# AN EXPERIMENTAL INVESTIGATION OF THE BEHAVIOR OF COMPACTED CLAY/SAND MIXTURES

by

Yueru Chen

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Civil Engineering

Fall 2010

Copyright 2010 Yueru Chen All Rights Reserved

# AN EXPERIMENTAL INVESTIGATION OF THE BEHAVIOR OF

### **COMPACTED CLAY/SAND MIXTURES**

by Yueru Chen

Approved:

Christopher L. Meehan, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee

Approved:

Harry W. Shenton, Ph.D. Chair of the Department of Civil and Environmental Engineering

Approved:

Michael J. Chajes, Ph.D. Dean of the College of Engineering

Approved:

Charles G. Riordan, Ph.D. Vice Provost for Graduate and Professional Education

#### ACKNOWLEDGMENTS

I would like to express most genuine appreciation to my advisor Dr. Christopher L. Meehan for his guidance, support and encouragement throughout the development of this thesis and the graduate studies. I am also grateful to Dr. Dov Leshchinsky and Dr. Victor N. Kaliakin for their valuable suggestions.

Special thanks go to the amazing graduate students – Farshid Vahedi Fard, Majid Khabbazian, Mohammad Khosravi, Nicole A. Walsh, Fan Zhu and Baris Imamoglu.

Finally, I would like to thank my parents and Bo Cheng for their love and unwavering support during my academic journey.

# TABLE OF CONTENTS

| LIST ( | OF FIGU           | RES            |                                                        | vii |
|--------|-------------------|----------------|--------------------------------------------------------|-----|
| Chapte | er                |                |                                                        |     |
| 1      | INTRC             | DUCTIO         | N                                                      | 1   |
| 2      | LITERATURE REVIEW |                |                                                        | 3   |
|        | 2.1               |                | ric of Compacted Fine-Grained Soil and Coarse<br>Soil  | 3   |
|        |                   | 2.1.1<br>2.1.2 | Fine-Grained Soil Fabric<br>Coarse-Grained Soil Fabric |     |
|        | 2.2               | Unconso        | lidated-Undrained Strength of Compacted Clays          | 12  |
|        | 2.3               | Stress-St      | rain Characteristics of Compacted Clays                | 17  |
|        | 2.4               | Compres        | sibility Characteristics of Compacted Clays            |     |
| 3      | SOIL P            | ROPERT         | IES AND SOIL PREPARATION TECHNIQUE                     |     |
|        | 3.1               | Soil Prop      | perties                                                |     |
|        |                   | 3.1.1<br>3.1.2 | Sand<br>Clays                                          |     |
|        | 3.2               | Soil Clas      | ssification of Pure Clay and Sand/Clay Mixtures        |     |
|        | 3.3               | Soil Prep      | paration Approach                                      |     |
| 4      | COMP              | ACTION         | TESTING OF CLAY/SAND MIXTURES                          |     |
|        | 4.1               | Compact        | tion Tests on Clay/Sand Mixtures                       |     |

|   |      | 4.1.1<br>4.1.2                   | Compaction test results for kaolinite/sand mixtures<br>Compaction Test Results for Bentonite/Sand                    | 40        |
|---|------|----------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------|
|   |      |                                  | Mixtures                                                                                                             | 46        |
|   | 4.2  | Summar                           | ry of Compaction Test Results                                                                                        | 52        |
| 5 | UU T | RIAXIAL                          | TESTING OF CLAY/SAND MIXTURES                                                                                        | 53        |
|   | 5.1  | Experim                          | nental Procedure                                                                                                     | 53        |
|   |      | 5.1.1<br>5.1.2<br>5.1.3          | Specimen Preparation<br>UU Triaxial Test Procedure<br>Correction for Membrane Effects                                | 63        |
|   | 5.2  | Results                          | and Discussion of Results                                                                                            | 64        |
|   |      | 5.2.1<br>5.2.2<br>5.2.3<br>5.2.4 | Unconsolidated-Undrained Shear Strength<br>Stress-Strain Behavior<br>Undrained Strength Parameters<br>Secant Modulus | 84<br>110 |
|   | 5.3  | Summar                           | ry of UU Triaxial test results                                                                                       | 136       |
| 6 |      |                                  | ONAL COMPRESSION TESTING OF CLAY/SAND                                                                                | 138       |
|   | 6.1  | Specime                          | en Preparation                                                                                                       | 139       |
|   | 6.2  | One-Dir                          | nensional Compression Test Procedure                                                                                 | 142       |
|   | 6.3  | Calibrat                         | ion                                                                                                                  | 143       |
|   | 6.4  | Results                          | and Discussion of Results                                                                                            | 144       |
|   |      | 6.4.1<br>6.4.2                   | Time-Compression Behaviour $\epsilon_v$ versus log $\sigma_v$ Curves                                                 |           |
|   | 6.5  | Summar                           | ry of One-Dimensional Test Results                                                                                   | 175       |
| 7 | CON  | CLUSION                          | S AND RECOMMENDATIONS                                                                                                | 176       |
|   | 7.1  | Conclus                          | ions                                                                                                                 | 176       |

| 7.2        | Recommendations for Future Research                                                      | 178 |
|------------|------------------------------------------------------------------------------------------|-----|
| APPENDIX A | SAND SIEVE ANALYSIS                                                                      | 180 |
| APPENDIX B | ATTERBERG LIMIT                                                                          | 201 |
| APPENDIX C | SPECIFIC GRAVITY                                                                         | 210 |
| APPENDIX D | DERIVATION OF THE EQUATION FOR CALCULATING<br>THE SPECIFIC GRAVITY OF SAND/CLAY MIXTURES | 214 |
| APPENDIX E | PROCTOR COMPATION TEST DATA                                                              | 217 |
| APPENDIX F | UU TRIAXIAL DATA                                                                         | 236 |
| APPENDIX G | ONE – DIMENSIONAL COMPRESSION DATA                                                       | 387 |
| APPENDIX H | DEFORMATION – TIME CURVES                                                                | 480 |
| REFERENCES |                                                                                          | 527 |

## LIST OF TABLES

| Table 3.1 Sieve Analysis Results from Tests Conducted on Ottawa Sand                                 | 23  |
|------------------------------------------------------------------------------------------------------|-----|
| Table 3.2 Atterberg Limits of Clay/Sand Mixtures                                                     | 26  |
| Table 3.3 Specific Gravities of Sand and Clay                                                        |     |
| Table 3.4 Specific Gravity of Each Sand/Clay Mixture                                                 | 29  |
| Table 3.5 Unified Soil Classifications                                                               | 30  |
| Table 4.1 Specifications for Proctor Tests                                                           | 39  |
| Table 4.2 Soil Properties of Kaolinite/Sand Mixtures                                                 | 44  |
| Table 4.3 Soil Properties of Bentonite/Sand Mixtures                                                 | 50  |
| Table 5.1 Comparison of Two Sampling Method                                                          | 59  |
| Table 5.2 Deviator Stress Values                                                                     | 67  |
| Table 5.3 Relative Sizes and Specific Surfaces of Clay Minerals (after Yong and Warkentin, 1975)     | 80  |
| Table 5.4 Mohr-Coulomb Strength Parameters                                                           | 111 |
| Table 5.5 Water Content Values Calculated Using Second-Order Polynomial         Regression Equations | 122 |
| Table 5.6 <i>E</i> <sub>50</sub>                                                                     | 131 |

# LIST OF FIGURES

| Figure 2.1. | Theoretical Clay Microstructure                                                                                                                                                                                                                                     | 6  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2.2. | Relationship between Dry Density, Water Content, and Strength<br>of a Compacted Silty Clay Specimen – Small Strain Failure<br>Criterion Adopted (Developed after Seed and Chan, 1959)                                                                               | 14 |
| Figure 2.3. | Relationship between Dry Density, Water Content, and Strength<br>of a Compacted Silty Clay Specimen - Large Strain Failure<br>Criterion Adopted (Developed from Seed and Chan, 1959)                                                                                | 15 |
| Figure 3.1. | Grain Size Distributions of Ottawa Sand                                                                                                                                                                                                                             | 24 |
| Figure 3.2. | Liquid Limit, Plastic Limit, and Plasticity Index vs. % Bentonite                                                                                                                                                                                                   | 27 |
| Figure 3.3. | Liquid Limit, Plastic Limit, and Plasticity Index vs. % Kaolinite                                                                                                                                                                                                   | 27 |
| Figure 3.4. | Hobart's Legacy Countertop Mixer.                                                                                                                                                                                                                                   | 31 |
| Figure 3.5. | Mixing dry soil; (a) air-dried sand and bentonite, (b) with an<br>empty bowl on the balance, press Re-Zero to zero the display, (c)<br>as bentonite and sand is added to the bowl, the net weight is<br>displayed, and (d) pouring the soil mixture into the mixer. | 32 |
| Figure 3.6. | Adding distilled water; (a) measuring water with a graduated cylinder, (b) transferring water to a squeeze bottle, (c) measuring the exact weight of distilled water, and (d) squeezing water into the soil mixture.                                                | 33 |
| Figure 3.7. | Soil Aggregate in Mixture with 50% Kaolinite.                                                                                                                                                                                                                       | 34 |
| Figure 3.8. | Soil Aggregate Grinding.                                                                                                                                                                                                                                            | 35 |
| Figure 3.9. | Appearance of Sand/Clay Mixture after Grinding                                                                                                                                                                                                                      | 35 |
| Figure 4.1. | Modified Proctor Test Equipment                                                                                                                                                                                                                                     | 37 |
| Figure 4.2. | Standard Proctor Test Equipment                                                                                                                                                                                                                                     | 38 |

| Figure 4.3.  | Compaction Curves of Kaolinite/Sand Mixtures (A) 15%<br>Kaolinite, (B) 25% Kaolinite, (C) 50% Kaolinite                                                                                                   | 42 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4.4.  | Compaction Curves of Kaolinite/Sand Mixtures (A) Low Energy<br>Proctor, (B) Standard Proctor, (C) Modified Proctor                                                                                        | 43 |
| Figure 4.5.  | Semi-log relationships between $\gamma_{d, max}$ and <i>E</i> (kaolinite/sand mixtures).                                                                                                                  | 45 |
| Figure 4.6.  | Semi-log relationships between $w_{opt}$ and $E$ (kaolinite/sand mixtures)                                                                                                                                | 46 |
| Figure 4.7.  | Compaction Curves of Bentonite/Sand Mixtures (A) 15%<br>Bentonite, (B) 25% Bentonite, (C) 50% Bentonite                                                                                                   | 48 |
| Figure 4.8.  | Compaction Curves of Bentonite/Sand Mixtures (A) Low Energy<br>Proctor, (B) Standard Proctor, (C) Modified Proctor                                                                                        | 49 |
| Figure 4.9.  | Linear relationships between $\gamma_{d, \max}$ and <i>E</i> (bentonite/sand mixtures)                                                                                                                    | 51 |
| Figure 4.10. | Linear relationships between wopt and E (bentonite/sand mixtures)                                                                                                                                         | 51 |
| Figure 5.1.  | Sampling Tube                                                                                                                                                                                             | 54 |
| Figure 5.2.  | Sharpened Edge of Sampling Tube                                                                                                                                                                           | 54 |
| Figure 5.3.  | Sampling Procedure; (a) placing sampling tubes on top of the soil,<br>(b) pushing sampling tubes into the soil, (c) attainment of the<br>desired sampling depth, and (d) Proctor mold ready for extrusion | 56 |
| Figure 5.4.  | Sampling Procedure; (a) placing tube on the close fitting piston,<br>(b) extruding specimen out of the tube, (c) specimen extruded out<br>of the tube, (d) sealing with plastic wrap.                     | 57 |
| Figure 5.5.  | Membranes Installed with an Expander                                                                                                                                                                      | 58 |
| Figure 5.6.  | Specimen Encased in Membranes and Sealed with "O" Rings                                                                                                                                                   | 58 |
| Figure 5.7.  | Trimming the specimen using the wire saw trimming method                                                                                                                                                  | 60 |
| Figure 5.8.  | Comparison of Triaxial Specimen Density and As-Compacted Soil Density                                                                                                                                     | 62 |

| Figure 5.9.  | qf vs. pf Failure Plots with Failure Lines for Test Series B15                                      | 70 |
|--------------|-----------------------------------------------------------------------------------------------------|----|
| Figure 5.10. | qf vs. pf Failure Plots with Failure Lines for Test Series B25                                      | 71 |
| Figure 5.11. | qf vs. pf Failure Plots with Failure Lines for Test Series B50                                      | 72 |
| Figure 5.12. | $q_f$ vs. $p_f$ Failure Plots with Failure Lines for Test Series K25                                | 73 |
| Figure 5.13. | $q_f$ vs. $p_f$ Failure Plots with Failure Lines for Test Series K50                                | 74 |
| Figure 5.14. | Maximum Deviator Stress of Bentonite/Sand Mixtures Compacted<br>Using the Low Energy Proctor Method | 76 |
| Figure 5.15. | Maximum Deviator Stress of Bentonite/Sand Mixtures Compacted<br>Using the Standard Proctor Method   | 77 |
| Figure 5.16. | Maximum Deviator Stress of Bentonite/Sand Mixtures Compacted<br>Using the Modified Proctor Method   | 78 |
| Figure 5.17. | Maximum Deviator Stress of Clay/Sand Mixtures Compacted<br>Using the Low Energy Proctor Method      | 81 |
| Figure 5.18. | Maximum Deviator Stress of Clay/Sand Mixtures Compacted<br>Using the Standard Proctor Method        | 82 |
| Figure 5.19. | Maximum Deviator Stress of Clay/Sand Mixtures Compacted<br>Using the Modified Proctor Method        | 83 |
| Figure 5.20. | Stress-Strain Curves for Tests on Low Energy Proctor Compacted 15% Bentonite/Sand Specimens         | 86 |
| Figure 5.21. | Stress-Strain Curves for Tests on Low Energy Proctor Compacted 25% Bentonite/Sand Specimens         | 87 |
| Figure 5.22. | Stress-Strain Curves for Tests on Low Energy Proctor Compacted 50% Bentonite/Sand Specimens         | 88 |
| Figure 5.23. | Stress-Strain Curves for Tests on Standard Proctor Compacted 15% Bentonite/Sand Specimens           | 89 |
| Figure 5.24. | Stress-Strain Curves for Tests on Standard Proctor Compacted 25% Bentonite/Sand Specimens           | 90 |
| Figure 5.25. | Stress-Strain Curves for Tests on Standard Proctor Compacted 50% Bentonite/Sand Specimens           | 91 |

| Figure 5.26. | Stress-Strain Curves for Tests on Modified Proctor Compacted 15% Bentonite/Sand Specimens                         | 92  |
|--------------|-------------------------------------------------------------------------------------------------------------------|-----|
| Figure 5.27. | Stress-Strain Curves for Tests on Modified Proctor Compacted 25% Bentonite/Sand Specimens                         | 93  |
| Figure 5.28. | Stress-Strain Curves for Tests on Modified Proctor Compacted 50% Bentonite/Sand Specimens                         | 94  |
| Figure 5.29. | Stress-Strain Curves for Tests on Low Energy Proctor Compacted<br>Bentonite/Sand Specimens at Confinement Level 1 | 97  |
| Figure 5.30. | Stress-Strain Curves for Tests on Standard Proctor Compacted<br>Bentonite/Sand Specimens at Confinement Level 1   | 98  |
| Figure 5.31. | Stress-Strain Curves for Tests on Modified Proctor Compacted<br>Bentonite/Sand Specimens at Confinement Level 1   | 99  |
| Figure 5.32. | Photograph of specimen S15-B(+1)-C1                                                                               | 100 |
| Figure 5.33. | Photograph of specimen S50-B(+1)-C1                                                                               | 101 |
| Figure 5.34. | A Brittle-Type Failure: Specimen M50-B(-1)-C1                                                                     | 102 |
| Figure 5.35. | A Bulging-Type Failure: Specimen M25-B(-2)-C1                                                                     | 102 |
| Figure 5.36. | Stress-Strain Curves for Tests on Low Energy Proctor Compacted 25% Kaolinite/Sand Specimens                       | 104 |
| Figure 5.37. | Stress-Strain Curves for Tests on Low Energy Proctor Compacted 50% Kaolinite/Sand Specimens                       | 105 |
| Figure 5.38. | Stress-Strain Curves for Tests on Standard Proctor Compacted 25% Kaolinite/Sand Specimens                         | 106 |
| Figure 5.39. | Stress-Strain Curves for Tests on Standard Proctor Compacted 50% Kaolinite/Sand Specimens                         | 107 |
| Figure 5.40. | Stress-Strain Curves for Tests on Modified Proctor Compacted 25% Kaolinite/Sand Specimens                         | 108 |
| Figure 5.41. | Stress-Strain Curves for Tests on Modified Proctor Compacted 50% Kaolinite/Sand Specimens                         | 109 |

| Figure 5.42. | Kf line for UU-Triaxial Tests on Bentonite/Sand Specimen (Data from L15-B(-4))                      | 110 |
|--------------|-----------------------------------------------------------------------------------------------------|-----|
| Figure 5.43. | Cohesion of Low Energy Proctor Compacted Clay/Sand<br>Specimens                                     | 114 |
| Figure 5.44. | Cohesion of Standard Proctor Compacted Clay/Sand Specimens                                          | 115 |
| Figure 5.45. | Cohesion of Modified Proctor Compacted Clay/Sand Specimens                                          | 116 |
| Figure 5.46. | Relationship between $\phi$ and $w\%$ (15B)                                                         | 117 |
| Figure 5.47. | Relationship between $\phi$ and $w\%$ (25B)                                                         | 118 |
| Figure 5.48. | Relationship between $\phi$ and $w\%$ (50B)                                                         | 119 |
| Figure 5.49. | Relationship between $\phi$ and $w\%$ (25K)                                                         | 120 |
| Figure 5.50. | Relationship between $\phi$ and $w\%$ (50K)                                                         | 121 |
| Figure 5.51. | Strength Parameters for Compacted 15% Bentonite/Sand Specimens                                      | 125 |
| Figure 5.52. | Strength Parameters for Compacted 25% Bentonite/Sand Specimens                                      | 126 |
| Figure 5.53. | Strength Parameters for Compacted 50% Bentonite/Sand Specimens                                      | 127 |
| Figure 5.54. | Strength Parameters for Compacted 25% Kaolinite/Sand Specimens                                      | 128 |
| Figure 5.55. | Strength Parameters for Compacted 50% Kaolinite/Sand Specimens                                      | 129 |
| Figure 5.56. | Relationship between $E_{50}$ , Water Content, and Clay Content for Bentonite/Sand Specimens        | 134 |
| Figure 5.57. | Relationship between E <sub>50</sub> , Water Content, and Clay Content for Kaolinite/Sand Specimens | 135 |

| Figure 6.1.  | Compression specimen preparation procedure; (a) placing the<br>compacted Proctor sample on a turntable, (b) trimming specimen<br>into the consolidation ring, (c) trimming the top and bottom of the<br>specimen flush with the consolidation ring, (d) placing filter<br>papers on the top and bottom of the specimen                       | . 140 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure 6.2.  | Comparison of Compression Test Specimen Density and As-<br>Compacted Soil Density from the Corresponding Proctor Mold                                                                                                                                                                                                                        | . 141 |
| Figure 6.3.  | Compression test setup procedure; (a) placing the specimen and consolidation ring into a consolidation cell, (b) placing the metal jacket over the consolidation ring to center it in the consolidation cell, (c) placing the consolidation cell on a loading frame with the dial gauge properly adjusted, (d) starting the compression test | . 143 |
| Figure 6.4.  | Compression vs. Time (L15B16W)                                                                                                                                                                                                                                                                                                               | . 147 |
| Figure 6.5.  | Compression vs. Time (S15B15W)                                                                                                                                                                                                                                                                                                               | . 148 |
| Figure 6.6.  | Compression vs. Time (M15B12W)                                                                                                                                                                                                                                                                                                               | . 149 |
| Figure 6.7.  | Compression vs. Time (L25B18W)                                                                                                                                                                                                                                                                                                               | . 150 |
| Figure 6.8.  | Compression vs. Time (S25B18W)                                                                                                                                                                                                                                                                                                               | . 151 |
| Figure 6.9.  | Compression vs. Time (M25B12W)                                                                                                                                                                                                                                                                                                               | . 152 |
| Figure 6.10. | Compression vs. Time (L50B20W)                                                                                                                                                                                                                                                                                                               | . 153 |
| Figure 6.11. | Compression vs. Time (S50B19W)                                                                                                                                                                                                                                                                                                               | . 154 |
| Figure 6.12. | Compression vs. Time (M50B14W)                                                                                                                                                                                                                                                                                                               | . 155 |
| Figure 6.13. | Compression vs. Time (L15K10W)                                                                                                                                                                                                                                                                                                               | . 156 |
| Figure 6.14. | Compression vs. Time (S15K10W)                                                                                                                                                                                                                                                                                                               | . 157 |
| Figure 6.15. | Compression vs. Time (M15K8W)                                                                                                                                                                                                                                                                                                                | . 158 |
| Figure 6.16. | Compression vs. Time (L25K10W)                                                                                                                                                                                                                                                                                                               | . 159 |
| Figure 6.17. | Compression vs. Time (S25K10W)                                                                                                                                                                                                                                                                                                               | . 160 |
| Figure 6.18. | Compression vs. Time (M25K8W)                                                                                                                                                                                                                                                                                                                | . 161 |

| Figure 6.19. | Compression vs. Time (L50K16W)                                                                           | 162 |
|--------------|----------------------------------------------------------------------------------------------------------|-----|
| Figure 6.20. | Compression vs. Time (S50K16W)                                                                           | 163 |
| Figure 6.21. | Compression vs. Time (M50K12W)                                                                           | 164 |
| Figure 6.22. | Typical Plots of Time-Compression for Bentonite/Sand Specimens<br>Compacted at <i>w</i> <sub>opt</sub>   | 165 |
| Figure 6.24. | Vertical Strain versus Vertical Applied Stress for Low Energy<br>Compacted Bentonite/Sand Mixtures       | 169 |
| Figure 6.25. | Vertical Strain versus Vertical Applied Stress for Standard Proctor<br>Compacted Bentonite/Sand Mixtures | 170 |
| Figure 6.26. | Vertical Strain versus Vertical Applied Stress for Modified<br>Proctor Compacted Bentonite/Sand Mixtures | 171 |
| Figure 6.27. | Vertical Strain versus Vertical Applied Stress for Low Energy<br>Compacted Kaolinite/Sand Mixtures       | 172 |
| Figure 6.28. | Vertical Strain versus Vertical Applied Stress for Standard Proctor<br>Compacted Kaolinite/Sand Mixtures | 173 |
| Figure 6.29. | Vertical Strain versus Vertical Applied Stress for Modified<br>Proctor Compacted Kaolinite/Sand Mixtures | 174 |
| Figure H.1.  | Compression VS. Time (L15B12W)                                                                           | 481 |
| Figure H.2.  | Compression VS. Time (L15B14W)                                                                           | 481 |
| Figure H.3.  | Compression VS. Time (L15B16W)                                                                           | 482 |
| Figure H.4.  | Compression VS. Time (L15B18W)                                                                           | 482 |
| Figure H.5.  | Compression VS. Time (L15B20W)                                                                           | 483 |
| Figure H.6.  | Compression VS. Time (L25B14W)                                                                           | 483 |
| Figure H.7.  | Compression VS. Time (L25B16W)                                                                           | 484 |
| Figure H.8.  | Compression VS. Time (L25B18W)                                                                           | 484 |
| Figure H.9.  | Compression VS. Time (L25B20W)                                                                           | 485 |

| Figure H.10. | Compression VS. | Time (L25B22W) | 485 |
|--------------|-----------------|----------------|-----|
| Figure H.11. | Compression VS. | Time (L25B24W) | 486 |
| Figure H.12. | Compression VS. | Time (L50B15W) | 486 |
| Figure H.13. | Compression VS. | Time (L50B16W) | 487 |
| Figure H.14. | Compression VS. | Time (L50B18W) | 487 |
| Figure H.15. | Compression VS. | Time (L50B20W) | 488 |
| Figure H.16. | Compression VS. | Time (L50B22W) | 488 |
| Figure H.17. | Compression VS. | Time (L50B24W) | 489 |
| Figure H.18. | Compression VS. | Time (S15B12W) | 489 |
| Figure H.19. | Compression VS. | Time (S15B13W) | 490 |
| Figure H.20. | Compression VS. | Time (S15B15W) | 490 |
| Figure H.21. | Compression VS. | Time (S15B17W) | 491 |
| Figure H.22. | Compression VS. | Time (S15B19W) | 491 |
| Figure H.23. | Compression VS. | Time (S25B14W) | 492 |
| Figure H.24. | Compression VS. | Time (S25B16W) | 492 |
| Figure H.25. | Compression VS. | Time (S25B18W) | 493 |
| Figure H.26. | Compression VS. | Time (S25B21W) | 493 |
| Figure H.27. | Compression VS. | Time (S25B23W) | 494 |
| Figure H.28. | Compression VS. | Time (S50B16W) | 494 |
| Figure H.29. | Compression VS. | Time (S50B18W) | 495 |
| Figure H.30. | Compression VS. | Time (S50B21W) | 495 |
| Figure H.31. | Compression VS. | Time (S50B24W) | 496 |
| Figure H.32. | Compression VS. | Time (M15B8W)  | 496 |

| Figure H.33. | Compression VS. | Time (M15B10W) | 497 |
|--------------|-----------------|----------------|-----|
| Figure H.34. | Compression VS. | Time (M15B12W) | 497 |
| Figure H.35. | Compression VS. | Time (M15B14W) | 498 |
| Figure H.36. | Compression VS. | Time (M15B16W) | 498 |
| Figure H.37. | Compression VS. | Time (M25B8W)  | 499 |
| Figure H.38. | Compression VS. | Time (M25B10W) | 499 |
| Figure H.39. | Compression VS. | Time (M25B12W) | 500 |
| Figure H.40. | Compression VS. | Time (M25B15W) | 500 |
| Figure H.41. | Compression VS. | Time (M25B16W) | 501 |
| Figure H.42. | Compression VS. | Time (M25B17W) | 501 |
| Figure H.43. | Compression VS. | Time (M25B19W) | 502 |
| Figure H.44. | Compression VS. | Time (M50B11W) | 502 |
| Figure H.45. | Compression VS. | Time (M50B13W) | 503 |
| Figure H.46. | Compression VS. | Time (M50B14W) | 503 |
| Figure H.47. | Compression VS. | Time (M50B15W) | 504 |
| Figure H.48. | Compression VS. | Time (M50B16W) | 504 |
| Figure H.49. | Compression VS. | Time (M50B17W) | 505 |
| Figure H.50. | Compression VS. | Time (M50B20W) | 505 |
| Figure H.51. | Compression VS. | Time (L15K6W)  | 506 |
| Figure H.52. | Compression VS. | Time (L15K8W)  | 506 |
| Figure H.53. | Compression VS. | Time (L15K10W) | 507 |
| Figure H.54. | Compression VS. | Time (L15K12W) | 507 |
| Figure H.55. | Compression VS. | Time (L25K6W)  | 508 |

| Figure H.56. | Compression VS. | Time (L25K8W)  | 508 |
|--------------|-----------------|----------------|-----|
| Figure H.57. | Compression VS. | Time (L25K10W) | 509 |
| Figure H.58. | Compression VS. | Time (L25K12W) | 509 |
| Figure H.59. | Compression VS. | Time (L25K14W) | 510 |
| Figure H.60. | Compression VS. | Time (L50K14W) | 510 |
| Figure H.61. | Compression VS. | Time (L50K16W) | 511 |
| Figure H.62. | Compression VS. | Time (L50K18W) | 511 |
| Figure H.63. | Compression VS. | Time (L50K20W) | 512 |
| Figure H.64. | Compression VS. | Time (S15K5W)  | 512 |
| Figure H.65. | Compression VS. | Time (S15K7W)  | 513 |
| Figure H.66. | Compression VS. | Time (S15K10W) | 513 |
| Figure H.67. | Compression VS. | Time (S15K12W) | 514 |
| Figure H.68. | Compression VS. | Time (S15K14W) | 514 |
| Figure H.69. | Compression VS. | Time (S25K6W)  | 515 |
| Figure H.70. | Compression VS. | Time (S25K8W)  | 515 |
| Figure H.71. | Compression VS. | Time (S25K10W) | 516 |
| Figure H.72. | Compression VS. | Time (S25K12W) | 516 |
| Figure H.73. | Compression VS. | Time (S25K14W) | 517 |
| Figure H.74. | Compression VS. | Time (S50K12W) | 517 |
| Figure H.75. | Compression VS. | Time (S50K14W) | 518 |
| Figure H.76. | Compression VS. | Time (S50K16W) | 518 |
| Figure H.77. | Compression VS. | Time (S50K18W) | 519 |
| Figure H.78. | Compression VS. | Time (S50K20W) | 519 |

| Figure H.79. | Compression VS. Time (M15K4W)  | . 520 |
|--------------|--------------------------------|-------|
| Figure H.80. | Compression VS. Time (M15K6W)  | . 520 |
| Figure H.81. | Compression VS. Time (M15K8W)  | . 521 |
| Figure H.82. | Compression VS. Time (M15K10W) | . 521 |
| Figure H.83. | Compression VS. Time (M25K3W)  | . 522 |
| Figure H.84. | Compression VS. Time (M25K6W)  | . 522 |
| Figure H.85. | Compression VS. Time (M25K8W)  | . 523 |
| Figure H.86. | Compression VS. Time (M25K10W) | . 523 |
| Figure H.87. | Compression VS. Time (M25K12W) | . 524 |
| Figure H.88. | Compression VS. Time (M50K10W) | . 524 |
| Figure H.89. | Compression VS. Time (M50K12W) | . 525 |
| Figure H.90. | Compression VS. Time (M50K14W) | . 525 |
| Figure H.91. | Compression VS. Time (M50K16W) | . 526 |
| Figure H.92. | Compression VS. Time (M50K18W) | . 526 |

#### ABSTRACT

Compacted clay/sand mixtures can be used as engineered fills when constructing earthen levees or embankment dams. They are also a design option available to engineers that are constructing liner systems or other types of impervious buffer zones for waste disposal projects. For geotechnical engineers that are designing these types of engineered fill systems, it is useful to have an understanding of the engineering behavior of these mixtures as a function of the soil mixture and compaction process that is utilized. This study investigated the effects of various soil mixtures and compaction conditions on the strength and compressibility characteristics of compacted clay/sand mixtures. The factors investigated include the: clay mineral type, clay content, dry unit weight, compaction moisture content, and compaction energy. To simulate the field compaction process, representative Proctor specimens were prepared for each of the clay/sand mixtures at low, standard, and modified Proctor compaction energy levels. Unconsolidated-undrained triaxial strength tests were conducted at various confining pressures on test specimens prepared from each of the compacted Proctor specimens. One dimensional compression tests were also performed on test specimens prepared from each of the compacted Proctor specimens, to determine the compressibility behavior of each of the compacted soil mixtures.

The experimental findings showed that the undrained strength of samples compacted at the same energy level decreased with increasing compaction moisture content. Additionally, the undrained strength increased with increasing confining pressure and compaction energy. The results also indicated that the angles of shearing resistance increased with decreasing moisture content, and were largest for specimens compacted at a very low water content with high compaction energy. The values of the cohesion intercept increased with increasing dry density, clay content, and plasticity of the clay fraction. Due to their differences in soil mineral characteristics and as-compacted soil fabric, kaolinite/sand mixtures exhibited higher  $\phi$  values and lower *c* values than bentonite/sand mixtures at the same water content relative to the optimum water content. The values of Young's modulus measured in the triaxial test at 50% of the strength increased with clay content and were higher for dry-of-optimum specimens. The compression test results further showed that a large percentage of compression occurred tended to occur within the first minute of loading. The compaction moisture content was found to have a more significant effect on a given mixture's compressibility behavior for samples having a high clay content.

#### Chapter 1

#### **INTRODUCTION**

Compacted clay/sand mixtures are currently used as engineered fills when constructing earthen levees or embankment dams (e.g., Fukue et al. 1986). For larger embankment dams, their use is typically confined to construction of a low permeability dam core, which is often used in conjunction with an engineered soil filter (e.g., Jafari and Shafiee 2004). It is also feasible to use a mixture of highly plastic clay (e.g., bentonite) with sand to construct liner systems or other types of impervious buffer zones for waste disposal projects (e.g., Chapuis 1990). In these cases, the undrained shear strength and compressibility behavior of the engineered clay/sand mixtures are dependent upon the soil compaction process. For geotechnical engineers that are designing these types of engineered fill systems, it is useful to have an understanding of the undrained shear strength and compressibility behavior of these mixtures as a function of the compaction process and compaction energy that is used. A review of past studies has revealed that the majority of previous research in this area has focused on the behavior of pure sands or clays, while research on clay/sand mixtures has been very limited.

This particular study investigated the "short-term" laboratory undrained shear strength and compressibility characteristics of laboratory-compacted clay/sand mixtures. The "short-term" refers to the characteristics of the fill material that are present immediately after compaction, before environmental factors have an opportunity to alter the as-compacted condition of the soil. Two types of clay were studied to investigate the effect of different clay mineralogy: sodium bentonite and pulverized kaolin. Test samples were prepared by mixing Ottawa sand with clay at different clay proportions (15%, 25% and 50%). A laboratory impact compaction approach (Proctor-type compaction) was utilized to create larger samples, with compaction efforts being varied to achieve three distinct energy levels. The resulting Proctor samples were extruded and trimmed to create triaxial test specimens and oedometer test specimens. The as-compacted strength of each of the clay/sand mixtures was measured using unconsolidated-undrained triaxial tests that employed three levels of confining pressure to simulate a variety of embankment heights. The as-compacted compressibility characteristics of each of the clay/sand mixtures was measured using a series of one-dimensional incremental compression tests.

The ultimate purpose of this research was to obtain data which can be used by engineers to predict the compaction properties, laboratory undrained shear strength and compressibility characteristics of partially saturated compacted clay/sand mixtures at different compaction conditions (i.e. compaction energy, molding water content). This will make it easier for engineers to better design earthern levees, embankment dams, and containment barrier systems that utilize these mixtures in their construction. The "low energy" test results provide a useful indicator about the effect of undercompaction on the associated strength and compressibility behavior of a compacted soil. And finally, the test results that are presented herein also provide useful insight into the fundamental principles of soil behavior that affect the mechanical behavior of clay/sand mixtures.

#### Chapter 2

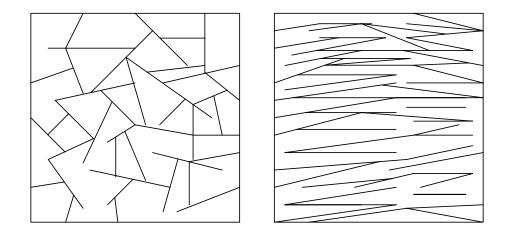
#### LITERATURE REVIEW

The objective of this chapter is to summarize and synthesize the arguments and ideas presented by previous researchers on the strength, stress-strain, and compressibility characteristics of compacted unsaturated soils. To understand these engineering properties of soil, a knowledge of the major factor affecting them, the fabric of compacted soil, is required. Accordingly, this literature review will have a significant focus on the fabric of partially saturated compacted soils.

In the subsequent sections, the following categories of previous research are discussed:

- The fabric of compacted fine-grained soil and granular soil
- Unconsolidated-undrained strength of compacted clays
- Stress-strain characteristics of compacted clays
- Compressibility characteristics of compacted clays

#### 2.1 The Fabric of Compacted Fine-Grained Soil and Coarse-Grained Soil


#### 2.1.1 Fine-Grained Soil Fabric

"Fine-grained" soil particles are generally characterized as those being finer than 0.075 mm (e.g., ASTM D422-63; Holtz and Kovacs, 1981). Fine-grained soils are those soil mixtures where 50% or more of the particles (by dry mass) in a given sample are finer than 0.075 mm. Typically, the fine-grained portion of a soil mixture is comprised of both silt- and clay-sized particles. The relative cutoff between these two particle-size ranges is commonly referred to as the *clay fraction*, which is often assumed to be either a particle size of 0.005 mm (ASTM D422-63) or a particle size of 0.002 mm (Taylor, 1948). This cutoff in particle size is somewhat arbitrary, as the behavior of clay particles is more appropriately associated with their plasticity (Holtz and Kovacs, 1981).

The interaction between coarse grained, or "granular" soil particles is controlled by the forces that are applied at the particle-to-particle contacts. In contrast, clay particles are small enough that their behavior is significantly affected by the molecular-level interactions that occur between individual particles. When examining the molecular structure of an individual clay particle, it can be observed that clay particles have a negatively charged surface. When in contact with water, positive cations (normally Na<sup>+</sup> together with their molecules of hydration water) are attracted onto this surface (Mitchell, 1976). Clay particles are then surrounded by a hydrosphere of adsorbed water, which contains soluble cations of different charges. These cations, called the exchangeable cations, balance the negative charges on the clay particles by forming a *diffuse double layer*. One effect of this diffuse double layer is that two clay particles will begin to repel each other when the double layer of each particle begins to overlap. In this way, the diffuse double layer controls both flocculation and dispersion. The smaller the clay particle size, the greater is the effect of the double layer.

One of the earliest theories of the arrangement of soil particles in a compacted clay soil was presented by Lambe (1958). This theory, often referred to as

the Gouy-Chapman theory, was used to explain the different arrangements of clay particles that were believed to exist in compacted clays. For clay soils compacted dry of optimum, the relatively small amount of water that is present yields a high concentration of electrolytes, which prevents the full development of the double layer of ions surrounding each clay particle. This double layer depression results in a low inter particle repulsion, which thereby leads to a tendency towards a *flocculated* soil structure, which has a low degree of clay particle orientation (Fig. 2.1a). As the compaction water content approaches optimum, the electrolyte concentration is reduced, which causes an expansion of the double layer that increases the repulsive forces between particles and which also increases the degree of particle orientation. Wet of optimum, a sufficient amount of water exists to develop double layers with repulsive forces that are great enough to result in a *dispersed* soil structure, which has a high degree of clay particle orientation (Fig. 2.1b). It should be noted that these general behavioral observations were made based on samples that were compacted using a kneading-type compaction process in the Harvard miniature compaction apparatus (Wilson, 1950).



(a) Flocculated



#### **Figure 2.1. Theoretical Clay Microstructure**

Seed and Chan (1959) discussed the effect of soil structure in compacted clays on shrinkage, swelling, swell pressures, stress-deformation characteristics, undrained strength, pore-water pressures, and effective strength characteristics. The increase of water content from dry to wet of optimum was believed to play an important role in producing an increased degree of particle orientation and clay particle dispersion, which then had a significant effect on the associated clay behavior. More specifically, samples compacted dry of optimum (which tended to have more flocculated structures) exhibited less shrinkage, greater swelling tendency, greater swell pressures, and steeper stress-strain curves than samples of the same soil that were compacted wet of optimum (which tended to have more dispersed structures).

Seed and Chan (1959) showed that the influence of structure on the undrained strength of compacted clay soils depends on the deformation criterion that is adopted. For undrained strengths that are determined at low strains (e.g., 5%), the

structure had a pronounced influence on the strength of compacted soils, with flocculated arrangements producing much higher strengths than dispersed arrangements. On the other hand, the structure had little or no influence on soil strength if a large strain failure criterion was used (e.g., 20 %). It should be noted that although soil structure may have a profound effect on the measured undrained strength, it appears to have almost no influence if the soil strength characteristics are instead determined in terms of effective stresses.

Seed and Chan (1959) conducted further tests on natural clay soils, validating the behavior proposed by Lambe's (1958) hypothesis on a wider array of clay soils. They also extended Lambe's hypothesis to encompass compaction methods which involved varying shear strains in the compaction process, including kneading compaction, impact compaction, vibratory compaction, and static compaction. For compacted clay soils, the shear strains that are applied during compaction were found to have a profound effect on the initial structure of the compacted soil, and its associated engineering behavior. For samples compacted dry of optimum, all of the aforementioned compaction methods produced no appreciable shear deformation in the soil, and consequently resulted in similar soil structures. Thus, the method of compaction had little effect on the strength of samples that were compacted dry of optimum.

For those samples that were compacted wet of optimum, the influence of the method of compaction was considerable. Those compaction methods which induced higher shearing strains during compaction produced a greater degree of dispersion and a higher degree of particle orientation. Therefore, for samples compacted at similar water contents and densities, those samples that were compacted wet of optimum using high strain-level compaction techniques (e.g., kneading compaction, impact compaction) exhibited more significant shrinkage and had lower undrained strengths than did those compaction methods which produced less shear deformation during compaction (e.g., vibratory compaction, static compaction). The effect of compaction method was more pronounced in the undrained strength test results if a small-strain failure criterion was used, and less if a large-strain failure criterion was used. When examining undrained strengths measured at small strain levels in the U-U triaxial test, it can be observed that the flocculated structure produced by low strain-level compaction techniques results in much higher strengths than the dispersed structure produced by high strain-level compaction techniques. However, for specimens subjected to shearing in the U-U triaxial test, the flocculated structure progressively changes to a dispersed arrangement as the strain level increases. As a result, at high strains in the U-U test, all samples at all water contents and densities had their fabrics reduced to a dispersed arrangement due to the shear strains that were applied. At high strains, only small differences were apparent for the undrained strengths that were measured in the U-U triaxial tests. Both initially flocculated samples and initially dispersed samples having the same compaction moisture content and initial dry density tended to exhibit approximately the same strength at high strain levels.

Compared to early studies in this area which used inferred or hypothesized mechanisms of behavior (e.g., Lambe, 1958; Seed and Chan, 1959), investigators in the 1960's and 1970's began to get a more accurate picture of the true structure of compacted soils through increasing use of electron microscopes. Sloane and Kell (1966) investigated the structure of compacted kaolin in a scanning electron

microscope study. They found little or no oriented fabric of individual particles. Instead, the kaolin flakes were arranged into packets regardless of the compaction method that was used. Wet of optimum, impact and kneading compaction produced a fabric that consisted of trajectories of parallel packets. Wet of optimum, static compaction produced a fabric with packets oriented normal to the compaction axis. However, at molding water content below optimum, all compaction methods produced randomly oriented packets. An increase in the orientation of parallel packets was observed with increasing water content for all compaction methods.

Diamond (1971) examined the microstructures of impact-compacted kaolinite and illite clays (after drying) using X-ray orientation determinations and scanning electron microscopy. He found dried clay that was compacted dry of optimum exhibited a domain structure with adjacent domains that were largely separated by micrometer-size interdomain voids. These domains were randomly oriented and touched each other only at peripheral points. Wet of optimum, domains were indistinct and had few interdomain voids. However, unlike Sloane and Kell, he found that only a small degree of preferred orientation normal to the compaction axis existed for both dry and wet of optimum samples.

Mitchell (1993) stated that the large shear strains that are induced by the compaction rammer in impact compaction (e.g., Proctor compaction) have profound effects on the fabric that is formed in the resulting compacted fine-grained soil. The compaction method and water content are two major factors that affect the formation of the resulting compacted soil structure. If the compaction hammer, tamper, or piston does not produce appreciable shear deformation in the soil, which usually occurs when the soil is compacted dry of optimum, there may be a general alignment of particles or

particle groups in the horizontal plane. If the soil is compacted wet of optimum, the hammer, tamper, or piston tends to penetrate the soil surface and produce larger shear strains, which leads to a greater alignment of particles along the failure surface. A folded or convoluted structure may result with repeated blows to the top of the soil layer.

#### 2.1.2 Coarse-Grained Soil Fabric

Oda (1972a) defines the *fabric* of a granular soil as the spatial arrangement of particles and associated voids. In his study, Oda (1972a) investigated the spatial arrangement of granular particles using an optical microscope. Based on his test results, Oda made the following conclusions:

- The characteristics of the post-compaction fabric of granular materials (e.g., sand, gravel) are a function of both the shape of the individual grains in the matrix and the method of compaction.
- (2) The initial fabric of a sand has important influences on its mechanical properties, such as mobilized strength, dilatancy rate, and secant deformation modulus at 50% strength.
- (3) Sands which are composed of nonspheric particles have different fabric and mechanical anisotropy depending on the method of preparation.

In order to clarify the mechanism controlling the fabric reconstruction that occurs during the shear-induced deformation of a sand, Oda (1972b) performed a series of drained triaxial compression tests. He found that continuous reconstruction of the initial fabric occurs at increasing axial strain levels, which was attributed to both the sliding that occurs along unstable particle contacts among neighboring grain particles and the rotation of individual grains. These more recent studies have illustrated the importance of a compacted soil's macrostructure, rather than its microstructure, in governing the resulting behavior of a compacted soil. For fine-grained soils in particular, the structure of particle groups is now considered more important than the fabric and structure that occurs at an individual particle level (e.g., Sloane and Kell, 1966; Diamond, 1971). Various authors have referred to these important collections of particles as domains, packets, or aggregates.

In general, the arrangement of these particle groups has been found by a variety of researchers to vary from dry to wet of optimum. Dry of optimum, the particle groups are distinct and relatively strong. There is a considerable quantity of void space between the particle groups (e.g., Diamond, 1971). As the compaction water content increases, the particle groups become weaker and more deformable. As a result, the particle groups distort and squeeze closer to each other. Wet of optimum, the particle groups become much less distinct and form a more homogeneous mass.

At a constant water content, increases in compactive effort also change the arrangement of particle groups. As the compaction energy increases, particle groups become more broken, deformable, and the quantity of large pores is reduced.

The arrangement of the particle groups, size and distribution of pores and the water content in these pores are useful in analyses of engineering properties of compacted soils. Thus, the above discussion will be useful in understanding and explaining the strength, compressibility and stress-strain behavior trends in the data that is presented later in this thesis.

#### 2.2 Unconsolidated-Undrained Strength of Compacted Clays

Rutledege (1947) performed one of the first comprehensive surveys on the undrained strength of compacted clays using a series of unconsolidated-undrained (U-U) triaxial tests. He found that the major factors that influence the U-U strength of compacted soils were the compaction water content, dry density, and minor principal stress in the triaxial test. Rutledge's (1947) results lead to the following conclusions:

- (1) The U-U strength of compacted clays decreased as the water content increased
- (2) The U-U strength of compacted clays increased as the dry density increased
- (3) The U-U strength of compacted clays increased as the minor principal stress increased, until the confining pressure became so high that the sample became fully saturated (or nearly fully saturated). This happened when the confining pressure was so high that the air in the sample voids dissolved in the water.

Holtz and Willard (1956) may have been the first to investigate the effect of gravel content on the shear strength of clayey gravel soils. They claimed that the angle of shearing resistance increased with the increasing gravel content, while at the same time the apparent cohesion decreased. The effect of the granular part of the mixture was predominant when the gravel fraction was greater than 50%.

Miller and Sowers (1957) used a series of U-U triaxial tests to investigate the effects of varying the proportions of coarse- and fine-grained soils on the strength of the resulting clay/sand mixtures. Various mixtures of clay (a low plasticity inorganic sandy clay) and sand were mixed ranging from 100 percent sand to 100 percent clay. The results revealed that the angle of shearing resistance stayed approximately the same until the fines content decreased to less than 33%. A sharp change occurred in the soil behavior for fines contents between 33% and 26%, where the angle of shearing resistance increased markedly and the cohesion decreased markedly.

Casagrande and Hirschfeld (1960, 1962) tested a silty clay soil compacted using kneading compaction to a constant dry unit weight, and reached a similar conclusion as Rutledge (1947). When the water content was very high and the sample was almost saturated, a small increment of additional pressure was all that was needed to dissolve the air in the pores. The failure envelope quickly became horizontal, and the  $\phi$  approached zero. In this situation, further increases in confining pressure were taken up by the pore water and not the soil structure. As a result, the effective stress and strength stayed constant. For samples having a lower compaction water content, the failure envelope will continue to slope upward, as it is difficult to achieve 100% saturation, and significantly higher pressures are required compress the specimen voids enough to dissolve the air that is present in the specimen.

For samples that have a similar structure and compaction water content, undrained strength will increase with an increase in density (Seed and Chan, 1959). However, undrained strength may also decrease with increasing density at a constant water content, depending on the strength criterion that is adopted (Seed and Chan, 1959). Seed and Chan (1959) used a series of U-U triaxial compression tests on compacted (kneading) silty clay specimens to show that the undrained strength increased with increasing density if a failure criterion of 25% strain was adopted. On the other hand, if a failure criterion of 5% strain was utilized, the undrained strength increased with increasing density up to a point, and then decreased with further increases in density, as shown in Figure 2.2.

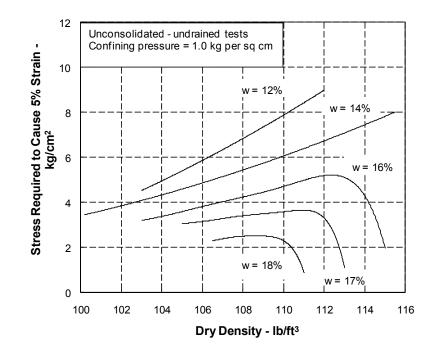



Figure 2.2. Relationship between Dry Density, Water Content, and Strength of a Compacted Silty Clay Specimen – Small Strain Failure Criterion Adopted (Developed after Seed and Chan, 1959)

Seed and Chan (1959) provided additional evidence on the importance of failure criterion. In their tests, kneading compaction was performed to prepare silty clay triaxial specimens, and the results from UU triaxial tests showed that the strength increased with density as long as the soil structure remained essentially the same, and as long as the undrained strength was determined at low strains. When significant changes in structure took place in the soil, the strength was significantly reduced despite the increase in density. However, if the undrained strength was determined at high strains, samples of silty clay having the same composition exhibited approximately equal strength whether the structure was flocculated or dispersed.

Consequently, for a given water content, the dry density and strength relationship showed no decrease in strength with increasing density (for strengths determined at high strain levels) (Figure 2.3). Seed and Chan pointed out that these behavioral observations likely do not apply to all soils. Some soils, such as a sandy clay, do not follow these considerations. In these soils, it is possible that the structure of the clay fraction that is compacted wet of optimum is considerably more dispersed than the structure of soil compacted dry of optimum. But the influence of the difference in structure is masked by other factors such as the high proportion of granular particles.

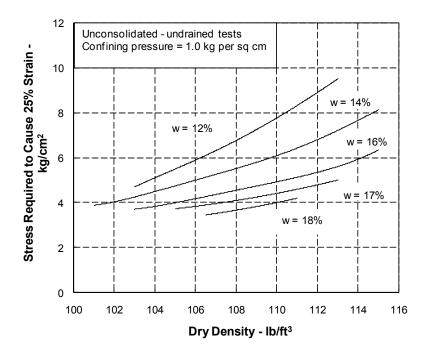



Figure 2.3. Relationship between Dry Density, Water Content, and Strength of a Compacted Silty Clay Specimen - Large Strain Failure Criterion Adopted (Developed from Seed and Chan, 1959)

Lee and Haley (1968) investigated the relative strength and deformation properties of a commercial kaolinite clay and a real silty clay compacted by kneading and static compaction. They found that in the U-U triaxial test, when samples were tested under very high confining pressures such as those that would be encountered in a high earth dam, even soils compacted at low water contents could become saturated. In general, all of the samples that were tested were observed to get stronger as the test confining pressure was increased, due to compression of the air voids. The samples that were compacted using static pressure were always stiffer and stronger than those samples that were compacted using kneading compaction. The samples that were compacted dry of optimum were stronger than samples of the same composition that were compacted wet of optimum.

Lambe (1961) and Olson and Langfelder (1965) showed the existence of highly negative pore water pressure in soils compacted dry of optimum. These negative pore water pressures would theoretically result in greater effective stress and hence greater strength. This explanation is typically given as the reason why dry of optimum samples are stronger than wet of optimum samples.

Yin (1999) examined the properties and behavior of Hong Kong marine deposits with different clay contents using a series of CU triaxial tests on compacted clay specimens. Test results indicated that the friction angle of Hong Kong marine deposits decreased with an increase in plasticity index. Young's modulus ( $E_{50}$ ) values were observed to increase with increasing effective confining pressure, and decrease with increasing clay content.

### 2.3 Stress-Strain Characteristics of Compacted Clays

Seed and Chan (1959) used a series of UU triaxial tests to show the typical stress-strain behavior of silty clay specimens that had been prepared using kneading compaction. Samples having a higher water content, lower density, and dispersed soil structure tended to have a more "plastic" stress-strain behavior, typically reaching their ultimate strength at very high strains. On the dry side of optimum, as the compaction water content was decreased, the soil particles became more randomly oriented and the soil became more rigid. At very low water contents, the combined effect of randomly oriented soil particles and highly negative pore water pressures produced a steep stress-strain curve with very brittle characteristics. Similar results are seen in the stress-strain curves presented by Casagrande and Hirschfeld (1960, 1962). However, the stress-strain behavior is not the same for all compacted clay soils. Variations will depend on amount and type of clay proportion, dry unit weight, compaction method, water content and confining pressure (Seed and Chan, 1959).

Lee and Haley (1968) showed the stress-strain characteristics of a compacted kaolinite. They found that the wet of optimum kaolinite sample prepared by static compaction was considerably stronger, stiffer, and more brittle than the otherwise identical sample prepared by kneading compaction. Dry samples prepared by static compaction were considerably stronger and more brittle than the wet samples. The general shapes of the stress-strain curves for Higgins Clay (a real silty clay) were similar to those observed for the kaolinite specimens. The wet of optimum samples prepared by static compaction maintained their relatively high strength and brittleness compared to the wet samples prepared by kneading compaction. The samples prepared dry of optimum with static compaction were considerably stronger and more brittle than either of the wet samples. The samples with the flocculated structure

exhibited relatively high strengths and brittle stress-strain characteristics. As the confining pressure increased, the samples compressed and became denser under the high pressure. This compression caused the air in the voids to become dissolved in the water, which in turn led to an increase in the degree of saturation, producing an increase in plasticity. Therefore, as the confining pressure increased, the flocculated samples lost some of their brittle stress-strain characteristics. The samples with a dispersed structure maintained their relatively low strengths and plastic stress-strain behavior at all confining pressures.

Daniel and Olson (1974) collected stress-strain data from more than 200 unconsolidated-undrained triaxial tests on specimens of three compacted clays and developed analytical expression for the stress-strain properties of these compacted soils. Their analyses of the stress-strain curves from tests showed that the initial tangent modulus was an exponential function of confining pressure.

Mitchell (1993) stated that stress-strain characteristics of different soils ranged from very brittle for some quick clays, cemented soils, heavily overconsolidated clays, and dense sands, to very plastic and ductile for insensitive and remolded clays and loose sands.

# 2.4 Compressibility Characteristics of Compacted Clays

It is difficult to define the fundamental relationships which govern the compressibility of compacted and/or unsaturated soils under load. As a result, unlike strength and stress-strain behavior, the compressibility of compacted and/or unsaturated soils has been covered in only a minimal fashion in the engineering literature.

Wilson (1952) investigated the effect of compaction water content on the compressibility of a compacted clayey sand. The results from his tests indicated that the wet of optimum samples were approximately 30 percent more compressible than the samples compacted dry of optimum. Wilson attributed this to the higher pore water pressures that are generated in the wet of optimum samples during loading. Based on this observation, Wilson recommended that cohesive highway embankments should be compacted dry of optimum, in order to obtain lower volume compressibility.

Using data obtained by Woodsum (1951), Leonards (1952) examined the compressibility of a highly plastic clay. He found that the compressibility of the clay was affected by the confining pressure that was applied prior to contact with water. However, this effect was minimized by using higher compaction energies. The data showed that a compacted sample wetted in the oedometer at a low confining pressure will compress more than a sample of the same composition that is confined and wetted at a higher pressure. In light of this, due to the lower confining pressure in the submerged condition, Leonards concluded that a change in water content resulting from the submergence of a compacted highway or airport pavement fill will be more severe than a corresponding change resulting from capillary action.

Lambe (1958) attributed the compressibility behavior of compacted clays in large part to the particle rearrangement that occurs under application of a load. When the consolidation pressure was relatively low, for dry of optimum samples, more pressure was required to reorient the particles of the flocculated structure. Therefore, the compression that occurs will be greater for a wet of optimum sample during the load increment. On the other hand, for larger consolidation pressures, a dry of optimum sample will compress more due to particle reorientation and void collapse. However, when the particles in a compacted clay matrix are highly dispersed, the dry of optimum sample will experience essentially the same compression as the wet of optimum sample.

Wahls, et al (1966) summarized all the conclusions concerning the compressibility of compacted soils made by former researchers. They stated that the soil type was undoubtedly one of the major factors influencing the compressibility characteristics of a compacted soil, but additional factors such as the compaction method, molding water content, and degree of saturation also had significant effects on the compressibility characteristics.

Hodek and Lovell (1978) presented convincing evidence of a strong relationship between pore size distribution and the compressibility characteristics of a compacted clayey soil. They concluded that the dry of optimum samples consisted mostly of large pores. The clay aggregates in the samples compacted dry of optimum were typically observed to be shrunken, stiff, and brittle. However, in the wet of optimum samples, there were few large pores and many small ones. The clay aggregates in the wet of optimum samples were swollen, weak, and plastic. Therefore, the dry of optimum samples were more brittle, compressing just a little under low load pressures and a great amount under high load pressures. On the other hand, the wet of optimum samples showed opposite compressibility behavior, compressing more under low load pressures and less amount under high load pressures, as compared to the dry of optimum samples. This behavior was believed to be caused by the lack of large voids in the wet of optimum ssamples. Shroff and Shah (2003) stated that the flocculated structure developed on the dry side of optimum in compacted clays offers greater resistance to compression than the dispersed structure formed on the wet side. Consequently, soils on the wet side of optimum are generally more compressible. In general, the methods of compaction that have been utilized by various researchers to prepare the specimens have been shown to have a significant effect on the compressibility behavior. Methods which generate higher shear strains during compaction, such as kneading or impact compaction, produce greater dispersion and a higher degree of particle orientation, which yields a corresponding increase in compressibility under load. For those cases where the compaction rammer causes very large penetration deformations during compaction, the specimen compressibility tends to increase, which is believed to be caused by a breakdown of the soil's structure and a greater orientation of the particles during compaction.

# Chapter 3

# SOIL PROPERTIES AND SOIL PREPARATION TECHNIQUE

# **3.1 Soil Properties**

## 3.1.1 Sand

The sand utilized in this study was Ottawa sand, which was purchased from ELE International, Inc. This sand conforms to the requirements for standard density testing sand outlined in ASTM D 1556-07, the Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method. To ensure that the sand that was used in this study remained consistent over time, sieve analysis tests were conducted on sand from each box of sand that was used (approximately every 22.7 kilograms), in general accordance with ASTM D 6913-04. Table 3.1 summarizes the results from these tests. The average coefficient of uniformity for this sand ( $C_u$ ) is 1.97, and consequently this sand classifies as a poorly graded sand (SP) according to the Unified Soil Classification System (ASTM D 2487-06). Figure 3.1 presents the gradation distributions from each sieve test that was conducted on this sand, and it shows that the grain sizes of this sand are primarily in the range of "fine" to "medium" (0.075 mm < D < 2.0 mm). The specific gravity of this sand was measured as 2.65, in accordance with ASTM D 854-06. Detailed data sheets for the classification tests that were conducted on this sand can be found in Appendix A.

| Test          | Percent Passing (%) |       |      |      |       |       | -     |      |       |
|---------------|---------------------|-------|------|------|-------|-------|-------|------|-------|
| No            | Sieve No.           |       |      |      |       |       |       |      | $C_c$ |
| 110.          | # 10                | # 20  | # 40 | # 60 | # 100 | # 140 | # 200 |      |       |
| 1             | 100                 | 100.0 | 26.5 | 0.9  | 0.2   | 0     | 0*    | 1.97 | 1.02  |
| 2             | 100                 | 99.9  | 25.4 | 0.9  | 0.1   | 0*    | 0*    | 1.96 | 1.03  |
| 3             | 100                 | 99.9  | 26.0 | 0.7  | 0.1   | 0.1   | 0.0   | 1.96 | 1.02  |
| 4             | 100                 | 99.9  | 32.2 | 2.4  | 0.7   | 0.1   | 0.0   | 2.02 | 0.95  |
| 5             | 100                 | 99.9  | 26.8 | 0.6  | 0.0   | 0.0   | 0.0   | 1.96 | 1.01  |
| 6             | 100                 | 99.9  | 32.1 | 1.1  | 0.1   | 0.0   | 0.0   | 1.99 | 0.94  |
| 7             | 100                 | 99.9  | 26.9 | 1.0  | 0.4   | 0.2   | 0.2   | 1.98 | 1.02  |
| 8             | 100                 | 99.9  | 26.7 | 3.0  | 1.0   | 0.4   | 0.4   | 2.03 | 1.05  |
| 9             | 100                 | 99.8  | 28.2 | 0.6  | 0*    | 0*    | 0*    | 1.97 | 0.99  |
| 10            | 100                 | 99.7  | 25.2 | 0.6  | 0.0   | 0.0   | 0.0   | 1.96 | 1.03  |
| 11            | 100                 | 99.9  | 24.2 | 0.2  | 0*    | 0*    | 0*    | 1.94 | 1.04  |
| 12            | 100                 | 99.8  | 21.7 | 0.1  | 0.0   | 0.0   | 0     | 1.91 | 1.05  |
| 13            | 100                 | 99.9  | 26.9 | 0.4  | 0.1   | 0.0   | 0     | 1.96 | 1.01  |
| 14            | 100                 | 99.8  | 29.1 | 1.4  | 0.4   | 0.1   | 0     | 1.99 | 0.99  |
| 15            | 100                 | 99.8  | 20.4 | 0.3  | 0.1   | 0.1   | 0.1   | 1.90 | 1.06  |
| 16            | 100                 | 99.8  | 24.6 | 0.2  | 0.0   | 0.0   | 0     | 1.94 | 1.03  |
| 17            | 100                 | 99.9  | 27.0 | 1.2  | 0.4   | 0.1   | 0.1   | 1.98 | 1.02  |
| 18            | 100                 | 99.8  | 25.2 | 1.3  | 0.2   | 0.0   | 0     | 1.97 | 1.04  |
| 19            | 100                 | 99.8  | 30.5 | 3.8  | 2.1   | 0.8   | 0.3   | 2.07 | 1.00  |
| 20            | 100                 | 99.9  | 30.9 | 1.2  | 0.3   | 0.1   | 0*    | 1.99 | 0.96  |
| Avg.          | 100                 | 99.9  | 26.8 | 1.1  | 0.3   | 0.1   | 0.1   | 1.97 | 1.01  |
| Stnd.<br>Dev. | 0.00                | 0.07  | 3.09 | 0.96 | 0.50  | 0.19  | 0.11  | 0.04 | 0.03  |

Table 3.1 Sieve Analysis Results from Tests Conducted on Ottawa Sand

\*Note: Small negative values of percent passing (e.g., -0.1 %) that are shown in the raw data sheets were caused by small +/- errors in balance measurements. During the analysis of the raw measured data, any small negative balances were zeroed prior to reporting in Table 3.1, as they are unrealistic measurements in a test of this type, and reflect a clear testing error.



Figure 3.1. Grain Size Distributions of Ottawa Sand.

# 3.1.2 Clays

Two types of clays were used in this study, bentonite and kaolinite. The bentonite was General Purpose Granular sodium bentonite (GPG 30) from American Colloid Company, of Skokie, Illinois. The Kaolinite was Pulverized Kaolin, C.A.S No. 1332-58-7, Manufactured by the Feldspar Corporation in Edgar, Florida. The initial water content is about 7% for the air-dried bentonite, and is about 1% for the air-dried kaolinite.

Prior to compaction, strength, and compressibility testing, the Atterberg limits and specific gravities of the pure bentonite, the pure kaolinite, and the sand/clay mixtures that were used in this study were determined. Table 3.2 lists the Atterberg limits of the pure clays and sand/clay mixtures, which were measured according to ASTM D4318-05, The Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. Complete data sheets for Atterberg limit test of each soil are given in Appendix B.

| Percent Clay in<br>Mixture with Sand | Plastic Limit<br>(%) | Liquid Limit<br>(%) | Plasticity Index<br>(%) |
|--------------------------------------|----------------------|---------------------|-------------------------|
| 15% Bentonite                        | 20                   | 135                 | 115                     |
| 25% Bentonite                        | 21                   | 252                 | 231                     |
| 50% Bentonite                        | 32                   | 365                 | 333                     |
| 100% Bentonite                       | 46                   | 499                 | 453                     |
| 15% Kaolinite                        | 12                   | 20                  | 8                       |
| 25% Kaolinite                        | 15                   | 24                  | 9                       |
| 50% Kaolinite                        | 24                   | 39                  | 15                      |
| 100% Kaolinite                       | 34                   | 57                  | 23                      |

Table 3.2 Atterberg Limits of Clay/Sand Mixtures

Figures 3.2 and 3.3 show the Atterberg limits plotted versus the percent clay in the soil mixtures. Figure 3.2 shows that as the proportion of bentonite in the mixture increased, the liquid limit (LL) increased drastically while the plastic limit (PL) increased very little. As a result, the plasticity index (PI), which is the difference between the liquid limit and plastic limit, increased quickly as the proportion of bentonite in the mixture increased. Figure 3.3 shows that as the proportion of kaolinite in the mixture increased the liquid limit (LL) and the plastic limit (PL) increased gradually.

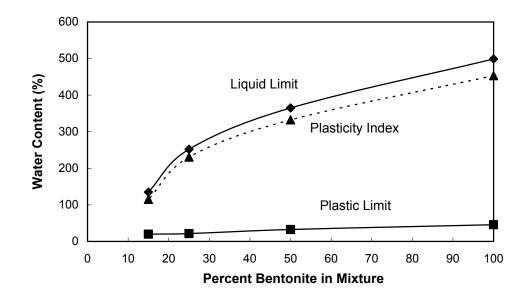



Figure 3.2. Liquid Limit, Plastic Limit, and Plasticity Index vs. % Bentonite.

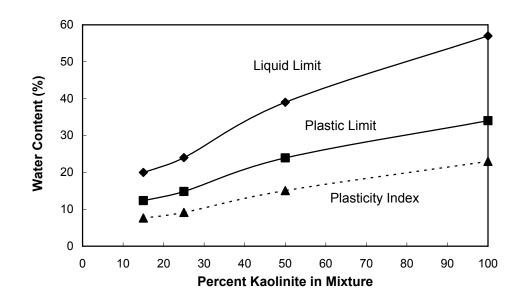



Figure 3.3. Liquid Limit, Plastic Limit, and Plasticity Index vs. % Kaolinite.

Table 3.3 lists the specific gravities for the sand and clays used in this study, which were determined using ASTM D 854-06, The Standard Test Method for Specific Gravity of Soil Solids by Water Pycnometer. Complete data sheets for specific gravity tests are given in Appendix C. The measured results for sand and kaolinite are near the values reported by Lambe and Whitman (1969), 2.65 for sand and 2.62-2.66 for kaolinite, respectively. The measured specific gravity of bentonite is within the range that has been reported by others: e.g., 2.5 (Daeman, 1997) to 2.74 (Akgun, 2006).

 Table 3.3 Specific Gravities of Sand and Clay

| Soil             | Sand | Kaolinite | Bentonite |
|------------------|------|-----------|-----------|
| Specific Gravity | 2.65 | 2.60      | 2.62      |

The specific gravities of the sand/clay mixtures used in this study,  $G_{ssc}$ , were calculated from the following equation:

$$G_{ssc} = \frac{\left(\frac{100}{\alpha}\right)G_{sc}}{1 + \left(\frac{100 - \alpha}{\alpha}\right)\left(\frac{G_{sc}}{G_{ss}}\right)}$$
(3.1)

where  $\alpha$  is the clay content (in %, with numbers ranging from 0 to 100),  $G_{sc}$  is the specific gravity of clay, and  $G_{ss}$  is the specific gravity of sand. The derivation of Equation 3.1 is provided in Appendix D. The specific gravity of each sand/clay mixture calculated using Equation 3.1 is shown in Table 3.4. The specific gravity of soil mixtures were used for calculating the void ratio and degree of saturation of test specimens.

| Clay Content | Clay Used for Mixture |           |  |  |
|--------------|-----------------------|-----------|--|--|
| (%)          | Kaolinite             | Bentonite |  |  |
| 15           | 2.64                  | 2.65      |  |  |
| 25           | 2.64                  | 2.64      |  |  |
| 50           | 2.62                  | 2.63      |  |  |

Table 3.4 Specific Gravity of Each Sand/Clay Mixture

### 3.2 Soil Classification of Pure Clay and Sand/Clay Mixtures

The pure clay and sand/clay mixtures were classified according to the Unified Soil Classification System (USCS) using ASTM D 2487-06, The Standard for Classification of Soils for Engineering Purposes. The kaolinite used in this study classifies as an elastic silt (MH). These results are consistent with the classification reported by Richter (1991), who utilized the same kaolinite for an independent study. It should be noted that the USCS classification of "MH" includes soil types such as micaceous, diatomaceous, fine sandy and silty soils, elastic silts, clays and silty clays (Holtz and Kovacs, 1981). Therefore, although the classification of this soil is as an elastic *silt*, its behavior will be clay-like in nature, as it is comprised primarily of clay particles. The bentonite used in this study classifies as a fat clay (CH). The corresponding USCS classifications of the different sand/clay mixtures utilized in this study are listed in Table 3.5.

| Clay Content | Clay Used for        | Clay Used for Mixture |  |  |  |
|--------------|----------------------|-----------------------|--|--|--|
| (%)          | Kaolinite            | Bentonite             |  |  |  |
| 100          | MH (elastic silt)    | CH (fat clay)         |  |  |  |
| 50           | CL (sandy lean clay) | CH (sandy fat clay)   |  |  |  |
| 25           | SM (silty sand)      | SC (clayey sand)      |  |  |  |
| 15           | SM (silty sand)      | SC (clayey sand)      |  |  |  |

**Table 3.5 Unified Soil Classifications** 

## **3.3 Soil Preparation Approach**

In order to prepare specimens for compaction testing, the powdered clay was added to the dry sand and the resulting soil was mixed using a 12-quart Hobart Countertop Mixer, Model HL-120 (Figure 3.4). According to ASTM D 698-00, approximately 2.3 kg of soil were needed for each compaction test, and consequently this amount was prepared each time that a compaction test was performed (Figure 3.5). To ensure even distribution of the sand and clay particles, the soil was mixed in a dry state for 5 minutes using a stirring speed of 59 revolutions per minute.



Figure 3.4. Hobart's Legacy Countertop Mixer.

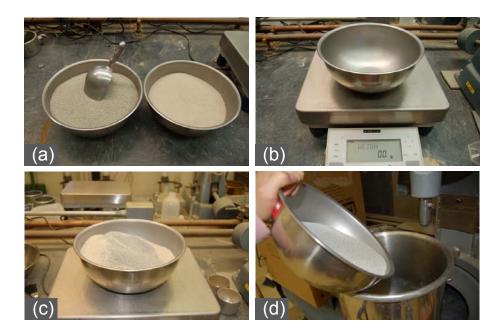



Figure 3.5. Mixing dry soil; (a) air-dried sand and bentonite, (b) with an empty bowl on the balance, press Re-Zero to zero the display, (c) as bentonite and sand is added to the bowl, the net weight is displayed, and (d) pouring the soil mixture into the mixer.

To prepare the soil specimens at the desired water content for each compaction test, it was necessary to adjust the water content of the sand/clay mixtures. The appropriate mass/volume of distilled water for each specimen was gradually added to the soil mixture using a squeeze bottle over the course of 5 minutes, while continuously mixing the soil at a mixer speed of 59 rpms. Figure 3.6 shows the procedure that was used to measure and add the distilled water. As hygroscopic water was retained in the pure clay minerals in their natural air-dried state, the amount of distilled water that was added to each "dry" soil mixture was calculated using the following equation:

$$M_w = M_t \times w_t - M_c \times w_c \tag{3.2}$$

where:

 $M_w$  = mass of water needed  $M_t$  = mass of dry sand and clay  $M_c$  = mass of clay  $w_t$  = water content of soil mixture  $w_c$  = water content of air - dried clay

The air-dried water contents of the clays that were used in this study were measured as 7 % for the bentonite and 1 % for the kaolinite, under ambient air conditions in the University of Delaware geotechnical laboratory.

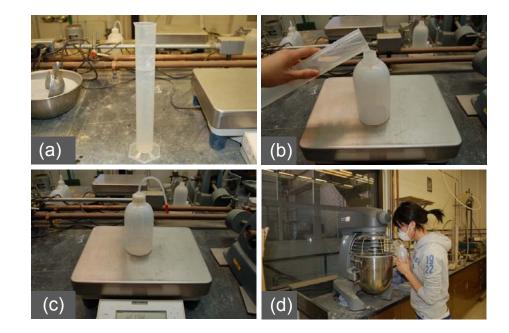



Figure 3.6. Adding distilled water; (a) measuring water with a graduated cylinder, (b) transferring water to a squeeze bottle, (c) measuring the exact weight of distilled water, and (d) squeezing water into the soil mixture. For mixtures containing high clay contents (e.g., 50%), the clay minerals have the tendency to aggregate during mixing, as shown in Figure 3.7. When this behavior was observed, a mortar and pestle were utilized to grind the aggregates to ensure a more uniform mixture (Figure 3.8). The grinding process was performed as quickly as possible to minimize the possibility of a change in water content of the soil during the grinding process. Figure 3.9 shows the appearance of a typical sand/clay mixture after grinding.



Figure 3.7. Soil Aggregate in Mixture with 50% Kaolinite.



Figure 3.8. Soil Aggregate Grinding.



Figure 3.9. Appearance of Sand/Clay Mixture after Grinding.

Upon completion of the mixture preparation process, each specimen was manually mixed one final time to ensure even distribution of water throughout and then placed in an airtight container and allowed to stand for more than 16 hours to more evenly distribute the water in the clay (in accordance with the recommendations made by ASTM D 698-00).

# Chapter 4

# **COMPACTION TESTING OF CLAY/SAND MIXTURES**

# 4.1 Compaction Tests on Clay/Sand Mixtures

The laboratory tests described in this chapter were conducted to measure the maximum dry unit weight ( $\gamma_{d,max}$ ) and optimum water content ( $w_{opt}$ ) of different clay/sand mixtures that were subjected to specific compactive efforts. The results from these tests are also useful for determining the relationship between the compaction water content and the resulting dry unit weight of the clay/sand mixtures that were tested. To investigate the influence of different compactive efforts, three compaction energy levels were chosen.

The highest compactive effort that was applied corresponded to that imposed by the modified Proctor (MP) compaction test (ASTM D1557-07), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort. Following this test procedure, the soil was compacted into a 102 mm (4 in.) diameter mold in five equal layers with each layer receiving 25 blows from a 44.5 N (10.0 lbf.) rammer dropped from a height of 457 mm (18 in.). The total compaction energy that is applied during a modified Proctor compaction test is 2,700 kN-m/m<sup>3</sup>. Figure 4.1 is a photograph of the laboratory equipment required for conducting a modified Proctor test.



Figure 4.1. Modified Proctor Test Equipment

The intermediate compactive effort that was applied corresponded to that imposed by the standard Proctor (SP) compaction test (ASTM D698-00), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. Following this test procedure, the soil was compacted into a 102 mm (4 in.) diameter mold in three equal layers with each layer receiving 25 blows from a 24.4 N (5.5 lbf.) rammer dropped from a height of 305 mm (12 in.). The total compaction energy that is applied during a modified Proctor compaction test is 600 kN-m/m<sup>3</sup>. Figure 4.2 is a photograph of the laboratory equipment required for conducting a standard Proctor test.



## **Figure 4.2. Standard Proctor Test Equipment**

The lowest compactive effort that was applied corresponded to that imposed by a "low-energy" (LE) compaction test procedure that was performed following the general approach utilized by the standard Proctor compaction test (the same mold, hammer and procedure) with only fifteen blows on each of the three layers (e.g., the same procedure that was followed by Daniel & Benson, 1990). The total compaction energy that is applied during this type of low-energy compaction test is 360 kN-m/m<sup>3</sup>. This "low energy" Proctor procedure is the same as the 15-blow compaction test described by the U.S. Army Corps of Engineers (1970). It is possible that on many projects, soil will be compacted at some locations in the field with energy levels that are less than those applied during the standard Proctor test. This low energy compaction test is expected to simulate poor quality compaction procedures that can occur in the field.

The test specifications for each energy level are summarized in Table 4.1.

| Test Series              | Diameter<br>of Mold | Height<br>of<br>Hammer<br>Drop | Number<br>of<br>Layers | Weight<br>of<br>Hammer | Number<br>of Blows<br>per<br>Layer | Compaction<br>Energy |
|--------------------------|---------------------|--------------------------------|------------------------|------------------------|------------------------------------|----------------------|
|                          | mm/in.              | mm/in.                         |                        | N/lbf.                 |                                    | kN-m/m <sup>3</sup>  |
| Modified<br>Proctor      | 102/4               | 457/18                         | 5                      | 44.5/10                | 25                                 | 2,700                |
| Standard<br>Proctor      | 102/4               | 305/12                         | 3                      | 24.4/5.5               | 25                                 | 600                  |
| Low<br>Energy<br>Proctor | 102/4               | 305/12                         | 3                      | 24.4/5.5               | 15                                 | 360                  |

#### **Table 4.1 Specifications for Proctor Tests**

As discussed in Chapter 3, tests were conducted on prepared clay/sand mixtures having both bentonite and kaolinite as the clay mineral in the mixture. For each type of clay, soil samples with clay contents of 15%, 25%, and 50% were prepared and tested to examine the effect of clay content on the mixtures' compaction characteristics. For each clay/sand mixture (for both clay mineral types), a number of compaction test specimens (varying between 5 and 13) were prepared over a range of water contents from 4% dry of optimum to 4% wet of optimum at each energy level. Complete data sheets for Proctor compaction test of each specimen are given in Appendix E.

As the resulting matrix of test specimens was quite large, each sample was assigned an identification name for tracking purposes; each of these names provides useful information about each test specimen and its corresponding compaction conditions. Firstly, each sample was assigned a letter to signify at which energy level it was compacted: M, S, and L stood for modified Proctor, standard Proctor, and low energy Proctor respectively. Next, a number (15, 25, or 50) was then assigned to indicate the clay proportion in the soil mixture. Lastly, a K or B was assigned to signify which kind of clay was tested.

#### 4.1.1 Compaction test results for kaolinite/sand mixtures

The dry unit weight-water content relationships for the kaolinite/sand mixtures are presented in Figures 4.3 and 4.4. In addition, each of these figures shows 60, 80, and 100% saturation curves, which were drawn using the average value of the specific gravity of the three kaolinite/sand mixtures (2.63). The compaction curves that are shown, as well as the maximum dry unit weight  $[\gamma_{d,max} (kN/m^3)]$  and optimum water content  $[w_{opt} (\%)]$  values for the data set of compaction curves, were determined by regression of the measured data with a third-order polynomial equation of the following form (Howell et al., 1997):

$$\gamma_{d,\max} = Aw_c^3 + Bw_c^2 + Cw_c + D$$
(4.1)

The values of the degree of saturation  $(S_r)$  at  $\gamma_{d,max}$  and  $w_{opt}$  of almost all the kaolinite/sand mixtures are in the 60-90% range.

Figure 4.3 shows the effect of compaction energy on the compaction characteristics for mixtures containing the same proportion of kaolinite. As expected, for the same soil mixture, the maximum dry unit weight increased and the optimum water content decreased as the compaction energy was increased.

Figure 4.4 was prepared using the same compaction test results, to show the influence of kaolinite content on the compaction characteristics. The compaction data indicate that for samples compacted at the same energy level, the maximum dry unit weight increased first as the kaolinite content increased from 15% to 25%, and then decreased as the kaolinite content increased to 50%. However, the optimum water content increased continuously as the clay fraction increased.

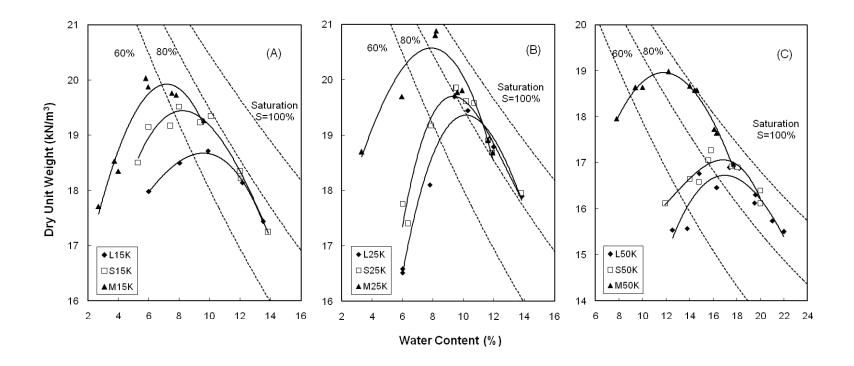



Figure 4.3. Compaction Curves of Kaolinite/Sand Mixtures (A) 15% Kaolinite, (B) 25% Kaolinite, (C) 50% Kaolinite

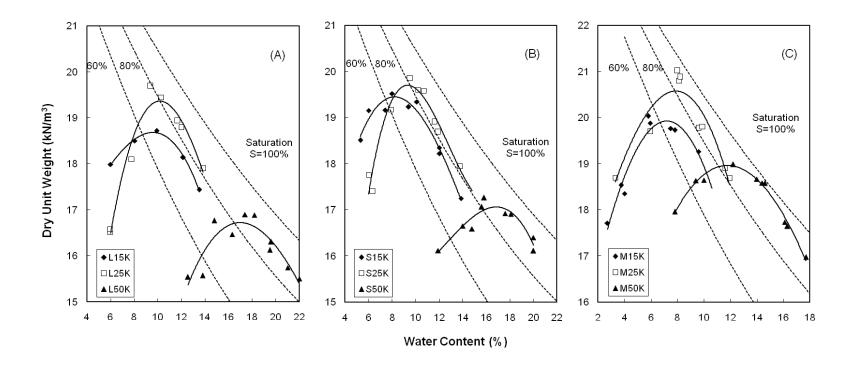



Figure 4.4. Compaction Curves of Kaolinite/Sand Mixtures (A) Low Energy Proctor, (B) Standard Proctor, (C) Modified Proctor

The optimum water contents and corresponding maximum dry unit weights that were determined for each of the kaolinite/sand mixtures that were tested are summarized in Table 4.2.

| Kaolinite<br>Content – | Low Energy<br>Proctor   |                                        | Standard Proctor        |                                           | Modified Proctor        |                                            |
|------------------------|-------------------------|----------------------------------------|-------------------------|-------------------------------------------|-------------------------|--------------------------------------------|
| (%)                    | W <sub>opt</sub><br>(%) | $\gamma_{d,\max}$ (kN/m <sup>3</sup> ) | W <sub>opt</sub><br>(%) | $\gamma_{d,\max}$<br>(kN/m <sup>3</sup> ) | W <sub>opt</sub><br>(%) | $\gamma_{d, \max}$<br>(kN/m <sup>3</sup> ) |
| 15                     | 9.6                     | 18.7                                   | 8.2                     | 19.4                                      | 7.2                     | 19.9                                       |
| 25                     | 10.2                    | 19.4                                   | 9.3                     | 19.7                                      | 7.9                     | 20.6                                       |
| 50                     | 17                      | 16.7                                   | 16.8                    | 17.1                                      | 11.8                    | 19                                         |

 Table 4.2 Soil Properties of Kaolinite/Sand Mixtures

Figure 4.5 is a semi-log plot that shows the relationship between the maximum dry unit weight and the compaction energy that is associated with each of the compaction tests shown in Table 4.2. Logarithmic regression analysis yielded an excellent fit with the measured data, with the coefficients of determination ( $\mathbb{R}^2$  values) ranging from 0.87 to 1, with an average of 0.95. The semi-log regression line of the mixture containing 25% kaolinite is above the 15% kaolinite line, which in turn is above the 50% kaolinite line. It means that as the kaolinite content increased from 15% to 25%, the maximum dry unit weight of the soil mixture first increased and then decreased as the kaolinite content increased to 50% by weight. The mixture with 25% kaolinite content has the largest maximum dry unit weight. As expected, for the same soil mixture, the maximum dry unit weight increased with increasing compaction

effort. For specimens compacted using the low energy Proctor method, the difference between specimens with high kaolinite content and specimen with lower kaolinite content is quite large. However, this difference became smaller as the compactive effort was increased. In other words, a high compactive effort reduces the difference in maximum dry unit weight between mixtures of varying kaolinite content.

In a similar fashion, Figure 4.6 shows the semi-log relationship between the optimum water content and the compaction energy that is associated with each compaction test. Logarithmic regression analysis yielded equations with  $R^2$  values ranging from 0.87 to 0.98, with an average of 0.93. As expected, the optimum water content increases as the kaolinite content is increased. It also decreases as the compactive effort is increased.



Figure 4.5. Semi-log relationships between  $\gamma_{d, max}$  and *E* (kaolinite/sand mixtures)

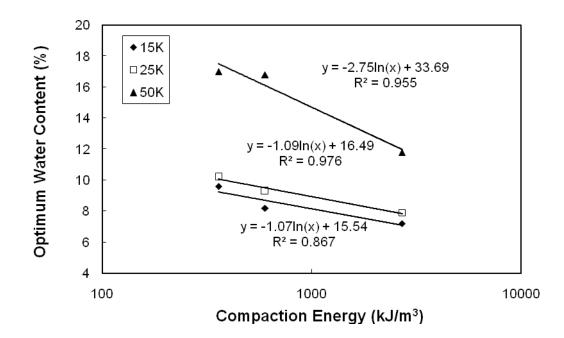



Figure 4.6. Semi-log relationships between w<sub>opt</sub> and E (kaolinite/sand mixtures)

## 4.1.2 Compaction Test Results for Bentonite/Sand Mixtures

Figure 4.7 shows the dry unit weight-water content relationships for the bentonite/sand mixtures, together with 60, 80, and 100% saturation curves. These saturation curves were drawn using the average value of the specific gravity of the three bentonite/sand mixtures (2.64). As mentioned previously, the compaction curves were drawn by curve fitting a third-order polynomial to each data set. The values of the degree of saturation ( $S_r$ ) at  $\gamma_{d,max}$  and  $w_{opt}$  of all the bentonite/sand mixtures are in the 70-85% range. These results are in good agreement with the results shown in Ito (2008). Figure 4.7 shows the effect of compaction energy on the compaction characteristics for mixtures containing the same proportion of bentonite.

For the same soil mixture, the maximum dry unit weight increased and the optimum water content decreased as the compaction energy was increased.

Figure 4.8 was prepared using the same compaction test results, to show the influence of bentonite content for mixtures compacted with the same compaction energy. The compaction data indicate that for samples compacted at the same energy level, the dry unit weight decreased and the optimum water content increased as the percentage of bentonite in the mixtures increased.

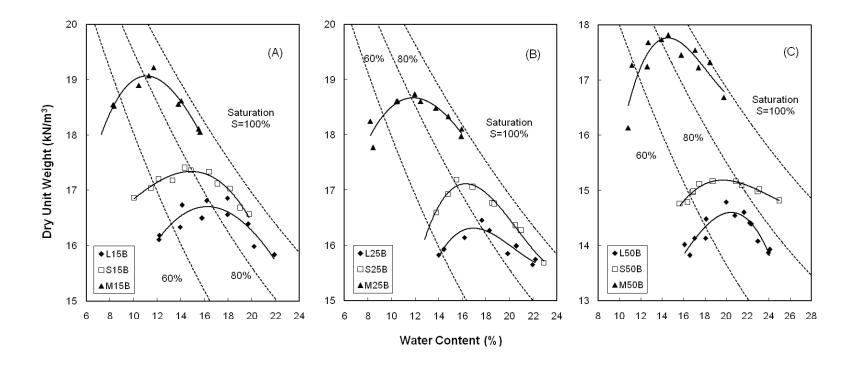



Figure 4.7. Compaction Curves of Bentonite/Sand Mixtures (A) 15% Bentonite, (B) 25% Bentonite, (C) 50% Bentonite

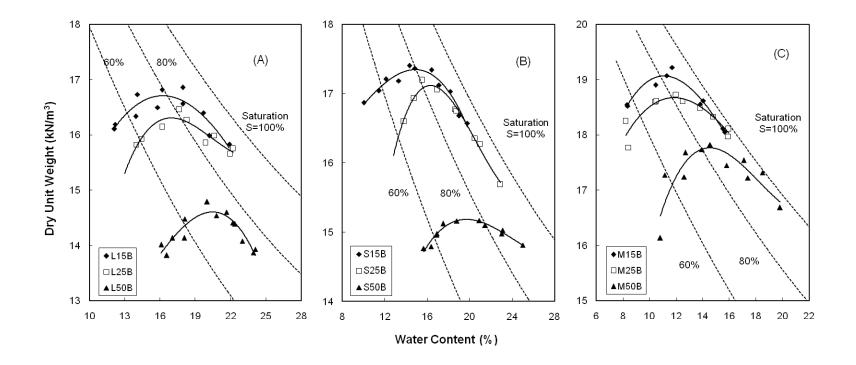



Figure 4.8. Compaction Curves of Bentonite/Sand Mixtures (A) Low Energy Proctor, (B) Standard Proctor, (C) Modified Proctor

The optimum water contents and corresponding maximum dry unit weights that were determined for each of the bentonite/sand mixtures that were tested are summarized in Table 4.3.

| Bentonit<br>e Content – | Low Energy<br>Proctor   |                                           | Standard Proctor        |                                           | Modified Proctor        |                                             |
|-------------------------|-------------------------|-------------------------------------------|-------------------------|-------------------------------------------|-------------------------|---------------------------------------------|
| (%)                     | W <sub>opt</sub><br>(%) | $\gamma_{d,\max}$<br>(kN/m <sup>3</sup> ) | W <sub>opt</sub><br>(%) | $\gamma_{d,\max}$<br>(kN/m <sup>3</sup> ) | W <sub>opt</sub><br>(%) | $\gamma_{d, \max}$<br>(kN/m <sup>3</sup> )) |
| 15                      | 16.2                    | 16.7                                      | 15                      | 17.3                                      | 11.1                    | 19.1                                        |
| 25                      | 17                      | 16.3                                      | 16.1                    | 17.2                                      | 11.8                    | 18.7                                        |
| 50                      | 20.5                    | 14.6                                      | 19.7                    | 15.2                                      | 14.5                    | 17.8                                        |

**Table 4.3 Soil Properties of Bentonite/Sand Mixtures** 

Figure 4.9 is a semi-log plot that shows the relationship between the maximum dry unit weight and the compaction energy that is associated with each of the compaction tests shown in Table 4.3. Logarithmic regression analysis yielded an excellent fit with the measured data, with  $R^2$  values ranging from 0.98 to 1, with an average of 0.99. As was observed with the kaolinite/sand mixtures, the maximum dry unit weight of the bentonite/sand mixtures increased with increasing compaction effort. However, unlike the kaolinite/sand mixtures, the maximum dry unit weight of the bentonite/sand mixtures compaction with increasing bentonite content.

Figure 4.10 shows the semi-log relationship between  $w_{opt}$  and E for the bentonite/sand mixtures. Logarithmic regression analysis again yielded an excellent fit with the measured data, with R<sup>2</sup> values ranging from 0.98 to 1, with an average of 0.99. As expected, the optimum water content increased as bentonite content increased, while it decreased with increasing compaction effort.

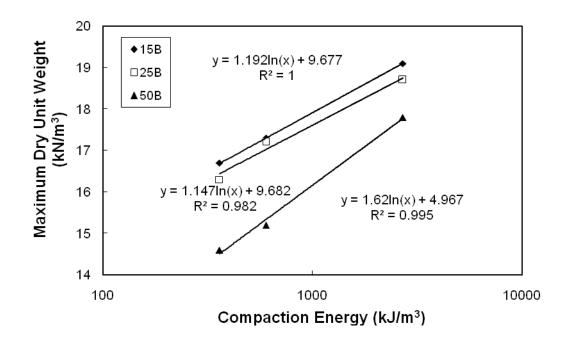



Figure 4.9. Linear relationships between  $\gamma_{d, \max}$  and *E* (bentonite/sand mixtures)

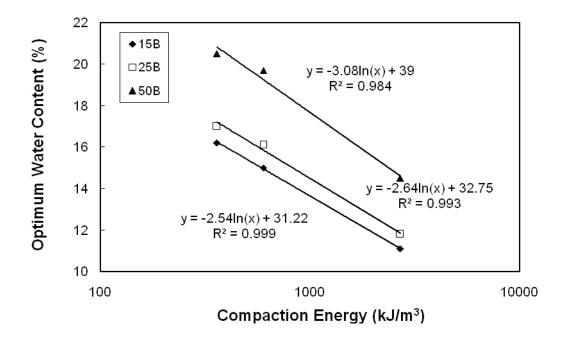



Figure 4.10. Linear relationships between wopt and E (bentonite/sand mixtures)

# 4.2 Summary of Compaction Test Results

This chapter describes a series of compaction tests that were conducted to determine the relationship between compaction water content and the resulting dry unit weight of the soil, for three different compactive efforts. The resulting compaction curves were also used to determine the optimum water content and maximum dry density values for the three compaction energies that were used. In addition to these important curves and values, the following conclusions were also reached as a result of the compaction tests that were performed:

- (1) A semi-logarithmic relationship exists between the maximum dry unit weight and the compaction energy for both kaolinite/sand and bentonite/sand mixtures. Logarithmic regression analysis yielded R<sup>2</sup> values ranging from 0.87 to 0.99 for kaolinite and 0.98 to 1 for bentonite.
- (2) A semi-logarithmic relationship also exists between the optimum water content and the compaction energy for both clay/sand mixtures. Logarithmic regression analysis yielded R<sup>2</sup> values ranging from 0.87 to 0.96 for kaolinite and 0.97 to 1 for bentonite.
- (3) For the kaolinite/sand mixtures, at all compaction energy levels, the maximum dry unit weight was observed for the 25% kaolinite mixture. However, this was not true for the bentonite/sand mixtures, which exhibited a consistent trend of decreasing dry unit weight as the bentonite content increased.
- (4) Higher compactive efforts minimize the difference in maximum dry unit weight between mixtures containing different clay contents.

#### Chapter 5

# **UU TRIAXIAL TESTING OF CLAY/SAND MIXTURES**

### **5.1 Experimental Procedure**

### **5.1.1 Specimen Preparation**

At each combination of clay/sand mixture type (kaolinite, bentonite), clay mix proportion (15%, 25%, 50%), compaction method (low energy, standard proctor, modified proctor), and water content, three triaxial specimens were prepared from each compacted Proctor specimen. Sharpened, thin-walled stainless steel tubes were utilized for sampling from the Proctor mold (Figure 5.1). The sampling tubes that were used had the following dimensions: 160.0 mm (6.3 in.) long, 35.6 mm (1.4 in.) inside diameter, and a wall thickness of 1.5 mm (0.058 in.). During sampling, approximately half of the sampling tube would be pushed into the soil.



# Figure 5.1. Sampling Tube



Figure 5.2. Sharpened Edge of Sampling Tube

In order to create triaxial specimens from a completed Proctor mold specimen, three sampling tubes were first placed on top of the compacted soil which was still in the Proctor mold, as shown in Figure 5.3a. To minimize sample disturbance, the sampling tubes were then pushed into the soil at a controlled speed (0.2 in./min). After the desired depth had been reached, the soil was extruded from the compaction mold together with all three sampling tubes using a hydraulic jack. Appropriately sized triaxial specimens were extruded from the sampling tubes using a close-fitting piston driven by a hydraulic jack and then sealed with plastic wrap to avoid changes in moisture content (Figure 5.4). The initial diameter of the specimen is equal to the inside diameter of the tube. Therefore, specimens obtained by tube sampling could be tested in the triaxial device without trimming, except for cutting the ends of the specimen to ensure appropriate specimen height. The specimen dimensions for each triaxial specimen before testing were approximately 35.5 mm (1.4 in.) in diameter and 71.1 mm (2.8 in.) in height.

After end cutting, the specimen was ready for setup in the triaxial chamber for UU triaxial testing. Because no drainage is allowed during a UU test, impermeable plastic plates were placed on the top and bottom of the specimen (ASTM D 2850). The plastic plates have the same diameter as the soil specimen. The specimen was then carefully encased in membranes. Two thin Trojan prophylactic membranes were installed using a membrane expander (Figure 5.5), and were sealed to the cap and base by four rubber "O" rings (Figure 5.6). O-rings at the top and bottom of the triaxial chamber were greased with silicon grease, and the triaxial test chamber was tightly sealed.

During the whole sampling and installation procedure, the soil specimen was handled extremely carefully in order to minimize disturbance and prevent any changes in moisture content.

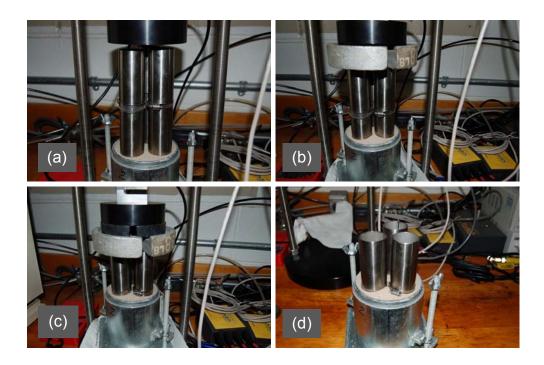
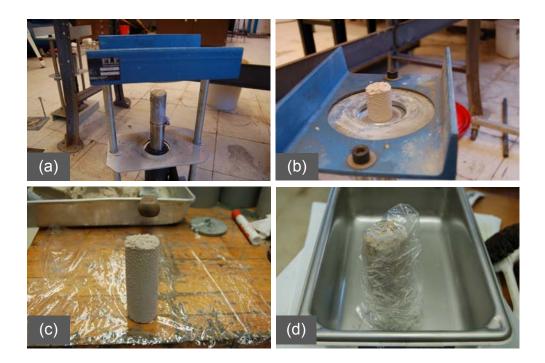




Figure 5.3. Sampling Procedure; (a) placing sampling tubes on top of the soil, (b) pushing sampling tubes into the soil, (c) attainment of the desired sampling depth, and (d) Proctor mold ready for extrusion.



5.4. Sampling Procedure; (a) placing tube on the close fitting piston, (b) extruding specimen out of the tube, (c) specimen extruded out of the tube, (d) sealing with plastic wrap.



Figure 5.5. Membranes Installed with an Expander



Figure 5.6. Specimen Encased in Membranes and Sealed with "O" Rings

In a few cases where the soil in the Proctor mold was very stiff, the sampling procedure that was used caused a loosening of the soil. Alternatively, some densification occurred for those specimens which were initially very loose. In order to investigate the effect of disturbance caused by the tube sampling procedure that was used, changes in density were checked as an indicator of disturbance. The average value of percent densification for all 206 samples that were prepared using the sampling tube approach was 4.3%. All observed densification values were less than 12%, and 83% of the values were less than 5%.

To compare sampling disturbance effects of the tube sampling method that was utilized with the more traditional hand-based wire saw trimming method, 18 specimens were prepared using a sample trimmer, as shown in Figure 5.7. The average value of percent densification for all samples prepared using the wire saw trimming method was 5%. All values were less than 13%, and 78% of the values were less than 5%. The results for each sample preparation method are summarized in Table 5.1; analysis of these numbers shows that the tube sampling method is more reliable and less time consuming than the wire saw trimming method.

| Sampling<br>Method | Approximate<br>Preparation<br>Time<br>(min/specimen) | Average<br>Densification<br>(%) | Maximum<br>Densification<br>(%) | Specimens<br>with measured<br>Densification ≤<br>5% (%) |
|--------------------|------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------------------------------|
| Wire Saw           | 60                                                   | 5                               | 13                              | 78                                                      |
| Tube               | 15                                                   | 4.3                             | 12                              | 83                                                      |

**Table 5.1 Comparison of Two Sampling Method** 



## Figure 5.7. Trimming the specimen using the wire saw trimming method

Figure 5.8 provides a comparison of triaxial specimen density with the ascompacted soil density. As can be observed, the sampling process does have an effect on the initial state of the triaxial specimens. However, as shown for the bentonite specimens (both in Figure 5.8 and in Table 5.1), this effect can be even more pronounced for specimens that are prepared using traditional trimming methods.

Differences between triaxial specimens and the Proctor specimen can also be attributed to the smaller sample size. As demonstrated by Gau and Olson (1971), density variations occur throughout a mass of soil compacted in a Proctor mold. These are averaged out for the entire Proctor specimen. However, the sub-sampling that is performed to create small triaxial specimens may consequently yield more highly variable specimen densities, as a specimen can be taken from an area of local variation.

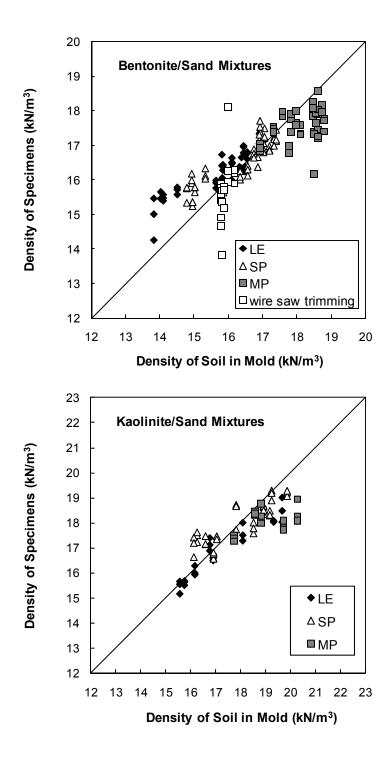



Figure 5.8. Comparison of Triaxial Specimen Density and As-Compacted Soil Density

#### 5.1.2 UU Triaxial Test Procedure

The triaxial compression tests were conducted in accordance with ASTM D 2850-03a, Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. After placing the triaxial chamber with a prepared specimen in place in the load frame, the chamber was filled with tap water. The specimen was then subjected to a cell pressure, and axially loaded to failure. For each Proctor mold, triaxial specimens were prepared and tested at confining pressures of 69, 138 and 276 kPa (10, 20 and 40 psi). The axial load was applied using a computer-based servomotor system, in conjunction with a strain-controlled approach to loading.

After application of the confining pressure, 10 minutes were allowed for the specimen to stabilize and equilibrate prior to application of the axial load. During the shearing stage, the triaxial specimen was subjected to axial displacements at a strain rate of 1%/minute, and the corresponding load on the specimen was recorded. For each specimen, shearing was continued until an axial strain of 15% was achieved. Because all of the tests were of the unconsolidated-undrained variety, the overall specimen water contents at failure were believed to be approximately the same as the specimen water content after compaction (although localized water content redistribution likely occurred in the specimens during shear). At the completion of the test, the cell was drained and the sample removed for water content determination.

Because the axial load-measuring device is located outside of the triaxial chamber, the chamber pressure produces an upward force on the piston that will thrust against the axial loading device. Therefore, the axial loading-measuring device was adjusted to compensate for piston friction and thrust using the following equation: Piston Force = Chamber Pressure × Cross - Sectional Area of Piston = Chamber Pressure ×  $\frac{1}{4}\pi D^2$ 

Where:

D = diameter of piston, which was 12.7 mm (0.5 in.)

#### 5.1.3 Correction for Membrane Effects

According to ASTM D 2850-03a, the following equation was used to correct the principal stress difference for the effect of the membrane:

$$\Delta(\sigma_1 - \sigma_3) = 4E_m t_m \varepsilon_1 / D$$

Where:

 $\Delta(\sigma_1 - \sigma_3)$  = correction to be subtracted from the measured principal stress difference,

D = diameter of specimen,

 $E_m$  = Young's modulus for the membrane material which was 1.39 MPa,

 $t_m$  = thickness of membranes which was 0.14 mm for two layers of

membranes,

$$\varepsilon_1$$
 = axial strain.

#### 5.2 Results and Discussion of Results

As mentioned previously in Chapter 4, the resulting matrix of test specimens was quite large, and for clarity it was necessary to assign each sample a name based on its compaction conditions and confining pressure. Firstly, each sample was assigned a letter to signify at which energy level it was compacted: M, S, and L stand for modified Proctor, standard Proctor, and low energy Proctor, respectively. Secondly, a number (15, 25, or 50) was assigned to indicate the clay proportion in the soil mixture. Thirdly, a K or B was assigned to signify the type of clay mineral that was tested. Fourthly, a number accompanying this letter was used to define the water content with negative numbers corresponding to dry of optimum, zero meaning at the optimum, and positive numbers signifying wet of optimum. Finally, the triaxial test confining pressure was denoted by the letter C and a number enclosed in parentheses and placed after the first four symbols. For example, a Standard Proctor specimen containing 15% bentonite compacted 2% dry of optimum and tested at 69 kPa would appear as S15B(-2)C(69).

#### 5.2.1 Unconsolidated-Undrained Shear Strength

Complete data sheets for each UU triaxial test are given in Appendix F. The results of the unconsolidated-undrained triaxial tests are summarized in Table 5.2. Complete replication of the tests at all compaction levels and water contents were planned, although not all were carried out because some samples failed during the sampling procedure.

The relationship between strength, water content, dry unit weight and clay mineral may vary greatly depending on the manner in which the strength is determined, and this in turn will depend on the purpose for which the relationship is being used. For example, in pavement design tests, the strength index of a soil is usually determined at relatively low strains, e.g., on the order of 5% (Seed and Chan, 1959). On the other hand, engineers concerned with testing soil for foundation studies or earth dam design would like to determine strength at larger strains (Seed and Chan, 1959). For the UU tests that were conducted here, *failure* was defined as the maximum deviator stress occurring in the range of 0-15% axial strain. At failure, the points  $p_f = (\sigma_1 + \sigma_3)/2$  are plotted vs.  $q_f = (\sigma_1 - \sigma_3)/2$  in Figures 5.9 through 5.13. Failure lines ( $K_f$  lines) were drawn through these points using linear least squares regression analysis. The failure lines for the bentonite/sand samples compacted at different energy levels are presented in Figures 5.9 through 5.11. The failure lines for the kaolinite/sand samples are presented in Figures 5.12 and 5.13, which show much the same behavior as the bentonite/sand mixtures. It should be noted that the results from the tests on the 15% kaolinite/sand mixtures are not shown because these specimens all failed during the sampling procedure.

As can be seen in Figures 5.9 through 5.13, the strength decreases with increasing water content for all samples. On the other hand, the strength increases with increasing confining pressure and compactive effort. The failure lines for Low Energy and Standard Proctor specimens at the highest water content are often close to horizontal, especially for the Low Energy specimens. These samples are almost saturated; any increase in confining pressure merely increases the pore water pressure but has little effect on the associated soil strength. However, exceptions are seen at the Modified Proctor energy level. The failure lines of the highest water content for this energy level do not reach a horizontal position in Figures 5.9 to 5.13. These samples are stiffer and stronger and require higher confining pressure to induce a nearly saturated condition.

The effect of confining pressure on strength is more obvious for samples at lower water contents. This is because these samples are partially saturated soils, which are more susceptible to change in void ratio as confining pressure is applied, due to compression of air voids (even under "unconsolidated" conditions where drainage cannot occur). As the void ratio decreases, the soil shear strength increases; this is why specimens compacted dry of optimum exhibit the largest gains in strength with increases in confining pressure.

| Test Number  | Max.<br>Deviator<br>Stress<br>(kPa) | Test Number  | Max.<br>Deviator<br>Stress<br>(kPa) | Test Number                  | Max.<br>Deviator<br>Stress<br>(kPa) |
|--------------|-------------------------------------|--------------|-------------------------------------|------------------------------|-------------------------------------|
| L15-B(-4)-C1 | 212.2                               | L25-B(+1)-C1 | 223.7                               | L50-B(+3)-C1                 | 274.5                               |
| L15-B(-4)-C2 | 305.8                               | L25-B(+1)-C2 | 252.3                               | L50-B(+3)-C2                 | 344.2                               |
| L15-B(-4)-C3 | 453.7                               | L25-B(+1)-C3 | 301.5                               | L50-B(+3)-C3                 | 366.9                               |
| L15-B(-2)-C1 | 200.4                               | L25-B(+3)-C1 | 185.9                               | L50-B(+4)-C1                 | 287.5                               |
| L15-B(-2)-C2 | 277.6                               | L25-B(+3)-C2 | 213.5                               | L50-B(+4)-C2                 | 291.9                               |
| L15-B(-2)-C3 | 442.9                               | L25-B(+3)-C3 | 247.9                               | L50-B(+4)-C3                 | 328.3                               |
| L15-B(0)-C1  | 201.7                               | L25-B(+5)-C1 | 150.9                               | S15-B(-5)-C1                 | 241.9                               |
| L15-B(0)-C2  | 254.7                               | L25-B(+5)-C2 | 160.9                               | S15-B(-5)-C2                 | 326.4                               |
| L15-B(0)-C3  | 424.1                               | L25-B(+5)-C3 | 174.0                               | S15-B(-5)-C3                 | 587.8                               |
| (0) 00       |                                     | ( 0) 00      |                                     |                              |                                     |
| L15-B(+2)-C1 | 202.1                               | L50-B(-4)-C1 | 386.5                               | S15-B(-3)-C1                 | 225.1                               |
| L15-B(+2)-C2 | 244.3                               | L50-B(-4)-C2 | 470.0                               | S15-B(-3)-C2                 | 279.9                               |
| L15-B(+2)-C3 | 356.9                               | L50-B(-4)-C3 | 602.0                               | S15-B(-3)-C3                 | 532.3                               |
| L15-B(+4)-C1 | 151.4                               | L50-B(-2)-C1 | 432.9                               | S15-B(-1)-C1                 | 211.4                               |
| L15-B(+4)-C2 | 180.4                               | L50-B(-2)-C2 | 447.8                               | S15-B(-1)-C2                 | 358.7                               |
| L15-B(+4)-C3 | 210.2                               | L50-B(-2)-C3 | 610.5                               | S15-B(-1)-C3                 | 502.1                               |
| L15-B(+5)-C1 | 76.3                                | L50-B(-1)-C1 | 417.3                               | S15-B(+1)-C1                 | 220.5                               |
| L15-B(+5)-C2 | 94.0                                | L50-B(-1)-C2 | 470.4                               | S15-B(+1)-C2                 | 270.0                               |
| L15-B(+5)-C3 | 102.1                               | L50-B(-1)-C3 | 550.3                               | S15-B(+1)-C3                 | 395.7                               |
| L25-B(-3)-C1 | 262.5                               | L50-B(0)-C1  | 372.6                               | S15-B(+3)-C1                 | 195.0                               |
| L25-B(-3)-C2 | 305.9                               | L50-B(0)-C2  | 425.3                               | S15-B(+3)-C1<br>S15-B(+3)-C2 | 230.1                               |
| L25-B(-3)-C3 | 498.1                               | L50-B(0)-C2  | 469.6                               | S15-B(+3)-C3                 | 318.1                               |
| 220 2( 0) 00 | 100.1                               | 200 2(0) 00  | 100.0                               |                              | 0.0.1                               |
| L25-B(-1)-C1 | 252.2                               | L50-B(+2)-C1 | 356.2                               | S15-B(+5)-C1                 | 121.2                               |
| L25-B(-1)-C2 | 283.4                               | L50-B(+2)-C2 | 378.9                               | S15-B(+5)-C2                 | 145.3                               |
| L25-B(-1)-C3 | 389.8                               | L50-B(+2)-C3 | 425.8                               | S15-B(+5)-C3                 | 185.8                               |
|              |                                     |              |                                     |                              |                                     |

**Table 5.2 Deviator Stress Values** 

| Test Number  | Max.<br>Deviator<br>Stress<br>(kPa) | Test Number  | Max.<br>Deviator<br>Stress<br>(kPa) | Test Number  | Max.<br>Deviator<br>Stress<br>(kPa) |
|--------------|-------------------------------------|--------------|-------------------------------------|--------------|-------------------------------------|
| S25-B(-4)-C1 | 311.7                               | S50-B(0)-C1  | 517.7                               | M25-B(-4)-C1 | 467.2                               |
| S25-B(-4)-C2 | 379.3                               | S50-B(0)-C2  | 549.6                               | M25-B(-4)-C2 | 672.1                               |
| S25-B(-4)-C3 | 576.1                               | S50-B(0)-C3  | 599.3                               | M25-B(-4)-C3 | 879.7                               |
| S25-B(-2)-C1 | 294.1                               | S50-B(+1)-C1 | 421.8                               | M25-B(-2)-C1 | 566.4                               |
| S25-B(-2)-C2 | 366.8                               | S50-B(+1)-C2 | 475.6                               | M25-B(-2)-C2 | 576.3                               |
| S25-B(-2)-C3 | 501.1                               | S50-B(+1)-C3 | 475.4                               | M25-B(-2)-C3 | 832.7                               |
| S25-B(0)-C1  | 230.0                               | S50-B(+3)-C1 | 348.6                               | M25-B(0)-C1  | 430.9                               |
| S25-B(0)-C2  | 286.0                               | S50-B(+3)-C2 | 338.3                               | M25-B(0)-C2  | 528.1                               |
| S25-B(0)-C3  | 352.0                               | S50-B(+3)-C3 | 379.4                               | M25-B(0)-C3  | 674.5                               |
| S25-B(+2)-C1 | 157.0                               | S50-B(+6)-C1 | 234.5                               | M25-B(+2)-C1 | 392.1                               |
| S25-B(+2)-C2 | 208.0                               | S50-B(+6)-C2 | 267.0                               | M25-B(+2)-C2 | 400.1                               |
| S25-B(+2)-C3 | 220.0                               | S50-B(+6)-C3 | 271.8                               | M25-B(+2)-C3 | 542.6                               |
| S25-B(+4)-C1 | 109.2                               | M15-B(-1)-C1 | 278.0                               | M25-B(+4)-C1 | 277.2                               |
| S25-B(+4)-C2 | 123.7                               | M15-B(-1)-C2 | 377.3                               | M25-B(+4)-C2 | 277.4                               |
| S25-B(+4)-C3 | 135.5                               | M15-B(-1)-C3 | 695.8                               | M25-B(+4)-C3 | 458.3                               |
| S25-B(+6)-C1 | 90.2                                | M15-B(+1)-C1 | 257.8                               | M50-B(-1)-C1 | 1051.6                              |
| S25-B(+6)-C2 | 95.8                                | M15-B(+1)-C2 | 477.0                               | M50-B(-1)-C2 | 1180.3                              |
| S25-B(+6)-C3 | 122.7                               | M15-B(+1)-C3 | 670.6                               | M50-B(-1)-C3 | 1295.6                              |
| S50-B(-3)-C1 | 522.8                               | M15-B(+3)-C1 | 299.8                               | M50-B(+2)-C1 | 1079.3                              |
| S50-B(-3)-C2 | 559.8                               | M15-B(+3)-C2 | 338.2                               | M50-B(+2)-C2 | 996.7                               |
| S50-B(-3)-C3 | 767.1                               | M15-B(+3)-C3 | 590.7                               | M50-B(+2)-C3 | 1232.6                              |
| S50-B(-2)-C1 | 523.0                               | M15-B(+5)-C1 | 189.5                               | M50-B(+4)-C1 | 646.7                               |
| S50-B(-2)-C2 | 619.2                               | M15-B(+5)-C2 | 304.7                               | M50-B(+4)-C2 | 713.3                               |
| S50-B(-2)-C3 | 729.5                               | M15-B(+5)-C3 | 337.2                               | M50-B(+4)-C3 | 762.3                               |

# Table 5.2 (continued)

| Test Number  | Max.<br>Deviator<br>Stress<br>(kPa) | Test Number  | Max.<br>Deviator<br>Stress<br>(kPa) | Test Number  | Max.<br>Deviator<br>Stress<br>(kPa) |
|--------------|-------------------------------------|--------------|-------------------------------------|--------------|-------------------------------------|
| M50-B(+5)-C1 | 508.4                               | L50-K(+4)-C1 | 32.3                                | S50-K(+3)-C1 | 45.2                                |
| M50-B(+5)-C2 | 561.8                               | L50-K(+4)-C2 | 29.8                                | S50-K(+3)-C2 | 41.6                                |
| M50-B(+5)-C3 | 583.6                               | L50-K(+4)-C3 | 35.3                                | S50-K(+3)-C3 | 57.5                                |
| L25-K(-2)-C1 | 295.0                               | S25-K(-2)-C1 | 394.9                               | M25-K(0)-C1  | 240.2                               |
| L25-K(-2)-C2 | 404.0                               | S25-K(-2)-C2 | 475.6                               | M25-K(0)-C2  | 212.3                               |
| L25-K(-2)-C3 | 660.9                               | S25-K(-2)-C3 | 750.3                               | M25-K(0)-C3  | 688.6                               |
| L25-K(0)-C1  | 156.5                               | S25-K(0)-C1  | 211.6                               | M25-K(+2)-C1 | 122.7                               |
| L25-K(0)-C2  | 328.5                               | S25-K(0)-C2  | 256.3                               | M25-K(+2)-C2 | 216.1                               |
| L25-K(0)-C3  | 377.0                               | S25-K(0)-C3  | 355.2                               | M25-K(+2)-C3 | 468.8                               |
| L25-K(+2)-C1 | 60.0                                | S25-K(+2)-C1 | 59.0                                | M50-K(0)-C1  | 1132.3                              |
| L25-K(+2)-C2 | 75.8                                | S25-K(+2)-C2 | 77.3                                | M50-K(0)-C2  | 1203.5                              |
| L25-K(+2)-C3 | 116.8                               | S25-K(+2)-C3 | 113.1                               | M50-K(0)-C3  | 1553.7                              |
| L50-K(-4)-C1 | 470.7                               | S50-K(-5)-C1 | 598.40                              | M50-K(+2)-C1 | 576.1                               |
| L50-K(-4)-C2 | 575.9                               | S50-K(-5)-C2 | 797.60                              | M50-K(+2)-C2 | 643.7                               |
| L50-K(-4)-C3 | 767.9                               | S50-K(-5)-C3 | 1110.20                             | M50-K(+2)-C3 | 714.7                               |
| L50-K(-2)-C1 | 362.2                               | S50-K(-3)-C1 | 536.3                               | M50-K(+4)-C1 | 223.7                               |
| L50-K(-2)-C2 | 503.4                               | S50-K(-3)-C2 | 549.4                               | M50-K(+4)-C2 | 230.8                               |
| L50-K(-2)-C3 | 558.1                               | S50-K(-3)-C3 | 848.1                               | M50-K(+4)-C3 | 228.6                               |
| L50-K(0)-C1  | 104.6                               | S50-K(-2)-C1 | 309.2                               |              |                                     |
| L50-K(0)-C2  | 132.1                               | S50-K(-2)-C2 | 312.0                               |              |                                     |
| L50-K(0)-C3  | 141.9                               | S50-K(-2)-C3 | 358.8                               |              |                                     |
| L50-K(+2)-C1 | 49.8                                | S50-K(+1)-C1 | 113.8                               |              |                                     |
| L50-K(+2)-C2 | 53.0                                | S50-K(+1)-C2 | 122.1                               |              |                                     |
| L50-K(+2)-C3 | 53.6                                | S50-K(+1)-C3 | 132.3                               |              |                                     |

# Table 5.2 (continued)

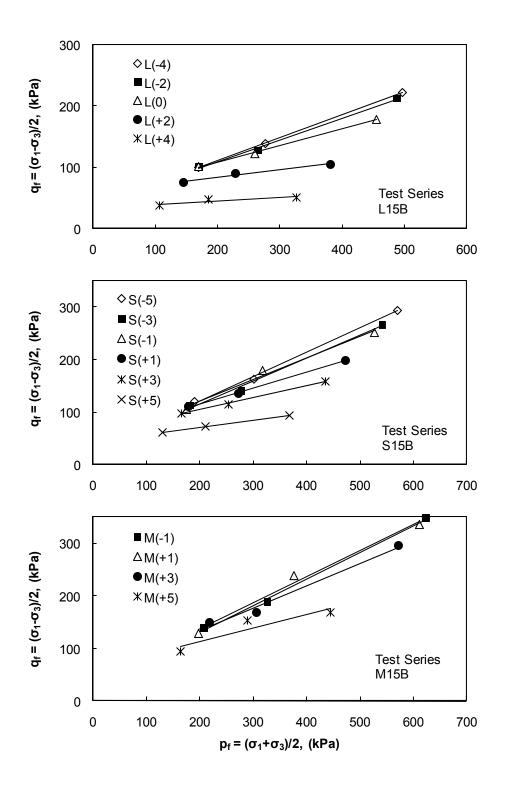



Figure 5.9. qf vs. pf Failure Plots with Failure Lines for Test Series B15




Figure 5.10. qf vs. pf Failure Plots with Failure Lines for Test Series B25

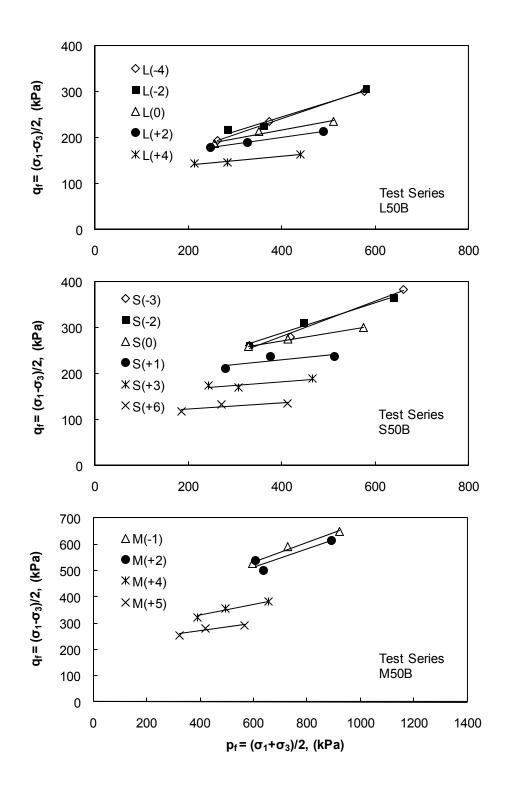



Figure 5.11. qf vs. pf Failure Plots with Failure Lines for Test Series B50

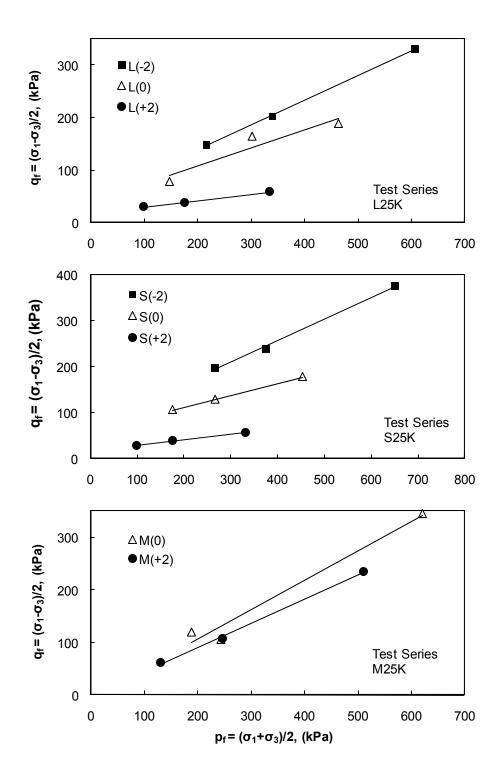



Figure 5.12. qf vs. pf Failure Plots with Failure Lines for Test Series K25

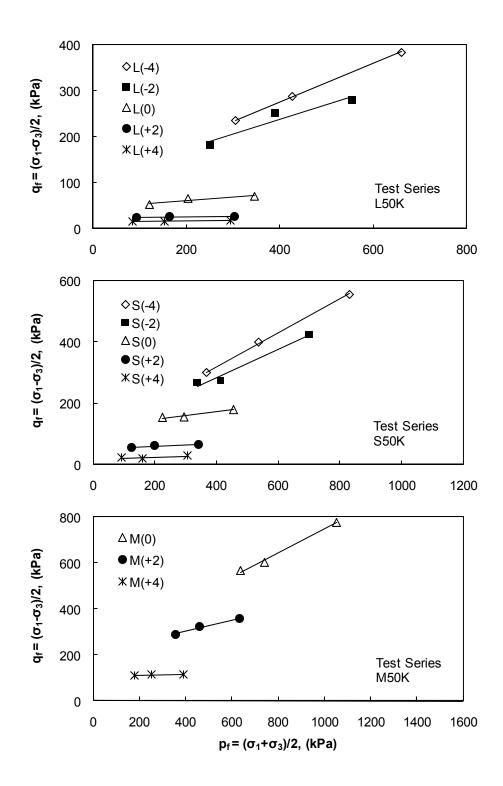



Figure 5.13. qf vs. pf Failure Plots with Failure Lines for Test Series K50

The effect of clay content and test confining pressure on the strengths measured for the bentonite/sand mixtures are shown more clearly in Figures 5.14 to 5.16. Each figure is for a separate nominal energy level. The change in maximum deviator stress under the influence of changing bentonite content is apparent. For a given compaction effort, increasing the clay proportion increases the maximum deviator stress of the soil mixture. Samples containing 50% bentonite have a maximum deviator stress that is considerably higher than those containing 15% and 25% bentonite. However, exceptions are seen at the highest confining pressure (C3 = 276 kPa), for which the compressive strength for samples containing 15% bentonite overlaps with those containing 25% bentonite. This is true at each nominal energy level. On the wet side of optimum the slopes of the trend lines are much the same and nearly coincide, regardless of the confining pressure. This is a consequence of the soil's nearly saturated condition. As the compaction water content decreases from the optimum, the slopes of the trend lines tend to diverge.

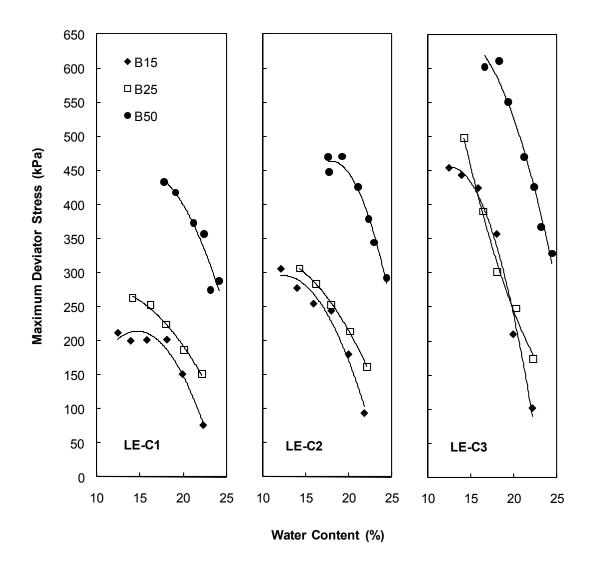



Figure 5.14. Maximum Deviator Stress of Bentonite/Sand Mixtures Compacted Using the Low Energy Proctor Method

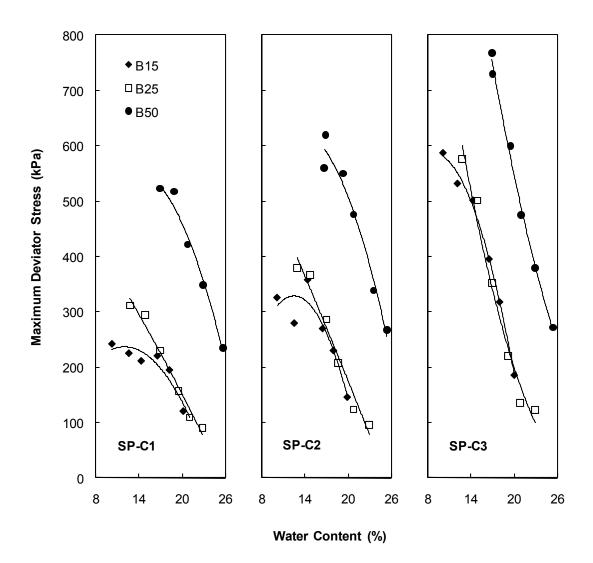



Figure 5.15. Maximum Deviator Stress of Bentonite/Sand Mixtures Compacted Using the Standard Proctor Method

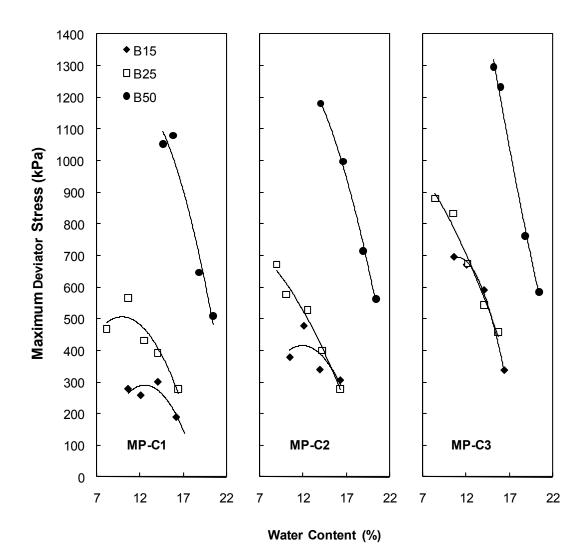



Figure 5.16. Maximum Deviator Stress of Bentonite/Sand Mixtures Compacted Using the Modified Proctor Method

The kaolinite/sand specimens that were tested exhibited much the same behavior as the bentonite/sand specimens, i.e., at the same water content, as the clay content increases, the maximum deviator stress increases. To better describe the effect of different clay minerals on the measured maximum deviator stresses, the test results from the kaolinite/sand mixtures were plotted together with the bentonite/sand mixtures in Figures 5.17 to 5.19. The effect of increasing water content on strength is more pronounced for the kaolinite/sand mixtures than for the bentonite/sand mixtures. At a water content 4% dry of optimum, the kaolinite/sand mixtures have a much higher strength than the bentonite/sand mixtures at the same clay content. The addition of a small amount of water produced a much sharper drop in the maximum deviator stress for the kaolinite/sand specimens. The change is so rapid that at 4% wet of optimum, the maximum deviator stress of the kaolinite/sand mixture has values that are relatively close to zero.

The bentonite utilized in this research study was comprised principally of the clay mineral montmorillonite (> 90% by mass, American Colloid Company, 1995). Compared to kaolinite, montmorillonite has a much smaller crystal size and a much larger specific surface. The relative sizes of kaolinite and montmorillonite and their specific surface are shown in Table 5.3 (Yong and Warkentin, 1975). Montmorillonite crystals have a stronger attraction for water, and have the tendency to adsorb much more water when forming a water layer surrounding each crystal. For the kaolinite/sand specimens, a water content that is 4% wet of optimum is very close to their liquid limit, while for bentonite/sand mixtures, a water content that is 4% wet of optimum is far from their liquid limit. For the kaolinite/sand mixtures, the addition of a small amount of water expands the water layer around the particles, which increases the repulsion between particles and gives a higher degree of dispersion and a lower strength for the resulting specimens that are prepared. However, the addition of this amount of water doesn't have nearly the same effect on the bentonite/sand mixtures.

| Mineral         | Typical<br>Thickness (nm) | Typical Diameter<br>(nm) | Specific Surface<br>(km²/kg) |
|-----------------|---------------------------|--------------------------|------------------------------|
| Montmorillonite | 3                         | 100-1000                 | 0.8                          |
| Kaolinite       | 50-2000                   | 300-4000                 | 0.015                        |

Table 5.3 Relative Sizes and Specific Surfaces of Clay Minerals (after Yong and Warkentin, 1975)

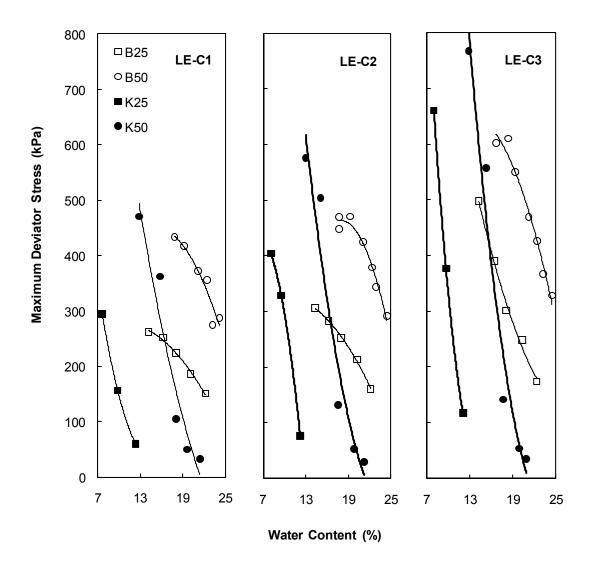



Figure 5.17. Maximum Deviator Stress of Clay/Sand Mixtures Compacted Using the Low Energy Proctor Method

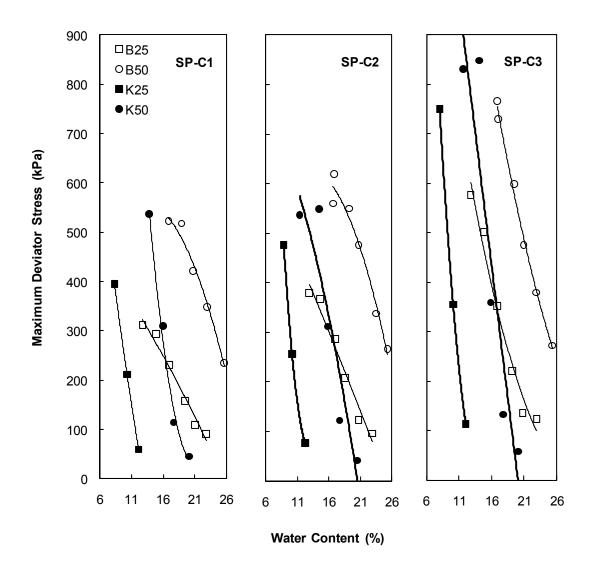



Figure 5.18. Maximum Deviator Stress of Clay/Sand Mixtures Compacted Using the Standard Proctor Method

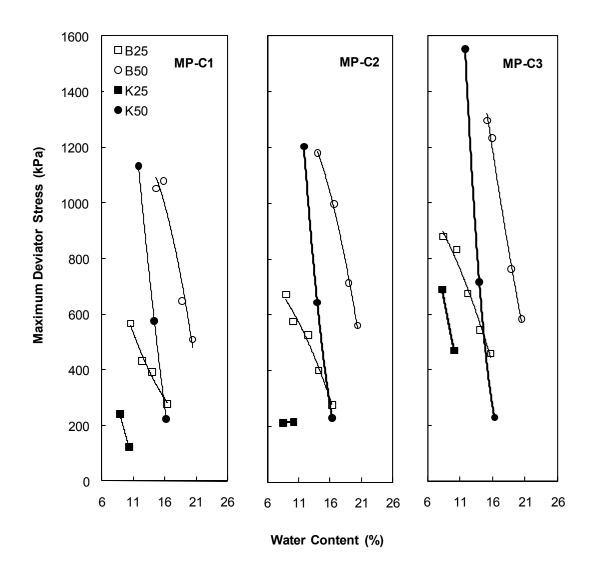



Figure 5.19. Maximum Deviator Stress of Clay/Sand Mixtures Compacted Using the Modified Proctor Method

#### 5.2.2 Stress-Strain Behavior

Stress-strain curves from UU tests on bentonite/sand specimens at confining pressures up to 276 kPa are shown in Figure 5.20 to 5.28. For most of the specimens that were tested, there was strain hardening over the entire range of strains in the test rather than a definitive peak in the deviator stress.

The stress-strain curves of samples compacted dry-of-optimum are considerably steeper and more brittle than the curves of wet-of-optimum samples. From the relative position of these curves in each figure, it is evident that the dry-ofoptimum specimens are stiffer, stronger and more brittle than their wet-of-optimum counterparts. The wet-of-optimum specimens have a greater tendency to exhibit increases in strength at very high strain levels. One possible mechanism to explain this behavior is capillarity (Carrier 2000). Samples at lower water content will tend to have a more highly negative pore water pressure, which in turn causes higher effective stresses between soil particles, and a greater specimen strength. Lambe and Whitman (1979) state that for a given compactive effort and dry density, the soil structure in compacted clays tends to be more flocculated for compaction on the dry side of optimum and more dispersive on the wet side. In general, for two specimens of the same clay at the same void ratio, an element of flocculated soil has a higher strength than the same element of soil in a dispersed state. As described herein, similar strength behavior as what has been observed for compacted clays is also observed for soils that contain an intermediate level of clayey fines, but that do not classify as "true" clays.

The stress-strain behavior of soils in the UU test also depends on the confining pressure that is used. As shown in Figures 5.20 to 5.28, the steepness of the initial portion of the stress-strain curves and the strength values both increase as the

confining pressure employed in the tests increases. The effect of increased confining pressure is more pronounced in the dry-of-optimum samples, especially the samples at the lowest water content. For these samples, the strength continues to increase with increasing confining pressure. Due to the air in the voids, the higher confining pressure was able to compress the samples so that they became denser, producing an increase in undrained strength. On the other hand, the increase in confining pressure had very little effect on the wet-of-optimum samples.

Increases in confining pressure were also shown to lead to an increase in plasticity, as can be observed for M50B(-1) in Fig. 5.28. At a confining pressure of 69 kPa, the sample quickly reached its maximum deviator stress, failing in a brittle manner at an axial strain of 4%. However, at a confining pressure of 276 kPa, the failure strain was about 10%, and the strength did not reduce suddenly after reaching the peak condition.

