
EXFILTRATION TECHNIQUES: AN EXAMINATION

AND EMULATION

by

Ryan C. Van Antwerp

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Electrical and
Computer Engineering

Spring 2011

c© 2011 Ryan C. Van Antwerp
All Rights Reserved

EXFILTRATION TECHNIQUES: AN EXAMINATION

AND EMULATION

by

Ryan C. Van Antwerp

Approved:
Fouad Kiamilev, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Michael J. Chajes, Ph.D.
Dean of the College of Engineering

Approved:
Charles G. Riordan, Ph.D.
Vice Provost for Graduate and Professional Education

ACKNOWLEDGEMENTS

To Dave Sincoskie: Dr. Sincoskie gave me the amazing opportunity to con-

tinue my education under his supervision. I would not be where I am today without

his guidance and teachings. He provided great insight into the field of cybersecurity

as well as the obstacles I faced in academia. He taught me to not give up at the

first sign of hardship and provided direction when I had hit a dead end. Not a day

goes by where he is not missed and he will always be remembered for his wisdom,

compassion, and his willingness to help.

To Chase Cotton: Dr. Cotton has provided great guidance into this field of

research. His practical experience and knowledge have proved to be invaluable. I

could always rely on him to provide assistance and to brainstorm. I never left his

office without having a solution to the problem I came to him with.

To Fouad Kiamilev: Dr. Kiamilev has been incredibly generous in providing

a lab for me to work in. This environment has been an incredible place to work,

learn, and build. The support he has provided me throughout this research has been

exceptionally helpful.

To my fiancée, Hye-Jin Gehring: I cannot wait to start my life with Hye-Jin.

She has always been kind, caring, and supportive despite my late nights at the lab

and stressful moods. She is my best friend and I could not imagine life without her.

iii

TABLE OF CONTENTS

LIST OF FIGURES . ix
LIST OF TABLES . x
ABSTRACT . xi

Chapter

1 BACKGROUND . 1
2 INTRODUCTION . 6

2.1 Motivation . 6
2.2 The Exfiltration Process . 6
2.3 Impact of Data Theft . 8
2.4 Malware Anti-Analysis Techniques 8

2.4.1 Code Obsfuscation . 9
2.4.2 Debugger Detection . 9
2.4.3 Binary Packing . 9
2.4.4 Virtual Machine Detection . 9

2.5 Exfiltration Test Bench Motivation 10

3 TAXONOMY OF EXFILTRATION METHODS 11

3.1 Bandwidth . 11
3.2 Covertness . 12
3.3 Method Descriptions . 13

3.3.1 Sample Method . 13

3.3.1.1 Description . 13
3.3.1.2 To Exfiltrate . 14

iv

3.3.1.3 To Detect Exfiltration 15

3.3.2 File Transfer . 15

3.3.2.1 Description - File Transfer 15
3.3.2.2 To Exfiltrate - File Transfer 16
3.3.2.3 To Detect Exfiltration - File Transfer 16

3.3.3 Secure Copy . 17

3.3.3.1 Description - Secure Copy 17
3.3.3.2 To Exfiltrate - Secure Copy 18
3.3.3.3 To Detect Exfiltration - Secure Copy 18

3.3.4 HTTP POST . 18

3.3.4.1 Description - HTTP POST 18
3.3.4.2 To Exfiltrate - HTTP POST 19
3.3.4.3 To Detect Exfiltration - HTTP POST 20

3.3.5 SSL HTTP . 20

3.3.5.1 Description - SSL HTTP 20
3.3.5.2 To Exfiltrate - SSL HTTP 21
3.3.5.3 To Detect Exfiltration - SSL HTTP 21

3.3.6 Email . 21

3.3.6.1 Description - Email 21
3.3.6.2 To Exfiltrate - Email 22
3.3.6.3 To Detect Exfiltration - Email 22

3.3.7 SSH Tunnel . 23

3.3.7.1 Description - SSH Tunnel 23
3.3.7.2 To Exfiltrate - SSH Tunnel 23
3.3.7.3 To Detect Exfiltration - SSH Tunnel 24

3.3.8 Instant Message . 24

3.3.8.1 Description - Instant Message 24

v

3.3.8.2 To Exfiltrate - Instant Message 25
3.3.8.3 To Detect Exfiltration - Instant Message 25

3.3.9 Echo Request . 25

3.3.9.1 Description - Echo Request 26
3.3.9.2 To Exfiltrate - Echo Request 26
3.3.9.3 To Detect Exfiltration - Echo Request 27

3.3.10 DNS Tunnel . 27

3.3.10.1 Description - DNS Tunnel 27
3.3.10.2 To Exfiltrate - DNS Tunnel 28
3.3.10.3 To Detect Exfiltration - DNS Tunnel 28

3.3.11 Update Communications . 28

3.3.11.1 Description - Update Communications 29
3.3.11.2 To Exfiltrate - Update Communications 29
3.3.11.3 To Detect Exfiltration - Update Communications . . 29

3.3.12 P2P . 30

3.3.12.1 Description - P2P 30
3.3.12.2 To Exfiltrate - P2P 30
3.3.12.3 To Detect Exfiltration - P2P 30

3.3.13 Custom IP . 31

3.3.13.1 Description - Custom IP 31
3.3.13.2 To Exfiltrate - Custom IP 31
3.3.13.3 To Detect Exfiltration - Custom IP 31

3.3.14 Custom TCP . 32

3.3.14.1 Description - Custom TCP 32
3.3.14.2 To Exfiltrate - Custom TCP 32

vi

3.3.14.3 To Detect Exfiltration - Custom TCP 33

3.3.15 Custom UDP . 33

3.3.15.1 Description - Custom UDP 33
3.3.15.2 To Exfiltrate - Custom UDP 33
3.3.15.3 To Detect Exfiltration 34

4 DESIGN AND IMPLEMENTATION 35

4.1 Initial Design . 35
4.2 Program Architecture . 37
4.3 Plug-in Design . 37

5 RESULTS AND ANALYSIS . 39

5.1 Time Measurements . 39
5.2 Reliability . 40
5.3 Current State of Detection Algorithms 41

5.3.1 Sensitive File Flagging . 41
5.3.2 Keyword Matching . 41
5.3.3 Regular Expression Matching 42
5.3.4 Blacklists/Whitelists . 42

5.4 Current Detection Algorithm Results 42
5.5 Common Characteristics . 43

5.5.1 Destination Address Determination 43
5.5.2 Compression and Encryption 44
5.5.3 Symmetry . 44

5.6 Analysis . 45

6 CONCLUSION . 46

6.1 Future Work . 47

6.1.1 Implement Additional Techniques 47
6.1.2 Behavioral Inspection and Characterization 48
6.1.3 Commercial Suite Testing . 48

vii

BIBLIOGRAPHY . 49

viii

LIST OF FIGURES

1.1 Data exfiltration hidden in sample traffic 3

1.2 Data exfiltration highlighted among sample traffic 4

2.1 The basic architecture the attacker manipulates in order to exfiltrate
data . 7

2.2 The effects of encryption on an outgoing DPI solution 8

3.1 Exfiltration using File Transfer Protocol (FTP) 15

3.2 Exfiltration using Secure Copy . 17

3.3 Exfiltration using an HTTP POST action 19

3.4 Exfiltration using an HTTP POST action in an SSL encrypted
channel . 20

3.5 Exfiltration using an SMTP server 22

3.6 Exfiltration using an SSH tunnel set up as a local proxy 23

3.7 Exfiltration using Instant Messaging clients 24

3.8 Exfiltration using ICMP Echo Request packets 25

3.9 Exfiltration using DNS lookup requests 27

3.10 Exfiltration using update communications 28

3.11 Exfiltration using a third-party P2P server to connect clients 30

4.1 Block diagram of the extb test bench utility 36

ix

LIST OF TABLES

3.1 Taxonomy of exfiltration methods rated in terms of bandwidth and
covertness . 12

5.1 Measurement of method time, user time, and system time 40

x

ABSTRACT

Data exfiltration is the process of transmitting data from an infected or

attacker-controlled machine back to the attacker while attempting to minimize de-

tection. In current attack scenarios, an attacker will attempt to break into a network,

achieve control of a target machine and steal sensitive data. Current network defense

mechanisms are largely implemented to prevent attackers from entering a network,

however there are typically few defenses implemented which prevent sensitive data

from leaving a network. In addition, a major obstacle is the inability of researchers

to know exactly how data will be exfiltrated from a machine. Currently, detection

suites focus on attributes of the sensitive data being stolen such as file names and

keywords. However, simple modification by the attacker of the data or the exfiltra-

tion channel can bypass these defense mechanisms. In order to better understand

how to defend against this type of activity, the attack surface must be examined.

