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Abstract

The Gene Expression Database (GXD) is a comprehensive online database within the

Mouse Genome Informatics resource, aiming to provide available information about en-

dogenous gene expression during mouse development. The information stems primarily

from many thousands of biomedical publications that database curators must go

through and read. Given the very large number of biomedical papers published each

year, automatic document classification plays an important role in biomedical research.

Specifically, an effective and efficient document classifier is needed for supporting the

GXD annotation workflow. We present here an effective yet relatively simple classifica-

tion scheme, which uses readily available tools while employing feature selection,

aiming to assist curators in identifying publications relevant to GXD. We examine the

performance of our method over a large manually curated dataset, consisting of more

than 25 000 PubMed abstracts, of which about half are curated as relevant to GXD while

the other half as irrelevant to GXD. In addition to text from title-and-abstract, we also con-

sider image captions, an important information source that we integrate into our method.

We apply a captions-based classifier to a subset of about 3300 documents, for which the

full text of the curated articles is available. The results demonstrate that our proposed ap-

proach is robust and effectively addresses the GXD document classification. Moreover,

using information obtained from image captions clearly improves performance, com-

pared to title and abstract alone, affirming the utility of image captions as a substantial

evidence source for automatically determining the relevance of biomedical publications

to a specific subject area.
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Introduction

Automatically collecting and searching biomedical publi-

cations plays an important role in biomedical research, be-

cause much information is conveyed in the form of

publications. However, since the number of biomedical

publications has grown rapidly over the past few decades

(1), it becomes impractical for researchers to quickly find

all and only those biomedical publications that are related

to their needs. One way to address this challenge is through

automatic categorization of large amounts of publications

by relevance to a topic, which can potentially save consid-

erable time and resources. As such, automated biomedical

document classification, aiming to identify publications

relevant to a specific research field, is an important task

that has attracted much interest (2–7).

The Mouse Genome Informatics (MGI; http://www.in

formatics.jax.org/) database is the most comprehensive

international resource focused on the laboratory mouse as

a model organism, providing integrated genetic, genomic

and biological data for facilitating study of human health

and disease. MGI covers several databases, namely the

Mouse Genome Database (8), the Gene Expression

Database (9, 10), the Mouse Tumor Biology Database (11)

and the MouseMine project (12). The Gene Expression

Database (GXD), on which we focus here, is an extensive

resource of mouse development expression information.

GXD collects and integrates data from a wide variety of

expression experiments (including both RNA and protein).

Expression data from wild-type and mutant mice are cap-

tured, with a focus on endogenous gene expression during

development. Knock-in reporter studies are included be-

cause they usually reflect the endogenous expression pat-

tern of the targeted gene. However, studies reporting on

ectopic gene expression via the use of transgenes, or experi-

ments studying the effects of treatments or other external/

environmental factors are excluded.

Much of the detailed information provided by GXD is

manually curated from the literature. Among all the publi-

cations surveyed MGI-wide, GXD curators first identify

those that meet the criteria described above.

Once the publications are identified, the curators anno-

tate within them the genes and ages analyzed and the types

of expression assays used. These annotations are combined

with the publications information from PubMed to create

a searchable index of published experiments on endogen-

ous gene expression during mouse development (http://

www.informatics.jax.org/gxdlit). This index allows re-

searchers to find publications with specific types of

expression data. Moreover, it supports GXD staff in pri-

oritizing papers toward a more extensive curation step,

namely, the detailed annotation of the expression results.

The comprehensive up-to-date index, includes Expression

Literature Content Records for >24 000 publications and

over 15 000 genes.

In the work presented here we use this large and well-

curated dataset to train and test a classifier that partitions

publications in MGI into those that are relevant for GXD

and those that are not. This classification task, referred to

as triage, is important toward expediting literature cur-

ation of developmental expression information.

Basic mainstream methods for biomedical document

classification typically use information obtained from titles

and abstracts of publications. Lakiotaki et al. (4) presented

a method for classifying a small manually tagged subset

(474 articles) of the OHSUMED TREC collection (13) into

documents aimed for medical professionals (clinicians) and

those aimed at consumers by employing a medical docu-

ment indexing method, AMTEx (14). The latter uses

MeSH (15) as a basis for vector representation of medical

documents and for classification. The system obtained

high precision (94.49%) but low recall (50.85%). Ren

et al. (16) also used vector representation, reduced via fea-

ture selection, for identifying 9 different experimental de-

signs in the context of neuroimaging, within a small set of

247 published abstracts from human neuroimaging journal

articles selected from BrainMap (17, 18). The reported

level of performance using precision and recall were 40

and 85% on average, respectively. Notably, these datasets

are both more than an order-of-magnitude smaller than

the number of documents considered by GXD, and the

tasks addressed do not reflect the magnitude and complex-

ity of the GXD classification challenge.

