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ABSTRACT 

IceCube is a one cubic kilometer international high-energy neutrino 

observatory at the South Pole. The IceCube experiment has two main components: 

InIce and IceTop. InIce located approximately 1500 meters below the surface of ice 

would deploy DOMs over 80 strings with 60 DOMs on each string. IceTop, located on 

the surface comprises an array of DOMs and would deploy 320 DOMs over 80 

stations. 

The data acquisition component of this experiment, known as the DAQ, 

is a collection of hardware and software components. There are several challenges 

involved in this experiment because of the real-time nature of the data being generated, 

large volumes of data to be handled without any losses, limited resources like power, 

network issues and extreme weather conditions at the site of deployment. The work 

done in this thesis is specifically in context of IceTop. 

A part of this work focuses on improving a specific component of 

IceCube DAQ called the Splicer. The Splicer is a software module responsible for 

merging several input sources and producing a single ordered stream. It has been used 

extensively in the whole IceCube experiment. We have analyzed performance of the 

Splicer using several methodologies. Out of the several techniques experimented, the 

most effective was to reduce Garbage Collection and Object Cycling. 

A second component that was designed and evaluated as part of this 

thesis was Monitoring System. The evaluation was done under different loads and 

various refresh rates to ensure the correctness and stability of the monitoring system. 
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Chapter 1 

 

INTRODUCTION 

IceCube is a one cubic kilometer international high-energy neutrino 

observatory built and installed in the clear deep ice at the South Pole. The IceCube 

experiment has two main components: InIce located around 1500 meters below the 

surface of the earth and IceTop, located on the surface of the earth. The main 

instrument for neutrino detection is the deep detector i.e. InIce. IceTop is mainly 

responsible for calibration of the deep detector, tagging of the high-energy particles to 

distinguish them from the background particles and perform cosmic ray science with 

InIce.  The experiment comprises of several hardware and software components. A key 

component of this experiment is the Data Acquisition System, referred to as the DAQ. 

The DAQ is a collection of hardware and software modules capturing and forwarding 

events generated from the activities of nuclear particles. This thesis gives an overview 

of the system and discusses the design and implementation of some of the 

components. 

The basic component of IceCube is an optical module which consists of 

a sensor that transforms light into electrical signals. A sensor is a photomultiplier tube 

housed in a glass pressure vessel. These sensors, referred to as Digital Optical 

Modules are strung on electrical cables and frozen more than 1500 meters below the 

surface of the ice. 
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As shown in Figure 1, the whole IceCube experiment has two main 

components – InIce and IceTop. This classification is based on the difference in the 

physical topology of the optical modules and the nuclear activity observed by them. As 

the name indicates, the InIce DOMs would be deep below the surface while the IceTop 

DOMs would be on the surface. 

 

 
 

Figure 1. Physical topology of IceCube Experiment 

InIce will occupy a volume of one cubic kilometer and would deploy 

DOMs over 80 strings with 60 DOMs on each string. IceTop, located on the surface, 

comprises an array of sensors to detect the activities of nuclear particles. The IceTop 

would deploy 320 DOMs over 80 stations. It will be used to calibrate IceCube and to 

conduct research on high-energy cosmic rays. The whole experiment on completion 
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will be operating around 5000 DOMs and would produce data in the order of 

Terabytes every day [2]. 

There is a significant overlap in the design requirements for the surface 

(IceTop) and deep (InIce) components of the IceCube experiment. Though similar, the 

surface array has specific goals including calibration, tagging and cosmic ray science, 

detector requirements, timing requirements and data volumes generated which are 

different from IceCube [2]. The main task for IceTop is air shower detection 

compatible with IceCube science goals. These air showers may be small air showers or 

large air showers or horizontal showers. The energy threshold of horizontal showers 

would be quite high because of low density of particles. This requires IceTop to have 

capabilities of handling large volumes of data [2]. The whole experiment consists of 

mainly the components shown in Figure 2. 

  

 

Figure 2. Software Components of IceCube Data Acquisition System 

As shown, the major components of IceCube starting from the Digital 

Optical Module (DOM) and proceeding downstream are DomHub, String Processor, 

IceTop Processor, InIce Trigger, IceTop Trigger, Global Trigger, and Event Builder. 

The centralized control over all the components is done by DAQ Control with the help 
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of Logging and Monitoring modules. The DAQ components interact with each other in 

a well-defined manner as well as with other external utilities such as Control, 

Monitoring and Logging which essentially ensure that the whole system is functioning 

correctly in tandem and creates the ability to detect and react to unexpected scenarios. 

As shown in Figure 2, the whole IceCube system can be visualized as a pipeline where 

each component plays a very specific role and participates in a particular order in the 

chain. What flows in this pipeline is the event data generated by the DOMs upon 

capturing activities of high energy particles. These events are used to make some 

decisions, processed and forwarded by every module from DomHub to Event Builder 

[3], [4]. 

All the binary data generated from DOMs first go to a DomHub which 

provides a communication nexus for all DOMs attached to a given hub. This data 

contains the information required for triggers to make decision and the waveform data. 

The DomHub queries all the operational DOMs attached to it for any data contained in 

their buffers. The topology variations in the locations of DOMs demand a time 

correction to be performed on the data so that the timestamp information of data 

corresponding to an activity is synchronized throughout the data. The String 

Processor/IceTop Processor gets this data from the DomHub and performs time 

correction on it. This is the only system where all DOM data would be buffered for a 

period of approximately 30 secs. The String Processor extracts the necessary 

information including hit type, dom-id, timestamp, which are needed by triggers to 

make decisions. This information is then packaged into a payload and sent to the 

attached trigger. The triggers apply application-specific logic on this data to determine 

if there is an interesting event, either a physics event or a calibration event. A trigger is 
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identified, parameterized and forwarded to the Global Trigger .The Global Trigger is 

responsible for identifying detector-wide hit patterns on the trigger payloads it receives 

from the input detectors. Again, in case of an interesting event, the trigger is formed 

and sent to the Event Builder. Event Builder receives trigger requests from the Global 

Trigger. The request may be to read the entire experiment or a specific detector or a 

specific module in a detector. Event Builder decodes the request, and queries the 

appropriate String Processor or IceTop Processor for the waveform data. This is 

necessary because all the data including waveform data is buffered at String Processor 

or IceTop Processor and in the later stages of the pipeline it’s only the necessary 

information that is being forwarded to the components. Hence, if there is some 

interesting activity detected, then the complete information corresponding to that 

activity is read out by Event Builder, dispatched and made available for analysis and 

reconstruction purposes. 
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Chapter 2 

 

ANALYSIS AND EVALUTION OF SPLICER 

Chapter 1 gives an overall architectural view of the IceCube Data 

Acquisition System. This section focuses on the deployment details of the whole 

experiment. Figure 3 shows the IceCube Data Acquisition system in detail. 