In this research, we examine the attack surface of data exfiltration by char-

acterizing different exfiltration methods and observing common characteristics be-

tween them. By exploring the taxonomy of exfiltration techniques, we hope to help

the research community improve existing detection algorithms and identify patterns

that can be used to create new detection algorithms. After examining each method,

a test bench suite was designed and implemented which emulates the data exfil-

tration process. This plug-in based framework allows a researcher to test common

exfiltration methods on any given data. The framework is also extendable in that

plug-ins can be quickly implemented using a wide array of existing libraries. The

results from this research show that there is a set of common characteristics among

xi

all methods that can be used to help further research of detection algorithms. Fea-

tures such as exfiltration timing, destination determination and traffic symmetry

can be used to construct a stronger detection suite.

xii

Chapter 1

BACKGROUND

One important but often overlooked aspect of any computer network is the

security of the network. The loss of sensitive data can cause an immense amount

of damage, regardless of the organization the network is serving. For consumers,

networks can contain the online identities of individuals, allowing attackers to steal

credit card numbers, passwords, and other data that can be used for a multitude

of different damaging acts. For corporations and organizations, the damage can be

much worse. Attacks will not simply harm the individual, but rather the organi-

zation as a whole. Attackers can steal trade secrets, financial records, and other

information that can result in the abrupt downfall of that corporation. Even more

damaging, attacks targeted at governmental and military networks can result in

severe consequences, specifically when military[18] or political[20] data is stolen.

These attacks happen frequently and it is becoming clear that new actions must be

taken to prevent data theft.

The main focus of recent research in cybersecurity and the protection of

government, corporate, and consumer computer systems and information has been

on attempting to prevent attackers from breaking into a system. Most defensive

approaches involve using an Intrusion Detection System (IDS) coupled with least

privilege security policies to ensure that attackers cannot break in without overcom-

ing several security layers. While this aspect of defense is necessary, it is important

to look at other protective techniques. Intrusion detection tools are useful, yet can-

not analyze all network traffic on large networks without substantial and expensive

1

hardware or high overhead resulting in network slowdowns. Another important as-

pect of network breaches is that even with extensive defenses focused on preventing

network intrusion, the most ardent and persistent hackers will eventually breach a

targeted network[6]. Several layers of defenses may stop an attacker who is target-

ing large ranges for any vulnerable target, however attackers will not give up at

the sign of a strong defense for targets such as government or military networks.

Breaching these networks can provide much greater gains, particularly in times of

war and political activities. For these reasons, it is important to not only examine

incoming traffic for anomalies that could signify a network breach, but also to ex-

amine outgoing traffic for the results of a network breach. In order to gain from a

network breach, an attacker must find a way to transmit data from the infiltrated

machine back to an attacker-controlled machine. Commercial tools do exist that

attempt to detect sensitive data from leaving a network. These tools are known as

Data Leak Prevention (DLP) suites[16]. However, as their name implies, they are

targeted at preventing accidental data leakage and only the most primitive attacks.

The majority of these tools focus on expression or keyword based algorithms, which

an attacker can overcome rather simply.

The current state of exfiltration detection appears to be focused on detecting

the attributes and data of sensitive files rather than the actual method of trans-

mission and behavioral aspects. Most exfiltration detection suites enumerate files

based on file names and hashes[16]. These signatures are examined when inspecting

outgoing traffic. The alternate approach that exists is the use of regular expressions

that match common data formats such as credit card numbers and social security

numbers. This approach is similar to the approach taken by antivirus companies and

has similar flaws. The most glaring issue with this approach is that a simple mod-

ification of the data or file can cause it to be transmitted unnoticed. Furthermore,

most exfiltration methods can simply compress or encrypt the data, thus making the

2

examination of the data impossible. Since a user will commonly and increasingly

communicate to servers using encrypted traffic[12], the encrypted or compressed

exfiltrated traffic will be lost among the noise. To demonstrate the obstacles that

current detection suites face, consider the traffic sample outlined in figure 1.1. This

figure represents an hour of traffic on a single machine that utilizies a variety of

different protocols. Each point is a packet that corresponds to a port number. The

first obstacle is the sheer amount of traffic and breadth of protocols that must be

understood and examined for exfiltrated data. Data is being exfiltrated in that traf-

fic sample, yet there is nothing alarming that can be gleaned from examination of

the traffic. In figure 1.2, the data exfiltration is highlighted. In this case, the traffic

is on port 443 and encrypted, rendering packet inspection suites useless. Also, due

to the amount of legitimate traffic on that port, it is nearly impossible to pick out

the exfiltrated data as suspicious.

Figure 1.1: Data exfiltration hidden in sample traffic

3

Figure 1.2: Data exfiltration highlighted among sample traffic

There is a small but growing movement towards behavior analysis that will

lead to more accurate anomaly detection. A behavioral algorithm will examine all

traffic from a host for a period of time that it is assumed to be known as safe.

After this learning period, a host-based agent will know which traffic is expected

(e.g. webmail, general browsing) and which traffic is an anomaly (e.g. SSH to

previously unknown server.) This approach is not perfect and will likely result in

many false positives, however it is a step in the right direction. It is clear that the

focus of exfiltration detection must shift focus from the data being stolen to other

behavioral aspects such as the method of data theft and typical user actions.

One of the main reasons that more complicated or specific algorithms do not

exist is due to the lack of exfiltration traffic samples and the difficulty of malware

analysis. In this research, we attempt to categorize exfiltration techniques and

create an emulation tool corresponding to the most popular methods. This tool will

4

provide a flexible way of creating exfiltration traffic samples that can be used to

design more advanced and efficient detection algorithms.

5

Chapter 2

INTRODUCTION

2.1 Motivation

There are a number of reasons an attacker would attempt to infiltrate a

private network. The most common goals are to block the service from use by

legitimate individuals, to take over systems in order to send spam messages, and

to steal information. The first case, known as a denial of service attack (DoS)

usually occurs as a primitive way of temporarily disabling a service. This type of

attack can be accomplished without infiltrating the network by simply saturating

the normal means of accessing the network. The other goals typically require an

attacker breaking into a system or network. While sending spam messages can

be profitable, there are many guards in place in mail servers and effective systems

that nearly eliminate spam exposure to the average user[5]. For these reasons, the

most profitable and most likely activities once a network has been infiltrated is the

theft of sensitive information such as passwords, credit card information, and other

personally identifiable data that can be used to provide financial gain.

2.2 The Exfiltration Process

There is currently a relatively small amount of information known about

existing exfiltration techinques. There are certain steps, however, that an attacker

must go through in order succesfully exfiltrate data. The attacker must first breach

a private network. Consider the network in figure 2.1. Most private networks

6

have a network gateway and firewall in which there may be significant defensive

tools that limit incoming traffic. Conversely, there are likely to be very few, if

any, defensive mechanisms examining outgoing traffic. Attacks such as cross-site

scripting (XSS) and SQL injections will not be hampered by a defensive firewall

and after the attacker gains control of the system, he or she will have little trouble

transmitting traffic out of the network. After exfiltration, a sophisticated attacker

may remove traces of his or her existence by the modification of system logs.

Figure 2.1: The basic architecture the attacker manipulates in order to exfiltrate
data

In the event that a network has a DLP or deep packet inspection (DPI)

solution in place, as illustrated in figure 2.2, it will have to inspect every piece of

outgoing traffic. Most DLP tools are very costly and have dedicated hardware,

precisely for this reason. However, this hardware is useless in the face of encrypted

traffic. When a channel or piece of data is encrypted, it has a high entropy and

will appear to contain random binary information. The attacker can decrypt this

data after transmission and it will have passed through the detection suite without

setting off an alarm.

7

Figure 2.2: The effects of encryption on an outgoing DPI solution

2.3 Impact of Data Theft

While theft of information from consumers can be costly, the real danger

arises from theft of data from corporate and government sources. Theft of infor-

mation such as trade secrets or marketing strategies from a corporation can cause

the corporation brand harm and have a considerable financial impact. Government

targets can have much more widespread and severe consequences such as large scale

financial loss and significant threats to a nation’s safety. An example of this kind of

backlash can be observed from the recent controversey surrounding the data theft

by Bradly Manning[20].

2.4 Malware Anti-Analysis Techniques

The obstacles that prevent more from being known about these methods

from malware are due to the difficulty of malware binary analysis and the industry

focus on how breaches occur, rather than how data is exfiltrated back to the at-

tacker. Modern malware has become increasigly sophisticated, particularly in ways

that prevent researchers from analyzing and reverse engineering malware samples.