Larger scale experiments are reported by Yu et al. (19),

who developed the TopicalMeSH representation, using

MeSH terms as a basis for latent topic vectors, to classify a

set of 18 000 drug review documents as relevant or irrele-

vant to each of 15 classes based on specific treatment con-

ditions. The reported performance, as measured by the

F-measure (combining precision and recall), was about

50% per class. Aside from the relatively low level of per-

formance, as MeSH terms are assigned to articles by the

NLM only several months after publication, a classifica-

tion system that relies on MeSH annotations or on

AMTEx cannot be applied to new publications that have

not yet been assigned MeSH terms. As GXD directly exam-

ines new publications as soon as they are available, a clas-

sification system relying on MeSH annotations is not an

effective route to pursue.

Another large scale work by Van Auken et al. (6) is

described in the context of the Textpresso information re-

trieval system (20), identifying documents relevant to the

WarmBase database (21, 22). They employ support vector

machines (SVMs) as a basis for a semi-automated curation
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workflow. However, the reported classification results are

described for sentences rather than for abstracts or

papers, and the reported level of performance is on average

50% recall, 80% precision and 60% F-measure. The same

group also reported applying Textpresso to a small

set of documents, containing 55 research articles, to

identify relevant papers for Gene Ontology Cellular

Component curation (23), obtaining 79.1% recall and

61.8% precision (7).

In contrast to classification systems that use term-

frequency-based document representation, Rinaldi et al.

(5) introduced the OntoGene system (24), relying on

advanced natural language processing (NLP) tools to sup-

port rich semantic document representation. The

OntoGene system was used for the triage task of

BioCreative’12 (25) aiming to select and prioritize docu-

ments within a relatively small dataset of 1,725 publica-

tions relevant to Comparative Toxicogennomics The

system ranks publications by relevance, based on the ex-

traction of target entities and of interactions in which the

target entities are involved. OntoGene’s reported perform-

ance, which was the best among the participants in the

task, is about 80% precision and recall. The method has

not been shown sufficiently fast to be applicable in prac-

tice, and has not been applied to a large dataset of GXD’s

magnitude. To summarize, while some of the existing

methods perform effectively on a small-scale specific task,

they have not shown to be a good fit for the large-scale

GXD categorization task with which we are concerned.

Another important distinction between previous work

and the work presented here is that the above methods use

text obtained only from PubMed abstracts or drug reviews.

However, image captions in the biomedical literatures

often contain significant and useful information for deter-

mining the topic discussed in the publications, as our group

and sevearl others have noted before (26–29). As such, we

consider here the use of text obtained from image captions

as part of the GXD classification process.

We present a biomedical document classification

scheme that uses statistical feature selection to reduce the

representation size and to focus the representation on

terms that support the GXD classification task. The classi-

fiers we employ and compare are widely applied in bio-

medical document classification, namely Naı̈ve Bayes (30)

and Random Forest classifiers (31–33). Our experiments

and results, performed over a set of many thousands of

documents, demonstrate that using these relatively simple

classifiers, coupled with a well-targetted feature-selection

method, lead to highly accurate and stable classification.

The importance of feature selection was also shown by

others before (34, 35). Our system retains its high level of

performance even when applied to the very large set of

documents considered by GXD. We also provide results

obtained from integrating image captions into the classifi-

cation process, showing an improved performance.

The latter demonstrates the utility and importance of using

image captions for supporting biomedical document

classification.

