
 i

EXPERIENCE AND ANALYSIS OF A REAL TIME

DATA ACQUISITION SYSTEM

by

Divya Swarnkar

A thesis submitted to the Faculty of the University of Delaware in partial

fulfillment of the requirements for the degree of Master of Science in Computer

Science.

Summer 2005

© 2005 Divya Swarnkar

All Rights Reserved

UMI Number: 1428193

1428193
2005

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

 ii

EXPERIENCE AND ANALYSIS OF A REAL TIME

DATA ACQUISITION SYSTEM

by

Divya Swarnkar

Approved: __

 Martin Swany, Ph.D.

 Professor in charge of thesis on behalf of the Advisory Committee

Approved: __

 David Seckel, Ph.D.

 Professor in charge of thesis on behalf of the Advisory Committee

Approved: __

 Henry Glyde, Ph.D.

 Chairperson, Department of Computer and Information Sciences

Approved: __

 Tom Apple, Ph.D.

 Dean, College of Arts and Sciences

Approved: __

 Conrado M. Gempesaw II, Ph.D.

 Vice Provost for Academic and International Program

 iii

ACKNOWLEDGMENTS

I would like to thank my Research advisor, Dr. Martin Swany , for all the

guidance, patience, and support, throughout the thesis work.

I would like to thank my advisor Dr.David Seckel, for his tremendous

support, guidance, and inspiration throughout the thesis work. I am grateful to him for

keeping my spirits high all this time.

I would like to thank Dr.Simon Patton, for his help in the understanding of

the Splicer.

I would like to thank my Project Manager, Mr.Abhay Agrawal and Group

Leader, Mr.Paul Musto, at Cadence Design Systens for their support in completing my

thesis.

I would like to thank my family and friends for all their help and support.

.

 iv

TABLE OF CONTENTS

LIST OF FIGURES .. v

ABSTRACT ...vii

INTRODUCTTION.. 1

ANAYSIS AND EVALUATION OF SPLICER.. 6

Motivation .. 9

Reasons for Choosing Java... 12

Design and Implementation of the Splicer ... 15

Experiments and Results .. 20

 Methodology.. 22

Disk Overhead Elimination ... 24

Performing Bulk Reads ... 26

Understanding Java Implementation and Processing

Overheads .. 28

Load Balancing Technique .. 30

Reducing Garbage Collection and Object Cycling...................... 32

Conclusion.. 34

DESIGN , DEVELOPMENT AND ANALYSIS OF ICETOP MONITORING

SYSTEM .. 36

Requirements .. 38

Design... 40

Implementation... 43

Evaluation... 46

Conclusion and Future Work.. 50

VOTE OF THANKS .. 51

REFERENCES... 52

 v

LIST OF FIGURES

Figure 1 Physical Topology of IceCube Experiment.. 2

Figure 2 Software Components of IceCube Data Acquisition System 3

Figure 3 DAQ Software Components and their multiplicity.................................. 6

Figure 4 IceTop : Data Flow from DOM to Event Builder 10

Figure 5 Components of Splicer ... 16

Figure 6 Working of selectable input channels of Splicer.................................... 19

Figure 7 Disk Overheads at both producer and consumer.................................... 23

Figure 8 No Disk Overheads at producer end... 25

Figure 9 No Disk Overheads .. 26

Figure 10 Reading in bulk rather than in small packets ... 28

Figure 11 Understanding Java implementation and processing overheads 29

Figure 12 Load Balancing by separating producer and consumer 31

Figure 13 Reduced garbage collection and object cycling...................................... 33

Figure 14 Comparison of all the techniques ... 34

Figure 15 Nodes and their Input/Output channels in IceTop Trigger.................... 41

Figure 16 Output screens of IceTop Monitoring System 44

Figure 17 Process Communication in IceTop Monitoring System 45

Figure 18 Memory Usage IceTop Monitoring System .. 47

 vi

Figure 19 CPU Usage when load = 2000 events .. 48

Figure 20 CPU Usage when load = 4000 events .. 49

 vii

ABSTRACT

IceCube is a one cubic kilometer international high-energy neutrino

observatory at the South Pole. The IceCube experiment has two main components:

InIce and IceTop. InIce located approximately 1500 meters below the surface of ice

would deploy DOMs over 80 strings with 60 DOMs on each string. IceTop, located on

the surface comprises an array of DOMs and would deploy 320 DOMs over 80

stations.

The data acquisition component of this experiment, known as the DAQ,

is a collection of hardware and software components. There are several challenges

involved in this experiment because of the real-time nature of the data being generated,

large volumes of data to be handled without any losses, limited resources like power,

network issues and extreme weather conditions at the site of deployment. The work

done in this thesis is specifically in context of IceTop.

A part of this work focuses on improving a specific component of

IceCube DAQ called the Splicer. The Splicer is a software module responsible for

merging several input sources and producing a single ordered stream. It has been used

extensively in the whole IceCube experiment. We have analyzed performance of the

Splicer using several methodologies. Out of the several techniques experimented, the

most effective was to reduce Garbage Collection and Object Cycling.

A second component that was designed and evaluated as part of this

thesis was Monitoring System. The evaluation was done under different loads and

various refresh rates to ensure the correctness and stability of the monitoring system.

 1

Chapter 1

INTRODUCTION

IceCube is a one cubic kilometer international high-energy neutrino

observatory built and installed in the clear deep ice at the South Pole. The IceCube

experiment has two main components: InIce located around 1500 meters below the

surface of the earth and IceTop, located on the surface of the earth. The main

instrument for neutrino detection is the deep detector i.e. InIce. IceTop is mainly

responsible for calibration of the deep detector, tagging of the high-energy particles to

distinguish them from the background particles and perform cosmic ray science with

InIce. The experiment comprises of several hardware and software components. A key

component of this experiment is the Data Acquisition System, referred to as the DAQ.

The DAQ is a collection of hardware and software modules capturing and forwarding

events generated from the activities of nuclear particles. This thesis gives an overview

of the system and discusses the design and implementation of some of the

components.

The basic component of IceCube is an optical module which consists of

a sensor that transforms light into electrical signals. A sensor is a photomultiplier tube

housed in a glass pressure vessel. These sensors, referred to as Digital Optical

Modules are strung on electrical cables and frozen more than 1500 meters below the

surface of the ice.

 2

As shown in Figure 1, the whole IceCube experiment has two main

components – InIce and IceTop. This classification is based on the difference in the

physical topology of the optical modules and the nuclear activity observed by them. As

the name indicates, the InIce DOMs would be deep below the surface while the IceTop

DOMs would be on the surface.

Figure 1. Physical topology of IceCube Experiment

InIce will occupy a volume of one cubic kilometer and would deploy

DOMs over 80 strings with 60 DOMs on each string. IceTop, located on the surface,

comprises an array of sensors to detect the activities of nuclear particles. The IceTop

would deploy 320 DOMs over 80 stations. It will be used to calibrate IceCube and to

conduct research on high-energy cosmic rays. The whole experiment on completion

 3

will be operating around 5000 DOMs and would produce data in the order of

Terabytes every day [2].