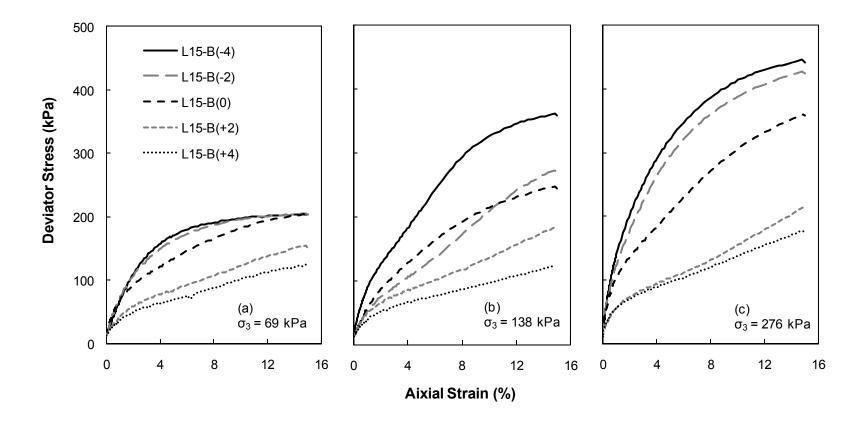



Figure 5.20. Stress-Strain Curves for Tests on Low Energy Proctor Compacted 15% Bentonite/Sand Specimens

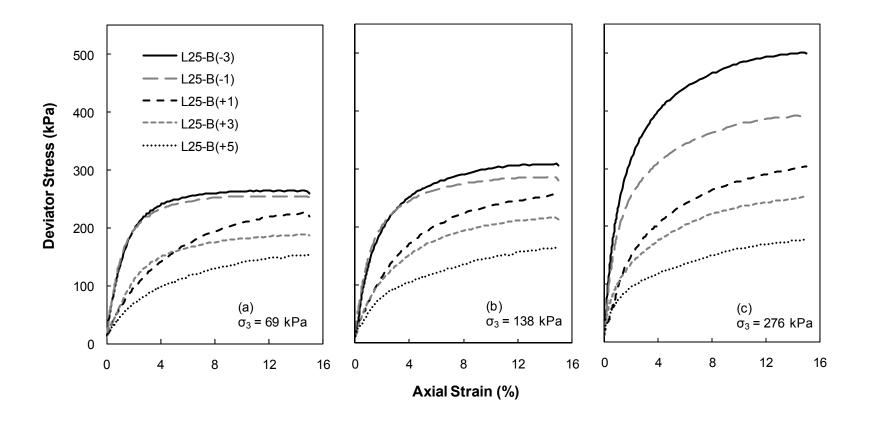



Figure 5.21. Stress-Strain Curves for Tests on Low Energy Proctor Compacted 25% Bentonite/Sand Specimens

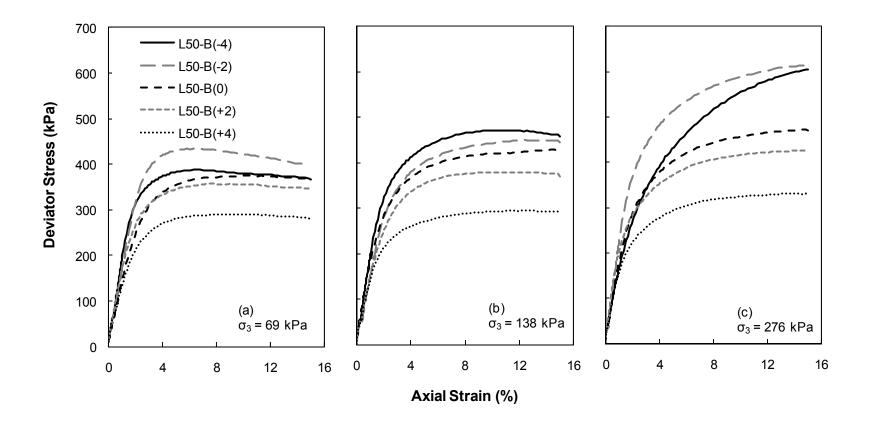



Figure 5.22. Stress-Strain Curves for Tests on Low Energy Proctor Compacted 50% Bentonite/Sand Specimens

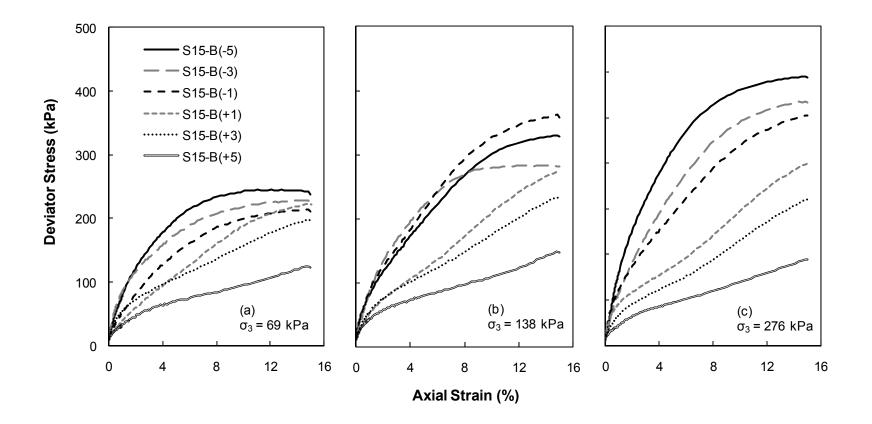



Figure 5.23. Stress-Strain Curves for Tests on Standard Proctor Compacted 15% Bentonite/Sand Specimens

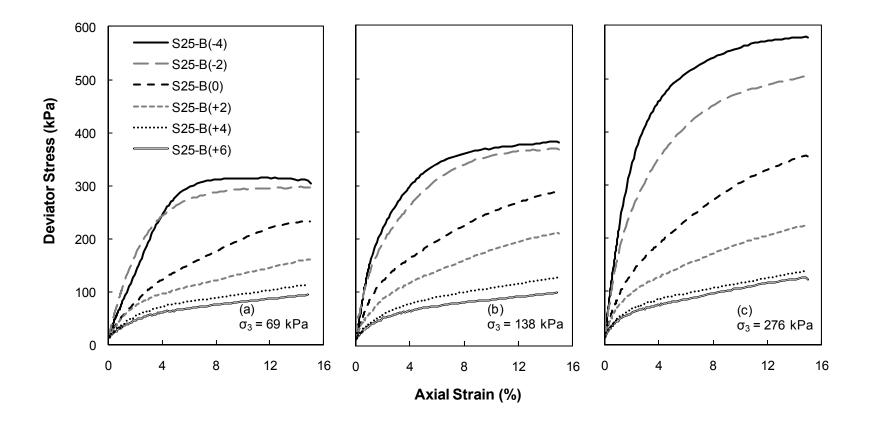



Figure 5.24. Stress-Strain Curves for Tests on Standard Proctor Compacted 25% Bentonite/Sand Specimens

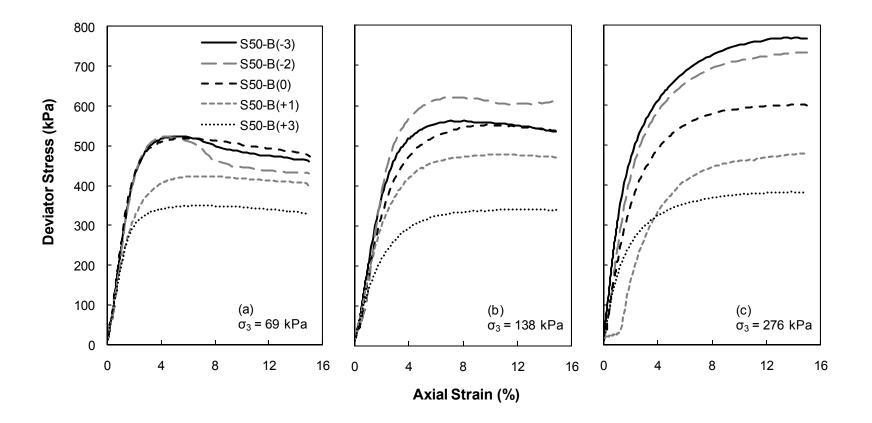



Figure 5.25. Stress-Strain Curves for Tests on Standard Proctor Compacted 50% Bentonite/Sand Specimens

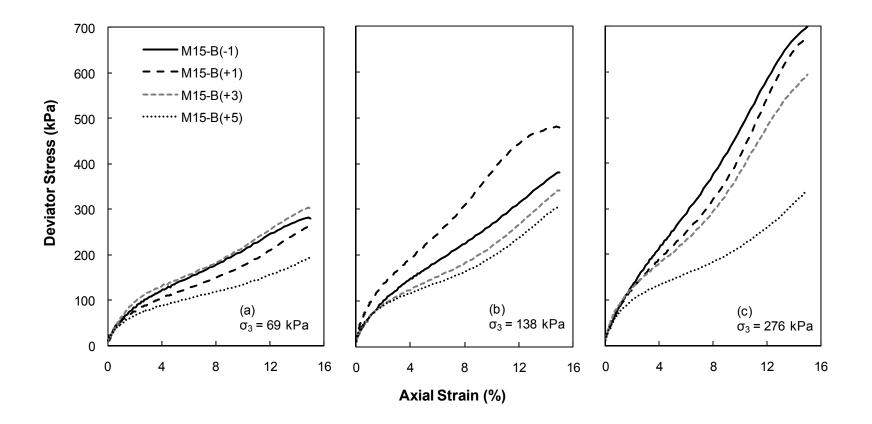



Figure 5.26. Stress-Strain Curves for Tests on Modified Proctor Compacted 15% Bentonite/Sand Specimens

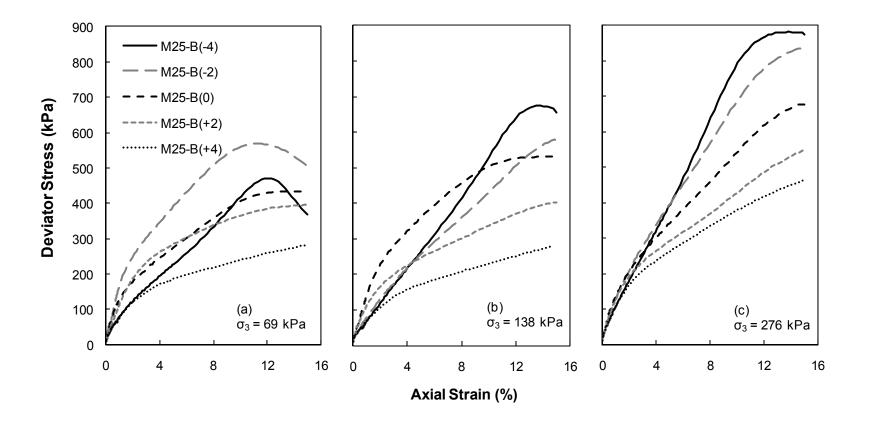



Figure 5.27. Stress-Strain Curves for Tests on Modified Proctor Compacted 25% Bentonite/Sand Specimens

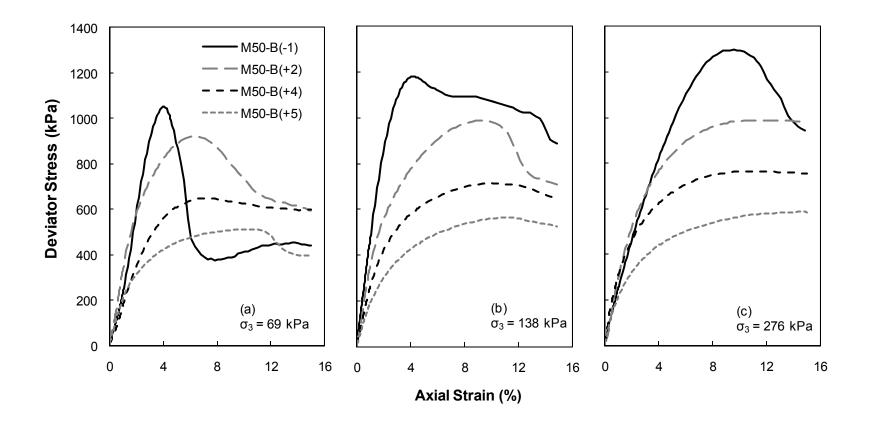



Figure 5.28. Stress-Strain Curves for Tests on Modified Proctor Compacted 50% Bentonite/Sand Specimens

Typical stress-strain curves from UU tests on bentonite/sand mixtures at confinement level 1 (69 kPa) are shown in Figures 5.29 to 5.31. The effect of clay content on the stress-strain behavior of the bentonite/sand specimens is shown more clearly in these figures. The relative shapes and positions of the curves for specimens tested at confinement level 2 (138 kPa) and level 3 (276 kPa) are similar to those observed in these figures, and are consequently not shown here. Each figure is for a separate nominal compactive effort. These data show that the specimens containing 50% bentonite are apparently stiffer, stronger and more brittle than specimens containing less bentonite. Definite peaks are seen in specimens containing 50% bentonite. These specimens developed a very steep stress-strain curve at the beginning of the test, and reached the maximum deviator stress at low strains. In contrast, specimens containing a lower bentonite proportion developed much flatter stress-strain curves.

The method of failure also presents an insight into the relative behavior that was observed for specimens prepared with different percentages of clay. All the specimens that contained less than 50% bentonite failed via a bulging-type mechanism. On the other hand, almost all the specimens containing 50% bentonite tested at confinement level 1 and level 2 failed on a well defined shear plane with a relatively small amount of bulging. For the specimens containing 50% bentonite, as confining pressure increased to confinement level 3, the specimens became more plastic, yielded more during the test, and typically failed via a bulging mechanism. For mixtures containing less than 50% bentonite, a high concentration of sand particles produced grain-to-grain contact and a large amount of voids among the sand particles (Figure 5.32). This type of soil matrix tended to deform by compressing voids or reorienting particles during shear, over a large portion of the specimen. As the clay content increased, the degree of void-filling by the clay also increased, which in some cases even caused the sand particles to float in a matrix of clay (Figure 5.33). At this point, specimens had a preference for developing a single shear plane. Figure 5.34 presents a picture of specimen M50-B(-1)-C1, which failed by a brittle-type failure mechanism. One of the specimens that failed by bulging, M25-B(-2)-C1, is shown in Figure 5.35.

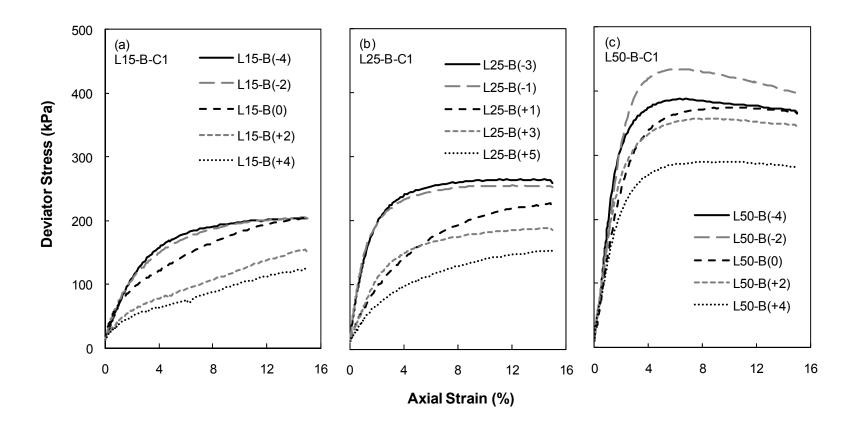



Figure 5.29. Stress-Strain Curves for Tests on Low Energy Proctor Compacted Bentonite/Sand Specimens at Confinement Level 1

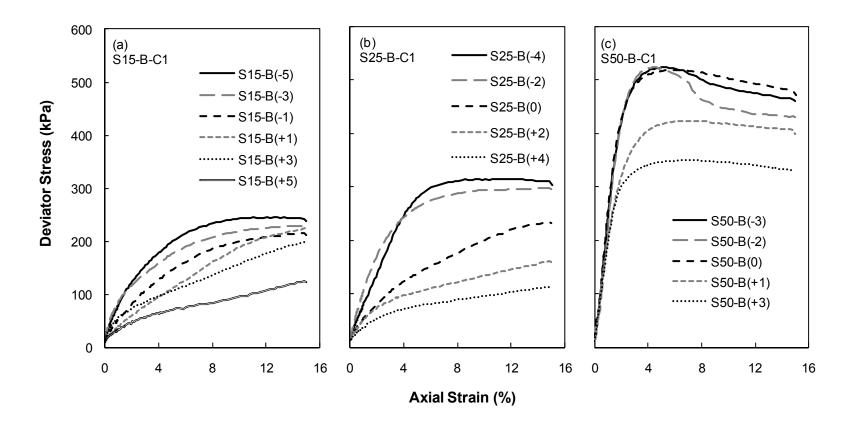



Figure 5.30. Stress-Strain Curves for Tests on Standard Proctor Compacted Bentonite/Sand Specimens at Confinement Level 1

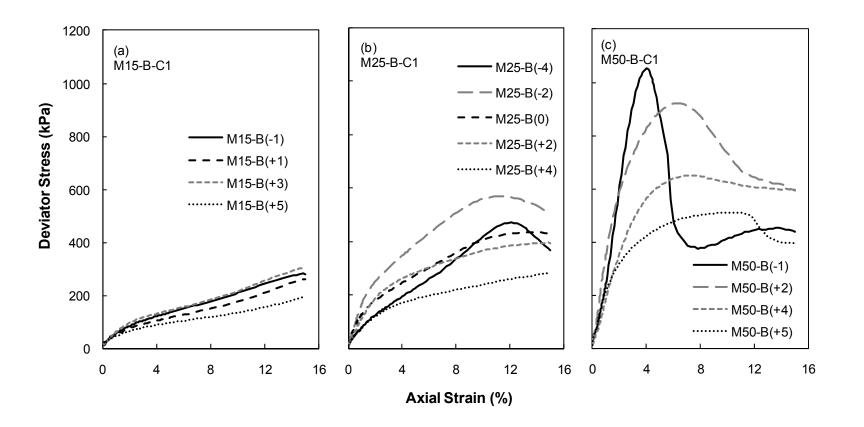



Figure 5.31. Stress-Strain Curves for Tests on Modified Proctor Compacted Bentonite/Sand Specimens at Confinement Level 1



Figure 5.32. Photograph of specimen S15-B(+1)-C1

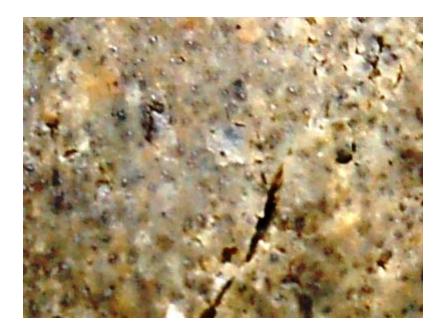



Figure 5.33. Photograph of specimen S50-B(+1)-C1

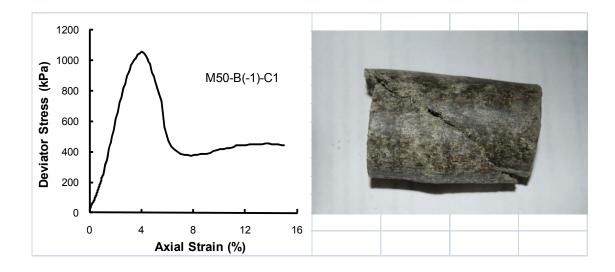



Figure 5.34. A Brittle-Type Failure: Specimen M50-B(-1)-C1

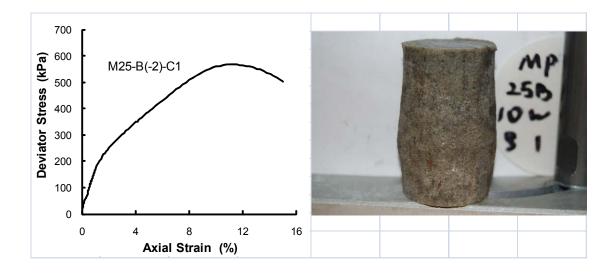



Figure 5.35. A Bulging-Type Failure: Specimen M25-B(-2)-C1

Stress-stain curves from UU triaxial tests on kaolinite/sand mixtures are shown in Figures 5.36 to 5.41. As mentioned previously, the results from tests on 15% kaolinite/sand mixtures are not shown due to sample failure during the UU specimen preparation process. The relative shapes of these stress-strain curves are similar to those observed for the bentonite/sand mixtures (Figure 5.20 to 5.28). The specimens compacted dry-of-optimum are considerably stronger, stiffer and more brittle than the otherwise identical specimens compacted wet-of-optimum. Unlike the bentonite/sand mixtures, the differences in undrained strength between dry-ofoptimum specimens and wet-of-optimum specimens are quite large. As the compaction water content increased, the undrained strength dropped drastically and the stress-strain curves became quite flat.

Increasing the UU test confining pressure had very little (if any) effect on the specimens that had been prepared wet-of-optimum. The specimens compacted wet-of-optimum maintained their considerably low strengths and plastic stress-stain behavior at all confining pressures. The dry-of-optimum specimens maintained their relatively high strengths. However, as the confining pressure increased, the dry-ofoptimum specimens lost some of their brittle stress-strain characteristics.

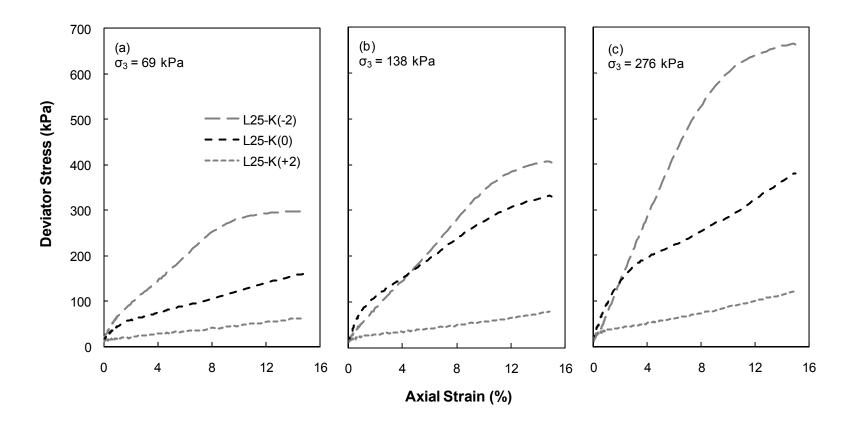



Figure 5.36. Stress-Strain Curves for Tests on Low Energy Proctor Compacted 25% Kaolinite/Sand Specimens

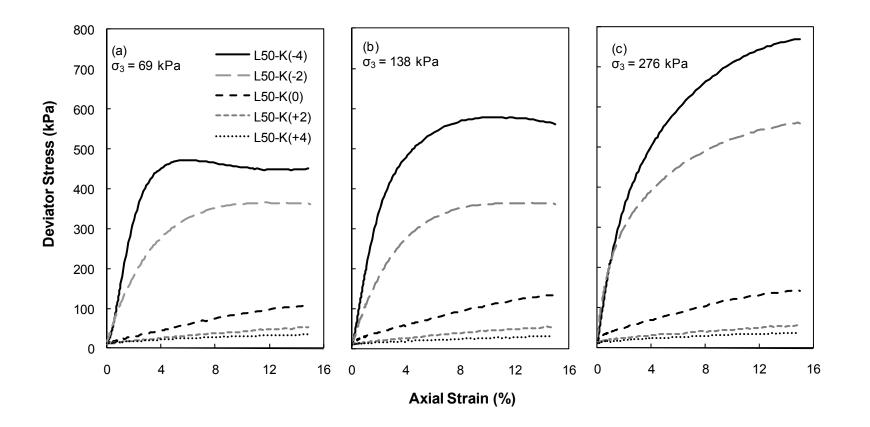



Figure 5.37. Stress-Strain Curves for Tests on Low Energy Proctor Compacted 50% Kaolinite/Sand Specimens

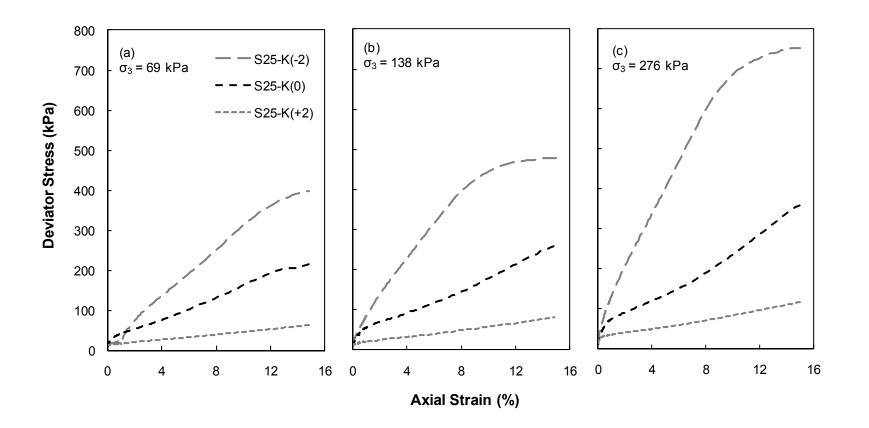



Figure 5.38. Stress-Strain Curves for Tests on Standard Proctor Compacted 25% Kaolinite/Sand Specimens

106

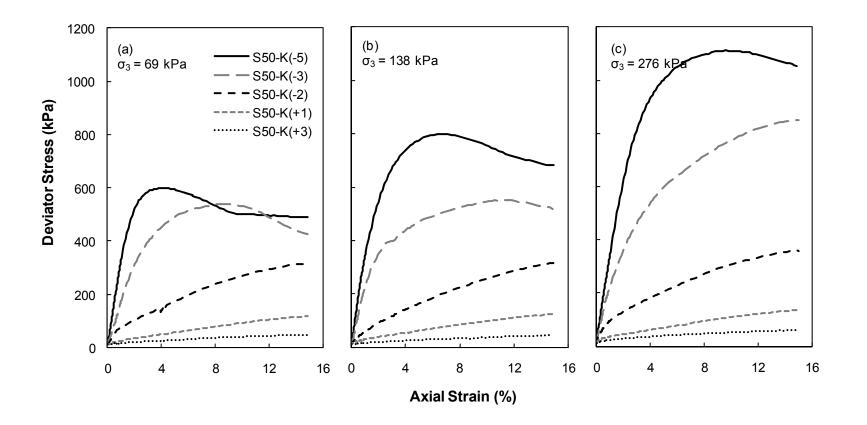



Figure 5.39. Stress-Strain Curves for Tests on Standard Proctor Compacted 50% Kaolinite/Sand Specimens

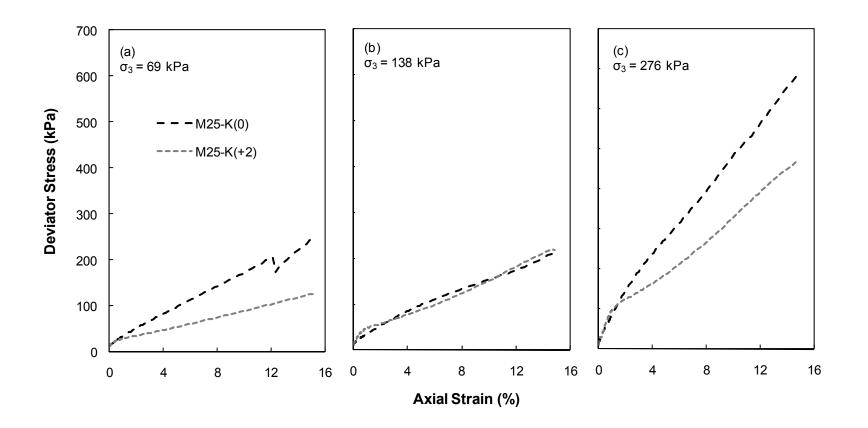



Figure 5.40. Stress-Strain Curves for Tests on Modified Proctor Compacted 25% Kaolinite/Sand Specimens

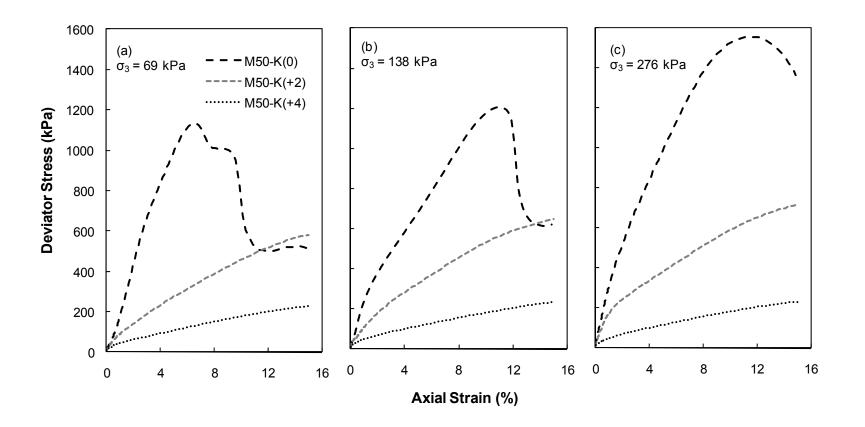



Figure 5.41. Stress-Strain Curves for Tests on Modified Proctor Compacted 50% Kaolinite/Sand Specimens

## 5.2.3 Undrained Strength Parameters

The K<sub>f</sub> failure envelopes for the soil mixtures that were tested (Figures 5.9 to 5.13) exhibited relatively linear behavior over the range of confining pressures that were used in the UU tests. The values of the Mohr-Coulomb strength parameters c and  $\phi$  were evaluated using the procedure recommended by Duncan et al. (1980), which is illustrated in Figure 5.42. At failure, the values of  $p_f = (\sigma_1 + \sigma_3)/2$  are plotted vs.  $q_f = (\sigma_1 - \sigma_3)/2$ . Failure lines (K<sub>f</sub> lines) were drawn through these points using linear least squares regression analysis.

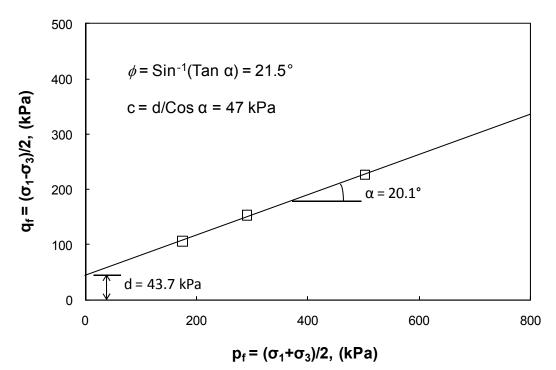



Figure 5.42. Kf line for UU-Triaxial Tests on Bentonite/Sand Specimen (Data from L15-B(-4))

The primary advantage of this method is that it is simpler to fit the "best" straight line through a series of points (which can be done using linear regression) than it is to draw the ideal Mohr-Coulomb failure envelope tangent to a series of circles which do not have a common tangent. To use this method, values of *c* and  $\phi$  are calculated from the slope and intercept of the K<sub>f</sub> line using the equations shown in Fig. 5.42. The resulting values of the Mohr-Coulomb strength parameters *c* and  $\phi$  for all the soils that were tested are listed in Table 5.4.

| Soil Number | Proctor Mold<br>Water Content<br>(%) | Proctor Mold<br>Dry Unit<br>Weight<br>(kN/m <sup>3</sup> ) | <i>c</i> (kPa) | $\phi$ (degrees) |  |  |
|-------------|--------------------------------------|------------------------------------------------------------|----------------|------------------|--|--|
| L15-B(-4)   | 12.1                                 | 16.1                                                       | 47             | 21.5             |  |  |
| L15-B(-2)   | 13.9                                 | 16.3                                                       | 39.9           | 21.7             |  |  |
| L15-B(0)    | 15.8                                 | 16.5                                                       | 40.1           | 20.8             |  |  |
| L15-B(+2)   | 17.9                                 | 16.6                                                       | 54.9           | 16               |  |  |
| L15-B(+4)   | 19.7                                 | 16.4                                                       | 60.3           | 6.9              |  |  |
| L15-B(+5)   | 21.1                                 | 15.8                                                       | 34.1           | 3.1              |  |  |
|             |                                      |                                                            |                |                  |  |  |
| L25-B(-3)   | 14.0                                 | 15.8                                                       | 55.7           | 21.9             |  |  |
| L25-B(-1)   | 16.1                                 | 16.1                                                       | 76.5           | 14.7             |  |  |
| L25-B(+1)   | 17.6                                 | 16.5                                                       | 85             | 9.1              |  |  |
| L25-B(+3)   | 19.9                                 | 15.9                                                       | 74.1           | 7.3              |  |  |
| L25-B(+5)   | 22.0                                 | 15.7                                                       | 68.5           | 3                |  |  |
|             | 16.6                                 | 14                                                         | 112.4          | 19.9             |  |  |
| L50-B(-4)   |                                      | • •                                                        |                |                  |  |  |
| L50-B(-2)   | 18.3                                 | 14.4                                                       | 125.6          | 18.4             |  |  |
| L50-B(-1)   | 19.2                                 | 14.5                                                       | 147.5          | 13.9             |  |  |
| L50-B(0)    | 20.8                                 | 14.5                                                       | 145            | 10.6             |  |  |
| L50-B(+2)   | 22.2                                 | 14.4                                                       | 143.9          | 8.3              |  |  |
| L50-B(+3)   | 23.3                                 | 14.1                                                       | 109            | 10.1             |  |  |
| L50-B(+4)   | 24                                   | 13.8                                                       | 122.4          | 5.4              |  |  |

 Table 5.4 Mohr-Coulomb Strength Parameters

## Table 5.4 (continued)

| Soil Number | Proctor Mold<br>Water Content<br>(%) | Proctor Mold<br>Dry Unit<br>Weight<br>(kN/m <sup>3</sup> ) | c (kPa) | $\phi$ (degrees) |  |  |
|-------------|--------------------------------------|------------------------------------------------------------|---------|------------------|--|--|
| S15-B(-5)   | 10                                   | 16.9                                                       | 33.5    | 27.5             |  |  |
| S15-B(-3)   | 12.3                                 | 17.2                                                       | 30      | 25.9             |  |  |
| S15-B(-1)   | 14.3                                 | 17.4                                                       | 44.1    | 24               |  |  |
| S15-B(+1)   | 16.3                                 | 17.3                                                       | 57.8    | 17.5             |  |  |
| S15-B(+3)   | 18.2                                 | 17                                                         | 59.7    | 13.4             |  |  |
| S15-B(+5)   | 19.8                                 | 16.6                                                       | 44.1    | 7.7              |  |  |
| S25-B(-4)   | 12.6                                 | 16                                                         | 70.1    | 23.2             |  |  |
| S25-B(-2)   | 14.8                                 | 16.9                                                       | 80.3    | 19.4             |  |  |
| S25-B(0)    | 16.9                                 | 17.1                                                       | 78.3    | 12.9             |  |  |
| S25-B(+2)   | 18.7                                 | 16.8                                                       | 65.8    | 7.2              |  |  |
| S25-B(+4)   | 20.5                                 | 16.4                                                       | 48.8    | 3.3              |  |  |
| S50-B(-3)   | 16.4                                 | 14.9                                                       | 139     | 22.6             |  |  |
| S50-B(-2)   | 16.9                                 | 15                                                         | 166     | 19.2             |  |  |
| S50-B(0)    | 19.5                                 | 15.1                                                       | 212     | 9.4              |  |  |
| S50-B(+1)   | 20.3                                 | 15.2                                                       | 188.3   | 6.1              |  |  |
| S50-B(+3)   | 23.1                                 | 15                                                         | 150.9   | 4.6              |  |  |
| S50-B(+6)   | 25.3                                 | 14.8                                                       | 107.2   | 4.4              |  |  |
| M15-B(-1)   | 10.5                                 | 19                                                         | 33.3    | 30.6             |  |  |
| M15-B(+1)   | 12.1                                 | 19                                                         | 44.5    | 29.7             |  |  |
| M15-B(+3)   | 13.8                                 | 18.6                                                       | 53.4    | 25.3             |  |  |
| M15-B(+5)   | 15.8                                 | 18                                                         | 63.6    | 14.9             |  |  |
| M25-B(-4)   | 8.4                                  | 18                                                         | 104.1   | 29.6             |  |  |
| M25-B(-2)   | 10.4                                 | 18.6                                                       | 138     | 24.6             |  |  |
| M25-B(0)    | 12.0                                 | 18.7                                                       | 121.5   | 21.6             |  |  |
| M25-B(+2)   | 13.8                                 | 18.5                                                       | 118.8   | 16.5             |  |  |
| M25-B(+4)   | 15.9                                 | 18                                                         | 64      | 19.1             |  |  |
| M50-B(-1)   | 13.7                                 | 17.7                                                       | 337.6   | 21.4             |  |  |
| M50-B(+2)   | 16.2                                 | 17.6                                                       | 325     | 20.3             |  |  |
| M50-B(+4)   | 18.5                                 | 17.2                                                       | 250.2   | 12.3             |  |  |
| M50-B(+5)   | 19.9                                 | 16.7                                                       | 213.8   | 8.4              |  |  |

| Soil Number | Proctor Mold<br>Water Content<br>(%) | Proctor Mold<br>Dry Unit<br>Weight<br>(kN/m <sup>3</sup> ) | c (kPa) | $\phi$ (degrees) |  |  |  |
|-------------|--------------------------------------|------------------------------------------------------------|---------|------------------|--|--|--|
| L25-K(-2)   |                                      |                                                            | 49.9    | 28.1             |  |  |  |
| L25-K(0)    | 9.4                                  | 19.3                                                       | 40.8    | 20.3             |  |  |  |
| L25-K(+2)   | 11.4                                 | 19.2                                                       | 17.4    | 7                |  |  |  |
| L50-K(-4)   | 12.6                                 | 15.5                                                       | 120.1   | 24.6             |  |  |  |
| L50-K(-2)   | 14.8                                 | 16.8                                                       | 117.3   | 18.5             |  |  |  |
| L50-K(0)    | 17.3                                 | 16.9                                                       | 45.9    | 4.4              |  |  |  |
| L50-K(+2)   | 19.5                                 | 16.1                                                       | 24.5    | 0.5              |  |  |  |
| L50-K(+4)   | 21                                   | 15.7                                                       | 14.6    | 0.5              |  |  |  |
| S25-K(-2)   | 7.9                                  | 19.3                                                       | 76.9    | 28               |  |  |  |
| S25-K(0)    | 10.0                                 | 19.6                                                       | 62.1    | 15               |  |  |  |
| S25-K(+2)   | 11.7                                 | 19                                                         | 18.3    | 6.6              |  |  |  |
| S50-K(-5)   | 11.4                                 | 16.1                                                       | 118.7   | 33.4             |  |  |  |
| S50-K(-3)   | 14.0                                 | 16.7                                                       | 115.2   | 27.1             |  |  |  |
| S50-K(-2)   | 15.1                                 | 17.9                                                       | 127.3   | 6.5              |  |  |  |
| S50-K(+1)   | 17.6                                 | 16.9                                                       | 52      | 2.4              |  |  |  |
| S50-K(+3)   | 19.8                                 | 16.1                                                       | 19.9    | 1.7              |  |  |  |
| M25-K(0)    | 8.2                                  | 20.6                                                       | 24.6    | 31.3             |  |  |  |
| M25-K(+2)   | 9.7                                  | 20.2                                                       | -       | 27.2             |  |  |  |
| M50-K(0)    | 12.2                                 | 19                                                         | 268.4   | 31.1             |  |  |  |
| M50-K(+2)   | 14.0                                 | 18.7                                                       | 209.5   | 13.8             |  |  |  |
| M50-K(+4)   | 15.8                                 | 17.7                                                       | 111.3   | 0.5              |  |  |  |

The variations in cohesion as a function of water content for each soil mixture are shown in Figures 5.43 to 5.45. Each figure is for a separate nominal energy level. As expected, the cohesion generally increased with increasing clay content. The cohesion also increased with increasing compactive effort. For specimens with higher clay contents, the cohesion increased considerably as the

compactive effort was increased to that applied by the Modified Proctor procedure. In contrast, for specimens with lower clay contents, the cohesion increased only slightly as the compactive effort increased. For specimens compacted using the low energy Proctor method, the difference in cohesion values between specimens with high clay content and lower clay content is quite small. However, the samples developed markedly different cohesion when compacted using the modified Proctor method. In other words, a low compactive effort reduces the difference in cohesion between mixtures of varying clay content. At the same clay content, the bentonite/sand specimens tend to exhibit higher cohesion values than the kaolinite/sand specimens.

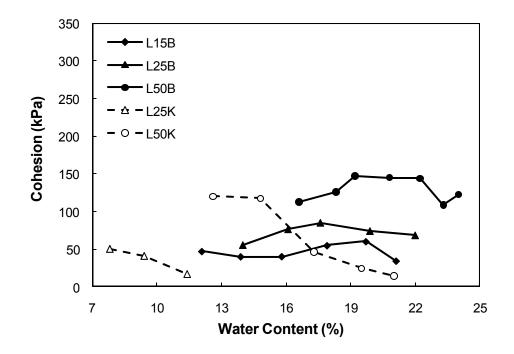



Figure 5.43. Cohesion of Low Energy Proctor Compacted Clay/Sand Specimens

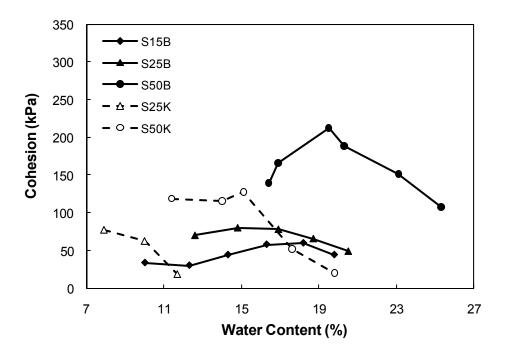



Figure 5.44. Cohesion of Standard Proctor Compacted Clay/Sand Specimens

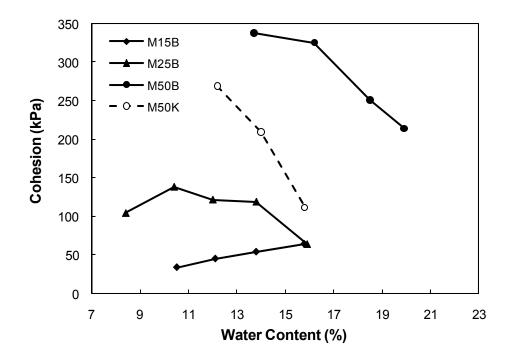



Figure 5.45. Cohesion of Modified Proctor Compacted Clay/Sand Specimens

If the total stress friction angles are plotted against the corresponding compaction water content values, it can be seen that there is a second-order polynomial correlation between the measured friction angle and compaction water content for each soil mixture that is compacted at a given energy level. Figures 5.46 to 5.50 indicate that the w% values are highly correlated with  $\phi$ . Water contents corresponding to 5, 10, 15, 20, 25, and 30 degree friction angles are determined from these second-order polynomial equations and are summarized in Table 5.5. To be more accurate, only those values of water content within the tested range were calculated.

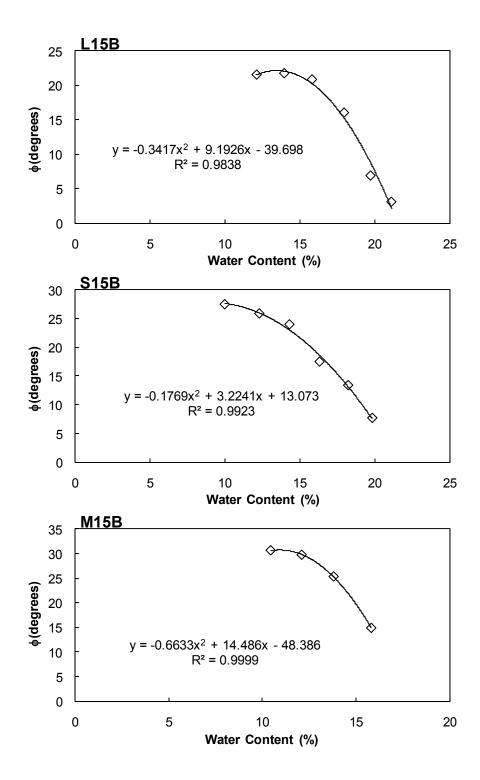



Figure 5.46. Relationship between  $\phi$  and w% (15B)

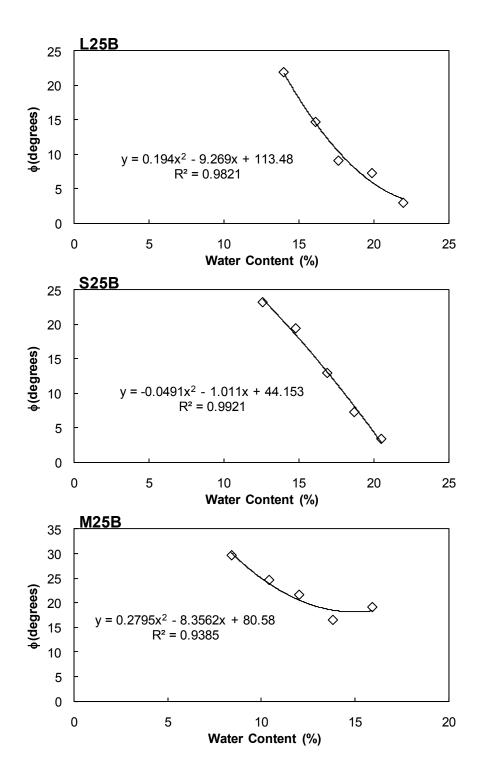



Figure 5.47. Relationship between  $\phi$  and w% (25B)

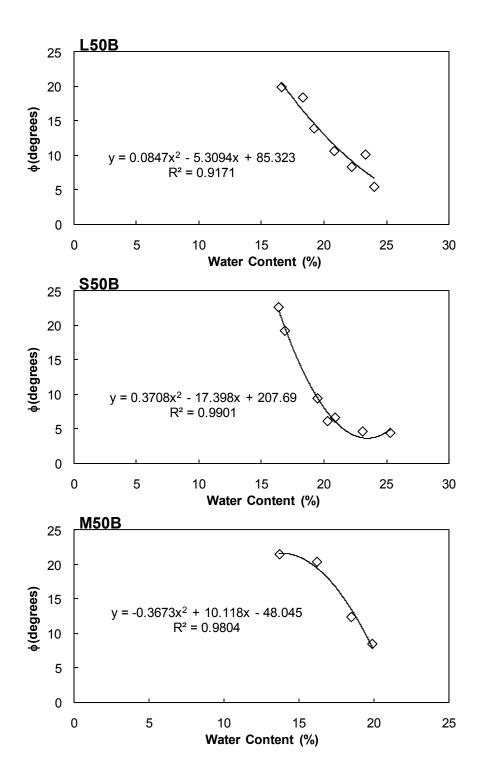



Figure 5.48. Relationship between  $\phi$  and w% (50B)

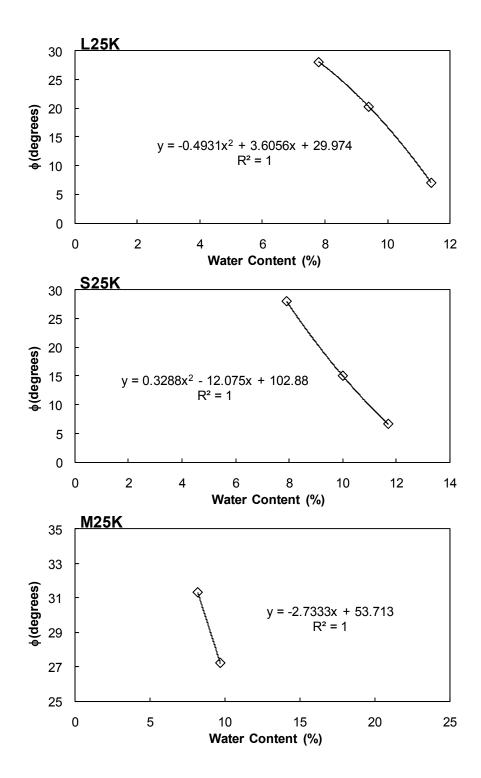



Figure 5.49. Relationship between  $\phi$  and w% (25K)

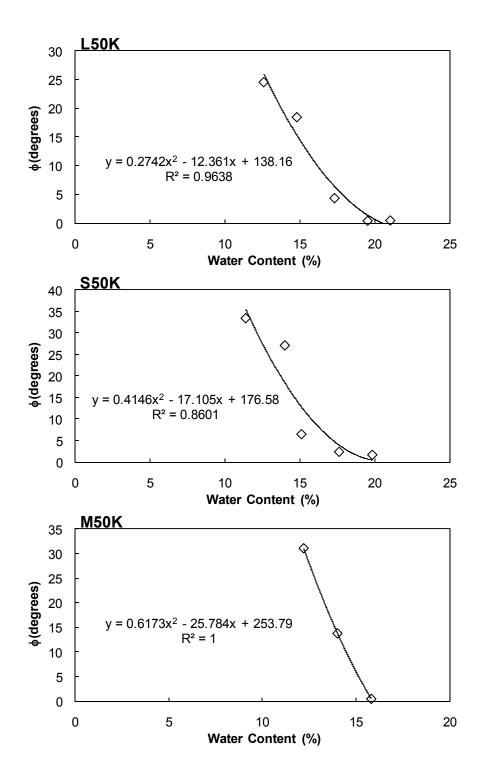



Figure 5.50. Relationship between  $\phi$  and w% (50K)

| <i>∳</i><br>(degrees) |      |      |      |      |      |      | Wate | er Conte | nt (%) |      |      |      |      |      |      |
|-----------------------|------|------|------|------|------|------|------|----------|--------|------|------|------|------|------|------|
|                       | L15B | S15B | M15B | L25B | S25B | M25B | L50B | S50B     | M50B   | L25K | S25K | M25K | L50K | S50K | M50K |
| 35                    | -    | -    | -    | -    | -    | -    | -    | -        | -      | -    | -    | 6.8  | -    | 12.2 | 11.9 |
| 30                    | -    | 9.0  | 11.5 | -    | 10.3 | 7.8  | -    | -        | -      | 7.4  | 7.6  | 8.7  | -    | 12.4 | 12.3 |
| 25                    | 11.1 | 12.7 | 14.2 | 13.7 | 12.4 | 10.9 | -    | -        | -      | 8.5  | 8.3  | -    | 13.0 | 12.9 | 12.8 |
| 20                    | 15.2 | 15.7 | 15.6 | 14.4 | 14.4 | 13.4 | 16.9 | 16.0     | 15.4   | 9.5  | 9.1  | -    | 13.8 | 13.6 | 13.3 |
| 15                    | 18.2 | 17.9 | 15.8 | 15.8 | 16.3 | 15.3 | 19.3 | 16.3     | 17.9   | 10.3 | 10.0 | -    | 14.9 | 14.5 | 13.9 |
| 10                    | 20.0 | 19.3 | -    | 17.9 | 18.1 | -    | 21.8 | 18.7     | 19.5   | 11.0 | 11.0 | -    | 16.4 | 15.7 | 14.5 |
| 5                     | 20.7 | 19.8 | -    | 20.7 | 19.8 | -    | 24.2 | 22.9     | 20.0   | 11.6 | 12.1 | -    | 18.1 | 17.2 | 15.2 |
| 0                     | -    | -    | -    | -    | -    | -    | -    | -        | -      | -    | -    | -    | 20.1 | 18.9 | 15.9 |

 Table 5.5 Water Content Values Calculated Using Second-Order Polynomial Regression Equations

In order to examine the relationship between compaction density, compaction water content, and the values of the undrained strength parameters c and  $\phi$ , the UU test results are shown in the form of contours of c and  $\phi$  in Figures 5.51 to 5.55. The cohesion (c) point locations are presented directly as measured from the test results. Cohesion trendlines were drawn through these point locations using linear interpolation and judgment. The friction angle ( $\phi$ ) point locations shown in Figures 5.51 to 5.55 are also presented directly as measured from the test results. In order to draw the friction angle contours, a slightly more sophisticated approach was utilized: For a given even-numbered total stress friction angle, the corresponding value of water content that corresponds to each contour point was calculated from the regression equations shown in Figures 5.46 to 5.50; the corresponding results are summarized in Table 5.5. The value of density that corresponds to each even-numbered  $\phi$  was then calculated using Equation 4.1 in Chapter 4. Insufficient test data are available for the 25% kaolinite/sand mixture; thus, only the available values of cohesion are plotted in Figure 5.54 for this soil mixture.

On the basis of the results shown in Figures 5.51 to 5.55, it is possible to draw a number of conclusions:

(1) The values of cohesion increase with increasing dry unit weight, and are largest for specimens compacted at water contents near optimum with high compactive effort. However, exceptions are seen for modified Proctor compacted 15% bentonite/sand specimens, which exhibit different trends in behavior than the low energy Proctor and standard Proctor specimens. One possible explanation for this behavior may be the disturbance that occurs during sampling (Duncan et al. 1980). Referring to Figure 5.8, the dry unit

weights of modified Proctor compacted 15% bentonite/sand specimens were decreased markedly due to sampling disturbance. The 50% bentonite/sand specimens developed the largest values of cohesion due to their higher clay content.

- (2) The values of  $\phi$  increased with decreasing water content, and are largest for specimens compacted at very low water content with high compactive effort. The kaolinite/sand mixtures exhibited higher friction angles than what was observed for the bentonite/sand mixtures.
- (3) The results of these tests indicate that the shear strength of compacted clay/sand mixtures under unconsolidated-undrained test conditions may vary widely depending on the compaction dry unit weight and water content. Previous studies have shown that the method of compaction may also have an important influence on the behavior of compacted soils (e.g., Seed, 1959, Mitchell and Chan, 1960). It is therefore desirable that samples that are used for determining parameters in this situation should be compacted using procedures similar to those used in the field, and it is essential that they should be compacted to the same dry unit weight, and at the same water content as the soil in the field.

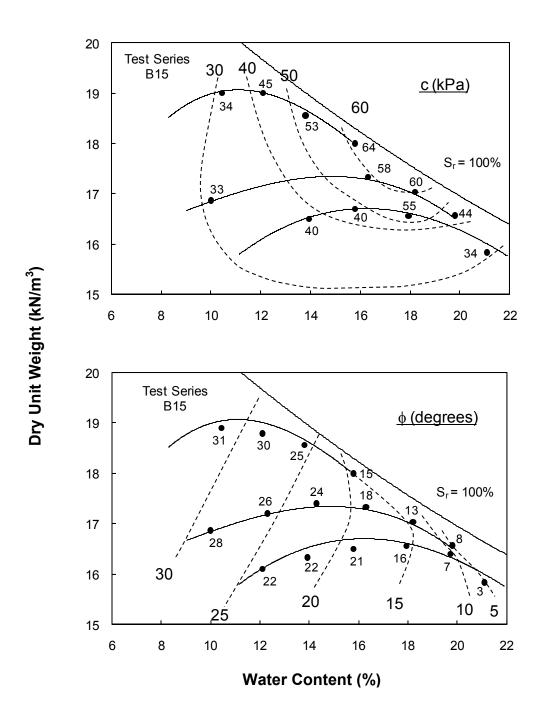



Figure 5.51. Strength Parameters for Compacted 15% Bentonite/Sand Specimens

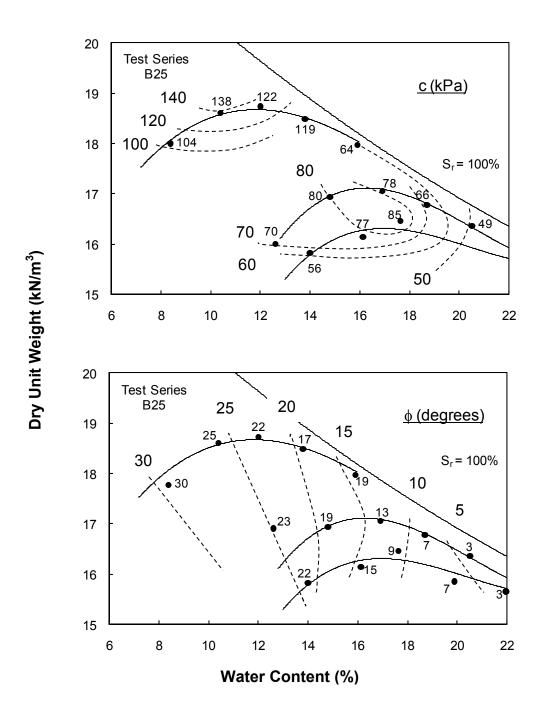



Figure 5.52. Strength Parameters for Compacted 25% Bentonite/Sand Specimens

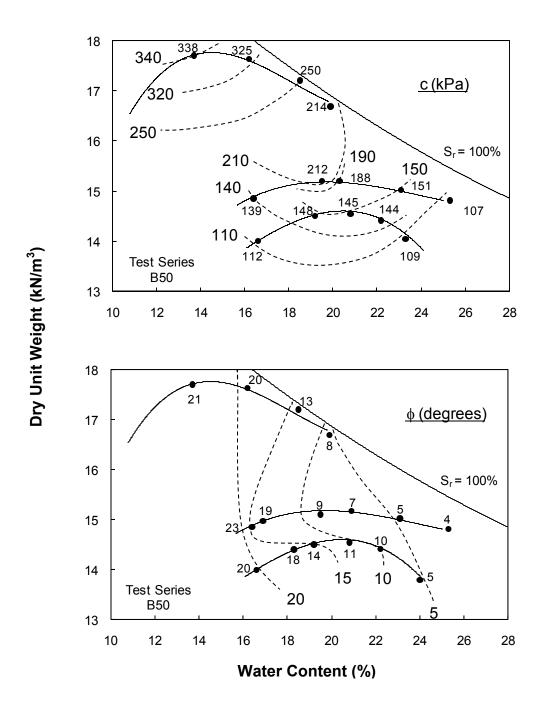



Figure 5.53. Strength Parameters for Compacted 50% Bentonite/Sand Specimens

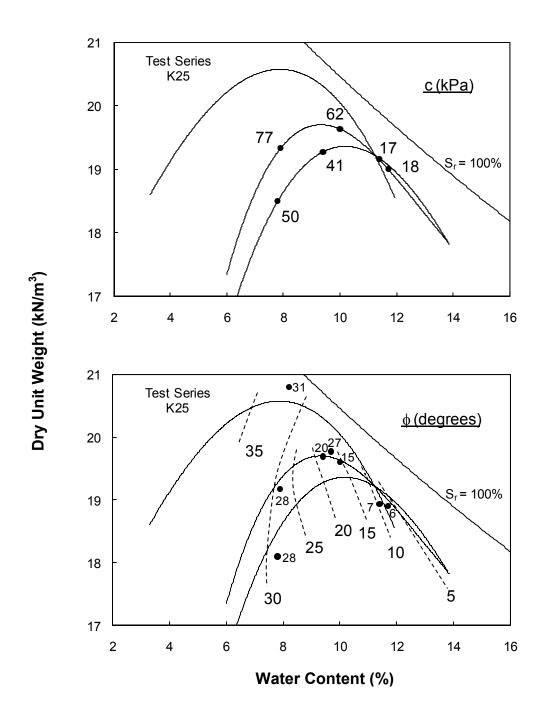



Figure 5.54. Strength Parameters for Compacted 25% Kaolinite/Sand Specimens

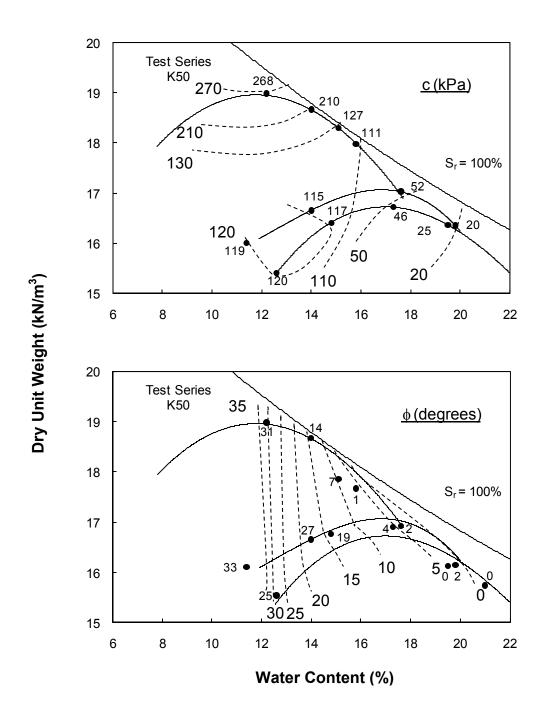



Figure 5.55. Strength Parameters for Compacted 50% Kaolinite/Sand Specimens

### 5.2.4 Secant Modulus

Strain-dependent soil stiffness is an important pre-failure property that controls soil deformations. To compare the deformation properties of different clay/sand mixtures that were tested in the UU triaxial, the secant modulus at 50% shear strength,  $E_{50}$ , is used here. It is common to infer the stiffness of soil specimens from measurements of the secant modulus  $E_{50}$  (e.g., Wiebe et al., 1998). The values of  $E_{50}$  calculated for each specimen are given in Table 5.6. Plots of  $E_{50}$  versus  $\sigma_3$  are presented in Figure 5.56 for bentonite/sand mixtures and in Figure 5.57 for kaolinite/sand mixtures. From these plots it is clear that at the same compaction energy level,  $E_{50}$  increases with clay content. Specimens compacted dry-of-optimum are stiffer than specimens compacted wet-of-optimum at the same energy level.

Table 5.6 *E*<sub>50</sub>

| Test Number  | <i>E</i> <sub>50</sub><br>(kPa) | Test Number  | <i>E</i> <sub>50</sub><br>(kPa) | Test Number  | <i>E</i> <sub>50</sub><br>(kPa) |
|--------------|---------------------------------|--------------|---------------------------------|--------------|---------------------------------|
| L15-B(-4)-C1 | 6011                            | L25-B(+1)-C1 | 4284                            | L50-B(+3)-C1 | 10932                           |
| L15-B(-4)-C2 | 7913                            | L25-B(+1)-C2 | 5468                            | L50-B(+3)-C2 | 13598                           |
| L15-B(-4)-C3 | 9394                            | L25-B(+1)-C3 | 7348                            | L50-B(+3)-C3 | 13469                           |
| L15-B(-2)-C1 | 5671                            | L25-B(+3)-C1 | 5917                            | L50-B(+4)-C1 | 12986                           |
| L15-B(-2)-C2 | 5251                            | L25-B(+3)-C2 | 5481                            | L50-B(+4)-C2 | 14212                           |
| L15-B(-2)-C3 | 9311                            | L25-B(+3)-C3 | 7698                            | L50-B(+4)-C3 | 15475                           |
| L15-B(0)-C1  | 5719                            | L25-B(+5)-C1 | 3182                            | S15-B(-5)-C1 | 6164                            |
| L15-B(0)-C2  | 5034                            | L25-B(+5)-C2 | 3885                            | S15-B(-5)-C2 | 4443                            |
| L15-B(0)-C3  | 7677                            | L25-B(+5)-C3 | 5281                            | S15-B(-5)-C3 | 11285                           |
| L15-B(+2)-C1 | 3887                            | L50-B(-4)-C1 | 19326                           | S15-B(-3)-C1 | 6090                            |
| L15-B(+2)-C2 | 3273                            | L50-B(-4)-C2 | 18929                           | S15-B(-3)-C2 | 6393                            |
| L15-B(+2)-C3 | 4699                            | L50-B(-4)-C3 | 12535                           | S15-B(-3)-C3 | 10207                           |
| L15-B(+4)-C1 | 1980                            | L50-B(-2)-C1 | 16977                           | S15-B(-1)-C1 | 3556                            |
| L15-B(+4)-C2 | 1909                            | L50-B(-2)-C2 | 14927                           | S15-B(-1)-C2 | 4611                            |
| L15-B(+4)-C3 | 1954                            | L50-B(-2)-C3 | 21110                           | S15-B(-1)-C3 | 6261                            |
| L15-B(+5)-C1 | 1794                            | L50-B(-1)-C1 | 22320                           | S15-B(+1)-C1 | 2188                            |
| L15-B(+5)-C2 | 1584                            | L50-B(-1)-C2 | 16515                           | S15-B(+1)-C2 | 2256                            |
| L15-B(+5)-C3 | 1555                            | L50-B(-1)-C3 | 16404                           | S15-B(+1)-C3 | 3138                            |
| L25-B(-3)-C1 | 13906                           | L50-B(0)-C1  | 13645                           | S15-B(+3)-C1 | 2305                            |
| L25-B(-3)-C2 | 12503                           | L50-B(0)-C2  | 17099                           | S15-B(+3)-C2 | 2158                            |
| L25-B(-3)-C3 | 21251                           | L50-B(0)-C3  | 16659                           | S15-B(+3)-C3 | 2429                            |
| L25-B(-1)-C1 | 15576                           | L50-B(+2)-C1 | 16725                           | S15-B(+5)-C1 | 1735                            |
| L25-B(-1)-C2 | 15407                           | L50-B(+2)-C2 | 14156                           | S15-B(+5)-C2 | 1793                            |
| L25-B(-1)-C3 | 17900                           | L50-B(+2)-C3 | 19857                           | S15-B(+5)-C3 | 1868                            |

| Table 5.6  | (continued) |
|------------|-------------|
| 1 4010 010 | (commaca)   |

| Test Number  | <i>E</i> <sub>50</sub><br>(kPa) | Test Number  | <i>E</i> <sub>50</sub><br>(kPa) | Test Number  | <i>E</i> <sub>50</sub><br>(kPa) |
|--------------|---------------------------------|--------------|---------------------------------|--------------|---------------------------------|
| S25-B(-4)-C1 | 6638                            | S50-B(0)-C1  | 25460                           | M25-B(-4)-C1 | 4439                            |
| S25-B(-4)-C2 | 12661                           | S50-B(0)-C2  | 17042                           | M25-B(-4)-C2 | 5175                            |
| S25-B(-4)-C3 | 18701                           | S50-B(0)-C3  | 18683                           | M25-B(-4)-C3 | 7789                            |
| S25-B(-2)-C1 | 9081                            | S50-B(+1)-C1 | 19936                           | M25-B(-2)-C1 | 1072                            |
| S25-B(-2)-C2 | 10122                           | S50-B(+1)-C2 | 16345                           | M25-B(-2)-C2 | 4860                            |
| S25-B(-2)-C3 | 12704                           | S50-B(+1)-C3 | 8854                            | M25-B(-2)-C3 | 7741                            |
| S25-B(0)-C1  | 3198                            | S50-B(+3)-C1 | 19593                           | M25-B(0)-C1  | 7041                            |
| S25-B(0)-C2  | 4923                            | S50-B(+3)-C2 | 12638                           | M25-B(0)-C2  | 9985                            |
| S25-B(0)-C3  | 5118                            | S50-B(+3)-C3 | 16411                           | M25-B(0)-C3  | 6915                            |
| S25-B(+2)-C1 | 3223                            | S50-B(+6)-C1 | 5637                            | M25-B(+2)-C1 | 8986                            |
| S25-B(+2)-C2 | 3450                            | S50-B(+6)-C2 | 7580                            | M25-B(+2)-C2 | 6629                            |
| S25-B(+2)-C3 | 4046                            | S50-B(+6)-C3 | 11893                           | M25-B(+2)-C3 | 6384                            |
| S25-B(+4)-C1 | 2511                            | M15-B(-1)-C1 | 2638                            | M25-B(+4)-C1 | 5258                            |
| S25-B(+4)-C2 | 2632                            | M15-B(-1)-C2 | 3063                            | M25-B(+4)-C2 | 4494                            |
| S25-B(+4)-C3 | 3245                            | M15-B(-1)-C3 | 4685                            | M25-B(+4)-C3 | 6093                            |
| S25-B(+6)-C1 | 2175                            | M15-B(+1)-C1 | 2031                            | M50-B(-1)-C1 | 29104                           |
| S25-B(+6)-C2 | 2569                            | M15-B(+1)-C2 | 4149                            | M50-B(-1)-C2 | 4685                            |
| S25-B(+6)-C3 | 2735                            | M15-B(+1)-C3 | 3983                            | M50-B(-1)-C3 | 2179                            |
| S50-B(-3)-C1 | 24065                           | M15-B(+3)-C1 | 2655                            | M50-B(+2)-C1 | 3067                            |
| S50-B(-3)-C2 | 19761                           | M15-B(+3)-C2 | 2318                            | M50-B(+2)-C2 | 3051                            |
| S50-B(-3)-C3 | 27432                           | M15-B(+3)-C3 | 3655                            | M50-B(+2)-C3 | 23384                           |
| S50-B(-2)-C1 | 22811                           | M15-B(+5)-C1 | 1893                            | M50-B(+4)-C1 | 1786                            |
| S50-B(-2)-C2 | 18938                           | M15-B(+5)-C2 | 2102                            | M50-B(+4)-C2 | 2353                            |
| S50-B(-2)-C3 | 22474                           | M15-B(+5)-C3 | 2416                            | M50-B(+4)-C3 | 2705                            |

| Table 5.6  | (continued) |
|------------|-------------|
| 1 abic 5.0 | (continucu) |

| Test Number  | <i>E</i> <sub>50</sub><br>(kPa) | Test Number  | <i>E</i> <sub>50</sub><br>(kPa) | Test Number  | <i>E</i> <sub>50</sub><br>(kPa) |
|--------------|---------------------------------|--------------|---------------------------------|--------------|---------------------------------|
| M50-B(+5)-C1 | 19067                           | L50-K(+4)-C1 | 1614                            | S50-K(+3)-C1 | 754                             |
| M50-B(+5)-C2 | 15741                           | L50-K(+4)-C2 | 1697                            | S50-K(+3)-C2 | 752                             |
| M50-B(+5)-C3 | 17426                           | L50-K(+4)-C3 | 1604                            | S50-K(+3)-C3 | 1392                            |
| L25-K(-2)-C1 | 3559                            | S25-K(-2)-C1 | 3144                            | M25-K(0)-C1  | 1833                            |
| L25-K(-2)-C2 | 3482                            | S25-K(-2)-C2 | 5629                            | M25-K(0)-C2  | -                               |
| L25-K(-2)-C3 | 7050                            | S25-K(-2)-C3 | 8165                            | M25-K(0)-C3  | 5088                            |
| L25-K(0)-C1  | 1715                            | S25-K(0)-C1  | 1656                            | M25-K(+2)-C1 | 972                             |
| L25-K(0)-C2  | 3543                            | S25-K(0)-C2  | 1837                            | M25-K(+2)-C2 | 1566                            |
| L25-K(0)-C3  | 5145                            | S25-K(0)-C3  | 2368                            | M25-K(+2)-C3 | 3401                            |
| L25-K(+2)-C1 | 593                             | S25-K(+2)-C1 | 552                             | M50-K(0)-C1  | 22463                           |
| L25-K(+2)-C2 | 738                             | S25-K(+2)-C2 | 640                             | M50-K(0)-C2  | 14439                           |
| L25-K(+2)-C3 | 1057                            | S25-K(+2)-C3 | 1016                            | M50-K(0)-C3  | 21803                           |
| L50-K(-4)-C1 | 16193                           | S50-K(-5)-C1 | 33457                           | M50-K(+2)-C1 | 5370                            |
| L50-K(-4)-C2 | 18447                           | S50-K(-5)-C2 | 32141                           | M50-K(+2)-C2 | 6563                            |
| L50-K(-4)-C3 | 16130                           | S50-K(-5)-C3 | 32103                           | M50-K(+2)-C3 | 8009                            |
| L50-K(-2)-C1 | 9041                            | S50-K(-3)-C1 | 16493                           | M50-K(+4)-C1 | 2084                            |
| L50-K(-2)-C2 | 17633                           | S50-K(-3)-C2 | 20657                           | M50-K(+4)-C2 | 2210                            |
| L50-K(-2)-C3 | 16439                           | S50-K(-3)-C3 | 16426                           | M50-K(+4)-C3 | 2317                            |
| L50-K(0)-C1  | 1034                            | S50-K(-2)-C1 | 3547                            |              |                                 |
| L50-K(0)-C2  | 1396                            | S50-K(-2)-C2 | 3318                            |              |                                 |
| L50-K(0)-C3  | 1678                            | S50-K(-2)-C3 | 4545                            |              |                                 |
| L50-K(+2)-C1 | 636                             | S50-K(+1)-C1 | 1096                            |              |                                 |
| L50-K(+2)-C2 | 726                             | S50-K(+1)-C2 | 1247                            |              |                                 |
| L50-K(+2)-C3 | 929                             | S50-K(+1)-C3 | 1416                            |              |                                 |

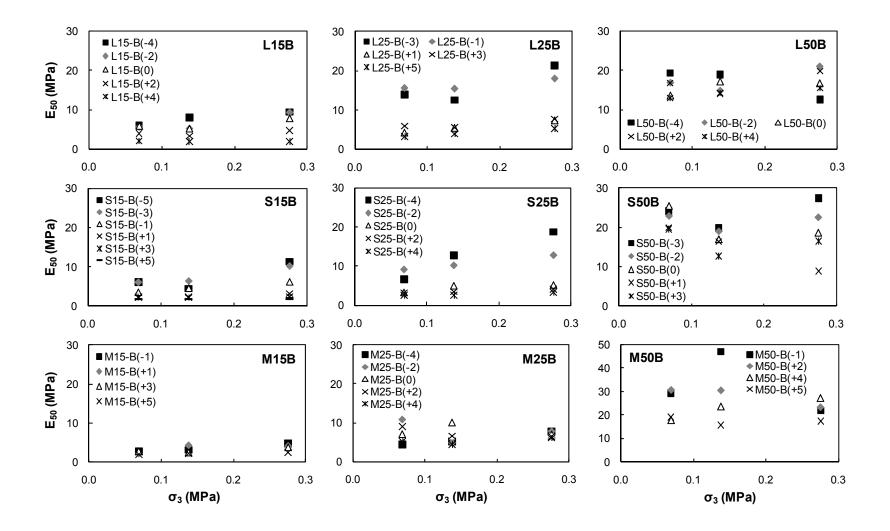



Figure 5.56. Relationship between E<sub>50</sub>, Water Content, and Clay Content for Bentonite/Sand Specimens

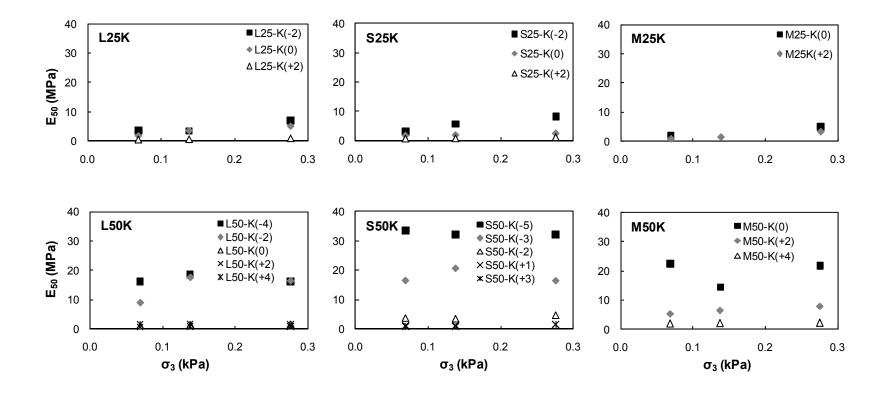



Figure 5.57. Relationship between E<sub>50</sub>, Water Content, and Clay Content for Kaolinite/Sand Specimens

#### 5.3 Summary of UU Triaxial test results

In this chapter the influence of clay/sand mix proportion, compaction moisture content, compaction energy, clay mineral type, and confining pressure on the strength and stress-strain characteristics of clay/sand materials was investigated using the UU Triaxial test. The test data support the following conclusions:

- (1) It appears that for clay/sand specimens compacted at the same energy level and with the same clay content, the undrained strength decreases with increasing compaction moisture content and that variations in water content have a larger influence on kaolinite/sand specimens than they do on bentonite/sand specimens. On the other hand, the undrained strength increases with increasing confining pressure and compactive effort.
- (2) At the same compaction energy level, dry-of-optimum specimens are stiffer, stronger and more brittle than wet-of-optimum specimens. In contrast, specimens containing a smaller amount of clay appear to be less stiff, weaker and less brittle than samples with a high clay content.
- (3) At the same clay/sand mix proportion, the values of  $\phi$  increase with decreasing water content and are largest for specimens compacted at a very low water content with high compactive effort. Kaolinite/sand specimens exhibit higher  $\phi$  values than what was observed for bentonite/sand specimens at the same water content relative to the optimum water content (e.g.,  $w_{opt} + 2\%$ ).
- (4) The values of the cohesion intercept (c) increase with increasing dry unit weight, and are largest for specimens compacted at water contents near optimum with a high compactive effort. The values of c also increase with

increasing clay content. Bentonite/sand specimens exhibit higher *c* values than kaolinite/sand specimens.

(5) The values of  $E_{50}$  increase with clay content and are higher for dry-ofoptimum specimens than wet-of-optimum specimens.

## Chapter 6

# ONE-DIMENSIONAL COMPRESSION TESTING OF CLAY/SAND MIXTURES

For compacted clay/sand mixtures, it is generally assumed that the coarser fraction of the mixture imparts relatively high density, high shear strength, and low compressibility, and the finer fraction fills the available pore space, further helping to achieve a high density and ensuring a low permeability (Jafari and Shafiee 2004). This type of behavior is ideal for certain high-strength/low-permeability applications, and consequently compacted clay/sand mixtures are commonly used as engineered fills when constructing embankment dams (Jafari and Shafiee 2004). They are also widely used as engineered barriers to construct liner systems for radioactive waste disposal facilities (Chapuis 1990). Yet, our understanding of the mechanics of compacted soils, which are by their nature partially saturated, lags far behind our understanding of saturated soil behavior. In addition, only limited experimental data have been reported in the literature that can be used to quantify the effect of the type and percentage of fines, compacted, unsaturated clay/sand mixtures.

In the one-dimensional compression tests described in this chapter, specimens were subjected to pressures up to 1300 kPa to examine the settlement characteristics of compacted unsaturated soils. The pressure-deformation relationship of the compacted unsaturated bentonite/sand specimens were compared with the compacted kaolinite/sand specimens. The effects of initial compaction conditions,

clay mineralogy, and the vertical pressure on the compressibility of clay/sand mixtures are investigated.

## **6.1 Specimen Preparation**

One compression specimen was produced from each compacted Proctor specimen, as shown in Figure 6.1. The compression specimens were prepared using a trimming turntable and a brass trimming ring, 63.5 mm (2.5 in.) in diameter and 20 mm (0.79 in.) in height (Figure 6.1a). Complete perimeter cuts were made to gradually reduce the specimen diameter until it reached the inside diameter of the consolidation ring (Figure 6.1b). As the trimming progressed, each specimen was carefully inserted into the consolidation ring using only minimal force. This trimming process was continued until a mid-height condition in the compaction mold was reached; the goal of this process was to ensure that each compression specimen was taken from the middle of the Proctor compaction specimen. Once the compression specimen was completely contained within the trimming ring, a straight knife with a sharp cutting edge was utilized for trimming the top and bottom of the specimen to prevent intrusion of the soil particles into the pores of the porous stones placed on both sides of the specimen (Figure 6.1d).

Figure 6.2 provides a comparison of compression test specimen density with the as-compacted soil density from the corresponding Proctor mold. As can be observed, the trimming procedure has a slight effect on the initial state of the compression test specimens.

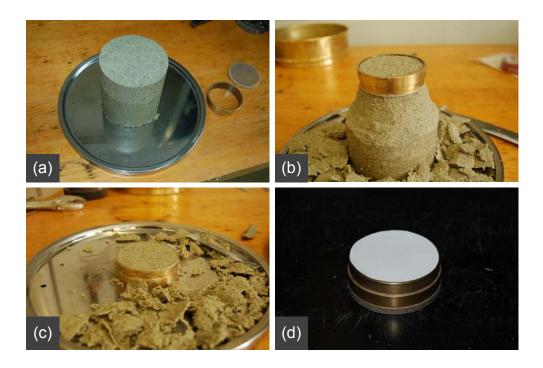



Figure 6.1. Compression specimen preparation procedure; (a) placing the compacted Proctor sample on a turntable, (b) trimming specimen into the consolidation ring, (c) trimming the top and bottom of the specimen flush with the consolidation ring, (d) placing filter papers on the top and bottom of the specimen.

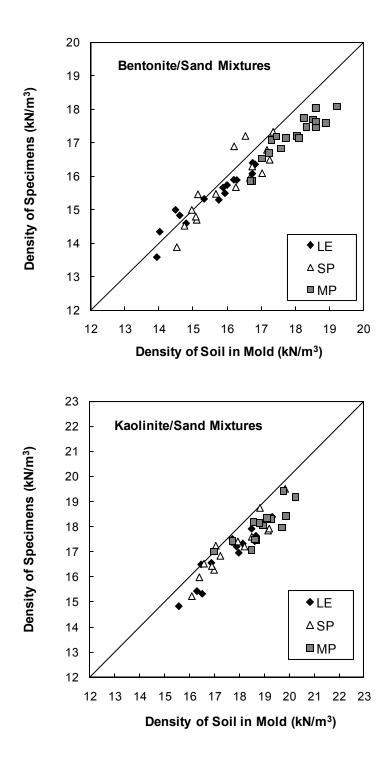



Figure 6.2. Comparison of Compression Test Specimen Density and As-Compacted Soil Density from the Corresponding Proctor Mold

#### **6.2 One-Dimensional Compression Test Procedure**

The one-dimensional compression tests described in this chapter were intended to evaluate the compressibility of samples at the molding moisture content in a compacted field situation. Consequently, the compression tests were performed without soaking or otherwise wetting the samples during the test. Specimens were tested in standard fixed-ring consolidometers, manufactured by ELE International, Model No. EI25-0479 (Figure 6.3). A brass consolidation ring with an internal diameter of 63.5 mm (2.5 inch) and a height of 20 mm (0.79 inch) was utilized during each test (Figure 6.3a). Each compression test specimen was trimmed into the consolidation ring following the procedure described in the previous section, and the ring and specimen were placed into the consolidation load frame. After placement of the top loading platen and loading ball, the vertical deflection dial gauge was adjusted and fixed into position to give a proper dial reading under application of load (Figure 6.3c). A loading frame that utilizes a lever arm-weight type loading system was used to compress the test specimens (Figure 6.3d). During each test, compressive displacements were measured with a dial gauge having a 0.0001 inch precision. A load-increment ratio of unity was adopted, in accordance with ASTM D 2435-04, Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. Each specimen was loaded in stages to a maximum of 1300 kPa. The total loading duration for each load step was selected to be 20 minutes. Deformation data were collected at time intervals of 0.1, 0.25, 0.5, 1, 2, 4, 8, 15, and 20 minutes using an automated data acquisition system.

The final specimen water content was determined by oven-drying at 110 °C for 24 hours. Complete data sheets for each compression test are given in Appendix G.

# 6.3 Calibration

Flexibility of the test apparatus under load was investigated by setting a hard steel specimen in the consolidometer and loading it as in the test. The deformation was measured and recorded for each load step. It was found that the calibration correction exceeded 5% of the measured deformation in tests. Based on the pressure-deformation characteristic of the apparatus, the measured deformation at each loading step was consequently corrected in accordance with ASTM D 2435-04.

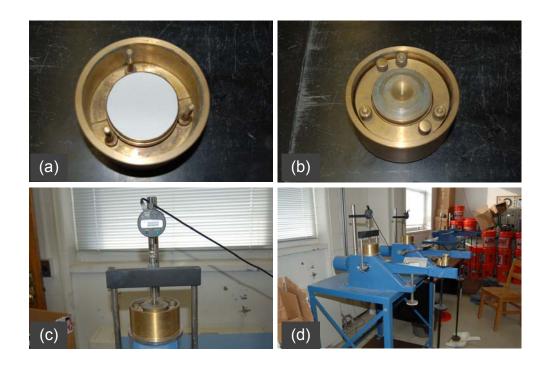



Figure 6.3. Compression test setup procedure; (a) placing the specimen and consolidation ring into a consolidation cell, (b) placing the metal jacket over the consolidation ring to center it in the consolidation cell, (c) placing the consolidation cell on a loading frame with the dial gauge properly adjusted, (d) starting the compression test.

### 6.4 Results and Discussion of Results

#### 6.4.1 Time-Compression Behaviour

Typical time-compression behaviour of bentonite/sand specimens compacted at their respective optimum water contents are shown in Figures 6.4 through 6.12. Typical time-compression behavior of kaolinite/sand specimens compacted at their respective optimum water contents are shown in Figures 6.13 through 6.21. For each load increment shown, a large amount of compression occurred within the first minute of loading, followed by very little compression in subsequent minutes. Yoshimi (1958) attributed this initial rapid compression to the extremely rapid dissipation of excess pore air pressure, as well as the initial compression of the pore air and soil skeleton. The time-compression behavior for specimens compacted at other water contents were found to be generally similar to that of specimens compacted at the optimum water content (as shown in Appendix G). For comparison purposes, the one-dimensional compression test results of bentonite/sand specimens compacted at their respective optimum water contents are summarized in Figure 6.22, and the test results of kaolinite/sand specimens are summarized in Figure 6.23. The test results clearly show that the compressibility of the compacted specimens was greatly affected by the compactive effort that was applied, which is not surprising, as the compactive effort has a significant effect on the resulting specimen density. At the same clay/sand mix proportion, the soil compressibility decreased as the compactive effort increased, with the lowest compressibility being observed for specimens that were compacted at the Modified Proctor energy level.

All the Low Energy Proctor and Standard Proctor compacted 50% bentonite/sand (Figures 6.10, 6.11) and kaolinite/sand (Figures 6.19, 6.20) specimens exhibited "critical pressure" behavior (Wallace, 1973), which can be characterized by a sudden increase in deformation that occurs when the applied pressure passes beyond a certain value. At low applied pressures, the compressibility of the Low Energy Proctor and Standard Proctor compacted 50% bentonite/sand mixture was quite low, even lower than the 15% bentonite/sand mixture and 25% bentonite/sand mixture. However, when the applied pressure exceeded a certain "critical pressure" the compressibility of the soil became very high. This was also true for Low Energy Proctor and Standard Proctor compacted 50% kaolinite/sand mixtures. The compressibility of the Low Energy Proctor and Standard Proctor compacted 50% kaolinite/sand mixtures. The compressibility of the Low Energy Proctor and Standard Proctor compacted 50% kaolinite/sand mixtures that are compacted at the same energy level and subjected to pressures exceeding the critical pressure.

For both the 50% bentonite/sand and 50% kaolinite/sand mixtures, the observed "critical pressure" was around 300 kPa. Gradwell and Birrell (1954) report values of critical pressure ranging from 105-259 kPa for a wide range of volcanic clays. Vargas (1953) reports that for residual clays in Southern Brazil, the magnitude of the critical pressures are widely scattered between 57 and 431 kPa. Sowers (1963) shows that for residual soils in the south-eastern US the values are between 96 and 527 kPa. These diverse results, which all correspond to the observed sudden increase in compressibility of natural soils, show that the values of critical pressure that were measured for compacted clay/sand mixtures have the same order of magnitude as what has been observed for natural clay soils.

The fabric of the 50% clay/sand mixtures are composed of clay as the main body with sand floating in the clay matrix (Shafiee et al., 2008). In the low consolidation pressure range, the initially randomly oriented clay particles produced a high resistance to deformation. As the consolidation pressure increased, the strains that occurred under load produced a higher degree of particle orientation which lead to a lower resistance to deformation and a higher compressibility (Seed and Chan, 1959). At lower clay contents, the soil structure was composed of a primarily sand soil skeleton that contained clay particles trapped in the intergranular void spaces between the sand particles (Thevanayagam and Mohan, 2000). Consequently, the compression behavior of these lower clay content mixtures was mainly controlled by the interaction that occurred between the sand grains. At higher strain levels, the initial fabric can be restructured by sliding along the unstable contacts, and by rotation of individual particles. Thus, there is no obvious sudden increase in compressibility for mixtures that have a lower clay percentage. As higher compaction energies (e.g., the Modified Proctor level), the samples' densities increased significantly, which lead to a marked decrease in compressibility. This may be the reason why the Modified Proctor compacted clay/sand specimens didn't exhibit "critical pressure" behavior; the current range of applied pressures may be less than what is required for this behavior to occur.

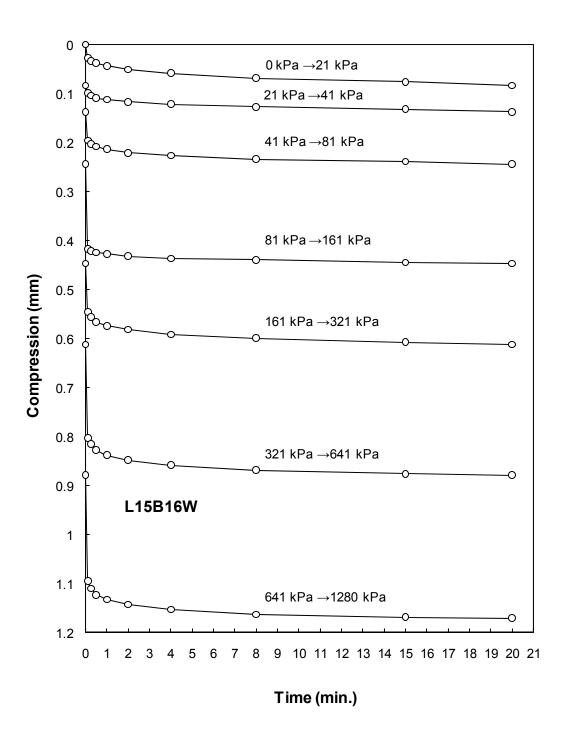



Figure 6.4. Compression vs. Time (L15B16W)

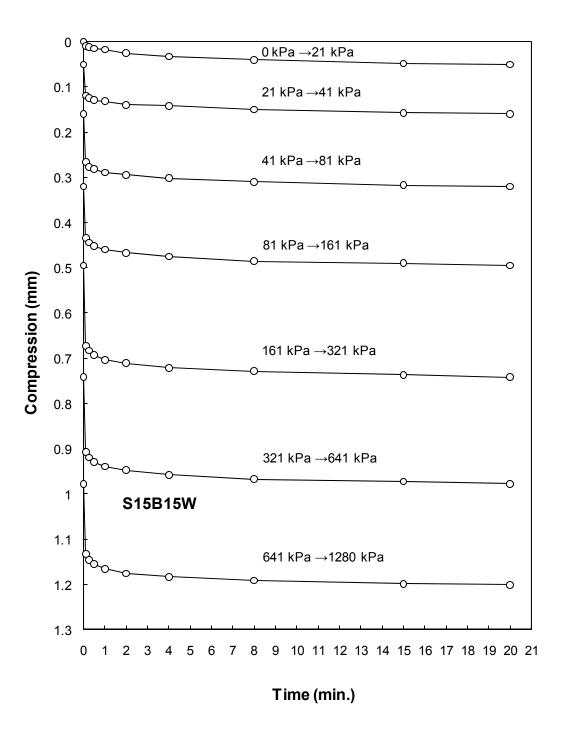



Figure 6.5. Compression vs. Time (S15B15W)



Figure 6.6. Compression vs. Time (M15B12W)

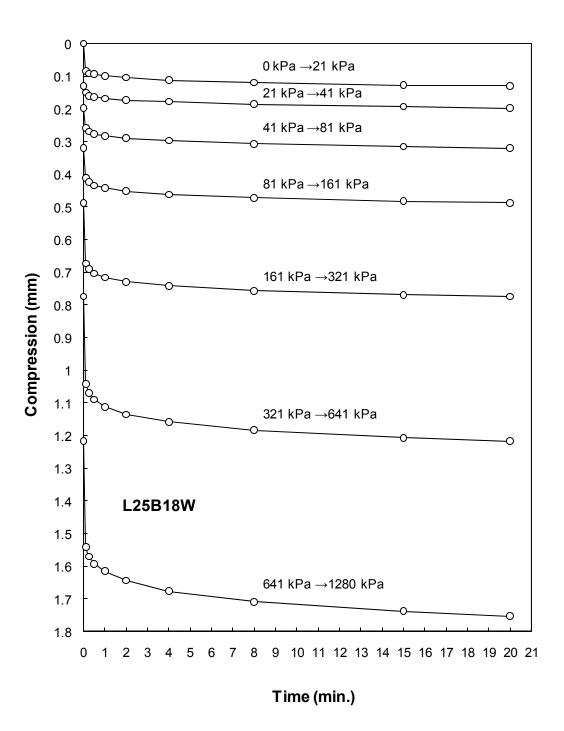



Figure 6.7. Compression vs. Time (L25B18W)

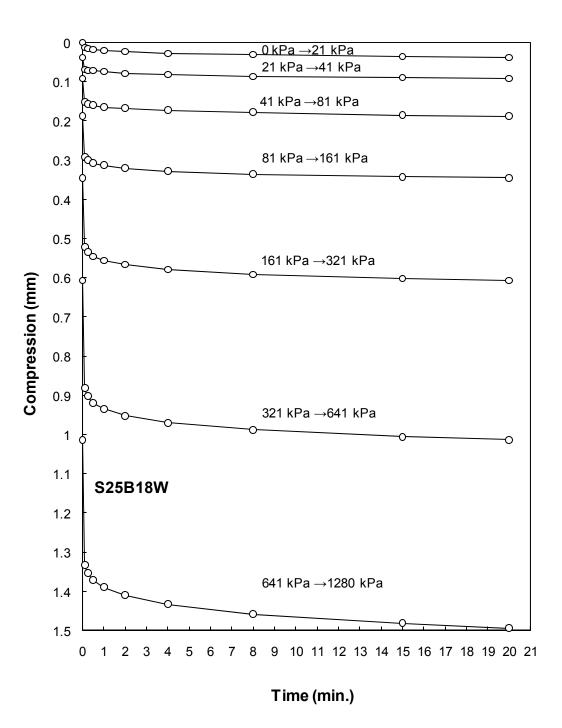



Figure 6.8. Compression vs. Time (S25B18W)

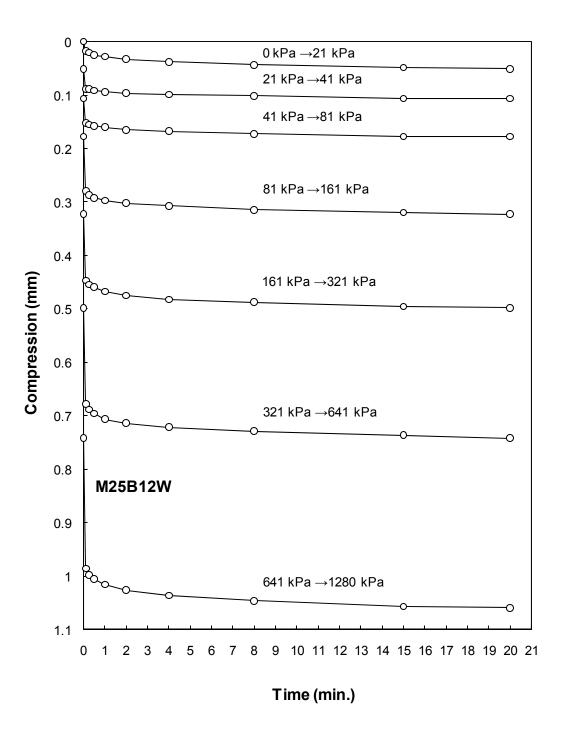



Figure 6.9. Compression vs. Time (M25B12W)

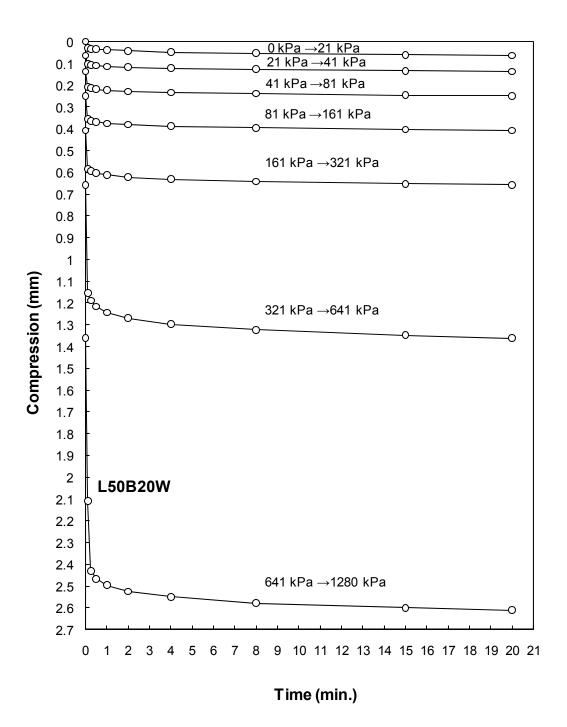



Figure 6.10. Compression vs. Time (L50B20W)

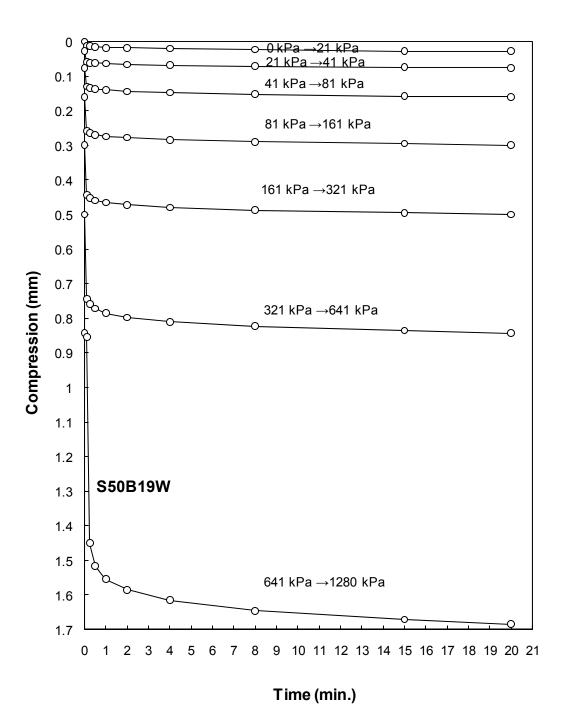



Figure 6.11. Compression vs. Time (S50B19W)

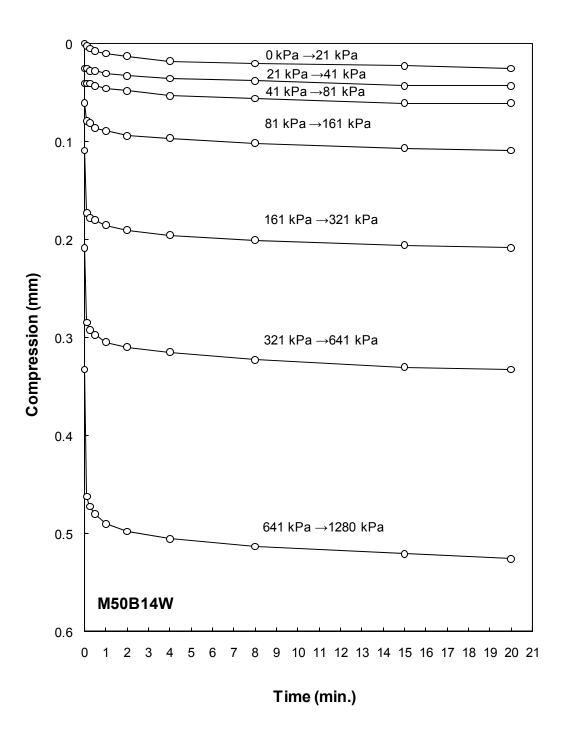



Figure 6.12. Compression vs. Time (M50B14W)

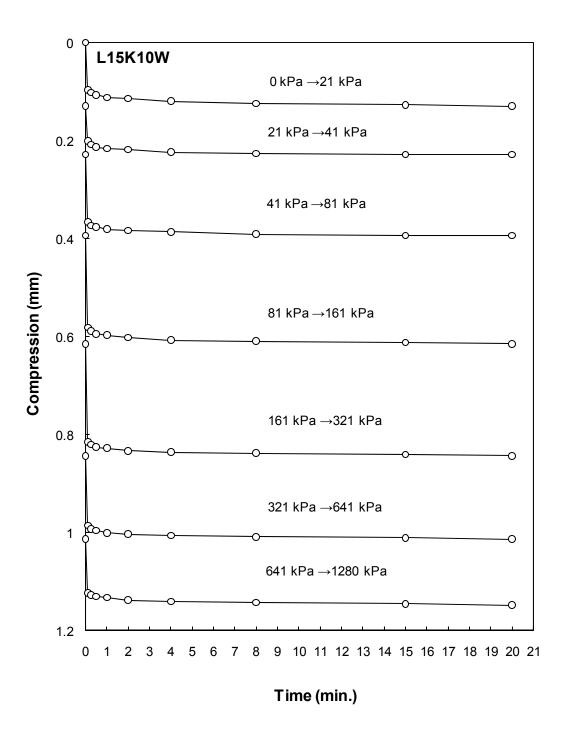



Figure 6.13. Compression vs. Time (L15K10W)

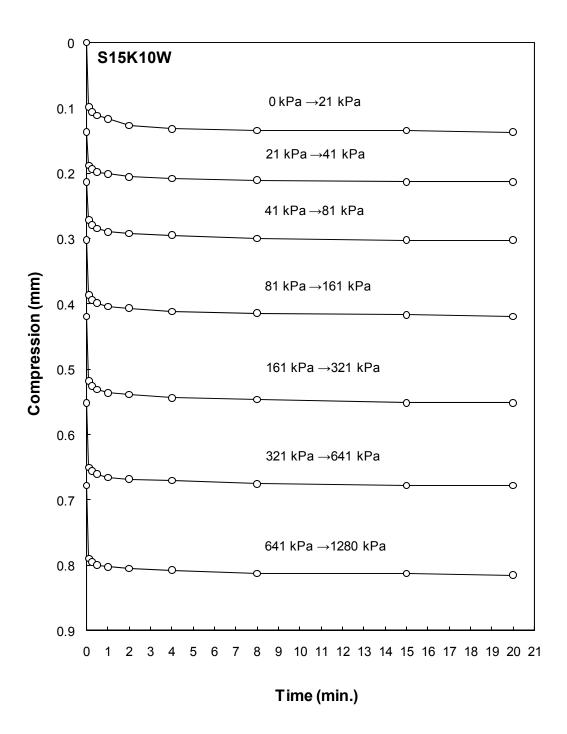



Figure 6.14. Compression vs. Time (S15K10W)

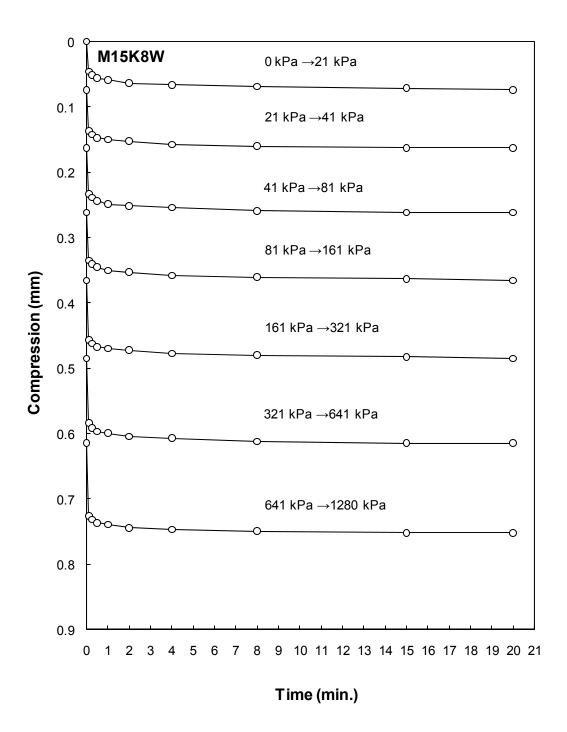



Figure 6.15. Compression vs. Time (M15K8W)

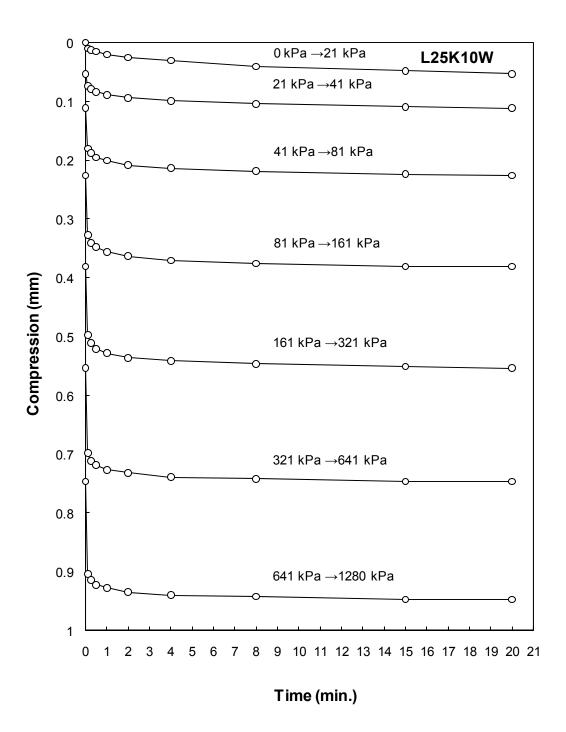



Figure 6.16. Compression vs. Time (L25K10W)

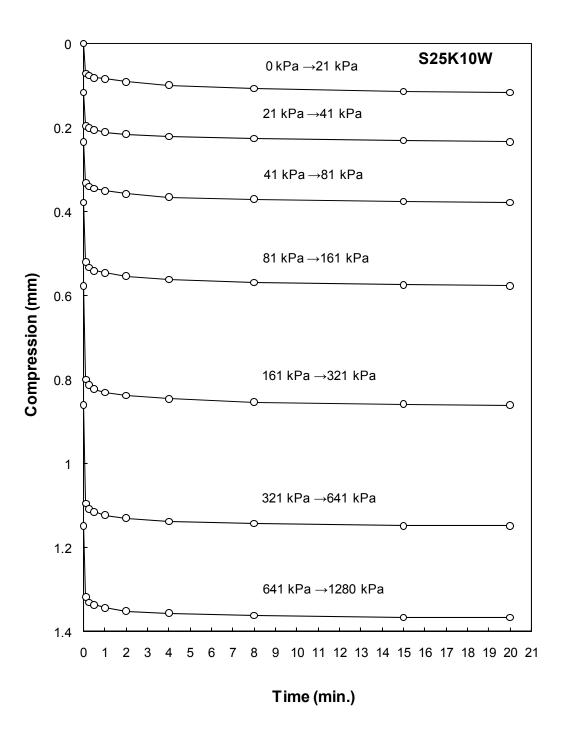



Figure 6.17. Compression vs. Time (S25K10W)

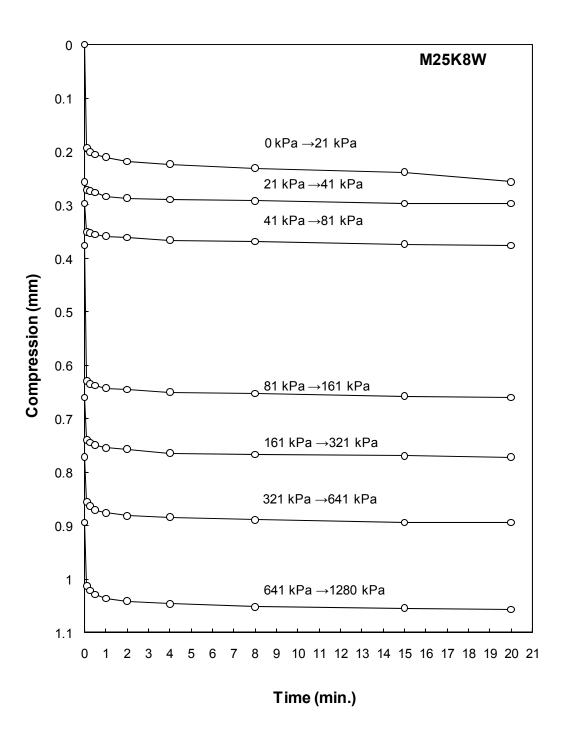



Figure 6.18. Compression vs. Time (M25K8W)

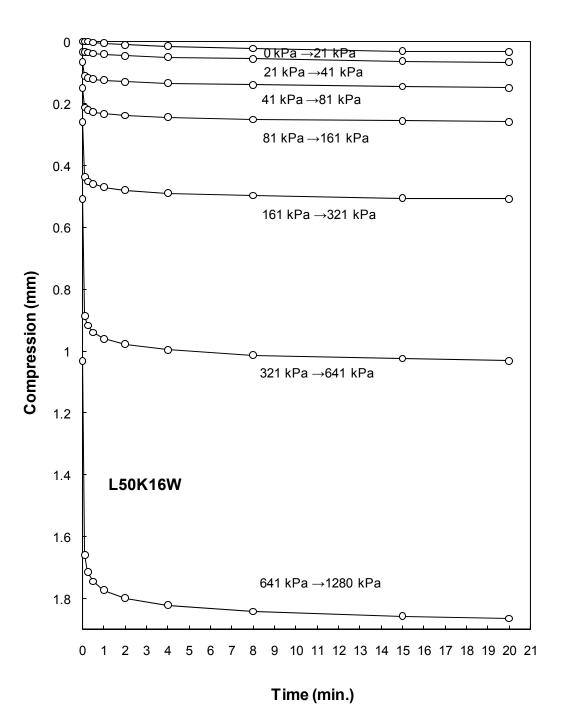



Figure 6.19. Compression vs. Time (L50K16W)

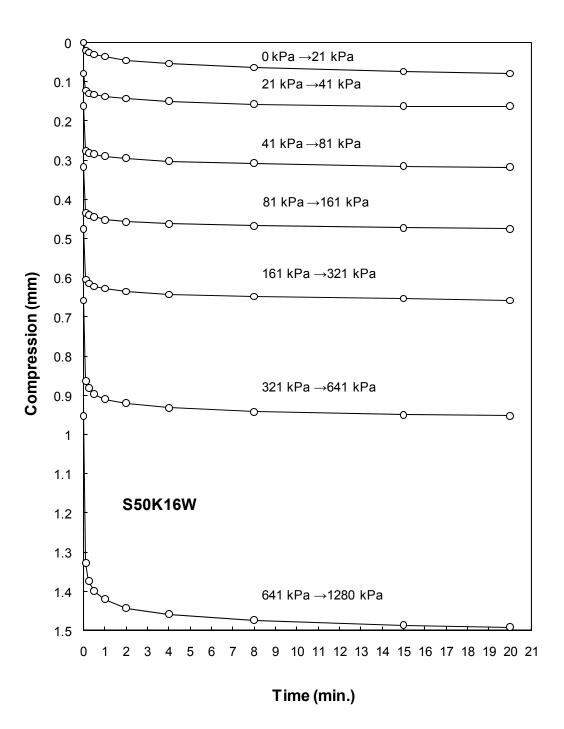



Figure 6.20. Compression vs. Time (S50K16W)

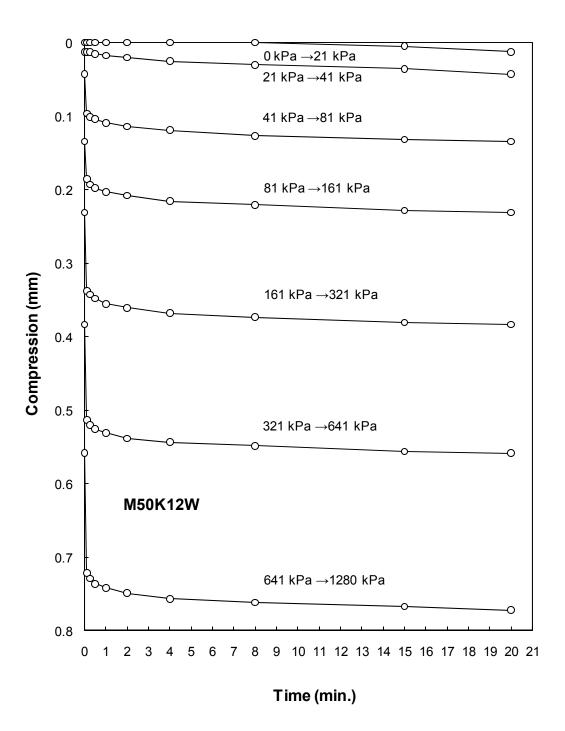



Figure 6.21. Compression vs. Time (M50K12W)

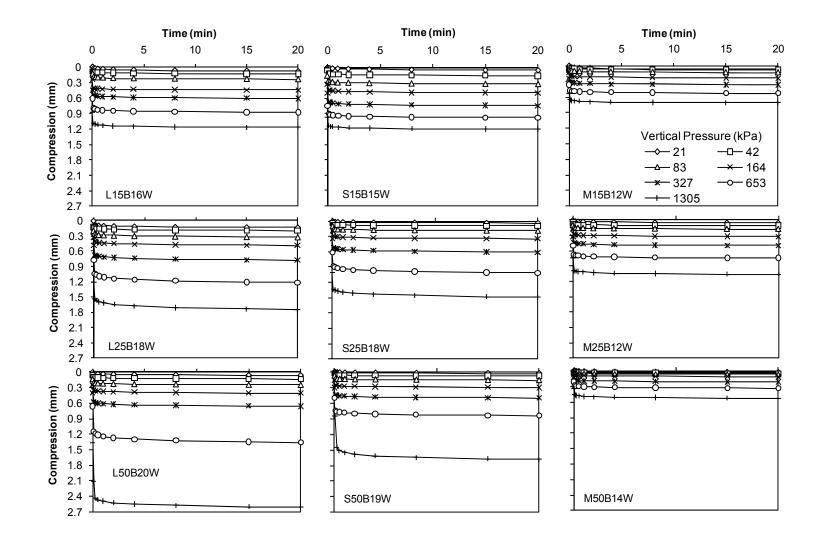



Figure 6.22. Typical Plots of Time-Compression for Bentonite/Sand Specimens Compacted at wopt

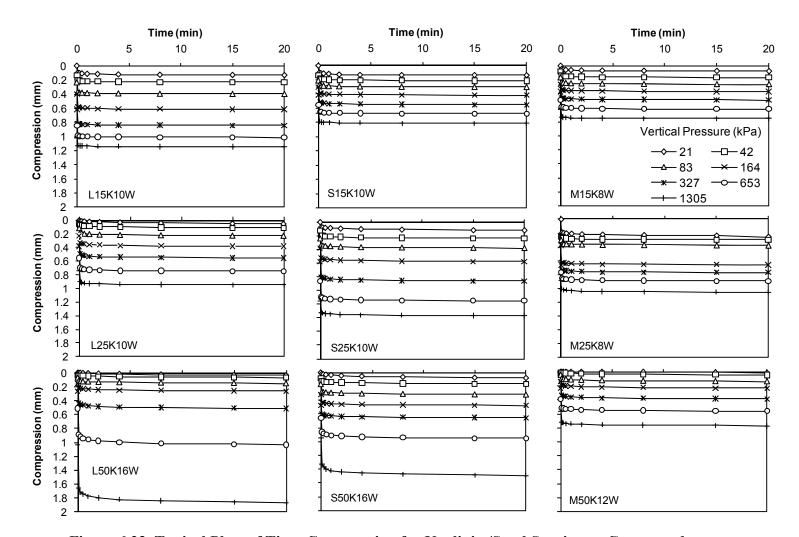



Figure 6.23. Typical Plots of Time-Compression for Kaolinite/Sand Specimens Compacted at wopt

#### 6.4.2 $\varepsilon_v$ versus log $\sigma_v$ Curves

To more clearly illustrate the effects of clay proportion, clay mineralogy, water content, and compactive effort on the compressibility of clay/sand mixtures, the oedometer test data are replotted as vertical strain ( $\varepsilon_v$ ) versus vertical applied stress ( $\sigma_v$ ) in Figures 6.24-6.29. Each figure is for a separate nominal energy level, and the applied stress is plotted on a logarithmic-scale axis.

Figures 6.24-6.26 present the  $\varepsilon_v$  vs  $\sigma_v$  curves that were measured for the bentonite/sand mixtures. These figures demonstrate that, at a given compaction energy level, the compressibility decreased as the sand content increased. However, this decrease in compressibility became relatively insignificant at higher levels of compactive effort. At the Modified Proctor energy level, samples with varying sand content exhibited almost the same degree of compressibility. As mentioned previously, the compactive effort also had a significant influence on the observed compressibility. At the same clay/sand mix proportion, the soil became less compressible as the compactive effort increased. The compaction water content was found to be important for samples with a high clay content, and relatively unimportant for samples having a low clay content. As can be observed from Figures 6.24-6.26, soils having a higher clay content that were compacted wet-of-optimum underwent significantly more compression than those with a lower clay content. Final vertical strains for samples containing a higher percentage of clay exhibited significant scatter. Conversely, the final vertical strains for samples having a low clay proportion exhibited a narrower band of results.

Figures 6.27-6.29 show the compressibility behavior that was observed for the kaolinite/sand mixtures. From these figures, it can be seen that the kaolinite/sand mixtures exhibited almost the same general trends in compressibility behavior as the bentonite/sand mixtures.

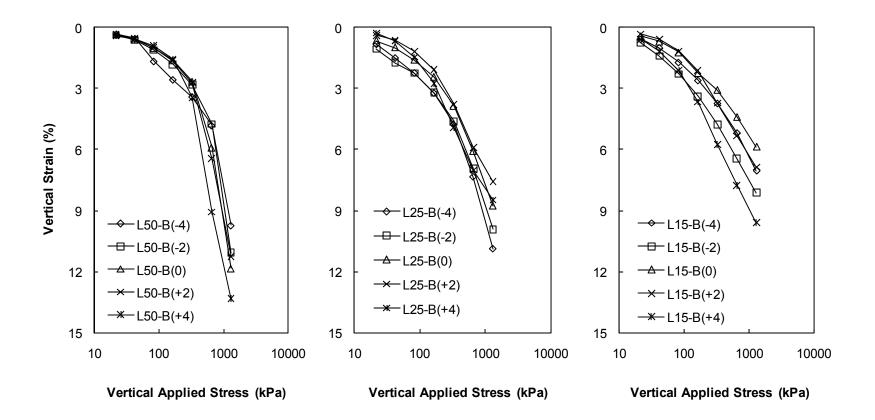



Figure 6.24. Vertical Strain versus Vertical Applied Stress for Low Energy Compacted Bentonite/Sand Mixtures

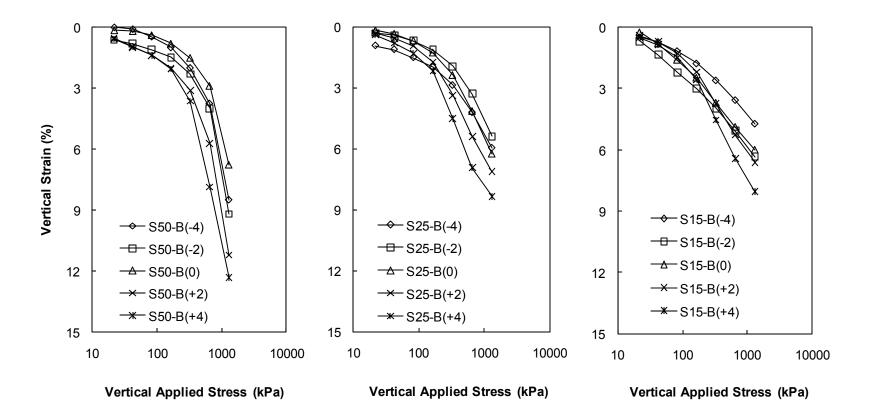



Figure 6.25. Vertical Strain versus Vertical Applied Stress for Standard Proctor Compacted Bentonite/Sand Mixtures

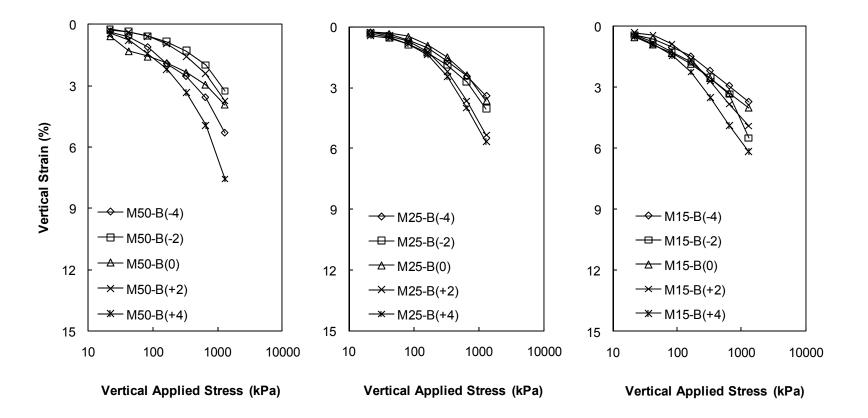



Figure 6.26. Vertical Strain versus Vertical Applied Stress for Modified Proctor Compacted Bentonite/Sand Mixtures

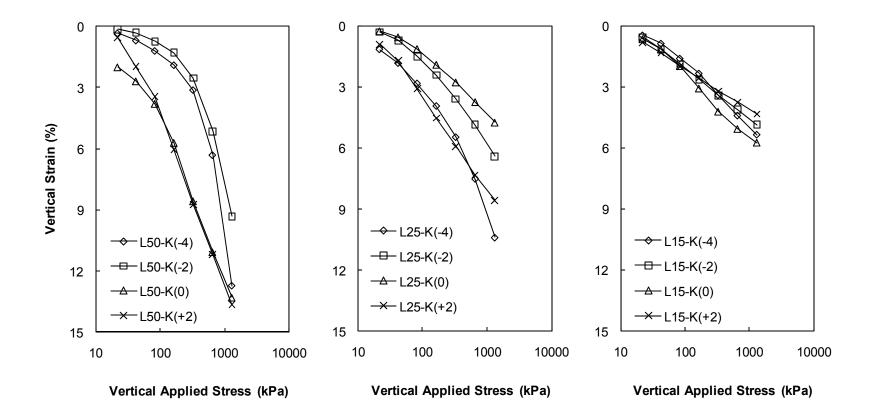



Figure 6.27. Vertical Strain versus Vertical Applied Stress for Low Energy Compacted Kaolinite/Sand Mixtures

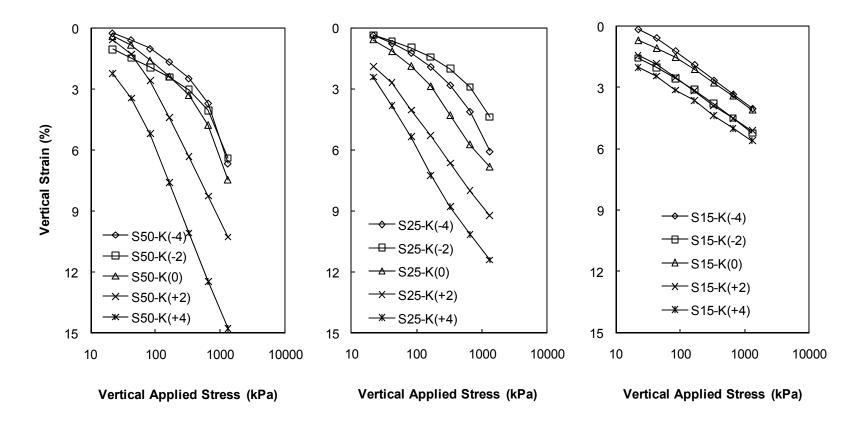



Figure 6.28. Vertical Strain versus Vertical Applied Stress for Standard Proctor Compacted Kaolinite/Sand Mixtures

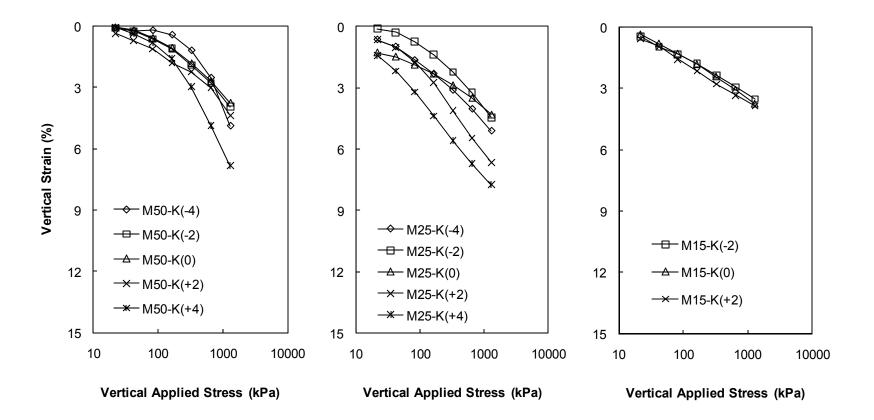



Figure 6.29. Vertical Strain versus Vertical Applied Stress for Modified Proctor Compacted Kaolinite/Sand Mixtures

#### 6.5 Summary of One-Dimensional Test Results

This chapter describes a series of 1-D compression tests that were conducted to determine the relationship between compaction condition (compaction moisture content, compactive effort, clay mineral type, and clay/sand mix proportion) and the compressibility behavior of clay/sand mixtures. The following conclusions were drawn from the tests that were conducted:

- (1) The 50% clay/sand samples compacted at either the Low Energy Proctor or Standard Proctor energy level exhibited a "critical pressure"-type behavior, which was characterized by a sudden increase in compressibility when the applied pressure passed beyond a certain point.
- (2) For each of the clay/sand mixtures, at a given compaction energy level, the compressibility decreased as the percentage of sand in the mixture increased. The effect of changes in sand content on the compressibility behavior was reduced at higher levels of compactive effort (e.g., the Modified Proctor compaction energy level).
- (3) Increases in compactive effort led to an increase in soil density, which in turn resulted in a decrease in soil compressibility.
- (4) The compaction water content was found to have a significant effect for samples with a high clay content, and was observed to be relatively unimportant for samples with a low clay content.

#### Chapter 7

#### **CONCLUSIONS AND RECOMMENDATIONS**

#### 7.1 Conclusions

This thesis examines the undrained strength, stress-strain, and compressibility behavior of compacted clay/sand mixtures containing various clay proportions. A laboratory impact compaction approach (Proctor-type compaction) was used to prepare both the triaxial test specimens and the one-dimensional compression test specimens that were utilized in this study, with three different compaction energy levels being utilized during specimen preparation. A detailed explanation of the experimental apparatus and procedures that were utilized is presented herein. The experimental results of this study lead to the following important conclusions:

- (6) A semi-logarithmic relationship exists between the maximum dry unit weight and the compaction energy for both kaolinite/sand and bentonite/sand mixtures. Logarithmic regression analysis yielded R<sup>2</sup> values ranging from 0.87 to 0.99 for kaolinite and 0.98 to 1 for bentonite.
- (7) A semi-logarithmic relationship also exists between the optimum water content and the compaction energy for both clay/sand mixtures. Logarithmic regression analysis yielded R<sup>2</sup> values ranging from 0.87 to 0.96 for kaolinite and 0.97 to 1 for bentonite.
- (8) For the kaolinite/sand mixtures, at all compaction energy levels, the maximum dry unit weight was observed to occur for the 25% kaolinite mixture. However, this was not true for the bentonite/sand mixtures, which

exhibited a consistent trend of decreasing dry unit weight as the bentonite content increased.

- (9) Higher compactive efforts minimize the difference in maximum dry unit weight between mixtures containing different clay contents.
- (10) It appears that for clay/sand specimens compacted at the same energy level and with the same clay content, the undrained strength determined in unconsolidated undrained (UU) triaxial tests at the maximum deviator stress decreases with increasing compaction moisture content. Variations in water content have a larger influence on the undrained strength of kaolinite/sand specimens than they do on bentonite/sand specimens. In general, for both of the clay minerals that were examined in this study, the UU triaxial undrained strength increases with increasing confining pressure and compactive effort.
- (11) At the same compaction energy level, dry-of-optimum UU triaxial specimens are stiffer, stronger and more brittle than wet-of-optimum specimens. In contrast, specimens containing a smaller amount of clay appear to be less stiff, weaker and less brittle than samples with a high clay content.
- (12) At the same clay/sand mix proportion, the values of  $\phi$  measured in the UU triaxial device increase with decreasing water content and are largest for specimens compacted at a very low water content with high compactive effort. Kaolinite/sand specimens exhibit higher  $\phi$  values than what was observed for bentonite/sand specimens at the same water content relative to the optimum water content (e.g.,  $w_{opt} + 2\%$ ).
- (13) The values of the cohesion intercept (c) measured in the UU triaxial device increase with increasing dry unit weight, and are largest for specimens compacted at water contents near optimum with a high compactive effort.

The values of c also increase with increasing clay content. Bentonite/sand specimens exhibited higher c values than kaolinite/sand specimens.

- (14) The values of the secant modulus measured at 50% shear strength in the UU triaxial device ( $E_{50}$ ) increase with clay content and are higher for dry-of-optimum specimens than wet-of-optimum specimens.
- (15) The 50% clay/sand samples compacted at either the Low Energy Proctor or Standard Proctor energy level exhibited a "critical pressure"-type behavior in the one-dimensional compressibility tests that were conducted, which was characterized by a sudden increase in compressibility when the applied pressure passed beyond a certain point.
- (16) For each of the clay/sand mixtures, at a given compaction energy level, the one-dimensional compressibility decreased as the percentage of sand in the mixture increased. The effect of changes in sand content on the compressibility behavior was reduced at higher levels of compactive effort (e.g., the Modified Proctor compaction energy level).
- (17) Increases in compactive effort led to an increase in soil density, which in turn resulted in a decrease in one-dimensional soil compressibility.
- (18) The compaction water content was found to have a significant effect on the one-dimensional compressibility behavior of samples with a high clay content, and was observed to be relatively unimportant for samples with a low clay content.

#### 7.2 Recommendations for Future Research

Compaction conditions in the field are different than those in the laboratory.
 Therefore, if the results of this study are to be of the most value for prediction

of field behavior, these results should be correlated with similar tests on field compacted soil.

- (2) Laboratory studies that focus on the effects of different methods of compaction (e.g., static, impact, kneading, and vibratory compaction) on the resulting strength and compressibility behavior of compacted clay/sand mixtures may also prove useful.
- (3) The influence of wetting induced collapse settlement and swell behavior resulting from postconstruction increases in moisture content from precipitation, capillary water, and flooding, should be examined.

