(
zk+1 −Cx̂k+1|k

)
Kk = APk|k−1C

T
(
CPk|k−1C

T + R
)−1

Pk+1|k = APk|k−1A
T −KkCPk|k−1A

T + GQGT

(3.50)

Under the conditions that Q is positive definite,
(
A,G

√
Q
)

is controllable,

(A,C) is observable, then it can be shown that :

• There exists a steady state Kalman filter

• limk→+∞Pk+1|k = P−∞

• limk→+∞Kk = K∞

• P−∞ is the solution to the algebraic Ricatti equation given by :

P−∞ = AP−∞AT −AP−∞CT
(
CP−∞CT + R

)−1
CP−∞AT + GQGT

• K∞ = P−∞CT
(
CP−∞CT + R

)−1
• P−∞ is unique, finite, and positive-semidefinite

• P−∞ is independent of P0, given that P0 ≥ 0

• The resulting steady state Kalman filter is asymptotically unbiased
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Often, for reasons of convenience and computational speed, the final steady

state formulation of the Kalman filter is utilized in practical estimation applications.

Although rate of convergence from initial conditions may be slower, the tradeoff for

lower memory footprint and faster computation is largely beneficial for long term appli-

cations in which initial conditions are of little concern. As long as the given conditions

on system dynamics and noise parameters are met, convergence is guaranteed and ini-

tial error may be of little consequence. Furthermore, utilization of fixed Kalman gain

K∞ allows for leveraging of many linear control techniques to analyze estimator and

closed-loop performance, as shown in the next chapter.

3.4.2 The Steady State Tobit Kalman Filter

The presence of censoring, even time-invariant censoring, precludes the Tobit

Kalman filter from converging to a steady state for time-invariant systems. This is

because the condition that measurement noise is stationary and white is violated when

the true state is near the censored region. Thus, variance R is no longer a time-

invariant parameter, thus covariance P and Tobit Kalman gain K does not converge.

The Tobit measurement variance is given by 3.11.

However, this result is not altogether disappointing. One would expect that

when the true state enters the area near the censoring region, and measurements begin

to become censored, that practical state information is being lost and error covariance

should therefore rise, reflecting higher state estimation uncertainty when near or in

the censored region. As has already been shown, naive use of a Kalman filter with

a time-invariant system in the presence of censoring leads to convergence to steady

state covariance and gain, however the model from which these values result is no

longer valid. Therefore state estimation with the standard Kalman filter becomes

biased while giving no indication that censoring is present via its error covariance.

The Tobit Kalman filter, although not converging to a steady state, increases its state

error covariance accordingly to counter-act the reduction of useful information due to

censoring. Thus the Tobit Kalman filter can react to censoring in such a manner that
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the Tobit gain updates, the error covariance grows, and a more accurate measure of

state uncertainty can be calculated.

But the question still remains, what if censoring limit T can be changed? One

would imagine that if T is managed in such a way that the censoring region always

remains a fixed distance away from the state and state estimates, that Tobit parameters

relying upon this relationship will stabilize. In fact, if T is controlled in such a manner

that a certain expectation of censoring is maintained at all times, it is found that the

inverse mills ratio and Tobit variance remain fixed. Thus, the conditions for a steady

state filter are recovered, and a modified Ricatti equation can be used to calculate a

new steady state Tobit Kalman filter. For example, consider the system given by :

xk = Axk−1 + Buk + wk−1

y∗k = Cxk + Duk + vk

yk =

 y∗k, y∗k < T

T, y∗k ≥ T

(3.51)

The Tobit a priori state estimate x̄ and state estimate covariance Ψ̄ given by :

x̄ = Ax̂ + Bu

Ψ̄ = AΨ̂AT +Q
(3.52)

For convenience, define the estimated latent measurement and probability of

measurement being uncensored as :

Ȳ = Cx̄ + Du

αi = (Ti−Ȳi)
σi

Epk = diag


Φ(α1)

Φ(α2)

...


(3.53)
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The inverse mills ratio, expected measurement, and measurement variance can

then be defined as :

E(y) =


φ(α1)(Ȳ (1)− σ1IMR(1)) + Φ(α1)

φ(α2)(Ȳ (2)− σ2IMR(2)) + Φ(α2)

...



IMR =


φ(α1)
Φ(α1)

φ(α2)
Φ(α2)

...



V = diag


σ2

1(1− IMR(1)2 − IMR(1)α1))

σ2
2(1− IMR(2)2 − IMR(1)α2))

...



(3.54)

Then the Tobit Kalman filter can be rewritten as :

Rxe = Ψ̄CTET
pk

Ree = EpkCΨ̄CTET
pk + V

K = Rxe(Ree)−1

x̂ = x̄ + K(y − E(y))

Ψ̂ = (INxN −KEpkC)Ψ̄

(3.55)

If T is chosen such that Epk = Ξ for a given Ξ, then α = Φ−1 (Ξ), and the

inverse mills ratio and variance remain constant. This is accomplished by defining

T = Ȳ + σΦ−1(Ξ) (3.56)

Which results in

V→ υ

C→ ΞC

K→ Ψ̄(ΞC)TΨ̄((ΞC)Ψ̄(ΞC)T + υ)−1

(3.57)
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With a linear time invariant system, given the definition of T above for a given

Ξ, a Tobit Kalman filter is defined which mirrors a standard Kalman filter for a mod-

ified time invariant system. Measurement matrix C has been replaced by ΞC and

measurement variance R goes to υ. Using the assumption that υ is stationary, then

a steady state Tobit Kalman filter can be found if the corresponding conditions are

met, namely that
(
A,
√

Q
)

is controllable and (A,ΞC) is observable. Furthermore,

the new Tobit steady state gain K∞ and error covariance Ψ̄−∞ can be found by solving

the Ricatti equation with the corresponding Tobit parameters.

Since the expectation of censoring and the inverse mills ratio are now calculable

to a pre-determined value, the expected measurement can the be defined as

E[y] = Ξ(Cx̂− σλ̂) + (1− Ξ)T (3.58)

and therefore, the state estimate is then given by

ẋ = Ax̂+ L(z − E[y])

= Ax̂+ L(z − (Ξ(Cx̂− σλ̂) + (1− Ξ)T ))
(3.59)

where the expection of the measurement z is given by

E[z] = (γ(Cx− σλ) + (1− γ)T )) (3.60)

Assume initial convergence of the state and state estimate, then γ ≈ Ξ and

λ ≈ λ̂, and therefore

˙̂x = A ˙̂x+ L(ΞCx− ΞCx̂)

= (A− LΞC)x̂+ L(ΞCx)

That is, the original uncensored dynamics of the filter are recovered, save for

the addition of the censoring factor Ξ, which is determined by the user.

The same principals apply for the discrete time system, leading to

Tk = Cx̂k + σΦ−1(Ξ) (3.61)
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and, assuming initial convergence,

xk+1 = Axk + wk

x̂k+1 = (A− LΞC)x̂k + L(ΞCxk)

3.4.3 Application of a Time Varying Censoring Limit

Usage of a time varying censoring limit with the preceding definition has pow-

erful implications. By specifying the parameter Ξ, the user can dictate the level of

censoring present at any given time, assuming the implications of physically realizing

the desired value T are disregarded for the time being. Because the level of censoring

is constant, the all Tobit related parameters resolve to fixed values, and a steady state

Tobit Kalman filter can be found if the sufficient conditions are met.

For example, consider the scenario of tracking a noisy oscillating signal, such

as that from a common place accelerometer. The general approach to avoid censoring

and capturing the highest dynamic range would be to run the associated analog to

digital converter at its maximum power level, say five volts. However, in the interests

of saving power for mobile applications, it may be far more desirable to run the ADC

at three volts, and trade the limited dynamic range for longer battery life. With Tobit

Kalman filter this tradeoff is no longer necessary. One can either run at the lower

power level indefinitely, and use the full Tobit Kalman filter to estimate the signal

when accelerometer enters the censored region of three to five volts. Another approach

would be to dynamically change the power level at all times to accomplish a specified

level of censoring, therefore state estimation accuracy, and maintain optimum battery

life while doing so. Both scenarios are shown below, and it is shown that highly accurate

signal tracking can be performed without the need for the full five volt dynamic range.
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Figure 3.1: Constant value below the censoring limit
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Figure 3.2: Constant value above the censoring limit
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Figure 3.3: Brownian Motion
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Figure 3.4: Sinusoidal Model
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Figure 3.5: Changing the censoring limit T to maintain a constant expectation of
censoring.
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Chapter 4

INTRODUCTION TO LINEAR CONTROL THEORY

This chapter covers introductory material related to linear systems theory and

basic linear control design. Topics ranging from linear system representation to stability

and output feedback are covered. This background material is presented with the

intent of providing what is necessary to understand the more advanced concepts and

conjectures to put forth in later chapters. A more detailed and rigorous discussion of

these topics can be found in any undergraduate control course textbook.

4.1 Basic Concepts of Linear Control Theory

In order to understand the control concepts and designs to be discussed, it is

first necessary to understand the basic underlying principals of linear systems; namely

their representation and properties.

4.1.1 State-Space Linear Systems

A linear state-space system takes the form of :

ẋ(t) = A(t)x(t) +B(t)u(t), x ∈ <n, u ∈ <k

y(t) = C(t)x(t) +D(t)u(t), y ∈ <m
(4.1)

Here x(t) is the system state, u(t) is the input, and y(t) is the output. Each

signal is a function of time and may be represented as continous (as shown), or discrete.

For continuous time t belongs to the set of all real numbers, whereas in discrete time t

belongs to the set of integers. A scalar signal is that in which the signal is of dimension

one. Thus, a scalar input would be u in which k = 1, also known as a single input.

An input with k > 1 is called multiple input. Likewise, a single output is a scalar
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signal y with m = 1, otherwise the output is known as multiple output. Therefore, a

multi-dimensional multiple-input multiple-output (MIMO) system has k > 1,m > 1,

and a scalar single-input single-output (SISO) system has k = 1,m = 1.

If the system matrices A(t), B(t), C(t), D(t) are constant for all time t, and are

thus not a function of time, then the system is called linear time-invariant (LTI). For

such systems the time index may be dropped for convenience. Otherwise, the system

is linear time-varying (LTV).

For discrete time linear state-space systems

x(t+ 1) = A(t)x(t) +B(t)u(t), x ∈ <n, u ∈ <k

y(t) = C(t)x(t) +D(t)u(t), y ∈ <m
(4.2)

All terms and relations defined previously for the continuous time system hold

for the discrete time system as well. The only difference being that for discrete time

systems the time index is defined over the domain of all integers, as previously noted.

Therefore the state equations for continuous time systems represents a differential

equation, whereas the discrete time system represents a difference equation.

4.1.2 Local Linearization of Nonlinear Systems

A nonlinear state-space system is a more generalized form of 4.1 in which the

continuous time differential equation takes the form of :

ẋ(t) = f(x, u, t), x ∈ <n, u ∈ <k

y(t) = g(x, u, t), y ∈ <m
(4.3)

Linear state-space systems are special cases of 4.3 in which the function f is

linear. However, linear systems are often approximations to more complex nonlinear

systems. A common method of analyzing nonlinear systems is to create a local linear

approximation to the nonlinear system. How to use to equilibrium points to do so is

covered next.

An equilibrium point of 4.3 is any point (xeq, ueq) ∈ <n×<k such that f(xeq, ueq) =

0. At such a point, 4.3 has a defined solution given by u(t) = ueq, x(t) = xeq, and
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y(t) = g(xeq, ueq) for all time t ≥ 0. Any perturbation δu(t) added to input ueq, and

or perturbation δxeq away from initial condition x(0) = xeq, results in a slight per-

turbation of output y from equilibrium output yeq. To understand the effect of these

perturbations define the following :

u(t) = ueq + δu(t), ∀t ≥ 0

x(0) = xeq + δxeq (4.4)

Then,

δx(t) := x(t)− xeq

δy(t) := y(t)− yeq

= g(x, u)− yeq

= g (xeq + δx, ueq + δu)− g(xeq, ueq)

(4.5)

Taylor series expansion of f(·) and g(·) is then performed about the aforemen-

tioned equilibrium point (xeq, ueq), resulting in :

δẋ = ∂f(xeq ,ueq)
∂x

δx+ ∂f(xeq ,ueq)
∂u

δu+O (||δx||2) +O (||δu||2)

δy = ∂g(xeq ,ueq)
∂x

δx+ ∂g(xeq ,ueq)
∂u

δu+O (||δx||2) +O (||δu||2) (4.6)

The higher order terms in 4.6 can be dropped, resulting in the local linearization

of 4.3 about equilibrium point (xeq, ueq) as given by :

δẋ = Aδx+Bδu

δy = Cδx+Dδu
(4.7)
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Where,

A := ∂f(xeq ,ueq)
∂x

B := ∂f(xeq ,ueq)
∂u

C := ∂g(xeq ,ueq)
∂x

D := ∂g(xeq ,ueq)
∂u

(4.8)

Matrices A,B,C, and D are called the Jacobian matrices of system. The system

given by use of the Jacobian matrices in 4.7 is an LTI system, which expresses the

relationship of the perturbations on the state, input, and output of 4.3. Note also

that 4.7 is a local linearization, and as such, is only valid for a small region about the

equilibrium point.

The local linearization for discrete time systems is analogous to that of the

continuous time systems considered before. The difference being that the discrete time

nonlinear system and discrete time local linearization are both now given by difference

equations as opposed to differential equations. Following the previous methodology,

the discrete time invariant system given by 4.9 can be linearized about equilibrium

point (xeq, ueq), resulting in local linearization given by 4.10, with Jacobian matrices

defined by 4.8.

x+ = f(x, u), x ∈ <n, u ∈ <k

y = g(x, u), y ∈ <m
(4.9)

δx+ = Aδx+Bδu

δy = Cδx+Dδu
(4.10)

4.1.3 Solutions to LTI Systems Using the Exponential Matrix

Consider the simple time-invariant system given by 4.11. This is a linear time

invariant homogenous system, in which the solution for x(t) is given by a linear map
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from initial condition x(0) by use of the matrix state transition matrix Φ(x, x0), (4.12).

ẋ = Ax, x(t0) = x0 ∈ <n (4.11)

x(t) = φ(t, t0)x0, x0 ∈ <n, t ≥ 0 (4.12)

The LTI and LTV systems the state transition matrix encompasses the complete

dynamics of x from initial condition (x0, t0) to desired point (x, t) via the integration

given by 4.13.

φ(t, t0) := I +
∫ t
t0
Ads1 +

∫ t
t0

∫ s1
t0
A2ds2ds1 + . . .

=
∑∞

k=0
(t−t0)k

k!
Ak

(4.13)

For CLTI systems 4.13 simplifies to a matrix exponential of A, defined by 4.14,

and leading an exact solution for the state transition matrix given by 4.15.

eA :=
∑∞

k=0
1
k!
Ak (4.14)

φ(t, t0) = eA(t−t0) (4.15)

By use of the matrix exponential for CLTI systems, there is now a defined

solution for x(t) for all t ≥ 0. Replacing the state transition matrix of 4.12 with the

matrix exponential definition of 4.15, results in the following complete description of

the solution to non homogenous linear time invariant systems for all t ≥ 0 4.16.

x(t) = eA(t−t0)x0 +
∫ t
t0
eA(t−τ)B(τ)u(τ)dτ

y(t) = CeA(t−t0)x0 +
∫ t
t0
CeA(t−τ)B(τ)u(τ)dτ +Du(t)

(4.16)

Solutions to discrete time linear systems follow from that of continuous time

systems, with the state transition matrix being defined via summation rather than

integration.
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4.2 Stability

Now that a solution for linear time varying and linear time invariant homogenous

systems has be defined, the next question to answer is when do these systems permit

stable solutions? First, the very notion of stability is discussed and two differing

definitions are defined; stability in the Lyapunov sense, and bounded-input bounded-

output stability.

In general, when one wishes to determine the stability of solutions to linear

systems, one seeks conditions which guarantee well behaved evolution of the systems

state over time. For systems meeting certain conditions, stronger notions of stability

such x(t)→ 0 as t→∞, may be guaranteed. The notion of stability in the Lyapunov

sense is presented first, in which the affect of initial conditions on the stability of

the homogenous system is considered. Then bounded-input bounded-output (BIBO)

stability is defined, which focuses attention on the input-output behavior of the system

over time.

4.2.1 Lyapunov Stability

Conditions of stability in the Lyapunov sense pertain to the stability of homo-

geneous systems with regards to initial conditions. That is, in the absence of input u,

how does the system evolve over time t from initial condition (x, t0). Systems which

are well-behaved, i.e. do not grow without bound to infinity, are said to be stable.

Systems which permit stability without restriction on the initial state are said to be

globally stable, whereas systems which permit stability only defined regions are said to

be locally stable.

A marginally stable system meets the criteria as defined in 4.17.

x(t0) = x0 ∈ <n

x(t) = Φ(t, t0)x0, ∀t ≥ 0
(4.17)

A system which is marginally stable has a closed form solution for all times

t ≥ 0, however no conditions on the value of this solution are given.
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An asymptotically stable system meets the criteria as defined in 4.18.

x(t)→ 0 as t→∞ (4.18)

A system which is asymptotically stable is marginally stable, with the additional

property that the solution converges to the origin as t goes to infinity. In this sense,

the system is ”well behaved”. When the system remains asymptotically stable given

any initial condition in the set of all possible initial conditions, the system is said to

globally asymptotically stable. Otherwise, the system is said to be locally asymptotically

stable about x0.

An exponentially stable system meets the criteria as defined in 4.19.

∃ constants c, λ > 0 such that ∀x(t0) = x0 ∈ <n

‖ x(t) ‖≤ ce−λ(t−t0) ‖ x(t0) ‖ (4.19)

A system which is exponentially stable is asymptotically stable, with the addi-

tional property that the solution converges to the origin in finite time. That is, there

exists some function which converges to the origin and upper bounds the systems solu-

tion. When the system remains exponentially stable given any initial condition in the

set of all possible initial conditions, the system is said to globally exponentially stable.

Otherwise, the system is said to be locally exponentially stable about x0. Exponential

stability is the strongest condition for system stability in the Lyapunov sense.

When the eigenvalues of A have strictly negative real parts it is said that A

is a stability matrix. It can be shown that homogeneous CLTI systems where A is a

stability matrix are exponentially stable. This can be seen in 4.20 by using the solution

for x(t) given by that of 4.16 with zero input, and setting λ equal to the maximum
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eigenvalue of A, therefore :

‖ eAt ‖ ≤ ce−λt, ∀t ∈ <

‖ x(t) ‖ = ‖ eA(t−t0)x0 ‖ ≤ ‖ eA(t−t0) ‖‖ x0 ‖ ≤ ce−λ(t−t0) ‖ x0 ‖, ∀t ∈ < (4.20)

The magnitude of the state is upper bounded by an exponential function which

decays at a rate determined by the maximum eigenvalue of A. Since this upper bound

is always decaying, the system is always decaying, and eventually converges to zero.

Thus the system is exponentially stable.

The definitions for marginal stability, asymptotic stability, and exponential sta-

bility hold for discrete time systems as well. As for CLTI systems, exponential stability

for DLTI systems can be shown if again A is a stability matrix. This follows from the

discussion of 4.20, except now

‖ x(t) ‖≤ cλt−t0 ‖ x(t0) ‖
(4.21)

4.2.2 Stability of Linearization

In the previous section the stability of linear systems was discussed, but what

can be inferred about the stability of systems with the non-linear form of 4.3? As

shown in section 4.1.2, this type of system may be linearized by use of the Jacobian A

to the following form :

ẋ = f(x), x ∈ <n

˙δx = Aδx (4.22)
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As before, the perturbation about the equilibrium point is defined as δx :=

x− xeq. If A is conditioned as in the previous section then

‖ x(t)− xeq ‖ ≤ ce−λ(t−t0) ‖ x(t0)− xeq ‖, ∀t ≥ t0

‖ δx ‖ ≤ ce−λ(t−t0) ‖ x(t0)− xeq ‖
(4.23)

A ball of radius epsilon can then be shown to exist such that

x(t) ∈ ε⇒ v̇ ≤ −1
2
‖ δx ‖2

for suitable Lyapunov function candidates v. Should the norm term remain positive

for all x(t), then the Lyapunov derivative remains negative for all t, representing a

decrease in system energy overtime, and therefore system stability.