Current malware commonly includes code obfuscation, debugger run-time detection,

binary packing, and virtual machine detection.

8

2.4.1 Code Obsfuscation

Obfuscation is a method of complicating the binary executable or providing

redundant instructions in code in order to confuse a malware analyzer. Examples

of this include creating pointless loops or extensive function nesting which provide

no real purpose in the code except to complicate analysis. This method slows down

and limits examination of the malware to only the most experienced analysts and

provides malware a longer time period to gather data or infiltrate systems before

fixers are put in place that would combat the exploit.

2.4.2 Debugger Detection

Most modern malware can easily detect if it is being run inside of a debugger

and will often exhibit incorrect behavior in this state in an attempt to slow down the

analyzer. Without help of a debugger, malware analysis can be incredibly difficult

and time consuming. In order to overcome debugger detection, some modifications

must be made to either the debugging environment or to the binary itself, both of

which further delay the malware analysis.

2.4.3 Binary Packing

Malware are now often packed(compressed) and when executed, will self mod-

ify its code or unpack the full payload. There are often checks in place to ensure

the environment is a real and valid target and not a virtual machine or sandbox,

further complicating analysis. Therefore, the binary must be put in an environment

that will cause it to unpack completely and then allow the malware to be analyzed.

2.4.4 Virtual Machine Detection

In line with binary packing and code obsfucation, most modern malware goes

to great lengths to ensure it is not running in a virtual machine or similar sandbox

environment. Tests performed by the malware may be as simple as testing the

9

MAC address manufacturer code, or as complicated as timing and hardware tests

that provide different results depending on whether the malware is running on a

real system or not.

2.5 Exfiltration Test Bench Motivation

For the above reasons, it is clear that there are very few viable options for

executing malware and capturing traffic without real world security implications

and ethical issues. For example, the most feasable way to capture exfiltration traffic

is to purposely infect a machine that has access to the internet, and to leave the

system unattended, while capturing traffic, for a lengthy period of time. This ex-

periment alone is difficult to execute correctly as there can be no prediction of when

exfiltration will occur, or if the machine is waiting for instructions from a command

and control channel before continuing. The sheer volume of the traffic that must be

inspected for the data exfiltration samples will also prove to be a difficulty. On top

of these difficulties, there are also obvious ethical and legal implications to purposly

infecting machines and letting them proliferate, possibly infecting more machines.

Currently, the most feasible option is to simulate this traffic in a controlled setting,

allowing for rapid prototyping of detection algorithms.

10

Chapter 3

TAXONOMY OF EXFILTRATION METHODS

In order to better understand how to defend against data exfiltration, a

taxonomy of common methods has been assembled and examined. The majority

of these have legitimate uses and are hard to detect among normal network traffic.

There are other methods that are an anomalous use of a protocol that may be harder

to detect, but provide a small throughput rate. It is important to note that data

can be exfiltrated in a nearly infinite number of ways and that the methods listed

below are simply the most feasible and most likely to be used. Each method has

been given a qualitative rating regarding how much transfer bandwidth is feasible

using that method and how unlikely it is that the channel will be discovered by both

detection tools and an observing administrator. Ratings can range from 1 having

the least amount of available bandwidth or a high likelyhood to be detected to 5

having the most amount of bandwidth or a very low likelyhood of being discovered.

3.1 Bandwidth

For the purposes of this research, bandwidth is regarded as the transfer speed

available so that the file (in this case, the data to be exfiltrated) transfers completely

and correctly with a relatively low degree of errors occuring. Consider, for example,

using Domain Name System (DNS)[17] requests as a way to exfiltrate data[1]. In

this scenario, an infected machine will make a large volume of DNS requests to a

given subdomain. For example, the client will request a DNS lookup for data-to-

be-exfiltrated.example.com. In this case, the host example.com will be queried for

11

Table 3.1: Taxonomy of exfiltration methods rated in terms of bandwidth and
covertness

Name Protocol Encryption Bandwidth Covertness
File Transfer FTP Yes 5 3
Secure Copy RCP/SSH Always 5 2
HTTP POST HTTP No 5 4
SSL HTTP HTTPS Always 5 5

Email SMTP No 5 4
SSH Tunnel SSH Always 5 2

Instant Message IRC/XMPP Yes 3 4
Echo Request ICMP No 2 4
DNS Tunnel DNS No 1 2

Update Comm. HTTP/SOAP No 5 3
P2P TCP No 5 2

Custom IP IP No 3 4
Custom TCP TCP No 5 3
Custom UDP UDP No 4 2

the resolution of the address, to which it will reply that it does not exist. However,

at this point, the ”datatobeexfiltrated” string has been sent to the receiving server.

While this method is arguably hard to detect, the amount of bandwidth that is

available to it is relatively small due to the nature of DNS requests and the length

of the subdomain that can be requested.

3.2 Covertness

Covertness can be described as the likeliness of the method being discovered.

There are some methods that will be generate a considerably larger footprint on a

network in regards to how out of place that type of traffic is on a network. Con-

sider an average computer user who does nothing more on a network than basic

browsing and email. Now consider an attacker has infiltrated the machine and has

gathered data to be exfiltrated using File Transfer Protocol (FTP)[25] or Secure

Shell (SSH)[29]r. It is unlikely that these protocols would be used by the average

12

user and therefore it is likely that these methods would be detected easily by any

behavioral detection applictions.

3.3 Method Descriptions

It is important to note that the taxonomy table demonstrates encryption

on a channel based level. Encryption built into the channel will hide most details

of the transfer including the file contents themselves. However, encryption can be

included in all methods by simply encrypting or compressing the file before transfer.

While this is not as protected as encrypting the entire channel, for the purposes

of exfiltration, it is enough to prevent inspection algorithms from examining the

contents of files. Compression will also be a much wanted feature of exfiltration in

that it shortens the transfer time and makes the transfer less likely to be detected.

The majority of the methods described below can usually be implemented easily

using an existing library. However, including an external library as a payload to

malware can be cumbersome by greatly increasing the executable size. For these

reasons, it can be assumed that an attacker will code all methods using standard

libraries that are installed by default on the infected machine. Sockets are standard

on most targeted machines and will likely be the tool of choice by attackers.

3.3.1 Sample Method

3.3.1.1 Description

In order to accurately describe methods used to exfiltrate data, certain terms

and scenarios must be defined. In all cases of exfiltration, there is an ultimate

transfer of information from a target machine to an attacker’s machine. This act

of transfer outgoing from the target machine back into a machine in control of the

attacker is known as exfiltration. An attacker is the individual who is receiving the

exfiltrated data in hopes of using it for financial or political gain. The attacker

can exfiltrate the data automatically, through the use of malware, or manually, by

13

some remote code execution exploit. It is important to recognize that the automatic

methods must be incredibly robust as almost all of these methods can fail depending

on the network environment. For this reason, it is likely that if the attacker is

exfiltrating data automatically, he or she will use methods most likely not to fail

and may even have back up methods ready in case of failure states. An attacker

exfiltrating data manually has much more flexibility as reconnaissance can be done

and the method least likely to be detected can be used. The attacker will exfiltrate

data by means of a channel, or the concept of an abstract connection. For both

manual and automatic exfiltration, the method chosen for exfiltration is likely to be

well known and well used channel that has legitimate uses.

3.3.1.2 To Exfiltrate

In order to exfiltrate data, the attacker’s code must be executed on the target

machine. This can take the form of a program executed automatically by malware

or manually by an attacker, or on a channel set up by an attacker through the use of

a remote shell. There are certain mechanisms (e.g. common dynamic link libraries)

built-in to most consumer systems that allow attackers to have a toolset that is

likely already installed. For the more sophisticated methods, some external libraries

may be loaded or they may be built manually. An attacker will connect to a server

that is using the same exfiltration method, transfer the data, and remove evidence

of the transaction.

To receive this data, the attacker must have agreed upon some method that

is used by both the target client and the server. The server will listen using the

designated protocol and save the data as it is received. The attacker may choose to

take the server offline after the data has been transmitted as a means to minimize

detection. Since the server is usually under the control of the attacker, he or she has

complete control to utilize whatever libraries that are needed, allowing the server to

be as complex as needed.