 

 

Figure 3. DAQ Software Components and their multiplicity 

As discussed, DomHub is the sole electrical attachment point for all 

deployed DOMs and also the last hardware component in the pipeline. Further 

downstream, all components are software modules. Irrespective of functionality, every 

software component performs a common task of concentrating the data coming into it. 
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The output of a module upstream becomes input for the module downstream. Also, 

String Processor/IceTop Processor being software components have multiple instances 

running in parallel to expedite the data processing. These two modules need large 

buffers and processing power. Separating load over multiple instances creates the 

flexibility of running these modules over different processors and also leads to a more 

robust and better system in terms of handling failure. The InIce and IceTop Trigger 

would have multiple processors feeding data into them, and therefore they need a 

mechanism to multiplex the data from all input streams to a single ordered stream and 

then apply the processing logic to it. The global trigger needs to multiplex the data 

from two sub-detectors at its input i.e. InIce and IceTop Trigger. 

InIce and IceTop Trigger receive hit payloads from String 

Processor/IceTop Processor and determine the source of origin of the event. Internally, 

at the microscopic level, there would at least be a Simple Majority Trigger and a 

Calibration Trigger running as part of InIce and IceTop Trigger. A Simple Majority 

Trigger is defined by sufficient number of hits within a coincidence time window. A 

Calibration Trigger is simply defined by the type and source of origin of the hit. The 

outputs of these internal triggers have to be merged internally to form a trigger from 

InIce/IceTop. Over the years, with new releases, there would be more internal triggers 

adding to the complexity of trigger and multiplexity of the merger .The experiment on 

completion would be taking data from approximately 5000 DOMs. As per the current 

design, there would be 10 instances of IceTop Processor and 80 instances of String 

Processor that would be in execution. 

Thus, each of the modules of DAQ – String Processor, IceTop 

Processor, InIce Trigger, IceTop Trigger, Global Trigger all follow a similar pattern of 
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data – all of them receive time-ordered data from multiple sources,  produce a single 

time ordered stream and analyze it. The above portrayed scenario led to the 

identification of an experiment wide pattern of data flow, referred to as the splicer 

pattern. Throughout DAQ, this data pattern is prevalent and hence this problem has 

been abstracted into a single problem. The recurring nature of this problem of 

multiplexing multiple asynchronous input streams and generating a single ordered 

output stream led to the design and implementation of the Splicer.  

The Splicer has been designed and developed by Dr. Simon Patton who 

is one of the experienced Engineers at Lawrence Berkeley National Laboratory. The 

Splicer meets all the functional requirements and is a complete solution for the splicer 

pattern. It can be used by any module which exhibits the splicer pattern. 
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Motivation: 

The main task for IceTop is air shower detection compatible with the 

IceCube science goals. The array is available for calibration and tagging along with 

study of cosmic ray cascades over a large and interesting range of energies. The 

science goal requires that IceTop operate simultaneously in two modes. In one mode 

IceTop needs to be self triggering, to be able to reconstruct air showers with good 

geometry and energy resolution independent of IceCube activity. In the other mode, 

IceTop acts as a veto to help eliminate a background of atmospheric muons which may 

contaminate the neutrino events which constitute the main science goal of IceCube. 

IceTop would detect small air showers (energy below threshold of 300 TeV), large air 

showers (energy > 300 TeV) and Horizontal showers (air showers with zenith angle 

greater than 60 degrees). The combined needs of a coincident trigger and large 

dynamic range for electromagnetic detection of air showers, a large cross-sectional 

area for muonic detection of horizontal showers lead to the design of stations. [2]. 

Figure 4 shows IceTop design with data from stations communicated to a DomHub 

which routes the data further to IceTop Processor. 
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Figure 4. IceTop : Data Flow from DOM to Event Builder 

Each DomHub receives data from DOMs at 3.2 Mbps. There are total 

320 DOMs resulting in a data volume of approximately 2 GBps in a minute at an 

overall rate of 32 Mbps. DomHub, forwards data to the IceTop Processor which 

performs time correction on it. Assuming, it needs to hold data for 60 seconds (worst 

case), a total of 2 GB storage is required. Also, this brings a very strict constraint on 

the request coming from the Event Builder. The event builder should never request for 

data that is outside the time window of data in the buffer. There should never be a 

situation where there comes a request from Event Builder for some data which has 

been thrown away. Along with several other requirements, the above scenario directly 

demands the IceTop experiment to be highly performance oriented.  

Figure 4 shows the data flow within IceTop subsystem. The data 

coming into the DomHub is a stream containing science data from the 32 DOMs. This 

stream is then demultiplexed into 32 different streams, one for each DOM. Thus, 

events are distributed in these streams based on the DOM from which they are 
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generated. At the output of DomHub, the Splicer is needed to merge the 32 streams 

into a single time-ordered stream and route it to the connected IceTop Processor. Each 

IceTop Processor after processing the input forwards the hit data to the IceTop Trigger. 