#### APPENDIX A

#### SAND SIEVE ANALYSIS

| Project:         | An experimental investigation of the behavior of compacted clay/sand mixtures |                |              |               |                          |              |           |  |  |
|------------------|-------------------------------------------------------------------------------|----------------|--------------|---------------|--------------------------|--------------|-----------|--|--|
| V-M Class:       | Light tan med                                                                 | dium to fine s | and          |               | Sieve Set:               | Single-Set S | ieving    |  |  |
| Method:          | В                                                                             |                | Sampling Pro | cedure Used:  | Air-Dried Sample No.: 20 |              |           |  |  |
| Soak Time:       | -                                                                             | D              | spersing Age | nt/Apparatus: | N/A                      | Sieve Time:  | 10 min    |  |  |
| Total Dry Mass o | f Sample, (g):                                                                |                | 153.4        | Sepa          | rating Sieve:            | N/A          |           |  |  |
| Total Dry Mass a | fter #200 wasł                                                                | n, (g):        | -            |               | Tested by:               | Yueru Chen   |           |  |  |
| Total Dry Mass > | No.4 Sieve (g                                                                 | ı):            | -            | Started:      | 2/27/2009                | Finished:    | 2/27/2009 |  |  |
| Sieve Openings   | U.S.                                                                          | Pan            | Soil+Pan     | Soil          | Percent                  | Retained     | Percent   |  |  |
| (mm)             | Standard                                                                      | Weight         | Weight       | Weight        | Partial                  | Total        | Finer     |  |  |
| 76.20            | 3-in.                                                                         |                |              |               |                          |              |           |  |  |
| 50.80            | 2-in.                                                                         |                |              |               |                          |              |           |  |  |
| 38.10            | 1-1/2-in.                                                                     |                |              |               |                          |              |           |  |  |
| 25.40            | 1-in.                                                                         |                |              |               |                          |              |           |  |  |
| 19.10            | 3/4-in.                                                                       |                |              |               |                          |              |           |  |  |
| 12.70            | 1/2-in.                                                                       |                |              |               |                          |              |           |  |  |
| 9.52             | 3/8-in.                                                                       |                |              |               |                          |              |           |  |  |
| 6.35             | No.3                                                                          |                |              |               |                          |              |           |  |  |
| 4.76             | No.4                                                                          |                |              |               |                          |              |           |  |  |
| Pan              | 1                                                                             |                |              |               |                          |              |           |  |  |
| 3.36             | No.6                                                                          |                |              |               |                          |              |           |  |  |
| 2.38             | No.8                                                                          |                |              |               |                          |              |           |  |  |
| 2.00             | No.10                                                                         | 731.5          | 731.5        | 0.0           | 0.00                     | 0.00         | 100.00    |  |  |
| 1.19             | No.16                                                                         |                |              |               |                          |              |           |  |  |
| 0.84             | No.20                                                                         | 629.5          | 629.7        | 0.2           | 0.13                     | 0.13         | 99.87     |  |  |
| 0.59             | No.30                                                                         |                |              |               |                          |              |           |  |  |
| 0.42             | No.40                                                                         | 375.0          | 480.8        | 105.8         | 68.97                    | 68.97        | 30.90     |  |  |
| 0.297            | No.50                                                                         |                |              |               |                          |              |           |  |  |
| 0.250            | No.60                                                                         | 371.5          | 417.0        | 45.5          | 29.66                    | 29.66        | 1.24      |  |  |
| 0.210            | No.70                                                                         |                |              |               |                          |              |           |  |  |
| 0.149            | No.100                                                                        | 509.9          | 511.3        | 1.4           | 0.91                     | 0.91         | 0.33      |  |  |
| 0.105            | No.140                                                                        | 306.0          | 306.4        | 0.4           | 0.26                     | 0.26         | 0.07      |  |  |
| 0.074            | No.200                                                                        | 334.4          | 334.6        | 0.2           | 0.13                     | 0.13         | -0.07     |  |  |
| Pan              | I                                                                             | 373.3          | 373.3        | 0.0           | 0.00                     | 0.00         | -0.07     |  |  |
| Total Dry Weig   | ht in grams                                                                   |                |              | 153.5         |                          |              |           |  |  |
| Percent Lost (-) | / Gained(+)                                                                   |                |              | 0.07          |                          |              |           |  |  |

| Project:          | An experimental investigation of the behavior of compacted clay/sand mixtures |                |              |               |               |              |           |  |  |
|-------------------|-------------------------------------------------------------------------------|----------------|--------------|---------------|---------------|--------------|-----------|--|--|
| V-M Class:        | Light tan med                                                                 | dium to fine s | and          |               | Sieve Set:    | Single-Set S | ieving    |  |  |
| Method:           | В                                                                             |                | Sampling Pro | cedure Used:  | Air-Dried     | Sample No.:  | 19        |  |  |
| Soak Time:        | -                                                                             | D              | spersing Age | nt/Apparatus: | N/A           | Sieve Time:  | 10 min    |  |  |
| Total Dry Mass of | f Sample, (g):                                                                |                | 172.4        | Sepa          | rating Sieve: | N/A          |           |  |  |
| Total Dry Mass a  | fter #200 wasł                                                                | n, (g):        | -            |               | Tested by:    | Yueru Chen   |           |  |  |
| Total Dry Mass >  | No.4 Sieve (g                                                                 | ı):            | -            | Started:      | 2/27/2009     | Finished:    | 2/27/2009 |  |  |
| Sieve Openings    | U.S.                                                                          | Pan            | Soil+Pan     | Soil          | Percent       | Retained     | Percent   |  |  |
| (mm)              | Standard                                                                      | Weight         | Weight       | Weight        | Partial       | Total        | Finer     |  |  |
| 76.20             | 3-in.                                                                         |                |              |               |               |              |           |  |  |
| 50.80             | 2-in.                                                                         |                |              |               |               |              |           |  |  |
| 38.10             | 1-1/2-in.                                                                     |                |              |               |               |              |           |  |  |
| 25.40             | 1-in.                                                                         |                |              |               |               |              |           |  |  |
| 19.10             | 3/4-in.                                                                       |                |              |               |               |              |           |  |  |
| 12.70             | 1/2-in.                                                                       |                |              |               |               |              |           |  |  |
| 9.52              | 3/8-in.                                                                       |                |              |               |               |              |           |  |  |
| 6.35              | No.3                                                                          |                |              |               |               |              |           |  |  |
| 4.76              | No.4                                                                          |                |              |               |               |              |           |  |  |
| Pan               | l                                                                             |                |              |               |               |              |           |  |  |
| 3.36              | No.6                                                                          |                |              |               |               |              |           |  |  |
| 2.38              | No.8                                                                          |                |              |               |               |              |           |  |  |
| 2.00              | No.10                                                                         | 451.5          | 451.5        | 0.0           | 0.00          | 0.00         | 100.00    |  |  |
| 1.19              | No.16                                                                         |                |              |               |               |              |           |  |  |
| 0.84              | No.20                                                                         | 408.9          | 409.3        | 0.4           | 0.23          | 0.23         | 99.77     |  |  |
| 0.59              | No.30                                                                         |                |              |               |               |              |           |  |  |
| 0.42              | No.40                                                                         | 340.2          | 459.7        | 119.5         | 69.32         | 69.32        | 30.45     |  |  |
| 0.297             | No.50                                                                         |                |              |               |               |              |           |  |  |
| 0.250             | No.60                                                                         | 316.0          | 361.9        | 45.9          | 26.62         | 26.62        | 3.83      |  |  |
| 0.210             | No.70                                                                         |                |              |               |               |              |           |  |  |
| 0.149             | No.100                                                                        | 308.0          | 311.0        | 3.0           | 1.74          | 1.74         | 2.09      |  |  |
| 0.105             | No.140                                                                        | 486.9          | 489.2        | 2.3           | 1.33          | 1.33         | 0.75      |  |  |
| 0.074             | No.200                                                                        | 292.6          | 293.4        | 0.8           | 0.46          | 0.46         | 0.29      |  |  |
| Pan               |                                                                               | 374.6          | 375.1        | 0.5           | 0.29          | 0.29         | 0.00      |  |  |
| Total Dry Weig    | ht in grams                                                                   |                |              | 172.4         |               |              |           |  |  |
| Percent Lost (-)  | / Gained(+)                                                                   |                |              | 0.00          |               |              |           |  |  |

| Project:         | An experimental investigation of the behavior of compacted clay/sand mixtures |                |              |               |                          |              |           |  |  |
|------------------|-------------------------------------------------------------------------------|----------------|--------------|---------------|--------------------------|--------------|-----------|--|--|
| V-M Class:       | Light tan med                                                                 | lium to fine s | and          |               | Sieve Set:               | Single-Set S | eving     |  |  |
| Method:          | В                                                                             |                | Sampling Pro | cedure Used:  | Air-Dried Sample No.: 18 |              |           |  |  |
| Soak Time:       | -                                                                             | D              | spersing Age | nt/Apparatus: | N/A                      | Sieve Time:  | 10 min    |  |  |
| Total Dry Mass o | f Sample, (g):                                                                |                | 169.6        | Sepa          | rating Sieve:            | N/A          |           |  |  |
| Total Dry Mass a | fter #200 wasl                                                                | n, (g):        | -            |               | Tested by:               | Yueru Chen   |           |  |  |
| Total Dry Mass > | No.4 Sieve (g                                                                 | ı):            | -            | Started:      | 2/27/2009                | Finished:    | 2/27/2009 |  |  |
| Sieve Openings   | U.S.                                                                          | Pan            | Soil+Pan     | Soil          | Percent                  | Retained     | Percent   |  |  |
| (mm)             | Standard                                                                      | Weight         | Weight       | Weight        | Partial                  | Total        | Finer     |  |  |
| 76.20            | 3-in.                                                                         |                |              |               |                          |              |           |  |  |
| 50.80            | 2-in.                                                                         |                |              |               |                          |              |           |  |  |
| 38.10            | 1-1/2-in.                                                                     |                |              |               |                          |              |           |  |  |
| 25.40            | 1-in.                                                                         |                |              |               |                          |              |           |  |  |
| 19.10            | 3/4-in.                                                                       |                |              |               |                          |              |           |  |  |
| 12.70            | 1/2-in.                                                                       |                |              |               |                          |              |           |  |  |
| 9.52             | 3/8-in.                                                                       |                |              |               |                          |              |           |  |  |
| 6.35             | No.3                                                                          |                |              |               |                          |              |           |  |  |
| 4.76             | No.4                                                                          |                |              |               |                          |              |           |  |  |
| Pan              |                                                                               |                |              |               |                          |              |           |  |  |
| 3.36             | No.6                                                                          |                |              |               |                          |              |           |  |  |
| 2.38             | No.8                                                                          |                |              |               |                          |              |           |  |  |
| 2.00             | No.10                                                                         | 451.5          | 451.5        | 0.0           | 0.00                     | 0.00         | 100.00    |  |  |
| 1.19             | No.16                                                                         |                |              |               |                          |              |           |  |  |
| 0.84             | No.20                                                                         | 409.1          | 409.4        | 0.3           | 0.18                     | 0.18         | 99.82     |  |  |
| 0.59             | No.30                                                                         |                |              |               |                          |              |           |  |  |
| 0.42             | No.40                                                                         | 340.8          | 467.4        | 126.6         | 74.65                    | 74.65        | 25.18     |  |  |
| 0.297            | No.50                                                                         |                |              |               |                          |              |           |  |  |
| 0.250            | No.60                                                                         | 316.1          | 356.6        | 40.5          | 23.88                    | 23.88        | 1.30      |  |  |
| 0.210            | No.70                                                                         |                |              |               |                          |              |           |  |  |
| 0.149            | No.100                                                                        | 308.1          | 309.9        | 1.8           | 1.06                     | 1.06         | 0.24      |  |  |
| 0.105            | No.140                                                                        | 486.9          | 487.3        | 0.4           | 0.24                     | 0.24         | 0.00      |  |  |
| 0.074            | No.200                                                                        | 292.6          | 292.6        | 0.0           | 0.00                     | 0.00         | 0.00      |  |  |
| Pan              |                                                                               | 374.5          | 374.5        | 0.0           | 0.00                     | 0.00         | 0.00      |  |  |
| Total Dry Weig   | ht in grams                                                                   |                |              | 169.6         |                          |              |           |  |  |
| Percent Lost (-) | / Gained(+)                                                                   |                |              | 0.00          |                          |              |           |  |  |

| Project:         | An experimental investigation of the behavior of compacted clay/sand mixtures |                |               |               |               |               |           |  |  |
|------------------|-------------------------------------------------------------------------------|----------------|---------------|---------------|---------------|---------------|-----------|--|--|
| V-M Class:       | Light tan med                                                                 | lium to fine s | and           |               | Sieve Set:    | Single-Set Si | ieving    |  |  |
| Method:          | В                                                                             |                | Sampling Pro  | cedure Used:  | Air-Dried     | Sample No.:   | 17        |  |  |
| Soak Time:       | -                                                                             | D              | ispersing Age | nt/Apparatus: | N/A           | Sieve Time:   | 10 min    |  |  |
| Total Dry Mass o | f Sample, (g):                                                                |                | 173.9         | Sepa          | rating Sieve: | N/A           |           |  |  |
| Total Dry Mass a | fter #200 wasl                                                                | n, (g):        | -             |               | Tested by:    | Yueru Chen    |           |  |  |
| Total Dry Mass > | No.4 Sieve (g                                                                 | ):             | -             | Started:      | 2/27/2009     | Finished:     | 2/27/2009 |  |  |
| Sieve Openings   | U.S.                                                                          | Pan            | Soil+Pan      | Soil          | Percent       | Retained      | Percent   |  |  |
| (mm)             | Standard                                                                      | Weight         | Weight        | Weight        | Partial       | Total         | Finer     |  |  |
| 76.20            | 3-in.                                                                         |                |               |               |               |               |           |  |  |
| 50.80            | 2-in.                                                                         |                |               |               |               |               |           |  |  |
| 38.10            | 1-1/2-in.                                                                     |                |               |               |               |               |           |  |  |
| 25.40            | 1-in.                                                                         |                |               |               |               |               |           |  |  |
| 19.10            | 3/4-in.                                                                       |                |               |               |               |               |           |  |  |
| 12.70            | 1/2-in.                                                                       |                |               |               |               |               |           |  |  |
| 9.52             | 3/8-in.                                                                       |                |               |               |               |               |           |  |  |
| 6.35             | No.3                                                                          |                |               |               |               |               |           |  |  |
| 4.76             | No.4                                                                          |                |               |               |               |               |           |  |  |
| Par              | l                                                                             |                |               |               |               |               |           |  |  |
| 3.36             | No.6                                                                          |                |               |               |               |               |           |  |  |
| 2.38             | No.8                                                                          |                |               |               |               |               |           |  |  |
| 2.00             | No.10                                                                         | 451.5          | 451.5         | 0.0           | 0.00          | 0.00          | 100.00    |  |  |
| 1.19             | No.16                                                                         |                |               |               |               |               |           |  |  |
| 0.84             | No.20                                                                         | 409.1          | 409.3         | 0.2           | 0.12          | 0.12          | 99.88     |  |  |
| 0.59             | No.30                                                                         |                |               |               |               |               |           |  |  |
| 0.42             | No.40                                                                         | 340.4          | 467.1         | 126.7         | 72.86         | 72.86         | 27.03     |  |  |
| 0.297            | No.50                                                                         |                |               |               |               |               |           |  |  |
| 0.250            | No.60                                                                         | 316.0          | 360.9         | 44.9          | 25.82         | 25.82         | 1.21      |  |  |
| 0.210            | No.70                                                                         |                |               |               |               |               |           |  |  |
| 0.149            | No.100                                                                        | 308.1          | 309.5         | 1.4           | 0.81          | 0.81          | 0.40      |  |  |
| 0.105            | No.140                                                                        | 486.9          | 487.4         | 0.5           | 0.29          | 0.29          | 0.12      |  |  |
| 0.074            | No.200                                                                        | 292.6          | 292.7         | 0.1           | 0.06          | 0.06          | 0.06      |  |  |
| Par              | 1                                                                             | 374.5          | 374.7         | 0.2           | 0.12          | 0.12          | -0.06     |  |  |
| Total Dry Weig   | ht in grams                                                                   |                |               | 174.0         |               |               |           |  |  |
| Percent Lost (-) | / Gained(+)                                                                   |                |               | 0.06          |               |               |           |  |  |

| Project:          | An experimental investigation of the behavior of compacted clay/sand mixtures |                |              |               |               |              |           |  |  |
|-------------------|-------------------------------------------------------------------------------|----------------|--------------|---------------|---------------|--------------|-----------|--|--|
| V-M Class:        | Light tan med                                                                 | lium to fine s | and          |               | Sieve Set:    | Single-Set S | ieving    |  |  |
| Method:           | В                                                                             |                | Sampling Pro | cedure Used:  | Air-Dried     | Sample No.:  | 16        |  |  |
| Soak Time:        | -                                                                             | D              | spersing Age | nt/Apparatus: | N/A           | Sieve Time:  | 10 min    |  |  |
| Total Dry Mass of | f Sample, (g):                                                                |                | 179.1        | Sepa          | rating Sieve: | N/A          |           |  |  |
| Total Dry Mass a  | fter #200 wasł                                                                | n, (g):        | -            |               | Tested by:    | Yueru Chen   |           |  |  |
| Total Dry Mass >  | No.4 Sieve (g                                                                 | ı):            | -            | Started:      | 2/27/2009     | Finished:    | 2/27/2009 |  |  |
| Sieve Openings    | U.S.                                                                          | Pan            | Soil+Pan     | Soil          | Percent       | Retained     | Percent   |  |  |
| (mm)              | Standard                                                                      | Weight         | Weight       | Weight        | Partial       | Total        | Finer     |  |  |
| 76.20             | 3-in.                                                                         |                |              |               |               |              |           |  |  |
| 50.80             | 2-in.                                                                         |                |              |               |               |              |           |  |  |
| 38.10             | 1-1/2-in.                                                                     |                |              |               |               |              |           |  |  |
| 25.40             | 1-in.                                                                         |                |              |               |               |              |           |  |  |
| 19.10             | 3/4-in.                                                                       |                |              |               |               |              |           |  |  |
| 12.70             | 1/2-in.                                                                       |                |              |               |               |              |           |  |  |
| 9.52              | 3/8-in.                                                                       |                |              |               |               |              |           |  |  |
| 6.35              | No.3                                                                          |                |              |               |               |              |           |  |  |
| 4.76              | No.4                                                                          |                |              |               |               |              |           |  |  |
| Pan               | 1                                                                             |                |              |               |               |              |           |  |  |
| 3.36              | No.6                                                                          |                |              |               |               |              |           |  |  |
| 2.38              | No.8                                                                          |                |              |               |               |              |           |  |  |
| 2.00              | No.10                                                                         | 451.5          | 451.5        | 0.0           | 0.00          | 0.00         | 100.00    |  |  |
| 1.19              | No.16                                                                         |                |              |               |               |              |           |  |  |
| 0.84              | No.20                                                                         | 409.1          | 409.5        | 0.4           | 0.22          | 0.22         | 99.78     |  |  |
| 0.59              | No.30                                                                         |                |              |               |               |              |           |  |  |
| 0.42              | No.40                                                                         | 340.3          | 475.0        | 134.7         | 75.21         | 75.21        | 24.57     |  |  |
| 0.297             | No.50                                                                         |                |              |               |               |              |           |  |  |
| 0.250             | No.60                                                                         | 316.0          | 359.6        | 43.6          | 24.34         | 24.34        | 0.22      |  |  |
| 0.210             | No.70                                                                         |                |              |               |               |              |           |  |  |
| 0.149             | No.100                                                                        | 308.0          | 308.4        | 0.4           | 0.22          | 0.22         | 0.00      |  |  |
| 0.105             | No.140                                                                        | 486.9          | 486.9        | 0.0           | 0.00          | 0.00         | 0.00      |  |  |
| 0.074             | No.200                                                                        | 292.6          | 292.6        | 0.0           | 0.00          | 0.00         | 0.00      |  |  |
| Pan               | I                                                                             | 374.5          | 374.5        | 0.0           | 0.00          | 0.00         | 0.00      |  |  |
| Total Dry Weig    | ht in grams                                                                   |                |              | 179.1         |               |              |           |  |  |
| Percent Lost (-)  | / Gained(+)                                                                   |                |              | 0.00          |               |              |           |  |  |

| Project:         | An experimental investigation of the behavior of compacted clay/sand mixtures |                |               |               |                                |              |           |  |  |
|------------------|-------------------------------------------------------------------------------|----------------|---------------|---------------|--------------------------------|--------------|-----------|--|--|
| V-M Class:       | Light tan med                                                                 | dium to fine s | and           |               | Sieve Set:                     | Single-Set S | ieving    |  |  |
| Method:          | В                                                                             |                | Sampling Pro  | cedure Used:  | Air-Dried Sample No.: 15       |              |           |  |  |
| Soak Time:       | -                                                                             | D              | ispersing Age | nt/Apparatus: | pparatus: N/A Sieve Time: 10 m |              |           |  |  |
| Total Dry Mass o | f Sample, (g):                                                                |                | 178           | Sepa          | rating Sieve:                  | N/A          |           |  |  |
| Total Dry Mass a | fter #200 wasl                                                                | n, (g):        | -             |               | Tested by:                     | Yueru Chen   |           |  |  |
| Total Dry Mass > | No.4 Sieve (g                                                                 | ı):            | -             | Started:      | 2/27/2009                      | Finished:    | 2/27/2009 |  |  |
| Sieve Openings   | U.S.                                                                          | Pan            | Soil+Pan      | Soil          | Percent                        | Retained     | Percent   |  |  |
| (mm)             | Standard                                                                      | Weight         | Weight        | Weight        | Partial                        | Total        | Finer     |  |  |
| 76.20            | 3-in.                                                                         |                |               |               |                                |              |           |  |  |
| 50.80            | 2-in.                                                                         |                |               |               |                                |              |           |  |  |
| 38.10            | 1-1/2-in.                                                                     |                |               |               |                                |              |           |  |  |
| 25.40            | 1-in.                                                                         |                |               |               |                                |              |           |  |  |
| 19.10            | 3/4-in.                                                                       |                |               |               |                                |              |           |  |  |
| 12.70            | 1/2-in.                                                                       |                |               |               |                                |              |           |  |  |
| 9.52             | 3/8-in.                                                                       |                |               |               |                                |              |           |  |  |
| 6.35             | No.3                                                                          |                |               |               |                                |              |           |  |  |
| 4.76             | No.4                                                                          |                |               |               |                                |              |           |  |  |
| Par              | 1                                                                             |                |               |               |                                |              |           |  |  |
| 3.36             | No.6                                                                          |                |               |               |                                |              |           |  |  |
| 2.38             | No.8                                                                          |                |               |               |                                |              |           |  |  |
| 2.00             | No.10                                                                         | 451.5          | 451.5         | 0.0           | 0.00                           | 0.00         | 100.00    |  |  |
| 1.19             | No.16                                                                         |                |               |               |                                |              |           |  |  |
| 0.84             | No.20                                                                         | 409.3          | 409.7         | 0.4           | 0.22                           | 0.22         | 99.78     |  |  |
| 0.59             | No.30                                                                         |                |               |               |                                |              |           |  |  |
| 0.42             | No.40                                                                         | 340.5          | 481.8         | 141.3         | 79.38                          | 79.38        | 20.39     |  |  |
| 0.297            | No.50                                                                         |                |               |               |                                |              |           |  |  |
| 0.250            | No.60                                                                         | 316.2          | 351.9         | 35.7          | 20.06                          | 20.06        | 0.34      |  |  |
| 0.210            | No.70                                                                         |                |               |               |                                |              |           |  |  |
| 0.149            | No.100                                                                        | 308.0          | 308.5         | 0.5           | 0.28                           | 0.28         | 0.06      |  |  |
| 0.105            | No.140                                                                        | 487.0          | 487.0         | 0.0           | 0.00                           | 0.00         | 0.06      |  |  |
| 0.074            | No.200                                                                        | 292.6          | 292.6         | 0.0           | 0.00                           | 0.00         | 0.06      |  |  |
| Par              | I                                                                             | 374.5          | 374.5         | 0.0           | 0.00                           | 0.00         | 0.06      |  |  |
| Total Dry Weig   | ht in grams                                                                   |                |               | 177.9         |                                |              |           |  |  |
| Percent Lost (-) | / Gained(+)                                                                   |                |               | -0.06         |                                |              |           |  |  |

| Project:          | An experimental investigation of the behavior of compacted clay/sand mixtures |                |               |               |               |                          |           |  |  |
|-------------------|-------------------------------------------------------------------------------|----------------|---------------|---------------|---------------|--------------------------|-----------|--|--|
| V-M Class:        | Light tan med                                                                 | lium to fine s | and           |               | Sieve Set:    | Single-Set S             | ieving    |  |  |
| Method:           | В                                                                             |                | Sampling Pro  | cedure Used:  | Air-Dried     | Air-Dried Sample No.: 14 |           |  |  |
| Soak Time:        | -                                                                             | D              | ispersing Age | nt/Apparatus: | N/A           | Sieve Time:              | 10 min    |  |  |
| Total Dry Mass of | f Sample, (g):                                                                |                | 160           | Sepa          | rating Sieve: | N/A                      |           |  |  |
| Total Dry Mass at | fter #200 wasł                                                                | n, (g):        | -             |               | Tested by:    | Yueru Chen               |           |  |  |
| Total Dry Mass >  | No.4 Sieve (g                                                                 | ):             | -             | Started:      | 2/27/2009     | Finished:                | 2/27/2009 |  |  |
| Sieve Openings    | U.S.                                                                          | Pan            | Soil+Pan      | Soil          | Percent       | Retained                 | Percent   |  |  |
| (mm)              | Standard                                                                      | Weight         | Weight        | Weight        | Partial       | Total                    | Finer     |  |  |
| 76.20             | 3-in.                                                                         |                |               |               |               |                          |           |  |  |
| 50.80             | 2-in.                                                                         |                |               |               |               |                          |           |  |  |
| 38.10             | 1-1/2-in.                                                                     |                |               |               |               |                          |           |  |  |
| 25.40             | 1-in.                                                                         |                |               |               |               |                          |           |  |  |
| 19.10             | 3/4-in.                                                                       |                |               |               |               |                          |           |  |  |
| 12.70             | 1/2-in.                                                                       |                |               |               |               |                          |           |  |  |
| 9.52              | 3/8-in.                                                                       |                |               |               |               |                          |           |  |  |
| 6.35              | No.3                                                                          |                |               |               |               |                          |           |  |  |
| 4.76              | No.4                                                                          |                |               |               |               |                          |           |  |  |
| Pan               |                                                                               |                |               |               |               |                          |           |  |  |
| 3.36              | No.6                                                                          |                |               |               |               |                          |           |  |  |
| 2.38              | No.8                                                                          |                |               |               |               |                          |           |  |  |
| 2.00              | No.10                                                                         | 451.5          | 451.5         | 0.0           | 0.00          | 0.00                     | 100.00    |  |  |
| 1.19              | No.16                                                                         |                |               |               |               |                          |           |  |  |
| 0.84              | No.20                                                                         | 409.3          | 409.6         | 0.3           | 0.19          | 0.19                     | 99.81     |  |  |
| 0.59              | No.30                                                                         |                |               |               |               |                          |           |  |  |
| 0.42              | No.40                                                                         | 339.7          | 452.8         | 113.1         | 70.69         | 70.69                    | 29.13     |  |  |
| 0.297             | No.50                                                                         |                |               |               |               |                          |           |  |  |
| 0.250             | No.60                                                                         | 316.1          | 360.5         | 44.4          | 27.75         | 27.75                    | 1.38      |  |  |
| 0.210             | No.70                                                                         |                |               |               |               |                          |           |  |  |
| 0.149             | No.100                                                                        | 308.0          | 309.6         | 1.6           | 1.00          | 1.00                     | 0.37      |  |  |
| 0.105             | No.140                                                                        | 487.0          | 487.5         | 0.5           | 0.31          | 0.31                     | 0.06      |  |  |
| 0.074             | No.200                                                                        | 292.6          | 292.7         | 0.1           | 0.06          | 0.06                     | 0.00      |  |  |
| Pan               |                                                                               | 374.6          | 374.6         | 0.0           | 0.00          | 0.00                     | 0.00      |  |  |
| Total Dry Weig    | ht in grams                                                                   |                |               | 160.0         |               |                          |           |  |  |
| Percent Lost (-)  | / Gained(+)                                                                   |                |               | 0.00          |               |                          |           |  |  |

| Project:          | An experimental investigation of the behavior of compacted clay/sand mixtures |                |              |               |                          |               |           |  |  |
|-------------------|-------------------------------------------------------------------------------|----------------|--------------|---------------|--------------------------|---------------|-----------|--|--|
| V-M Class:        | Light tan med                                                                 | dium to fine s | and          |               | Sieve Set:               | Single-Set Si | ieving    |  |  |
| Method:           | В                                                                             |                | Sampling Pro | cedure Used:  | Air-Dried Sample No.: 13 |               |           |  |  |
| Soak Time:        | -                                                                             | D              | spersing Age | nt/Apparatus: | N/A                      | Sieve Time:   | 10 min    |  |  |
| Total Dry Mass of | f Sample, (g):                                                                |                | 175.1        | Sepa          | rating Sieve:            | N/A           |           |  |  |
| Total Dry Mass a  | fter #200 wasł                                                                | n, (g):        | -            |               | Tested by:               | Yueru Chen    |           |  |  |
| Total Dry Mass >  | No.4 Sieve (g                                                                 | ı):            | -            | Started:      | 2/27/2009                | Finished:     | 2/27/2009 |  |  |
| Sieve Openings    | U.S.                                                                          | Pan            | Soil+Pan     | Soil          | Percent                  | Retained      | Percent   |  |  |
| (mm)              | Standard                                                                      | Weight         | Weight       | Weight        | Partial                  | Total         | Finer     |  |  |
| 76.20             | 3-in.                                                                         |                |              |               |                          |               |           |  |  |
| 50.80             | 2-in.                                                                         |                |              |               |                          |               |           |  |  |
| 38.10             | 1-1/2-in.                                                                     |                |              |               |                          |               |           |  |  |
| 25.40             | 1-in.                                                                         |                |              |               |                          |               |           |  |  |
| 19.10             | 3/4-in.                                                                       |                |              |               |                          |               |           |  |  |
| 12.70             | 1/2-in.                                                                       |                |              |               |                          |               |           |  |  |
| 9.52              | 3/8-in.                                                                       |                |              |               |                          |               |           |  |  |
| 6.35              | No.3                                                                          |                |              |               |                          |               |           |  |  |
| 4.76              | No.4                                                                          |                |              |               |                          |               |           |  |  |
| Pan               | 1                                                                             |                |              |               |                          |               |           |  |  |
| 3.36              | No.6                                                                          |                |              |               |                          |               |           |  |  |
| 2.38              | No.8                                                                          |                |              |               |                          |               |           |  |  |
| 2.00              | No.10                                                                         | 451.6          | 451.6        | 0.0           | 0.00                     | 0.00          | 100.00    |  |  |
| 1.19              | No.16                                                                         |                |              |               |                          |               |           |  |  |
| 0.84              | No.20                                                                         | 409.6          | 409.8        | 0.2           | 0.11                     | 0.11          | 99.89     |  |  |
| 0.59              | No.30                                                                         |                |              |               |                          |               |           |  |  |
| 0.42              | No.40                                                                         | 340.0          | 467.8        | 127.8         | 72.99                    | 72.99         | 26.90     |  |  |
| 0.297             | No.50                                                                         |                |              |               |                          |               |           |  |  |
| 0.250             | No.60                                                                         | 316.2          | 362.6        | 46.4          | 26.50                    | 26.50         | 0.40      |  |  |
| 0.210             | No.70                                                                         |                |              |               |                          |               |           |  |  |
| 0.149             | No.100                                                                        | 308.0          | 308.6        | 0.6           | 0.34                     | 0.34          | 0.06      |  |  |
| 0.105             | No.140                                                                        | 487.0          | 487.1        | 0.1           | 0.06                     | 0.06          | 0.00      |  |  |
| 0.074             | No.200                                                                        | 292.7          | 292.7        | 0.0           | 0.00                     | 0.00          | 0.00      |  |  |
| Pan               | I                                                                             | 374.6          | 374.6        | 0.0           | 0.00                     | 0.00          | 0.00      |  |  |
| Total Dry Weig    | ht in grams                                                                   |                |              | 175.1         |                          |               |           |  |  |
| Percent Lost (-)  | / Gained(+)                                                                   |                |              | 0.00          |                          |               |           |  |  |

| Project:          | An experimental investigation of the behavior of compacted clay/sand mixtures |                |              |               |                          |              |           |  |  |
|-------------------|-------------------------------------------------------------------------------|----------------|--------------|---------------|--------------------------|--------------|-----------|--|--|
| V-M Class:        | Light tan med                                                                 | dium to fine s | and          |               | Sieve Set:               | Single-Set S | eving     |  |  |
| Method:           | В                                                                             |                | Sampling Pro | cedure Used:  | Air-Dried Sample No.: 12 |              |           |  |  |
| Soak Time:        | -                                                                             | D              | spersing Age | nt/Apparatus: | N/A                      | Sieve Time:  | 10 min    |  |  |
| Total Dry Mass of | f Sample, (g):                                                                |                | 181.6        | Sepa          | rating Sieve:            | N/A          |           |  |  |
| Total Dry Mass a  | fter #200 wasl                                                                | n, (g):        | -            |               | Tested by:               | Yueru Chen   |           |  |  |
| Total Dry Mass >  | No.4 Sieve (g                                                                 | ı):            | -            | Started:      | 2/27/2009                | Finished:    | 2/27/2009 |  |  |
| Sieve Openings    | U.S.                                                                          | Pan            | Soil+Pan     | Soil          | Percent                  | Retained     | Percent   |  |  |
| (mm)              | Standard                                                                      | Weight         | Weight       | Weight        | Partial                  | Total        | Finer     |  |  |
| 76.20             | 3-in.                                                                         |                |              |               |                          |              |           |  |  |
| 50.80             | 2-in.                                                                         |                |              |               |                          |              |           |  |  |
| 38.10             | 1-1/2-in.                                                                     |                |              |               |                          |              |           |  |  |
| 25.40             | 1-in.                                                                         |                |              |               |                          |              |           |  |  |
| 19.10             | 3/4-in.                                                                       |                |              |               |                          |              |           |  |  |
| 12.70             | 1/2-in.                                                                       |                |              |               |                          |              |           |  |  |
| 9.52              | 3/8-in.                                                                       |                |              |               |                          |              |           |  |  |
| 6.35              | No.3                                                                          |                |              |               |                          |              |           |  |  |
| 4.76              | No.4                                                                          |                |              |               |                          |              |           |  |  |
| Pan               |                                                                               |                |              |               |                          |              |           |  |  |
| 3.36              | No.6                                                                          |                |              |               |                          |              |           |  |  |
| 2.38              | No.8                                                                          |                |              |               |                          |              |           |  |  |
| 2.00              | No.10                                                                         | 451.6          | 451.6        | 0.0           | 0.00                     | 0.00         | 100.00    |  |  |
| 1.19              | No.16                                                                         |                |              |               |                          |              |           |  |  |
| 0.84              | No.20                                                                         | 409.6          | 410.0        | 0.4           | 0.22                     | 0.22         | 99.78     |  |  |
| 0.59              | No.30                                                                         |                |              |               |                          |              |           |  |  |
| 0.42              | No.40                                                                         | 339.7          | 481.5        | 141.8         | 78.08                    | 78.08        | 21.70     |  |  |
| 0.297             | No.50                                                                         |                |              |               |                          |              |           |  |  |
| 0.250             | No.60                                                                         | 316.3          | 355.5        | 39.2          | 21.59                    | 21.59        | 0.11      |  |  |
| 0.210             | No.70                                                                         |                |              |               |                          |              |           |  |  |
| 0.149             | No.100                                                                        | 308.0          | 308.2        | 0.2           | 0.11                     | 0.11         | 0.00      |  |  |
| 0.105             | No.140                                                                        | 486.9          | 486.9        | 0.0           | 0.00                     | 0.00         | 0.00      |  |  |
| 0.074             | No.200                                                                        | 292.7          | 292.7        | 0.0           | 0.00                     | 0.00         | 0.00      |  |  |
| Pan               |                                                                               | 374.6          | 374.6        | 0.0           | 0.00                     | 0.00         | 0.00      |  |  |
| Total Dry Weig    | ht in grams                                                                   |                |              | 181.6         |                          |              |           |  |  |
| Percent Lost (-)  | / Gained(+)                                                                   |                |              | 0.00          |                          |              |           |  |  |

| Project:          | An experimental investigation of the behavior of compacted clay/sand mixtures |                |               |               |                          |              |           |  |  |
|-------------------|-------------------------------------------------------------------------------|----------------|---------------|---------------|--------------------------|--------------|-----------|--|--|
| V-M Class:        | Light tan med                                                                 | dium to fine s | and           |               | Sieve Set:               | Single-Set S | ieving    |  |  |
| Method:           | В                                                                             |                | Sampling Pro  | cedure Used:  | Air-Dried Sample No.: 11 |              |           |  |  |
| Soak Time:        | -                                                                             | D              | ispersing Age | nt/Apparatus: | N/A                      | Sieve Time:  | 10 min    |  |  |
| Total Dry Mass of | f Sample, (g):                                                                |                | 165.1         | Sepa          | rating Sieve:            | N/A          |           |  |  |
| Total Dry Mass a  | fter #200 wasł                                                                | n, (g):        | -             |               | Tested by:               | Yueru Chen   |           |  |  |
| Total Dry Mass >  | No.4 Sieve (g                                                                 | ı):            | -             | Started:      | 2/27/2009                | Finished:    | 2/27/2009 |  |  |
| Sieve Openings    | U.S.                                                                          | Pan            | Soil+Pan      | Soil          | Percent                  | Retained     | Percent   |  |  |
| (mm)              | Standard                                                                      | Weight         | Weight        | Weight        | Partial                  | Total        | Finer     |  |  |
| 76.20             | 3-in.                                                                         |                |               |               |                          |              |           |  |  |
| 50.80             | 2-in.                                                                         |                |               |               |                          |              |           |  |  |
| 38.10             | 1-1/2-in.                                                                     |                |               |               |                          |              |           |  |  |
| 25.40             | 1-in.                                                                         |                |               |               |                          |              |           |  |  |
| 19.10             | 3/4-in.                                                                       |                |               |               |                          |              |           |  |  |
| 12.70             | 1/2-in.                                                                       |                |               |               |                          |              |           |  |  |
| 9.52              | 3/8-in.                                                                       |                |               |               |                          |              |           |  |  |
| 6.35              | No.3                                                                          |                |               |               |                          |              |           |  |  |
| 4.76              | No.4                                                                          |                |               |               |                          |              |           |  |  |
| Pan               | 1                                                                             |                |               |               |                          |              |           |  |  |
| 3.36              | No.6                                                                          |                |               |               |                          |              |           |  |  |
| 2.38              | No.8                                                                          |                |               |               |                          |              |           |  |  |
| 2.00              | No.10                                                                         | 451.6          | 451.6         | 0.0           | 0.00                     | 0.00         | 100.00    |  |  |
| 1.19              | No.16                                                                         |                |               |               |                          |              |           |  |  |
| 0.84              | No.20                                                                         | 410.6          | 410.8         | 0.2           | 0.12                     | 0.12         | 99.88     |  |  |
| 0.59              | No.30                                                                         |                |               |               |                          |              |           |  |  |
| 0.42              | No.40                                                                         | 339.9          | 464.9         | 125.0         | 75.71                    | 75.71        | 24.17     |  |  |
| 0.297             | No.50                                                                         |                |               |               |                          |              |           |  |  |
| 0.250             | No.60                                                                         | 316.3          | 355.8         | 39.5          | 23.92                    | 23.92        | 0.24      |  |  |
| 0.210             | No.70                                                                         |                |               |               |                          |              |           |  |  |
| 0.149             | No.100                                                                        | 308.1          | 308.7         | 0.6           | 0.36                     | 0.36         | -0.12     |  |  |
| 0.105             | No.140                                                                        | 487.0          | 487.2         | 0.2           | 0.12                     | 0.12         | -0.24     |  |  |
| 0.074             | No.200                                                                        | 292.7          | 292.7         | 0.0           | 0.00                     | 0.00         | -0.24     |  |  |
| Pan               | I                                                                             | 374.6          | 374.6         | 0.0           | 0.00                     | 0.00         | -0.24     |  |  |
| Total Dry Weig    | ht in grams                                                                   |                |               | 165.5         |                          |              |           |  |  |
| Percent Lost (-)  | / Gained(+)                                                                   |                |               | 0.24          |                          |              |           |  |  |

| Project:          | An experimental investigation of the behavior of compacted clay/sand mixtures |                |               |               |               |                   |           |  |  |
|-------------------|-------------------------------------------------------------------------------|----------------|---------------|---------------|---------------|-------------------|-----------|--|--|
| V-M Class:        | Light tan med                                                                 | lium to fine s | and           |               | Sieve Set:    | Single-Set S      | ieving    |  |  |
| Method:           | В                                                                             |                | Sampling Pro  | cedure Used:  | Air-Dried     | ed Sample No.: 10 |           |  |  |
| Soak Time:        | -                                                                             | D              | ispersing Age | nt/Apparatus: | N/A           | Sieve Time:       | 10 min    |  |  |
| Total Dry Mass of | Sample, (g):                                                                  | 141.5 Sepa     |               |               | rating Sieve: | N/A               |           |  |  |
| Total Dry Mass af | iter #200 wash                                                                | n, (g):        | -             |               | Tested by:    | Yueru Chen        |           |  |  |
| Total Dry Mass >  | No.4 Sieve (g                                                                 | ):             | -             | Started:      | 2/27/2009     | Finished:         | 2/27/2009 |  |  |
| Sieve Openings    | U.S.                                                                          | Pan            | Soil+Pan      | Soil          | Percent       | Retained          | Percent   |  |  |
| (mm)              | Standard                                                                      | Weight         | Weight        | Weight        | Partial       | Total             | Finer     |  |  |
| 76.20             | 3-in.                                                                         | č              | Ŭ             | Ŭ,            |               |                   |           |  |  |
| 50.80             | 2-in.                                                                         |                |               |               |               |                   |           |  |  |
| 38.10             | 1-1/2-in.                                                                     |                |               |               |               |                   |           |  |  |
| 25.40             | 1-in.                                                                         |                |               |               |               |                   |           |  |  |
| 19.10             | 3/4-in.                                                                       |                |               |               |               |                   |           |  |  |
| 12.70             | 1/2-in.                                                                       |                |               |               |               |                   |           |  |  |
| 9.52              | 3/8-in.                                                                       |                |               |               |               |                   |           |  |  |
| 6.35              | No.3                                                                          |                |               |               |               |                   |           |  |  |
| 4.76              | No.4                                                                          |                |               |               |               |                   |           |  |  |
| Pan               |                                                                               |                |               |               |               |                   |           |  |  |
| 3.36              | No.6                                                                          |                |               |               |               |                   |           |  |  |
| 2.38              | No.8                                                                          |                |               |               |               |                   |           |  |  |
| 2.00              | No.10                                                                         | 731.6          | 731.6         | 0.0           | 0.00          | 0.00              | 100.00    |  |  |
| 1.19              | No.16                                                                         |                |               |               |               |                   |           |  |  |
| 0.84              | No.20                                                                         | 629.5          | 629.9         | 0.4           | 0.28          | 0.28              | 99.72     |  |  |
| 0.59              | No.30                                                                         |                |               |               |               |                   |           |  |  |
| 0.42              | No.40                                                                         | 374.7          | 480.2         | 105.5         | 74.56         | 74.56             | 25.16     |  |  |
| 0.297             | No.50                                                                         |                |               |               |               |                   |           |  |  |
| 0.250             | No.60                                                                         | 371.5          | 406.3         | 34.8          | 24.59         | 24.59             | 0.57      |  |  |
| 0.210             | No.70                                                                         |                |               |               |               |                   |           |  |  |
| 0.149             | No.100                                                                        | 509.8          | 510.6         | 0.8           | 0.57          | 0.57              | 0.00      |  |  |
| 0.105             | No.140                                                                        | 306.0          | 306.0         | 0.0           | 0.00          | 0.00              | 0.00      |  |  |
| 0.074             | No.200                                                                        | 334.4          | 334.4         | 0.0           | 0.00          | 0.00              | 0.00      |  |  |
| Pan               |                                                                               | 373.3          | 373.3         | 0.0           | 0.00          | 0.00              | 0.00      |  |  |
| Total Dry Weig    | ht in grams                                                                   |                |               | 141.5         |               |                   |           |  |  |
| Percent Lost (-)  | / Gained(+)                                                                   |                |               | 0.00          |               |                   |           |  |  |

| Project:         | An experimental investigation of the behavior of compacted clay/sand mixtures |                |              |               |                         |              |           |  |  |
|------------------|-------------------------------------------------------------------------------|----------------|--------------|---------------|-------------------------|--------------|-----------|--|--|
| V-M Class:       | Light tan med                                                                 | dium to fine s | and          |               | Sieve Set:              | Single-Set S | ieving    |  |  |
| Method:          | В                                                                             |                | Sampling Pro | cedure Used:  | Air-Dried Sample No.: 9 |              |           |  |  |
| Soak Time:       | -                                                                             | D              | spersing Age | nt/Apparatus: | N/A                     | Sieve Time:  | 10 min    |  |  |
| Total Dry Mass o | f Sample, (g):                                                                |                | 163.9        | Sepa          | rating Sieve:           | N/A          |           |  |  |
| Total Dry Mass a | fter #200 wasl                                                                | h, (g):        | -            |               | Tested by:              | Yueru Chen   |           |  |  |
| Total Dry Mass > | No.4 Sieve (g                                                                 | g):            | -            | Started:      | 2/27/2009               | Finished:    | 2/27/2009 |  |  |
| Sieve Openings   | U.S.                                                                          | Pan            | Soil+Pan     | Soil          | Percent                 | Retained     | Percent   |  |  |
| (mm)             | Standard                                                                      | Weight         | Weight       | Weight        | Partial                 | Total        | Finer     |  |  |
| 76.20            | 3-in.                                                                         |                |              |               |                         |              |           |  |  |
| 50.80            | 2-in.                                                                         |                |              |               |                         |              |           |  |  |
| 38.10            | 1-1/2-in.                                                                     |                |              |               |                         |              |           |  |  |
| 25.40            | 1-in.                                                                         |                |              |               |                         |              |           |  |  |
| 19.10            | 3/4-in.                                                                       |                |              |               |                         |              |           |  |  |
| 12.70            | 1/2-in.                                                                       |                |              |               |                         |              |           |  |  |
| 9.52             | 3/8-in.                                                                       |                |              |               |                         |              |           |  |  |
| 6.35             | No.3                                                                          |                |              |               |                         |              |           |  |  |
| 4.76             | No.4                                                                          |                |              |               |                         |              |           |  |  |
| Pan              |                                                                               |                |              |               |                         |              |           |  |  |
| 3.36             | No.6                                                                          |                |              |               |                         |              |           |  |  |
| 2.38             | No.8                                                                          |                |              |               |                         |              |           |  |  |
| 2.00             | No.10                                                                         | 731.6          | 731.6        | 0.0           | 0.00                    | 0.00         | 100.00    |  |  |
| 1.19             | No.16                                                                         |                |              |               |                         |              |           |  |  |
| 0.84             | No.20                                                                         | 629.4          | 629.8        | 0.4           | 0.24                    | 0.24         | 99.76     |  |  |
| 0.59             | No.30                                                                         |                |              |               |                         |              |           |  |  |
| 0.42             | No.40                                                                         | 375.3          | 492.6        | 117.3         | 71.57                   | 71.57        | 28.19     |  |  |
| 0.297            | No.50                                                                         |                |              |               |                         |              |           |  |  |
| 0.250            | No.60                                                                         | 371.6          | 416.9        | 45.3          | 27.64                   | 27.64        | 0.55      |  |  |
| 0.210            | No.70                                                                         |                |              |               |                         |              |           |  |  |
| 0.149            | No.100                                                                        | 509.9          | 510.9        | 1.0           | 0.61                    | 0.61         | -0.06     |  |  |
| 0.105            | No.140                                                                        | 306.1          | 306.2        | 0.1           | 0.06                    | 0.06         | -0.12     |  |  |
| 0.074            | No.200                                                                        | 334.4          | 334.4        | 0.0           | 0.00                    | 0.00         | -0.12     |  |  |
| Pan              |                                                                               | 373.3          | 373.3        | 0.0           | 0.00                    | 0.00         | -0.12     |  |  |
| Total Dry Weig   | ht in grams                                                                   |                |              | 164.1         |                         |              |           |  |  |
| Percent Lost (-) | / Gained(+)                                                                   |                |              | 0.12          |                         |              |           |  |  |

| Project:          | An experimental investigation of the behavior of compacted clay/sand mixtures |                                                 |              |               |                       |                  |           |  |
|-------------------|-------------------------------------------------------------------------------|-------------------------------------------------|--------------|---------------|-----------------------|------------------|-----------|--|
| V-M Class:        | Light tan med                                                                 | dium to fine sand Sieve Set: Single-Set Sieving |              |               |                       |                  |           |  |
| Method:           | В                                                                             |                                                 | Sampling Pro | cedure Used:  | Air-Dried             | Sample No.:      | 8         |  |
| Soak Time:        | - Dispersing Age                                                              |                                                 |              | nt/Apparatus: | N/A                   | Sieve Time:      | 10 min    |  |
| Total Dry Mass of | f Sample, (g):                                                                |                                                 | 178.8        | Sepa          | rating Sieve:         | N/A              |           |  |
| Total Dry Mass a  | fter #200 wasł                                                                | n, (g):                                         | -            |               | Tested by: Yueru Chen |                  |           |  |
| Total Dry Mass >  | No.4 Sieve (g                                                                 | ):                                              | -            | Started:      | 2/27/2009             | Finished:        | 2/27/2009 |  |
| Sieve Openings    | U.S.                                                                          | Pan                                             | Soil+Pan     | Soil          | Percent               | Retained Percent |           |  |
| (mm)              | Standard                                                                      | Weight                                          | Weight       | Weight        | Partial               | Total            | Finer     |  |
| 76.20             | 3-in.                                                                         |                                                 |              |               |                       |                  |           |  |
| 50.80             | 2-in.                                                                         |                                                 |              |               |                       |                  |           |  |
| 38.10             | 1-1/2-in.                                                                     |                                                 |              |               |                       |                  |           |  |
| 25.40             | 1-in.                                                                         |                                                 |              |               |                       |                  |           |  |
| 19.10             | 3/4-in.                                                                       |                                                 |              |               |                       |                  |           |  |
| 12.70             | 1/2-in.                                                                       |                                                 |              |               |                       |                  |           |  |
| 9.52              | 3/8-in.                                                                       |                                                 |              |               |                       |                  |           |  |
| 6.35              | No.3                                                                          |                                                 |              |               |                       |                  |           |  |
| 4.76              | No.4                                                                          |                                                 |              |               |                       |                  |           |  |
| Pan               |                                                                               |                                                 |              |               |                       |                  |           |  |
| 3.36              | No.6                                                                          |                                                 |              |               |                       |                  |           |  |
| 2.38              | No.8                                                                          |                                                 |              |               |                       |                  |           |  |
| 2.00              | No.10                                                                         | 731.6                                           | 731.6        | 0.0           | 0.00                  | 0.00             | 100.00    |  |
| 1.19              | No.16                                                                         |                                                 |              |               |                       |                  |           |  |
| 0.84              | No.20                                                                         | 629.6                                           | 629.8        | 0.2           | 0.11                  | 0.11             | 99.89     |  |
| 0.59              | No.30                                                                         |                                                 |              |               |                       |                  |           |  |
| 0.42              | No.40                                                                         | 375.1                                           | 505.9        | 130.8         | 73.15                 | 73.15            | 26.73     |  |
| 0.297             | No.50                                                                         |                                                 |              |               |                       |                  |           |  |
| 0.250             | No.60                                                                         | 371.5                                           | 414.0        | 42.5          | 23.77                 | 23.77            | 2.96      |  |
| 0.210             | No.70                                                                         |                                                 |              |               |                       |                  |           |  |
| 0.149             | No.100                                                                        | 509.9                                           | 513.5        | 3.6           | 2.01                  | 2.01             | 0.95      |  |
| 0.105             | No.140                                                                        | 306.1                                           | 307.1        | 1.0           | 0.56                  | 0.56             | 0.39      |  |
| 0.074             | No.200                                                                        | 334.6                                           | 334.6        | 0.0           | 0.00                  | 0.00             | 0.39      |  |
| Pan               |                                                                               | 373.3                                           | 373.3        | 0.0           | 0.00                  | 0.00             | 0.39      |  |
| Total Dry Weig    | ht in grams                                                                   |                                                 |              | 178.1         |                       |                  |           |  |
| Percent Lost (-)  | / Gained(+)                                                                   |                                                 |              | -0.39         |                       |                  |           |  |

| Project:                  | An experimental investigation of the behavior of compacted clay/sand mixtures |                                                 |              |               |                       |             |           |  |
|---------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|--------------|---------------|-----------------------|-------------|-----------|--|
| V-M Class:                | Light tan med                                                                 | dium to fine sand Sieve Set: Single-Set Sieving |              |               |                       |             |           |  |
| Method:                   | В                                                                             |                                                 | Sampling Pro | cedure Used:  | Air-Dried             | Sample No.: | 7         |  |
| Soak Time:                | - Dispersing Age                                                              |                                                 |              | nt/Apparatus: | N/A                   | Sieve Time: | 10 min    |  |
| Total Dry Mass of         | f Sample, (g):                                                                |                                                 | 165          | Sepa          | rating Sieve:         | N/A         |           |  |
| Total Dry Mass a          | fter #200 wasł                                                                | n, (g):                                         | -            |               | Tested by: Yueru Chen |             |           |  |
| Total Dry Mass >          | No.4 Sieve (g                                                                 | ):                                              | -            | Started:      | 2/27/2009             | Finished:   | 2/27/2009 |  |
| Sieve Openings            | U.S.                                                                          | Pan                                             | Soil+Pan     | Soil          | Percent               | Retained    | Percent   |  |
| (mm)                      | Standard                                                                      | Weight                                          | Weight       | Weight        | Partial               | Total       | Finer     |  |
| 76.20                     | 3-in.                                                                         |                                                 |              |               |                       |             |           |  |
| 50.80                     | 2-in.                                                                         |                                                 |              |               |                       |             |           |  |
| 38.10                     | 1-1/2-in.                                                                     |                                                 |              |               |                       |             |           |  |
| 25.40                     | 1-in.                                                                         |                                                 |              |               |                       |             |           |  |
| 19.10                     | 3/4-in.                                                                       |                                                 |              |               |                       |             |           |  |
| 12.70                     | 1/2-in.                                                                       |                                                 |              |               |                       |             |           |  |
| 9.52                      | 3/8-in.                                                                       |                                                 |              |               |                       |             |           |  |
| 6.35                      | No.3                                                                          |                                                 |              |               |                       |             |           |  |
| 4.76                      | No.4                                                                          |                                                 |              |               |                       |             |           |  |
| Pan                       |                                                                               |                                                 |              |               |                       |             |           |  |
| 3.36                      | No.6                                                                          |                                                 |              |               |                       |             |           |  |
| 2.38                      | No.8                                                                          |                                                 |              |               |                       |             |           |  |
| 2.00                      | No.10                                                                         | 731.6                                           | 731.6        | 0.0           | 0.00                  | 0.00        | 100.00    |  |
| 1.19                      | No.16                                                                         |                                                 |              |               |                       |             |           |  |
| 0.84                      | No.20                                                                         | 629.6                                           | 629.7        | 0.1           | 0.06                  | 0.06        | 99.94     |  |
| 0.59                      | No.30                                                                         |                                                 |              |               |                       |             |           |  |
| 0.42                      | No.40                                                                         | 374.6                                           | 495.2        | 120.6         | 73.09                 | 73.09       | 26.85     |  |
| 0.297                     | No.50                                                                         |                                                 |              |               |                       |             |           |  |
| 0.250                     | No.60                                                                         | 371.5                                           | 414.1        | 42.6          | 25.82                 | 25.82       | 1.03      |  |
| 0.210                     | No.70                                                                         |                                                 |              |               |                       |             |           |  |
| 0.149                     | No.100                                                                        | 509.9                                           | 510.9        | 1.0           | 0.61                  | 0.61        | 0.42      |  |
| 0.105                     | No.140                                                                        | 306.1                                           | 306.4        | 0.3           | 0.18                  | 0.18        | 0.24      |  |
| 0.074                     | No.200                                                                        | 334.4                                           | 334.5        | 0.1           | 0.06                  | 0.06        | 0.18      |  |
| Pan                       |                                                                               | 373.3                                           | 373.3        | 0.0           | 0.00                  | 0.00        | 0.18      |  |
| Total Dry Weight in grams |                                                                               |                                                 |              | 164.7         |                       |             |           |  |
| Percent Lost (-)          | / Gained(+)                                                                   |                                                 |              | -0.18         |                       |             |           |  |

| Project:                     | An experimental investigation of the behavior of compacted clay/sand mixtures |                                                 |              |               |               |             |           |
|------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|--------------|---------------|---------------|-------------|-----------|
| V-M Class:                   | Light tan med                                                                 | dium to fine sand Sieve Set: Single-Set Sieving |              |               |               |             |           |
| Method:                      | В                                                                             |                                                 | Sampling Pro | cedure Used:  | Air-Dried     | Sample No.: | 6         |
| Soak Time:                   | - Dispersing Ager                                                             |                                                 |              | nt/Apparatus: | N/A           | Sieve Time: | 10 min    |
| Total Dry Mass of            | f Sample, (g):                                                                |                                                 | 168.2        | Sepa          | rating Sieve: | N/A         |           |
| Total Dry Mass af            | fter #200 wash                                                                | n, (g):                                         | -            |               | Tested by:    | Yueru Chen  |           |
| Total Dry Mass >             | No.4 Sieve (g                                                                 | ):                                              | -            | Started:      | 2/27/2009     | Finished:   | 2/27/2009 |
| Sieve Openings               | U.S.                                                                          | Pan                                             | Soil+Pan     | Soil          | Percent       | Retained    | Percent   |
| (mm)                         | Standard                                                                      | Weight                                          | Weight       | Weight        | Partial       | Total       | Finer     |
| 76.20                        | 3-in.                                                                         |                                                 | Ŭ,           |               |               |             |           |
| 50.80                        | 2-in.                                                                         |                                                 |              |               |               |             |           |
| 38.10                        | 1-1/2-in.                                                                     |                                                 |              |               |               |             |           |
| 25.40                        | 1-in.                                                                         |                                                 |              |               |               |             |           |
| 19.10                        | 3/4-in.                                                                       |                                                 |              |               |               |             |           |
| 12.70                        | 1/2-in.                                                                       |                                                 |              |               |               |             |           |
| 9.52                         | 3/8-in.                                                                       |                                                 |              |               |               |             |           |
| 6.35                         | No.3                                                                          |                                                 |              |               |               |             |           |
| 4.76                         | No.4                                                                          |                                                 |              |               |               |             |           |
| Pan                          |                                                                               |                                                 |              |               |               |             |           |
| 3.36                         | No.6                                                                          |                                                 |              |               |               |             |           |
| 2.38                         | No.8                                                                          |                                                 |              |               |               |             |           |
| 2.00                         | No.10                                                                         | 731.6                                           | 731.6        | 0.0           | 0.00          | 0.00        | 100.00    |
| 1.19                         | No.16                                                                         |                                                 |              |               |               |             |           |
| 0.84                         | No.20                                                                         | 629.5                                           | 629.7        | 0.2           | 0.12          | 0.12        | 99.88     |
| 0.59                         | No.30                                                                         |                                                 |              |               |               |             |           |
| 0.42                         | No.40                                                                         | 374.8                                           | 488.9        | 114.1         | 67.84         | 67.84       | 32.05     |
| 0.297                        | No.50                                                                         |                                                 |              |               |               |             |           |
| 0.250                        | No.60                                                                         | 371.5                                           | 423.5        | 52.0          | 30.92         | 30.92       | 1.13      |
| 0.210                        | No.70                                                                         |                                                 |              |               |               |             |           |
| 0.149                        | No.100                                                                        | 509.9                                           | 511.6        | 1.7           | 1.01          | 1.01        | 0.12      |
| 0.105                        | No.140                                                                        | 306.1                                           | 306.3        | 0.2           | 0.12          | 0.12        | 0.00      |
| 0.074                        | No.200                                                                        | 334.5                                           | 334.5        | 0.0           | 0.00          | 0.00        | 0.00      |
| Pan                          |                                                                               | 373.3                                           | 373.3        | 0.0           | 0.00          | 0.00        | 0.00      |
| Total Dry Weig               | ht in grams                                                                   |                                                 |              | 168.2         |               |             |           |
| Percent Lost (-) / Gained(+) |                                                                               |                                                 |              | 0.00          |               |             |           |

| Project:                     | An experimental investigation of the behavior of compacted clay/sand mixtures |                                                 |              |               |                       |                  |           |  |
|------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|--------------|---------------|-----------------------|------------------|-----------|--|
| V-M Class:                   | Light tan med                                                                 | dium to fine sand Sieve Set: Single-Set Sieving |              |               |                       |                  |           |  |
| Method:                      | В                                                                             |                                                 | Sampling Pro | cedure Used:  | Air-Dried             | Sample No.:      | 5         |  |
| Soak Time:                   | - Dispersing Age                                                              |                                                 |              | nt/Apparatus: | N/A                   | Sieve Time:      | 10 min    |  |
| Total Dry Mass of            | f Sample, (g):                                                                |                                                 | 171.8        | Sepa          | rating Sieve:         | N/A              |           |  |
| Total Dry Mass at            | fter #200 wasł                                                                | n, (g):                                         | -            |               | Tested by: Yueru Chen |                  |           |  |
| Total Dry Mass >             | No.4 Sieve (g                                                                 | ı):                                             | -            | Started:      | 2/27/2009             | Finished:        | 2/27/2009 |  |
| Sieve Openings               | U.S.                                                                          | Pan                                             | Soil+Pan     | Soil          | Percent               | Retained Percent |           |  |
| (mm)                         | Standard                                                                      | Weight                                          | Weight       | Weight        | Partial               | Total            | Finer     |  |
| 76.20                        | 3-in.                                                                         |                                                 |              |               |                       |                  |           |  |
| 50.80                        | 2-in.                                                                         |                                                 |              |               |                       |                  |           |  |
| 38.10                        | 1-1/2-in.                                                                     |                                                 |              |               |                       |                  |           |  |
| 25.40                        | 1-in.                                                                         |                                                 |              |               |                       |                  |           |  |
| 19.10                        | 3/4-in.                                                                       |                                                 |              |               |                       |                  |           |  |
| 12.70                        | 1/2-in.                                                                       |                                                 |              |               |                       |                  |           |  |
| 9.52                         | 3/8-in.                                                                       |                                                 |              |               |                       |                  |           |  |
| 6.35                         | No.3                                                                          |                                                 |              |               |                       |                  |           |  |
| 4.76                         | No.4                                                                          |                                                 |              |               |                       |                  |           |  |
| Pan                          |                                                                               |                                                 |              |               |                       |                  |           |  |
| 3.36                         | No.6                                                                          |                                                 |              |               |                       |                  |           |  |
| 2.38                         | No.8                                                                          |                                                 |              |               |                       |                  |           |  |
| 2.00                         | No.10                                                                         | 731.6                                           | 731.6        | 0.0           | 0.00                  | 0.00             | 100.00    |  |
| 1.19                         | No.16                                                                         |                                                 |              |               |                       |                  |           |  |
| 0.84                         | No.20                                                                         | 629.5                                           | 629.7        | 0.2           | 0.12                  | 0.12             | 99.88     |  |
| 0.59                         | No.30                                                                         |                                                 |              |               |                       |                  |           |  |
| 0.42                         | No.40                                                                         | 374.6                                           | 500.2        | 125.6         | 73.11                 | 73.11            | 26.78     |  |
| 0.297                        | No.50                                                                         |                                                 |              |               |                       |                  |           |  |
| 0.250                        | No.60                                                                         | 371.5                                           | 416.5        | 45.0          | 26.19                 | 26.19            | 0.58      |  |
| 0.210                        | No.70                                                                         |                                                 |              |               |                       |                  |           |  |
| 0.149                        | No.100                                                                        | 510.0                                           | 511.0        | 1.0           | 0.58                  | 0.58             | 0.00      |  |
| 0.105                        | No.140                                                                        | 306.1                                           | 306.1        | 0.0           | 0.00                  | 0.00             | 0.00      |  |
| 0.074                        | No.200                                                                        | 334.5                                           | 334.5        | 0.0           | 0.00                  | 0.00             | 0.00      |  |
| Pan                          |                                                                               | 373.3                                           | 373.3        | 0.0           | 0.00                  | 0.00             | 0.00      |  |
| Total Dry Weig               | ht in grams                                                                   |                                                 |              | 171.8         |                       |                  |           |  |
| Percent Lost (-) / Gained(+) |                                                                               |                                                 |              | 0.00          |                       |                  |           |  |

| Project:          | An experime    | ntal investigat | ion of the beh | avior of comp | or of compacted clay/sand mixtures |              |           |  |
|-------------------|----------------|-----------------|----------------|---------------|------------------------------------|--------------|-----------|--|
| V-M Class:        | Light tan med  | lium to fine s  | and            |               | Sieve Set:                         | Single-Set S | eving     |  |
| Method:           | В              |                 | Sampling Pro   | cedure Used:  | Air-Dried                          | Sample No.:  | 4         |  |
| Soak Time:        | -              | D               | spersing Age   | nt/Apparatus: | N/A                                | Sieve Time:  | 10 min    |  |
| Total Dry Mass of | f Sample, (g): |                 | 160.5          | Sepa          | rating Sieve:                      | N/A          |           |  |
| Total Dry Mass a  | fter #200 wasł | n, (g):         | -              |               | Tested by:                         | Yueru Chen   |           |  |
| Total Dry Mass >  | No.4 Sieve (g  | ı):             | -              | Started:      | 2/27/2009                          | Finished:    | 2/27/2009 |  |
| Sieve Openings    | U.S.           | Pan             | Soil+Pan       | Soil          | Percent                            | Retained     | Percent   |  |
| (mm)              | Standard       | Weight          | Weight         | Weight        | Partial                            | Total        | Finer     |  |
| 76.20             | 3-in.          |                 |                |               |                                    |              |           |  |
| 50.80             | 2-in.          |                 |                |               |                                    |              |           |  |
| 38.10             | 1-1/2-in.      |                 |                |               |                                    |              |           |  |
| 25.40             | 1-in.          |                 |                |               |                                    |              |           |  |
| 19.10             | 3/4-in.        |                 |                |               |                                    |              |           |  |
| 12.70             | 1/2-in.        |                 |                |               |                                    |              |           |  |
| 9.52              | 3/8-in.        |                 |                |               |                                    |              |           |  |
| 6.35              | No.3           |                 |                |               |                                    |              |           |  |
| 4.76              | No.4           |                 |                |               |                                    |              |           |  |
| Pan               |                |                 |                |               |                                    |              |           |  |
| 3.36              | No.6           |                 |                |               |                                    |              |           |  |
| 2.38              | No.8           |                 |                |               |                                    |              |           |  |
| 2.00              | No.10          | 731.6           | 731.6          | 0.0           | 0.00                               | 0.00         | 100.00    |  |
| 1.19              | No.16          |                 |                |               |                                    |              |           |  |
| 0.84              | No.20          | 629.6           | 629.7          | 0.1           | 0.06                               | 0.06         | 99.94     |  |
| 0.59              | No.30          |                 |                |               |                                    |              |           |  |
| 0.42              | No.40          | 374.6           | 483.3          | 108.7         | 67.73                              | 67.73        | 32.21     |  |
| 0.297             | No.50          |                 |                |               |                                    |              |           |  |
| 0.250             | No.60          | 371.5           | 419.3          | 47.8          | 29.78                              | 29.78        | 2.43      |  |
| 0.210             | No.70          |                 |                |               |                                    |              |           |  |
| 0.149             | No.100         | 510.0           | 512.8          | 2.8           | 1.74                               | 1.74         | 0.69      |  |
| 0.105             | No.140         | 306.1           | 307.1          | 1.0           | 0.62                               | 0.62         | 0.06      |  |
| 0.074             | No.200         | 334.5           | 334.6          | 0.1           | 0.06                               | 0.06         | 0.00      |  |
| Pan               |                | 373.3           | 373.3          | 0.0           | 0.00                               | 0.00         | 0.00      |  |
| Total Dry Weig    | ht in grams    |                 |                | 160.5         |                                    |              |           |  |
| Percent Lost (-)  | / Gained(+)    |                 |                | 0.00          |                                    |              |           |  |

| Project:          | An experimer   | ntal investigat | tion of the beh | avior of comp | mpacted clay/sand mixtures |              |           |  |
|-------------------|----------------|-----------------|-----------------|---------------|----------------------------|--------------|-----------|--|
| V-M Class:        | Light tan med  | lium to fine s  | and             |               | Sieve Set:                 | Single-Set S | ieving    |  |
| Method:           | В              |                 | Sampling Pro    | cedure Used:  | Air-Dried                  | Sample No.:  | 3         |  |
| Soak Time:        | -              | D               | ispersing Age   | nt/Apparatus: | N/A                        | Sieve Time:  | 10 min    |  |
| Total Dry Mass of | f Sample, (g): |                 | 183.7           | Sepa          | rating Sieve:              | N/A          |           |  |
| Total Dry Mass at | fter #200 wasł | n, (g):         | -               |               | Tested by:                 | Yueru Chen   |           |  |
| Total Dry Mass >  | No.4 Sieve (g  | ):              | -               | Started:      | 2/27/2009                  | Finished:    | 2/27/2009 |  |
| Sieve Openings    | U.S.           | Pan             | Soil+Pan        | Soil          | Percent                    | Retained     | Percent   |  |
| (mm)              | Standard       | Weight          | Weight          | Weight        | Partial                    | Total        | Finer     |  |
| 76.20             | 3-in.          | -               | -               |               |                            |              |           |  |
| 50.80             | 2-in.          |                 |                 |               |                            |              |           |  |
| 38.10             | 1-1/2-in.      |                 |                 |               |                            |              |           |  |
| 25.40             | 1-in.          |                 |                 |               |                            |              |           |  |
| 19.10             | 3/4-in.        |                 |                 |               |                            |              |           |  |
| 12.70             | 1/2-in.        |                 |                 |               |                            |              |           |  |
| 9.52              | 3/8-in.        |                 |                 |               |                            |              |           |  |
| 6.35              | No.3           |                 |                 |               |                            |              |           |  |
| 4.76              | No.4           |                 |                 |               |                            |              |           |  |
| Pan               |                |                 |                 |               |                            |              |           |  |
| 3.36              | No.6           |                 |                 |               |                            |              |           |  |
| 2.38              | No.8           |                 |                 |               |                            |              |           |  |
| 2.00              | No.10          | 731.6           | 731.6           | 0.0           | 0.00                       | 0.00         | 100.00    |  |
| 1.19              | No.16          |                 |                 |               |                            |              |           |  |
| 0.84              | No.20          | 629.7           | 629.9           | 0.2           | 0.11                       | 0.11         | 99.89     |  |
| 0.59              | No.30          |                 |                 |               |                            |              |           |  |
| 0.42              | No.40          | 374.6           | 510.3           | 135.7         | 73.87                      | 73.87        | 26.02     |  |
| 0.297             | No.50          |                 |                 |               |                            |              |           |  |
| 0.250             | No.60          | 371.6           | 418.2           | 46.6          | 25.37                      | 25.37        | 0.65      |  |
| 0.210             | No.70          |                 |                 |               |                            |              |           |  |
| 0.149             | No.100         | 510.0           | 511.0           | 1.0           | 0.54                       | 0.54         | 0.11      |  |
| 0.105             | No.140         | 306.2           | 306.3           | 0.1           | 0.05                       | 0.05         | 0.05      |  |
| 0.074             | No.200         | 334.4           | 334.5           | 0.1           | 0.05                       | 0.05         | 0.00      |  |
| Pan               |                | 373.3           | 373.3           | 0.0           | 0.00                       | 0.00         | 0.00      |  |
| Total Dry Weig    | ht in grams    |                 |                 | 183.7         |                            |              |           |  |
| Percent Lost (-)  | / Gained(+)    |                 |                 | 0.00          |                            |              |           |  |

| Project:          | An experimer   | ntal investigat | tion of the beh | avior of comp | acted clay/sa | nd mixtures  |           |
|-------------------|----------------|-----------------|-----------------|---------------|---------------|--------------|-----------|
| V-M Class:        | Light tan med  | lium to fine s  | and             |               | Sieve Set:    | Single-Set S | ieving    |
| Method:           | В              |                 | Sampling Pro    | cedure Used:  | Air-Dried     | Sample No.:  | 1         |
| Soak Time:        | -              | D               | ispersing Age   | nt/Apparatus: | N/A           | Sieve Time:  | 10 min    |
| Total Dry Mass of | f Sample, (g): |                 | 201.6           | Sepa          | rating Sieve: | N/A          |           |
| Total Dry Mass at | fter #200 wash | n, (g):         | -               |               | Tested by:    | Yueru Chen   |           |
| Total Dry Mass >  | No.4 Sieve (g  | ):              | -               | Started:      | 2/27/2009     | Finished:    | 2/27/2009 |
| Sieve Openings    | U.S.           | Pan             | Soil+Pan        | Soil          | Percent       | Retained     | Percent   |
| (mm)              | Standard       | Weight          | Weight          | Weight        | Partial       | Total        | Finer     |
| 76.20             | 3-in.          |                 |                 |               |               |              |           |
| 50.80             | 2-in.          |                 |                 |               |               |              |           |
| 38.10             | 1-1/2-in.      |                 |                 |               |               |              |           |
| 25.40             | 1-in.          |                 |                 |               |               |              |           |
| 19.10             | 3/4-in.        |                 |                 |               |               |              |           |
| 12.70             | 1/2-in.        |                 |                 |               |               |              |           |
| 9.52              | 3/8-in.        |                 |                 |               |               |              |           |
| 6.35              | No.3           |                 |                 |               |               |              |           |
| 4.76              | No.4           |                 |                 |               |               |              |           |
| Pan               |                |                 |                 |               |               |              |           |
| 3.36              | No.6           |                 |                 |               |               |              |           |
| 2.38              | No.8           |                 |                 |               |               |              |           |
| 2.00              | No.10          | 731.6           | 731.6           | 0.0           | 0.00          | 0.00         | 100.00    |
| 1.19              | No.16          |                 |                 |               |               |              |           |
| 0.84              | No.20          | 629.9           | 630.0           | 0.1           | 0.05          | 0.05         | 99.95     |
| 0.59              | No.30          |                 |                 |               |               |              |           |
| 0.42              | No.40          | 374.7           | 522.8           | 148.1         | 73.46         | 73.46        | 26.49     |
| 0.297             | No.50          |                 |                 |               |               |              |           |
| 0.250             | No.60          | 371.5           | 423.0           | 51.5          | 25.55         | 25.55        | 0.94      |
| 0.210             | No.70          |                 |                 |               |               |              |           |
| 0.149             | No.100         | 510.3           | 511.9           | 1.6           | 0.79          | 0.79         | 0.15      |
| 0.105             | No.140         | 306.3           | 306.6           | 0.3           | 0.15          | 0.15         | 0.00      |
| 0.074             | No.200         | 334.4           | 334.6           | 0.2           | 0.10          | 0.10         | -0.10     |
| Pan               |                | 380.0           | 380.1           | 0.1           | 0.05          | 0.05         | -0.15     |
| Total Dry Weig    | ht in grams    |                 |                 | 201.9         |               |              |           |
| Percent Lost (-)  | / Gained(+)    |                 |                 | 0.15          |               |              |           |

| Project:                               | An experimental investigation of the behavior of com |                |               |               | pacted clay/sand mixtures     |             |           |
|----------------------------------------|------------------------------------------------------|----------------|---------------|---------------|-------------------------------|-------------|-----------|
| V-M Class:                             | Light tan med                                        | dium to fine s | and           |               | Sieve Set: Single-Set Sieving |             |           |
| Method:                                | В                                                    |                | Sampling Pro  | cedure Used:  | Air-Dried                     | Sample No.: | 2         |
| Soak Time:                             | -                                                    | D              | ispersing Age | nt/Apparatus: | N/A                           | Sieve Time: | 10 min    |
| Total Dry Mass o                       | f Sample, (g):                                       |                | 156.5         | Sepa          | arating Sieve:                | N/A         |           |
| Total Dry Mass after #200 wash, (g): - |                                                      |                |               | Tested by:    | Yueru Chen                    |             |           |
| Total Dry Mass >                       | No.4 Sieve (g                                        | g):            | -             | Started:      | 2/27/2009                     | Finished:   | 2/27/2009 |
| Sieve Openings                         | U.S.                                                 | Pan            | Soil+Pan      | Soil          | Percent                       | Retained    | Percent   |
| (mm)                                   | Standard                                             | Weight         | Weight        | Weight        | Partial                       | Total       | Finer     |
| 76.20                                  | 3-in.                                                |                |               |               |                               |             |           |
| 50.80                                  | 2-in.                                                |                |               |               |                               |             |           |
| 38.10                                  | 1-1/2-in.                                            |                |               |               |                               |             |           |
| 25.40                                  | 1-in.                                                |                |               |               |                               |             |           |
| 19.10                                  | 3/4-in.                                              |                |               |               |                               |             | 1         |
| 12.70                                  | 1/2-in.                                              |                |               |               |                               |             | 1         |
| 9.52                                   | 3/8-in.                                              |                |               |               |                               |             |           |
| 6.35                                   | No.3                                                 |                |               |               |                               |             |           |
| 4.76                                   | No.4                                                 |                |               |               |                               |             |           |
| Par                                    | )<br>                                                |                |               |               |                               |             |           |
| 3.36                                   | No.6                                                 |                |               |               |                               |             |           |
| 2.38                                   | No.8                                                 |                |               |               |                               |             |           |
| 2.00                                   | No.10                                                | 731.6          | 731.6         | 0.0           | 0.00                          | 0.00        | 100.00    |
| 1.19                                   | No.16                                                |                |               |               |                               |             |           |
| 0.84                                   | No.20                                                | 629.8          | 629.9         | 0.1           | 0.06                          | 0.06        | 99.94     |
| 0.59                                   | No.30                                                |                |               |               |                               |             |           |
| 0.42                                   | No.40                                                | 375.3          | 492.0         | 116.7         | 74.57                         | 74.57       | 25.37     |
| 0.297                                  | No.50                                                |                |               |               |                               |             |           |
| 0.250                                  | No.60                                                | 371.4          | 409.7         | 38.3          | 24.47                         | 24.47       | 0.89      |
| 0.210                                  | No.70                                                |                |               |               |                               |             |           |
| 0.149                                  | No.100                                               | 510.1          | 511.4         | 1.3           | 0.83                          | 0.83        | 0.06      |
| 0.105                                  | No.140                                               | 306.2          | 306.5         | 0.3           | 0.19                          | 0.19        | -0.13     |
| 0.074                                  | No.200                                               | 334.5          | 334.5         | 0.0           | 0.00                          | 0.00        | -0.13     |
| Par                                    | 1                                                    | 380.2          | 380.2         | 0.0           | 0.00                          | 0.00        | -0.13     |
| Total Dry Weig                         | ht in grams                                          |                |               | 156.7         |                               |             |           |
| Percent Lost (-)                       | / Gained(+)                                          |                |               | 0.13          |                               |             |           |

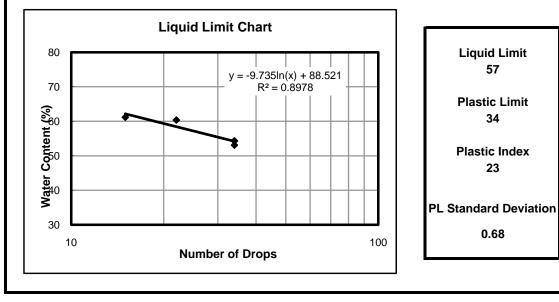
#### **APPENDIX B**

### ATTERBERG LIMIT

| Sample: Bentonite                       |           | Location:                              | N/A       | Mi              | xing Water:                     | Distilled                     |
|-----------------------------------------|-----------|----------------------------------------|-----------|-----------------|---------------------------------|-------------------------------|
| Specimen Type: Air-dried                |           |                                        |           | Tested By:      | Yueru Cher                      |                               |
| Liquid Limit Determintatior             | )         |                                        |           |                 |                                 |                               |
| Sample No.                              | 1         | 2                                      | 3         | 4               | 5                               |                               |
| Can No.                                 | majid     | 4                                      | 31        | 1               | 121                             |                               |
| Wt. of can (g)                          | 28.66     | 28.71                                  | 28.37     | 28.07           | 30.94                           |                               |
| Wt. of can + wet soil (g)               | 51.5      | 45.71                                  | 44.99     | 47.77           | 49.47                           |                               |
| Wt. of can + dry soil (g)               | 32.45     | 31.59                                  | 31.15     | 31.28           | 33.95                           |                               |
| Wt. of dry soil (g)                     | 3.79      | 2.88                                   | 2.78      | 3.21            | 3.01                            |                               |
| Wt. of water (g)                        | 19.05     | 14.12                                  | 13.84     | 16.49           | 15.52                           |                               |
| Water Content (%)                       | 502.64    | 490.28                                 | 497.84    | 513.71          | 515.61                          |                               |
| No. of Drops                            | 24        | 32                                     | 24        | 15              | 15                              |                               |
| Plastic Limit Determination             | \         |                                        |           | Testing F       | quipment Us                     | sed                           |
| Sample No.                              | 1         | 2                                      |           |                 |                                 |                               |
| Can No.                                 | FJ-3      | 405                                    | Plastic L | imit:           | Hand Rolled > Mechanical Device |                               |
| Wt. of can (g)                          | 39.4      | 38.1                                   | ┨┠───     |                 | Manual 2                        |                               |
| Wt. of can + wet soil (g)               | 45.5      | 44.1                                   | Liquid Li | mit: Mechanical |                                 |                               |
| Wt. of can + dry soil (g)               | 43.6      | 42.2                                   | ┨┖────    |                 | INIEC                           | lianicai                      |
|                                         | 43.0      |                                        | ł         | То              | st Method                       |                               |
| Wt. of dry soil (g)<br>Wt. of water (g) | 4.2       | 4.1<br>1.9                             | A         | X               | B                               |                               |
| Water Content (%)                       | 45.2      | 46.3                                   |           |                 | рагаtion M                      | lethod                        |
| Plastic limit                           | -         | 40.3<br>16                             | Wet       | X               | Dry                             | lethou                        |
|                                         | -         | 10                                     | Wei       | ^               | Diy                             |                               |
| 550                                     | uid Limit |                                        |           |                 | -                               | d Limit<br>199                |
| 530<br>510<br>490                       | y .       | = -31.76ln(x)<br>R <sup>2</sup> = 0.96 |           |                 |                                 | ic Limit<br>46                |
| <b>A</b> 470                            |           |                                        |           |                 | 4                               | c Index<br>53<br>rd Deviation |
| 450 10                                  | Number o  | f Drops                                |           | 100             | 0                               | .55                           |

| Sample: 50%bentonite &                                                     | 50% sand | Location:                              | N/A                | Mi         | xing Water:               | Distilled                                                                |     |
|----------------------------------------------------------------------------|----------|----------------------------------------|--------------------|------------|---------------------------|--------------------------------------------------------------------------|-----|
| Specimen Type: Air-dried                                                   |          | Date:                                  | 10/15/2009         |            | Tested By:                | Yueru C                                                                  | hei |
| Liquid Limit Determintatior                                                | <b>`</b> |                                        |                    |            |                           |                                                                          |     |
| Sample No.                                                                 | 1        | 2                                      | 3                  | 4          |                           |                                                                          |     |
| Can No.                                                                    | FJ-3     | Y-1                                    | FJ-1               | 410        |                           |                                                                          |     |
| Wt. of can (g)                                                             | 29.06    | 28.37                                  | 28.1               | 28.4       |                           |                                                                          |     |
| Wt. of can + wet soil (g)                                                  | 43.22    | 42.98                                  | 39.2               | 44.6       |                           |                                                                          |     |
| Wt. of can + dry soil (g)                                                  | 31.99    | 31.61                                  | 30.51              | 31.78      |                           |                                                                          |     |
| Wt. of dry soil (g)                                                        | 2.93     | 3.24                                   | 2.41               | 3.38       |                           |                                                                          |     |
| Wt. of water (g)                                                           | 11.23    | 11.37                                  | 8.69               | 12.82      |                           |                                                                          |     |
| Water Content (%)                                                          | 383.28   | 350.93                                 | 360.58             | 379.29     |                           |                                                                          |     |
| No. of Drops                                                               | 20       | 30                                     | 26                 | 21         |                           |                                                                          |     |
|                                                                            | 20       | 00                                     | 20                 | 21         |                           |                                                                          |     |
| Plastic Limit Determination                                                | 1        |                                        |                    | Testing Ed | quipment Us               | sed                                                                      |     |
| Sample No.                                                                 | 1        | 2                                      | Diactic Li         |            | Han                       | d Rolled                                                                 | Х   |
| Can No.                                                                    | 405      | 404                                    | Plastic Li         | mit:       | Mechanica                 | I Device                                                                 |     |
| Wt. of can (g)                                                             | 38.1     | 38.94                                  | L i av si al L i a | - 14.      | Manual                    |                                                                          | Х   |
| Wt. of can + wet soil (g)                                                  | 45.28    | 45.62                                  | Liquid Lin         | Mechanical |                           |                                                                          |     |
| Wt. of can + dry soil (g)                                                  | 43.5     | 44                                     |                    |            | -                         | -                                                                        |     |
| Wt. of dry soil (g)                                                        | 5.4      | 5.06                                   |                    | Tes        | t Method                  |                                                                          |     |
| Wt. of water (g)                                                           | 1.78     | 1.62                                   | А                  | Х          | В                         |                                                                          |     |
| Water Content (%)                                                          | 33.0     | 32.0                                   | Sp                 | becimen pr | eparation M               | ethod                                                                    |     |
| Plastic limit                                                              | 3        | 32                                     | Wet                | X          | Dry                       |                                                                          |     |
| 400<br>380<br>0060<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000 | y=-      | 81.74ln(x) +<br>R <sup>2</sup> = 0.995 |                    |            | Plast<br>Plasti<br>Plasti | d Limit<br>365<br>ic Limit<br>32<br>ic Index<br>333<br>candard<br>iation |     |
| 320 <b>1</b> 0                                                             | Number   | of Drops                               |                    | 100        | _                         | .47                                                                      |     |

| pecimen Type:         Air-dried         Date:         10/22/2009         Tested By:         Yueru Che           Liquid Limit Determination         Sample No.         1         2         3         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ample: 25%bentonite &                                                                                | 75% sand | Location:      |             | Mi              | xing Water: Distilled                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------|----------------|-------------|-----------------|----------------------------------------------------|--|
| Sample No.       1       2       3       4         Can No.       4       FJ-5       46       201         Wt. of can (g)       28.72       28.04       28.89       28.88         Wt. of can (g)       28.72       28.04       28.89       28.88         Wt. of can + dry soil (g)       32.52       31.89       31.99       33.18         Wt. of can + dry soil (g)       32.52       31.89       31.99       33.18         Wt. of an + dry soil (g)       38.83       9.68       8.16       11.2         Water Content (%)       232.37       251.43       263.23       260.47       1         No. of Drops       34       26       21       20       20         Plastic Limit Determination       232.37       251.43       263.23       260.47       1         No. of Drops       34       26       21       20       20         Plastic Limit Determination       20       38.94       39.94       39.94         Wt. of can + dry soil (g)       45.81       46.5       46.5       47.85       48       9.90         Wt. of dry soil (g)       6.35       6.23       7.84       9.90       9.91       9.91       9.91     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pecimen Type: Air-dried                                                                              |          | Date:          | 10/22/2009  |                 | Tested By: Yueru Che                               |  |
| Sample No.       1       2       3       4         Can No.       4       FJ-5       46       201         Wt. of can (g)       28.72       28.04       28.89       28.88         Wt. of can + wet soil (g)       41.35       41.57       40.15       44.38         Wt. of can + wet soil (g)       32.52       31.89       31.99       33.18         Wt. of dry soil (g)       32.52       31.89       31.99       33.18         Wt. of dry soil (g)       3.8       3.85       3.1       4.3         Wt. of water (g)       8.83       9.68       8.16       11.2         Water Content (%)       232.37       251.43       263.23       260.47         No. of Drops       34       26       21       20         Plastic Limit Determination       Testing Equipment Used       Manual 2         Sample No.       1       2       Manual 3         Wt. of can (g)       38.09       38.94       Mechanical         Wt. of dry soil (g)       6.35       6.23       Mechanical         Wt. of water (g)       1.37       1.33       A       X       B         Specimen preparation Method       Wet       X       Dry       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Liquid Limit Determintation                                                                          | 1        |                |             |                 |                                                    |  |
| Wt. of can (g)       28.72       28.04       28.89       28.88         Wt. of can + wet soil (g)       41.35       41.57       40.15       44.38         Wt. of can + dry soil (g)       32.52       31.89       31.99       33.18         Wt. of dry soil (g)       3.8       3.85       3.1       4.3         Wt. of water (g)       8.83       9.68       8.16       11.2         Water Content (%)       232.37       251.43       263.23       260.47         No. of Drops       34       26       21       20         Plastic Limit Determination       Testing Equipment Used         Sample No.       1       2         Wt. of can (g)       38.09       38.94         Wt. of can + wet soil (g)       43.7       1.37         Wt. of dry soil (g)       6.35       6.23         Wt. of water (g)       1.37       1.33         Water Content (%)       21.6       21.3         Plastic limit       21       21         Vet       X       Dry         Specimen preparation Method       Wet         Wet       X       Dry         Vi. of water (g)       9       9       9         280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                    | 1        | 2              | 3           | 4               |                                                    |  |
| Wt. of can + wet soil (g)       41.35       41.57       40.15       44.38         Wt. of can + dry soil (g)       32.52       31.89       31.99       33.18         Wt. of dry soil (g)       3.8       3.85       3.1       4.3         Wt. of water (g)       8.83       9.68       8.16       11.2         Water Content (%)       232.37       251.43       263.23       260.47         No. of Drops       34       26       21       20         Plastic Limit Determination       1       2       20       1         Sample No.       1       2       1       20       1         Plastic Limit Determination       5       44.5       1       1       1         Wt. of can (g)       38.09       38.94       1       1       1       1         Wt. of can + dry soil (g)       44.44       45.17       Mechanical       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td>Can No.</td><td>4</td><td>FJ-5</td><td>46</td><td>201</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Can No.                                                                                              | 4        | FJ-5           | 46          | 201             |                                                    |  |
| Wt. of can + dry soil (g) $32.52$ $31.89$ $31.99$ $33.18$ Wt. of dry soil (g) $3.8$ $3.85$ $3.1$ $4.3$ Wt. of water (g) $8.83$ $9.68$ $8.16$ $11.2$ Water Content (%) $232.37$ $251.43$ $263.23$ $260.47$ No. of Drops $34$ $26$ $21$ $20$ $20$ Plastic Limit Determination $38.09$ $38.94$ $46.5$ $404$ $Mechanical Device$ Wt. of can (g) $38.09$ $38.94$ $46.5$ $Mechanical Device$ $Manual Y$ Wt. of dry soil (g) $6.35$ $6.23$ $Mechanical$ $Mechanical$ Wt. of water (g) $1.37$ $1.33$ $A$ $X$ $B$ Water Content (%) $21.6$ $21.3$ $Method$ $A$ $X$ $B$ $300$ $280$ $y = -57.9ln(x) + 437.91$ $R^2 = 0.9599$ <td< td=""><td>Wt. of can (g)</td><td>28.72</td><td>28.04</td><td>28.89</td><td>28.88</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wt. of can (g)                                                                                       | 28.72    | 28.04          | 28.89       | 28.88           |                                                    |  |
| Wt. of dry soil (g)       3.8       3.85       3.1       4.3         Wt. of water (g)       8.83       9.68       8.16       11.2         Water Content (%)       232.37       251.43       263.23       260.47         No. of Drops       34       26       21       20         Plastic Limit Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Wt. of can + wet soil (g)                                                                            | 41.35    | 41.57          | 40.15       | 44.38           |                                                    |  |
| Wt. of water (g)       8.83       9.68       8.16       11.2         Water Content (%)       232.37       251.43       263.23       260.47         No. of Drops       34       26       21       20         Plastic Limit Determination       1       2       20       1         Can No.       405       404       405       404         Wt. of can (g)       38.09       38.94       26       21       20         Wt. of can + wet soil (g)       45.81       46.5       46.5       404       45.17         Wt. of dry soil (g)       6.35       6.23       Test Method       Manual )         Wt. of water (g)       1.37       1.33       X       B       Specimen preparation Method         Wet       X       Dry       Dry       Itiquid Limit       252       Plastic Limit       252         Value       y = -57.9ln(x) + 437.91       R <sup>2</sup> = 0.9599       Plastic Limit       252       Plastic Limit       21         300       y = -57.9ln(x) + 437.91       Plastic Limit       21       Plastic Limit       21         Wet       X       Dry       Dry       Plastic Limit       21       Plastic Limit       21         300 <td>Wt. of can + dry soil (g)</td> <td>32.52</td> <td>31.89</td> <td>31.99</td> <td>33.18</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Wt. of can + dry soil (g)                                                                            | 32.52    | 31.89          | 31.99       | 33.18           |                                                    |  |
| Water Content (%)       232.37       251.43       263.23       260.47         No. of Drops       34       26       21       20         Plastic Limit Determination       1       2       20       Hand Rolled 2         Sample No.       1       2       20       Hand Rolled 2         Can No.       405       404       Hand Rolled 2       Mechanical Device         Wt. of can (g)       38.09       38.94       Hand Rolled 2       Mechanical Device         Wt. of can + wet soil (g)       45.81       46.5       Hand Rolled 2       Mechanical Period         Wt. of can + dry soil (g)       6.35       6.23       Test Method       Mechanical         Wt. of water (g)       1.37       1.33       Specimen preparation Method         Wt of water (g)       21.6       21.3       Specimen preparation Method         Plastic limit       21       Wet       X       Dry         Liquid Limit Chart         300       y=-57.9ln(x) + 437.91       Plastic Limit       21         Plastic Limit         21       y=-57.9ln(x) + 437.91       Plastic Limit       21         Plastic Limit         21       Plastic Limit       21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wt. of dry soil (g)                                                                                  | 3.8      | 3.85           | 3.1         | 4.3             |                                                    |  |
| No. of Drops         34         26         21         20           Plastic Limit Determination<br>Sample No.         1         2         Plastic Limit Equipment Used           Can No.         405         404         Plastic Limit:         Hand Rolled         Plastic Limit:           Wt. of can (g)         38.09         38.94         46.5         Mechanical Device         Liquid Limit:         Manual 2           Wt. of can + wet soil (g)         44.84         45.17         Mechanical         Mechanical           Wt. of an + dry soil (g)         6.35         6.23         Mechanical         Mechanical           Wt. of water (g)         1.37         1.33         Specimen preparation Method         Method           Vater Content (%)         21.6         21.3         Specimen preparation Method         Wet         X         Dry           Liquid Limit Chart           300         y = -57.9ln(x) + 437.91         Plastic Limit         21         Plastic Limit         21           Value         y = -57.9ln(x) + 437.91         Plastic Limit         21         Plastic Limit         21           Plastic Limit Chart         y = -57.9ln(x) + 437.91         Plastic Limit         21         Plastic Index         231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wt. of water (g)                                                                                     | 8.83     | 9.68           | 8.16        | 11.2            |                                                    |  |
| Plastic Limit DeterminationSample No.12Can No.405404Wt. of can (g)38.0938.94Wt. of can + wet soil (g)45.8146.5Wt. of can + dry soil (g)44.4445.17Wt. of dry soil (g)6.356.23Wt. of water (g)1.371.33Water Content (%)21.621.3Plastic limit21Liquid Limit ChartSpecimen preparation MethodWetXDryLiquid Limit Chart300<br>280<br>9y = -57.9ln(x) + 437.91<br>R <sup>2</sup> = 0.9599Liquid Limit ChartLiquid Limit Chart21Liquid Limit ChartJastic limit21Liquid Limit Chart20Liquid Limit ChartJastic limit21Liquid Limit Chart300<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water Content (%)                                                                                    | 232.37   | 251.43         | 263.23      | 260.47          |                                                    |  |
| Sample No.       1       2         Can No.       405       404         Wt. of can (g)       38.09       38.94         Wt. of can + wet soil (g)       45.81       46.5         Wt. of can + dry soil (g)       6.35       6.23         Wt. of dry soil (g)       6.35       6.23         Wt. of water (g)       1.37       1.33         Water Content (%)       21.6       21.3         Plastic limit       21       Specimen preparation Method         Wet       X       Dry         Liquid Limit Chart       Liquid Limit 21         300       y = -57.9ln(x) + 437.91       Plastic Limit       Liquid Limit 252         Plastic limit       21       Plastic Limit       21         300       y = -57.9ln(x) + 437.91       Plastic Limit       21         300       y = -57.9ln(x) + 437.91       Plastic Limit       21         Plastic limit       21       Plastic Limit       21         92/20       Plastic limit       21       Plastic Limit       21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No. of Drops                                                                                         | 34       | 26             | 21          | 20              |                                                    |  |
| Sample No.       1       2         Can No.       405       404         Wt. of can (g)       38.09       38.94         Wt. of can + wet soil (g)       45.81       46.5         Wt. of can + dry soil (g)       6.35       6.23         Wt. of dry soil (g)       6.35       6.23         Wt. of water (g)       1.37       1.33         Water Content (%)       21.6       21.3         Plastic limit       21       Specimen preparation Method         Wet       X       Dry         Liquid Limit Chart       Liquid Limit 21         300       y = -57.9ln(x) + 437.91       Plastic Limit       Liquid Limit 252         Plastic limit       21       Plastic Limit       21         300       y = -57.9ln(x) + 437.91       Plastic Limit       21         300       y = -57.9ln(x) + 437.91       Plastic Limit       21         Plastic limit       21       Plastic Limit       21         92/20       Plastic limit       21       Plastic Limit       21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Plastic Limit Determination                                                                          | )        |                |             | Testing Eq      | auipment Used                                      |  |
| Can No.405404Wt. of can (g)38.0938.94Wt. of can + wet soil (g)45.8146.5Wt. of can + dry soil (g)6.356.23Wt. of dry soil (g)6.356.23Wt. of water (g)1.371.33Water Content (%)21.621.3Plastic limit21Liquid Limit Chart300 $y = -57.9 \ln(x) + 437.91$ $280$ $y = -57.9 \ln(x) + 437.91$ $300$ $y = -57.9 \ln(x) + 437.91$ $280$ $y = -57.9 \ln(x) + 437.91$ $300$ $y = -57.9 \ln(x) + 437.91$ $280$ $y = -57.9 \ln(x) + 437.91$ $300$ $y = -57.9 \ln(x) + 437.91$ $280$ $y = -57.9 \ln(x) + 437.91$ $300$ $y = -57.9 \ln(x) + 437.91$ $280$ $y = -57.9 \ln(x) + 437.91$ $300$ $y = -57.9 \ln(x) + 437.91$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ <t< td=""><td></td><td></td><td>2</td><td></td><td>•</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |          | 2              |             | •               |                                                    |  |
| Wt. of can (g)       38.09       38.94         Wt. of can + wet soil (g)       45.81       46.5         Wt. of can + dry soil (g)       6.35       6.23         Wt. of dry soil (g)       6.35       6.23         Wt. of water (g)       1.37       1.33         Water Content (%)       21.6       21.3         Plastic limit       21       X       B         Liquid Limit Chart         300       y = -57.9ln(x) + 437.91       Test Method         280       y = -57.9ln(x) + 437.91       Plastic Limit       252         Plastic Limit       21       Plastic Limit       21         Liquid Limit Chart         300       y = -57.9ln(x) + 437.91       Plastic Limit       252         Plastic Limit       21       Plastic Limit       21         Plastic Limit         300       y = -57.9ln(x) + 437.91       Plastic Limit       21         Plastic Index       231       Plastic Index       231         Plastic Index       231       PL Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                    | -        | _              | Plastic Lir | nit:            |                                                    |  |
| Wt. of can + wet soil (g)       45.81       46.5         Wt. of can + dry soil (g)       44.44       45.17         Wt. of dry soil (g)       6.35       6.23         Wt. of water (g)       1.37       1.33         Water Content (%)       21.6       21.3         Plastic limit       21       Specimen preparation Method         Wet       X       Dry         Liquid Limit Chart       Liquid Limit 252         90       9       -57.9ln(x) + 437.91         80       9       9         92       9       9         92       9       9         92       9       9         92       9       9         92       9       9         92       9       9         92       9       9         92       9       9         92       9       9         92       9       9         92       9       9         92       9       9         9       9       9         9       9       9         9       9       9         9       9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      | 38.09    | 38.94          |             |                 | Manual                                             |  |
| Wt. of can + dry soil (g) $44.44$ $45.17$ Wt. of dry soil (g) $6.35$ $6.23$ Wt. of water (g) $1.37$ $1.33$ Water Content (%) $21.6$ $21.3$ Plastic limit $21$ Liquid Limit Chart300<br>280Liquid Limit Chart $300$<br>280 $y = -57.9ln(x) + 437.91$<br>$R^2 = 0.9599$ Plastic Limit<br>21Plastic Limit<br>21Plastic Limit<br>21Plastic Limit<br>21Plastic Limit<br>2120Plastic Index<br>231Plastic Index<br>231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0)                                                                                                  | 45.81    | 46.5           | Liquid Lin  | mit: Mechanical |                                                    |  |
| Wt. of dry soil (g)6.356.23Wt. of water (g)1.371.33Water Content (%)21.621.3Plastic limit21Specimen preparation MethodWetXDryLiquid Limit Chart $y = -57.9 ln(x) + 437.91$ $R^2 = 0.9599$ Plastic Limit280 $y = -57.9 ln(x) + 437.91$ Plastic Limit210Plastic Limit210210210210210210210210210210210210210210210210210210210210210210210210210210210210210210210210210210210210210210210210210211211212213213214021502150215021502150215021502150215021502150215021502150215021502150215021502150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      | 44.44    | 45.17          |             |                 |                                                    |  |
| Wt. of water (g)1.371.33Water Content (%)21.621.3Plastic limit21Liquid Limit Chart300<br>280<br>$280$ $y = -57.9 ln(x) + 437.91$<br>$R^2 = 0.9599$ Liquid Limit Chart300<br>280<br>$280$ $y = -57.9 ln(x) + 437.91$<br>$R^2 = 0.9599$ Plastic Limit<br>21Plastic Limit<br>21Plastic Limit<br>21Plastic Limit<br>21Plastic Limit<br>21Plastic Limit<br>21Plastic Limit<br>21Plastic Index<br>231PL Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · ·                                                                                        | 6.35     | 6.23           |             | Tes             | t Method                                           |  |
| Water Content (%)21.621.3Specimen preparation MethodPlastic limit21WetXDryLiquid Limit Chart300<br>280<br>$280$ $y = -57.9 ln(x) + 437.91$<br>$R^2 = 0.9599$ Liquid Limit<br>252<br>Plastic Limit<br>219<br>240<br>$y = 220$ 9<br>$y = 220$ Plastic Index<br>231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |          | 1.33           | А           | Х               | В                                                  |  |
| Plastic limit         21         Wet         X         Dry           Liquid Limit Chart         Image: Chart Chart         Image: Chart Chart Chart         Image: Chart C |                                                                                                      | 21.6     | 21.3           | Sp          | ecimen pr       | eparation Method                                   |  |
| $\begin{array}{c} 300\\ 280\\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Plastic limit                                                                                        |          | 21             |             | -               | ri r                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300<br>280<br>(%)<br>600<br>(%)<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20 |          | / = -57.9ln(x) |             |                 | 252<br>Plastic Limit<br>21<br>Plastic Index<br>231 |  |


| Sample: 15%bentonite &                           | 85% sand   | Location:                            | N/A        | Miz        | xing Water: D                       |            |    |
|--------------------------------------------------|------------|--------------------------------------|------------|------------|-------------------------------------|------------|----|
| Specimen Type: Air-dried                         |            | Date:                                | 11/2/2009  |            | Tested By: Y                        | 'ueru Cl   | he |
| Liquid Limit Determintation                      | )          |                                      |            |            |                                     |            |    |
| Sample No.                                       | 1          | 2                                    | 3          |            | Г                                   |            |    |
| Can No.                                          | 209        | 31                                   | 59         |            |                                     |            |    |
| Wt. of can (g)                                   | 28.17      | 28.36                                | 28.33      |            |                                     |            |    |
| Wt. of can + wet soil (g)                        | 39.39      | 40.02                                | 41.47      |            |                                     |            |    |
| Wt. of can + dry soil (g)                        | 32.88      | 33.31                                | 33.95      |            |                                     |            |    |
| Wt. of dry soil (g)                              | 4.71       | 4.95                                 | 5.62       |            |                                     |            |    |
| Wt. of water (g)                                 | 6.51       | 6.71                                 | 7.52       |            | 1                                   |            |    |
| Water Content (%)                                | 138.22     | 135.56                               | 133.81     |            | 1                                   |            |    |
| No. of Drops                                     | 20         | 26                                   | 28         |            |                                     |            |    |
| ·                                                |            |                                      |            |            |                                     |            |    |
| Plastic Limit Determination                      |            |                                      |            | Testing Ec | quipment Use                        |            |    |
| Sample No.                                       | 1          | 2                                    | Plastic Li | mit:       |                                     | Rolled     | >  |
| Can No.                                          | 46         | 31                                   |            |            | Mechanical                          |            |    |
| Wt. of can (g)                                   | 39.17      | 38.44                                | Liquid Lir | nit:       |                                     |            | >  |
| Wt. of can + wet soil (g)                        | 46.09      | 45.9                                 |            |            | Mech                                | anical     |    |
| Wt. of can + dry soil (g)                        | 44.91      | 44.7                                 |            |            |                                     |            |    |
| Wt. of dry soil (g)                              | 5.74       | 6.26                                 |            | 1          | t Method                            |            |    |
| Wt. of water (g)                                 | 1.18       | 1.2                                  | A          | Х          | В                                   |            |    |
| Water Content (%)                                | 20.6       | 19.2                                 |            | 1          | eparation Met                       | thod       |    |
| Plastic limit                                    | 2          | 20                                   | Wet        | Х          | Dry                                 |            |    |
|                                                  | luid Limit | Chart                                |            |            | Linuid                              | 1          |    |
| 150<br>145<br>🔄 40                               |            | y = -12.81ln(<br>R <sup>2</sup> = 0. |            |            | Liquid<br>13<br>Plastic<br>20       | 5<br>Limit |    |
| (5,40)           130           130           125 | ~~         |                                      |            |            | Plastic Index<br>115<br>PL Standard |            |    |
| ≥ <sup>120</sup><br>120<br>10                    | Number o   | of Drops                             |            | 100        | PL Star<br>Devia<br>0.6             | tion       |    |

| DEPARTMENT OF<br>UNIVERSITY<br>Atterberg Li | OF DEL                  | AWARE        | E - GEOTI     | ECHNIC        | AL LAB                 |  |
|---------------------------------------------|-------------------------|--------------|---------------|---------------|------------------------|--|
| Project Name: An experin                    | nental inve             | stigation of | the behavior  | of compact    | ted clay/sand mixtures |  |
| Sample: Kaolinite                           |                         | Location:    | N/A           | Mi            | xing Water: Distilled  |  |
| Specimen Type: Air-dried                    |                         | Date:        | 9/22/2009     |               | Tested By: Yueru Chen  |  |
| Liquid Limit Determintation<br>Sample No.   | 1                       | 2            | 3             | 4             |                        |  |
| Can No.<br>Wt. of can (g)                   | 59<br>28.32             | 410<br>28.42 | B-14<br>29.08 | FJ-1<br>28.07 |                        |  |
| Wt. of can + wet soil (g)                   | 34.06                   | 38.54        | 36.98         | 36.23         |                        |  |
| Wt. of can + dry soil (g)                   | 31.9                    | 34.7         | 34.2          | 33.4          |                        |  |
| Wt. of dry soil (g)                         | 3.58                    | 6.28         | 5.12          | 5.33          |                        |  |
| Wt. of water (g)                            | 2.16                    | 3.84         | 2.78          | 2.83          |                        |  |
| Water Content (%)                           | 60.34                   | 61.15        | 54.30         | 53.10         |                        |  |
| No. of Drops                                | o. of Drops 22 15 34 34 |              |               |               |                        |  |
| Plastic Limit Determination                 | )                       |              | 1             | Testing E     | quipment Used          |  |
| Sample No.                                  | 1                       | 2            | Diactia I     | imiti         | Hand Rolled X          |  |

| Plastic Limit Determination |      |      |  |  |  |  |
|-----------------------------|------|------|--|--|--|--|
| Sample No.                  | 1    | 2    |  |  |  |  |
| Can No.                     | 405  | 404  |  |  |  |  |
| Wt. of can (g)              | 38.1 | 38.9 |  |  |  |  |
| Wt. of can + wet soil (g)   | 44.7 | 47.3 |  |  |  |  |
| Wt. of can + dry soil (g)   | 43   | 45.2 |  |  |  |  |
| Wt. of dry soil (g)         | 4.9  | 6.3  |  |  |  |  |
| Wt. of water (g)            | 1.7  | 2.1  |  |  |  |  |
| Water Content (%)           | 34.7 | 33.3 |  |  |  |  |
| Plastic limit               | 3    | 34   |  |  |  |  |

| Testing Equipment Used |                   |   |  |  |  |
|------------------------|-------------------|---|--|--|--|
| Plastic Limit:         | Hand Rolled       | Х |  |  |  |
|                        | Mechanical Device |   |  |  |  |
| Liquid Limit:          | Manual            | Х |  |  |  |
| Liquid Limit:          | Mechanical        |   |  |  |  |

| Test Method                 |  |  |  |  |  |  |  |  |
|-----------------------------|--|--|--|--|--|--|--|--|
| A X B                       |  |  |  |  |  |  |  |  |
| Specimen preparation Method |  |  |  |  |  |  |  |  |
| Wet X Dry                   |  |  |  |  |  |  |  |  |



| ample: 50% kaolinite & 5               | 0% sand   | Location:    | N/A         | Μ       | ixing Water: | Distilled    |
|----------------------------------------|-----------|--------------|-------------|---------|--------------|--------------|
| pecimen Type: Air-dried                |           | Date:        | 11/4/2009   |         | Tested By:   | Yueru Che    |
| Liquid Limit Determintation            | )         |              |             |         |              |              |
| Sample No.                             | 1         | 2            | 3           |         |              |              |
| Can No.                                | 2010      | 201          | FJ-5        |         |              |              |
| Wt. of can (g)                         | 28.63     | 28.9         | 28.06       |         |              |              |
| Wt. of can + wet soil (g)              | 38.43     | 41.74        | 40.84       |         |              |              |
| Wt. of can + dry soil (g)              | 35.63     | 38.16        | 37.33       |         |              |              |
| Wt. of dry soil (g)                    | 7         | 9.26         | 9.27        |         |              |              |
| Wt. of water (g)                       | 2.8       | 3.58         | 3.51        |         |              |              |
| Water Content (%)                      | 40.00     | 38.66        | 37.86       |         |              |              |
| No. of Drops                           | 18        | 27           | 32          |         |              |              |
| Plastic Limit Determination            |           |              |             | Tocting | Equipment U  | sod          |
| Sample No.                             | 1         | 2            |             | resurg  |              | d Rolled X   |
| Can No.                                | 404       | 405          | Plastic L   | imit:   | Mechanica    |              |
| Wt. of can (g)                         | 38.95     | 38.1         |             |         | WECHAINC     | Manual X     |
| Wt. of can + wet soil (g)              | 46.27     | 46.88        | Liquid Li   | mit:    | Mo           | chanical     |
|                                        | -         | 40.00        |             |         | IVIE         | chanical     |
| Wt. of can + dry soil (g)              | 44.86     |              |             | Ta      | at Mathad    |              |
| Wt. of dry soil (g)                    | 5.91      | 7.08         |             |         | st Method    | 1            |
| Wt. of water (g)                       | 1.41      |              | A           | X       | B            | lathad       |
| Water Content (%)<br>Plastic limit     | 23.9      | 24.0         |             |         | reparation N |              |
| Plastic limit                          |           | 24           | Wet         | Х       | Dry          |              |
| Lia                                    | uid Limit | Chart        |             |         |              |              |
| LIQ                                    |           | Chart        |             |         |              |              |
| 50                                     |           |              |             |         | -            | id Limit     |
| 45                                     |           | v = -3.7ln() | x) + 50.731 |         |              | 39           |
| 45                                     |           |              | 0.9932      |         |              |              |
| <b>₹</b> 0                             |           |              |             |         | Plast        | ic Limit     |
| 1 (C                                   |           |              |             |         |              | 24           |
| <b>j</b> i<br>35                       |           |              |             |         |              |              |
| 00000000000000000000000000000000000000 |           |              |             |         | Plast        | ic Index     |
|                                        |           |              |             |         |              | 15           |
| Mater 5                                |           |              |             |         |              |              |
|                                        |           |              |             |         | PL Standa    | ard Deviatio |
| 00                                     |           |              |             |         | 1            |              |
| 10                                     |           |              |             | 100     |              | ).08         |

#### Atterberg Limits Determination: ASTM D 4318 - 05

| Sample: 25% kaolinite & 7   | 5% sand   | Location:                              | N/A                | M          | ixing Water: | Distilled                       |
|-----------------------------|-----------|----------------------------------------|--------------------|------------|--------------|---------------------------------|
| Specimen Type: Air-dried    |           | Date:                                  | 11/5/2009          |            | Tested By:   | Yueru Cher                      |
| Liquid Limit Determintation | )         |                                        |                    |            |              |                                 |
| Sample No.                  | 1         | 2                                      | 3                  | 4          |              |                                 |
| Can No.                     | 59        | 211                                    | FJ-3               | 4          |              |                                 |
| Wt. of can (g)              | 28.34     | 28.18                                  | 29.06              | 28.74      |              |                                 |
| Wt. of can + wet soil (g)   | 40.89     | 41.03                                  | 42.36              | 44.42      |              |                                 |
| Wt. of can + dry soil (g)   | 38.43     | 38.4                                   | 39.9               | 41.46      |              |                                 |
| Wt. of dry soil (g)         | 10.09     | 10.22                                  | 10.84              | 12.72      |              |                                 |
| Wt. of water (g)            | 2.46      | 2.63                                   | 2.46               | 2.96       |              |                                 |
| Water Content (%)           | 24.38     | 25.73                                  | 22.69              | 23.27      |              |                                 |
| No. of Drops                | 25        | 16                                     | 34                 | 27         |              |                                 |
|                             |           |                                        | 1                  |            | ·            | l                               |
| Plastic Limit Determination | 1         | 0                                      |                    | I esting E | quipment Us  |                                 |
| Sample No.                  | 1         | 2                                      | Plastic L          | imit:      |              | d Rolled X                      |
| Can No.                     | 31        | 46                                     | ┨┠────             |            | Mechanica    |                                 |
| Wt. of can (g)              | 38.44     | 39.16                                  | Liquid Li          | mit:       |              | Manual X                        |
| Wt. of can + wet soil (g)   | 45.72     | 47.82                                  |                    |            | Med          | hanical                         |
| Wt. of can + dry soil (g)   | 44.78     | 46.7                                   | l .                |            |              |                                 |
| Wt. of dry soil (g)         | 6.34      | 7.54                                   |                    |            | st Method    |                                 |
| Wt. of water (g)            | 0.94      | 1.12                                   | A                  | Х          | В            |                                 |
| Water Content (%)           | 14.8      | 14.9                                   |                    |            | reparation M | ethod                           |
| Plastic limit               |           | 15                                     | Wet                | Х          | Dry          |                                 |
| 50 <b></b>                  | uid Limit | Chart                                  |                    |            | Liqui        | d Limit                         |
| Water Content (%) 00        |           | v = -4.116ln(x<br>R <sup>2</sup> = 0.5 | ) + 37.207<br>5529 |            | Plast        | 24<br>ic Limit<br>15<br>c Index |
| Nater Cq                    |           |                                        |                    |            | PL Standa    | 9                               |

100 Number of Drops

0.01

0

10

| Sample: 15% kaolinite & 8<br>Specimen Type: Air-dried                                           | 5% sand  | Location:                                       | N/A<br>11/6/2009               | M          | ixing Water: I<br>Tested By: ` |                                                              |
|-------------------------------------------------------------------------------------------------|----------|-------------------------------------------------|--------------------------------|------------|--------------------------------|--------------------------------------------------------------|
| specimen Type. All-uneu                                                                         |          | Dale.                                           | 11/0/2003                      |            | Testeu Dy.                     |                                                              |
| Liquid Limit Determintation                                                                     |          |                                                 |                                |            |                                |                                                              |
| Sample No.                                                                                      | 1        | 2                                               | 3                              |            |                                |                                                              |
| Can No.                                                                                         | 209      | 59                                              | 211                            |            |                                |                                                              |
| Wt. of can (g)                                                                                  | 28.17    | 28.33                                           | 28.17                          |            |                                |                                                              |
| Wt. of can + wet soil (g)                                                                       | 38.22    | 41.79                                           | 40.79                          |            |                                |                                                              |
| Wt. of can + dry soil (g)                                                                       | 36.61    | 39.48                                           | 38.5                           |            |                                |                                                              |
| Wt. of dry soil (g)                                                                             | 8.44     | 11.15                                           | 10.33                          |            |                                |                                                              |
| Wt. of water (g)                                                                                | 1.61     | 2.31                                            | 2.29                           |            |                                |                                                              |
| Water Content (%)                                                                               | 19.08    | 20.72                                           | 22.17                          |            |                                |                                                              |
| No. of Drops                                                                                    | 32       | 20                                              | 15                             |            |                                |                                                              |
|                                                                                                 |          |                                                 |                                |            |                                |                                                              |
| Plastic Limit Determination                                                                     |          |                                                 |                                | Testing E  | quipment Us                    |                                                              |
| Sample No.                                                                                      | 1        | 2                                               | Plastic L                      | imit       | Hand Rolled                    |                                                              |
| Can No.                                                                                         | 31       | 46                                              |                                |            | Mechanical                     | Device                                                       |
| Wt. of can (g)                                                                                  | 38.42    | 39.14                                           | Liquid L                       | imit       |                                | Manual X                                                     |
| Wt. of can + wet soil (g)                                                                       | 47.28    | 45.44                                           |                                | innit.     | Mech                           | nanical                                                      |
| Wt. of can + dry soil (g)                                                                       | 46.3     | 44.75                                           |                                |            |                                |                                                              |
| Wt. of dry soil (g)                                                                             | 7.88     | 5.61                                            |                                | Te         | st Method                      |                                                              |
| Wt. of water (g)                                                                                | 0.98     | 0.69                                            | Α                              | Х          | В                              |                                                              |
| Water Content (%)                                                                               | 12.4     | 12.3                                            | S                              | Specimen p | reparation Me                  | ethod                                                        |
| Plastic limit                                                                                   |          | 2                                               | Wet                            | Х          | Dry                            |                                                              |
| Mater Content (%)<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | y        | chart<br>/ = -4.101ln(><br>R <sup>2</sup> = 0.9 | <pre>&lt;) + 33.209 9912</pre> |            | 2<br>Plastic<br>1<br>Plastic   | d Limit<br>20<br>c Limit<br>2<br>c Index<br>8<br>d Deviation |
| 0 <b>1</b> 0                                                                                    | Number o | f Drons                                         |                                | 100        |                                | 07                                                           |

#### APPENDIX C

### SPECIFIC GRAVITY

## DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING UNIVERSITY OF DELAWARE - GEOTECHNICAL LAB Specific Gravity of Soil Solids: ASTM D 854 - 06

| Project Name: An experimental investigation o        | t the behavior of compac | cted clay/sand   | mixtures   |  |  |  |
|------------------------------------------------------|--------------------------|------------------|------------|--|--|--|
| Sample Description: Light tan poorly graded m        | edium to fine sand (SP)  | Date: 11/12/2009 |            |  |  |  |
| Percent Passing No. 4 Sieve: 100% Metho              | od Used: A               | Tested By:       | Yueru Cher |  |  |  |
|                                                      |                          | 1                | 1          |  |  |  |
| Specimen No.                                         | 1                        | 2                | 3          |  |  |  |
| Wt. of empty, clean pycnometer (g)                   | 91.37                    | 92.02            | 92.51      |  |  |  |
| Wt. of pycnometer + water (g)                        | 340.44                   | 341.14           | 341.39     |  |  |  |
| Wt. of pycnometer + dry soil + water (g)             | 377.82                   | 378.40           | 378.81     |  |  |  |
|                                                      |                          |                  |            |  |  |  |
| Pan No.                                              | 1                        | 2                | 3          |  |  |  |
| Wt. of pan (g)                                       | 156.76                   | 159.90           | 156.77     |  |  |  |
| Wt. of Pan + dry soil                                | 216.80                   | 219.73           | 216.76     |  |  |  |
| Wt. of dry soil (g)                                  | 60.04                    | 59.83            | 59.99      |  |  |  |
|                                                      |                          |                  |            |  |  |  |
| Temperature (°C)                                     | 23.9                     | 24.0             | 24.0       |  |  |  |
| Temperature Coefficient (K)                          | 0.99912                  | 0.99909          | 0.99909    |  |  |  |
| G <sub>s</sub> at test temperature (G <sub>t</sub> ) | 2.65                     | 2.65             | 2.66       |  |  |  |
| G <sub>s</sub> at 20°C (G <sub>20°C</sub> )          | 2.65                     | 2.65             | 2.66       |  |  |  |
| Average G <sub>s</sub>                               |                          | 2.65             |            |  |  |  |
| Standard Deviation                                   |                          | 0.0036           |            |  |  |  |

Equation Used:

$$G_{t} = \frac{\rho_{s}}{\rho_{w,t}} = \frac{M_{s}}{\left(M_{pw,t} - \left(M_{pw,t} - M_{s}\right)\right)}$$

$$G_{20^{\circ}C} = K \times G_t$$

Note:

A vacuum was used to deair the soil slurry. The pycnometer was periodically (every 20 minutes) agitated under vacuum for 2 hours, and was then allowed to stand overnight under constant vacuum.

| DEPARTMENT OF CIVIL<br>UNIVERSITY OF D<br>Specific Gravity | ELAWARE           | - GEOTECI      | HNICAL L       | AB         |
|------------------------------------------------------------|-------------------|----------------|----------------|------------|
| Project Name: An experimental investi                      | gation of the beh | avior of compa | cted clay/sanc | I mixtures |
| Sample Description: Bentonite                              | <u> </u>          |                | Date:          | 12/2/2009  |
| Percent Passing No. 4 Sieve: 100%                          | Method Used:      | А              | Tested By:     | Yueru Chen |
|                                                            |                   |                |                |            |
| Specimen No.                                               |                   | 1              | 2              | 3          |
| Wt. of empty, clean pycnometer (g)                         |                   | 92.61          | 91.37          | 91.37      |
| Wt. of pycnometer + water (g)                              |                   | 345.42         | 344.18         | 344.24     |
| Wt. of pycnometer + dry soil + water (g                    | g)                | 354.38         | 353.26         | 356.08     |
| Pan No.                                                    |                   | 3              | 2              | 4          |
| Wt. of pan (g)                                             |                   | 159.76         | 156.69         | 159.72     |
| Wt. of Pan + dry soil                                      |                   | 174.25         | 171.36         | 178.90     |
| Wt. of dry soil (g)                                        |                   | 14.49          | 14.67          | 19.18      |
| Temperature (°C)                                           |                   | 23.0           | 23.1           | 23.9       |
| Temperature Coefficient (K)                                |                   | 0.99933        | 0.99931        | 0.99912    |
| $G_s$ at test temperature ( $G_t$ )                        |                   | 2.62           | 2.62           | 2.61       |
| G <sub>s</sub> at 20°C (G <sub>20°C</sub> )                |                   | 2.6185         | 2.6225         | 2.6108     |
| Average G <sub>s</sub>                                     |                   |                | 2.62           |            |
| Standard Deviation                                         |                   |                | 0.0049         |            |

Equation Used:

Note:

$$G_{t} = \frac{\rho_{s}}{\rho_{w,t}} = \frac{M_{s}}{\left(M_{pw,t} - \left(M_{pws,t} - M_{s}\right)\right)}$$

 $G_{20^{\circ}C} = K \times G_t$ 

A vacuum was used to deair the soil slurry. The pycnometer was periodically (every 20 minutes) agitated under vacuum for 2 hours. A solution of sodium hexametaphosphate was used to disperse the sample, at the rate of 40 g of sodium hexametaphosphate/liter of solution. To avoid forming highly viscous fluid during the deairing process, the amount of soil solids being tested was less than the mass recommended by ASTM.

| DEPARTMENT OF CIVIL<br>UNIVERSITY OF DI                 |                |        |         |            |
|---------------------------------------------------------|----------------|--------|---------|------------|
| Specific Gravity Project Name: An experimental investig |                |        |         |            |
| Sample Description: Kaolinite                           |                | roompa | 1       | 11/17/2009 |
| Percent Passing No. 4 Sieve: 100%                       | Method Used: A |        |         | Yueru Chen |
| Specimen No.                                            |                | 1      | 2       | 3          |
| Wt. of empty, clean pycnometer (g)                      |                | 1.37   | 92.02   | 92.51      |
|                                                         |                |        |         |            |
| Wt. of pycnometer + water (g)                           | -              | 0.13   | 340.68  | 341.3      |
| Wt. of pycnometer + dry soil + water (g)                | ) 36           | 1.61   | 362.04  | 361.37     |
| Pan No.                                                 |                | 1      | 2       | 3          |
| Wt. of pan (g)                                          | 15             | 6.73   | 159.72  | 156.72     |
| Wt. of Pan + dry soil                                   | 19             | 1.57   | 194.41  | 189.30     |
| Wt. of dry soil (g)                                     | 3.             | 4.84   | 34.69   | 32.58      |
| Temperature (°C)                                        | 2              | 7.1    | 27.1    | 26.9       |
| Temperature Coefficient (K)                             | 0.9            | 9828   | 0.99828 | 0.99833    |
| $G_s$ at test temperature ( $G_t$ )                     |                | .61    | 2.60    | 2.60       |
| G <sub>s</sub> at 20°C (G <sub>20°C</sub> )             | 2.0            | 6033   | 2.5979  | 2.6000     |
| Average G <sub>s</sub>                                  |                |        | 2.60    | 1          |
| Standard Deviation                                      |                |        | 0.0022  |            |

Equation Used:

$$G_{t} = \frac{\rho_{s}}{\rho_{w,t}} = \frac{M_{s}}{(M_{pw,t} - (M_{pws,t} - M_{s}))}$$

$$G_{20^{\circ}C} = K \times G_t$$

Note:

A vacuum was used to deair the soil slurry. The pycnometer was periodically (every 20 minutes) agitated under vacuum for 2 hours, and was then allowed to stand overnight under constant vacuum. Air bubbles accumulated at the top of the water surface of the pycnometer. One possible source of error in the test is the effect of the air bubbles on the volume measurements.

#### **APPENDIX D**

#### DERIVATION OF THE EQUATION FOR CALCULATING THE SPECIFIC GRAVITY OF SAND/CLAY MIXTURES

*W*,  $W_{clay}$ , and  $W_{sand}$  represent the weights of sand/clay mixture, clay and sand respectively. *V*,  $V_{clay}$ , and  $V_{sand}$  represent the volumes of sand/clay mixture, clay, and sand respectively. The particle densities of clay,  $\rho_{clay}$  (g/cm3), sand,  $\rho_{sand}$  (g/cm3), and the clay content,  $\alpha$  (%) are expressed in the following equations:

$$\rho_{clay} = \frac{W_{clay}}{V_{clay}}$$

$$\rho_{sand} = \frac{W_{sand}}{V_{sand}}$$

$$\alpha = \frac{W_{clay}}{W_{sand} + W_{clay}} \times 100$$
(C - 1)

Equation (B-1) can be rewritten as

$$W_{sand} = \frac{W_{clay}}{\frac{\alpha}{100}} - W_{clay} = W_{clay} \left(\frac{100}{\alpha} - 1\right) = W_{clay} \left(\frac{100 - \alpha}{\alpha}\right)$$
(C - 2)

Since, 
$$\rho_{cs} = \frac{W}{V} = \frac{W_{clay} + W_{sand}}{V_{clay} + V_{sand}} = \frac{\left(\frac{W_{clay}}{W_{sand}}\right) + 1}{\left(\frac{V_{clay}}{W_{sand}}\right) + \left(\frac{V_{sand}}{W_{sand}}\right)} = \frac{\left(\frac{W_{clay}}{W_{sand}}\right) + 1}{\left(\frac{W_{clay}}{W_{sand}}\right) + \left(\frac{W_{clay}}{W_{sand}}\right) + \left$$

From equation (B-2),  $\frac{W_{clay}}{W_{sand}} = \frac{\alpha}{100 - \alpha}$ 

Therefore,

$$\rho_{cs} = \frac{\left(\frac{\alpha}{100 - \alpha}\right) + 1}{\left(\frac{\alpha}{100 - \alpha}\right) \left(\frac{1}{\rho_{clay}}\right) + \left(\frac{1}{\rho_{sand}}\right)}$$
$$\rho_{cs} = \frac{\rho_{clay} + \left(\frac{100 - \alpha}{\alpha}\right) \rho_{clay}}{1 + \left(\frac{100 - \alpha}{\alpha}\right) \left(\frac{\rho_{clay}}{\rho_{sand}}\right)}$$

$$\rho_{cs} = \frac{\left(\frac{100}{\alpha}\right)\rho_{clay}}{1 + \left(\frac{100 - \alpha}{\alpha}\right)\left(\frac{\rho_{clay}}{\rho_{sand}}\right)}$$

Since 
$$G_s = \frac{\rho_{cs}}{\rho_w}$$
,  
For  $\rho_w = 1 g / cm^3$ ,  
 $G_s = \rho_{cs} = \frac{\left(\frac{100}{\alpha}\right)\rho_{clay}}{1 + \left(\frac{100 - \alpha}{\alpha}\right)\left(\frac{\rho_{clay}}{\rho_{sand}}\right)}$ 
(C-3)

The specific gravity for each sand/clay mixture is Chapter 3 was calculated from equation (C-3).