4.2.3 Bounded-Input Bounded-Output Stability

The previous discussion on stability in the Lyapunov sense considered only the

evolution from initial conditions and pertained only to homogeneous systems. BIBO

stability however address the stability of non-homogeneous systems without regard to

initial conditions. The notion of BIBO stability is defined by :

sup
t∈[0,∞]

‖ yf (t) ‖≤ g sup
t∈[0,∞]

‖ u(t) ‖
(4.24)

If a system is stable in the BIBO sense then a finite input produces a finite

output, for all time t.

4.3 State Feedback

Having presented a preliminary discussion on the nature of linear system repre-

sentation and stability, consider now a discussion of various feedback control techniques

via the utilization of input u. The goal of any feedback system is to drive the system

to a desired state in a stable manner. Furthermore, it is desired that stable feedback

control laws can be guaranteed to exist, that certain performance characteristics can be

understood and calculated, and that optimal feedback laws can be found to accomplish

given criteria.
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Begin this discussion on feedback by considering the following definition for u,

in which the control input is taken to be a proportional gain on the full system state

x, given by :

u = -Kx (4.25)

Which in turn results in :

ẋ = Ax+Bu

= (A−BK)x (4.26)

It can be shown that if the pair (A,B) is stablizable then there exists such a

K that the state feedback law stabilizes the CLTI system. That is, (A − BK) is a

stability matrix.

Difficulty arises in practical implementations of state feedback controllers be-

cause the true state x is not always available for control. In the absence of noise, if the

linear measurement map y = Cx is invertible then the true state can be recovered from

the measured outputs, given that there are as many unique measurements as there are

unknown states. However, if this is not the case, then x must be reliably estimated in

order for stable feedback to be accomplished. This is the driving factor for the rest of

the discussion.

4.4 Output Feedback and State Observers

If only the output y can be measured then state feedback law given by 4.25 can-

not be utilized directly. However, If (A,C) is detectable then x can be estimated. The

simplest state estimator, as referred to as a state observer, is the open-loop estimator.

The open-loop estimator is simply a copy of the original system which takes the same

input as the normal system. That is :

˙̂x = Ax̂+Bu (4.27)
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Using this state estimate, define the error e between the true system state x and

the state estimate x̂ as follows :

e := x̂− x

ė = Ax̂+Bu− (Ax̂+Bu)

= Ae
(4.28)

The system input is cancelled, for it is equivalent in both the original system and

the open-loop estimator. Thus a linear homogeneous system results. As shown in the

previous section, if A is a stability matrix then this error system is exponentially stable,

meaning that the error between the true state x and the state estimate x̂ converges to

zero over time.

However, improved performance can be gained by incorporating the system

outputs into the state estimation. Consider the estimator given in 4.29, in which the

estimated output is defined by a copy of the original system output model except now

with the estimated state instead of the true state. The state estimate is calculated by

summation of the open-loop estimator with a difference term between this expected

output and the actual output.

ŷ := Cx̂+Du

˙̂x = Ax̂+Bu− L (ŷ − y) , L ∈ <n×m (4.29)

The additional term L(ŷ − y) acts as a correction factor. Again, defining the

state estimation error e as :

e := x̂− x

ė = Ax̂+Bu− L (ŷ − y)− (Ax+Bu)

= (A− LC)e
(4.30)
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See that If (A − LC) is a stability matrix then the state estimation error con-

verges to zero exponentially fast. Furthermore, compared to the open-loop estimator,

the gain factor L my be designed in such a way that (A − LC) is a stability matrix,

even though A alone is not. This is very powerful, because it means that an exponen-

tially stable state estimators may be made for systems which are not inherently stable

themselves.

4.4.1 Stabilization via Output Feedback

Consider the CLTI system given by :

ẋ = Ax+Bu

y = Cx+Du (4.31)

With state estimator given by :

˙̂x = Ax̂+Bu− L (ŷ − y)

ŷ = Cx̂+Du (4.32)

It has already shown in section 4.3 that even if A is not a stability matrix, there

may exist a gain K such that the state feedback law u = −Kx stabilizes the system.

It has also been shown that even if A is not a stability matrix, a state estimator of the

form given by 4.29 can still produce exponentially stable state estimates x̂. Therefore,

if the state is not directly available for feedback, one may use the state estimate can

be utilized for feedback instead. A controller of this form is known as a certainty

equivalence controller, and leads to :

u = −Kx̂
(4.33)
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Combining terms, now have a state estimation model is given in the form of

˙̂x = Ax̂−BKx̂− L (Cx̂−DKx̂− y)

= (A− LC −BK + LDK) x̂+ Ly (4.34)

Now consider once again the error defined by e = x̂ − x, with ė = (A − LC)e,

as shown in 4.30. Thus :

ẋ = Ax+Bu

= Ax−BKx̂

= (A−BK)x−BKe
(4.35)

From these results a new state-space model can be created with state x = [x′e′]′,

shown below.

 ẋ

ė

 =

 A−BK −BK

0 A− LC

 x

e


(4.36)

The diagonal nature of this matrix gives rise to the separation principal, which

states that gains K and L may be design separately such that (A − BK) and (A −

LC) respectively are stability matrices. Thus the the state estimation law and the

associated certainty equivalent state feedback law may be designed independently from

one another.

4.5 LQR & LQG Control

This section looks to expand the discussion on state and output feedback and

introduce notions of optimal control. The goal of Linear Quadratic Regulation (LQR)

is to find gain K for state feedback controllers which optimizes the balance of control

effort verses system output. Likewise, the goal of Linear Quadratic Gaussian estimation

68



is to find gain L to optimize the state estimation of x given assumptions on noise present

in the system.

4.5.1 Linear Quadratic Regulation

Consider the following system

ẋ = Ax+Bu

y = Cx

z = Gx+Hu

(4.37)

Where y is the measured output and z is the output to be controlled (y may

equal z).

As mentioned, the LQR problem seeks a solution for K which stabilizes the

system, and optimally minimizes the energy of the system. More specifically, one seeks

to find u(t) such that the following is minimized :

4.5.2 Linear Quadratic Regulation

JLQR :=
∫∞

0
y(t)

′
Q̄y(t) + u(t)

′
R̄u(t)dt (4.38)

The weighting matrices Q and R determine the tradeoff between control energy

and output energy. Intuitively, a low energy control input comes at the expense of

a higher energy output, and a low energy output necessitates a large control input.

These two goals conflict, and LQR seeks to minimize the total energy subject to the

weighting defined by the control designer.

A more general quadratic form of the JLQR criterion is given by

JLQR :=
∫∞

0
x(t)

′
Qx(t) + u(t)

′
Ru(t) + 2x

′
Nu(t)dt (4.39)

The criterion given in 4.38 is a special case of 4.39 in which Q = G′Q̄G,R =

H ′Q̄H + R̄, and N = G′Q̄H.
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As is shown in [12], if a symmetric matrix P can be found which solves the

following algebraic Riccati equation

A
′
P + PA+Q−

(
PB +N)R−1(B

′
P +N

′)
= 0

(4.40)

and (A − BR−1(B′P + N ′) is a stability matrix, then there exists a feedback

law of form

u = −Kx

K := R−1
(
B
′
P +N

′) (4.41)

which minimizes the JLQR criterion of 4.39. The resulting closed-loop form of

the system is then

ẋ =
(
A−BR−1

(
B
′
P +N

′))
x

ẋ = (A−BK)x (4.42)

Since the choice of K in 4.41 minimizes the JLQR criterion, it said to be an

optimal control.

Assuming that N := G
′
H = 0 then the above algebraic Ricatti equation sim-

plifies to

A
′
P + PA+G

′
G− PBR−1B

′
P = 0 (4.43)

and again if a symmetric matrix P exists which solves 4.43 and stabilizes (A−

BR−1B′P , then the optimal control law and resulting closed-loop system simplifies to

u = −Kx

K := R−1B
′
P

ẋ =
(
A−BR−1B

′
P
)
x

ẋ = (A−BK)x

(4.44)
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In this form two important transfer functions can be found which are useful for

in describing frequency domain properties of LQR controllers.

L̂(s) = K(sI − A)−1B

T̂ (s) = G(sI − A)−1B +H (4.45)

These two open-loop transfer matrices are from the process input to controller

input, and control input to controlled output, respectively. Many important prop-

erties and characteristics of LQR controllers can be obtained via frequency domain

manipulations of these transfer functions, [?].

4.5.3 Minimum Energy Estimation

As mentioned in 4.4, the full state x is often not available for use in state

feedback controllers, and instead a state estimate x̂ must be constructed. When the

state estimate is used for feedback in place of the true state the resulting controller is

said to be certainty equivalent. However, the system given by 4.31 is often not exact in

practical use of LTI models. Instead, a system of the following form is more appropriate

˙̄x = Ax+Bu+ B̄d, x ∈ <n, u ∈ <k, d ∈ <q

y = Cx+ n, y ∈ <m
(4.46)

Here, terms d and n represent disturbance and measurement noise, respectively.

The goal of Minimum Energy Estimation (MEE) is to construct an optimal state ob-

server for x which can be used in a certainty equivalent controller. This is accomplished

by finding x̄, defined by the model in 4.47, which is consistent with past inputs and

measurements for the least amount of noise d and n.

˙̄x = Ax̄+Bu+ B̄d, x̄ ∈ <n, u ∈ <k, d ∈ <q

y = Cx̄+ n, y ∈ <m
(4.47)
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The total amount of noise is measured according to the following criterion

JMEE :=
∫ t
−∞ n(τ)

′
Qn(τ) + d(τ)

′
Rd(τ)dτ

(4.48)

When an optimal solution for x̄ is found, then the MEE state estimate is simply

x̂ = x̄. It can be seen that 4.48 is of a similar form to the JLQR criterion of 4.5.1,

and as before, the weighting matrices Q and R play important roles. Varying Q and

R in the JMEE criterion effectively changes the balance between the belief in the

system outputs versus belief in the system model. When Q is large compared to R,

then the noise term n is forced small, measured outputs are trusted, and the resulting

state estimator quickly reacts to variations in y. When R is large compared to Q then

disturbance d is forced small, the previous state estimates are trusted, and the resulting

state estimator reacts slowly to variations in y.

Again, moving to a quadratic criterion, now of the form

JMEE :=
∫ t
−∞ (Cx̄(τ)− y(τ))

′
Q (Cx̄(τ)− y(τ)) + d(τ)

′
Rd(τ)dτ

(4.49)

and using arguments similar to that of 4.5.1, it can be shown that if there is a

symmetric matrix P which solves the algebraic Ricatti equation given by

(−A′)P + P (−A) + C ′QC − PB̄R−1B̄
′
P = 0

(4.50)

and (−A− B̄R−1B̄′P is a stability matrix, then the minimum energy estimator

for 4.46 is given by

L := P−1C
′
Q

˙̂x = (A− LC)x̂+Bu+ Ly
(4.51)
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With x̂ given by 4.51, the convergence of estimator is shown by again defining

the error as :

e = x̂− x

ė = ˙̂x− ẋ

= (A− LC)e+ B̄d− Ln
(4.52)

(A−LC) is a stability matrix, thus e(t)→ 0 as t→∞ when no noise is present,

thus the closed loop system is exponentially stable. When noise is present e does not

converge to zero, however it is bounded according to d and n, and therefore the closed

loop system is BIBO stable.

4.5.4 Linear Quadratic Gaussian Estimation

Assume now that the noise and disturbance present in 4.46 are uncorrelated zero-

mean white Gaussian processes. Also, assume that the respective covariance matrices

are given by

E [d(τ)d′(τ)] = δ(t− τ)R−1

E [n(τ)n′(τ)] = δ(t− τ)Q−1 (4.53)

The MEE estimator previously given by 4.51 now describes the Kalman filter.

As shown by the previous discussion on the Kalman filter, the estimator minimizes the

asymptotic norm of the estimation error.
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4.5.5 Combining LQR and LQG For Output Feedback

Consider the following CLTI system, in which disturbance d and measurement

noise n are assumed to be zero-mean white Gaussian processes

ẋ = Ax+Bu+ B̄d, x ∈ <n, u ∈ <k, d ∈ <q

y = Cx+ n, y ∈ <m

z = Gx+Hu, z ∈ <l
(4.54)

The optimal feedback controller designed by LQR can be combined with an LQG

state estimator to create an LQG/LQR output feedback controller of the following form

u = −Kx̂
˙̂x = (A− LC)x̂+Bu+ Ly

= (A− LC −BK)x̂+ Ly
(4.55)

Since LQR guarantees that (A−BK) is a stability matrix, and LQG guarantees

that (A− LC) is a stability matrix, the separation principal guarantees from 4.4 that

the resulting closed loop controller is asymptotical stable.
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Chapter 5

STABILITY OF THE TOBIT KALMAN FILTER

By leveraging the basic concepts from of the previous chapters it is shown un-

der what conditions the Tobit Kalman filter is a stable estimator for censored data.

Behavior of the Tobit Kalman filter as a state observer in both the homogeneous and

non-homogeneous case is explored, and it is shown that given certain conditions expo-

nential and BIBO stability can be recovered, despite the presence of censored regions.

The Jacobian of a Tobit Kalman observer is derived and it’s implications discussed.

5.1 Defining the Tobit State Space

Consider the following homogeneous DLTI system, which is right censored at

threshold T :

xk+1 = Axk + wk

y∗k = Cxk + nk

yk = h(xk) =


y∗k, y∗k ≤ T

T, y∗k > T

(5.1)

with TKF observer as shown in section 3.3 :

x̂k+1 = Ax̂k + L(yk − E[ŷk])

E[ŷk] = Φ
(
T−Cx̂k

σ

) [
Cx̂k − σλ

(
(T−Cx̂k)

σ

)]
+
(
1−Φ

(
T−Cx̂k

σ

))
T (5.2)
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At any time k, the expectation of the true measurement can be defined as

E[yk] = Φ
(
T−Cxk

σ

) [
Cxk − σλ

(
T−Cxk

σ

)]
+
(
1−Φ

(
T−Cxk

σ

))
T

(5.3)

For the purposes of cleaner notion, define the following as

γ = Φ
(
T−Cxk

σ

)
λ = λ

(
T−Cxk

σ

)
γ̂ = Φ

(
T−Cx̂k

σ

)
λ̂ = λ

(
T−Cx̂k

σ

) (5.4)

Here, γ represents the probability of true measurement being uncensored, λ is

the Inverse Mills Ratio of the true state, γ̂ is probability of the expected measurement

being uncensored, and λ̂ is the inverse mills ratio of the state estimate. Using these

definitions, the following relation can be found

E[yk] = γ(Cxk − σλ) + (1− γ)T

E[ŷk] = γ̂(Cx̂k − σλ̂) + (1− γ̂)T

E[L(yk − ŷk)] = L
(

[γ(Cxk − σλ) + (1− γ)T]−
[
γ̂(Cx̂k − σλ̂) + (1− γ̂)T

])
= L

(
γCxk − γ̂Cx̂k − γσλ+ γ̂σλ̂− γT + γ̂T

) (5.5)

Therefore 5.2 can be re-written as

x̂k+1 = Ax̂k + L
(
γCxk − γ̂Cx̂k − γσλ+ γ̂σλ̂− γT + γ̂T

)
(5.6)
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Re-arranging terms and grouping 5.6 with 5.1 results in the following state-space

description of the DLTI system with TKF observer

 ẋ

˙̂x

 =

 A 0

LγC A− Lγ̂C

 x

x̂

+

 0

L
(
σ
(
−γλ+ γ̂λ̂

)
− (γ + γ̂)T

) 
(5.7)

5.1.1 Effect of the Censoring Limit on the Tobit Kalman Filter

The formulation of 5.7 shows that for open-ended censoring the TKF is inher-

ently a non-linear time varying observer, even though the underlying system model

is time-invariant. Regardless of the value of x, terms γ̂ and λ̂ change in value as x̂

evolves. Further illuminated by this formulation however is effect of censoring limit T

as it is moved from one extreme to the other, summarized below in table 5.1.

T →∞ T → −∞

γ, γ̂ → 1

λ, λ̂ → 0

x̂k+1 → Ax̂k + L (Cx−Cx̂k)

γ, γ̂ → 0

λ, λ̂ →∞

x̂k+1 → Ax̂k

Table 5.1: The effecting of right handed censoring limit T on 5.7

The intuitive notion is reinforced that as censoring limit T is increased to∞ (the

no censoring case) then the TKF reduces to the standard minimum energy estimator

given by the Kalman filter. In contrast, as censoring limit T is lowered to −∞ (the

all-censored case), then the TKF reduces to the open-loop estimator.

As the true state and state observer move deep into the censoring region the

TKF observer seemlessly devolves into an open-loop predictor, as defined in 4.27. This

is not unexpected. The presence of open-ended censoring regions inherently presents

the possibility that the system may move into a region far away from the uncensored
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region, relative to the noise distributions of Q and R. In such regions, the probability

of censoring is extremely high and the censoring value T is repeatedly returned as the

measurement. Essentially, no new information is presented to the filter, as the censoring

limit is predicted as a measurement and is then returned as a measurement. The filter

is left with no better option than to open-loop predict the evolution of the state x

based off the system model. From these results it is proposed that if the system to be

estimated is open-loop stable, that is A is a stability matrix, then the resulting TKF

observer is stable regardless of the level of censoring. The TKF does no worse than

an open-loop predictor, and when both censored and uncensored measurements are

returned, it is at least as good, if not better than the standard Kalman filter. However,

for systems in which A is not a stability matrix, the stability of the accompanying TKF

observer cannot be guaranteed. Although, as shown previously, a Tobit-Kalman gain

L may be found which stabilizes the filter when near the censoring limit, if the state

evolves to deep into the censoring limit then open-loop prediction occurs, and the state

estimate may diverge at this time.

5.1.2 Error Convergence of the Tobit Kalman Filter

Going back to the state estimation error of a discrete time noisy homogeneous

system, where ek = xk − x̂k, for the standard LQG estimator the following system is

defined

xk+1 = Axk + wk

x̂k+1 = Ax̂k + L(yk − E[yk])

yk = Cxk + vk

E[yk] = Cx̂k

ek+1 = xk+1 − x̂k+1

= (A− LC)ek + wk − Lvk

(5.8)
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When censoring is present and a T.KF. estimator is utilized, then by use of 5.3

the system and state estimator may be re-modeled as

xk+1 = Axk + wk

x̂k+1 = Ax̂k + L(yk − E[y]k)

yk = γ(Cxk − σλ) + (1− γ)T

E[yk] = γ̂(Cx̂k − σλ̂) + (1− γ̂)T

(5.9)

The state estimation error dynamics can now be redefined as

ek+1 = Axk + wk −Ax̂k − L
(
γ(Cxk − σλ) + (1− γ)T− (γ̂(Cx̂k − σλ̂)− (1− γ̂)T)

)
= (A− LγC) xk − (A− Lγ̂C) x̂k + L(σ(γλ− γ̂λ̂) + (γ − γ̂)T) + wk

(5.10)

Recall that, by 5.5, the definition of γ and λ is given by

γ = Φ
(
T−Cxk

σ

)
γ̂ = Φ

(
T−Cx̂k

σ

)
λ = λ

(
T−Cxk

σ

)
=

φ
(
T−Cxk

σ

)
Φ
(
T−Cxk

σ

)
λ̂ = λ

(
T−Cx̂k

σ

)
=

φ
(
T−Cx̂k

σ

)
Φ
(
T−Cx̂k

σ

)
(5.11)

and therefore 5.10 can be re-written as

ek+1 = (A− LγC) xk − (A− Lγ̂C) x̂k + L
(
σ(φ(T−Cxk

σ
)− φ(T−Cx̂k

σ
)) + (γ − γ̂)T

)
+ wk

= (A− LγC) xk − (A− Lγ̂C) x̂k + L(σeφ + eγT) + wk

(5.12)

where,

eφ = φ
(
T−Cxk

σ

)
− φ

(
T−Cx̂k

σ

)
eγ = Φ

(
T−Cxk

σ

)
− Φ

(
T−Cx̂k

σ

) (5.13)
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By substitution of x̂k = xk − ek, equation 5.12 can be written entirely in the

form of xk and ek, and a complete description of the error dynamics is then given by

ek+1 =
(
A− LΦ

(
T−Cxk

σ

)
C
)
xk −

(
A− LΦ

(
T−C(xk−ek)

σ

)
C
)

(xk − ek)

+ L
(
σ
(
φ(T−Cxk

σ
)− φ(T−C(xk−ek)

σ
)
)

+
(
Φ(T−Cxk

σ
)−Φ(T−C(xk−ek)

σ
)
)

T
)

+ w

(5.14)

The above error dynamics consist of non-linear and state dependent terms of

both x and e, including an error injection term β, defined as

β=σ
(
φ(T−Cxk

σ
)− φ(T−C(xk−ek)

σ
)
)

+
(

Φ(T−Cxk
σ

)− Φ(T−C(xk−ek)
σ

)
)
T

=σeφ + eγT
(5.15)

Note that φ(·) is bounded on [0, 1
σ
√

2π
] and γ(·) is bounded on [0, 1]. Therefore

eφ is bounded on [− 1
σ
√

2π
, 1
σ
√

2π
] and γ is bounded on [−1, 1]. Thus β is bounded by

±
(

1
σ
√

2π
+ T

)
. If, under certain conditions, the asymptotic convergence of the above

error, combined with the existence of a unique stationary point at e = 0, can be found,

then the stability of the Tobit Kalman filter as state estimator with censored data will

be proven, for said conditions.