There is a significant overlap in the design requirements for the surface

(IceTop) and deep (InIce) components of the IceCube experiment. Though similar, the

surface array has specific goals including calibration, tagging and cosmic ray science,

detector requirements, timing requirements and data volumes generated which are

different from IceCube [2]. The main task for IceTop is air shower detection

compatible with IceCube science goals. These air showers may be small air showers or

large air showers or horizontal showers. The energy threshold of horizontal showers

would be quite high because of low density of particles. This requires IceTop to have

capabilities of handling large volumes of data [2]. The whole experiment consists of

mainly the components shown in Figure 2.

Figure 2. Software Components of IceCube Data Acquisition System

As shown, the major components of IceCube starting from the Digital

Optical Module (DOM) and proceeding downstream are DomHub, String Processor,

IceTop Processor, InIce Trigger, IceTop Trigger, Global Trigger, and Event Builder.

The centralized control over all the components is done by DAQ Control with the help

 4

of Logging and Monitoring modules. The DAQ components interact with each other in

a well-defined manner as well as with other external utilities such as Control,

Monitoring and Logging which essentially ensure that the whole system is functioning

correctly in tandem and creates the ability to detect and react to unexpected scenarios.

As shown in Figure 2, the whole IceCube system can be visualized as a pipeline where

each component plays a very specific role and participates in a particular order in the

chain. What flows in this pipeline is the event data generated by the DOMs upon

capturing activities of high energy particles. These events are used to make some

decisions, processed and forwarded by every module from DomHub to Event Builder

[3], [4].

All the binary data generated from DOMs first go to a DomHub which

provides a communication nexus for all DOMs attached to a given hub. This data

contains the information required for triggers to make decision and the waveform data.

The DomHub queries all the operational DOMs attached to it for any data contained in

their buffers. The topology variations in the locations of DOMs demand a time

correction to be performed on the data so that the timestamp information of data

corresponding to an activity is synchronized throughout the data. The String

Processor/IceTop Processor gets this data from the DomHub and performs time

correction on it. This is the only system where all DOM data would be buffered for a

period of approximately 30 secs. The String Processor extracts the necessary

information including hit type, dom-id, timestamp, which are needed by triggers to

make decisions. This information is then packaged into a payload and sent to the

attached trigger. The triggers apply application-specific logic on this data to determine

if there is an interesting event, either a physics event or a calibration event. A trigger is

 5

identified, parameterized and forwarded to the Global Trigger .The Global Trigger is

responsible for identifying detector-wide hit patterns on the trigger payloads it receives

from the input detectors. Again, in case of an interesting event, the trigger is formed

and sent to the Event Builder. Event Builder receives trigger requests from the Global

Trigger. The request may be to read the entire experiment or a specific detector or a

specific module in a detector. Event Builder decodes the request, and queries the

appropriate String Processor or IceTop Processor for the waveform data. This is

necessary because all the data including waveform data is buffered at String Processor

or IceTop Processor and in the later stages of the pipeline it’s only the necessary

information that is being forwarded to the components. Hence, if there is some

interesting activity detected, then the complete information corresponding to that

activity is read out by Event Builder, dispatched and made available for analysis and

reconstruction purposes.

 6

Chapter 2

ANALYSIS AND EVALUTION OF SPLICER

Chapter 1 gives an overall architectural view of the IceCube Data

Acquisition System. This section focuses on the deployment details of the whole

experiment. Figure 3 shows the IceCube Data Acquisition system in detail.

Figure 3. DAQ Software Components and their multiplicity

As discussed, DomHub is the sole electrical attachment point for all

deployed DOMs and also the last hardware component in the pipeline. Further

downstream, all components are software modules. Irrespective of functionality, every

software component performs a common task of concentrating the data coming into it.

 7

The output of a module upstream becomes input for the module downstream. Also,

String Processor/IceTop Processor being software components have multiple instances

running in parallel to expedite the data processing. These two modules need large

buffers and processing power. Separating load over multiple instances creates the

flexibility of running these modules over different processors and also leads to a more

robust and better system in terms of handling failure. The InIce and IceTop Trigger

would have multiple processors feeding data into them, and therefore they need a

mechanism to multiplex the data from all input streams to a single ordered stream and

then apply the processing logic to it. The global trigger needs to multiplex the data

from two sub-detectors at its input i.e. InIce and IceTop Trigger.

InIce and IceTop Trigger receive hit payloads from String

Processor/IceTop Processor and determine the source of origin of the event. Internally,

at the microscopic level, there would at least be a Simple Majority Trigger and a

Calibration Trigger running as part of InIce and IceTop Trigger. A Simple Majority

Trigger is defined by sufficient number of hits within a coincidence time window. A

Calibration Trigger is simply defined by the type and source of origin of the hit. The

outputs of these internal triggers have to be merged internally to form a trigger from

InIce/IceTop. Over the years, with new releases, there would be more internal triggers

adding to the complexity of trigger and multiplexity of the merger .The experiment on

completion would be taking data from approximately 5000 DOMs. As per the current

design, there would be 10 instances of IceTop Processor and 80 instances of String

Processor that would be in execution.

Thus, each of the modules of DAQ – String Processor, IceTop

Processor, InIce Trigger, IceTop Trigger, Global Trigger all follow a similar pattern of

 8

data – all of them receive time-ordered data from multiple sources, produce a single

time ordered stream and analyze it. The above portrayed scenario led to the

identification of an experiment wide pattern of data flow, referred to as the splicer

pattern. Throughout DAQ, this data pattern is prevalent and hence this problem has

been abstracted into a single problem. The recurring nature of this problem of

multiplexing multiple asynchronous input streams and generating a single ordered

output stream led to the design and implementation of the Splicer.

The Splicer has been designed and developed by Dr. Simon Patton who

is one of the experienced Engineers at Lawrence Berkeley National Laboratory. The

Splicer meets all the functional requirements and is a complete solution for the splicer

pattern. It can be used by any module which exhibits the splicer pattern.

 9

Motivation:

The main task for IceTop is air shower detection compatible with the

IceCube science goals. The array is available for calibration and tagging along with

study of cosmic ray cascades over a large and interesting range of energies. The

science goal requires that IceTop operate simultaneously in two modes. In one mode

IceTop needs to be self triggering, to be able to reconstruct air showers with good

geometry and energy resolution independent of IceCube activity. In the other mode,

IceTop acts as a veto to help eliminate a background of atmospheric muons which may

contaminate the neutrino events which constitute the main science goal of IceCube.

IceTop would detect small air showers (energy below threshold of 300 TeV), large air

showers (energy > 300 TeV) and Horizontal showers (air showers with zenith angle

greater than 60 degrees). The combined needs of a coincident trigger and large

dynamic range for electromagnetic detection of air showers, a large cross-sectional

area for muonic detection of horizontal showers lead to the design of stations. [2].

Figure 4 shows IceTop design with data from stations communicated to a DomHub

which routes the data further to IceTop Processor.