Materials and methods

Data source

We downloaded from the MGI references website (http://

www.informatics.jax.org/reference/) a file that contains in-

formation pertaining to all 115 027 publications used to

curate gene expression information for the MGI database

throughout the years 2004–2014. The information in-

cludes: PubMed identifier (PMID), title, publication year

and a curated indicator stating the sub-project within MGI

to which the correponding paper is relevant. From the ref-

erences included in the file, we identified 13 035 PMIDs of

publications that have the indication Expression Literature

Records or Expression: Assay Results shown in the

Curated Data column. The topics discussed in these publi-

cations are considered relevant to GXD. Of these 13 035

relevant publications, only 12 966 were available for free

download online in PDF format, and we use those and

refer to them as the positive set in our experiments. Of the

remaining 101 992 publications in the downloaded refer-

ences file after the above selection process, 79 284 publica-

tions were available for free download online in PDF

format. These publications are considered unrelated or ir-

relevant to GXD. Notably, there is a significant imbalance

between the number of available relevant examples

(12 966) and that of irrelevant examples (79 284). It is im-

portant to directly address the imbalance in order to train

a stable, sensitive and specific classifier under such an

imbalanced setting (36). To avoid over-simplification of

the classification task (e.g. hypothetically—simply classify-

ing all documents as irrelevant would already yield a rather

high accuracy), we select 12 354 publications out of the

79 284 irrelevant publications to comprise the actual nega-

tive set. In order to overcome potential bias stemming

from varied language use and topic distribution differences

between the positive set and the negative set, the publica-

tions included in the negative set are obtained from the

same journals as the relevant ones, and have a similar dis-

tribution of publication-years as the relevant ones. The

12 354 negative publications are thus selected at random

from among the irrelavant publications that satisfy the two

conditions. By keeping the size of the negative set similar

to that of the positive set and avoiding shift in time, we en-

sure similarity of writing style and overall areas of interest
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between the positive set and the negative set, and avoid the

issue of semantic drift between the two sets; a phenomenon

that may otherwise bias classification (37).

Image captions, which provide descriptions for figures,

form an important source of information in publications.

To integrate information from image captions into the

classifier, we build an additional datatset, to which we

refer as the GXD-caption dataset, in which the text associ-

ated with each publication consists not only of title and ab-

stract but also of image captions within the paper. Of the

12 966 publications in our positive set, 1,630 were avai-

labe in plain text format from the PMC Author

Manuscript Collection (38) allowing us to easily obtain fig-

ure captions. These documents, for which we have access

to titles, abstracts and image captions comprise the positive

GXD-caption set. Among the 79 284 irrelevant publica-

tions, 11 099 papers were available in plain text format

from the PMC, from which figure captions can be readily

obtained. As described before, to retain balance, we select

1,696 out of these 11 099 publications to bulid the nega-

tive GXD-caption set, similar in size to the positive GXD-

caption set. The publications in the negative GXD-caption

set are selected at random from a set of papers published in

the same journals and having a similar distribution of

publication-years as the publications in the positive GXD-

caption set. We train/test our classifiers over the combined

set including both positive and negative documents.

Table 1 summarizes the datasets used in our experiments.

As an additional verification step, we also test our clas-

sifiers over an additional subset of 1,000 irrelevant docu-

ments outside the training/test set. These documents were

selected uniformly at random from among the remaining

9,403 irrelevant documents for which figure captions are

available.

Document representation

Our document representation is based on a variation on

the bag-of-terms model that we have introduced and used

in our earlier work (39, 40, 41). The representation uses a

set of terms consisting of both unigrams (single words) and

bigrams (pairs of two consecutive words). Using a limited

number of meaningful terms as features has proven effect-

ive and efficient in our earlier work. To reduce the number

of features, we first remove standard stop words (42); we

also remove rare terms (appearing in a single publication

within the dataset), as well as overly frequent ones (appear-

ing within over 60% of the publications in the dataset).

The last dimensionality-reduction step, which we intro-

duced before (39), employs the Z-score Test (43) to select

features whose probability to occur in the positive set is

statistically significantly different from their probability to

occur in the negative set. The Z-score calculation process is

described next.

Let t be a term, d be a publication, Dr denote the set of

GXD-relevant documents and Dn denote the set of docu-

ments irrelevant to GXD. The probability of term t to

occur within relevant publications, Pr(tjDr), is estimated

as:

Pr tjDrð Þ � # of documents in Dr that have term t

Total # of documents in Dr
:

Similarly, the probability of term t to occur within ir-

relevant publications, Pr(tjDn), is estimated as:

Pr tjDnð Þ � # of documents in Dn that have term t

Total # of documents in Dn
:

We calculate Pr(tjDr) and Pr(tjDn) for each term t.