Assume a homogeneous system of the form given by 5.8, in which A is Schur

stable, then xk → 0, as k →∞. Therefore, the error dynamics go to

ek+1 =
(
A− LΦ

(
T+Cek

σ

)
C
)
ek + L

(
σ
(
φ(T

σ
)− φ(T+Cek

σ
)
))

+ L
((

Φ(T
σ

)−Φ(T+Cek
σ

)
)
T
)

+ w

=
(
A− LΦ

(
T+Cek

σ

)
C
)
ek + Lβ + w

(5.16)

The error dynamics have are now in the form of a state dependent difference

equation with a bounded injection term and white Gaussian noise. Sufficient conditions

for stability of time-varying linear systems of the form

uk+1 =Mkuk, k ∈ N0 (5.17)
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is shown by [13]. Here Mk represents a sequence of matrices with elements in

C(N×N). The first assumption is that the frozen systems uk+1 = Mnuk are exponentially

stable. Then, if M ∈ ΣK,ω,Γ for some (K,ω,Γ) ∈ R≥1 × R≥0 × R>0, then

||uk|| ≤ Kk−me−ω(k−m)||um|| ∀(k,m) ∈ {N0 × N0|n ≥ m} (5.18)

where ΣK,ω,Γ is the class of generators defined by

ΣK,ω,Γ :=

(Mk) ∈ (CN×N)N

∣∣∣∣∣∣ ∀ k,m ∈ N0 : ||Mm
k || ≤ Ke−ωm

∀ k,m ∈ N0 : ||Mk −Mm|| ≤ L|k −m|
(5.19)

and (CN×N)N is the set of all mapping from N to CN×N . Considering only the first

term of 5.16, and defining

Ak = A− LΦ(T+Cek
σ

)C (5.20)

a system can be defined of the form

ek+1 = Akek (5.21)

The time-varying system matrix of 5.21 is then considered as a special case of

the state dependent system matrix of 5.16, in which the set of all possible sequences of

Ak can be formed from the set all possible values of (A− LΦ
(
T+Cek

σ

)
C). Note again

that Φ
(
T+Cek

σ

)
m×m is diagonal, and

0 ≤ Φi,i ≤ 1 ∀ i ∈ Z|1 ≤ i ≤ m (5.22)

That is, each element of Φ is bounded by [0, 1], corresponding to the 100%

censored to 0% censored scenarios pertaining to the specified measurement. Thus, the

system matrix of 5.20 is well defined for all possible value of ek, and

∀(ek)k∈Z, Ak is exponentially stable
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Since A is assumed to be Schur stable, and (A − LC) is designed according to

the standard Kalman filter and is assumed to be Schur stable as well, then

∀(An)n∈N0 ∈ CN×N , ek+1 = Anek is exponentially stable (5.23)

Therefore all possible frozen time systems of 5.21 are exponentially stable and

the first condition for the stability of 5.21 is met. Next it is noted that

∀ k,m ∈ N0 : ||Ak − Am|| ≤ ||LC|| ≤ L|k −m| (5.24)

and

∀ k,m ∈ N0 : ||Amk || ≤ ||Am|| ≤ Ke−ωm (5.25)

Therefore, there exists A ∈ ΣK,ω,Γ for some (K,ω,Γ), and sufficient conditions

are met for the bound of form 5.18 for all solutions e of 5.21. Thus, it is proven that the

first term of 5.16 is bounded, but it remains to show that e = 0 is a unique stationary

point. First, it is easily shown via direct substitution that e = 0 is a stationary point,

for

ek+1 = 0 = L
(
σ
(
φ(T

σ
)− φ(T

σ
)
)

+
(
Φ(T

σ
)−Φ(T

σ
)
)
T
)

(5.26)

where the zero-mean white Gaussian noise term w has been omitted. If e = 0

is not a unique stationary point then, there must exist a solution to the following

e∞=
(
A− LΦ

(
T+Ce∞

σ

)
C
)
e∞ + L

(
σ
(
φ(T

σ
)− φ(T+Ce∞

σ
)
)

+
(
Φ(T

σ
)−Φ(T+Ce∞

σ
)
)
T
)

(5.27)

for which e∞ 6= 0. Re-arranging 5.27 to move the constant terms to the left

side, then the same condition can be restated as

−L(σφ(T
σ

) + Φ(T
σ

)T) =
(
A− LΦ

(
T+Ce∞

σ

)
C− I

)
e∞ − L

(
σφ(T+Ce∞

σ
)−Φ(T+Ce∞

σ
)T
)

(5.28)
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Therefore, if for a fixed level of censoring T , fixed measurement variance σ, Shur

stable system matrix A, fixed gain L, and the above condition only being satisfied for

e∞ = 0, all sufficient conditions for the convergence of e to a unique stationary point

defined by e = 0 are met. Thus, the Tobit Kalman filter estimator for censored data

meeting these conditions is an asymptotically stable unbiased estimator.

However, the use of a fixed L in 5.28 may not guarantee that e = 0 is the

only solution. In this case, it is possible for the error dynamics to converge to a non-

zero stationary point, and the filter no longer can be said to be unbiased. The error

dynamics still converge, as shown, and thus the filter remains stable, although the level

of bias may limit its usefulness. For simplicity, consider the scalar case in which C = I,

T = 0, and σ = 1. It is still assumed that A is Shur and L is designed to be positive

semi-definite and A− LC is Shur stable. Condition 5.28 then simplifies to

−Lφ(0) = (A− LΦ (e∞)− 1) e∞ − Lφ(e∞)

−L(φ(0)− φ(e∞)) = (A− LΦ (e∞)− 1) e∞

−Lφd = (A− LΦ (e∞)− 1) e∞

(5.29)

For

φd = φ(0)− φ(e∞) (5.30)

Note that, ∀e∞,

φ(0) = 1√
2π
≥ φd ≥ 0

A < 1

L ≥ 0

0 ≤ Φ(e∞) ≤ 1

(A− LΦ (e∞)− 1) < 0

(5.31)

Therefore, for a non-zero stationary point to exist, there must exist a non-zero e∞

which is a solution to 5.29 and meeting the conditions of 5.31. From 5.31 it is apparent

that −Lφd < 0, and since (A− LΦ (e∞)− 1) < 0, then for 5.29 to hold it must be that

e∞ ≥ 0 (5.32)
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Therefore, if a solution e∞ 6= 0 can be found satisfying the given conditions, then at

the very least this bias must be of a known sign. Assuming that e∞ > 0, then

x∞ − x̂∞ > 0

0− x̂∞ > 0

and therefore

x̂∞ < 0 (5.33)

That is, for the given example, a biased solution will always result in a state estimate

that is below the true state and in the uncensored region. Furthermore, since e∞ ≥ 0,

and therefore .5 ≤ Φ(e∞) ≤ 1, one can see that

−Lφ(0) ≤ −Lφd
−Lφ(0) ≤ (A− LΦ(e∞)− 1)e∞

−Lφ(0) ≤ −||A− LΦ(e∞)− 1||e∞

(5.34)

must be satisfied. On the contrary, if ∀e∞,

−||A− LΦ(e∞)− 1||e∞ < −Lφ(0)

−||A− L1
2
− 1||e∞ < −Lφ(0)

(5.35)

then the only solution to 5.34 is e∞ = 0, and the filter is unbiased.

The use of a fixed gain L in a filter for censored data is a sub-optimal design.

Consider instead of the use of the time-varying optimal Tobit gain instead of a fixed

gain L. This places a secondary condition on 5.27, given by,

Lk+1 = Lk (5.36)

that is, a true stationary point can only be reached if gain L has converged.

As defined previously in 3.40 and 3.39, and with the change of variable x̂ = −e, the

optimal Tobit gain at each step is defined by

E(pk) = Φ(T+Ce
σ

)

Lk = Ψk|k−1C
TE(pk)T(E(pk)CΨk|k−1C

TE(pk)T + E(pkvkv
T
k pk)T)−1

(5.37)
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which only has a solution to 5.36 should Lk = 0 or E(pk+1) = E(pk). Should

Lk 6= 0, and e = 0, then E(pk) = Φ(T
σ

) = E(pk+1), x̂ = 0, and all Tobit Parameters

which are a function of x̂ converge, and gain L and covariance P converge to their

respective steady state values according to given level of censoring at the origin, as

discussed later. Thus e = 0 is a stationary point. Should Lk = 0, the expectation of

being uncensored must be identically zero, the error injection term β of 5.16 is removed,

and because A is Shur stable e continues to converge.

It has been shown that the error dynamics of a Tobit Kalman filter estimator,

with an inherently Shur stable system matrix and fixed gain, always converges, despite

the level of censoring. Furthermore, is has been shown that e = 0 is a stationary point

of the system, however other stationary points may exist, and conditions for their

existence have been given. Likewise, e = 0 is also a stationary point for systems with a

time-varying Tobit Kalman gain, although tt has yet to be shown however that e = 0

is a unique stationary point, and that this point is locally or globally stable. Strong

statements with regards to marginally stable and or unstable systems have not yet been

completed. In essence, under large degrees of censoring in which approximately T <

Cx− 6σ, nearly all measurements become censored, open-loop prediction ensues, and

the Tobit estimator inherits the properties of the underlying system model. Although

an unstable system may have a local region region of attraction, especially should the

censoring limit be taken to an exceedingly safe limit, it cannot be said to be stable.

There remains the finite probability that a state trajectory can be generated which

may drive the state and state estimate deep into censoring, at which time the system

model no longer permits accurate open-loop estimation.

5.2 Examples of Estimator Convergence Under Differing Initial Conditions

Examples of estimator convergence for the class of stable homogeneous systems,

despite the presence of censoring, is shown in the following examples. Useful notions

with regard to the behavior of the estimator error dynamics in relation to the initial
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conditions of the state and state estimate can be gleamed by considering the following

possible starting scenarios.

Scenario 1. Completely Uncensored

In this scenario the value of T → ∞ and the system reverts to a completely

uncensored case. As seen in previous sections this results in convergence of the TKF

estimator to a completely linear and symptomatically stable observer. This can be

verified w.r.t. 5.74 by noting that as T →∞, then

γ, γ̂ → 1

λ, λ̂→ 0

eγ, eλ → 0

and thus the resulting error dynamics go to

ek+1 = (A− LC)ek + w

Scenario 2. Completely Censored

Similar to scenario 1, except in the opposing extreme, the value of T → −∞

and the system reverts to a completely censored case. As seen in previous sections this

results in convergence of the TKF estimator to an open loop linear observer. Stability

in this case is entirely dependent on the system matrix A. This can be verified w.r.t.

5.74 by noting that as T → −∞, then

γ, γ̂ → 0

λ, λ̂→∞

and thus the resulting error dynamics go to

ek+1 = Aek + w

An example response of the estimator when the state and state estimator are

both censored is shown in figure 5.1.
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Figure 5.1: Scenario 2. Initial condition response when the state and state estima-
tor are nearly completely censored. The estimator acts as an open-loop
predictor, and the error converges.

The bounds of the error convergence are represented by the magenta and red

dashed lines. The lower bound of the estimator error, represented in magenta, is given

by the convergence of the linear system given that no censoring is present. As given

by scenario one, this represents the ”best-case” scenario and the dynamics converge to

that of the linear LQG estimator. The upper bound of the estimator error, represented
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in red, is given by the convergence of the linear system given by open-loop prediction.

This is the ”worst-case” of scenario two, in which nearly all measurements are censored.

As expected, when the the state and state estimator start deep in the censored region,

the estimation error follows directly on top of the open-loop error bound. Since A is a

stability matrix the error converges. However, if A is not a stability matrix, then the

upper error bound does not converge, and may diverge.

Scenario 3. True State Uncensored, Estimate Censored

In this more interesting scenario there is now an explicit initial error between

state and state estimate. For right handed censoring, if the true state is uncensored

and the state estimate is censored, then x̂ > x, and λ→ 0. Therefore, eλ = −λ̂, and

γ → 1

γ̂ → 0

eγ → 1

An example response of the estimator for this scenario is shown in figure 5.2.

Contrary to scenario two, in which the error dynamics followed that of the upper

error bound, the error dynamics of scenario three follow closely to that of the lower

error bound. The uncensored true state results in many uncensored measurements,

and the state estimator uses this information to converge to the true state faster than

that of scenario two.

Scenario 4. True State Censored, Estimate Uncensored

The opposite to scenario three, whereby the true state is censored and the state

estimate is uncensored. Due to right censoring, such a scenario enforces that x̂ < x,

λ̂ → 0, and therefore eλ = λ. Since the true state is censored, the censoring limit T

is repeatedly returned as a measurement until x reaches near enough to the censoring

limit to generate uncensored measurements. Until this point little useful information

is presented to the filter, although the lack of uncensored measurements indicates that

the true state is above the censoring limit and proportionally far enough away such that
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Figure 5.2: Scenario 3. Initial condition response when the true state is uncensored
and state estimate is censored.

the noise distribution described by σ is not significant enough to generate uncensored

measurements.

γ → 0

γ̂ → 1

eγ → −1

An example response of the estimator for this scenario is shown in figure 5.3.

Note that as the true state becomes uncensored, the error dynamics move seamlessly

to that of the lower convergence bound as more uncensored measurements become
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Figure 5.3: Scenario 4. Initial condition response when the true state is censored and
state estimate is uncensored.

available. Performance can be improved by using a time-varying TKF gain, with a

high initial error covariance which accurately reflects the uncertainty inherent in the

initial estimate error.

5.3 The Effect of the Censoring on Internal Stability

Section 4.2.1 discussed the stability of homogeneous systems with respect to

initial conditions. It was found that for LTI systems in which A is a stability matrix

then the solution for x(t) converges to the origin in finite time, despite the value of

x(0), and therefore the system is said to be globally exponentially stable. This result

was extended to locally linearized systems in section 4.2.2 by leveraging the system
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Jacobian. The effect of censoring on these two results is explained in the following

section.

First consider again the following state-space representation of a homogenous

system with TKF observer,

 ẋ

˙̂x

 =

 A 0

LγC A− Lγ̂C

 x

x̂

+

 0

L
(
σ
(
−γλ+ γ̂λ̂

)
− (γ + γ̂)T

) 
(5.38)

As explained previously, increasing levels of censoring force the above formu-

lation into a non-linear relationship due to the presence censoring dependent terms γ

and λ, representing the probability of censoring and inverse mills ratio, respectively.

Therefore in order to understand the effect of censoring level T on the internal stabil-

ity of 5.38, the system must first be linearized about an equilibrium point. Then, as

shown in section 4.2.2, the system’s stability with regards to perturbations away from

the equilibrium point can analyzed.

5.3.1 Calculation of the Tobit Jacobian

As a motivating example, first consider the uncensored system LTI system given

by

 ẋ

˙̂x

 =

 A 0

LC A− LC

 x

x̂


(5.39)

Defining state x = [x′, x̂′]′, then 5.39 has equilibrium point xeq = 0, and can be

rewritten in the form of

ẋ = f1(x, x̂) = Ax

˙̂x = f2(x, x̂) = (A− LC)x̂ + LCx (5.40)
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Then the jacobian is defined as

J =

∂f1∂x ∂f1
∂x̂

∂f2
∂x

∂f2
∂x̂

 (5.41)

Since 5.39 is already a linear system, this results in a trivial Jacobian J equal to

the original system matrix. As shown in section 4.2, the behavior of the system about

equilibrium point xeq can be described by

˙δx = Jδx
(5.42)

where δx = x− xeq. Here, J is independent of xeq, and assuming that J is a

stability matrix, then x will not diverge from the equilibrium point.

The question however, is what happens to an otherwise innocuous system such

as this when a censored region is introduced? To understand the effect of censoring on

a system such as 5.39, use the system as shown in 5.38. As mentioned in section 5.1.1,

this system is inherently non-linear.

With right-handed censoring, the system is now better modeled as

ẋ = Ax

˙̂x = Ax̂ + L(−γ̂Cx̂ + γCx− γσλ+ γ̂σλ̂− γT + γ̂T)
(5.43)

so

ẋ = f1 (x, x̂)

˙̂x = f2 (x, x̂)
(5.44)

with

f1 (x, x̂) = Ax

f2 (x, x̂) = Ax̂− Lγ̂Cx̂ + LγCx− Lγσλ+ Lγ̂σλ̂− LγT + Lγ̂T
(5.45)
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The jacobian is then defined as in 5.41, with

∂f1
∂x

= A

∂f1
∂x̂

= 0

∂f2
∂x

=
[
Lγ
(
∂
∂x
Cx
)

+
(
∂
∂x
Lγ
)
Cx
]
−
[
Lγσ

(
∂
∂x
λ
)

+ L
(
∂
∂x
γ
)
σλ
]
− L

(
∂
∂x
γ
)
T

= LγC + LφxCx− Lγσ
(
(− 1

σ2 )(C(Cx− T ))λ− λ2
)
− Lφxσλ− LφxT

= L
(
φx (Cx− σλ− T ) + γ

(
C + 1

σ
(C (Cx− T ))λ+ σλ2

))
∂f2
∂x̂

= A+
[
−Lγ̂

(
∂
∂x̂
Cx̂
)

+−L
(
∂
∂x̂
γ̂
)
Cx̂
]

+
[
Lγ̂σ

(
∂
∂x̂
λ̂
)

+ L
(
∂
∂x̂
γ̂
)
σλ̂
]

+ L
(
∂
∂x̂
γ̂
)
T

= A− Lγ̂C − Lφx̂Cx̂+ Lγ̂σ
(

(− 1
σ2 )(C(Cx̂− T ))λ̂− λ̂2

)
+ Lφx̂σλ̂+ Lφx̂T

= A− L
(
φx̂

(
Cx̂− σλ̂− T

)
+ γ̂

(
C + 1

σ
(C (Cx̂− T )) λ̂+ σλ̂2

))
(5.46)

Now it is shown that,

J =

 A 0

L
(
φx (Cx− σλ− T ) + γ

(
C + 1

σ
(C (Cx− T ))λ+ σλ2

))
A− L

(
φx̂

(
Cx̂− σλ̂− T

)
+ γ̂

(
C + 1

σ
(C (Cx̂− T )) λ̂+ σλ̂2

))


(5.47)

And thus the local linearization is now

˙δx = Jδx
(5.48)

As shown in section 4.2.2, if this local linearization is exponentially stable, then

J must be Hurwitz, and there exists a region about the equilibrium point in which

x(t) does not diverge from the equilibrium point for all time. For J to be Hurwitz one

needs <(λ) < 0 for all λ, where λ are the eigenvalues of J; given by the solution to∣∣∣∣∣∣∣
∂f1
∂x
− λI ∂f1

∂x̂

∂f2
∂x

∂f2
∂x̂
− λI

∣∣∣∣∣∣∣ = 0 (5.49)
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5.3.2 Calculation of the Tobit Error Jacobian

Calculation of the Jacobian for the state estimator error dynamics follows from

that of section 5.3.1, except now the system as given in section 5.1.2 is utilized, in

which

x = Ax + w

˙̂x = Ax̂ + L(y − ŷ)

y = γ(Cx− σλ) + (1− γ)T

ŷ = γ̂(Cx̂− σλ̂) + (1− γ̂)T

ė = ẋ− ˙̂x

ė = Ax + w −Ax̂− L
(
γ(Cx− σλ) + (1− γ)T− (γ̂(Cx̂− σλ̂) + (1− γ̂)T)

)
= (A− LγC) x− (A− Lγ̂C) x̂ + Lσ(γλ− γ̂λ̂+ (γ − γ̂)T) + w

(5.50)

A new system is then defined in which x = [x′ e′]′, So that

ẋ = f1 (x, e)

˙̂e = f2 (x, e)
(5.51)

with

f1 (x, e) = Ax + w

f2 (x, e) = Ae− LγCx + Lγ̂Cx− Lγ̂Ce + Lγσλ− Lγ̂σλ̂+ LγT− Lγ̂T + w

(5.52)

and the Jacobian is defined as

J =

∂f1∂x ∂f1
∂e

∂f2
∂x

∂f2
∂e

 (5.53)
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with

∂f1

∂x
= A

∂f1

∂e
= 0

∂f2

∂x
=−

[
Lγ

(
∂

∂x
Cx

)
+

(
∂

∂x
Lγ

)
Cx

]
+

[
Lγ̂

(
∂

∂x
Cx

)
+

(
∂

∂x
Lγ̂

)
Cx

]
−
[
Lγ̂

(
∂

∂x
Ce

)
+

(
∂

∂x
Lγ̂

)
Ce

]
+

[
Lγ

(
∂

∂x
σλ

)
+

(
∂

∂x
Lγ

)
σλ

]
−
[
Lγ̂

(
∂

∂x
σλ̂

)
+

(
∂

∂x
Lγ̂

)
σλ̂

]
+ L

(
∂

∂x
γ

)
T − L

(
∂

∂x
γ̂

)
T

∂f2

∂e
= A+

[
L

(
∂γ̂

∂e

)
Cx

]
−
[
Lγ̂C + L

(
∂γ̂

∂e

)
Ce

]
−
[
Lγ̂σ

(
∂γ̂

∂e

)
+ L

(
∂γ̂

∂e

)
σλ̂

]
− L

(
∂γ̂

∂e

)
T

(5.54)

As with the previous Jacobian definition, stability with respect to perturbations

away from equilibrium is achieved when J is Hurwitz, that is, when all eigenvalues of

J have strictly negative real parts.