 10

Figure 4. IceTop : Data Flow from DOM to Event Builder

Each DomHub receives data from DOMs at 3.2 Mbps. There are total

320 DOMs resulting in a data volume of approximately 2 GBps in a minute at an

overall rate of 32 Mbps. DomHub, forwards data to the IceTop Processor which

performs time correction on it. Assuming, it needs to hold data for 60 seconds (worst

case), a total of 2 GB storage is required. Also, this brings a very strict constraint on

the request coming from the Event Builder. The event builder should never request for

data that is outside the time window of data in the buffer. There should never be a

situation where there comes a request from Event Builder for some data which has

been thrown away. Along with several other requirements, the above scenario directly

demands the IceTop experiment to be highly performance oriented.

Figure 4 shows the data flow within IceTop subsystem. The data

coming into the DomHub is a stream containing science data from the 32 DOMs. This

stream is then demultiplexed into 32 different streams, one for each DOM. Thus,

events are distributed in these streams based on the DOM from which they are

 11

generated. At the output of DomHub, the Splicer is needed to merge the 32 streams

into a single time-ordered stream and route it to the connected IceTop Processor. Each

IceTop Processor after processing the input forwards the hit data to the IceTop Trigger.

The IceTop Trigger at its front end has a Splicer which merges the input from 10

IceTop Processors into a single ordered stream. There is another Splicer at the end of

the IceTop Trigger which acts as a merger and receives triggers from Calibration and

Shower Triggers. The merger-Splicer processes the input and generates IceTop

Triggers to be sent to the Global Trigger. As discussed, improving the performance of

IceTop was regarded a top priority along with other goals of a correct, robust and

stable system. After analyzing the whole system, the best target identified to improve

the performance was the Splicer. This was for two reasons: Firstly, the Splicer had

been developed keeping in mind the functional requirement of the system .Hence,

there was a lot of scope of performance improvement in the Splicer. Secondly, the

Splicer was one module that has been used extensively throughout the whole IceCube

project. Success in improving the performance of one module would have great

benefits because of the extensive use of this module throughout the software.

 12

Reasons for Choosing Java:

IceCube is a complex distributed application, developed by

programmers separated by large distances. The experiment will be completely

developed over a span of 10 years. The system thus demands development in a

language which is simple yet effective to communicate, robust, portable and has

networking and distributed software development capabilities. This is a data-centric

application and demands an application environment that best supports data handling

over multiple asynchronous streams. Keeping in mind the long time frame of the

project, the development environment should be such that it’s always easy to find

programmers working and learning it. Thus, using Java for this project was a

collaborative decision and was motivated by the strong points of Java [7, 8] that are as

follows

1.) Networking features :

The Java Platform has been designed to be network centric. Java makes

it unbelievably easy to work with resources across a network and to create network

based applications using client/server or multitier architectures. The Java API includes

multilevel support for network communications. Low level sockets can be established

between agents, and data communication protocols can be layered on top of the socket

connection. The java.io and java.nio package contains several stream classes

intended for filtering and preprocessing input and output data streams. APIs built on

top of the basic networking support in Java provide higher level networking

capabilities, such as distributed objects, remote connections to database servers,

directory services, etc. The combination of the virtual machine (VM), portable secure

 13

bytecodes, cross-platform capabilities and developer friendly language semantics make

the Java environment powerful and productive for distributed programming.

2.) Portable

The principal advantage of Java is that it runs almost anywhere. The

developer/user need only have a compatible Java virtual machine (VM), something

that most operating systems and browsers now include as a standard feature. Java runs

on most major hardware and software platforms, including Windows 95 and NT, the

Macintosh, and several varieties of UNIX.

3.) Java is simple

There are many programmers who can understand and write code in

Java, so that many people can participate in developing open source software. Java is

an elegant language combined with a powerful and well designed set of APIs. The

simplicity of this language enables in writing better code with fewer bugs, and thus

reducing development time.

4.) Multithreading support

The ability to generate multithreaded agents is a fundamental feature of

Java. Any class can extend the java.lang.Thread class by providing its own

implementation of a run () method. Or by implementing the Runnable interface (which

essentially means providing a run () method that represents the body of work to be

done in the thread) can be wrapped with a thread by simply creating a new Thread with

the Runnable object as the argument. Java also provides mechanisms for control and

manipulation of its threads. Threads are assigned priorities that are publicly poll able

and settable, giving the ability to suggest how processing time is allocated to threads

by the Virtual Machine. Threads can also be made to yield to other threads, to sleep for

 14

some period of time, to suspend indefinitely, or to go away altogether. These kinds of

operations become important in asynchronous systems like IceCube, in which a thread

is tasked with client polling and spawns new threads to service client requests.

5.) Java is not slow

Java is considered to be slow as compared to other Object Oriented

Programming languages like C++. Though slower, Java is not too slow. When used

correctly, Java code can be sometimes as fast as C++. There are changes proposed to

the Java Virtual Machine specification that will allow several hardware features to be

brought into play, thereby increasing performance further. There are many well

understood optimization techniques and also code profilers which will help us to

eliminate bottlenecks. Multithreading should also allow performance enhancements.

 15

Design and Implementation of Splicer:

The Splicer is a Java module consisting of a set of Interfaces and

Implementation, for producing an output stream for data exhibiting splicer pattern. It’s

a highly multithreaded and thread safe system fed by several asynchronous selectable

channels, their data being stored into large Byte Buffers, and processed to produce a

single stream of ordered objects.

The Splicer can take data from any number of input streams. This has

been made possible by using the built-in support of threads provided by Java. The

Splicer uses Java’s Thread class that supports a rich collection of methods to start a

thread, run a thread, stop a thread and check on a thread’s status. In order to prevent

shared data from being corrupted by multiple input threads, Java’s synchronization

feature is used to create mutually exclusive access to data objects. Synchronization is

used to ensure that only one thread is in a critical region at once and is not interrupted

in critical regions.

The Splicer is a generic solution for any data that follows the splicer

pattern. This has been achieved by putting together several interfaces. Use of Java

interfaces help in defining the protocol of behavior that can be implemented by any

class anywhere in the class hierarchy. They are useful for capturing similarities among

unrelated classes without artificially forging a class relationship. A class that

implements the interface needs to implement all the methods defined in the interface,

thereby agreeing to a certain behavior. Thus, domain specific solution for the splicer

behavior can be obtained by implementing interfaces in the Splicer module.

 16

Figure 5. Components of Splicer

Figure 5 shows major interfaces and classes of the splicer module,

implementation of which results in specific solutions. The I in front of class names

indicate it’s an Interface and C indicates it’s a class.

Spliceable is an interface which extends Comparable interface. This

interface marks an object as being able to be used by the Splicer .It has a single

method, ‘compareTo’ that defines the order of elements in the output. This is a method

of Comparable interface and imposes a total ordering on the objects of each class that

implements it. This ordering is referred to as the class's natural ordering, and the

class's compareTo method is referred to as its natural comparison method.