14

3.3.1.3 To Detect Exfiltration

For most methods, there are telling signs of their use on the network. Often,

these methods can be detected without the use of deep inspection of a packet’s

contents. The challenge that exists is not the detection of the method, but rather the

detection of the method with malicious intent. This research attempts to highlight

some of the details surrounding data exfiltration and allow the inspection of these

methods to show certain characteristics or patterns that can be used to detect

or intercept suspicious traffic. Having illustrated the template for an exfiltration

method, we will now outline the methods found in this taxonomy.

3.3.2 File Transfer

Figure 3.1: Exfiltration using File Transfer Protocol (FTP)

3.3.2.1 Description - File Transfer

File transfer will use the FTP protocol[25] (which relies on Transmission

Control Protocol (TCP)[15] for both a transfer channel and an out-of-band command

channel) in order to transmit the sensitive data to a server, which will be running

an FTP server. The FTP protocol involves an authentication step, followed by the

transfer of the file, followed by a closing of the connection. This method uses an

out-of-band channel for communications regarding the file name and file size. FTP

also has the ability to decide which side of the connection will act as the client or

15

connection initiator. This provides a slight advantage over other methods in that

it allows an attacker to choose which way the connection will start, allowing some

flexibility to bypass certain target-side firewall restrictions.

3.3.2.2 To Exfiltrate - File Transfer

For an infected machine to exfiltrate using this method, the data typically

is encapsulated in some kind of binary format(possibly compressed or encrypted)

and the client must attempt to authenticate with the server. The server’s address is

either hard-coded or dynamically determined[13]. The authentication details such

as the user name and password must also be static or dynamically determined. The

alternative is that anonymous login can be used, however this may prove to be

a security issue as it will allow anyone to access the attacker’s server. The FTP

protocol can be implemented by hand in C using sockets or using an existing library

such as CURL[2]. Associated data will be sent over a TCP channel. Standard

file transfer using FTP allows the port of the receiving server to be specified by the

server. Therefore, it is perfectly valid for FTP to transfer the file using non-standard

ports for both malicious and non-malicious purposes.

To receive this data, the attacker must install and configure a standard FTP

server service with corresponding usernames and passwords that will either be hard-

coded into the client side or dynamically determined. Additional processing can be

done on the server side to organize the data or to uniquely determine which host sent

the data. The attacker may choose to only have the server accepting connections

during certain times that exfiltration is expected. This may reduce the chance of

detection if the server is no longer available after detection.

3.3.2.3 To Detect Exfiltration - File Transfer

Examining packet headers for FTP traffic to servers that have not been ap-

proved during previous use (e.g. whitelisting) may be the safest course of action.

16

The user can be prompted for FTP connections to previously unheard of servers,

much like SSH does if the user does not have the SSL key. This method, however,

will provide an obstacle to the user if he or she legitimately uses FTP. Alternative

methods include packet examination for restricted REGular EXpressions (REGEX)

patterns or alerting the use of any transfer of encrypted data over unencrypted

FTP channel. A white list approach can be taken on only servers that use TLS[8]

encryption, therefore reducing the amount of servers that the user must approve.

3.3.3 Secure Copy

Figure 3.2: Exfiltration using Secure Copy

3.3.3.1 Description - Secure Copy

The secure copy (SCP) method uses RCP (remote copy) in combination with

SSH in order to provide a copy method that is encrypted and authenticated. RCP

uses a TCP channel provided by an SSH tunnel and provides a series of protocol

messages that allow the transfer of files and some file attributes. SSH is a protocol

that provides encryption of the entire channel, hiding the internal protocol messages

that RCP may produce, further limiting the areas that detection algorithms may

inspect.

17

3.3.3.2 To Exfiltrate - Secure Copy

The client must initiate an SSH session to a remote server using hard-coded or

dynamically determined username and password combination. Once authenticated

with the server, transfer the file of encapsulated sensitive information using the

RCP protocol. The connection is closed once the transfer is complete. This can be

implemented using the openSSL library[3] as well as using the sockets interface.

A server is needed that has installed and properly configured an SSH service

with corresponding username and password combinations. The attacker may choose

to use a non-standard port to avoid suspicion. For a situation where an attacker is

manually exfiltrating data, the attacker may also choose to ignore requests from all

other machines besides the machine exfiltrating.

3.3.3.3 To Detect Exfiltration - Secure Copy

Detecting exfiltration using this method is particularly difficult due to the fact

that the entire transfer channel is encrypted. The most feasible method to detect this

type of exfiltration is to examine packet headers and packets for SSH authentication

attempts to non-trusted servers through the use of a whitelist. Alternatively, the

SSH protocol could be limited by a network adminstrator to only work to trusted

servers. For average computer users, the SSH protocol will most likely not be used

legitimately and this type of traffic will be observed easily.

3.3.4 HTTP POST

3.3.4.1 Description - HTTP POST

HTTP POST is a method in which an HTML object contains a form and a

POST action. This method utilizes the Hypertext Transport Protocol (HTTP)[11]

to exfiltrate data. The POST action will send the specified text in the web form to

the server specified by HTML. This method is unencrypted and originally was not

meant for very large amounts of data. Later, there were modifications made to this

18

Figure 3.3: Exfiltration using an HTTP POST action

method to accommodate file uploads to web servers[19]. Data can now be encoded

using a new encoding specifically for this type of transfer (multipart/form-data).

The server will write the received data according to the corresponding ACTION

URL.

3.3.4.2 To Exfiltrate - HTTP POST

The packets necessary to submit a POST can be crafted easily using TCP

sockets. Multiple POST requests may be needed due to the inefficiencies of trans-

ferring large amounts of data in a single POST. The POST requests may also be

split up in order to behave more like with existing POST requests. Note that the

majority of legitimate web applications that accept file uploads have a limit, usually

on an order of megabytes. This must be considered by the attacker and may also

be used by the defender as a means to detect exfiltration.

A properly configured HTTP server can handle the expected POST request,

or a service can emulate the correct response to the POST using simple sockets. The

latter method will be able to better hide its identity by only responding to POST

requests and ignoring GET requests. Since there is no authentication built-in to

this method, some modifications may be necessary in order to uniquely identify

exfiltrated data to a host machine.

19

3.3.4.3 To Detect Exfiltration - HTTP POST

Exfiltration of data will presumably use a POST submission without request-

ing data from a site initially. For example, the typical POST usage involves the client

requesting an HTML object from a server, followed by the client submitting a POST

request. Exfiltration will most likely skip the first step, to minimize unnecessary

traffic and may be a flag that can be detected as suspicious traffic. POST requests

to servers which have not been seen before can also be marked suspicious. If the

server is not using SSL[27], the contents of the request can also be examined to see

if any restricted keywords or regular expressions were present.

3.3.5 SSL HTTP

Figure 3.4: Exfiltration using an HTTP POST action in an SSL encrypted channel

3.3.5.1 Description - SSL HTTP

SSL HTTP is simply using the HTTP protocol in an encrypted channel that

is facilitated by SSL[27]. A public/private key pair is used to safely exchange a

symmetric key which is used for encryption of both sides of the communication.

The most feasible method of exfiltration from within this channel is to use HTTP

POST. As such, much of the implementation details are similar to that of HTTP

POST but resulting in a much more secure connection that will be significantly

harder to detect.

20

3.3.5.2 To Exfiltrate - SSL HTTP

This type of exfiltration will be nearly identical to an HTTP POST sub-

mission, where a file upload request is sent to a determined server with the proper

attributes. An SSL handshake must be initiated first, which can be accomplished

with standard encryption algorithms and standard sockets. The data to be exfil-

trated is assumed to be encapsulated in some form and most likely compressed.

Similar to what is needed to accept HTTP POST requests, all that is needed

to receive this type of exfiltration is a properly installed and configured HTTP server

or service emulation. Additional configuration will be needed, specifically in terms

of a valid certificate. There are various options at this point, such as legitimately

buying a certificate that can be validated by a third party, providing more legitimacy

to the connection or to use a self-signed certificate that will not cost money but may

appear suspicious.

3.3.5.3 To Detect Exfiltration - SSL HTTP

This type of exfiltration maybe the most difficult to detect for a multitude of

reasons. This type of traffic will likely be one of the most common types of traffic on

all consumer machines allowing exfiltration to hide among legitimate traffic. Clients

may also connect to a multitude of different HTTPS servers making the use of a

white list system cumbersome. Due to the inherent encryption of this traffic, it

cannot be inspected. For these reasons, the only feasible method of detection is

by using some kind of behavioral system that will detect anomalies that stray from

normal traffic patterns[9].