Using the formulation above, a term t is considered dis-

tinguishing for the Gene Expression topic, if and only if its

probability to occur in publications associated with GXD,

Pr(tjDr), is statistically significantly different from its prob-

ability to occur in publications not associated with GXD,

Pr(tjDn). To determine the significance of the difference

between these two probabilities, the Z-score statistic is em-

ployed (39, 43), where:

Z score ¼ Pr tjDrð Þ � Pr tjDnð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p 1��pð Þ 1

Drj j þ
1

Dnj j

� �r
;

and

�p ¼ Drj j � Pr tDrð Þ þ jDnj � PrðtjDnÞ
Drj j þ jDnj

The higher the absolute value of the Z-score, the

greater the confidence level that the difference between

Pr(tjDr) and Pr(tjDn) is significant. For the publications

pertaining to the GXD dataset that we have constructed,

we set a threshold of 1.96 for the Z-score, that is, if the

Z-score of a term is higher than 1.96, it is considered to be

Table 1. The datasets used for training and testing of our bio-

medical document classification

Dataset Number of examples

Positive Negative Total

GXD 12 966 12 354 25 320

GXD-caption 1630 1696 3326
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distinguishing with respect to our classification task.

For the documents in the GXD-caption dataset, we em-

ploy two different Z-score thresholds: one for selecting

distinguishing terms from the captions, set at 1.63,

and one for selecting terms from the titles/abstracts, set

at 1.96.

To ensure that the test set is not used for feature selec-

tion and is excluded from both the representation and the

classification-learning process, the feature selection steps

discussed above use only data from the training set. After n

distinguishing terms are identified through the feature se-

lection process from the training set, these distinguishing

terms are used to represent the documents in the test set.

Each document d in the test set is represented as a simple

binary vector of the form Vd¼<vt1, vt2, . . ., vtn>, where

vti¼1 if the ith term in the distinguishing terms list is pre-

sented in article d, and 0 otherwise.

Classifiers

We trained and tested two types of classifiers, Naı̈ve Bayes

and Random Forest, over the GXD dataset and over the

GXD-caption dataset, based on the document representa-

tion desribed in the Document Representaiton part. The

Weka implementation was used to train and test the classi-

fiers (44).

The first classifier used is the Naı̈ve Bayes, which is a

simple probabilistic classifier based on the assumption that

the value of each feature is conditionally independent of all

other features, given the class value. In our case, to deter-

mine if a publication d is relevant to GXD, the posterior

probability P(djrelevant) is compared to the posterior

probability P(djirrelevant). If P(djrelevant) is greater, pub-

lication d is classified as relevant, otherwise, it is labeled as

irrelevant. As the Naı̈ve Bayes classifier is simple and fast,

it is readily applicable to a large and high-dimensional

dataset and we use it in our experiments.

We also ran experiments using the Random Forest clas-

sifier. The Random Forest consists of an ensemble of tree-

structure classifiers, such that each node in each tree checks

for the value of a subset of features, typically chosen

through a stochastic process called ‘feature bagging’ (32).

If one or a few of the features are strong predictors for the

target class, these features are checked in many of the trees,

causing the trees to become correlated (33). The Random

Forest classifier has shown to be applicable to high-

dimensional high-volume data. We thus use it for the GXD

document classification task. The forest consists of 2000

decision trees, and the number of features stochastically se-

lected for each tree is set to 90.

Experiments and results

Experiments

We first conducted experiments over the large GXD data-

set, in wich each document is represented based on title-

and-abstract only. We then conducted experiments over

the GXD-caption dataset, in which captions are also

included in the representation. In addition, we also tested

our classifier that uses title, abstract and captions over a

set of 1,000 irrelevant documents selected as described in

the Methods section.

The first group of experiments aims to test the perform-

ance of the proposed classification method over the large

scale GXD dataset. To ensure our results are statistically

significant, we trained/tested the classifiers using three sets

of cross-validation runs with different settings, as described

next.

For the first set of cross-validation experiments over the

GXD dataset, to ensure stability of the results, we exe-

cuted five distinct complete 5-fold cross validation runs,

each run using a different 5-way split of the dataset, so

that each complete run consists of 25 training/test sessions

in total. In each session, 80% of the data was used for the

training process, in which about 11 400 distinguishing

terms were selected to repersent publications and classifiers

were trained based on the represented publications, while

20% of the data was used for testing the classifiers.

To validate that the classification results remain steady

even when the size of training set varies, we performed two

additional sets of experiments. In one (to which we refer as

the Second Set of experiments over GXD dataset), we

enlarged the size of the training set to be 90% of the data,

while reducing the test size to 10%, by running 10-fold

cross validation. As before, we employed 10 complete sets

of stratified 10-fold cross validation, so that each complete

run consists of 100 training/test sessions in total. In each

session, about 12 500 distinguishing terms were selected

from the training part of the data and were used to repre-

sent documents in the test set.