 SpliceableFactory is an interface that is used by the Splicer class to

create the appropriate Spliceable instances and interrogate a Byte Buffer that contains

the incoming data for a channel.

 17

Splicer is a concrete class that uses Spliceable and SpliceableFactory

instances to handle the mechanics of splicing together one or more input channels to

create a single ordered output. This class accepts data from all added selectable

SpliceableChannel objects and merges the resultant objects into an ordered list. This

list is then passed to a SplicedAnalysis object for processing. A SpliceableChannel

object is defined as an object which can be multiplexed via a selector and which

implements both the SelectableChannel and ReadableByteChannel interfaces and

whose byte contents can be converted into Spliceable objects by an appropriate

SpliceableFactory object.

SplicedAnalysis is an interface whose implementation is called by the

Splicer whenever there are new objects in the output. This is where any analysis of the

ordered output takes place. This interface defines the methods that must be

implemented by any analysis that wants to run on the results of a Splicer object.

Figure 5 also shows the working of the Splicer module. Apart from

interfaces, the major concrete classes are Splicer, Consumer and Channel Controller.

The Splicer module is started and stopped from Splicer class. The main activities that

occur in this class are: registration of Readable Byte Channels from where data is to be

read, creation of a ChannelController for each channel, creation of a consumer thread

which would handle the processing of data from all channels, creation of the list of

spliced objects from each channel.

Another important class is Channel Controller. A Channel Controller is

identified by the channel it controls and the factory it uses to create Spliceables from

that Channel. Each input stream has a Channel Controller associated with it. The main

purpose of this class is data handling i.e. reading data from the pipe, putting it into

 18

Byte Buffer, parsing the data from buffer and creating Spliceables using Spliceable

Factory, and updating the ByteBuffer. It maintains the latest spliceables at each

channel and provides it to the Splicer class.

The Consumer class is a thread created by Splicer class for managing

all the selectable readable byte channels. This thread iterates over all the Channel

Controllers to consume data from respective Byte Buffers, parse them, create list of

Spliceables and gather the Spliceables from the list, to be added to the final list of

Spliced objects

The data in Figure 5 can be explained as a unidirectional dataflow. All

the data is fed to the Splicer through a pipe, the write end being registered to the data

feeder and the read end is registered to the Splicer. All the binary data read from pipe

is stored in a Byte Buffer. Hence there would be a Byte Buffer for each input channel.

The data from Byte Buffer is read by Channel Controller and parsed to create

Spliceables. To create Spliceables appropriate factory is used. The factory knows the

definition of Spliceables. The Spliceables are then added to a list, which is again

unique for each individual input channel. The Splicer class reads the list of Spliceables

from each input channel to produce a single ordered list of Spliced objects. This list is

finally sent to Analysis for analyzing and processing it.

In order to gather the Spliceables from each channel, three variables are

used. Earliest Spliceable and Latest Spliceable are for each channel, while

EarliestLatestSpliceable is for all the channels. Earliest Spliceable is defined as a

Spliceable on a channel before which all the Spliceables have been processed. Latest

Spliceable is defined as the last Spliceable on a channel. EarliestLatestSpliceable is

defined as the earliest of the latest spliceables on all channels. The Splicer class uses

 19

this value to construct the Spliced list. It takes Spliceables up to

EarliestLatestSpliceable on each channel .Figure 6 diagrammatically shows it.

Figure 6. Working of Selectable input channels in Splicer

 As shown in Figure 6, the LatestSpliceable on Channel 1 is 12, on

Channel 2 is 9, and on Channel 3 is 10. The earliest of all these three is on Channel 2

i.e. 9. Hence, all the Spliceables up to this goes into the Spliced List Object. After

forming the Spliced List, the Earliest Spliceable on each channel is updated to show

the current status.

timestamp

12 8 5 1

 10 6

 9 7 6 5 4 3 2 1

channel 1 :

latest spliceable

channel 2 : latest

spliceable

channel 3 :

latest spliceable

earliest of latest

spliceables

9 8 7 6 6 5 5 4 4 3 2 1 1

list of spliced

 20

Experiments and Results:

As explained in earlier sections, IceCube is a complex, distributed Data

Acquisition System and it is always desirable to keep such applications simple and

efficient. For a real time data acquisition system, it’s crucial that the data rate is well

maintained to make sure that data reaches in time and in its entirety from source to

destination. Therefore, at each of the components in the pipeline it’s important to have

enough buffer space so that there is no data loss, and each component should be fast

enough so that the buffers never overflow. Hence, the rate at which data flows in the

pipeline is important and every component has to be fast enough to maintain required

speed of data flow. To improve the performance of this system, broadly we could

follow two approaches – either improve the hardware or the software. Both approaches

have different feasibility scopes and associated advantages/disadvantages.

1.) Improving the hardware

 Improving the hardware which includes the processor, RAM etc. for

overall system seems to be the simplest way of coming over the data rate requirements.

The hardware can be improved by upgrading the configuration of all the machines. If

each machine operates at a much higher speed than the current specification then

definitely the processing time at each node would reduce thereby reducing the overall

data processing time of the whole system. Another possibility is to go for load sharing

by distributing the processing over multiple machines. This would help because there

would be more number of processors doing the same task, and hence the rate at which

data would forward in the pipeline would increase.

 21

These solutions are not most preferred ones because of the resource limitations at

South Pole. Adding to the budget is always a concern but more importantly it’s the

requirement of power, which is a scarce and invaluable resource at South Pole. The

power generation for the whole experiment is done using fuel which is brought on

planes and limited number of flights can be scheduled in a year. Hence, it’s a project

policy and requirement to optimize power usage. Increasing the multiplicity of

processors directly increases the demand for electric power.

2.) Improving the software

 The second and preferred approach followed in this project is to make

the software code as efficient as possible to cope up with the available resources. The

objective of software improvement is to identify the sources in the whole system

where maximum time is consumed and try to improve them. As discussed in the

previous section, one of the extensively used modules throughout the project is the

Splicer and hence efforts have been made to improve its performance.

 The Splicer, in terms of functionality is a very robust and generic

module. It’s written in such a way that although each module in DAQ is different, it

uses the Splicer as an envelope and writes all the necessary code in it. Performance

requirement of the Splicer were secondary at the time of development of Splicer, but

has been becoming increasingly important and have been addressed in this section.

Analysis of the Splicer had been an incremental step, the first step was to create an

appropriate running environment for Splicer, the second step was to understand that

environment and establish boundaries between Splicer and its environment, and then

to improve the performance of the Splicer.

 22

Methodology:

As already discussed, the Splicer is a module used throughout the

IceCube project. As part of this thesis, it has been analyzed and evaluated in context of

the IceTop sub detector. In order to analyze the performance of the Splicer, there has

to be some data source simulating the behavior of input streams feeding data to the

splicer. Also there has to be some data consumer consuming the data produced by the

splicer i.e. the list of spliceables. Hence, in all the experiments there are three

components involved in the whole setup. These are: a data producer, which provides

data to the splicer over TCP/IP sockets; the Splicer, which reads data from producer,

splices it, and forwards the spliced list to the data consumer; data consumer which is

the user of output of the Splicer.