The IceTop Trigger at its front end has a Splicer which merges the input from 10 

IceTop Processors into a single ordered stream. There is another Splicer at the end of 

the IceTop Trigger which acts as a merger and receives triggers from Calibration and 

Shower Triggers. The merger-Splicer processes the input and generates IceTop 

Triggers to be sent to the Global Trigger. As discussed, improving the performance of 

IceTop was regarded a top priority along with other goals of a correct, robust and 

stable system. After analyzing the whole system, the best target identified to improve 

the performance was the Splicer. This was for two reasons: Firstly, the Splicer had 

been developed keeping in mind the functional requirement of the system .Hence, 

there was a lot of scope of performance improvement in the Splicer. Secondly, the 

Splicer was one module that has been used extensively throughout the whole IceCube 

project. Success in improving the performance of one module would have great 

benefits because of the extensive use of this module throughout the software.  
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Reasons for Choosing Java: 

IceCube is a complex distributed application, developed by 

programmers separated by large distances. The experiment will be completely 

developed over a span of 10 years. The system thus demands development in a 

language which is simple yet effective to communicate, robust, portable and has 

networking and distributed software development capabilities. This is a data-centric 

application and demands an application environment that best supports data handling 

over multiple asynchronous streams. Keeping in mind the long time frame of the 

project, the development environment should be such that it’s always easy to find 

programmers working and learning it. Thus, using Java for this project was a 

collaborative decision and was motivated by the strong points of Java [7, 8] that are as 

follows 

1.) Networking features : 

The Java Platform has been designed to be network centric. Java makes 

it unbelievably easy to work with resources across a network and to create network 

based applications using client/server or multitier architectures. The Java API includes 

multilevel support for network communications. Low level sockets can be established 

between agents, and data communication protocols can be layered on top of the socket 

connection. The java.io and java.nio package contains several stream classes 

intended for filtering and preprocessing input and output data streams. APIs built on 

top of the basic networking support in Java provide higher level networking 

capabilities, such as distributed objects, remote connections to database servers, 

directory services, etc. The combination of the virtual machine (VM), portable secure 
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bytecodes, cross-platform capabilities and developer friendly language semantics make 

the Java environment powerful and productive for distributed programming.  

2.) Portable 

The principal advantage of Java is that it runs almost anywhere. The 

developer/user need only have a compatible Java virtual machine (VM), something 

that most operating systems and browsers now include as a standard feature. Java runs 

on most major hardware and software platforms, including Windows 95 and NT, the 

Macintosh, and several varieties of UNIX. 

3.) Java is simple  

There are many programmers who can understand and write code in 

Java, so that many people can participate in developing open source software. Java is 

an elegant language combined with a powerful and well designed set of APIs. The 

simplicity of this language enables in writing better code with fewer bugs, and thus 

reducing development time. 

4.) Multithreading support  

The ability to generate multithreaded agents is a fundamental feature of 

Java. Any class can extend the java.lang.Thread class by providing its own 

implementation of a run () method. Or by implementing the Runnable interface (which 

essentially means providing a run () method that represents the body of work to be 

done in the thread) can be wrapped with a thread by simply creating a new Thread with 

the Runnable object as the argument. Java also provides mechanisms for control and 

manipulation of its threads. Threads are assigned priorities that are publicly poll able 

and settable, giving the ability to suggest how processing time is allocated to threads 

by the Virtual Machine. Threads can also be made to yield to other threads, to sleep for 
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some period of time, to suspend indefinitely, or to go away altogether. These kinds of 

operations become important in asynchronous systems like IceCube, in which a thread 

is tasked with client polling and spawns new threads to service client requests. 

5.) Java is not slow 

Java is considered to be slow as compared to other Object Oriented 

Programming languages like C++. Though slower, Java is not too slow. When used 

correctly, Java code can be sometimes as fast as C++. There are changes proposed to 

the Java Virtual Machine specification that will allow several hardware features to be 

brought into play, thereby increasing performance further. There are many well 

understood optimization techniques and also code profilers which will help us to 

eliminate bottlenecks. Multithreading should also allow performance enhancements. 
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Design and Implementation of Splicer: 

The Splicer is a Java module consisting of a set of Interfaces and 

Implementation, for producing an output stream for data exhibiting splicer pattern. It’s 

a highly multithreaded and thread safe system fed by several asynchronous selectable 

channels, their data being stored into large Byte Buffers, and processed to produce a 

single stream of ordered objects. 

The Splicer can take data from any number of input streams. This has 

been made possible by using the built-in support of threads provided by Java. The 

Splicer uses Java’s Thread class that supports a rich collection of methods to start a 

thread, run a thread, stop a thread and check on a thread’s status. In order to prevent 

shared data from being corrupted by multiple input threads, Java’s synchronization 

feature is used to create mutually exclusive access to data objects. Synchronization is 

used to ensure that only one thread is in a critical region at once and is not interrupted 

in critical regions. 

The Splicer is a generic solution for any data that follows the splicer 

pattern. This has been achieved by putting together several interfaces. Use of Java 

interfaces help in defining the protocol of behavior that can be implemented by any 

class anywhere in the class hierarchy. They are useful for capturing similarities among 

unrelated classes without artificially forging a class relationship. A class that 

implements the interface needs to implement all the methods defined in the interface, 

thereby agreeing to a certain behavior. Thus, domain specific solution for the splicer 

behavior can be obtained by implementing interfaces in the Splicer module. 
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Figure 5. Components of Splicer 

Figure 5 shows major interfaces and classes of the splicer module, 

implementation of which results in specific solutions. The I in front of class names 

indicate it’s an Interface and C indicates it’s a class. 

Spliceable is an interface which extends Comparable interface. This 

interface marks an object as being able to be used by the Splicer .It has a single 

method, ‘compareTo’ that defines the order of elements in the output. This is a method 

of Comparable interface and imposes a total ordering on the objects of each class that 

implements it. This ordering is referred to as the class's natural ordering, and the 

class's compareTo method is referred to as its natural comparison method. 