5.3.3 Implications of the Tobit Jacobian

In sections 5.3.1 and 5.3.2, the Jacobians of the state/state-estimate and state/state-

error systems were derived, and it was noted that in order for the systems to remain

stable in the Lyapunov sense it was necessary for the resulting Jacobians to be Hurwitz.

There are three main factors which effect the stability of these Jacobians. The first

being the underlying, possibly non-linear, system dynamics. The second being the cen-

soring limit T , and the third being the noise parameter σ. The first two may seem to

be the most obvious in the traditional sense. For right handed censoring, if T is taken

to the extreme upper limit, the system reverts to the uncensored case, as mentioned

previously. If, in this uncensored case, the underlying system is linear time invariant

and stable, then the resulting Jacobian is trivial, and stable. Thus, regardless of the

value of σ, the resulting LQG state estimator is stable with respect to perturbations
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from equilibrium, as shown in section 4.5.4. From this point on, it is assumed that the

underlying uncensored system in consideration is linear and time invariant.

When censoring is present, and a true TKF state estimation formation is used,

then it has already been shown that the system model is now truly of a non-linear form.

The noise parameter σ plays an important role, signifying how ”far” from the censoring

region the state and state estimates may be. The ideas of being ”deep” into censoring

or ”deep” into the uncensored region are relative to the noise distribution specified

by σ. Thus two systems with identical dynamics, in which one system has a large

measurement noise distribution, and one system as a small measurement noise distri-

bution, results in differing notions of stability at differing points. A large measurement

noise distribution results in more censored measurements generated for a given fixed

state and T . As the state approaches the censoring limit censored measurements are

generated sooner and more frequently, however, as the state moves into the censored

region more uncensored measurements are generated as well. A small measurement

noise distribution means that the state can approach nearer to the censoring limit be-

fore censored measurements are generated, but also has the counter affect of quickly

causing all measurements to be become censored when the state continues farther into

the uncensored region. A tight noise distribution results in the TKF quickly devolving

to the open-loop estimator form when in the censored region. While low measurement

noise is beneficial in the uncensored case, it has an adverse effect in a censored region,

especially for systems with fast dynamics.

To illustrate these concepts consider the stability of the defined TKF Jacobians

for a given system as T and σ are varied. For simplicity, first consider the scalar

case with A = −.8, C = 1,and σ = .5. A stable LQG state estimator of form 5.8 is

formed by taking process disturbance variance σq = .1 and solving for optimal LQG

gain L = 0.0246. Take the equilibrium point to be x = 0, and calculate the nominal
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uncensored Jacobian as

J =

 A 0

LC A− LC

 =

 −.8 0

0.0246 −0.82462


(5.55)

which has eigenvalues given by λ = [−.8;−0.8246]. Since L was calculated such

that (A−LC) is a stability matrix, the resulting eigenvalues are both negative and the

Jacobian is stable, as expected. Now, introducing arbitrary censoring limit T results in

a Jacobian of form 5.47. Given the values for A, C, L, σ, and calculating at equilibrium

x = 0, 5.47 can be simplified to

J =

 A 0

L
(
φx (−σλ− T ) + γ

(
C − 1

σTλ+ σλ2
))

A− L
(
φx̂

(
−σλ̂− T

)
+ γ̂

(
C − 1

σT λ̂+ σλ̂2
))


(5.56)

For the given system, as censoring limit T is progressively lowered the minimum

magnitude eigenvalue moves towards the open-loop case, as shown in figure 5.4.

Figure 5.4: Minimum eigenvalue of the Tobit Jacobian as censoring limit T is varied
for an inherently stable system.

Again however, since A is a stability matrix, the open-loop estimator case re-

mains exponentially stable, with worst case performance in which the estimator dy-

namics parallel that of the original system. As seen by eigenvalues of 5.55, when
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uncensored the estimator dynamics given by LQG are better than that of an open-loop

estimator. In the case when T is lowered such that the system is ”heavily” censored,

then λ→ [−.8;−.8], and the state estimate dynamics are that of the original system.

Similar results are found when T is varied in the error Jacobian formulation of 5.53,

as shown in figure 5.5.

Figure 5.5: Minimum eigenvalue of the Tobit error Jacobian as censoring limit T is
varied.

It is evident in figures 5.4 and 5.5 that as T is varied there exists a local distur-

bance to the trend near T = 0. The overall trend, that as T moves from high above

x = 0 to far below x = 0, that the eigenvalues move from the no-censored case the

open-loop case, is apparent. However, near T = x = 0 the expectation of censoring is

50% regardless of σ. At this point, it appears that it is actually beneficial to be slightly

more censored than to be slightly more uncensored.

Note however, that in the previous examples, the gain L used at each value

of censoring remained that of the uncensored LQG estimator derived from the given

examples. However, if one assumes that for a given level of censoring T that the state

remains near x = 0, then the steady state TKF formulation provides a more optimal

value of L via the modified Ricatti equation. By utilizing the updated value of L at

each censoring level, the results shown in figures 5.6 and 5.7 are obtained.
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Figure 5.6: Minimum eigenvalue of the Tobit Jacobian as censoring limit T is varied
and L is recalculated at each iteration.

Figure 5.7: Minimum eigenvalue of the Tobit error Jacobian as censoring limit T is
varied and L is recalculated at each iteration.

Now, by using the optimum value of L at each level of censoring instead of the

naive gain derived from an uncensored LQG estimator, figure 5.7 indicates that the

disturbance in the trend near T = x = 0 has been alleviated. The error dynamics

now follow a smoother trend of more stable performance when uncensored towards

open-loop performance when heavily censored.

Consider now a repetition of the above experiment, except T is held fixed at
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T = .5, and measurement noise variance σ is varied. As shown in 5.8, the minimum

Jacobian eigenvalue varies from that of the uncensored case when σ is very small, to

that of the 50% censored case when σ is large.

Figure 5.8: Magnitude of the smallest eigenvalue of the Tobit Jacobian as measure-
ment noise variance σ is varied. The red line represents the minimum
eigenvalue of 50% censored system.

This is expected, for when x and T are fixed, the ”level” of censoring is entirely

dependent on the expectation of censoring γ and inverse mills ratio λ, which are now

only functions of σ. If σ is very small then the proportional distance from the censoring

limit relative to σ increases, and the system behaves as an uncensored system. As σ is

increased then the proportional distance to the censoring limit relative to σ decreases,

and eventually censored measurements are routinely generated. However, since x and

T are fixed, if σ grows large enough that σ >> (T −x), then γ → .5, meaning that the

expectation of censoring reaches a limit of 50%, and the Jacobian eigenvalues converge

to that of a 50% censored system.

Again however, note that figure 5.8, represents the eigenvalues of the resulting

Jacobian when σ is varied and the naive uncensored gain L is utilized. Therefore, one

can see that the minimum eigenvalue actually overshoots that of the 50% censored case

and estimator performs worse for values of σ slightly greater than T − x. If however,
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the proper gain L is recalculated at each σ iteration, as done previously when T alone

was varied, this effect is no longer seen, as shown in figure 5.9.

Figure 5.9: Magnitude of the smallest eigenvalue of the Tobit Jacobian as measure-
ment noise variance σ is varied and gain L is recalculated at each iter-
ation. The red line represents the minimum eigenvalue of 50% censored
system.

Now, for very small values of σ, the system behaves as if no measurement noise

or censoring are present at all. Thus very accurate measurements can be taken of

the system output, the minimum eigenvalue is very low, and the state estimator is

very quick and stable. However, as σ is increased, the system quickly converges that

of a 50% censored system. This however, as per the previous discussion, is entirely

expected for larger values of σ enforce that the difference between T and x becomes

trivial, and nearly half of all measurements become censored. In this case estimator

dynamics revert to that of a 50$ censored system, and the difference between multiple

systems with varying levels of σ become trivial, given that σ >> (T − x).

5.4 Examples

To illustrate the results of sections 5.1.2, 5.3.1, and 5.3.2, consider the following

examples regarding the effects of censoring on the state of a DC motor model and a

generic unstable scalar system.
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5.4.1 DC Motor Speed Model

For a simplified DC motor angular velocity model with state
[
θ̇ , i

]′
, then

ẋ = Ax + Gw

y = Cx + v (5.57)

with the system matrices A,G, and C being defined as

A =

 b
j

k
j

−k
l

r
l

 , G =

 0

l

 , C =
[

1 0
]

(5.58)

where b is the motor friction constant, j is the moment of inertia, k is a force

constant, r is resistance, and l is inductance. Notice that angular velocity is the only

measurement made. From this point on, unless otherwise noted, take b = 3.5077e-6,

j = 4.2937e-5, k = 9.37e-3, r = 4.27, and l = .288e-6. A complete description of the

homogeneous CLTI system model for DC motor speed control is then given by

 θ̈

i̇

 =

 −0.0817 226.6111

−3.3785e4 −1.4826e7

 θ̇

i

+

 0

1
.288e-6

w
[
y
]

=

[
1 0

] θ̇

i

+ v

(5.59)

To construct an LQG observer as seen in section 4.5.4 for the above system use

the algebraic Ricatti equation to calculate the steady state gain of the Kalman filter
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associated with the given noise parameters. Taking variance of w and v to be σq = .01

and σr = .05, respectively, then the process and noise covariances are given by

Q = E [(Gw)(Gw)′] = (Gσq)(Gσq)
′ =

 .2800e-4 .1233e-4

.1233e-4 .0543e-4


R = E [vv′] = σ2

r = 0.0025
(5.60)

Solving 4.50 for P yields the minimum energy estimator given by 4.51, resulting

in gain L corresponding to the steady gain of the standard Kalman filter for system

5.59.

L = P−1C
′
Q

= [10.0329 0.2257]′ (5.61)

and complete estimator dynamics given by

˙̂x = (A− LC)x̂ + Ly

ė = (A− LC)e + Gw + Lv (5.62)

Since the maximum eigenvalue of (A−LC) is , the resulting LQG state estimator

is exponentially stable. To demonstrate this fact, the evolution of θ̇ and ˆ̇θ from the zero

initial condition is shown in figure 5.10. As expected, because the system matrix in

5.61 is a stability matrix, the true and estimated angular velocity states do not diverge

from the initial condition over time.

However, the introduction of right handed censoring without compensation

causes the state estimate x̂ to become biased. This is due to the fact that the original

LQG estimator assumes a linear measurement model in which E[y] = E[Cx+v] = Cx.

However, censoring leads to a non-linear measurement model better modeled by 5.3.

103



Figure 5.10: Evolution of states θ̇ and ˆ̇θ over time without censoring.

The resulting model mismatch results in the LQG estimator incorrectly weighting cen-

sored measurements the same as uncensored measurements, biasing the state estimate

towards the censoring limit. This result can be seen in figure 5.11.

Figure 5.11: Evolution of states θ̇ and ˆ̇θ over time with censoring.

To compensate for the censoring present in 5.11 the state estimator must be

adjusted to the form given by 5.9 where
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˙̂x = Ax̂ + L(y − ŷ)

ŷ = γ̂(Cx̂− σλ̂) + (1− γ̂)T

The resulting initial condition response with censoring is shown in 5.12.

Figure 5.12: Evolution of states θ̇ and ˆ̇θ over time with censoring, using a TKF
estimator with the same gain as the original uncensored LQG estimator.

Although the same level of censoring is present as in figure 5.11, the new formu-

lation compensates for the censored region and allows for a stable and more accurate

state estimation than a naive LQG estimator. However, in figure 5.12, the same gain L

is being used as that of the uncensored LQG estimator. In the censored case this gain

should be modified to reflect the inherent change in the system model created by the

effect of the censored region. Assume that T is constant and that the system remains

near the equilibrium point, then it may be assumed that the constant censoring limit

results in a near constant proportion of censored measurements being generated. Thus,

γ, the expectation of any given measurement being uncensored, and λ, the inverse mills

ratio, approach constants over time. Using these constant values the modified alge-

braic Ricatti equation of 3.4.2 can be solved for a steady state Tobit Kalman gain. For

example, should T = 0 as in the previous example, and assuming that the system is
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stable and therefore x remains near 0 as t→∞, then E[γ̂] = Φ(0) = .5. The modified

algebraic Ricatti equation results in a new gain value of

L = P−1C
′
Q

= [16.452 .305]′

This new TKF gain is slightly different from the original uncensored optimal

given by 5.61, due the censoring described above. A comparison between estimation

with the optimal uncensored gain and the new gain is shown in figure 5.13.

Figure 5.13: Evolution of states θ̇ and ˆ̇θ over time with censoring, using a TKF
estimator with an updated Tobit gain. The previous θ̂ with the original
gain is shown in red, while the new estimate of θ̂ using the updated gain
is shown in blue.

The resulting filter with the new Tobit Kalman gain results in a stable unbiased

state estimate which compensates for the censored region and has lower error than

when the standard LQG gain is utilized.

As discussed earlier, as the censoring limit T is lowered to extreme limits the

system enters a state in which nearly all measurements are censored. At such a time γ

goes to zero, and the estimator enters the predicted ”open-loop” behavior. The result

of such an estimator is shown in figure 5.14.
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Figure 5.14: Evolution of states θ̇ and ˆ̇θ over time with censoring, using a TKF
estimator when heavily censored.

As predicted, because A is a stability matrix in this example, the state estimator

does not diverge from the true state, however the repeated return of wholly censored

measurements is providing almost no useful information. Thus, the state estimator

is unable to track with disturbances in the process model, and resorts to open-loop

prediction from the initial state estimate. Note here that the initial condition has

changed from [0; 0] to [0; .5], meaning that the initial state estimate has an initial

error. Since the heavy censoring enforces an open-loop behavior, the state estimate

simply converges to the origin in finite time because A is Hurwitz. Also note that

the concept of being ”heavily” censored is somewhat subjective, in the sense that it

relies entirely upon the difference between the censoring limit and the true signal in

proportion to the noise parameter σ. Thus, in this scenario, in which T = −.25, the

censoring limit is 5σ away from the origin, resulting in nearly all measurements to

being censored, and thus the signal being ”heavily” censored.

5.4.2 DC Motor Position Model

The previous section explored the DC motor speed model and the implication of

censoring on the stability of its estimation. The DC motor speed model is convenient

due to its inherent open loop stability, and therefore effectiveness at illustrating that

the TKF estimator remains stable under certain conditions despite the possibility of
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heavy censoring. Another similar model is now addressed, that of DC motor angular

position. This model is inherently much less stable than the motor speed problem, and

therefore is used to demonstrate the effects of censoring in a more dramatic manner.

For a simplified DC motor angular position model with state
[
θ, θ̇ , i

]′
, then

ẋ = Ax + Gw

y = Cx + v (5.63)

with the system matrices A,G, and C being defined as

A =


0 1 0

0 b
j

k
j

0 −k
l

r
l

 , G =


0

0

l

 , C =
[

1 0 0
]

(5.64)

where b,j,k,r and l are defined as before in the motor speed model. A complete

description of the homogeneous CLTI system model for DC motor postion is then given

by


θ̇

θ̈

i̇

 =


0 1 0

0 −0.0817 226.6111

0 −3.3785e4 −1.4826e7



θ

θ̇

i

+


0

0

1
.288e-6

w

[
y
]

=

[
1 0 0

]
θ

θ̇

i

+ v

(5.65)
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Using the same values for process and measurement noise variances as shown

previously, now

Q = E [(Gw)(Gw)′] =


0 0 0

0 0 0

0 0
(

.01
.288e-6

)2


R = E [vv′] = 0.0025

(5.66)

Again solving 4.50 for P yields the minimum energy estimator with gain L

corresponding to the steady gain of the standard Kalman filter for system 5.65, and

given by

L = P−1C
′
Q

= [4.0480 8.1931 − 0.0187]′ (5.67)

A complete description of the estimator can now be given as in 5.62, and re-

peated here as

˙̂x = (A− LC)x̂ + Ly

ė = (A− LC)e + Gw + Lv

The eigenvalues for the system matrix A are given by

λA =


−14826388.3725128

−0.598070200532675

0


and the eigenvalues for (A−LC) of the nominal uncensored LQG estimator are

given by
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λA−LC =


−14826388.3725128

−2.32303105520711− 2.28421305934995i

−2.32303105520711 + 2.28421305934995i


Therefore, even though the underlying system is only marginally stable, the

resulting uncensored LQG state estimator is exponentially stable. To demonstrate this

fact, the evolution of θ and θ̂ from the zero initial condition is shown in figure 5.15.

As expected, because the system matrix in 5.67 is a stability matrix, the true and

estimated angular velocity states do not diverge from the initial condition over time

when no censoring is present.

Figure 5.15: Evolution of states θ and θ̂ over time with a TKF estimator and no
censoring.

When censoring is introduced the standard estimator is no longer valid, as

previously shown, and the TKF estimator of form 5.9 should then be used. If for

example, censoring limit T = 0 is imposed, then the state estimate evolves as shown

in 5.16.
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Figure 5.16: Evolution of states θ and θ̂ over time with a TKF estimator and cen-
soring limit T = 0. Red is the state estimate when using the original
uncensored LQG gain, and blue is the state estimate when using a TKF
gain.

As shown in the previous example, there is a noticeable difference between use

of 5.9 with the naive uncensored LQG gain L and a new recalculated L based on the

censoring statistics. For T = 0 modified Ricatti equation may used to estimate a new

TKF gain of L = [7.281, 13.253,−0.0302]′, resulting the eigenvalues of (A−LC) moving

to

λA−LC =


−14826388.3725128

−3.9395245780726− 1.4449381590563i

−3.9395245780726 + 1.4449381590563i


Should censoring limit T be moves lower to T = −10deg then estimator perfor-

mance degrades to that shown by 5.17.

Due to the fact that the sever censoring limit provides little valuable informa-

tion for the first several samples, the estimator cannot do any better than open loop

prediction until a noticeable number of uncensored measurements are generated. At
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Figure 5.17: Evolution of states θ and θ̂ over time with a TKF estimator and censor-
ing limit T = −10deg. Red is the state estimate when using the original
uncensored LQG gain, and blue is the state estimate when using a TKF
gain.

this point the estimator with the updated gain of L = [73.1575, 0.6447,−0.0015] is able

to recover and begin tracking the motor position while it enters the uncensored region,

whereas utilization of the original LQG gain provided poorer performance. With up-

dated gain at this level of censoring the eigenvalues of (A− LC) have reduced further

to

λA−LC =


−14826388.3725128

−73.1486

−0.6070


Now consider the case in which censoring limit T = −20deg and all measure-

ments become censored. At this point L = [17.7467, 2.3025e− 10,−5.2485e− 13] and

the eigenvalues of (A− LC) are
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λA−LC =


−14826388.3725128

−17.7467

−0.59807


The eigenvalues of the state estimator in this scenario are approaching that of

the original system matrix A given previously. Thus, the estimator is converging to

the open-loop estimator, which can be seen in figure 5.18.

Figure 5.18: Evolution of states θ and θ̂ over time with a TKF estimator and censor-
ing limit T = −20deg. Red is the state estimate when using the original
uncensored LQG gain, and blue is the state estimate when using a TKF
gain.

It is apparent that as the T is lowered from the no-censoring case to the heavily

censored case the eigenvalues of the state estimator are approaching that of the original

system and the TKF transitions from an LQG estimator to an open-loop predictor.