IceTop would be taking data from 320 DOMs. Hence, for simulation

purposes, the data producer provides data over 320 channels. This is worth 1 second of

data and is approximately equal to 8 MB. The 8 MB comes over 320 channels, with

2000 events on each channel. Each event is equal to 13 bytes, where the first 6 bytes is

timestamp value of the event and the rest 7 byte correspond to the event data.

When the Splicer was developed, the environment to run Splicer didn’t

exist. Thus, in context of IceTop, a running environment for Splicer was created. The

first two experiments, explained later in the chapter, helped to determine the test

environment most appropriate for the Splicer. The next two experiments further helped

in understanding the environment.

 23

Experiments:

The results of all the experiments are expressed using box-and-whisker

plots. As shown in graphs, Q1, the first quartile, is the median of the lower part of

data. Q3, the third quartile, is the median of upper part of the data.

1.) The first experiment was done to establish a running environment for the Splicer.

There were operating system imposed restrictions due to which approximately 250

files only could be opened at one time. The timing values obtained for different

input streams are shown in Figure 7.

0

2000

4000

6000

8000

10000

12000

T
im

e
(i

n
 m

il
li

se
co

n
d

s)

Median 3442 5341 7049 8409 10380

Q1 3391 5297 6994 8268 10182

Min 3342 5275 6688 8087 10138

Max 3463 5623 7130 8566 10581

Q3 3447 5388 7066 8495 10551

50 100 150 200 250Num. of files

Figure 7. Disk Overheads at both producer and consumer

As the graph indicates, the time to process data increases almost linearly with the

amount of data. The inability to open all input files in this experiment led to the

 24

motivation for the second experiment i.e. to try reading the data from buffers rather

than from files.

2.) Disk Overhead Elimination

The next technique experimented was to eliminate the disk overheads involved in

reading from and writing to the files.

Motivation:

I/O is a major factor in system performance. It places heavy demands on the CPU to

execute device driver code and to schedule processes fairly and efficiently as they

block and unblock. The resulting context switches stress the CPU and its hardware

caches. I/O also exposes any inefficiency in the interrupt handling mechanisms in the

kernel, I/O loads memory bus during data copy between controllers and physical

memory, and again during copies between kernel buffers and application data space.

Hence, an I/O driven application demands a lot of CPU time.

Experiment:

In real DAQ, the Splicer would be fed by data from a component of IceCube over a

socket/pipe and would send the final ordered list to next component in the pipeline.

Thus, there wouldn’t be any reads or writes from files. Hence, file handling was

removed to create a better environment for Splicer. To enable reading 320 input

streams in the current setup, the concept of buffer was used to store the data from data-

producer into a temporary buffer .The Splicer then reads data through sockets and

stores them in its internal buffers. This helped in two ways. Firstly data could be read

from all 320 streams. Secondly, as expected because of the disk read overhead

elimination at the data-provider side, there had been reduction in the time needed by

the whole setup to process the data and produce spliceables. Figure 8 shows the time

consumption of current setup.

 25

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
im

e
(i

n
 m

il
li

se
co

n
d

s)

Median 1539 2922 4212 5329 6449 8992

Q1 1480 2850 4178 5268 6412 8913

Min 1387 2633 4101 5223 6259 7705

Max 1602 2992 4235 5663 6921 9070

Q3 1572 2967 4226 5544 6522 8995

50 100 150 200 250 320Num. of files

Figure 8. No disk overheads at producer end

Conclusion:

Comparing Figure 7 and Figure 8, there was significant time improvement of

approximately 50% in data handling when disk overheads were eliminated at data-

producer side.

 On the same principles disk write overheads were eliminated at the

data-consumer end. The spliceables after being processed in the Analysis were not

written to a Binary file, rather written to a buffer. Figure 9 shows the time

consumption when disk overheads at the data consumer were also removed.

 26

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
im

e
(i

n
 m

il
li

se
co

n
d

s)

Median 1143 1869 2669 3234 4404 5342

Q1 973 1780 2520 3194 4302 5311

Min 929 1772 2471 3081 4287 5229

Max 1229 1898 2896 3299 4745 7811

Q3 1174 1888 2729 3287 4643 5405

50 100 150 200 250 320
Num. of files

Figure 9. No disk overheads

Comparing the results of Figure 8 and Figure 9, it was observed that there was almost

30 to 40% time saved when disk overheads were removed at both data producer and

consumer.

3.) Performing Bulk Reads

The third technique experimented to improve the performance was Bulk Read.

Motivation:

Buffering is a technique where large chunks of data is read from disk, and then

accessed a byte or a character at a time. Buffering is a basic and important technique

for speeding I/O, and several Java classes support buffering for the same reason.

 27

Experiment:

The current setup of experiment has 13 bytes for each event. Out of 13 bytes, 6 bytes

correspond to the time information that is being used to construct Spliceable objects.

The other 7 bytes correspond to the payload information. The data producer puts all

the data in the buffer and then the Splicer read the data through ports from their

respective buffers .The splicer always reads 13 bytes at a time from the buffer ,

performs some processing to it and then sends it to the data consumer. Instead of

reading each object from the socket, the entire data approximately equal to 26KB was

read. Thus the number of accesses required to read the data from socket are reduced.

The reason for expecting improvement was that reading data in bulk (or buffered data)

is always considered to be efficient than reading small chunks of data. Figure10 shows

the performance of the current setup when data is read in bulk from the sockets i.e.

read accesses to socket is reduced.

 28

0

1000

2000

3000

4000

5000

6000

7000

T
im

e
(i

n
 m

il
li

se
co

n
d

s)

Median 973 1630 2275 3087 4208 6075

Q1 963 1611 2200 3051 4044 5995

Min. 949 1566 2187 3025 3930 5886

Max. 989 1958 2820 3335 5557 6317

Q3 983 1728 2389 3123 4509 6143

50 100 150 200 250 320
Num. of files

Figure 10. Reading in Bulk rather than in small packets

Conclusion:

Comparing the results of Figure 9 and Figure 10, it has been observed that there is

hardly any improvement in time. It means that processing overhead involved in

reading single chunk rather than bulk was not significant in the overall time

consumption of the system.

4.) Understanding Java Implementation and Processing Overheads

The next technique that was experimented was to understand Java implementation and

processing overheads.

Motivation:

In a time critical application performing a small operation over each event may add to

the overall time consumed by the whole application.

 29

Experiment:

In the current setup, each event in total is of 13 bytes where 6 bytes is the time

information. In order to create Spliceables, the Splicer needs the timestamp

information associated with each event. This information has to be an 8 byte quantity

(long in Java).To convert 6 bytes to 8-byte long in Java, a method is written which is

called for every event. Figure11 shows the performance of the current set up.