3.3.6 Email

3.3.6.1 Description - Email

The use of Email to transmit files will use Simple Mail Transfer Protocol

(SMTP)[24]. This method will attach a file of sensitive data and attempt to transmit

21

Figure 3.5: Exfiltration using an SMTP server

it via Email to the server. Two methods of exfiltration exist for this protocol: using

the user’s existing mail server and Email address and connecting to an arbitary

mail server to transmit data. Additional methods are possible, but significantly

more difficult to implement. An example would be a program that logs into a

webmail service and exfiltrates data accordingly. This method is much more likely

to be used by an attacker manually exfiltrating data.

3.3.6.2 To Exfiltrate - Email

One method the client can use is to use the user’s current mail server and

email address, however the exfiltration malware must know the user’s credentials and

the user must have an existing email address, which is unreliable. The alternative

method is to use an existing mail server to transmit the data. A socket connection

can be implemented to utilize a mail server that forwards the data as an attachment.

A properly installed and configured mail server must exist to relay the exfil-

trated data. A receiving email address may also needed to receive the data. In the

case of the attacker connecting directly to an existing mail server, a receiving email

address may not be needed as the data can be parsed directly from the mail server.

3.3.6.3 To Detect Exfiltration - Email

Due to the unreliable nature of using the first exfiltration method listed above,

the malware will most likely use an arbitrary mail server. Since the typical user will

22

only regularly connect to a small number of mail servers, detecting the connection

to a previously unheard of mail server will be trivial. Additional detection methods

may attempt to inspect data for restricted keywords or regular expressions.

3.3.7 SSH Tunnel

Figure 3.6: Exfiltration using an SSH tunnel set up as a local proxy

3.3.7.1 Description - SSH Tunnel

An SSH tunnel will work by encrypting a channel using an SSH session.

Traffic will be tunneled to the SSH host through the use of a local proxy. The

data channel will be encrypted and closed when finished. This allows nearly any

underlying protocol to be used through an encrypted channel which makes it very

appealing to an attacker.

3.3.7.2 To Exfiltrate - SSH Tunnel

The first step to creating an SSH tunnel is to initiate an SSH session with

a remote host. An existing library can be used (openSSL) or the secure handshake

can be coded using sockets. A proxy will then be initiated over SSH and traffic will

be sent to that local proxy on the specified port.

23

Like secure copy, the only requirements for accepting this type of data would

be a properly configured SSH service. Some configuration must be agreed upon

beforehand, such as the user name and password to be used.

3.3.7.3 To Detect Exfiltration - SSH Tunnel

There will be two key events that will flag suspicious activity. The first event

will the connection to a remote SSH server, which the typical user will only do

rarely. A white list can be used in this case to notify the user. The other event will

be the use of a local proxy. Any packets sent to 127.0.0.1 will hint at the existence

of a local proxy. While it may seem advantageous to use the flexible nature of SSH

tunnels, they may be too likely to be detected for an attacker to use.

3.3.8 Instant Message

Figure 3.7: Exfiltration using Instant Messaging clients

3.3.8.1 Description - Instant Message

Instant messages can be used to transmit small amounts of data using a num-

ber of different overlay protocols. The most common protocols that exist currently

are Internet Relay Chat (IRC)[21] and Extensible Messaging and Presence Protocol

(XMPP)[22]. Both require authenticating with a corresponding server. Two clients

can authenticate with the same server and messages can be passed between the two

clients. IRC has been one of the most popular ways for a botnet to communicate

24

with a command and control channel[28] due to the third-party nature of the server

and the ease of communication.

3.3.8.2 To Exfiltrate - Instant Message

The attacker must authenticate with a determined server using either the

XMPP or IRC protocol. Messages will be passed according to the corresponding

protocol. The data must be split up to accommodate message length limits and

may have to be encoded if messages may not contain binary data.

To accept this data, a server will be similar to an implemented client. The

channel that is established here is similar to two individuals meeting at a specific

location and communicating accordingly.

3.3.8.3 To Detect Exfiltration - Instant Message

A white list will help significantly to detect this type of exfiltration as the

amount of XMPP or IRC servers the average user connects to would be relatively

small. A large volume of messages being transferred may also be a sign of exfiltration

as a legitimate user likely will send messages at a much smaller frequency than a

machine exfiltrating data.

3.3.9 Echo Request

Figure 3.8: Exfiltration using ICMP Echo Request packets

25

3.3.9.1 Description - Echo Request

An Internet Control Message Protocol (ICMP)[7] echo request packet is often

sent by a user to determine if a remote host is available. The host receiving the echo

request packet will respond with an echo response with the packet payload being

identical to the packet payload received. If the client does not wish to receive a reply,

the exfiltration could be further obscured by crafting the echo request packet to have

an incorrect source address. One of the overlooked details about this transaction is

that the contents of the ping packet are rarely inspected as they are largely irrelevant

to determining if a host is available or not. For this reason, the packet payload can

contain data to be exfiltrated and the receiving host can simply record the payloads

of all ICMP echo request packets it receives.

3.3.9.2 To Exfiltrate - Echo Request

Raw sockets can be used to implement an ICMP echo request fairly easily.

There is some flexibility in terms of setting the payload size. Standard echo request

packets are 56 bytes, however they can be larger. Making the packet size larger will

likely make this method easier to detect. In this case, the attacker must balance the

packet size against transfer bandwidth so as to not get detected. The data to be

exfiltrated must be encapsulated and split up accordingly. The attacker may also

choose to implement some feature to ensure a reliable channel, as these packets are

prone to arriving out of order, or not at all.

The receiving system will accept echo request packets, record their payloads

and piece together the data accordingly. The server may choose to respond with

echo reply packets, in an attempt to look more authentic, however it is not necessary

and may do nothing more than produce more noise on the network.

26

3.3.9.3 To Detect Exfiltration - Echo Request

The main downside to using ICMP echo request packets to exfiltrate data

is that there will be a large amount of requests on a network where typical usage

will be very little, if any. Detection algorithms may also inspect ICMP packets

for keywords or regular expressions. Packets with high entropy[10] may signify the

existence of exfiltrated data as the payload should not contain highly varying data.

3.3.10 DNS Tunnel

Figure 3.9: Exfiltration using DNS lookup requests

3.3.10.1 Description - DNS Tunnel

DNS requests work by sending a hostname string to a DNS server. The

server will either respond with the corresponding IP address or that the requested

domain name was not found. In the case of subdomains of hosts, the DNS server

or client may request from the known Top Level Domain (TLD) the identify of the

subdomain. This aspect of DNS makes the transfer of data via DNS possible. As

described earlier, the infected machine will request a subdomain of the attacker’s

TLD. The TLD will respond that the subdomain does not exist and will record the

string as data that has been exfiltrated.

27

3.3.10.2 To Exfiltrate - DNS Tunnel

An attacker must simply send UDP DNS requests for subdomains to the

determined domain with data in the subdomain portion of the domain. The data

must be divided into small enough chunks so that they can be transmitted in this

manner. The data must also be encoded to support requirements that disallow

binary data in subdomain strings.

A specified domain must be owned by the attacker that has DNS request

handling capabilies is needed to receive this type of exfiltration. The server must

record all DNS requests and piece the data back together accordingly with decoding

if it was used.

3.3.10.3 To Detect Exfiltration - DNS Tunnel

The most telling sign of exfiltration in this manner will be repeated and

complex DNS requests to the same domain. The examination of the number of

DNS requests in any period of time will likely uncover this method. Due to how

noisy this method is and how little bandwidth is available to it, this method is not

likely to be used for large scale data exfiltration.

3.3.11 Update Communications

Figure 3.10: Exfiltration using update communications

28

3.3.11.1 Description - Update Communications

There are a large amount of client applications that periodically update auto-

matically be contacting a determined server. Some applications or operating systems

may even download updates automatically. Exfiltration in this manner will most

likely utilize the method of contacting a home server to ask for updates. In order

to determine if an update is needed, some data must be initially sent to the server.

An attacker could emulate this method to appear as an application update.

3.3.11.2 To Exfiltrate - Update Communications

An existing protocol that asks for updates must be examined (e.g. Windows

Update) in order to properly implement the client. An update request will be crafted

to mimic this type of action while containing exfiltration data rather than an actual

request. The destination will be a target owned by the attacker.

On the receiving side, a custom service must be designed and implemented

to record the update requests and parse the data. Protocol messages that ensure

proper and valid delivery may be used, but will increase the chances of the method

being detected. Some update services must transmit a complex state of the system

or application and in some cases can cause the amount of outgoing traffic to be very

large.