Since the original system is marginally stable, and the TKF is marginally stable as

well in the extreme censoring case. In the case when T is such that the system is not

heavily censored then the TKF is stable and always performs better than open-loop

prediction.
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5.5 Changing T to Recover Stability

Consider again a linear time-invariant homogeneous system with a TKF observer

as modeled by 5.5 and given below as

ẋ = Ax

˙̂x = Ax̂ + L(−γ̂Cx̂ + γCx− γσλ+ γ̂σλ̂− γT + γ̂T)

As mentioned in section 5.3.1, when censoring limit T is constant the resulting

TKF observer is non-linear and time-varying. As such, little can be guaranteed in

terms of stability and convergence for all times. If the system matrix A is a stability

matrix then performance of the observer can be characterized in the extreme cases of

complete censoring or no censoring, and stability with regards to perturbation from

equilibrium can be calculated, as shown previously.

The deviation from traditional linear analysis is due to the non-linear and state

dependent probabilistic terms γ and λ introduced by censoring. Recall that the terms γ

and λ represent the expectation of the measurement being uncensored and the inverse

mills ratio, respectively, given by 5.5 and repeated here as

γ = Φ
(
T−Cxk

σ

)
λ = λ

(
T−Cxk

σ

)
γ̂ = Φ

(
T−Cx̂k

σ

)
λ̂ = λ

(
T−Cx̂k

σ

)
By definition, each of these terms are entirely dependent on the given mea-

surement noise distribution σ and the difference of the state/state-estimate from the

censoring limit T . Therefore, assuming that σ remains constant, if the state and state

estimate remain at a constant proportion to the censoring limit then λ and γ remain

constant as well. The effect is a convergence of the observer from a time-varying non-

linear estimator to a time-invariant linear system with constant disturbance. Such an
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outcome can be realized in two ways. First, by forcing the true state and state esti-

mate to evolve in such a manner that as t→∞ then x, x̂→ α. Such a system can be

realized if A is a stability matrix and α = 0. This now describes an open loop stable

system and estimator as described previously. The second, and more interesting case,

involves defining T such that the constant proportion is maintained regardless of x and

x̂. Exactly this type of system was described previously in section 3.4.2 in which it

was shown that a steady state TKF results.

As shown before, the value of T can be determined at any time by defining an

α between (0, 1) such that

T = Cx̂ + σΦ−1(α) (5.68)

Thus, γ̂ is then

γ̂ = Φ
(
T−Cx̂k

σ

)
= Φ

(
Cx̂+σΦ−1(α)−Cx̂k

σ

)
= Φ (Φ−1(α))

= α

(5.69)

The error dynamics of the filter, originally defined by 5.10, can now be charac-

terized by

ė := (A− Lγ̂C)e− Leγ(Cx− σλ−T) + Lγeλ + w

= (A− Lγ̂C)e− Leγ(Cx− σλ− (Cx̂ + σΦ−1(α))) + Lγeλ + w

= (A− Lγ̂C)e− Leγ(Ce− σλ− σΦ−1(α)) + Lγeλ + w

= (A− LγC)e− Leγ(σλ+ σΦ−1(α)) + Lγeλ + w

(5.70)

Assume initial convergence of the filter such that γ ≈ γ̂, and λ ≈ λ̂, then the

error dynamics converge to

ė = (A− LγC)e + w
(5.71)
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This form is similar to that of the uncensored LQG estimator, except with

the addition term γ, which is assumed to be constant due to the redefinition of T

given above. Note that in 5.68 α can chosen such that a desired expectation of being

uncensored with respect to the state estimate is accomplished. In short, T is defined in

order to set a desired γ̂. An alternative method of would be set T such that a desired

inverse mills ratio λ̂ results. This can be done by redefining α such that

λ̂ = −Φ−1(α) (5.72)

for a desired inverse mills ratio λ̂, resulting in a T given by

T = Cx̂ + σΦ−1(α)

= Cx̂− σλ̂
(5.73)

Following the form of 5.70, an alternative description for the estimator error

dynamics can be given by

ė := (A− Lγ̂C)e− Leγ(Cx− σλ−T) + Lγeλ + w

= (A− LγC)e− Leγ(−σλ+ σλ̂) + Lγeλ + w

= (A− LγC)e + Leλ(γ(1 + σ)− γ̂σ) + w
(5.74)

The definitions for T given by 5.68 and 5.73 are entirely analogous. The first

defined T such that a desired constant γ̂ is accomplished, subsequently resulting in a

constant λ̂ as well. The second defines T such that a given constant λ̂ is accomplished,

resulting in a related constant γ̂ as well. Via either definition, T maintains a constant

proportional offset from x̂ and either error dynamics of 5.70 or 5.74 can be explored.

Although T is maintained at a constant offset from x̂, it may fall either below or above

x̂ depending on the desired level of censoring. Any γ̂ < .5 inherently dictates a T < x̂.

It is clear that when T is defined with respect to the state estimate, then the

main driver of the error becomes the level of censoring of the true state, with an

additional term driven by the error between the state and state estimate inverse mills
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ratios. By looking at 5.74 it becomes apparent that there are four particular scenarios

related to the level of censoring and initial conditions that create differing behaviors,

and is explored next.

Scenario 1. Completely Uncensored

In this scenario the value of T → ∞ and the system reverts to a completely

uncensored case. As seen in previous sections this results in convergence of the TKF

estimator to a completely linear and globally symptomatically stable observer. This

can be verified w.r.t. 5.74 by noting that as T →∞, then

γ, γ̂ → 1

λ, λ̂→ 0

eλ → 0

and thus the resulting error dynamics go to

ė = (A− LC)e + w

Scenario 2. Completely Uncensored

Similar to scenario 1, except in the opposing extreme, the value of T → −∞

and the system reverts to a completely censored case. As seen in previous sections this

results in convergence of the TKF estimator to an open loop linear observer. Stability

in this case is entirely dependent on the system matrix A. This can be verified w.r.t.

5.74 by noting that as T → −∞, then

γ, γ̂ → 0

λ, λ̂→∞

and thus the resulting error dynamics go to

ė = Ae + w
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Scenario 3. True State Uncensored, T > x̂

In this more interesting scenario there is now an explicit initial error between

state and state estimate. The assumption that x̂ ≈ x is no longer taken for granted.

However, in this scenario, since the true state is uncensored one would hope the observer

remains stable regardless of its initial state estimate. Since the true state is uncensored

then x < T . Therefore

γ ≤ γ(T−CT
σ

)

λ ≤ λ(T−CT
σ

)

eγ ≤ γ(T−CT
σ

)− γ̂

eλ ≤ λ(T−CT
σ

)− λ̂

and thus the resulting error dynamics go to

ė = (A− LγC)e− Leγ(−σλ+ σλ̂) + Lγeλ + w

Should the true state be farther in the uncensored region and x < x̂, then γ > γ̂

and λ < λ̂, therefore dynamics simplify to

eγ > 0

eλ < 0

ė = (A− LγC)e− L‖eλ‖(γ(1 + σ)− γ̂σ) + w

Should the true state be deep in the uncensored region, and thus x << x̂, the

dynamics simplify to

γ → 1

λ→ 0

eλ → −λ̂

and thus the resulting error dynamics go to

ė = (A− LC)e− Lλ̂(1 + σ(1− γ̂)) + w

An example of this response is shown in figure 5.19.
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Figure 5.19: Scenario 3. Evolution of states θ̇ and ˆ̇θ over time with controlled cen-
soring, using a TKF estimator with an expectation of censoring on x̂ of
.80.
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Scenario 4. True State Uncensored, T < x̂

In a similar scenario the true state is again uncensored, but now T is defined to

create a heavy degree of censoring relative to x̂ and therefore T < x̂. As before, since

the true state is uncensored then x < T < x̂. Therefore it remains that

γ ≤ γ(T−CT
σ

)

λ ≤ λ(T−CT
σ

)

eγ ≤ γ(T−CT
σ

)− γ̂

eλ ≤ λ(T−CT
σ

)− λ̂

and thus the resulting error dynamics go to

= (A− LγC)e− Leγ(−σλ+ σλ̂) + Lγeλ + w

Further, since x < T < x̂, then γ < γ̂ and λ < λ̂. Therefore

eλ < 0

ė = (A− LγC)e− L‖eλ‖(γ(1 + σ) + σγ̂) + w

If T is defined such to maintain a heavy degree of censoring relative to x̂, then

γ̂ → 0, and

ė = (A− LγC)e− L‖eλ‖(γ(1 + σ)) + w

Should x be deep in the uncensored region such that x << T then γ → 1 and

λ→ 0. Then eλ → −λ̂, and

ė = (A− LC)e− Lλ̂(1 + σ) + w

An example of this response is shown in figure 5.20.

Scenario 5. True State Censored, T > x̂

The opposite to scenario three, whereby the true state is censored and the state

estimate is partially censored with T > x̂. Due to right censoring, such a scenario
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Figure 5.20: Scenario 4. Evolution of states θ̇ and ˆ̇θ over time with controlled cen-
soring, using a TKF estimator with an expectation of censoring on x̂ of
.33.
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enforces that x > T > x̂, and therefore λ̂ < λ, and therefore eλ > 0. Since the true

state is censored, the censoring limit T is repeatedly returned as a measurement until

x reaches near enough to the censoring limit to generate uncensored measurements.

Until this point little useful information is presented to the filter, although the lack

of uncensored measurements indicates that the true state is above the censoring limit

and proportionally far enough away such that the noise distribution described by σ is

not significant enough to generate uncensored measurements.

If x is deeply censored, such that x >> T , then γ → 0. Then

γ → 0

and thus the resulting error dynamics go to

ė = Ae− Leλ(−γ̂σ) + w

An example of this response is shown in figure 5.21.

Scenario 6. True State Censored, T < x̂

Similar to scenario 5, except now T is defined to create a large degree of censoring

relative to x̂, resulting in T < x̂. Should T << x̂ then γ̂ → 0, and

γ̂ → 0

ė = (A− LγC)e + Leλ(γ(1 + σ)) + w

If T is much less than both x and x̂, then γ → 0 as well and the completely

censored case of scenario 1 is reached.

An example of this response is shown in figure 5.22.
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Figure 5.21: Scenario 5. Evolution of states θ̇ and ˆ̇θ over time with controlled cen-
soring, using a TKF estimator with an expectation of censoring on x̂ of
.80.
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Figure 5.22: Scenario 6. Evolution of states θ̇ and ˆ̇θ over time with controlled cen-
soring, using a TKF estimator with an expectation of censoring on x̂ of
.33.
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Chapter 6

OUTPUT FEEDBACK WITH THE TOBIT KALMAN FILTER

In this chapter it is demonstrated via analysis and example how the Tobit

Kalman filter can be used in an output feedback system. The previous chapter fo-

cused primarily on non-homogenous systems in order to characterize the behavior of

the T.K.F. as a state estimator. It is shown how the T.K.F. can be used effectively as a

state observer for closed loop control of dynamic systems. The effect of censoring on a

standard LQG controlled system is analyzed, and it will be shown how and when such

a system becomes unstable due to differing censoring scenarios. It is then shown that

use of a T.K.F observer can recover stability under certain conditions. Use of both the

standard T.K.F. observer and the time-caring steady state T.K.F. will be discussed,

and novel control techniques utilizing T.K.F. specific parameters will be introduced.

Effective control of the censoring limits will be demonstrated for multiple unique sce-

narios, and this concept will be extended with particular application towards computer

vision based systems where effective target tracking under a multitude of difficult cen-

soring scenarios may be present.

6.1 Setpoint Control with a State Observer

In chapter four the basic concepts of state feedback and output feedback control

were defined and demonstrated, with particular focus on concepts of stability. In section
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4.5.5, the LQG output feedback back controller was defined for systems in the form of

ẋ = Ax+Bu+ B̄d, x ∈ <n, u ∈ <k, d ∈ <q

y = Cx+ n, y ∈ <m

z = Gx+Hu, z ∈ <l
(6.1)

by utilizing input u defined as

u = −Kx̂ (6.2)

where feedback gain K is defined according the LQR design process and is given

by 4.41. The LQG state estimator for x̂ is defined by 4.51, and the resulting closed

loop LQG output feedback controller is then given by

ẋ = Ax−BKx̂+ B̄d

˙̂x = (A− LC −BK)x̂+ Ly (6.3)

For uncensored systems the above output feedback controller is guaranteed by

the separation principal to result in asymptotically stable closed loop stability. Suppose

now instead of driving the system state to the origin it is desired to control system

output z to a defined setpoint r. Such a condition is met when state x and input u

reach an equilibrium point of (xeq, ueq) for which

ẋ = 0 = Axeq +Bueq

z = r = Gxeq +Hueq
(6.4)

or

 −A B

−G H

 −xeq
ueq

 =

 0

r

 (6.5)
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Consider now a change of variables with x̄ := x − xeq and ū := u − ueq, with

system dynamics mirroring the original system, resulting in

˙̄x = Ax̄+Bū

z̄ = Gx̄+Hū (6.6)

Application of the LQR design process for the above system then results in

ū = −Kx̄ (6.7)

Thus, the definition for the optimum control input can be found by changing

back to the original state and input definitions, resulting in

u− ueq = −K (x− xeq)

u = −K (x− xeq) + ueq
(6.8)

Output feedback for set point control is then constructed by replacing the state

feedback term in 6.6-6.8, with the LQG state estimate x̂, and thus

u = −K (x̂− xeq) + ueq (6.9)

And the LQG estimator of 6.3 is updated with 6.9 to form

˙̂x = (A− LC −BK)x̂+BKxeq +Bueq + Ly
(6.10)

Using another change of variables, now given by x̄ = xeq− x̂, the complete LQG

output feedback setpoint controller is

˙̄x = (A− LC −BK)x̄− L(y − Cxeq)

u = Kx̄+ ueq
(6.11)
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6.2 The Tobit Kalman Filter as a State Observer

As discussed previously, the LQG output feedback controller operates under the

concept of certainly equivalence. In this approach the controller is constructed under

principals of optimal state feedback, however state estimates are utilized in place of

the true states, which may not be directly available. In the case of LQR, the optimum

control law consists of the state feedback term of

u(t) = −Kx(t) (6.12)

And using certainty equivalence, the following control law is used when the full

state cannot be measured,

u(t) = −Kx̂(t) (6.13)

The LQG output feedback controller results from the use of a Kalman filter as a

state observer to produce the state estimates utilized by 6.13. The resulting closed loop

system is then given by 6.3, with L given by either the optimum Kalman gain or steady

state Kalman gain. However, if censoring is present, the measurement model presented

6.16 is no longer valid near or in the censoring region. Thus, as shown previously, the

standard Kalman filter produces biased state estimates which then are fed back into

the true state dynamics via 6.13. It is shown that the bias induced by censoring can

cause certain systems to become unstable when a naive LQG feedback is used when

censoring is present.

However, by utilizing the Tobit Kalman filter, unbiased state estimates can be

used to construct state estimates for 6.13 when censoring is present. Such a T.K.F.

observer is constructed by adding the feedback term of 6.13 to the homogeneous T.K.F.

estimator given by 5.6, resulting in the following state estimator formulation

x̂k+1 = (A−BK)x̂k + L(yk − E[ŷk]) (6.14)
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Here, yk is the measured system output and E[ŷk] is dependent on the censoring

characteristics of the system. For right censored system considered previously, E[ŷk]

would be defined by

E[ŷk] = Φ
(
Cx̂k−T

σ

) [
Cx̂k + σλ

(
(T−Cx̂k)

σ

)]
+ Φ

(
T−Cx̂k

σ

)
T

(6.15)

A complete description for a system of form 6.16, subjected to right censoring at

T and which utilizes the T.K.F. observer of 6.14 to construct a T.K.F. LQG controller,

is then given by

xk+1 = Ax−BKx̂k + Gwk

x̂k+1 = (A−BK)x̂k + L(yk − E[ŷk])

E[ŷk] = Φ
(
Cx̂k−T

σ

) [
Cx̂k + σλ

(
(T−Cx̂k)

σ

)]
+ Φ

(
T−Cx̂k

σ

)
T

y∗k = Cxk + nk

yk = h(xk) =

 y∗k, y∗k ≤ T

T, y∗k > T

(6.16)

The error dynamics of 6.16 equal that given by the homogeneous estimator given

in 5.10 and repeated in 6.17, for the control law input is cancelled by its equal presence

in each term.

ek+1 = xk − x̂k

= Axk −BKx̂k + Gwk − [(A−BK)x̂k + L(yk − E[ŷk])]

= Aek − L (γ(Cxk − σλ) + (1− γ)T) + L(γ̂(Cx̂k − σλ̂) + (1− γ̂)T) + Gwk

= Aek − L(γxk − γ̂x̂k)C + L(σ(φ− φ̂) + (γ − γ̂)T) + Gwk

(6.17)
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Where, as defined previously,

γ = Φ

(
T − Cxk

σ

)
γ̂ = Φ

(
T − Cx̂k

σ

) (6.18)

λ =

φ

(
T − Cxk

σ

)
Φ

(
T − Cxk

σ

) =

φ

(
T − Cxk

σ

)
γ

λ̂ =

φ

(
T − Cx̂k

σ

)
Φ

(
T − Cx̂k

σ

) =

φ

(
T − Cx̂k

σ

)
γ̂

(6.19)

φ = φ

(
T − Cxk

σ

)
= γλ

φ̂ = φ

(
T − Cx̂k

σ

)
= γ̂λ̂

(6.20)

Because the control input cancels, and the resulting error dynamics of the T.K.F.

LQG controller equals that of the homogeneous state estimator, the same notions of

stability can be drawn as defined in 5.1.2. That is, the T.K.F. LQG controller can only

remain stable as long as the T.K.F. observer remains stable as well, for the separation

principal holds and certainty equivalence is valid. This means that, as can be expected

intuitively, unstable systems subjected to a large degree of open-ended censoring cannot

be guaranteed global stability. As shown previously there will alway exist a region in

which the observer effectively reverts to open-loop prediction, the unstable nature of

the system no longer permits a stable and unbiased state estimate, and the resulting

closed loop controller is unstable.

However, for inherently stable and or marginally stable systems, the T.K.F.

observer has already been shown to be a stable estimator. Thus, via the separation

principal, the resulting T.K.F. LQG controller is stable as well. Additional constraints
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arise on effective performance however as the level of censoring is increased. Under

heavy censoring the T.K.F. convergence dynamics slow, and may become slower than

that of the LQR feedback control. Although theoretically stable, at such a point

the state estimation may be too slow for practical control of the system, and either

the control dynamics should be slowed or the level of censoring decreased in order

to maintain a fast estimator with respect to the state dynamics. Such concepts and

examples of effective closed loop control in the presence of censoring with a T.K.F.

observer is demonstrated in the following sections.

In figure 6.1 the closed loop control of an open-loop stable system is shown for

varying levels of increasing censoring, utilizing an LQG output feedback controller with

both a standard Kalman observer and a Tobit Kalman observer. Here the system is

represented by the DC motor speed model given in 5.59. Note that as censoring limit

T is lowered the bias induced in the standard Kalman state estimate causes the true

state to increase, as a non-zero input is consistently applied to the system. Because

the system is open-loop stable the motor velocity does not diverge, however a steady

state error is induced. The LQG controller utilizing a Tobit Kalman observer however

is able to produce unbiased state estimates despite the presence of censoring, and thus

maintains velocity near the origin with minimal performance degradation compared to

that of the original uncensored system.

6.2.1 Step Responses Using a T.K.F. Observer

In figure 6.2 the closed loop step response of an open-loop stable system is shown

for varying levels of increasing censoring, utilizing an LQG output feedback controller

with both a standard Kalman observer and a Tobit Kalman observer. Again, the DC

motor speed model is used as given in 5.59. Note that as with figure 6.1, when the

censoring limit T is lowered the bias induced in the standard Kalman state estimate

causes the true state to increase, as a non-zero input is consistently applied to the

system. Because the system is open-loop stable the motor velocity does not diverge,

however a steady state error is induced. The LQG controller utilizing a Tobit Kalman
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Figure 6.1: Comparison of LQG Control of a stable plant subjected to varying lev-
els of censoring using a standard Kalman observer and a Tobit Kalman
observer.
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observer however is able to produce unbiased state estimates despite the presence of

censoring, and thus maintains velocity near the reference with minimal performance

degradation compared to that of the original uncensored system. Thus the Tobit LQG

output feedback controller is able to control to reference inputs that are beyond the

directly measurable limits of the system’s output.