0

1000

2000

3000

4000

5000

6000

7000

T
im

e
(i

n
 m

il
li

se
co

n
d

s)

Median 1105 1806 2631 3701 4486 5949

Q1 1100 1745 2534 3565 4455 5862

Min. 1089 1699 2359 3440 4425 5811

Max. 1128 1897 3172 3846 4707 6351

Q3 1124 1840 2766 3828 4538 6034

50 100 150 200 250 320
Num. of files

Figure 11. Understanding Java implementation and processing overheads

Conclusion:

After comparing the results of Figure 9 and Figure 11, it has been observed that there

is almost no improvement in the performance. This is again an indication that the

 30

fraction of time spent in converting the 6 byte timestamp information to 8 byte java

primitive data, is not dominating in the total processing. Also, to reduce the

processing, instead of 6 bytes 8 bytes are supplied to the Splicer i.e. there is more data

transfer now. A slight increase in time when number of files is more indicates that data

transfer is more costly than small processing.

5.) Load Balancing Technique

The next technique that was experimented was to separate the processing at data

provider and data consumer.

Motivation:

Load balancing has been effective in solving big problems faster by distributing the

workload on multiple processors working simultaneously. Complex problems can be

modularized and solved faster using parallel processors.

Experiment:

In real DAQ, the Splicer would be on a different machine than the producer and

consumer. By performing this experiment, we are modeling and testing the Splicer in

an environment which is closer to the actual environment of the Splicer. The objective

of this experiment was to separate the time consumption by data-producer from the

Splicer, to see what proportion of time is used by the data producer. The two

processors were connected by a cross cable. The same code was executed with data

producer on one machine and the Splicer with data consumer on other machine and

both of them talking to each other through sockets. Figure 12 shows the performance

after removing the processing overhead.

 31

0

1000

2000

3000

4000

5000

6000

7000

T
im

e
(i

n
 m

il
li

se
co

n
d

s)

Median 1110 1956 2922 3582 4411 5830

Q1 1096 1914 2810 3487 4354 5694

Min. 1057 1864 2800 3439 4345 5493

Max. 1162 2021 3304 3945 4874 6114

Q3 1114 2004 2986 3906 4594 6064

50 100 150 200 250 320
Num. of files

Figure 12. Load Balancing by separating producer and consumer

Conclusion:

Comparing the results of Figure 9 (when all processes are on same machine) and

Figure 12 (when producer is on a different machine) it has been observed that there is

no significant difference in the timing when the whole processing is on one machine or

on two machines. The plausible reason for this seems to be the fact that most of the

processing is done at the Splicer. Also, in this case time consumed is little more than

the case when all the components are on same machine which is possible because the

data flows on a physical link to reach the Splicer. But, these results are helpful

because it indicates that network latencies and limitations are not significantly going to

affect the performance in real DAQ where data provider and the Splicer with

consumer may be on different machines.

 32

6.) Reducing Garbage Collection and Object Cycling

The next technique that was experimented was to reduce garbage collection and object

cycling. So far the techniques were helpful to reduce the overall time of application by

changing the environment in which splicer would be used. This technique would

internally change the Splicer and hence, directly affects performance of the Splicer.

Motivation:

Object Creation costs time and uses CPU cycles. Garbage collection and memory

recycling again takes time and CPU cycles. The less the object creation is, lesser is the

burden of object cycling. The benefits of garbage collection are indisputable; increased

reliability, decoupling of memory management from class interface design, and less

developer time spent chasing memory management errors. The well known problems

of dangling pointers and memory leaks simply do not occur in Java programs.

However, garbage collection is not without its costs, along with it comes performance

impact, pauses, configuration complexity, and nondeterministic finalization.

Experiment:

The list of spliceables generated by the Splicer and sent over to the Analysis was a

collapsible vector of objects .The Spliceables were added to this list by Consumer and

were removed from the list by Splicer after receiving a message from the Analysis.

Hence, with Splicer to handle approximately 1000 events in a second, these elements

were added and then removed from the list in 1 sec. This was time consuming. The

optimization done here was to convert the list of Spliceables from a Vector to a simple

array of Spliceable Objects. The size of this list was kept equal to the maximum

number of elements it might process in a second. Thus, instead of creating objects

every time, they need to be created once and reassigned every time with new values.

 33

Hence, this saves object creation overheads and thus results in less work for garbage

collector too. Figure 13 shows the performance with reduced garbage collection and

object cycling.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
im

e
(i

n
 m

il
li

se
co

n
d

s)

Median 777 1478 1666 2539 3185 3813

Q1 774 1462 1469 2514 3008 3808

Min 720 1440 1418 2494 2681 3772

Max 841 1562 1867 2584 3545 3998

Q3 822 1515 1749 2555 3256 3936

50 100 150 200 250 320
Num. of files

Figure 13. Reduced garbage collection and object cycling

Conclusion:

As is evident from the figures, this technique reduced the time consumption to almost

30% of the time consumed without the introduced garbage collection. Also, this

technique directly improves performance of the Splicer. However, we have not been

able to separate the statistics for object creation and garbage collection.

 34

Conclusion:

0

2000

4000

6000

8000

10000

12000

T
im

e
(i

n
 m

il
li

se
co

n
d
s)

A 3442 5341 7049 8409 10380

B 1539 2922 4212 5329 6449 8992

C 1143 1869 2669 3234 4404 5342

D 1110 1956 2922 3582 4411 5830

E 973 1630 2275 3087 4208 6075

F 1105 1806 2631 3701 4486 5949

G 777 1478 1666 2539 3185 3813

50 100 150 200 250 320
Num. of files

Figure 14. Comparison of results obtained of all the techniques

A Data fed to and read from Splicer with Disk Overheads

B No Disk Overheads at Data Producer

C No Disk Overheads

D Different machine : No Disk Overheads

E Performing Bulk Read

F Reducing Processing Overheads

G Reducing Garbage Collection

 35

As shown in Figure 14, removing disk overheads and reducing garbage collection were

the two most effective techniques to improve the performance of the application that

would use Splicer. Improvement in time through elimination of disk overheads

indicates to use performance efficient methodologies while reduction in garbage

collection directly improves performance of the Splicer. The other techniques were

also helpful in proceeding further because they helped in eliminating the probable

targets of time consumption. Along with garbage collection, there are techniques like

Object Pooling, use of ring buffers to eliminate compaction of data which seems to be

promising. Object pooling is to maintain a pool of frequently used objects and grab

one from the pool instead of creating a new one whenever needed. The theory is that

pooling spreads out the allocation costs over many more uses. When the object

creation cost is high, such as with database connections or threads, or the pooled

object represents a limited and costly resource, such as with database connections, this

makes sense. However, they couldn’t be implemented and remain as a future work to

be done.

 36

Chapter 3

DESIGN, DEVELOPMENT AND EVALUTION OF

ICETOP MONITORING SYSTEM

The IceCube experiment and its major software components have been

discussed in Chapter 2. As already mentioned, the experiment will deploy 5120 optical

modules and once operating, it will generate Terabytes of data daily. With such

magnitude of data flowing all through the DAQ pipeline it becomes very necessary

that there exists a central component to manage the whole experiment. DAQ Control is

the system that performs the task of a central controlling unit in IceCube system. DAQ

Control provides a single control view of all DAQ components. As such, it provides a

single API through which higher software and operator levels can determine the

overall state of the DAQ system and command that system to move to one of a small

set of known operational states. Amongst several other functions one of the most

important task of DAQ Control is to provide a single access point of control and

monitoring of overall DAQ state and operation. DAQ control does this by using a

centralized Monitoring System for IceCube.