#### **APPENDIX E**

#### PROCTOR COMPATION TEST DATA

| Project Name: A                      | n experin | nental inv | estigatic/ | on of the | behavior | of comp | acted cla | y/sand n | nixtures         |        |
|--------------------------------------|-----------|------------|------------|-----------|----------|---------|-----------|----------|------------------|--------|
| Method Used: A                       |           | Preparat   | ion Meth   | od Used   | :        | Moist   | Ram       | imer:    | Ma               | nual   |
| Material Description:                | L15B      |            |            | Oversize  | Fraction | :       |           | 0%       | G <sub>s</sub> : | 2.65   |
| Location: N/A                        |           | ٦          | ested B    | /:        | Yueru    | Chen    | Test      | Date:    | 9/15/            | 2009   |
| Determination of dry                 | unit we   | eight      |            |           |          |         |           |          |                  |        |
| Specimen No.                         | 1         | 2          | 3          | 4         | 5        | 6       | 7         | 8        | 9                | 10     |
| Water content, w%                    | 12.1      | 13.9       | 14.1       | 15.8      | 16.2     | 17.9    | 18.0      | 19.7     | 20.2             | 21.9   |
| Mold volume (cm <sup>3</sup> )       | 940.7     | 937.2      | 937.2      | 937.2     | 940.7    | 940.7   | 937.2     | 940.7    | 937.2            | 937.2  |
| Wt. of mold (g)                      | 4226.7    | 4213.5     | 4232.0     | 4213.7    | 4227.3   | 4226.6  | 4217.2    | 4226.6   | 4217.1           | 4213.4 |
| Wt. of mold + soil (g)               | 5959.0    | 5991.6     | 6055.7     | 6038.5    | 6100.8   | 6099.7  | 6116.7    | 6109.0   | 6052.6           | 6057.4 |
| Wt. of wet soil (g)                  | 1732.3    | 1778.1     | 1823.7     | 1824.8    | 1873.5   | 1873.1  | 1899.5    | 1882.4   | 1835.5           | 1844.0 |
| Wet density (g/cm <sup>3</sup> )     | 1.8       | 1.9        | 1.9        | 1.9       | 2.0      | 2.0     | 2.0       | 2.0      | 2.0              | 2.0    |
| Dry density (g/cm <sup>3</sup> )     | 1.6       | 1.7        | 1.7        | 1.7       | 1.7      | 1.7     | 1.7       | 1.7      | 1.6              | 1.6    |
| Wet unit weight (kN/m <sup>3</sup> ) | 18.1      | 18.6       | 19.1       | 19.1      | 19.5     | 19.5    | 19.9      | 19.6     | 19.2             | 19.3   |
| Dry unit weight (kN/m <sup>3</sup> ) | 16.1      | 16.3       | 16.7       | 16.5      | 16.8     | 16.6    | 16.9      | 16.4     | 16.0             | 15.8   |
| Determination of zero-a              | ir-void   | curve      |            |           |          |         |           |          |                  |        |
| Water content, w%                    | 18.0      | 20.0       | 22.0       | 24.0      | 26.0     |         |           |          |                  |        |
| Dry density (g/cm <sup>3</sup> )     | 1.8       | 1.7        | 1.7        | 1.6       | 1.6      |         |           |          |                  |        |
| Dry unit weight (kN/m <sup>3</sup> ) | 17.6      | 17.0       | 16.4       | 15.9      | 15.4     |         |           |          |                  |        |



#### Low Energy Proctor Test

| /lethod Use                  | ed: A                       | Pre                                               | paration I                    | Method U | sed:     | Moist     | Ram    | mer:   | Mai              | nual   |  |
|------------------------------|-----------------------------|---------------------------------------------------|-------------------------------|----------|----------|-----------|--------|--------|------------------|--------|--|
| /laterial De                 | scription:                  | L25B                                              |                               |          | Oversize | Fraction: | 0%     |        | G <sub>s</sub> : | 2.64   |  |
| ocation:                     | N/A                         |                                                   | Tested By: Yueru Chen Test Da |          |          |           |        |        | 8/21/200         | 9      |  |
| Determin                     | nation of dry               | unit we                                           | ight                          |          |          |           |        |        |                  |        |  |
| Specime                      | en No.                      | 1                                                 | 2                             | 3        | 4        | 5         | 6      | 7      | 8                | 9      |  |
| Water co                     | ntent, w%                   | 14.0                                              | 14.5                          | 16.2     | 17.6     | 18.3      | 19.9   | 20.6   | 22.0             | 22.2   |  |
| Mold volu                    | ume (cm <sup>3</sup> )      | 937.2                                             | 940.7                         | 943.8    | 942.9    | 942.9     | 937.2  | 942.9  | 942.9            | 937.2  |  |
| Wt. of mo                    | old (g)                     | 4213.5                                            | 4227.1                        | 4217.1   | 4207.7   | 4207.8    | 4213.5 | 4207.7 | 4207.8           | 4213.  |  |
| Wt. of mc                    | old + soil (g)              | 5937.0                                            | 5975.2                        | 6021.9   | 6068.5   | 6058.4    | 6029.2 | 6061.2 | 6042.8           | 6051.9 |  |
| Wt. of we                    | et soil (g)                 | 1723.5                                            | 1748.1                        | 1804.8   | 1860.8   | 1850.6    | 1815.7 | 1853.5 | 1835.0           | 1838.4 |  |
| Wet dens                     | sity (g/cm <sup>3</sup> )   | 1.8                                               | 1.9                           | 1.9      | 2.0      | 2.0       | 1.9    | 2.0    | 1.9              | 2.0    |  |
| Dry densi                    | ity (g/cm <sup>3</sup> )    | 1.6                                               | 1.6                           | 1.6      | 1.7      | 1.7       | 1.6    | 1.6    | 1.6              | 1.6    |  |
| Wet unit                     | weight (kN/m <sup>3</sup> ) | 18.0                                              | 18.2                          | 18.8     | 19.4     | 19.3      | 19.0   | 19.3   | 19.1             | 19.2   |  |
| Dry unit v                   | veight (kN/m <sup>3</sup> ) | 15.8                                              | 15.9                          | 16.1     | 16.5     | 16.3      | 15.9   | 16.0   | 15.7             | 15.7   |  |
| Determina                    | ation of zero-a             | ir-void c                                         | urve                          |          |          |           |        |        |                  |        |  |
| Water co                     | ntent, w%                   | 18.0                                              | 20.0                          | 22.0     | 24.0     |           |        |        |                  |        |  |
| Dry densi                    | ity (g/cm <sup>3</sup> )    | 1.8                                               | 1.7                           | 1.7      | 1.6      |           |        |        |                  |        |  |
| Dry unit v                   | veight (kN/m <sup>3</sup> ) | 17.5                                              | 16.9                          | 16.4     | 15.8     |           |        |        |                  |        |  |
| 17.0                         |                             |                                                   | 70                            | ro-air-v |          | 20        |        |        |                  |        |  |
| 16.5<br>16.0<br>16.0<br>15.5 | -                           | Zero-air-void curve<br>Optimum wat<br>content (%) |                               |          |          |           |        |        |                  |        |  |
| 16.0<br>16.0                 | •                           |                                                   |                               |          | •        | •         |        |        | 1<br>Maxim       |        |  |

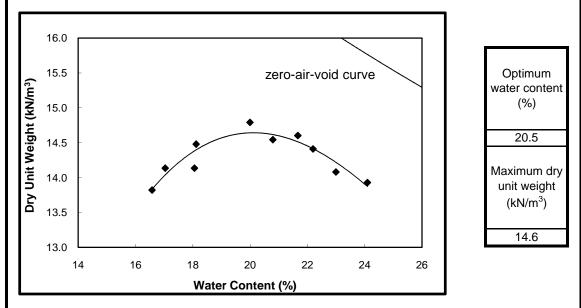
18

Water Content (%)

20

22

24


15.0

12

14

16

| Project Name: | : Ai                      | An experimental investigation of the behavior of compacted clay/sand mixtures |        |           |          |           |           |        |           |                  |        |
|---------------|---------------------------|-------------------------------------------------------------------------------|--------|-----------|----------|-----------|-----------|--------|-----------|------------------|--------|
| Method Used:  | А                         |                                                                               | F      | Preparati | on Metho | od Used:  | Moist     | R      | Rammer:   | Manual           |        |
| Material Desc | ription:                  | L50B                                                                          |        |           | С        | versize l | Fraction: | 0%     |           | G <sub>s</sub> : | 2.63   |
| Location:     | N/A                       |                                                                               |        | Te        | sted By: | Yueru C   | hen       | Te     | est Date: | 9/18/200         | )9     |
| Determina     | tion of dry               | unit we                                                                       | eight  |           |          |           |           |        |           |                  |        |
| Specimen I    | No.                       | 1                                                                             | 2      | 3         | 4        | 5         | 6         | 7      | 8         | 9                | 10     |
| Water conte   | ent, w%                   | 16.6                                                                          | 17.0   | 18.1      | 18.1     | 20.0      | 20.8      | 21.7   | 22.2      | 23.0             | 24.1   |
| Mold volum    | e (cm <sup>3</sup> )      | 942.9                                                                         | 937.2  | 942.9     | 942.9    | 940.7     | 937.2     | 943.8  | 942.9     | 940.7            | 943.8  |
| Wt. of mold   | (g)                       | 4207.8                                                                        | 4213.7 | 4207.9    | 4208.0   | 4227.2    | 4212.7    | 4217.4 | 4207.6    | 4225.8           | 4199.7 |
| Wt. of mold   | + soil (g)                | 5756.6                                                                        | 5794.2 | 5812.0    | 5851.8   | 5929.2    | 5890.9    | 5926.6 | 5900.1    | 5886.7           | 5862.9 |
| Wt. of wet s  | oil (g)                   | 1548.8                                                                        | 1580.5 | 1604.1    | 1643.8   | 1702.0    | 1678.2    | 1709.2 | 1692.5    | 1660.9           | 1663.2 |
| Wet density   | (g/cm <sup>3</sup> )      | 1.6                                                                           | 1.7    | 1.7       | 1.7      | 1.8       | 1.8       | 1.8    | 1.8       | 1.8              | 1.8    |
| Dry density   | (g/cm <sup>3</sup> )      | 1.4                                                                           | 1.4    | 1.4       | 1.5      | 1.5       | 1.5       | 1.5    | 1.5       | 1.4              | 1.4    |
| Wet unit we   | ight (kN/m <sup>3</sup> ) | 16.1                                                                          | 16.5   | 16.7      | 17.1     | 17.7      | 17.6      | 17.8   | 17.6      | 17.3             | 17.3   |
| Dry unit wei  | ght (kN/m <sup>3</sup> )  | 13.8                                                                          | 14.1   | 14.1      | 14.5     | 14.8      | 14.5      | 14.6   | 14.4      | 14.1             | 13.9   |
| Determinati   | on of zero-a              | ir-void                                                                       | curve  |           |          |           |           |        |           |                  |        |
| Water conte   | ent, w%                   | 20.0                                                                          | 22.0   | 24.0      | 26.0     | 28.0      |           |        |           |                  |        |
| Dry density   | (g/cm <sup>3</sup> )      | 1.7                                                                           | 1.7    | 1.6       | 1.6      | 1.5       |           |        |           |                  |        |
| Dry unit wei  | ght (kN/m <sup>3</sup> )  | 16.9                                                                          | 16.3   | 15.8      | 15.3     | 14.8      |           |        |           |                  |        |



| Meth                                 | nod Use   | d: A                        |         | F      | Preparati       | on Metho | od Used:  | Moist        | F      | Rammer:   | Manual           |                     |  |
|--------------------------------------|-----------|-----------------------------|---------|--------|-----------------|----------|-----------|--------------|--------|-----------|------------------|---------------------|--|
| Mate                                 | erial Des | cription:                   | S15B    |        |                 | 0        | versize l | Fraction:    | 0%     |           | G <sub>s</sub> : | 2.65                |  |
| Loca                                 | ation:    | N/A                         |         |        | Te              | sted By: | Yueru C   | hen          | Te     | est Date: | e: 1/26/2009     |                     |  |
| Det                                  | ermin     | ation of dry                | unit we | eight  |                 |          |           |              |        |           |                  |                     |  |
| S                                    | pecimer   | n No.                       | 1       | 2      | 3               | 4        | 5         | 6            | 7      | 8         | 9                | 10                  |  |
| W                                    | ater con  | itent, w%                   | 10.0    | 12.1   | 13.3            | 14.3     | 14.9      | 16.4         | 17.1   | 18.2      | 19.0             | 19.8                |  |
| M                                    | old volu  | me (cm <sup>3</sup> )       | 940.7   | 943.8  | 940.7           | 940.7    | 940.7     | 942.9        | 940.7  | 943.8     | 942.9            | 940.7               |  |
| W                                    | t. of mol | d (g)                       | 4227.1  | 4217.3 | 4227.5          | 4227.3   | 4227.2    | 4208.0       | 4227.5 | 4217.2    | 4205.0           | 4227.0              |  |
| W                                    | t. of mol | d + soil (g)                | 6006.9  | 6073.4 | 6094.3          | 6135.1   | 6139.5    | 6148.1       | 6149.5 | 6153.4    | 6112.9           | 6130.4              |  |
| W                                    | t. of wet | soil (g)                    | 1779.8  | 1856.1 | 1866.8          | 1907.8   | 1912.3    | 1940.1       | 1922.0 | 1936.2    | 1907.9           | 1903.4              |  |
| W                                    | et densi  | ty (g/cm <sup>3</sup> )     | 1.9     | 2.0    | 2.0             | 2.0      | 2.0       | 2.1          | 2.0    | 2.1       | 2.0              | 2.0                 |  |
| Dr                                   | ry densit | y (g/cm <sup>3</sup> )      | 1.7     | 1.8    | 1.8             | 1.8      | 1.8       | 1.8          | 1.7    | 1.7       | 1.7              | 1.7                 |  |
| W                                    | et unit w | /eight (kN/m <sup>3</sup> ) | 18.6    | 19.3   | 19.5            | 19.9     | 19.9      | 20.2         | 20.0   | 20.1      | 19.8             | 19.8                |  |
| Dr                                   | ry unit w | eight (kN/m <sup>3</sup> )  | 16.9    | 17.2   | 17.2            | 17.4     | 17.4      | 17.3         | 17.1   | 17.0      | 16.7             | 16.6                |  |
| Det                                  | ermina    | tion of zero-a              | ir-void | curve  |                 |          |           |              |        |           |                  |                     |  |
| W                                    | ater con  | itent, w%                   | 16.0    | 18.0   | 20.0            | 22.0     | 24.0      |              |        |           |                  |                     |  |
| Dr                                   | ry densit | y (g/cm <sup>3</sup> )      | 1.9     | 1.8    | 1.7             | 1.7      | 1.6       |              |        |           |                  |                     |  |
| Dr                                   | ry unit w | eight (kN/m <sup>3</sup> )  | 18.2    | 17.6   | 17.0            | 16.4     | 15.9      |              |        |           |                  |                     |  |
|                                      | 18.0      |                             |         |        |                 |          |           |              |        |           |                  |                     |  |
|                                      | 47.5      | -                           |         | zero-a | air-void<br>◆ ◆ | curve    |           | X            |        |           | water of         | mum<br>conten<br>%) |  |
| (kN/m³)                              | 17.5      |                             | •       |        |                 |          |           | $\mathbf{X}$ |        |           |                  |                     |  |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.5      |                             | •       | •      |                 | •        | <b>\</b>  | $\backslash$ |        |           | 1                | ļ                   |  |

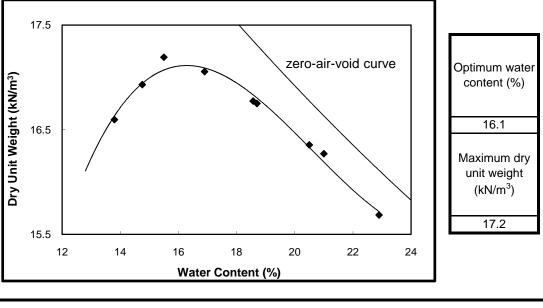
Water Content (%)

16

18

20

22


16.0 L 8

10

12

14

| on:<br>I/A<br><b>n of dry</b><br>w%<br>m <sup>3</sup> )<br>bil (g) | S25B<br>unit we<br>1<br>13.8<br>940.7<br>4225.4 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                       | Oversize<br>Yueru Cl<br>4<br>16.9                                                                                                                                                                                                                                                                                                                    | hen<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | est Date:<br>7                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                     | 2.64<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n of dry<br>w%<br>m <sup>3</sup> )                                 | 1<br>13.8<br>940.7                              | <b>ight</b><br>2<br>14.8                                                                                                                                                                                            | 3<br>15.5                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| w%<br>m <sup>3</sup> )                                             | 1<br>13.8<br>940.7                              | 2<br>14.8                                                                                                                                                                                                           | 15.5                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| m <sup>3</sup> )                                                   | 13.8<br>940.7                                   | 14.8                                                                                                                                                                                                                | 15.5                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| m <sup>3</sup> )                                                   | 940.7                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                       | 16.9                                                                                                                                                                                                                                                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ,                                                                  |                                                 | 940.7                                                                                                                                                                                                               | 937.2                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                      | 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.7                                                  | 20.5                                                                                                                                                                                                                                                                                                                                                                                                               | 21.0                                                  | 22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| oil (g)                                                            | 4225.4                                          |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                       | 940.7                                                                                                                                                                                                                                                                                                                                                | 940.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 942.9                                                 | 942.9                                                                                                                                                                                                                                                                                                                                                                                                              | 942.9                                                 | 940.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| oil (g)                                                            |                                                 | 4227.3                                                                                                                                                                                                              | 4213.2                                                                                                                                                                                                                                                                                | 4227.2                                                                                                                                                                                                                                                                                                                                               | 4227.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4205.4                                                | 4208.1                                                                                                                                                                                                                                                                                                                                                                                                             | 4205.0                                                | 4227.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                    | 6036.5                                          | 6090.5                                                                                                                                                                                                              | 6110.2                                                                                                                                                                                                                                                                                | 6139.1                                                                                                                                                                                                                                                                                                                                               | 6134.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6116.5                                                | 6102.4                                                                                                                                                                                                                                                                                                                                                                                                             | 6097.3                                                | 6075.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| g)                                                                 | 1811.1                                          | 1863.2                                                                                                                                                                                                              | 1897.0                                                                                                                                                                                                                                                                                | 1911.9                                                                                                                                                                                                                                                                                                                                               | 1907.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1911.1                                                | 1894.3                                                                                                                                                                                                                                                                                                                                                                                                             | 1892.3                                                | 1848.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| cm <sup>3</sup> )                                                  | 1.9                                             | 2.0                                                                                                                                                                                                                 | 2.0                                                                                                                                                                                                                                                                                   | 2.0                                                                                                                                                                                                                                                                                                                                                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0                                                   | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                                                   | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| m³)                                                                | 1.7                                             | 1.7                                                                                                                                                                                                                 | 1.8                                                                                                                                                                                                                                                                                   | 1.7                                                                                                                                                                                                                                                                                                                                                  | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.7                                                   | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7                                                   | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (kN/m <sup>3</sup> )                                               | 18.9                                            | 19.4                                                                                                                                                                                                                | 19.9                                                                                                                                                                                                                                                                                  | 19.9                                                                                                                                                                                                                                                                                                                                                 | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.9                                                  | 19.7                                                                                                                                                                                                                                                                                                                                                                                                               | 19.7                                                  | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (kN/m <sup>3</sup> )                                               | 16.6                                            | 16.9                                                                                                                                                                                                                | 17.2                                                                                                                                                                                                                                                                                  | 17.1                                                                                                                                                                                                                                                                                                                                                 | 16.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.8                                                  | 16.4                                                                                                                                                                                                                                                                                                                                                                                                               | 16.3                                                  | 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| of zero-a                                                          | ir-void c                                       | urve                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| w%                                                                 | 18.0                                            | 20.0                                                                                                                                                                                                                | 22.0                                                                                                                                                                                                                                                                                  | 24.0                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| :m <sup>3</sup> )                                                  | 1.8                                             | 1.7                                                                                                                                                                                                                 | 1.7                                                                                                                                                                                                                                                                                   | 1.6                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (kN/m <sup>3</sup> )                                               | 17.5                                            | 16.9                                                                                                                                                                                                                | 16.4                                                                                                                                                                                                                                                                                  | 15.8                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                    | •                                               | •                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                     | zero-                                                                                                                                                                                                                                                                                                                                                | air-void                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | curve                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                    | conte                                                 | nt (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                    | (kN/m <sup>3</sup> )<br>(kN/m <sup>3</sup> )    | m <sup>3</sup> )         1.7           (kN/m <sup>3</sup> )         18.9           (kN/m <sup>3</sup> )         16.6           of zero-air-void c           w%         18.0           rm <sup>3</sup> )         1.8 | m <sup>3</sup> )         1.7         1.7           (kN/m <sup>3</sup> )         18.9         19.4           (kN/m <sup>3</sup> )         16.6         16.9           of zero-air-void curve           w%         18.0         20.0           m <sup>3</sup> )         1.8         1.7 | xm <sup>3</sup> )         1.7         1.7         1.8           (kN/m <sup>3</sup> )         18.9         19.4         19.9           (kN/m <sup>3</sup> )         16.6         16.9         17.2           of zero-air-void curve         w%         18.0         20.0         22.0           xm <sup>3</sup> )         1.8         1.7         1.7 | m <sup>3</sup> )         1.7         1.7         1.8         1.7           (kN/m <sup>3</sup> )         18.9         19.4         19.9         19.9           (kN/m <sup>3</sup> )         16.6         16.9         17.2         17.1           of zero-air-void curve         w%         18.0         20.0         22.0         24.0           m <sup>3</sup> )         1.8         1.7         1.7         1.6           (kN/m <sup>3</sup> )         17.5         16.9         16.4         15.8 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | m <sup>3</sup> )         1.7         1.7         1.8         1.7         1.7         1.7           (kN/m <sup>3</sup> )         18.9         19.4         19.9         19.9         19.9         19.9           (kN/m <sup>3</sup> )         16.6         16.9         17.2         17.1         16.8         16.8           of zero-air-void curve         w%         18.0         20.0         22.0         24.0 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | m <sup>3</sup> )       1.7       1.7       1.8       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.7       1.6       1.3       1.7       1.7       1.6       1.7       1.7       1.6       1.7       1.7       1.6       1.7       1.7       1.6       1.7       1.7       1.6       1.7       1.7       1.6       1.7       1.7       1.6       1.7       1.7       1.6       1.7       1.7       1.6       1.7       1.7       1.6       1.7       1.7       1.6       1.7       1.7       1.6 <th< td=""></th<> |



| lethod Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d: A                        |         | F      | Preparati | on Metho  | d Used:   | Moist    | F      | Rammer:   | Manual           |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------|--------|-----------|-----------|-----------|----------|--------|-----------|------------------|--------|
| laterial Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cription:                   | S50B    |        |           | 0         | versize F | raction: | 0%     |           | G <sub>s</sub> : | 2.63   |
| ocation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A                         |         |        | Те        | sted By:  | Yueru C   | hen      | Te     | est Date: | 10/18/2009       |        |
| Determina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ation of dry                | unit we | eight  |           |           |           |          |        |           |                  |        |
| Specimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n No.                       | 1       | 2      | 3         | 4         | 5         | 6        | 7      | 8         | 9                | 10     |
| Water con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tent, w%                    | 15.7    | 16.4   | 16.9      | 17.5      | 18.8      | 20.9     | 21.5   | 23.0      | 23.1             | 25.0   |
| Mold volur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | me (cm <sup>3</sup> )       | 940.7   | 940.7  | 937.2     | 942.9     | 942.9     | 940.7    | 940.7  | 942.9     | 940.7            | 937.2  |
| Wt. of mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d (g)                       | 4227.4  | 4227.4 | 4213.8    | 4208.0    | 4208.0    | 4225.8   | 4227.2 | 4208.0    | 4225.7           | 4213.  |
| Wt. of mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d + soil (g)                | 5864.8  | 5878.0 | 5886.4    | 5915.7    | 5938.5    | 5984.2   | 5985.4 | 5978.6    | 5999.5           | 5982.  |
| Wt. of wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | soil (g)                    | 1637.4  | 1650.6 | 1672.6    | 1707.7    | 1730.5    | 1758.4   | 1758.2 | 1770.6    | 1773.8           | 1768.  |
| Wet densi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ty (g/cm <sup>3</sup> )     | 1.7     | 1.8    | 1.8       | 1.8       | 1.8       | 1.9      | 1.9    | 1.9       | 1.9              | 1.9    |
| Dry densit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y (g/cm <sup>3</sup> )      | 1.5     | 1.5    | 1.5       | 1.5       | 1.5       | 1.5      | 1.5    | 1.5       | 1.5              | 1.5    |
| Wet unit w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | veight (kN/m <sup>3</sup> ) | 17.1    | 17.2   | 17.5      | 17.8      | 18.0      | 18.3     | 18.3   | 18.4      | 18.5             | 18.5   |
| Dry unit w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eight (kN/m <sup>3</sup> )  | 14.8    | 14.8   | 15.0      | 15.1      | 15.2      | 15.2     | 15.1   | 15.0      | 15.0             | 14.8   |
| Determina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion of zero-a              | ir-void | curve  |           |           |           |          |        |           |                  |        |
| Water con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tent, w%                    | 20.0    | 22.0   | 24.0      | 26.0      | 28.0      |          |        |           |                  |        |
| Dry densit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y (g/cm <sup>3</sup> )      | 1.7     | 1.7    | 1.6       | 1.6       | 1.5       |          |        |           |                  |        |
| Dry unit w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eight (kN/m <sup>3</sup> )  | 16.9    | 16.3   | 15.8      | 15.3      | 14.8      |          |        |           |                  |        |
| 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |         |        | zero-a    | ir-void ( | curve     |          |        |           | Optir            | mum    |
| 15.5 tuber 15.0 tuber | -                           | *       | -      |           | •••       | *         |          |        |           | water o<br>(%    | conter |

20

Water Content (%)

22

24

26

14.0 └ 14

16

18

| Meth                                 | ect Name: A                         | An experin |         | -        | on Metho |           |          |        | ammer:    |                              |                     |  |
|--------------------------------------|-------------------------------------|------------|---------|----------|----------|-----------|----------|--------|-----------|------------------------------|---------------------|--|
| Mate                                 | erial Description:                  | M15B       |         |          | 0        | versize F | raction: | 0%     |           | G <sub>s</sub> :             | 2.65                |  |
| Loca                                 | ation: N/A                          |            |         | Te       | sted By: | Yueru C   | hen      | Te     | est Date: | : 9/18/2009                  |                     |  |
| Det                                  | termination of dry                  | unit we    | eight   |          |          |           |          |        |           |                              |                     |  |
| S                                    | Specimen No.                        | 1          | 2       | 3        | 4        | 5         | 6        | 7      | 8         | 9                            | 10                  |  |
| W                                    | /ater content, w%                   | 8.3        | 8.4     | 10.2     | 10.5     | 11.3      | 11.7     | 13.8   | 14.1      | 15.5                         | 15.7                |  |
| M                                    | lold volume (cm <sup>3</sup> )      | 937.2      | 940.7   | 937.2    | 937.2    | 943.8     | 937.2    | 937.2  | 940.7     | 940.7                        | 937.2               |  |
| W                                    | /t. of mold (g)                     | 4213.3     | 4227.5  | 4213.3   | 4217.1   | 4216.5    | 4217.2   | 4213.3 | 4227.1    | 4226.4                       | 4214.               |  |
| W                                    | /t. of mold + soil (g)              | 6132.3     | 6152.0  | 6173.2   | 6211.3   | 6258.9    | 6268.3   | 6230.5 | 6263.3    | 6232.2                       | 6209.               |  |
| W                                    | /t. of wet soil (g)                 | 1919.0     | 1924.5  | 1959.9   | 1994.2   | 2042.4    | 2051.1   | 2017.2 | 2036.2    | 2005.8                       | 1994.               |  |
| W                                    | /et density (g/cm <sup>3</sup> )    | 2.0        | 2.0     | 2.1      | 2.1      | 2.2       | 2.2      | 2.2    | 2.2       | 2.1                          | 2.1                 |  |
| Dry density (g/cm <sup>3</sup> )     |                                     | 1.9        | 1.9     | 1.9      | 1.9      | 1.9       | 2.0      | 1.9    | 1.9       | 1.8                          | 1.8                 |  |
| Wet unit weight (kN/m <sup>3</sup> ) |                                     | 20.1       | 20.1    | 20.5     | 20.9     | 21.2      | 21.5     | 21.1   | 21.2      | 20.9                         | 20.9                |  |
| Dr                                   | ry unit weight (kN/m <sup>3</sup> ) | 18.5       | 18.52   | 18.6     | 18.9     | 19.1      | 19.2     | 18.56  | 18.62     | 18.11                        | 18.1                |  |
| Det                                  | ermination of zero-                 | air-void   | curve   |          |          |           |          |        |           |                              |                     |  |
| W                                    | /ater content, w%                   | 10.0       | 12.0    | 14.0     | 16.0     | 18.0      |          |        |           |                              |                     |  |
| Dr                                   | ry density (g/cm <sup>3</sup> )     | 2.1        | 2.0     | 1.9      | 1.9      | 1.8       |          |        |           |                              |                     |  |
| Dr                                   | ry unit weight (kN/m <sup>3</sup> ) | 20.5       | 19.7    | 18.9     | 18.2     | 17.6      |          |        |           |                              |                     |  |
|                                      |                                     |            | <u></u> | <b>.</b> |          | 11.0      |          |        |           |                              |                     |  |
|                                      | 20.0                                |            |         |          |          |           |          |        |           |                              |                     |  |
| kN/m <sup>3</sup> )                  | 20.0<br>19.5<br>19.0                |            |         | •        |          | zero-air  | -void c  | urve   |           | water o                      | mum<br>conter<br>%) |  |
| Dry Unit Weight (kN/m³)              | 19.5                                |            | •       | •        | 2        |           | -void c  | urve   |           | water o<br>(%<br>11<br>Maxim | conter<br>%)        |  |

12

Water Content (%)

14

16

18

17.0 6

8

10

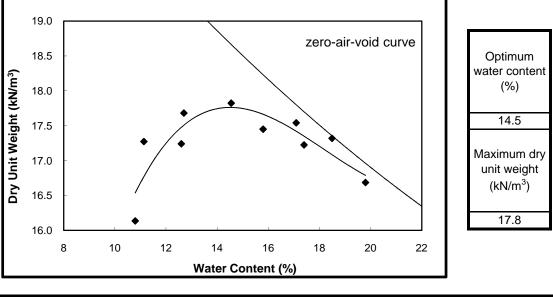
| Material Descrip<br>Location:<br>Determinati<br>Specimen No<br>Water conten<br>Mold volume<br>Wt. of mold (<br>Wt. of mold +<br>Wt. of wet so<br>Wet density (<br>Dry density (<br>Wet unit weig<br>Dry unit weig | N/A<br>ion of dry<br>lo.<br>(cm <sup>3</sup> )<br>g)<br>+ soil (g)<br>iil (g)<br>(g/cm <sup>3</sup> )<br>g/cm <sup>3</sup> )<br>ght (kN/m <sup>3</sup> )   | M25B<br><b>unit we</b><br>1<br>8.2<br>940.7<br>4227.4<br>6120.8<br>1893.4<br>2.0<br>1.9<br>19.7 | 2<br>8.4<br>940.7<br>4226.2<br>6074.1<br>1847.9<br>2.0<br>1.8 | ad By:<br>3<br>10.4<br>940.7<br>4226.5<br>6196.6<br>1970.1<br>2.1 | 4<br>10.5<br>942.9<br>4207.8<br>6185.1<br>1977.3<br>2.1 |                                                  | 6<br>12.5<br>942.9<br>4205.2<br>6216.8<br>2011.6 | Test<br>7<br>13.8<br>940.7<br>4226.0<br>6242.8 | %<br>Date:<br>8<br>14.8<br>942.9<br>4205.4<br>6228.2<br>2022.8 | 10/2/<br>9<br>15.9<br>937.2<br>4212.9<br>6203.2 | 2.64<br>(2009<br>10<br>15.95<br>937.15<br>4216.9<br>6222.4 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|
| Determinati<br>Specimen No<br>Water conten<br>Mold volume<br>Wt. of mold (<br>Wt. of mold +<br>Wt. of wet so<br>Wet density (<br>Dry density (<br>Wet unit weig<br>Dry unit weig                                  | ion of dry<br>io.<br>t, w%<br>(cm <sup>3</sup> )<br>g)<br>+ soil (g)<br>iil (g)<br>(g/cm <sup>3</sup> )<br>g/cm <sup>3</sup> )<br>ght (kN/m <sup>3</sup> ) | 1<br>8.2<br>940.7<br>4227.4<br>6120.8<br>1893.4<br>2.0<br>1.9                                   | 2<br>8.4<br>940.7<br>4226.2<br>6074.1<br>1847.9<br>2.0<br>1.8 | 3<br>10.4<br>940.7<br>4226.5<br>6196.6<br>1970.1<br>2.1           | 4<br>10.5<br>942.9<br>4207.8<br>6185.1<br>1977.3        | 5<br>12.0<br>937.2<br>4213.1<br>6217.1<br>2004.0 | 12.5<br>942.9<br>4205.2<br>6216.8                | 7<br>13.8<br>940.7<br>4226.0<br>6242.8         | 8<br>14.8<br>942.9<br>4205.4<br>6228.2                         | 9<br>15.9<br>937.2<br>4212.9<br>6203.2          | 10<br>15.95<br>937.15<br>4216.9                            |
| Specimen New<br>Water content<br>Mold volume<br>Wt. of mold (<br>Wt. of mold +<br>Wt. of wet so<br>Wet density (<br>Dry density (<br>Wet unit weig<br>Dry unit weig                                               | lo.<br>(cm <sup>3</sup> )<br>g)<br>⊢ soil (g)<br>(g/cm <sup>3</sup> )<br>g/cm <sup>3</sup> )<br>ght (kN/m <sup>3</sup> )                                   | 1<br>8.2<br>940.7<br>4227.4<br>6120.8<br>1893.4<br>2.0<br>1.9                                   | 2<br>8.4<br>940.7<br>4226.2<br>6074.1<br>1847.9<br>2.0<br>1.8 | 10.4<br>940.7<br>4226.5<br>6196.6<br>1970.1<br>2.1                | 10.5<br>942.9<br>4207.8<br>6185.1<br>1977.3             | 12.0<br>937.2<br>4213.1<br>6217.1<br>2004.0      | 12.5<br>942.9<br>4205.2<br>6216.8                | 13.8<br>940.7<br>4226.0<br>6242.8              | 14.8<br>942.9<br>4205.4<br>6228.2                              | 15.9<br>937.2<br>4212.9<br>6203.2               | 15.95<br>937.15<br>4216.9                                  |
| Water conten<br>Mold volume<br>Wt. of mold (<br>Wt. of mold +<br>Wt. of wet so<br>Wet density (<br>Dry density (<br>Wet unit weig<br>Dry unit weig                                                                | nt, w%<br>(cm <sup>3</sup> )<br>g)<br>⊦ soil (g)<br>iil (g)<br>(g/cm <sup>3</sup> )<br>g/cm <sup>3</sup> )<br>ght (kN/m <sup>3</sup> )                     | 8.2<br>940.7<br>4227.4<br>6120.8<br>1893.4<br>2.0<br>1.9                                        | 8.4<br>940.7<br>4226.2<br>6074.1<br>1847.9<br>2.0<br>1.8      | 10.4<br>940.7<br>4226.5<br>6196.6<br>1970.1<br>2.1                | 10.5<br>942.9<br>4207.8<br>6185.1<br>1977.3             | 12.0<br>937.2<br>4213.1<br>6217.1<br>2004.0      | 12.5<br>942.9<br>4205.2<br>6216.8                | 13.8<br>940.7<br>4226.0<br>6242.8              | 14.8<br>942.9<br>4205.4<br>6228.2                              | 15.9<br>937.2<br>4212.9<br>6203.2               | 15.95<br>937.15<br>4216.9                                  |
| Mold volume<br>Wt. of mold (<br>Wt. of mold +<br>Wt. of wet so<br>Wet density (<br>Dry density (<br>Wet unit weig<br>Dry unit weig                                                                                | (cm <sup>3</sup> )<br>g)<br>⊢ soil (g)<br>iil (g)<br>(g/cm <sup>3</sup> )<br>g/cm <sup>3</sup> )<br>ght (kN/m <sup>3</sup> )                               | 940.7<br>4227.4<br>6120.8<br>1893.4<br>2.0<br>1.9                                               | 940.7<br>4226.2<br>6074.1<br>1847.9<br>2.0<br>1.8             | 940.7<br>4226.5<br>6196.6<br>1970.1<br>2.1                        | 942.9<br>4207.8<br>6185.1<br>1977.3                     | 937.2<br>4213.1<br>6217.1<br>2004.0              | 942.9<br>4205.2<br>6216.8                        | 940.7<br>4226.0<br>6242.8                      | 942.9<br>4205.4<br>6228.2                                      | 937.2<br>4212.9<br>6203.2                       | 937.15<br>4216.9                                           |
| Wt. of mold (<br>Wt. of mold +<br>Wt. of wet so<br>Wet density (<br>Dry density (<br>Wet unit weig<br>Dry unit weig                                                                                               | g)<br>⊢ soil (g)<br>iil (g)<br>(g/cm <sup>3</sup> )<br>g/cm <sup>3</sup> )<br>ght (kN/m <sup>3</sup> )                                                     | 4227.4<br>6120.8<br>1893.4<br>2.0<br>1.9                                                        | 4226.2<br>6074.1<br>1847.9<br>2.0<br>1.8                      | 4226.5<br>6196.6<br>1970.1<br>2.1                                 | 4207.8<br>6185.1<br>1977.3                              | 4213.1<br>6217.1<br>2004.0                       | 4205.2<br>6216.8                                 | 4226.0<br>6242.8                               | 4205.4<br>6228.2                                               | 4212.9<br>6203.2                                | 4216.9                                                     |
| Wt. of mold +<br>Wt. of wet so<br>Wet density (<br>Dry density (<br>Wet unit weig<br>Dry unit weig                                                                                                                | + soil (g)<br>iil (g)<br>(g/cm <sup>3</sup> )<br>g/cm <sup>3</sup> )<br>ght (kN/m <sup>3</sup> )                                                           | 6120.8<br>1893.4<br>2.0<br>1.9                                                                  | 6074.1<br>1847.9<br>2.0<br>1.8                                | 6196.6<br>1970.1<br>2.1                                           | 6185.1<br>1977.3                                        | 6217.1<br>2004.0                                 | 6216.8                                           | 6242.8                                         | 6228.2                                                         | 6203.2                                          |                                                            |
| Wt. of wet so<br>Wet density (<br>Dry density (<br>Wet unit weig<br>Dry unit weig                                                                                                                                 | (g/cm <sup>3</sup> )<br>g/cm <sup>3</sup> )<br>ght (kN/m <sup>3</sup> )                                                                                    | 1893.4<br>2.0<br>1.9                                                                            | 1847.9<br>2.0<br>1.8                                          | 1970.1<br>2.1                                                     | 1977.3                                                  | 2004.0                                           |                                                  |                                                |                                                                |                                                 | 6222.4                                                     |
| Wet density (<br>Dry density (<br>Wet unit weig<br>Dry unit weig                                                                                                                                                  | (g/cm <sup>3</sup> )<br>g/cm <sup>3</sup> )<br>ght (kN/m <sup>3</sup> )                                                                                    | 2.0<br>1.9                                                                                      | 2.0<br>1.8                                                    | 2.1                                                               |                                                         |                                                  | 2011.6                                           | 2016.8                                         | 2022.8                                                         |                                                 |                                                            |
| Dry density (g<br>Wet unit weig<br>Dry unit weig                                                                                                                                                                  | g/cm <sup>3</sup> )<br>ght (kN/m <sup>3</sup> )                                                                                                            | 1.9                                                                                             | 1.8                                                           |                                                                   | 2.1                                                     | 21                                               |                                                  |                                                | 2022.0                                                         | 1990.3                                          | 2006                                                       |
| Wet unit weig<br>Dry unit weig                                                                                                                                                                                    | ght (kN/m <sup>3</sup> )                                                                                                                                   |                                                                                                 | -                                                             | 4.0                                                               |                                                         | 2.1                                              | 2.1                                              | 2.1                                            | 2.1                                                            | 2.1                                             | 2.14                                                       |
| Dry unit weig                                                                                                                                                                                                     |                                                                                                                                                            | 19.7                                                                                            |                                                               | 1.9                                                               | 1.9                                                     | 1.9                                              | 1.9                                              | 1.9                                            | 1.9                                                            | 1.8                                             | 1.85                                                       |
|                                                                                                                                                                                                                   | ht (kN/m <sup>3</sup> )                                                                                                                                    |                                                                                                 | 19.3                                                          | 20.5                                                              | 20.6                                                    | 21.0                                             | 20.9                                             | 21.0                                           | 21.0                                                           | 20.8                                            | 20.99                                                      |
| Determinatio                                                                                                                                                                                                      |                                                                                                                                                            | 18.2                                                                                            | 17.8                                                          | 18.6                                                              | 18.6                                                    | 18.7                                             | 18.6                                             | 18.5                                           | 18.3                                                           | 18.0                                            | 18.11                                                      |
|                                                                                                                                                                                                                   | on of zero-a                                                                                                                                               | ir-void (                                                                                       | curve                                                         |                                                                   |                                                         |                                                  |                                                  |                                                |                                                                |                                                 |                                                            |
| Water conten                                                                                                                                                                                                      | nt, w%                                                                                                                                                     | 12.0                                                                                            | 14.0                                                          | 16.0                                                              | 18.0                                                    |                                                  |                                                  |                                                |                                                                |                                                 |                                                            |
| Dry density (                                                                                                                                                                                                     | g/cm <sup>3</sup> )                                                                                                                                        | 2.0                                                                                             | 1.9                                                           | 1.9                                                               | 1.8                                                     |                                                  |                                                  |                                                |                                                                |                                                 |                                                            |
| Dry unit weig                                                                                                                                                                                                     | ht (kN/m <sup>3</sup> )                                                                                                                                    | 19.6                                                                                            | 18.9                                                          | 18.2                                                              | 17.5                                                    |                                                  |                                                  |                                                |                                                                |                                                 |                                                            |
| 19.0 [(KN/m <sup>3</sup> )<br>18.5 -<br>18.0 -                                                                                                                                                                    | •                                                                                                                                                          |                                                                                                 | •                                                             | •                                                                 |                                                         | zero-a                                           | ir-void                                          | curve                                          |                                                                | water o<br>(%                                   | %)<br>.8                                                   |

12

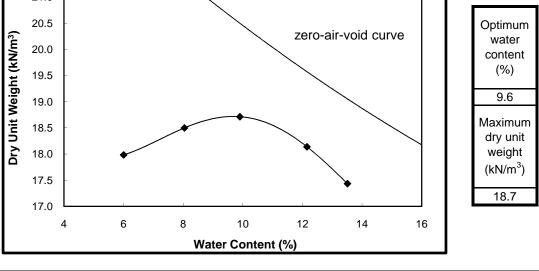
Water Content (%)

14

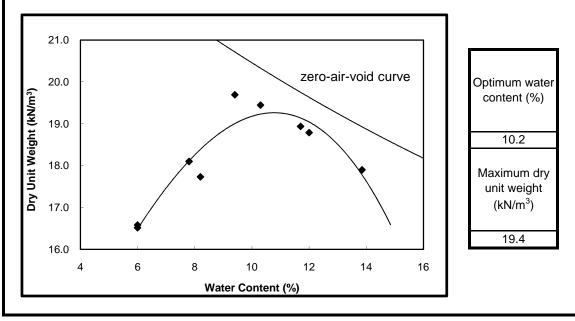
16


18

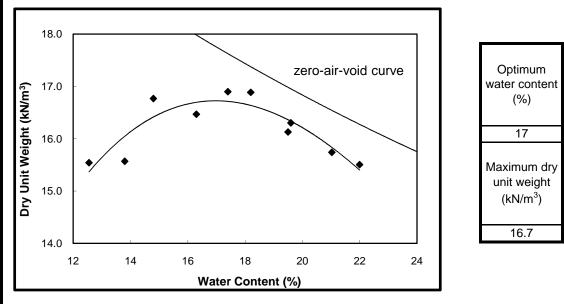
17.5 L


8

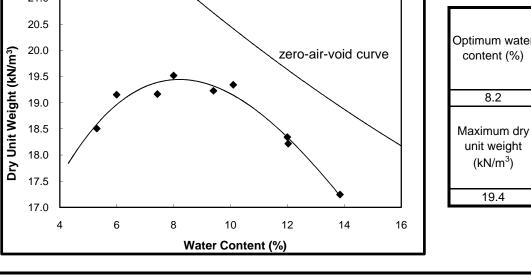
10


| Meth                             | nod Used:                                                                                            | А                        |         | Preparat | ion Meth | od Used  | :          | Moist    | Ram        | mer:   | Mai                    | nual   |
|----------------------------------|------------------------------------------------------------------------------------------------------|--------------------------|---------|----------|----------|----------|------------|----------|------------|--------|------------------------|--------|
| Mate                             | erial Descrip                                                                                        | tion:                    | M50B    |          | (        | Oversize | Fraction   | :        |            | 0%     | G <sub>s</sub> :       | 2.63   |
| Loca                             | ation:                                                                                               | N/A                      |         | Т        | ested By | /:       | Yueru Chen |          | Test Date: |        | 10/7/2009              |        |
| Det                              | erminatio                                                                                            | on of dry                | unit we | eight    |          |          |            |          |            |        |                        |        |
| S                                | pecimen No                                                                                           | ).                       | 1       | 2        | 3        | 4        | 5          | 6        | 7          | 8      | 9                      | 10     |
| W                                | ater content                                                                                         | ., w%                    | 10.8    | 11.1     | 12.6     | 12.7     | 14.6       | 15.8     | 17.1       | 17.4   | 18.5                   | 19.8   |
| M                                | old volume (                                                                                         | (cm <sup>3</sup> )       | 942.9   | 940.7    | 940.7    | 940.7    | 937.2      | 940.7    | 940.7      | 937.2  | 937.2                  | 940.7  |
| W                                | Wt. of mold (g)<br>Wt. of mold + soil (g)<br>Wt. of wet soil (g)<br>Wet density (g/cm <sup>3</sup> ) |                          | 4207.7  | 4226.0   | 4227.1   | 4225.7   | 4213.2     | 4227.6   | 4226.3     | 4217.2 | 4213.0                 | 4219.6 |
| W                                | Wt. of mold + soil (g)                                                                               |                          | 5926.0  | 6066.9   | 6088.7   | 6136.5   | 6163.5     | 6165.3   | 6195.7     | 6148.9 | 6173.2                 | 6136.5 |
| W                                | Wt. of wet soil (g)                                                                                  |                          | 1718.3  | 1840.9   | 1861.6   | 1910.8   | 1950.3     | 1937.7   | 1969.4     | 1931.7 | 1960.2                 | 1916.9 |
| Wet density (g/cm <sup>3</sup> ) |                                                                                                      | 1.8                      | 2.0     | 2.0      | 2.0      | 2.1      | 2.1        | 2.1      | 2.1        | 2.1    | 2.0                    |        |
| Dr                               | ry density (g                                                                                        | /cm <sup>3</sup> )       | 1.6     | 1.8      | 1.8      | 1.8      | 1.8        | 1.8      | 1.8        | 1.8    | 1.8                    | 1.7    |
| W                                | Wet unit weight (kN/m <sup>3</sup> )                                                                 |                          | 17.9    | 19.2     | 19.4     | 19.9     | 20.4       | 20.2     | 20.5       | 20.2   | 20.5                   | 20.0   |
| Dr                               | ry unit weigh                                                                                        | nt (kN/m <sup>3</sup> )  | 16.1    | 17.3     | 17.2     | 17.7     | 17.8       | 17.4     | 17.5       | 17.2   | 17.3                   | 16.7   |
| Dete                             | erminatior                                                                                           | n of zero-a              | ir-void | curve    |          |          |            |          |            |        |                        |        |
| W                                | ater conte                                                                                           | nt, w%                   | 12.0    | 14.0     | 16.0     | 18.0     | 20.0       | 22.0     |            |        |                        |        |
| D                                | ry density (                                                                                         | (g/cm <sup>3</sup> )     | 2.0     | 1.9      | 1.9      | 1.8      | 1.7        | 1.7      |            |        |                        |        |
| D                                | ry unit weig                                                                                         | ght (kN/m <sup>3</sup> ) | 19.6    | 18.9     | 18.2     | 17.5     | 16.9       | 16.3     |            |        |                        |        |
| N/m <sup>3</sup> )               | 19.0<br>18.5<br>18.0                                                                                 |                          |         |          |          |          | zero-ai    | r-void d | curve      |        | Optir<br>water c<br>(% |        |
| eight (kN/m <sup>3</sup> )       | 17.5 -                                                                                               |                          |         | •        | •        | •        |            |          |            |        | 14                     | .5     |

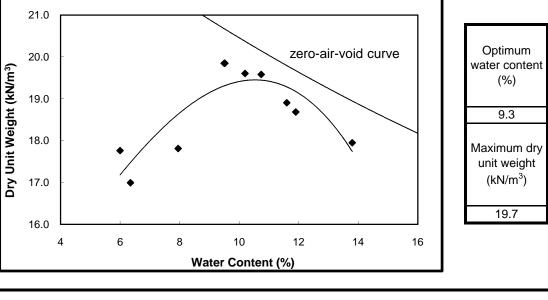



| Aethod Used:<br>Aaterial Desci |                           |             | Prenaration I | Method Used:   | Moiet  | Rammer:    | Monual   |
|--------------------------------|---------------------------|-------------|---------------|----------------|--------|------------|----------|
|                                |                           | L15K        |               | size Fraction: |        |            | 2.64     |
| ocation:                       | N/A                       | LINK        |               | Yueru Chen     | 078    | Test Date: |          |
|                                | tion of dry u             | nit weight  | Toolog Dy:    |                |        | Tool Date: | 2,0,2000 |
| Specimen I                     |                           | 1           | 2             | 3              | 4      | 5          |          |
| Water conte                    | ent, w%                   | 6.0         | 8.0           | 9.9            | 12.2   | 13.5       |          |
| Mold volum                     | e (cm <sup>3</sup> )      | 942.9       | 940.7         | 937.2          | 942.9  | 942.9      |          |
| Wt. of mold                    | (g)                       | 4205.4      | 4227.5        | 4227.5         | 4205.4 | 4205.4     |          |
| Wt. of mold                    | + soil (g)                | 6037.7      | 6144.1        | 6192.2         | 6160.7 | 6107.6     |          |
| Wt. of wet s                   | oil (g)                   | 1832.3      | 1916.6        | 1964.7         | 1955.3 | 1902.2     |          |
| Wet density                    | (g/cm <sup>3</sup> )      | 1.9         | 2.0           | 2.1            | 2.1    | 2.0        |          |
| Dry density                    | (g/cm <sup>3</sup> )      | 1.8         | 1.9           | 1.9            | 1.8    | 1.8        |          |
| Wet unit we                    | ight (kN/m <sup>3</sup> ) | 19.1        | 20.0          | 20.6           | 20.3   | 19.8       |          |
| Dry unit wei                   | ght (kN/m <sup>3</sup> )  | 18.0        | 18.5          | 18.7           | 18.1   | 17.4       |          |
| Determinati                    | on of zero-air            | -void curve |               |                |        |            |          |
| Water conte                    | ent, w%                   | 8.0         | 10.0          | 12.0           | 14.0   | 16.0       |          |
| Dry density                    | (g/cm <sup>3</sup> )      | 2.2         | 2.1           | 2.0            | 1.9    | 1.9        |          |
| Dry unit wei                   | ght (kN/m <sup>3</sup> )  | 21.3        | 20.5          | 19.6           | 18.9   | 18.2       |          |

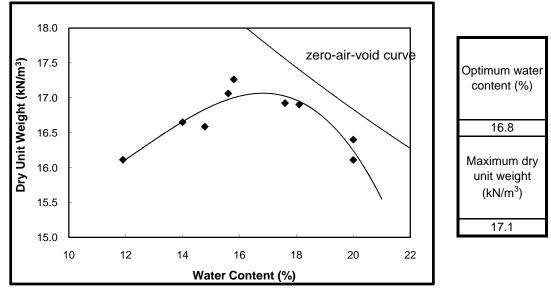



#### Project Name: An experimental investigation of the behavior of compacted clay/sand mixtures Method Used: Preparation Method Used: Rammer: Manual А Moist Material Description: L25K Oversize Fraction: 0% G<sub>s</sub>: 2.64 N/A Tested By: Yueru Chen Test Date: 2/10/2009 Location: Determination of dry unit weight Specimen No. 3 4 5 6 7 8 9 1 2 11.7 Water content, w% 6.0 6.0 7.8 8.2 9.4 10.3 12 13.85 Mold volume (cm<sup>3</sup>) 940.7 937.2 940.7 940.9 937.2 937.15 937.15 937.15 940.74 Wt. of mold (g) 4227.5 4214.0 4227.2 4205.4 4213.9 4205.4 4214.0 4205.4 4227.5 Wt. of mold + soil (g) 5906.3 5892.9 6098.2 6045.4 6271.8 6254.2 6234.6 6215.5 6181.5 Wt. of wet soil (g) 1678.8 1678.9 1840.0 2057.9 1954 1871.0 2049 2021 2010 Wet density (g/cm<sup>3</sup>) 1.8 1.8 2.0 2.0 2.2 2.19 2.16 2.14 2.08 1.7 1.7 1.8 1.8 2.0 1.98 1.93 1.92 1.82 Dry density (g/cm<sup>3</sup>) Wet unit weight (kN/m<sup>3</sup>) 17.5 17.6 19.5 19.2 21.5 21.45 21.15 21.04 20.38 Dry unit weight (kN/m<sup>3</sup>) 16.5 16.6 18.1 17.7 19.7 19.44 18.94 18.79 17.90 Determination of zero-air-void curve Water content, w% 8.0 10.0 12.0 14.0 16.0 Dry density (g/cm<sup>3</sup>) 2.2 2.1 2.0 1.9 1.9 18.2 Dry unit weight (kN/m<sup>3</sup>) 21.3 20.5 19.6 18.9



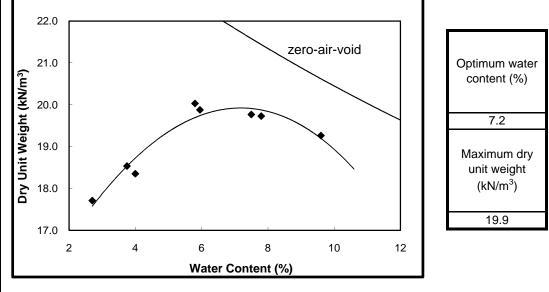

| Project Name: An experimental investigation of the behavior of compacted clay/sand mixtures |                      |         |        |           |          |           |           |        |           |                  |        |
|---------------------------------------------------------------------------------------------|----------------------|---------|--------|-----------|----------|-----------|-----------|--------|-----------|------------------|--------|
| Method Used: A                                                                              | 1                    |         | F      | Preparati | on Metho | od Used:  | Moist     | F      | Rammer:   | Manual           |        |
| Material Descripti                                                                          | on:                  | L50K    |        |           | С        | versize l | Fraction: | 0%     |           | G <sub>s</sub> : | 2.62   |
| Location: N                                                                                 | J/A                  |         |        | Те        | sted By: | Yueru C   | hen       | Te     | est Date: | 2/11/200         | )9     |
| Determinatio                                                                                | n of dry             | unit we | eight  |           |          |           |           |        |           |                  |        |
| Specimen No.                                                                                |                      | 1       | 2      | 3         | 4        | 5         | 6         | 7      | 8         | 9                | 10     |
| Water content,                                                                              | w%                   | 12.55   | 13.80  | 14.80     | 16.30    | 17.40     | 18.20     | 19.50  | 19.60     | 21.03            | 22.00  |
| Mold volume (c                                                                              | m <sup>3</sup> )     | 940.7   | 940.7  | 940.7     | 940.7    | 940.7     | 942.9     | 940.7  | 940.7     | 942.9            | 940.7  |
| Wt. of mold (g)                                                                             |                      | 4227.1  | 4227.5 | 4227.2    | 4227.5   | 4227.1    | 4205.4    | 4227.4 | 4227.5    | 4207.7           | 4227.5 |
| Wt. of mold + soil (g)                                                                      |                      | 5904.5  | 5926.6 | 6073.0    | 6063.9   | 6129.5    | 6123.6    | 6075.5 | 6097.3    | 6038.9           | 6041.5 |
| Wt. of wet soil (g)                                                                         |                      | 1677.4  | 1699.1 | 1845.8    | 1836.4   | 1902.4    | 1918.2    | 1848.1 | 1869.8    | 1831.2           | 1814.0 |
| Wet density (g/                                                                             | cm <sup>3</sup> )    | 1.8     | 1.8    | 2.0       | 2.0      | 2.0       | 2.0       | 2.0    | 2.0       | 1.9              | 1.9    |
| Dry density (g/c                                                                            | ;m <sup>3</sup> )    | 1.6     | 1.6    | 1.7       | 1.7      | 1.7       | 1.7       | 1.6    | 1.7       | 1.6              | 1.6    |
| Wet unit weight                                                                             | (kN/m <sup>3</sup> ) | 17.5    | 17.7   | 19.2      | 19.1     | 19.8      | 20.0      | 19.3   | 19.5      | 19.1             | 18.9   |
| Dry unit weight                                                                             | (kN/m <sup>3</sup> ) | 15.5    | 15.6   | 16.8      | 16.5     | 16.9      | 16.9      | 16.1   | 16.3      | 15.7             | 15.5   |
| Determination                                                                               | of zero-a            | ir-void | curve  |           |          |           |           |        |           |                  |        |
| Water content,                                                                              | w%                   | 16.0    | 18.0   | 20.0      | 22.0     | 24.0      |           |        |           |                  |        |
| Dry density (g/c                                                                            | 2m <sup>3</sup> )    | 1.8     | 1.8    | 1.7       | 1.7      | 1.6       |           |        |           |                  |        |
| Dry unit weight                                                                             | (kN/m <sup>3</sup> ) | 18.1    | 17.4   | 16.8      | 16.3     | 15.8      |           |        |           |                  |        |




|                                              |           |        |           |          |           |        |           | Rammer: Manual   |       |  |  |
|----------------------------------------------|-----------|--------|-----------|----------|-----------|--------|-----------|------------------|-------|--|--|
| laterial Description:                        | S15K      |        |           | Oversize | Fraction: | 0%     |           | G <sub>s</sub> : | 2.64  |  |  |
| ocation: N/A                                 |           | Τe     | ested By: | Yueru Cl | nen       | T      | est Date: | 1/26/2009        |       |  |  |
| Determination of dry                         | unit we   | ight   |           |          |           |        |           |                  |       |  |  |
| Specimen No.                                 | 1         | 2      | 3         | 4        | 5         | 6      | 7         | 8                | 9     |  |  |
| Water content, w%                            | 5.3       | 6.0    | 7.4       | 8.0      | 9.4       | 10.1   | 12.0      | 12.0             | 13.9  |  |  |
| Mold volume (cm <sup>3</sup> )               | 942.9     | 937.2  | 942.9     | 937.2    | 942.9     | 942.9  | 942.9     | 940.7            | 942.9 |  |  |
| Wt. of mold (g)                              | 4205.4    | 4213.8 | 4205.4    | 4213.9   | 4205.4    | 4207.8 | 4205.4    | 4227.3           | 4205. |  |  |
| Wt. of mold + soil (g)                       | 6078.5    | 6153.3 | 6184.4    | 6227.9   | 6227.3    | 6254.7 | 6167.2    | 6197.5           | 6092. |  |  |
| Wt. of wet soil (g)                          | 1873.1    | 1939.5 | 1979.0    | 2014.0   | 2021.9    | 2046.9 | 1961.8    | 1970.2           | 1887. |  |  |
| Wet density (g/cm <sup>3</sup> )             | 2.0       | 2.1    | 2.1       | 2.1      | 2.1       | 2.2    | 2.1       | 2.1              | 2.0   |  |  |
| Dry density (g/cm <sup>3</sup> )             | 1.9       | 2.0    | 2.0       | 2.0      | 2.0       | 2.0    | 1.9       | 1.9              | 1.8   |  |  |
| Wet unit weight (kN/m <sup>3</sup> )         | 20.3      | 20.6   | 21.1      | 21.0     | 21.3      | 20.4   | 20.5      | 19.6             |       |  |  |
| Dry unit weight (kN/m <sup>3</sup> )         | 18.5      | 19.2   | 19.2      | 19.5     | 19.2      | 19.3   | 18.2      | 18.3             | 17.2  |  |  |
| etermination of zero-a                       | ir-void c | urve   |           |          |           |        |           |                  |       |  |  |
| Water content, w%                            | 10.0      | 12.0   | 14.0      | 16.0     |           |        |           |                  |       |  |  |
| Dry density (g/cm <sup>3</sup> )             | 2.2       | 2.1    | 2.0       | 1.9      | 1.9       |        |           |                  |       |  |  |
| Dry unit weight (kN/m <sup>3</sup> )         | 21.3      | 20.5   | 19.6      | 18.9     | 18.2      |        |           |                  |       |  |  |
| 21.0<br>20.5<br>20.0<br>19.5<br>19.0<br>18.5 | •         |        | •         | zero-a   | ir-void c | curve  |           | Optimu<br>conte  | nt (% |  |  |

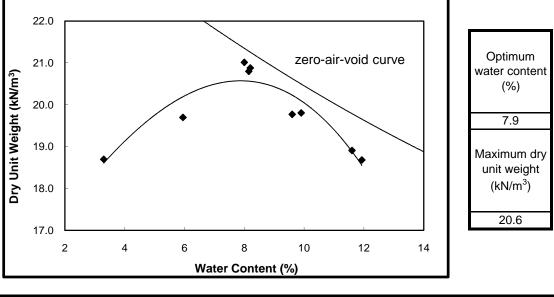


| Met                                  | hod Us               | ed: A                       |         | Pre        | paration | Method   | d Used:    | Moist    | Ram        | mer:   | Mar                    | nual    |
|--------------------------------------|----------------------|-----------------------------|---------|------------|----------|----------|------------|----------|------------|--------|------------------------|---------|
| Mat                                  | erial De             | escription:                 | S25K    |            | Overs    | size Fra | ction:     |          | 0'         | %      | G <sub>s</sub> :       | 2.64    |
| Loc                                  | ation:               | N/A                         |         | Tested By: |          |          | Yueru Chen |          | Test Date: |        | 1/23/2009              |         |
| Det                                  | termin               | ation of dry                | unit we | eight      |          |          |            |          |            |        |                        |         |
| S                                    | Specime              | n No.                       | 1       | 2          | 3        | 4        | 5          | 6        | 7          | 8      | 9                      | 10      |
| W                                    | /ater cor            | ntent, w%                   | 6.0     | 6.4        | 8.0      | 9.5      | 9.5        | 10.2     | 10.7       | 11.6   | 11.9                   | 13.8    |
| М                                    | old volu             | me (cm <sup>3</sup> )       | 937.2   | 942.9      | 942.9    | 940.7    | 942.9      | 937.2    | 943.8      | 942.9  | 940.7                  | 942.9   |
| Wt. of mold (g)                      |                      |                             | 4214.0  | 4205.4     | 4205.4   | 4227.0   | 4205.4     | 4214.1   | 4216.5     | 4205.4 | 4227.3                 | 4205.4  |
| Wt. of mold + soil (g)               |                      | 6012.6                      | 5942.6  | 6053.6     | 6311.1   | 6295.0   | 6278.0     | 6302.7   | 6233.3     | 6232.4 | 6168.8                 |         |
| W                                    | /t. of wet           | t soil (g)                  | 1798.6  | 1737.2     | 1848.2   | 2084.1   | 2089.6     | 2063.9   | 2086.2     | 2027.9 | 2005.1                 | 1963.4  |
| Wet density (g/cm <sup>3</sup> )     |                      |                             | 1.9     | 1.8        | 2.0      | 2.2      | 2.2        | 2.2      | 2.2        | 2.2    | 2.1                    | 2.1     |
| Dry density (g/cm <sup>3</sup> )     |                      | 1.8                         | 1.7     | 1.8        | 2.0      | 2.0      | 2.0        | 2.0      | 1.9        | 1.9    | 1.8                    |         |
| Wet unit weight (kN/m <sup>3</sup> ) |                      | 18.8                        | 18.1    | 19.2       | 21.7     | 21.7     | 21.6       | 21.7     | 21.1       | 20.9   | 20.4                   |         |
| D                                    | ry unit w            | veight (kN/m <sup>3</sup> ) | 17.8    | 17.0       | 17.8     | 19.8     | 19.9       | 19.6     | 19.6       | 18.9   | 18.7                   | 17.9    |
| Det                                  | ermina               | tion of zero-a              | ir-void | curve      |          |          |            |          |            |        |                        |         |
| Ν                                    | /ater co             | ontent, w%                  | 8.0     | 10.0       | 12.0     | 14.0     | 16.0       |          |            |        |                        |         |
| D                                    | ry dens              | sity (g/cm <sup>3</sup> )   | 2.2     | 2.1        | 2.0      | 1.9      | 1.9        |          |            |        |                        |         |
| D                                    | ry unit              | weight (kN/m <sup>3</sup> ) | 21.3    | 20.5       | 19.6     | 18.9     | 18.2       |          |            |        |                        |         |
| Weight (kN/m <sup>3</sup> )          | 21.0<br>20.0<br>19.0 | -                           |         |            | •        | Ze       | ero-air-v  | void cur | rve        |        | Optin<br>water c<br>(% | content |



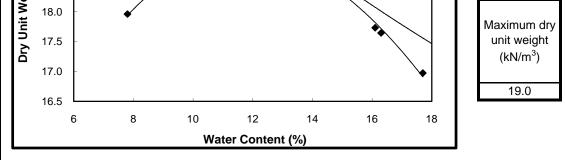

| Project Name: An                     | experime  | ntal inves            | tigation o | f the beha | avior of co | ompacted | clay/san | d mixtures       | S      |
|--------------------------------------|-----------|-----------------------|------------|------------|-------------|----------|----------|------------------|--------|
| Method Used: A                       | Pre       | paration I            | Method U   | sed:       | Moist       | Ram      | mer:     | Ma               | nual   |
| Material Description:                | S50K      | Oversize Fract        |            |            |             | 0        | %        | G <sub>s</sub> : | 2.62   |
| Location: N/A                        |           | Tested By: Yueru Chen |            |            |             | Test     | Date:    | 1/29/2009        |        |
| Determination of dry                 | unit we   | ight                  |            |            |             |          |          |                  |        |
| Specimen No.                         | 1         | 2                     | 3          | 4          | 5           | 6        | 7        | 8                | 9      |
| Water content, w%                    | 11.9      | 14.0                  | 14.8       | 15.6       | 15.8        | 17.6     | 18.1     | 20.0             | 20.0   |
| Mold volume (cm <sup>3</sup> )       | 942.9     | 937.2                 | 942.9      | 942.9      | 940.7       | 940.7    | 942.9    | 942.9            | 937.2  |
| Wt. of mold (g)                      | 4205.4    | 4214.0                | 4205.4     | 4205.4     | 4227.2      | 4227.2   | 4205.4   | 4205.4           | 4214.0 |
| Wt. of mold + soil (g)               | 5938.4    | 6027.3                | 6035.3     | 6101.3     | 6144.3      | 6135.8   | 6124.3   | 6097.1           | 6060.8 |
| Wt. of wet soil (g)                  | 1733.0    | 1813.3                | 1829.9     | 1895.9     | 1917.1      | 1908.6   | 1918.9   | 1891.7           | 1846.8 |
| Wet density (g/cm <sup>3</sup> )     | 1.8       | 1.9                   | 1.9        | 2.0        | 2.0         | 2.0      | 2.0      | 2.0              | 2.0    |
| Dry density (g/cm <sup>3</sup> )     | 1.6       | 1.7                   | 1.7        | 1.7        | 1.8         | 1.7      | 1.7      | 1.7              | 1.6    |
| Wet unit weight (kN/m <sup>3</sup> ) | 18.0      | 19.0                  | 19.0       | 19.7       | 20.0        | 19.9     | 20.0     | 19.7             | 19.3   |
| Dry unit weight (kN/m <sup>3</sup> ) | 16.1      | 16.7                  | 16.6       | 17.1       | 17.3        | 16.9     | 16.9     | 16.4             | 16.1   |
| Determination of zero-a              | ir-void c | urve                  |            |            |             |          |          |                  |        |
| Water content, w%                    | 14.0      | 16.0                  | 18.0       | 20.0       | 22.0        |          |          |                  |        |
| Dry density (g/cm <sup>3</sup> )     | 1.9       | 1.8                   | 1.8        | 1.7        | 1.7         |          |          |                  |        |
| Dry unit weight (kN/m <sup>3</sup> ) | 18.8      | 18.1                  | 17.4       | 16.8       | 16.3        |          |          |                  |        |




# DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING UNIVERSITY OF DELAWARE - GEOTECHNICAL LAB Modified Proctor Test: ASTM D 1557

| Method Used: A                       | Pr          | eparation I | Method Us | ed:       | Moist  | Ram    | imer:            | Manual |
|--------------------------------------|-------------|-------------|-----------|-----------|--------|--------|------------------|--------|
| Material Description:                | M15K        |             | Oversize  | Fraction: |        | 0%     | G <sub>s</sub> : | 2.64   |
| Location: N/A                        | Teste       | ed By:      | Yueru Ch  | en        | Test   | Date:  | 1/30/            | /2009  |
| Determination of dry                 | unit wei    | ght         |           |           |        |        |                  |        |
| Specimen No.                         | 1           | 2           | 3         | 4         | 5      | 6      | 7                | 8      |
| Water content, w%                    | 2.7         | 3.8         | 4.0       | 5.8       | 6.0    | 7.5    | 7.8              | 9.6    |
| Mold volume (cm <sup>3</sup> )       | 942.9       | 942.9       | 937.2     | 940.7     | 940.7  | 937.2  | 940.7            | 940.7  |
| Wt. of mold (g)                      | 4205.4      | 4205.2      | 4213.6    | 4227.1    | 4227.8 | 4213.7 | 4227.5           | 4227.5 |
| Wt. of mold + soil (g)               | 5953.6      | 6053.5      | 6036.8    | 6259.4    | 6247.4 | 6243.5 | 6266.9           | 6252.2 |
| Wt. of wet soil (g)                  | 1748.2      | 1848.3      | 1823.2    | 2032.3    | 2019.6 | 2029.8 | 2039.4           | 2024.7 |
| Wet density (g/cm <sup>3</sup> )     | 1.9         | 2.0         | 1.9       | 2.2       | 2.1    | 2.2    | 2.2              | 2.2    |
| Dry density (g/cm <sup>3</sup> )     | 1.8         | 1.9         | 1.9       | 2.0       | 2.0    | 2.0    | 2.0              | 2.0    |
| Wet unit weight (kN/m <sup>3</sup> ) | 18.2        | 19.2        | 19.1      | 21.2      | 21.1   | 21.2   | 21.3             | 21.1   |
| Dry unit weight (kN/m <sup>3</sup> ) | 17.7        | 18.53       | 18.4      | 20.0      | 19.9   | 19.8   | 19.73            | 19.3   |
| Determination of zero-a              | air-void cu | urve        |           |           |        |        |                  |        |
| Water content, w%                    | 4.0         | 6.0         | 8.0       | 10.0      | 12.0   |        |                  |        |
| Dry density (g/cm <sup>3</sup> )     | 2.4         | 2.3         | 2.2       | 2.1       | 2.0    |        |                  |        |
| Dry unit weight (kN/m <sup>3</sup> ) | 23.4        | 22.3        | 21.3      | 20.5      | 19.6   |        |                  |        |

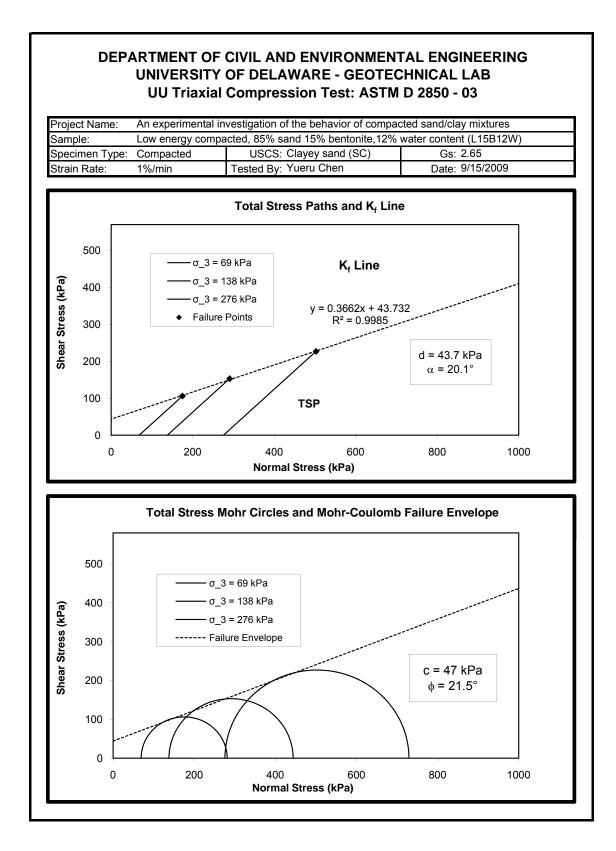



# DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING UNIVERSITY OF DELAWARE - GEOTECHNICAL LAB Modified Proctor Test: ASTM D 1557

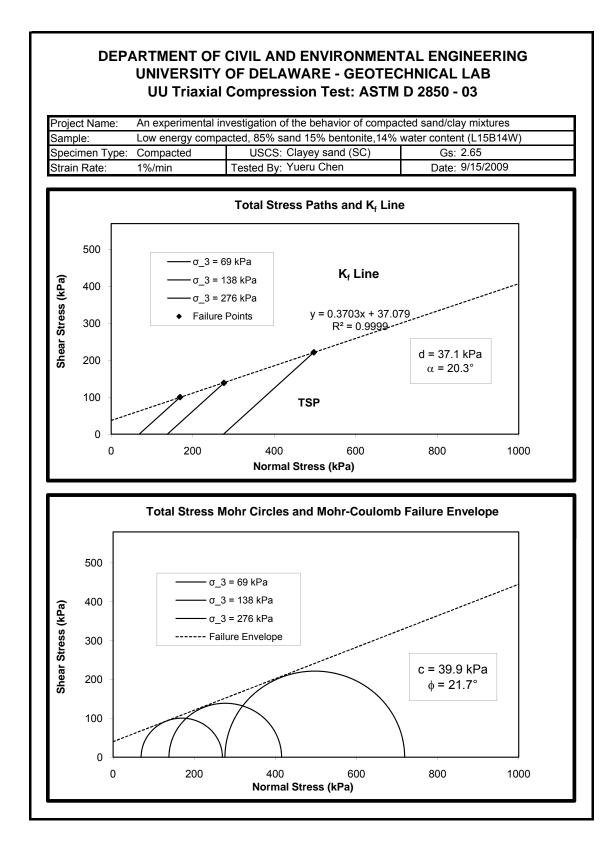
|      | od Used: A                          |         | Preparat | ion Meth | od Used   |        | Moist  | Ram    | mer:   | Mar              | nual |
|------|-------------------------------------|---------|----------|----------|-----------|--------|--------|--------|--------|------------------|------|
|      | erial Description:                  | M25K    |          | Over     | rsize Fra | ction: |        | 0'     | %      | G <sub>s</sub> : | 2.64 |
| .oca | tion: N/A                           |         | Teste    | ed By:   | Yueru C   | hen    |        | Test   | Date:  | 1/29/            | 2009 |
| Det  | ermination of dry                   | unit we | eight    |          |           |        |        |        |        |                  |      |
| S    | pecimen No.                         | 1       | 2        | 3        | 4         | 5      | 6      | 7      | 8      | 9                |      |
| Wa   | ater content, w%                    | 3.3     | 6.0      | 8.0      | 8.2       | 8.2    | 9.6    | 9.9    | 11.6   | 11.9             |      |
| Mo   | old volume (cm <sup>3</sup> )       | 942.9   | 937.2    | 937.2    | 940.7     | 940.7  | 940.7  | 937.2  | 942.9  | 937.2            |      |
| Wt   | t. of mold (g)                      | 4205.4  | 4213.7   | 4213.7   | 4225.5    | 4227.2 | 4228.3 | 4213.8 | 4205.3 | 4213.6           |      |
| Wt   | t. of mold + soil (g)               | 6061.8  | 6207.3   | 6381.8   | 6382.7    | 6393.8 | 6306.2 | 6293.2 | 6233.6 | 6211.1           |      |
| Wt   | t. of wet soil (g)                  | 1856.4  | 1993.6   | 2168.1   | 2157.2    | 2166.6 | 2077.9 | 2079.4 | 2028.3 | 1997.5           |      |
| We   | et density (g/cm <sup>3</sup> )     | 2.0     | 2.1      | 2.3      | 2.3       | 2.3    | 2.2    | 2.2    | 2.2    | 2.1              |      |
| Dr   | y density (g/cm <sup>3</sup> )      | 1.9     | 2.0      | 2.1      | 2.1       | 2.1    | 2.0    | 2.0    | 1.9    | 1.9              |      |
| We   | et unit weight (kN/m <sup>3</sup> ) | 19.3    | 20.9     | 22.7     | 22.5      | 22.6   | 21.7   | 21.8   | 21.1   | 20.9             |      |
| Dr   | y unit weight (kN/m <sup>3</sup> )  | 18.7    | 19.7     | 21.0     | 20.8      | 20.9   | 19.8   | 19.8   | 18.9   | 18.7             |      |
| Dete | ermination of zero-a                | ir-void | curve    |          |           |        |        |        |        |                  |      |
| Wa   | ater content, w%                    | 6.0     | 8.0      | 10.0     | 12.0      | 14.0   |        |        |        |                  |      |
| Dr   | y density (g/cm <sup>3</sup> )      | 2.3     | 2.2      | 2.1      | 2.0       | 1.9    |        |        |        |                  |      |
| Dr   | y unit weight (kN/m <sup>3</sup> )  | 22.3    | 21.3     | 20.5     | 19.6      | 18.9   |        |        |        |                  |      |



# DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING UNIVERSITY OF DELAWARE - GEOTECHNICAL LAB Modified Proctor Test: ASTM D 1557

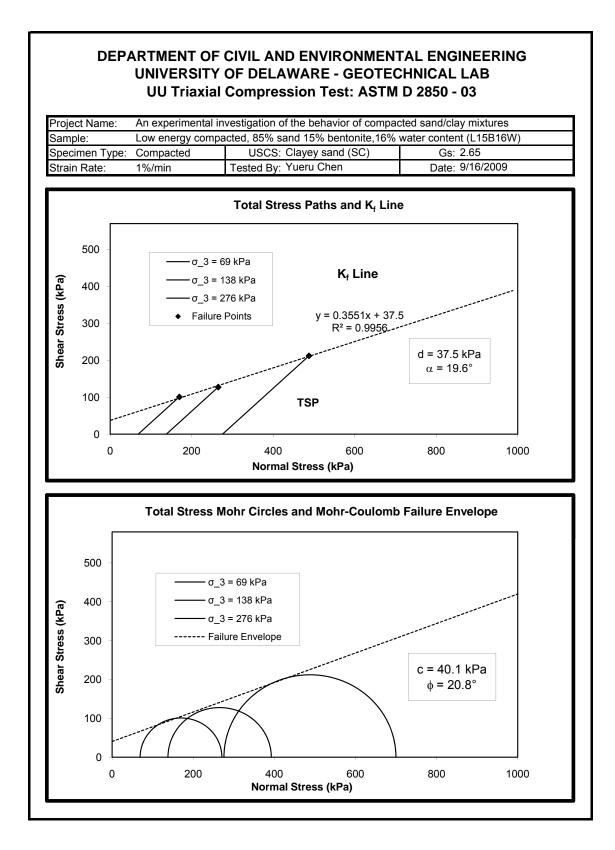

| Alethod Used: A                                              |                        |           | Preparat | ion Meth | od Used  |          | Moist    | Ram        | mer:   | Mar                    | nual        |
|--------------------------------------------------------------|------------------------|-----------|----------|----------|----------|----------|----------|------------|--------|------------------------|-------------|
| Aaterial Descriptio                                          | n:                     | M50K      |          | (        | Oversize | Fraction | :        |            | 0%     | G <sub>s</sub> :       | 2.62        |
| ocation: N/                                                  | /A                     |           | Т        | ested By | /:       | Yueru    | Chen     | Test       | Date:  | 2/2/2                  | 2009        |
| Determination                                                | of dry                 | unit we   | eight    |          |          |          |          |            |        |                        |             |
| Specimen No.                                                 |                        | 1         | 2        | 3        | 4        | 5        | 6        | 7          | 8      | 9                      |             |
| Water content, w                                             | v%                     | 7.8       | 9.4      | 10.0     | 12.2     | 14.0     | 14.4     | 16.1       | 16.3   | 17.7                   |             |
| Mold volume (cn                                              | n <sup>3</sup> )       | 942.9     | 940.7    | 940.7    | 940.7    | 937.2    | 942.9    | 942.9      | 937.2  | 940.7                  |             |
| Wt. of mold (g)                                              |                        | 4205.3    | 4227.3   | 4227.5   | 4227.0   | 4213.7   | 4205.4   | 4205.8     | 4213.9 | 4227.5                 |             |
| Wt. of mold + so                                             | il (g)                 | 6066.2    | 6182.4   | 6193.9   | 6269.4   | 6246.5   | 6248.5   | 6184.4     | 6174.2 | 6143.4                 |             |
| Wt. of wet soil (g                                           | 1)                     | 1860.9    | 1955.1   | 1966.4   | 2042.4   | 2032.8   | 2043.1   | 1978.6     | 1960.3 | 1915.9                 |             |
| Wet density (g/c                                             | m³)                    | 2.0       | 2.1      | 2.1      | 2.2      | 2.2      | 2.2      | 2.1        | 2.1    | 2.0                    |             |
| Dry density (g/cr                                            | m <sup>3</sup> )       | 1.8       | 1.9      | 1.9      | 1.9      | 1.9      | 1.9      | 1.8        | 1.8    | 1.7                    |             |
| Wet unit weight                                              | (kN/m <sup>3</sup> )   | 19.4      | 20.4     | 20.5     | 21.3     | 21.3     | 21.3     | 20.6       | 20.5   | 20.0                   |             |
| Dry unit weight (                                            | kN/m³)                 | 18.0      | 18.6     | 18.6     | 19.0     | 18.7     | 18.6     | 17.7       | 17.6   | 17.0                   |             |
| Determination of                                             | of zero-a              | ir-void ( | curve    |          |          |          |          |            |        |                        |             |
| Water content,                                               | w%                     | 10.0      | 12.0     | 14.0     | 16.0     | 18.0     | 20.0     | 22.0       |        |                        |             |
| Dry density (g/                                              | 'cm <sup>3</sup> )     | 2.1       | 2.0      | 1.9      | 1.8      | 1.8      | 1.7      | 1.7        |        |                        |             |
| Dry unit weight                                              | t (kN/m <sup>3</sup> ) | 20.4      | 19.6     | 18.8     | 18.1     | 17.5     | 16.9     | 16.3       |        |                        |             |
| 20.0<br>19.5<br>19.0<br>19.0<br>18.5<br>18.0<br>18.0<br>17.5 |                        |           | •        | •        | zer      | o-air-vo | bid curv | re         |        | Optir<br>water c<br>(% | conte<br>6) |
| 10.0<br>17.5                                                 | •                      |           |          |          |          |          |          | $\searrow$ |        | Maxim<br>unit w        |             |



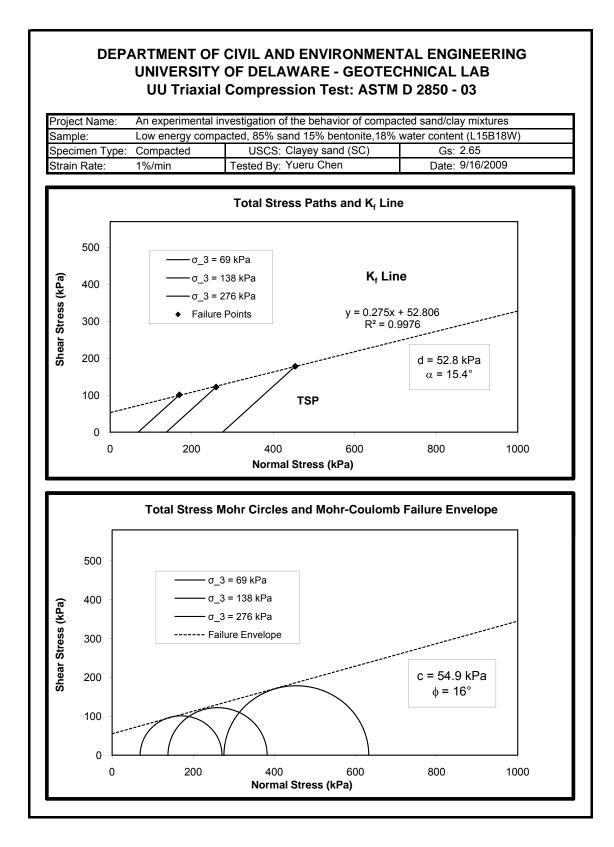

## **APPENDIX F**

## UU TRIAXIAL DATA

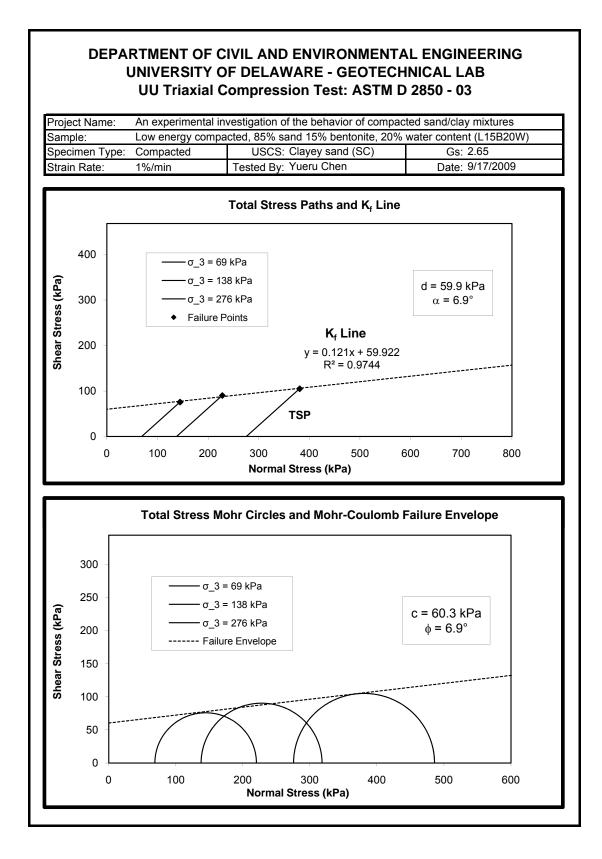
|                                       | An experimental ir |                                   |                           |        |       |           |       |
|---------------------------------------|--------------------|-----------------------------------|---------------------------|--------|-------|-----------|-------|
|                                       | Low energy comp    |                                   |                           |        |       |           | /)    |
| Specimen Type:                        |                    |                                   | Clayey sand               |        |       | 2.65      |       |
| Strain Rate:                          | 1%/min             | Tested By:                        | Yueru Chen                |        | Date: | 9/15/2009 |       |
|                                       |                    |                                   | Trimming                  |        |       | Specimen  |       |
| Sampl                                 | le No.             | 1                                 | 2                         | 3      | 1     | 2         | 3     |
| Tin No.                               |                    | 4                                 | FJ-5                      | 46     | 201   | 209       | 31    |
| Wt. of Tin (g)                        |                    | 28.7                              | 28.0                      | 28.9   | 28.9  | 28.2      | 28.4  |
| Wt. of Tin + Wet                      | soil (g)           | 119.6                             | 93.2                      | 147.6  | 161.1 | 156.9     | 155.8 |
| Wt. of Tin + Dry                      | soil (g)           | 109.7                             | 86.1                      | 134.9  | 146.5 | 143.0     | 141.7 |
| Wt. of Dry Soil (                     | g)                 | 81.0                              | 58.1                      | 106.0  | 117.6 | 114.8     | 113.3 |
| Wt. of Water (g)                      |                    | 9.9                               | 7.1                       | 12.7   | 14.6  | 13.9      | 14.1  |
| Water Content (                       | ,                  | 12.2                              | 12.2                      | 12.0   | 12.4  | 12.1      | 12.4  |
| Average Water (                       | Content (%)        |                                   | 12.1                      |        |       | 12.3      |       |
| Samp                                  | le No.             | 1                                 | 2                         | 3      | - 8   |           |       |
| Cell Pressure (k                      |                    | 68.95                             | 137.90                    | 275.79 |       |           |       |
| Average Height,                       | ,                  | 7.12                              | 7.09                      | 7.09   |       |           | 2     |
| Average Diamet                        | ( )                | 3.56                              | 3.52                      | 3.53   |       |           | 15    |
| Dry Unit Weight                       | -                  | 16.32                             | 16.30                     | 15.99  | 1.00  |           | 112   |
| Initial Void ratio                    |                    | 0.59                              | 0.60                      | 0.63   | 1.1   | S. C. L.  | 12    |
| Saturation (%)                        |                    | 0.55                              | 0.54                      | 0.53   | 84    |           | 3     |
| Strain at Failure                     | (%)                | 14.06                             | 14.81                     | 14.83  |       |           |       |
| Max Deviator St                       | ress (kPa)         | 215.3                             | 309.1                     | 457.0  |       |           | 12-   |
| Membrane Corre                        | ection (kPa)       | 3.1                               | 3.3                       | 3.3    | 6     | 23 200    |       |
| Corrected Devia                       | tor Stress (kPa)   | 212.2                             | 305.8                     | 453.7  | E.    | 100 100   |       |
| Corrected Major                       | Stress (kPa)       | 281.1                             | 443.7                     | 729.5  |       |           |       |
| 500<br>400<br>300                     | UU Triaxial - Str  | = 276 kPa                         | <b>:urve</b><br>= 138 kPa |        |       |           | 123   |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3 6<br>Axial S     | σ <sub>3</sub><br>9<br>Strain (%) | = 69 kPa<br>12            | 15     |       |           | 154   |



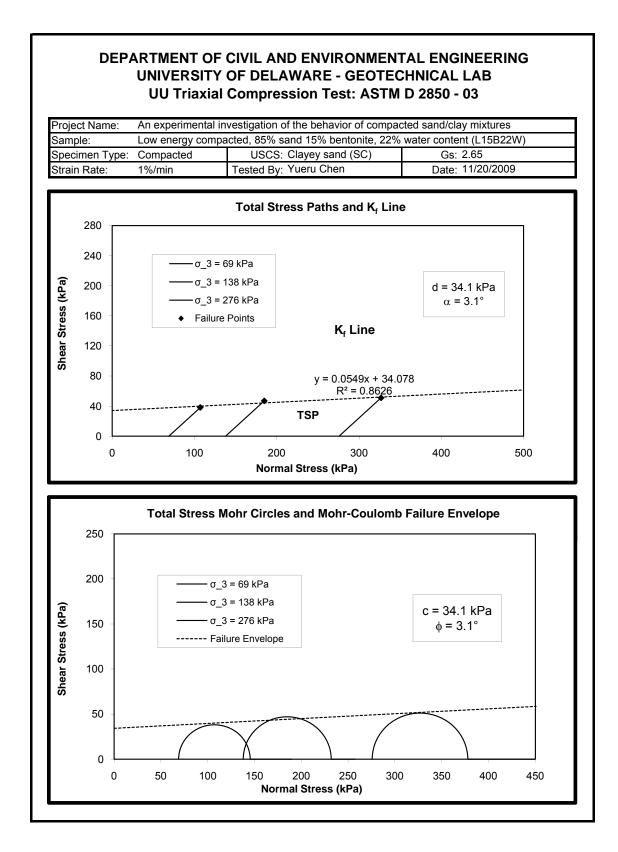

| Project Name: An experimental i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nvestigation of                     | of the behavio | or of compac | ted sand/cla | y mixtures            |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|--------------|--------------|-----------------------|------------------|
| Sample: Low energy comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                |              | water conte  | nt (L15B14W           | /)               |
| Specimen Type: Compacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | USCS:                               | Clayey sand    | I (SC)       | Gs:          | 2.65                  |                  |
| Strain Rate: 1%/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tested By:                          | Yueru Chen     |              | Date:        | 9/15/2009             |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | Trimming       |              |              | Specimen              |                  |
| Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                   | 2              | 3            | 1            | 2                     | 3                |
| Tin No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B8                                  | 213            | 1            | ь<br>В-19    | 101                   | 7                |
| Wt. of Tin (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.5                                | 27.9           | 28.1         | 27.4         | 28.0                  | 28.2             |
| Wt. of Tin + Wet soil (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 143.2                               | 102.9          | 108.2        | 158.6        | 159.2                 | 160.9            |
| Wt. of Tin + Dry soil (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 129.2                               | 93.7           | 98.4         | 142.6        | 143.1                 | 144.7            |
| Wt. of Dry Soil (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.70                              | 65.80          | 70.30        | 115.2        | 115.1                 | 116.5            |
| Wt. of Water (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.00                               | 9.20           | 9.80         | 16.0         | 16.1                  | 16.2             |
| Water Content (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.90                               | 13.98          | 13.94        | 13.9         | 14.0                  | 13.9             |
| Average Water Content (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | 13.9           |              |              | 13.9                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | 1              |              | 1 m          | Service in the        |                  |
| Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                   | 2              | 3            | 12           |                       | 1.               |
| Cell Pressure (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68.95                               | 137.90         | 275.79       |              |                       | 4                |
| Average Height, L (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.11                                | 7.10           | 7.15         | 100          |                       | 15               |
| Average Diameter, D (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.52                                | 3.52           | 3.54         | 100          | 1 3 3                 | 2                |
| Dry Unit Weight (kN/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.32                               | 16.37          | 16.24        |              | 22.1                  | 14               |
| Initial Void ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.59                                | 0.59           | 0.60         |              | A CONTRACT            | S                |
| Saturation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.62                                | 0.63           | 0.61         | 13           |                       | -                |
| Strain at Failure (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.33                               | 14.58          | 14.81        | 140          |                       | and the second   |
| Max Deviator Stress (kPa)<br>Membrane Correction (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 203.6<br>3.2                        | 280.9<br>3.2   | 446.1<br>3.3 | - Constant   | A start               | -                |
| Corrected Deviator Stress (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200.4                               | 277.6          | 442.9        | line         | and the second second | 2                |
| Corrected Major Stress (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.4                               | 415.5          | 718.7        | 100          | Sec. Se               | 11               |
| 300 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - | 276 kPa                             | = 138 kPa      |              |              |                       | 140              |
| 100<br>0<br>0<br>3<br>6<br>Axial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | σ <sub>3</sub> =<br>9<br>Strain (%) | = 69 kPa<br>12 | 15           |              |                       | /5/<br>/4/<br>S1 |



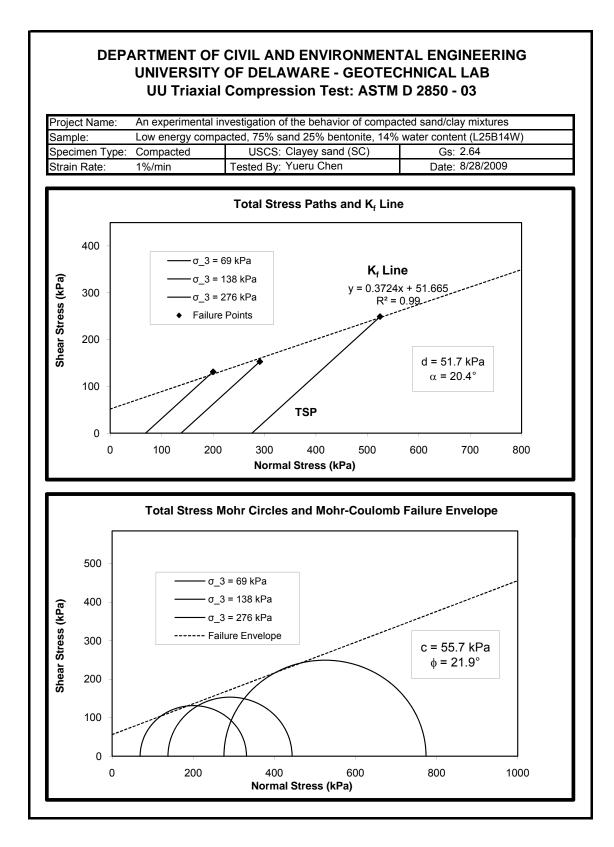

| Project Name:<br>Sample:     | An experimental in<br>Low energy comp | -          |                   |        |       |                   |       |
|------------------------------|---------------------------------------|------------|-------------------|--------|-------|-------------------|-------|
| Sample.<br>Specimen Type:    |                                       |            | Clayey sand       |        |       | 2.65              | v)    |
| Strain Rate:                 | 1%/min                                |            | Yueru Cher        |        |       | 9/16/2009         |       |
|                              | 170/1111                              | rootou by: | 1 4014 0110       |        | Date. | 0,10,2000         |       |
| Som                          | nple No.                              |            | Trimming          |        |       | Specimen          |       |
| San                          | ipie No.                              | 1          | 2                 | 3      | 1     | 2                 | 3     |
| Tin No.                      |                                       | 4          | FJ-5              | 46     | 201   | 209               | 31    |
| Wt. of Tin (g)               |                                       | 28.7       | 28.0              | 28.9   | 28.9  | 28.2              | 28.4  |
| Wt. of Tin + W               |                                       | 151.6      | 146.6             | 127.9  | 164.1 | 161.5             | 164.4 |
| Wt. of Tin + D               |                                       | 134.9      | 130.2             | 114.4  | 145.7 | 143.2             | 145.8 |
| Wt. of Dry Soi               |                                       | 106.2      | 102.2             | 85.5   | 116.8 | 115.0             | 117.4 |
| Wt. of Water (               |                                       | 16.7       | 16.4              | 13.5   | 18.4  | 18.3              | 18.6  |
| Water Conten                 |                                       | 15.7       | 16.0              | 15.8   | 15.8  | 15.9              | 15.8  |
| Average Wate                 | r Content (%)                         |            | 15.9              |        |       | 15.8              |       |
| San                          | nple No.                              | 1          | 2                 | 3      | 1     | NEWS THE          |       |
| Cell Pressure                |                                       | 68.95      | 137.90            | 275.79 |       |                   | 6     |
| Average Heigl                |                                       | 7.07       | 7.10              | 7.10   |       |                   | 15    |
| Average Diam                 | , ,                                   | 3.55       | 3.53              | 3.52   |       |                   | 16    |
| Dry Unit Weig                | â                                     | 16.38      | 16.24             | 16.71  |       |                   |       |
| Initial Void rati            |                                       | 0.59       | 0.60              | 0.56   | 100   |                   | 5     |
| Saturation (%)               |                                       | 0.71       | 0.70              | 0.76   |       |                   |       |
| Strain at Failu              | re (%)                                | 14.83      | 14.84             | 14.81  |       | <b>经闭制</b> 开      |       |
| Max Deviator                 |                                       | 204.9      | 258.0             | 427.4  | 1     |                   | 100   |
| Membrane Co                  |                                       | 3.3        | 3.3               | 3.3    | -     | the second second |       |
|                              | viator Stress (kPa)                   | 201.7      | 254.7             | 424.1  | 100   |                   |       |
| Corrected Maj                | or Stress (kPa)                       | 270.6      | 392.6             | 699.9  |       |                   | 15    |
| 500<br>400 -<br>300 -        | UU Triaxial - Str $\sigma_3 =$        | 276 kPa    | urve<br>= 138 kPa |        |       |                   | 5     |
| 200 Deviator 2<br>100 0<br>0 | 3 6                                   |            | = 69 kPa<br>12    | 15     |       |                   | 1569  |


## **Notes:** Membrane correction according to ASTM D 2850-03a: $\Delta(\sigma_1 - \sigma_3) = 4E_m t_m \varepsilon_1 / D \qquad E_m = 1.39 MPa \ ; t_m = 0.14 mm$

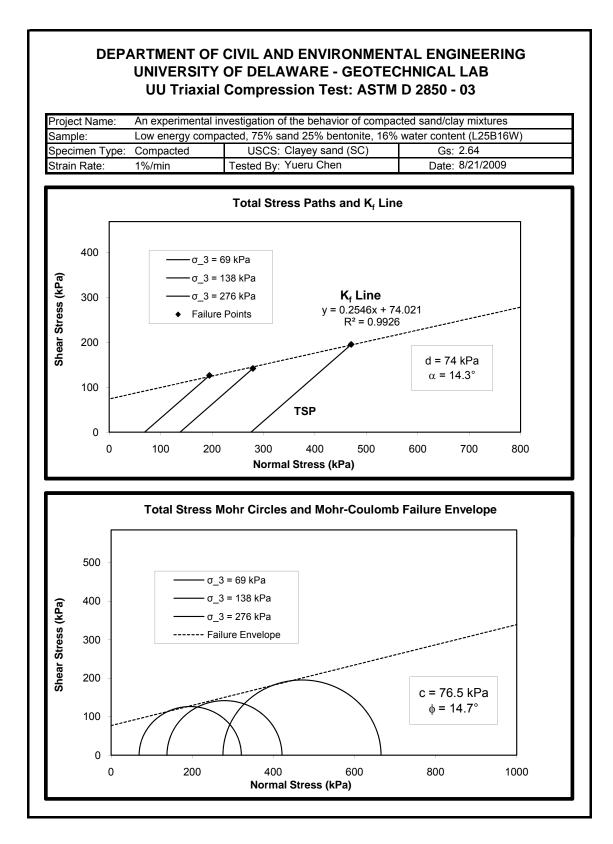



| Project Name: An experimental             |                          |                    |        |              |             |       |
|-------------------------------------------|--------------------------|--------------------|--------|--------------|-------------|-------|
| Sample: Low energy com                    | 7                        |                    |        | water conter | nt (L15B18W | /)    |
| Specimen Type: Compacted                  |                          | Clayey sand        |        |              | 2.65        |       |
| Strain Rate: 1%/min                       | Tested By:               | Yueru Chen         |        | Date:        | 9/16/2009   |       |
|                                           |                          | Trimming           |        |              | Specimen    |       |
| Sample No.                                | 1                        | 2                  | 3      | 1            | 2           | 3     |
| Tin No.                                   | B8                       | 213                | 1      | B-19         | 101         | 7     |
| Wt. of Tin (g)                            | 28.5                     | 27.9               | 28.1   | 27.4         | 28.0        | 28.2  |
| Wt. of Tin + Wet soil (g)                 | 158.9                    | 108.0              | 102.4  | 167.9        | 166.4       | 165.8 |
| Wt. of Tin + Dry soil (g)                 | 139.0                    | 95.9               | 91.2   | 146.4        | 145.3       | 144.8 |
| Wt. of Dry Soil (g)                       | 110.5                    | 68.0               | 63.1   | 119.0        | 117.3       | 116.6 |
| Wt. of Water (g)                          | 19.9                     | 12.1               | 11.2   | 21.5         | 21.1        | 21.0  |
| Water Content (%)                         | 18.0                     | 17.8               | 17.7   | 18.1         | 18.0        | 18.0  |
| Average Water Content (%)                 |                          | 17.9               |        |              | 18.0        | ~     |
| Sample No.                                | 1                        | 2                  | 3      |              | CONCEPT OF  |       |
| Cell Pressure (kPa)                       | 68.95                    | 137.90             | 275.79 |              |             | 1     |
| Average Height, L (cm)                    | 7.10                     | 7.09               | 7.09   |              |             | E     |
| Average Diameter, D (cm)                  | 3.54                     | 3.51               | 3.52   |              |             | 2     |
| Dry Unit Weight (kN/m <sup>3</sup> )      | 16.75                    | 16.80              | 16.59  |              | 9.801       | 18    |
| Initial Void ratio                        | 0.55                     | 0.55               | 0.57   |              |             | 10    |
| Saturation (%)                            | 0.87                     | 0.87               | 0.84   |              |             | >     |
| Strain at Failure (%)                     | 14.80                    | 14.81              | 14.83  | 100          |             |       |
| Max Deviator Stress (kPa)                 | 205.4                    | 247.5              | 360.2  | 2.4          |             | 1     |
| Membrane Correction (kPa)                 | 3.3                      | 3.3                | 3.3    |              | the state   |       |
| Corrected Deviator Stress (kPa)           | 202.1                    | 244.3              | 356.9  |              |             | 1     |
| Corrected Major Stress (kPa)              | 271.1                    | 382.2              | 632.7  |              |             |       |
| UU Triaxial - St<br>400<br>300 -<br>200 - | ₅ <sub>3</sub> = 276 kPa | Eurve<br>= 138 kPa |        |              |             | ちょう   |
|                                           | -                        | = 69 kPa           |        |              |             | うろう   |
| 0 3 6<br>Axial                            | 9<br>Strain (%)          | 12                 | 15     | 1            | ** · · · ·  | 1     |

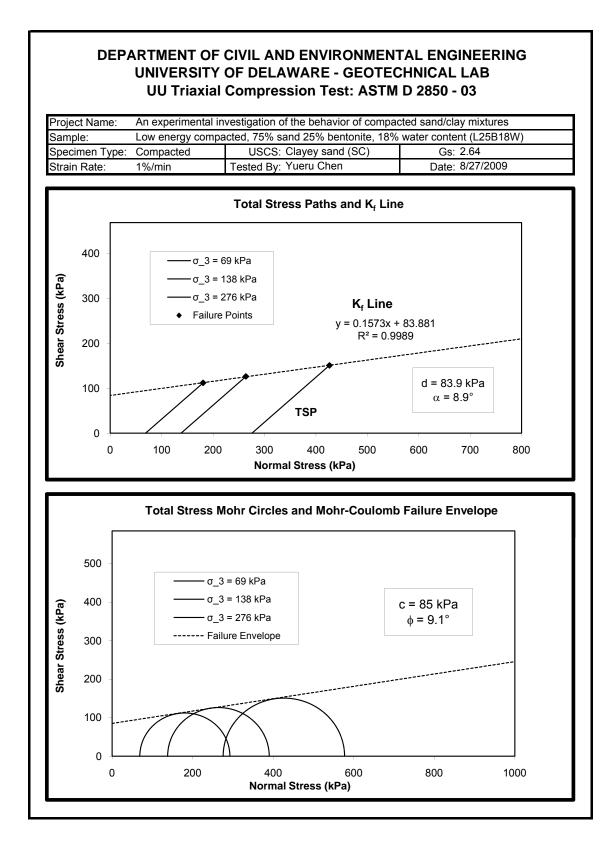



| 1                                               | al investigation of                             |                               |        |       | ,         |       |
|-------------------------------------------------|-------------------------------------------------|-------------------------------|--------|-------|-----------|-------|
|                                                 | mpacted, 85% s                                  |                               |        |       |           | /)    |
| Specimen Type: Compacted                        |                                                 | Clayey sand                   |        |       | 2.65      |       |
| Strain Rate: 1%/min                             | Tested By:                                      | Yueru Chen                    |        | Date: | 9/17/2009 |       |
|                                                 |                                                 | Trimming                      |        |       | Specimen  |       |
| Sample No.                                      | 1                                               | 2                             | 3      | 1     | 2         | 3     |
| Tin No.                                         | 4                                               | FJ-5                          | 46     | 201   | 209       | 31    |
| Wt. of Tin (g)                                  | 28.7                                            | 28.0                          | 28.9   | 28.9  | 28.2      | 28.4  |
| Wt. of Tin + Wet soil (g)                       | 103.5                                           | 124.0                         | 156.2  | 169.5 | 168.6     | 168.0 |
| Wt. of Tin + Dry soil (g)                       | 91.2                                            | 108.2                         | 135.2  | 146.2 | 145.2     | 144.8 |
| Wt. of Dry Soil (g)                             | 62.5                                            | 80.2                          | 106.3  | 117.3 | 117.0     | 116.4 |
| Wt. of Water (g)                                | 12.3                                            | 15.8                          | 21.0   | 23.3  | 23.4      | 23.2  |
| Water Content (%)                               | 19.7                                            | 19.7                          | 19.8   | 19.9  | 20.0      | 19.9  |
| Average Water Content (%)                       |                                                 | 19.7                          |        | -     | 19.9      | -     |
| Sample No.                                      | 1                                               | 2                             | 3      |       |           |       |
| Cell Pressure (kPa)                             | 68.95                                           | 137.90                        | 275.79 | 1000  |           | 1     |
| Average Height, L (cm)                          | 7.12                                            | 7.14                          | 7.13   |       |           | 151   |
| Average Diameter, D (cm)                        | 3.55                                            | 3.54                          | 3.50   |       |           |       |
| Dry Unit Weight (kN/m <sup>3</sup> )            | 16.32                                           | 16.33                         | 16.64  |       |           | 201   |
| Initial Void ratio                              | 0.59                                            | 0.59                          | 0.56   |       |           | 0     |
| Saturation (%)                                  | 0.89                                            | 0.90                          | 0.94   | 5.0   |           | ,     |
| Strain at Failure (%)                           | 14.84                                           | 14.80                         | 14.83  | 100   |           |       |
| Max Deviator Stress (kPa)                       | 154.7                                           | 183.7                         | 213.4  |       |           | 1000  |
| Membrane Correction (kPa)                       | 3.3                                             | 3.3                           | 3.3    | 100   | The man   |       |
| Corrected Deviator Stress (kPa                  | a) 151.4                                        | 180.4                         | 210.2  |       |           |       |
| Corrected Major Stress (kPa)                    | 220.3                                           | 318.3                         | 485.9  |       |           | A.F   |
| UU Triaxial -<br>250<br>200 -<br>150 -<br>100 - | Stress-Strain C<br>$\sigma_3 = 276 \text{ kPa}$ | Surve $\sigma_3 = 12$         | A A    |       |           | 20    |
|                                                 | 6 9                                             | σ <sub>3</sub> = 69 kPa<br>12 |        |       |           | 150   |
| Ах                                              | ial Strain (%)                                  |                               |        |       |           | -     |

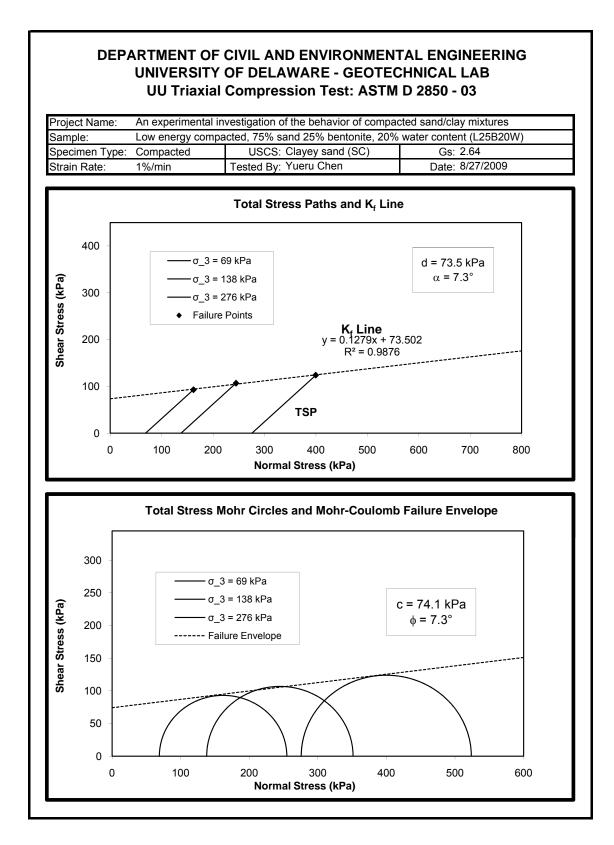



| Project Name: An experimental ir                              | nvestigation of           | of the behavio                       | or of compac   | ted sand/cla   | y mixtures     |                |
|---------------------------------------------------------------|---------------------------|--------------------------------------|----------------|----------------|----------------|----------------|
| Sample: Low energy compa                                      | acted, 85% s              | and 15% ber                          | ntonite, 22%   | water conte    | nt (L15B22W    | /)             |
| Specimen Type: Compacted                                      | USCS:                     | Clayey sand                          | I (SC)         | Gs:            | 2.65           |                |
| Strain Rate: 1%/min                                           | Tested By:                | Yueru Chen                           |                | Date:          | 11/20/2009     |                |
|                                                               | 1                         | <b>-</b> ···                         |                |                |                |                |
| Sample No.                                                    | 4                         | Trimming<br>2                        | 2              | 4              | Specimen<br>2  | 0              |
| Tin No.                                                       | 1                         | ∠<br>FJ-3                            | 3<br>211       | 1<br>B-19      | 2<br>101       | 3              |
| Wt. of Tin (g)                                                | 209                       | 29.1                                 | 211            | в-19<br>27.4   | -              | 28.2           |
| Wt. of Tin + Wet soil (g)                                     | 28.2                      |                                      | -              |                | 28.0           | -              |
| Wt. of Tin + Dry soil (g)                                     | 129.4<br>112.0            | 127.7<br>110.3                       | 121.3<br>105.1 | 162.0<br>137.5 | 164.7<br>140.2 | 163.2<br>138.7 |
| Wt. of Dry Soil (g)                                           | 83.8                      | 81.2                                 | 76.9           | 137.5          | 140.2          | 136.7          |
| Wt. of Water (g)                                              | 17.4                      | 17.4                                 | 76.9<br>16.2   | 24.5           | 24.5           | 24.5           |
| Water Content (%)                                             | 20.8                      | 21.4                                 | 21.1           | 22.3           | 21.8           | 24.3           |
| Average Water Content (%)                                     | 20.0                      | 21.4                                 | 21.1           | 22.0           | 21.0           | ~~~~           |
| Average water content (70)                                    |                           | 21.1                                 |                | - 4            | 22.1           |                |
| Sample No.                                                    | 1                         | 2                                    | 3              | 6              |                |                |
| Cell Pressure (kPa)                                           | 68.95                     | 137.90                               | 275.79         |                |                | 12             |
| Average Height, L (cm)                                        | 7.10                      | 7.10                                 | 7.09           |                | 1. 1. 1.       | 150            |
| Average Diameter, D (cm)                                      | 3.50                      | 3.52                                 | 3.53           |                | AL STA         | 0.77           |
| Dry Unit Weight (kN/m <sup>3</sup> )                          | 15.81                     | 15.93                                | 15.62          | 5.0            |                | 12             |
| Initial Void ratio                                            | 0.64                      | 0.63                                 | 0.66           |                |                | SI             |
| Saturation (%)                                                | 0.92                      | 0.92                                 | 0.88           |                |                | -              |
| Strain at Failure (%)                                         | 14.59                     | 14.83                                | 15.00          |                | 1 and          |                |
| Max Deviator Stress (kPa)                                     | 79.6                      | 97.3                                 | 105.4          |                |                | a second and   |
| Membrane Correction (kPa)                                     | 3.2                       | 3.3                                  | 3.3            | (Arra          |                | 11             |
| Corrected Deviator Stress (kPa)                               | 76.3                      | 94.0                                 | 102.1          | and the second |                | 20             |
| Corrected Major Stress (kPa)                                  | 145.3                     | 231.9                                | 377.9          | 100            |                | 150            |
| UU Triaxial - Stro                                            | ess-Strain C<br>= 276 kPa | Surve<br>$\sigma_3 = 138 \text{ kP}$ |                |                |                | ST             |
| Deriator Stress (KB)<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | σ <sub>3</sub> =          | = 69 kPa                             |                |                |                | 151            |
| 0 3 6<br>Axial S                                              | 9<br>Strain (%)           | 12                                   | 15             |                |                |                |

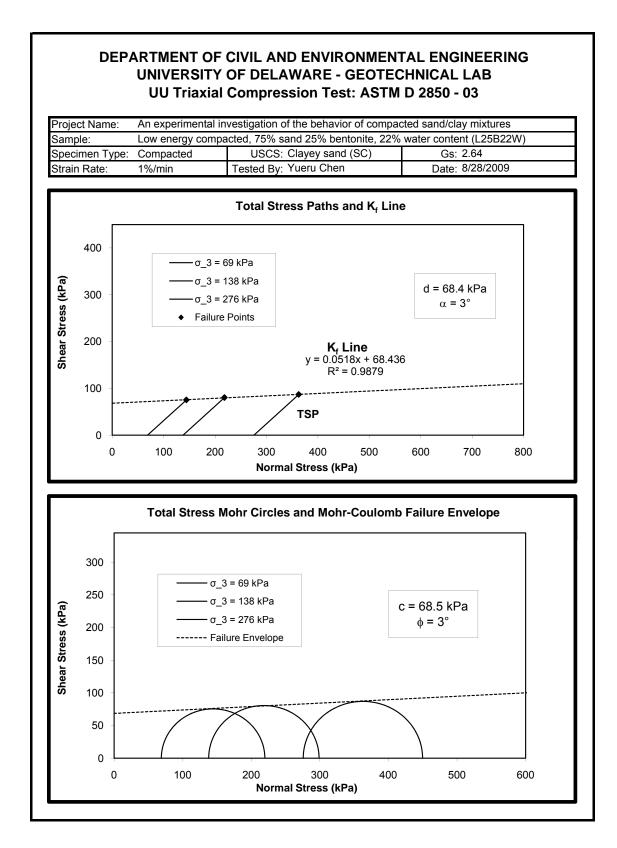



| Project Name: An experimental        | investigation o                       | of the behavio    | or of compac | ted sand/cla | y mixtures |            |
|--------------------------------------|---------------------------------------|-------------------|--------------|--------------|------------|------------|
| Sample: Low energy com               |                                       |                   |              |              |            | /)         |
| Specimen Type: Compacted             |                                       | Clayey sand       |              |              | 2.64       |            |
| Strain Rate: 1%/min                  | Tested By:                            | Yueru Chen        |              | Date:        | 8/28/2009  |            |
|                                      |                                       | Trimming          |              |              | Specimen   |            |
| Sample No.                           | 1                                     | 2                 | 3            | 1            | 2          | 3          |
| Tin No.                              | 4                                     | FJ-5              | 46           | 201          | 209        | 7          |
| Wt. of Tin (g)                       | 28.7                                  | 28                | 28.9         | 28.9         | 28.1       | 28.3       |
| Wt. of Tin + Wet soil (g)            | 83.1                                  | 102.5             | 110.2        | 162.1        | 158.2      | 164.0      |
| Wt. of Tin + Dry soil (g)            | 76.4                                  | 93.3              | 100.3        | 145.6        | 141.9      | 147.1      |
| Wt. of Dry Soil (g)                  | 47.70                                 | 65.30             | 71.40        | 116.7        | 113.8      | 118.8      |
| Wt. of Water (g)                     | 6.70                                  | 9.20              | 9.90         | 16.5         | 16.3       | 16.9       |
| Water Content (%)                    | 14.05                                 | 14.09             | 13.87        | 14.1         | 14.3       | 14.2       |
| Average Water Content (%)            |                                       | 14.0              |              |              | 14.2       |            |
| Sample No.                           | 1                                     | 2                 | 3            | 12           | Martine Th |            |
| Cell Pressure (kPa)                  | 68.95                                 | 137.90            | 275.79       |              | No. M.     |            |
| Average Height, L (cm)               | 7.12                                  | 7.13              | 7.13         |              |            | 25         |
| Average Diameter, D (cm)             | 3.53                                  | 3.53              | 3.53         |              | 14日13月     | 1/11       |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 16.40                                 | 15.98             | 16.72        | 62           |            |            |
| Initial Void ratio                   | 0.58                                  | 0.62              | 0.55         |              |            | 51         |
| Saturation (%)                       | 0.64                                  | 0.61              | 0.68         |              |            |            |
| Strain at Failure (%)                | 11.10                                 | 14.86             | 14.57        |              |            | A DOMESTIC |
| Max Deviator Stress (kPa)            | 265.0                                 | 309.2             | 501.3        | -            |            |            |
| Membrane Correction (kPa)            | 2.4                                   | 3.3               | 3.2          | 100          | A COLORADO |            |
| Corrected Deviator Stress (kPa)      | 262.5                                 | 305.9             | 498.1        | - B          |            | 1          |
| Corrected Major Stress (kPa)         | 331.5                                 | 443.8             | 773.9        |              |            | 25         |
| UU Triaxial - St                     | $\sigma_3 = 2$                        | 276 kPa<br>38 kPa |              |              |            | ST         |
|                                      | σ <sub>3</sub> = 6<br>9<br>Strain (%) | 39 kPa<br>12      | 15           |              |            | 34457      |




|                         |                | nvestigation c                  |             |        |           |                    |           |
|-------------------------|----------------|---------------------------------|-------------|--------|-----------|--------------------|-----------|
|                         |                | acted, 75% s                    |             |        |           |                    | /)        |
| Specimen Type: Com      |                |                                 | Clayey sand | · · ·  |           | 2.64               |           |
| Strain Rate: 1%/n       | nin            | Tested By:                      | Yueru Chen  |        | Date:     | 8/21/2009          |           |
|                         |                | 1                               | Trimming    |        |           | Specimen           |           |
| Sample No               |                | 1                               | 2           | 3      | 1         | 2                  | 3         |
| Tin No.                 |                | B8                              | 213         | 1      | ь<br>В-19 | 101                | 7         |
| Wt. of Tin (g)          |                | 28.4                            | 27.9        | 28.1   | 27.4      | 28.0               | 28.2      |
| Wt. of Tin + Wet soil   | (g)            | 99.6                            | 116.9       | 84.8   | 165.8     | 163.6              | 164.9     |
| Wt. of Tin + Dry soil ( | g)             | 89.8                            | 104.4       | 76.9   | 146.5     | 144.7              | 145.6     |
| Wt. of Dry Soil (g)     |                | 61.40                           | 76.50       | 48.80  | 119.1     | 116.7              | 117.4     |
| Wt. of Water (g)        |                | 9.80                            | 12.50       | 7.90   | 19.3      | 18.9               | 19.3      |
| Water Content (%)       |                | 15.96                           | 16.34       | 16.19  | 16.2      | 16.2               | 16.4      |
| Average Water Conte     | ent (%)        |                                 | 16.2        |        |           | 16.3               |           |
| Sample No               | )              | 1                               | 2           | 3      | No.       | STREET, STREET,    |           |
| Cell Pressure (kPa)     |                | 68.95                           | 137.90      | 275.79 |           | Sectionary)        | 16        |
| Average Height, L (ci   | n)             | 7.15                            | 7.15        | 7.13   | 83        |                    | 25        |
| Average Diameter, D     |                | 3.54                            | 3.52        | 3.53   |           | and the second     | 1h        |
| Dry Unit Weight (kN/r   |                | 16.63                           | 16.46       | 16.50  | 15        | Contraction of the | ID        |
| Initial Void ratio      | 11 <i>)</i>    | 0.56                            | 0.57        | 0.57   | 53        |                    | 51        |
| Saturation (%)          |                | 0.77                            | 0.75        | 0.76   |           |                    | 100       |
| Strain at Failure (%)   |                | 12.81                           | 14.58       | 14.84  | - 88      | <b>学校社</b> 会       | a summing |
| Max Deviator Stress     | (kPa)          | 255.0                           | 286.6       | 393.1  |           |                    | 1         |
| Membrane Correction     | n (kPa)        | 2.8                             | 3.2         | 3.3    | -         |                    |           |
| Corrected Deviator S    | tress (kPa)    | 252.2                           | 283.4       | 389.8  |           | CTR IN             | 11        |
| Corrected Major Stre    | ss (kPa)       | 321.1                           | 421.3       | 665.6  |           |                    | 2         |
| 400 -                   | Triaxial - Str | ess-Strain C<br>$\sigma_3 = 27$ |             |        |           |                    | 16        |
| <b>dy</b><br>300 -      |                | σ <sub>3</sub> = 13             | 38 kPa      |        |           |                    | 2 /       |
| Deviator Stress (kPa)   |                | $\sigma_3 = 69$                 | ) kPa       |        |           |                    | 29        |
|                         | 6              | 9                               | 12          | 15     |           |                    | 18        |
|                         | Axial S        | Strain (%)                      |             |        | Chan Int  | -see 5             | 1 miles   |

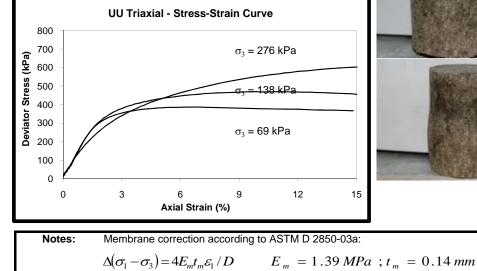



| •                                                              | ental investigation of                                       |             |        |                              |                    |             |
|----------------------------------------------------------------|--------------------------------------------------------------|-------------|--------|------------------------------|--------------------|-------------|
|                                                                | compacted, 75% s                                             |             | ,      |                              | `                  | /)          |
| Specimen Type: Compacted                                       |                                                              | Clayey sand |        |                              | 2.64               |             |
| Strain Rate: 1%/min                                            | Tested By:                                                   | Yueru Chen  |        | Date:                        | 8/27/2009          |             |
| <b>-</b>                                                       |                                                              | Trimming    |        |                              | Specimen           |             |
| Sample No.                                                     | 1                                                            | 2           | 3      | 1                            | 2                  | 3           |
| Tin No.                                                        | 4                                                            | FJ-5        | 46     | 201                          | 209                | 7           |
| Wt. of Tin (g)                                                 | 28.7                                                         | 28          | 28.9   | 28.9                         | 28.1               | 28.3        |
| Wt. of Tin + Wet soil (g)                                      | 109.2                                                        | 128         | 110.6  | 170.5                        | 169.7              | 172.2       |
| Wt. of Tin + Dry soil (g)                                      | 97.1                                                         | 113.1       | 98.3   | 148.9                        | 148.1              | 150.2       |
| Wt. of Dry Soil (g)                                            | 68.40                                                        | 85.10       | 69.40  | 120.0                        | 120.0              | 121.9       |
| Wt. of Water (g)                                               | 12.10                                                        | 14.90       | 12.30  | 21.6                         | 21.6               | 22.0        |
| Water Content (%)                                              | 17.69                                                        | 17.51       | 17.72  | 18.0                         | 18.0               | 18.0        |
| Average Water Content (%)                                      |                                                              | 17.6        |        |                              | 18.0               |             |
| Sample No.                                                     | 1                                                            | 2           | 3      | 1                            | City Long          |             |
| Cell Pressure (kPa)                                            | 68.95                                                        | 137.90      | 275.79 |                              |                    | 100         |
| Average Height, L (cm)                                         | 7.10                                                         | 7.11        | 7.13   |                              |                    | 4           |
| Average Diameter, D (cm)                                       | 3.53                                                         | 3.55        | 3.55   |                              |                    | Es          |
| Dry Unit Weight (kN/m <sup>3</sup> )                           | 16.97                                                        | 16.77       | 16.94  |                              |                    | 2           |
| Initial Void ratio                                             | 0.53                                                         | 0.54        | 0.53   |                              |                    | 18          |
| Saturation (%)                                                 | 0.90                                                         | 0.87        | 0.90   |                              |                    | 1.0         |
| Strain at Failure (%)                                          | 14.81                                                        | 14.59       | 14.82  | of the local division of the |                    |             |
| Max Deviator Stress (kPa)                                      | 227.0                                                        | 255.5       | 304.7  |                              | and the second     | And a state |
| Membrane Correction (kPa)                                      | 3.3                                                          | 3.2         | 3.2    | 6                            | Contraction in the | -           |
| Corrected Deviator Stress (I                                   | (Pa) 223.7                                                   | 252.3       | 301.5  |                              |                    | T.          |
| Corrected Major Stress (kPa                                    | a) 292.6                                                     | 390.2       | 577.2  |                              |                    | 12          |
| UU Triaxia<br>300<br>σ <sub>3</sub> = 276 k<br>200<br>100<br>0 | I - Stress-Strain C<br>Pa $\sigma_3 = 13$<br>$\sigma_3 = 69$ | 38 kPa      |        |                              |                    | The seal    |
| 0 3 Notes: Membrane                                            | 6 9<br>Axial Strain (%)                                      | 12          | 15     |                              |                    | C.          |

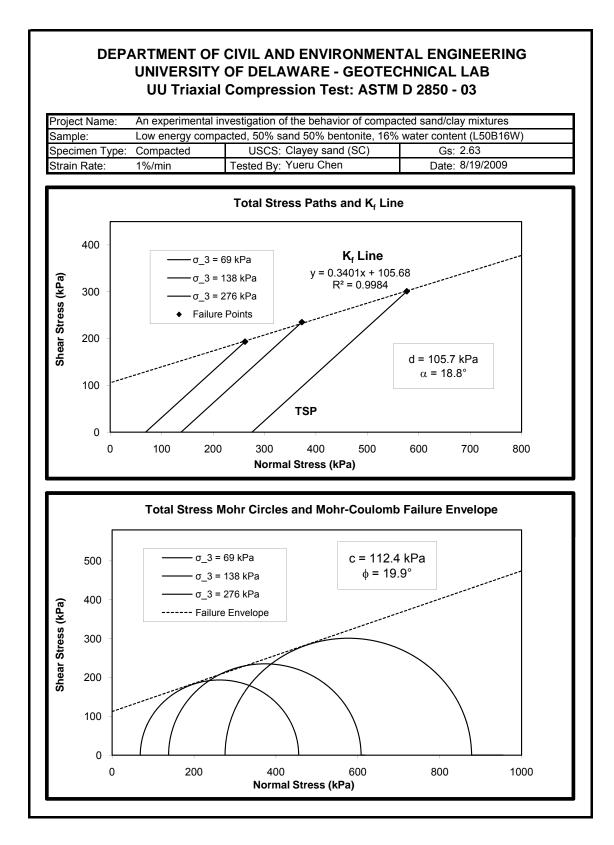


|                                      | An experimental investigation of the behavior of compacted sand/clay mixtures<br>Low energy compacted, 75% sand 25% bentonite, 20% water content (L25B20W) |                        |        |                |                    |               |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|----------------|--------------------|---------------|
|                                      |                                                                                                                                                            |                        |        |                |                    | /)            |
| Specimen Type: Compacted             |                                                                                                                                                            | USCS: Clayey sand (SC) |        | Gs: 2.64       |                    |               |
| Strain Rate: 1%/min                  | Tested By:                                                                                                                                                 | Yueru Cher             |        | Date:          | 8/27/2009          |               |
| Comula No                            |                                                                                                                                                            | Trimming               |        |                | Specimen           |               |
| Sample No.                           | 1                                                                                                                                                          | 2                      | 3      | 1              | 2                  | 3             |
| Tin No.                              | B8                                                                                                                                                         | 213                    | 1      | B-19           | 101                | 7             |
| Wt. of Tin (g)                       | 28.4                                                                                                                                                       | 27.9                   | 28.1   | 27.4           | 28.0               | 28.2          |
| Wt. of Tin + Wet soil (g)            | 87.9                                                                                                                                                       | 86.4                   | 119    | 166.1          | 168.4              | 168.6         |
| Wt. of Tin + Dry soil (g)            | 78                                                                                                                                                         | 76.7                   | 104    | 142.9          | 144.8              | 144.9         |
| Wt. of Dry Soil (g)                  | 49.60                                                                                                                                                      | 48.80                  | 75.90  | 115.5          | 116.8              | 116.7         |
| Wt. of Water (g)                     | 9.90                                                                                                                                                       | 9.70                   | 15.00  | 23.2           | 23.6               | 23.7          |
| Water Content (%)                    | 19.96                                                                                                                                                      | 19.88                  | 19.76  | 20.1           | 20.2               | 20.3          |
| Average Water Content (%)            |                                                                                                                                                            | 19.9                   |        |                | 20.2               |               |
| Sample No.                           | 1                                                                                                                                                          | 2                      | 3      |                | Contraction of the | 1             |
| Cell Pressure (kPa)                  | 68.95                                                                                                                                                      | 137.90                 | 275.79 |                |                    | 4             |
| Average Height, L (cm)               | 7.10                                                                                                                                                       | 7.11                   | 7.13   |                |                    | 25            |
| Average Diameter, D (cm)             | 3.53                                                                                                                                                       | 3.53                   | 3.53   |                |                    | 5.            |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 16.27                                                                                                                                                      | 16.43                  | 16.40  | 1              |                    | 10            |
| Initial Void ratio                   | 0.59                                                                                                                                                       | 0.58                   | 0.58   |                |                    | 8             |
| Saturation (%)                       | 0.90                                                                                                                                                       | 0.93                   | 0.93   |                |                    |               |
| Strain at Failure (%)                | 14.84                                                                                                                                                      | 14.81                  | 14.82  | 1000           |                    | Concession of |
| Max Deviator Stress (kPa)            | 189.1                                                                                                                                                      | 216.8                  | 251.2  | State of State | Carlo and          | 150-00        |
| Membrane Correction (kPa)            | 3.3                                                                                                                                                        | 3.3                    | 3.3    | 4              | Contraction of the | -             |
| Corrected Deviator Stress (kPa)      | 185.9                                                                                                                                                      | 213.5                  | 247.9  |                |                    |               |
| Corrected Major Stress (kPa)         | 254.8                                                                                                                                                      | 351.4                  | 523.7  |                |                    | 4             |
| UU Triaxial - S                      |                                                                                                                                                            |                        |        |                |                    | 128           |
| $\sigma_3 = 276 \text{ kPa}$         | $\sigma_3 = 13$                                                                                                                                            | <u>38 kPa</u>          |        |                |                    |               |
| $\sigma_3 = 276 \text{ kPa}$         | $\sigma_3 = 69$                                                                                                                                            | 9 kPa                  |        | 6              | ALL PROPERTY       | 3/1           |
| 0 Deviator                           |                                                                                                                                                            |                        |        |                |                    | 500           |
| 0 3 6                                | 9<br>I Strain (%)                                                                                                                                          | 12                     | 15     | and the second |                    | -             |




| Project Name:                        | An experimental ir                                                                    | nvestigation c        | of the behavio    | or of compac    | ted sand/cla    | y mixtures              |                |
|--------------------------------------|---------------------------------------------------------------------------------------|-----------------------|-------------------|-----------------|-----------------|-------------------------|----------------|
| Sample:                              | Low energy compa                                                                      | acted, 75% s          | and 25% ber       | ntonite, 22%    | water conter    | nt (L25B22W             | /)             |
| Specimen Type:                       |                                                                                       |                       | Clayey sand       |                 | Gs: 2.64        |                         |                |
| Strain Rate:                         | 1%/min                                                                                | Tested By: Yueru Chen |                   |                 | Date:           | 8/28/2009               |                |
|                                      |                                                                                       | 1                     | Trimming          |                 |                 | Specimen                |                |
| Sam                                  | ple No.                                                                               | 1                     | 2                 | 3               | 1               | 2                       | 3              |
| Tin No.                              |                                                                                       | B8                    | 213               | 1               | ь<br>В-19       | 101                     | 7              |
| Wt. of Tin (g)                       |                                                                                       | 28.4                  | 27.9              | 28.1            | 27.4            | 28.0                    | 28.2           |
| Wt. of Tin + We                      | et soil (q)                                                                           | 126.7                 | 75.9              | 113.2           | 164.7           | 167.0                   | 165.9          |
| Wt. of Tin + Dr                      |                                                                                       | 108.9                 | 67.3              | 97.9            | 139.8           | 141.8                   | 140.8          |
| Wt. of Dry Soil                      |                                                                                       | 80.50                 | 39.40             | 69.80           | 112.4           | 113.8                   | 112.6          |
| Wt. of Water (g                      |                                                                                       | 17.80                 | 8.60              | 15.30           | 24.9            | 25.2                    | 25.1           |
| Water Content                        | (%)                                                                                   | 22.11                 | 21.83             | 21.92           | 22.2            | 22.1                    | 22.3           |
| Average Water                        | r Content (%)                                                                         |                       | 22.0              |                 |                 | 22.2                    |                |
|                                      |                                                                                       |                       | -                 | _               |                 | Call No. of Lot.        | -              |
|                                      | iple No.                                                                              | 1                     | 2                 | 3               |                 |                         |                |
| Cell Pressure (                      |                                                                                       | 68.95                 | 137.90            | 275.79          |                 |                         | 2              |
| Average Heigh                        |                                                                                       | 7.13                  | 7.14              | 7.12            |                 |                         |                |
| Average Diame                        | ,                                                                                     | 3.52                  | 3.53              | 3.54            |                 |                         | 2              |
| Dry Unit Weigh<br>Initial Void ratio |                                                                                       | 15.91                 | 15.98             | 15.76           |                 |                         | S              |
| Saturation (%)                       | )                                                                                     | 0.63                  | 0.62              | 0.64            |                 |                         | 10             |
| Strain at Failur                     | o (%)                                                                                 | 0.93<br>14.87         | 0.94<br>14.87     | 0.91<br>14.86   | _               |                         | 18 m           |
| Max Deviator S                       | · · /                                                                                 | 14.87                 | 164.2             | 177.3           | 100 million     | 了机能性                    | 10 -10         |
| Membrane Cor                         | 1                                                                                     | 3.3                   | 3.3               | 3.3             | Constant of the | CONTRACTOR OF THE OWNER | and the second |
|                                      | iator Stress (kPa)                                                                    | 150.9                 | 160.9             | 174.0           |                 | NOR OF STREET           | 411            |
| Corrected Majo                       | , ,                                                                                   | 219.8                 | 298.8             | 449.8           |                 |                         |                |
| Deviator Stress (kPa)                | UU Triaxial - Str<br>$\sigma_3 = 276 \text{ kPa}$<br>$\sigma_3 = \sigma_3 = \sigma_3$ | ess-Strain C          |                   |                 |                 |                         | 24             |
| 0<br>0<br>Notes:                     | 3 6<br>Axial S<br>Membrane correct                                                    | 9<br>Strain (%)       | 12<br>g to ASTM D | 15<br>2850-03a: |                 |                         |                |

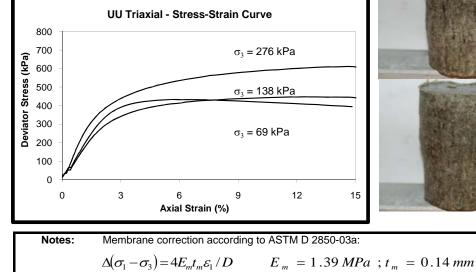



| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                        |                 |  |  |  |
|----------------|-------------------------------------------------------------------------------|------------------------|-----------------|--|--|--|
| Sample:        | Low energy compacted, 50% sand 50% bentonite, 16% water content (L50B16W)     |                        |                 |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Clayey sand (SC) | Gs: 2.63        |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen  | Date: 8/19/2009 |  |  |  |

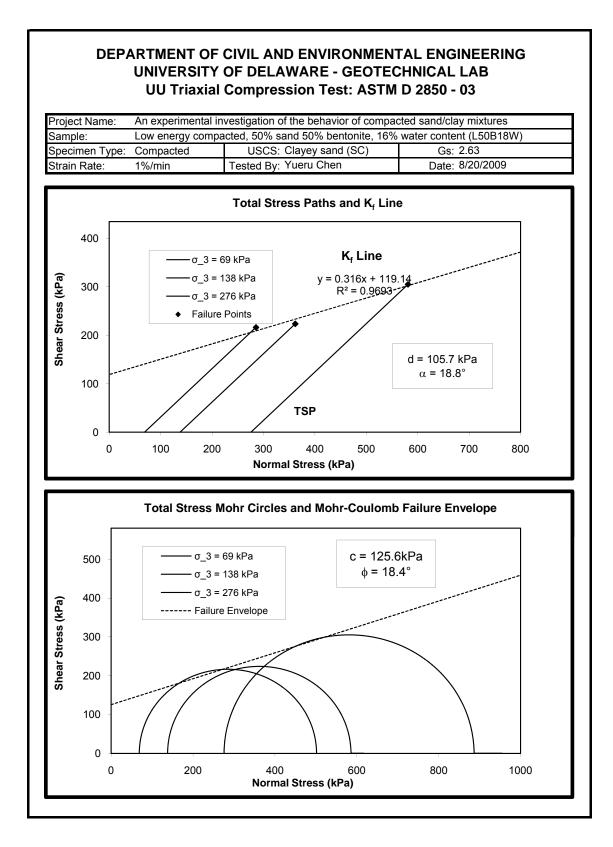
| Sample No.                |      | Trimming |      |          | Specimen |       |  |
|---------------------------|------|----------|------|----------|----------|-------|--|
| Sample No.                | 1    | 2        | 3    | 1        | 2        | 3     |  |
| Tin No.                   | 4    | FJ-5     | 46   | 201      | 209      | 31    |  |
| Wt. of Tin (g)            | 28.7 | 28.0     | 28.8 | 28.9     | 28.2     | 28.3  |  |
| Wt. of Tin + Wet soil (g) | 77.4 | 64.3     | 54.2 | 151.4    | 144.2    | 139.8 |  |
| Wt. of Tin + Dry soil (g) | 70.5 | 59.1     | 50.6 | 134.1    | 126.8    | 123.9 |  |
| Wt. of Dry Soil (g)       | 41.8 | 31.1     | 21.8 | 105.2    | 98.6     | 95.6  |  |
| Wt. of Water (g)          | 6.9  | 5.2      | 3.6  | 17.3     | 17.4     | 15.9  |  |
| Water Content (%)         | 16.5 | 16.7     | 16.5 | 16.4     | 17.6     | 16.6  |  |
| Average Water Content (%) |      | 16.6     |      | 6.6 16.9 |          |       |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.14  | 6.76   | 6.66   |
| Average Diameter, D (cm)             | 3.53  | 3.53   | 3.52   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 14.75 | 14.62  | 14.47  |
| Initial Void ratio                   | 0.75  | 0.76   | 0.78   |
| Saturation (%)                       | 0.58  | 0.61   | 0.56   |
| Strain at Failure (%)                | 6.80  | 9.57   | 15.01  |
| Max Deviator Stress (kPa)            | 388.0 | 472.1  | 605.3  |
| Membrane Correction (kPa)            | 1.5   | 2.1    | 3.3    |
| Corrected Deviator Stress (kPa)      | 386.5 | 470.0  | 602.0  |
| Corrected Major Stress (kPa)         | 455.5 | 607.9  | 877.8  |





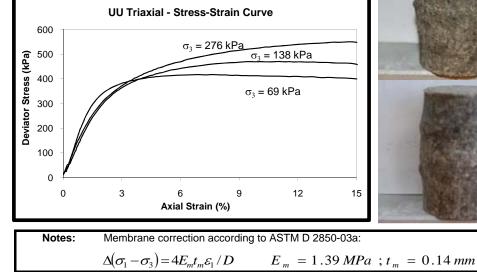




| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                        |                 |  |  |
|----------------|-------------------------------------------------------------------------------|------------------------|-----------------|--|--|
| Sample:        | Low energy compacted, 50% sand 50% bentonite, 18% water content (L50B18W)     |                        |                 |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Clayey sand (SC) | Gs: 2.63        |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen  | Date: 8/20/2009 |  |  |

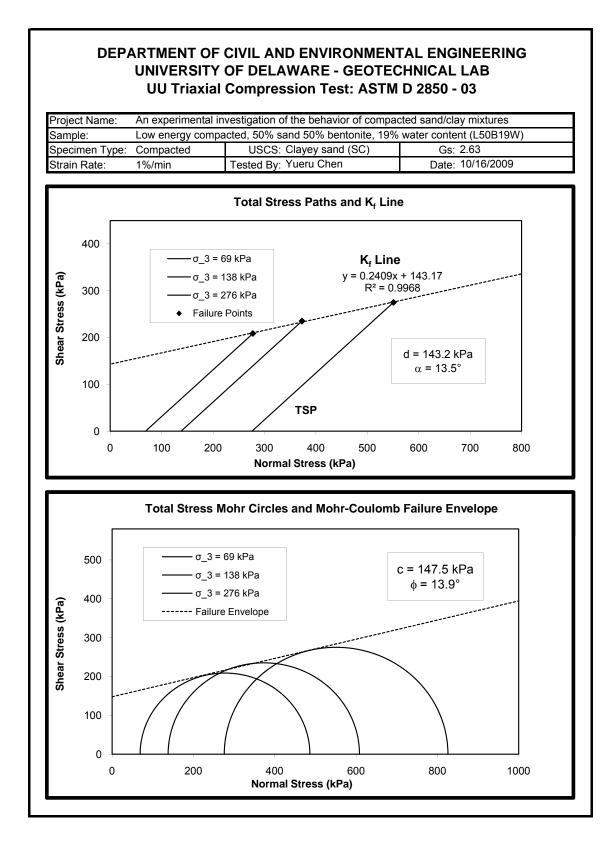
| Sample No.                | Trimming |      |      | Specimen |       |       |
|---------------------------|----------|------|------|----------|-------|-------|
| Sample No.                | 1        | 2    | 3    | 1        | 2     | 3     |
| Tin No.                   | 4        | FJ-5 | 46   | 201      | 209   | 31    |
| Wt. of Tin (g)            | 28.7     | 28.0 | 28.9 | 28.9     | 28.1  | 28.3  |
| Wt. of Tin + Wet soil (g) | 92.2     | 59.8 | 70.4 | 147.3    | 141.6 | 152.3 |
| Wt. of Tin + Dry soil (g) | 82.5     | 54.8 | 64.0 | 129.4    | 124.5 | 133.1 |
| Wt. of Dry Soil (g)       | 53.8     | 26.8 | 35.1 | 100.5    | 96.4  | 104.8 |
| Wt. of Water (g)          | 9.7      | 5.0  | 6.4  | 17.9     | 17.1  | 19.2  |
| Water Content (%)         | 18.0     | 18.7 | 18.2 | 17.8     | 17.7  | 18.3  |
| Average Water Content (%) | 18.3     |      |      |          | 18.0  |       |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 6.68  | 6.66   | 6.93   |
| Average Diameter, D (cm)             | 3.54  | 3.55   | 3.55   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 15.00 | 14.35  | 14.99  |
| Initial Void ratio                   | 0.72  | 0.80   | 0.72   |
| Saturation (%)                       | 0.65  | 0.58   | 0.67   |
| Strain at Failure (%)                | 5.80  | 12.32  | 14.84  |
| Max Deviator Stress (kPa)            | 434.2 | 450.5  | 613.7  |
| Membrane Correction (kPa)            | 1.3   | 2.7    | 3.3    |
| Corrected Deviator Stress (kPa)      | 432.9 | 447.8  | 610.5  |
| Corrected Major Stress (kPa)         | 501.9 | 585.7  | 886.3  |





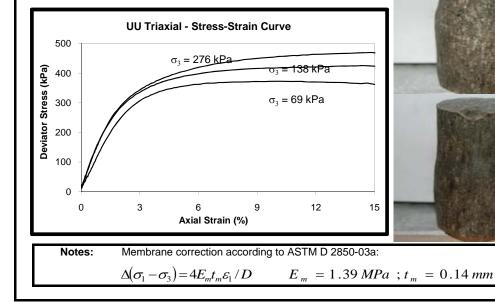


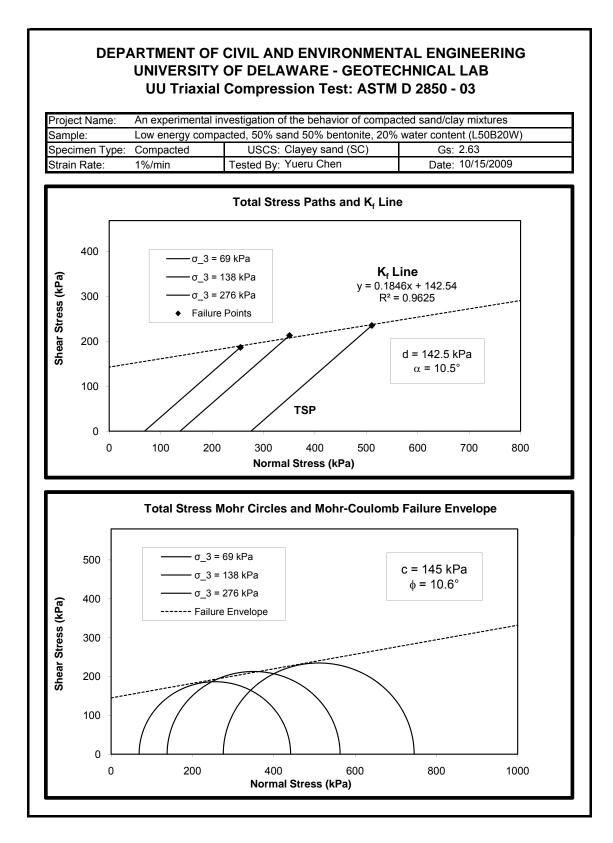


| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                        |                  |  |  |
|----------------|-------------------------------------------------------------------------------|------------------------|------------------|--|--|
| Sample:        | Low energy compacted, 50% sand 50% bentonite, 19% water content (L50B19W)     |                        |                  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Clayey sand (SC) | Gs: 2.63         |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen  | Date: 10/16/2009 |  |  |

| Sample No.                |       | Trimming |       |       | Specimen |       |  |
|---------------------------|-------|----------|-------|-------|----------|-------|--|
| Sample No.                | 1     | 2        | 3     | 1     | 2        | 3     |  |
| Tin No.                   | 4     | FJ-5     | 46    | 201   | 209      | 31    |  |
| Wt. of Tin (g)            | 28.7  | 28.0     | 28.9  | 28.9  | 28.2     | 28.4  |  |
| Wt. of Tin + Wet soil (g) | 109.4 | 101.0    | 103.8 | 158.5 | 154.2    | 151.3 |  |
| Wt. of Tin + Dry soil (g) | 96.4  | 89.3     | 91.7  | 137.7 | 133.9    | 131.4 |  |
| Wt. of Dry Soil (g)       | 67.7  | 61.3     | 62.8  | 108.8 | 105.7    | 103.0 |  |
| Wt. of Water (g)          | 13.0  | 11.7     | 12.1  | 20.8  | 20.3     | 19.9  |  |
| Water Content (%)         | 19.2  | 19.1     | 19.3  | 19.1  | 19.2     | 19.3  |  |
| Average Water Content (%) |       | 19.2     |       | 19.2  |          |       |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.09  | 6.88   | 6.74   |
| Average Diameter, D (cm)             | 3.51  | 3.53   | 3.51   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 15.57 | 15.39  | 15.47  |
| Initial Void ratio                   | 0.66  | 0.68   | 0.67   |
| Saturation (%)                       | 0.77  | 0.75   | 0.76   |
| Strain at Failure (%)                | 7.57  | 11.06  | 14.57  |
| Max Deviator Stress (kPa)            | 419.0 | 472.9  | 553.5  |
| Membrane Correction (kPa)            | 1.7   | 2.4    | 3.2    |
| Corrected Deviator Stress (kPa)      | 417.3 | 470.4  | 550.3  |
| Corrected Major Stress (kPa)         | 486.2 | 608.3  | 826.1  |






| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                        |                  |  |  |
|----------------|-------------------------------------------------------------------------------|------------------------|------------------|--|--|
| Sample:        | Low energy compacted, 50% sand 50% bentonite, 20% water content (L50B20W)     |                        |                  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Clayey sand (SC) | Gs: 2.63         |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen  | Date: 10/15/2009 |  |  |

| Sample No.                | Trimming |      |       | Specimen |       |       |
|---------------------------|----------|------|-------|----------|-------|-------|
|                           | 1        | 2    | 3     | 1        | 2     | 3     |
| Tin No.                   | B8       | 213  | 1     | B-19     | 101   | 7     |
| Wt. of Tin (g)            | 28.5     | 27.9 | 28.1  | 27.4     | 28.0  | 28.2  |
| Wt. of Tin + Wet soil (g) | 83.3     | 97.7 | 114.9 | 160.2    | 153.8 | 159.8 |
| Wt. of Tin + Dry soil (g) | 74.0     | 85.6 | 99.8  | 137.0    | 131.9 | 136.8 |
| Wt. of Dry Soil (g)       | 45.5     | 57.7 | 71.7  | 109.6    | 103.9 | 108.6 |
| Wt. of Water (g)          | 9.3      | 12.1 | 15.1  | 23.2     | 21.9  | 23.0  |
| Water Content (%)         | 20.4     | 21.0 | 21.1  | 21.2     | 21.1  | 21.2  |
| Average Water Content (%) |          | 20.8 |       |          | 21.1  |       |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.03  | 6.64   | 6.89   |
| Average Diameter, D (cm)             | 3.54  | 3.52   | 3.54   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 15.57 | 15.78  | 15.71  |
| Initial Void ratio                   | 0.66  | 0.64   | 0.64   |
| Saturation (%)                       | 0.85  | 0.87   | 0.87   |
| Strain at Failure (%)                | 10.05 | 14.31  | 14.83  |
| Max Deviator Stress (kPa)            | 374.8 | 428.4  | 472.9  |
| Membrane Correction (kPa)            | 2.2   | 3.2    | 3.3    |
| Corrected Deviator Stress (kPa)      | 372.6 | 425.3  | 469.6  |
| Corrected Major Stress (kPa)         | 441.5 | 563.2  | 745.4  |





|                                                            | al investigation of |             |             |                |                           |                |  |  |
|------------------------------------------------------------|---------------------|-------------|-------------|----------------|---------------------------|----------------|--|--|
|                                                            | mpacted, 50% s      |             |             | water conter   | nt (L50B22W)              | )              |  |  |
| pecimen Type: Compacted                                    |                     | Clayey san  |             | Gs: 2.63       |                           |                |  |  |
| train Rate: 1%/min                                         | Tested By:          | Yueru Cher  | 1           | Date:          | 8/26/2009                 |                |  |  |
|                                                            |                     | Trimming    |             |                | Specimen                  |                |  |  |
| Sample No.                                                 | 1                   | 2           | 3           | 1              | 2                         | 3              |  |  |
| Tin No.                                                    | B8                  | 213         | 1           | B-19           | 101                       | 7              |  |  |
| Wt. of Tin (g)                                             | 28.4                | 27.9        | 28.1        | 27.4           | 28.0                      | 28.2           |  |  |
| Wt. of Tin + Wet soil (g)                                  | 85.7                | 101.9       | 79.1        | 158.2          | 162.3                     | 158.4          |  |  |
| Wt. of Tin + Dry soil (g)                                  | 75.3                | 88.5        | 69.8        | 134.3          | 137.8                     | 134.6          |  |  |
| Wt. of Dry Soil (g)                                        | 46.9                | 60.6        | 41.7        | 106.9          | 109.8                     | 106.4          |  |  |
| Wt. of Water (g)                                           | 10.4                | 13.4        | 9.3         | 23.9           | 24.5                      | 23.8           |  |  |
| Water Content (%)                                          | 22.2                | 22.1        | 22.3        | 22.4           | 22.3                      | 22.4           |  |  |
| Average Water Content (%)                                  |                     | 22.2        |             |                | 22.3                      |                |  |  |
| Sample No.                                                 |                     | 0           | 2           |                | Constant in               | -              |  |  |
| Cell Pressure (kPa)                                        | 1<br>68.95          | 2<br>137.90 | 3<br>275.79 | 1              |                           | 11             |  |  |
| Average Height, L (cm)                                     | 6.84                | 7.00        | 6.77        | 10             |                           | D D            |  |  |
| Average Diameter, D (cm)                                   | 3.55                | 3.54        | 3.54        | 16             |                           | 50             |  |  |
| <u> </u>                                                   | 15.49               | 15.63       | 15.66       | 100            |                           | 27             |  |  |
| Dry Unit Weight (kN/m <sup>3</sup> )<br>Initial Void ratio | 0.67                | 0.65        | 0.65        | - 34           | A COLOR                   |                |  |  |
| Saturation (%)                                             | 0.88                | 0.90        | 0.00        | 100            |                           | 30 3           |  |  |
| Strain at Failure (%)                                      | 7.55                | 12.58       | 14.58       | 1000           |                           |                |  |  |
| Max Deviator Stress (kPa)                                  | 357.5               | 381.6       | 429.0       |                |                           | The Tre        |  |  |
| Membrane Correction (kPa)                                  | 1.3                 | 2.7         | 3.3         |                | Contraction of the        |                |  |  |
| Corrected Deviator Stress (kPa                             |                     | 378.9       | 425.8       |                | THE REAL                  | 19h            |  |  |
| Corrected Major Stress (kPa)                               | 425.1               | 516.8       | 701.5       | 1              | AN AL                     |                |  |  |
|                                                            |                     |             |             |                | - Aller                   | D              |  |  |
|                                                            | Stress-Strain C     | urve        |             |                |                           | 20             |  |  |
| 800                                                        |                     |             |             |                |                           | 1              |  |  |
| <b>7</b> 00 -                                              | $\sigma_3$          | = 276 kPa   |             | Tool Statement |                           | and the second |  |  |
| 600 -                                                      |                     |             |             | - March        | and the second            | and and        |  |  |
| 600 -<br>500 -<br>400 -<br>300 -<br>200 -                  | <b>5</b>            | = 138 kPa   |             |                | Contraction of the second | 100            |  |  |
|                                                            | 03                  | - 100 11 0  |             |                | and the same of           | The second     |  |  |

221

# **•** · · · · ·

267

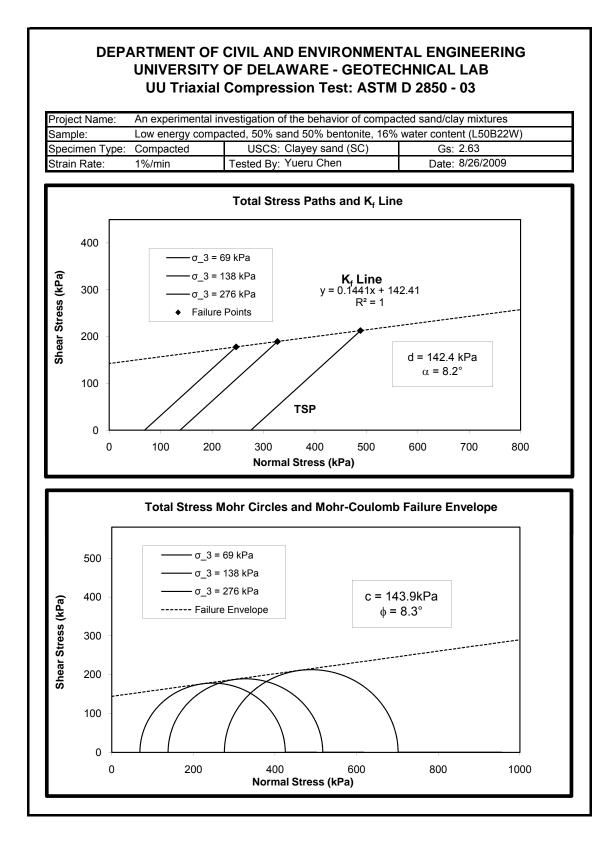
12

15

 $E_m = 1.39 MPa ; t_m = 0.14 mm$ 

9

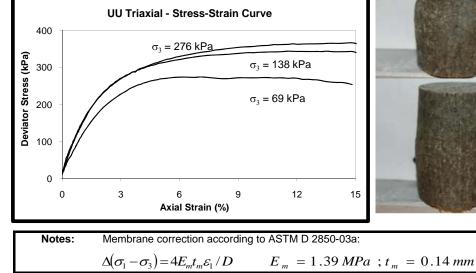
Membrane correction according to ASTM D 2850-03a:


6 Axial Strain (%)

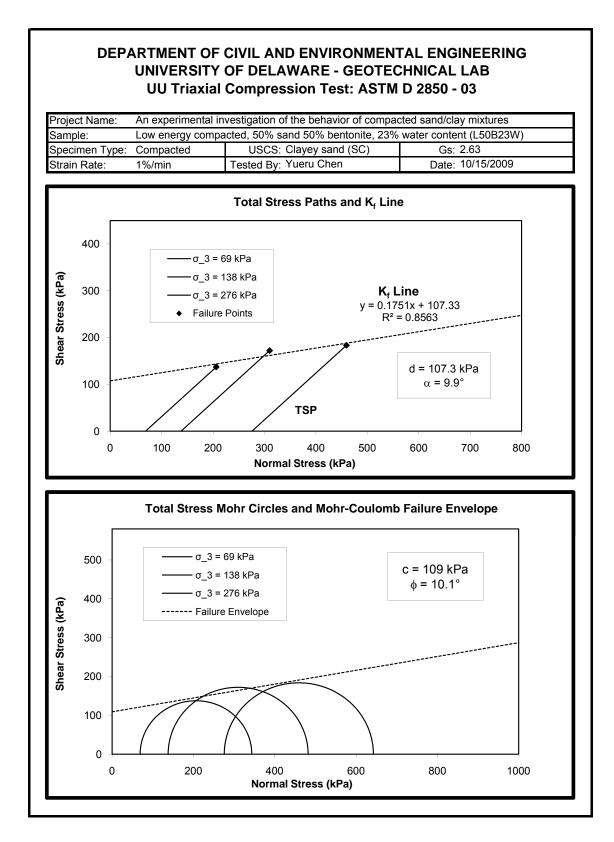
 $\Delta\!\left(\underline{\sigma_1}-\underline{\sigma_3}\right)=4E_mt_m\varepsilon_1/D$ 

100 0

0


Notes:

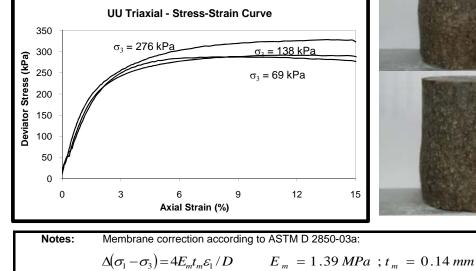



| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                        |                  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------|------------------------|------------------|--|--|--|--|
| Sample:        | Low energy compacted, 50% sand 50% bentonite, 23% water content (L50B23W)     |                        |                  |  |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Clayey sand (SC) | Gs: 2.63         |  |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen  | Date: 10/15/2009 |  |  |  |  |

| Sample No.                |      | Trimming |       |       | Specimen |       |  |
|---------------------------|------|----------|-------|-------|----------|-------|--|
| Sample No.                | 1    | 2        | 3     | 1     | 2        | 3     |  |
| Tin No.                   | 4    | FJ-5     | 46    | 201   | 209      | 31    |  |
| Wt. of Tin (g)            | 28.7 | 28.0     | 28.9  | 28.9  | 28.2     | 28.4  |  |
| Wt. of Tin + Wet soil (g) | 59.6 | 89.0     | 116.1 | 159.2 | 162.7    | 158.6 |  |
| Wt. of Tin + Dry soil (g) | 53.7 | 77.5     | 99.7  | 134.7 | 137.6    | 134.1 |  |
| Wt. of Dry Soil (g)       | 25.0 | 49.5     | 70.8  | 105.8 | 109.4    | 105.7 |  |
| Wt. of Water (g)          | 5.9  | 11.5     | 16.4  | 24.5  | 25.1     | 24.5  |  |
| Water Content (%)         | 23.6 | 23.2     | 23.2  | 23.2  | 22.9     | 23.2  |  |
| Average Water Content (%) |      | 23.3     |       |       | 23.1     |       |  |

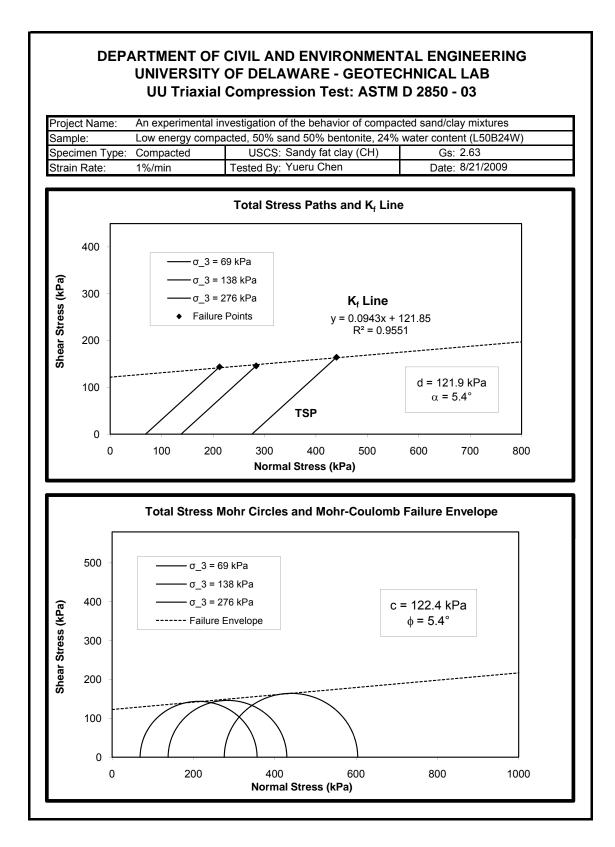
| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 6.80  | 7.08   | 6.90   |
| Average Diameter, D (cm)             | 3.55  | 3.51   | 3.52   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 15.46 | 15.65  | 15.45  |
| Initial Void ratio                   | 0.67  | 0.65   | 0.67   |
| Saturation (%)                       | 0.91  | 0.93   | 0.91   |
| Strain at Failure (%)                | 7.05  | 13.56  | 14.81  |
| Max Deviator Stress (kPa)            | 276.1 | 347.2  | 370.2  |
| Membrane Correction (kPa)            | 1.5   | 3.0    | 3.3    |
| Corrected Deviator Stress (kPa)      | 274.5 | 344.2  | 366.9  |
| Corrected Major Stress (kPa)         | 343.5 | 482.1  | 642.7  |



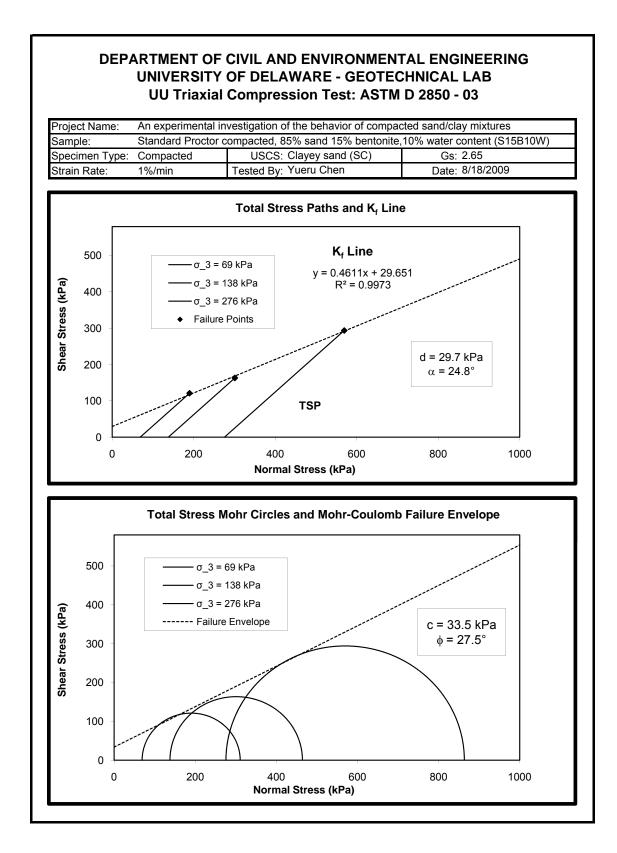





| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                           |                 |  |  |  |  |
|----------------|-------------------------------------------------------------------------------|---------------------------|-----------------|--|--|--|--|
| Sample:        | Low energy compacted, 50% sand 50% bentonite, 24% water content (L50B24W)     |                           |                 |  |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Sandy fat clay (CH) | Gs: 2.63        |  |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen     | Date: 8/21/2009 |  |  |  |  |


| Sample No.                |      | Trimming |      |       | Specimen |       |  |
|---------------------------|------|----------|------|-------|----------|-------|--|
| Sample No.                | 1    | 2        | 3    | 1     | 2        | 3     |  |
| Tin No.                   | 4    | FJ-5     | 46   | 201   | 209      | 31    |  |
| Wt. of Tin (g)            | 28.7 | 28.0     | 28.9 | 28.9  | 28.1     | 28.3  |  |
| Wt. of Tin + Wet soil (g) | 84.5 | 101.8    | 91.1 | 161.1 | 159.1    | 159.1 |  |
| Wt. of Tin + Dry soil (g) | 73.6 | 87.8     | 79.0 | 135.4 | 133.4    | 133.4 |  |
| Wt. of Dry Soil (g)       | 44.9 | 59.8     | 50.1 | 106.5 | 105.3    | 105.1 |  |
| Wt. of Water (g)          | 10.9 | 14.0     | 12.1 | 25.7  | 25.7     | 25.7  |  |
| Water Content (%)         | 24.3 | 23.4     | 24.2 | 24.1  | 24.4     | 24.5  |  |
| Average Water Content (%) |      | 23.9     |      |       | 24.3     |       |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 6.86  | 7.08   | 6.95   |
| Average Diameter, D (cm)             | 3.54  | 3.56   | 3.54   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 15.52 | 14.63  | 15.11  |
| Initial Void ratio                   | 0.66  | 0.76   | 0.71   |
| Saturation (%)                       | 0.96  | 0.84   | 0.91   |
| Strain at Failure (%)                | 9.06  | 12.83  | 13.59  |
| Max Deviator Stress (kPa)            | 289.5 | 294.7  | 331.3  |
| Membrane Correction (kPa)            | 2.0   | 2.8    | 3.0    |
| Corrected Deviator Stress (kPa)      | 287.5 | 291.9  | 328.3  |
| Corrected Major Stress (kPa)         | 356.4 | 429.8  | 604.1  |

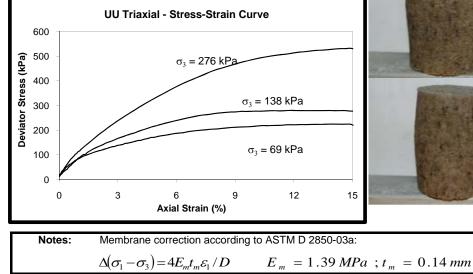






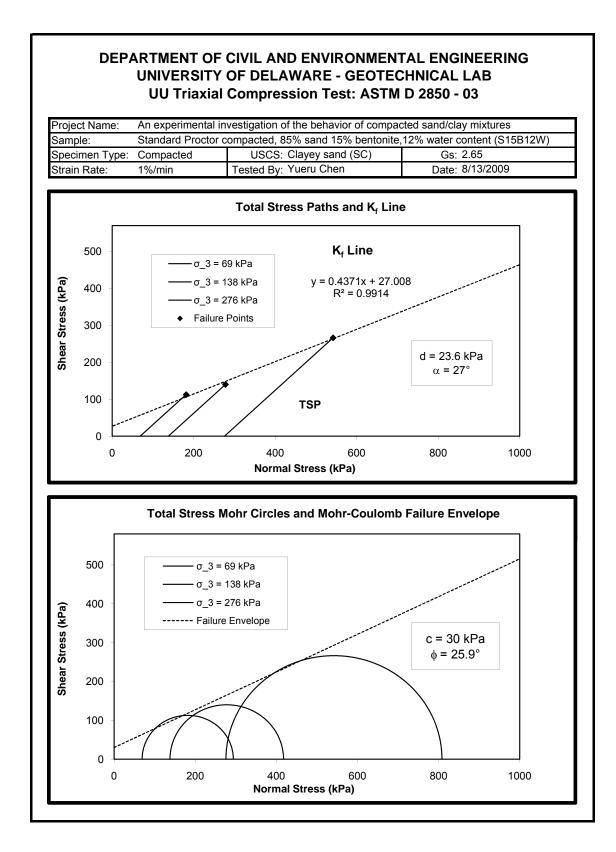



| Specimen Type: Compacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | USCS:                    | r compacted, 85% sand 15% bentonite,<br>USCS: Clayey sand (SC) |                | Gs: 2.65<br>Date: 8/18/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|
| Strain Rate: 1%/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tested By:               | Yueru Chen                                                     |                | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8/18/2009             |                 |
| Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | Trimming                                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Specimen              |                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                        | 2                                                              | 3              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                     | 3               |
| Tin No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                        | FJ-5                                                           | 46             | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 209                   | 31              |
| Wt. of Tin (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.7                     | 28                                                             | 28.8           | 28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.1                  | 28.3            |
| Wt. of Tin + Wet soil (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83                       | 108.9                                                          | 98.3           | 158.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 156.9                 | 159.6           |
| Wt. of Tin + Dry soil (g)<br>Wt. of Dry Soil (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78.1                     | 101.4                                                          | 92             | 146.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 145.0                 | 147.5           |
| Wt. of Water (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49.40<br>4.90            | 73.40<br>7.50                                                  | 63.20<br>6.30  | 117.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 116.90                | 119.20<br>12.10 |
| Water Content (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.92                     | 10.22                                                          | 9.97           | 12.00<br>10.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.90<br>10.18        | 10.15           |
| Average Water Content (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.92                     | 10.22                                                          | 5.57           | 10.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.10                 | 10.10           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and a second          |                 |
| Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                        | 2                                                              | 3              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a de la calle         |                 |
| Cell Pressure (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68.95                    | 137.90                                                         | 275.79         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1915) (1941)         |                 |
| Average Height, L (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.11                     | 7.12                                                           | 7.11           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 14              |
| Average Diameter, D (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.52                     | 3.54                                                           | 3.53           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 11              |
| Dry Unit Weight (kN/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.66                    | 16.37                                                          | 16.83          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                 |
| Initial Void ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.56                     | 0.59                                                           | 0.54           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | NS:             |
| Saturation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.48                     | 0.46                                                           | 0.49           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 1               |
| Strain at Failure (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.82                    | 14.58                                                          | 14.82          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                 |
| Max Deviator Stress (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 244.8                    | 329.6                                                          | 591.0          | Contraction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 435 / SP              | and the second  |
| Membrane Correction (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.8                      | 3.2                                                            | 3.3            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The state             | -               |
| Corrected Deviator Stress (kPa)<br>Corrected Major Stress (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 241.9<br>310.9           | 326.4<br>464.3                                                 | 587.8<br>863.6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                 |
| UU Triaxial - S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stress-Strain C          | urve                                                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 110             |
| 700<br>600<br>500<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | σ <sub>3</sub> = 276 kPa |                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | R               |
| 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - |                          | 5 <sub>3</sub> = 138 kPa                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                     | 15              |
| 100 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | σ <sub>3</sub> = 69 kPa                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Se              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 9<br>al Strain (%)     | 12                                                             | 15             | and the second s | and the second second |                 |

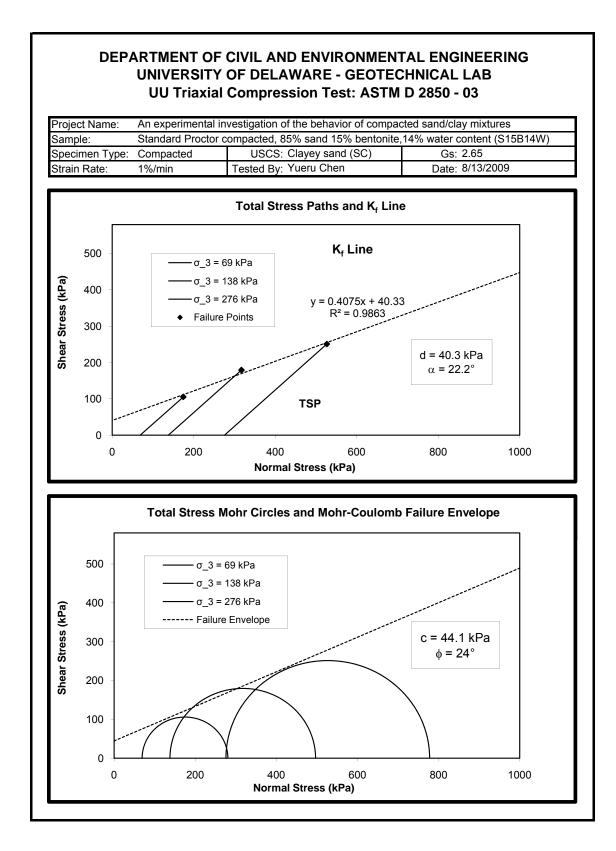



| DEP                       | ARTMENT OF<br>UNIVERSITY<br>UU Triaxial                                                 | OF DELA                | WARE - | GEOTEC          | HNICAL | LAB    | G      |  |
|---------------------------|-----------------------------------------------------------------------------------------|------------------------|--------|-----------------|--------|--------|--------|--|
| Project Name:             |                                                                                         |                        |        |                 |        |        |        |  |
| Sample:                   | Sample: Standard Proctor compacted, 85% sand 15% bentonite, 12% water content (S15B12W) |                        |        |                 |        |        |        |  |
| Specimen Type:            | Compacted                                                                               | USCS: Clayey sand (SC) |        | Gs: 2.65        |        |        |        |  |
| Strain Rate:              | 1%/min                                                                                  | Tested By: Yueru Chen  |        | Date: 8/13/2009 |        |        |        |  |
| Sam                       | Trimming                                                                                |                        |        | Specimen        |        |        |        |  |
| Uam                       |                                                                                         | 1                      | 2      | 3               | 1      | 2      | 3      |  |
| Tin No.                   |                                                                                         | B14                    | 2010   | 410             | majid  | FJ-1   | 59     |  |
| Wt. of Tin (g)            |                                                                                         | 29.1                   | 28.6   | 28.4            | 28.7   | 28.1   | 28.3   |  |
| Wt. of Tin + Wet soil (g) |                                                                                         | 133                    | 144    | 112.6           | 165.1  | 164.4  | 163.1  |  |
| Wt. of Tin + Dr           | Wt. of Tin + Dry soil (g)                                                               |                        | 131.4  | 103.3           | 149.9  | 149.2  | 148.5  |  |
| Wt. of Dry Soil           | (g)                                                                                     | 92.70                  | 102.80 | 74.90           | 121.20 | 121.10 | 120.20 |  |
| Wt. of Water (g           | ))                                                                                      | 11.20                  | 12.60  | 9.30            | 15.20  | 15.20  | 14.60  |  |
| Water Content             | (%)                                                                                     | 12.08                  | 12.26  | 12.42           | 12.54  | 12.55  | 12.15  |  |

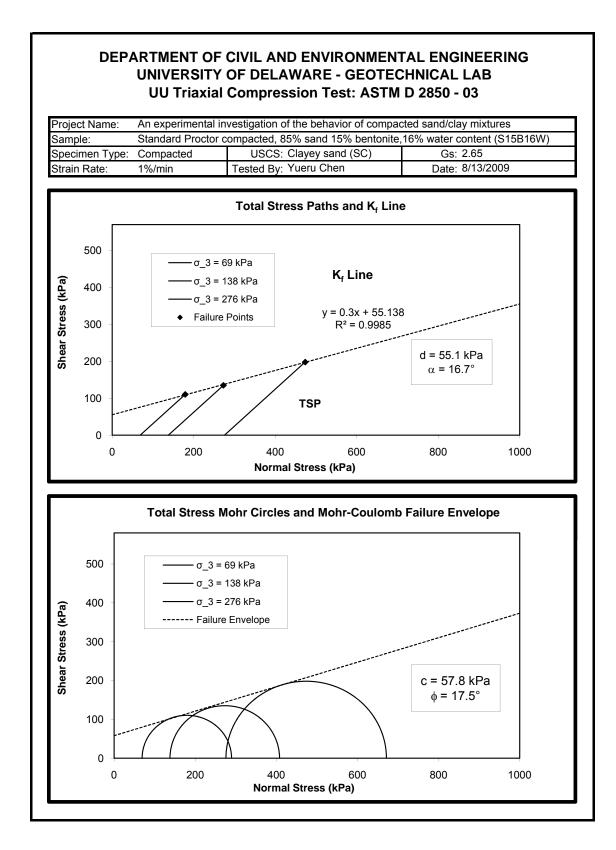
12.3


| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.13  | 7.13   | 7.12   |
| Average Diameter, D (cm)             | 3.54  | 3.55   | 3.54   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 16.98 | 16.87  | 16.84  |
| Initial Void ratio                   | 0.53  | 0.54   | 0.54   |
| Saturation (%)                       | 0.63  | 0.61   | 0.59   |
| Strain at Failure (%)                | 13.86 | 13.83  | 14.86  |
| Max Deviator Stress (kPa)            | 228.2 | 283.0  | 535.6  |
| Membrane Correction (kPa)            | 3.1   | 3.0    | 3.3    |
| Corrected Deviator Stress (kPa)      | 225.1 | 279.9  | 532.3  |
| Corrected Major Stress (kPa)         | 294.1 | 417.8  | 808.1  |

Average Water Content (%)





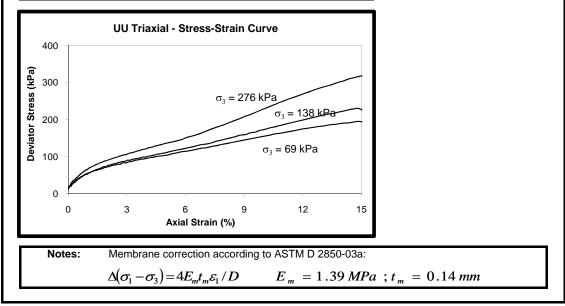


12.4

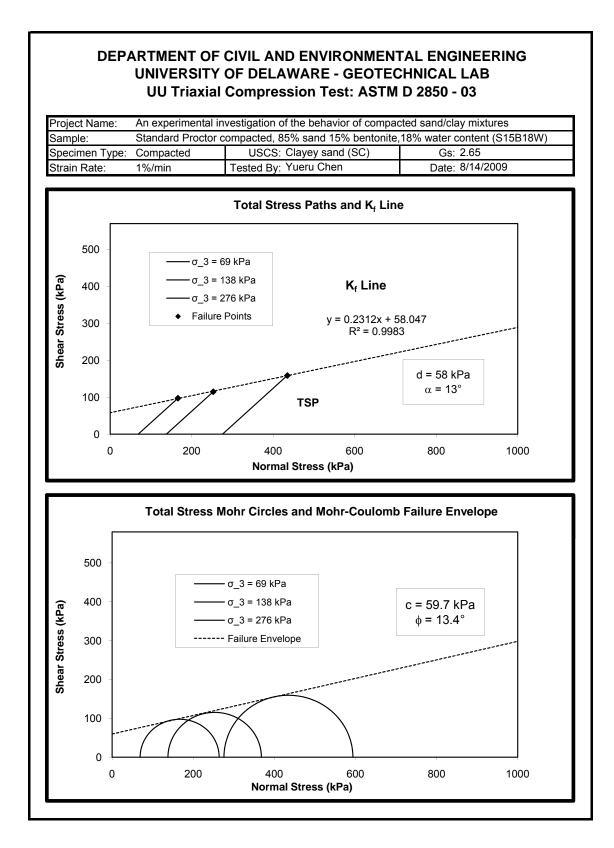


| USCS:                                                                                                      | 55% sand 15<br>Clayey sand<br>Yueru Chen<br>Trimming<br>2<br>FJ-5<br>28<br>104.8<br>95.2<br>67.20<br>9.60<br>14.29<br>14.3 | l (SC)                                                |                                                                                                                                                                                                                                                                                                                                                              | 2.65<br>8/13/2009<br>Specimen<br>2<br>209<br>28.1<br>170.3<br>152.4<br>124.30<br>17.90                             | 3<br>201<br>28.9<br>167.3<br>150.0<br>121.10          |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 1           4           28.7           127           114.7           86.00           12.30           14.30 | Yueru Chen<br>Trimming<br>2<br>FJ-5<br>28<br>104.8<br>95.2<br>67.20<br>9.60<br>14.29<br>14.3                               | 3<br>46<br>28.8<br>133.1<br>120<br>91.20<br>13.10     | Date:<br>1<br>31<br>28.3<br>165.4<br>148.3<br>120.00<br>17.10                                                                                                                                                                                                                                                                                                | 8/13/2009<br>Specimen<br>2<br>209<br>28.1<br>170.3<br>152.4<br>124.30<br>17.90                                     | 201<br>28.9<br>167.3<br>150.0<br>121.10               |
| 1<br>4<br>28.7<br>127<br>114.7<br>86.00<br>12.30<br>14.30<br>14.30                                         | Trimming<br>2<br>FJ-5<br>28<br>104.8<br>95.2<br>67.20<br>9.60<br>14.29<br>14.3                                             | 3<br>46<br>28.8<br>133.1<br>120<br>91.20<br>13.10     | 1<br>31<br>28.3<br>165.4<br>148.3<br>120.00<br>17.10                                                                                                                                                                                                                                                                                                         | Specimen           2           209           28.1           170.3           152.4           124.30           17.90 | 201<br>28.9<br>167.3<br>150.0<br>121.10               |
| 4<br>28.7<br>127<br>114.7<br>86.00<br>12.30<br>14.30<br>14.30                                              | 2<br>FJ-5<br>28<br>104.8<br>95.2<br>67.20<br>9.60<br>14.29<br>14.3                                                         | 46<br>28.8<br>133.1<br>120<br>91.20<br>13.10          | 31<br>28.3<br>165.4<br>148.3<br>120.00<br>17.10                                                                                                                                                                                                                                                                                                              | 2<br>209<br>28.1<br>170.3<br>152.4<br>124.30<br>17.90                                                              | 201<br>28.9<br>167.3<br>150.0<br>121.10               |
| 4<br>28.7<br>127<br>114.7<br>86.00<br>12.30<br>14.30<br>14.30                                              | FJ-5<br>28<br>104.8<br>95.2<br>67.20<br>9.60<br>14.29<br>14.3                                                              | 46<br>28.8<br>133.1<br>120<br>91.20<br>13.10          | 31<br>28.3<br>165.4<br>148.3<br>120.00<br>17.10                                                                                                                                                                                                                                                                                                              | 209<br>28.1<br>170.3<br>152.4<br>124.30<br>17.90                                                                   | 201<br>28.9<br>167.3<br>150.0<br>121.10               |
| 28.7<br>127<br>114.7<br>86.00<br>12.30<br>14.30<br>14.30                                                   | 28<br>104.8<br>95.2<br>67.20<br>9.60<br>14.29<br>14.3                                                                      | 28.8<br>133.1<br>120<br>91.20<br>13.10                | 28.3<br>165.4<br>148.3<br>120.00<br>17.10                                                                                                                                                                                                                                                                                                                    | 28.1<br>170.3<br>152.4<br>124.30<br>17.90                                                                          | 28.9<br>167.3<br>150.0<br>121.10                      |
| 127<br>114.7<br>86.00<br>12.30<br>14.30                                                                    | 104.8<br>95.2<br>67.20<br>9.60<br>14.29<br>14.3                                                                            | 133.1<br>120<br>91.20<br>13.10                        | 165.4<br>148.3<br>120.00<br>17.10                                                                                                                                                                                                                                                                                                                            | 170.3<br>152.4<br>124.30<br>17.90                                                                                  | 167.3<br>150.0<br>121.10                              |
| 114.7<br>86.00<br>12.30<br>14.30<br>1                                                                      | 95.2<br>67.20<br>9.60<br>14.29<br>14.3                                                                                     | 120<br>91.20<br>13.10                                 | 148.3<br>120.00<br>17.10                                                                                                                                                                                                                                                                                                                                     | 152.4<br>124.30<br>17.90                                                                                           | 150.0<br>121.10                                       |
| 86.00<br>12.30<br>14.30<br>1                                                                               | 67.20<br>9.60<br>14.29<br>14.3                                                                                             | 91.20<br>13.10                                        | 120.00<br>17.10                                                                                                                                                                                                                                                                                                                                              | 124.30<br>17.90                                                                                                    | 121.1(                                                |
| 12.30<br>14.30<br>1                                                                                        | 9.60<br>14.29<br>14.3                                                                                                      | 13.10                                                 | 17.10                                                                                                                                                                                                                                                                                                                                                        | 17.90                                                                                                              |                                                       |
| 14.30<br>1                                                                                                 | 14.29<br>14.3                                                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                                       |
| 1                                                                                                          | 14.3                                                                                                                       | 14.36                                                 | 14.25                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    | 17.30                                                 |
|                                                                                                            |                                                                                                                            |                                                       |                                                                                                                                                                                                                                                                                                                                                              | 14.40                                                                                                              | 14.29                                                 |
|                                                                                                            | 2                                                                                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                              | 14.3                                                                                                               |                                                       |
| 68.95                                                                                                      | 2                                                                                                                          | 3                                                     |                                                                                                                                                                                                                                                                                                                                                              | CONTRACTOR OF                                                                                                      |                                                       |
|                                                                                                            | 137.90                                                                                                                     | 275.79                                                |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                                       |
| 7.09                                                                                                       | 7.13                                                                                                                       | 7.14                                                  | 6                                                                                                                                                                                                                                                                                                                                                            | 1.1 4                                                                                                              |                                                       |
| 3.51                                                                                                       | 3.53                                                                                                                       | 3.51                                                  |                                                                                                                                                                                                                                                                                                                                                              | - LOBER                                                                                                            |                                                       |
| 17.13                                                                                                      | 17.46                                                                                                                      | 17.17                                                 |                                                                                                                                                                                                                                                                                                                                                              | tamp -                                                                                                             | 10                                                    |
| 0.52                                                                                                       | 0.49                                                                                                                       | 0.51                                                  |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    | MA .                                                  |
| 0.73                                                                                                       | 0.78                                                                                                                       | 0.74                                                  |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    | 1/2                                                   |
| 14.58                                                                                                      | 14.84                                                                                                                      | 15.00                                                 | Concession of the                                                                                                                                                                                                                                                                                                                                            | HUNDER                                                                                                             |                                                       |
| 214.6                                                                                                      | 362.0                                                                                                                      | 505.4                                                 | State of some                                                                                                                                                                                                                                                                                                                                                | C. Carrow                                                                                                          | -                                                     |
| 3.2                                                                                                        | 3.3                                                                                                                        | 3.3                                                   | 6                                                                                                                                                                                                                                                                                                                                                            | Martin weight                                                                                                      | -                                                     |
| 211.4                                                                                                      | 358.7                                                                                                                      | 502.1                                                 |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                                       |
| 280.3                                                                                                      | 496.6                                                                                                                      | 777.9                                                 |                                                                                                                                                                                                                                                                                                                                                              | ビニカ州                                                                                                               | 15                                                    |
| s-Strain C                                                                                                 | urve                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    | 144                                                   |
|                                                                                                            |                                                                                                                            | 2 <u>a</u>                                            |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    | 19                                                    |
| 9                                                                                                          | σ <sub>3</sub> = 69 kPa<br>12                                                                                              | 15                                                    |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    | 1                                                     |
|                                                                                                            | 0.52<br>0.73<br>14.58<br>214.6<br>3.2<br>211.4<br>280.3<br><b>S-Strain C</b><br>276 kPa                                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0.52       0.49       0.51         0.73       0.78       0.74         14.58       14.84       15.00         214.6       362.0       505.4         3.2       3.3       3.3         211.4       358.7       502.1         280.3       496.6       777.9         s-Strain Curve $\sigma_3 = 138$ kPa $\sigma_3 = 69$ kPa $\sigma_3 = 69$ kPa $\sigma_3 = 12$ 15 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |



| Project Name: Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n experimental ir                 | nvestigation c         | of the behavio                                                    | or of compac                    | ted sand/cla | y mixtures    |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|-------------------------------------------------------------------|---------------------------------|--------------|---------------|--------|
| Sample: St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | andard Proctor                    | compacted, 8           | 35% sand 15                                                       | nite, 16% water content (S15B16 |              |               |        |
| Specimen Type: Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ompacted                          | USCS: Clayey sand (SC) |                                                                   | Gs: 2.65                        |              |               |        |
| Strain Rate: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %/min                             | Tested By:             | Yueru Chen                                                        |                                 | Date:        | 8/13/2009     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                        | Trimmina                                                          |                                 |              | Chaoiman      |        |
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No.                               | 1                      | Trimming<br>2                                                     | 3                               | 1            | Specimen<br>2 | 3      |
| Tin No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | B8                     | 213                                                               |                                 | 7            | 2<br>101      | B-19   |
| Wt. of Tin (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | 28.4                   | 27.9                                                              | 28.1                            | 28.2         | 28.0          | 27.4   |
| Wt. of Tin + Wet s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oil (a)                           | 103.4                  | 116.2                                                             | 105.4                           | 170.2        | 170.2         | 168.6  |
| Wt. of Tin + Dry so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 92.9                   | 103.7                                                             | 94.6                            | 150.1        | 150.1         | 148.6  |
| Wt. of Dry Soil (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0)                               | 64.50                  | 75.80                                                             | 66.50                           | 121.90       | 122.10        | 121.20 |
| Wt. of Water (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | 10.50                  | 12.50                                                             | 10.80                           | 20.10        | 20.10         | 20.00  |
| Water Content (%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                                 | 16.28                  | 16.49                                                             | 16.24                           | 16.49        | 16.46         | 16.50  |
| Average Water Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ontent (%)                        |                        | 16.3                                                              |                                 |              | 16.5          |        |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NI-                               | 1                      | -                                                                 | <u>^</u>                        |              | Alton and     | 100    |
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | 1                      | 2                                                                 | 3                               |              |               |        |
| Cell Pressure (kPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                 | 68.95                  | 137.90                                                            | 275.79                          |              |               | -      |
| Average Height, L<br>Average Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   | 7.11                   | 7.11<br>3.53                                                      | 7.13<br>3.54                    |              |               | 14     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                 | 3.53<br>17.23          | 3.53<br>17.18                                                     | 3.54<br>16.99                   | 100          |               | 11     |
| Dry Unit Weight (k<br>Initial Void ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (N/m <sup>*</sup> )               | 0.51                   | 0.51                                                              | 0.53                            |              |               |        |
| Saturation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | 0.86                   | 0.85                                                              | 0.83                            |              | ALC: NOT      | 8      |
| Strain at Failure (%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>%</b> )                        | 14.82                  | 14.84                                                             | 15.00                           | -            |               |        |
| Max Deviator Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                 | 223.8                  | 273.3                                                             | 399.0                           | 1000         | S. Lokal      | 2      |
| Membrane Correc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | 3.3                    | 3.3                                                               | 3.3                             | -            | Antonio .     | 0      |
| Corrected Deviato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | 220.5                  | 270.0                                                             | 395.7                           | 1. 1997      | Sector L      | 8      |
| Corrected Major S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tress (kPa)                       | 289.5                  | 407.9                                                             | 671.5                           | 100          |               | 15     |
| Deviator Stress (Kpa)<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0002<br>0 | JU Triaxial - Str                 | σ <sub>3</sub> = 276   | kPa<br>$\sigma_3 = 138 \text{ kF}$<br>$\sigma_3 = 69 \text{ kPa}$ |                                 |              |               | 52     |
| 0<br>Notes: M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 6<br>Axial S<br>embrane correct | 9<br>Strain (%)        | 12                                                                | 15                              |              |               |        |





| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures   |                        |                 |  |  |  |
|----------------|---------------------------------------------------------------------------------|------------------------|-----------------|--|--|--|
| Sample:        | Standard Proctor compacted, 85% sand 15% bentonite, 18% water content (S15B18W) |                        |                 |  |  |  |
| Specimen Type: | Compacted                                                                       | USCS: Clayey sand (SC) | Gs: 2.65        |  |  |  |
| Strain Rate:   | 1%/min                                                                          | Tested By: Yueru Chen  | Date: 8/14/2009 |  |  |  |

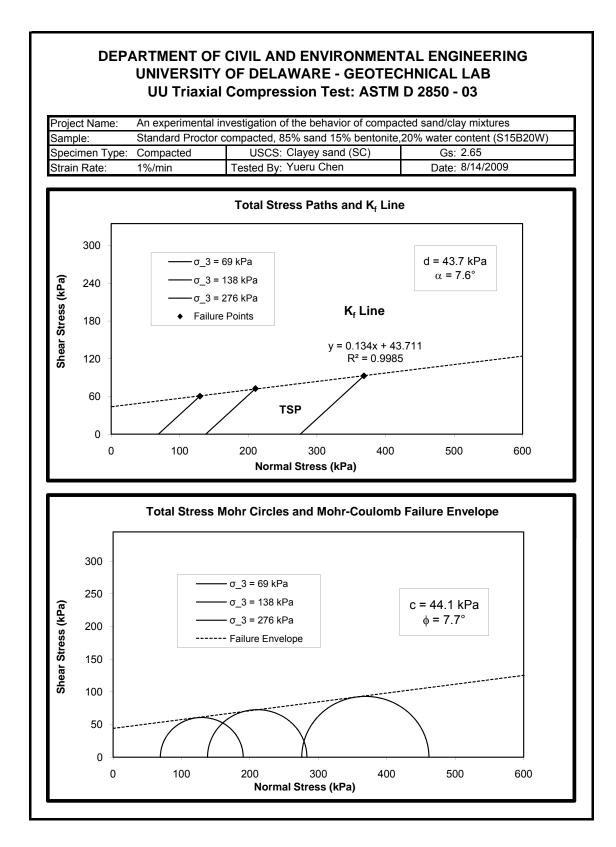
| Sample No.                |       | Trimming |       | Specimen |        |        |  |
|---------------------------|-------|----------|-------|----------|--------|--------|--|
| Sample No.                | 1     | 2        | 3     | 1        | 2      | 3      |  |
| Tin No.                   | 4     | FJ-5     | 46    | 31       | 209    | 201    |  |
| Wt. of Tin (g)            | 28.7  | 28       | 28.8  | 28.3     | 28.1   | 28.9   |  |
| Wt. of Tin + Wet soil (g) | 95.2  | 131.8    | 119.2 | 171.5    | 170.0  | 170.1  |  |
| Wt. of Tin + Dry soil (g) | 84.9  | 116      | 105.3 | 149.5    | 148.4  | 148.6  |  |
| Wt. of Dry Soil (g)       | 56.20 | 88.00    | 76.50 | 121.20   | 120.30 | 119.70 |  |
| Wt. of Water (g)          | 10.30 | 15.80    | 13.90 | 22.00    | 21.60  | 21.50  |  |
| Water Content (%)         | 18.33 | 17.95    | 18.17 | 18.15    | 17.96  | 17.96  |  |
| Average Water Content (%) |       | 18.2     |       |          | 18.0   |        |  |

|                                      | -     |        |        |
|--------------------------------------|-------|--------|--------|
| Sample No.                           | 1     | 2      | 3      |
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.14  | 7.10   | 7.11   |
| Average Diameter, D (cm)             | 3.53  | 3.54   | 3.54   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.06 | 16.89  | 16.80  |
| Initial Void ratio                   | 0.52  | 0.54   | 0.55   |
| Saturation (%)                       | 0.92  | 0.88   | 0.87   |
| Strain at Failure (%)                | 14.83 | 14.82  | 15.02  |
| Max Deviator Stress (kPa)            | 198.3 | 233.4  | 321.4  |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 195.0 | 230.1  | 318.1  |
| Corrected Major Stress (kPa)         | 264.0 | 368.0  | 593.9  |

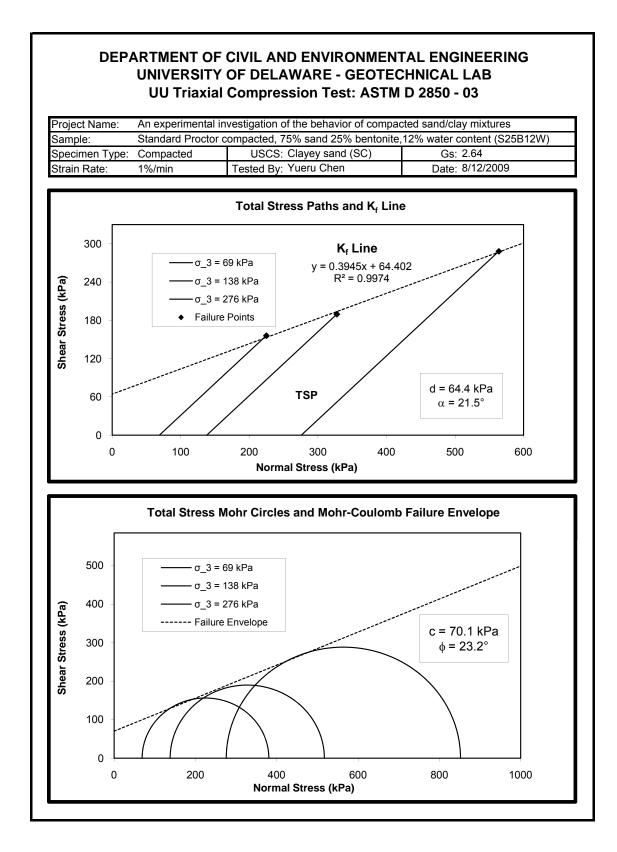
Pictures are not available.



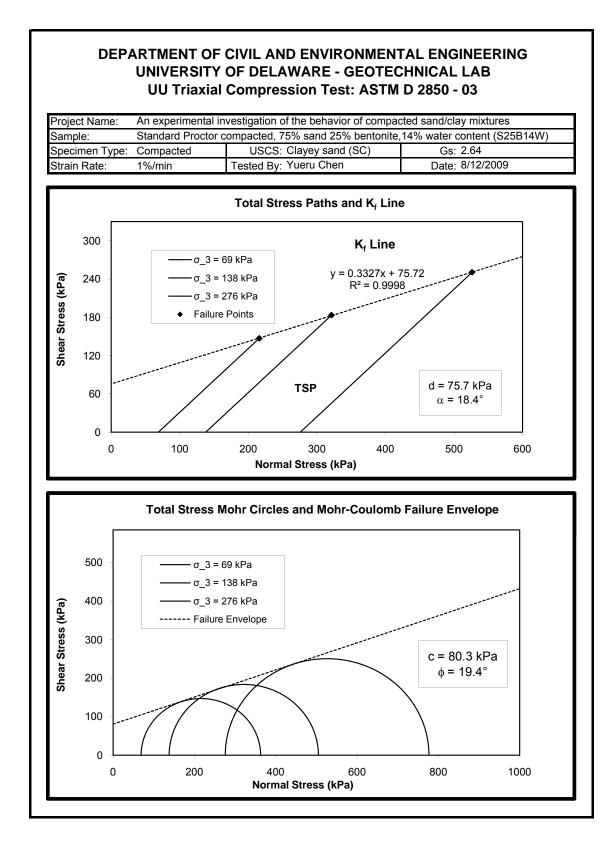



| Project Name:         | An experimental in      |                                                                                                  |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                     |
|-----------------------|-------------------------|--------------------------------------------------------------------------------------------------|------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------|
| Sample:               |                         | compacted, 85% sand 15% bentonite, 20% water content (S15B20W<br>USCS: Clayey sand (SC) Gs: 2.65 |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                     |
| Specimen Type:        |                         |                                                                                                  |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.65                                   |                     |
| Strain Rate:          | 1%/min                  | Tested By:                                                                                       | Yueru Cher       |        | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8/14/2009                              |                     |
|                       |                         |                                                                                                  | Trimming         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Specimen                               |                     |
| Sam                   | ple No.                 | 1                                                                                                | 2                | 3      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                      | 3                   |
| Tin No.               |                         | B8                                                                                               | 213              | 1      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101                                    | B-19                |
| Wt. of Tin (g)        |                         | 28.4                                                                                             | 27.9             | 28.1   | 28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.0                                   | 27.3                |
| Wt. of Tin + We       |                         | 113.6                                                                                            | 121.5            | 132    | 168.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 167.4                                  | 164.8               |
| Wt. of Tin + Dr       |                         | 99.6                                                                                             | 106              | 114.8  | 144.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 144.3                                  | 141.9               |
| Wt. of Dry Soil       |                         | 71.20                                                                                            | 78.10            | 86.70  | 116.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 116.30                                 | 114.60              |
| Wt. of Water (g       | "                       | 14.00                                                                                            | 15.50            | 17.20  | 23.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.10                                  | 22.90               |
| Water Content         | ( )                     | 19.66                                                                                            | 19.85            | 19.84  | 20.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.86                                  | 19.98               |
| Average Water         | · Content (%)           |                                                                                                  | 19.8             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.0                                   |                     |
| Sam                   | ple No.                 | 1                                                                                                | 2                | 3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                      | A                   |
| Cell Pressure (       |                         | 68.95                                                                                            | 137.90           | 275.79 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                     |
| Average Heigh         |                         | 7.12                                                                                             | 7.11             | 7.08   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                     |
| Average Diame         |                         | 3.53                                                                                             | 3.54             | 3.54   | Sec. and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and the second                         |                     |
| Dry Unit Weigh        | nt (kN/m <sup>3</sup> ) | 16.40                                                                                            | 16.30            | 16.12  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                     |
| Initial Void ratio    |                         | 0.58                                                                                             | 0.60             | 0.61   | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · ·································· |                     |
| Saturation (%)        |                         | 0.91                                                                                             | 0.88             | 0.86   | Concession of the local division of the loca |                                        |                     |
| Strain at Failur      |                         | 14.84                                                                                            | 14.81            | 14.85  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                     |
| Max Deviator S        | · · · /                 | 124.5                                                                                            | 148.5            | 189.0  | and the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | an allering                            | State of the second |
| Membrane Cor          | ( )                     | 3.3                                                                                              | 3.3              | 3.3    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contrato De la                         |                     |
|                       | iator Stress (kPa)      | 121.2                                                                                            | 145.3            | 185.8  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 200                 |
| Corrected Majo        | or Stress (kPa)         | 190.2                                                                                            | 283.2            | 461.6  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                     |
|                       | UU Triaxial - Str       | oss-Strain C                                                                                     |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.40                                  | 1                   |
| 200                   |                         | Coo-Otraill O                                                                                    | -ui 75           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 2                   |
|                       |                         |                                                                                                  |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S. Start                               | 10                  |
| Deviator Stress (kPa) |                         |                                                                                                  |                  |        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                     |
| -) s                  | 07                      | 6 kDa                                                                                            | $\sigma_3 = 138$ | kPa 🔨  | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                     | P. Contraction      |
| ŝ                     | σ <sub>3</sub> = 27     |                                                                                                  |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                     |

Membrane correction according to ASTM D 2850-03a:


 $\Delta(\sigma_1 - \sigma_3) = 4E_m t_m \varepsilon_1 / D \qquad E_m = 1.39 MPa \; ; t_m = 0.14 mm$ 

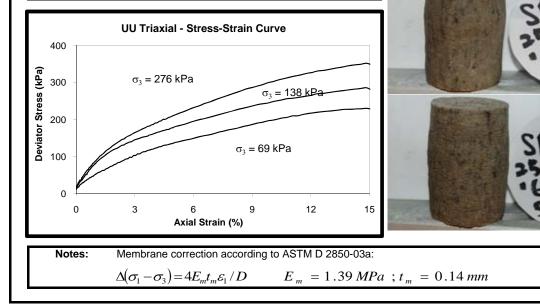
Axial Strain (%)

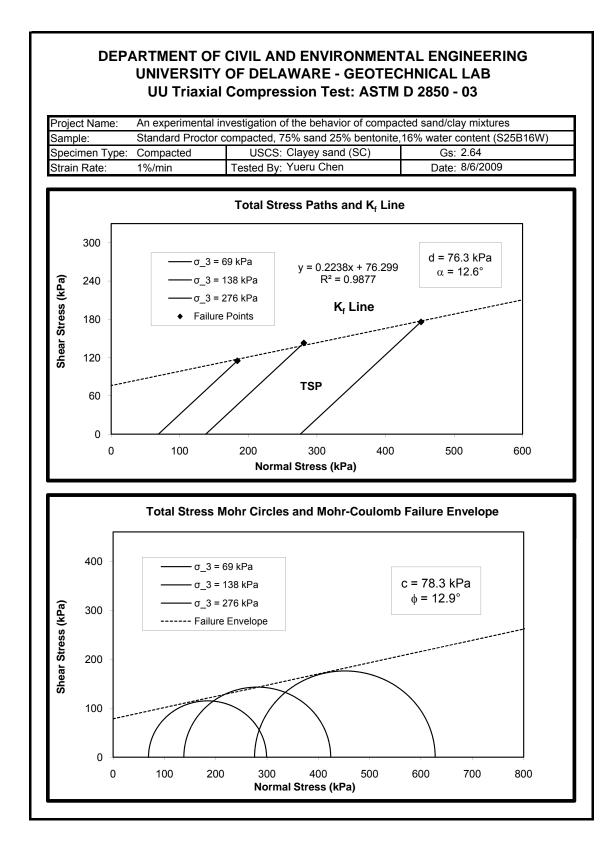

Notes:



| Project Name: An experimental in                                                                                        | nvestigation of    | of the behavio   | or of compac | cted sand/cla  | ay mixtures          |        |
|-------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|--------------|----------------|----------------------|--------|
| Sample: Standard Proctor                                                                                                | compacted, 7       | 75% sand 25      | 12% water    | content (S25   | B12W)                |        |
| Specimen Type: Compacted                                                                                                |                    | Clayey sand      | , ,          | Gs:            | 2.64                 |        |
| Strain Rate: 1%/min                                                                                                     | Tested By:         | Yueru Chen       |              | Date:          | 8/12/2009            |        |
|                                                                                                                         |                    | Trimming         |              |                | Specimen             |        |
| Sample No.                                                                                                              | 1                  | 2                | 3            | 1              | 2                    | 3      |
| Tin No.                                                                                                                 | 4                  | FJ-5             | 46           | 31             | 209                  | 201    |
| Wt. of Tin (g)                                                                                                          | 28.7               | 28               | 28.9         | 28.4           | 28.2                 | 28.9   |
| Wt. of Tin + Wet soil (g)                                                                                               | 80.5               | 83.4             | 98.9         | 164.5          | 165.4                | 167.3  |
| Wt. of Tin + Dry soil (g)                                                                                               | 74.8               | 77.2             | 91           | 149.1          | 149.7                | 151.6  |
| Wt. of Dry Soil (g)                                                                                                     | 46.10              | 49.20            | 62.10        | 120.70         | 121.50               | 122.70 |
| Wt. of Water (g)                                                                                                        | 5.70               | 6.20             | 7.90         | 15.40          | 15.70                | 15.70  |
| Water Content (%)                                                                                                       | 12.36              | 12.60            | 12.72        | 12.76          | 12.92                | 12.80  |
| Average Water Content (%)                                                                                               |                    | 12.6             |              |                | 12.8                 |        |
| Sample No.                                                                                                              | 1                  | 2                | 3            |                | and the second       | 1      |
| Cell Pressure (kPa)                                                                                                     | 68.95              | 137.90           | 275.79       |                |                      | 00     |
| Average Height, L (cm)                                                                                                  | 7.08               | 7.13             | 7.11         |                |                      | 51     |
| Average Diameter, D (cm)                                                                                                | 3.50               | 3.52             | 3.53         | <b>1</b> 13    |                      | in the |
| Dry Unit Weight (kN/m <sup>3</sup> )                                                                                    | 17.43              | 17.16            | 17.31        |                | N. Britstein         | 271    |
| Initial Void ratio                                                                                                      | 0.49               | 0.51             | 0.50         | 105            |                      | 121    |
| Saturation (%)                                                                                                          | 0.49               | 0.51             | 0.68         |                |                      | 1.1    |
| Strain at Failure (%)                                                                                                   | 12.36              | 14.82            | 14.82        | - 50           |                      | 73     |
| Max Deviator Stress (kPa)                                                                                               | 314.5              | 382.6            | 579.3        |                |                      |        |
| Membrane Correction (kPa)                                                                                               | 2.8                | 3.3              | 3.3          | and the second |                      | -      |
| Corrected Deviator Stress (kPa)                                                                                         | 311.7              | 379.3            | 576.1        | 1              | Personal Association | -      |
| Corrected Major Stress (kPa)                                                                                            | 380.7              | 517.2            | 851.9        |                |                      | 4      |
| UU Triaxial - Str<br>700<br>600<br>500<br>400<br>200<br>100<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | σ <sub>3</sub> = 1 | 38 kPa<br>39 kPa |              |                |                      | 512    |
| 0 7<br>0 3 6<br>Axial S                                                                                                 | 9<br>Strain (%)    | 12               | 15           | -              |                      |        |




| Project Name: An experimental        |                        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               |
|--------------------------------------|------------------------|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|
| Sample: Standard Proctor             | compacted, 7           | 75% sand 25 | % bentonite, | 14% water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | content (S25 | B14W)         |
| Specimen Type: Compacted             | USCS: Clayey sand (SC) |             | Gs: 2.64     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               |
| Strain Rate: 1%/min                  | Tested By:             | Yueru Chen  |              | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8/12/2009    |               |
|                                      |                        | Trimming    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Specimen     |               |
| Sample No.                           | 1                      | 2           | 3            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2            | 3             |
| Tin No.                              | B8                     | 213         | 1            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 101          | B-19          |
| Wt. of Tin (g)                       | 28.4                   | 27.9        | 28.1         | 28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.0         | 27.4          |
| Wt. of Tin + Wet soil (g)            | 105.2                  | 96.9        | 118.8        | 170.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 170.3        | 170.8         |
| Wt. of Tin + Dry soil (g)            | 95.3                   | 88          | 107.2        | 151.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 152.1        | 152.2         |
| Wt. of Dry Soil (g)                  | 66.90                  | 60.10       | 79.10        | 123.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 124.10       | 124.80        |
| Wt. of Water (g)                     | 9.90                   | 8.90        | 11.60        | 18.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.20        | 18.60         |
| Water Content (%)                    | 14.80                  | 14.81       | 14.66        | 14.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.67        | 14.90         |
| Average Water Content (%)            |                        | 14.8        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.8         |               |
| Sample No.                           | 1                      | 2           | 3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALLANK WE    |               |
| Cell Pressure (kPa)                  | 68.95                  | 137.90      | 275.79       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | C             |
| Average Height, L (cm)               | 7.14                   | 7.12        | 7.13         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 3             |
| Average Diameter, D (cm)             | 3.53                   | 3.52        | 3.51         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 25            |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.40                  | 17.54       | 17.72        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS SRE       | 11            |
| Initial Void ratio                   | 0.49                   | 0.48        | 0.46         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 17            |
| Saturation (%)                       | 0.81                   | 0.81        | 0.85         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "帮助"。        | 14            |
| Strain at Failure (%)                | 14.31                  | 14.87       | 14.89        | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |               |
| Max Deviator Stress (kPa)            | 297.2                  | 370.1       | 504.4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A LAND STATE | P. Statistics |
| Membrane Correction (kPa)            | 3.2                    | 3.3         | 3.3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L'AMBRE !!   | THE .         |
| Corrected Deviator Stress (kPa)      | 294.1                  | 366.8       | 501.1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               |
| Corrected Major Stress (kPa)         | 363.0                  | 504.7       | 776.9        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | alle.        | 25            |
| UU Triaxial - St                     | ress-Strain C          | urve        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C. MARINE    | 14            |
| $\sigma_3 = 276 \text{ kPa}$         |                        |             |              | Constant of the local division of the local |              |               |
| σ <sub>3</sub> = 276 kPa             | σ <sub>3</sub> = 1     | 38 kPa      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               |
| \$ 300 -                             |                        |             |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 1.            |
|                                      | σ <sub>3</sub> = 6     | i9 kPa      |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | ļ             |
| 0 3 6                                | 9<br>Strain (%)        | 12          | 15           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |               |

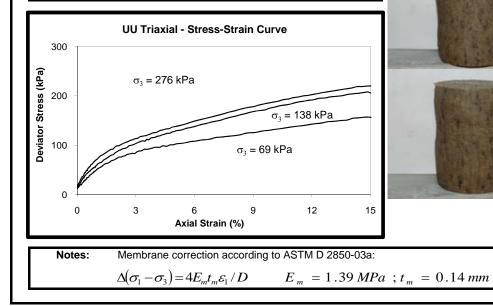


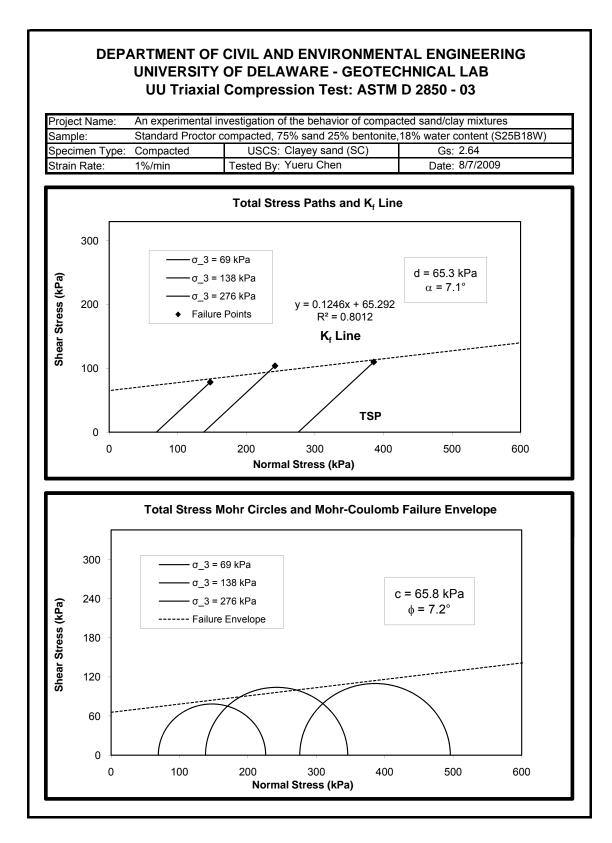

| Project Name:  | An experimental in | An experimental investigation of the behavior of compacted sand/clay mixtures |                |  |  |  |  |  |  |  |
|----------------|--------------------|-------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|--|
| Sample:        | Standard Proctor c | ndard Proctor compacted, 75% sand 25% bentonite, 16% water content (S25B16W)  |                |  |  |  |  |  |  |  |
| Specimen Type: | Compacted          | USCS: Clayey sand (SC)                                                        | Gs: 2.64       |  |  |  |  |  |  |  |
| Strain Rate:   | 1%/min             | Tested By: Yueru Chen                                                         | Date: 8/6/2009 |  |  |  |  |  |  |  |

| Sample No.                |       | Trimming |       | Specimen |        |        |  |
|---------------------------|-------|----------|-------|----------|--------|--------|--|
| Sample No.                | 1     | 2        | 3     | 1        | 2      | 3      |  |
| Tin No.                   | 4     | FJ-5     | 46    | 201      | 31     | 209    |  |
| Wt. of Tin (g)            | 28.8  | 28.1     | 28.9  | 28.9     | 28.4   | 28.2   |  |
| Wt. of Tin + Wet soil (g) | 118.2 | 110.3    | 113.9 | 172.1    | 174.3  | 170.0  |  |
| Wt. of Tin + Dry soil (g) | 105.3 | 98.4     | 101.7 | 151.4    | 153.1  | 149.5  |  |
| Wt. of Dry Soil (g)       | 76.50 | 70.30    | 72.80 | 122.50   | 124.70 | 121.30 |  |
| Wt. of Water (g)          | 12.90 | 11.90    | 12.20 | 20.70    | 21.20  | 20.50  |  |
| Water Content (%)         | 16.86 | 16.93    | 16.76 | 16.90    | 17.00  | 16.90  |  |
| Average Water Content (%) |       | 16.8     |       |          | 16.9   |        |  |

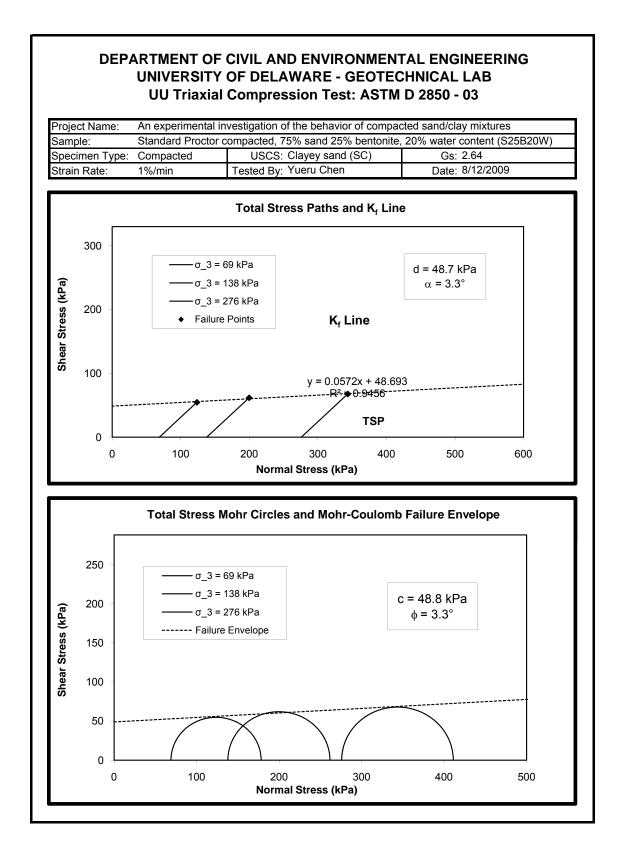
| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.09  | 7.16   | 7.10   |
| Average Diameter, D (cm)             | 3.51  | 3.56   | 3.52   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.50 | 17.21  | 17.25  |
| Initial Void ratio                   | 0.48  | 0.50   | 0.50   |
| Saturation (%)                       | 0.93  | 0.89   | 0.89   |
| Strain at Failure (%)                | 14.81 | 14.82  | 14.83  |
| Max Deviator Stress (kPa)            | 233.3 | 289.3  | 355.3  |
| Membrane Correction (kPa)            | 3.3   | 3.2    | 3.3    |
| Corrected Deviator Stress (kPa)      | 230.0 | 286.0  | 352.0  |
| Corrected Major Stress (kPa)         | 298.9 | 423.9  | 627.8  |







| DEP/           | ARTMENT OF<br>UNIVERSITY<br>UU Triaxial | OF DELA         | WARE -                                                    | GEOTEC      | CHNICAL       | LAB         | G      |
|----------------|-----------------------------------------|-----------------|-----------------------------------------------------------|-------------|---------------|-------------|--------|
| Project Name:  | An experimental in                      | nvestigation of | of the behavi                                             | or of compa | cted sand/cla | ay mixtures |        |
| Sample:        | Standard Proctor                        | compacted, 7    | ompacted, 75% sand 25% bentonite, 18% water content (S25B |             |               |             | 5B18W) |
| Specimen Type: | Compacted                               | USCS:           | Clayey san                                                | d (SC)      | Gs:           | 2.64        |        |
| Strain Rate:   | 1%/min                                  | Tested By:      | Yueru Cher                                                | ו           | Date:         | 8/7/2009    |        |
| 0              | a la Nia                                |                 | Trimming                                                  |             |               | Specimen    |        |
| Sample No.     |                                         | 1               | 2                                                         | 3           | 1             | 2           | 3      |
| Tin No.        |                                         | 4               | FJ-5                                                      | 46          | 209           | 31          | 201    |
| M/t of Tip (a) |                                         | 00.7            | 00                                                        | 20.0        | 00.4          | 00.0        | 00.0   |

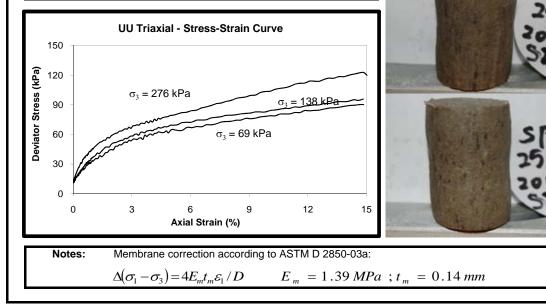
| Tin No.                   | 4     | FJ-5  | 46    | 209    | 31     | 201    |
|---------------------------|-------|-------|-------|--------|--------|--------|
| Wt. of Tin (g)            | 28.7  | 28    | 28.9  | 28.1   | 28.3   | 28.9   |
| Wt. of Tin + Wet soil (g) | 92.1  | 121.1 | 104.4 | 171.1  | 170.4  | 170.6  |
| Wt. of Tin + Dry soil (g) | 82.1  | 106.4 | 92.5  | 147.8  | 148.1  | 147.8  |
| Wt. of Dry Soil (g)       | 53.40 | 78.40 | 63.60 | 119.70 | 119.80 | 118.90 |
| Wt. of Water (g)          | 10.00 | 14.70 | 11.90 | 23.30  | 22.30  | 22.80  |
| Water Content (%)         | 18.73 | 18.75 | 18.71 | 19.47  | 18.61  | 19.18  |
| Average Water Content (%) |       | 18.7  |       |        | 19.1   |        |

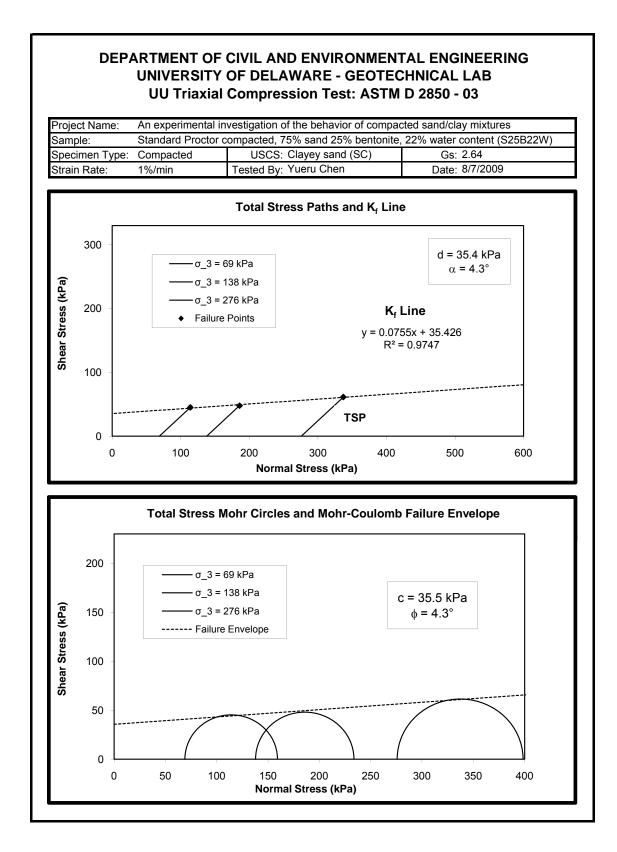

N S

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.13  | 7.11   | 7.14   |
| Average Diameter, D (cm)             | 3.52  | 3.54   | 3.54   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 16.89 | 16.76  | 16.64  |
| Initial Void ratio                   | 0.53  | 0.54   | 0.56   |
| Saturation (%)                       | 0.96  | 0.90   | 0.91   |
| Strain at Failure (%)                | 14.82 | 14.85  | 15.01  |
| Max Deviator Stress (kPa)            | 160.3 | 211.2  | 223.3  |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 157.0 | 208.0  | 220.0  |
| Corrected Major Stress (kPa)         | 226.0 | 345.9  | 495.8  |





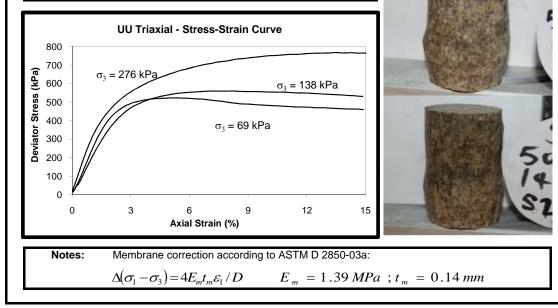

| Project Name: An experimenta         |                                              |                      |        |           |                |       |
|--------------------------------------|----------------------------------------------|----------------------|--------|-----------|----------------|-------|
| Sample: Standard Proct               |                                              |                      |        | 20% water | content (S25   | B20W) |
| Specimen Type: Compacted             |                                              | Clayey sand          |        |           | 2.64           |       |
| Strain Rate: 1%/min                  | Tested By:                                   | Yueru Chen           |        | Date:     | 8/12/2009      |       |
|                                      |                                              | Trimming             |        |           | Specimen       |       |
| Sample No.                           | 1                                            | 2                    | 3      | 1         | 2              | 3     |
| Tin No.                              | FJ-1                                         | 59                   | 410    | majid     | B14            | 2010  |
| Wt. of Tin (g)                       | 28                                           | 28.3                 | 28.4   | 28.7      | 29.1           | 28.6  |
| Wt. of Tin + Wet soil (g)            | 113.1                                        | 120.3                | 77.1   | 168.1     | 166.5          | 166.4 |
| Wt. of Tin + Dry soil (g)            | 98.6                                         | 104.6                | 68.8   | 143.9     | 142.9          | 142.7 |
| Wt. of Dry Soil (g)                  | 70.60                                        | 76.30                | 40.40  | 115.20    | 113.80         | 114.1 |
| Wt. of Water (g)                     | 14.50                                        | 15.70                | 8.30   | 24.20     | 23.60          | 23.70 |
| Water Content (%)                    | 20.54                                        | 20.58                | 20.54  | 21.01     | 20.74          | 20.77 |
| Average Water Content (%)            |                                              | 20.6                 |        |           | 20.8           |       |
| Sample No.                           | 1                                            | 2                    | 3      | 2         |                |       |
| Cell Pressure (kPa)                  | 68.95                                        | 137.90               | 275.79 |           | <b>Wheeler</b> | C     |
| Average Height, L (cm)               | 7.12                                         | 7.07                 | 7.12   |           |                | 122   |
| Average Diameter, D (cm)             | 3.53                                         | 3.54                 | 3.53   | 1000      |                | 1221  |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 16.25                                        | 16.00                | 16.09  |           |                | 200   |
| Initial Void ratio                   | 0.59                                         | 0.62                 | 0.61   |           |                | 15    |
| Saturation (%)                       | 0.93                                         | 0.89                 | 0.90   | _         |                | à     |
| Strain at Failure (%)                | 14.82                                        | 14.82                | 14.85  | - Carl    | N. Land        |       |
| Max Deviator Stress (kPa)            | 112.5                                        | 127.0                | 138.8  |           |                |       |
| Membrane Correction (kPa)            | 3.3                                          | 3.3                  | 3.3    |           | A DESTRUCT     | 2     |
| Corrected Deviator Stress (kPa       | ) 109.2                                      | 123.7                | 135.5  |           | ALL CHART      | S     |
| Corrected Major Stress (kPa)         | 178.2                                        | 261.6                | 411.3  |           |                | 251   |
| $\sigma_3 = 276 \text{ kPa}$         | Stress-Strain C<br>$\sigma_3 = 69 \text{ k}$ | 0 <sub>3</sub> = 138 | kPa    |           |                | 2020  |
| 0 3<br>Axi                           | 6 9<br>al Strain (%)                         | 12                   | 15     |           |                |       |

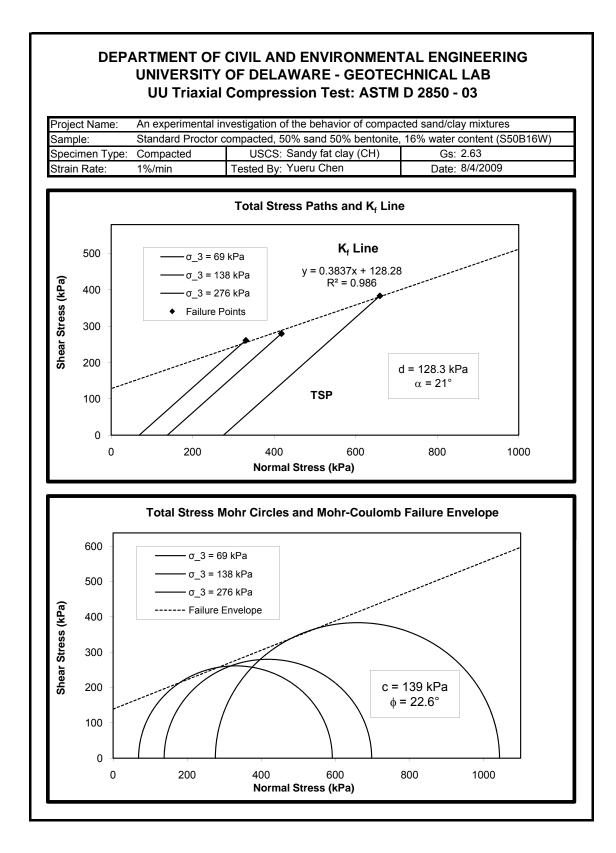



| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures   |                        |                |  |  |  |
|----------------|---------------------------------------------------------------------------------|------------------------|----------------|--|--|--|
| Sample:        | Standard Proctor compacted, 75% sand 25% bentonite, 22% water content (S25B22W) |                        |                |  |  |  |
| Specimen Type: | Compacted                                                                       | USCS: Clayey sand (SC) | Gs: 2.64       |  |  |  |
| Strain Rate:   | 1%/min                                                                          | Tested By: Yueru Chen  | Date: 8/7/2009 |  |  |  |

| Sample No.                |       | Trimming |       | Specimen |        |        |
|---------------------------|-------|----------|-------|----------|--------|--------|
| Sample No.                | 1     | 2        | 3     | 1        | 2      | 3      |
| Tin No.                   | B8    | 213      | 1     | 7        | 101    | B-19   |
| Wt. of Tin (g)            | 28.4  | 27.9     | 28.1  | 28.2     | 28.0   | 27.4   |
| Wt. of Tin + Wet soil (g) | 71.8  | 93.7     | 84.5  | 165.0    | 165.3  | 164.8  |
| Wt. of Tin + Dry soil (g) | 63.8  | 81.7     | 74.1  | 139.6    | 139.7  | 139.2  |
| Wt. of Dry Soil (g)       | 35.40 | 53.80    | 46.00 | 111.40   | 111.70 | 111.80 |
| Wt. of Water (g)          | 8.00  | 12.00    | 10.40 | 25.40    | 25.60  | 25.60  |
| Water Content (%)         | 22.60 | 22.30    | 22.61 | 22.80    | 22.92  | 22.90  |
| Average Water Content (%) |       | 22.5     |       |          | 22.9   |        |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.11  | 7.12   | 7.10   |
| Average Diameter, D (cm)             | 3.53  | 3.54   | 3.52   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 15.73 | 15.63  | 15.87  |
| Initial Void ratio                   | 0.65  | 0.66   | 0.63   |
| Saturation (%)                       | 0.93  | 0.92   | 0.96   |
| Strain at Failure (%)                | 14.84 | 14.83  | 14.84  |
| Max Deviator Stress (kPa)            | 93.5  | 99.0   | 126.0  |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 90.2  | 95.8   | 122.7  |
| Corrected Major Stress (kPa)         | 159.1 | 233.7  | 398.5  |

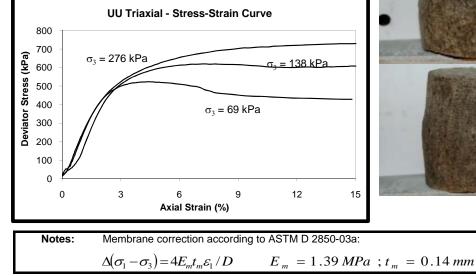


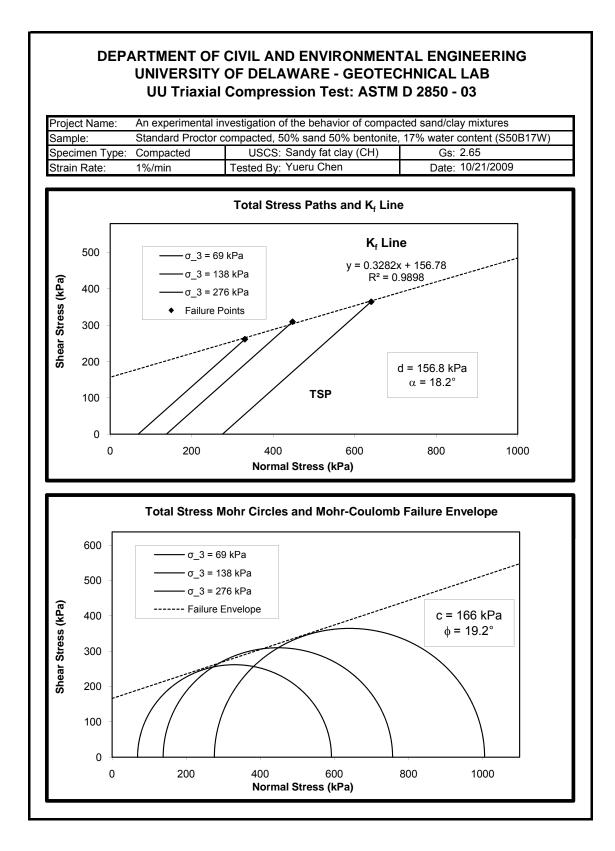

| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures   |                           |                |  |  |  |
|----------------|---------------------------------------------------------------------------------|---------------------------|----------------|--|--|--|
| Sample:        | Standard Proctor compacted, 50% sand 50% bentonite, 16% water content (S50B16W) |                           |                |  |  |  |
| Specimen Type: | Compacted                                                                       | USCS: Sandy fat clay (CH) | Gs: 2.63       |  |  |  |
| Strain Rate:   | 1%/min                                                                          | Tested By: Yueru Chen     | Date: 8/4/2009 |  |  |  |

| Somala No.                |       | Trimming |      | Specimen |       |       |
|---------------------------|-------|----------|------|----------|-------|-------|
| Sample No.                | 1     | 2        | 3    | 1        | 2     | 3     |
| Tin No.                   | 46    | FJ-5     | 4    | 7        | 101   | B-19  |
| Wt. of Tin (g)            | 28.9  | 28.1     | 28.7 | 28.8     | 28.0  | 27.4  |
| Wt. of Tin + Wet soil (g) | 101.1 | 100.4    | 88.5 | 159.0    | 152.6 | 156.2 |
| Wt. of Tin + Dry soil (g) | 90.8  | 90.2     | 80.2 | 140.2    | 134.8 | 137.6 |
| Wt. of Dry Soil (g)       | 61.9  | 62.2     | 51.5 | 111.4    | 106.8 | 110.2 |
| Wt. of Water (g)          | 10.3  | 10.2     | 8.3  | 18.8     | 17.8  | 18.6  |
| Water Content (%)         | 16.6  | 16.4     | 16.1 | 16.9     | 16.7  | 16.9  |
| Average Water Content (%) |       | 16.4     |      |          | 16.8  |       |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.11  | 6.99   | 7.00   |
| Average Diameter, D (cm)             | 3.53  | 3.53   | 3.53   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 15.75 | 15.33  | 15.77  |
| Initial Void ratio                   | 0.64  | 0.68   | 0.64   |
| Saturation (%)                       | 0.70  | 0.64   | 0.70   |
| Strain at Failure (%)                | 5.00  | 8.08   | 13.58  |
| Max Deviator Stress (kPa)            | 523.9 | 561.6  | 770.1  |
| Membrane Correction (kPa)            | 1.1   | 1.8    | 3.0    |
| Corrected Deviator Stress (kPa)      | 522.8 | 559.8  | 767.1  |
| Corrected Major Stress (kPa)         | 591.7 | 697.7  | 1042.9 |



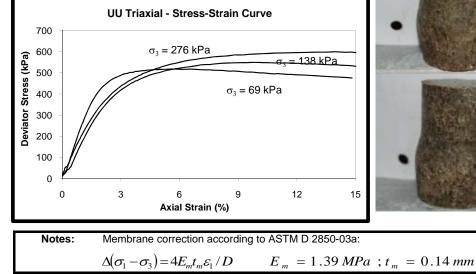




| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures   |                           |                  |  |  |  |
|----------------|---------------------------------------------------------------------------------|---------------------------|------------------|--|--|--|
| Sample:        | Standard Proctor compacted, 50% sand 50% bentonite, 17% water content (S50B17W) |                           |                  |  |  |  |
| Specimen Type: | Compacted                                                                       | USCS: Sandy fat clay (CH) | Gs: 2.65         |  |  |  |
| Strain Rate:   | 1%/min                                                                          | Tested By: Yueru Chen     | Date: 10/21/2009 |  |  |  |

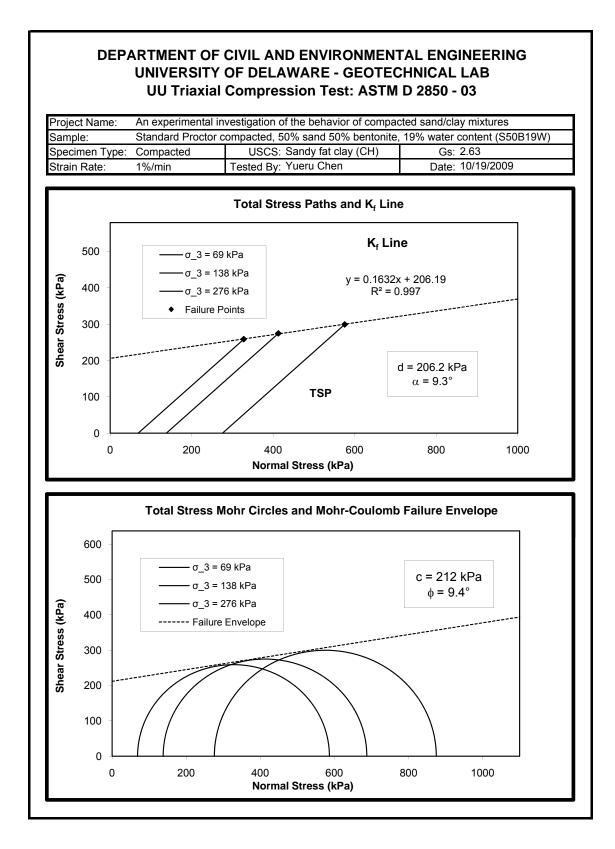
| Sample No.                |       | Trimming |      |       | Specimen |       |  |
|---------------------------|-------|----------|------|-------|----------|-------|--|
| Sample No.                | 1     | 2        | 3    | 1     | 2        | 3     |  |
| Tin No.                   | majid | 59       | 211  | 2010  | FJ-3     | Y-1   |  |
| Wt. of Tin (g)            | 28.7  | 28.3     | 28.2 | 28.6  | 29.1     | 28.3  |  |
| Wt. of Tin + Wet soil (g) | 89.4  | 89.2     | 77.4 | 161.0 | 160.8    | 156.5 |  |
| Wt. of Tin + Dry soil (g) | 80.7  | 80.6     | 70.1 | 141.9 | 141.8    | 137.9 |  |
| Wt. of Dry Soil (g)       | 52.0  | 52.3     | 41.9 | 113.3 | 112.7    | 109.6 |  |
| Wt. of Water (g)          | 8.7   | 8.6      | 7.3  | 19.1  | 19.0     | 18.6  |  |
| Water Content (%)         | 16.7  | 16.4     | 17.4 | 16.9  | 16.9     | 17.0  |  |
| Average Water Content (%) |       | 16.9     |      |       | 16.9     |       |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.12  | 7.06   | 7.02   |
| Average Diameter, D (cm)             | 3.52  | 3.52   | 3.55   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 16.08 | 16.14  | 15.52  |
| Initial Void ratio                   | 0.62  | 0.61   | 0.68   |
| Saturation (%)                       | 0.72  | 0.73   | 0.67   |
| Strain at Failure (%)                | 4.34  | 7.31   | 15.02  |
| Max Deviator Stress (kPa)            | 524.0 | 620.8  | 732.8  |
| Membrane Correction (kPa)            | 1.0   | 1.6    | 3.3    |
| Corrected Deviator Stress (kPa)      | 523.0 | 619.2  | 729.5  |
| Corrected Major Stress (kPa)         | 592.0 | 757.1  | 1005.2 |
|                                      |       |        |        |





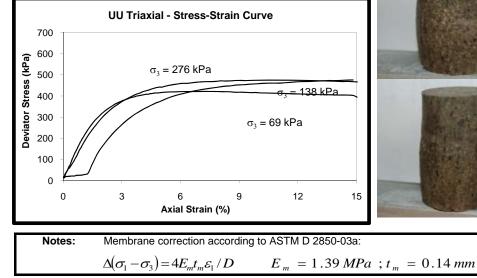




| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures   |                           |                  |  |  |  |
|----------------|---------------------------------------------------------------------------------|---------------------------|------------------|--|--|--|
| Sample:        | Standard Proctor compacted, 50% sand 50% bentonite, 19% water content (S50B19W) |                           |                  |  |  |  |
| Specimen Type: | Compacted                                                                       | USCS: Sandy fat clay (CH) | Gs: 2.63         |  |  |  |
| Strain Rate:   | 1%/min                                                                          | Tested By: Yueru Chen     | Date: 10/19/2009 |  |  |  |

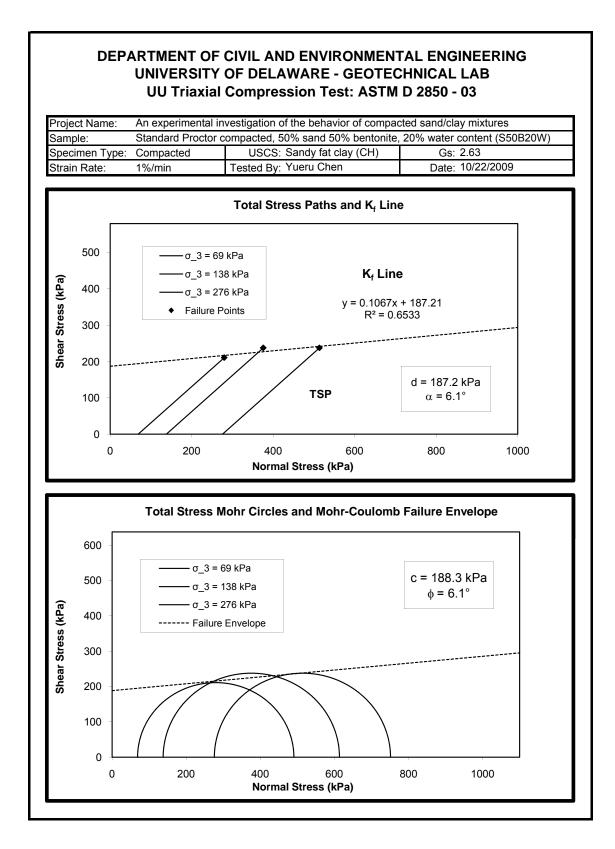
| Sample No                 |      | Trimming |      | Specimen |       |       |
|---------------------------|------|----------|------|----------|-------|-------|
| Sample No.                | 1    | 2        | 3    | 1        | 2     | 3     |
| Tin No.                   | B8   | 213      | 1    | B-19     | 101   | 7     |
| Wt. of Tin (g)            | 28.5 | 27.9     | 28.1 | 27.4     | 28.0  | 28.2  |
| Wt. of Tin + Wet soil (g) | 96.6 | 85.7     | 86.4 | 157.1    | 159.4 | 156.9 |
| Wt. of Tin + Dry soil (g) | 85.5 | 76.4     | 76.8 | 136.5    | 138.2 | 135.9 |
| Wt. of Dry Soil (g)       | 57.0 | 48.5     | 48.7 | 109.1    | 110.2 | 107.7 |
| Wt. of Water (g)          | 11.1 | 9.3      | 9.6  | 20.6     | 21.2  | 21.0  |
| Water Content (%)         | 19.5 | 19.2     | 19.7 | 18.9     | 19.2  | 19.5  |
| Average Water Content (%) |      | 19.5     |      |          | 19.2  |       |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 6.75  | 6.98   | 6.74   |
| Average Diameter, D (cm)             | 3.54  | 3.52   | 3.53   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 16.15 | 15.96  | 15.99  |
| Initial Void ratio                   | 0.60  | 0.62   | 0.61   |
| Saturation (%)                       | 0.83  | 0.82   | 0.84   |
| Strain at Failure (%)                | 6.55  | 9.80   | 13.83  |
| Max Deviator Stress (kPa)            | 519.1 | 551.8  | 602.3  |
| Membrane Correction (kPa)            | 1.4   | 2.2    | 3.0    |
| Corrected Deviator Stress (kPa)      | 517.7 | 549.6  | 599.3  |
| Corrected Major Stress (kPa)         | 586.6 | 687.5  | 875.1  |





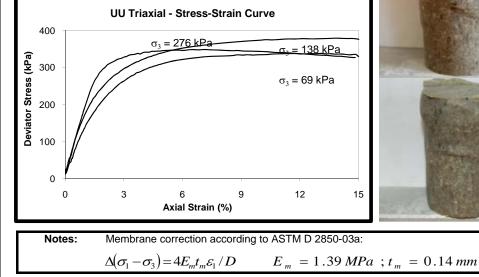




| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures   |                           |                  |  |  |  |  |
|----------------|---------------------------------------------------------------------------------|---------------------------|------------------|--|--|--|--|
| Sample:        | Standard Proctor compacted, 50% sand 50% bentonite, 20% water content (S50B20W) |                           |                  |  |  |  |  |
| Specimen Type: | Compacted                                                                       | USCS: Sandy fat clay (CH) | Gs: 2.63         |  |  |  |  |
| Strain Rate:   | 1%/min                                                                          | Tested By: Yueru Chen     | Date: 10/22/2009 |  |  |  |  |

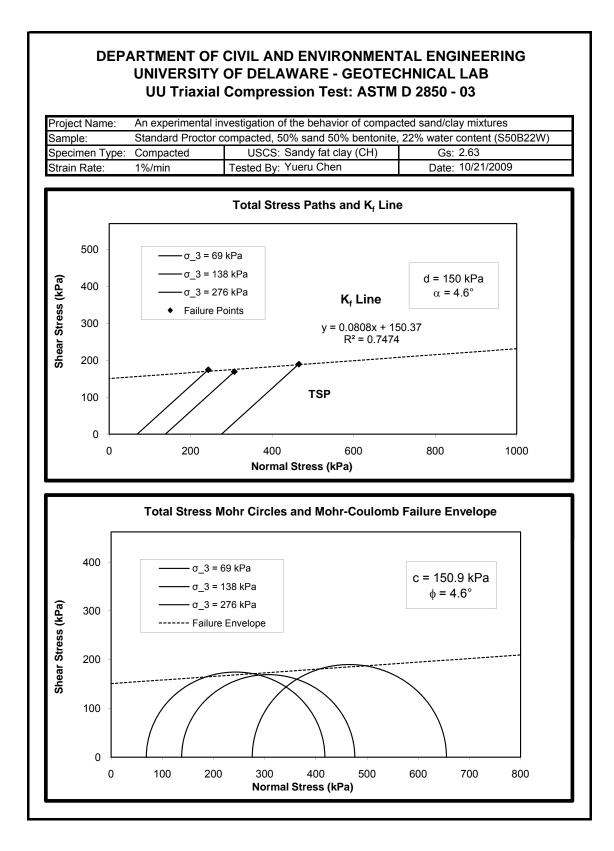
| Sample No.                | Trimming  |       |      | Specimen |       |       |
|---------------------------|-----------|-------|------|----------|-------|-------|
| Sample No.                | 1         | 2     | 3    | 1        | 2     | 3     |
| Tin No.                   | 4         | FJ-5  | 46   | 201      | 209   | 31    |
| Wt. of Tin (g)            | 28.7      | 28.0  | 28.9 | 28.9     | 28.2  | 28.4  |
| Wt. of Tin + Wet soil (g) | 109.4     | 126.8 | 90.1 | 168.0    | 165.6 | 164.7 |
| Wt. of Tin + Dry soil (g) | 95.9      | 110.2 | 79.7 | 144.1    | 142.0 | 141.1 |
| Wt. of Dry Soil (g)       | 67.2      | 82.2  | 50.8 | 115.2    | 113.8 | 112.7 |
| Wt. of Water (g)          | 13.5      | 16.6  | 10.4 | 23.9     | 23.6  | 23.6  |
| Water Content (%)         | 20.1      | 20.2  | 20.5 | 20.7     | 20.7  | 20.9  |
| Average Water Content (%) | 20.3 20.8 |       |      |          |       |       |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.13  | 7.00   | 7.04   |
| Average Diameter, D (cm)             | 3.54  | 3.53   | 3.53   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 16.12 | 16.33  | 16.03  |
| Initial Void ratio                   | 0.60  | 0.58   | 0.61   |
| Saturation (%)                       | 0.91  | 0.94   | 0.90   |
| Strain at Failure (%)                | 7.56  | 10.55  | 14.82  |
| Max Deviator Stress (kPa)            | 423.5 | 477.9  | 478.7  |
| Membrane Correction (kPa)            | 1.7   | 2.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 421.8 | 475.6  | 475.4  |
| Corrected Major Stress (kPa)         | 490.7 | 613.5  | 751.2  |







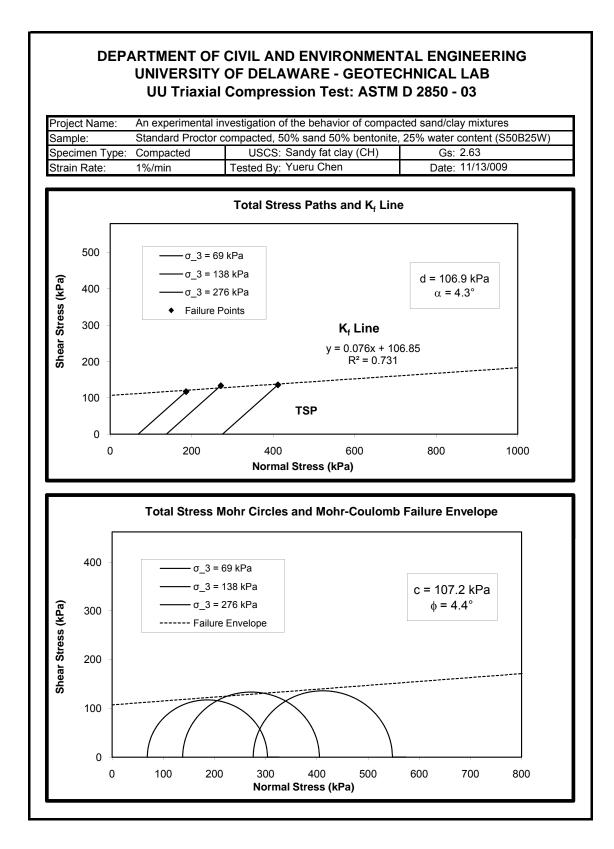


| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures   |                           |                  |  |  |  |  |
|----------------|---------------------------------------------------------------------------------|---------------------------|------------------|--|--|--|--|
| Sample:        | Standard Proctor compacted, 50% sand 50% bentonite, 22% water content (S50B22W) |                           |                  |  |  |  |  |
| Specimen Type: | Compacted                                                                       | USCS: Sandy fat clay (CH) | Gs: 2.63         |  |  |  |  |
| Strain Rate:   | 1%/min                                                                          | Tested By: Yueru Chen     | Date: 10/21/2009 |  |  |  |  |

| Sample No.                |       | Trimming |       |       | Specimen |       |  |  |
|---------------------------|-------|----------|-------|-------|----------|-------|--|--|
| Sample No.                | 1     | 2        | 3     | 1     | 2        | 3     |  |  |
| Tin No.                   | 4     | FJ-5     | 46    | 201   | 209      | 31    |  |  |
| Wt. of Tin (g)            | 28.7  | 28.0     | 28.9  | 28.9  | 28.2     | 28.4  |  |  |
| Wt. of Tin + Wet soil (g) | 105.0 | 110.5    | 100.0 | 167.3 | 167.4    | 166.1 |  |  |
| Wt. of Tin + Dry soil (g) | 91.0  | 94.6     | 86.7  | 141.5 | 140.9    | 140.5 |  |  |
| Wt. of Dry Soil (g)       | 62.3  | 66.6     | 57.8  | 112.6 | 112.7    | 112.1 |  |  |
| Wt. of Water (g)          | 14.0  | 15.9     | 13.3  | 25.8  | 26.5     | 25.6  |  |  |
| Water Content (%)         | 22.5  | 23.9     | 23.0  | 22.9  | 23.5     | 22.8  |  |  |
| Average Water Content (%) |       | 23.1     |       |       | 23.1     |       |  |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.14  | 7.14   | 7.15   |
| Average Diameter, D (cm)             | 3.53  | 3.55   | 3.52   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 15.78 | 15.64  | 15.78  |
| Initial Void ratio                   | 0.64  | 0.65   | 0.63   |
| Saturation (%)                       | 0.95  | 0.95   | 0.95   |
| Strain at Failure (%)                | 7.04  | 13.09  | 13.82  |
| Max Deviator Stress (kPa)            | 350.2 | 341.2  | 382.5  |
| Membrane Correction (kPa)            | 1.5   | 2.9    | 3.0    |
| Corrected Deviator Stress (kPa)      | 348.6 | 338.3  | 379.4  |
| Corrected Major Stress (kPa)         | 417.6 | 476.2  | 655.2  |

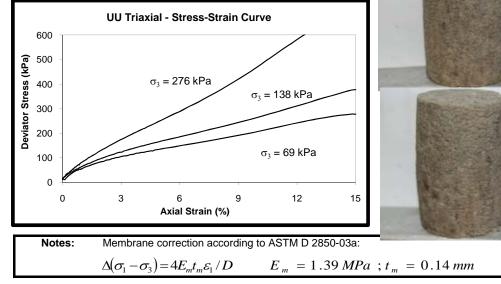




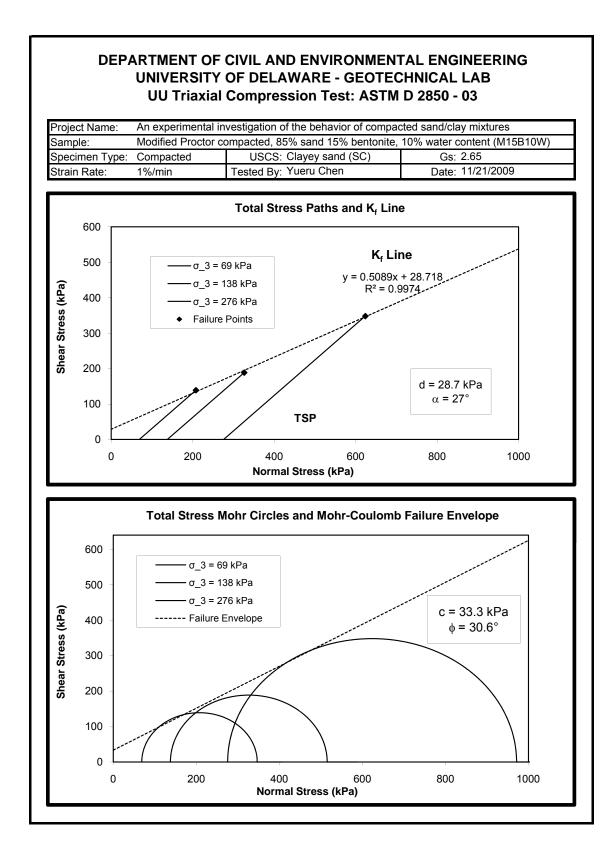



| Project Name: An experimental in<br>Sample: Standard Proctor of |               |                        |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25W)  |
|-----------------------------------------------------------------|---------------|------------------------|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Specimen Type: Compacted                                        |               | Sandy fat c            |                | Gs:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - /   |
| Strain Rate: 1%/min                                             |               | Yueru Cher             |                | Date:              | 11/13/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|                                                                 | ,             |                        |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Sample No.                                                      |               | Trimming               |                |                    | Specimen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| Sample 140.                                                     | 1             | 2                      | 3              | 1                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3     |
| Tin No.                                                         | 209           | FJ-3                   | 211            | B19                | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7     |
| Wt. of Tin (g)                                                  | 28.2          | 29.1                   | 28.2           | 27.3               | 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.1  |
| Wt. of Tin + Wet soil (g)                                       | 119.4         | 93.3                   | 122.8          | 160.2              | 161.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 165.6 |
| Wt. of Tin + Dry soil (g)                                       | 100.8         | 80.5                   | 103.7          | 133.1              | 134.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 137.8 |
| Wt. of Dry Soil (g)                                             | 72.6          | 51.4                   | 75.5           | 105.8              | 106.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.7 |
| Wt. of Water (g)                                                | 18.6          | 12.8                   | 19.1           | 27.1               | 26.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.8  |
| Water Content (%)                                               | 25.6          | 24.9                   | 25.3           | 25.6               | 25.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.3  |
| Average Water Content (%)                                       |               | 25.3                   |                |                    | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| Sample No.                                                      | 4             | 2                      | 2              | -                  | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Cell Pressure (kPa)                                             | 1             | 2<br>137.90            | 3              |                    | Hat Parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E.    |
| Average Height, L (cm)                                          | 68.95<br>6.95 |                        | 275.79<br>7.16 |                    | ALCONTRACT OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24    |
| Average Diameter, D (cm)                                        | 3.54          | 6.92<br>3.55           | 3.53           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                 | 15.17         | 15.21                  | 15.36          | 6                  | ALC: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100   |
| Dry Unit Weight (kN/m <sup>3</sup> )<br>Initial Void ratio      | 0.70          | 0.70                   | 0.68           | - X                | A Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Saturation (%)                                                  | 0.70          | 0.70                   | 0.88           |                    | The state of the s |       |
| Strain at Failure (%)                                           | 13.35         | 11.83                  | 14.80          |                    | De antes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| Max Deviator Stress (kPa)                                       | 237.5         | 269.6                  | 275.0          | No.                | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1     |
| Membrane Correction (kPa)                                       | 2.9           | 203.0                  | 3.3            | Contraction of the | ALC THE PARTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Corrected Deviator Stress (kPa)                                 | 234.5         | 267.0                  | 271.8          | 1                  | and the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2     |
| Corrected Major Stress (kPa)                                    | 303.5         | 404.9                  | 547.5          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                 | 000.0         | 101.0                  | 011.0          |                    | Photo A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| UU Triaxial - Stre                                              | ess-Strain C  | urve                   |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-    |
| $\sigma_{3} = 276$                                              | ∂ kPa         |                        |                | 5                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4     |
| SSS                                                             |               | $\sigma_3 = 138$       | kPa —          | AND MCCO           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| o 300 -                                                         |               | σ <sub>3</sub> = 69 kP | a              |                    | P. Post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| σ <sub>3</sub> = 276           200           100                |               |                        |                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
| 0 3 6                                                           | 9             | 12                     | 15             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B     |

 $\Delta(\sigma_1 - \sigma_3) = 4E_m t_m \varepsilon_1 / D \qquad E_m = 1.39 MPa \; ; t_m = 0.14 mm$ 

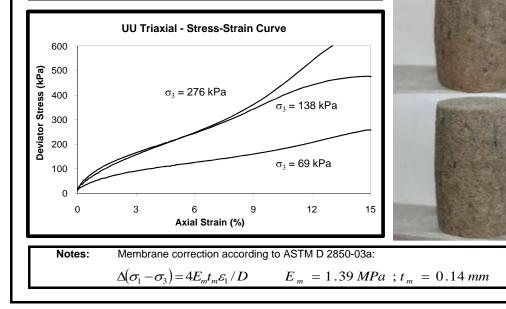

Membrane correction according to ASTM D 2850-03a:

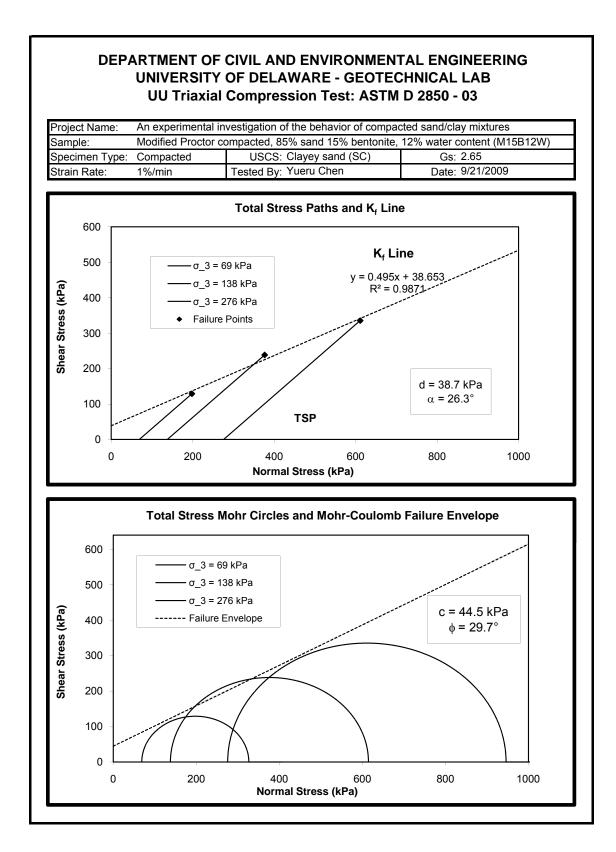
Notes:




| DEI            | PARTMENT OF<br>UNIVERSITY<br>UU Triaxia | OF DEL          | AWARE -       | GEOTE        | CHNICAL       | LAB                | G     |  |
|----------------|-----------------------------------------|-----------------|---------------|--------------|---------------|--------------------|-------|--|
| Project Name:  | An experimental ir                      | nvestigation of | of the behavi | or of compa  | cted sand/cla | ay mixtures        |       |  |
| Sample:        | Modified Proctor of                     | ompacted, 8     | 5% sand 159   | % bentonite, | 10% water of  | content (M15E      | 310W) |  |
| Specimen Type  | : Compacted                             | USCS:           | Clayey san    | d (SC)       | Gs:           | 2.65               |       |  |
| Strain Rate:   | 1%/min                                  | Tested By:      | Yueru Cher    | ۱            | Date:         | 11/21/2009         |       |  |
| Sor            | Sample No. Trimming Specimen            |                 |               |              |               |                    |       |  |
| Sal            | liple No.                               | 1               | 2             | 3            | 1             | 2                  | 3     |  |
| Tin No.        |                                         | 410             | 4             | FJ1          | B8            | 213                | 1     |  |
| Wt. of Tin (g) |                                         | 28.4            | 28.7          | 28           | 28.5          | 27.9               | 28.1  |  |
| Wt. of Tin + V |                                         | 80.9            | 112.3         | 84.8         | 163.5         | 161.2              | 163.8 |  |
| Wt. of Tin + D | Dry soil (g)                            | 76              | 104.3         | 79.5         | 150.5         | 148.6              | 150.8 |  |
| Wt. of Dry So  | il (g)                                  | 47.60           | 75.60         | 51.50        | 122.0         | 120.7              | 122.7 |  |
| Wt. of Water   | (g)                                     | 4.90            | 8.00          | 5.30         | 13.0          | 12.6               | 13.0  |  |
| Water Conter   | nt (%)                                  | 10.29           | 10.58         | 10.29        | 10.7          | 10.4               | 10.6  |  |
| Average Wate   | er Content (%)                          |                 | 10.4          |              |               | 10.6               |       |  |
|                |                                         |                 |               |              | 6             | The real of        |       |  |
|                | mple No.                                | 1               | 2             | 3            | 1             | and the second     | M     |  |
| Cell Pressure  |                                         | 68.95           | 137.90        | 275.79       |               |                    | 100   |  |
| Average Heig   |                                         | 7.13            | 7.13          | 7.11         |               |                    | 15 P  |  |
| Average Dian   | neter, D (cm)                           | 3.50            | 3.53          | 3.52         |               | State of the state | 10    |  |
| <b>D</b>       | 3.                                      | 47 45           | 40.07         | 47 40        |               |                    |       |  |

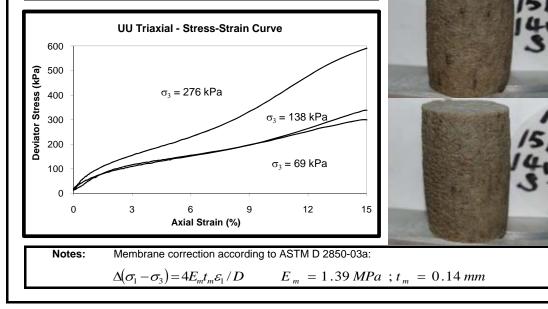
| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.13  | 7.13   | 7.11   |
| Average Diameter, D (cm)             | 3.50  | 3.53   | 3.52   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.45 | 16.97  | 17.40  |
| Initial Void ratio                   | 0.49  | 0.53   | 0.49   |
| Saturation (%)                       | 0.58  | 0.52   | 0.57   |
| Strain at Failure (%)                | 15.03 | 15.01  | 15.00  |
| Max Deviator Stress (kPa)            | 281.3 | 380.6  | 699.1  |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 278.0 | 377.3  | 695.8  |
| Corrected Major Stress (kPa)         | 347.0 | 515.2  | 971.6  |

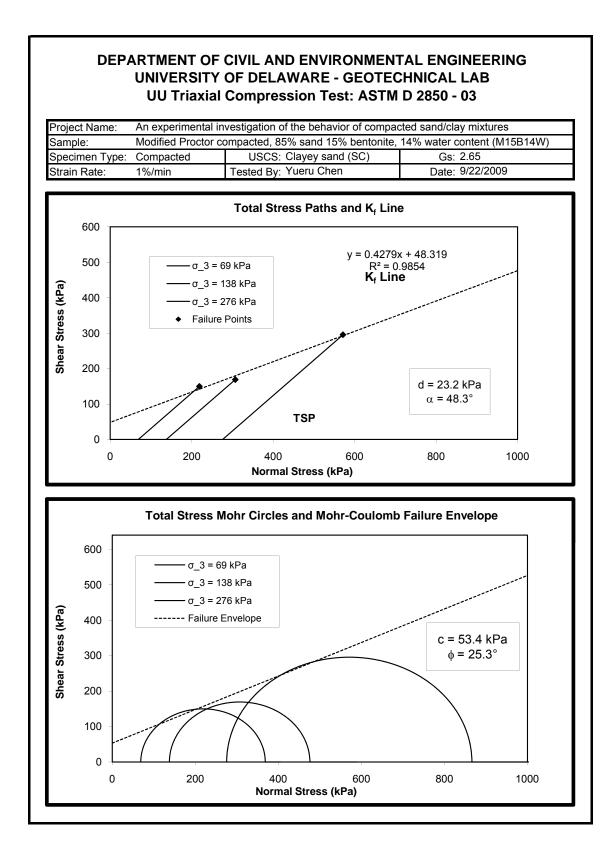





| DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING<br>UNIVERSITY OF DELAWARE - GEOTECHNICAL LAB |                     |                 |               |              |                 |               |       |  |
|------------------------------------------------------------------------------------------------|---------------------|-----------------|---------------|--------------|-----------------|---------------|-------|--|
|                                                                                                |                     |                 |               |              |                 |               |       |  |
|                                                                                                | UU Triaxia          | I Compre        | ssion Te      | st: ASTN     | I D 2850        | - 03          |       |  |
| Project Name:                                                                                  | An experimental in  | nvestigation of | of the behavi | or of compa  | cted sand/cla   | ay mixtures   |       |  |
| Sample:                                                                                        | Modified Proctor of | compacted, 8    | 5% sand 159   | % bentonite, | 12% water of    | content (M15B | 512W) |  |
| Specimen Type:                                                                                 | Compacted           | USCS:           | Clayey san    | d (SC)       | Gs:             | 2.65          |       |  |
| Strain Rate:                                                                                   | 1%/min              | Tested By:      | Yueru Cher    | า            | Date: 9/21/2009 |               |       |  |
|                                                                                                |                     | -               |               |              | -               |               |       |  |
| Sam                                                                                            | ple No.             | Trimming        |               |              | Specimen        |               |       |  |
| Can                                                                                            |                     | 1               | 2             | 3            | 1               | 2             | 3     |  |
| Tin No.                                                                                        |                     | B8              | 213           | 1            | B19             | 101           | 7     |  |
| Wt. of Tin (g)                                                                                 |                     | 28.5            | 27.9          | 28.1         | 27.4            | 28            | 28.2  |  |
| Wt. of Tin + We                                                                                | et soil (g)         | 100.5           | 105.5         | 109.1        | 164.4           | 170.0         | 166.8 |  |
| Wt. of Tin + Dr                                                                                | y soil (g)          | 92.7            | 97.1          | 100.5        | 149.6           | 154.7         | 151.9 |  |
| Wt. of Dry Soil                                                                                | (g)                 | 64.20           | 69.20         | 72.40        | 122.2           | 126.7         | 123.7 |  |
| Wt. of Water (g                                                                                | a)                  | 7.80            | 8.40          | 8.60         | 14.8            | 15.3          | 14.9  |  |
| Water Content                                                                                  | (%)                 | 12.15           | 12.14         | 11.88        | 12.1            | 12.1          | 12.0  |  |
| Average Water                                                                                  | r Content (%)       |                 | 12.1          |              |                 | 12.1          |       |  |

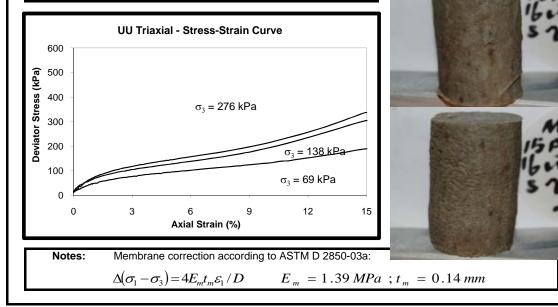

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.13  | 7.15   | 7.14   |
| Average Diameter, D (cm)             | 3.50  | 3.53   | 3.50   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.48 | 17.76  | 17.67  |
| Initial Void ratio                   | 0.49  | 0.46   | 0.47   |
| Saturation (%)                       | 0.66  | 0.69   | 0.68   |
| Strain at Failure (%)                | 14.83 | 14.81  | 15.03  |
| Max Deviator Stress (kPa)            | 261.1 | 480.2  | 674.0  |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 257.8 | 477.0  | 670.6  |
| Corrected Major Stress (kPa)         | 326.8 | 614.9  | 946.4  |

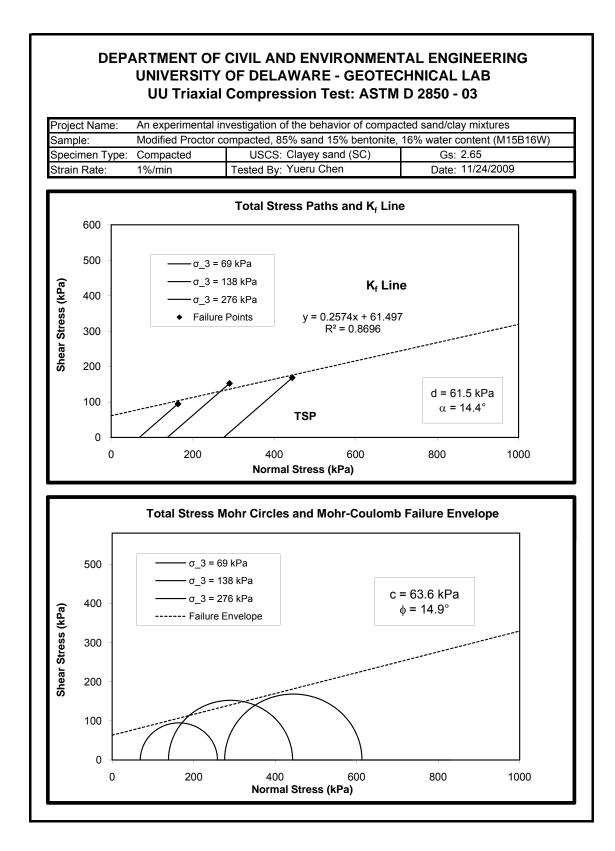





|                          | ARTMENT O<br>UNIVERSIT<br>UU Triaxia | Y OF DELA<br>al Compre | AWARE -<br>ssion Te                                                                  | GEOTE<br>st: ASTN | CHNICAL<br>I D 2850 · | LAB<br>03                   | G       |  |
|--------------------------|--------------------------------------|------------------------|--------------------------------------------------------------------------------------|-------------------|-----------------------|-----------------------------|---------|--|
| Project Name:<br>Sample: | An experimental<br>Modified Proctor  | 0                      |                                                                                      |                   |                       | ,                           | 814\\/\ |  |
| · · · ·                  |                                      | USCS:                  | ompacted, 85% sand 15% bentonite,<br>USCS: Clayey sand (SC)<br>Tested By: Yueru Chen |                   |                       | Gs: 2.65<br>Date: 9/22/2009 |         |  |
| Sample No.               |                                      |                        | Trimming                                                                             |                   | Specimen              |                             |         |  |
| Tin No.                  |                                      | 1 4                    | 2<br>FJ5                                                                             | 3<br>46           | 1<br>201              | 2<br>209                    | 3<br>31 |  |
| Wt. of Tin (g)           |                                      | 28.7                   | 28                                                                                   | 28.9              | 28.9                  | 28.2                        | 28.4    |  |
| Wt. of Tin + We          | t soil (g)                           | 113.6                  | 102.9                                                                                | 121.9             | 172.5                 | 169.5                       | 168.9   |  |
| Wt. of Tin + Dry         | v soil (g)                           | 103.2                  | 93.8                                                                                 | 110.7             | 154.8                 | 152.2                       | 151.6   |  |
| Wt. of Dry Soil          | (g)                                  | 74.50                  | 65.80                                                                                | 81.80             | 125.9                 | 124.0                       | 123.2   |  |
| Wt. of Water (g)         | /t. of Water (g) 10.40 9.10 11.20    |                        | 11.20                                                                                | 17.7              | 17.3                  | 17.3                        |         |  |
| Water Content            | (%)                                  | 13.96                  | 13.83                                                                                | 13.69             | 14.1                  | 14.0                        | 14.0    |  |
| Average Water            | Content (%)                          |                        | 13.8                                                                                 |                   |                       | 14.0                        |         |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.12  | 7.13   | 7.13   |
| Average Diameter, D (cm)             | 3.51  | 3.51   | 3.47   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.93 | 17.63  | 17.92  |
| Initial Void ratio                   | 0.45  | 0.47   | 0.45   |
| Saturation (%)                       | 0.83  | 0.78   | 0.83   |
| Strain at Failure (%)                | 15.03 | 15.01  | 15.00  |
| Max Deviator Stress (kPa)            | 303.1 | 341.5  | 594.0  |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 299.8 | 338.2  | 590.7  |
| Corrected Major Stress (kPa)         | 368.7 | 476.1  | 866.5  |

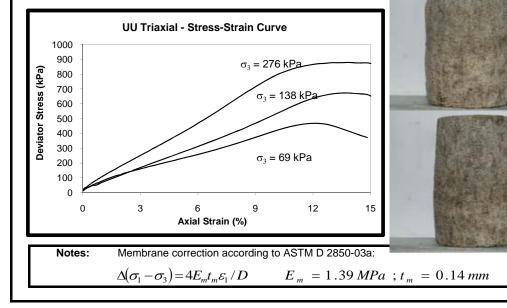


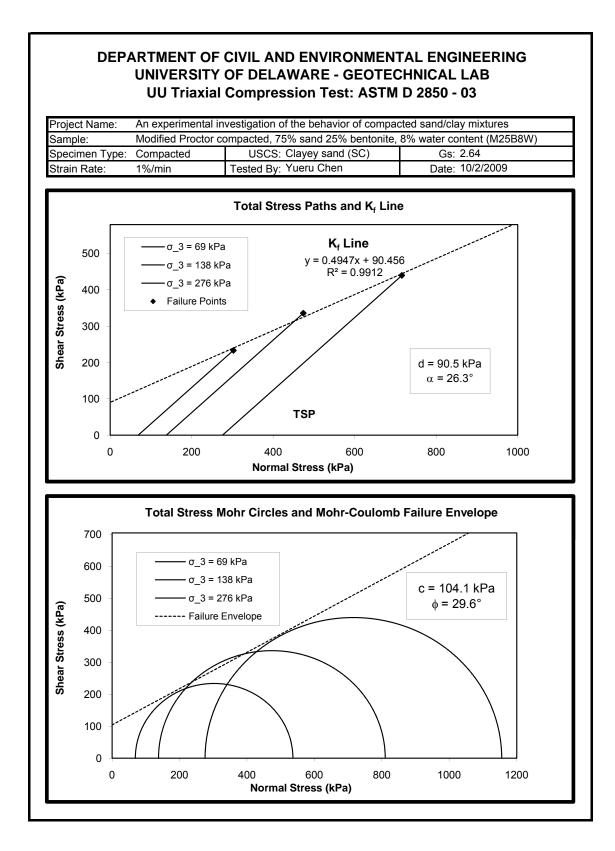




| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                                                                                 |                  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------|--|--|--|--|
| Sample:        | Modified Proctor co                                                           | Modified Proctor compacted, 85% sand 15% bentonite, 16% water content (M15B16W) |                  |  |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Clayey sand (SC)                                                          | Gs: 2.65         |  |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen                                                           | Date: 11/24/2009 |  |  |  |  |

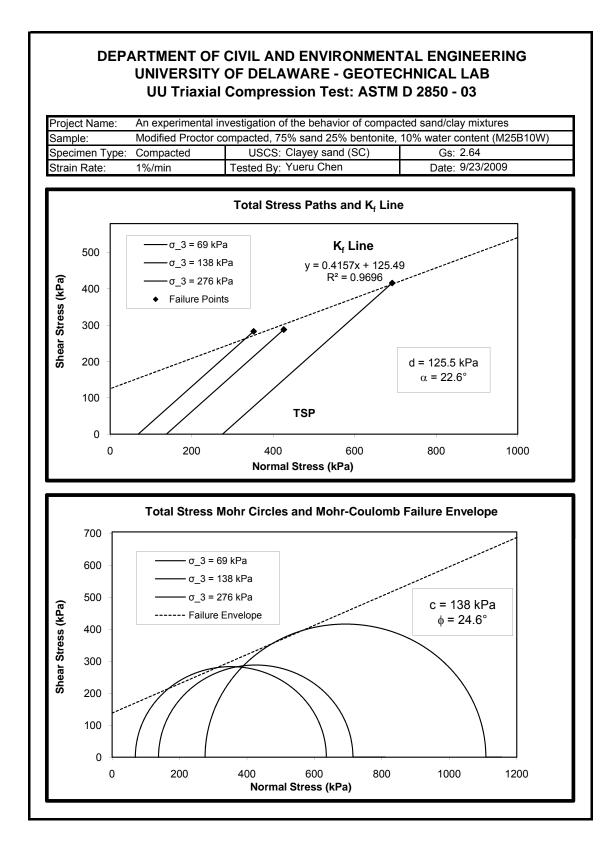
| Sample No.                |       | Trimming |       |       | Specimen |       |  |  |
|---------------------------|-------|----------|-------|-------|----------|-------|--|--|
| Sample No.                | 1     | 2        | 3     | 1     | 2        | 3     |  |  |
| Tin No.                   | 410   | 4        | FJ1   | B8    | 213      | 1     |  |  |
| Wt. of Tin (g)            | 28.4  | 28.7     | 28.1  | 28.5  | 27.9     | 28.1  |  |  |
| Wt. of Tin + Wet soil (g) | 117.3 | 117.1    | 115.8 | 171.6 | 169.7    | 169.6 |  |  |
| Wt. of Tin + Dry soil (g) | 105.1 | 105.1    | 103.8 | 151.7 | 149.8    | 149.7 |  |  |
| Wt. of Dry Soil (g)       | 76.70 | 76.40    | 75.70 | 123.2 | 121.9    | 121.6 |  |  |
| Wt. of Water (g)          | 12.20 | 12.00    | 12.00 | 19.9  | 19.9     | 19.9  |  |  |
| Water Content (%)         | 15.91 | 15.71    | 15.85 | 16.2  | 16.3     | 16.4  |  |  |
| Average Water Content (%) | 15.8  |          | 16.3  |       |          |       |  |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.12  | 7.12   | 7.14   |
| Average Diameter, D (cm)             | 3.51  | 3.50   | 3.50   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.54 | 17.48  | 17.37  |
| Initial Void ratio                   | 0.48  | 0.49   | 0.50   |
| Saturation (%)                       | 0.89  | 0.89   | 0.87   |
| Strain at Failure (%)                | 15.02 | 15.02  | 15.00  |
| Max Deviator Stress (kPa)            | 192.9 | 308.1  | 340.5  |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 189.5 | 304.7  | 337.2  |
| Corrected Major Stress (kPa)         | 258.5 | 442.6  | 613.0  |

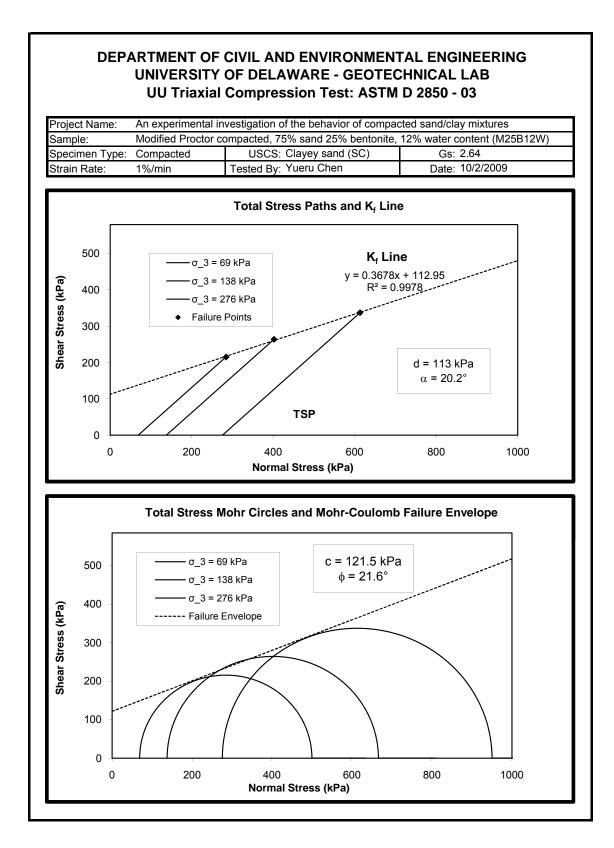


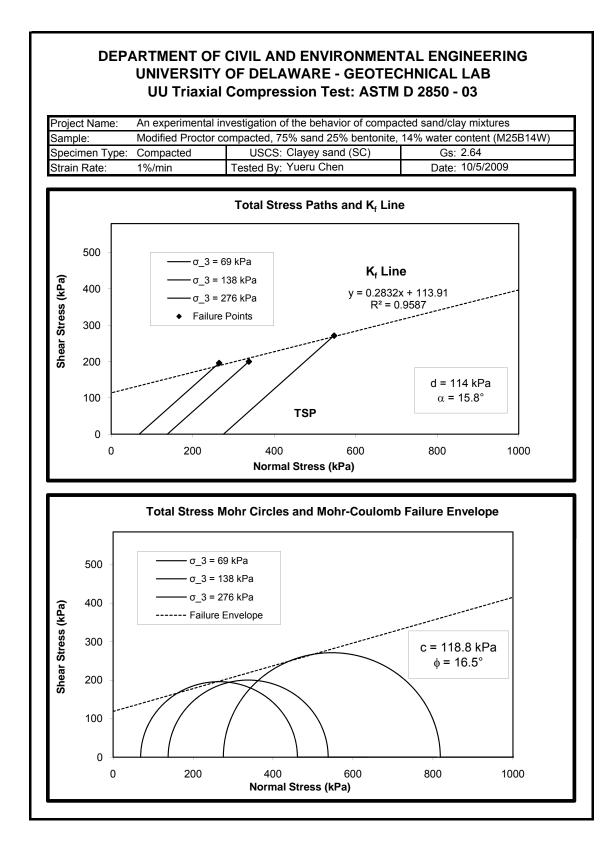

| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                                                                               |                 |  |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|
| Sample:        | Modified Proctor co                                                           | Iodified Proctor compacted, 75% sand 25% bentonite, 8% water content (M25B8W) |                 |  |  |  |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Clayey sand (SC)                                                        | Gs: 2.64        |  |  |  |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen                                                         | Date: 10/2/2009 |  |  |  |  |  |  |


| Sample No.                |       | Trimming |       | Specimen |       |       |  |
|---------------------------|-------|----------|-------|----------|-------|-------|--|
| Sample No.                | 1     | 2        | 3     | 1        | 2     | 3     |  |
| Tin No.                   | B8    | 213      | 1     | B-19     | B8    | 101   |  |
| Wt. of Tin (g)            | 28.5  | 27.9     | 28.1  | 27.4     | 28.5  | 28    |  |
| Wt. of Tin + Wet soil (g) | 76.8  | 69.8     | 92    | 156.2    | 161.4 | 158.0 |  |
| Wt. of Tin + Dry soil (g) | 72.9  | 66.7     | 87    | 146.5    | 150.5 | 147.9 |  |
| Wt. of Dry Soil (g)       | 44.40 | 38.80    | 58.90 | 119.1    | 122.0 | 119.9 |  |
| Wt. of Water (g)          | 3.90  | 3.10     | 5.00  | 9.7      | 10.9  | 10.1  |  |
| Water Content (%)         | 8.78  | 7.99     | 8.49  | 8.1      | 8.9   | 8.4   |  |
| Average Water Content (%) |       | 8.4      |       |          | 8.5   |       |  |

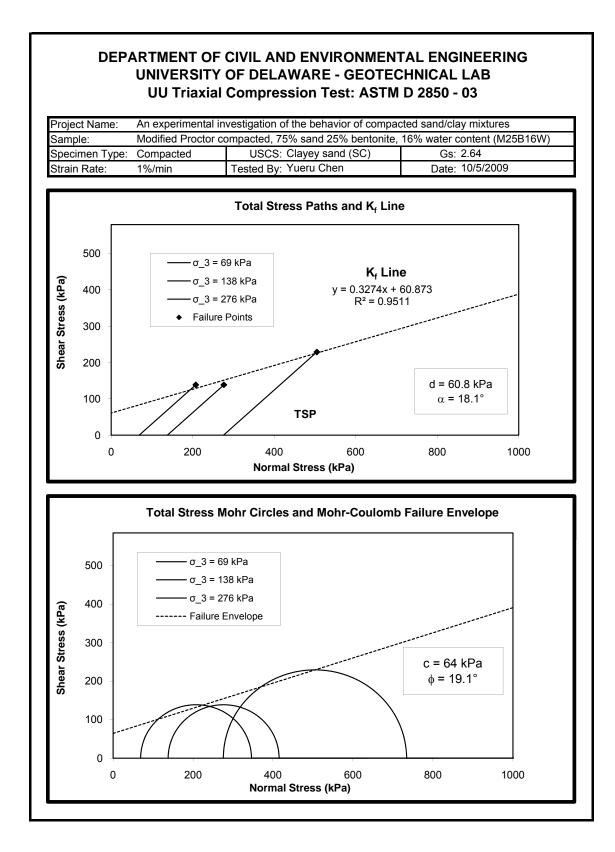
| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.14  | 7.11   | 7.13   |
| Average Diameter, D (cm)             | 3.50  | 3.54   | 3.54   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 16.98 | 17.13  | 16.78  |
| Initial Void ratio                   | 0.53  | 0.51   | 0.54   |
| Saturation (%)                       | 0.41  | 0.46   | 0.41   |
| Strain at Failure (%)                | 12.07 | 13.81  | 13.83  |
| Max Deviator Stress (kPa)            | 469.9 | 675.1  | 882.7  |
| Membrane Correction (kPa)            | 2.7   | 3.0    | 3.0    |
| Corrected Deviator Stress (kPa)      | 467.2 | 672.1  | 879.7  |
| Corrected Major Stress (kPa)         | 536.2 | 810.0  | 1155.5 |



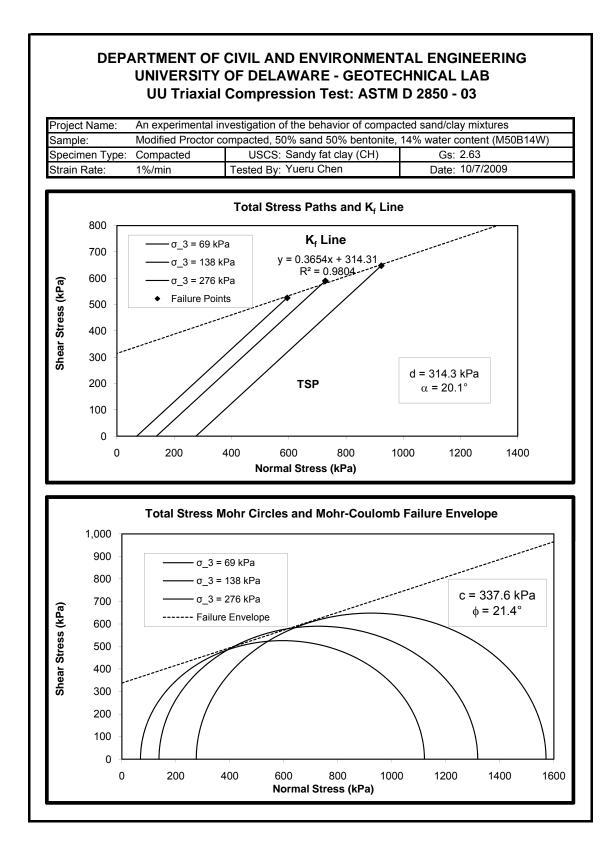




| Project Name: An experimental i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nvestigation of         | of the behavi                                   | or of compac | ted sand/cla | y mixtures  |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------|--------------|--------------|-------------|--------|
| Sample: Modified Proctor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | compacted, 7            | 5% sand 25%                                     | 6 bentonite, |              |             | B10W)  |
| Specimen Type: Compacted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | Clayey sand                                     |              | Gs:          | 2.64        |        |
| Strain Rate: 1%/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tested By:              | Yueru Cher                                      |              | Date:        | 9/23/2009   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | Trimming                                        |              |              | Specimen    |        |
| Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 2                                               | 3            | 1            | 2           | 3      |
| Tin No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                       | <br>FJ-5                                        | 46           | 201          | 209         | 31     |
| Wt. of Tin (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.7                    | 28                                              | 28.9         | 28.9         | 28.2        | 28.4   |
| Wt. of Tin + Wet soil (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78.1                    | 70.8                                            | 93.9         | 171.9        | 163.8       | 168.3  |
| Wt. of Tin + Dry soil (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73.5                    | 66.6                                            | 87.9         | 158.2        | 151.4       | 155.0  |
| Wt. of Dry Soil (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.80                   | 38.60                                           | 59.00        | 129.3        | 123.2       | 126.6  |
| Wt. of Water (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.60                    | 4.20                                            | 6.00         | 13.7         | 12.4        | 13.3   |
| Water Content (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.27                   | 10.88                                           | 10.17        | 10.6         | 10.1        | 10.5   |
| Average Water Content (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 10.4                                            |              |              | 10.4        |        |
| Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                       | 2                                               | 3            | 1            | Cane Street |        |
| Cell Pressure (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68.95                   | 137.90                                          | 275.79       |              |             | 2.0    |
| Average Height, L (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.13                    | 7.15                                            | 7.13         |              |             | 2      |
| Average Diameter, D (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.49                    | 3.53                                            | 3.51         |              |             | 100.00 |
| Dry Unit Weight (kN/m <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.60                   | 17.27                                           | 18.00        | 6            |             |        |
| Initial Void ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.39                    | 0.50                                            | 0.44         | 1            |             | 3      |
| Saturation (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.71                    | 0.53                                            | 0.63         |              |             |        |
| Strain at Failure (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.32                   | 14.88                                           | 14.80        | -            | A STREET    | -      |
| Max Deviator Stress (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 568.9                   | 579.5                                           | 836.0        | Sec.         | SAL STREET  |        |
| Membrane Correction (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                     | 3.3                                             | 3.3          | -            | - Line      |        |
| Corrected Deviator Stress (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 566.4                   | 576.3                                           | 832.7        |              |             |        |
| Corrected Major Stress (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 635.3                   | 714.2                                           | 1108.5       |              |             |        |
| UU Triaxial - Sta<br>1000<br>900 -<br>800 -<br>800 -<br>800 -<br>800 -<br>500 -<br>500 -<br>600 -<br>600 -<br>500 -<br>600 - | σ <sub>3</sub> =        | Curve<br>276 kPa<br>$\sigma_3 = 69 \text{ kPa}$ |              |              |             | 103    |
| 300<br>200<br>100<br>0<br>3<br>3<br>0<br>3<br>0<br>3<br>3<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | σ <sub>3</sub> = 138 kF |                                                 | 15           |              |             | 203    |