In figure 6.3 the closed loop step response of a marginally stable system is shown

with censoring present below the desired reference position. LQG output feedback

controllers with both a standard Kalman observer and a Tobit Kalman observer are

compared. Here, the DC motor angular position model is used as given in 5.65. When

the censoring limit T is lowered a bias is induced in the standard Kalman state estimate

and a resulting non-zero input is consistently applied to the system. Because the

system is marginally stable, with a pole at the origin, the non-zero input resulting

from the standard Kalman estimator bias causes the state to grow unbounded. The

LQG controller utilizing a Tobit Kalman observer however is able to produce unbiased

state estimates despite the presence of censoring, and thus maintains position near

the reference with minimal performance degradation compared to that of the original

uncensored system. Even under heavy censoring, growth of the position away from the

reference is avoided, and setpoint control to a position within the censored region is

possible.

The state estimation error and tracking error of the standard Kalman filter and

Tobit Kalman filter observers is shown figure 6.4. It is evident that during the initial

free response time prior to the step input that the two controllers operate with the

same error order of magnitude. However, as the step input is applied at t = 4sec, the

controller with a standard Kalman observer begins to diverge in both state estimation

and reference tracking. The Tobit Kalman LQG controller however not only fails to

diverge in either error, it continues to decrease in both errors as time evolves.

Error covariance during the step response of figure 6.3 is shown in figure 6.5. It

is clearly illustrated that standard Kalman observer remain ”unaware” of the censoring

present on the system output, and thus it’s error covariance continues to converge to the
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Figure 6.2: Comparison of step responses of LQG controllers subjected to varying
levels of censoring on a stable plant, using a standard Kalman observer
and a Tobit Kalman observer.

s
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Figure 6.3: Step responses of a marginally stable system subjected to censoring using
both a standard Kalman observer and a Tobit Kalman observer
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Figure 6.4: State estimate error and reference tracking error while performing LQG
controller step response, for both the standard Kalman Filter and Tobit
Kalman Filter
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uncensored steady state value. The Tobit Kalman observer error covariance however

converges to a higher steady state, indicating that censoring is present at a constant

level. This is consistent with the fact that the step input combined with a constant

censoring limit results in an expectation of censoring that remains constant.

Figure 6.5: State estimate error covariance while performing LQG controller step
response, for both the standard Kalman Filter and Tobit Kalman Fil-
ter observers. Standard Kalman error covariance continues to converge
to the uncensored steady state error covariance, despite the presence of
censoring.

This constant expectation of censoring can be calculated, assuming x = 1, as

γ = Φ

(
T − C
σ

)
(6.21)
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Assuming this constant expectation of censoring, and using the principals of

the steady state Tobit Kalman filter as introduced previously, the steady state Tobit

Kalman error covariance shown in figure 6.5 can be predicted via the modified algebraic

Ricatti Equation.

A more interesting output feedback scenario with a more complicated dynamic

model in a censored environment is presented in the next section.

6.3 Mobile Robot Control

6.3.1 Introduction

Often the effect of censored data leads to either engineering the system away

from regions where censoring may occur, treating censored measurements as normal

measurements, or rejecting censored measurements completely. One common example

of this is the censoring of received signal strength (RSS), which results in a drastically

reduced ability to accurately estimate vehicle position via range estimates. A Tobit

Kalman filter is used to produce a more accurate position estimate despite censoring on

RSS, and it is shown how this estimate can be used as feedback in a linear-quadratic-

Gaussian (LQG) regulator for position reference tracking.

Effectiveness of the Tobit Kalman filter is shown through simulation of mobile

vehicle position estimation using received signal strength (RSS). Using a suitable RF

model with known parameters, one can estimate range to a given transmitter. Given

range to multiple transmitters with known locations, a position estimate for the receiver

can be generated. However, due to the noisy nature of RSS, and a highly nonlinear

relationship between signal strength and distance, previous methods of estimating re-

ceiver position often artificially censor RSS measurements below a certain limit due to

lack of confidence in the measurement [9, 18]. Also, for the same reasons, many RSS

indicators only report to a defined lower threshold. It is shown that despite censored

RSS measurements, the Tobit Kalman filter produces effective distance to transmitter

estimates, and therefore allow for more accurate position estimates with a larger range

than typically seen before. By implementing the Tobit Kalman filter as a observer an
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output feedback controller is constructed which is able to control the vehicle to regions

unattainable using the standard Kalman filter.

6.3.2 Mobile Vehicle Motion Model

For simulation purposes the simplified motion model shown below was used to

generate vehicle position over time. The model is a two dimensional double integrator

with a circular reference input r with radius ζ which starts at (0, ζ) with frequency ω.

LQG regulation was used to implement a closed-loop controller, with performance of

the standard Kalman filter and the Tobit Kalman filter as observers being compared.

Position control input is defined as

Up = N̄r −KlqrX̂p (6.22)

, with N̄ being a scaling factor, X̂p being (x̂p, ŷp) state estimates given by (6.43),

and Klqr being the optimal solution to the LQG control problem for the motion model

outlined by (6.23,6.24). Weighting of output power vs. control effort is determined by

the user. By use of the separation principal, feedback gain Klqr is designed separately

from that of the observer gain L. When the Tobit Kalman filter is used as an observer

closed-loop control remains stable even when signal strength measurements are heavily

censored, allowing for stable vehicle motion into regions unreachable by use of the

standard Kalman filter alone.

The vehicle motion model can now be fully described by the following :

Xp(k + 1) = ApXp(k) + BpUp(k) + Gpσq

Yp(k) = CpX(k) + Hpσr

(6.23)

with 
ẋp

ẋv

ẋp

ẋv

 =


1 ∆ 0 0

0 1 0 0

0 0 1 ∆

0 0 0 1




xp

xv

yp

yv

+


1 0

0 0

0 1

0 0


Up1
Up2

+


1
m

1
2
∆2 0

1
m

∆ 0

0 1
m

1
2
∆2

0 1
m

∆

σq (6.24)
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xp
yp

 =

1 0 0 0

0 0 1 0



xp

xv

yp

yv

+

1 0

0 1

σr (6.25)

At each time step k the range to transmitter i is defined as

di(k) =
√

(xp(k)− xi)2 + (yp(k)− yi)2 (6.26)

6.3.3 Radio Frequency Propagation Modeling

At true distance di the received signal strength (RSS) relative to transmitter i

is modeled as shown in [31] as

RSSi(k) = Ptx − PL(d0)− 10αlog10(
di(k)

d0

) + ηRSS (6.27)

Where Ptx is the transmitter power in dBm, α is the path-loss exponent, and

PL(d0) = Ptx(1− FSPL(d0))

is the power loss at reference distance d0, which is modeled as the free space path loss

at d0 given by

FSPL(d0) = (
4πd0f

c
)2

Interference, multi-path errors, and fluctuations in transmitter and receiver

power are accounted for by ηRSS, which has been shown to be accurately modeled

as white Gaussian noise independent of di [31].

6.3.4 Model for Tracking

In order to arrange this system into a suitable form for tracking with a Tobit

Kalman filter, assume a linear state transition model for di. For this, use a simple

Brownian motion model as given below, because it represents the least informative
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model possible and highlights the Tobit Kalman filter’s ability to provide accurate

state estimation despite the lack of strong information about the true system.

d∗i (k) = βid
∗
i (k − 1) + σd (6.28)

Letting β = 1, taking the log10 of (6.28) and combining it with (6.27) yields a

linear approximation of the system in state space form that is now suitable for Kalman

filtering :

log10(d∗i (k)) = log10(d∗i (k|k − 1)) + ηd

RSSi(k) = −10αlog10(d∗i (k)) + (Ptx − PL(d0)) + ηRSS

(6.29)

The constant term (Ptx − PL(d0)) ≈ 0, and may be omitted. In order to

accurately propagate the state estimate for log10(d∗i ) between time steps a correction

factor Udi may be incorporated. A formulation for Udi is found by noticing that

d∗i (k + 1) =
√

(xp(k + 1)− xi)2 + (yp(k + 1)− yi)2

≈ (((xp(k) + ∆xv(k))− xi)2

+((yp(k) + ∆yv(k))− yi)2)
1
2

= βid
∗
i (k)

(6.30)

with

βi =
d∗i i(k+1)

d∗i (k)

=
√

((xp(k)+∆xv(k))−xi)2+((yp(k)+∆yv(k))−yi)2
(xp(k)−xi)2+(yp(k)−yi)2

(6.31)

Therefore,

log10(d∗i (k + 1)) = log10(βid
∗
i (k)) + ηd

= log10(d∗i (k)) + log10(βi) + ηd

(6.32)
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and now define

fui(Xp) =
1

2
log10(βi) (6.33)

Therefore, by taking Udi = fui(Xp) = 1
2
log10(βi) the log of distance can be more

accurately transitioned between time steps. However, the simplified linear model of

the system may be retained by setting Udi = 0, at the expense of reduced performance

during censoring due to increased uncertainty in log10(di) state propagation.

This leads to the following model for tracking the distances to three transmitters

:

Xd(k + 1) = AdXd(k) + BdUd(k) + Gdηd

Yd(k) = CdXd(k) + Hdηrss

(6.34)


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+
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fu1(Xp)

fu2(Xp)

fu3(Xp)


+


1 0 0

0 1 0

0 0 1


ηd

(6.35)


RSS1

RSS2

RSS3


=


−10α 0 0

0 −10α 0

0 0 −10α




ˆlog10(d1)

ˆlog10(d2)

ˆlog10(d3)
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+
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0 1 0
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
ηrss

(6.36)

As shown in [31] , σd can be modeled as

σd(k) = di(k)
σrss
10α

(6.37)
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which, when substituted into (6.28), yields

di(k + 1) = di(k) + σd(k)

= di(k) + di(k)σrss
10α

= di(k)
(
1 + σrss

10α

)
(6.38)

Taking the log10 of both sides yields,

log10(di(k + 1)) = log10(di(k)
(
1 + σrss

10α

)
)

= log10(di(k)) + log10

(
1 + σrss

10α

) (6.39)

and therefore an approximation for ηd is made as

ηd = log10

(
1 + σrss

10α

)
(6.40)

The full combined system model for tracking vehicle position, velocity, and

distance to transmitters can now formed as

Xp(k + 1)

Xd(k + 1)

 =

Ap 0

0 Ad

Xp(k)

Xd(k)

+

Bp 0

0 Bd

Up(k)

Ud(k)

+

Gp 0

0 Gd

σq
ηd


Yp(k)

Yd(k)

 =

Cp 0

0 Cd

Xp(k)

Xd(k)

+

Hp 0

0 Hd

 σr

ηRSS

 (6.41)

Finally, estimating range to transmitter i is accomplished by transforming the

state log10(di(k)) by

d̂i(k) = 10(log10(di(k))) = d∗i (k)

143



6.3.5 Estimating Position Using Range Estimates

The circle upon which the receiver lies when at position (xp, yp), with range di

from transmitter i located at position (xi, yi) is given by

d2
i = (xp − xi)2 + (yp − yi)2 (6.42)

By using multiple transmitters with known locations, one can estimate the unknown

position of the receiver by using range estimates d̂i to solve for the intersection of these

overlapping circles. Expanding (6.42) for multiple transmitters, three for simplicity,

yields a linear system as given below.

R = AX̂p

R =


d̂1

2
− d̂2

2

d̂1

2
− d̂3

2

d̂2

2
− d̂3

2



A =


(2x2 − 2x1) (2y2 − 2y1) (x2

1 + y2
1 − x2

2 − y2
2)

(2x3 − 2x1) (2y3 − 2y1) (x2
1 + y2

1 − x2
3 − y2

3)

(2x3 − 2x2) (2y3 − 2y2) (x2
2 + y2

2 − x2
3 − y2

3)



X̂p =


x̂p

ŷp

1



(6.43)

Where R is a vector of squared range estimate differences and A is a constant

matrix dependent on the transmitter locations. Solving the system for X̂p in a least-

squares sense yields an estimate (x̂p, ŷp) of true receiver position (xp, yp). Matrices R

and A can be expanded to N transmitters by following the above form.
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In simulation X̂p is then combined with simulated measurements RSSmi , cal-

culated according to (6.27), to form the censored measurement vector Z used for the

innovation process of the T.K.F.

Z =



x̂p

ŷp

RSSm1

RSSm2

RSSm3



RSSmi =

 RSSmi , RSSmi > T

T, RSSmi ≤ T

(6.44)

The distance estimation states are affected by any censoring imposed on the

measured RSSmi , then affecting the raw distance estimate d̂i(k), which in turn de-

grades the localization estimate. By censoring the measured RSSmi at -90 dBm, the

effectiveness of the Tobit Kalman filter compared to the standard Kalman filter is

apparent.

6.3.6 Simulation Setup

For the following simulation it was desired to show the capabilities of the Tobit

Kalman filter in a general system, not to provide an optimal representation of RSS and

its use directly for position estimation and control under realistic dynamics. Therefore,

for simplicity, desired vehicle motion was restricted to a circle with constant radius

ζ = 27m with ω set to traverse approximately one cycle in the given time period. The

RF model has Ptx = 20 dBm, d0 = 1, α = 6, and ηRSS = 2. The number of transmitters

was fixed to three with (x1, y1) = (0, 10), (x2, y2) = (10,−10), (x3, y3) = (−10,−10),

and A in (6.43) was constant at all times according to these positions. Initial conditions

were set such that velocity (xv(0), yv(0)) = 0, position (xp(0), yp(0)) = (0, 0), log10(di)

were set to their true values, σq = .1 and σr = .05, and covariance Ψ = .1. For
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solution of the LQG problem for feedback gain Klqr, output control vs. control effort

was weighted 1000:1 in the cost minimization, meaning that higher control inputs were

favored in exchange for faster response.

As the given example is only meant to be a demonstration for the effectiveness

of the Tobit Kalman filter in a censored situation, non-linearities in the formulation

of Up and d̂i are ignored. Both effects, while not trivial, are presented to both the

standard Kalman filter and the Tobit Kalman filter equally, and therefore a direct

comparison between the two remains valid. The following simulation is meant to be

a novel approach to the localization problem and does not claim to be the optimal

solution.

6.3.7 Results

A two-dimensional representation of the scenario is presented in fig. 6.6, in

which the mobile vehicle has traversed the space, attempting to follow the circular

reference input using LQG regulation with a Tobit filter based observer. The locations

of the three transmitters are noted by the labeled cross marks, with the range at which

each transmitter’s measured RSS by the vehicle is thresholded (in the absence of ηRSS).

A standard Kalman filter observer was run in parallel for comparison, but it’s state

estimate was not used in control feedback. It is readily apparent that the standard

Kalman filter can only accurately estimate position when well within the -90 dBm

range of all three transmitters, as dictated by (6.43). As the mobile vehicle approaches

the thresholded region range to transmitter estimates become heavily biased due to

RSS censoring and the least squares position approximation degrades. This censoring

on the RSS measurements in shown in fig. 6.7, and it’s effect on the estimation of

log10(d∗i (k)) for i = 1 is shown in fig. 6.8.

Position estimation error is shown in fig. 6.9 as a comparison between the

presented filters. For the short period of time in which all three transmitters are

uncensored the filter errors converge as the Tobit Kalman filter converges to an un-

censored standard Kalman filter. However, for a large majority of the time at least

146



X

X X

1

23

Figure 6.6: Position estimate of the vehicle in 2D space. 100 iterations combined;
parameters as given in section 6.3.6. Ranges at which RSS would be cen-
sored (-90 dBm) is shown. The standard Kalman filter can only estimate
a position when within the -90 dBm range of all three transmitters. The
Tobit Kalman filter however successfully propagates a range estimate for
any transmitter below this threshold, allowing a more accurate position
estimate to be calculated at all times. Closed loop LQG control is sta-
ble, and the vehicle adequately tracks the reference trajectory into the
censored regions.
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Figure 6.7: Received Signal Strength from all three transmitters vs. time. RSS is only
reported to -90 dBm, at which point the measurement is left censored.
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Figure 6.8: Comparison of tracking the state log10(d1). Censoring in the measurement
of RSS1 results in the standard Kalman filter to fail to adequately track
range to transmitter 1, which propagates to a poor position estimate.
The Tobit Kalman filter however manages to estimate state values even
in the presence of censoring and noise
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one transmitter is out of range and often reads as a censored RSS measurement by

the vehicle. The standard Kalman filter behaves poorly because its ignorance of cen-

sored measurements causes it to trust all measurements with equal weight, even when

censored for long periods of time, resulting in a biased estimate. The Tobit Kalman

filter is able to generate a state estimate well outside the range of the three overlapping

transmitters, and thus is able to maintain a lower position estimate error at nearly all

times. Although it is not explicitly shown here, attempting reliable closed-loop LQG

control with a standard Kalman filter observer severely restricts the maximum radius

ζ of the reference trajectory to within approximately 19m with the given parameters,

a nearly 33% reduction in radius compared to that attainable by the Tobit Kalman

filter. The bias introduced into the standard Kalman estimate by censoring causes the

closed-loop to go unstable if the tracking radius is increased beyond this limit.

The Tobit Kalman filter cannot completely overcome the inherent lack of infor-

mation that a censored measurement presents, and therefore cannot entirely account

for the dynamics of the vehicle’s motion with respect to a censored transmitter. At this

point the system model becomes an important factor, with more informative models

yielding improved state estimates than models with an inherent lack of information.

Without an informative dynamic model when measurements are censored the full sys-

tem behavior is unobservable and cannot be accounted for, but the Tobit Kalman filter

does use the information that measurements are censored to its full potential and pro-

vides an optimal, real-time, recursive state estimation given the available information.

When the true state of the system is far from the censoring region this formu-

lation converges to the standard Kalman filter. When the true state of the system is

near the censoring region, and measurements become censored, the Tobit Kalman filter

provides an unbiased state estimation that far outperforms the standard Kalman filter,

and effective closed-loop reference tracking is possible. The effectiveness of the Tobit

Kalman filter and a potential application for its use is demonstrated by estimation and

control of vehicle position using censored received signal strength as a range to trans-

mitter estimate. The Tobit Kalman filter is able to estimate vehicle position with lower
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Figure 6.9: Comparison of position error magnitude vs time. As expected, the stan-
dard Kalman filter performs poorly because of its ignorance of censored
measurements. The Tobit Kalman filter maintains a lower and more
consistent mean square error.
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mean-squared error despite censored measurements and high noise, while the standard

Kalman filter provides a heavily biased and range limited estimate. Is has been shown

that in cases where the censoring model is well understood there is a significant amount

of information present in what cannot be observed, which is information that can be

exploited by the Tobit Kalman filter and has previously largely been ignored.

6.4 Output Feedback With a Steady State Tobit Kalman Filter

In the previous sections output feedback assuming constant censoring limits

was assumed. For reasons discussed previously, constant censoring limits impose re-

strictions on the possible performance of both the Tobit Kalman state estimator and

resulting closed loop control using a Tobit Kalman observer. Namely, there may exist

open-ended censored regions in which the T.K.F. estimator converges to that of an

open-loop predictor, and performance of the subsequent closed loop control depends

on the dynamics of the particular system and the desired reference. However, as has be

demonstrated in chapter five, the ability to control the censoring limit T may allow the

T.K.F. estimator to converge to a steady state and recover global asymptotic stability

under certain conditions and assumptions.

For example, consider again the marginally stable DC motor angular position

model as used in section 6.2.1. What If, instead of a constant censoring limit T , a

variable censoring limit of the form of 5.68 or 5.73 was utilized? The step response

shown in figure 6.10 shows such a system, in which a T.K.F. LQG controller is utilized

with a censoring T set such that an expectation of censoring of .95 is maintained at all

times.

As seen previously, if initial convergence is assumed then the estimator dynamics

converge to those given by by 3.4.2. With the addition of a reference input the system
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becomes

Tk = Cx̂k + σΦ(α)−1

uk = N̄rk −Kx̂k

xk+1 = Axk + Buk + wk

x̂k+1 = (A− LγC)x̂k + Buk + L(γCxk)

(6.45)

Figure 6.10: Step response of a Tobit LQG controller with censoring limit T set
to maintain an expectation of censoring of .95. Response of an LQG
controller with an uncensored standard Kalman filter observer is shown
for comparison.

Note in figures 6.10,6.11 that an expectation of being uncensored for 95% of the

measurements is maintained for a relatively low censoring limit. Thus, if maintaining

a high censoring limit T to avoid censoring entirely has an associated cost, it may be

very beneficial to use a Tobit Kalman observer and smartly control the censoring limit
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Figure 6.11: Detailed view of the step response of a Tobit LQG controller with cen-
soring limit T set to maintain an expectation of censoring of .95. Re-
sponse of an LQG controller with an uncensored standard Kalman filter
observer is shown for comparison.
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according to the above rule. As shown, even when censored is purposefully allowed,

minimal degradation of estimation and control performance can be achieved by using

a Tobit Kalman observer.