 SpliceableFactory is an interface that is used by the Splicer class to 

create the appropriate Spliceable instances and interrogate a Byte Buffer that contains 

the incoming data for a channel. 
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Splicer is a concrete class that uses Spliceable and SpliceableFactory 

instances to handle the mechanics of splicing together one or more input channels to 

create a single ordered output. This class accepts data from all added selectable 

SpliceableChannel objects and merges the resultant objects into an ordered list. This 

list is then passed to a SplicedAnalysis object for processing. A SpliceableChannel 

object is defined as an object which can be multiplexed via a selector and which 

implements both the SelectableChannel and ReadableByteChannel interfaces and 

whose byte contents can be converted into Spliceable objects by an appropriate 

SpliceableFactory object. 

SplicedAnalysis is an interface whose implementation is called by the 

Splicer whenever there are new objects in the output. This is where any analysis of the 

ordered output takes place. This interface defines the methods that must be 

implemented by any analysis that wants to run on the results of a Splicer object.  

Figure 5 also shows the working of the Splicer module. Apart from 

interfaces, the major concrete classes are Splicer, Consumer and Channel Controller. 

The Splicer module is started and stopped from Splicer class. The main activities that 

occur in this class are: registration of Readable Byte Channels from where data is to be 

read, creation of a ChannelController for each channel, creation of a consumer thread 

which would handle the processing of data from all channels, creation of the list of 

spliced objects from each channel.  

Another important class is Channel Controller. A Channel Controller is 

identified by the channel it controls and the factory it uses to create Spliceables from 

that Channel. Each input stream has a Channel Controller associated with it. The main 

purpose of this class is data handling i.e. reading data from the pipe, putting it into 
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Byte Buffer, parsing the data from buffer and creating Spliceables using Spliceable 

Factory, and updating the ByteBuffer. It maintains the latest spliceables at each 

channel and provides it to the Splicer class. 

The Consumer class is a thread created by Splicer class for managing 

all the selectable readable byte channels. This thread iterates over all the Channel 

Controllers to consume data from respective Byte Buffers, parse them, create list of 

Spliceables and gather the Spliceables from the list, to be added to the final list of 

Spliced objects 

The data in Figure 5 can be explained as a unidirectional dataflow. All 

the data is fed to the Splicer through a pipe, the write end being registered to the data 

feeder and the read end is registered to the Splicer. All the binary data read from pipe 

is stored in a Byte Buffer. Hence there would be a Byte Buffer for each input channel. 

The data from Byte Buffer is read by Channel Controller and parsed to create 

Spliceables. To create Spliceables appropriate factory is used. The factory knows the 

definition of Spliceables. The Spliceables are then added to a list, which is again 

unique for each individual input channel. The Splicer class reads the list of Spliceables 

from each input channel to produce a single ordered list of Spliced objects. This list is 

finally sent to Analysis for analyzing and processing it. 

In order to gather the Spliceables from each channel, three variables are 

used. Earliest Spliceable and Latest Spliceable are for each channel, while 

EarliestLatestSpliceable is for all the channels. Earliest Spliceable is defined as a 

Spliceable on a channel before which all the Spliceables have been processed. Latest 

Spliceable is defined as the last Spliceable on a channel. EarliestLatestSpliceable is 

defined as the earliest of the latest spliceables on all channels.  The Splicer class uses 
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this value to construct the Spliced list. It takes Spliceables up to 

EarliestLatestSpliceable on each channel .Figure 6 diagrammatically shows it.   

 

Figure 6. Working of Selectable input channels in Splicer 

             As shown in Figure 6, the LatestSpliceable on Channel 1 is 12, on 

Channel 2 is 9, and on Channel 3 is 10. The earliest of all these three is on Channel 2 

i.e. 9. Hence, all the Spliceables up to this goes into the Spliced List Object. After 

forming the Spliced List, the Earliest Spliceable on each channel is updated to show 

the current status. 
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Experiments and Results: 

As explained in earlier sections, IceCube is a complex, distributed Data 

Acquisition System and it is always desirable to keep such applications simple and 

efficient. For a real time data acquisition system, it’s crucial that the data rate is well 

maintained to make sure that data reaches in time and in its entirety from source to 

destination. Therefore, at each of the components in the pipeline it’s important to have 

enough buffer space so that there is no data loss, and each component should be fast 

enough so that the buffers never overflow. Hence, the rate at which data flows in the 

pipeline is important and every component has to be fast enough to maintain required 

speed of data flow. To improve the performance of this system, broadly we could 

follow two approaches – either improve the hardware or the software. Both approaches 

have different feasibility scopes and associated advantages/disadvantages. 

1.) Improving the hardware  

    Improving the hardware which includes the processor, RAM etc. for 

overall system seems to be the simplest way of coming over the data rate requirements. 

The hardware can be improved by upgrading the configuration of all the machines. If 

each machine operates at a much higher speed than the current specification then 

definitely the processing time at each node would reduce thereby reducing the overall 

data processing time of the whole system. Another possibility is to go for load sharing 

by distributing the processing over multiple machines. This would help because there 

would be more number of processors doing the same task, and hence the rate at which 

data would forward in the pipeline would increase. 
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These solutions are not most preferred ones because of the resource limitations at 

South Pole. Adding to the budget is always a concern but more importantly it’s the 

requirement of power, which is a scarce and invaluable resource at South Pole. The 

power generation for the whole experiment is done using fuel which is brought on 

planes and limited number of flights can be scheduled in a year. Hence, it’s a project 

policy and requirement to optimize power usage. Increasing the multiplicity of 

processors directly increases the demand for electric power. 

2.) Improving the software 

  The second and preferred approach followed in this project is to make 

the software code as efficient as possible to cope up with the available resources. The 

objective of software improvement is to identify the sources in the whole system 

where maximum time is consumed and try to improve them. As discussed in the 

previous section, one of the extensively used modules throughout the project is the 

Splicer and hence efforts have been made to improve its performance. 