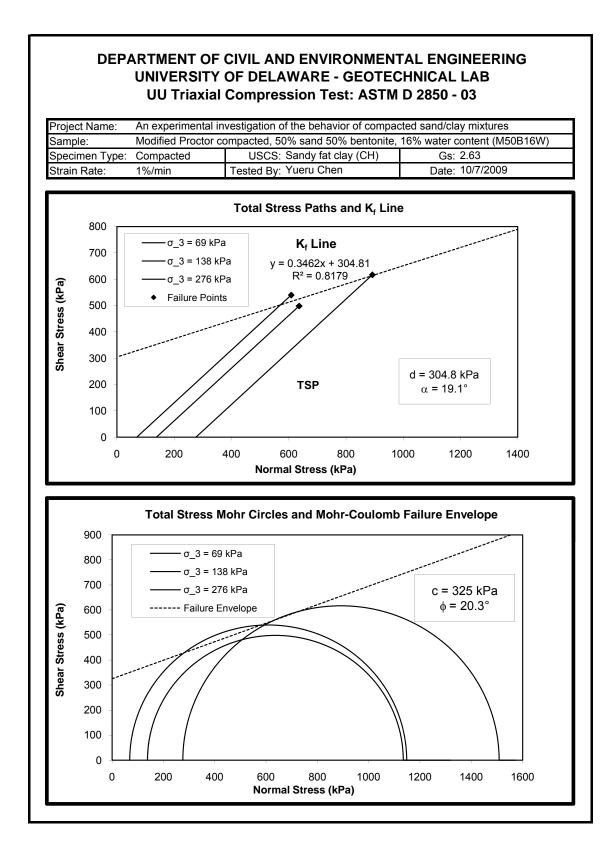



| Project Name: An experimental        | investigation o | of the behavio           | or of compac | ted sand/cla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y mixtures            |       |
|--------------------------------------|-----------------|--------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|
| Sample: Modified Proctor             |                 |                          |              | 12% water c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ontent (M25           | B12W) |
| Specimen Type: Compacted             |                 | Clayey sand              | · ·          | Gs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.64                  |       |
| Strain Rate: 1%/min                  | Tested By:      | Yueru Chen               |              | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/2/2009             |       |
|                                      |                 | Trimming                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Specimen              |       |
| Sample No.                           | 1               | 2                        | 3            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                     | 3     |
| Tin No.                              | 4               | FJ-5                     | 46           | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 209                   | 31    |
| Wt. of Tin (g)                       | 28.7            | 28                       | 28.9         | 28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.2                  | 28.4  |
| Wt. of Tin + Wet soil (g)            | 81.4            | 76.6                     | 83.8         | 172.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 173.0                 | 170.2 |
| Wt. of Tin + Dry soil (g)            | 75.9            | 71.2                     | 78           | 156.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 156.9                 | 154.8 |
| Wt. of Dry Soil (g)                  | 47.20           | 43.20                    | 49.10        | 127.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 128.7                 | 126.4 |
| Wt. of Water (g)                     | 5.50            | 5.40                     | 5.80         | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.1                  | 15.4  |
| Water Content (%)                    | 11.65           | 12.50                    | 11.81        | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.5                  | 12.2  |
| Average Water Content (%)            |                 | 12.0                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.4                  |       |
| Sample No.                           | 1               | 2                        | 3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |
| Cell Pressure (kPa)                  | 68.95           | 137.90                   | 275.79       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | -     |
| Average Height, L (cm)               | 7.10            | 7.12                     | 7.13         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |
| Average Diameter, D (cm)             | 3.52            | 3.53                     | 3.51         | - 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 25    |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 18.13           | 18.12                    | 17.97        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CALL N                |       |
| Initial Void ratio                   | 0.43            | 0.43                     | 0.44         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 12    |
| Saturation (%)                       | 0.77            | 0.77                     | 0.73         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 5     |
| Strain at Failure (%)                | 13.58           | 13.82                    | 14.84        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |
| Max Deviator Stress (kPa)            | 433.9           | 531.2                    | 677.8        | and the second s | And the second second |       |
| Membrane Correction (kPa)            | 3.0             | 3.0                      | 3.3          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |       |
| Corrected Deviator Stress (kPa)      | 430.9           | 528.1                    | 674.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | -     |
| Corrected Major Stress (kPa)         | 499.8           | 666.0                    | 950.3        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 PM                  | -     |
| UU Triaxial - St<br>700<br>ຄີ 600    |                 | <b>Curve</b><br>276 kPa  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 121   |
| Stress (Kpa)                         |                 | σ <sub>3</sub> = 138 kPa | à            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1311-13               |       |
| Deviator Stre<br>000                 |                 | σ <sub>3</sub> = 69 kPa  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 25    |
| 0 3 6<br>Axial                       | 9<br>Strain (%) | 12                       | 15           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | S     |




| Project Name: An experimental ir                                                          | nvestigation of | of the behavio                       | or of compac | ted sand/cla | y mixtures  |                         |
|-------------------------------------------------------------------------------------------|-----------------|--------------------------------------|--------------|--------------|-------------|-------------------------|
| Sample: Modified Proctor of                                                               |                 |                                      |              | 14% water c  | ontent (M25 | B14W)                   |
| Specimen Type: Compacted                                                                  |                 | Clayey sand                          | Gs:          | 2.64         |             |                         |
| Strain Rate: 1%/min                                                                       | Tested By:      | Yueru Chen                           |              | Date:        | 10/5/2009   |                         |
|                                                                                           |                 | Trimming                             |              |              | Specimen    |                         |
| Sample No.                                                                                | 1               | 2                                    | 3            | 1            | 2           | 3                       |
| Tin No.                                                                                   | 4               | FJ-5                                 | 46           | 201          | 209         | 31                      |
| Wt. of Tin (g)                                                                            | 28.7            | 28                                   | 28.9         | 28.9         | 28.2        | 28.4                    |
| Wt. of Tin + Wet soil (g)                                                                 | 109.5           | 99.9                                 | 83.3         | 176.8        | 172.4       | 174.2                   |
| Wt. of Tin + Dry soil (g)                                                                 | 99.7            | 91.1                                 | 76.8         | 158.6        | 154.5       | 156.2                   |
| Wt. of Dry Soil (g)                                                                       | 71.00           | 63.10                                | 47.90        | 129.7        | 126.3       | 127.8                   |
| Wt. of Water (g)                                                                          | 9.80            | 8.80                                 | 6.50         | 18.2         | 17.9        | 18.0                    |
| Water Content (%)                                                                         | 13.80           | 13.95                                | 13.57        | 14.0         | 14.2        | 14.1                    |
| Average Water Content (%)                                                                 |                 | 13.8                                 |              |              | 14.1        |                         |
| Sample No.                                                                                | 4               | 0                                    | 0            | - 1          | THE OWNER   |                         |
| Sample No.<br>Cell Pressure (kPa)                                                         | 1               | 2<br>137.90                          | 3<br>275.79  |              | ALC: NO     | M                       |
| Average Height, L (cm)                                                                    | 68.95<br>7.13   | 7.13                                 | 7.14         |              |             | a.c.                    |
| Average Diameter, D (cm)                                                                  | 3.53            | 3.52                                 | 3.52         |              |             | 23                      |
|                                                                                           | 18.23           | 17.86                                | 18.04        |              |             | 14.                     |
| Dry Unit Weight (kN/m <sup>3</sup> )<br>Initial Void ratio                                | 0.42            | 0.45                                 | 0.44         |              |             | 9                       |
| Saturation (%)                                                                            | 0.88            | 0.40                                 | 0.85         |              |             |                         |
| Strain at Failure (%)                                                                     | 14.82           | 14.80                                | 14.84        |              |             |                         |
| Max Deviator Stress (kPa)                                                                 | 395.4           | 403.3                                | 545.9        | -            |             | No. of Concession, name |
| Membrane Correction (kPa)                                                                 | 3.3             | 3.3                                  | 3.3          |              | A REAL AND  |                         |
| Corrected Deviator Stress (kPa)                                                           | 392.1           | 400.1                                | 542.6        |              |             |                         |
| Corrected Major Stress (kPa)                                                              | 461.1           | 538.0                                | 818.4        |              |             |                         |
| UU Triaxial - Str<br>600<br>500<br>400<br>200<br>0<br>$\sigma_3 =$<br>100<br>$\sigma_3 =$ | $\sigma_3 = 2$  | Surve<br>$\sigma_3 = 69 \text{ kPa}$ |              |              |             | 51                      |
| 0 3 6<br>Axial S                                                                          | 9<br>Strain (%) | 12                                   | 15           |              |             |                         |

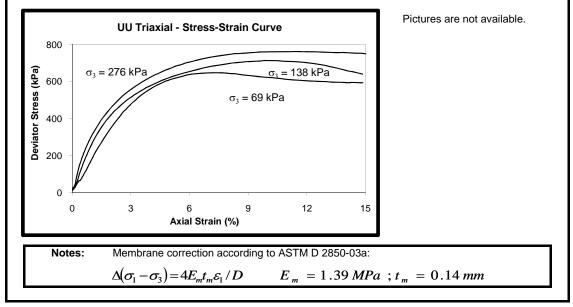


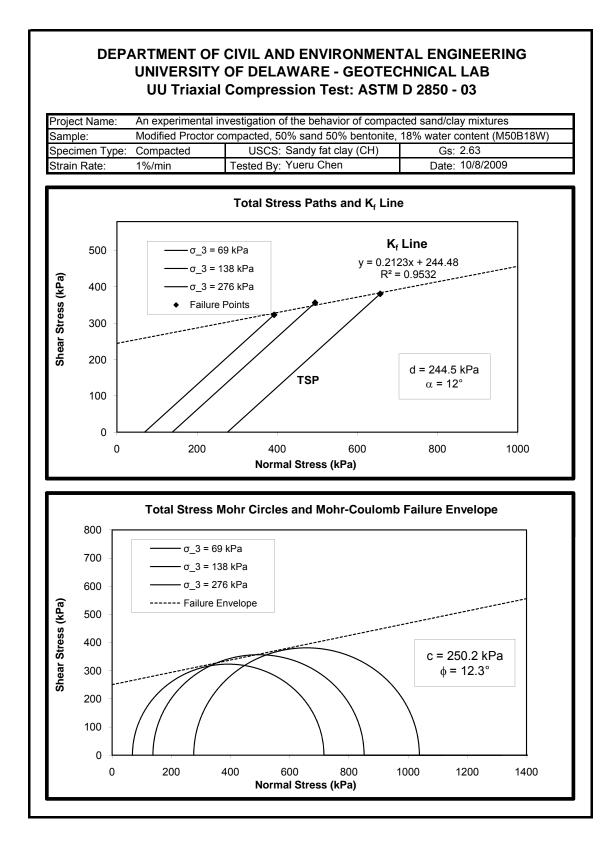

| Project Name: An experimental                  |                 |                         |        |                    |           |       |
|------------------------------------------------|-----------------|-------------------------|--------|--------------------|-----------|-------|
| Sample: Modified Proctor                       |                 |                         |        |                    |           | B16W) |
| Specimen Type: Compacted                       |                 | Clayey sand             | · · /  | Gs:                | 2.64      |       |
| Strain Rate: 1%/min                            | Tested By:      | Yueru Cher              |        | Date:              | 10/5/2009 |       |
|                                                |                 | Trimming                |        |                    | Specimen  |       |
| Sample No.                                     | 1               | 2                       | 3      | 1                  | 2         | 3     |
| Tin No.                                        | B8              | 213                     | 1      | B19                | 101       | 7     |
| Wt. of Tin (g)                                 | 28.5            | 27.9                    | 28.1   | 27.4               | 28        | 28.2  |
| Wt. of Tin + Wet soil (g)                      | 86.3            | 104.2                   | 90.9   | 174.1              | 172.1     | 173.8 |
| Wt. of Tin + Dry soil (g)                      | 78.2            | 93.9                    | 82.3   | 153.4              | 151.9     | 154.0 |
| Wt. of Dry Soil (g)                            | 49.70           | 66.00                   | 54.20  | 126.0              | 123.9     | 125.8 |
| Wt. of Water (g)                               | 8.10            | 10.30                   | 8.60   | 20.7               | 20.2      | 19.8  |
| Water Content (%)                              | 16.30           | 15.61                   | 15.87  | 16.4               | 16.3      | 15.7  |
| Average Water Content (%)                      |                 | 15.9                    |        | -                  | 16.2      |       |
| Sample No.                                     | 1               | 2                       | 3      | 1.0                |           |       |
| Cell Pressure (kPa)                            | 68.95           | 137.90                  | 275.79 |                    |           | -     |
| Average Height, L (cm)                         | 7.14            | 7.08                    | 7.12   |                    |           |       |
| Average Diameter, D (cm)                       | 3.53            | 3.53                    | 3.50   |                    |           | 250   |
| Dry Unit Weight (kN/m <sup>3</sup> )           | 17.69           | 17.54                   | 18.02  |                    |           | L     |
| Initial Void ratio                             | 0.46            | 0.48                    | 0.44   |                    |           |       |
| Saturation (%)                                 | 0.93            | 0.90                    | 0.95   |                    |           | 3     |
| Strain at Failure (%)                          | 14.83           | 15.01                   | 14.83  | And in case of the |           |       |
| Max Deviator Stress (kPa)                      | 280.5           | 280.7                   | 461.6  | -                  |           | 2     |
| Membrane Correction (kPa)                      | 3.3             | 3.3                     | 3.3    |                    |           |       |
| Corrected Deviator Stress (kPa)                | 277.2           | 277.4                   | 458.3  |                    |           |       |
| Corrected Major Stress (kPa)                   | 346.2           | 415.3                   | 734.1  |                    |           | M     |
| UU Triaxial - St                               | ress-Strain C   | Curve                   |        |                    |           | 16    |
| (τρ<br>500 -<br>(τρ<br>300 -<br>300 -<br>300 - | σ3 =            | = 276 kPa               |        | -                  |           |       |
|                                                |                 | 5₃ = 138 kPa            |        |                    |           | 1     |
| 200<br>100<br>0                                |                 | σ <sub>3</sub> = 69 kPa |        |                    |           | i     |
| 0 3 6                                          | 9<br>Strain (%) | 12                      | 15     | -                  |           |       |



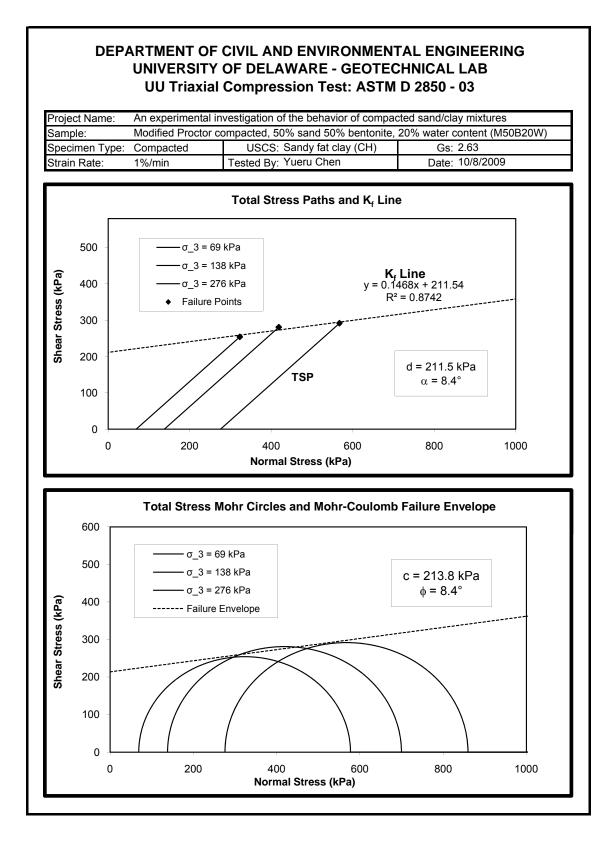
| Project Name: An experimental i      | nvestigation o   | of the behavio | or of compac | ted sand/cla  | ay mixtures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|--------------------------------------|------------------|----------------|--------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Sample: Modified Proctor of          | compacted, 5     | 0% sand 50%    | 6 bentonite, | 14% water o   | ontent (M50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B14W) |
| Specimen Type: Compacted             |                  | Sandy fat cl   |              | Gs:           | 2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Strain Rate: 1%/min                  | Tested By:       | Yueru Chen     |              | Date:         | 10/7/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|                                      |                  | Trimming       |              |               | Specimen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| Sample No.                           | 1                | 2              | 3            | 1             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3     |
| Tin No.                              | 4                | FJ-5           | 46           | 201           | 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201   |
| Wt. of Tin (g)                       | 28.7             | 28             | 28.9         | 28.9          | 28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.9  |
| Wt. of Tin + Wet soil (g)            | 106.1            | 159.6          | 126          | 168.3         | 170.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 171.6 |
| Wt. of Tin + Dry soil (g)            | 96.9             | 143            | 114.7        | 150.5         | 152.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 152.8 |
| Wt. of Dry Soil (g)                  | 68.20            | 115.00         | 85.80        | 121.6         | 124.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 123.9 |
| Wt. of Water (g)                     | 9.20             | 16.60          | 11.30        | 17.8          | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.8  |
| Water Content (%)                    | 13.49            | 14.43          | 13.17        | 14.6          | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.2  |
| Average Water Content (%)            |                  | 13.7           |              |               | 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Sample No.                           | 1                | 2              | 3            |               | ROPE TO A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Cell Pressure (kPa)                  | 68.95            | 137.90         | 275.79       | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Average Height, L (cm)               | 7.12             | 7.14           | 7.13         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M     |
| Average Diameter, D (cm)             | 3.47             | 3.49           | 3.53         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50    |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.72            | 17.91          | 17.42        |               | (主義)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | de.   |
| Initial Void ratio                   | 0.46             | 0.44           | 0.48         | 1.1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14    |
| Saturation (%)                       | 0.84             | 0.84           | 0.83         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15    |
| Strain at Failure (%)                | 4.04             | 4.23           | 9.56         | 100           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| Max Deviator Stress (kPa)            | 1052.5           | 1181.2         | 1297.7       | in the second | SEC IN CAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| Membrane Correction (kPa)            | 0.9              | 0.9            | 2.1          |               | C. A. |       |
| Corrected Deviator Stress (kPa)      | 1051.6           | 1180.3         | 1295.6       | 100           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sh.   |
| Corrected Major Stress (kPa)         | 1120.5           | 1318.2         | 1571.4       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N     |
| UU Triaxial - Str                    | ess-Strain C     |                | 276 kPa      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14    |
| 1200 -<br>1000 -<br>800 -<br>600 -   | σ <sub>3</sub> = | 138 kPa        |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 400 - X                              | σ <sub>3</sub>   | = 69 kPa       |              | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 200<br>0<br>0 3 6<br>Axial           | 9<br>Strain (%)  | 12             | 15           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|                                      | 9<br>Strain (%)  | 12             | 15           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |

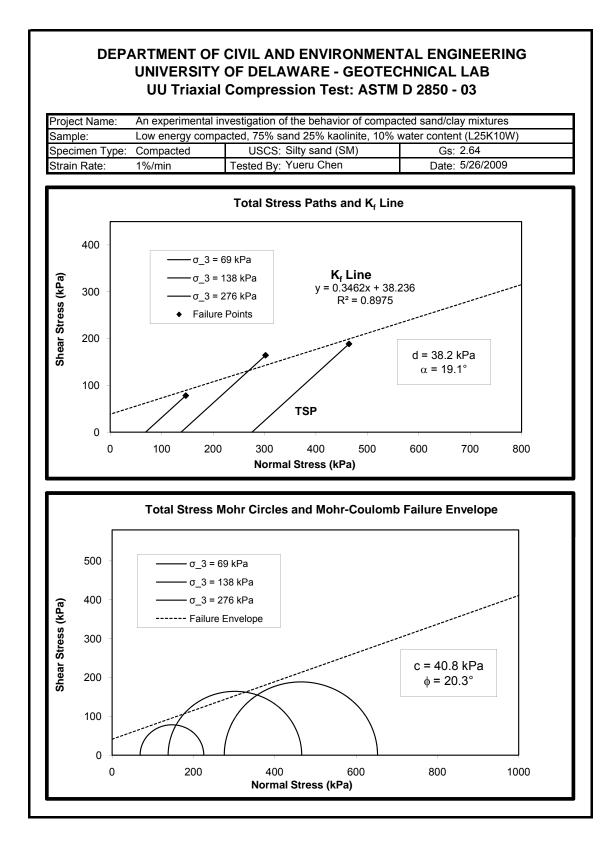


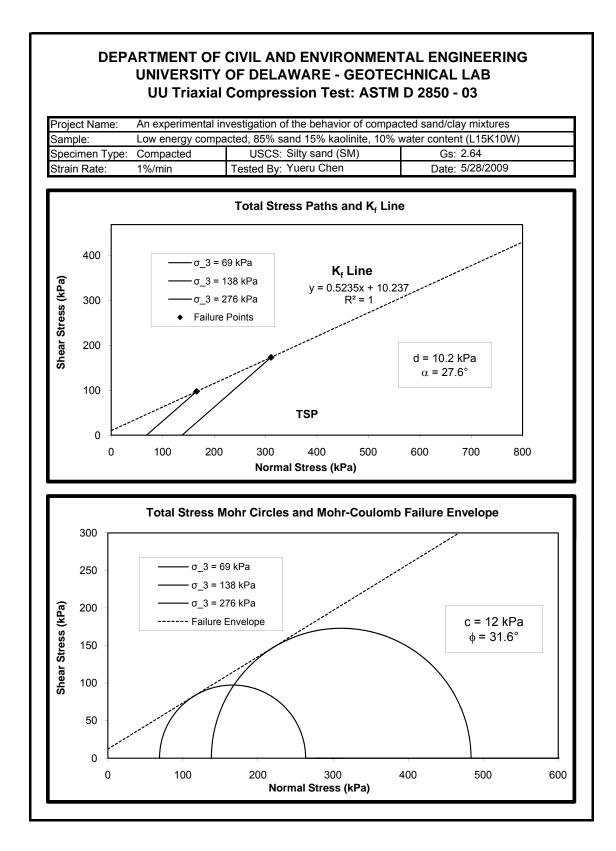

| Project Name: An experimenta         | al investigation o    | of the behavio | or of compac   | ted sand/cla | y mixtures |         |
|--------------------------------------|-----------------------|----------------|----------------|--------------|------------|---------|
| Sample: Modified Procto              | or compacted, 5       |                |                |              |            | B16W)   |
| Specimen Type: Compacted             |                       | Sandy fat cl   | ,              | Gs:          | 2.63       |         |
| Strain Rate: 1%/min                  | Tested By:            | Yueru Chen     |                | Date:        | 10/7/2009  |         |
|                                      |                       | Trimming       |                |              | Specimen   |         |
| Sample No.                           | 1                     | 2              | 3              | 1            | 2          | 3       |
| Tin No.                              | B8                    | 213            | 1              | B19          | 101        | 7       |
| Wt. of Tin (g)                       | 28.5                  | 27.9           | 28.1           | 27.4         | 28         | 28.2    |
| Wt. of Tin + Wet soil (g)            | 95                    | 87             | 61             | 174.4        | 173.8      | 173.3   |
| Wt. of Tin + Dry soil (g)            | 85.5                  | 78.8           | 56.5           | 154.3        | 153.0      | 153.3   |
| Wt. of Dry Soil (g)                  | 57.00                 | 50.90          | 28.40          | 126.9        | 125.0      | 125.1   |
| Wt. of Water (g)                     | 9.50                  | 8.20           | 4.50           | 20.1         | 20.8       | 20.0    |
| Water Content (%)                    | 16.67                 | 16.11          | 15.85          | 15.8         | 16.6       | 16.0    |
| Average Water Content (%)            |                       | 16.2           |                |              | 16.2       |         |
| Sample No.                           | 1                     | 2              | 3              |              | A. HARLE   |         |
| Cell Pressure (kPa)                  | 68.95                 | 137.90         | 275.79         |              |            | 1.2.2   |
| Average Height, L (cm)               | 7.14                  | 7.14           | 7.13           |              |            | 10      |
| Average Diameter, D (cm)             | 3.53                  | 3.50           | 3.49           |              |            | SM      |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.82                 | 17.85          | 17.99          | 1000         |            | 2.0     |
| Initial Void ratio                   | 0.45                  | 0.45           | 0.43           | 1.2 14 14    |            | 2.      |
| Saturation (%)                       | 0.93                  | 0.98           | 0.97           |              | 1 +        | 10      |
| Strain at Failure (%)                | 4.63                  | 6.54           | 7.04           |              | 18 . J     | 8 . C   |
| Max Deviator Stress (kPa)            | 1080.4                | 998.2          | 1234.2         |              |            |         |
| Membrane Correction (kPa)            | 1.0                   | 1.5            | 1.6            | 1            |            |         |
| Corrected Deviator Stress (kPa       | ) 1079.3              | 996.7          | 1232.6         | 1            |            | and the |
| Corrected Major Stress (kPa)         | 1148.3                | 1134.6         | 1508.4         |              | 自由运行       |         |
| 1400                                 | Stress-Strain C       |                | 76 kPa         |              | 1          | 100     |
| Deviator Stress (Kpa)<br>1000        | σ <sub>3</sub> = 69   | kPa            | <u>138 kPa</u> |              |            | 211-    |
| 0 3<br>Ax<br>Notes: Membrane corr    | 6 9<br>ial Strain (%) | 12             | 15             |              |            |         |




| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                                                                                 |                 |  |  |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|
| Sample:        | Modified Proctor co                                                           | Nodified Proctor compacted, 50% sand 50% bentonite, 18% water content (M50B18W) |                 |  |  |  |  |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Sandy fat clay (CH)                                                       | Gs: 2.63        |  |  |  |  |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen                                                           | Date: 10/8/2009 |  |  |  |  |  |  |  |


| Sample No.                |       | Trimming |       | Specimen |       |       |  |
|---------------------------|-------|----------|-------|----------|-------|-------|--|
| Sample No.                | 1     | 2        | 3     | 1        | 2     | 3     |  |
| Tin No.                   | 4     | FJ-5     | 46    | 201      | 209   | 31    |  |
| Wt. of Tin (g)            | 28.7  | 28       | 28.9  | 28.9     | 28.2  | 28.4  |  |
| Wt. of Tin + Wet soil (g) | 114.3 | 98.9     | 94.5  | 174.8    | 175.7 | 175.5 |  |
| Wt. of Tin + Dry soil (g) | 100.8 | 87.8     | 84.4  | 151.7    | 152.2 | 152.2 |  |
| Wt. of Dry Soil (g)       | 72.10 | 59.80    | 55.50 | 122.8    | 124.0 | 123.8 |  |
| Wt. of Water (g)          | 13.50 | 11.10    | 10.10 | 23.1     | 23.5  | 23.3  |  |
| Water Content (%)         | 18.72 | 18.56    | 18.20 | 18.8     | 19.0  | 18.8  |  |
| Average Water Content (%) |       | 18.5     |       |          | 18.9  |       |  |

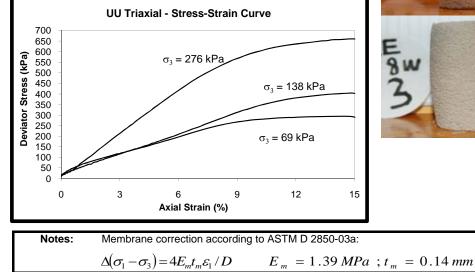

| Sample No.                           | 1      | 2      | 3      |
|--------------------------------------|--------|--------|--------|
| Cell Pressure (kPa)                  | 68.95  | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.13   | 7.13   | 7.18   |
| Average Diameter, D (cm)             | 3.50   | 3.53   | 3.52   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.56  | 17.43  | 17.38  |
| Initial Void ratio                   | 0.47   | 0.48   | 0.48   |
| Saturation (%)                       | 105.45 | 103.84 | 102.20 |
| Strain at Failure (%)                | 7.33   | 9.83   | 11.56  |
| Max Deviator Stress (kPa)            | 648.3  | 715.4  | 764.8  |
| Membrane Correction (kPa)            | 1.6    | 2.2    | 2.6    |
| Corrected Deviator Stress (kPa)      | 646.7  | 713.3  | 762.3  |
| Corrected Major Stress (kPa)         | 715.6  | 851.2  | 1038.1 |

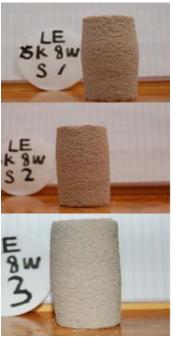


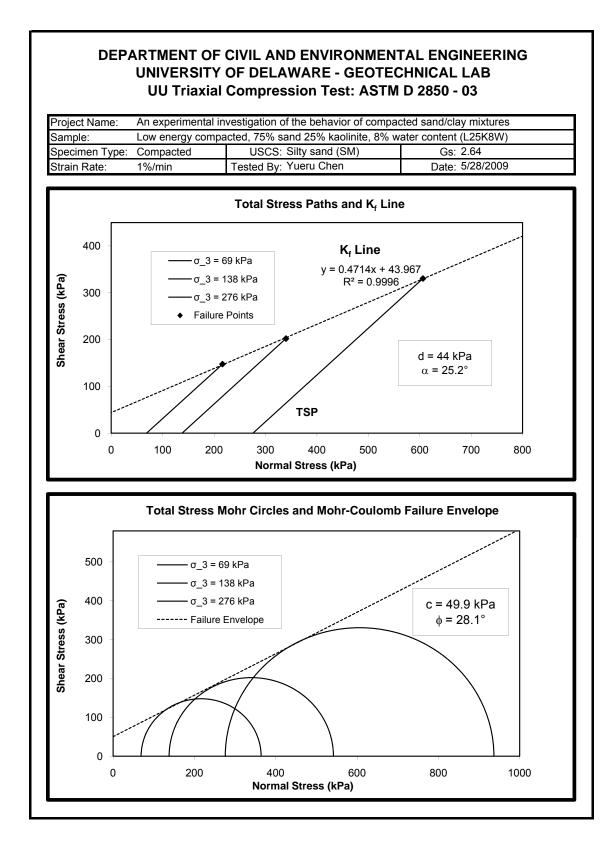



| •                                                          | ental investigation of  |                           |               |       |                       |       |  |  |
|------------------------------------------------------------|-------------------------|---------------------------|---------------|-------|-----------------------|-------|--|--|
|                                                            | octor compacted, 5      |                           |               |       |                       | B20W) |  |  |
| Specimen Type: Compacted                                   |                         | USCS: Sandy fat clay (CH) |               |       | Gs: 2.63              |       |  |  |
| Strain Rate: 1%/min                                        | Tested By:              | Yueru Chen                |               | Date: | 10/8/2009             |       |  |  |
|                                                            |                         | Trimming                  |               |       | Specimen              |       |  |  |
| Sample No.                                                 | 1                       | 2                         | 3             | 1     | 2                     | 3     |  |  |
| Tin No.                                                    | B8                      | 213                       | 1             | B-19  | 101                   | 7     |  |  |
| Wt. of Tin (g)                                             | 28.5                    | 27.9                      | 28.1          | 27.4  | 28                    | 28.2  |  |  |
| Wt. of Tin + Wet soil (g)                                  | 97.4                    | 92                        | 88.9          | 172.3 | 170.8                 | 172.5 |  |  |
| Wt. of Tin + Dry soil (g)                                  | 85.9                    | 81.4                      | 78.8          | 147.7 | 146.6                 | 148.0 |  |  |
| Wt. of Dry Soil (g)                                        | 57.40                   | 53.50                     | 50.70         | 120.3 | 118.6                 | 119.8 |  |  |
| Wt. of Water (g)                                           | 11.50                   | 10.60                     | 10.10         | 24.6  | 24.2                  | 24.5  |  |  |
| Water Content (%)                                          | 20.03                   | 19.81                     | 19.92         | 20.4  | 20.4                  | 20.5  |  |  |
| Average Water Content (%)                                  |                         | 19.9                      |               |       | 20.4                  |       |  |  |
| Sample No.                                                 | 4                       | 0                         | 2             |       | WARD COL. ST.         | 100   |  |  |
| Cell Pressure (kPa)                                        | 1                       | 2                         | 3             |       | and the second second |       |  |  |
| Average Height, L (cm)                                     | 68.95                   | 137.90                    | 275.79        |       | 200                   | N     |  |  |
| Average Diameter, D (cm)                                   | 7.14                    | 7.10                      | 7.12          |       | Star 1                | 50    |  |  |
|                                                            | 3.51<br>17.08           | 3.52<br>16.84             | 3.53<br>16.87 |       | A A                   | -     |  |  |
| Dry Unit Weight (kN/m <sup>3</sup> )<br>Initial Void ratio | 0.51                    | 0.53                      | 0.53          |       | 12-11-20              | N 21  |  |  |
| Saturation (%)                                             | 105.37                  | 100.84                    | 101.53        |       |                       | 10 1  |  |  |
| Strain at Failure (%)                                      | 103.37                  | 11.07                     | 14.59         | 1000  | 10                    |       |  |  |
| Max Deviator Stress (kPa)                                  | 510.7                   | 564.2                     | 586.8         | 1000  | and the second        | 12    |  |  |
| Membrane Correction (kPa)                                  |                         | 2.4                       | 3.2           |       | and the same          | -     |  |  |
| Corrected Deviator Stress (I                               |                         | 561.8                     | 583.6         |       | ACCESSION OF          | A     |  |  |
| Corrected Major Stress (kPa                                | ,                       | 699.7                     | 859.4         | 1000  |                       | 18    |  |  |
| 600                                                        | II - Stress-Strain C    |                           | 29 1/20       |       |                       | 5     |  |  |
| $\sigma_3 = 276 \text{ kPa}$                               | $\sigma_3 = 69$         |                           | 38 kPa        | 100   |                       | -52   |  |  |
|                                                            | 6 9<br>Axial Strain (%) | 12                        | 15            | -     |                       | 1. al |  |  |





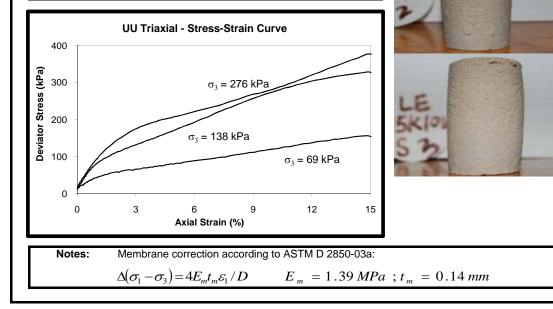



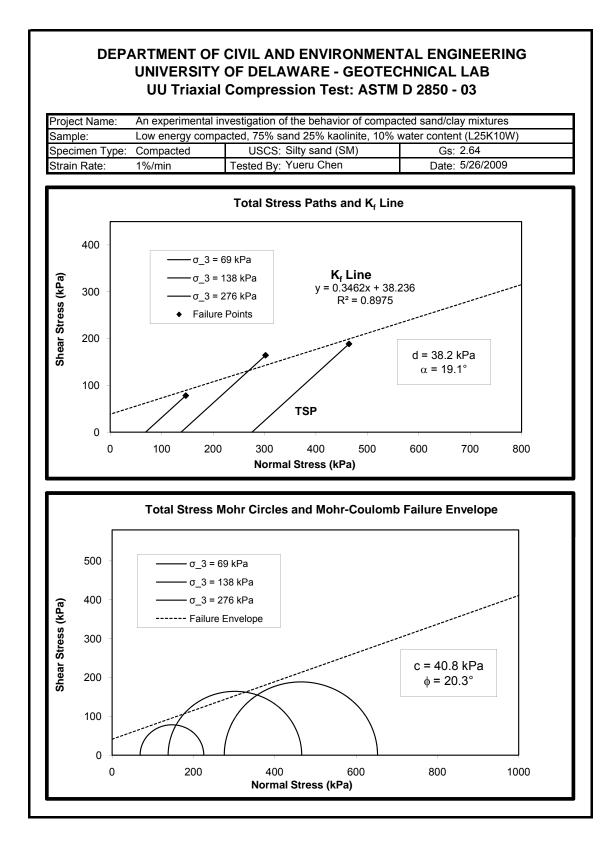


| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                                |                 |  |  |  |
|----------------|-------------------------------------------------------------------------------|--------------------------------|-----------------|--|--|--|
| Sample:        | Low energy compacted, 75% sand 25% kaolinite, 8% water content (L25K8W)       |                                |                 |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Silty sand (SM) Gs: 2.64 |                 |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen          | Date: 5/28/2009 |  |  |  |

| Sample No.                |        | Trimming |       |       | Specimen |       |  |  |
|---------------------------|--------|----------|-------|-------|----------|-------|--|--|
|                           | 1      | 2        | 3     | 1     | 2        | 3     |  |  |
| Tin No.                   | 213    | 205      | B8    | 404   | 405      | 4     |  |  |
| Wt. of Tin (g)            | 27.91  | 29.7     | 28.44 | 28.7  | 27.7     | 28.7  |  |  |
| Wt. of Tin + Wet soil (g) | 111.58 | 99.55    | 91.07 | 161.3 | 159.1    | 164.4 |  |  |
| Wt. of Tin + Dry soil (g) | 105.5  | 94.52    | 86.5  | 151.9 | 149.3    | 154.4 |  |  |
| Wt. of Dry Soil (g)       | 77.59  | 64.82    | 58.06 | 123.1 | 121.6    | 125.7 |  |  |
| Wt. of Water (g)          | 6.08   | 5.03     | 4.57  | 9.4   | 9.8      | 10.0  |  |  |
| Water Content (%)         | 7.84   | 7.76     | 7.87  | 7.6   | 8.1      | 8.0   |  |  |
| Average Water Content (%) |        | 7.8      |       | 7.9   |          |       |  |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.12  | 7.09   | 7.12   |
| Average Diameter, D (cm)             | 3.53  | 3.50   | 3.50   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.29 | 17.52  | 18.01  |
| Initial Void ratio                   | 0.50  | 0.48   | 0.44   |
| Saturation (%)                       | 0.41  | 0.45   | 0.48   |
| Strain at Failure (%)                | 14.36 | 14.84  | 14.83  |
| Max Deviator Stress (kPa)            | 298.2 | 407.3  | 664.2  |
| Membrane Correction (kPa)            | 3.2   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 295.0 | 404.0  | 660.9  |
| Corrected Major Stress (kPa)         | 364.0 | 541.9  | 936.7  |

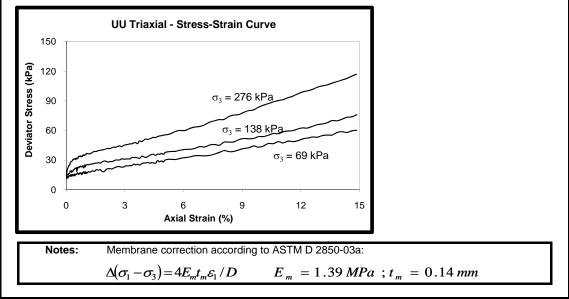


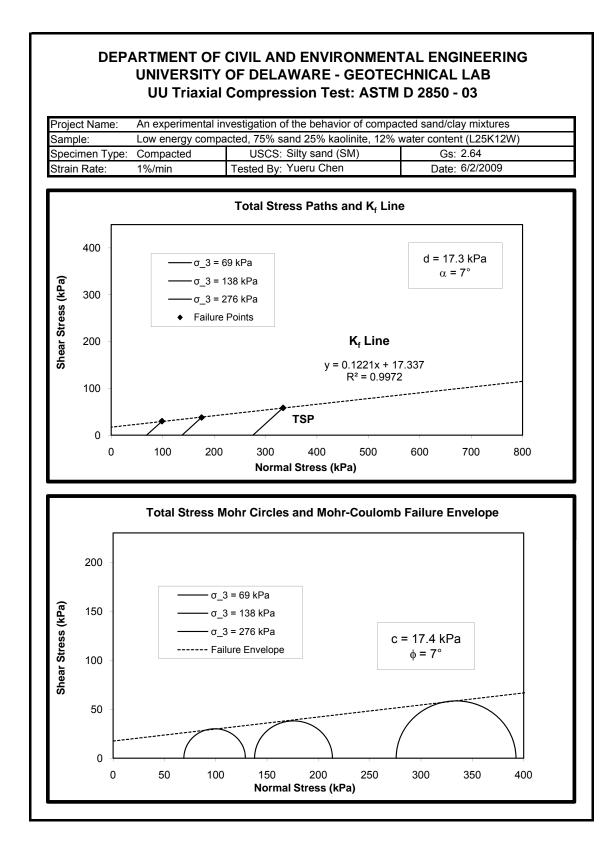



| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                                       |  |  |  |  |
|----------------|-------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
| Sample:        | Low energy compacted, 75% sand 25% kaolinite, 10% water content (L25K10W)     |                                       |  |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Silty sand (SM) Gs: 2.64        |  |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen Date: 5/26/2009 |  |  |  |  |

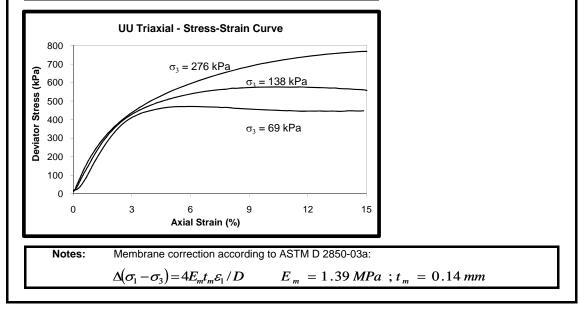
| Sample No.                |       | Trimming |        |       | Specimen |       |  |  |
|---------------------------|-------|----------|--------|-------|----------|-------|--|--|
|                           | 1     | 2        | 3      | 1     | 2        | 3     |  |  |
| Tin No.                   | 213   | 205      | B8     | 201   | 7        | B-19  |  |  |
| Wt. of Tin (g)            | 27.89 | 29.69    | 28.44  | 28.9  | 28.2     | 27.4  |  |  |
| Wt. of Tin + Wet soil (g) | 65.23 | 128.07   | 110.98 | 165.7 | 177.1    | 173.1 |  |  |
| Wt. of Tin + Dry soil (g) | 61.99 | 119.62   | 103.95 | 153.4 | 164.1    | 160.3 |  |  |
| Wt. of Dry Soil (g)       | 34.10 | 89.93    | 75.51  | 124.6 | 135.9    | 132.9 |  |  |
| Wt. of Water (g)          | 3.24  | 8.45     | 7.03   | 12.2  | 13.0     | 12.8  |  |  |
| Water Content (%)         | 9.50  | 9.40     | 9.31   | 9.8   | 9.6      | 9.7   |  |  |
| Average Water Content (%) |       | 9.4      |        | 9.7   |          |       |  |  |

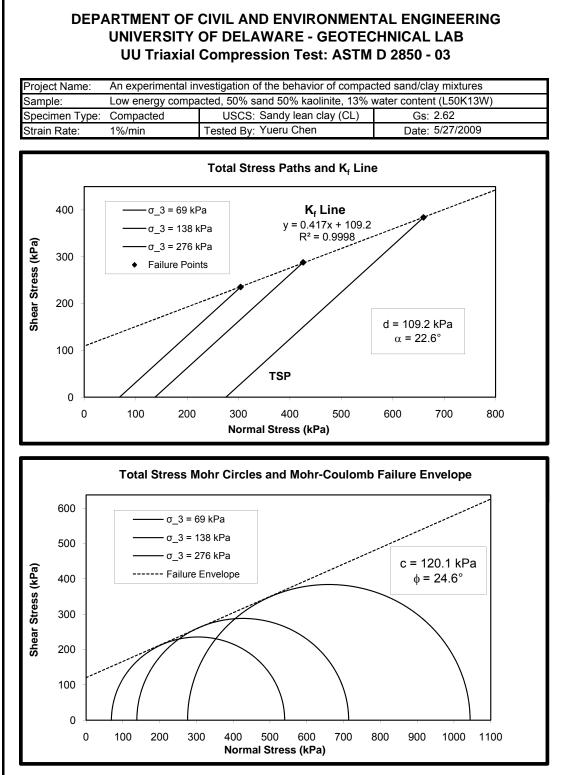

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 6.81  | 7.13   | 7.12   |
| Average Diameter, D (cm)             | 3.56  | 3.54   | 3.55   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 18.04 | 19.02  | 18.49  |
| Initial Void ratio                   | 0.44  | 0.36   | 0.40   |
| Saturation (%)                       | 0.60  | 0.70   | 0.64   |
| Strain at Failure (%)                | 14.84 | 14.87  | 14.83  |
| Max Deviator Stress (kPa)            | 159.7 | 331.8  | 380.3  |
| Membrane Correction (kPa)            | 3.2   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 156.5 | 328.5  | 377.0  |
| Corrected Major Stress (kPa)         | 225.4 | 466.4  | 652.8  |






| Project Name:    | An experimental<br>Low energy com | Ū.         |              |        |          | ,        |       |  |  |
|------------------|-----------------------------------|------------|--------------|--------|----------|----------|-------|--|--|
| Sample:          |                                   |            |              |        |          |          |       |  |  |
| Specimen Type    |                                   |            | Silty sand ( | ,      | Gs: 2.64 |          |       |  |  |
| Strain Rate:     | 1%/min                            | Tested By: | Yueru Cher   | ١      | Date:    | 6/2/2009 |       |  |  |
|                  |                                   |            | Trimming     |        |          | Specimen |       |  |  |
| San              | nple No.                          | 1          | 2            | 3      | 1        | 2        | 3     |  |  |
| Tin No.          |                                   | 4          | 405          | 404    | 2        | 420      | 418   |  |  |
| Wt. of Tin (g)   |                                   | 28.71      | 27.69        | 28.7   | 29.0     | 27.6     | 28.8  |  |  |
| Wt. of Tin + W   | Wt. of Tin + Wet soil (g)         |            | 111.5        | 124.06 | 177.0    | 176.0    | 178.3 |  |  |
| Wt. of Tin + D   | Wt. of Tin + Dry soil (g)         |            | 102.88       | 114.17 | 160.7    | 159.8    | 162.2 |  |  |
| Wt. of Dry Soi   | Wt. of Dry Soil (g)               |            | 75.19        | 85.47  | 131.7    | 132.2    | 133.4 |  |  |
| Wt. of Water (   | Wt. of Water (g)                  |            | 8.62         | 9.89   | 16.3     | 16.2     | 16.0  |  |  |
| Water Conten     | t (%)                             | 11.09      | 11.46        | 11.57  | 12.4     | 12.2     | 12.0  |  |  |
| Average Wate     | er Content (%)                    |            | 11.4         |        |          | 12.2     |       |  |  |
|                  |                                   |            | _            | -      | 1        |          |       |  |  |
|                  | nple No.                          | 1          | 2            | 3      |          |          |       |  |  |
| Cell Pressure    | · · ·                             | 68.95      | 137.90       | 275.79 |          |          |       |  |  |
| Average Heig     | ht, L (cm)                        | 7.10       | 7.10         | 7.14   |          |          |       |  |  |
| Average Diam     | neter, D (cm)                     | 3.54       | 3.53         | 3.56   |          |          |       |  |  |
| Dry Unit Weig    | ht (kN/m <sup>3</sup> )           | 18.53      | 18.62        | 18.38  |          |          |       |  |  |
| Initial Void rat | Initial Void ratio                |            | 0.39         | 0.41   |          |          |       |  |  |
| Saturation (%)   | )                                 | 0.82       | 0.83         | 0.78   |          |          |       |  |  |
| Strain at Failu  | re (%)                            | 14.86      | 14.85        | 14.83  |          |          |       |  |  |
|                  |                                   |            |              |        |          |          |       |  |  |


| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.10  | 7.10   | 7.14   |
| Average Diameter, D (cm)             | 3.54  | 3.53   | 3.56   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 18.53 | 18.62  | 18.38  |
| Initial Void ratio                   | 0.40  | 0.39   | 0.41   |
| Saturation (%)                       | 0.82  | 0.83   | 0.78   |
| Strain at Failure (%)                | 14.86 | 14.85  | 14.83  |
| Max Deviator Stress (kPa)            | 63.3  | 79.1   | 120.1  |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.2    |
| Corrected Deviator Stress (kPa)      | 60.0  | 75.8   | 116.8  |
| Corrected Major Stress (kPa)         | 129.0 | 213.7  | 392.6  |
|                                      |       |        |        |

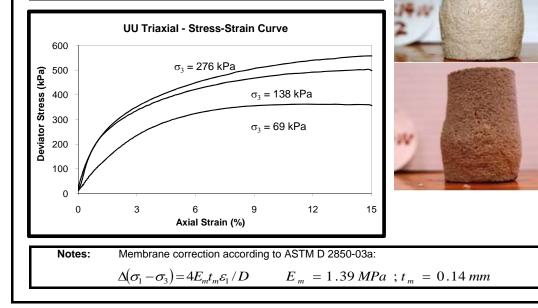


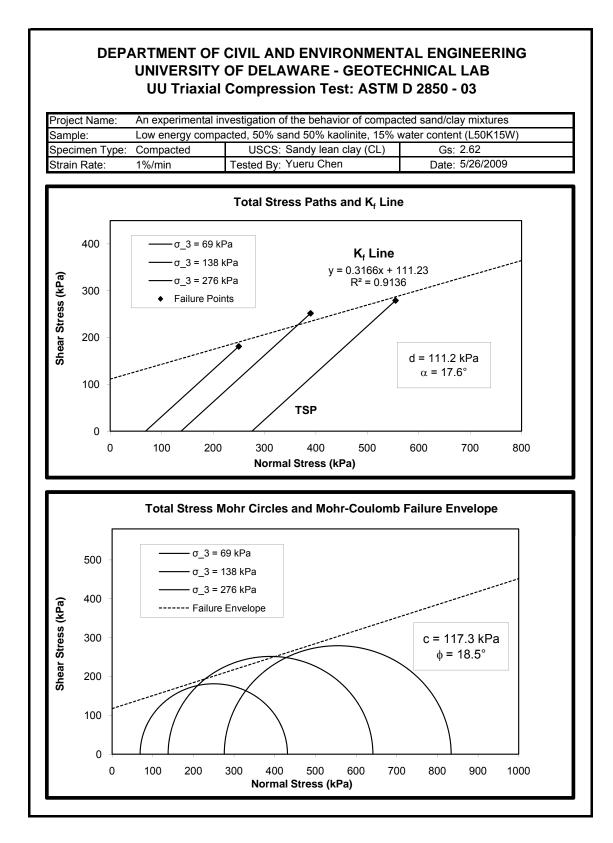



| Project Name:             | An experimenta           | An experimental investigation of the behavior of compacted sand/clay mixtures |            |                |              |             |       |  |  |
|---------------------------|--------------------------|-------------------------------------------------------------------------------|------------|----------------|--------------|-------------|-------|--|--|
| Sample:                   | Low energy con           | npacted, 50% s                                                                | and 50% ka | olinite, 13% v | water conten | t (L50K13W) |       |  |  |
| Specimen Type             | e: Compacted             | USCS:                                                                         | Sandy lean | clay (CL)      | Gs: 2.62     |             |       |  |  |
| Strain Rate:              | 1%/min                   | Tested By:                                                                    | Yueru Cher | ١              | Date:        | 5/27/2009   |       |  |  |
| 0-                        | and No.                  |                                                                               | Trimming   |                |              | Specimen    |       |  |  |
| Sample No.                |                          | 1                                                                             | 2          | 3              | 1            | 2           | 3     |  |  |
| Tin No.                   |                          | 46                                                                            | 121        | 101            | 31           | 7           | B-19  |  |  |
| Wt. of Tin (g)            |                          | 28.84                                                                         | 30.91      | 28.02          | 28.3         | 28.2        | 27.4  |  |  |
| Wt. of Tin + Wet soil (g) |                          | 101.78                                                                        | 90.97      | 95.25          | 159.0        | 156.8       | 151.7 |  |  |
| Wt. of Tin + Dry soil (g) |                          | 93.72                                                                         | 84.37      | 87.54          | 144.2        | 142.0       | 137.6 |  |  |
| Wt. of Dry So             | oil (g)                  | 64.88                                                                         | 53.46      | 59.52          | 115.8        | 113.8       | 110.2 |  |  |
| Wt. of Water              | (g)                      | 8.06                                                                          | 6.60       | 7.71           | 14.9         | 14.8        | 14.2  |  |  |
| Water Conte               | nt (%)                   | 12.42                                                                         | 12.35      | 12.95          | 12.8         | 13.0        | 12.8  |  |  |
| Average Wat               | er Content (%)           |                                                                               | 12.6       |                |              | 12.9        |       |  |  |
| Sa                        | mple No.                 | 1                                                                             | 2          | 3              |              |             |       |  |  |
| Cell Pressure             |                          | 68.95                                                                         | 137.90     | 275.79         |              |             |       |  |  |
| Average Heig              | ght, L (cm)              | 7.12                                                                          | 7.12       | 7.13           |              |             |       |  |  |
| Average Diar              | meter, D (cm)            | 3.55                                                                          | 3.55       | 3.53           |              |             |       |  |  |
| Dry Unit Wei              | ght (kN/m <sup>3</sup> ) | 16.08                                                                         | 15.86      | 15.51          |              |             |       |  |  |
| 1 1                       |                          |                                                                               |            |                |              |             |       |  |  |

| Cell Pressure (KPa)                  | 68.95 | 137.90 | 275.79 |
|--------------------------------------|-------|--------|--------|
| Average Height, L (cm)               | 7.12  | 7.12   | 7.13   |
| Average Diameter, D (cm)             | 3.55  | 3.55   | 3.53   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 16.08 | 15.86  | 15.51  |
| Initial Void ratio                   | 0.60  | 0.62   | 0.66   |
| Saturation (%)                       | 0.56  | 0.55   | 0.51   |
| Strain at Failure (%)                | 6.07  | 11.61  | 14.84  |
| Max Deviator Stress (kPa)            | 472.0 | 578.5  | 771.2  |
| Membrane Correction (kPa)            | 1.3   | 2.5    | 3.3    |
| Corrected Deviator Stress (kPa)      | 470.7 | 575.9  | 767.9  |
| Corrected Major Stress (kPa)         | 539.6 | 713.8  | 1043.7 |



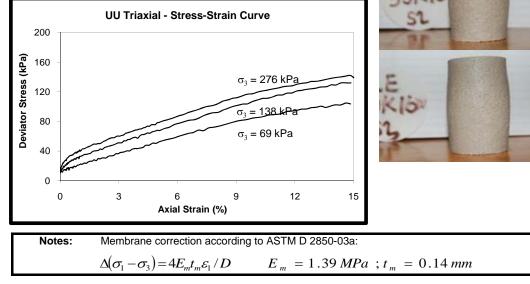




| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                                                                           |                 |  |  |  |
|----------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|--|--|--|
| Sample:        | Low energy compa                                                              | Low energy compacted, 50% sand 50% kaolinite, 15% water content (L50K15W) |                 |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Sandy lean clay (CL)                                                | Gs: 2.62        |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen                                                     | Date: 5/26/2009 |  |  |  |

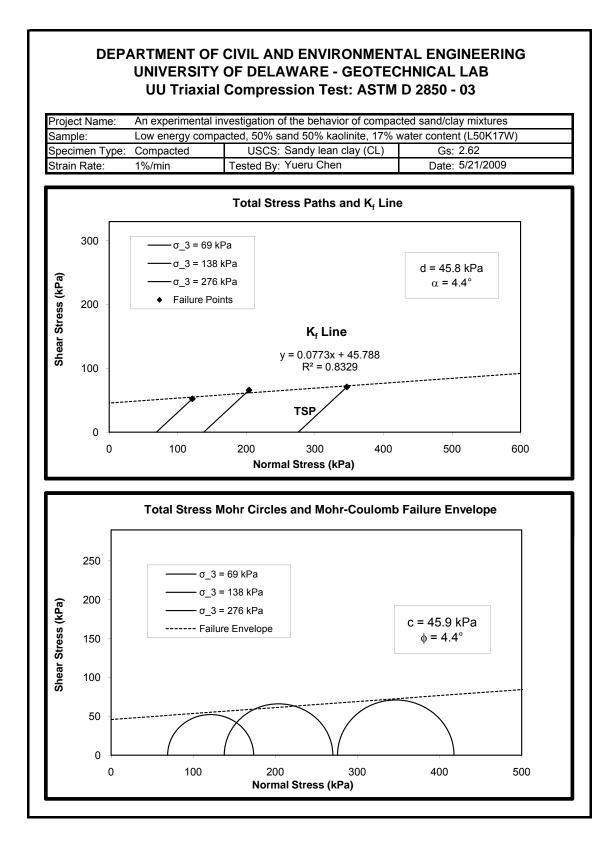
| Sample No.                |       | Trimming |       |       | Specimen |       |  |  |
|---------------------------|-------|----------|-------|-------|----------|-------|--|--|
| Sample No.                | 1     | 2        | 3     | 1     | 2        | 3     |  |  |
| Tin No.                   | 404   | 405      | 4     | 2     | 420      | 418   |  |  |
| Wt. of Tin (g)            | 28.7  | 27.69    | 28.7  | 29.0  | 27.6     | 28.8  |  |  |
| Wt. of Tin + Wet soil (g) | 77.12 | 77.62    | 89.38 | 170.3 | 168.9    | 169.7 |  |  |
| Wt. of Tin + Dry soil (g) | 70.93 | 71.06    | 81.64 | 151.1 | 150.3    | 151.0 |  |  |
| Wt. of Dry Soil (g)       | 42.23 | 43.37    | 52.94 | 122.1 | 122.8    | 122.2 |  |  |
| Wt. of Water (g)          | 6.19  | 6.56     | 7.74  | 19.2  | 18.6     | 18.7  |  |  |
| Water Content (%)         | 14.66 | 15.13    | 14.62 | 15.8  | 15.1     | 15.3  |  |  |
| Average Water Content (%) |       | 14.8     |       |       | 15.4     |       |  |  |

414W

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.11  | 7.12   | 7.11   |
| Average Diameter, D (cm)             | 3.51  | 3.57   | 3.54   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.41 | 16.90  | 17.13  |
| Initial Void ratio                   | 0.48  | 0.52   | 0.50   |
| Saturation (%)                       | 0.87  | 0.76   | 0.80   |
| Strain at Failure (%)                | 13.12 | 14.84  | 14.86  |
| Max Deviator Stress (kPa)            | 365.1 | 506.7  | 561.3  |
| Membrane Correction (kPa)            | 2.9   | 3.2    | 3.3    |
| Corrected Deviator Stress (kPa)      | 362.2 | 503.4  | 558.1  |
| Corrected Major Stress (kPa)         | 431.2 | 641.3  | 833.9  |







| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                                                                           |                 |  |  |  |  |
|----------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|--|--|--|--|
| Sample:        | Low energy compa                                                              | Low energy compacted, 50% sand 50% kaolinite, 17% water content (L50K17W) |                 |  |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Sandy lean clay (CL)                                                | Gs: 2.62        |  |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen                                                     | Date: 5/21/2009 |  |  |  |  |

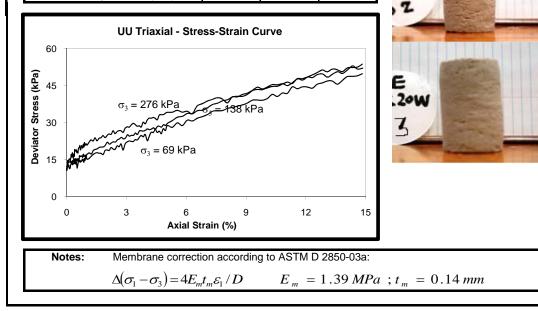
| Sample No.                    |       | Trimming |        |       | Specimen |       |  |  |
|-------------------------------|-------|----------|--------|-------|----------|-------|--|--|
| Sample No.                    | 1     | 2        | 3      | 1     | 2        | 3     |  |  |
| Tin No.                       | 7     | 201      | B-19   | 46    | 121      | 101   |  |  |
| Wt. of Tin (g)                | 28.18 | 28.89    | 27.41  | 28.8  | 30.9     | 28.0  |  |  |
| Wt. of Tin + Wet soil (g)     | 92.77 | 93.87    | 116.97 | 169.8 | 171.7    | 169.2 |  |  |
| Wt. of Tin + Dry soil (g)     | 83.31 | 84.34    | 103.61 | 148.3 | 150.7    | 148.0 |  |  |
| Wt. of Dry Soil (g)           | 55.13 | 55.45    | 76.20  | 119.5 | 119.8    | 120.0 |  |  |
| Wt. of Water (g)              | 9.46  | 9.53     | 13.36  | 21.5  | 21.0     | 21.2  |  |  |
| Water Content (%)             | 17.16 | 17.19    | 17.53  | 18.0  | 17.5     | 17.6  |  |  |
| Average Water Content (%) 17. |       | 17.3     | 17.7   |       |          |       |  |  |

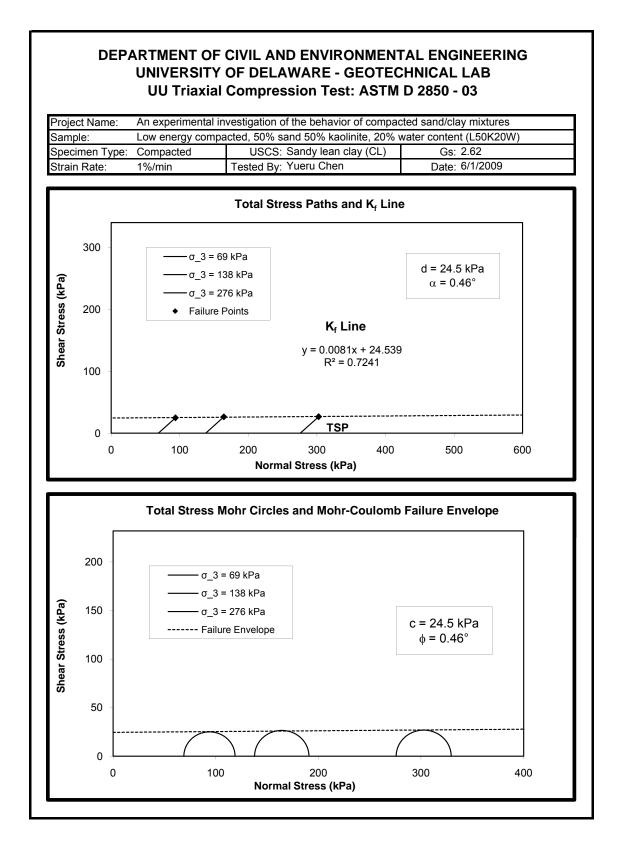
| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.20  | 7.14   | 7.16   |
| Average Diameter, D (cm)             | 3.54  | 3.55   | 3.53   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 16.51 | 16.59  | 16.76  |
| Initial Void ratio                   | 0.56  | 0.55   | 0.53   |
| Saturation (%)                       | 0.85  | 0.84   | 0.87   |
| Strain at Failure (%)                | 15.02 | 14.86  | 14.83  |
| Max Deviator Stress (kPa)            | 107.9 | 135.4  | 145.2  |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 104.6 | 132.1  | 141.9  |
| Corrected Major Stress (kPa)         | 173.6 | 270.0  | 417.7  |







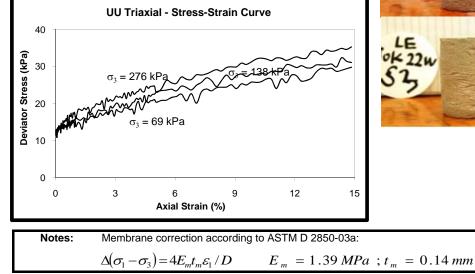

| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                                                                           |                |  |  |  |  |
|----------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------|--|--|--|--|
| Sample:        | Low energy compa                                                              | Low energy compacted, 50% sand 50% kaolinite, 20% water content (L50K20W) |                |  |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Sandy lean clay (CL)                                                | Gs: 2.62       |  |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen                                                     | Date: 6/1/2009 |  |  |  |  |


| Sample No.                |        | Trimming |        |       | Specimen |       |  |  |
|---------------------------|--------|----------|--------|-------|----------|-------|--|--|
| Sample No.                | 1      | 2        | 3      | 1     | 2        | 3     |  |  |
| Tin No.                   | 101    | 121      | 46     | 404   | 405      | 4     |  |  |
| Wt. of Tin (g)            | 28.01  | 30.93    | 28.83  | 28.7  | 27.7     | 28.7  |  |  |
| Wt. of Tin + Wet soil (g) | 134.3  | 92.02    | 103.43 | 166.1 | 166.0    | 166.8 |  |  |
| Wt. of Tin + Dry soil (g) | 116.92 | 82       | 91.27  | 143.6 | 143.1    | 143.9 |  |  |
| Wt. of Dry Soil (g)       | 88.91  | 51.07    | 62.44  | 114.9 | 115.4    | 115.2 |  |  |
| Wt. of Water (g)          | 17.38  | 10.02    | 12.16  | 22.5  | 22.9     | 22.9  |  |  |
| Water Content (%)         | 19.55  | 19.62    | 19.47  | 19.6  | 19.8     | 19.9  |  |  |
| Average Water Content (%) | 19.5   |          | 19.8   |       |          |       |  |  |

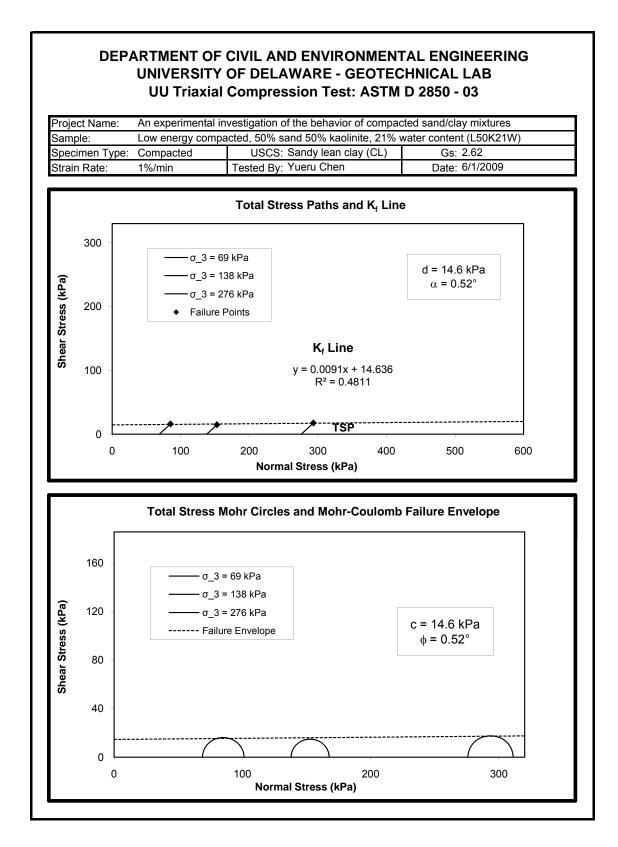
LE K20W

E 20W

| 1     | 2                                                                              | 3                                                                                                                                                                                                                                                                                  |
|-------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 68.95 | 137.90                                                                         | 275.79                                                                                                                                                                                                                                                                             |
| 7.11  | 7.14                                                                           | 7.12                                                                                                                                                                                                                                                                               |
| 3.56  | 3.55                                                                           | 3.52                                                                                                                                                                                                                                                                               |
| 15.95 | 16.01                                                                          | 16.30                                                                                                                                                                                                                                                                              |
| 0.61  | 0.61                                                                           | 0.58                                                                                                                                                                                                                                                                               |
| 0.84  | 0.86                                                                           | 0.90                                                                                                                                                                                                                                                                               |
| 14.83 | 14.35                                                                          | 14.84                                                                                                                                                                                                                                                                              |
| 53.1  | 56.1                                                                           | 56.9                                                                                                                                                                                                                                                                               |
| 3.2   | 3.1                                                                            | 3.3                                                                                                                                                                                                                                                                                |
| 49.8  | 53.0                                                                           | 53.6                                                                                                                                                                                                                                                                               |
| 118.8 | 190.9                                                                          | 329.4                                                                                                                                                                                                                                                                              |
|       | 68.95<br>7.11<br>3.56<br>15.95<br>0.61<br>0.84<br>14.83<br>53.1<br>3.2<br>49.8 | 68.95         137.90           7.11         7.14           3.56         3.55           15.95         16.01           0.61         0.61           0.84         0.86           14.83         14.35           53.1         56.1           3.2         3.1           49.8         53.0 |



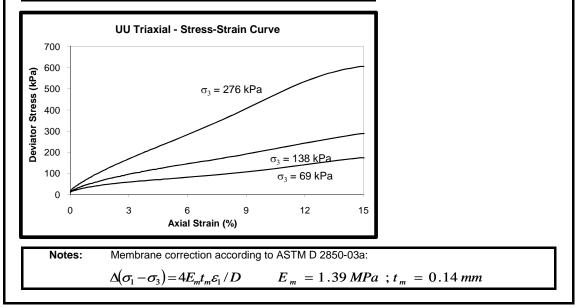


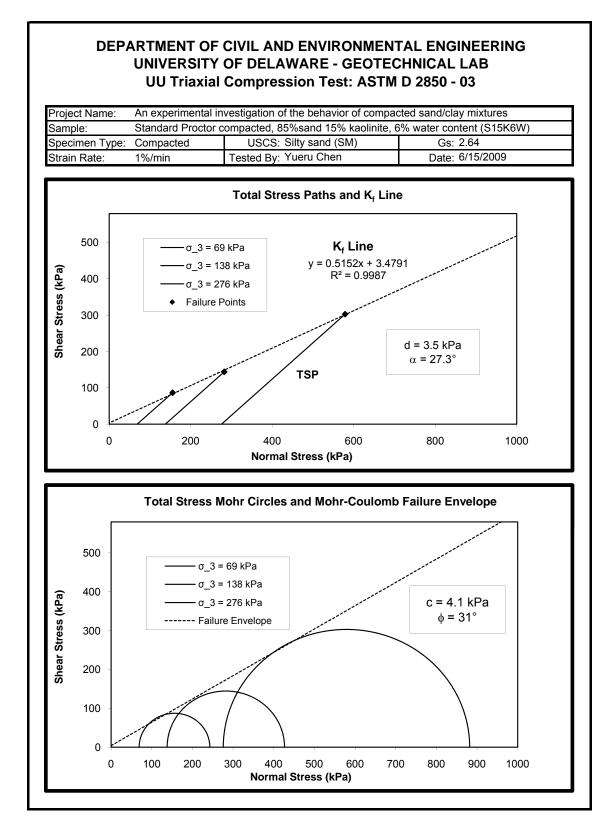


| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                       |                |  |  |  |
|----------------|-------------------------------------------------------------------------------|-----------------------|----------------|--|--|--|
| Sample:        | Low energy compacted, 50% sand 50% kaolinite, 21% water content (L50K21W)     |                       |                |  |  |  |
| Specimen Type: | Compacted USCS: Sandy lean clay (CL) Gs: 2.62                                 |                       |                |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen | Date: 6/1/2009 |  |  |  |

| Sample No.                |        | Trimming |       |       | Specimen |       |  |
|---------------------------|--------|----------|-------|-------|----------|-------|--|
| Sample No.                | 1      | 2        | 3     | 1     | 2        | 3     |  |
| Tin No.                   | 2      | 420      | 418   | B-19  | 7        | 31    |  |
| Wt. of Tin (g)            | 28.97  | 27.57    | 28.88 | 27.3  | 28.2     | 28.3  |  |
| Wt. of Tin + Wet soil (g) | 148.61 | 120.91   | 81.82 | 162.4 | 164.5    | 165.5 |  |
| Wt. of Tin + Dry soil (g) | 127.73 | 104.69   | 72.65 | 138.6 | 140.7    | 141.8 |  |
| Wt. of Dry Soil (g)       | 98.76  | 77.12    | 43.77 | 111.3 | 112.5    | 113.5 |  |
| Wt. of Water (g)          | 20.88  | 16.22    | 9.17  | 23.8  | 23.9     | 23.7  |  |
| Water Content (%)         | 21.14  | 21.03    | 20.95 | 21.4  | 21.2     | 20.9  |  |
| Average Water Content (%) |        | 21.0     |       |       | 21.1     |       |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.23  | 7.20   | 7.23   |
| Average Diameter, D (cm)             | 3.51  | 3.55   | 3.54   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 15.65 | 15.52  | 15.69  |
| Initial Void ratio                   | 0.64  | 0.66   | 0.64   |
| Saturation (%)                       | 0.87  | 0.85   | 0.86   |
| Strain at Failure (%)                | 14.34 | 14.85  | 14.84  |
| Max Deviator Stress (kPa)            | 35.5  | 33.0   | 38.6   |
| Membrane Correction (kPa)            | 3.2   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 32.3  | 29.8   | 35.3   |
| Corrected Major Stress (kPa)         | 101.3 | 167.7  | 311.1  |

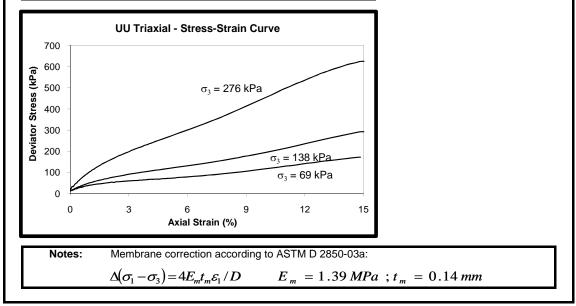


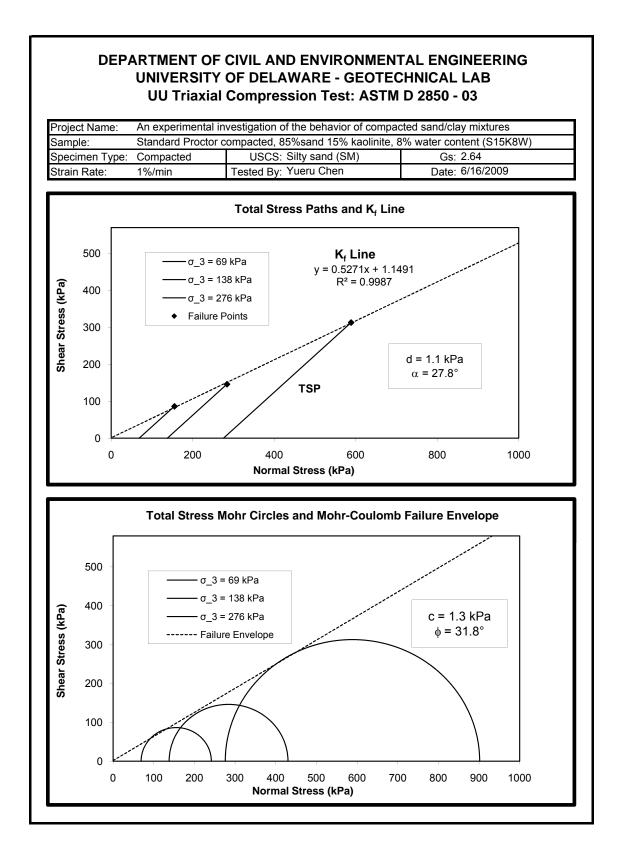



| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                       |                 |  |  |  |
|----------------|-------------------------------------------------------------------------------|-----------------------|-----------------|--|--|--|
| Sample:        | Standard Proctor compacted, 85% sand 15% kaolinite, 6% water content (S15K6W) |                       |                 |  |  |  |
| Specimen Type: | Compacted USCS: Silty sand (SM) Gs: 2.64                                      |                       |                 |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen | Date: 6/15/2009 |  |  |  |

| Sample No.                |       | Trimming |       |       |       |       |
|---------------------------|-------|----------|-------|-------|-------|-------|
| Sample No.                | 1     | 2        | 3     | 1     | 2     | 3     |
| Tin No.                   | 101   | 46       | B-19  | 405   | 4     | 404   |
| Wt. of Tin (g)            | 28.02 | 28.84    | 27.4  | 27.7  | 28.7  | 28.7  |
| Wt. of Tin + Wet soil (g) | 95.88 | 82.48    | 82.35 | 162.1 | 161.0 | 161.0 |
| Wt. of Tin + Dry soil (g) | 92.07 | 79.44    | 79.26 | 154.2 | 153.2 | 153.3 |
| Wt. of Dry Soil (g)       | 64.05 | 50.60    | 51.86 | 126.5 | 124.5 | 124.6 |
| Wt. of Water (g)          | 3.81  | 3.04     | 3.09  | 7.9   | 7.7   | 7.7   |
| Water Content (%)         | 5.95  | 6.01     | 5.96  | 6.3   | 6.2   | 6.2   |
| Average Water Content (%) |       | 6.0      |       |       | 6.2   |       |

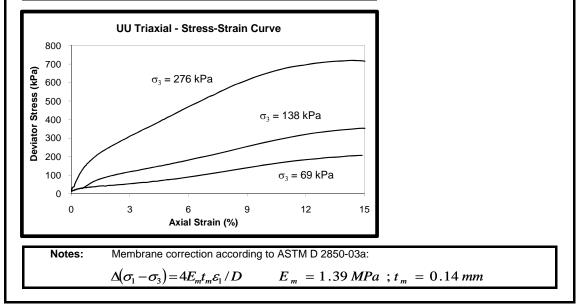

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.11  | 7.08   | 7.06   |
| Average Diameter, D (cm)             | 3.51  | 3.54   | 3.52   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 18.00 | 17.57  | 17.77  |
| Initial Void ratio                   | 0.44  | 0.47   | 0.46   |
| Saturation (%)                       | 0.38  | 0.35   | 0.36   |
| Strain at Failure (%)                | 14.86 | 15.03  | 14.83  |
| Max Deviator Stress (kPa)            | 177.2 | 292.2  | 609.2  |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 173.9 | 288.9  | 605.9  |
| Corrected Major Stress (kPa)         | 242.8 | 426.8  | 881.7  |

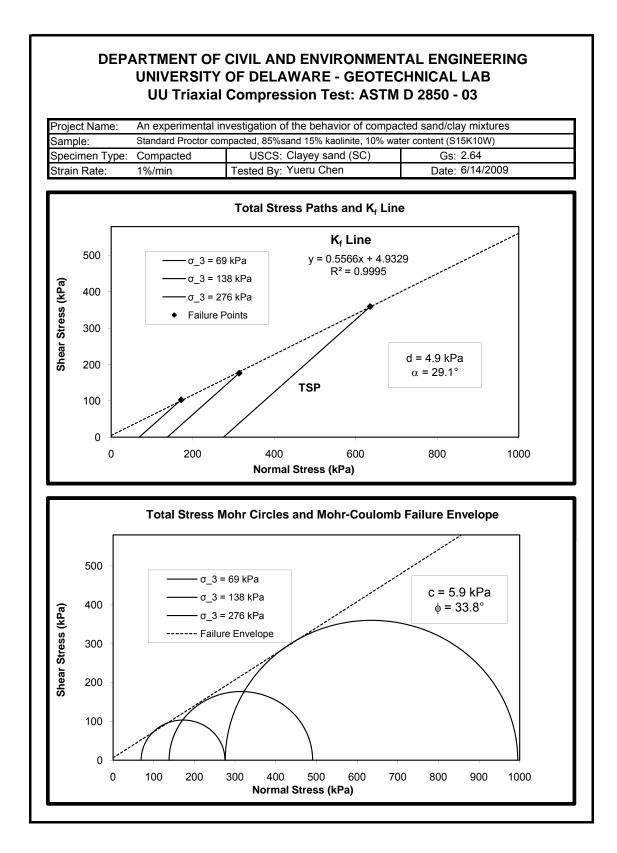





| An experimental investigation of the behavior of compacted sand/clay mixtures |                                                                                                 |                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| r compacted, 8                                                                | 35% sand 15                                                                                     | % kaolinite,                                                                                                                                                                              | 8% water co                                                                                                                                                                                                                                              | ntent (S15K8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| USCS:                                                                         | Silty sand (                                                                                    | SM)                                                                                                                                                                                       | Gs:                                                                                                                                                                                                                                                      | 2.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Tested By:                                                                    | Tested By: Yueru Chen                                                                           |                                                                                                                                                                                           | Date:                                                                                                                                                                                                                                                    | 6/16/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                               | Trimming                                                                                        |                                                                                                                                                                                           |                                                                                                                                                                                                                                                          | Specimen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 1                                                                             | 2                                                                                               | 3                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Majid                                                                         | FJ-3                                                                                            | 5                                                                                                                                                                                         | Majid                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 28.66                                                                         | 29.03                                                                                           | 28.89                                                                                                                                                                                     | 28.7                                                                                                                                                                                                                                                     | 28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 73.09                                                                         | 94.26                                                                                           | 97.12                                                                                                                                                                                     | 169.1                                                                                                                                                                                                                                                    | 168.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 168.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 69.84                                                                         | 89.4                                                                                            | 92.3                                                                                                                                                                                      | 158.2                                                                                                                                                                                                                                                    | 157.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 157.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 41.18                                                                         | 60.37                                                                                           | 63.41                                                                                                                                                                                     | 129.6                                                                                                                                                                                                                                                    | 129.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 128.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 3.25                                                                          | 4.86                                                                                            | 4.82                                                                                                                                                                                      | 10.8                                                                                                                                                                                                                                                     | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 7.89                                                                          | 8.05                                                                                            | 7.60                                                                                                                                                                                      | 8.4                                                                                                                                                                                                                                                      | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                               | 7.8                                                                                             |                                                                                                                                                                                           | 8.3                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                               |                                                                                                 |                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 1                                                                             | 2                                                                                               | 3                                                                                                                                                                                         |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                               | r compacted, &<br>USCS:<br>Tested By:<br>1<br>Majid<br>28.66<br>73.09<br>69.84<br>41.18<br>3.25 | r compacted, 85% sand 15<br>USCS: Silty sand (5<br>Tested By: Yueru Cher<br>1 2<br>Majid FJ-3<br>28.66 29.03<br>73.09 94.26<br>69.84 89.4<br>41.18 60.37<br>3.25 4.86<br>7.89 8.05<br>7.8 | r compacted, 85% sand 15% kaolinite,<br>USCS: Silty sand (SM)<br>Tested By: Yueru Chen<br>Trimming<br>1 2 3<br>Majid FJ-3 5<br>28.66 29.03 28.89<br>73.09 94.26 97.12<br>69.84 89.4 92.3<br>41.18 60.37 63.41<br>3.25 4.86 4.82<br>7.89 8.05 7.60<br>7.8 | r compacted, 85% sand 15% kaolinite, 8% water co         USCS: Silty sand (SM)       Gs:         Tested By: Yueru Chen       Date:         Trimming       1         1       2       3       1         Majid       FJ-3       5       Majid         28.66       29.03       28.89       28.7         73.09       94.26       97.12       169.1         69.84       89.4       92.3       158.2         41.18       60.37       63.41       129.6         3.25       4.86       4.82       10.8         7.89       8.05       7.60       8.4 | Tercompacted, 85% sand 15% kaolinite, 8% water content (S15K8         USCS: Silty sand (SM)       Gs: 2.64         Tested By: Yueru Chen       Date: 6/16/2009         Trimming       Specimen         1       2       3       1       2         Majid       FJ-3       5       Majid       7         28.66       29.03       28.89       28.7       28.2         73.09       94.26       97.12       169.1       168.0         69.84       89.4       92.3       158.2       157.5         41.18       60.37       63.41       129.6       129.3         3.25       4.86       4.82       10.8       10.5         7.89       8.05       7.60       8.4       8.1 |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.00  | 7.13   | 7.10   |
| Average Diameter, D (cm)             | 3.54  | 3.52   | 3.52   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 18.48 | 18.28  | 18.31  |
| Initial Void ratio                   | 0.40  | 0.42   | 0.41   |
| Saturation (%)                       | 0.55  | 0.51   | 0.53   |
| Strain at Failure (%)                | 14.84 | 15.01  | 15.02  |
| Max Deviator Stress (kPa)            | 175.8 | 295.7  | 629.0  |
| Membrane Correction (kPa)            | 3.2   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 172.6 | 292.4  | 625.6  |
| Corrected Major Stress (kPa)         | 241.5 | 430.3  | 901.4  |

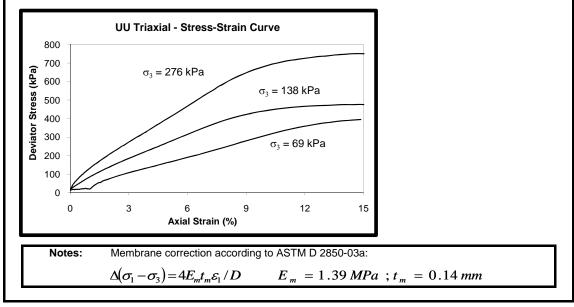


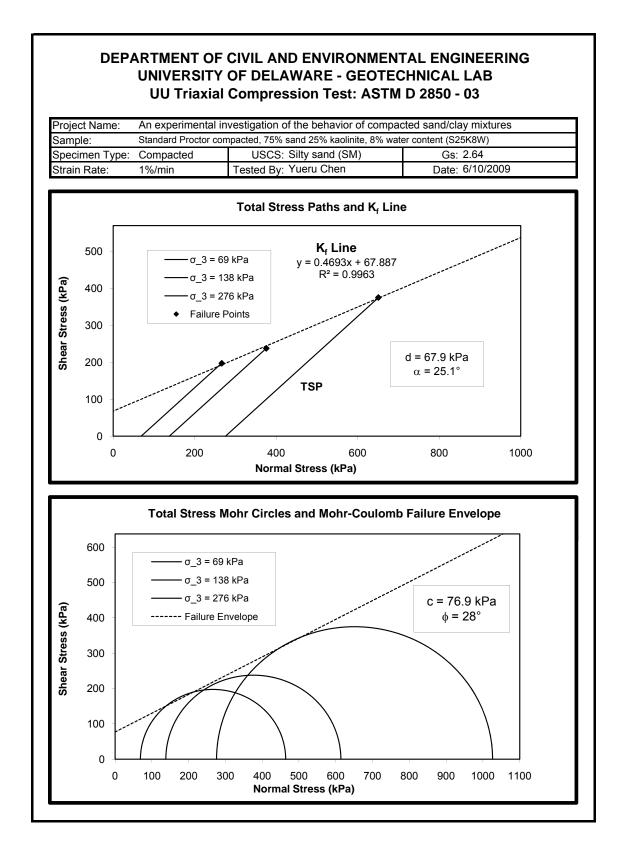




| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures   |                        |                 |  |  |  |
|----------------|---------------------------------------------------------------------------------|------------------------|-----------------|--|--|--|
| Sample:        | Standard Proctor compacted, 85% sand 15% kaolinite, 10% water content (S15K10W) |                        |                 |  |  |  |
| Specimen Type: | Compacted                                                                       | USCS: Clayey sand (SC) | Gs: 2.64        |  |  |  |
| Strain Rate:   | 1%/min                                                                          | Tested By: Yueru Chen  | Date: 6/14/2009 |  |  |  |

| Sample No.                |       | Trimming | rimming |       | Specimen |       |  |
|---------------------------|-------|----------|---------|-------|----------|-------|--|
| Sample No.                | 1     | 2        | 3       | 1     | 2        | 3     |  |
| Tin No.                   | 213   | B8       | 31      | 4     | 405      | 404   |  |
| Wt. of Tin (g)            | 27.9  | 28.45    | 38.34   | 28.7  | 27.7     | 28.7  |  |
| Wt. of Tin + Wet soil (g) | 95.31 | 136.28   | 118.04  | 178.9 | 179.3    | 179.2 |  |
| Wt. of Tin + Dry soil (g) | 89.02 | 126.61   | 109.8   | 164.7 | 164.6    | 164.9 |  |
| Wt. of Dry Soil (g)       | 61.12 | 98.16    | 71.46   | 136.0 | 136.9    | 136.2 |  |
| Wt. of Water (g)          | 6.29  | 9.67     | 8.24    | 14.2  | 14.7     | 14.4  |  |
| Water Content (%)         | 10.29 | 9.85     | 11.53   | 10.4  | 10.7     | 10.5  |  |
| Average Water Content (%) |       | 10.6     |         |       | 10.6     |       |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.11  | 7.11   | 7.11   |
| Average Diameter, D (cm)             | 3.56  | 3.53   | 3.53   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 18.89 | 19.29  | 19.19  |
| Initial Void ratio                   | 0.37  | 0.34   | 0.35   |
| Saturation (%)                       | 0.74  | 0.83   | 0.80   |
| Strain at Failure (%)                | 14.87 | 14.86  | 14.35  |
| Max Deviator Stress (kPa)            | 209.4 | 356.1  | 722.6  |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.2    |
| Corrected Deviator Stress (kPa)      | 206.2 | 352.9  | 719.4  |
| Corrected Major Stress (kPa)         | 275.1 | 490.8  | 995.2  |




| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                       |                 |  |  |  |  |
|----------------|-------------------------------------------------------------------------------|-----------------------|-----------------|--|--|--|--|
| Sample:        | Standard Proctor compacted, 75% sand 25% kaolinite, 8% water content (S25K8W) |                       |                 |  |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Silty sand (SM) | Gs: 2.64        |  |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen | Date: 6/10/2009 |  |  |  |  |

| Sample No.                |       | Trimming |       | Specimen |       |       |  |
|---------------------------|-------|----------|-------|----------|-------|-------|--|
| Sample No.                | 1     | 2        | 3     | 1        | 2     | 3     |  |
| Tin No.                   | 213   | 205      | B8    | 46       | 121   | 101   |  |
| Wt. of Tin (g)            | 27.9  | 29.7     | 28.46 | 28.8     | 30.9  | 28.0  |  |
| Wt. of Tin + Wet soil (g) | 93.69 | 89.23    | 79.38 | 168.3    | 167.3 | 172.3 |  |
| Wt. of Tin + Dry soil (g) | 88.88 | 84.9     | 75.68 | 157.6    | 156.2 | 161.6 |  |
| Wt. of Dry Soil (g)       | 60.98 | 55.20    | 47.22 | 128.7    | 125.3 | 133.6 |  |
| Wt. of Water (g)          | 4.81  | 4.33     | 3.70  | 10.8     | 11.1  | 10.7  |  |
| Water Content (%)         | 7.89  | 7.84     | 7.84  | 8.4      | 8.9   | 8.0   |  |
| Average Water Content (%) | 7.9   |          | 8.4   |          |       |       |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.06  | 7.08   | 7.15   |
| Average Diameter, D (cm)             | 3.49  | 3.53   | 3.54   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 18.71 | 17.72  | 18.66  |
| Initial Void ratio                   | 0.38  | 0.46   | 0.39   |
| Saturation (%)                       | 0.57  | 0.51   | 0.55   |
| Strain at Failure (%)                | 14.86 | 14.86  | 14.59  |
| Max Deviator Stress (kPa)            | 398.3 | 478.9  | 753.5  |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.2    |
| Corrected Deviator Stress (kPa)      | 394.9 | 475.6  | 750.3  |
| Corrected Major Stress (kPa)         | 463.9 | 613.5  | 1026.1 |





| Project Name:             | An experimental investigation of the behavior of compacted sand/clay mixtures |                                                                                 |              |       |                 |          |       |  |
|---------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------|-------|-----------------|----------|-------|--|
| Sample:                   | Standard Procto                                                               | Standard Proctor compacted, 75% sand 25% kaolinite, 10% water content (S25K10W) |              |       |                 |          |       |  |
| Specimen Type:            | Compacted                                                                     | USCS:                                                                           | Silty sand ( | SM)   | Gs: 2.64        |          |       |  |
| Strain Rate:              | 1%/min                                                                        | Tested By:                                                                      | Yueru Cher   | 1     | Date: 6/10/2009 |          |       |  |
|                           |                                                                               |                                                                                 | Trimming     |       |                 | Specimen |       |  |
| Sam                       | Sample No.                                                                    |                                                                                 | 2            | 3     | 1               | 2        | 3     |  |
| Tin No.                   |                                                                               | B-19                                                                            | 46           | 101   | 31              | B8       | 213   |  |
| Wt. of Tin (g)            |                                                                               | 27.41                                                                           | 28.84        | 28.02 | 28.4            | 28.5     | 27.9  |  |
| Wt. of Tin + Wet soil (g) |                                                                               | 88.29                                                                           | 107.26       | 103.5 | 177.1           | 177.8    | 178.2 |  |
| Wt. of Tin + Dr           | y soil (g)                                                                    | 82.69                                                                           | 100.17       | 96.75 | 163.2           | 164.0    | 164.5 |  |
| Wt. of Dry Soil           | (g)                                                                           | 55.28                                                                           | 71.33        | 68.73 | 134.8           | 135.5    | 136.6 |  |
|                           |                                                                               |                                                                                 |              |       |                 |          |       |  |

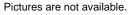
| ) = (3)                              | 00.20 |        | 000    |      |      |
|--------------------------------------|-------|--------|--------|------|------|
| Wt. of Water (g)                     | 5.60  | 7.09   | 6.75   | 13.9 | 13.8 |
| Water Content (%)                    | 10.13 | 9.94   | 9.82   | 10.3 | 10.2 |
| Average Water Content (%)            |       | 10.0   |        |      | 10.2 |
|                                      |       | -      | -      |      |      |
| Sample No.                           | 1     | 2      | 3      |      |      |
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |      |      |
| Average Height, L (cm)               | 7.08  | 7.11   | 7.12   |      |      |
| Average Diameter, D (cm)             | 3.52  | 3.53   | 3.53   |      |      |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 19.21 | 19.06  | 19.28  |      |      |
| Initial Void ratio                   | 0.35  | 0.36   | 0.34   |      |      |
| Saturation (%)                       | 0.78  | 0.75   | 0.77   |      |      |
| Strain at Failure (%)                | 14.86 | 14.86  | 15.01  |      |      |
|                                      |       |        |        |      |      |

214.9

3.3

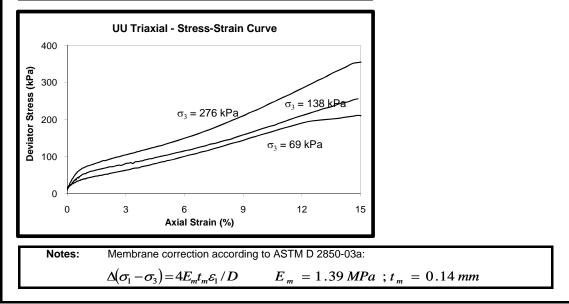
211.6

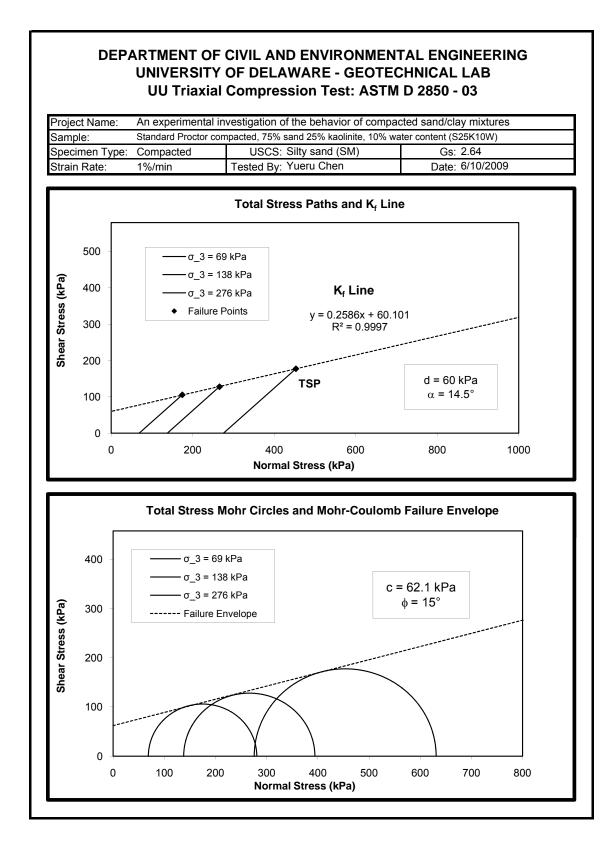
280.5


Max Deviator Stress (kPa)

Membrane Correction (kPa)

Corrected Major Stress (kPa)


Corrected Deviator Stress (kPa)


259.6 358.5 3.3 3.3 256.3 355.2 394.2 631.0



13.8

10.1





| Project Name:             | An experimental investigation of the behavior of compacted sand/clay mixtures |                |                                                                |       |       |                 |       |  |  |
|---------------------------|-------------------------------------------------------------------------------|----------------|----------------------------------------------------------------|-------|-------|-----------------|-------|--|--|
| Sample:                   | Standard Procto                                                               | r compacted, 7 | compacted, 75% sand 25% kaolinite, 12% water content (S25K12W) |       |       |                 |       |  |  |
| Specimen Type             | : Compacted                                                                   | USCS:          | USCS: Silty sand (SM)                                          |       |       | Gs: 2.64        |       |  |  |
| Strain Rate:              | 1%/min                                                                        | Tested By:     | Tested By: Yueru Chen                                          |       |       | Date: 6/16/2009 |       |  |  |
|                           |                                                                               |                | Trimming                                                       |       |       | Specimen        |       |  |  |
| Sar                       | nple No.                                                                      | 1              | 2                                                              | 3     | 1     | 2               | 3     |  |  |
| Tin No.                   |                                                                               | 101            | 46                                                             | B-19  | 31    | B8              | 213   |  |  |
| Wt. of Tin (g)            |                                                                               | 28.03          | 28.84                                                          | 27.4  | 28.4  | 28.5            | 27.9  |  |  |
| Wt. of Tin + V            | Vet soil (g)                                                                  | 121.6          | 115.09                                                         | 137.1 | 176.0 | 177.0           | 177.1 |  |  |
| Wt. of Tin + Dry soil (g) |                                                                               | 111.8          | 106.1                                                          | 125.5 | 159.9 | 160.8           | 161.1 |  |  |

77.26

8.99

| Water Content (%)                    | 11.70 | 11 64  | 44.00  |      |
|--------------------------------------|-------|--------|--------|------|
| Mator Contone (70)                   |       | 11.64  | 11.82  | 12.2 |
| Average Water Content (%)            |       | 11.7   |        |      |
|                                      |       |        | -      |      |
| Sample No.                           | 1     | 2      | 3      |      |
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |      |
| Average Height, L (cm)               | 7.12  | 7.13   | 7.11   |      |
| Average Diameter, D (cm)             | 3.52  | 3.56   | 3.56   |      |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 18.67 | 18.34  | 18.49  |      |
| Initial Void ratio                   | 0.39  | 0.41   | 0.40   |      |
| Saturation (%)                       | 0.83  | 0.78   | 0.79   |      |
| Strain at Failure (%)                | 14.85 | 14.85  | 14.85  |      |
| Max Deviator Stress (kPa)            | 62.2  | 80.5   | 116.3  |      |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.3    |      |
| Corrected Deviator Stress (kPa)      | 59.0  | 77.3   | 113.1  |      |
| Corrected Major Stress (kPa)         | 127.9 | 215.2  | 388.9  | Pict |

83.77

9.80

Wt. of Dry Soil (g)

Wt. of Water (g)

Pictures are not available.

132.4

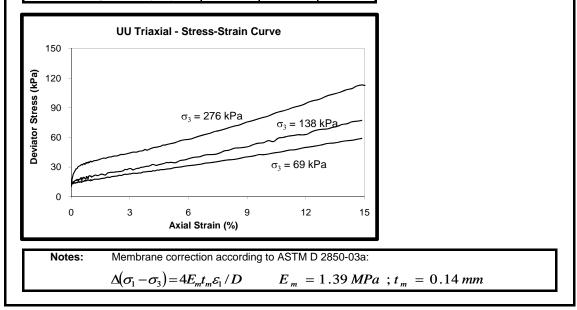
16.2

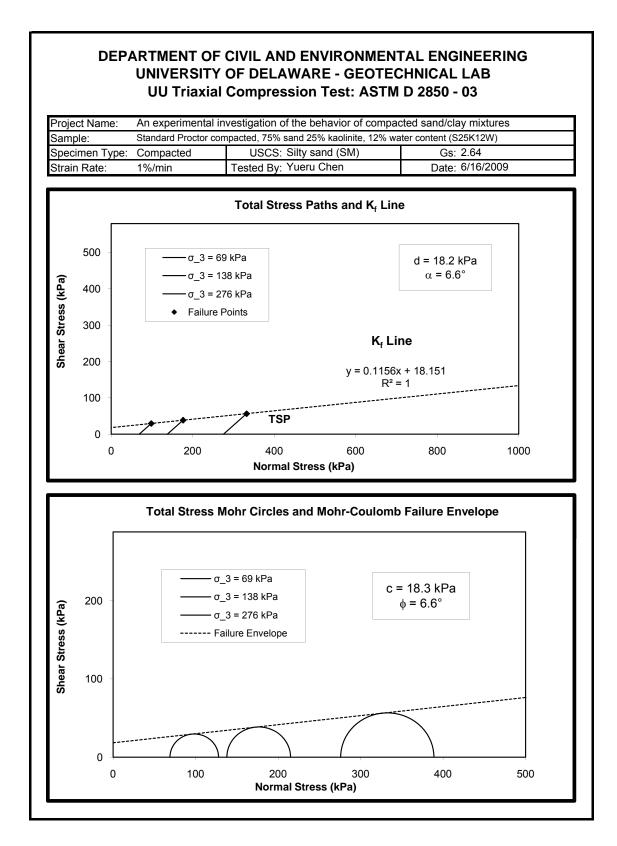
12.3

12.2

133.2

16.0

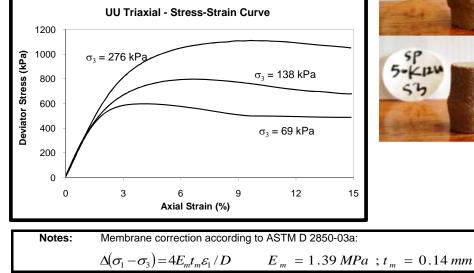

12.0


131.6

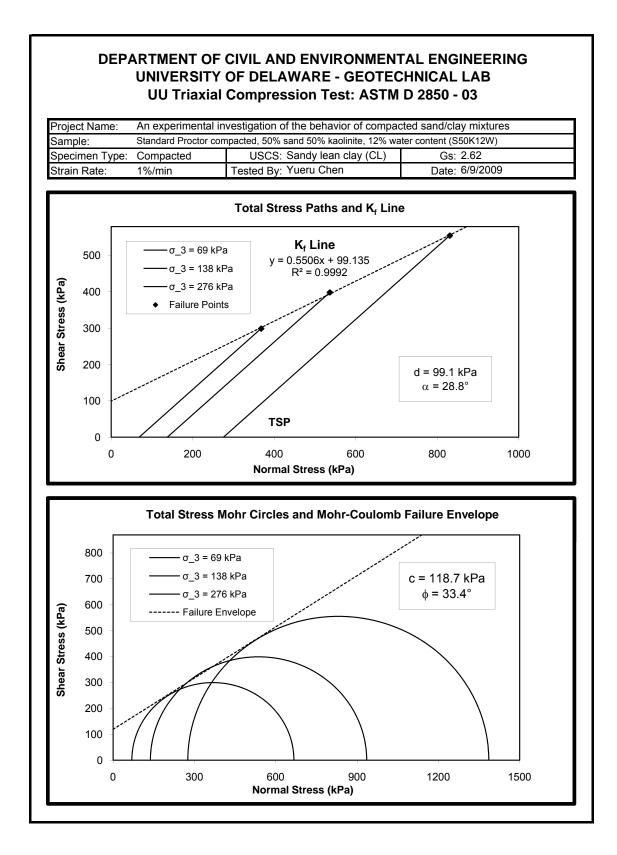
16.0

98.10

11.60



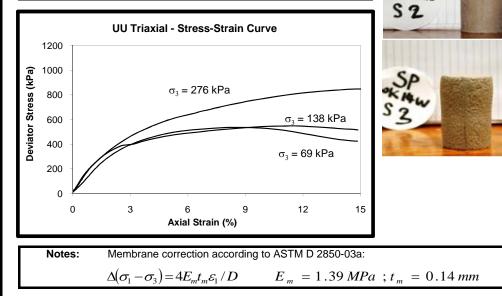


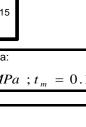


| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                                                                                 |                |  |  |  |  |
|----------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------|--|--|--|--|
| Sample:        | Standard Proctor c                                                            | Standard Proctor compacted, 50% sand 50% kaolinite, 12% water content (S50K12W) |                |  |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Sandy lean clay (CL)                                                      | Gs: 2.62       |  |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen                                                           | Date: 6/9/2009 |  |  |  |  |

| Sample No.                |       | Trimming |        |       | Specimen |       |  |  |
|---------------------------|-------|----------|--------|-------|----------|-------|--|--|
| Sample No.                | 1     | 2        | 3      | 1     | 2        | 3     |  |  |
| Tin No.                   | 213   | 205      | B 8    | majid | FJ-3     | 5     |  |  |
| Wt. of Tin (g)            | 27.89 | 29.7     | 28.45  | 28.7  | 29.0     | 28.9  |  |  |
| Wt. of Tin + Wet soil (g) | 92.4  | 85.99    | 108.02 | 161.3 | 165.4    | 159.1 |  |  |
| Wt. of Tin + Dry soil (g) | 85.86 | 80.12    | 100.05 | 147.4 | 151.4    | 145.6 |  |  |
| Wt. of Dry Soil (g)       | 57.97 | 50.42    | 71.60  | 118.7 | 122.4    | 116.7 |  |  |
| Wt. of Water (g)          | 6.54  | 5.87     | 7.97   | 13.9  | 13.9     | 13.5  |  |  |
| Water Content (%)         | 11.28 | 11.64    | 11.13  | 11.7  | 11.4     | 11.6  |  |  |
| Average Water Content (%) | 11.4  |          | 11.6   |       |          |       |  |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.16  | 7.17   | 6.89   |
| Average Diameter, D (cm)             | 3.53  | 3.50   | 3.51   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 16.62 | 17.40  | 17.19  |
| Initial Void ratio                   | 0.55  | 0.48   | 0.50   |
| Saturation (%)                       | 0.56  | 0.63   | 0.61   |
| Strain at Failure (%)                | 4.06  | 6.87   | 9.58   |
| Max Deviator Stress (kPa)            | 599.3 | 799.1  | 1112.3 |
| Membrane Correction (kPa)            | 0.9   | 1.5    | 2.1    |
| Corrected Deviator Stress (kPa)      | 598.4 | 797.6  | 1110.2 |
| Corrected Major Stress (kPa)         | 667.3 | 935.5  | 1386.0 |

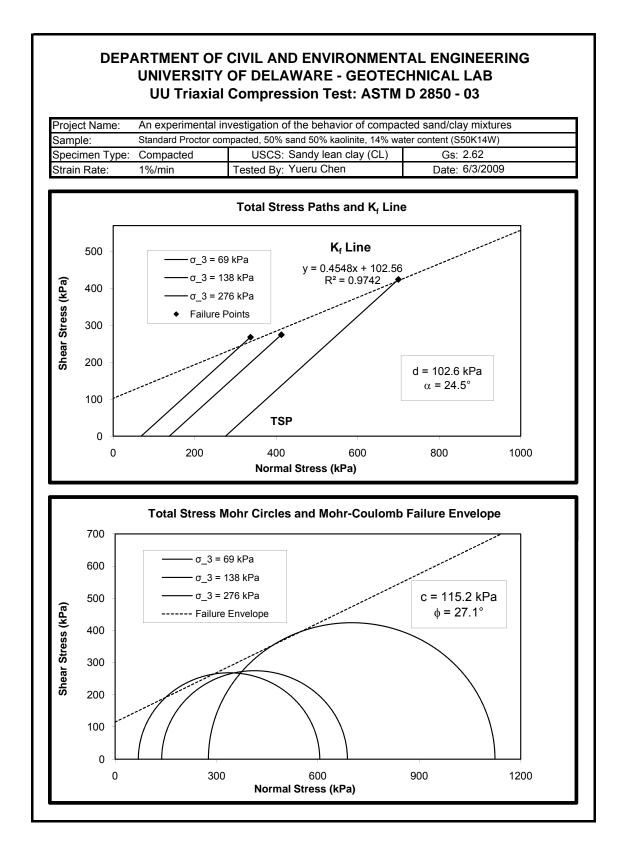





| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                                                                                 |                |  |  |  |  |
|----------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------|--|--|--|--|
| Sample:        | Standard Proctor c                                                            | Standard Proctor compacted, 50% sand 50% kaolinite, 14% water content (S50K14W) |                |  |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Sandy lean clay (CL)                                                      | Gs: 2.62       |  |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen                                                           | Date: 6/3/2009 |  |  |  |  |

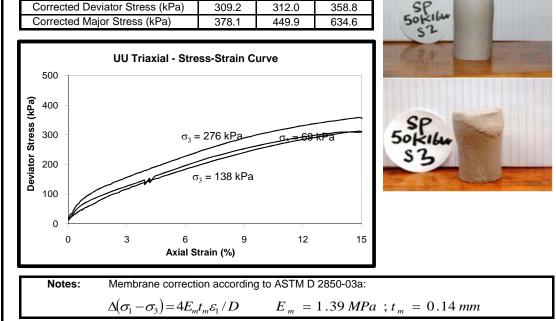
| Sample No.                |        | Trimming |        |       | Specimen |       |  |  |
|---------------------------|--------|----------|--------|-------|----------|-------|--|--|
| Sample No.                | 1      | 2        | 3      | 1     | 2        | 3     |  |  |
| Tin No.                   | 404    | 405      | 4      | 2     | 420      | 418   |  |  |
| Wt. of Tin (g)            | 28.71  | 27.7     | 28.71  | 29.0  | 27.6     | 28.9  |  |  |
| Wt. of Tin + Wet soil (g) | 122.13 | 123.88   | 105.16 | 161.6 | 156.5    | 159.2 |  |  |
| Wt. of Tin + Dry soil (g) | 110.93 | 112.17   | 95.48  | 145.5 | 140.2    | 143.1 |  |  |
| Wt. of Dry Soil (g)       | 82.22  | 84.47    | 66.77  | 116.5 | 112.6    | 114.2 |  |  |
| Wt. of Water (g)          | 11.20  | 11.71    | 9.68   | 16.1  | 16.3     | 16.2  |  |  |
| Water Content (%)         | 13.62  | 13.86    | 14.50  | 13.8  | 14.5     | 14.1  |  |  |
| Average Water Content (%) | 14.0   |          | 14.1   |       |          |       |  |  |

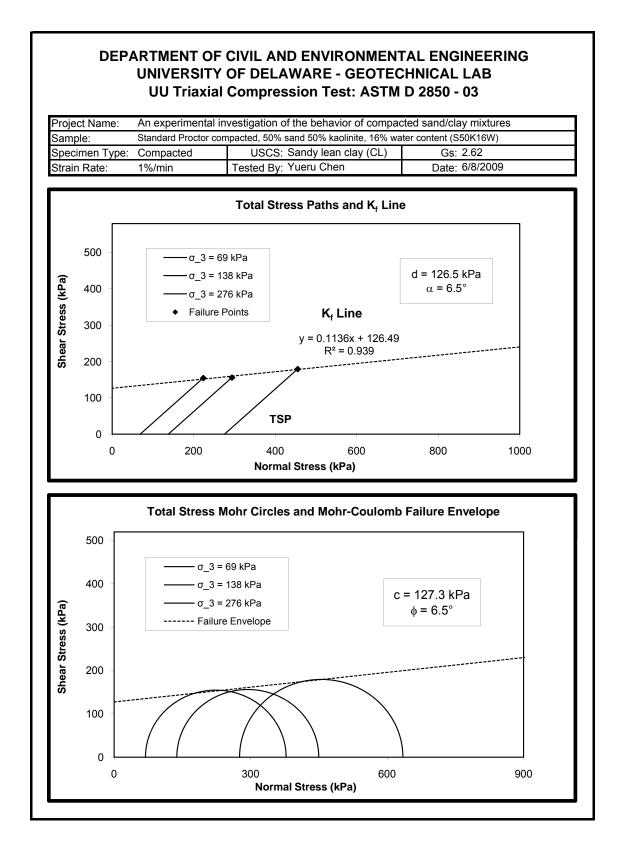

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 6.85  | 6.63   | 6.62   |
| Average Diameter, D (cm)             | 3.52  | 3.52   | 3.51   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.13 | 17.15  | 17.46  |
| Initial Void ratio                   | 0.50  | 0.50   | 0.47   |
| Saturation (%)                       | 0.72  | 0.76   | 0.79   |
| Strain at Failure (%)                | 8.56  | 11.35  | 14.84  |
| Max Deviator Stress (kPa)            | 538.2 | 551.9  | 851.4  |
| Membrane Correction (kPa)            | 1.9   | 2.5    | 3.3    |
| Corrected Deviator Stress (kPa)      | 536.3 | 549.4  | 848.1  |
| Corrected Major Stress (kPa)         | 605.2 | 687.3  | 1123.9 |





SI


SP



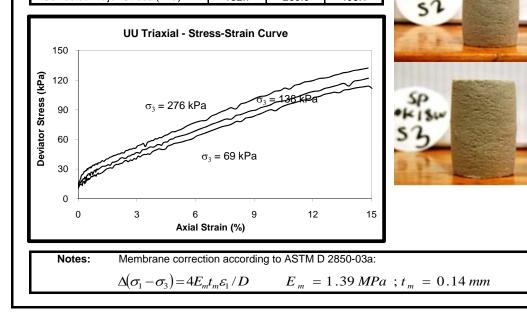

| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures   |                                     |  |  |  |  |
|----------------|---------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|
| Sample:        | Standard Proctor compacted, 50% sand 50% kaolinite, 16% water content (S50K16W) |                                     |  |  |  |  |
| Specimen Type: | Compacted                                                                       | USCS: Sandy lean clay (CL) Gs: 2.62 |  |  |  |  |
| Strain Rate:   | 1%/min                                                                          |                                     |  |  |  |  |

| Sample No.                |       | Trimming |        |       | Specimen |       |  |
|---------------------------|-------|----------|--------|-------|----------|-------|--|
| Sample No.                | 1     | 2        | 3      | 1     | 2        | 3     |  |
| Tin No.                   | 4     | 405      | 404    | 418   | 420      | 2     |  |
| Wt. of Tin (g)            | 28.71 | 27.7     | 28.71  | 28.9  | 27.6     | 29.0  |  |
| Wt. of Tin + Wet soil (g) | 96.36 | 107.04   | 105.41 | 174.5 | 171.6    | 175.4 |  |
| Wt. of Tin + Dry soil (g) | 87.34 | 96.64    | 95.46  | 154.5 | 151.9    | 155.3 |  |
| Wt. of Dry Soil (g)       | 58.63 | 68.94    | 66.75  | 125.6 | 124.3    | 126.3 |  |
| Wt. of Water (g)          | 9.02  | 10.40    | 9.95   | 20.1  | 19.7     | 20.1  |  |
| Water Content (%)         | 15.38 | 15.09    | 14.91  | 16.0  | 15.8     | 15.9  |  |
| Average Water Content (%) |       | 15.1     |        |       | 15.9     |       |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.14  | 7.13   | 7.15   |
| Average Diameter, D (cm)             | 3.53  | 3.51   | 3.52   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.68 | 17.68  | 17.81  |
| Initial Void ratio                   | 0.45  | 0.45   | 0.44   |
| Saturation (%)                       | 0.92  | 0.91   | 0.94   |
| Strain at Failure (%)                | 14.45 | 14.89  | 14.86  |
| Max Deviator Stress (kPa)            | 312.4 | 315.3  | 362.1  |
| Membrane Correction (kPa)            | 3.2   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 309.2 | 312.0  | 358.8  |
| Corrected Major Stress (kPa)         | 378.1 | 449.9  | 634.6  |
|                                      |       |        |        |






| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures   |                            |          |  |  |  |
|----------------|---------------------------------------------------------------------------------|----------------------------|----------|--|--|--|
| Sample:        | Standard Proctor compacted, 50% sand 50% kaolinite, 18% water content (S50K18W) |                            |          |  |  |  |
| Specimen Type: | Compacted                                                                       | USCS: Sandy lean clay (CL) | Gs: 2.62 |  |  |  |
| Strain Rate:   | 1%/min Tested By: Yueru Chen Date: 6/4/2009                                     |                            |          |  |  |  |

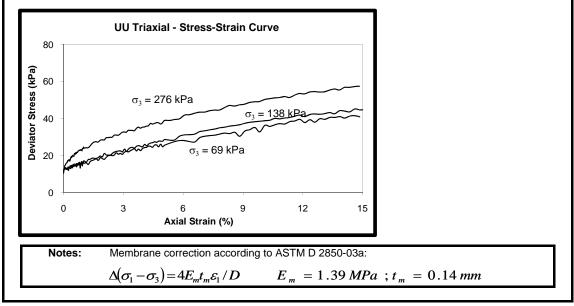

| Sample No.                |       | Trimming |        |       | Specimen |       |  |
|---------------------------|-------|----------|--------|-------|----------|-------|--|
| Sample No.                | 1     | 2        | 3      | 1     | 2        | 3     |  |
| Tin No.                   | 213   | 205      | B 8    | majid | FJ-3     | 5     |  |
| Wt. of Tin (g)            | 27.9  | 29.72    | 28.45  | 28.7  | 29.0     | 28.9  |  |
| Wt. of Tin + Wet soil (g) | 99.96 | 113.13   | 145.46 | 168.8 | 167.8    | 168.9 |  |
| Wt. of Tin + Dry soil (g) | 89.23 | 100.71   | 127.89 | 147.8 | 146.8    | 147.8 |  |
| Wt. of Dry Soil (g)       | 61.33 | 70.99    | 99.44  | 119.2 | 117.8    | 119.0 |  |
| Wt. of Water (g)          | 10.73 | 12.42    | 17.57  | 21.0  | 20.9     | 21.1  |  |
| Water Content (%)         | 17.50 | 17.50    | 17.67  | 17.6  | 17.7     | 17.7  |  |
| Average Water Content (%) |       | 17.6     |        |       | 17.7     |       |  |

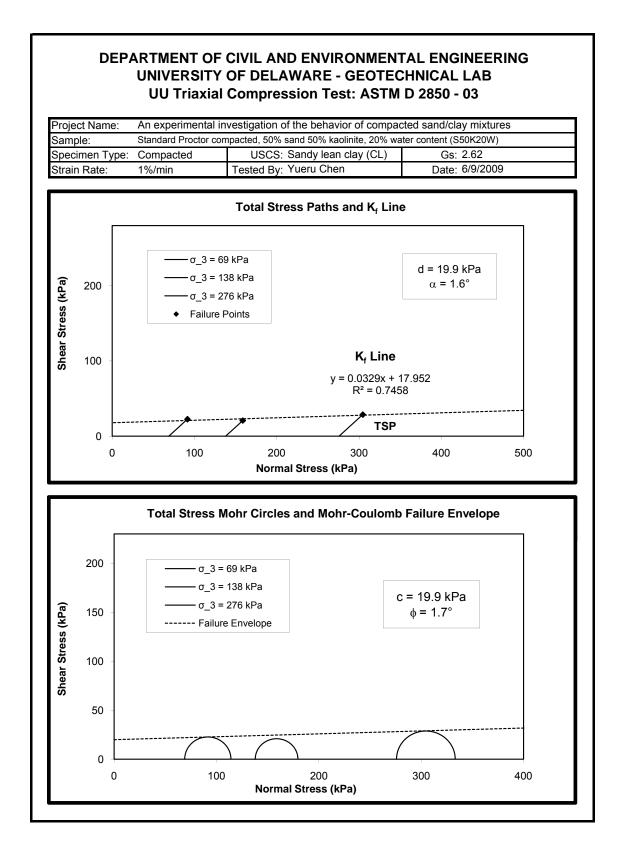
50K18W

SP SOK 180

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.12  | 7.09   | 7.11   |
| Average Diameter, D (cm)             | 3.55  | 3.52   | 3.53   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 16.55 | 16.74  | 16.80  |
| Initial Void ratio                   | 0.55  | 0.54   | 0.53   |
| Saturation (%)                       | 0.84  | 0.87   | 0.88   |
| Strain at Failure (%)                | 14.86 | 14.84  | 14.82  |
| Max Deviator Stress (kPa)            | 117.0 | 125.3  | 135.6  |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 113.8 | 122.1  | 132.3  |
| Corrected Major Stress (kPa)         | 182.7 | 260.0  | 408.1  |





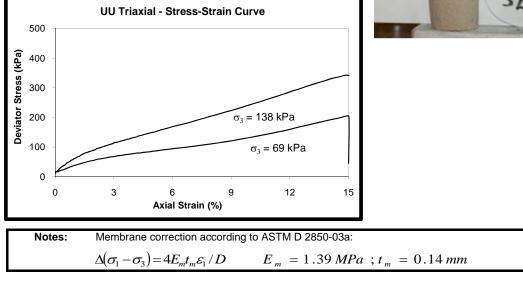


#### 

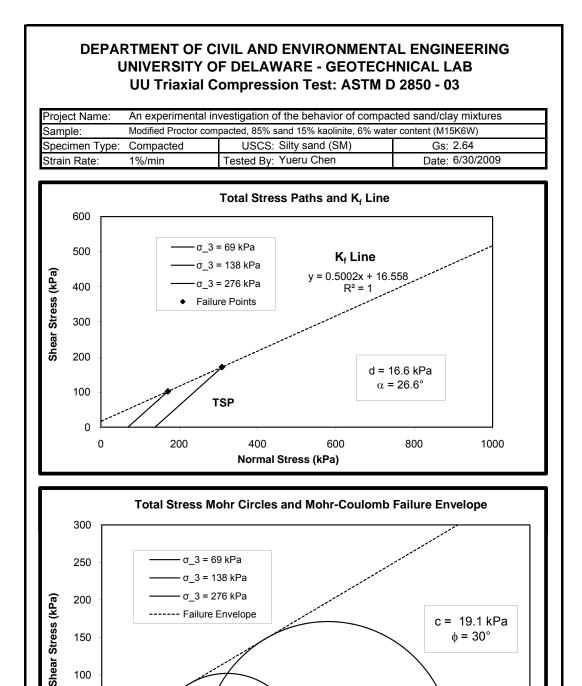
| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures   |                            |                |  |  |  |  |
|----------------|---------------------------------------------------------------------------------|----------------------------|----------------|--|--|--|--|
| Sample:        | Standard Proctor compacted, 50% sand 50% kaolinite, 20% water content (S50K20W) |                            |                |  |  |  |  |
| Specimen Type: | Compacted                                                                       | USCS: Sandy lean clay (CL) | Gs: 2.62       |  |  |  |  |
| Strain Rate:   | 1%/min                                                                          | Tested By: Yueru Chen      | Date: 6/9/2009 |  |  |  |  |

| Comple No.                |        | · · · · · · · · · · · · · · · · · · · |       |       |       |       |  |
|---------------------------|--------|---------------------------------------|-------|-------|-------|-------|--|
| Sample No.                | 1      | 2                                     | 3     | 1     | 2     | 3     |  |
| Tin No.                   | 101    | 121                                   | 46    | 2     | 420   | 418   |  |
| Wt. of Tin (g)            | 28.02  | 30.92                                 | 28.85 | 29.0  | 27.6  | 28.9  |  |
| Wt. of Tin + Wet soil (g) | 120.18 | 116.21                                | 112.4 | 166.1 | 166.2 | 166.1 |  |
| Wt. of Tin + Dry soil (g) | 104.98 | 102.12                                | 98.57 | 143.2 | 142.6 | 143.1 |  |
| Wt. of Dry Soil (g)       | 76.96  | 71.20                                 | 69.72 | 114.2 | 115.0 | 114.3 |  |
| Wt. of Water (g)          | 15.20  | 14.09                                 | 13.83 | 22.9  | 23.6  | 23.0  |  |
| Water Content (%)         | 19.75  | 19.79                                 | 19.84 | 20.1  | 20.6  | 20.1  |  |
| Average Water Content (%) |        | 19.8                                  |       |       | 20.2  |       |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.03  | 7.07   | 7.11   |
| Average Diameter, D (cm)             | 3.57  | 3.57   | 3.55   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 15.92 | 15.93  | 15.92  |
| Initial Void ratio                   | 0.61  | 0.61   | 0.61   |
| Saturation (%)                       | 0.86  | 0.88   | 0.86   |
| Strain at Failure (%)                | 14.61 | 14.61  | 14.84  |
| Max Deviator Stress (kPa)            | 48.4  | 44.8   | 60.7   |
| Membrane Correction (kPa)            | 3.2   | 3.2    | 3.3    |
| Corrected Deviator Stress (kPa)      | 45.2  | 41.6   | 57.5   |
| Corrected Major Stress (kPa)         | 114.1 | 179.5  | 333.2  |





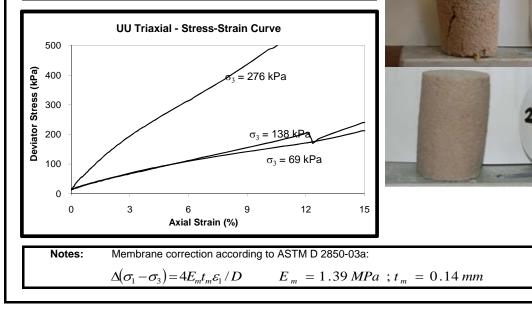


| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                                              |          |  |  |  |
|----------------|-------------------------------------------------------------------------------|----------------------------------------------|----------|--|--|--|
| Sample:        | Modified Proctor compacted, 85% sand 15% kaolinite, 6% water content (M15K6W) |                                              |          |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Silty sand (SM)                        | Gs: 2.64 |  |  |  |
| Strain Rate:   | 1%/min                                                                        | 1%/min Tested By: Yueru Chen Date: 6/30/2009 |          |  |  |  |

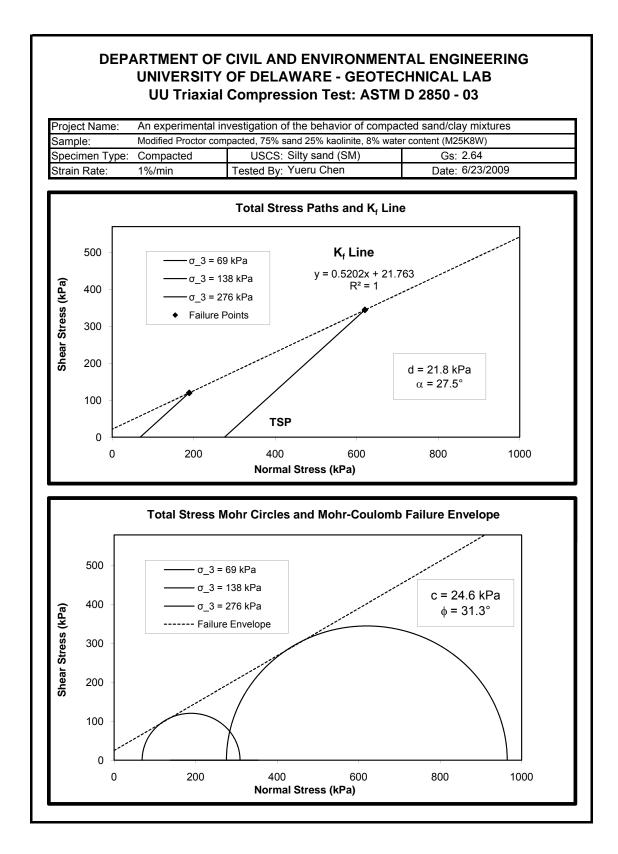
| Sample No.                |       | Trimming |        |       | Specimen |  |  |
|---------------------------|-------|----------|--------|-------|----------|--|--|
| Sample No.                | 1     | 2        | 3      | 1     | 2        |  |  |
| Tin No.                   | 213   | 31       | B-8    | 5     | FJ-3     |  |  |
| Wt. of Tin (g)            | 27.9  | 28.38    | 28.46  | 28.9  | 29.0     |  |  |
| Wt. of Tin + Wet soil (g) | 91.21 | 100.5    | 102.83 | 164.6 | 165.3    |  |  |
| Wt. of Tin + Dry soil (g) | 87.75 | 96.52    | 98.75  | 157.0 | 157.5    |  |  |
| Wt. of Dry Soil (g)       | 59.85 | 68.14    | 70.29  | 128.1 | 128.5    |  |  |
| Wt. of Water (g)          | 3.46  | 3.98     | 4.08   | 7.6   | 7.8      |  |  |
| Water Content (%)         | 5.78  | 5.84     | 5.80   | 5.9   | 6.1      |  |  |
| Average Water Content (%) |       | 5.8      |        |       | 6.0      |  |  |

| Sample No.                           | 1     | 2      |  |
|--------------------------------------|-------|--------|--|
| Cell Pressure (kPa)                  | 68.95 | 137.90 |  |
| Average Height, L (cm)               | 7.14  | 7.15   |  |
| Average Diameter, D (cm)             | 3.49  | 3.53   |  |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 18.40 | 18.01  |  |
| Initial Void ratio                   | 0.41  | 0.44   |  |
| Saturation (%)                       | 0.38  | 0.37   |  |
| Strain at Failure (%)                | 14.86 | 14.85  |  |
| Max Deviator Stress (kPa)            | 207.6 | 345.6  |  |
| Membrane Correction (kPa)            | 3.3   | 3.3    |  |
| Corrected Deviator Stress (kPa)      | 204.3 | 342.3  |  |
| Corrected Major Stress (kPa)         | 273.2 | 480.2  |  |
|                                      |       |        |  |





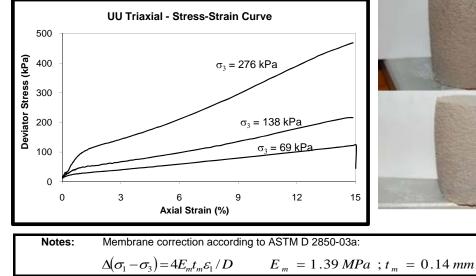




Normal Stress (kPa)

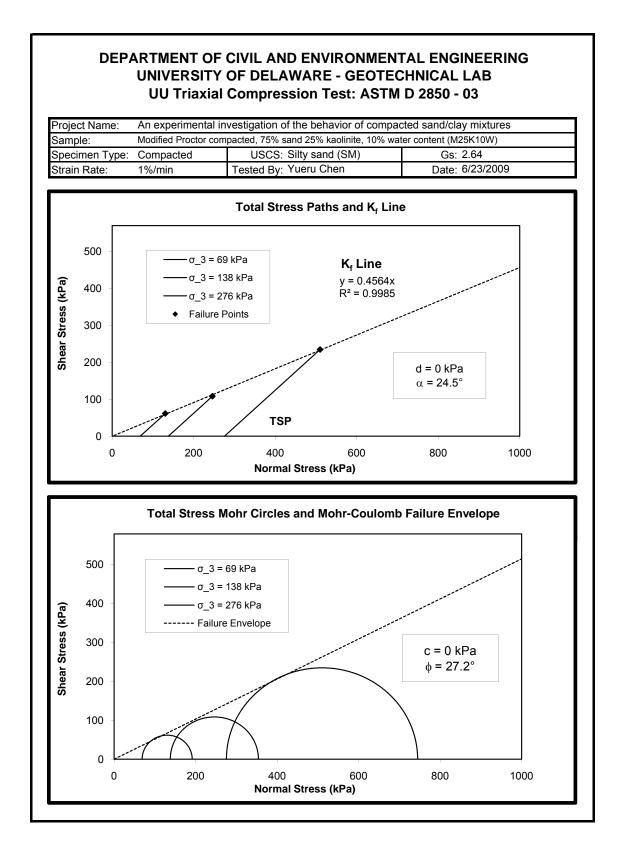
| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures |                       |                 |  |  |  |
|----------------|-------------------------------------------------------------------------------|-----------------------|-----------------|--|--|--|
| Sample:        | Modified Proctor compacted, 75% sand 25% kaolinite, 8% water content (M25K8W) |                       |                 |  |  |  |
| Specimen Type: | Compacted                                                                     | USCS: Silty sand (SM) | Gs: 2.64        |  |  |  |
| Strain Rate:   | 1%/min                                                                        | Tested By: Yueru Chen | Date: 6/23/2009 |  |  |  |

| Sample No.                |       | Trimming |       |       | Specimen |       |  |
|---------------------------|-------|----------|-------|-------|----------|-------|--|
| Sample No.                | 1     | 2        | 3     | 1     | 2        | 3     |  |
| Tin No.                   | 7     | 201      | 205   | 5     | FJ-3     | MAJID |  |
| Wt. of Tin (g)            | 28.18 | 28.88    | 29.69 | 28.9  | 29.0     | 28.7  |  |
| Wt. of Tin + Wet soil (g) | 90.94 | 80.89    | 93.58 | 160.4 | 163.6    | 174.4 |  |
| Wt. of Tin + Dry soil (g) | 86.19 | 76.94    | 88.72 | 149.6 | 153.1    | 163.3 |  |
| Wt. of Dry Soil (g)       | 58.01 | 48.06    | 59.03 | 120.7 | 124.1    | 134.6 |  |
| Wt. of Water (g)          | 4.75  | 3.95     | 4.86  | 10.7  | 10.5     | 11.1  |  |
| Water Content (%)         | 8.19  | 8.22     | 8.23  | 8.9   | 8.5      | 8.3   |  |
| Average Water Content (%) |       | 8.2      |       |       | 8.5      |       |  |

| 1     | 2                                                                                | 3                                                                                                                                                                                                                                                                                 |
|-------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 68.95 | 137.90                                                                           | 275.79                                                                                                                                                                                                                                                                            |
| 7.12  | 7.16                                                                             | 7.14                                                                                                                                                                                                                                                                              |
| 3.52  | 3.46                                                                             | 3.53                                                                                                                                                                                                                                                                              |
| 17.09 | 18.08                                                                            | 18.90                                                                                                                                                                                                                                                                             |
| 0.52  | 0.43                                                                             | 0.37                                                                                                                                                                                                                                                                              |
| 0.46  | 0.52                                                                             | 0.59                                                                                                                                                                                                                                                                              |
| 15.00 | 0.00                                                                             | 15.02                                                                                                                                                                                                                                                                             |
| 243.5 | 0.0                                                                              | 692.0                                                                                                                                                                                                                                                                             |
| 3.3   | 0.0                                                                              | 3.3                                                                                                                                                                                                                                                                               |
| 240.2 | 0.0                                                                              | 688.6                                                                                                                                                                                                                                                                             |
| 309.2 | 0.0                                                                              | 964.4                                                                                                                                                                                                                                                                             |
|       | 68.95<br>7.12<br>3.52<br>17.09<br>0.52<br>0.46<br>15.00<br>243.5<br>3.3<br>240.2 | 68.95         137.90           7.12         7.16           3.52         3.46           17.09         18.08           0.52         0.43           0.46         0.52           15.00         0.00           243.5         0.0           3.3         0.0           240.2         0.0 |



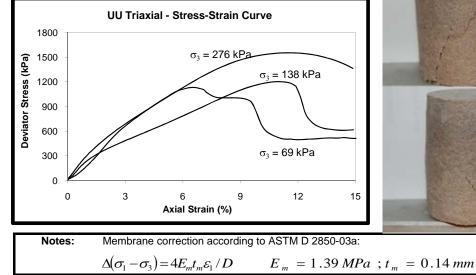




| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures   |                       |                 |  |  |  |
|----------------|---------------------------------------------------------------------------------|-----------------------|-----------------|--|--|--|
| Sample:        | Modified Proctor compacted, 75% sand 25% kaolinite, 10% water content (M25K10W) |                       |                 |  |  |  |
| Specimen Type: | Compacted                                                                       | USCS: Silty sand (SM) | Gs: 2.64        |  |  |  |
| Strain Rate:   | 1%/min                                                                          | Tested By: Yueru Chen | Date: 6/23/2009 |  |  |  |

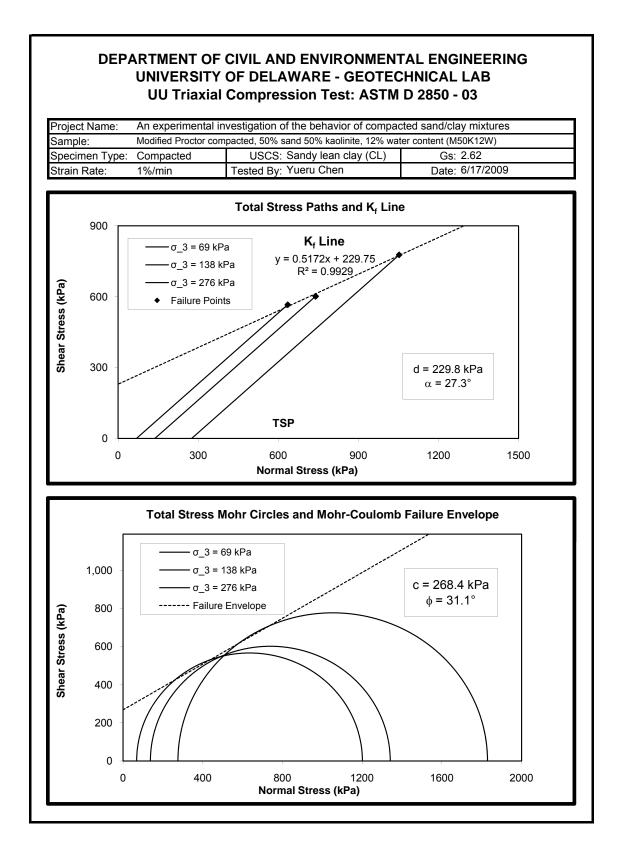
| Sample No.                |       | Trimming |       |       | Specimen |       |  |
|---------------------------|-------|----------|-------|-------|----------|-------|--|
|                           | 1     | 2        | 3     | 1     | 2        | 3     |  |
| Tin No.                   | B-19  | 46       | 101   | 31    | B8       | 213   |  |
| Wt. of Tin (g)            | 27.41 | 28.84    | 28.02 | 28.4  | 28.5     | 27.9  |  |
| Wt. of Tin + Wet soil (g) | 88.29 | 107.26   | 103.5 | 177.1 | 177.8    | 178.2 |  |
| Wt. of Tin + Dry soil (g) | 87.34 | 96.64    | 95.46 | 163.2 | 164.0    | 164.5 |  |
| Wt. of Dry Soil (g)       | 59.93 | 67.80    | 67.44 | 134.8 | 135.5    | 136.6 |  |
| Wt. of Water (g)          | 0.95  | 10.62    | 8.04  | 13.9  | 13.8     | 13.8  |  |
| Water Content (%)         | 1.59  | 15.66    | 11.92 | 10.3  | 10.2     | 10.1  |  |
| Average Water Content (%) |       | 9.7      |       |       | 10.2     |       |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.07  | 7.08   | 7.12   |
| Average Diameter, D (cm)             | 3.53  | 3.51   | 3.52   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 19.08 | 19.46  | 19.38  |
| Initial Void ratio                   | 0.36  | 0.33   | 0.34   |
| Saturation (%)                       | 0.76  | 0.81   | 0.79   |
| Strain at Failure (%)                | 15.03 | 14.61  | 14.87  |
| Max Deviator Stress (kPa)            | 126.0 | 219.4  | 472.1  |
| Membrane Correction (kPa)            | 3.3   | 3.2    | 3.3    |
| Corrected Deviator Stress (kPa)      | 122.7 | 216.1  | 468.8  |
| Corrected Major Stress (kPa)         | 191.7 | 354.0  | 744.6  |





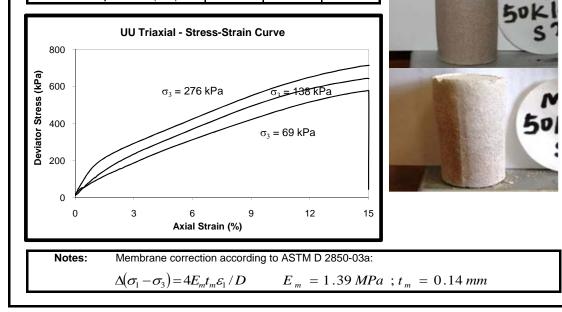




| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures   |                            |                 |  |  |  |
|----------------|---------------------------------------------------------------------------------|----------------------------|-----------------|--|--|--|
| Sample:        | Modified Proctor compacted, 50% sand 50% kaolinite, 12% water content (M50K12W) |                            |                 |  |  |  |
| Specimen Type: | Compacted                                                                       | USCS: Sandy lean clay (CL) | Gs: 2.62        |  |  |  |
| Strain Rate:   | 1%/min                                                                          | Tested By: Yueru Chen      | Date: 6/17/2009 |  |  |  |