Figure 6.12: Comparison of state estimation error of a Tobit Kalman filter with 5%
censored measurements, and an uncensored standard Kalman filter, for
the step response in figure 6.10.

In figure 6.12 the state estimation error between the uncensored Kalman filter

and the 5% censored Tobit Kalman filter is shown. It is apparent that even though

the Tobit observer has some degree of censored measurements, the state estimation

error remains indistinguishable from that of the standard Kalman observer. Likewise,

tracking error between the two observer follows a similar pattern, as shown in figure

6.13.
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Figure 6.13: Comparison of reference tracking error of a Tobit Kalman filter with 5%
censored measurements, and an uncensored standard Kalman filter, for
the step response in figure 6.10.
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6.4.1 Transfer Function Comparisons Using the Steady State T.K.F. Ob-

server

As previously calculated in 5.5, a steady state T.K.F. in which T is varied

according to 5.68 or 5.73, results in a predictable expectation of censoring, inverse mills

ratio, Tobit update gain, and Tobit error covariance. As such, the transfer function

of the uncensored LQG controller can be modified to include these new Tobit filter

parameters and calculate transfer function of steady state Tobit LQG Controllers for

a given level of censoring.

First, consider the uncensored steady state LQG output feedback controller

given by 6.3. The negative-feedback transfer matrix is given by

Ĉ(s) = K(sI − A+ LC +BK)−1L (6.46)

and the transfer matrix from control input u to output y is

P̂ (s) = C(sI − A)−1B (6.47)

The resulting closed loop transfer matrix from r to output y is then

ŷ = P̂ (s)(I + Ĉ(s)P̂ (s))−1(N + Ĉ(s))r̂ (6.48)

If T is defined as according to 5.68, where here α is renamed ED, then

T = Cx̂+ σΦ−1(ED)

γ̂ = ED

λ̂ → φ(Φ−1(γ̂))

γ̂

C → γ̂C

L → LTobit

Ψ → ΨTobit

(6.49)
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If the standard uncensored Kalman gain is utilized instead of this new Tobit

gain, then the transfer functions for the corresponding L.Q.G. Tobit output feedback

controller change from 6.46 & 6.47 to

Ĉ(s) = K(sI − A+ Lγ̂C +BK)−1L

P̂ (s) = γ̂C(sI − A)−1B
(6.50)

As the expectation of censoring γ̂ = ED is lowered, and the offset of the censor-

ing limit T from the state estimate progressively shrinks, then the transfer functions

of 6.50 change accordingly. In figure 6.14 a comparison of the step responses of the

DC motor angular velocity model under increasingly heavy expectations censoring is

shown.

Figure 6.14: Comparison of step responses generated via the transfer functions of
steady state Tobit LQG controllers under varying levels of censoring.
Color meter represents expectation of censoring, with 0 being entirely
uncensored, and 100 being entirely censored. Note that as censoring
increases, step performance decreases.

As expected, when the censoring level increases the step dynamics slow. At the

extreme levels of censoring the Tobit observer behaves as an open loop estimator and
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the step response reflects such a system. Of note here however, is that little performance

degradation is seen until a very large degree of persistent censoring is induced, namely

that of nearly 90% or greater censored measurements. In figure 6.15 the bode plots

for the same scenario is presented. Again, as expected, the magnitude and phase plots

for the given system degrade as the expectation of censoring is increased. As before,

the performance loss due to censoring is minimal until very large persistent censoring

is present.

Figure 6.15: Comparison of bode plots generated via the transfer functions of steady
state Tobit LQG controllers under varying levels of censoring. Color
meter represents expectation of censoring, with 0 being entirely uncen-
sored, and 100 being entirely censored. Note that as censoring increases,
magnitude and phase responses decrease.
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6.5 Controlling Uncertainty Using Tobit Parameters

As has been extensively discussed previously, when censoring is present the Tobit

Kalman filter provides more information with regards to the current level uncertainty

and filter performance than the standard Kalman filter and similar estimators. The

standard Kalman filter assumes a linear system output model, which is subjected to

zero-mean measurement noise, and is available at all times. As such, the standard

Kalman filter converges to a calculable steady state gain and error covariance which

may be determined via the algebraic Ricatti equation, as has been shown. However,

the presence of censoring breaks both the linear measurement model and zero-mean

measurement noise assumptions. All measurements are weighted equally, despite the

clear difference in information a censored vs. non-censored measurement presents.

As shown, naive use of the standard Kalman filter when censoring is present results

in a biased and uninformative filter that not only cannot accurately estimate the true

system state but also converges to an incorrect error covariance that leaves no indication

of true estimator uncertainty.

The Sinopoli et. al. formulation of the Kalman filter for when measurements are

dropped is a potential first approach towards the handling of censored measurements.

That is, when censored measurements are read they are assumed to contain no valuable

information and are then ignored, and the state a priori prediction step is performed

without an a posteriori correction. However, in this case, a string of repeated censored

measurements results in a rapidly increasing state estimate error covariance which

over-estimates the true uncertainty of the system. A bias is also induced, for censored

measurements are not utilized at all, and uncensored measurements are weighted more

heavily.

The Tobit Kalman filter, however, utilizes the information that censored mea-

surements present. The frequency of arrival between censored and uncensored mea-

surements create a weight between the expected value to be seen and the actual mea-

surements observed. The calculated expectation of censoring and inverse mills ratio

also provide valuable information with regards to the state’s estimated location and
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expected measurement. As censoring varies the Tobit Kalman filter measurement vari-

ance, gain, and error covariance updates accordingly. No longer is the estimation

uncertainty a defined steady state quantity; with censored measurements it becomes a

dynamic element. The expectation of censoring, inverse mills ration, and error covari-

ance, is now information available from the Tobit Kalman filter which can be directly

leveraged as feedback for the update censoring limits in order improve estimation per-

formance according to specified criteria. It is shown in sections 6.6 and 6.7 how pa-

rameters unique to the Tobit Kalman filter can be used in novel estimation techniques

to influence state estimation performance and uncertainty.

6.6 Estimation with Multiple Censored Regions

In this section the effect of taking multiple simultaneous measurements of the

system output, each with independent censoring characteristics, is considered. As more

simultaneous measurements are taken of the same system state, the Bernoulli approx-

imation of the expected measurement becomes more accurate. Furthermore, differing

censoring characteristics can be applied to independent measurements, allow for a sen-

sor fusion type system which does not rely upon a rederiviation of the Tobit Kalman

filter gain and error covariance terms. Each measurement’s expectation of censoring,

inverse mills ratio, and variance is calculated according to that measurement’s respec-

tive censoring model, and the Tobit Kalman gain and a posteriori update calculations

remain unchanged.

An example of such a system is given in 6.51 as

xk+1 = Axk + Gw

yk = Cxk + Hv

(6.51)

with [
ẋ
]

=
[
.99
] [
x
]

+
[
1
]
w (6.52)
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y1

y2

 =

1

1

[x]+

1 0

0 1

v1

v2

 (6.53)

In essence, the output vector is stacked with multiple measurements of the

same state. Here, two separate measurements are defined, the first being subjected

to right censoring, and the second being subjected to left censoring. The censoring

limit is common among both censoring regions such that T = 0 for each, resulting in

measurements defined by

Z =

z1

z2


where

z1 =

 y1, y1 < T

T, y1 ≥ T

z2 =

 y2, y2 > T

T, y2 ≤ T

(6.54)

Estimated measurements are defined by Ŷ = CX̂, and with thus for the given

C, ŷ = x̂. The full expectation of censoring and inverse mill ratio is then given by

γ =

Φ
(
T−ŷ
σr

)
0

0 Φ
(
ŷ−T
σr

)


λ =


σrφ(T−ŷσr

)
γ11

σrφ(T−ŷσr
)

γ22



(6.55)

162



Variance is calculated according to the following,

V =

σ2
r

(
1− λ2

11 − λ11

(
T−ŷ
σr

))
0

0 σ2
r

(
1− λ2

21 − λ21

(
T−ŷ
σr

))
 (6.56)

and the expected measurement vector is then consistent with the size of the ac-

tual observed measurement vector, with each expected measurement being a bernoulli

random variable with an expected value calculated according to their respective ele-

ments of γ and λ.

E [y] =

γ11 (ŷ − σrλ11) + (1− γ11)T

γ22 (ŷ + σrλ21) + (1− γ22)T

 (6.57)

Innovation is then calculated in the same manner as the standard Tobit Kalman

filter, by taking the error between the observed system output and expected measure-

ments.

Innovation = Z − E [y] (6.58)

Using the newly calculated value of V given by 6.56, the structure of the To-

bit gain formulation and a posteriori state and error covariance update remain un-

changed. As such, the state estimate is produced via the combined information from

both measurements. The estimation of such a brownian system, with both left and

right censoring present independently, is shown in figure 6.16.

The system state is accurately estimated throughout all space, even though the

first measurement is entirely right censored at T = 0 and the second is entirely left

censored at T = 0 as well. Although neither measurement can sense the entire space,

their combined information is accurately and automatically combined via the stacked

Tobit Kalman formulation, enabling accurate state estimation at all times and smooth

transitioning from one region to another.
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Figure 6.16: Estimation of a scalar brownian system with a Tobit Kalman filter in
which both left and right censoring are present, each defined at the
same censoring threshold. In this arrangement, the censoring limits
combine such that the entire space can be ”seen”, and the resulting
state estimate seamlessly tracks through the entire space.

A similar measurement system can considered, in which multiple independent

measurements are made of the same system output, each with identical censoring char-

acteristics. This is equivalent to taking multiple simultaneous samples, and since mea-

surement noise is assumed to be independent between samples the proportion of cen-

sored vs. uncensored measurements allows for a more accurate estimate of the censored

measurement distribution at the current state value. Thus, a more accurate estimate

the state can be formed without the need for differing censored regions and subsequent

sensor technologies. A comparison between estimation of the same brownian motion

model with a varying number of concurrent right-hand censored measurements is shown

in figure 6.17, and in detail in figure 6.18.

It is especially evident in figure 6.18 that as more measurements are used the

Tobit filter is able to more confidently and more accurately estimate the true system

state in the censored region. This is further verified in figure 6.19, in which it shown that

the mean squared estimation error decreases as a function of the number of concurrent

measurements increases, as would be expected.

Now consider the same model as in 6.51, but with each measurement being
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Figure 6.17: Estimation of a scalar brownian system with a Tobit Kalman filter in
which multiple measurements are taken concurrently, each with inde-
pendent noise but subjected to the same censoring model. Ny represents
the number of concurrent measurements used for a given estimate iter-
ation. A single representative set of measurements in shown by purple
markers to indicate the censoring model present.
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Figure 6.18: Detail view of figure 6.17. As more measurements are used the state
estimation in both the uncensored and censored regions is improved. A
single representative set of measurements in shown by purple markers
to indicate the censoring model present.
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Figure 6.19: Mean squared error of the brownian state estimation as a function of
the number of concurrent censored measurements used.
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subjected to independent saturation regions. That is, output yi is uncensored when

it lies between lower and upper censoring limits defined by Tli and Thi . This in effect

creates multiple uncensored ”windows”, or fields of view (FOV). Any measurements

outside of these fields of view, whether they be above or below, are censored. The

censoring fields of view may or may not be overlapping. The measurement model is

now given by

Z =

z1

z2


with

zi =


yi, Tli < yi < Thi

Tli , yi ≤ Tli

Thi , yi ≥ Thi

(6.59)

As with the previous discussion, the expectation of being uncensored γ, the

inverse mills ratio λ, and variance V must be correctly defined for each independent

measurement according to that measurements censoring model. This leads to the

following for multiple saturation regions,

γi = Φ
(
Thi−ŷ
σr

)
− Φ

(
Tli−ŷ
σr

)

γhi = 1− Φ
(
Thi−ŷ
σr

)

γli = Φ
(
Tli−ŷ
σr

)

λi =
φ

(
Thi
−ŷ

σr

)
−φ
(
Tli
−ŷ
σr

)
γi

(6.60)

Vi,i = σ2
r

(
1− λ2

i +
(
ŷλi
σr

)
+

(
TliΦ

(
Tli
−ŷ
σr

)
−ThiΦ

(
Thi
−ŷ

σr

)
γi

))
(6.61)
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Due to the saturation censoring model the expected measurement is defined

slightly differently, however the overall form of weighting T vs. the uncensored mea-

surements remains. The innovation equation and subsequent Tobit gain and update

equation are unchanged.

E [yi] = γi (ŷ − σrλi) + γliTli + γhiThi (6.62)

Erry = Z −

E [y1]

E [y2]

 (6.63)

In figure 6.20 the same brownian motion used previously is estimated, now with

two independent and non-overlapping saturation censoring regions. The Tobit filter is

able provide accurate state estimates both in and between the censoring regions. The

error covariance accurately reflects the total information presented by the two con-

current measurement models and estimation between censored and uncensored regions

remains smooth at all times.

Figure 6.20: Estimation of a scalar brownian system with a Tobit Kalman filter in
which two non-overlapping saturation censoring regions are present.
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6.7 Application of the T.K.F. and Censored Feedback Control Towards

Novel Computer Vision Techniques

The previous section discussed the estimation of a brownian system in which

two independent saturation censored measurements where utilized in the Tobit Kalman

filter. It was noted that such a measurement model, as given by 6.59, in effect creates

two independent ”fields of view” for the same system state. In this section it is discussed

how this concept can be applied to computer vision based target tracking, in which a

known camera model creates a saturation region in which the target can be observed.

Unique advantages of the Tobit filter, as discussed previously, allow novel tracking

techniques to be explored for one or more targets. The goal of such a system is

depicted in 6.21.

Here it desired to visually track one or more targets which may be of similar

appearance, and may exit the field of view. The edges of the camera system’s field of

view define censoring limits, for which targets can be measured while inside the field of

view, and cannot be measured while outside the field of view. Although a target outside

the field of the view cannot be directly observed, a known dynamic model can be used

accurately predict its expected evolution until uncensored measurements can taken

again. Such a problem was first explored in section 2.2, where it was demonstrated

how a Kalman filter framework can be used to accomplish such a goal for stationary

targets. The drawback however, was that the Sinolpoli et. al. method employed at

that time suffered from a rapidly growing error covariance while the target is outside

the field of view. Therefore it was possible to unrealistically snap to a target response

when censored for a long period of time, opening the possibility for false detection

and target identification confusion. It was also assumed that the targets were fixed,

and therefore had no dynamic model of their own evolution, and that the movement

of the camera would permit an accurate estimation of the target’s position within the

imaging plane. It is shown in the following sections and examples how a Tobit Kalman

estimator can be used in a vision based system in order to rectify these deficiencies

and track moving targets which enter and exit the field of view.
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Figure 6.21: Tracking of multiple targets in a congested environment using an air-
borne vision based sensing system
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6.7.1 Saturation Censoring in a Vision Based System

Assume that there exists an airborne camera system which is pointing towards

the ground at a known position and attitude. Furthermore, assume that the imaging

system is calibrated such that it’s intrinsic camera matrix is well defined. Projection

of the left and right edges of the camera frame onto the ground create left and right

censoring limits on the ground, which is assumed to be a plane. A saturation region

can then be formed in the units of this ground plane, for which targets can be observed.

Such a scenario is shown in figure 6.22.

Figure 6.22: Projection of airborne camera frame boundaries onto the ground. Left
and right field of view limits can be used to implement the Tobit satu-
ration censoring model for target tracking and estimation.

The target’s state dynamics can be formed in the reference frame of the ground

plane, and its output can be measured via the vision based system. A Tobit Kalman

172



filter for saturation censoring can be utilized to incorporate the left and right censoring

restraints imposed by the limited horizontal field of view of camera. Incorporation of

all four camera edges is called frame censoring. Although a more accurate and generic

censoring model, frame censoring requires a two dimensional state motion model, a

much more complicated censoring model with cross-correlation between censored mea-

surements, and a larger array of assumptions to be made with regard to the target’s

evolution in the censored region. Assume for the purposes of the following discussion

that the camera and target are restricted to one axis of motion. That is, assume that

the target only moves in a horizontal motion with respect to the imaging plane and only

the left and right saturation limits imposed by the camera field of view are relevant.

6.7.2 Tracking Targets Between Multiple Fields of View

Consider first the following constant velocity motion model for a single target,

which is subjected to random disturbances in velocity.

X(k + 1) = AX(k) + Gσq

Y(k) = CX(k) + Hσr

(6.64)

with ẋp
ẋv

 =

1 ∆

0 1

xp
xv

+

1
2
∆2

∆

σq (6.65)

yp1
yp2

 =

1 0

1 0

xp
xv

+

1 0

0 1

σr (6.66)

Assume two camera systems are present in the environment, in a manner consis-

tent with that described the previous section, which create two separate non-overlapping

saturation censoring regions on the ground plane of the target. Projection of left and

right frame limits of camera i onto the ground then create censoring limits Thi and Tli ,
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respectively. Measurements zi are then assumed to come from the vision based system

according to model given previously in 6.59, and given by

zi =


ypi , Tli < ypi < Thi

Tli , ypi ≤ Tli

Thi , ypi ≥ Thi

(6.67)

As with before, estimated measurements given by Ŷ = CX̂, and therefore with

the given C, ŷ = x̂p, and the expectation of being uncensored and the inverse mills

ratio are then defined by

γi = Φ
(
Thi−ŷ
σr

)
− Φ

(
Tli−ŷ
σr

)

γhi = 1− Φ
(
Thi−ŷ
σr

)

γli = Φ
(
Tli−ŷ
σr

)

λi =
φ

(
Thi
−ŷ

σr

)
−φ
(
Tli
−ŷ
σr

)
γi

(6.68)

with the measurement variance is given by

Vi = σ2
r

(
1− λ2

i +
(
ŷλi
σr

)
+

(
TliΦ

(
Tli
−ŷ
σr

)
−ThiΦ

(
Thi
−ŷ

σr

)
γi

))
(6.69)

Each expected measurement is then formed as

E [yi] = γi (ŷ − σrλi) + γliTli + γhiThi (6.70)

and the innovation is then the difference between the observed position from

the vision based detector and the expected target measurement given by 6.70.

Eyi = zi − E [yi] (6.71)
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Tobit gain and update equations remain unchanged. Demonstrated in figure

6.23 is the tracking of a single target which is moving from one field of view to another,

with no over-lap between the censored regions. At the beginning of the target trajectory

only the right camera can observe the target, between approximately 13 to 18 seconds

neither camera can directly observer the target, and from 18 to 30 seconds only the

left camera can observe the target. It appears that target position estimation remains

consistent throughout the entire trajectory of the simulation, despite the transition

from one censoring to another.

Figure 6.23: Tracking of target position between two non-overlapping fields of view
using a stacked measurement vector with independent saturation cen-
soring regions.

It is evident in figure 6.23 that while the target is outside the field of view of
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both censored regions, the target’s velocity cannot be estimated. This is because of the

limitations of the target dynamical model, for as the position becomes entirely censored

the filter must resort to pure prediction based on the constant velocity assumption.

Figure 6.24: Estimation of target velocity between two non-overlapping fields of view
using a stacked measurement vector with independent saturation cen-
soring regions. Due to limitations in the dynamic model, velocity is
propogated while target position is censored.

A more detail view provided by 6.25 shows the transition of the target from the

censored region into the saturation region of the left camera. Position estimation error

has increased in the censored region since the disturbances in the velocity cannot be

observed. The filter has over estimated the velocity of the target, as is evident from

figure 6.24, and expects the target to enter the uncensored region earlier than in truth.
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However, when the target is not observed as predicted the estimate begins to correct

itself and move toward the true position. The estimate then converges to the true state

in the uncensored region of the left camera.

Figure 6.25: Detail view of figure 6.23 in the area near when the target exits the
censored region between the two fields of view. Notice that while cen-
sored the target position error has grown, however the estimated po-
sition moves towards the true position as the estimate approaches the
censored region and uncensored measurements are not observed.

The error covariance of the estimator is shown in figure 6.26. Error covariance

converges to that of the uncensored Kalman filter while the target remains far from

the censored regions. However, uncertainty grows as the target enters the censored

area between the non-overlapping uncensored region. Position uncertainty grows more
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rapidly than that of velocity, although both fall rapidly as the second censoring limit

approaches and the target is observed.

Figure 6.26: Error covariance while tracking of target between two non-overlapping
fields of view using a stacked measurement vector with independent
saturation censoring regions. Note that uncertainty grows while target
moves through the censored region, but quickly recovers as the target
approaches and enters the second field of view.