The IceCube Monitoring System provides the mechanisms to centrally

monitor and control all components of the IceCube system. The IceCube software shall

provide a Monitoring System that allows for monitoring the performance of all facets

of detector function, configuring the system, calibrating the system, identifying fault

conditions, and controlling the operation of the Data Acquisition, Data Handling and

 37

Satellite Data Transmission systems. The IceCube Monitoring System would request

for monitoring information from the Components of the IceCube system. These can be

String Processor, IceTop Trigger, and Event Builder etc. Thus each of the components

will instrument "Monitor Points" and would report back their values to the Monitoring

System.

Based on the same grounds, the IceTop Monitoring System provides monitoring

information of a subcomponent of IceCube i.e. IceTop Trigger. The primary

motivation behind development of IceTop Monitoring System is to respond to the

central Monitoring and to make it possible to extract the details at all levels of the

hierarchy. Having an ability to see into the details at each components / sub-

component level not only helps in debugging and testing, but also helps to make good

approximation of configurable parameters like buffer size for data at input/output

streams. The graphical display of monitored data improves the Usability of the system

by making it easier for the user to analyze the displayed information effectively.

IceTop Monitoring System has been developed in isolation, but it has been designed

such that interface of this system is adaptable.

 38

Requirements:

The purpose of IceTop Monitoring system is to capture all the

monitoring information of IceTop Trigger on a regular time basis as well as on the

request of the user. The information captured and monitored by IceTop Monitoring

system should be sufficient enough to give a complete idea of what’s going on in the

system and should be concise enough so that it does not significantly impact IceTop

Trigger’s performance. The main requirements of IceTop Monitoring system are

governed by its uses, which are as follows:

1. The user should have control on the details of collection of data i.e. delta time of

monitoring should be settable by the user. This is very important because it gives the

user complete control on how frequently he wants to monitor the system. This feature

is particularly useful in case of abnormal operations, where it’s essential to get finer

grained record of the system for some period of time to identify the point of

origin/reason of problem.

2. It should give a complete picture of the IceTop Trigger. The information displayed

by Monitoring about IceTop Triggers should be sufficient enough so that in case of

some abnormal activities in the system, it’s possible to identify the point of fault, and

then scrutiny it in detail by making frequent snapshot requests.

3. Monitoring of network conditions is a crucial requirement for an application like

IceCube. All through the DAQ pipeline, there is data continuously flowing through

pipes/ sockets between the components. This data gets stored in buffers at the input

side of all nodes. Thus, there is a need of information about rate of payloads on all

 39

channels, buffer usage at each input channel and a histogram of latencies at each I/O

stream to give a complete view of network traffic in the whole system.

4. Apart from diagnostic purposes, one of the most important uses of Monitoring

system is interactive debugging. Because of the real time nature of data to be

monitored, it’s very difficult to ensure if the system is running correctly. The IceTop

Monitoring provides detailed as well as summary of time stamps on I/O stream and

their nodes. IceTop Monitoring System makes it possible to see events coming in at

each input channel of a node, events coming into the node and events’ going out of the

node .This helps to debug problems like data loss, or programming errors like

redirecting output to a wrong channel etc.

5. The Monitoring system should display information in a concise and easy to

visualize manner. The better is the display, easier it is for the user to analyze the

information. The Monitoring system therefore displays all information using graphical

display. There may be large number of input/output channels associated with a node ,

showing the details of all of them can be unnecessary and confusing most of the time ,

hence a single input and output channel of interest can be viewed in detail at a time ,

while the others can be selected by just selecting a radio button. Also labeled panels

are used for sub components so that they are easily available to user but not always in

the front panel. Detail information about timestamps is always available but not

displayed .When interested; user can view everything on a single click. Thus, all the

information is made available to the user and only the most important information

being displayed to him.

 40

Design:

IceTop Monitoring System has been designed to monitor any

application which can be represented as a network of nodes connected by edges i.e. a

graph. The design should be flexible enough so that IceTop Monitoring doesn’t restrict

itself to monitoring IceTop only. This should be a generic and thus a customized

solution for a problem which required graph monitoring. To accomplish this goal

every component/sub-component that needs to be monitored is identified as a node in

a graph. In IceCube DAQ, no node exists in isolation i.e. there are always one or more

input coming to a component and one or more output going out from a component. In

the current design, they are designated as Input channels to a node and output channels

from a node.

Another design issue was how frequently the system should be

monitored. This was of concern because of the large volume of data transfer that takes

between the nodes/input channels/output channels to monitoring. The monitoring

should be frequent enough so that all the interesting as well as abnormal activities are

captured by the Monitoring. The monitoring cannot be very frequent since it interrupts

the system from its normal function of forwarding data downstream the pipeline. Also,

Monitoring should be customizable so that the user can define the time intervals when

he wants to capture the snapshot of the system.

Based on the above design constraints, IceTop Monitoring system has

been designed so that it provides the capabilities to the user to decide how frequently

he wants to view the snapshots of the system. Thus under normal operations, this

frequency can be less while if there are some problems then the user has control to

 41

request the snapshots more frequently. Also regardless of the frequency of the user

requests, the Monitoring system would request for all the Monitoring information on

an hourly basis. The information received on this timed requests would be archived,

and would be saved after each run.

Considering the architecture of the whole IceCube System every module can be

visualized as a node that hosts at least one input channel and feeding at least one

output channel. Figure 15 shows the nodes and channels architecture for IceTop

Trigger.

Figure 15. Nodes and their Input/Output channels in IceTop Trigger

 As shown in Figure, internally there are 4 components which are part of

IceTop Trigger. Each of these components can be visualized as a node, connected to at

least one input and output channel. These components are also connected to

Monitoring System and provide it with the real time values of monitoring points. To

obtain the implementation of such a design, generic payloads for nodes and channels

are defined. These payloads contain the monitoring information specific to a

node/channel.

Node :

 Hit Sorter

Node :

Merger

Node :

Calibration Trigger

Node :

Simple Majority Trigger

IceTop Monitoring System

IDH 1 to

Global Trigger

IDH 2

IDH 10

 42

The node monitors the first timestamp and last timestamp of the all the events

it has received in a given time frame. It also monitors a specified number of

timestamps and stores them in a ring buffer so that the latest values are returned to the

display system. The input channel monitors the first timestamp and last timestamp, the

clock times corresponding to them, the data arrival rate and the buffer usage. The

output channel monitors similar quantities, but at the output end of a node and for

output channels.

Since each node can have varying number of input and output channels,

they have been added as a vector, so that their size can be varied. Also there is another

vector for low level sub-components. This is used to obtain hierarchical monitoring of

the system i.e. if a sub system component has another subsystem component, then it

adds the details of that sub component also.