    The Splicer, in terms of functionality is a very robust and generic 

module. It’s written in such a way that although each module in DAQ is different, it 

uses the Splicer as an envelope and writes all the necessary code in it. Performance 

requirement of the Splicer were secondary at the time of development of Splicer, but 

has been becoming increasingly important and have been addressed in this section. 

Analysis of the Splicer had been an incremental step, the first step was to create an 

appropriate running environment for Splicer, the second step was to understand that 

environment and establish boundaries between Splicer and its environment, and then 

to improve the performance of the Splicer. 
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Methodology: 

As already discussed, the Splicer is a module used throughout the 

IceCube project. As part of this thesis, it has been analyzed and evaluated in context of 

the IceTop sub detector. In order to analyze the performance of the Splicer, there has 

to be some data source simulating the behavior of input streams feeding data to the 

splicer. Also there has to be some data consumer consuming the data produced by the 

splicer i.e. the list of spliceables. Hence, in all the experiments there are three 

components involved in the whole setup. These are: a data producer, which provides 

data to the splicer over TCP/IP sockets; the Splicer, which reads data from producer, 

splices it, and forwards the spliced list to the data consumer; data consumer which is 

the user of output of the Splicer.  

IceTop would be taking data from 320 DOMs. Hence, for simulation 

purposes, the data producer provides data over 320 channels. This is worth 1 second of 

data and is approximately equal to 8 MB. The 8 MB comes over 320 channels, with 

2000 events on each channel. Each event is equal to 13 bytes, where the first 6 bytes is 

timestamp value of the event and the rest 7 byte correspond to the event data. 

When the Splicer was developed, the environment to run Splicer didn’t 

exist. Thus, in context of IceTop, a running environment for Splicer was created. The 

first two experiments, explained later in the chapter, helped to determine the test 

environment most appropriate for the Splicer. The next two experiments further helped 

in understanding the environment. 
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Experiments: 

The results of all the experiments are expressed using box-and-whisker 

plots. As shown in graphs, Q1, the first quartile, is the median of the lower part of 

data. Q3, the third quartile, is the median of upper part of the data.  

 

1.) The first experiment was done to establish a running environment for the Splicer. 

There were operating system imposed restrictions due to which approximately 250 

files only could be opened at one time. The timing values obtained for different 

input streams are shown in Figure 7. 
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Figure 7. Disk Overheads at both producer and consumer 

 

As the graph indicates, the time to process data increases almost linearly with the 

amount of data. The inability to open all input files in this experiment led to the 
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motivation for the second experiment i.e. to try reading the data from buffers rather 

than from files. 

2.)  Disk Overhead Elimination 

The next technique experimented was to eliminate the disk overheads involved in 

reading from and writing to the files. 

Motivation: 

I/O is a major factor in system performance. It places heavy demands on the CPU to 

execute device driver code and to schedule processes fairly and efficiently as they 

block and unblock. The resulting context switches stress the CPU and its hardware 

caches. I/O also exposes any inefficiency in the interrupt handling mechanisms in the 

kernel, I/O loads memory bus during data copy between controllers and physical 

memory, and again during copies between kernel buffers and application data space. 

Hence, an I/O driven application demands a lot of CPU time. 

Experiment: 

In real DAQ, the Splicer would be fed by data from a component of IceCube over a 

socket/pipe and would send the final ordered list to next component in the pipeline. 

Thus, there wouldn’t be any reads or writes from files. Hence, file handling was 

removed to create a better environment for Splicer. To enable reading 320 input 

streams in the current setup, the concept of buffer was used to store the data from data-

producer into a temporary buffer .The Splicer then reads data through sockets and 

stores them in its internal buffers. This helped in two ways. Firstly data could be read 

from all 320 streams. Secondly, as expected because of the disk read overhead 

elimination at the data-provider side, there had been reduction in the time needed by 

the whole setup to process the data and produce spliceables. Figure 8 shows the time 

consumption of current setup. 
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Figure 8.   No disk overheads at producer end 

Conclusion:  

Comparing Figure 7 and Figure 8, there was significant time improvement of 

approximately 50% in data handling when disk overheads were eliminated at data-

producer side. 

    On the same principles disk write overheads were eliminated at the 

data-consumer end. The spliceables after being processed in the Analysis were not 

written to a Binary file, rather written to a buffer. Figure 9 shows the time 

consumption when disk overheads at the data consumer were also removed. 
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Figure 9.   No disk overheads 

 

Comparing the results of Figure 8 and Figure 9, it was observed that there was almost 

30 to 40% time saved when disk overheads were removed at both data producer and 

consumer. 

3.)  Performing Bulk Reads  

The third technique experimented to improve the performance was Bulk Read. 

Motivation: 

Buffering is a technique where large chunks of data is read from disk, and then 

accessed a byte or a character at a time. Buffering is a basic and important technique 

for speeding I/O, and several Java classes support buffering for the same reason. 
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Experiment: 

The current setup of experiment has 13 bytes for each event. Out of 13 bytes, 6 bytes 

correspond to the time information that is being used to construct Spliceable objects. 

The other 7 bytes correspond to the payload information. The data producer puts all 

the data in  the buffer and then the Splicer read the data through ports from their 

respective buffers .The splicer always reads 13 bytes at a time from the buffer , 

performs some processing to it and then sends it to the data consumer. Instead of 

reading each object from the socket, the entire data approximately equal to 26KB was 

read. Thus the number of accesses required to read the data from socket are reduced. 

The reason for expecting improvement was that reading data in bulk (or buffered data) 

is always considered to be efficient than reading small chunks of data. Figure10 shows 

the performance of the current setup when data is read in bulk from the sockets i.e. 

read accesses to socket is reduced. 
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Figure 10.  Reading in Bulk rather than in small packets 

Conclusion:  

Comparing the results of Figure 9 and Figure 10, it has been observed that there is 

hardly any improvement in time. It means that processing overhead involved in 

reading single chunk rather than bulk was not significant in the overall time 

consumption of the system. 

4.) Understanding Java Implementation and Processing Overheads       

The next technique that was experimented was to understand Java implementation and 

processing overheads. 