3.3.11.3 To Detect Exfiltration - Update Communications

The number of applications that ask for updates on the client can be aggre-

gated and their known servers can be added to a white list. Even if the traffic looks

identical to application update traffic, if it is contacting an alternative server, an

alarm can be set. Additional servers must be approved by the user or administrator.

29

Figure 3.11: Exfiltration using a third-party P2P server to connect clients

3.3.12 P2P

3.3.12.1 Description - P2P

Peer-2-Peer (P2P) traffic can be described as using a centrally located server

for each client to communicate with each other. Once the clients have found each

they, they will initiate a direct connection and communicate accordingly. If a user

actively uses P2P applications, specifically legitimate ones such as those used for

software distribution, there will be significantly more places for exfiltration traffic

to hide.

3.3.12.2 To Exfiltrate - P2P

A client will contact a third party server as a means of meeting the receiving

client. This third party server can be an IRC server or writable web server, for

example. Once the clients have communicated, they can open a communication

channel and transfer data.

In this method, the server will be nearly identical to the client. The server will

likely have open ports so that the sending side can initiate connections, bypassing

firewalls in the process.

3.3.12.3 To Detect Exfiltration - P2P

If there is no current P2P traffic existing on the client, than the detection of

this type of traffic will be trivial. However, among other P2P traffic, picking out

30

suspicious activity will be extremely difficult. The traffic must be examined closely

in an attempt to discover connections that were not initiated by the user.

3.3.13 Custom IP

3.3.13.1 Description - Custom IP

The Internet Protocol (IP)[14] is the basis of most transfers between two

machines across the internet and can be used without a transport protocol. Some

protocol messages must be implemented in order to support accurate and reliable

transfer. This is the one of the most minimal methods and therefore extensive care

must be taken to ensure proper delivery.

3.3.13.2 To Exfiltrate - Custom IP

Simple sockets without specifying a transport layer protocol can be used to

implement the client side of this method. Additional data must be included to ensure

proper delivery. This type of exfiltration will presumably be one of the most difficult

versions to implement and may not provide as much covertness as expected. It may

stick out due to it being an unheard of protocol. On the other hand, dissection

of protocols must be implemented into a detection algorithm and therefore being

initially unable to dissect this protocol may provide an advantage.

To receive data, a service must be designed and created that matches the

client exfiltration protocol. Special care must be taken to implement a proper reli-

able transfer. Additional issues may arise due to improper routing or routers that

will not forward packets using an unheard of transport layer protocol.

3.3.13.3 To Detect Exfiltration - Custom IP

The IP header of each packet can be examined for the corresponding transport

layer flag. Unknown flags or flags that do not match the packet content can be

31

marked as suspicious. There should be little or no practical uses of IP to transfer

data without using an existing transport layer protocol.

3.3.14 Custom TCP

3.3.14.1 Description - Custom TCP

The Transmission Control Protocol (TCP)[15] can be used without needing

any overlaying or existing protocol. TCP can be used to simply transmit messages

to and from a server as needed, inventing protocol messages as needed. This is

essentially what FTP uses to transfer files, but without using a command channel.

It would be more efficient to know the file size and other attributes of the file before

receiving, however in reality, it is not needed. A server could listen for a client to

connect on a determined port and assume the file is complete when the client closes

the connection.

3.3.14.2 To Exfiltrate - Custom TCP

Simple sockets can be used to transmit the exfiltrated data. Acknowledge-

ment and initialization messages may be used in order to ensure data is sent cor-

rectly and fully. The file may be split up depending on how much data needs to be

exfiltrated in order to facilitate some kind of protection in case the transfer fails.

This may be one of the most covert methods due to the sheer volume of legitimate

network traffic that utilizes TCP.

A specific service will be designed and created to match the transfer sequence

of the client. A previously agreed upon set of protocol messages can be used to ensure

proper exfiltration. For multiple infected machines, the server must find some way

to identify different hosts. Data that is sent manually by an attacker may signal the

server to shutdown after receiving the data, as to limit investigative features.

32

3.3.14.3 To Detect Exfiltration - Custom TCP

Detecting this type of exfiltration will be difficult due to the majority of

other TCP traffic that exists on a network. Signs to look for include the use of

non-standard ports or ports to which the packets do not match the corresponding

well known service. A white list can be used in combination with an examination of

the packet headers and data to ensure that data sent to a specific port matches the

correct application protocol. A combination of strategies must be used to properly

detect suspicious activity of this nature.

3.3.15 Custom UDP

3.3.15.1 Description - Custom UDP

Like TCP, the User Datagram Protocol (UDP)[23] can be used to send sen-

sitive data without utilizing any existing application layer protocols. Unlike TCP,

UDP does not have any features to ensure a reliable channel. The client-server pair

must account for obstacles such as duplicate packets, missing packets, and out of

order packets.

3.3.15.2 To Exfiltrate - Custom UDP

Simple sockets can be used to send UDP packets. Care must be taken in

order to add proper order and reliable transport to ensure data is received correctly

and completely. Without some internal error recovery, this method may only be

viable for small amounts of data.

A custom UDP service must be designed and created to properly handle

the client side transfer. Custom protocol messages may be implemented to ensure

proper delivery. It is strongly recommended that a UDP server find some way to

validate that the file has transferred correctly due to the lossy nature of UDP.

33

3.3.15.3 To Detect Exfiltration

Unlike TCP, there are far fewer services that use the UDP protocol and

therefore the examination of all UDP traffic may be feasible. This examination

in combination with well known port numbers and a white list will be effective in

detecting UDP data exfiltration.

34

Chapter 4

DESIGN AND IMPLEMENTATION

The exfiltration test bench (extb) suite was designed as a flexible framework

to initiate many different types of exfiltration. It allows a user to have the identical

program and corresponding plug-in on both a client and a server machine. The

server (or receiver) machine listens using the specified method and port (if needed).

The client then initiates a connection to the designated server and transmits the

specified file accordingly. The server receives the file, saves the data to disk, and

closes immediately after. The program was designed to be lightweight, robust, and

easy to use. Python[4] was used as the programming language for this framework

due to its rapid prototyping abilities and large library base which allow plug-ins

to be programmed quickly and efficiently, requiring little code. A block diagram

illustrating the design of the program can be found in figure 4.1.

4.1 Initial Design

The original design involved an auxiliary command channel which would

confirm the method, file size, and some kind of verification that the file transferred

completely and correctly. Later in the design process, this command channel was

removed in order emulate an authentic environment. In a real world scenario, a

malware author would have to find some alternative way to specify the size of the

file and other attributes necessary for correct and complete file transfer. This is

particularly important for nonstandard protocols or protocols that were not inten-

tionally meant for file transfer. As an example, consider a protocol like FTP which

35

Figure 4.1: Block diagram of the extb test bench utility

was designed for file transfer. In this case, the file size is transmitted in the com-

mand channel. A separate TCP channel is opened up for the actual transfer of the

file and the sending side closes the connection to signify the end of the transfer.

This process allows the receiving system to verify with some degree of accuracy that

the file transferred completely and correctly. On the other hand, consider a covert

channel such as using ICMP packets that look like an echo request, but actually

carry exfiltrated traffic. Due to the small packet size, many of these packets must

be sent for a moderately sized file to be transmitted. With no reliable data channel

features (such as those implemented with TCP) there will be a high probability of

errors occurring during transfer. The attacker must consider these attributes when

designing malware and may have to balance the covertness of the channel versus the

reliability and bandwidth of the channel.

36

4.2 Program Architecture

As seen in figure 4.1, an identical program having both sending and receiving

functions with an identical method library is loaded on two seperate machines. The

server will be started first in order to eliminate race conditions. This is due to

the fact that the client will transmit data without waiting for acknowledgement

and in some cases will still send packets even if the destination is not listening.

After program initialization, the server will load the external library specified on

the command line. This library will handle all receiving aspects of the method.

After receiving and recording the data sent, the server will return control to the

main program which will take care of any needed finalization. The client works

in an almost identical manner except that the client section of the library code is

called rather than the server section. Some configuration options are passed over

the command line such as the port number and destination options. In future work,

these options may be expanded to allow configuration of per method attributes such

as packet size or acknowledgement options.

4.3 Plug-in Design

In order to implement a plug-in for this framework, the method must be

programmed using the Python language. The advantage to using this language is

that there are a very large number of external libraries that have implemented many

major protocols. As opposed to a language like C, Python will allow the user to

ignore some of the specific details of programming a method. For example, consider

the HTTP POST method. In C, this would likely have to be programmed using

sockets and obstacles such as socket creation, transmission buffering and framing

would have to be overcome before the programmer could even begin the actual

exfiltration. In Python, libraries for these functions already exist and provide the

user the flexibility to avoid these extraneous details. Additionally, if low-level control

37

is needed, Python allows C code to be embedded inside its environment, allowing

fine grain control over the exfiltration method.