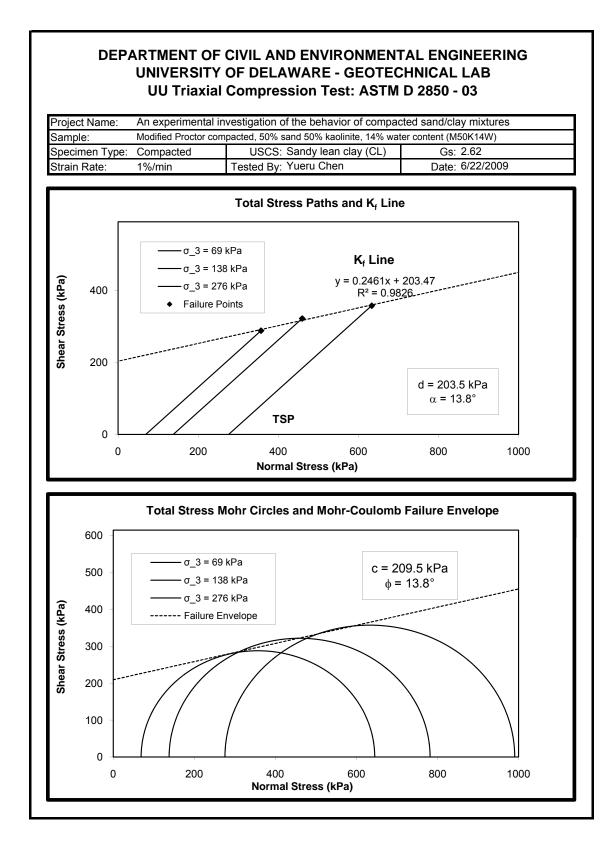
| Sample No.                |        | Trimming |        |       | Specimen |       |  |
|---------------------------|--------|----------|--------|-------|----------|-------|--|
| Sample No.                | 1      | 2        | 3      | 1     | 2        | 3     |  |
| Tin No.                   | 404    | 4        | 405    | majid | FJ-3     | 5     |  |
| Wt. of Tin (g)            | 28.72  | 28.72    | 27.71  | 28.7  | 29.0     | 28.9  |  |
| Wt. of Tin + Wet soil (g) | 102.53 | 91.25    | 111.78 | 178.4 | 176.1    | 179.3 |  |
| Wt. of Tin + Dry soil (g) | 94.26  | 84.54    | 102.76 | 162.5 | 160.6    | 163.4 |  |
| Wt. of Dry Soil (g)       | 65.54  | 55.82    | 75.05  | 133.8 | 131.5    | 134.5 |  |
| Wt. of Water (g)          | 8.27   | 6.71     | 9.02   | 15.9  | 15.6     | 15.9  |  |
| Water Content (%)         | 12.62  | 12.02    | 12.02  | 11.9  | 11.8     | 11.8  |  |
| Average Water Content (%) |        | 12.2     |        |       | 11.8     |       |  |

| Sample No.                           | 1      | 2      | 3      |
|--------------------------------------|--------|--------|--------|
| Cell Pressure (kPa)                  | 68.95  | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.17   | 7.19   | 7.13   |
| Average Diameter, D (cm)             | 3.51   | 3.51   | 3.51   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 18.89  | 18.58  | 19.14  |
| Initial Void ratio                   | 0.36   | 0.38   | 0.34   |
| Saturation (%)                       | 0.86   | 0.81   | 0.90   |
| Strain at Failure (%)                | 6.58   | 10.87  | 11.34  |
| Max Deviator Stress (kPa)            | 1133.8 | 1205.9 | 1556.2 |
| Membrane Correction (kPa)            | 1.5    | 2.4    | 2.5    |
| Corrected Deviator Stress (kPa)      | 1132.3 | 1203.5 | 1553.7 |
| Corrected Major Stress (kPa)         | 1201.3 | 1341.4 | 1829.5 |









| Project Name:  | An experimental investigation of the behavior of compacted sand/clay mixtures   |                            |                 |  |  |  |
|----------------|---------------------------------------------------------------------------------|----------------------------|-----------------|--|--|--|
| Sample:        | Modified Proctor compacted, 50% sand 50% kaolinite, 14% water content (M50K14W) |                            |                 |  |  |  |
| Specimen Type: | Compacted                                                                       | USCS: Sandy lean clay (CL) | Gs: 2.62        |  |  |  |
| Strain Rate:   | 1%/min                                                                          | Tested By: Yueru Chen      | Date: 6/22/2009 |  |  |  |

| Sample No.                |       | Trimming |       |       | Specimen |       |  |
|---------------------------|-------|----------|-------|-------|----------|-------|--|
| Sample No.                | 1     | 2        | 3     | 1     | 2        | 3     |  |
| Tin No.                   | B-19  | 46       | 101   | 205   | 201      | 7     |  |
| Wt. of Tin (g)            | 27.4  | 28.83    | 28.01 | 29.6  | 28.9     | 28.2  |  |
| Wt. of Tin + Wet soil (g) | 93.68 | 93.06    | 117.3 | 176.1 | 176.6    | 178.5 |  |
| Wt. of Tin + Dry soil (g) | 85.28 | 85.16    | 106.7 | 157.7 | 158.6    | 160.0 |  |
| Wt. of Dry Soil (g)       | 57.88 | 56.33    | 78.69 | 128.1 | 129.7    | 131.9 |  |
| Wt. of Water (g)          | 8.40  | 7.90     | 10.60 | 18.4  | 18.1     | 18.4  |  |
| Water Content (%)         | 14.51 | 14.02    | 13.47 | 14.4  | 14.0     | 14.0  |  |
| Average Water Content (%) |       | 14.0     |       |       | 14.1     |       |  |

| Sample No.                           | 1     | 2      | 3      |
|--------------------------------------|-------|--------|--------|
| Cell Pressure (kPa)                  | 68.95 | 137.90 | 275.79 |
| Average Height, L (cm)               | 7.08  | 7.12   | 7.16   |
| Average Diameter, D (cm)             | 3.51  | 3.51   | 3.54   |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 18.32 | 18.44  | 18.36  |
| Initial Void ratio                   | 0.40  | 0.39   | 0.40   |
| Saturation (%)                       | 0.93  | 0.93   | 0.92   |
| Strain at Failure (%)                | 15.01 | 14.85  | 15.03  |
| Max Deviator Stress (kPa)            | 579.4 | 647.0  | 718.0  |
| Membrane Correction (kPa)            | 3.3   | 3.3    | 3.3    |
| Corrected Deviator Stress (kPa)      | 576.1 | 643.7  | 714.7  |
| Corrected Major Stress (kPa)         | 645.1 | 781.6  | 990.5  |

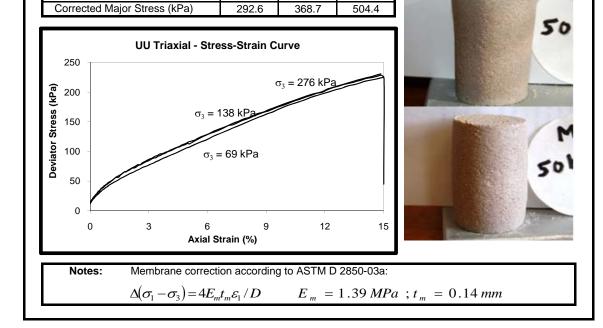


MP



| DEPARTMENT<br>UNIVERS                | OF CIVIL AI                                |            | -      | -                 |                                 | G                |  |
|--------------------------------------|--------------------------------------------|------------|--------|-------------------|---------------------------------|------------------|--|
|                                      | axial Compre                               |            |        |                   |                                 |                  |  |
| ,                                    | ntal investigation of<br>ctor compacted, 5 |            |        |                   | ,                               | 16\\/\           |  |
| Specimen Type: Compacted             |                                            | Sandy lean |        |                   | 2.62                            | 1000)            |  |
| Strain Rate: 1%/min                  |                                            | Yueru Cher | , ,    | Date:             | 6/29/2009                       |                  |  |
|                                      | Tested by.                                 | Tueru Oner | 1      | Date.             | 0/29/2009                       | ,                |  |
|                                      |                                            | Trimming   |        |                   | Specimen                        |                  |  |
| Sample No.                           | 1                                          | 2          | 3      | 1                 | 2                               | 3                |  |
| Tin No.                              | 7                                          | 201        | 205    | 418               | 420                             | 2                |  |
| Wt. of Tin (g)                       | 28.18                                      | 28.88      | 29.69  | 28.8              | 27.6                            | 29.0             |  |
| Wt. of Tin + Wet soil (g)            | 105.12                                     | 119.43     | 112.08 | 172.5             | 171.4                           | 169.9            |  |
| Wt. of Tin + Dry soil (g)            | 94.63                                      | 107.13     | 100.84 | 152.4             | 151.2                           | 150.1            |  |
| Wt. of Dry Soil (g)                  | 66.45                                      | 78.25      | 71.15  | 123.6 123.6 121.1 |                                 |                  |  |
| Wt. of Water (g)                     | 10.49                                      | 12.30      | 11.24  | 20.1              | 20.2                            | 19.8             |  |
| Water Content (%)                    | 15.79                                      | 15.72      | 15.80  | 16.3              | 16.3                            | 16.3             |  |
| Average Water Content (%)            |                                            | 15.8       |        |                   | 16.3                            | -                |  |
|                                      |                                            |            |        |                   | and a state of the state of the |                  |  |
| Sample No.                           | 1                                          | 2          | 3      |                   | ALCONDUCT. A. P.                | N                |  |
| Cell Pressure (kPa)                  | 68.95                                      | 137.90     | 275.79 |                   |                                 |                  |  |
| Average Height, L (cm)               | 7.13                                       | 7.13       | 7.11   | 1000              |                                 | FAK              |  |
| Average Diameter, D (cm)             | 3.53                                       | 3.52       | 3.51   |                   |                                 | 200              |  |
| Dry Unit Weight (kN/m <sup>3</sup> ) | 17.37                                      | 17.48      | 17.27  | 1000              | In the second                   | C                |  |
| Initial Void ratio                   | 0.48                                       | 0.47       | 0.49   |                   |                                 | 3                |  |
| Saturation (%)                       | 0.89                                       | 0.91       | 0.88   |                   |                                 | 1                |  |
| Strain at Failure (%)                | 14.84                                      | 14.86      | 14.86  |                   |                                 | - and the second |  |
|                                      |                                            |            |        |                   |                                 |                  |  |

234.0


3.3

230.8

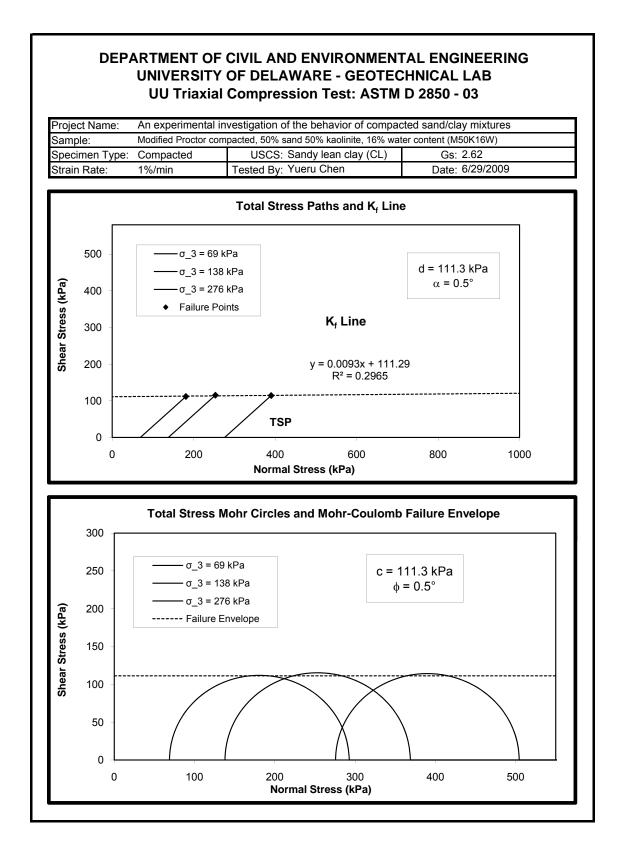
231.9

3.3

228.6



227.0


3.3

223.7

Max Deviator Stress (kPa)

Membrane Correction (kPa)

Corrected Deviator Stress (kPa)



#### 

#### APPENDIX G

#### **ONE – DIMENSIONAL COMPRESSION DATA**

| Project:                                                                                                                                                               | An experimental investigation of the behavior of compacted sand/clay mixtures |                                  |                                                 |                                                                                       |                 |         |                |                                                                           |                           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------|-----------------|---------|----------------|---------------------------------------------------------------------------|---------------------------|--|
| Sample:                                                                                                                                                                | Low ene                                                                       | rgy con                          | npacted, 85% s                                  | sand 1                                                                                | 5% bentonite    | , 12% w | ater content ( | L15B12W)                                                                  |                           |  |
| Consolid. Type                                                                                                                                                         | EI25-047                                                                      | 9                                |                                                 |                                                                                       | Consolid. Ty    | pe l    | Fixed Ring     |                                                                           |                           |  |
| Height of Spec.                                                                                                                                                        | 20                                                                            | mm                               | Dia. of Spec.                                   |                                                                                       | 63.5 mi         | m /     | Area of Spec.  | 3166.9                                                                    | mm <sup>2</sup>           |  |
| Weight of Ring                                                                                                                                                         | 66.3                                                                          | g                                | Wt. of Stone                                    |                                                                                       | 133.6 g         | ١       | Nt. of Paper   | 0.3                                                                       | g                         |  |
| Specific Gravity                                                                                                                                                       | 2.65                                                                          |                                  | Tested By                                       |                                                                                       | Yueru Chen      | C       | Date 3/11/2009 |                                                                           |                           |  |
| Trimmings                                                                                                                                                              | ;                                                                             |                                  |                                                 | 1                                                                                     |                 |         |                | 2                                                                         |                           |  |
| Tin No.                                                                                                                                                                |                                                                               |                                  |                                                 | 213                                                                                   |                 |         |                | B8                                                                        |                           |  |
| Wt. of Tin (g)                                                                                                                                                         |                                                                               |                                  |                                                 | 27.9                                                                                  |                 |         | 28.4           |                                                                           |                           |  |
| Wt. of Tin + Wet Soil                                                                                                                                                  | (g)                                                                           |                                  |                                                 | 145.8                                                                                 |                 |         |                | 169.9                                                                     |                           |  |
| Wt. of Tin + Dry Soil                                                                                                                                                  | (g)                                                                           |                                  | 132.9 15                                        |                                                                                       |                 |         | 154.6          |                                                                           |                           |  |
| Wt. of Dry Soil (g)                                                                                                                                                    |                                                                               |                                  | 105 126.2                                       |                                                                                       |                 |         |                |                                                                           |                           |  |
| Wt. of Water (g)                                                                                                                                                       |                                                                               |                                  | 12.9 15.3                                       |                                                                                       |                 |         |                |                                                                           |                           |  |
| Water Content (%)                                                                                                                                                      |                                                                               |                                  | 12.3 12.1                                       |                                                                                       |                 |         |                |                                                                           |                           |  |
| Average Water Conte                                                                                                                                                    | ent (%)                                                                       |                                  |                                                 |                                                                                       | 1               | 2.2     |                |                                                                           |                           |  |
|                                                                                                                                                                        |                                                                               |                                  |                                                 |                                                                                       |                 |         |                |                                                                           |                           |  |
| Sassimon                                                                                                                                                               |                                                                               |                                  |                                                 |                                                                                       |                 |         |                |                                                                           |                           |  |
| Specimen                                                                                                                                                               | l                                                                             |                                  | Bef                                             | fore T                                                                                | est             |         | At             | ter Test                                                                  |                           |  |
| Tare I.D. No.                                                                                                                                                          | I                                                                             |                                  |                                                 |                                                                                       | est<br>Paper    |         | At             | iter Test<br>205                                                          |                           |  |
| •                                                                                                                                                                      |                                                                               |                                  | Ring, S                                         |                                                                                       | Paper           |         | Ai             |                                                                           |                           |  |
| Tare I.D. No.                                                                                                                                                          | oil (g)                                                                       |                                  | Ring, S                                         | Stone,                                                                                | Paper           |         | A              | 205                                                                       |                           |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S                                                                                                                                   | oil (g)                                                                       |                                  | Ring, S                                         | Stone,                                                                                | Paper           |         | Ai             | 205<br>145.8                                                              |                           |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So                                                                                                           | oil (g)                                                                       |                                  | Ring, S                                         | Stone,<br>316.9<br>-                                                                  | Paper           |         | Af             | 205<br>145.8<br>132.6                                                     |                           |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                       | oil (g)                                                                       |                                  | Ring, S<br>2<br>1                               | Stone,<br>316.9<br>-<br>200.20                                                        | Paper<br>)      |         | A              | 205<br>145.8<br>132.6<br>29.7                                             |                           |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry Sc<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 | oil (g)                                                                       |                                  | Ring, S<br>2<br>1<br>1                          | Stone,<br>316.9<br>-<br>200.20<br>116.70                                              | Paper           |         | A              | 205<br>145.8<br>132.6<br>29.7<br>116.1                                    |                           |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                         | oil (g)                                                                       |                                  | Ring, S<br>2<br>1<br>1                          | Stone,<br>316.9<br>-<br>200.20<br>116.70                                              | Paper           |         | A              | 205<br>145.8<br>132.6<br>29.7<br>116.1<br>102.9                           |                           |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry Sc<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | oil (g)                                                                       |                                  | Ring, S<br>2<br>1<br>1                          | Stone,<br>316.9<br>-<br>200.20<br>116.70<br>102.90<br>13.80                           | Paper           |         | A              | 205<br>145.8<br>132.6<br>29.7<br>116.1<br>102.9<br>13.2                   |                           |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry Sc<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | oil (g)                                                                       | ρ <sub>d</sub>                   | Ring, S<br>2<br>1<br>1                          | Stone,<br>316.9<br>-<br>200.20<br>116.70<br>102.90<br>13.80<br>13.4                   | Paper           | nsity   | ρ              | 205<br>145.8<br>132.6<br>29.7<br>116.1<br>102.9<br>13.2<br>12.8           | g/cm                      |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | oil (g)<br>bil (g)                                                            | ρ <sub>d</sub><br>γ <sub>d</sub> | Ring, S<br>2<br>1<br>1                          | Stone,<br>316.9<br>-<br>200.20<br>116.70<br>102.90<br>13.80<br>13.4<br>m <sup>3</sup> | Paper<br>)<br>) |         | ρ              | 205<br>145.8<br>132.6<br>29.7<br>116.1<br>102.9<br>13.2<br>12.8<br>d 1.78 | g/cm <sup>°</sup><br>kN/m |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | oil (g)<br>bil (g)                                                            | γ <sub>d</sub>                   | Ring, S<br>2<br>1<br>1<br>1.62 g/c              | Stone,<br>316.9<br>-<br>200.20<br>116.70<br>102.90<br>13.80<br>13.4<br>m <sup>3</sup> | Final Dry Der   |         | ρ              | 205<br>145.8<br>132.6<br>29.7<br>116.1<br>102.9<br>13.2<br>12.8<br>d 1.78 | -                         |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | oil (g)<br>bil (g)                                                            | γ <sub>d</sub>                   | Ring, S<br>2<br>1<br>1<br>1.62 g/ci<br>15.9 kN/ | Stone,<br>316.9<br>-<br>200.20<br>116.70<br>102.90<br>13.80<br>13.4<br>m <sup>3</sup> | Final Dry Der   |         | ρ              | 205<br>145.8<br>132.6<br>29.7<br>116.1<br>102.9<br>13.2<br>12.8<br>d 1.78 | -                         |  |

| Project:                                                                                                                             | An expe   | e behavior of compa | acted sand/clay mi                               | xtures                      |                                                 |                                             |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|--------------------------------------------------|-----------------------------|-------------------------------------------------|---------------------------------------------|--|--|
| Sample:                                                                                                                              | Low energ | gy com              | pacted, 85% sand 1                               | 5% bentonite, 14%           | water content (L1                               | 5B14W)                                      |  |  |
| Consolid. Type                                                                                                                       | EI25-047  | '9                  |                                                  | Consolid. Type              | Fixed Ring                                      |                                             |  |  |
| Height of Spec.                                                                                                                      | 20        | mm                  | Dia. of Spec.                                    | 63.5 mm                     | Area of Spec.                                   | 3166.9 mm <sup>2</sup>                      |  |  |
| Weight of Ring                                                                                                                       | 63        | g                   | Wt. of Stone                                     | 128.3 g                     | Wt. of Paper                                    | 0.3 g                                       |  |  |
| Specific Gravity                                                                                                                     | 2.65      |                     | Tested By                                        | Yueru Chen                  | Date                                            | 3/11/2009                                   |  |  |
| Trimmings                                                                                                                            | ;         |                     | 1                                                |                             |                                                 | 2                                           |  |  |
| Tin No.                                                                                                                              |           |                     | 7                                                |                             | 201                                             |                                             |  |  |
| Wt. of Tin (g)                                                                                                                       |           |                     | 28.2                                             |                             | 28.9                                            |                                             |  |  |
| Wt. of Tin + Wet Soil                                                                                                                | (g)       |                     | 158.8                                            | 8                           | 15                                              | 3.2                                         |  |  |
| Wt. of Tin + Dry Soil                                                                                                                | bil (g)   |                     |                                                  | 6                           | 13                                              | 7.9                                         |  |  |
| Wt. of Dry Soil (g)                                                                                                                  |           |                     | 114.4                                            | 4                           | 1                                               | 09                                          |  |  |
| Wt. of Water (g)                                                                                                                     |           |                     | 16.2                                             |                             | 15.3                                            |                                             |  |  |
| Water Content (%)                                                                                                                    |           |                     |                                                  |                             |                                                 | 4.0                                         |  |  |
| Average Water Cont                                                                                                                   | ent (%)   |                     |                                                  | 14.1                        |                                                 |                                             |  |  |
|                                                                                                                                      |           |                     |                                                  |                             |                                                 |                                             |  |  |
| Specimen                                                                                                                             |           |                     | Before 7                                         | Test                        | After                                           | r Test                                      |  |  |
| Tare I.D. No.                                                                                                                        |           |                     | Ring, Stone                                      | , Paper                     | B·                                              | -19                                         |  |  |
| Wt. of Tare + Wet S                                                                                                                  | oil (g)   |                     | 309.7                                            | 1                           | 151.4                                           |                                             |  |  |
| Wt. of Tare + Dry So                                                                                                                 | oil (g)   |                     | -                                                |                             | 131.3                                           |                                             |  |  |
| Wt. of Tare (g)                                                                                                                      |           |                     | 191.6                                            | 0                           | 27.4                                            |                                             |  |  |
|                                                                                                                                      |           |                     |                                                  |                             | 124                                             |                                             |  |  |
| Wt. of Wet Soil (g)                                                                                                                  |           |                     | 117.5                                            | 0                           | 1                                               | 24                                          |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                           |           |                     | 117.5<br>103.9                                   |                             |                                                 | 24<br>13.9                                  |  |  |
|                                                                                                                                      |           |                     |                                                  | 0                           | 10                                              |                                             |  |  |
| Wt. of Dry Soil (g)                                                                                                                  |           |                     | 103.9                                            | 0<br>D                      | 10<br>20                                        | 3.9                                         |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              |           |                     | 103.9<br>13.60                                   | 0<br>D                      | 10<br>20                                        | 93.9<br>0.1                                 |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         |           | Ρ <sub>d</sub>      | 103.9<br>13.60                                   | 0<br>D                      | 10<br>20                                        | 3.9<br>0.1<br>9.3<br>1.79 g/cm <sup>3</sup> |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         | ıt        | Pd<br>γd            | 103.9<br>13.60<br>13.1                           | 0<br>D                      | 10<br>2(<br>19<br>Ρ <sub>d</sub>                | 3.9<br>0.1<br>9.3<br>1.79 g/cm <sup>3</sup> |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma |           | γd                  | 103.9<br>13.6(<br>13.1<br>1.64 g/cm <sup>3</sup> | 0<br>)<br>Final Dry Density | 10<br>2(<br>19<br>Ρ <sub>d</sub>                | 3.9<br>0.1<br>9.3<br>1.79 g/cm <sup>5</sup> |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              |           | γ <sub>d</sub><br>s | 103.9<br>13.6(<br>13.1<br>1.64 g/cm <sup>3</sup> | 0<br>)<br>Final Dry Density | 10<br>2(<br>19<br>9d<br>ght γ <sub>d</sub><br>6 | 3.9<br>0.1<br>9.3<br>1.79 g/cm <sup>3</sup> |  |  |

| Project:                                                   | An expe   | rimenta           | ıl investiga | of compac         | cted sand/c | lay mix     | tures       |                   |           |             |
|------------------------------------------------------------|-----------|-------------------|--------------|-------------------|-------------|-------------|-------------|-------------------|-----------|-------------|
| Sample:                                                    | Low energ | gy com            | pacted, 85   | % sand 1          | 5% benton   | ite, 16% v  | vater conte | nt (L15           | B16W)     |             |
| Consolid. Type                                             | EI25-047  | '9                |              |                   | Consolid.   | Туре        | Fixed Rin   | g                 |           |             |
| Height of Spec.                                            | 20        | mm                | Dia. of S    | pec.              | 63.5        | mm          | Area of S   | pec.              | 3166.9    | $\rm{mm}^2$ |
| Weight of Ring                                             | 67.5      | g                 | Wt. of St    | one               | 133.6       | g           | Wt. of Pa   | per               | 0.3       | g           |
| Specific Gravity                                           | 2.65      |                   | Tested E     | By                | Yueru Che   | en          | Date        |                   | 3/5/2     | 2009        |
| Trimmings                                                  | 5         |                   |              | 1                 |             |             |             | 2                 | 2         |             |
| Tin No.                                                    |           |                   |              | 7                 |             |             | 201         |                   |           |             |
| Wt. of Tin (g)                                             |           |                   |              | 28.1              | 1 28.9      |             |             |                   |           |             |
| Wt. of Tin + Wet Soil                                      | (g)       |                   |              | 160.7             | 7           |             | 164         | 1.2               |           |             |
| Wt. of Tin + Dry Soil                                      |           |                   |              | 142.2             | 2           |             |             | 14                | 5.3       |             |
| Wt. of Dry Soil (g)                                        |           |                   |              | 114.1             | 1           |             |             | 116               | 6.4       |             |
| Wt. of Water (g)                                           |           |                   | 18.5         |                   |             |             | 18          | .9                |           |             |
| Water Content (%)                                          |           |                   | 16.2 16.2    |                   |             | .2          |             |                   |           |             |
| Average Water Cont                                         | ent (%)   |                   |              |                   | 16.2        |             |             |                   |           |             |
|                                                            |           |                   |              |                   |             |             |             |                   |           |             |
| Specimen                                                   |           |                   |              | Before 7          | Fest        |             |             | After             | Test      |             |
| Tare I.D. No.                                              |           |                   | Ri           | ng, Stone         | , Paper     |             |             | B-                | 19        |             |
| Wt. of Tare + Wet S                                        | oil (g)   |                   |              | 324.7             | 7           |             |             | 15                | 0         |             |
| Wt. of Tare + Dry Se                                       | oil (g)   |                   |              | -                 |             |             | 133.1       |                   |           |             |
| Wt. of Tare (g)                                            |           |                   |              | 201.4             | 0           |             | 27.4        |                   |           |             |
| Wt. of Wet Soil (g)                                        |           |                   |              | 123.3             | 0           |             |             | 122               | 2.6       |             |
| Wt. of Dry Soil (g)                                        |           |                   |              | 105.7             | 0           |             |             | 10                | 5.7       |             |
| Wt. of Water (g)                                           |           |                   |              | 17.60             | D           |             |             | 16                | .9        |             |
| Water Content (%)                                          |           |                   |              | 16.7              |             |             |             | 16                | .0        |             |
|                                                            |           |                   |              |                   |             |             |             |                   |           |             |
| Initial Dry Density                                        |           | $\rho_{\text{d}}$ | 1.67         | g/cm <sup>3</sup> | Final Dry   |             |             | $\rho_{\text{d}}$ | 1.77      | g/cm        |
| Initial Dry Unit Weigh                                     |           | γd                | 16.4         | kN/m <sup>3</sup> | Final Dry   | Unit Weig   | ht          | γd                | 17.4      | kN/m        |
| End of load deformation results                            |           |                   |              |                   |             |             |             |                   |           |             |
|                                                            |           |                   | ~            | ^                 | 4           | ~           | 0           |                   | 7         |             |
| End of load deforma<br>Load Step No.<br>Corrected Def (mm) | 1 0.08    |                   | 2<br>0.1370  | 3<br>0.2440       | 4<br>0.4470 | 5<br>0.6120 | 6<br>0.8790 | 4                 | 7<br>1700 |             |

| Project: An experimental investigation of the behavior of compact                                            |            |                     |                     |                                  |           | cted sand/c              | lay mix     | tures             |                   |                   |
|--------------------------------------------------------------------------------------------------------------|------------|---------------------|---------------------|----------------------------------|-----------|--------------------------|-------------|-------------------|-------------------|-------------------|
| Sample: I                                                                                                    | ow energ   | gy com              | pacted, 85%         | % sand 1                         | 5% benton | ite, 18% v               | water conte | nt (L15           | B18W)             |                   |
| Consolid. Type                                                                                               | El25-047   | 9                   |                     |                                  | Consolid. | Туре                     | Fixed Rin   | g                 |                   |                   |
| Height of Spec.                                                                                              | 20         | mm                  | Dia. of Sp          | Dec.                             | 63.5      | mm                       | Area of S   | pec.              | 3166.9            | $mm^2$            |
| Weight of Ring                                                                                               | 66.3       | g                   | Wt. of Sto          | one                              | 133.7     | g                        | Wt. of Pa   | per               | 0.3               | g                 |
| Specific Gravity                                                                                             | 2.65       |                     | Tested B            | y                                | Yueru Ch  | en                       | Date        |                   | 3/6/2             | 2009              |
| Trimmings                                                                                                    |            |                     |                     | 1                                |           |                          |             | 2                 | 2                 |                   |
| Tin No.                                                                                                      |            |                     |                     | 404                              |           |                          |             | 40                | )5                |                   |
| Wt. of Tin (g)                                                                                               |            |                     |                     | 28.7                             |           |                          | 27.7        |                   |                   |                   |
| Wt. of Tin + Wet Soil                                                                                        | (g)        |                     |                     | 155                              |           |                          |             | 15                | 5.8               |                   |
| Wt. of Tin + Dry Soil                                                                                        | (g)        | 135.8               |                     |                                  | 3         |                          |             | 130               | 5.3               |                   |
| Wt. of Dry Soil (g)                                                                                          |            | 107.1               |                     |                                  | 1         |                          |             | 108               | 3.6               |                   |
| Wt. of Water (g)                                                                                             |            |                     | 19.2 19.5           |                                  |           | .5                       |             |                   |                   |                   |
| Water Content (%)                                                                                            |            |                     | 17.9 18.0           |                                  |           | .0                       |             |                   |                   |                   |
| Average Water Conte                                                                                          | ent (%)    |                     |                     |                                  |           | 17.9                     |             |                   |                   |                   |
|                                                                                                              |            |                     |                     |                                  |           |                          |             |                   |                   |                   |
| Specimen                                                                                                     |            |                     |                     | Before 7                         | Гest      |                          |             | After             | Test              |                   |
| Tare I.D. No.                                                                                                |            |                     | Rin                 | g, Stone                         | , Paper   |                          |             | 10                | )1                |                   |
| Wt. of Tare + Wet Se                                                                                         | oil (g)    |                     |                     | 325.8                            | В         |                          | 152.7       |                   |                   |                   |
| Wt. of Tare + Dry Sc                                                                                         | il (g)     |                     |                     | -                                |           |                          | 134         |                   |                   |                   |
| Wt. of Tare (g)                                                                                              |            |                     |                     | 200.3                            | 0         |                          |             | 2                 | 8                 |                   |
| Wt. of Wet Soil (g)                                                                                          |            |                     |                     | 125.5                            | 0         |                          |             | 124               | 4.7               |                   |
| Wt. of Dry Soil (g)                                                                                          |            |                     |                     | 106.0                            | 0         |                          |             | 10                | )6                |                   |
| Wt. of Water (g)                                                                                             |            |                     |                     | 19.50                            | C         |                          |             | 18                | .7                |                   |
| Water Content (%)                                                                                            |            |                     |                     | 18.4                             |           |                          |             | 17                | .6                |                   |
|                                                                                                              |            |                     |                     | _                                |           |                          |             |                   |                   |                   |
|                                                                                                              |            | $\rho_d$            | 1.67                | g/cm <sup>3</sup>                | Final Dry | Density                  |             | $\rho_{\text{d}}$ | 1.80              | g/cm <sup>3</sup> |
| , <u>,</u>                                                                                                   |            | , u                 |                     |                                  |           |                          |             |                   |                   |                   |
| Initial Dry Unit Weigh                                                                                       |            | γd                  | 16.4                | kN/m <sup>3</sup>                | Final Dry | Unit Weig                | ht          | γd                | 17.6              | kN/m              |
| Initial Dry Unit Weigh<br>End of load deformat                                                               | ion result | γd                  | -                   |                                  |           |                          |             | γd                |                   | kN/m              |
| Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deformat<br>Load Step No.<br>Corrected Def (mm) |            | γ <sub>d</sub><br>s | 16.4<br>2<br>0.1140 | kN/m <sup>3</sup><br>3<br>0.2340 | 4         | Unit Weig<br>5<br>0.7420 | 6<br>1.0700 |                   | 17.6<br>7<br>3700 | kN/m              |

| Project: An experimental investigation of the behavior of compacted sa                                                                |            |                     |                                                    |                                                               |            | cted sand/c | lay mix           | tures                                                           |                                 |                           |
|---------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|----------------------------------------------------|---------------------------------------------------------------|------------|-------------|-------------------|-----------------------------------------------------------------|---------------------------------|---------------------------|
| Sample: I                                                                                                                             | ow energ   | gy com              | pacted, 85% sar                                    | าd 15%                                                        | % benton   | ite, 20% v  | water conte       | nt (L15                                                         | B20W)                           |                           |
| Consolid. Type                                                                                                                        | El25-047   | '9                  |                                                    | (                                                             | Consolid.  | Туре        | Fixed Rin         | g                                                               |                                 |                           |
| Height of Spec.                                                                                                                       | 20         | mm                  | Dia. of Spec.                                      |                                                               | 63.5       | mm          | Area of S         | pec.                                                            | 3166.9                          | $\rm{mm}^2$               |
| Weight of Ring                                                                                                                        | 63         | g                   | Wt. of Stone                                       |                                                               | 130        | g           | Wt. of Pap        | ber                                                             | 0.3                             | g                         |
| Specific Gravity                                                                                                                      | 2.65       |                     | Tested By                                          | Y                                                             | /ueru Che  | en          | Date              |                                                                 | 3/6/2                           | 2009                      |
| Trimmings                                                                                                                             |            |                     |                                                    | 1                                                             |            |             |                   | 2                                                               | 2                               |                           |
| Tin No.                                                                                                                               |            |                     | 3                                                  | 313                                                           |            |             | B8                |                                                                 |                                 |                           |
| Wt. of Tin (g)                                                                                                                        |            |                     | 2                                                  | 27.9                                                          |            |             | 28.4              |                                                                 |                                 |                           |
| Wt. of Tin + Wet Soil                                                                                                                 | (g)        |                     | 14                                                 | 47.3                                                          |            |             |                   | 180                                                             | ).4                             |                           |
| Wt. of Tin + Dry Soil                                                                                                                 | (g)        |                     | 127.3                                              |                                                               |            |             |                   | 154                                                             | 4.7                             |                           |
| Wt. of Dry Soil (g)                                                                                                                   |            |                     | 99.4 12                                            |                                                               |            | 126         | 6.3               |                                                                 |                                 |                           |
| Wt. of Water (g)                                                                                                                      |            |                     | 20 25.7                                            |                                                               |            | .7          |                   |                                                                 |                                 |                           |
| Water Content (%)                                                                                                                     |            |                     | 20.1 20.3                                          |                                                               |            |             |                   |                                                                 |                                 |                           |
| Average Water Conte                                                                                                                   | ent (%)    |                     |                                                    |                                                               |            | 20.2        |                   |                                                                 |                                 |                           |
|                                                                                                                                       |            |                     |                                                    |                                                               |            |             |                   |                                                                 |                                 |                           |
| Specimen                                                                                                                              |            |                     | Befo                                               | ore Tes                                                       | st         |             |                   | After                                                           | Test                            |                           |
| Tare I.D. No.                                                                                                                         |            |                     | Ring, St                                           | one, F                                                        | Paper      |             |                   | 20                                                              | )5                              |                           |
| Wt. of Tare + Wet Se                                                                                                                  | oil (g)    |                     | 3                                                  | 314                                                           |            |             | 151.4             |                                                                 |                                 |                           |
| Wt. of Tare + Dry Sc                                                                                                                  | il (g)     |                     |                                                    | -                                                             |            |             | 130.9             |                                                                 |                                 |                           |
| Wt. of Tare (g)                                                                                                                       |            |                     | 19                                                 | 93.30                                                         |            |             |                   | 29                                                              | .7                              |                           |
|                                                                                                                                       |            |                     | 193.30         29.7           120.70         121.7 |                                                               |            | 17          |                   |                                                                 |                                 |                           |
| Wt. of Wet Soil (g)                                                                                                                   |            |                     | 12                                                 | 20.70                                                         |            |             |                   | 12′                                                             | 1.7                             |                           |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                            |            |                     |                                                    | 20.70<br>01.20                                                |            |             |                   | 12 <sup>,</sup><br>10 <sup>,</sup>                              |                                 |                           |
| ( <u>-</u> )                                                                                                                          |            |                     | 10                                                 |                                                               |            |             |                   |                                                                 | 1.2                             |                           |
| Wt. of Dry Soil (g)                                                                                                                   |            |                     | 10<br>11                                           | 01.20                                                         |            |             |                   | 10'                                                             | 1.2<br>.5                       |                           |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                               |            |                     | 10<br>1!<br>1                                      | 01.20<br>9.50<br>19.3                                         |            |             |                   | 10 <sup>-</sup><br>20                                           | 1.2<br>.5                       |                           |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                          |            | Ρd                  | 10<br>19<br>1<br>1.60 g/cm                         | 01.20<br>9.50<br>19.3<br>n <sup>3</sup> F                     | inal Dry I |             |                   | 10 <sup>-</sup><br>20                                           | 1.2<br>.5                       | 0                         |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh                         |            | γd                  | 10<br>1!<br>1                                      | 01.20<br>9.50<br>19.3<br>n <sup>3</sup> F                     | inal Dry I |             | ht                | 10 <sup>,</sup><br>20<br>20                                     | 1.2<br>.5<br>.3                 | g/cm <sup>3</sup><br>kN/m |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deformat | ion result | γ <sub>d</sub><br>s | 10<br>19<br>1.60 g/cm<br>15.7 kN/n                 | 01.20<br>9.50<br>19.3<br>n <sup>3</sup> F<br>n <sup>3</sup> F | Final Dry  | Jnit Weig   |                   | 10 <sup>2</sup><br>20<br>20                                     | 1.2<br>.5<br>.3<br>1.79<br>17.6 | 0                         |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                               |            | γ <sub>d</sub><br>S | 10<br>19<br>1<br>1.60 g/cm                         | 01.20<br>9.50<br>19.3<br>n <sup>3</sup> F<br>m <sup>3</sup> F |            |             | ht<br>6<br>1.7300 | 10 <sup>2</sup><br>20<br>20<br>Ρ <sub>d</sub><br>γ <sub>d</sub> | 1.2<br>.5<br>.3<br>1.79         | 0                         |

| Project:                                                                                                                                                     | An expe     | he behavior of compa             | acted sand/clay mi                                                              | xtures                                                                |                                                              |                                                                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| Sample: I                                                                                                                                                    | ∟ow enerę   | gy com                           | pacted, 75% sand                                                                | 25% bentonite, 14%                                                    | water content (L2                                            | 5B14W)                                                                 |  |  |
| Consolid. Type                                                                                                                                               | El25-047    | 9                                |                                                                                 | Consolid. Type                                                        | Fixed Ring                                                   |                                                                        |  |  |
| Height of Spec.                                                                                                                                              | 20          | mm                               | Dia. of Spec.                                                                   | 63.5 mm                                                               | Area of Spec.                                                | 3166.9 mm <sup>2</sup>                                                 |  |  |
| Weight of Ring                                                                                                                                               | -           | g                                | Wt. of Stone                                                                    | - g                                                                   | Wt. of Paper                                                 | - g                                                                    |  |  |
| Specific Gravity                                                                                                                                             | 2.64        |                                  | Tested By                                                                       | Yueru Chen                                                            | Date                                                         | 7/21/2009                                                              |  |  |
| Trimmings                                                                                                                                                    |             |                                  | 1                                                                               |                                                                       |                                                              | 2                                                                      |  |  |
| Tin No.                                                                                                                                                      |             |                                  | 40                                                                              | 4                                                                     | 405                                                          |                                                                        |  |  |
| Wt. of Tin (g)                                                                                                                                               |             |                                  | 28.                                                                             | 71                                                                    | 27.7                                                         |                                                                        |  |  |
| Wt. of Tin + Wet Soil                                                                                                                                        | (g)         |                                  | 156.                                                                            | .61                                                                   | 162                                                          | 2.69                                                                   |  |  |
| Wt. of Tin + Dry Soil                                                                                                                                        | (g)         |                                  | 140                                                                             | 0.5                                                                   | 14                                                           | 5.58                                                                   |  |  |
| Wt. of Dry Soil (g)                                                                                                                                          |             |                                  | 111.                                                                            | 79                                                                    | 117                                                          | 7.88                                                                   |  |  |
| Wt. of Water (g)                                                                                                                                             |             |                                  | 16.11 17.11                                                                     |                                                                       |                                                              | .11                                                                    |  |  |
| Water Content (%)                                                                                                                                            |             |                                  | 14.4 14.5                                                                       |                                                                       |                                                              | 4.5                                                                    |  |  |
| Average Water Conte                                                                                                                                          | ent (%)     |                                  |                                                                                 | 14.5                                                                  |                                                              |                                                                        |  |  |
|                                                                                                                                                              |             |                                  |                                                                                 |                                                                       |                                                              |                                                                        |  |  |
| Specimen                                                                                                                                                     |             |                                  | Before                                                                          | Test                                                                  | After                                                        | r Test                                                                 |  |  |
| Tare I.D. No.                                                                                                                                                |             |                                  | Ring, Ston                                                                      | e, Paper                                                              |                                                              | 4                                                                      |  |  |
| Wt. of Tare + Wet Se                                                                                                                                         | oil (g)     |                                  | 308.                                                                            | 21                                                                    | 14                                                           | 3.2                                                                    |  |  |
| Wt. of Tare + Dry Sc                                                                                                                                         | oil (g)     |                                  | -                                                                               |                                                                       | 128.8                                                        |                                                                        |  |  |
| $M_{t}$ of Toro (a)                                                                                                                                          |             |                                  |                                                                                 |                                                                       |                                                              | 8.8                                                                    |  |  |
| Wt. of Tare (g)                                                                                                                                              |             |                                  | 193.                                                                            | 14                                                                    | 28                                                           | 8.8<br>3.7                                                             |  |  |
| Wt. of Wet Soil (g)                                                                                                                                          |             |                                  | 193.<br>115.                                                                    |                                                                       |                                                              |                                                                        |  |  |
|                                                                                                                                                              |             |                                  |                                                                                 | 07                                                                    | 11                                                           | 3.7                                                                    |  |  |
| Wt. of Wet Soil (g)                                                                                                                                          |             |                                  | 115.                                                                            | 07<br>10                                                              | 11<br>10                                                     | 3.7<br>4.5                                                             |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                                                   |             |                                  | 115.<br>100.                                                                    | 07<br>10<br>97                                                        | 11<br>10<br>14                                               | 3.7<br>4.5<br>0.1                                                      |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                               |             |                                  | 115.<br>100.<br>14.9                                                            | 07<br>10<br>97                                                        | 11<br>10<br>14                                               | 8.7<br>4.5<br>0.1<br>4.4                                               |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                          |             | ρ <sub>d</sub>                   | 115.<br>100.<br>14.9<br>15.<br>1.58 g/cm <sup>3</sup>                           | 07<br>10<br>97<br>0<br>Final Dry Density                              | 11<br>10<br>14<br>14<br>Ρ <sub>d</sub>                       | 8.7<br>4.5<br>10.1<br>4.4<br>4.4<br>1.77 g/cm <sup>2</sup>             |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                          | ſt          | ρ <sub>d</sub><br>γ <sub>d</sub> | 115.<br>100.<br>14.9<br>15.                                                     | 07<br>10<br>97<br>0<br>Final Dry Density                              | 11<br>10<br>14<br>14<br>Ρ <sub>d</sub>                       | 8.7<br>4.5<br>10.1<br>4.4<br>4.4<br>1.77 g/cm <sup>2</sup>             |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deformat | tion result | γd                               | 115.<br>100.<br>14.9<br>15.<br>1.58 g/cm <sup>3</sup><br>15.5 kN/m <sup>3</sup> | 07<br>10<br>97<br>0<br>Final Dry Density<br>Final Dry Unit Wei        | 11<br>10<br>14<br>14<br>Ρ <sub>d</sub><br>ght γ <sub>d</sub> | 3.7<br>4.5<br>0.1<br>4.4<br>4.4<br>1.77 g/cm <sup>3</sup><br>17.4 kN/m |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                               |             | γ <sub>d</sub><br>s              | 115.<br>100.<br>14.9<br>15.<br>1.58 g/cm <sup>3</sup>                           | 07<br>10<br>97<br>0<br>Final Dry Density<br>Final Dry Unit Wei<br>4 5 | 11<br>10<br>14<br>14<br>14<br>9d<br>γd<br>6                  | 8.7<br>4.5<br>0.1<br>4.4<br>4.4<br>1.77 g/cm <sup>3</sup>              |  |  |

| Project:                                      | An expe  | rimenta             | al investigation of the                          | ne behavior of compa                    | acted sand/clay m | ixtures                |  |  |
|-----------------------------------------------|----------|---------------------|--------------------------------------------------|-----------------------------------------|-------------------|------------------------|--|--|
| Sample: I                                     | ow energ | gy com              | pacted, 75% sand                                 | 25% bentonite, 16%                      | water content (L2 | 5B16W)                 |  |  |
| Consolid. Type                                | El25-047 | '9                  |                                                  | Consolid. Type                          | Fixed Ring        | -                      |  |  |
| Height of Spec.                               | 20       | mm                  | Dia. of Spec.                                    | 63.5 mm                                 | Area of Spec.     | 3166.9 mm <sup>2</sup> |  |  |
| Weight of Ring                                | -        | g                   | Wt. of Stone                                     | - g                                     | Wt. of Paper      | - g                    |  |  |
| Specific Gravity                              | 2.64     |                     | Tested By                                        | Yueru Chen                              | Date              | 7/20/2009              |  |  |
| Trimmings                                     |          |                     | 1                                                |                                         |                   | 2                      |  |  |
| Tin No.                                       |          |                     | 20                                               | 1                                       | 7                 |                        |  |  |
| Wt. of Tin (g)                                |          |                     | 28.8                                             | 38                                      | 28                | 3.18                   |  |  |
| Wt. of Tin + Wet Soil                         | (g)      |                     | 152.                                             | 15                                      | 3.82              |                        |  |  |
| t. of Tin + Dry Soil (g)                      |          |                     | 135.                                             | 98                                      | 13                | 5.95                   |  |  |
| /t. of Dry Soil (g)                           |          |                     | 107                                              | .1                                      | 10                | 7.77                   |  |  |
| Wt. of Water (g)                              |          |                     | 16.84 17.87                                      |                                         |                   | 7.87                   |  |  |
| Water Content (%)                             |          |                     | 15.                                              | 7                                       | 16.6              |                        |  |  |
| Average Water Conte                           | ent (%)  |                     |                                                  | 16.2                                    |                   |                        |  |  |
|                                               |          |                     |                                                  |                                         |                   |                        |  |  |
| Specimen                                      |          |                     | Before                                           | Test                                    | Afte              | r Test                 |  |  |
| Tare I.D. No.                                 |          |                     | Ring, Ston                                       | e, Paper                                | :                 | 31                     |  |  |
| Wt. of Tare + Wet So                          | oil (g)  |                     | 304.                                             | 26                                      | 13                | 135.73                 |  |  |
| Wt. of Tare + Dry Sc                          | il (g)   |                     | -                                                |                                         | 120.98            |                        |  |  |
| Wt. of Tare (g)                               |          |                     | 196.                                             | 55                                      | 2                 | 9.7                    |  |  |
| Wt. of Wet Soil (g)                           |          |                     | 107.                                             | 71                                      | 10                | 6.03                   |  |  |
| Wt. of Dry Soil (g)                           |          |                     | 91.2                                             | 28                                      | 91                | 1.28                   |  |  |
| Wt. of Water (g)                              |          |                     | 16.4                                             | 13                                      | 14                | 1.75                   |  |  |
| Water Content (%)                             |          |                     | 18.                                              | 0                                       | 1                 | 6.2                    |  |  |
|                                               |          |                     |                                                  |                                         |                   |                        |  |  |
|                                               |          | _                   | 4 4 4 4 3                                        | Einel Dr. Der - H                       |                   | 1.00                   |  |  |
| Initial Dry Density                           |          | $\rho_d$            | 1.44 g/cm <sup>3</sup>                           | Final Dry Density                       | ρ <sub>d</sub>    | 1.62 g/cm              |  |  |
| Initial Dry Density<br>Initial Dry Unit Weigh |          | γd                  | 1.44 g/cm <sup>3</sup><br>14.1 kN/m <sup>3</sup> | Final Dry Density<br>Final Dry Unit Wei |                   | 1.62 g/cm<br>15.9 kN/m |  |  |
|                                               |          | γ <sub>d</sub><br>s | 0                                                |                                         |                   | -                      |  |  |

| Project:                                                                             | An expe     | An experimental investigation of the behavior of con<br>ow energy compacted, 75% sand 25% bentonite, 18 |             |                   |             |             |             | acted sand/clay mixtures |           |                   |  |
|--------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------|-------------|-------------------|-------------|-------------|-------------|--------------------------|-----------|-------------------|--|
| Sample:                                                                              | Low energ   | gy com                                                                                                  | pacted, 75° | % sand 2          | 5% benton   | ite, 18%    | water conte | nt (L25                  | B18W)     |                   |  |
| Consolid. Type                                                                       | EI25-047    | 79                                                                                                      |             |                   | Consolid.   | Туре        | Fixed Rin   | g                        |           |                   |  |
| Height of Spec.                                                                      | 20          | mm                                                                                                      | Dia. of S   | pec.              | 63.5        | mm          | Area of S   | pec.                     | 3166.9    | $\rm{mm}^2$       |  |
| Weight of Ring                                                                       | -           | g                                                                                                       | Wt. of St   | one               | -           | g           | Wt. of Pa   | per                      | -         | g                 |  |
| Specific Gravity                                                                     | 2.64        |                                                                                                         | Tested B    | у                 | Yueru Che   | en          | Date        |                          | 7/21/     | 2009              |  |
| Trimmings                                                                            | 3           |                                                                                                         |             | 1                 |             |             |             | 2                        | 2         |                   |  |
| Tin No.                                                                              |             |                                                                                                         |             | 201               |             |             | 7           |                          |           |                   |  |
| Wt. of Tin (g)                                                                       |             |                                                                                                         |             | 28.8              | 5           |             | 28.17       |                          |           |                   |  |
| Wt. of Tin + Wet Soil                                                                | (q)         |                                                                                                         |             | 160.3             |             |             | 144         |                          |           |                   |  |
| Wt. of Tin + Dry Soil                                                                |             |                                                                                                         |             | 140.0             |             |             |             | 126                      |           |                   |  |
| Wt. of Dry Soil (g)                                                                  |             | 111.16 97.97                                                                                            |             |                   |             |             |             |                          |           |                   |  |
| Wt. of Water (g)                                                                     |             |                                                                                                         |             | 20.38             |             | 17.96       |             |                          | -         |                   |  |
| Water Content (%)                                                                    |             |                                                                                                         |             | 18.3              |             |             | 18.3        |                          |           |                   |  |
| Average Water Cont                                                                   | ent (%)     |                                                                                                         |             |                   |             | 18.3        |             |                          |           |                   |  |
|                                                                                      |             |                                                                                                         |             |                   |             |             |             |                          |           |                   |  |
| Specimen                                                                             |             |                                                                                                         |             | Before 7          | Fest        |             |             | After                    | Test      |                   |  |
| Tare I.D. No.                                                                        |             |                                                                                                         | Rir         | ng, Stone         | , Paper     |             |             | 3                        | 1         |                   |  |
| Wt. of Tare + Wet S                                                                  | oil (g)     |                                                                                                         |             | 323.7             | 7           |             |             | 151                      | .18       |                   |  |
| Wt. of Tare + Dry So                                                                 | oil (g)     |                                                                                                         |             | -                 |             |             | 132.37      |                          |           |                   |  |
| Wt. of Tare (g)                                                                      |             |                                                                                                         |             | 200.2             | 2           |             |             | 29                       | .7        |                   |  |
| Wt. of Wet Soil (g)                                                                  |             |                                                                                                         |             | 123.4             | 8           |             |             | 121                      | .48       |                   |  |
| Wt. of Dry Soil (g)                                                                  |             |                                                                                                         |             | 102.6             | 7           |             |             | 102                      | .67       |                   |  |
| Wt. of Water (g)                                                                     |             |                                                                                                         |             | 20.8              | 1           |             |             | 18.                      | 81        |                   |  |
| Water Content (%)                                                                    |             |                                                                                                         |             | 20.3              |             |             |             | 18                       | .3        |                   |  |
|                                                                                      |             |                                                                                                         | 4.00        | , 3               |             | <b>D</b> "  |             |                          | 4 70      |                   |  |
| Initial Dry Density                                                                  |             | $\rho_d$                                                                                                | 1.62        | g/cm <sup>3</sup> | Final Dry   |             |             | $\rho_d$                 | 1.78      | g/cm <sup>3</sup> |  |
|                                                                                      | )T          | γd                                                                                                      | 15.9        | kN/m <sup>3</sup> | Final Dry   | Unit Weig   | jnt         | γd                       | 17.4      | kN/m              |  |
| , ,                                                                                  |             | End of load deformation results                                                                         |             |                   |             |             |             |                          |           |                   |  |
| End of load deforma                                                                  | tion result |                                                                                                         | 2           | 2                 | Λ           | 5           | 6           |                          | 7         |                   |  |
| Initial Dry Unit Weigh<br>End of load deforma<br>Load Step No.<br>Corrected Def (mm) |             |                                                                                                         | 2<br>0.1980 | 3<br>0.3200       | 4<br>0.4880 | 5<br>0.7750 | 6<br>1.2200 | 1                        | 7<br>7500 |                   |  |

| Project:                                                                                                      | An expe     | rimenta             | al investigation of the behavior of compacted sand/clay mixtures  |                                          |                            |                                      |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-------------|---------------------|-------------------------------------------------------------------|------------------------------------------|----------------------------|--------------------------------------|--|--|--|
| Sample:                                                                                                       | Low energ   | gy com              | pacted, 75% sand 2                                                | 5% bentonite, 20%                        | water content (L2          | 5B20W)                               |  |  |  |
| Consolid. Type                                                                                                | EI25-047    | '9                  |                                                                   | Consolid. Type                           | Fixed Ring                 |                                      |  |  |  |
| Height of Spec.                                                                                               | 20          | mm                  | Dia. of Spec.                                                     | 63.5 mm                                  | Area of Spec.              | 3166.9 mm <sup>2</sup>               |  |  |  |
| Weight of Ring                                                                                                | -           | g                   | Wt. of Stone                                                      | - g                                      | Wt. of Paper               | - g                                  |  |  |  |
| Specific Gravity                                                                                              | 2.64        |                     | Tested By                                                         | Yueru Chen                               | Date                       | 7/21/2009                            |  |  |  |
| Trimmings                                                                                                     | 6           |                     | 1                                                                 |                                          |                            | 2                                    |  |  |  |
| Tin No.                                                                                                       |             |                     | MAJI                                                              | C                                        | 213                        |                                      |  |  |  |
| Wt. of Tin (g)                                                                                                |             |                     | 28.65                                                             | 5                                        | 27.9                       |                                      |  |  |  |
| Wt. of Tin + Wet Soil                                                                                         | (g)         |                     | 125.5                                                             | 7                                        | 13                         | 2.3                                  |  |  |  |
| Wt. of Tin + Dry Soil                                                                                         | (g)         |                     | 109.1                                                             | 8                                        | 114                        | 1.25                                 |  |  |  |
| Wt. of Dry Soil (g)                                                                                           |             |                     |                                                                   | 3                                        | 86                         | .35                                  |  |  |  |
| Wt. of Water (g)                                                                                              |             |                     | 80.53         86.35           16.39         18.05                 |                                          |                            | .05                                  |  |  |  |
| Water Content (%)                                                                                             |             |                     | 20.4 20.9                                                         |                                          |                            | ).9                                  |  |  |  |
| Average Water Cont                                                                                            | ent (%)     |                     |                                                                   | 20.6                                     |                            |                                      |  |  |  |
|                                                                                                               |             |                     |                                                                   |                                          |                            |                                      |  |  |  |
| Specimen                                                                                                      |             |                     | Before T                                                          | est                                      | After                      | Test                                 |  |  |  |
| Tare I.D. No.                                                                                                 |             |                     | Ring, Stone                                                       | , Paper                                  | F、                         | J-3                                  |  |  |  |
| Wt. of Tare + Wet S                                                                                           | oil (g)     |                     | 320.5                                                             | 4                                        | 151.13                     |                                      |  |  |  |
| Wt. of Tare + Dry So                                                                                          | oil (g)     |                     | -                                                                 |                                          | 130.79                     |                                      |  |  |  |
| Wt. of Tare (g)                                                                                               |             |                     | 197.7                                                             | 5                                        | 29                         | 9.1                                  |  |  |  |
| Wt. of Wet Soil (g)                                                                                           |             |                     | 122.7                                                             | 9                                        | 122                        | 2.03                                 |  |  |  |
|                                                                                                               |             |                     |                                                                   |                                          | 101.69                     |                                      |  |  |  |
| Wt. of Dry Soil (g)                                                                                           |             |                     | 101.6                                                             | 9                                        | 101                        | 1.69                                 |  |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       |             |                     | 101.6<br>21.10                                                    | -                                        | -                          | I.69<br>.34                          |  |  |  |
|                                                                                                               |             |                     |                                                                   | )                                        | 20                         |                                      |  |  |  |
| Wt. of Water (g)                                                                                              |             |                     | 21.10<br>20.7                                                     | )                                        | 20                         | .34<br>).0                           |  |  |  |
| Wt. of Water (g)<br>Water Content (%)                                                                         |             | ρ <sub>d</sub>      | 21.10<br>20.7<br>1.61 g/cm <sup>3</sup>                           | Final Dry Density                        | 20<br>20<br>Ρ <sub>d</sub> | .34<br>).0<br>1.77 g/cm              |  |  |  |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh                        |             | γd                  | 21.10<br>20.7                                                     | )                                        | 20<br>20<br>Ρ <sub>d</sub> | .34<br>).0<br>1.77 g/cm              |  |  |  |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion result | γ <sub>d</sub><br>s | 21.10<br>20.7<br>1.61 g/cm <sup>3</sup><br>15.7 kN/m <sup>3</sup> | Final Dry Density<br>Final Dry Unit Weig | 20<br>2(<br>Pd<br>γd       | .34<br>0.0<br>1.77 g/cm<br>17.3 kN/m |  |  |  |
| Wt. of Water (g)                                                                                              |             | γ <sub>d</sub><br>S | 21.10<br>20.7<br>1.61 g/cm <sup>3</sup>                           | Final Dry Density                        | 20<br>20<br>Pd<br>γd<br>6  | .34<br>).0<br>1.77 g/cm              |  |  |  |

| Project:                                                                                                                             |                          |                     | al investigation of the behavior of compacted sand/clay mixtures<br>apacted, 75% sand 25% bentonite, 22% water content (L25B22W) |                                         |                                      |                                               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------------|--|--|
| Sample:                                                                                                                              | Low energ                | gy com              | pacted, 75% sand 2                                                                                                               | 5% bentonite, 22%                       | water content (L2                    | 5B22W)                                        |  |  |
| Consolid. Type                                                                                                                       | EI25-047                 | '9                  |                                                                                                                                  | Consolid. Type                          | Fixed Ring                           |                                               |  |  |
| Height of Spec.                                                                                                                      | 20                       | mm                  | Dia. of Spec.                                                                                                                    | 63.5 mm                                 | Area of Spec.                        | 3166.9 mm <sup>2</sup>                        |  |  |
| Weight of Ring                                                                                                                       | -                        | g                   | Wt. of Stone                                                                                                                     | - g                                     | Wt. of Paper                         | - g                                           |  |  |
| Specific Gravity                                                                                                                     | 2.64                     |                     | Tested By                                                                                                                        | Yueru Chen                              | Date                                 | 7/21/2009                                     |  |  |
| Trimmings                                                                                                                            | 3                        |                     | 1                                                                                                                                |                                         |                                      | 2                                             |  |  |
| Tin No.                                                                                                                              |                          |                     | 46                                                                                                                               |                                         | 1                                    | 01                                            |  |  |
| Wt. of Tin (g)                                                                                                                       |                          |                     | 28.85                                                                                                                            | 5                                       | 28.03                                |                                               |  |  |
| Wt. of Tin + Wet Soil                                                                                                                | l (g)                    |                     | 130.4                                                                                                                            | 8                                       | 11:                                  | 5.31                                          |  |  |
| Wt. of Tin + Dry Soil                                                                                                                | t. of Tin + Dry Soil (g) |                     |                                                                                                                                  | 5                                       | 99                                   | .33                                           |  |  |
| Vt. of Dry Soil (g)                                                                                                                  |                          |                     | 83.3                                                                                                                             |                                         | 7                                    | 1.3                                           |  |  |
| Wt. of Water (g)                                                                                                                     |                          |                     | 18.33                                                                                                                            |                                         |                                      | .98                                           |  |  |
| Water Content (%)                                                                                                                    |                          |                     | 22.0 22.4                                                                                                                        |                                         |                                      | 2.4                                           |  |  |
| Average Water Cont                                                                                                                   | ent (%)                  |                     |                                                                                                                                  | 22.2                                    |                                      |                                               |  |  |
|                                                                                                                                      |                          |                     |                                                                                                                                  |                                         |                                      |                                               |  |  |
| Specimen                                                                                                                             | I                        |                     | Before 7                                                                                                                         | Fest                                    | After                                | rTest                                         |  |  |
| Tare I.D. No.                                                                                                                        |                          |                     | Ring, Stone                                                                                                                      | , Paper                                 | B8                                   |                                               |  |  |
| Wt. of Tare + Wet S                                                                                                                  | oil (g)                  |                     | 316.3                                                                                                                            | 3                                       | 148.73                               |                                               |  |  |
| Wt. of Tare + Dry Se                                                                                                                 | oil (g)                  |                     | -                                                                                                                                |                                         | 127.26                               |                                               |  |  |
| Wt. of Tare (g)                                                                                                                      |                          |                     | 194.8                                                                                                                            | 4                                       | 28                                   | .45                                           |  |  |
| Mt of Mot Call (-)                                                                                                                   |                          |                     | 121.4                                                                                                                            | 6                                       | 120                                  | 1 28                                          |  |  |
| Wt. of Wet Soil (g)                                                                                                                  |                          |                     |                                                                                                                                  |                                         |                                      | 0.20                                          |  |  |
| Wt. of Vvet Soll (g)<br>Wt. of Dry Soil (g)                                                                                          |                          |                     | 98.82                                                                                                                            | -                                       | 98                                   |                                               |  |  |
|                                                                                                                                      |                          |                     | 98.8 <sup>4</sup><br>22.65                                                                                                       | 1                                       |                                      |                                               |  |  |
| Wt. of Dry Soil (g)                                                                                                                  |                          |                     |                                                                                                                                  | 1<br>5                                  | 21                                   | .81                                           |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         |                          |                     | 22.65<br>22.9                                                                                                                    | 5                                       | 21<br>2'                             | .81<br>.47<br>1.7                             |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         |                          | ρ <sub>d</sub>      | 22.65<br>22.9<br>1.56 g/cm <sup>3</sup>                                                                                          | Final Dry Density                       | 21<br>2'<br>ρ <sub>d</sub>           | .81<br>.47<br>1.7<br>-1.07 g/cm               |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh                        |                          | γd                  | 22.65<br>22.9                                                                                                                    | 5                                       | 21<br>2'<br>ρ <sub>d</sub>           | .81<br>.47<br>1.7<br>-1.07 g/cm               |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion result              | γ <sub>d</sub><br>S | 22.65<br>22.9<br>1.56 g/cm <sup>3</sup><br>15.3 kN/m <sup>3</sup>                                                                | Final Dry Density<br>Final Dry Unit Wei | 21<br>2 <sup>·</sup><br>Pd<br>ght γd | .81<br>.47<br>1.7<br>-1.07 g/cm<br>-10.4 kN/m |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh                        |                          | γ <sub>d</sub><br>S | 22.65<br>22.9<br>1.56 g/cm <sup>3</sup>                                                                                          | Final Dry Density                       | 21<br>2<br>Pd<br>ght γd<br>6         | .81<br>.47<br>1.7<br>-1.07 g/cm <sup>2</sup>  |  |  |

| Project:                                                                             | An expe                  | rimenta           | al investigatio | of compa          | acted sand/clay mixtures |             |             |                   |           |                 |
|--------------------------------------------------------------------------------------|--------------------------|-------------------|-----------------|-------------------|--------------------------|-------------|-------------|-------------------|-----------|-----------------|
| Sample:                                                                              | Low ener                 | gy com            | pacted, 75%     | sand 2            | 5% benton                | ite, 24%    | water conte | nt (L25           | B24W)     |                 |
| Consolid. Type                                                                       | EI25-047                 | 9                 |                 |                   | Consolid.                | Туре        | Fixed Rin   | g                 |           |                 |
| Height of Spec.                                                                      | 20                       | mm                | Dia. of Spe     | ec.               | 63.5                     | mm          | Area of S   | pec.              | 3166.9    | mm <sup>2</sup> |
| Weight of Ring                                                                       | 66.3                     | g                 | Wt. of Stor     | ne                | 130                      | g           | Wt. of Pa   | per               | 0.3       | g               |
| Specific Gravity                                                                     | 2.64                     |                   | Tested By       |                   | Yueru Che                | en          | Date        |                   | 3/6/2     | 2009            |
| Trimmings                                                                            | ;                        |                   |                 | 1                 |                          |             |             | 2                 | 2         |                 |
| Tin No.                                                                              |                          |                   |                 | 7                 |                          |             | 201         |                   |           |                 |
| Wt. of Tin (g)                                                                       |                          |                   |                 | 28.2              |                          |             | 28.9        |                   |           |                 |
| Wt. of Tin + Wet Soil                                                                | (g)                      |                   |                 | 153.5             | 5                        |             |             | 14                | 16        |                 |
| Wt. of Tin + Dry Soil                                                                | Soil (g)                 |                   |                 | 129.5             | 5                        |             |             | 12                | 3.7       |                 |
| Wt. of Dry Soil (g)                                                                  |                          |                   |                 |                   | 3                        |             |             | 94                | .8        |                 |
| Wt. of Water (g)                                                                     |                          |                   | 24 22.3         |                   |                          | 2.3         |             |                   |           |                 |
| Water Content (%)                                                                    |                          |                   | 23.7 23.5       |                   |                          |             |             |                   |           |                 |
| Average Water Cont                                                                   | ent (%)                  |                   |                 |                   |                          | 23.6        |             |                   |           |                 |
|                                                                                      |                          |                   |                 |                   |                          |             |             |                   |           |                 |
| Specimen                                                                             |                          |                   | E               | Before T          | est                      |             |             | After             | Test      |                 |
| Tare I.D. No.                                                                        |                          |                   | Ring            | , Stone           | , Paper                  |             |             | B-                | 19        |                 |
| Wt. of Tare + Wet S                                                                  | oil (g)                  |                   |                 | 319.4             | 1                        |             | 149.1       |                   |           |                 |
| Wt. of Tare + Dry So                                                                 | oil (g)                  |                   |                 | -                 |                          |             | 126.4       |                   |           |                 |
| Wt. of Tare (g)                                                                      |                          |                   |                 | 196.6             | 0                        |             |             | 27                | .4        |                 |
| Wt. of Wet Soil (g)                                                                  |                          |                   |                 | 122.8             | 0                        |             |             | 12                | 1.7       |                 |
| Wt. of Dry Soil (g)                                                                  |                          |                   |                 | 99.00             | )                        |             |             | 9                 | 9         |                 |
| Wt. of Water (g)                                                                     |                          |                   |                 | 23.80             | )                        |             |             | 22                | 2.7       |                 |
| Water Content (%)                                                                    |                          |                   |                 | 24.0              |                          |             |             | 22                | 2.9       |                 |
|                                                                                      |                          |                   |                 |                   |                          |             |             |                   |           |                 |
| Initial Dry Density                                                                  |                          | $\rho_{\text{d}}$ |                 | g/cm <sup>3</sup> | Final Dry                | •           |             | $\rho_{\text{d}}$ | 1.73      | g/cm            |
|                                                                                      | nt                       | γd                | 15.3 k          | «N/m <sup>3</sup> | Final Dry                | Unit Weig   | ght         | γd                | 16.9      | kN/m            |
| , ,                                                                                  |                          |                   |                 |                   |                          |             |             |                   |           |                 |
| End of load deforma                                                                  |                          | S                 |                 |                   |                          |             |             |                   | _         |                 |
| Initial Dry Unit Weigh<br>End of load deforma<br>Load Step No.<br>Corrected Def (mm) | tion result<br>1<br>0.16 |                   | 2<br>0.2970     | 3<br>0.4650       | 4<br>0.7240              | 5<br>1.1200 | 6<br>1.6400 |                   | 7<br>9200 |                 |

| Project:                                                                                                    | An expe     | erimenta | al investigation | of the         | e behavior o | of compa  | cted sand/o | clay mix | tures  |                 |
|-------------------------------------------------------------------------------------------------------------|-------------|----------|------------------|----------------|--------------|-----------|-------------|----------|--------|-----------------|
| Sample:                                                                                                     | Low energ   | gy com   | pacted, 50% sa   | nd 50          | 0% bentoni   | ite, 16%  | water conte | nt (L50  | B16W)  |                 |
| Consolid. Type                                                                                              | El25-047    | 79       |                  |                | Consolid.    | Туре      | Fixed Rin   | g        |        |                 |
| Height of Spec.                                                                                             | 20          | mm       | Dia. of Spec.    |                | 63.5         | mm        | Area of S   | pec.     | 3166.9 | mm <sup>2</sup> |
| Weight of Ring                                                                                              | -           | g        | Wt. of Stone     |                | -            | g         | Wt. of Pa   | per      | -      | g               |
| Specific Gravity                                                                                            | 2.63        |          | Tested By        |                | Yueru Che    | en        | Date        |          | 7/20/  | 2009            |
| Trimmings                                                                                                   | 3           |          |                  | 1              |              |           |             | 2        | 2      |                 |
| Tin No.                                                                                                     |             |          |                  | 201            |              |           |             | 7        | ,      |                 |
| Wt. of Tin (g)                                                                                              |             |          |                  | 28.88          | 3            |           |             | 28.      | 18     |                 |
| Wt. of Tin + Wet Soil                                                                                       | l (g)       |          | 1                |                | 153          | .82       |             |          |        |                 |
| Wt. of Tin + Dry Soil                                                                                       | (0)         |          | 1                | 35.98          | 8            |           |             | 135      | .95    |                 |
| Wt. of Dry Soil (g)                                                                                         | . = *       |          |                  | 107.1          |              |           |             | 107      | .77    |                 |
| Wt. of Water (g)                                                                                            |             |          |                  | 16.84          | Ļ            |           |             | 17.      | 87     |                 |
| Water Content (%)                                                                                           |             |          |                  | 15.7           |              |           |             | 16       | .6     |                 |
| Average Water Cont                                                                                          | ent (%)     |          |                  |                |              |           |             |          |        |                 |
|                                                                                                             |             |          |                  |                |              |           |             |          |        |                 |
| Specimen                                                                                                    | 1           |          | Bef              | ore T          | est          |           |             | After    | Test   |                 |
| Tare I.D. No.                                                                                               |             |          | Ring, S          | itone,         | , Paper      |           |             | 3        | 1      |                 |
| Wt. of Tare + Wet S                                                                                         | oil (g)     |          | 3                | 04.26          | 6            |           |             | 135      | .73    |                 |
| Wt. of Tare + Dry Se                                                                                        | oil (g)     |          |                  | -              |              |           |             | 120      | .98    |                 |
| Wt. of Tare (g)                                                                                             |             |          | 1                | 96.55          | 5            |           |             | 28.      | 35     |                 |
| Wt. of Wet Soil (g)                                                                                         |             |          | 1                | 07.71          | 1            |           |             | 107      | .38    |                 |
| Wt. of Dry Soil (g)                                                                                         |             |          | ę                | 92.63          | 3            |           |             | 92.      | 63     |                 |
| Wt. of Water (g)                                                                                            |             |          | ,                | 15.08          | }            |           |             | 14.      | 75     |                 |
| Water Content (%)                                                                                           |             |          |                  | 16.3           |              |           |             | 15       | .9     |                 |
|                                                                                                             |             |          |                  | 2              |              |           |             |          |        |                 |
|                                                                                                             |             | $\rho_d$ | 1.46 g/ci        |                | Final Dry [  |           |             | $\rho_d$ | 1.65   | g/cm            |
|                                                                                                             |             |          |                  |                | Final Dry l  | unit Weid | nt          | γd       | 16.2   | kN/m            |
| Initial Dry Unit Weigh                                                                                      |             | γd       | 14.3 kN/         | m              |              |           | ,           | 70       | 10.2   | N <b>1</b> /111 |
| Initial Dry Unit Weigh<br>End of load deforma                                                               | tion result | S        |                  |                | -            |           |             | 70       |        | K <b>N</b> /111 |
| Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma<br>Load Step No.<br>Corrected Def (mm) |             | is       | 2                | m<br>3<br>1200 | 4 0.6500     | 5 0.8800  | 6           |          | 7      |                 |

| Project:                                                                              | An expe                  | erimenta | al investiga | tion of th        | e behavior  | of compa    | cted sand/c | lay mix    | tures     |                   |
|---------------------------------------------------------------------------------------|--------------------------|----------|--------------|-------------------|-------------|-------------|-------------|------------|-----------|-------------------|
| Sample:                                                                               | Low energ                | gy com   | pacted, 50   | % sand 5          | 0% benton   | ite, 18% v  | vater conte | nt (L50    | B18W)     |                   |
| Consolid. Type                                                                        | EI25-047                 | 79       |              |                   | Consolid    | . Туре      | Fixed Rin   | g          |           |                   |
| Height of Spec.                                                                       | 20                       | mm       | Dia. of S    | pec.              | 63.5        | mm          | Area of S   | pec.       | 3166.9    | mm <sup>2</sup>   |
| Weight of Ring                                                                        | -                        | g        | Wt. of St    | one               | -           | g           | Wt. of Pa   | per        | -         | g                 |
| Specific Gravity                                                                      | 2.63                     |          | Tested E     | By                | Yueru Ch    | en          | Date        |            | 7/17/     | 2009              |
| Trimmings                                                                             | ;                        |          |              | 1                 |             |             |             | 2          | )         |                   |
| Tin No.                                                                               |                          |          |              | 46                |             |             |             | 10         | )1        |                   |
| Wt. of Tin (g)                                                                        |                          |          |              | 28.8              | 5           |             |             | 28.        | 02        |                   |
| Wt. of Tin + Wet Soil                                                                 | (g)                      |          |              | 129.2             | 9           |             |             | 132        | .85       |                   |
| Wt. of Tin + Dry Soil                                                                 | (g)                      |          |              | 114.1             | 6           |             |             | 116        | 6.7       |                   |
| Wt. of Dry Soil (g)                                                                   |                          |          |              | 85.3 <sup>,</sup> | 1           |             |             | 88.        | 68        |                   |
| Wt. of Water (g)                                                                      |                          |          |              | 15.13             | 3           |             |             | 16.        | 15        |                   |
| Water Content (%)                                                                     |                          |          |              | 17.7              |             |             | 18.2        |            |           |                   |
| Average Water Cont                                                                    | ent (%)                  |          |              |                   |             |             |             |            |           |                   |
|                                                                                       |                          |          |              |                   |             |             |             |            |           |                   |
| Specimen                                                                              |                          |          |              | Before 7          | Fest        |             |             | After      | Test      |                   |
| Tare I.D. No.                                                                         |                          |          | Ri           | ng, Stone         | , Paper     |             |             | В          | 8         |                   |
| Wt. of Tare + Wet S                                                                   | oil (g)                  |          |              | 311.5             | 1           |             |             | 143        | .06       |                   |
| Wt. of Tare + Dry So                                                                  | oil (g)                  |          |              | -                 |             |             | 125.32      |            |           |                   |
| Wt. of Tare (g)                                                                       |                          |          |              | 196.5             | 5           |             |             | 28.        | 44        |                   |
| Wt. of Wet Soil (g)                                                                   |                          |          |              | 114.9             | 6           |             | 114.62      |            |           |                   |
| Wt. of Dry Soil (g)                                                                   |                          |          |              | 96.88             | 3           |             |             | 96.        | 88        |                   |
| Wt. of Water (g)                                                                      |                          |          |              | 18.08             | 3           |             |             | 17.        | 74        |                   |
| Water Content (%)                                                                     |                          |          |              | 18.7              |             |             |             | 18         | .3        |                   |
|                                                                                       |                          |          |              | 2                 |             |             |             |            |           |                   |
| Initial Dry Density                                                                   |                          | $\rho_d$ | 1.53         | g/cm <sup>3</sup> | Final Dry   |             |             | $\rho_{d}$ | 1.75      | g/cm <sup>°</sup> |
|                                                                                       | nt                       | γd       | 15.0         | kN/m <sup>3</sup> | Final Dry   | Unit Weig   | nt          | γd         | 17.2      | kN/m              |
| , 0                                                                                   |                          |          |              |                   |             |             |             |            |           |                   |
| End of load deformat                                                                  |                          |          | 2            | 2                 | 1           | F           | 6           |            | 7         |                   |
| Initial Dry Unit Weigh<br>End of load deformat<br>Load Step No.<br>Corrected Def (mm) | tion result<br>1<br>0.07 |          | 2<br>0.1650  | 3<br>0.3050       | 4<br>0.5030 | 5<br>0.7620 | 6<br>1.2200 | 2          | 7<br>5400 |                   |

| Project:                                                                             | An expe     | rimenta  | ntal investigation of the behavior of compacted sand/clay mixtures |                    |             |             |             |          |           |                 |
|--------------------------------------------------------------------------------------|-------------|----------|--------------------------------------------------------------------|--------------------|-------------|-------------|-------------|----------|-----------|-----------------|
| Sample:                                                                              | Low energ   | gy com   | pacted, 50% s                                                      | and 5              | 0% benton   | ite, 20%    | water conte | ent (L50 | B20W)     |                 |
| Consolid. Type                                                                       | El25-047    | '9       |                                                                    |                    | Consolid.   | Туре        | Fixed Rin   | ng       |           |                 |
| Height of Spec.                                                                      | 20          | mm       | Dia. of Spec                                                       | •                  | 63.5        | mm          | Area of S   | pec.     | 3166.9    | mm <sup>2</sup> |
| Weight of Ring                                                                       | -           | g        | Wt. of Stone                                                       |                    | -           | g           | Wt. of Pa   | per      | -         | g               |
| Specific Gravity                                                                     | 2.63        |          | Tested By                                                          |                    | Yueru Che   | en          | Date        |          | 7/17/     | 2009            |
| Trimmings                                                                            | 6           |          |                                                                    | 1                  |             |             |             | 2        | 2         |                 |
| Tin No.                                                                              |             |          |                                                                    | 201                |             |             |             | 7        | ,         |                 |
| Wt. of Tin (g)                                                                       |             |          |                                                                    |                    | 28.         | 17          |             |          |           |                 |
| Wt. of Tin + Wet Soil                                                                | l (g)       |          |                                                                    |                    | 121         | .45         |             |          |           |                 |
| Wt. of Tin + Dry Soil                                                                | (0)         |          |                                                                    | 104.26             | 6           |             |             | 105      | .96       |                 |
| Wt. of Dry Soil (g)                                                                  |             |          |                                                                    | 75.38              | 3           |             |             | 77.      | 79        |                 |
| Wt. of Water (g)                                                                     |             |          |                                                                    | 14.98              | 3           |             |             | 15.      | 49        |                 |
| Water Content (%)                                                                    |             |          |                                                                    | 19.9               |             |             |             | 19       | .9        |                 |
| Average Water Cont                                                                   | ent (%)     |          |                                                                    |                    |             |             |             |          |           |                 |
|                                                                                      |             |          |                                                                    |                    |             |             |             |          |           |                 |
| Specimen                                                                             | 1           |          | Be                                                                 | fore T             | est         |             |             | After    | Test      |                 |
| Tare I.D. No.                                                                        |             |          | Ring, S                                                            | Stone              | , Paper     |             |             | 3        | 1         |                 |
| Wt. of Tare + Wet S                                                                  | oil (g)     |          | ;                                                                  | 305.10             | 6           |             |             | 141      | .66       |                 |
| Wt. of Tare + Dry Se                                                                 | oil (g)     |          |                                                                    | -                  |             |             |             | 122      | 2.7       |                 |
| Wt. of Tare (g)                                                                      |             |          |                                                                    | 191.4              | 5           |             |             | 28.      | 44        |                 |
| Wt. of Wet Soil (g)                                                                  |             |          |                                                                    | 113.7 <sup>.</sup> | 1           |             |             | 113      | .22       |                 |
| Wt. of Dry Soil (g)                                                                  |             |          |                                                                    | 94.26              | 5           |             |             | 94.      | 26        |                 |
| Wt. of Water (g)                                                                     |             |          |                                                                    | 19.45              | 5           |             |             | 18.      | 96        |                 |
| Water Content (%)                                                                    |             |          |                                                                    | 20.6               |             |             |             | 20       | .1        |                 |
|                                                                                      |             |          |                                                                    | 3                  |             |             |             |          |           |                 |
| Initial Dry Density                                                                  |             | $\rho_d$ | 0                                                                  | cm <sup>3</sup>    | Final Dry I |             |             | $\rho_d$ | 1.71      | g/cm            |
|                                                                                      | ht          | γd       | 14.6 kN                                                            | l/m <sup>3</sup>   | Final Dry I | Unit Weig   | gnt         | γd       | 16.8      | kN/m            |
| , ,                                                                                  |             | -        |                                                                    |                    |             |             |             |          |           |                 |
| End of load deforma                                                                  | tion result |          | 2                                                                  | 2                  | А           | F           | e           |          | 7         |                 |
| Initial Dry Unit Weigh<br>End of load deforma<br>Load Step No.<br>Corrected Def (mm) |             |          | 2<br>0.1370 0.                                                     | 3<br>2490          | 4<br>0.4090 | 5<br>0.6580 | 6<br>1.3600 | 0        | 7<br>6100 |                 |

| Project:                                                                                                                              | An expe  | rimenta        | al investigation of t                                                 | he behavior of comp                                             | acted sand/clay m                        | ixtures                                                    |  |
|---------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------|------------------------------------------------------------|--|
| Sample: I                                                                                                                             | _ow ener | gy com         | pacted, 50% sand                                                      | 50% bentonite, 22%                                              | water content (L5                        | 0B22W)                                                     |  |
| Consolid. Type                                                                                                                        | EI25-047 | 79             |                                                                       | Consolid. Type                                                  | Fixed Ring                               |                                                            |  |
| Height of Spec.                                                                                                                       | 20       | mm             | Dia. of Spec.                                                         | 63.5 mm                                                         | Area of Spec.                            | 3166.9 mm <sup>2</sup>                                     |  |
| Weight of Ring                                                                                                                        | -        | g              | Wt. of Stone                                                          | - g                                                             | Wt. of Paper                             | - g                                                        |  |
| Specific Gravity                                                                                                                      | 2.63     |                | Tested By                                                             | Yueru Chen                                                      | Date                                     | 7/16/2009                                                  |  |
| Trimmings                                                                                                                             |          |                | 1                                                                     |                                                                 |                                          | 2                                                          |  |
| Tin No.                                                                                                                               |          |                | MA                                                                    | IID                                                             | 2                                        | .13                                                        |  |
| Wt. of Tin (g)                                                                                                                        |          |                | 28.0                                                                  | 65                                                              | 2                                        | 7.9                                                        |  |
| Wt. of Tin + Wet Soil                                                                                                                 | (g)      |                | 159                                                                   | 19                                                              | 16                                       | 3.39                                                       |  |
| Wt. of Tin + Dry Soil                                                                                                                 |          |                | 135.                                                                  | 84                                                              | 13                                       | 9.37                                                       |  |
| Wt. of Dry Soil (g)                                                                                                                   |          |                | 107.                                                                  | 19                                                              | 11                                       | 1.47                                                       |  |
| Wt. of Water (g)                                                                                                                      |          |                | 23.:                                                                  | 35                                                              | 24                                       | 1.02                                                       |  |
| Water Content (%)                                                                                                                     |          |                | 21.                                                                   | 8                                                               | 2                                        | 1.5                                                        |  |
| Average Water Conte                                                                                                                   | ent (%)  |                |                                                                       | 21.7                                                            |                                          |                                                            |  |
|                                                                                                                                       |          |                |                                                                       |                                                                 |                                          |                                                            |  |
| Specimen                                                                                                                              |          |                | Before                                                                | Test                                                            | Afte                                     | r Test                                                     |  |
| Tare I.D. No.                                                                                                                         |          |                | Ring, Stor                                                            | ie, Paper                                                       | F                                        | J-3                                                        |  |
| Wt. of Tare + Wet So                                                                                                                  | oil (g)  |                | 311                                                                   | 39                                                              | 14                                       | 5.31                                                       |  |
| Wt. of Tare + Dry Sc                                                                                                                  | oil (g)  |                | -                                                                     |                                                                 | 12                                       | 4.84                                                       |  |
| Wt. of Tare (g)                                                                                                                       |          |                | 194                                                                   | 82                                                              | 29.03                                    |                                                            |  |
|                                                                                                                                       |          |                |                                                                       |                                                                 | 116.28                                   |                                                            |  |
| Wt. of Wet Soil (g)                                                                                                                   |          |                | 116                                                                   | 57                                                              | 11                                       | 6.28                                                       |  |
| Wt. of Vvet Soll (g)<br>Wt. of Dry Soil (g)                                                                                           |          |                | 116.<br>95.8                                                          | -                                                               |                                          | 6.28<br>5.81                                               |  |
| ( <u>-</u> )                                                                                                                          |          |                | -                                                                     | 81                                                              | 95                                       |                                                            |  |
| Wt. of Dry Soil (g)                                                                                                                   |          |                | 95.                                                                   | 81<br>76                                                        | 95<br>20                                 | 5.81                                                       |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                               |          |                | 95.<br>20.                                                            | 81<br>76                                                        | 95<br>20                                 | 5.81<br>).47                                               |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                          |          | Ρd             | 95.<br>20.                                                            | 81<br>76                                                        | 95<br>20                                 | 5.81<br>).47<br>1.4<br>1.70 g/cm                           |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                          | t        | Pd<br>γd       | 95.<br>20.<br>21.                                                     | 31<br>76<br>7<br>Final Dry Density                              | 9ξ<br>2(<br>2<br>Ρd                      | 5.81<br>).47<br>1.4<br>1.70 g/cm                           |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deformat |          | γd             | 95.<br>20.<br>21.<br>1.51 g/cm <sup>3</sup><br>14.8 kN/m <sup>3</sup> | 31<br>76<br>7<br>Final Dry Density                              | 9ξ<br>2(<br>2<br>Ρd                      | 5.81<br>).47<br>1.4<br>1.70 g/cm <sup>2</sup><br>16.7 kN/m |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                               |          | γ <sub>d</sub> | 95.4<br>20. <sup>-</sup><br>21.<br>1.51 g/cm <sup>3</sup>             | 81<br>76<br>7<br>Final Dry Density<br>Final Dry Unit Wei<br>4 5 | 9ε<br>20<br>2<br>2<br>ight Pd<br>γd<br>6 | 5.81<br>).47<br>1.4<br>1.70 g/cm <sup>5</sup>              |  |

| Project:                                                                                                    | An expe     | rimenta             | al investigation | ntal investigation of the behavior of compacted sand/clay mixtures |                          |                          |                    |          |                   |             |  |
|-------------------------------------------------------------------------------------------------------------|-------------|---------------------|------------------|--------------------------------------------------------------------|--------------------------|--------------------------|--------------------|----------|-------------------|-------------|--|
| Sample:                                                                                                     | Low energ   | gy com              | pacted, 50% sa   | and 50                                                             | 0% benton                | ite, 24%                 | water conte        | ent (L50 | B24W)             |             |  |
| Consolid. Type                                                                                              | EI25-047    | 9                   |                  |                                                                    | Consolid.                | Туре                     | Fixed Rin          | ng       |                   |             |  |
| Height of Spec.                                                                                             | 20          | mm                  | Dia. of Spec.    |                                                                    | 63.5                     | mm                       | Area of S          | pec.     | 3166.9            | $\rm{mm}^2$ |  |
| Weight of Ring                                                                                              | 62.9        | g                   | Wt. of Stone     |                                                                    | 130                      | g                        | Wt. of Pa          | per      | 0.3               | g           |  |
| Specific Gravity                                                                                            | 2.63        |                     | Tested By        |                                                                    | Yueru Che                | en                       | Date               |          | 3/13/             | 2009        |  |
| Trimmings                                                                                                   | 3           |                     |                  | 1                                                                  |                          |                          |                    | 2        | 2                 |             |  |
| Tin No.                                                                                                     |             |                     |                  | 213                                                                |                          |                          |                    | В        | 8                 |             |  |
| Wt. of Tin (g)                                                                                              |             |                     |                  |                                                                    | 28                       | .4                       |                    |          |                   |             |  |
| Wt. of Tin + Wet Soil                                                                                       | l (g)       |                     | ,                | 161.8                                                              | ;                        |                          |                    | 15       | 51                |             |  |
| Wt. of Tin + Dry Soil                                                                                       | (g)         |                     |                  | 135.9                                                              | 1                        |                          |                    | 12       | 7.1               |             |  |
| Wt. of Dry Soil (g)                                                                                         |             |                     |                  | 108                                                                |                          |                          |                    | 98       | .7                |             |  |
| Wt. of Water (g)                                                                                            |             |                     |                  | 25.9                                                               |                          |                          |                    | 23       | .9                |             |  |
| Water Content (%)                                                                                           |             |                     |                  | 24.0                                                               |                          |                          |                    | 24       | .2                |             |  |
| Average Water Cont                                                                                          | ent (%)     |                     |                  |                                                                    |                          | 24.1                     |                    |          |                   |             |  |
|                                                                                                             |             |                     |                  |                                                                    |                          |                          |                    |          |                   |             |  |
| Specimen                                                                                                    | 1           |                     | Bef              | ore T                                                              | est                      |                          |                    | After    | Test              |             |  |
| Tare I.D. No.                                                                                               |             |                     | Ring, S          | stone,                                                             | Paper                    |                          |                    | 20       | )5                |             |  |
| Wt. of Tare + Wet S                                                                                         | ioil (g)    |                     | 3                | 303.2                                                              | 2                        |                          |                    | 139      | 9.1               |             |  |
| Wt. of Tare + Dry Se                                                                                        | oil (g)     |                     |                  | -                                                                  |                          |                          |                    | 11       | 7.4               |             |  |
| Wt. of Tare (g)                                                                                             |             |                     | 1                | 93.20                                                              | C                        |                          |                    | 29       | .7                |             |  |
| Wt. of Wet Soil (g)                                                                                         |             |                     | 1                | 10.00                                                              | C                        |                          |                    | 109      | 9.4               |             |  |
| Wt. of Dry Soil (g)                                                                                         |             |                     | 8                | 87.70                                                              | 1                        |                          |                    | 87       | .7                |             |  |
| Wt. of Water (g)                                                                                            |             |                     |                  | 22.30                                                              | 1                        |                          |                    | 21       | .7                |             |  |
| Water Content (%)                                                                                           |             |                     |                  | 25.4                                                               |                          |                          |                    | 24       | .7                |             |  |
|                                                                                                             |             |                     |                  | 3                                                                  |                          | _                        |                    |          |                   |             |  |
|                                                                                                             |             | $\rho_d$            | 1.38 g/ci        | m                                                                  | Final Dry                | Density                  |                    | $\rho_d$ | 1.60              | g/cm        |  |
|                                                                                                             |             |                     | 40.0             | , 3                                                                | <b>E</b> 1 <b>D</b>      |                          | 1.4                |          |                   |             |  |
| Initial Dry Unit Weigh                                                                                      |             | γd                  | 13.6 kN/         | /m <sup>3</sup>                                                    | Final Dry                | Unit Weię                | ght                | γd       | 15.7              | kN/m        |  |
| Initial Dry Unit Weigh<br>End of load deforma                                                               | tion result | γd                  |                  |                                                                    | -                        |                          |                    | γd       | -                 | kN/m        |  |
| Initial Dry Density<br>Initial Dry Unit Weigł<br>End of load deforma<br>Load Step No.<br>Corrected Def (mm) |             | γ <sub>d</sub><br>s | 2                | /m <sup>3</sup><br>3<br>1800                                       | Final Dry<br>4<br>0.3120 | Unit Weio<br>5<br>0.6880 | 9ht<br>6<br>1.8100 |          | 15.7<br>7<br>6600 | kN/m        |  |

| Project:                                                           | An exp          | perimen           | tal investig | gation of t       | he behavic | or of compa | acted sand/ | clay mi           | xtures  |                 |
|--------------------------------------------------------------------|-----------------|-------------------|--------------|-------------------|------------|-------------|-------------|-------------------|---------|-----------------|
| Sample: Sta                                                        | andard P        | roctor c          | compacted    | , 85% sar         | nd 15% bei | ntonite, 12 | % water co  | ntent (S          | S15B12V | V)              |
| Consolid. Type                                                     | El25-047        | 9                 |              |                   | Consolid   | . Туре      | Fixed Ring  | g                 |         |                 |
| Height of Spec.                                                    | 20              | mm                | Dia. of S    | pec.              | 63.5       | mm          | Area of Sp  | Dec.              | 3166.9  | mm <sup>2</sup> |
| Weight of Ring                                                     | 66.4            | g                 | Wt. of St    | one               | 130        | g           | Wt. of Pap  | ber               | 0.3     | g               |
| Specific Gravity                                                   | 2.65            |                   | Tested B     | Зу                | Yueru Ch   | en          | Date        |                   | 3/3/2   | 2009            |
| Trimmings                                                          |                 |                   |              | 1                 |            |             |             | 2                 |         |                 |
| Tin No.                                                            |                 |                   |              | 213               |            |             |             | В                 | В       |                 |
| Wt. of Tin (g)                                                     |                 |                   |              | 27.9              | -          |             |             | .4                |         |                 |
| Wt. of Tin + Wet Soil (                                            | g)              |                   |              | 177.3             | 3          |             |             | 174               | 1.7     |                 |
| Wt. of Tin + Dry Soil (g                                           | g)              |                   |              | 162.7             | 1          |             |             | 159               | 9.5     |                 |
| Wt. of Dry Soil (g)                                                |                 |                   |              | 134.2             | 2          |             |             | 131               | 1.1     |                 |
| Wt. of Water (g)                                                   |                 |                   |              | 15.2              | !          |             |             | 15                | .2      |                 |
| Water Content (%)                                                  |                 |                   |              | 11.3              |            |             |             | 11                | .6      |                 |
| Average Water Conter                                               | nt (%)          |                   | 11.5         |                   |            |             |             |                   |         |                 |
|                                                                    |                 |                   |              |                   |            |             |             |                   |         |                 |
| Specimen                                                           |                 |                   |              | Before -          | Fest       |             |             | After             | Test    |                 |
| Tare I.D. No.                                                      |                 |                   | Ri           | ng, Stone         | e, Paper   |             |             | 20                | 5       |                 |
| Wt. of Tare + Wet Soi                                              | l (g)           |                   |              | 313.2             | 2          |             |             | 145               | 5.7     |                 |
| Wt. of Tare + Dry Soil                                             | (g)             |                   |              | -                 |            |             |             | 133               | 3.6     |                 |
| Wt. of Tare (g)                                                    |                 |                   |              | 196.7             | 0          |             |             | 29                | .7      |                 |
| Wt. of Wet Soil (g)                                                |                 |                   |              | 116.5             | 0          |             |             | 11                | 6       |                 |
| Wt. of Dry Soil (g)                                                |                 |                   |              | 103.9             | 0          |             |             | 103               | 3.9     |                 |
| Wt. of Water (g)                                                   |                 |                   |              | 12.60             | C          |             |             | 12                | .1      |                 |
| Water Content (%)                                                  |                 |                   |              | 12.1              |            |             |             | 11                | .6      |                 |
|                                                                    |                 |                   |              |                   |            |             |             |                   |         |                 |
| Initial Dry Density                                                |                 | $\rho_{\text{d}}$ | 1.64         | g/cm <sup>3</sup> | Final Dry  | Density     |             | $\rho_{\text{d}}$ | 1.72    | g/cm            |
|                                                                    |                 | γd                | 16.1         | kN/m <sup>3</sup> | Final Dry  | Unit Weigl  | nt          | γd                | 16.9    | kN/m            |
| Initial Dry Unit Weight                                            |                 |                   |              |                   |            |             |             |                   |         |                 |
| , ,                                                                | on results      |                   |              |                   |            |             |             |                   |         |                 |
| Initial Dry Unit Weight<br>End of load deformatic<br>Load Step No. | on results<br>1 |                   | 2            | 3                 | 4          | 5           | 6           |                   | 7       |                 |

| Project:                                                                                                                                                                 | / III CAPO | rimenta        | I investigation of t                                                                    | he behavior of comp                                             | acted sand/clay mi                                                                                              | xtures                                                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| Sample: Star                                                                                                                                                             | ndard Pro  | octor co       | mpacted, 85% sa                                                                         | nd 15% bentonite, 13                                            | 3% water content (                                                                                              | S15B13W)                                                                     |  |
| Consolid. Type                                                                                                                                                           | El25-047   | 9              |                                                                                         | Consolid. Type                                                  | Fixed Ring                                                                                                      |                                                                              |  |
| Height of Spec.                                                                                                                                                          | 20         | mm             | Dia. of Spec.                                                                           | 63.5 mm                                                         | Area of Spec.                                                                                                   | 3166.9 mm <sup>2</sup>                                                       |  |
| Weight of Ring                                                                                                                                                           | 66.3       | g              | Wt. of Stone                                                                            | 128.2 g                                                         | Wt. of Paper                                                                                                    | 0.3 g                                                                        |  |
| Specific Gravity                                                                                                                                                         | 2.65       |                | Tested By                                                                               | Yueru Chen                                                      | Date                                                                                                            | 2/19/2009                                                                    |  |
| Trimmings                                                                                                                                                                |            |                | 1                                                                                       |                                                                 |                                                                                                                 | 2                                                                            |  |
| Tin No.                                                                                                                                                                  |            |                | 40                                                                                      | 4                                                               | 4                                                                                                               | 05                                                                           |  |
| Wt. of Tin (g)                                                                                                                                                           |            |                | 28.                                                                                     | 6                                                               | 2                                                                                                               | 7.7                                                                          |  |
| Wt. of Tin + Wet Soil (                                                                                                                                                  | (g)        |                | 178                                                                                     | .3                                                              | 17                                                                                                              | '1.1                                                                         |  |
| Wt. of Tin + Dry Soil (                                                                                                                                                  | g)         |                | 160                                                                                     | .7                                                              | 15                                                                                                              | 54.2                                                                         |  |
| Wt. of Dry Soil (g)                                                                                                                                                      |            |                | 132                                                                                     | .1                                                              | 12                                                                                                              | 26.5                                                                         |  |
| Wt. of Water (g)                                                                                                                                                         |            |                | 17.                                                                                     | 6                                                               | 10                                                                                                              | 6.9                                                                          |  |
| Water Content (%)                                                                                                                                                        |            |                | 13.                                                                                     | 3                                                               | 13.4                                                                                                            |                                                                              |  |
| Average Water Conte                                                                                                                                                      | nt (%)     |                |                                                                                         |                                                                 |                                                                                                                 |                                                                              |  |
|                                                                                                                                                                          |            |                |                                                                                         |                                                                 |                                                                                                                 |                                                                              |  |
|                                                                                                                                                                          |            |                |                                                                                         |                                                                 |                                                                                                                 |                                                                              |  |
| Specimen                                                                                                                                                                 |            |                | Before                                                                                  | Test                                                            | Afte                                                                                                            | r Test                                                                       |  |
| Specimen<br>Tare I.D. No.                                                                                                                                                |            |                | Before<br>Ring, Ston                                                                    |                                                                 |                                                                                                                 | r Test<br>01                                                                 |  |
| ·                                                                                                                                                                        | il (g)     |                |                                                                                         | e, Paper                                                        | 1                                                                                                               |                                                                              |  |
| Tare I.D. No.                                                                                                                                                            |            |                | Ring, Ston                                                                              | e, Paper                                                        | 1                                                                                                               | 01                                                                           |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So                                                                                                                                    |            |                | Ring, Ston                                                                              | e, Paper<br>.3                                                  | 1<br>1<br>13                                                                                                    | 01<br>51                                                                     |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi                                                                                                           |            |                | Ring, Ston<br>318<br>-                                                                  | e, Paper<br>.3<br>80                                            | 1<br>1<br>13<br>2                                                                                               | 01<br>51<br>36.4                                                             |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)                                                                                        |            |                | Ring, Ston<br>318<br>-<br>194.                                                          | e, Paper<br>.3<br>80<br>50                                      | 1<br>1<br>13<br>2<br>1                                                                                          | 01<br>51<br>36.4<br>28                                                       |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 |            |                | Ring, Ston<br>318<br>-<br>194.<br>123.                                                  | e, Paper<br>.3<br>80<br>50<br>40                                | 1<br>13<br>2<br>1<br>10                                                                                         | 01<br>51<br>36.4<br>28<br>23                                                 |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          |            |                | Ring, Ston<br>318<br>-<br>194.<br>123.<br>108.                                          | e, Paper<br>.3<br>80<br>50<br>40<br>0                           | 1<br>1<br>13<br>2<br>1<br>10<br>10                                                                              | 01<br>51<br>96.4<br>28<br>23<br>98.4                                         |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) |            |                | Ring, Ston<br>318<br>-<br>194.<br>123.<br>108.<br>15. <sup>-</sup><br>13.               | e, Paper<br>.3<br>80<br>50<br>40<br>9                           | 1<br>1<br>13<br>2<br>1<br>1<br>10<br>1,<br>1,<br>1,<br>1,                                                       | 01<br>51<br>36.4<br>28<br>23<br>38.4<br>4.6<br>3.5                           |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | il (g)     | ρ <sub>d</sub> | Ring, Ston<br>318<br>-<br>194.<br>123.<br>108.<br>15.'<br>13.<br>1.71 g/cm <sup>3</sup> | e, Paper<br>.3<br>80<br>50<br>40<br>0<br>9<br>Final Dry Density | 1<br>1<br>13<br>2<br>1<br>1<br>10<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1, | 01<br>51<br>36.4<br>28<br>23<br>98.4<br>4.6<br>3.5<br>1.83 g/cm <sup>2</sup> |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | i (g)      | γd             | Ring, Ston<br>318<br>-<br>194.<br>123.<br>108.<br>15. <sup>-</sup><br>13.               | e, Paper<br>.3<br>80<br>50<br>40<br>9                           | 1<br>1<br>13<br>2<br>1<br>1<br>10<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1, | 01<br>51<br>36.4<br>28<br>23<br>98.4<br>4.6<br>3.5<br>1.83 g/cm <sup>2</sup> |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | i (g)      | γd             | Ring, Ston<br>318<br>-<br>194.<br>123.<br>108.<br>15.'<br>13.<br>1.71 g/cm <sup>3</sup> | e, Paper<br>.3<br>80<br>50<br>40<br>0<br>9<br>Final Dry Density | 1<br>1<br>13<br>2<br>1<br>1<br>10<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1,<br>1, | 01<br>51<br>36.4<br>28<br>23<br>98.4<br>4.6<br>3.5<br>1.83 g/cm <sup>3</sup> |  |

| Project:                                                                                                                                                        | An exper     | imenta         | I investigation of t                                                        | the behavior of comp                                                    | acted sand/clay mi                                            | xtures                                                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Sample: Sta                                                                                                                                                     | ndard Pro    | ctor co        | mpacted, 85% sa                                                             | nd 15% bentonite, 18                                                    | 5% water content (                                            | S15B15W)                                                                |  |
| Consolid. Type                                                                                                                                                  | EI25-0479    | 9              |                                                                             | Consolid. Type                                                          | Fixed Ring                                                    |                                                                         |  |
| Height of Spec.                                                                                                                                                 | 20           | mm             | Dia. of Spec.                                                               | 63.5 mm                                                                 | Area of Spec.                                                 | 3166.9 mm <sup>2</sup>                                                  |  |
| Weight of Ring                                                                                                                                                  | 67.5         | g              | Wt. of Stone                                                                | 130 g                                                                   | Wt. of Paper                                                  | 0.3 g                                                                   |  |
| Specific Gravity                                                                                                                                                | 2.65         |                | Tested By                                                                   | Yueru Chen                                                              | Date                                                          | 2/18/2009                                                               |  |
| Trimmings                                                                                                                                                       |              |                | 1                                                                           |                                                                         |                                                               | 2                                                                       |  |
| Tin No.                                                                                                                                                         |              |                | 41                                                                          | 0                                                                       |                                                               | 5                                                                       |  |
| Wt. of Tin (g)                                                                                                                                                  |              |                | 28                                                                          | .4                                                                      | 30                                                            | 0.8                                                                     |  |
| Wt. of Tin + Wet Soil                                                                                                                                           | (g)          |                | 151                                                                         | 1.6                                                                     | 13                                                            | 8.5                                                                     |  |
| Wt. of Tin + Dry Soil                                                                                                                                           | (g)          |                | 13                                                                          | 6                                                                       | 12                                                            | 4.3                                                                     |  |
| Wt. of Dry Soil (g)                                                                                                                                             |              |                |                                                                             | 7.6                                                                     | 9;                                                            | 3.5                                                                     |  |
| Wt. of Water (g)                                                                                                                                                |              |                | 15                                                                          | .6                                                                      | 14                                                            | 4.2                                                                     |  |
| Water Content (%)                                                                                                                                               |              |                | 14                                                                          | .5                                                                      | 15                                                            | 5.2                                                                     |  |
| Average Water Cont                                                                                                                                              | ent (%)      |                |                                                                             | 14.8                                                                    |                                                               |                                                                         |  |
|                                                                                                                                                                 |              |                |                                                                             |                                                                         |                                                               |                                                                         |  |
| Specimen                                                                                                                                                        |              |                | Before                                                                      | + Test                                                                  | After                                                         | r Test                                                                  |  |
| Tare I.D. No.                                                                                                                                                   |              |                | Ring, Stor                                                                  | ie, Paper                                                               | 3                                                             | BA                                                                      |  |
| Wt. of Tare + Wet S                                                                                                                                             | oil (g)      |                | 327                                                                         | 7.1                                                                     | 16                                                            | 3.4                                                                     |  |
| Wt. of Tare + Dry So                                                                                                                                            | oil (g)      |                | -                                                                           |                                                                         | 14                                                            | 6.6                                                                     |  |
| Wt. of Tare (g)                                                                                                                                                 |              |                | - 146.6<br>197.80 34.7                                                      |                                                                         |                                                               |                                                                         |  |
| (3)                                                                                                                                                             |              |                | 197                                                                         | .80                                                                     | 34                                                            |                                                                         |  |
| Wt. of Wet Soil (g)                                                                                                                                             |              |                | 197<br>129                                                                  |                                                                         | -                                                             |                                                                         |  |
|                                                                                                                                                                 |              |                | -                                                                           | .30                                                                     | 12                                                            | 4.7                                                                     |  |
| Wt. of Wet Soil (g)                                                                                                                                             |              |                | 129                                                                         | .30<br>.90                                                              | 12<br>11                                                      | 4.7<br>8.7                                                              |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                                                      |              |                | 129<br>111                                                                  | .30<br>.90<br>40                                                        | 12<br>11<br>11                                                | 4.7<br>8.7<br>1.9                                                       |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                                  |              |                | 129<br>111<br>17.<br>15                                                     | .30<br>.90<br>40<br>.5                                                  | 12<br>11<br>11                                                | 4.7<br>18.7<br>1.9<br>5.8<br>5.0                                        |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                             |              | ρ <sub>d</sub> | 129<br>111<br>17.<br>15<br>1.77 g/cm <sup>3</sup>                           | .30<br>.90<br>40<br>.5<br>Final Dry Density                             | 12<br>11<br>10<br>11<br>11<br>Γ                               | 4.7<br>1.9<br>5.8<br>5.0<br>1.88 g/cm                                   |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh                            |              | γd             | 129<br>111<br>17.<br>15                                                     | .30<br>.90<br>40<br>.5<br>Final Dry Density                             | 12<br>11<br>10<br>11<br>11<br>Γ                               | 4.7<br>1.9<br>5.8<br>5.0<br>1.88 g/cm                                   |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deformation | tion results | γd             | 129<br>111<br>17.<br>15<br>1.77 g/cm <sup>3</sup><br>17.3 kN/m <sup>3</sup> | .30<br>.90<br>40<br>.5<br>Final Dry Density<br>Final Dry Unit We        | 12<br>11<br>1(<br>1)<br>1)<br>Γd<br>ight γ <sub>d</sub>       | 4.7<br>(8.7<br>1.9<br>5.8<br>5.0<br>1.88 g/cm <sup>2</sup><br>18.4 kN/m |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                                  |              | γd             | 129<br>111<br>17.<br>15<br>1.77 g/cm <sup>3</sup>                           | .30<br>.90<br>40<br>.5<br>Final Dry Density<br>Final Dry Unit We<br>4 5 | 12<br>11<br>16<br>18<br>ρ <sub>d</sub><br>γ <sub>d</sub><br>6 | 4.7<br>1.9<br>5.8<br>5.0<br>1.88 g/cm <sup>2</sup>                      |  |

| Project:                                                                                                                                                                              | An expe         | rimenta        | l investigat | ion of the                                                                         | e behavior o                                              | f compa   | cted sand/o | clay mix                                               | ktures                                                      |                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|--------------|------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------|-------------|--------------------------------------------------------|-------------------------------------------------------------|---------------------------|
| Sample: Stan                                                                                                                                                                          | ndard Pro       | octor co       | mpacted, 8   | 35% sand                                                                           | d 15% bento                                               | nite, 179 | % water cor | ntent (S                                               | 615B17W                                                     | /)                        |
| Consolid. Type                                                                                                                                                                        | El25-047        | 9              |              |                                                                                    | Consolid.                                                 | Туре      | Fixed Rin   | g                                                      |                                                             |                           |
| Height of Spec.                                                                                                                                                                       | 20              | mm             | Dia. of Sp   | Dec.                                                                               | 63.5                                                      | mm        | Area of S   | pec.                                                   | 3166.9                                                      | mm <sup>2</sup>           |
| Weight of Ring                                                                                                                                                                        | 66.3            | g              | Wt. of Sto   | one                                                                                | 133.7                                                     | g         | Wt. of Pa   | per                                                    | 0.3                                                         | g                         |
| Specific Gravity                                                                                                                                                                      | 2.65            |                | Tested By    | y                                                                                  | Yueru Che                                                 | n         | Date        |                                                        | 3/3/2                                                       | 2009                      |
| Trimmings                                                                                                                                                                             |                 |                |              | 1                                                                                  |                                                           |           |             | 2                                                      | 2                                                           |                           |
| Tin No.                                                                                                                                                                               |                 |                |              | 201                                                                                |                                                           |           |             | 7                                                      | 7                                                           |                           |
| Wt. of Tin (g)                                                                                                                                                                        |                 |                |              |                                                                                    |                                                           |           |             | 28                                                     | 3.1                                                         |                           |
| Wt. of Tin + Wet Soil (                                                                                                                                                               | (g)             |                |              | 158.7                                                                              | 7                                                         |           |             | 202                                                    | 2.7                                                         |                           |
| Wt. of Tin + Dry Soil (                                                                                                                                                               | g)              |                |              | 139.7                                                                              | 7                                                         |           |             | 17                                                     | 77                                                          |                           |
| Wt. of Dry Soil (g)                                                                                                                                                                   |                 |                |              | 110.8                                                                              | 3                                                         |           |             | 148                                                    | 8.9                                                         |                           |
| Wt. of Water (g)                                                                                                                                                                      |                 |                |              | 19                                                                                 |                                                           |           |             | 25                                                     | 5.7                                                         |                           |
| Water Content (%)                                                                                                                                                                     |                 |                |              | 17.1                                                                               |                                                           |           | 17.3        |                                                        |                                                             |                           |
| Average Water Conte                                                                                                                                                                   | nt (%)          |                | 17.2         |                                                                                    |                                                           |           |             |                                                        |                                                             |                           |
| 3                                                                                                                                                                                     |                 |                |              |                                                                                    |                                                           | 17.2      |             |                                                        |                                                             |                           |
|                                                                                                                                                                                       |                 |                |              |                                                                                    |                                                           | 17.2      |             |                                                        |                                                             |                           |
| Specimen                                                                                                                                                                              | (///            |                |              | Before T                                                                           | Fest                                                      | 17.2      |             | After                                                  | Test                                                        |                           |
|                                                                                                                                                                                       |                 |                | Rin          | Before T<br>g, Stone                                                               |                                                           | 17.2      |             | After<br>B-                                            |                                                             |                           |
| Specimen<br>Tare I.D. No.                                                                                                                                                             |                 |                | Rin          |                                                                                    | , Paper                                                   | 17.2      |             |                                                        | 19                                                          |                           |
| Specimen<br>Tare I.D. No.                                                                                                                                                             | il (g)          |                | Rin          | g, Stone                                                                           | , Paper                                                   | 17.2      |             | B-<br>152                                              | 19                                                          |                           |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So                                                                                                                                     | il (g)          |                | Rin          | g, Stone                                                                           | , Paper<br>9                                              | 17.2      |             | B-<br>152                                              | 19<br>2.3<br>3.9                                            |                           |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soi                                                                                                           | il (g)          |                | Rin          | g, Stone<br>325.9<br>-                                                             | e, Paper<br>9<br>0                                        | 17.2      |             | B-<br>152<br>133<br>27                                 | 19<br>2.3<br>3.9                                            |                           |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)                                                                                         | il (g)          |                | Rin          | g, Stone<br>325.9<br>-<br>200.3                                                    | , Paper<br>9<br>0<br>0                                    | 17.2      |             | B-<br>152<br>133<br>27<br>124                          | 19<br>2.3<br>3.9<br>7.4                                     |                           |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 | il (g)          |                | Rin          | g, Stone<br>325.9<br>-<br>200.3<br>125.6                                           | e, Paper<br>9<br>0<br>0<br>0                              | 17.2      |             | B-<br>152<br>133<br>27<br>124                          | 19<br>2.3<br>3.9<br>7.4<br>4.9<br>6.5                       |                           |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                           | il (g)          |                | Rin          | g, Stone<br>325.9<br>-<br>200.3<br>125.6<br>106.5                                  | , Paper<br>9<br>0<br>0<br>0<br>0                          | 17.2      |             | B-<br>152<br>133<br>27<br>124<br>106                   | 19<br>2.3<br>3.9<br>7.4<br>4.9<br>6.5<br>8.4                |                           |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)  | il (g)          |                |              | g, Stone<br>325.9<br>200.3<br>125.6<br>106.5<br>19.10<br>17.9                      | , Paper<br>9<br>0<br>0<br>0<br>0                          |           |             | B-<br>15:<br>13:<br>27<br>124<br>100<br>18<br>17       | 19<br>2.3<br>3.9<br>7.4<br>4.9<br>6.5<br>8.4<br>7.3         |                           |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Wet Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | il (g)<br>I (g) | ρ <sub>d</sub> | 1.68         | g, Stone<br>325.9<br>200.3<br>125.6<br>106.5<br>19.10<br>17.9<br>g/cm <sup>3</sup> | , Paper<br>9<br>0<br>0<br>0<br>0<br>0<br>5<br>Final Dry D | Density   |             | B-<br>153<br>133<br>27<br>124<br>100<br>18<br>17<br>Ρd | 19<br>2.3<br>3.9<br>7.4<br>4.9<br>6.5<br>8.4<br>7.3<br>1.80 | 0                         |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)  | il (g)<br>I (g) | γd             |              | g, Stone<br>325.9<br>200.3<br>125.6<br>106.5<br>19.10<br>17.9                      | , Paper<br>9<br>0<br>0<br>0<br>0                          | Density   | ht          | B-<br>15:<br>13:<br>27<br>124<br>100<br>18<br>17       | 19<br>2.3<br>3.9<br>7.4<br>4.9<br>6.5<br>8.4<br>7.3         | 0                         |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | il (g)<br>I (g) | γd             | 1.68         | g, Stone<br>325.9<br>200.3<br>125.6<br>106.5<br>19.10<br>17.9<br>g/cm <sup>3</sup> | , Paper<br>9<br>0<br>0<br>0<br>0<br>0<br>5<br>Final Dry D | Density   | ht          | B-<br>153<br>133<br>27<br>124<br>100<br>18<br>17<br>Ρd | 19<br>2.3<br>3.9<br>7.4<br>4.9<br>6.5<br>8.4<br>7.3<br>1.80 | g/cm <sup>°</sup><br>kN/m |

| Project:                                       | An expe          | rimenta           | al investigat | ion of the        | e behavior  | of compa    | cted sand/cl | ay mix            | tures     |                 |
|------------------------------------------------|------------------|-------------------|---------------|-------------------|-------------|-------------|--------------|-------------------|-----------|-----------------|
| Sample: Sta                                    | indard Pro       | octor co          | mpacted, 8    | 35% sand          | d 15% ben   | tonite, 19% | % water cont | ent (S            | 15B19W    | /)              |
| Consolid. Type                                 | EI25-047         | '9                |               |                   | Consolid    | . Туре      | Fixed Ring   |                   |           |                 |
| Height of Spec.                                | 20               | mm                | Dia. of Sp    | Dec.              | 63.5        | mm          | Area of Sp   | ec.               | 3166.9    | mm <sup>2</sup> |
| Weight of Ring                                 | 67.5             | g                 | Wt. of Sto    | one               | 130         | g           | Wt. of Pap   | er                | 0.3       | g               |
| Specific Gravity                               | 2.65             |                   | Tested B      | y                 | Yueru Ch    | en          | Date         |                   | 3/4/2     | 2009            |
| Trimmings                                      | ;                |                   |               | 1                 |             |             |              | 2                 | 2         |                 |
| Tin No.                                        |                  |                   |               | 404               |             |             |              | 40                | )5        |                 |
| Wt. of Tin (g)                                 |                  |                   |               | 28.7              |             |             | 27           | .7                |           |                 |
| Wt. of Tin + Wet Soil                          | (g)              |                   |               |                   | 194         | 4.2         |              |                   |           |                 |
| Wt. of Tin + Dry Soil                          | (g)              |                   |               | 152.8             | 3           |             |              | 167               | 7.7       |                 |
| Wt. of Dry Soil (g)                            |                  |                   |               | 124.1             | 1           |             |              | 14                | 10        |                 |
| Wt. of Water (g)                               |                  |                   |               | 23.7              |             |             |              | 26                | .5        |                 |
| Water Content (%)                              |                  |                   |               | 19.1              |             |             |              | 18                | .9        |                 |
| Average Water Cont                             | ent (%)          |                   | 19.0          |                   |             |             |              |                   |           |                 |
|                                                |                  |                   |               |                   |             |             |              |                   |           |                 |
| Specimen                                       |                  |                   |               | Before 7          | Fest        |             |              | After             | Test      |                 |
| Tare I.D. No.                                  |                  |                   | Rin           | g, Stone          | , Paper     |             |              | 10                | )1        |                 |
| Wt. of Tare + Wet S                            | oil (g)          |                   |               | 321.2             | 2           |             |              | 150               | 0.4       |                 |
| Wt. of Tare + Dry So                           | e + Dry Soil (g) |                   |               | -                 |             |             |              | 13                | 81        |                 |
| Wt. of Tare (g)                                |                  |                   |               | 197.8             | 0           |             |              | 2                 | 8         |                 |
| Wt. of Wet Soil (g)                            |                  |                   |               | 123.4             | 0           |             |              | 122               | 2.4       |                 |
| Wt. of Dry Soil (g)                            |                  |                   |               | 103.0             | 0           |             |              | 10                | )3        |                 |
| Wt. of Water (g)                               |                  |                   |               | 20.40             | )           |             |              | 19                | .4        |                 |
| Water Content (%)                              |                  |                   |               | 19.8              |             |             |              | 18                | .8        |                 |
|                                                |                  |                   |               |                   |             |             |              |                   |           |                 |
| Initial Dry Density                            |                  | $\rho_{\text{d}}$ | 1.63          | g/cm <sup>3</sup> | Final Dry   | Density     |              | $\rho_{\text{d}}$ | 1.77      | g/cm            |
| initial Dry Donoty                             |                  |                   | 15.9          | kN/m <sup>3</sup> | Final Dry   | Unit Weig   | ht           | γd                | 17.3      | kN/m            |
| Initial Dry Unit Weigh                         | nt               | γd                | 15.5          |                   |             | 0           |              |                   |           |                 |
| Initial Dry Unit Weigh<br>End of load deformat | tion result      | S                 |               |                   |             | 0           |              |                   |           |                 |
| Initial Dry Unit Weigh                         |                  | S                 | 2             | 3                 | 4<br>0.5180 | 5           | 6<br>1.2800  |                   | 7<br>6100 |                 |

|                                                                                                                                                                          | Апсярс    | ninenta        | tal investigation of the behavior of compacted sand/clay mixtures |                                                                  |                                                               |                                                                              |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|
| Sample: Stan                                                                                                                                                             | ndard Pro | octor co       | mpacted, 75% sar                                                  | nd 25% bentonite, 14                                             | % water content (S                                            | S25B14W)                                                                     |  |  |  |  |
| Consolid. Type                                                                                                                                                           | El25-047  | 9              |                                                                   | Consolid. Type                                                   | Fixed Ring                                                    |                                                                              |  |  |  |  |
| Height of Spec.                                                                                                                                                          | 20        | mm             | Dia. of Spec.                                                     | 63.5 mm                                                          | Area of Spec.                                                 | 3166.9 mm <sup>2</sup>                                                       |  |  |  |  |
| Weight of Ring                                                                                                                                                           | 66.2      | g              | Wt. of Stone                                                      | 133.7 g                                                          | Wt. of Paper                                                  | 0.3 g                                                                        |  |  |  |  |
| Specific Gravity                                                                                                                                                         | 2.64      |                | Tested By                                                         | Yueru Chen                                                       | Date                                                          | 5/16/2009                                                                    |  |  |  |  |
| Trimmings                                                                                                                                                                |           |                | 1                                                                 |                                                                  | :                                                             | 2                                                                            |  |  |  |  |
| Tin No.                                                                                                                                                                  |           |                | 410                                                               | )                                                                | E                                                             | 38                                                                           |  |  |  |  |
| Wt. of Tin (g)                                                                                                                                                           |           |                | 28.4                                                              | 4                                                                | 28                                                            | 3.5                                                                          |  |  |  |  |
| Wt. of Tin + Wet Soil (                                                                                                                                                  | (g)       |                | 108                                                               | 1                                                                | 1                                                             | 12                                                                           |  |  |  |  |
| Wt. of Tin + Dry Soil (                                                                                                                                                  | g)        |                | 98.0                                                              | 6                                                                | 10                                                            | 1.6                                                                          |  |  |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                      |           |                | 70.:                                                              | 2                                                                | 73                                                            | 3.1                                                                          |  |  |  |  |
| Wt. of Water (g)                                                                                                                                                         |           |                | 9.5                                                               | i                                                                | 10                                                            | ).4                                                                          |  |  |  |  |
| Water Content (%)                                                                                                                                                        |           |                | 13.                                                               | 5                                                                | 14                                                            | 4.2                                                                          |  |  |  |  |
| Average Water Conte                                                                                                                                                      | nt (%)    |                |                                                                   | 13.9                                                             |                                                               |                                                                              |  |  |  |  |
|                                                                                                                                                                          |           |                |                                                                   |                                                                  |                                                               |                                                                              |  |  |  |  |
|                                                                                                                                                                          |           |                |                                                                   |                                                                  |                                                               |                                                                              |  |  |  |  |
| Specimen                                                                                                                                                                 |           |                | Before                                                            | Test                                                             | After                                                         | Test                                                                         |  |  |  |  |
| Specimen<br>Tare I.D. No.                                                                                                                                                |           |                | Before<br>Ring, Ston                                              |                                                                  |                                                               | <sup>.</sup> Test<br>19                                                      |  |  |  |  |
| •                                                                                                                                                                        | il (g)    |                |                                                                   | e, Paper                                                         | В                                                             |                                                                              |  |  |  |  |
| Tare I.D. No.                                                                                                                                                            |           |                | Ring, Ston                                                        | e, Paper                                                         | B<br>14                                                       | 19                                                                           |  |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So                                                                                                                                    |           |                | Ring, Ston                                                        | e, Paper<br>4                                                    | B<br>14<br>13                                                 | 19<br>6.1                                                                    |  |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi                                                                                                           |           |                | Ring, Ston<br>319.<br>-                                           | e, Paper<br>4<br>20                                              | B<br>14<br>1;<br>27                                           | 19<br>6.1<br>32                                                              |  |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)                                                                                        |           |                | Ring, Ston<br>319<br>-<br>200.                                    | e, Paper<br>4<br>20<br>20                                        | B<br>14<br>1:<br>27<br>11                                     | 19<br>6.1<br>32<br>7.4                                                       |  |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 |           |                | Ring, Ston<br>319.<br>-<br>200.:<br>119.:                         | e, Paper<br>4<br>20<br>20<br>60                                  | B<br>14<br>13<br>27<br>11<br>10                               | 19<br>6.1<br>32<br>7.4<br>8.7                                                |  |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          |           |                | Ring, Ston<br>319<br>-<br>200.<br>119.<br>104.                    | e, Paper<br>4<br>20<br>20<br>60                                  | B<br>14<br>1:<br>27<br>11<br>10<br>14                         | 19<br>6.1<br>32<br>7.4<br>8.7<br>4.6                                         |  |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) |           | 0.             | Ring, Ston<br>319<br>-<br>200.<br>119.<br>104.<br>14.6<br>14.     | e, Paper<br>4<br>20<br>20<br>60<br>0                             | B<br>14<br>1:<br>27<br>11<br>10<br>14<br>13                   | 19<br>6.1<br>32<br>7.4<br>8.7<br>4.6<br>4.1<br>3.5                           |  |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | l (g)     | ρ <sub>d</sub> | Ring, Ston<br>319.<br>-<br>200.<br>119.<br>104.<br>14.6<br>14.6   | e, Paper<br>4<br>20<br>20<br>50<br>50<br>50<br>Final Dry Density | Β<br>14<br>1;<br>27<br>11<br>10<br>14<br>13<br>Ρ <sub>d</sub> | 19<br>6.1<br>32<br>7.4<br>8.7<br>4.6<br>4.1<br>3.5<br>1.76 g/cm <sup>2</sup> |  |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | l (g)     | γd             | Ring, Ston<br>319<br>-<br>200.<br>119.<br>104.<br>14.6<br>14.     | e, Paper<br>4<br>20<br>20<br>60<br>0                             | Β<br>14<br>1;<br>27<br>11<br>10<br>14<br>13<br>Ρ <sub>d</sub> | 19<br>6.1<br>32<br>7.4<br>8.7<br>4.6<br>4.1<br>3.5                           |  |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | l (g)     | γd             | Ring, Ston<br>319.<br>-<br>200.<br>119.<br>104.<br>14.6<br>14.6   | e, Paper<br>4<br>20<br>20<br>50<br>50<br>50<br>Final Dry Density | Β<br>14<br>1;<br>27<br>11<br>10<br>14<br>13<br>Ρ <sub>d</sub> | 19<br>6.1<br>32<br>7.4<br>8.7<br>4.6<br>4.1<br>3.5<br>1.76 g/cm <sup>2</sup> |  |  |  |  |

| Project:                                                                                                                                                                       | An expe           | rimenta             | tal investigation of the behavior of compacted sand/clay mixtures                  |                                                 |                                                               |                                                                         |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|
| Sample: Sta                                                                                                                                                                    | andard Pro        | octor co            | mpacted, 75% san                                                                   | d 25% bentonite, 16                             | % water content (                                             | 325B16W)                                                                |  |  |  |  |
| Consolid. Type                                                                                                                                                                 | EI25-047          | 9                   |                                                                                    | Consolid. Type                                  | Fixed Ring                                                    |                                                                         |  |  |  |  |
| Height of Spec.                                                                                                                                                                | 20                | mm                  | Dia. of Spec.                                                                      | 63.5 mm                                         | Area of Spec.                                                 | 3166.9 mm <sup>2</sup>                                                  |  |  |  |  |
| Weight of Ring                                                                                                                                                                 | 66.2              | g                   | Wt. of Stone                                                                       | 130 g                                           | Wt. of Paper                                                  | 0.3 g                                                                   |  |  |  |  |
| Specific Gravity                                                                                                                                                               | 2.64              |                     | Tested By                                                                          | Yueru Chen                                      | Date                                                          | 7/20/2009                                                               |  |  |  |  |
| Trimmings                                                                                                                                                                      | 3                 |                     | 1                                                                                  |                                                 |                                                               | 2                                                                       |  |  |  |  |
| Tin No.                                                                                                                                                                        |                   |                     | FJ-3                                                                               | }                                               | 2                                                             | 13                                                                      |  |  |  |  |
| Wt. of Tin (g)                                                                                                                                                                 |                   |                     | 29                                                                                 |                                                 | 27                                                            | 7.9                                                                     |  |  |  |  |
| Wt. of Tin + Wet Soi                                                                                                                                                           | l (g)             |                     | 136.                                                                               | 9                                               | 13                                                            | 1.2                                                                     |  |  |  |  |
| Wt. of Tin + Dry Soil                                                                                                                                                          | (g)               |                     | 122.4                                                                              | 4                                               | 11                                                            | 7.4                                                                     |  |  |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                            |                   |                     | 93.4                                                                               | Ļ                                               | 89                                                            | 9.5                                                                     |  |  |  |  |
| Wt. of Water (g)                                                                                                                                                               |                   |                     | 14.5                                                                               | j                                               | 1:                                                            | 3.8                                                                     |  |  |  |  |
| Water Content (%)                                                                                                                                                              |                   |                     | 15.5                                                                               | ;                                               | 15                                                            | 5.4                                                                     |  |  |  |  |
| Average Water Cont                                                                                                                                                             | ent (%)           |                     | 15.5                                                                               |                                                 |                                                               |                                                                         |  |  |  |  |
|                                                                                                                                                                                |                   |                     |                                                                                    |                                                 |                                                               |                                                                         |  |  |  |  |
| Specimen                                                                                                                                                                       | 1                 |                     | Before <sup>-</sup>                                                                | Test                                            | After                                                         | r Test                                                                  |  |  |  |  |
| Tare I.D. No.                                                                                                                                                                  |                   |                     | Ring, Stone                                                                        | , Paper                                         | 1                                                             | 01                                                                      |  |  |  |  |
| Wt. of Tare + Wet S                                                                                                                                                            | oil (g)           |                     | 323.                                                                               | 1                                               | 15                                                            | 4.2                                                                     |  |  |  |  |
| Wt. of Tare + Dry Se                                                                                                                                                           | oil (a)           |                     |                                                                                    |                                                 |                                                               |                                                                         |  |  |  |  |
|                                                                                                                                                                                | on (g)            |                     | - 137.1<br>196.50 28                                                               |                                                 |                                                               |                                                                         |  |  |  |  |
| Wt. of Tare (g)                                                                                                                                                                | un (g)            |                     | 196.5                                                                              | i0                                              |                                                               | 37.1<br>28                                                              |  |  |  |  |
|                                                                                                                                                                                | on (g)            |                     | -<br>196.5<br>126.6                                                                |                                                 | 2                                                             |                                                                         |  |  |  |  |
| Wt. of Tare (g)                                                                                                                                                                | un (g)            |                     |                                                                                    | 60                                              | 2                                                             | 28                                                                      |  |  |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                                                                         | (9)               |                     | 126.6                                                                              | 60<br>0                                         | 2<br>12<br>10                                                 | 28<br>26.2                                                              |  |  |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                                                  | (g)               |                     | 126.6<br>109.1                                                                     | 60<br>0<br>0                                    | 2<br>12<br>10<br>17                                           | 28<br>26.2<br>99.1                                                      |  |  |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         |                   |                     | 126.6<br>109.1<br>17.5<br>16.0                                                     | 50<br>0<br>0                                    | 2<br>12<br>10<br>17                                           | 28<br>26.2<br>99.1<br>7.1<br>5.7                                        |  |  |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         |                   | ρ <sub>d</sub>      | 126.6<br>109.1<br>17.5<br>16.0<br>1.72 g/cm <sup>3</sup>                           | Final Dry Density                               | 2<br>12<br>10<br>17<br>15<br>Pd                               | 28<br>26.2<br>19.1<br>7.1<br>5.7<br>1.85 g/cm                           |  |  |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh                        | nt                | γd                  | 126.6<br>109.1<br>17.5<br>16.0                                                     | 50<br>0<br>0                                    | 2<br>12<br>10<br>17<br>15<br>Pd                               | 28<br>26.2<br>19.1<br>7.1<br>5.7<br>1.85 g/cm                           |  |  |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | nt<br>tion result | γd                  | 126.6<br>109.1<br>17.5<br>16.0<br>1.72 g/cm <sup>3</sup><br>16.9 kN/m <sup>3</sup> | Final Dry Density<br>Final Dry Unit Weig        | 2<br>12<br>10<br>17<br>15<br>Ρ <sub>d</sub><br>γ <sub>d</sub> | 28<br>26.2<br>99.1<br>7.1<br>5.7<br>1.85 g/cm <sup>2</sup><br>18.2 kN/m |  |  |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              | nt<br>tion result | γ <sub>d</sub><br>s | 126.6<br>109.1<br>17.5<br>16.0<br>1.72 g/cm <sup>3</sup>                           | Final Dry Density<br>Final Dry Unit Weig<br>4 5 | 2<br>12<br>10<br>17<br>11<br>15<br>9d<br>γd<br>6              | 28<br>26.2<br>19.1<br>7.1<br>5.7<br>1.85 g/cm <sup>3</sup>              |  |  |  |  |

| Project:                                                                                                                                                    | An expe     | rimenta                          | I investigation of th                                                           | ne behavior of compa                                                   | acted sand/clay mi                                           | xtures                                                                 |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| Sample: Sta                                                                                                                                                 | andard Pro  | octor co                         | mpacted, 75% san                                                                | nd 25% bentonite, 18                                                   | % water content (S                                           | S25B18W)                                                               |  |  |
| Consolid. Type El25-0479                                                                                                                                    |             |                                  |                                                                                 | Consolid. Type                                                         | Fixed Ring                                                   |                                                                        |  |  |
| Height of Spec.                                                                                                                                             | 20          | mm                               | Dia. of Spec.                                                                   | 63.5 mm                                                                | Area of Spec.                                                | 3166.9 mm <sup>2</sup>                                                 |  |  |
| Weight of Ring                                                                                                                                              | 62.9        | g                                | Wt. of Stone                                                                    | 129.9 g                                                                | Wt. of Paper                                                 | 0.3 g                                                                  |  |  |
| Specific Gravity                                                                                                                                            | 2.64        |                                  | Tested By                                                                       | Yueru Chen                                                             | Date                                                         | 2/18/2009                                                              |  |  |
| Trimmings                                                                                                                                                   | 3           |                                  | 1                                                                               |                                                                        | :                                                            | 2                                                                      |  |  |
| Tin No.                                                                                                                                                     |             |                                  | 201                                                                             | l                                                                      | 7                                                            |                                                                        |  |  |
| Wt. of Tin (g)                                                                                                                                              |             |                                  | 28.8                                                                            | 5                                                                      | 28.17                                                        |                                                                        |  |  |
| Wt. of Tin + Wet Soil (g)                                                                                                                                   |             | 160.3                            | 39                                                                              | 144.1                                                                  |                                                              |                                                                        |  |  |
| Wt. of Tin + Dry Soil (g)                                                                                                                                   |             |                                  | 140.0                                                                           | 01                                                                     | 126                                                          | 126.14                                                                 |  |  |
| Wt. of Dry Soil (g)                                                                                                                                         |             | 111.1                            | 16                                                                              | 97.97                                                                  |                                                              |                                                                        |  |  |
| Wt. of Water (g)                                                                                                                                            |             | 20.3                             | 8                                                                               | 17.96                                                                  |                                                              |                                                                        |  |  |
| Water Content (%)                                                                                                                                           |             |                                  | 18.3                                                                            | 3                                                                      | 18.3                                                         |                                                                        |  |  |
| Average Water Cont                                                                                                                                          | ent (%)     |                                  |                                                                                 | 18.3                                                                   |                                                              |                                                                        |  |  |
|                                                                                                                                                             |             |                                  |                                                                                 |                                                                        |                                                              |                                                                        |  |  |
| Specimen                                                                                                                                                    |             | Before                           | Test                                                                            | After Test                                                             |                                                              |                                                                        |  |  |
| Tare I.D. No.                                                                                                                                               |             | Ring, Stone                      | ə, Paper                                                                        | 404                                                                    |                                                              |                                                                        |  |  |
| Wt. of Tare + Wet Soil (g)                                                                                                                                  |             |                                  | 324.                                                                            | 6                                                                      | 159.1                                                        |                                                                        |  |  |
| Wt. of Tare + Dry Soil (g)                                                                                                                                  |             |                                  | -                                                                               |                                                                        | 139.8                                                        |                                                                        |  |  |
| Wt. of Tare (g)                                                                                                                                             |             | 100                              |                                                                                 | 28.7                                                                   |                                                              |                                                                        |  |  |
| Wt. of Tare (g)                                                                                                                                             |             |                                  | 193. <i>′</i>                                                                   | 10                                                                     | 28                                                           |                                                                        |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                                                      |             |                                  | 193. <sup>-</sup><br>131.t                                                      | -                                                                      |                                                              |                                                                        |  |  |
|                                                                                                                                                             |             |                                  |                                                                                 | 50                                                                     | 13                                                           | 3.7                                                                    |  |  |
| Wt. of Wet Soil (g)                                                                                                                                         |             |                                  | 131.8                                                                           | 50<br>10                                                               | 13                                                           | 3.7<br>0.4                                                             |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                                                  |             |                                  | 131. <del>(</del><br>111                                                        | 50<br>10<br>0                                                          | 13<br>11<br>19                                               | 3.7<br>0.4<br>1.1                                                      |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              |             |                                  | 131.(<br>111. <sup>-</sup><br>20.4<br>18.4                                      | 50<br>10<br>0<br>4                                                     | 13<br>11<br>19                                               | 3.7<br>0.4<br>1.1<br>9.3<br>7.4                                        |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         |             | Ρd                               | 131.<br>111.<br>20.4<br>18.4<br>1.75 g/cm <sup>3</sup>                          | 50<br>10<br>0<br>4<br>Final Dry Density                                | 13<br>11<br>15<br>17<br>Ρd                                   | 3.7<br>0.4<br>1.1<br>9.3<br>7.4<br>1.90 g/cm                           |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         | nt          | ρ <sub>d</sub><br>γ <sub>d</sub> | 131.(<br>111. <sup>-</sup><br>20.4<br>18.4                                      | 50<br>10<br>0<br>4                                                     | 13<br>11<br>15<br>17<br>Ρd                                   | 3.7<br>0.4<br>1.1<br>9.3<br>7.4<br>1.90 g/cm                           |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion result | γ <sub>d</sub><br>s              | 131.<br>111.<br>20.4<br>18.<br>1.75 g/cm <sup>3</sup><br>17.2 kN/m <sup>3</sup> | 50<br>10<br>4<br>Final Dry Density<br>Final Dry Unit Weig              | 13<br>11<br>15<br>17<br>Ρ <sub>d</sub><br>29t γ <sub>d</sub> | 3.7<br>0.4<br>1.1<br>9.3<br>7.4<br>1.90 g/cm <sup>2</sup><br>18.6 kN/m |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              |             | γ <sub>d</sub><br>s              | 131.<br>111.<br>20.4<br>18.4<br>1.75 g/cm <sup>3</sup>                          | 50<br>10<br>.0<br>4<br>Final Dry Density<br>Final Dry Unit Weig<br>4 5 | 13<br>11<br>15<br>17<br>9d<br>9d<br>γd                       | 3.7<br>0.4<br>1.1<br>9.3<br>7.4<br>1.90 g/cm <sup>2</sup>              |  |  |