Motivation: 

In a time critical application performing a small operation over each event may add to 

the overall time consumed by the whole application. 
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Experiment: 

In the current setup, each event in total is of 13 bytes where 6 bytes is the time 

information. In order to create Spliceables, the Splicer needs the timestamp 

information associated with each event. This information has to be an 8 byte quantity 

(long in Java).To convert 6 bytes to 8-byte long in Java, a method is written which is 

called for every event. Figure11 shows the performance of the current set up.       
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Figure 11.  Understanding Java implementation and processing overheads 

 

Conclusion: 

After comparing the results of Figure 9 and Figure 11, it has been observed that there 

is almost no improvement in the performance. This is again an indication that the 
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fraction of time spent in converting the 6 byte timestamp information to 8 byte java 

primitive data, is not dominating in the total processing. Also, to reduce the 

processing, instead of 6 bytes 8 bytes are supplied to the Splicer i.e. there is more data 

transfer now. A slight increase in time when number of files is more indicates that data 

transfer is more costly than small processing. 

5.) Load Balancing Technique  

The next technique that was experimented was to separate the processing at data 

provider and data consumer. 

Motivation: 

Load balancing has been effective in solving big problems faster by distributing the 

workload on multiple processors working simultaneously. Complex problems can be 

modularized and solved faster using parallel processors. 

Experiment: 

In real DAQ, the Splicer would be on a different machine than the producer and 

consumer. By performing this experiment, we are modeling and testing the Splicer in 

an environment which is closer to the actual environment of the Splicer. The objective 

of this experiment was to separate the time consumption by data-producer from the 

Splicer, to see what proportion of time is used by the data producer. The two 

processors were connected by a cross cable. The same code was executed with data 

producer on one machine and the Splicer with data consumer on other machine and 

both of them talking to each other through sockets. Figure 12 shows the performance 

after removing the processing overhead. 
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Figure 12.  Load Balancing by separating producer and consumer  

Conclusion: 

Comparing the results of Figure 9 (when all processes are on same machine) and 

Figure 12 (when producer is on a different machine) it has been observed that there is 

no significant difference in the timing when the whole processing is on one machine or 

on two machines. The plausible reason for this seems to be the fact that most of the 

processing is done at the Splicer. Also, in this case time consumed is little more than 

the case when all the components are on same machine which is possible because the 

data flows on a physical link to reach the Splicer.  But, these results are helpful 

because it indicates that network latencies and limitations are not significantly going to 

affect the performance in real DAQ where data provider and the Splicer with 

consumer may be on different machines. 
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6.)  Reducing Garbage Collection and Object Cycling 

The next technique that was experimented was to reduce garbage collection and object 

cycling. So far the techniques were helpful to reduce the overall time of application by 

changing the environment in which splicer would be used. This technique would 

internally change the Splicer and hence, directly affects performance of the Splicer. 

Motivation: 

Object Creation costs time and uses CPU cycles. Garbage collection and memory 

recycling again takes time and CPU cycles. The less the object creation is, lesser is the 

burden of object cycling. The benefits of garbage collection are indisputable; increased 

reliability, decoupling of memory management from class interface design, and less 

developer time spent chasing memory management errors. The well known problems 

of dangling pointers and memory leaks simply do not occur in Java programs. 

However, garbage collection is not without its costs, along with it comes performance 

impact, pauses, configuration complexity, and nondeterministic finalization. 

Experiment: 

The list of spliceables generated by the Splicer and sent over to the Analysis was a 

collapsible vector of objects .The Spliceables were added to this list by Consumer and 

were removed from the list by Splicer after receiving a message from the Analysis. 

Hence, with Splicer to handle approximately 1000 events in a second, these elements 

were added and then removed from the list in 1 sec. This was time consuming. The 

optimization done here was to convert the list of Spliceables from a Vector to a simple 

array of Spliceable Objects. The size of this list was kept equal to the maximum 

number of elements it might process in a second. Thus, instead of creating objects 

every time, they need to be created once and reassigned every time with new values. 
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Hence, this saves object creation overheads and thus results in less work for garbage 

collector too. Figure 13 shows the performance with reduced garbage collection and 

object cycling. 
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Figure 13.  Reduced garbage collection and object cycling 

Conclusion: 

As is evident from the figures, this technique reduced the time consumption to almost 

30% of the time consumed without the introduced garbage collection. Also, this 

technique directly improves performance of the Splicer. However, we have not been 

able to separate the statistics for object creation and garbage collection.  
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Conclusion: 
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Figure 14. Comparison of results obtained of all the techniques 

 

A Data fed to and read from Splicer with Disk Overheads 

B No Disk Overheads at Data Producer 

C No Disk Overheads 

D Different machine : No Disk Overheads 

E Performing Bulk Read 

F Reducing Processing Overheads 

G Reducing Garbage Collection 
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As shown in Figure 14, removing disk overheads and reducing garbage collection were 

the two most effective techniques to improve the performance of the application that 

would use Splicer. Improvement in time through elimination of disk overheads 

indicates to use performance efficient methodologies while reduction in garbage 

collection directly improves performance of the Splicer. The other techniques were 

also helpful in proceeding further because they helped in eliminating the probable 

targets of time consumption. Along with garbage collection, there are techniques like 

Object Pooling, use of ring buffers to eliminate compaction of data which seems to be 

promising. Object pooling is to maintain a pool of frequently used objects and grab 

one from the pool instead of creating a new one whenever needed. The theory is that 

pooling spreads out the allocation costs over many more uses. When the object 

creation cost is high, such as with database connections or threads, or the pooled 

object represents a limited and costly resource, such as with database connections, this 

makes sense. However, they couldn’t be implemented and remain as a future work to 

be done. 
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Chapter 3 

 

DESIGN, DEVELOPMENT AND EVALUTION OF  

ICETOP MONITORING SYSTEM 

The IceCube experiment and its major software components have been 

discussed in Chapter 2. As already mentioned, the experiment will deploy 5120 optical 

modules and once operating, it will generate Terabytes of data daily. With such 

magnitude of data flowing all through the DAQ pipeline it becomes very necessary 

that there exists a central component to manage the whole experiment. DAQ Control is 

the system that performs the task of a central controlling unit in IceCube system. DAQ 

Control provides a single control view of all DAQ components. As such, it provides a 

single API through which higher software and operator levels can determine the 

overall state of the DAQ system and command that system to move to one of a small 

set of known operational states. Amongst several other functions one of the most 

important task of DAQ Control is to provide a single access point of control and 

monitoring of overall DAQ state and operation. DAQ control does this by using a 

centralized Monitoring System for IceCube. 