In order to properly design a plug-in, two functions need to be defined: server

and client. These functions will handle all aspects of their corresponding job. For

example, the client will handle reading the file to be sent, breaking the file into appro-

priately sized blocks, loading any external libraries needed, opening the connection,

transmitting the file, and closing or terminating the connection. The framework has

been designed so that the plug-in has a large amount of flexibility and is therefore

not hindered by the framework itself.

38

Chapter 5

RESULTS AND ANALYSIS

The test bench described in Chapter 4 was used as a means to investigate

the methodology that malware authors would use when choosing how to exfiltrated

sensitive data. The test suite proved useful in demonstrating various characteris-

tics that were common to all methods that may be used to either develop further

exfiltration methods as well as improving current detection algorithms. In order to

demonstrate the usefulness and capabilities of different techniques, each exfiltration

method was used to exfiltrate a file of constant size (500MB) on a loopback inter-

face, in order to minimize errors due to packet loss. Each method was measured

using the time command in order to show how long the program took to finish, how

much computation was needed at the user level, and how much computation was

used as the kernel level. The results of this experiment can be found in table 5.1.

It is important to note that due to the file size used and the reliability issues asso-

ciated with using the ping method to transmit a file, a reading for ping could not

accurately be measured.

5.1 Time Measurements

The time that each method took to complete can be thought of as the avail-

able native throughput of the method. There are some characteristics of the method

that will reduce this throughput rate of each method, typically due to the use of

methods that were not designed to transfer such large amounts of data. Since UDP

has no built-in reliability features, the attacker must choose whether to transfer

39

Table 5.1: Measurement of method time, user time, and system time
Method Real Time (s) User Time (s) System Time (s)

http 45.404 3.316 8.025
https 96.060 69.552 6.944
ftp 26.385 1.852 3.396
ftps 35.772 31.750 2.404
tcp 17.479 7.288 4.428
udp 58.227 33.482 21.633
ping - - -

data with additional acknowledgement and retransmission features added or to sim-

ply hope that the file transfers correctly and to retransmit the entire file if an error

occurs. Other methods that use encryption on the actual channel must also allow

time for each system to encrypt and decrypt messages before transmitting them

over the channel, slowing down the throughput of that file transfer.

5.2 Reliability

In the course of testing each of these methods, it also became apparent that

some of these methods were only reliable to a certain degree. UDP, for example

failed to transmit the 500MB file correctly in some cases. This can presumably be

attributed to the fact that packets arrived out of order or too fast for the server

program to properly accept them. The ICMP method also proved to have difficulty

sending files as small as 1MB. However, it is important to keep in mind that not

all data exfiltrated is identical. There are situations where reliability may not be

completely needed and the loss of some data during transfer can be acceptable. For

example, the ICMP method would be ideal for sniffing keystrokes. The malware

or attacker would log all key strokes and periodically exfiltrate the data. A large

amount of useful data can be extracted from a key logger such as passwords, identi-

fying information, and encryption keys. This will also prove useful to the attacker if

40

he or she is searching for a specific piece of information that is not accessible on the

machine. As another scenario, suppose the user does not save passwords or credit

card information on the computer. The only way to capture this information would

be as the user types it. Working in tandem with the ICMP method, after sniffing

the necessary information, the password can be sent as a normal-sized ping packet

with a very small likelihood of being detected. If by chance the necessary packet

failed to transfer correctly, the attacker could simply wait until the next instance of

the user typing in the desired piece of information.

5.3 Current State of Detection Algorithms

By testing the methods implemented on existing detection algorithms, it is

likely that the majority of these exfiltration attempts would succeed without being

detected. Most detection suites work using the same set of rules[26] described below.

5.3.1 Sensitive File Flagging

These detection suites will allow the administrator to select certain files that

are sensitive and may not exit the network unless given the proper permissions.

This technique is largely aimed at the accidental exfiltration of certain files or at

the most primitive and unsophisticated attacker. It is trivial to bypass this check by

simply changing the file name, a small amount of the file contents (to alter hashing

sums), or by simply compressing or encrypting the data. Since the attacker is likely

to use compression just to minimize the amount of data transferred, it is likely the

attacker will defeat this method without even trying.

5.3.2 Keyword Matching

The administrator may also be given the option to specify keywords that

may not exist in data exiting the network. Often these keywords will exist in sensi-

tive documents and may prevent an attacker from exfiltrating data even if the file

41

contents or file names are modified slightly, however, it is evident that this method

is also aimed at a user accidentally exfiltrating data. Often, attackers will scrape

files for the sensitive information and compile it into a separate file, eliminating the

keywords that would exit the system. This method also can do nothing against

attackers that compress or encrypt the file before exfiltration.

5.3.3 Regular Expression Matching

Like keyword matching, the administrator can set certain regular expressions

that would prevent the exfiltration of data that matches the expression. A common

example of this would be an expression such as [0-9]3\-[0-9]2\-[0-9]4 which would

match social security numbers. This expression roughly translates into any string of

numbers in the form of 000-00-0000 where 0 can be any single digit number. This is

slightly better than keyword matching as the actual sensitive data can be matched

rather than keywords that can be safely deleted from the file. This method will

only work, however, if the file can be inspected which excludes cases where the file

is compressed or encrypted.

5.3.4 Blacklists/Whitelists

Some detection applications also allow the administrator to white list or black

list certain destinations or IP addresses. This method is only effective if the malicious

IP address is known, which would not happen until after exfiltration has occurred.

Even for most botnets, if the source IP address is determined and distributed, it

will not prevent exfiltration through other members of the botnet.

5.4 Current Detection Algorithm Results

Using information from feature lists and data sheets of well known detection

suites, it is clear that even some of the most primitive methods would succeed

without detection. All methods that transmit over an encrypted channel would not

42

be able to be inspected by these detection suites. Some of the detection suites cannot

understand every protocol and would not even attempt to inspect the contents of

ICMP packets. It is clear that these detection suites were originally designed to

prevent accidental data exfiltration but provide little to no protection against the

moderately equipped attacker or malware.

5.5 Common Characteristics

By examining various methods of exfiltration, there were certain character-

istics that were evident in each technique. It is clear that there are certain states

that the exfiltration process must go through before the transfer can be considered

complete and successful. These characterics are descried below.

5.5.1 Destination Address Determination

The malware or attacker must determine which destination IP address to

send exfiltrated data to. For malware, this address cannot be hard-coded as it would

be trivial for systems to prevent the exfiltration by simply finding the destination

and blacklisting it. Most modern malware uses what is known as fast-flux[13] to

determine the destination. The malware may use a form of fast-flux where the

malware determines a set of possible DNS names based on an internal algorithm and

an external expression, such as the current date. The domain names are determined

by the attacker and purchased at the appropriate time. The malware may also use

a single domain lookup which the attacker changes rapidly to different IP addresses.

This allows the malware to maintain the same DNS lookup that will result in IP

addresses that vary over time. One of these techniques must be used and may allow

a detection algorithm to detect suspicious activity. For example, rapid DNS lookups

to containing seemingly random domain names may be a sign of fast-flux. Manual

DNS cache flushing followed by repeated lookup of the same domain name will also

signify suspicious activity.

43

5.5.2 Compression and Encryption

An attacker is likely to compress sensitive data collected from a machine for

various reasons. In order to minimize the amount of data being exfiltrated and in

turn the likeliness of being detected, only the most important of data is encapsulated.

Excessive data is discarded and only key information is grouped. Compression is

then used to minimize the file size even more. Compression in itself prevents data

from being inspected without first being extracted. Encryption is a natural extension

of compression which can prevent the data from being decompressed without the

proper key. This prevents most features of detection systems simply by eliminating

the ability to inspect packets. However, the tradeoff of compression and encryption

is that they are processor intensive procedures. A detection algorithm can examine

computations performed that may be indicative of compression and encryption and

this can be used as a signal of possible malicious activity.

5.5.3 Symmetry

An attacker will go to great lengths to minimize the amount of traffic that

is transmitted to and from the destination. For this reason, exfiltration will often

not be acknowledged and there will be little or no response from the destination

after exfiltration has completed. This is vastly different from the majority of traffic

when examined on a session level. For an average user, most traffic is initiated by

the user and the majority of data exchanged is downloaded from a destination to

the host machine. Exfiltration would have a much different ratio of outgoing to

ingoing traffic as the majority of the session traffic would be outgoing. While there

is limited use in detecting active data exfiltration, the concept of session symmetry

can be used and sessions with certain symmetry ratios can signify malicious activity.