In the third set of experiments, we reduced the size of

the training set, and increased the size of the test set, by

dividing both the positive set and the negative set into just

two subsets: half of the data was treated as the training set

while the other half became the test set. The subsets were

formed so that the training and the test sets have a similar

distribution of publication-years. We trained the Random

Forest classifier on the training set, where about 7,600

terms were selected and used for document representation.

The classifier was then tested on the test set.

To assess the impact of using captions vs. titles-

and-abstracts only, we excuted a second group of experi-

ments, consisting of three sets of experiments over the
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GXD-caption dataset described next. Since this dataset is

smaller, we used only five-fold cross validation, employing

five complete runs of cross-validation, where a different

five-way split of the dataset was used in each complete

run, so that each run comprised a total of 25 sessions of

training/test, to ensure statistial significance of the results.

For the first set of expriments over the GXD-caption

set, we used only titles and abstracts of the publications as

training/test data. In each of the 25 sessions, we selected

about 1,460 distinguishing terms based on the training set,

which were used as features for representing the docu-

ments in the test set.

For the second set of experiments over the GXD-caption

dataset, we used only image captions of publications in our

training/test datasets. We selected about 1,940 distinguish-

ing terms based on the training set alone, and used those as

features for representing the documents in the test dataset.

In addition to the above experiments, we conducted a

third set of experiments over the GXD-caption dataset, in

which we used text from captions as well as text from titles

and abstracts in order to represent documents and classify

them. To intergrate the two sources of information into

one representation, we first separately identified a set of

distinguishing terms from the captions, and from the titles

and abstracts; we then used the union of the two sets as a

basis for representation and classification. The total num-

ber of terms used in this integrated representation was

about 2,740 per experiment.

As an additional verification step, we also trained a

Random Forest classifier using the whole GXD-caption

dataset (3326 documents) as the training set, where 3438

distinguishing terms from title, abstract and captions were

selected as features for document representation. We tested

the classifier over the set of 1000 irrelevant documents se-

lected from among �9400 negative documents as

described in the Methods section.

Results and analysis

We report results using standard measures widely em-

ployed for document classification evaluation, namely

Precision, Recall, F-measure and Accuracy (45). For bio-

medical document curation, Recall is often viewed as more

important than Precision because missing relevant docu-

ments may compromise the integrity of the database.

Therefore, we also include the utility measure introduced

by TREC Genomics, which biases the evaluation in favor

of high recall. We use two versions of the utility measure:

Utility-10 and Utility-20, each giving a different weights to

true positives (46). Utility-10 and Utility-20 measures are

calculated as follows:

UTIL� 10 ¼ 10� TP� FP

10� TPþ FPð Þ ;

UTIL� 20 ¼ 20� TP� FP

20� TPþ FPð Þ :

where TP is the number of true positives and FP is the

number of false positives.

Table 2 shows the results obtained from the first three

sets of cross validation experiments over the GXD dataset.

Row 1 and Row 2 show results obtained from the Naı̈ve

Bayes classifier and from the Random Forest classifier, re-

spectively, where the representation is based on title-and-

abstract terms, under 5 complete runs of 5-fold cross valid-

ation. Row 3 and Row 4 show the performance of the two

classifiers on the same dataset, under 10 complete runs of

10-fold cross validation. Row 5 shows results obtained

when half of the GXD dataset was used for training and

the other half for testing. Figure 1 graphically depicts the

results shown in Table 2. Both Table 2 and Figure 1 dem-

onstrate that using our proposed method leads to very high

level performance on the large scale GXD dataset, accord-

ing to every evaluation measure, which indicates that the

proposed document classification method is effective and

can indeed be useful in practice.

Table 3 shows results obtained from cross validation

experiments over the GXD-caption dataset. Rows 1 and 2

summarize the performance of the Naı̈ve Bayes and the

Random Forest classifiers, respectively, when applied to

publications in the GXD-caption dataset, represented

based on information obtained from title and abstract

only. Rows 3 and 4 show the results of the two respective

classifiers, when applied to the data represented using

terms obtained from the image captions only. Rows 5 and

6 summarize results obtained from the two classifiers when

the representation uses terms from title, abstract and image

captions. Table 3 shows that the classifiers generated in the

last set of expriments, which rely on features obtained

from title, abstract and image captions, have the highest

Precision, Recall, F-measure, Accuracy, Utility-10 and

Utility-20. Figure 2 graphically depicts the results shown in

Table 3. In particular, Figure 2 shows that the Recall,

F-measure and Accuracy of our classifiers all clearly in-

crease with the introduction of text from image captions.