Repeating the same scenario, expect with over-lapping saturation censored re-

gions, is shown in figure 6.27. In contrast to the previous simulation in which there

existed a region where neither camera could measure the target position, there now

exists a region in which both cameras can detect the target concurrently. As such, it

would be expected that target velocity can now be estimated at all times, and in the

common field of view of each camera the uncertainty of the filter decreases.
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Figure 6.27: Tracking of target position with two overlapping fields of view using a
stacked measurement vector with separate saturation censoring regions.
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It is verified in figure 6.28 that velocity can indeed be measured at all times.

This is unsurprising, for even the existence of touching yet non-overlapping uncensored

regions, such that in the first left & right censoring example, allowed for accurate state

estimation in the transition between each region.

Figure 6.28: Estimation of target velocity with two overlapping fields of view using a
stacked measurement vector with separate saturation censoring regions.

In figure 6.29 a detailed view of the transition into the over-lapping uncensored

region is shown. At this point the filter is effectively presented with twice as much

information regarding the state as was previously available, since both cameras can

now contribute a meaningful position measurement. The state estimate appears to

tighten around the true state in this overlapping region.
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Figure 6.29: Detail view of figure 6.27 in the area near when the target enters the
overlapping region between the two fields of view.
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The reduction in filter uncertainty while in the overlapping uncensored region is

confirmed in 6.30. While in either the left or right camera’s field of view exclusively, the

error covariance converges to the steady state of an uncensored standard Kalman filter

with a single measurement. However, when in the overlapping uncensored region the

error covariance for both position and velocity is reduced significantly. These steady

state error covariances can be predicted by the Ricatti equation by either considering a

single measurement, with no censoring, or two measurements, again with no censoring.

Figure 6.30: Error covariance while tracking of target with two overlapping fields
of view using a stacked measurement vector with separate saturation
censoring regions. Note that uncertainty reduces while target moves
through the region in which the fields of view overlap.

In the previous example the tracking of a single target with multiple stationary
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fields of view was considered. However, there are additional useful scenarios that can be

explored. The first being, can the camera be automatically controlled such that a target

is tracked according to a given condition? The second being, how can multiple targets

be tracked simultaneously? These questions are not necessarily mutually exclusive, for

if two targets are desired to be tracked with a single field of view, but are diverging

from each other, how should the camera react?

6.7.3 Automatic Panning Using Tobit Parameters

In this section the principals of the steady state Tobit Kalman filter are applied

to the vision based target tracking problem. In the previous section the methodology

behind considering a vision based tracking system as a censored Tobit Kalman problem

was introduced for stationary cameras, and thus, stationary censoring limits. However,

in previous sections such as 5.5 and 6.4, the ability of the Tobit Kalman filter to dictate

a variable censoring limit and maintain a steady state estimator has been demonstrated.

By controlling the ground based saturation censoring limits for a vision based system,

and thus the camera’s position and attitude, automatic panning motions can be found

which accomplish a multitude of differing scenarios which may be desired.

For example, consider the same constant velocity motion model for a single

target as used previously in 6.64. Assume that the target tracking begins far from

censoring, and it is known that the target moves from right to left with an unknown

velocity but given measurement noise variance σ. Suppose it is desired to automatically

move the camera such that there is at least a 99.99% probability that the target does

not exit the left edge of the camera’s field of view. Mathematically speaking, this

scenario is equivalent to the steady state Tobit Kalman definition given previously in

which the censoring limit T is defined to maintain an offset from the state estimate
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according to a desired expectation of being uncensored. That is,

T∗hk
= Cx̂k + σΦ−1(.9999)

Thk
= f(T ∗hk) =

 Th0 , T∗hk
≤ Th0

T∗hk
, T∗hk

> Th0

(6.72)

The rule given by 6.74 enforces that when the camera’s field of view is projected

on the ground the resulting saturation region’s high censoring limit is maintained such

that the expectation of the target measurement being uncensored is at least 99.99%. In

other words, if the saturation censoring limit Th given above is accomplished, the target

measurement is only censored .01% of the time. It assumed that for a given desired

censoring limit on the ground that a camera position and attitude can be calculated to

meet the given condition. For simplicity, Tlk is set to Thk − 50, representing a camera

moving at a constant altitude in a purely translational motion at a fixed focal length to

accomplish the desired offset between censoring limits. An example of such a scenario

is shown in 6.31.

As similar scenario is considered in figure 6.32, in which both the left and right

ground censoring limits are controlled such that the target is maintained directly in the

middle of the field of view at all times. The size of the window around the target, and

resulting offsets of Th and Tl from the state, the dictated again by a desired expectation

of measurement censoring. Such a rule is then given by

Thk
= Cx̂k + σΦ−1(1

2
(ED + 1))

Tlk = Cx̂k + σΦ−1(1− 1
2
(ED + 1))

(6.73)

where ED represents the desired expectation of censoring. Since the target is

maintained in the middle of the field of view the measurement noise distribution is

equally censored on both tails, and therefore the inverse mill ratio remains zero. With

expectation of censoring maintaining a constant value, and inverse mills ratio being

zero, the variance converges as well, and a steady Tobit Kalman filter results. As with

before, the given expectation of being uncensored can be used calculate a steady state
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Figure 6.31: Automatic translation of FOV using a steady state saturated Tobit
Kalman filter, using the expectation of being uncensored (ED) to control
camera limits.
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Tobit gain and error covariance, which can be considered in the design process to set

ED to maintain or exceed a certain level of desired uncertainty.

Figure 6.32: Automatic translation of FOV using a steady state saturated Tobit
Kalman filter, using the expectation of censoring (ED) to center target
within FOV and track with target.

Complications arise in the above scenarios when it is desired to simultaneously

track one or more targets. For N targets and M ≥ N independent fields of view it may

be possible to track all given targets via a smartly stacked measurement vector, as seen

previously. However, if M < N , then there exists scenarios in which the target states

may diverge, and a fixed size censoring limit will not be able to observe both targets

simultaneously. At such a time a panning motion would then need to be induced in

order to selectively look at each target. Two methods for achieving such motions are

put forward in the following examples. Each method uses a Tobit parameter based
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feedback to influence censoring limits Th and Tl such that the saturation censored

region is moved to reduce target uncertainty.

The method for tracking multiple targets is analogous to the previous examples,

in that the inverse mills ratio λ is used as a feedback to control the combined censor-

ing limits of the camera’s saturation censoring region. As mentioned in the previous

example, when the target is centered in the field of view the inverse mills ratio goes

to zero, as there is an equal expectation of the being on the left or right of the field of

view. When two targets are present one can extend the stacked measurement example

for stacked states as well. Whereas before in 6.27 a stacked measurement vector was

used to create multiple fields of view of the same state, the analogous example can

created in which multiple independent states can be stacked as well. These states can

be measured independently, with these measurements subjected to either the same or

differing censoring models. When using a stacked state vector, with a corresponding

stacked measurement vector, multiple inverse mills ratios need be calculated, one for

each independent measurement. By attempting to drive the combined inverse mills

ratio to zero the censoring region tries to keep both targets centered in the FOV, and

effectively attempts to drive each target to the same expectation of censoring as well.

Should the imager focal length and position be fixed, then the only method for con-

trolling these censoring limits is to pan the camera. Such a generated panning motion

can be seen in6.33, in which the following update law for T is used

Th(k) = Th(k − 1)−K(λ1(k) + λ2(k)) (6.74)

where K is a proportional gain and

λi =
φ
(
Th−ŷi
σr

)
−φ
(
Tl−ŷi
σr

)
γi

(6.75)

The filter attempts to update Th such that the combined inverse mills ratio of the

targets is reduced. Censoring limit Tl is found in relation to Th according to the camera

model. If both targets are well within the field of view then target measurements will
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be unbiased and the inverse mills ratios negligible, no change in Th occurs, and the

camera remains stationary. However, should target i move nearer to a censored region,

that it is it approaches the edge of the field of view, then the respective λi pushes the

desired censoring limit in such a manner as to reduce the expectation of censoring.

Figure 6.33: Automatic panning of a solitary FOV using a saturated Tobit Kalman
filter, using the inverse mill ratio to control camera limits in order to
estimate multiple targets.

In the given example the trajectories of the two targets begin in a similar man-

ner, however the first target nears the edge of the field of view early on. The censoring

limit Th automatically compensates for this via the λ feedback, and the camera is

panned to accomplish the desired censored limit and keep both targets in the field

188



of view. However, because the second target is moving significantly slower, it begins

to exit the opposite side of the field of view. Focal length is fixed so the separation

between the Th and Tl censoring limits cannot be expanded by increasing the field of

view directly. Such an action may be undesirable, for the effective pixels on target are

reduced and the vision algorithm may suffer accordingly. Therefore a panning motion

is induced, for when the saturation limits are adjusted to view one target, the inverse

mills ratio of the other target grows. Eventually λ2 grows to such an extent that the

saturation limits are forced to moved towards the offending second target, thereby

causing λ1 of the first target to grow. This balancing act is continued indefinitely, with

the oscillations becoming greater in magnitude.

Figure 6.34: Error covariance of a saturated Tobit Kalman filter while using the
inverse mill ratio to control camera limits in order to estimate multiple
targets.
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In figure 6.34 the error covariance for the above example is shown. The error

covariance initially converges, as the both targets remain in the field of view and are not

subjected to censoring. Eventually however, near the 1200 frame mark, the separation

between targets has grown significantly large enough that both targets can no longer

be contained in a fixed field of view. For a short period of time the inverse mills

ratio feedback term has not accumulated enough to enforce a significant change in the

censoring limit, thus the camera remains stationary, both targets are censored, and the

error covariance grows rapidly. However, the feedback term eventually gains enough

influence to begin the panning motion, in which each target is observed over alternating

short time steps. At this time, the error covariance for each target is reduced. The

error covariance for the first target remains lower as it remains uncensored for a larger

proportion of the panning motion, as is evident in figure 6.33.

As shown in figure 6.34, and mentioned previously, the Tobit Kalman filter error

covariance provides a meaningful measure of the quality of the current state estimate.

This is valuable information that is not present in the standard Kalman Filter, which

converges to a steady state, or is otherwise less informative, such as in the Sinopoli et.

al Kalman filter in which the error covariance grows unnecessarily fast. Therefore, can

this information be leveraged for use directly in the control of the censoring limits, as

seen previously? Such a system is presented in figure 6.36, in which a similar scenario

was constructed as to the previous example, except Th is now updated according a

feedback which incorporates the error covariance directly, with intent of driving the

field of view in such a manner that a desired P confidence interval is always maintained.

Such an update law takes the form of

Th(k) = Th(k − 1)−K ((P1,1(k − 1)− Pref1)− (P3,3(k − 1)− Pref2)) (6.76)

where, gain, K is a tuned proportional gain. The reference error covariances

Prefi represent desired levels of uncertainty. These can be taken either as the optimal

uncensored values, calculated according the steady state standard Kalman filter, or can
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be artificially set higher to reflect a more forgiving camera controller. For instance,

setting Prefi higher than the uncensored value allows for the respective target to exit

the field of view and remain censored until the error covariance grows to such a level

that the feedback term then engages. For example, it is possible to designate these

reference values according to the associated confidence interval of the state, such that

the censoring limit is updated in order to maintain a 95% confidence that the target

is within a given radius of the target estimate. Should an accurate dynamic model of

the target be available, then the error covariance grows rather slowly even when the

target is completely censored. Feedback on P therefore remains low, the censoring

limit is not driven harshly at first, and unnecessary camera motion is avoided until

error uncertainty grows to prescribed unacceptable level. In such a scenario the filter

is in essence controlling uncertainty. An example of the motion induced by such a

design is shown in figure 6.35 for a single target, and in figure 6.36 for multiple targets.

It is apparent in figure 6.35, that by directly using the error covariance as

feedback, it is possible to allow the target to exit the field of view and still safely

maintain a desired level of target location uncertainty. Thus the target object does

not have to be strictly within the field of view at all times, and optimal techniques for

practical control of the camera, such as power, bandwidth, field of view, etc., can be

considered. The extension to two targets is shown in figure 6.36. A similar result is

found as in that of 6.33, in which a panning motion is induced to alternatively view

each target and reduce the total error uncertainty. Since the error covariance is used

directly instead of the expectation of censoring, the targets are allowed more time in

the censored region before uncertainty grows to an unacceptable level.

A more optimal feedback term for the adjustment of Th would perhaps seek

a motion which minimizes this error covariance over time with less of an oscillatory

component, and which takes into account the dynamics of the panning motion itself

and its effect on the camera system. Infinitely large and unrealistically fast panning

oscillations need to be avoided in order to maintain vision algorithm performance and

implement such a camera controller in a practical manner. Also the extension to
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Figure 6.35: Automatic panning of a solitary FOV using a saturated Tobit Kalman
filter, using the error covariance to control camera limits in order to
maintain a desired level of target location uncertainty.
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Figure 6.36: Automatic panning of a solitary FOV using a saturated Tobit Kalman
filter, using the error covariance to control camera limits in order to
track multiple targets.
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Figure 6.37: Error covariance while controlling camera FOV limits in order to track
multiple targets.
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the optimal tracking of N targets should be considered, and the usefulness of frame

censoring over saturation censoring considered. Such concepts will be explored in future

work.
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Chapter 7

CONCLUSION AND FUTURE WORK

In this work a thorough introduction to the topic of estimation and control with

censored data has been presented. Handling of censored data has largely been an under

valued topic in many engineering disciplines, despite its practical relevance and common

occurrence. Specifically addressed was the topic of output censoring in state-space

dynamical systems, with the specific intent of deriving a recursive real-time estimator

with application to practical control systems. In doing so the traditional method of

recursive estimation via the Kalman filter was first introduced, with a discussion on

the effects of censored measurements on such an estimator. Novel techniques were

introduced for handling of censored measurements in vision based tracking system,

without modification to the original Kalman filter framework.

The Tobit Kalman filter was derived, which utilizes a new measurement expec-

tation model to re-derive the Kalman gain, measurement variance, and a posteriori

state estimate and error covariance update. The effectiveness of the Tobit Kalman

filter as a state estimator in the presence of censored data was demonstrated, and

multiple censoring models were defined. A steady state Tobit Kalman filter was intro-

duced which, assuming the censoring level can be changed, allows for convergence of

the Tobit Kalman filter’s gain, error covariance, and expectation of censoring, given

certain conditions. After a brief introduction to basic linear control theory concepts,

the stability of the Tobit Kalman filter estimator was discussed. It was shown that

for inherently stable systems, in which the system matrix is stable, the Tobit Kalman

filter always provides a stable state estimate despite the level of censoring present. For

systems which are unstable, local stability of the estimator may be possible, depending

on the censoring characteristics.
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Given a stable Tobit Kalman estimator, an effective close loop LQG based out-

put feedback controller was formed using the T.K.F. as a state observer. New control

possibilities were introduced, one of which includes set point control to references within

a censored region, a previously unacheivable result using traditional linear methods.

Control using the steady state Tobit Kalman filter was demonstrated as well, and it

was shown that high levels of censoring can be tolerated with stable systems with min-

imal degradation in control performance. Using the steady state Tobit Kalman filter

observer, the effective performance of the resulting LQG output feedback controller

can be analyzed for differing levels of expected censoring.

Novel estimation techniques were then discussed which utilize parameters unique

the Tobit Kalman filter. Namely, the implications of multiple censoring regions was

discussed via the sampling of multiple concurrent measurements. It was demonstrated

how multiple censored measurements can be combined in a single filter to reduce esti-

mator uncertainty. Particular attention was focused on the application of vision based

tracking, in which it was demonstrated how saturation censoring can be used to model

an airborne imager. Filter formulations were introduced for the tracking of one or more

targets which exit the field of view, and automatic control of the camera saturation

limits was demonstrated.

7.1 Future Work

The work presented here provides an exciting foundation for a large variety of

both theoretical and applications based future research. From the stability analysis

of more complicated non-linear systems subjected to censoring, to the simultaneous

tracking of multiple targets using distributed censoring regions, the possibilities are

truly endless. The implications of censored data and its effect on control systems is still

a largely undervalued topic, despite its ubiquitous nature in nearly all of engineering

and natural sciences. The questions raised throughout the development of the previous

topics only adds more to the list of still unexplored areas. The way we think of

censoring, and classify new problems in a censored formulation, is ever changing and
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evolving. Censored data is no longer relegated to simple saturated accelerometers or

poor RF receivers, which are then ignored or shyed away from. The value of these

censored measurements can now begin to be harnessed for ever newer techniques of

estimation and control, examples of which are given by, but limited to, the following

Optimal Distribution of Multiple Censored Regions
The topic of multiple censored regions was introduced in 6.6 for stationary limits,
and then leveraged in section 6.7 for moving censoring limits. There remains
extensive research to be done in both of these topics. For instance, can a greedy
algorithm be used to optimally distribute multiple censored regions throughout
a given space such that total estimation error is minimized over all possible state
trajectories? Can these regions be moved in real-time in an optimal fashion?
Can swarm coverage be controlled to an increased area by incorporating censored
communication between individual elements? Sensor fields of view may not need
to overlap, and state uncertainty can be estimated and possibly controlled while
inside the censored regions, as demonstrated in 6.7.

Optimal Tracking of Multiple Simultaneous Targets with a Limited FOV
An extension to the topic of tracking multiple targets with a limited field of
view, as introduced in 6.7, has numerous applications to surveillance and optimal
control. More optimal and stable panning motions should be found for increased
effectiveness of automated surveillance. The concept of ”controlling uncertainty”,
a unique property of the Tobit Kalman filter, should be leveraged and refined.
Associating cost with particular tracking motions or tracking errors can lead to
automatic priority assignment of multiple targets.

Frame Censoring with the Tobit Kalman Filter
The realization of frame censoring represents the most general and powerful cen-
soring model for vision based tracking and detection systems. Extensions to
multiple dimensions will lead a generic censoring model independent of potential
application. However, the framework for censored measurement modeling and
propagation for such a system is still in its infancy, and stability criteria is as of
yet undefined. The possibility of more complicated censoring limits, of variable
size and shape, need to be considered and the implications derived.

The Quantized Tobit Kalman Filter
Taking the idea of multiple censoring regions to the extreme results in the quan-
tized Tobit Kalman filter, in which all of space is made up discrete bins with
adjacent bounds. Now every measurement is an occluded measurement, with its
value dependent upon the underlying continuous state, its noise distribution, and
the distribution of occlusion regions. Can such a system be constructed with a
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purpose? Perhaps to purposefully induce dithering such that optimal reconstruc-
tion of a continuous signal can be performed via estimation with Tobit Kalman
filter with discrete measurements?

Sensor Fusion using the Tobit Kalman Filter
Introduced in section 6.6, the use of multiple censored regions with multiple cen-
soring models presents unique applications towards new sensor fusion techniques.
How can the Tobit Kalman filter be used to optimally combine the information
present in an array of poor, possibly censored, measurements? In parallel to that
of optimal distribution of censored regions, how can multiple different censoring
models be optimally combined to maximize the information of the underlying
system, with minimal cost?

Estimation and Control with Categorical Data
Exploration of non-traditional ways of classifying censored data leads to an en-
tirely new field of advanced signal processing of categorical and survey data. How
can one process measurements that are not truly numerical in nature, and yet
still relate to a given underlying state to be estimated? What other systems and
processes can be re-defined in a censored framework?

Non-linear Analysis of the Tobit Kalman Filter Estimator
Application of the Tobit Kalman filter to non-linear system will be explored. The
state dependent nature of various Tobit parameters lends itself more naturally to
a non-linear framework for more robust stability analysis. The study of condi-
tions for global exponential stability of Tobit Kalman estimators of time-varying
systems. Incorporation of possible non-linear censoring limit dynamics, as well as
censoring limit uncertainty. Is there an applicable parallel to that of the E.K.F.
for the Tobit Kalman filter, and if so, under what conditions?

Non-linear Control with a Tobit Kalman Filter Observer
Incorporation of advanced non-linear control techniques, coupled with T.K.F.
estimators, for novel control techniques of both linear and non-linear systems
subjected to persistent censoring. Moving away from LQG control to more ro-
bust control techniques. Guaranteeing control specifications for given levels of
expected censoring and classes of inputs.

Adaptive & Network Control with a Tobit Kalman Observer
Coupling of Tobit Kalman estimation with concepts of optimal adaptive control,
creating systems which can react to sudden changes in censoring. Network control
of multiple agents, each potentially subjected to censoring. How long can a
network node be censored before too much information is lost and the network
fails? Can network converge exceed that of traditional techniques if information
is allowed be censored?
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