44

5.6 Analysis

It is clear that the a study of the attack surface of exfiltration can uncover

other details that may be common to exfiltration techniques. These techniques can

be compiled and used with a behavioral approach in order to accurately detect and

halt data exfiltration. It is important to note that the most sophisticated attacker

will likely examine current traffic and choose a technique that hides well with the

traffic that is native to that machine. For example, if the user commonly uses a P2P

client, the attacker can detect this traffic and exfiltrated in a way that simulates

that traffic. This gives the attacker the knowledge of existing traffic in order to

better hide behind legitimate traffic.

45

Chapter 6

CONCLUSION

The impetus for this research is the lack of valid traffic samples of active ex-

filtration. Modern malware authors make it extremely difficult to examine malware

samples in a research environment. Malware prevents inspection by detecting the

existence of debugger and virtualization tools. For this reason, the most feasible way

to demonstrate exfiltration traffic is to emulate it using information from existing

research and mimicking the likely goals of the attacker. After implementing many

methods that are likely to be used by an attacker, there are several chracteristics

that are important to the attacker and certain tradeoffs that must be made. For

example, the attacker must choose whether to compress and encrypt traffic to hide

it from inspection from a detection algorithm or to send traffic as clear text and

not alarm the user to any uninitiated processing by the machine. There are also

certain features such as the types of traffic that legitimately exist on the system

and the type of data being exfiltrated. UDP or ICMP may be ideal for sending

data from a keylogger, but would prove unreliable for larger transfers where loss is

unacceptable. P2P traffic would likely stand out among an average user’s traffic

who does not use any P2P clients. The timing of the exfiltration is also important

for various reasons. Exfiltration occurring during hours that the user does not typ-

ically use the computer would be obvious due to the lack of background noise and

the low probability that a user would be executing that action at that time of day.

Additionally, it may be important to spread the transfer out over certain periods

46

of time, so as to not saturate the network in one burst of data. The former would

be more covert, but in the event that it is detected, the attacker may no longer be

able to exfiltrated data. In the latter case, the user may be detected, but only after

the data has been sent in full. These characteristics need to be further examined in

conjunction with the development of detection algorithms. This joint investigation

may allow researchers to prevent further exfiltration and gain some ground in the

ever-present fight against cyber criminals.

6.1 Future Work

There is a significant amount of work that can be done to extend and make

use of the findings in this thesis. The main purpose of this research was to examine

the attack surface of advisaries using exfiltration as well as to provide the ability

to generate samples of data that would represent exfiltration traffic. These samples

can be used to test existing detection algorithms and can be used to improve these

algorithms.

6.1.1 Implement Additional Techniques

The most logical extension of this work would be to implement additional

methods in an attempt to examine and detail nearly every feasible exfiltration tech-

nique. This would greatly enhance the usefulness of this research and provide even

more sample methods that can improve detection research. In addition to imple-

menting more methods, there needs to be a more refined level of control for all

methods included. For example, attributes such as packet size, packet timing, max-

imum throughput, and other features can be implemented so they can be configured

at runtime.

47

6.1.2 Behavioral Inspection and Characterization

Since the method of exfiltration that is least likely to be detected is the

method that hides well among legitimate traffic of the same type or protocol, hav-

ing an application that inspects current traffic and determines the most covert tech-

nique will prove useful. This program would sniff and examine all outgoing traffic,

primarily for protocol information and use this information to compute a list and

frequencies of traffic types that legitimately exist on the system. The malware or

attacker can then choose from this list the method that will be most ideal in terms

of reliability and throughput.

6.1.3 Commercial Suite Testing

It would be useful to test the exfiltration test suite against existing com-

mercial DLP suites. These tools often come in the form of a dedicated system

which inspects all traffic exiting the private network. They inspect every packet

for keywords, regular expressions, and other signatures of sensitive data leaving the

network. Running the test bench program through this inspection system would

allow the detection system to test its effectiveness as well as provide insight into the

types of traffic that are not being properly examined.

48

BIBLIOGRAPHY

[1] free DNS tunneling service. http://www.dnstunnel.de/.

[2] libcurl - the multiprotocol file transfer library. http://curl.haxx.se/

libcurl/.

[3] OpenSSL: The Open Source toolkit for SSL/TLS. http://www.openssl.org/.

[4] The Python Programming Language. www.python.org.

[5] The Spamhaus Project. http://www.spamhaus.org/.

[6] Jaafar Almasizadeh and Mohammad Abdollahi Azgomi. A New Method for
Modeling and Evaluation of the Probability of Attacker Success. In 2008 In-
ternational Conference on Security Technology, page 49, 2008.

[7] S. Deering. ICMP Router Discovery Messages, June 1991. http://www.ietf.
org/rfc/rfc1256.txt.

[8] T. Dierks and C. Allen. RFC 2246: The TLS Protocol, January 1999. http:

//www.ietf.org/rfc/rfc2246.txt.

[9] Adam Ely. HTTPS Is Evil. Darkreading, March 2011. http:

//www.darkreading.com/authentication/167901072/security/privacy/

229301300/tech-insight-https-is-evil.html.

[10] Tyrell William Fawcett. ExFILD: a tool for the detection of data exfiltration
using entropy and encryption characteristics of network traffic. Master’s thesis,
University of Delaware, 2010.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol – HTTP/1.1, June
1999. http://www.ietf.org/rfc/rfc2616.txt.

[12] Kelly Jackson Higgins. Twitter Offers Users A Default SSL Set-
ting. Darkreading, March 2011. http://www.darkreading.com/

insider-threat/167801100/security/application-security/

229301047/twitter-offers-users-a-default-ssl-setting.html.

49

[13] Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix C. Freiling. Mea-
suring and Detecting Fast-Flux Service Networks. 2008.

[14] Information Sciences Institute. RFC 791: Internet Protocol, September 1981.
http://www.ietf.org/rfc/rfc791.txt.

[15] Information Sciences Institute. RFC 793: Transmission Control Protocol,
September 1981. http://www.ietf.org/rfc/rfc793.txt.

[16] Simon Liu and Rick Kuhn. Data Loss Prevention. IEEE IT Pro, March/April,
2010.

[17] P. Mockapetris. RFC 1035: Domain Names - Implementation and Specification,
November 1987. http://www.ietf.org/rfc/rfc1035.txt.

[18] Daniel Nasaw. Hackers breach defences of joint strike fighter jet programme.
The Guardian, April 2009. http://www.guardian.co.uk/world/2009/apr/

21/hackers-us-fighter-jet-strike.

[19] E. Nebel and L. Masinter. RFC 1867: Form-based File Upload in HTML,
November 1995. http://www.ietf.org/rfc/rfc1867.txt.

[20] Denver Nicks. Private Manning and the Making of Wikileaks. This
Land Press, September 2010. http://thislandpress.com/09/23/2010/

private-manning-and-the-making-of-wikileaks-2/.

[21] J. Oikarinen and D. Reed. RFC 1459: Internet Relay Chat Protocol, May 1993.
http://www.ietf.org/rfc/rfc1459.txt.

[22] Ed. P. Saint-Andrew. RFC 3921: Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence, October 2004. http://www.ietf.

org/rfc/rfc3921.txt.

[23] J. Postel. RFC 768: User Datagram Protocol, August 1980. http://www.

ietf.org/rfc/rfc768.txt.

[24] J. Postel. RFC 821: Simple Mail Transfer Protocol, August 1982. http:

//www.ietf.org/rfc/rfc0821.txt.

[25] J. Postel and J. Reynolds. RFC 959: File Transfer Protocol (FTP), October
1985. http://www.ietf.org/rfc/rfc959.txt.

[26] Paul E. Proctor and Eric Quellet. Magic Quadrant for Content-Aware Data
Loss Prevention. Gartner RAS Core Research, June 2010.

50

[27] E. Rescorla. HTTP Over TLS, May 2000. http://www.ietf.org/rfc/

rfc2818.txt.

[28] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szyd-
lowski, Richard Kemmerer, Chris Kruegel, and Giovanni Vigna. Your botnet
is my botnet: Analysis of a botnet takeover. In Proceedings of the 16th ACM
conference on computer and communications security, pages 635–647. ACM,
November 2009.

[29] T. Ylonen and Ed. C. Lonvick. RFC 4251: The Secure Shell (SSH) Protocol
Architecture, January 2006. http://www.ietf.org/rfc/rfc4251.txt.

51