Both Table 3 and Figure 2 indicate that image captions in-

deed provide valuable information supporting the GXD

document classification task.

Recall that we also applied our classifier over a set of

1,000 irrelevant documents selected as decribed in the

Methods section as an additional verification step. The re-

sulting true negative rate (the proportion of negative publi-

cations that are correctly identified) is 0.863. It is about

the same as the true negative rate obtained through the
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cross validation experiments above, which is on average

0.877 with a standard deviation of 0.009. That is, the

level of performance obained through the cross valid-

ation experiments is retained on documents outside the

training/test set. The results thus indicate that our classi-

fiers are indeed effective for addressing the GXD classifi-

cation task.

Conclusion and future work

We have presented a biomedical document classification

framework for effectively identifying publications relevant

to the Mouse Gene Expression Database (GXD) using a

realistic large scale dataset. Our precision, recall,

F-measure, accuracy and utility measures are about 90%

for all experiments employing different cross validation

settings, which shows that our classifier is effective and ro-

bust. This performance level is higher than any previously

reported over realistically large biomedical document data-

sets (19, 47), despite the relative simplicity of the classifiers

used. We again note that our feature selection step is an

important step toward the improved performance.

Moreover, our classifier retains a similar level of

performance on documents outside the training/test set,

which suggests that our classifier is stable and applicable.

Additionally, in terms of efficiency, the total time for

pre-processing and classifying a single new publication

using our classifier is 20 ms on average. Thus, our method

is sufficiently efficient for supporting the actual document

classification task addressed by GXD.

Notably, our experiments use a variety of features ob-

tained from different parts of the publication. Our results

indicate that using features obtained from title, abstract

and image captions indeed performs best, supporting the

idea that the image caption provides substantial evidence

for biomedical document classification.

Given the vast amount of irrelevant publications

(79 284), as part of future work, rather than train a classifier

based on a balanced subsample, we plan to further improve

the classifier by developing strategies to better utilize more

of the irrelevant documents as part of the training itself. We

also note that as captions were not readily available for all

the documents in the GXD dataset, the comparative experi-

ments that use caption-based representaiton were limited to

the GXD-caption dataset, which is smaller. In the future,

we plan to use image captions from a larger set of

Table 2. Classification evaluation measures for our classifiers on the GXD dataset using different cross-validation settings

Classifiers Precision Recall F-measure Accuracy Utility-10 Utility-20

NB5 0.892 (0.005) 0.957 (0.003) 0.923 (0.003) 0.917 (0.004) 0.876 (0.006) 0.881 (0.005)

RF5 0.908 (0.006) 0.921 (0.005) 0.915 (0.004) 0.912 (0.005) 0.895 (0.007) 0.899 (0.007)

NB10 0.891 (0.007) 0.957 (0.006) 0.923 (0.004) 0.917 (0.005) 0.875 (0.008) 0.881 (0.008)

RF10 0.908 (0.008) 0.922 (0.008) 0.915 (0.006) 0.912 (0.007) 0.894 (0.009) 0.899 (0.009)

RF-H-and-H 0.905 0.925 0.915 0.913 0.896 0.900

NB denotes Naı̈ve Bayes classifier; RF denotes Random Forest classifier. The suffix 5 indicates using 5 complete runs of 5-fold cross validation; the suffix 10 in-

dicates using 10 complete runs of 10-fold cross validation. H-and-H represents using half of the GXD dataset for training and the other half for testing.

Figure 1. Performance of our classifiers, measured on the GXD dataset according to the different performance metrics, calculated over the various

cross-validation settings. NB denotes Naı̈ve Bayes; RF denotes Random Forest classifier. The suffix 5 denotes average over 5 complete runs of 5-fold

cross validation (25 runs in total); the suffix 10 denotes average over10 complete runs of 10-fold cross validation (100 runs in total). half-training-half-

testing represents runs in which half of the GXD dataset was used for training and the other half for testing.
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documents, by harvesting figure captions directly from the

PDF. We are also actively working on combining informa-

tion obtained direclty from text as well as the images for ad-

dressing biomedical document classification.
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