The IceCube Monitoring System provides the mechanisms to centrally 

monitor and control all components of the IceCube system. The IceCube software shall 

provide a Monitoring System that allows for monitoring the performance of all facets 

of detector function, configuring the system, calibrating the system, identifying fault 

conditions, and controlling the operation of the Data Acquisition, Data Handling and 
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Satellite Data Transmission systems. The IceCube Monitoring System would request 

for monitoring information from the Components of the IceCube system. These can be 

String Processor, IceTop Trigger, and Event Builder etc. Thus each of the components 

will instrument "Monitor Points" and would report back their values to the Monitoring 

System.  

Based on the same grounds, the IceTop Monitoring System provides monitoring 

information of a subcomponent of IceCube i.e. IceTop Trigger. The primary 

motivation behind development of IceTop Monitoring System is to respond to the 

central Monitoring and to make it possible to extract the details at all levels of the 

hierarchy.  Having an ability to see into the details at each components / sub-

component level not only  helps in debugging and testing, but also helps to make good 

approximation of configurable parameters like buffer size for data at input/output 

streams. The graphical display of monitored data improves the Usability of the system 

by making it easier for the user to analyze the displayed information effectively. 

IceTop Monitoring System has been developed in isolation, but it has been designed 

such that interface of this system is adaptable.   
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Requirements: 

The purpose of IceTop Monitoring system is to capture all the 

monitoring information of IceTop Trigger on a regular time basis as well as on the 

request of the user. The information captured and monitored by IceTop Monitoring 

system should be sufficient enough to give a complete idea of what’s going on in the 

system and should be concise enough so that it does not significantly impact IceTop 

Trigger’s performance. The main requirements of IceTop Monitoring system are 

governed by its uses, which are as follows: 

1. The user should have control on the details of collection of data i.e. delta time of 

monitoring should be settable by the user. This is very important because it gives the 

user complete control on how frequently he wants to monitor the system. This feature 

is particularly useful in case of abnormal operations, where it’s essential to get finer 

grained record of the system for some period of time to identify the point of 

origin/reason of problem. 

2. It should give a complete picture of the IceTop Trigger. The information displayed 

by Monitoring about IceTop Triggers should be sufficient enough so that in case of 

some abnormal activities in the system, it’s possible to identify the point of fault, and 

then scrutiny it in detail by making frequent snapshot requests. 

3. Monitoring of network conditions is a crucial requirement for an application like 

IceCube. All through the DAQ pipeline, there is data continuously flowing through 

pipes/ sockets between the components. This data gets stored in buffers at the input 

side of all nodes. Thus, there is a need of information about rate of payloads on all 
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channels, buffer usage at each input channel and a histogram of latencies at each I/O 

stream to give a complete view of network traffic in the whole system. 

4. Apart from diagnostic purposes, one of the most important uses of Monitoring 

system is interactive debugging. Because of the real time nature of data to be 

monitored, it’s very difficult to ensure if the system is running correctly. The IceTop 

Monitoring provides detailed as well as summary of time stamps on I/O stream and 

their nodes. IceTop Monitoring System makes it possible to see events coming in at 

each input channel of a node, events coming into the node and events’ going out of the 

node .This helps to debug problems like data loss, or programming errors like 

redirecting output to a wrong channel etc. 

5. The Monitoring system should display information in a concise and easy to 

visualize manner. The better is the display, easier it is for the user to analyze the 

information. The Monitoring system therefore displays all information using graphical 

display. There may be large number of input/output  channels associated with a node , 

showing the details of all of them can be unnecessary and confusing most of the time ,  

hence a single input and output channel of interest can be viewed in detail at a time , 

while the others can be selected by just selecting a radio button. Also labeled panels 

are used for sub components so that they are easily available to user but not always in 

the front panel. Detail information about timestamps is always available but not 

displayed .When interested; user can view everything on a single click. Thus, all the 

information is made available to the user and only the most important information 

being displayed to him. 
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Design: 

IceTop Monitoring System has been designed to monitor any 

application which can be represented as a network of nodes connected by edges i.e. a 

graph. The design should be flexible enough so that IceTop Monitoring doesn’t restrict 

itself to monitoring IceTop only. This should be a generic and thus a customized 

solution for a problem which required graph monitoring. To accomplish this goal 

every component/sub-component that needs to be monitored is identified as a node in 

a graph. In IceCube DAQ, no node exists in isolation i.e. there are always one or more 

input coming to a component and one or more output going out from a component. In 

the current design, they are designated as Input channels to a node and output channels 

from a node. 

Another design issue was how frequently the system should be 

monitored. This was of concern because of the large volume of data transfer that takes 

between the nodes/input channels/output channels to monitoring. The monitoring 

should be frequent enough so that all the interesting as well as abnormal activities are 

captured by the Monitoring. The monitoring cannot be very frequent since it interrupts 

the system from its normal function of forwarding data downstream the pipeline. Also, 

Monitoring should be customizable so that the user can define the time intervals when 

he wants to capture the snapshot of the system. 

Based on the above design constraints, IceTop Monitoring system has 

been designed so that it provides the capabilities to the user to decide how frequently 

he wants to view the snapshots of the system. Thus under normal operations, this 

frequency can be less while if there are  some problems then the user has control to 
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request the snapshots more frequently. Also regardless of the frequency of the user 

requests, the Monitoring system would request for all the Monitoring information on 

an hourly basis. The information received on this timed requests would be archived, 

and would be saved after each run. 