Thus, the above schema helps to obtain a customizable information

retrieval schema for a component where each component, can have varying number of

input channels, output channels and sub-level components.

 43

Implementation:

The IceTop Monitoring System has been implemented in Java and

makes extensive use of Java’s swing package for graphics. The application has three

screens. The first screen displays the run-configuration of the IceTop trigger. It has all

the static, run time settable configuration parameters of IceTop system. The second

screen contains a tabbed panel of all the sub components. Each panel is identical but

the information displayed is specific to a component. From second screen there is a

mechanism to see the components one level down, if they exist. Also, the details of the

timestamps can also be viewed from the second screen. The three main screens of the

display system are shown in Figure 16

 44

Figure 16. Output Screen snapshots of IceTop Monitoring System

As shown in the above figure, The IceTop Monitoring System displays monitoring

information about the internal components of the IceTop Trigger .The screen showing

detail statistics of the components in the figure shows details about the Hit Sorter (as

selected in the Tabbed Pane).As per the scheme, there would be a similar screen with

same data fields for IceTop Trigger, which would basically be an integrated report of

all these internal triggers, but is not completely ready at this time. To get the

monitoring points for IceTop trigger, it communicates to three packages – Splicer,

TriggerUtil and IceTop Trigger. Figure 17 shows the communication between IceTop

Monitoring System and these three packages for one node. This communication

scenario would be true for any node communicating with the Monitoring System.

 45

Figure 17. Process Communication in a Node

In brief the role of each module is: the Splicer acts as data controller – it reads data

from buffers, gives them for processing and returns back the processed result to

IceTop Trigger. Trigger Util package actually creates the spliceables from the Splicer,

uses buffer-id from Splicer, reads buffers with appropriate factories and payload

definitions, creates spliceable payload, and gives it back to splicer. IceTop trigger is

the consumer of spliceables. It requests Splicer to create spliceable payloads. IceTop

Monitoring System needs to communicate with all of them. This is because it

monitors: input channels, for which the monitoring points have to be stationed at

triggerUtil; output channels/nodes, for which monitoring points are at IceTop trigger.

It also has to communicate with Splicer, which in this scheme is manager/controller,

to signal when the monitoring needs a snapshot of the system.

 46

Evaluation:

The memory usage and the CPU usage of IceTop Monitoring System

have been evaluated while it’s running and interacting with other modules like IceTop

Trigger, Splicer and TriggerUtil.

The performance of IceTop Monitoring System has been evaluated

under varying load conditions and refresh rates. By refresh rates, it means that the rate

at which Monitoring would request for the most recent data from IceTop Trigger

System i.e. most recent snapshot of the system. The events shown in the graph refer to

the specified number of latest timestamp values returned by each node to the

Monitoring System. The size of each of this event is 8 bytes. Apart from this, as

discussed in previous section there is other information too going from nodes and

input/output channels to the Monitoring System.

 47

Memory Usage of Icetop Monitoring System

390000

400000

410000

420000

430000

440000

450000

460000

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

Time (in secs)

M
e
m

o
ry

 U
s
a
g

e
 (

in
 k

B
)

Load = 4000 events , Refresh Rate = 15 secs Load = 4000 events and Refresh Rate = 5 secs

Load = 2000 events and Refresh Rate = 5 secs Load = 2000 events and Refresh Rate = 15 secs

Figure 18 Memory Usage of IceTop Monitoring System

Figure 18 shows the memory usage of IceTop Monitoring System. The

memory usage remains almost the same when the refresh rates are changed keeping

the load same. This is clear because changing refresh rates is mainly impacting CPU

usage; the memory requirements are the same because load remains the same.

Supporting the above argument we do see differences in the memory requirement,

when load is doubled.

 48

0

10

20

30

40

50

60

70

80

90

100

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

Time Elapsed (in secs)

C
P

U
 U

sa
g
e

(i
n
 p

er
ce

n
ta

g
e)

Refresh Rate = 5 secs Refresh Rate = 15 secs

Figure 19. CPU Usage when load = 2000 events

 49

0

20

40

60

80

100

120

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

Time Elapsed (in secs)

C
P

U
 U

sa
g
e

(i
n
 p

er
ce

n
ta

g
e)

Refresh Rate = 5 secs Refresh Rate = 15 secs

Figure 20. CPU Usage when load = 4000 events

Figure 19 and Figure 20, shows the performance of IceTop Monitoring

System. In Figure 19 the load is 2000 events i.e. 16 KB while in Figure 20 the load is 32

KB. There is a similar pattern observed in both the figures i.e. as the refresh rates

increases i.e. as the request to view most recent snap-shot becomes more frequent, the

CPU load increases.

 50

Conclusion and Future Work:

As part of evaluation of IceTop Monitoring System, it was executed

under several conditions. The system was tested to work under high load as well as refresh

rates to make sure that it survives under conditions of frequent requests. As observed, the

display system runs successfully under all the tests.

There is always possibility of improvements in an application. The

IceTop Monitoring system also has scope of improvement. One of the extensions would

be incorporation of hierarchical scheme of components. The design has been done keeping

it as a possibility, but the implementation doesn’t support this feature as of yet and this

remains a challenge to be accomplished further.

 51

VOTE OF THANKS

I would like to express my acknowledgements to National Science

Foundation, USA, the primary funding source of IceCube Project

I would like to thank Graduate Office, University of Delaware for

giving me permission to go on Curriculum Practical Training and work on second part

of my thesis work.

I would like to thank Cadence Design Systems, Inc., where I have been

working as an intern since last 5 months. The experience gained at Cadence, working

on a similar application as IceTop Monitoring System, was helpful in the design and

implementation of this part of my thesis work.

 52

REFERENCES

1. Version 1 , June 2002 , “IceCube : A New Window On The Universe “

<http://icecube.wisc.edu>

2. T.K.Gaisser, David Seckel, Serap Tilav, Paul Evenson, Xinhua Bai . “IceTop

Preliminary Design Document “ June 30,2003

3. Chuck McParland “The Software Design Description of DAQ “ Oct. 24,2002

4. Simon Patton , LBNL “The Software Design Description of “Production”

IceCube Software” Feb. 18,2003

5. Toni Coarasa , Doug Cowen , Seon Hee “Software Design Description of

InIce Trigger” May 3,2004

6. C.McParland , J.Jacobson , D.Hays “Binary Representation of DOM Raw

Engineering Event “ Sept. 12,2004

7. Silberschatz , Galvin , Gagne “Operating System Concepts” Sixth Edition

8. Herbert Schildt “Java The Complete Reference” J2SE 5Edition

9. Ignacio Taboada “Detector Wide Monitoring Plan for Year One WBS 1.5.3.1 “

Feb. 15, 2005

10. An Introduction to the IceCube Software Development Environment – Simon

Patton , LBNL

11. John E Cavin “Software Requirement Specification for IceCube System

Software “ Feb.25, 2002