Considering the architecture of the whole IceCube System every module can be 

visualized as a node that hosts at least one input channel and feeding at least one 

output channel. Figure 15 shows the nodes and channels architecture for IceTop 

Trigger. 

 

 

Figure 15.  Nodes and their Input/Output channels in IceTop Trigger 

   As shown in Figure, internally there are 4 components which are part of 

IceTop Trigger. Each of these components can be visualized as a node, connected to at 

least one input and output channel. These components are also connected to 

Monitoring System and provide it with the real time values of monitoring points. To 

obtain the implementation of such a design, generic payloads for nodes and channels 

are defined. These payloads contain the monitoring information specific to a 

node/channel. 
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The node monitors the first timestamp and last timestamp of the all the events 

it has received in a given time frame. It also monitors a specified number of 

timestamps and stores them in a ring buffer so that the latest values are returned to the 

display system. The input channel monitors the first timestamp and last timestamp, the 

clock times corresponding to them, the data arrival rate and the buffer usage. The 

output channel monitors similar quantities, but at the output end of a node and for 

output channels. 

Since each node can have varying number of input and output channels, 

they have been added as a vector, so that their size can be varied. Also there is another 

vector for low level sub-components. This is used to obtain hierarchical monitoring of 

the system i.e. if a sub system component has another subsystem component, then it 

adds the details of that sub component also. 

Thus, the above schema helps to obtain a customizable information 

retrieval schema for a component where each component, can have varying number of 

input channels, output channels and sub-level components.  
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Implementation: 

The IceTop Monitoring System has been implemented in Java and 

makes extensive use of Java’s swing package for graphics. The application has three 

screens. The first screen displays the run-configuration of the IceTop trigger. It has all 

the static, run time settable configuration parameters of IceTop system. The second 

screen contains a tabbed panel of all the sub components. Each panel is identical but 

the information displayed is specific to a component. From second screen there is a 

mechanism to see the components one level down, if they exist. Also, the details of the 

timestamps can also be viewed from the second screen. The three main screens of the 

display system are shown in Figure 16 
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Figure 16. Output Screen snapshots of IceTop Monitoring System 

 

As shown in the above figure, The IceTop Monitoring System displays monitoring 

information about the internal components of the IceTop Trigger .The screen showing 

detail statistics of the components in the figure shows details about the Hit Sorter (as 

selected in the Tabbed Pane).As per the scheme, there would be a similar screen with 

same data fields for IceTop Trigger, which would basically be an integrated report of 

all these internal triggers, but is not completely ready at this time. To get the 

monitoring points for IceTop trigger, it communicates to three packages – Splicer, 

TriggerUtil and IceTop Trigger. Figure 17 shows the communication between IceTop 

Monitoring System and these three packages for one node. This communication 

scenario would be true for any node communicating with the Monitoring System. 
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Figure 17. Process Communication in a Node  

 

In brief the role of each module is: the Splicer acts as data controller – it reads data 

from buffers, gives them for processing and returns back the processed result to 

IceTop Trigger. Trigger Util package actually creates the spliceables from the Splicer, 

uses buffer-id from Splicer, reads buffers with appropriate factories and payload 

definitions, creates spliceable payload, and gives it back to splicer. IceTop trigger is 

the consumer of spliceables. It requests Splicer to create spliceable payloads. IceTop 

Monitoring System needs to communicate with all of them. This is because it 

monitors: input channels, for which the monitoring points have to be stationed at 

triggerUtil; output channels/nodes, for which monitoring points are at IceTop trigger. 

It also has to communicate with Splicer, which in this scheme is manager/controller, 

to signal when the monitoring needs a snapshot of the system. 
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Evaluation: 

The memory usage and the CPU usage of IceTop Monitoring System 

have been evaluated while it’s running and interacting with other modules like IceTop 

Trigger, Splicer and TriggerUtil. 

The performance of IceTop Monitoring System has been evaluated 

under varying load conditions and refresh rates. By refresh rates, it means that the rate 

at which Monitoring would request for the most recent data from IceTop Trigger 

System i.e. most recent snapshot of the system. The events shown in the graph refer to 

the specified number of latest timestamp values returned by each node to the 

Monitoring System. The size of each of this event is 8 bytes. Apart from this, as 

discussed in previous section there is other information too going from nodes and 

input/output channels to the Monitoring System. 
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Memory Usage of Icetop Monitoring System
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Figure  18 Memory Usage of IceTop Monitoring System 

Figure 18 shows the memory usage of IceTop Monitoring System. The 

memory usage remains almost the same when the refresh rates are changed keeping 

the load same. This is clear because changing refresh rates is mainly impacting CPU 

usage; the memory requirements are the same because load remains the same. 

Supporting the above argument we do see differences in the memory requirement, 

when load is doubled. 
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Figure 19. CPU Usage when load = 2000 events 
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Figure 20. CPU Usage when load = 4000 events 

Figure 19 and Figure 20, shows the performance of IceTop Monitoring 

System. In Figure 19 the load is 2000 events i.e. 16 KB while in Figure 20 the load is 32 

KB. There is a similar pattern observed in both the figures i.e. as the refresh rates 

increases i.e. as the request to view most recent snap-shot becomes more frequent, the 

CPU load increases.  

 

 

 

 

 

 

 



 50 

 

Conclusion and Future Work: 

As part of evaluation of IceTop Monitoring System, it was executed 

under several conditions. The system was tested to work under high load as well as refresh 

rates to make sure that it survives under conditions of frequent requests. As observed, the 

display system runs successfully under all the tests. 

There is always possibility of improvements in an application. The 

IceTop Monitoring system also has scope of improvement. One of the extensions would 

be incorporation of hierarchical scheme of components. The design has been done keeping 

it as a possibility, but the implementation doesn’t support this feature as of yet and this 

remains a challenge to be accomplished further. 
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