| Project:                                      | An expe   | rimenta            | l investigatio | on of the                              | e behavior o               | of compa   | cted sand/o | clay mix                         | ktures       |                           |
|-----------------------------------------------|-----------|--------------------|----------------|----------------------------------------|----------------------------|------------|-------------|----------------------------------|--------------|---------------------------|
| Sample: Sta                                   | ndard Pro | octor co           | mpacted, 75    | 5% sanc                                | d 25% bent                 | onite, 19º | % water co  | ntent (S                         | S25B19V      | /)                        |
| Consolid. Type El25-0479                      |           |                    | Consolid. Type |                                        |                            | Fixed Ring |             |                                  |              |                           |
| Height of Spec.                               | 20        | mm                 | Dia. of Spe    | ec.                                    | 63.5                       | mm         | Area of S   | pec.                             | 3166.9       | $mm^2$                    |
| Weight of Ring                                | 67.5      | g                  | Wt. of Stor    | ne                                     | 130                        | g          | Wt. of Pa   | per                              | 0.3          | g                         |
| Specific Gravity                              | 2.64      |                    | Tested By      |                                        | Yueru Che                  | en         | Date        |                                  | 2/20/        | 2009                      |
| Trimmings                                     |           |                    |                | 1                                      |                            |            |             | 2                                | 2            |                           |
| Tin No.                                       |           | 410                |                |                                        |                            | 5          |             |                                  |              |                           |
| Wt. of Tin (g)                                |           |                    |                | 28.3                                   |                            |            | 30.8        |                                  |              |                           |
| Wt. of Tin + Wet Soil (g)                     |           |                    | 164.2          |                                        |                            | 148.2      |             |                                  |              |                           |
| Wt. of Tin + Dry Soil (g)                     |           |                    | 142.9          |                                        |                            |            | 129.7       |                                  |              |                           |
| Wt. of Dry Soil (g)                           |           |                    | 114.6          |                                        |                            |            | 98.9        |                                  |              |                           |
| Wt. of Water (g)                              |           |                    | 21.3           |                                        |                            | 18.5       |             |                                  |              |                           |
| Water Content (%)                             |           |                    | 18.6           |                                        |                            | 18.7       |             |                                  |              |                           |
| Average Water Content (%)                     |           |                    | 18.6           |                                        |                            |            |             |                                  |              |                           |
|                                               |           |                    |                |                                        |                            |            |             |                                  |              |                           |
| Specimen                                      |           | Before Test        |                |                                        | After Test                 |            |             |                                  |              |                           |
| Tare I.D. No.                                 |           | Ring, Stone, Paper |                |                                        | 3A                         |            |             |                                  |              |                           |
| Wt. of Tare + Wet Soil (g)                    |           | 323                |                |                                        | 159.2                      |            |             |                                  |              |                           |
| Wt. of Tare + Dry Soil (g)                    |           |                    | -              |                                        |                            | 139.9      |             |                                  |              |                           |
| Wt. of Tare (g)                               |           | 197.80             |                |                                        | 34.7                       |            |             |                                  |              |                           |
| Wt. of Wet Soil (g)                           |           | 125.20             |                |                                        | 124.5                      |            |             |                                  |              |                           |
| Wt. of Dry Soil (g)                           |           |                    | 105.20         |                                        |                            | 105.2      |             |                                  |              |                           |
| Wt. of Water (g)                              |           |                    |                | 20.00                                  |                            |            | 19.3        |                                  |              |                           |
| Water Content (%)                             |           |                    | 19.0           |                                        |                            | 18.3       |             |                                  |              |                           |
| Water Content (%)                             |           |                    |                |                                        |                            |            |             |                                  |              |                           |
|                                               |           |                    | 4.60           | , 3                                    |                            |            |             |                                  | 4 07         | , .                       |
| Initial Dry Density                           |           | ρ <sub>d</sub>     |                | g/cm <sup>3</sup>                      | Final Dry [                |            |             | ρ <sub>d</sub>                   | 1.67         | 0                         |
| Initial Dry Density<br>Initial Dry Unit Weigh |           | γd                 |                | g/cm <sup>3</sup><br>kN/m <sup>3</sup> | Final Dry I<br>Final Dry I |            | ıht         | Ρ <sub>d</sub><br>γ <sub>d</sub> | 1.67<br>16.3 | 0                         |
| Initial Dry Density                           |           | γd                 |                | -                                      |                            |            | iht<br>6    |                                  |              | g/cm <sup>3</sup><br>kN/m |

| Project:                                                                             | An expe     | rimenta           | al investigat | ion of the        | e behavior  | of compa    | cted sand/c | lay mix           | tures     |        |
|--------------------------------------------------------------------------------------|-------------|-------------------|---------------|-------------------|-------------|-------------|-------------|-------------------|-----------|--------|
| Sample: Sta                                                                          | ndard Pro   | octor co          | mpacted, 7    | '5% sano          | d 25% bent  | onite, 21º  | % water cor | ntent (S          | 25B21W    | /)     |
| Consolid. Type                                                                       | EI25-047    | '9                |               |                   | Consolid.   | Туре        | Fixed Rin   | g                 |           |        |
| Height of Spec.                                                                      | 20          | mm                | Dia. of Sp    | ec.               | 63.5        | mm          | Area of S   | pec.              | 3166.9    | $mm^2$ |
| Weight of Ring                                                                       | 67.5        | g                 | Wt. of Sto    | one               | 128.3       | g           | Wt. of Pa   | per               | 0.3       | g      |
| Specific Gravity                                                                     | 2.64        |                   | Tested By     | /                 | Yueru Che   | en          | Date        |                   | 3/3/2     | 2009   |
| Trimmings                                                                            | 5           |                   |               | 1                 |             |             |             | 2                 | 2         |        |
| Tin No.                                                                              |             |                   |               | 404               |             |             |             | 40                | )5        |        |
| Wt. of Tin (g)                                                                       |             |                   |               | 28.7              |             |             | 27.7        |                   |           |        |
| Wt. of Tin + Wet Soil                                                                | (g)         |                   |               | 165.9             | Э           |             |             | 180               | 0.5       |        |
| Wt. of Tin + Dry Soil                                                                | (g)         |                   |               | 142.1             | 1           |             |             | 15                | 54        |        |
| Wt. of Dry Soil (g)                                                                  |             |                   |               | 113.4             | 4           |             |             | 126               | 5.3       |        |
| Wt. of Water (g)                                                                     |             |                   |               | 23.8              |             |             |             | 26                | .5        |        |
| Water Content (%)                                                                    |             |                   |               | 21.0              |             |             |             | 21                | .0        |        |
| Average Water Cont                                                                   | ent (%)     |                   |               |                   |             | 21.0        |             |                   |           |        |
|                                                                                      |             |                   |               |                   |             |             |             |                   |           |        |
| Specimen                                                                             |             |                   |               | Before 7          | Fest        |             |             | After             | Test      |        |
| Tare I.D. No.                                                                        |             |                   | Rin           | g, Stone          | , Paper     |             |             | 10                | )1        |        |
| Wt. of Tare + Wet S                                                                  | oil (g)     |                   |               | 319.1             | 1           |             |             | 15                | 50        |        |
| Wt. of Tare + Dry So                                                                 | oil (g)     |                   |               | -                 |             |             |             | 129               | 9.2       |        |
| Wt. of Tare (g)                                                                      |             |                   |               | 196.1             | 0           |             |             | 2                 | 8         |        |
| Wt. of Wet Soil (g)                                                                  |             |                   |               | 123.0             | 0           |             |             | 12                | 22        |        |
| Wt. of Dry Soil (g)                                                                  |             |                   |               | 101.2             | 0           |             |             | 101               | 1.2       |        |
| Wt. of Water (g)                                                                     |             |                   |               | 21.80             | C           |             |             | 20                | .8        |        |
| Water Content (%)                                                                    |             |                   |               | 21.5              |             |             |             | 20                | .6        |        |
|                                                                                      |             |                   |               | _                 |             |             |             |                   |           |        |
| Initial Dry Density                                                                  |             | $\rho_{\text{d}}$ | 1.60          | g/cm <sup>3</sup> | Final Dry   | •           |             | $\rho_{\text{d}}$ | 1.74      | g/cm   |
|                                                                                      |             | γd                | 15.7          | kN/m <sup>3</sup> | Final Dry   | Unit Weig   | ht          | γd                | 17.1      | kN/m   |
| , ,                                                                                  |             |                   |               |                   |             |             |             |                   |           |        |
| End of load deforma                                                                  | tion result | S                 |               |                   |             |             | -           |                   | -         |        |
| Initial Dry Unit Weigh<br>End of load deforma<br>Load Step No.<br>Corrected Def (mm) |             | S                 | 2<br>0.1600   | 3<br>0.2620       | 4<br>0.4370 | 5<br>0.9040 | 6<br>1.3870 |                   | 7<br>6660 |        |

| Project:                                                                                                                                               | Allexpe   | erimenta            | I investigation of the                                                          | e behavior of compa | acted sand/clay mi                           | ted sand/clay mixtures                                                   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|---------------------------------------------------------------------------------|---------------------|----------------------------------------------|--------------------------------------------------------------------------|--|--|--|
| Sample: Sta                                                                                                                                            | ndard Pro | octor co            | mpacted, 75% sand                                                               | d 25% bentonite, 24 | % water content (                            | S25B23W)                                                                 |  |  |  |
| Consolid. Type                                                                                                                                         | EI25-047  | 79                  |                                                                                 | Consolid. Type      | Fixed Ring                                   |                                                                          |  |  |  |
| Height of Spec.                                                                                                                                        | 20        | mm                  | Dia. of Spec.                                                                   | 63.5 mm             | Area of Spec.                                | 3166.9 mm <sup>2</sup>                                                   |  |  |  |
| Weight of Ring                                                                                                                                         | 63        | g                   | Wt. of Stone                                                                    | 128.3 g             | Wt. of Paper                                 | 0.3 g                                                                    |  |  |  |
| Specific Gravity                                                                                                                                       | 2.64      |                     | Tested By                                                                       | Yueru Chen          | Date                                         | 3/4/2009                                                                 |  |  |  |
| Trimmings                                                                                                                                              |           |                     | 1                                                                               |                     |                                              | 2                                                                        |  |  |  |
| Tin No.                                                                                                                                                |           |                     | 201                                                                             |                     |                                              | 7                                                                        |  |  |  |
| Wt. of Tin (g)                                                                                                                                         |           |                     | 28.9                                                                            | 1                   | 28.2                                         |                                                                          |  |  |  |
| Wt. of Tin + Wet Soil                                                                                                                                  | (g)       |                     | 167.8                                                                           | 3                   | 16                                           | 4.9                                                                      |  |  |  |
| Wt. of Tin + Dry Soil                                                                                                                                  | (g)       |                     | 141.9                                                                           | Э                   | 13                                           | 9.5                                                                      |  |  |  |
| Wt. of Dry Soil (g)                                                                                                                                    |           |                     | 113                                                                             |                     | 11                                           | 1.3                                                                      |  |  |  |
| Wt. of Water (g)                                                                                                                                       |           |                     | 25.9                                                                            | 1                   | 2                                            | 5.4                                                                      |  |  |  |
| Water Content (%)                                                                                                                                      |           |                     | 22.9                                                                            | 1                   | 22                                           | 2.8                                                                      |  |  |  |
| Average Water Conte                                                                                                                                    | ent (%)   |                     |                                                                                 | 22.9                |                                              |                                                                          |  |  |  |
|                                                                                                                                                        |           |                     |                                                                                 |                     |                                              |                                                                          |  |  |  |
| Specimen                                                                                                                                               |           |                     | Before 7                                                                        | Гest                | After                                        | r Test                                                                   |  |  |  |
| •                                                                                                                                                      |           |                     |                                                                                 |                     | After Test                                   |                                                                          |  |  |  |
| Tare I.D. No.                                                                                                                                          |           |                     | Ring, Stone                                                                     | , Paper             | B·                                           | -19                                                                      |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So                                                                                                                  | oil (g)   |                     | Ring, Stone<br>315.                                                             | •                   |                                              | -19<br>9.9                                                               |  |  |  |
|                                                                                                                                                        |           |                     | 0.                                                                              | •                   | 14                                           | -                                                                        |  |  |  |
| Wt. of Tare + Wet Se                                                                                                                                   |           |                     | 0.                                                                              | 1                   | 14<br>12                                     | 9.9                                                                      |  |  |  |
| Wt. of Tare + Wet So<br>Wt. of Tare + Dry So                                                                                                           |           |                     | 315. <sup>-</sup>                                                               | 0                   | 14<br>12<br>2                                | 9.9<br>7.3                                                               |  |  |  |
| Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                        |           |                     | 315.<br>-<br>191.6                                                              | 0                   | 14<br>12<br>21<br>12                         | 9.9<br>7.3<br>7.4                                                        |  |  |  |
| Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 |           |                     | 315.<br>-<br>191.6<br>123.5                                                     | 0<br>0<br>0         | 14<br>12<br>21<br>12<br>99                   | 9.9<br>7.3<br>7.4<br>2.5                                                 |  |  |  |
| Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          |           |                     | 315.<br>-<br>191.6<br>123.5<br>99.90                                            | 0<br>0<br>0<br>0    | 14<br>12<br>2<br>12<br>99<br>22              | 9.9<br>7.3<br>7.4<br>2.5<br>9.9                                          |  |  |  |
| Wt. of Tare + Wet Se<br>Wt. of Tare + Dry Sc<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) |           |                     | 315.<br>-<br>191.6<br>123.5<br>99.90<br>23.60<br>23.6                           | 0                   | 14<br>12<br>2<br>12<br>99<br>22<br>22        | 9.9<br>7.3<br>7.4<br>2.5<br>9.9<br>2.6<br>2.6                            |  |  |  |
| Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | bil (g)   | ρ <sub>d</sub>      | 315.<br>-<br>191.6<br>123.5<br>99.9(<br>23.6)<br>23.6<br>1.58 g/cm <sup>3</sup> | Final Dry Density   | 14<br>12<br>21<br>12<br>99<br>22<br>22<br>Ρd | 9.9<br>7.3<br>7.4<br>2.5<br>9.9<br>2.6<br>2.6<br>1.76 g/cm               |  |  |  |
| Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | bil (g)   | γd                  | 315.<br>-<br>191.6<br>123.5<br>99.90<br>23.60<br>23.6                           | 0                   | 14<br>12<br>21<br>12<br>99<br>22<br>22<br>Ρd | 9.9<br>7.3<br>7.4<br>2.5<br>9.9<br>2.6<br>2.6<br>1.76 g/cm               |  |  |  |
| Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | bil (g)   | γ <sub>d</sub><br>s | 315.<br>-<br>191.6<br>123.5<br>99.9(<br>23.6)<br>23.6<br>1.58 g/cm <sup>3</sup> | Final Dry Density   | 14<br>12<br>21<br>12<br>99<br>22<br>22<br>Ρd | 9.9<br>7.3<br>7.4<br>12.5<br>9.9<br>2.6<br>2.6<br>1.76 g/cm <sup>2</sup> |  |  |  |

| Project:                                                    | An expe                  | rimenta    | al investiga | tion of th        | e behavior  | of compa    | cted sand/o | clay mix | ktures       |                   |  |
|-------------------------------------------------------------|--------------------------|------------|--------------|-------------------|-------------|-------------|-------------|----------|--------------|-------------------|--|
| Sample: Sta                                                 | indard Pro               | octor co   | mpacted,     | 50% sano          | d 50% bent  | onite, 16   | % water co  | ntent (S | \$50B16V     | V)                |  |
| Consolid. Type                                              | EI25-047                 | '9         |              |                   | Consolid.   | Туре        | Fixed Rin   | g        |              |                   |  |
| Height of Spec.                                             | 20                       | mm         | Dia. of S    | pec.              | 63.5        | mm          | Area of S   | pec.     | 3166.9       | $mm^2$            |  |
| Weight of Ring                                              | -                        | g          | Wt. of St    | one               | -           | g           | Wt. of Pa   | per      | -            | g                 |  |
| Specific Gravity                                            | 2.63                     |            | Tested E     | By                | Yueru Che   | ən          | Date        |          | 7/16/        | /2009             |  |
| Trimmings                                                   | ;                        |            |              | 1                 |             |             |             | 2        | 2            |                   |  |
| Tin No.                                                     |                          |            |              | 201               |             |             |             | 3        | 1            |                   |  |
| Wt. of Tin (g)                                              |                          |            |              | 28.88             | 3           |             |             | 28.35    |              |                   |  |
| Wt. of Tin + Wet Soil                                       | (g)                      |            |              | 97.19             | Э           |             |             | 137      | <b>7</b> .34 |                   |  |
| Wt. of Tin + Dry Soil                                       | (0)                      |            |              | 87.8 <sup>,</sup> | 1           |             |             | 122      | 2.08         |                   |  |
| Wt. of Dry Soil (g)                                         |                          |            |              | 58.93             | 3           |             |             | 93.      | .73          |                   |  |
| Wt. of Water (g)                                            |                          |            |              | 9.38              |             |             |             | 15.      | .26          |                   |  |
| Water Content (%)                                           |                          |            |              | 15.9              |             |             |             | 16       | 6.3          |                   |  |
| Average Water Cont                                          | ent (%)                  |            |              |                   |             | 16.1        |             |          |              |                   |  |
|                                                             |                          |            |              |                   |             |             |             |          |              |                   |  |
| Specimen                                                    |                          |            |              | Before 7          | Fest        |             |             | After    | Test         |                   |  |
| Tare I.D. No.                                               |                          |            | Ri           | ng, Stone         | , Paper     |             |             | 3        | 1            |                   |  |
| Wt. of Tare + Wet S                                         | oil (g)                  |            |              | 309.6             | 4           |             |             | 137      | 7.34         |                   |  |
| Wt. of Tare + Dry So                                        | oil (g)                  |            |              | -                 |             |             |             | 122      | 2.08         |                   |  |
| Wt. of Tare (g)                                             |                          |            |              | 200.2             | 3           |             |             | 28.      | .35          |                   |  |
| Wt. of Wet Soil (g)                                         |                          |            |              | 109.4             | 1           |             |             | 108      | 8.99         |                   |  |
| Wt. of Dry Soil (g)                                         |                          |            |              | 93.73             | 3           |             |             | 93.      | .73          |                   |  |
| Wt. of Water (g)                                            |                          |            |              | 15.68             | 3           |             |             | 15.      | .26          |                   |  |
| Water Content (%)                                           |                          |            |              | 16.7              |             |             |             | 16       | 6.3          |                   |  |
|                                                             |                          |            |              | 2                 |             |             |             |          |              |                   |  |
| Initial Dry Density                                         |                          | $\rho_{d}$ | 1.48         | g/cm <sup>3</sup> | Final Dry   |             |             | $\rho_d$ | 1.64         | g/cm <sup>3</sup> |  |
|                                                             |                          |            |              |                   |             | Unit Weię   | ght         | γd       | 16.1         | kN/m              |  |
| , ,                                                         |                          |            |              |                   |             |             |             |          |              |                   |  |
| End of load deformat                                        |                          |            | 0            | 0                 | 4           | -           | 6 7         |          |              |                   |  |
| End of load deformat<br>Load Step No.<br>Corrected Def (mm) | tion result<br>1<br>0.13 |            | 2<br>0.2540  | 3<br>0.3910       | 4<br>0.5380 | 5<br>0.7370 | 6<br>1.0700 | 4        | 7<br>9800    |                   |  |

| Project:                                                                                                                                                                | An expe   | rimenta        | I investigation of th                                                                          | e behavior of compa                                     | cted sand/clay mixtures                                                 |                                                                           |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|
| Sample: Sta                                                                                                                                                             | ndard Pro | ctor co        | mpacted, 50% san                                                                               | d 50% bentonite, 18                                     | % water content (                                                       | S50B18W)                                                                  |  |  |
| Consolid. Type                                                                                                                                                          | EI25-047  | 9              |                                                                                                | Consolid. Type                                          | Fixed Ring                                                              |                                                                           |  |  |
| Height of Spec.                                                                                                                                                         | 20        | mm             | Dia. of Spec.                                                                                  | 63.5 mm                                                 | Area of Spec.                                                           | 3166.9 mm <sup>2</sup>                                                    |  |  |
| Weight of Ring                                                                                                                                                          | -         | g              | Wt. of Stone                                                                                   | - g                                                     | Wt. of Paper                                                            | - g                                                                       |  |  |
| Specific Gravity                                                                                                                                                        | 2.63      |                | Tested By                                                                                      | Yueru Chen                                              | Date                                                                    | 7/20/2009                                                                 |  |  |
| Trimmings                                                                                                                                                               |           |                | 1                                                                                              |                                                         |                                                                         | 2                                                                         |  |  |
| Tin No.                                                                                                                                                                 |           |                | 404                                                                                            |                                                         | 4                                                                       | 05                                                                        |  |  |
| Wt. of Tin (g)                                                                                                                                                          |           |                | 28.73                                                                                          | 3                                                       | 27.71                                                                   |                                                                           |  |  |
| Wt. of Tin + Wet Soil                                                                                                                                                   | (g)       |                | 139.2                                                                                          | 8                                                       | 142                                                                     | 2.94                                                                      |  |  |
| Wt. of Tin + Dry Soil                                                                                                                                                   | (0)       |                | 122.6                                                                                          | 2                                                       | 12                                                                      | 5.95                                                                      |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                     |           |                | 93.8                                                                                           | 9                                                       | 98                                                                      | 8.24                                                                      |  |  |
| Wt. of Water (g)                                                                                                                                                        |           |                | 16.6                                                                                           | 6                                                       | 16                                                                      | 5.99                                                                      |  |  |
| Water Content (%)                                                                                                                                                       |           |                | 17.7                                                                                           |                                                         | 17                                                                      | 7.3                                                                       |  |  |
| Average Water Conte                                                                                                                                                     | ent (%)   |                |                                                                                                | 17.5                                                    |                                                                         |                                                                           |  |  |
|                                                                                                                                                                         |           |                |                                                                                                |                                                         |                                                                         |                                                                           |  |  |
| Specimen                                                                                                                                                                |           |                | Before <sup>-</sup>                                                                            | Test                                                    | After                                                                   | r Test                                                                    |  |  |
| opecimen                                                                                                                                                                |           |                | 20.0.0                                                                                         |                                                         | After Test                                                              |                                                                           |  |  |
| Tare I.D. No.                                                                                                                                                           |           |                | Ring, Stone                                                                                    |                                                         |                                                                         | 4                                                                         |  |  |
| •                                                                                                                                                                       | oil (g)   |                |                                                                                                | , Paper                                                 |                                                                         |                                                                           |  |  |
| Tare I.D. No.                                                                                                                                                           |           |                | Ring, Stone                                                                                    | , Paper                                                 | 140                                                                     | 4                                                                         |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So                                                                                                                                   |           |                | Ring, Stone                                                                                    | e, Paper<br>9                                           | 14(<br>12;                                                              | 4<br>0.39                                                                 |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So                                                                                                           |           |                | Ring, Stone<br>306.s                                                                           | a, Paper<br>9<br>2                                      | 14(<br>12;<br>28                                                        | 4<br>0.39<br>3.59                                                         |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                        |           |                | Ring, Stone<br>306.9<br>-<br>194.8                                                             | 9, Paper<br>9<br>2<br>8                                 | 14(<br>12:<br>28<br>11                                                  | 4<br>0.39<br>3.59<br>8.71                                                 |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 |           |                | Ring, Stone<br>306.9<br>-<br>194.8<br>112.0                                                    | a, Paper<br>9<br>-2<br>8<br>3                           | 14(<br>12:<br>28<br>11 <sup>-</sup><br>94                               | 4<br>0.39<br>3.59<br>9.71<br>1.68                                         |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          |           |                | Ring, Stone<br>306.9<br>-<br>194.8<br>112.0<br>94.84                                           | a, Paper<br>29<br>12<br>18<br>18<br>19<br>10            | 14(<br>12:<br>28<br>11 <sup>,</sup><br>94<br>1(                         | 4<br>0.39<br>3.59<br>9.71<br>1.68<br>9.88                                 |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) |           |                | Ring, Stone<br>306.9<br>-<br>194.8<br>112.0<br>94.8<br>17.20<br>18.1                           | 9, Paper<br>9<br>12<br>18<br>8<br>9                     | 14(<br>12:<br>28<br>11 <sup>-</sup><br>94<br>1(<br>1)                   | 4<br>0.39<br>3.59<br>9.71<br>1.68<br>4.88<br>6.8<br>7.7                   |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | bil (g)   | ρ <sub>d</sub> | Ring, Stone<br>306.9<br>-<br>194.8<br>112.0<br>94.8<br>17.20<br>18.1<br>1.50 g/cm <sup>3</sup> | e, Paper<br>9<br>22<br>8<br>3<br>0<br>Final Dry Density | 14(<br>12:<br>28<br>11 <sup>-</sup><br>94<br>1(<br>1)<br>Ρ <sub>d</sub> | 4<br>0.39<br>3.59<br>9.71<br>1.68<br>9.88<br>6.8<br>7.7<br>1.65 g/cm      |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | bil (g)   | γ <sub>d</sub> | Ring, Stone<br>306.9<br>-<br>194.8<br>112.0<br>94.8<br>17.20<br>18.1                           | 9, Paper<br>9<br>12<br>18<br>8<br>9                     | 14(<br>12:<br>28<br>11 <sup>-</sup><br>94<br>1(<br>1)<br>Ρ <sub>d</sub> | 4<br>0.39<br>3.59<br>9.71<br>1.68<br>9.88<br>6.8<br>7.7<br>1.65 g/cm      |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | bil (g)   | γ <sub>d</sub> | Ring, Stone<br>306.9<br>-<br>194.8<br>112.0<br>94.8<br>17.20<br>18.1<br>1.50 g/cm <sup>3</sup> | 9, Paper<br>9<br>22<br>8<br>3<br>0<br>Final Dry Density | 14(<br>12:<br>28<br>11 <sup>-</sup><br>94<br>1(<br>1)<br>Ρ <sub>d</sub> | 4<br>0.39<br>3.59<br>5.71<br>1.68<br>6.8<br>7.7<br>1.65 g/cm <sup>2</sup> |  |  |

| •                                                                                                                                      |                                                                           | Ū                                                                                  |                                                                                                                                                                   | e behavior o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                                                                                                                                        |                                                                           | mpacted, 50%                                                                       | sanc                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                                                                                                                                                                                                                                                            | `                                                                                                                                                                                                                                                                                                                                                        | 50B19W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /)                                                     |
| EI25-047                                                                                                                               | '9                                                                        | 1                                                                                  |                                                                                                                                                                   | Consolid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fixed Ring                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
| 20                                                                                                                                     | mm                                                                        | Dia. of Spec                                                                       |                                                                                                                                                                   | 63.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Area of Sp                                                                                                                                                                                                                                                                                   | bec.                                                                                                                                                                                                                                                                                                                                                     | 3166.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mm <sup>2</sup>                                        |
| -                                                                                                                                      | g                                                                         | Wt. of Stone                                                                       |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wt. of Pap                                                                                                                                                                                                                                                                                   | ber                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g                                                      |
| 2.63                                                                                                                                   |                                                                           | Tested By                                                                          |                                                                                                                                                                   | Yueru Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                          | 7/17/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2009                                                   |
|                                                                                                                                        |                                                                           |                                                                                    | 1                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |
|                                                                                                                                        |                                                                           |                                                                                    | 101                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |
|                                                                                                                                        |                                                                           |                                                                                    | 28.03                                                                                                                                                             | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.85                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
| (g)                                                                                                                                    |                                                                           |                                                                                    | 158.72                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 135                                                                                                                                                                                                                                                                                                                                                      | .11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| (g)                                                                                                                                    |                                                                           |                                                                                    | 138                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 118                                                                                                                                                                                                                                                                                                                                                      | .31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                                                                                                                                        |                                                                           |                                                                                    | 109.9                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 89.                                                                                                                                                                                                                                                                                                                                                      | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
|                                                                                                                                        |                                                                           |                                                                                    | 20.72                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                       | .8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
|                                                                                                                                        |                                                                           |                                                                                    | 18.8                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                       | .8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
| ent (%)                                                                                                                                |                                                                           |                                                                                    |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
|                                                                                                                                        |                                                                           |                                                                                    |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
|                                                                                                                                        |                                                                           | Ве                                                                                 | fore T                                                                                                                                                            | est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | After                                                                                                                                                                                                                                                                                                                                                    | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |
|                                                                                                                                        |                                                                           | Ring, S                                                                            | Stone                                                                                                                                                             | , Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | В                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |
| oil (g)                                                                                                                                |                                                                           |                                                                                    | 316.5                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 146                                                                                                                                                                                                                                                                                                                                                      | .83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| il (g)                                                                                                                                 |                                                                           |                                                                                    | -                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 128.27                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
|                                                                                                                                        |                                                                           |                                                                                    | 197.73                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 28.                                                                                                                                                                                                                                                                                                                                                      | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
|                                                                                                                                        |                                                                           |                                                                                    | 118.7                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 118                                                                                                                                                                                                                                                                                                                                                      | .38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                                                                                                                                        |                                                                           |                                                                                    | 99.82                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 99.                                                                                                                                                                                                                                                                                                                                                      | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
|                                                                                                                                        |                                                                           |                                                                                    | 18.95                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 18.                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
|                                                                                                                                        |                                                                           |                                                                                    | 19.0                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                       | .6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
|                                                                                                                                        | _                                                                         | 4 50 /                                                                             | 3                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                        | 4 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                      |
|                                                                                                                                        |                                                                           | -                                                                                  |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g/cm                                                   |
|                                                                                                                                        |                                                                           | 15.4 kN                                                                            | ı/m~                                                                                                                                                              | Final Dry C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mit vvei(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Juit                                                                                                                                                                                                                                                                                         | γd                                                                                                                                                                                                                                                                                                                                                       | 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kN/m                                                   |
| Initial Dry Unit Weight $\gamma_d$ 15.4 kN/m <sup>3</sup> Final Dry Unit Weight $\gamma_d$ 16.9 kN,<br>End of load deformation results |                                                                           |                                                                                    |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
| ion result<br>1                                                                                                                        |                                                                           | 2                                                                                  | 3                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 7                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |
|                                                                                                                                        | El25-047<br>20<br>-<br>2.63<br>(g)<br>(g)<br>ent (%)<br>bil (g)<br>il (g) | El25-0479<br>20 mm<br>2.63<br>(g)<br>(g)<br>(g)<br>(g)<br>(g)<br>(g)<br>(g)<br>(g) | El25-0479<br>20 mm Dia. of Spec<br>- g Wt. of Stone<br>2.63 Tested By<br>(g)<br>(g)<br>(g)<br>(g)<br>(g)<br>(g)<br>(g)<br>Ent (%)<br>Be<br>Ring, S<br>pd 1.58 g/c | El25-0479<br>20 mm Dia. of Spec.<br>- g Wt. of Stone<br>2.63 Tested By<br>1<br>1<br>101<br>28.03<br>(g) 158.72<br>(g) 138<br>109.9<br>20.72<br>18.8<br>ent (%)<br>Before T<br>Ring, Stone<br>bil (g) -<br>1[(g) | EI25-0479         Consolid.           20         mm         Dia. of Spec.         63.5           g         Wt. of Stone         -         -           2.63         Tested By         Yueru Che           2.63         Tested By         Yueru Che           1         101         28.03           (g)         158.72         -           (g)         138         109.97           20.72         18.8         -           ent (%)         Before Test         Ring, Stone, Paper           pil (g)         316.5         -           18.8         -         -           pol (g)         197.73         -           18.95         -         -           19.0         -         - | EI25-0479         Consolid. Type           20         mm         Dia. of Spec.         63.5         mm           -         g         Wt. of Stone         -         g           2.63         Tested By         Yueru Chen           1         101         28.03           (g)         158.72 | EI25-0479         Consolid. Type         Fixed Ring           20         mm         Dia. of Spec.         63.5         mm         Area of Sp           g         Wt. of Stone         -         g         Wt. of Pag           2.63         Tested By         Yueru Chen         Date           1         101         28.03           (g)         158.72 | El25-0479         Consolid. Type         Fixed Ring           20         mm         Dia. of Spec.         63.5         mm         Area of Spec.           -         g         Wt. of Stone         -         g         Wt. of Paper           2.63         Tested By         Yueru Chen         Date         Date           1         2         101         44           28.03         28.         (g)         158.72         135           (g)         138         118         109.97         89.           20.72         16         18.8         18           109.97         89.         20.72         16           18.8         18         18         18           ent (%)         18.8         18         18           Jil (g)         316.5         146         146           Il (g)         -         128         197.73         28.           118.77         118         99.82         99.         18.95         18.           19.0         18         19.0         18         19.0         18 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

| Project:                                                                                                                                                                | An expe   | rimenta        | l investigation of th                                                                           | behavior of compacted sand/clay mixtures<br>50% bentonite, 22% water content (S50B22W) |                                                 |                                                                       |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------|--|--|
| Sample: Sta                                                                                                                                                             | ndard Pro | ctor co        | mpacted, 50% san                                                                                | d 50% bentonite, 22                                                                    | % water content (                               | S50B22W)                                                              |  |  |
| Consolid. Type                                                                                                                                                          | EI25-047  | 9              |                                                                                                 | Consolid. Type                                                                         | Fixed Ring                                      |                                                                       |  |  |
| Height of Spec.                                                                                                                                                         | 20        | mm             | Dia. of Spec.                                                                                   | 63.5 mm                                                                                | Area of Spec.                                   | 3166.9 mm <sup>2</sup>                                                |  |  |
| Weight of Ring                                                                                                                                                          | -         | g              | Wt. of Stone                                                                                    | - g                                                                                    | Wt. of Paper                                    | - g                                                                   |  |  |
| Specific Gravity                                                                                                                                                        | 2.63      |                | Tested By                                                                                       | Yueru Chen                                                                             | Date                                            | 7/20/2009                                                             |  |  |
| Trimmings                                                                                                                                                               |           |                | 1                                                                                               |                                                                                        |                                                 | 2                                                                     |  |  |
| Tin No.                                                                                                                                                                 |           |                | 46                                                                                              |                                                                                        | 1                                               | 01                                                                    |  |  |
| Wt. of Tin (g)                                                                                                                                                          |           |                | 28.8                                                                                            | 7                                                                                      | 28.03                                           |                                                                       |  |  |
| Wt. of Tin + Wet Soil                                                                                                                                                   | (g)       |                | 160.0                                                                                           | 5                                                                                      |                                                 | 5.33                                                                  |  |  |
| Wt. of Tin + Dry Soil                                                                                                                                                   | (0)       |                | 137.2                                                                                           |                                                                                        |                                                 | 0.7                                                                   |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                     |           |                | 108.3                                                                                           | 3                                                                                      | 11                                              | 2.67                                                                  |  |  |
| Wt. of Water (g)                                                                                                                                                        |           |                | 22.8                                                                                            | 5                                                                                      | 24                                              | 1.63                                                                  |  |  |
| Water Content (%)                                                                                                                                                       |           |                | 21.1                                                                                            |                                                                                        | 2                                               | 1.9                                                                   |  |  |
| Average Water Conte                                                                                                                                                     | ent (%)   |                |                                                                                                 | 21.5                                                                                   |                                                 |                                                                       |  |  |
|                                                                                                                                                                         |           |                |                                                                                                 |                                                                                        |                                                 |                                                                       |  |  |
|                                                                                                                                                                         |           |                |                                                                                                 |                                                                                        | After Test                                      |                                                                       |  |  |
| Specimen                                                                                                                                                                |           |                | Before <sup>-</sup>                                                                             | Test                                                                                   | Afte                                            | r Test                                                                |  |  |
| Specimen<br>Tare I.D. No.                                                                                                                                               |           |                | Before <sup>-</sup><br>Ring, Stone                                                              |                                                                                        |                                                 | r Test<br>38                                                          |  |  |
| •                                                                                                                                                                       | oil (g)   |                |                                                                                                 | , Paper                                                                                | E                                               |                                                                       |  |  |
| Tare I.D. No.                                                                                                                                                           |           |                | Ring, Stone                                                                                     | , Paper                                                                                | E<br>14                                         | 38                                                                    |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So                                                                                                                                   |           |                | Ring, Stone                                                                                     | , Paper<br>1                                                                           | 14<br>12                                        | 38<br>3.83                                                            |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So                                                                                                           |           |                | Ring, Stone<br>309.0<br>-                                                                       | , Paper<br>1<br>5                                                                      | 14<br>12<br>28                                  | 38<br>3.83<br>3.96                                                    |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                        |           |                | Ring, Stone<br>309.0<br>-<br>193.1                                                              | , Paper<br>1<br>5<br>6                                                                 | 14<br>14<br>12<br>28<br>11                      | 38<br>3.83<br>3.96<br>3.46                                            |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 |           |                | Ring, Stone<br>309.0<br>-<br>193.1<br>115.8                                                     | a, Paper<br>1<br>5<br>6<br>0                                                           | 14<br>12<br>28<br>11<br>9                       | 38<br>3.83<br>3.96<br>3.46<br>5.37                                    |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          |           |                | Ring, Stone<br>309.0<br>-<br>193.1<br>115.8<br>95.50                                            | e, Paper<br>1<br>5<br>6<br>0<br>5                                                      | 14<br>14<br>12<br>28<br>11<br>9                 | 38<br>3.83<br>3.96<br>3.46<br>5.37<br>5.5                             |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) |           |                | Ring, Stone<br>309.0<br>-<br>193.1<br>115.8<br>95.5(<br>20.3)<br>21.3                           | , Paper<br>1<br>5<br>6<br>0<br>5                                                       | E<br>14<br>12<br>28<br>11<br>9<br>19<br>2       | 38<br>3.83<br>3.96<br>3.46<br>5.37<br>5.5<br>9.87<br>0.8              |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | il (g)    | ρ <sub>d</sub> | Ring, Stone<br>309.0<br>-<br>193.1<br>115.8<br>95.50<br>20.30<br>21.3<br>1.51 g/cm <sup>3</sup> | , Paper<br>1<br>5<br>6<br>0<br>5<br>Final Dry Density                                  | Ε<br>14<br>12<br>28<br>11<br>9<br>15<br>2<br>Ρd | 38<br>3.83<br>3.96<br>3.46<br>5.37<br>5.5<br>9.87<br>0.8<br>1.70 g/cm |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Wrt Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | t         | γd             | Ring, Stone<br>309.0<br>-<br>193.1<br>115.8<br>95.5(<br>20.3)<br>21.3                           | , Paper<br>1<br>5<br>6<br>0<br>5                                                       | Ε<br>14<br>12<br>28<br>11<br>9<br>15<br>2<br>Ρd | 38<br>3.83<br>3.96<br>3.46<br>5.37<br>5.5<br>9.87<br>0.8              |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | t         | γd             | Ring, Stone<br>309.0<br>-<br>193.1<br>115.8<br>95.50<br>20.30<br>21.3<br>1.51 g/cm <sup>3</sup> | , Paper<br>1<br>5<br>6<br>0<br>5<br>Final Dry Density                                  | Ε<br>14<br>12<br>28<br>11<br>9<br>15<br>2<br>Ρd | 38<br>3.83<br>3.96<br>3.46<br>5.37<br>5.5<br>9.87<br>0.8<br>1.70 g/cm |  |  |

| Project:                                                                                                      | An expe      | rimenta        | al investigation of th                                           | e behavior of compa                                       | cted sand/clay mi                               | xtures                              |  |  |  |
|---------------------------------------------------------------------------------------------------------------|--------------|----------------|------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-------------------------------------|--|--|--|
| Sample: Sta                                                                                                   | andard Pro   | ctor co        | mpacted, 50% san                                                 | d 50% bentonite, 24                                       | % water content (                               | \$50B24W)                           |  |  |  |
| Consolid. Type                                                                                                | EI25-047     | 9              |                                                                  | Consolid. Type                                            | Fixed Ring                                      |                                     |  |  |  |
| Height of Spec.                                                                                               | 20           | mm             | Dia. of Spec.                                                    | 63.5 mm                                                   | Area of Spec.                                   | 3166.9 mm <sup>2</sup>              |  |  |  |
| Weight of Ring                                                                                                | 62.9         | g              | Wt. of Stone                                                     | 129.9 g                                                   | Wt. of Paper                                    | 0.3 g                               |  |  |  |
| Specific Gravity                                                                                              | 2.63         |                | Tested By                                                        | Yueru Chen                                                | Date                                            | 3/3/2009                            |  |  |  |
| Trimmings                                                                                                     | 3            |                | 1                                                                |                                                           |                                                 | 2                                   |  |  |  |
| Tin No.                                                                                                       |              |                | MAJI                                                             | D                                                         | F                                               | I-3                                 |  |  |  |
| Wt. of Tin (g)                                                                                                |              |                | 28.6                                                             | 3                                                         | 29                                              |                                     |  |  |  |
| Wt. of Tin + Wet Soi                                                                                          | l (g)        |                | 176.                                                             | 6                                                         | 14                                              | 6.7                                 |  |  |  |
| Wt. of Tin + Dry Soil                                                                                         | (g)          |                | 148.                                                             | 5                                                         | 12                                              | 3.8                                 |  |  |  |
| Wt. of Dry Soil (g)                                                                                           |              |                | 119.                                                             | 9                                                         | 94                                              | .8                                  |  |  |  |
| Wt. of Water (g)                                                                                              |              |                | 28.1                                                             | l                                                         | 22                                              | 2.9                                 |  |  |  |
| Water Content (%)                                                                                             |              |                | 23.4                                                             | 1                                                         | 24                                              | .2                                  |  |  |  |
| Average Water Cont                                                                                            | ent (%)      |                |                                                                  | 23.8                                                      |                                                 |                                     |  |  |  |
|                                                                                                               |              |                |                                                                  |                                                           |                                                 |                                     |  |  |  |
| Specimen                                                                                                      | 1            |                | Before                                                           | Test                                                      | After                                           | Test                                |  |  |  |
| Tare I.D. No.                                                                                                 |              |                | Ring, Stone                                                      | e, Paper                                                  | 4                                               | 5                                   |  |  |  |
| Wt. of Tare + Wet S                                                                                           | oil (g)      |                | 304.                                                             | 8                                                         | 1.                                              | 40                                  |  |  |  |
| Wt. of Tare + Dry Se                                                                                          | oil (g)      |                | -                                                                |                                                           | 118.5                                           |                                     |  |  |  |
| Wt. of Tare (g)                                                                                               |              |                | 193.1                                                            | 10                                                        | 28                                              | 3.9                                 |  |  |  |
| Wt. of Wet Soil (g)                                                                                           |              |                | 111.7                                                            | 70                                                        | 11                                              | 1.1                                 |  |  |  |
|                                                                                                               |              |                | 89.6                                                             | 0                                                         | 89                                              | 111.1<br>89.6                       |  |  |  |
| Wt. of Dry Soil (g)                                                                                           |              |                | 0010                                                             | 0                                                         | 09.0<br>21.5                                    |                                     |  |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       |              |                | 22.1                                                             |                                                           |                                                 |                                     |  |  |  |
|                                                                                                               |              |                |                                                                  | 0                                                         | 21                                              |                                     |  |  |  |
| Wt. of Water (g)                                                                                              |              |                | 22.1<br>24.7                                                     | 0                                                         | 21                                              | .5<br>I.0                           |  |  |  |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density                                                  |              | ρ <sub>d</sub> | 22.1<br>24.7<br>1.41 g/cm <sup>3</sup>                           | 0<br>7<br>Final Dry Density                               | 2΄<br>24<br>Ρ <sub>d</sub>                      | .5<br>I.0<br>1.61 g/cm              |  |  |  |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh                        |              | γd             | 22.1<br>24.7                                                     | 0                                                         | 2΄<br>24<br>ρ <sub>d</sub>                      | .5<br>I.0<br>1.61 g/cm              |  |  |  |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion results | γd             | 22.1<br>24.7<br>1.41 g/cm <sup>3</sup><br>13.9 kN/m <sup>3</sup> | 0<br>7<br>Final Dry Density<br>Final Dry Unit Weiç        | 2΄<br>24<br>ρ <sub>d</sub><br>γ <sub>d</sub>    | .5<br>i.0<br>1.61 g/cm<br>15.8 kN/m |  |  |  |
| Wt. of Water (g)                                                                                              |              | Υd<br>Yd       | 22.1<br>24.7<br>1.41 g/cm <sup>3</sup>                           | 0<br>7<br>Final Dry Density<br>Final Dry Unit Weig<br>4 5 | 2 <sup>2</sup><br>24<br>ght γ <sub>d</sub><br>6 | .5<br>1.0<br>1.61 g/cm <sup>2</sup> |  |  |  |

| Project: An experimental investigation of the behavior of compacted sand/clay mixtures |               |                                            |                                   |                  |             |             |                                   |                         |                                        |  |  |
|----------------------------------------------------------------------------------------|---------------|--------------------------------------------|-----------------------------------|------------------|-------------|-------------|-----------------------------------|-------------------------|----------------------------------------|--|--|
| Sample:                                                                                | Modified Proc | ctor compacte                              | d, 85% sa                         | and 15% ber      | ntonite, 89 | % water con | tent (N                           | 115B8W)                 | )                                      |  |  |
| Consolid. Type                                                                         | El25-0479     |                                            |                                   | Consolid.        | Туре        | Fixed Ring  | J                                 |                         |                                        |  |  |
| Height of Spec.                                                                        | 20 m          | m Dia. of S                                | Зрес.                             | 63.5             | mm          | Area of Sp  | ec.                               | 3166.9                  | mm²                                    |  |  |
| Weight of Ring                                                                         | 67.48 g       | Wt. of S                                   | tone                              | 130              | g           | Wt. of Pap  | er                                | 0.3                     | g                                      |  |  |
| Specific Gravity                                                                       | 2.65          | Tested                                     | Ву                                | Yueru Che        | en          | Date        |                                   | 3/30/                   | 2009                                   |  |  |
| Trimmings                                                                              |               |                                            | 1                                 |                  |             |             | 2                                 |                         |                                        |  |  |
| Tin No.                                                                                |               |                                            | 7                                 |                  |             |             | 20                                | )1                      |                                        |  |  |
| Wt. of Tin (g)                                                                         |               |                                            | 28.1                              | 7                |             | 28.91       |                                   |                         |                                        |  |  |
| Wt. of Tin + Wet Soil                                                                  | (g)           |                                            | 142.0                             | 9                |             |             | 159                               | .55                     |                                        |  |  |
| Wt. of Tin + Dry Soil                                                                  | (g)           |                                            | 133.1                             | 4                |             |             | 149                               | .33                     |                                        |  |  |
| Wt. of Dry Soil (g)                                                                    |               |                                            | 104.9                             | )7               |             |             | 120                               | .42                     |                                        |  |  |
| Wt. of Water (g)                                                                       |               |                                            | 8.95                              | 5                |             |             | 10.                               | 22                      |                                        |  |  |
| Water Content (%)                                                                      |               |                                            | 8.5                               |                  |             |             | 8.                                | 5                       |                                        |  |  |
| Average Water Conte                                                                    | ent (%)       |                                            |                                   |                  | 8.5         |             |                                   |                         |                                        |  |  |
|                                                                                        |               |                                            |                                   |                  |             |             |                                   |                         |                                        |  |  |
| Specimen                                                                               |               |                                            | Before <sup>-</sup>               | Test             |             |             | After                             | Test                    |                                        |  |  |
| Tare I.D. No.                                                                          |               | F                                          | Ring, Stone                       | e, Paper         |             |             | B-1                               | 19                      |                                        |  |  |
| Wt. of Tare + Wet So                                                                   | oil (g)       |                                            | 322.7                             | 2                |             |             | 151                               | .77                     |                                        |  |  |
| Wt. of Tare + Dry So                                                                   | il (g)        |                                            | -                                 |                  |             |             | 141                               | 1.7                     |                                        |  |  |
| Wt. of Tare (g)                                                                        |               |                                            | 197.7                             | '8               |             |             | 27                                | .4                      |                                        |  |  |
| Wt. of Wet Soil (g)                                                                    |               |                                            | 124.9                             | 94               |             |             | 124                               | .37                     |                                        |  |  |
|                                                                                        |               |                                            |                                   |                  |             | 124.37      |                                   |                         |                                        |  |  |
| Wt. of Dry Soil (g)                                                                    |               |                                            | 114.3                             | 80               |             |             | 114                               | 114.3                   |                                        |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                |               |                                            | 114.3<br>10.64                    | -                |             |             |                                   | -                       |                                        |  |  |
|                                                                                        |               |                                            |                                   | -                |             |             |                                   | 07                      |                                        |  |  |
| Wt. of Water (g)                                                                       |               |                                            | 10.64                             | -                |             |             | 10.                               | 07                      |                                        |  |  |
| Wt. of Water (g)<br>Water Content (%)                                                  |               | ρ <sub>d</sub> 1.80                        | 10.64                             | -                | Density     |             | 10.                               | 07                      | 0                                      |  |  |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density                           | t             | ρ <sub>d</sub> 1.80<br>γ <sub>d</sub> 17.7 | 10.64<br>9.3                      | 4                |             | ht          | 10.<br>8.                         | 07<br>8                 | 0                                      |  |  |
| Wt. of Water (g)                                                                       |               |                                            | 10.64<br>9.3<br>g/cm <sup>3</sup> | 4<br>Final Dry [ |             | ht          | 10.4<br>8.5<br>Ρd<br>γd           | 07<br>8<br>1.87<br>18.4 | 0                                      |  |  |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh |               |                                            | 10.64<br>9.3<br>g/cm <sup>3</sup> | 4<br>Final Dry [ |             | ht 6        | 10.<br>8.<br><sup>ρ</sup> d<br>γd | 07<br>8<br>1.87         | g/cm <sup>3</sup><br>kN/m <sup>3</sup> |  |  |

| An expe   | rimenta                              | al investigat                                                                                      | ion of the                                    | e behavior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of compa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cted sand/c                                                                                                                                                                                                                                                                                                                                           | lay mi                                                                                                                                                                                                                                                                                                                                                                                                            | tures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|--------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ified Pro | ctor co                              | mpacted, 8                                                                                         | 5% sand                                       | 15% bent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onite, 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 water con                                                                                                                                                                                                                                                                                                                                           | itent (M                                                                                                                                                                                                                                                                                                                                                                                                          | 15B10W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| El25-047  | '9                                   |                                                                                                    |                                               | Consolid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fixed Rin                                                                                                                                                                                                                                                                                                                                             | g                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20        | mm                                   | Dia. of Sp                                                                                         | Dec.                                          | 63.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Area of S                                                                                                                                                                                                                                                                                                                                             | pec.                                                                                                                                                                                                                                                                                                                                                                                                              | 3166.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 66.3      | g                                    | Wt. of Sto                                                                                         | one                                           | 128.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wt. of Pa                                                                                                                                                                                                                                                                                                                                             | per                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.65      |                                      | Tested By                                                                                          | у                                             | Yueru Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                   | 3/31/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |                                      |                                                                                                    | 1                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                      |                                                                                                    | 7                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                | )1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                      |                                                                                                    | 28.16                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.89                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (g)       |                                      |                                                                                                    | 186.6                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | 189                                                                                                                                                                                                                                                                                                                                                                                                               | .81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| g)        |                                      |                                                                                                    | 171.6                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | 174                                                                                                                                                                                                                                                                                                                                                                                                               | .54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                      |                                                                                                    | 143.4                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | 145                                                                                                                                                                                                                                                                                                                                                                                                               | .65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                      |                                                                                                    | 14.95                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | 15.                                                                                                                                                                                                                                                                                                                                                                                                               | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                      |                                                                                                    | 10.4                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nt (%)    |                                      |                                                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                      |                                                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                      |                                                                                                    | Before 7                                      | Fest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | After                                                                                                                                                                                                                                                                                                                                                                                                             | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                      | Rin                                                                                                | g, Stone                                      | , Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | B-                                                                                                                                                                                                                                                                                                                                                                                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| il (g)    |                                      |                                                                                                    | 320.9                                         | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | 152                                                                                                                                                                                                                                                                                                                                                                                                               | .87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| l (g)     |                                      |                                                                                                    | -                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | 141                                                                                                                                                                                                                                                                                                                                                                                                               | .08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                      |                                                                                                    | 194.9                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | 27.                                                                                                                                                                                                                                                                                                                                                                                                               | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                      |                                                                                                    | 126.0                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | 125                                                                                                                                                                                                                                                                                                                                                                                                               | .48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                      |                                                                                                    | 113.6                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | 113                                                                                                                                                                                                                                                                                                                                                                                                               | .69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                      |                                                                                                    | 12.31                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | 11.                                                                                                                                                                                                                                                                                                                                                                                                               | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                      |                                                                                                    | 10.8                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                | .4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                      | 4 70                                                                                               | , 3                                           | Final D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Danait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | $\rho_d$                             |                                                                                                    | 0                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>h</b> 4                                                                                                                                                                                                                                                                                                                                            | ρ <sub>d</sub>                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           |                                      |                                                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       | γd                                                                                                                                                                                                                                                                                                                                                                                                                | 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | γd                                   | tion results                                                                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | S                                    | 2                                                                                                  | 3                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                     | , a                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | lified Pro<br>El25-047<br>20<br>66.3 | ified Proctor co<br>EI25-0479<br>20 mm<br>66.3 g<br>2.65<br>(g)<br>g)<br>nt (%)<br>il (g)<br>I (g) | (g)<br>g)<br>nt (%)<br>Rin<br>il (g)<br>I (g) | Image: constraint of the constrated of the constraint of the constraint of the constraint of the | Image: constraint of the constrated of the constraint of the constraint of the constraint of the | Image: constraint of the sector compacted, 85% sand 15% bentonite, 10%           El25-0479         Consolid. Type           20         mm         Dia. of Spec.         63.5         mm           66.3         g         Wt. of Stone         128.3         g           2.65         Tested By         Yueru Chen         1           7         28.16 | Iffied Proctor compacted, 85% sand 15% bentonite, 10% water con           El25-0479         Consolid. Type         Fixed Rin           20         mm         Dia. of Spec.         63.5         mm         Area of S           66.3         g         Wt. of Stone         128.3         g         Wt. of Pa           2.65         Tested By         Yueru Chen         Date           1         7         28.16 | Iffied Proctor compacted, 85% sand 15% bentonite, 10% water content (M           El25-0479         Consolid. Type         Fixed Ring           20         mm         Dia. of Spec.         63.5         mm         Area of Spec.           66.3         g         Wt. of Stone         128.3         g         Wt. of Paper           2.65         Tested By         Yueru Chen         Date         Date           1         2         7         20         20           2.65         Tested By         Yueru Chen         Date           1         2         7         20           28.16         28         189         143.49         145           143.49         143.49         145         14.95         15           10.4         10.5         10.5         10.4         10           11         10.4         10         10.5         126.00         125           11 (g)         320.9         152         13.69         113         12.31         11           10.8         10.8         10         10.8         10         10 | 20         mm         Dia. of Spec.         63.5         mm         Area of Spec.         3166.9           66.3         g         Wt. of Stone         128.3         g         Wt. of Paper         0.3           2.65         Tested By         Yueru Chen         Date         3/31/           2.65         Tested By         Yueru Chen         Date         3/31/           1         2         7         201           28.16         28.89         189.81         19.81           g)         171.65         174.54         143.49         145.65           143.49         145.65         14.95         15.27         10.4         10.5           nt (%)         10.5         10.5         152.87         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td< td=""></td<> |

| Project:An experimental investigation of the behavior of compacted sand/clay mixturesSample:Modified Proctor compacted, 85% sand 15% bentonite, 12% water content (M15B12W) |            |                      |                                     |                               |                                        |                         |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|-------------------------------------|-------------------------------|----------------------------------------|-------------------------|--|--|--|
| Sample: Moo                                                                                                                                                                 | lified Pro | ctor co              | mpacted, 85% sa                     | nd 15% bentonite, 12          | % water content (N                     | /15B12W)                |  |  |  |
| Consolid. Type                                                                                                                                                              | El25-047   | 9                    |                                     | Consolid. Type                | Fixed Ring                             |                         |  |  |  |
| Height of Spec.                                                                                                                                                             | 20         | mm                   | Dia. of Spec.                       | 63.5 mm                       | Area of Spec.                          | 3166.9 mm <sup>2</sup>  |  |  |  |
| Weight of Ring                                                                                                                                                              | 66.3       | g                    | Wt. of Stone                        | 128.3 g                       | Wt. of Paper                           | 0.3 g                   |  |  |  |
| Specific Gravity                                                                                                                                                            | 2.65       |                      | Tested By                           | Yueru Chen                    | Date                                   | 3/26/2009               |  |  |  |
| Trimmings                                                                                                                                                                   |            |                      | 1                                   |                               |                                        | 2                       |  |  |  |
| Tin No.                                                                                                                                                                     |            |                      | 21                                  | 3                             | E                                      | 38                      |  |  |  |
| Wt. of Tin (g)                                                                                                                                                              |            |                      | 27.                                 | 87                            | 28                                     | 28.43                   |  |  |  |
| Wt. of Tin + Wet Soil                                                                                                                                                       | (g)        |                      | 159                                 | .37                           | 189                                    | 9.77                    |  |  |  |
| Wt. of Tin + Dry Soil                                                                                                                                                       | g)         |                      | 145                                 | 5.6                           | 17                                     | 2.8                     |  |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                         |            |                      | 117                                 | .73                           | 144                                    | 4.37                    |  |  |  |
| Wt. of Water (g)                                                                                                                                                            |            |                      | 13.                                 | 77                            | 16                                     | .97                     |  |  |  |
| Water Content (%)                                                                                                                                                           |            |                      | 11                                  | .7                            | 11                                     | 1.8                     |  |  |  |
| Average Water Conte                                                                                                                                                         | ent (%)    |                      |                                     | 11.7                          |                                        |                         |  |  |  |
|                                                                                                                                                                             |            |                      |                                     |                               |                                        |                         |  |  |  |
| Specimen                                                                                                                                                                    |            |                      | Before                              | Test                          | After                                  | <sup>.</sup> Test       |  |  |  |
| Tare I.D. No.                                                                                                                                                               |            |                      | Ring, Stor                          | ne, Paper                     | 2                                      | 05                      |  |  |  |
| Wt. of Tare + Wet So                                                                                                                                                        | oil (g)    |                      | 326                                 | 5.1                           | 16                                     | 0.4                     |  |  |  |
| Wt. of Tare + Dry So                                                                                                                                                        | il (g)     |                      | -                                   |                               | 14                                     | 6.5                     |  |  |  |
| Wt. of Tare (g)                                                                                                                                                             |            |                      | 194                                 | .90                           | 29                                     | .68                     |  |  |  |
| Wt. of Wet Soil (g)                                                                                                                                                         |            |                      | 131                                 | .20                           | 130                                    | ).72                    |  |  |  |
|                                                                                                                                                                             |            |                      | 116                                 | 82                            | 130.72<br>116.82<br>13.9               |                         |  |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                         |            |                      |                                     | .02                           |                                        |                         |  |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                                                                     |            |                      | 14.                                 | -                             |                                        |                         |  |  |  |
|                                                                                                                                                                             |            |                      | -                                   | 38                            | 1:                                     |                         |  |  |  |
| Wt. of Water (g)                                                                                                                                                            |            |                      | 14.                                 | 38                            | 1:                                     | 3.9                     |  |  |  |
| Wt. of Water (g)<br>Water Content (%)                                                                                                                                       |            | ρ <sub>d</sub>       | 14.                                 | 38<br>.3                      | 1:                                     | 3.9<br>1.9              |  |  |  |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density                                                                                                                | <br>:      | Ρ <sub>d</sub><br>γd | 14.<br>12                           | 38<br>.3<br>Final Dry Density | 1:<br>1 <sup>.</sup><br>Ρ <sub>d</sub> | 3.9<br>1.9<br>1.91 g/cm |  |  |  |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh                                                                                      |            | γd                   | 14.<br>12<br>1.84 g/cm <sup>3</sup> | 38<br>.3<br>Final Dry Density | 1:<br>1 <sup>.</sup><br>Ρ <sub>d</sub> | 3.9<br>1.9<br>1.91 g/cm |  |  |  |
| Wt. of Water (g)                                                                                                                                                            |            | γd                   | 14.<br>12<br>1.84 g/cm <sup>3</sup> | 38<br>.3<br>Final Dry Density | 1:<br>1 <sup>.</sup><br>Ρ <sub>d</sub> | 3.9<br>1.9<br>1.91 g/cm |  |  |  |

|                                                                                                                                                                        | - 1-               | minerite       | I investigati | on or the                                                                          | e behavior o                                         | i compa   | cted sand/o | lay mix                                          | tures                                                   |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|---------------|------------------------------------------------------------------------------------|------------------------------------------------------|-----------|-------------|--------------------------------------------------|---------------------------------------------------------|-----------------|
| Sample: Mo                                                                                                                                                             | dified Pro         | ctor co        | mpacted, 85   | 5% sand                                                                            | 15% bento                                            | nite, 14% | 6 water con | itent (M                                         | 15B14W                                                  | /)              |
| Consolid. Type                                                                                                                                                         | EI25-047           | '9             |               |                                                                                    | Consolid.                                            | Туре      | Fixed Rin   | g                                                |                                                         |                 |
| Height of Spec.                                                                                                                                                        | 20                 | mm             | Dia. of Sp    | ec.                                                                                | 63.5 ı                                               | mm        | Area of S   | pec.                                             | 3166.9                                                  | mm <sup>2</sup> |
| Weight of Ring                                                                                                                                                         | 66.3               | g              | Wt. of Stor   | ne                                                                                 | 133.7 (                                              | g         | Wt. of Pa   | per                                              | 0.3                                                     | g               |
| Specific Gravity                                                                                                                                                       | 2.65               |                | Tested By     |                                                                                    | Yueru Che                                            | n         | Date        |                                                  | 3/24/                                                   | 2009            |
| Trimmings                                                                                                                                                              | ;                  |                |               | 1                                                                                  |                                                      |           |             | 2                                                | 2                                                       |                 |
| Tin No.                                                                                                                                                                |                    |                |               | 7                                                                                  |                                                      |           |             | 20                                               | )1                                                      |                 |
| Wt. of Tin (g)                                                                                                                                                         |                    |                |               | 28.1                                                                               |                                                      |           | 28.9        |                                                  |                                                         |                 |
| Wt. of Tin + Wet Soil                                                                                                                                                  | (g)                |                |               | 195.6                                                                              | 6                                                    |           |             | 152                                              | 2.8                                                     |                 |
| Wt. of Tin + Dry Soil                                                                                                                                                  | (g)                |                |               | 174.9                                                                              | )                                                    |           |             | 137                                              | 7.6                                                     |                 |
| Wt. of Dry Soil (g)                                                                                                                                                    |                    |                |               | 146.8                                                                              | 3                                                    |           |             | 108                                              | 3.7                                                     |                 |
| Wt. of Water (g)                                                                                                                                                       |                    |                |               | 20.7                                                                               |                                                      |           |             | 15                                               | .2                                                      |                 |
| Water Content (%)                                                                                                                                                      |                    |                |               | 14.1                                                                               |                                                      |           |             | 14                                               | .0                                                      |                 |
| Average Water Cont                                                                                                                                                     | ent (%)            |                |               |                                                                                    |                                                      | 14.0      |             |                                                  |                                                         |                 |
|                                                                                                                                                                        |                    |                |               |                                                                                    |                                                      |           |             |                                                  |                                                         |                 |
|                                                                                                                                                                        |                    |                |               |                                                                                    |                                                      |           | After Test  |                                                  |                                                         |                 |
| Specimen                                                                                                                                                               |                    |                | ł             | Before 1                                                                           | est                                                  |           |             | After                                            | Test                                                    |                 |
| Specimen<br>Tare I.D. No.                                                                                                                                              |                    |                |               | Before T<br>g, Stone                                                               |                                                      |           |             | After<br>B-                                      |                                                         |                 |
| Tare I.D. No.                                                                                                                                                          |                    |                |               |                                                                                    | , Paper                                              |           |             |                                                  | 19                                                      |                 |
| ·                                                                                                                                                                      | oil (g)            |                |               | g, Stone                                                                           | , Paper                                              |           |             | B-*                                              | 19<br>56                                                |                 |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So                                                                                                           | oil (g)            |                |               | g, Stone                                                                           | , Paper                                              |           |             | B-1                                              | 19<br>56<br>0.2                                         |                 |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                        | oil (g)            |                |               | g, Stone<br>329.5<br>-                                                             | , Paper<br>5<br>0                                    |           |             | B-1<br>15<br>14(                                 | 19<br>56<br>0.2<br>.4                                   |                 |
| Tare I.D. No.<br>Wt. of Tare + Wet S                                                                                                                                   | oil (g)            |                |               | g, Stone<br>329.5<br>-<br>200.3                                                    | , Paper<br>5<br>0<br>0                               |           |             | B-15<br>15<br>14(<br>27                          | 19<br>56<br>0.2<br>.4<br>3.6                            |                 |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 | oil (g)            |                |               | g, Stone<br>329.5<br>-<br>200.3<br>129.2                                           | , Paper<br>5<br>0<br>0<br>0                          |           |             | B-15<br>15<br>14(<br>27<br>128                   | 19<br>56<br>0.2<br>.4<br>3.6<br>2.8                     |                 |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          | oil (g)            |                |               | g, Stone<br>329.5<br>-<br>200.3<br>129.2<br>112.8                                  | , Paper<br>5<br>0<br>0<br>0<br>0                     |           |             | B- <sup>-</sup><br>15<br>140<br>27<br>128<br>112 | 19<br>56<br>0.2<br>.4<br>3.6<br>2.8<br>.8               |                 |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | oil (g)            | 0.             | Rinç          | g, Stone<br>329.5<br>200.3<br>129.2<br>112.8<br>16.4(<br>14.5                      | , Paper<br>5<br>0<br>0<br>0<br>0                     | lensity   |             | B<br>15<br>14(<br>27<br>128<br>112<br>15<br>14   | 19<br>56<br>0.2<br>.4<br>3.6<br>2.8<br>.8<br>.0         | a/cm            |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | oil (g)<br>bil (g) | ρ <sub>d</sub> | Ring<br>1.78  | g, Stone<br>329.5<br>200.3<br>129.2<br>112.8<br>16.40<br>14.5<br>g/cm <sup>3</sup> | , Paper<br>5<br>0<br>0<br>0<br>0<br>)<br>Final Dry D |           | bt          | B-15<br>140<br>27<br>128<br>112<br>15<br>14      | 19<br>56<br>0.2<br>.4<br>3.6<br>2.8<br>.8<br>.0<br>1.87 | 0               |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | oil (g)<br>bil (g) | γd             | Ring<br>1.78  | g, Stone<br>329.5<br>200.3<br>129.2<br>112.8<br>16.4(<br>14.5                      | , Paper<br>5<br>0<br>0<br>0<br>0                     |           | ht          | B<br>15<br>14(<br>27<br>128<br>112<br>15<br>14   | 19<br>56<br>0.2<br>.4<br>3.6<br>2.8<br>.8<br>.0         | 0               |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | oil (g)<br>bil (g) | γd             | Ring<br>1.78  | g, Stone<br>329.5<br>200.3<br>129.2<br>112.8<br>16.40<br>14.5<br>g/cm <sup>3</sup> | , Paper<br>5<br>0<br>0<br>0<br>0<br>)<br>Final Dry D |           | ht 6        | B-15<br>140<br>27<br>128<br>112<br>15<br>14      | 19<br>56<br>0.2<br>.4<br>3.6<br>2.8<br>.8<br>.0<br>1.87 | g/cm<br>kN/m    |

| Project:                                                                                                                             | An expe          | rimenta                          | al investigation o                 | of the b                                                  | ehavior   | of compa             | cted sand/cl         | ay mix                                                     | tures                            |                           |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------|------------------------------------|-----------------------------------------------------------|-----------|----------------------|----------------------|------------------------------------------------------------|----------------------------------|---------------------------|
| Sample: Mc                                                                                                                           | dified Pro       | ctor co                          | mpacted, 85% s                     | and 15                                                    | 5% bent   | onite, 16%           | water cont           | ent (M                                                     | 15B16W                           | )                         |
| Consolid. Type                                                                                                                       | El25-047         | '9                               |                                    | С                                                         | Consolid. | . Туре               | Fixed Ring           |                                                            |                                  |                           |
| Height of Spec.                                                                                                                      | 20               | mm                               | Dia. of Spec.                      |                                                           | 63.5      | mm                   | Area of Sp           | ec.                                                        | 3166.9                           | $\rm{mm}^2$               |
| Weight of Ring                                                                                                                       | 67.5             | g                                | Wt. of Stone                       |                                                           | 130       | g                    | Wt. of Pap           | er                                                         | 0.3                              | g                         |
| Specific Gravity                                                                                                                     | 2.65             |                                  | Tested By                          | Yι                                                        | ueru Ch   | en                   | Date                 |                                                            | 3/25/                            | 2009                      |
| Trimmings                                                                                                                            | 3                |                                  |                                    | 1                                                         |           |                      |                      | 2                                                          | 2                                |                           |
| Tin No.                                                                                                                              |                  |                                  | 2                                  | 404                                                       |           |                      |                      | 40                                                         | )5                               |                           |
| Wt. of Tin (g)                                                                                                                       |                  |                                  | 2                                  | 28.7                                                      |           |                      | 27.7                 |                                                            |                                  |                           |
| Wt. of Tin + Wet Soi                                                                                                                 | l (g)            |                                  | 2                                  | 200                                                       |           |                      |                      | 205                                                        | 5.3                              |                           |
| Wt. of Tin + Dry Soil                                                                                                                | (g)              |                                  | 1                                  | 76.9                                                      |           |                      |                      | 181                                                        | 1.2                              |                           |
| Wt. of Dry Soil (g)                                                                                                                  |                  |                                  | 1                                  | 48.2                                                      |           |                      |                      | 153                                                        | 3.5                              |                           |
| Wt. of Water (g)                                                                                                                     |                  |                                  | 2                                  | 23.1                                                      |           |                      |                      | 24                                                         | .1                               |                           |
| Water Content (%)                                                                                                                    |                  |                                  | 1                                  | 15.6                                                      |           |                      |                      | 15                                                         | .7                               |                           |
| Average Water Cont                                                                                                                   | ent (%)          |                                  |                                    |                                                           |           | 15.6                 |                      |                                                            |                                  |                           |
|                                                                                                                                      |                  |                                  |                                    |                                                           |           |                      |                      |                                                            |                                  |                           |
| Specimen                                                                                                                             | 1                |                                  | Befo                               | ore Tes                                                   | st        |                      |                      | After                                                      | Test                             |                           |
| Tare I.D. No.                                                                                                                        |                  |                                  | Ring, St                           | one, Pa                                                   | aper      |                      |                      | 10                                                         | )1                               |                           |
| Wt. of Tare + Wet S                                                                                                                  | oil (g)          |                                  | 3                                  | 26.9                                                      |           |                      |                      | 156                                                        | 6.4                              |                           |
| Wt. of Tare + Dry Se                                                                                                                 | oil (g)          |                                  |                                    | -                                                         |           |                      |                      | 139                                                        | 9.1                              |                           |
| Wt. of Tare (g)                                                                                                                      |                  |                                  | 19                                 | 97.80                                                     |           |                      | 139.1<br>28<br>128.4 |                                                            |                                  |                           |
|                                                                                                                                      |                  |                                  |                                    | 97.60                                                     |           |                      |                      |                                                            |                                  |                           |
| Wt. of Wet Soil (g)                                                                                                                  |                  |                                  |                                    | 97.80<br>29.10                                            |           |                      |                      |                                                            |                                  |                           |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                           |                  |                                  | 12                                 |                                                           |           |                      |                      |                                                            | 3.4                              |                           |
| (0)                                                                                                                                  |                  |                                  | 12<br>11                           | 29.10                                                     |           |                      |                      | 128                                                        | 3.4<br>I.1                       |                           |
| Wt. of Dry Soil (g)                                                                                                                  |                  |                                  | 12<br>11<br>1                      | 29.10<br>11.10                                            |           |                      |                      | 128<br>111                                                 | 3.4<br>1.1<br>.3                 |                           |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              |                  |                                  | 12<br>11<br>1                      | 29.10<br>11.10<br>8.00                                    |           |                      |                      | 128<br>111<br>17                                           | 3.4<br>1.1<br>.3                 |                           |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         |                  | ρ <sub>d</sub>                   | 12<br>11<br>1                      | 29.10<br>11.10<br>8.00<br>16.2                            | inal Dry  | Density              |                      | 128<br>111<br>17                                           | 3.4<br>1.1<br>.3                 | g/cm <sup>°</sup>         |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         | 1t               | Ρ <sub>d</sub><br>γ <sub>d</sub> | 12<br>11<br>1.<br>1.<br>1.         | 29.10<br>11.10<br>8.00<br>16.2<br>n <sup>3</sup> Fi       | -         | Density<br>Unit Weig | ht                   | 128<br>111<br>17<br>15                                     | 3.4<br>1.1<br>.3<br>.6           | -                         |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion result      | γ <sub>d</sub><br>S              | 12<br>11<br>1.75 g/cm<br>17.2 kN/r | 29.10<br>11.10<br>8.00<br>16.2<br>n <sup>3</sup> Fi       | -         | -                    | ht                   | 128<br>111<br>17<br>15<br>Ρ <sub>d</sub>                   | 3.4<br>1.1<br>.6<br>1.90<br>18.6 | -                         |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              | tion result<br>1 | γ <sub>d</sub><br>S              | 12<br>11<br>1.75 g/cm<br>17.2 kN/r | 29.10<br>11.10<br>8.00<br>16.2<br>m <sup>3</sup> Fin<br>3 | -         | -                    | ht<br>6<br>1.2400    | 128<br>111<br>17<br>15<br>Ρ <sub>d</sub><br>γ <sub>d</sub> | 3.4<br>1.1<br>.3<br>.6<br>1.90   | g/cm <sup>3</sup><br>kN/m |

| Project:                                                                                                                                                                                       | Аперры      | imenta         | I investigation of                                                                 | the behavior of compa                                                 | behavior of compacted sand/clay mixtures                                             |                                                                    |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| Sample: Mo                                                                                                                                                                                     | odified Pro | octor co       | ompacted, 75% s                                                                    | and 25% bentonite, 8                                                  | % water content (N                                                                   | /125B8W)                                                           |  |  |
| Consolid. Type                                                                                                                                                                                 | EI25-0479   | )              |                                                                                    | Consolid. Type                                                        | Fixed Ring                                                                           |                                                                    |  |  |
| Height of Spec.                                                                                                                                                                                | 20          | mm             | Dia. of Spec.                                                                      | 63.5 mm                                                               | Area of Spec.                                                                        | 3166.9 mm <sup>2</sup>                                             |  |  |
| Weight of Ring                                                                                                                                                                                 | 66.3        | g              | Wt. of Stone                                                                       | 133.69 g                                                              | Wt. of Paper                                                                         | 0.3 g                                                              |  |  |
| Specific Gravity                                                                                                                                                                               | 2.64        |                | Tested By                                                                          | Yueru Chen                                                            | Date                                                                                 | 4/1/2009                                                           |  |  |
| Trimmings                                                                                                                                                                                      |             |                | 1                                                                                  |                                                                       |                                                                                      | 2                                                                  |  |  |
| Tin No.                                                                                                                                                                                        |             |                | 7                                                                                  | ,                                                                     | 201                                                                                  |                                                                    |  |  |
| Wt. of Tin (g)                                                                                                                                                                                 |             |                | 28.                                                                                | 16                                                                    | 28                                                                                   | .87                                                                |  |  |
| Wt. of Tin + Wet Soil                                                                                                                                                                          | (g)         |                | 177                                                                                | .02                                                                   | 170.28                                                                               |                                                                    |  |  |
| Wt. of Tin + Dry Soil                                                                                                                                                                          | (g)         |                | 165                                                                                | .72                                                                   | 159                                                                                  | 9.57                                                               |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                                            |             |                | 137                                                                                | .56                                                                   | 13                                                                                   | 0.7                                                                |  |  |
| Wt. of Water (g)                                                                                                                                                                               |             |                | 11                                                                                 | .3                                                                    | 10                                                                                   | .71                                                                |  |  |
| Water Content (%)                                                                                                                                                                              |             |                | 8.                                                                                 | 2                                                                     | 8                                                                                    | .2                                                                 |  |  |
| Average Water Conte                                                                                                                                                                            | ent (%)     |                |                                                                                    | 8.2                                                                   |                                                                                      |                                                                    |  |  |
|                                                                                                                                                                                                |             |                |                                                                                    |                                                                       |                                                                                      |                                                                    |  |  |
|                                                                                                                                                                                                |             |                |                                                                                    |                                                                       |                                                                                      |                                                                    |  |  |
| Specimen                                                                                                                                                                                       |             |                | Before                                                                             | e Test                                                                | After                                                                                | <sup>.</sup> Test                                                  |  |  |
| Specimen<br>Tare I.D. No.                                                                                                                                                                      |             |                | Before<br>Ring, Stor                                                               |                                                                       |                                                                                      | Test<br>19                                                         |  |  |
|                                                                                                                                                                                                | oil (g)     |                |                                                                                    | ne, Paper                                                             | B·                                                                                   |                                                                    |  |  |
| Tare I.D. No.                                                                                                                                                                                  |             |                | Ring, Stor                                                                         | ne, Paper                                                             | B-<br>157                                                                            | .19                                                                |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So                                                                                                                                                          |             |                | Ring, Stor                                                                         | ne, Paper<br>5.1                                                      | B-<br>15 <sup>-</sup><br>14 <sup>-</sup>                                             | -19<br>1.86                                                        |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So                                                                                                                                  |             |                | Ring, Stor<br>32                                                                   | ne, Paper<br>5.1<br>.29                                               | B-<br>15 <sup>-</sup><br>14 <sup>-</sup><br>27                                       | 19<br>1.86<br>1.97                                                 |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                                               |             |                | Ring, Stor<br>32!<br>-<br>200                                                      | ne, Paper<br>5.1<br>.29<br>.81                                        | B-<br>15 <sup>-</sup><br>14 <sup>-</sup><br>27<br>12 <sup>4</sup>                    | 19<br>1.86<br>1.97<br>.38                                          |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                        |             |                | Ring, Stor<br>325<br>-<br>200<br>124                                               | ne, Paper<br>5.1<br>.29<br>.81<br>.59                                 | B-<br>15 <sup>-</sup><br>14 <sup>-</sup><br>27<br>12 <sup>-</sup><br>11 <sup>-</sup> | 19<br>1.86<br>1.97<br>.38<br>4.48                                  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                 |             |                | Ring, Stor<br>32!<br>-<br>200<br>124<br>114                                        | ne, Paper<br>5.1<br>.29<br>.81<br>.59<br>22                           | B-<br>15 <sup>-</sup><br>14<br>27<br>124<br>114<br>9.                                | 19<br>1.86<br>1.97<br>.38<br>4.48<br>4.59                          |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                        |             |                | Ring, Stor<br>325<br>-<br>200<br>124<br>114<br>10.<br>8.                           | ne, Paper<br>5.1<br>.29<br>.81<br>.59<br>22<br>9                      | B-<br>15 <sup>-</sup><br>14<br>27<br>124<br>114<br>9.<br>8                           | 19<br>1.86<br>1.97<br>.38<br>4.48<br>4.59<br>89<br>.6              |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                        | il (g)      | ρ <sub>d</sub> | Ring, Stor<br>325<br>-<br>200<br>124<br>114<br>10.<br>8.<br>1.81 g/cm <sup>3</sup> | ne, Paper<br>5.1<br>.29<br>.81<br>.59<br>22<br>9<br>Final Dry Density | Β-<br>15 <sup>-</sup><br>14<br>27<br>12-<br>11-<br>9.<br>8<br>Ρ <sub>d</sub>         | 19<br>1.86<br>1.97<br>.38<br>4.48<br>4.59<br>89<br>.6<br>1.87 g/cm |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | t           | γd             | Ring, Stor<br>325<br>-<br>200<br>124<br>114<br>10.<br>8.                           | ne, Paper<br>5.1<br>.29<br>.81<br>.59<br>22<br>9<br>Final Dry Density | Β-<br>15 <sup>-</sup><br>14<br>27<br>12-<br>11-<br>9.<br>8<br>Ρ <sub>d</sub>         | 19<br>1.86<br>1.97<br>.38<br>4.48<br>4.59<br>89<br>.6<br>1.87 g/cm |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                             | t           | γd             | Ring, Stor<br>325<br>-<br>200<br>124<br>114<br>10.<br>8.<br>1.81 g/cm <sup>3</sup> | ne, Paper<br>5.1<br>.29<br>.81<br>.59<br>22<br>9<br>Final Dry Density | Β-<br>15 <sup>-</sup><br>14<br>27<br>12-<br>11-<br>9.<br>8<br>Ρ <sub>d</sub>         | 19<br>1.86<br>1.97<br>.38<br>4.48<br>4.59<br>89<br>.6<br>1.87 g/cm |  |  |

| Project:                                                                                                                                                                                                                      | An experimental investigation of the behavior of compacted sand/clay mixtures |                                  |                                                                                              |                                                |                                                                                                                                                                                                                                          | xtures                                                                             |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| Sample: Mc                                                                                                                                                                                                                    | dified Pro                                                                    | ctor co                          | mpacted, 75% san                                                                             | d 25% bentonite, 1                             | 0% water content (N                                                                                                                                                                                                                      | //25B10W)                                                                          |  |  |
| Consolid. Type                                                                                                                                                                                                                | El25-047                                                                      | '9                               |                                                                                              | Consolid. Type                                 | Fixed Ring                                                                                                                                                                                                                               |                                                                                    |  |  |
| Height of Spec.                                                                                                                                                                                                               | 20                                                                            | mm                               | Dia. of Spec.                                                                                | 63.5 mm                                        | Area of Spec.                                                                                                                                                                                                                            | 3166.9 mm <sup>2</sup>                                                             |  |  |
| Weight of Ring                                                                                                                                                                                                                | 66.3                                                                          | g                                | Wt. of Stone                                                                                 | 130 g                                          | Wt. of Paper                                                                                                                                                                                                                             | 0.3 g                                                                              |  |  |
| Specific Gravity                                                                                                                                                                                                              | 2.64                                                                          |                                  | Tested By                                                                                    | Yueru Chen                                     | Date                                                                                                                                                                                                                                     | 4/2/2009                                                                           |  |  |
| Trimmings                                                                                                                                                                                                                     | 3                                                                             |                                  | 1                                                                                            |                                                |                                                                                                                                                                                                                                          | 2                                                                                  |  |  |
| Tin No.                                                                                                                                                                                                                       |                                                                               |                                  | MAJ                                                                                          | ID                                             | FJ-3                                                                                                                                                                                                                                     |                                                                                    |  |  |
| Wt. of Tin (g)                                                                                                                                                                                                                |                                                                               |                                  | 28.6                                                                                         | 6                                              | 2                                                                                                                                                                                                                                        | 29                                                                                 |  |  |
| Wt. of Tin + Wet Soi                                                                                                                                                                                                          | l (g)                                                                         |                                  | 151.                                                                                         | 51                                             | 150                                                                                                                                                                                                                                      |                                                                                    |  |  |
| Wt. of Tin + Dry Soil                                                                                                                                                                                                         | (g)                                                                           |                                  | 139                                                                                          | .8                                             | 13                                                                                                                                                                                                                                       | 8.58                                                                               |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                                                                           |                                                                               |                                  | 111.                                                                                         | 14                                             | 10                                                                                                                                                                                                                                       | 9.58                                                                               |  |  |
| Wt. of Water (g)                                                                                                                                                                                                              |                                                                               |                                  | 11.7                                                                                         | '1                                             | 11                                                                                                                                                                                                                                       | .42                                                                                |  |  |
| Water Content (%)                                                                                                                                                                                                             |                                                                               |                                  | 10.                                                                                          | 5                                              | 1                                                                                                                                                                                                                                        | 0.4                                                                                |  |  |
| Average Water Cont                                                                                                                                                                                                            | ent (%)                                                                       |                                  |                                                                                              | 10.5                                           |                                                                                                                                                                                                                                          |                                                                                    |  |  |
|                                                                                                                                                                                                                               |                                                                               |                                  |                                                                                              |                                                |                                                                                                                                                                                                                                          |                                                                                    |  |  |
| Specimen                                                                                                                                                                                                                      | 1                                                                             |                                  | Before                                                                                       | Test                                           | Afte                                                                                                                                                                                                                                     | r Test                                                                             |  |  |
|                                                                                                                                                                                                                               |                                                                               |                                  | Ring, Ston                                                                                   | e, Paper                                       |                                                                                                                                                                                                                                          | 5                                                                                  |  |  |
| Tare I.D. No.                                                                                                                                                                                                                 |                                                                               |                                  |                                                                                              |                                                |                                                                                                                                                                                                                                          | 0                                                                                  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S                                                                                                                                                                                          | oil (g)                                                                       |                                  | 326.                                                                                         | 04                                             | 326.04 157.92                                                                                                                                                                                                                            |                                                                                    |  |  |
|                                                                                                                                                                                                                               | (0)                                                                           |                                  | 326.                                                                                         | 04                                             | -                                                                                                                                                                                                                                        | -                                                                                  |  |  |
| Wt. of Tare + Wet S                                                                                                                                                                                                           | (0)                                                                           |                                  | 326.<br>-<br>196.                                                                            |                                                | 14                                                                                                                                                                                                                                       | 7.92                                                                               |  |  |
| Wt. of Tare + Wet S<br>Wt. of Tare + Dry Se                                                                                                                                                                                   | (0)                                                                           |                                  | -                                                                                            | 60                                             | 14<br>28                                                                                                                                                                                                                                 | 7.92<br>5.48                                                                       |  |  |
| Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                                                                                                | (0)                                                                           |                                  | - 196.                                                                                       | 60<br>44                                       | 14<br>28<br>12                                                                                                                                                                                                                           | 7.92<br>5.48<br>3.89                                                               |  |  |
| Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                                                                         | (0)                                                                           |                                  | 196.<br>129.                                                                                 | 60<br>44<br>59                                 | 14<br>28<br>12<br>11                                                                                                                                                                                                                     | 7.92<br>5.48<br>9.89<br>9.03                                                       |  |  |
| Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                                                  | (0)                                                                           |                                  | -<br>196.<br>129.<br>116.                                                                    | 60<br>44<br>59<br>35                           | 14<br>28<br>12<br>11<br>11<br>12                                                                                                                                                                                                         | 7.92<br>5.48<br>8.89<br>9.03<br>6.59                                               |  |  |
| Wt. of Tare + Wet S<br>Wt. of Tare + Dry Se<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              | (0)                                                                           |                                  | -<br>196.<br>129.<br>116.<br>12.8                                                            | 60<br>44<br>59<br>35                           | 14<br>28<br>12<br>11<br>11<br>12                                                                                                                                                                                                         | 7.92<br>5.48<br>9.89<br>9.03<br>6.59<br>2.44                                       |  |  |
| Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         | (0)                                                                           | ρ <sub>d</sub>                   | -<br>196.<br>129.<br>116.<br>12.8                                                            | 60<br>44<br>59<br>35                           | 14<br>28<br>12<br>11<br>11<br>12<br>11                                                                                                                                                                                                   | 7.92<br>5.48<br>9.03<br>6.59<br>2.44<br>0.7                                        |  |  |
| Wt. of Tare + Wet S<br>Wt. of Tare + Dry Se<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         | oil (g)                                                                       | Ρ <sub>d</sub><br>γ <sub>d</sub> | -<br>196.<br>129.<br>116.<br>12.8<br>11.                                                     | 60<br>44<br>59<br>95<br>0                      | 14<br>2ε<br>12<br>11<br>1<br>1<br>1<br>1<br>2<br>1<br>1<br>2                                                                                                                                                                             | 7.92<br>5.48<br>9.03<br>6.59<br>2.44<br>0.7<br>1.92 g/cm                           |  |  |
| Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | oil (g)                                                                       | γd                               | -<br>196.<br>129.<br>116.<br>12.8<br>11.<br>1.84 g/cm <sup>3</sup><br>18.0 kN/m <sup>3</sup> | 60<br>44<br>59<br>55<br>0<br>Final Dry Density | 14<br>2ε<br>12<br>11<br>1<br>1<br>1<br>1<br>2<br>1<br>1<br>2                                                                                                                                                                             | 7.92<br>5.48<br>9.03<br>6.59<br>2.44<br>0.7<br>1.92 g/cm <sup>2</sup><br>18.8 kN/m |  |  |
| Wt. of Tare + Wet S<br>Wt. of Tare + Dry Se<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              | oil (g)                                                                       | γ <sub>d</sub><br>s              | -<br>196.<br>129.<br>116.<br>12.8<br>11.<br>1.84 g/cm <sup>3</sup>                           | 60<br>44<br>59<br>55<br>0<br>Final Dry Density | 14.<br>2ε<br>12:<br>11:<br>12:<br>11:<br>12:<br>11:<br>12:<br>14:<br>12:<br>14:<br>12:<br>14:<br>12:<br>14:<br>12:<br>14:<br>12:<br>14:<br>12:<br>14:<br>12:<br>14:<br>12:<br>12:<br>12:<br>11:<br>12:<br>12:<br>12:<br>12:<br>12:<br>12 | 7.92<br>5.48<br>9.03<br>6.59<br>2.44<br>0.7<br>1.92 g/cm <sup>3</sup>              |  |  |

| Project:                                                                                                                                                                          | Ап слрс    | erimental investigation of the behavior of compacted sand/clay mixtures |                                                        |                                         |                           |               |                                                                             |                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|---------------------------|---------------|-----------------------------------------------------------------------------|---------------------------|--|
| Sample: Mod                                                                                                                                                                       | lified Pro | ctor co                                                                 | mpacted, 75% sa                                        | ind 25% be                              | ntonite, 12               | % water conte | nt (M25B12V                                                                 | V)                        |  |
| Consolid. Type                                                                                                                                                                    | El25-047   | '9                                                                      |                                                        | Conso                                   | id. Type                  | Fixed Ring    |                                                                             |                           |  |
| Height of Spec.                                                                                                                                                                   | 20         | mm                                                                      | Dia. of Spec.                                          | 63.5                                    | mm                        | Area of Spe   | ec. 3166.9                                                                  | mm²                       |  |
| Weight of Ring                                                                                                                                                                    | 63         | g                                                                       | Wt. of Stone                                           | 130                                     | g                         | Wt. of Pape   | er 0.3                                                                      | g                         |  |
| Specific Gravity                                                                                                                                                                  | 2.64       |                                                                         | Tested By                                              | Yueru (                                 | Chen                      | Date          | 3/31/                                                                       | /2009                     |  |
| Trimmings                                                                                                                                                                         |            |                                                                         |                                                        | 1                                       |                           |               | 2                                                                           |                           |  |
| Tin No.                                                                                                                                                                           |            |                                                                         | 2                                                      | 13                                      |                           |               | 205                                                                         |                           |  |
| Wt. of Tin (g)                                                                                                                                                                    |            |                                                                         | 27                                                     | 27.88                                   |                           |               | 29.68                                                                       |                           |  |
| Wt. of Tin + Wet Soil (                                                                                                                                                           | (g)        |                                                                         | 176                                                    | 6.99                                    |                           | 170.89        |                                                                             |                           |  |
| Wt. of Tin + Dry Soil (                                                                                                                                                           | g)         |                                                                         | 160                                                    | 0.25                                    |                           |               | 155.35                                                                      |                           |  |
| Wt. of Dry Soil (g)                                                                                                                                                               |            |                                                                         | 132                                                    | 2.37                                    |                           |               | 125.67                                                                      |                           |  |
| Wt. of Water (g)                                                                                                                                                                  |            |                                                                         | 16                                                     | .74                                     |                           |               | 15.54                                                                       |                           |  |
| Water Content (%)                                                                                                                                                                 |            |                                                                         | 12                                                     | 2.6                                     |                           |               | 12.4                                                                        |                           |  |
| Average Water Conte                                                                                                                                                               | nt (%)     |                                                                         |                                                        |                                         |                           |               |                                                                             |                           |  |
|                                                                                                                                                                                   |            |                                                                         |                                                        |                                         |                           |               |                                                                             |                           |  |
| Specimen                                                                                                                                                                          |            |                                                                         | Befor                                                  | e Test                                  |                           |               | After Test                                                                  |                           |  |
| Tare I.D. No.                                                                                                                                                                     |            |                                                                         | Ring, Sto                                              | ne, Paper                               |                           | B8            |                                                                             |                           |  |
|                                                                                                                                                                                   |            |                                                                         |                                                        | 1 4 0                                   |                           |               |                                                                             |                           |  |
| Wt. of Tare + Wet So                                                                                                                                                              | il (g)     |                                                                         | 32                                                     | 1.13                                    |                           | 155.94        |                                                                             |                           |  |
| Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi                                                                                                                                     |            |                                                                         | 32'                                                    | -                                       |                           |               | 155.94<br>142.37                                                            |                           |  |
|                                                                                                                                                                                   |            |                                                                         |                                                        | -<br>3.30                               |                           |               |                                                                             |                           |  |
| Wt. of Tare + Dry Soi                                                                                                                                                             |            |                                                                         | 193                                                    | -                                       |                           |               | 142.37                                                                      |                           |  |
| Wt. of Tare + Dry Soi<br>Wt. of Tare (g)                                                                                                                                          |            |                                                                         | 19:<br>12:                                             | -<br>3.30                               |                           |               | 142.37<br>28.43                                                             |                           |  |
| Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                                                   |            |                                                                         | 19:<br>12:<br>11:                                      | -<br>3.30<br>7.83                       |                           |               | 142.37<br>28.43<br>127.51                                                   |                           |  |
| Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                            |            |                                                                         | 19:<br>12:<br>11:<br>13                                | -<br>3.30<br>7.83<br>3.94               |                           |               | 142.37<br>28.43<br>127.51<br>113.94                                         |                           |  |
| Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                   |            |                                                                         | 19:<br>12:<br>11:<br>13<br>12:<br>11:                  | -<br>3.30<br>7.83<br>3.94<br>.89<br>2.2 | a Donoitra                |               | 142.37<br>28.43<br>127.51<br>113.94<br>13.57<br>11.9                        |                           |  |
| Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                   | l (g)      | ρ <sub>d</sub>                                                          | 19:<br>12:<br>11:<br>13<br>12<br>13<br>12<br>1.80 g/cm | -<br>3.30<br>7.83<br>3.94<br>           | y Density                 | abt           | 142.37<br>28.43<br>127.51<br>113.94<br>13.57<br>11.9<br>ρ <sub>d</sub> 1.90 | •                         |  |
| Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weight | l (g)      | γd                                                                      | 19:<br>12:<br>11:<br>13<br>12:<br>11:                  | -<br>3.30<br>7.83<br>3.94<br>           | ry Density<br>ry Unit Wei | ght           | 142.37<br>28.43<br>127.51<br>113.94<br>13.57<br>11.9                        | •                         |  |
| Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                        | l (g)      | γ <sub>d</sub><br>s                                                     | 19:<br>12:<br>11:<br>13<br>12<br>13<br>12<br>1.80 g/cm | -<br>3.30<br>7.83<br>3.94<br>           |                           | ght<br>6      | 142.37<br>28.43<br>127.51<br>113.94<br>13.57<br>11.9<br>ρ <sub>d</sub> 1.90 | g/cm <sup>2</sup><br>kN/m |  |

| Project:                                                                                                                                                |             |                                  |                                                       |                                          | xtures                             |                                                             |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------|-------------------------------------------------------|------------------------------------------|------------------------------------|-------------------------------------------------------------|--|--|
| Sample: Mc                                                                                                                                              | odified Pro | ctor co                          | mpacted, 75% san                                      | d 25% bentonite, 15                      | % water content (N                 | 125B15W)                                                    |  |  |
| Consolid. Type                                                                                                                                          | EI25-047    | 9                                |                                                       | Consolid. Type                           | Fixed Ring                         |                                                             |  |  |
| Height of Spec.                                                                                                                                         | 20          | mm                               | Dia. of Spec.                                         | 63.5 mm                                  | Area of Spec.                      | 3166.9 mm <sup>2</sup>                                      |  |  |
| Weight of Ring                                                                                                                                          | 66.3        | g                                | Wt. of Stone                                          | 128.3 g                                  | Wt. of Paper                       | 0.3 g                                                       |  |  |
| Specific Gravity                                                                                                                                        | 2.64        |                                  | Tested By                                             | Yueru Chen                               | Date                               | 3/30/2009                                                   |  |  |
| Trimmings                                                                                                                                               | 3           |                                  | 1                                                     |                                          | :                                  | 2                                                           |  |  |
| Tin No.                                                                                                                                                 |             |                                  | 21:                                                   | 3                                        | 205                                |                                                             |  |  |
| Wt. of Tin (g)                                                                                                                                          |             |                                  | 27.8                                                  | 39                                       | 29                                 | .69                                                         |  |  |
| Wt. of Tin + Wet Soi                                                                                                                                    | l (g)       |                                  | 166.                                                  | 54                                       | 155.21                             |                                                             |  |  |
| Wt. of Tin + Dry Soil                                                                                                                                   | (g)         |                                  | 148.                                                  | 62                                       | 139                                | 9.03                                                        |  |  |
| Wt. of Dry Soil (g)                                                                                                                                     |             |                                  | 120.                                                  | 73                                       | 109                                | 9.34                                                        |  |  |
| Wt. of Water (g)                                                                                                                                        |             |                                  | 17.9                                                  | 92                                       | 16                                 | .18                                                         |  |  |
| Water Content (%)                                                                                                                                       |             |                                  | 14.                                                   | 8                                        | 14                                 | 4.8                                                         |  |  |
| Average Water Cont                                                                                                                                      | ent (%)     |                                  |                                                       | 14.8                                     |                                    |                                                             |  |  |
|                                                                                                                                                         |             |                                  |                                                       |                                          |                                    |                                                             |  |  |
| Specimen                                                                                                                                                | 1           |                                  | Before                                                | Test                                     | After                              | Test                                                        |  |  |
| Tare I.D. No.                                                                                                                                           |             |                                  | Ring, Ston                                            | e, Paper                                 | B8                                 |                                                             |  |  |
| Wt. of Tare + Wet S                                                                                                                                     | oil (g)     |                                  | 325.                                                  | 18                                       | 158                                | 158.15                                                      |  |  |
| Wt. of Tare + Dry So                                                                                                                                    | oil (a)     |                                  | _                                                     |                                          |                                    |                                                             |  |  |
|                                                                                                                                                         | uii (g)     |                                  |                                                       |                                          | 141.36                             |                                                             |  |  |
| Wt. of Tare (g)                                                                                                                                         | ui (g)      |                                  | 194.                                                  | 90                                       |                                    | I.36<br>.44                                                 |  |  |
|                                                                                                                                                         | un (g)      |                                  | 194.<br>130.                                          |                                          | 28                                 |                                                             |  |  |
| Wt. of Tare (g)                                                                                                                                         | on (g)      |                                  | -                                                     | 28                                       | 28<br>129                          | .44                                                         |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                                                  | un (g)      |                                  | 130.                                                  | 28<br>92                                 | 28<br>129<br>112                   | .44<br>9.71                                                 |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                           |             |                                  | 130.<br>112.                                          | 28<br>92<br>36                           | 28<br>129<br>112<br>16             | .44<br>9.71<br>2.92                                         |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       |             |                                  | 130.<br>112.<br>17.3                                  | 28<br>92<br>36                           | 28<br>129<br>112<br>16             | .44<br>9.71<br>2.92<br>.79                                  |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                  |             | ρ <sub>d</sub>                   | 130.<br>112.<br>17.3                                  | 28<br>92<br>36                           | 28<br>129<br>112<br>16             | .44<br>9.71<br>2.92<br>.79<br>4.9                           |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                  |             | ρ <sub>d</sub><br>γ <sub>d</sub> | 130.<br>112.<br>17.3<br>15.                           | 28<br>92<br>36<br>4<br>Final Dry Density | 28<br>129<br>112<br>16<br>14<br>Ρd | .44<br>9.71<br>2.92<br>.79<br>4.9<br>1.88 g/cm              |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh | nt          | γd                               | 130.<br>112.<br>17.3<br>15.<br>1.78 g/cm <sup>3</sup> | 28<br>92<br>36<br>4<br>Final Dry Density | 28<br>129<br>112<br>16<br>14<br>Ρd | .44<br>9.71<br>2.92<br>.79<br>4.9<br>1.88 g/cm <sup>3</sup> |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       | nt          | γd                               | 130.<br>112.<br>17.3<br>15.<br>1.78 g/cm <sup>3</sup> | 28<br>92<br>36<br>4<br>Final Dry Density | 28<br>129<br>112<br>16<br>14<br>Ρd | .44<br>9.71<br>2.92<br>.79<br>4.9<br>1.88 g/cm              |  |  |

| Project:                                                                                                      | An experimental investigation of the behavior of compacted sand/clay mixtures |                     |                          |                                                     |           |            |                   |                                               |                          |                                        |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------|--------------------------|-----------------------------------------------------|-----------|------------|-------------------|-----------------------------------------------|--------------------------|----------------------------------------|
| Sample: Mc                                                                                                    | dified Pro                                                                    | ctor co             | mpacted, 75%             | sand                                                | 25% bento | onite, 16% | water cont        | tent (M                                       | 25B16W                   | ')                                     |
| Consolid. Type                                                                                                | EI25-047                                                                      | 9                   |                          |                                                     | Consolid. | Туре       | Fixed Ring        | 3                                             |                          |                                        |
| Height of Spec.                                                                                               | 20                                                                            | mm                  | Dia. of Spec             |                                                     | 63.5      | mm         | Area of Sp        | bec.                                          | 3166.9                   | $\rm{mm}^2$                            |
| Weight of Ring                                                                                                | 66.3                                                                          | g                   | Wt. of Stone             |                                                     | 130       | g          | Wt. of Pap        | ber                                           | 0.3                      | g                                      |
| Specific Gravity                                                                                              | 2.64                                                                          |                     | Tested By                |                                                     | Yueru Che | en         | Date              |                                               | 3/27/                    | 2009                                   |
| Trimmings                                                                                                     | \$                                                                            |                     |                          | 1                                                   |           |            |                   | 2                                             |                          |                                        |
| Tin No.                                                                                                       |                                                                               |                     |                          | MAJIE                                               | 5         |            | FJ-3              |                                               |                          |                                        |
| Wt. of Tin (g)                                                                                                |                                                                               |                     | 28.67                    |                                                     |           |            | 29.               | 03                                            |                          |                                        |
| Wt. of Tin + Wet Soi                                                                                          | l (g)                                                                         |                     |                          | 137.45                                              | 5         |            | 165.28            |                                               |                          |                                        |
| Wt. of Tin + Dry Soil                                                                                         | (g)                                                                           |                     |                          | 122.55                                              | 5         |            | 146.5             |                                               |                          |                                        |
| Wt. of Dry Soil (g)                                                                                           |                                                                               |                     |                          | 93.88                                               | 3         |            |                   | 117                                           | .47                      |                                        |
| Wt. of Water (g)                                                                                              |                                                                               |                     |                          | 14.9                                                |           |            |                   | 18.                                           | 78                       |                                        |
| Water Content (%)                                                                                             |                                                                               |                     |                          |                                                     |           |            | 16                | .0                                            |                          |                                        |
| Average Water Cont                                                                                            | ent (%)                                                                       |                     |                          |                                                     |           | 15.9       |                   |                                               |                          |                                        |
|                                                                                                               |                                                                               |                     |                          |                                                     |           |            |                   |                                               |                          |                                        |
| Specimen                                                                                                      | I                                                                             |                     | Be                       | fore T                                              | est       |            |                   | After                                         | Test                     |                                        |
| Tare I.D. No.                                                                                                 |                                                                               |                     | Ring, S                  | Stone,                                              | , Paper   |            | 5                 |                                               |                          |                                        |
| Wt. of Tare + Wet S                                                                                           | oil (g)                                                                       |                     | ;                        | 325.62                                              | 2         |            | 157.33            |                                               |                          |                                        |
| Wt. of Tare + Dry So                                                                                          | oil (g)                                                                       |                     |                          | -                                                   |           |            |                   | 139                                           | .58                      |                                        |
| Wt. of Tare (g)                                                                                               |                                                                               |                     |                          | 196.60                                              | 0         |            |                   | 28.                                           | 89                       |                                        |
| Wt. of Wet Soil (g)                                                                                           |                                                                               |                     |                          | 129.02                                              | 2         |            |                   | 128                                           | .44                      |                                        |
|                                                                                                               |                                                                               |                     |                          |                                                     |           |            | 110.69            |                                               |                          |                                        |
| Wt. of Dry Soil (g)                                                                                           |                                                                               |                     |                          | 110.69                                              | 9         |            |                   | 110                                           | .09                      |                                        |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       |                                                                               |                     |                          | 110.69<br>18.33                                     |           |            |                   | 110<br>17.                                    |                          |                                        |
| ·                                                                                                             |                                                                               |                     |                          |                                                     |           |            |                   | -                                             | 75                       |                                        |
| Wt. of Water (g)                                                                                              |                                                                               |                     |                          | 18.33<br>16.6                                       | 3         |            |                   | 17.                                           | 75                       |                                        |
| Wt. of Water (g)<br>Water Content (%)                                                                         |                                                                               | ρ <sub>d</sub>      | 1.75 g/c                 | 18.33<br>16.6<br>cm <sup>3</sup>                    |           | Density    |                   | 17.                                           | 75                       | -                                      |
| Wt. of Water (g)<br>Water Content (%)                                                                         | nt                                                                            | Pd<br>γd            | 1.75 g/c                 | 18.33<br>16.6                                       | 3         | -          | ht                | 17.<br>16                                     | 75<br>.0                 | -                                      |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion result                                                                   | γd                  | 1.75 g/c<br>17.1 kN      | 18.33<br>16.6<br>cm <sup>3</sup><br>/m <sup>3</sup> | Final Dry | Unit Weig  |                   | 17.<br>16<br>ρ <sub>d</sub>                   | 75<br>.0<br>1.85<br>18.2 | g/cm <sup>3</sup><br>kN/m <sup>3</sup> |
| Wt. of Water (g)                                                                                              |                                                                               | γ <sub>d</sub><br>s | 1.75 g/c<br>17.1 kN<br>2 | 18.33<br>16.6                                       | Final Dry | -          | ht<br>6<br>0.8000 | 17.<br>16<br>ρ <sub>d</sub><br>γ <sub>d</sub> | 75<br>.0<br>1.85         | -                                      |

| Project:                                                                | An expe    | rimenta  | al investiga        | ation of th                                                                   | e behavior   | of compa        | cted sand/c | lay mi            | tures     |                 |
|-------------------------------------------------------------------------|------------|----------|---------------------|-------------------------------------------------------------------------------|--------------|-----------------|-------------|-------------------|-----------|-----------------|
| Sample: Moo                                                             | dified Pro | ctor co  | mpacted,            | 75% sand                                                                      | d 25% bent   | onite, 17%      | 6 water con | tent (M           | 25B17W    | /)              |
| Consolid. Type                                                          | EI25-047   | '9       |                     |                                                                               | Consolid     | . Туре          | Fixed Rin   | g                 |           |                 |
| Height of Spec.                                                         | 20         | mm       | Dia. of S           | spec.                                                                         | 63.5         | mm              | Area of S   | pec.              | 3166.9    | mm <sup>2</sup> |
| Weight of Ring                                                          | 66.3       | g        | Wt. of S            | tone                                                                          | 130          | g               | Wt. of Pa   | oer               | 0.3       | g               |
| Specific Gravity                                                        | 2.64       |          | Tested I            | Зу                                                                            | Yueru Ch     | en              | Date        | Date 3/25/2009    |           |                 |
| Trimmings                                                               |            |          |                     | 1                                                                             |              |                 |             | 2                 | 2         |                 |
| Tin No.                                                                 |            |          |                     | MAJI                                                                          | D            |                 | FJ-3        |                   |           |                 |
| Wt. of Tin (g)                                                          |            |          |                     | 28.6                                                                          | 5            |                 | 29          |                   |           |                 |
| Wt. of Tin + Wet Soil                                                   | (g)        |          |                     | 159.3                                                                         | 2            |                 | 158.38      |                   |           |                 |
| Wt. of Tin + Dry Soil (                                                 | g)         |          |                     | 140                                                                           |              |                 | 139.3       |                   |           |                 |
| Wt. of Dry Soil (g)                                                     |            |          |                     | 111.3                                                                         | 35           |                 |             | 11(               | 0.3       |                 |
| Wt. of Water (g)                                                        |            |          |                     | 19.2                                                                          | 2            |                 |             | 19.               | 08        |                 |
| Water Content (%)                                                       |            |          |                     | 17.2                                                                          | 2            |                 |             | 17                | .3        |                 |
| Average Water Conte                                                     | ent (%)    |          |                     |                                                                               |              | 17.3            |             |                   |           |                 |
|                                                                         |            |          |                     |                                                                               |              |                 |             |                   |           |                 |
| Specimen                                                                |            |          |                     | Before <sup>-</sup>                                                           | Test         |                 |             | After             | Test      |                 |
| Tare I.D. No.                                                           |            |          | Ri                  | ng, Stone                                                                     | e, Paper     |                 |             | 5                 | 5         |                 |
| Wt. of Tare + Wet Sc                                                    | oil (g)    |          |                     | 323.                                                                          | 2            |                 |             | 154.7             |           |                 |
| Wt. of Tare + Dry So                                                    | il (g)     |          |                     | -                                                                             |              |                 |             | 130               | 5.1       |                 |
| Wt. of Tare (g)                                                         |            |          |                     | 196.6                                                                         | 60           |                 |             | 27                | .4        |                 |
| Wt. of Wet Soil (g)                                                     |            |          |                     | 126.6                                                                         | 60           |                 |             | 12                | 7.3       |                 |
| Wt. of Dry Soil (g)                                                     |            |          |                     | 108.7                                                                         | 0            |                 |             | 108               | 3.7       |                 |
| Wt. of Water (g)                                                        |            |          |                     | 17.9                                                                          | 0            |                 |             | 18                | .6        |                 |
| Water Content (%)                                                       |            |          |                     | 16.5                                                                          | 5            |                 |             | 17                | .1        |                 |
|                                                                         |            |          |                     |                                                                               |              |                 |             |                   |           |                 |
|                                                                         |            | $\rho_d$ | 1.72                | g/cm <sup>3</sup>                                                             | Final Dry    | -               |             | $\rho_{\text{d}}$ | 1.87      | g/cm            |
| Initial Dry Density                                                     |            |          |                     | 2                                                                             | E's al David | 11-11-11-14/-1- | 4           |                   | 40.0      | 1.8.17          |
|                                                                         | t          | γd       | 16.8                | $_{\rm H}$ 16.8 kN/m <sup>3</sup> Final Dry Unit Weight $\gamma_{\rm d}$ 18.3 |              |                 | kN/m        |                   |           |                 |
| Initial Dry Density<br>Initial Dry Unit Weight<br>End of load deformati | on result  | S        |                     | kN/m <sup>3</sup>                                                             | -            | _               |             | Ϋ́d               |           | kN/m            |
| Initial Dry Unit Weight                                                 |            | S        | 16.8<br>2<br>0.2310 | kN/m <sup>3</sup><br>3<br>0.3860                                              | 4            | 5<br>0.8920     | 6<br>1.3100 |                   | 7<br>6600 | kN/m            |

| Project:                                                                                                                                                    | An experimental investigation of the behavior of compacted sand/clay mixtures odified Proctor compacted, 75% sand 25% bentonite, 19% water content (M25B19W) |                                  |                                                                                    |                                                           | acted sand/clay miz                          | xtures                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------|--|
| Sample: Mc                                                                                                                                                  | dified Pro                                                                                                                                                   | ctor co                          | mpacted, 75% sand                                                                  | d 25% bentonite, 199                                      | % water content (N                           | 125B19W)                                                                |  |
| Consolid. Type                                                                                                                                              | El25-047                                                                                                                                                     | '9                               |                                                                                    | Consolid. Type                                            | Fixed Ring                                   | -                                                                       |  |
| Height of Spec.                                                                                                                                             | 20                                                                                                                                                           | mm                               | Dia. of Spec.                                                                      | 63.5 mm                                                   | Area of Spec.                                | 3166.9 mm <sup>2</sup>                                                  |  |
| Weight of Ring                                                                                                                                              | 63                                                                                                                                                           | g                                | Wt. of Stone                                                                       | 128.3 g                                                   | Wt. of Paper                                 | 0.3 g                                                                   |  |
| Specific Gravity                                                                                                                                            | 2.64                                                                                                                                                         |                                  | Tested By                                                                          | Yueru Chen                                                | Date                                         | 3/25/2009                                                               |  |
| Trimmings                                                                                                                                                   |                                                                                                                                                              |                                  | 1                                                                                  |                                                           |                                              | 2                                                                       |  |
| Tin No.                                                                                                                                                     |                                                                                                                                                              |                                  | 213                                                                                |                                                           | B8                                           |                                                                         |  |
| Wt. of Tin (g)                                                                                                                                              |                                                                                                                                                              |                                  | 27.9                                                                               | )                                                         | 28                                           | 3.4                                                                     |  |
| Wt. of Tin + Wet Soil                                                                                                                                       | l (g)                                                                                                                                                        |                                  | 162.3                                                                              | 8                                                         | 171.4                                        |                                                                         |  |
| Wt. of Tin + Dry Soil                                                                                                                                       | (g)                                                                                                                                                          |                                  | 140.8                                                                              | 8                                                         | 14                                           | 8.2                                                                     |  |
| Wt. of Dry Soil (g)                                                                                                                                         |                                                                                                                                                              |                                  | 112.                                                                               | 9                                                         | 11                                           | 9.8                                                                     |  |
| Wt. of Water (g)                                                                                                                                            |                                                                                                                                                              |                                  | 22                                                                                 |                                                           | 23                                           | 3.2                                                                     |  |
| Water Content (%)                                                                                                                                           |                                                                                                                                                              |                                  | 19.5                                                                               | 5                                                         | 19                                           | 9.4                                                                     |  |
| Average Water Cont                                                                                                                                          | ent (%)                                                                                                                                                      |                                  |                                                                                    | 19.4                                                      |                                              |                                                                         |  |
|                                                                                                                                                             |                                                                                                                                                              |                                  |                                                                                    |                                                           |                                              |                                                                         |  |
| Specimen                                                                                                                                                    | I                                                                                                                                                            |                                  | Before                                                                             | Test                                                      | After                                        | Test                                                                    |  |
| Tare I.D. No.                                                                                                                                               |                                                                                                                                                              |                                  | Ring, Stone                                                                        | e, Paper                                                  | 205                                          |                                                                         |  |
| Wt. of Tare + Wet S                                                                                                                                         | oil (g)                                                                                                                                                      |                                  | 314.8                                                                              | 37                                                        | 1:                                           | 52                                                                      |  |
| Wt. of Tare + Dry Se                                                                                                                                        | oil (g)                                                                                                                                                      |                                  | -                                                                                  |                                                           | 13                                           | 22                                                                      |  |
|                                                                                                                                                             |                                                                                                                                                              |                                  |                                                                                    |                                                           | 132.2                                        |                                                                         |  |
| Wt. of Tare (g)                                                                                                                                             |                                                                                                                                                              |                                  | 191.6                                                                              | 60                                                        | 29                                           | ).7                                                                     |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                                                      |                                                                                                                                                              |                                  | 191.6<br>123.2                                                                     |                                                           |                                              |                                                                         |  |
|                                                                                                                                                             |                                                                                                                                                              |                                  |                                                                                    | 27                                                        | 12                                           | 9.7                                                                     |  |
| Wt. of Wet Soil (g)                                                                                                                                         |                                                                                                                                                              |                                  | 123.2                                                                              | 50                                                        | 12<br>10                                     | ).7<br>2.3                                                              |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                                                  |                                                                                                                                                              |                                  | 123.2<br>102.5                                                                     | 27<br>50<br>7                                             | 12<br>10<br>19                               | 9.7<br>2.3<br>2.5                                                       |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              |                                                                                                                                                              |                                  | 123.2<br>102.5<br>20.7                                                             | 27<br>50<br>7                                             | 12<br>10<br>19                               | 9.7<br>2.3<br>2.5<br>9.8                                                |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         |                                                                                                                                                              | Ρ <sub>d</sub>                   | 123.2<br>102.5<br>20.7<br>20.3<br>1.62 g/cm <sup>3</sup>                           | Final Dry Density                                         | 12<br>10<br>19<br>19<br>Ρd                   | 9.7<br>2.3<br>2.5<br>9.8<br>9.3<br>-0.96 g/cm                           |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         | ıt                                                                                                                                                           | Ρ <sub>d</sub><br>γ <sub>d</sub> | 123.2<br>102.5<br>20.7<br>20.3                                                     | 27<br>50<br>7<br>3                                        | 12<br>10<br>19<br>19<br>Ρd                   | 9.7<br>2.3<br>2.5<br>9.8<br>9.3<br>-0.96 g/cm                           |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion result                                                                                                                                                  | γ <sub>d</sub><br>s              | 123.2<br>102.5<br>20.7<br>20.3<br>1.62 g/cm <sup>3</sup><br>15.9 kN/m <sup>3</sup> | 27<br>50<br>7<br>Final Dry Density<br>Final Dry Unit Weig | 12<br>10<br>19<br>19<br>19<br>Ρα<br>9d<br>9d | 9.7<br>2.3<br>2.5<br>9.8<br>9.3<br>-0.96 g/cm <sup>2</sup><br>-9.4 kN/m |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh                        |                                                                                                                                                              | γ <sub>d</sub><br>s              | 123.2<br>102.5<br>20.7<br>20.3<br>1.62 g/cm <sup>3</sup>                           | Final Dry Density<br>Final Dry Unit Weig<br>4 5           | 12<br>10<br>19<br>19<br>9d<br>9d<br>γd       | 9.7<br>2.3<br>2.5<br>9.8<br>9.3<br>-0.96 g/cm                           |  |

| 110,000                                                                                                                        | ject: An experimental investigation of the behavior of compacted sand/clay mixtures<br>nple: Modified Proctor compacted, 50% sand 50% bentonite, 13% water content (M50B13W) |                |                                   |                                                                          |            |                      |             |                                                  |                              |                 |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------|--------------------------------------------------------------------------|------------|----------------------|-------------|--------------------------------------------------|------------------------------|-----------------|
| Sample: Mo                                                                                                                     | dified Pro                                                                                                                                                                   | ctor co        | mpacted, 50% s                    | and 50                                                                   | 0% bento   | onite, 139           | % water con | tent (M                                          | 50B13W                       | /)              |
| Consolid. Type                                                                                                                 | El25-047                                                                                                                                                                     | 9              |                                   | С                                                                        | Consolid.  | Туре                 | Fixed Rin   | g                                                |                              |                 |
| Height of Spec.                                                                                                                | 20                                                                                                                                                                           | mm             | Dia. of Spec.                     |                                                                          | 63.5       | mm                   | Area of S   | pec.                                             | 3166.9                       | mm <sup>2</sup> |
| Weight of Ring                                                                                                                 | 66.27                                                                                                                                                                        | g              | Wt. of Stone                      |                                                                          | 128.35     | g                    | Wt. of Pa   | oer                                              | 0.3                          | g               |
| Specific Gravity                                                                                                               | 2.63                                                                                                                                                                         |                | Tested By                         | Υı                                                                       | ueru Che   | en                   | Date        |                                                  | 4/3/2                        | 2009            |
| Trimmings                                                                                                                      | ;                                                                                                                                                                            |                |                                   | 1                                                                        |            |                      |             | 2                                                | 2                            |                 |
| Tin No.                                                                                                                        |                                                                                                                                                                              |                | 2                                 | 404                                                                      |            |                      |             | 40                                               | )5                           |                 |
| Wt. of Tin (g)                                                                                                                 |                                                                                                                                                                              |                | 2                                 | 28.71                                                                    |            |                      |             | 27                                               | .7                           |                 |
| Wt. of Tin + Wet Soil                                                                                                          | (g)                                                                                                                                                                          |                | 145.47                            |                                                                          |            | 189                  | 9.7         |                                                  |                              |                 |
| Wt. of Tin + Dry Soil                                                                                                          | (g)                                                                                                                                                                          |                | 13                                | 32.52                                                                    |            |                      | 171.11      |                                                  |                              |                 |
| Wt. of Dry Soil (g)                                                                                                            |                                                                                                                                                                              |                | 10                                | 03.81                                                                    |            |                      |             | 143                                              | .41                          |                 |
| Wt. of Water (g)                                                                                                               |                                                                                                                                                                              |                | 1:                                | 2.95                                                                     |            |                      |             | 18.                                              | 59                           |                 |
| Water Content (%)                                                                                                              |                                                                                                                                                                              |                | 1                                 | 12.5                                                                     |            |                      |             | 13                                               | .0                           |                 |
| Average Water Cont                                                                                                             | ent (%)                                                                                                                                                                      |                |                                   |                                                                          |            | 12.7                 |             |                                                  |                              |                 |
|                                                                                                                                |                                                                                                                                                                              |                |                                   |                                                                          |            |                      |             |                                                  |                              |                 |
| Specimen                                                                                                                       |                                                                                                                                                                              |                | Befo                              | ore Tes                                                                  | t          |                      |             | After                                            | Test                         |                 |
| Tare I.D. No.                                                                                                                  |                                                                                                                                                                              |                | Ring, St                          | one, P                                                                   | aper       |                      | 101         |                                                  |                              |                 |
|                                                                                                                                | - 1 ( - )                                                                                                                                                                    |                | 31                                | 15.63                                                                    |            |                      |             | 148                                              |                              |                 |
| Wt. of Tare + Wet S                                                                                                            | oli (g)                                                                                                                                                                      |                | 315.63 148                        |                                                                          |            |                      |             |                                                  |                              |                 |
| Wt. of Tare + Wet S<br>Wt. of Tare + Dry So                                                                                    |                                                                                                                                                                              |                |                                   | -                                                                        |            |                      |             | 134                                              | .81                          |                 |
|                                                                                                                                |                                                                                                                                                                              |                | 19                                | -<br>94.92                                                               |            |                      |             | 134<br>28.                                       | -                            |                 |
| Wt. of Tare + Dry So                                                                                                           |                                                                                                                                                                              |                |                                   | -<br>94.92<br>20.71                                                      |            |                      |             | -                                                | 02                           |                 |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                        |                                                                                                                                                                              |                | 12                                |                                                                          |            |                      |             | 28.                                              | 02<br>.98                    |                 |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 |                                                                                                                                                                              |                | 12<br>10                          | 20.71                                                                    |            |                      |             | 28.<br>119                                       | 02<br>.98<br>.79             |                 |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          |                                                                                                                                                                              |                | 12<br>10<br>11                    | 20.71<br>06.79                                                           |            |                      |             | 28.<br>119<br>106                                | 02<br>.98<br>.79<br>19       |                 |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) |                                                                                                                                                                              |                | 12<br>10<br>1:<br>1               | 20.71<br>06.79<br>3.92<br>13.0                                           |            |                      |             | 28.<br>119<br>106<br>13.<br>12                   | 02<br>.98<br>.79<br>19<br>.4 |                 |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | bil (g)                                                                                                                                                                      | ρ <sub>d</sub> | 12<br>10<br>1:<br>1:<br>1.69 g/cm | 20.71<br>06.79<br>3.92<br>13.0<br>n <sup>3</sup> Fi                      | inal Dry I |                      |             | 28.<br>119<br>106<br>13.<br>12<br>Ρ <sub>d</sub> | 02<br>.98<br>.79<br>19<br>.4 | -               |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | bil (g)                                                                                                                                                                      | γd             | 12<br>10<br>1:<br>1               | 20.71<br>06.79<br>3.92<br>13.0<br>n <sup>3</sup> Fi                      |            | Density<br>Unit Weig | ght         | 28.<br>119<br>106<br>13.<br>12                   | 02<br>.98<br>.79<br>19<br>.4 | -               |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | bil (g)                                                                                                                                                                      | γd             | 12<br>10<br>1:<br>1:<br>1.69 g/cm | 20.71<br>26.79<br>3.92<br>13.0<br>n <sup>3</sup> Fi<br>m <sup>3</sup> Fi |            |                      | ght 6       | 28.<br>119<br>106<br>13.<br>12<br>Ρ <sub>d</sub> | 02<br>.98<br>.79<br>19<br>.4 | g/cm<br>kN/m    |

| Project:                                                                             | An expe     | rimenta           | al investiga | tion of th        | e behavior  | of compa    | cted sand/o | clay mix          | ktures      |                 |  |
|--------------------------------------------------------------------------------------|-------------|-------------------|--------------|-------------------|-------------|-------------|-------------|-------------------|-------------|-----------------|--|
| Sample: Mo                                                                           | odified Pro | ctor co           | mpacted, 5   | 50% sand          | 50% bent    | onite, 14%  | % water cor | ntent (N          | 150B14W     | /)              |  |
| Consolid. Type                                                                       | EI25-047    | '9                |              |                   | Consolid    | Туре        | Fixed Rin   | g                 |             |                 |  |
| Height of Spec.                                                                      | 20          | mm                | Dia. of S    | pec.              | 63.5        | mm          | Area of S   | pec.              | 3166.9      | mm <sup>2</sup> |  |
| Weight of Ring                                                                       | 62.91       | g                 | Wt. of St    | one               | 134.64      | g           | Wt. of Pa   | per               | 0.3         | g               |  |
| Specific Gravity                                                                     | 2.63        |                   | Tested B     | у                 | Yueru Ch    | en          | Date        |                   | 4/28/       | /2009           |  |
| Trimmings                                                                            | 3           |                   |              | 1                 |             |             |             | 2                 | 2           |                 |  |
| Tin No.                                                                              |             |                   |              | 7                 | ,           |             |             | 201               |             |                 |  |
| Wt. of Tin (g)                                                                       |             |                   |              | 28.1              |             |             |             | 28                | .88         |                 |  |
| Wt. of Tin + Wet Soi                                                                 | l (g)       |                   |              | 141.4             | 7           |             |             | 171               | .07         |                 |  |
| Wt. of Tin + Dry Soil                                                                | (0)         |                   |              | 126.8             | 7           |             | 154.65      |                   |             |                 |  |
| Wt. of Dry Soil (g)                                                                  |             |                   |              | 98.77             | 7           |             |             | 125               | 5.77        |                 |  |
| Wt. of Water (g)                                                                     |             |                   |              | 14.6              | i           |             |             | 16                | .42         |                 |  |
| Water Content (%)                                                                    |             |                   |              | 14.8              | i           |             |             | 13                | 8.1         |                 |  |
| Average Water Cont                                                                   | ent (%)     |                   |              |                   |             | 13.9        |             |                   |             |                 |  |
|                                                                                      |             |                   |              |                   |             |             |             |                   |             |                 |  |
| Specimer                                                                             | 1           |                   |              | Before 7          | Fest        |             |             | After             | Test        |                 |  |
| Tare I.D. No.                                                                        |             |                   | Rir          | ng, Stone         | , Paper     |             |             | B-                | B-19        |                 |  |
| Wt. of Tare + Wet S                                                                  | ioil (g)    |                   |              | 324.2             | 4           |             |             | 153.96            |             |                 |  |
| Wt. of Tare + Dry Se                                                                 | oil (g)     |                   |              | -                 |             |             | 138.18      |                   |             |                 |  |
| Wt. of Tare (g)                                                                      |             |                   |              | 197.8             | 5           |             |             | 27                | <b>'</b> .4 |                 |  |
| Wt. of Wet Soil (g)                                                                  |             |                   |              | 126.3             | 9           |             |             | 126               | 6.56        |                 |  |
| Wt. of Dry Soil (g)                                                                  |             |                   |              | 110.7             | 8           |             |             | 110               | ).78        |                 |  |
| Wt. of Water (g)                                                                     |             |                   |              | 15.6 <sup>-</sup> | 1           |             |             | 15                | .78         |                 |  |
| Water Content (%)                                                                    |             |                   |              | 14.1              |             |             |             | 14                | l.2         |                 |  |
|                                                                                      |             |                   |              | -                 |             |             |             |                   |             |                 |  |
| Initial Dry Density                                                                  |             | $\rho_{\text{d}}$ | 1.75         | g/cm <sup>3</sup> | Final Dry   |             |             | $\rho_{\text{d}}$ | 1.80        | g/cm            |  |
|                                                                                      | nt          | γd                | 17.1         | kN/m <sup>3</sup> | Final Dry   | Unit Weig   | ght         | γd                | 17.6        | kN/m            |  |
| , ,                                                                                  |             |                   |              |                   |             |             |             |                   |             |                 |  |
| End of load deforma                                                                  | tion result | S                 | 0            | 0                 | A           | ~           | <u>^</u>    |                   | 7           |                 |  |
| Initial Dry Unit Weigh<br>End of load deforma<br>Load Step No.<br>Corrected Def (mm) |             |                   | 2<br>0.0432  | 3<br>0.0610       | 4<br>0.1090 | 5<br>0.2080 | 6<br>0.3330 | 0                 | 7<br>5260   |                 |  |

| Project:                                                                                                    | An expe     | rimenta  | al investigati      | on of the                        | e behavior                                                              | of compa    | cted sand/c | lay mix           | tures   |         |
|-------------------------------------------------------------------------------------------------------------|-------------|----------|---------------------|----------------------------------|-------------------------------------------------------------------------|-------------|-------------|-------------------|---------|---------|
| Sample: Mo                                                                                                  | odified Pro | ctor co  | mpacted, 50         | )% sand                          | 50% bent                                                                | onite, 15%  | 6 water con | itent (M          | I50B15W | /)      |
| Consolid. Type                                                                                              | EI25-047    | '9       |                     |                                  | Consolid                                                                | . Туре      | Fixed Rin   | g                 |         |         |
| Height of Spec.                                                                                             | 20          | mm       | Dia. of Sp          | ec.                              | 63.5                                                                    | mm          | Area of S   | pec.              | 3166.9  | $mm^2$  |
| Weight of Ring                                                                                              | 66.3        | g        | Wt. of Sto          | ne                               | 133.6                                                                   | g           | Wt. of Pa   | per               | 0.3     | g       |
| Specific Gravity                                                                                            | 2.63        |          | Tested By           |                                  | Yueru Ch                                                                | en          | Date        |                   | 3/31/   | 2009    |
| Trimmings                                                                                                   | 6           |          |                     | 1                                |                                                                         |             |             | 2                 | 2       |         |
| Tin No.                                                                                                     |             |          |                     | 404                              |                                                                         |             | 405         |                   |         |         |
| Wt. of Tin (g)                                                                                              |             |          |                     | 28.7                             |                                                                         |             |             | 27                | .7      |         |
| Wt. of Tin + Wet Soi                                                                                        | l (g)       |          |                     | 151.2                            | 1                                                                       |             | 169.24      |                   |         |         |
| Wt. of Tin + Dry Soil                                                                                       | (g)         |          |                     | 134.9                            | 3                                                                       |             |             | 151               | .15     |         |
| Wt. of Dry Soil (g)                                                                                         |             |          |                     | 106.2                            | 3                                                                       |             |             | 123               | .45     |         |
| Wt. of Water (g)                                                                                            |             |          |                     | 16.28                            | 3                                                                       |             |             | 18.               | 09      |         |
| Water Content (%)                                                                                           |             |          |                     | 15.3                             |                                                                         |             |             | 14                | .7      |         |
| Average Water Cont                                                                                          | ent (%)     |          |                     |                                  |                                                                         | 15.0        |             |                   |         |         |
|                                                                                                             |             |          |                     |                                  |                                                                         |             |             |                   |         |         |
| Specimer                                                                                                    | 1           |          |                     | Before T                         | 「est                                                                    |             |             | After             | Test    |         |
| Tare I.D. No.                                                                                               |             |          | Ring                | g, Stone                         | , Paper                                                                 |             |             | 10                | )1      |         |
| Wt. of Tare + Wet S                                                                                         | ioil (g)    |          |                     | 327.4                            | 8                                                                       |             |             | 154               | .81     |         |
| Wt. of Tare + Dry Se                                                                                        | oil (g)     |          |                     | -                                |                                                                         |             |             | 138               | .41     |         |
| Wt. of Tare (g)                                                                                             |             |          |                     | 200.2                            | 0                                                                       |             |             | 28.               | .01     |         |
| Wt. of Wet Soil (g)                                                                                         |             |          |                     | 127.2                            | 8                                                                       |             |             | 120               | 5.8     |         |
| Wt. of Dry Soil (g)                                                                                         |             |          |                     | 110.4                            | 0                                                                       |             |             | 11(               | 0.4     |         |
| Wt. of Water (g)                                                                                            |             |          |                     | 16.88                            | 3                                                                       |             |             | 16                | .4      |         |
| Water Content (%)                                                                                           |             |          |                     | 15.3                             |                                                                         |             |             | 14                | .9      |         |
|                                                                                                             |             |          |                     |                                  |                                                                         |             |             |                   |         |         |
|                                                                                                             |             | $\rho_d$ |                     | g/cm <sup>3</sup>                | Final Dry                                                               | -           |             | $\rho_{\text{d}}$ | 1.81    | g/cm    |
|                                                                                                             |             |          |                     |                                  | Linel Dr.                                                               | Linit Waia  | ht          | γ.                | 17.8    | kN/m    |
| Initial Dry Unit Weigh                                                                                      |             | γd       | 17.1                | kN/m <sup>3</sup>                | $\gamma_d$ 17.1 kN/m <sup>3</sup> Final Dry Unit Weight $\gamma_d$ 17.8 |             |             | KIN/III           |         |         |
| Initial Dry Unit Weigl<br>End of load deforma                                                               | tion result | S        |                     |                                  |                                                                         |             |             | 7 d               | -       | KIN/III |
| Initial Dry Density<br>Initial Dry Unit Weigl<br>End of load deforma<br>Load Step No.<br>Corrected Def (mm) |             | S        | 17.1<br>2<br>0.2620 | kN/m <sup>3</sup><br>3<br>0.3150 | 4<br>0.3760                                                             | 5<br>0.4700 | 6 0.5890    |                   | 7       | KIN/III |

| Project:                                                                                                                             | An experimental investigation of the behavior of compacted sand/clay mixtures<br>Modified Proctor compacted, 50% sand 50% bentonite, 16% water content (M50B16W) |                                  |                                                                                    |                                                            | xtures                                                           |                                                                   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|--|--|
| Sample: Mo                                                                                                                           | dified Pro                                                                                                                                                       | ctor co                          | mpacted, 50% sand                                                                  | d 50% bentonite, 169                                       | % water content (N                                               | 150B16W)                                                          |  |  |
| Consolid. Type                                                                                                                       | EI25-047                                                                                                                                                         | 9                                |                                                                                    | Consolid. Type                                             | Fixed Ring                                                       |                                                                   |  |  |
| Height of Spec.                                                                                                                      | 20                                                                                                                                                               | mm                               | Dia. of Spec.                                                                      | 63.5 mm                                                    | Area of Spec.                                                    | 3166.9 mm <sup>2</sup>                                            |  |  |
| Weight of Ring                                                                                                                       | 66.3                                                                                                                                                             | g                                | Wt. of Stone                                                                       | 133.74 g                                                   | Wt. of Paper                                                     | 0.3 g                                                             |  |  |
| Specific Gravity                                                                                                                     | 2.63                                                                                                                                                             |                                  | Tested By                                                                          | Yueru Chen                                                 | Date                                                             | 4/3/2009                                                          |  |  |
| Trimmings                                                                                                                            | 5                                                                                                                                                                |                                  | 1                                                                                  |                                                            | :                                                                | 2                                                                 |  |  |
| Tin No.                                                                                                                              |                                                                                                                                                                  |                                  | 213                                                                                | i                                                          | 20                                                               | 05                                                                |  |  |
| Wt. of Tin (g)                                                                                                                       |                                                                                                                                                                  |                                  | 27.9                                                                               | 2                                                          | 29                                                               | .73                                                               |  |  |
| Wt. of Tin + Wet Soi                                                                                                                 | l (g)                                                                                                                                                            |                                  | 160.9                                                                              | 97                                                         | 142.17                                                           |                                                                   |  |  |
| Wt. of Tin + Dry Soil                                                                                                                | (g)                                                                                                                                                              |                                  | 142.7                                                                              | <b>7</b> 6                                                 | 127                                                              | 7.02                                                              |  |  |
| Wt. of Dry Soil (g)                                                                                                                  |                                                                                                                                                                  |                                  | 114.8                                                                              | 34                                                         | 97                                                               | .29                                                               |  |  |
| Wt. of Water (g)                                                                                                                     |                                                                                                                                                                  |                                  | 18.2                                                                               | 1                                                          | 15                                                               | .15                                                               |  |  |
| Water Content (%)                                                                                                                    |                                                                                                                                                                  |                                  | 15.9                                                                               | )                                                          | 15                                                               | 5.6                                                               |  |  |
| Average Water Cont                                                                                                                   | ent (%)                                                                                                                                                          |                                  |                                                                                    | 15.7                                                       |                                                                  |                                                                   |  |  |
|                                                                                                                                      |                                                                                                                                                                  |                                  |                                                                                    |                                                            |                                                                  |                                                                   |  |  |
| Specimen                                                                                                                             | 1                                                                                                                                                                |                                  | Before                                                                             | Test                                                       | After                                                            | Test                                                              |  |  |
| Tare I.D. No.                                                                                                                        |                                                                                                                                                                  |                                  | Ring, Stone                                                                        | e, Paper                                                   | E                                                                | 8                                                                 |  |  |
| Wt. of Tare + Wet S                                                                                                                  | oil (g)                                                                                                                                                          |                                  | 329.1                                                                              | 8                                                          | 157                                                              | 7.01                                                              |  |  |
| Wt. of Tare + Dry Se                                                                                                                 | oil (g)                                                                                                                                                          |                                  | -                                                                                  |                                                            | 139                                                              | 9.49                                                              |  |  |
| Wt. of Tare (g)                                                                                                                      |                                                                                                                                                                  |                                  | 200.3                                                                              |                                                            | 139.49<br>28.45                                                  |                                                                   |  |  |
|                                                                                                                                      |                                                                                                                                                                  |                                  | 200.0                                                                              | 34                                                         | 28                                                               | .45                                                               |  |  |
| Wt. of Wet Soil (g)                                                                                                                  |                                                                                                                                                                  |                                  | 128.8                                                                              |                                                            |                                                                  | .45<br>3.56                                                       |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                           |                                                                                                                                                                  |                                  |                                                                                    | 34                                                         | 128                                                              |                                                                   |  |  |
| (0)                                                                                                                                  |                                                                                                                                                                  |                                  | 128.8                                                                              | 34<br>)4                                                   | 128<br>111                                                       | 3.56                                                              |  |  |
| Wt. of Dry Soil (g)                                                                                                                  |                                                                                                                                                                  |                                  | 128.8<br>111.0                                                                     | 34<br>04<br>0                                              | 128<br>11 <sup>1</sup><br>17                                     | 3.56<br>1.04                                                      |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              |                                                                                                                                                                  |                                  | 128.8<br>111.0<br>17.8                                                             | 34<br>04<br>0                                              | 128<br>11 <sup>1</sup><br>17                                     | 8.56<br>1.04<br>5.52<br>5.8                                       |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         |                                                                                                                                                                  | Ρd                               | 128.8<br>111.0<br>17.8<br>16.0<br>1.75 g/cm <sup>3</sup>                           | 34<br>04<br>0                                              | 128<br>11 <sup>1</sup><br>17                                     | 3.56<br>1.04<br>.52<br>5.8<br>1.82 g/cm                           |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         | ıt                                                                                                                                                               | ρ <sub>d</sub><br>γ <sub>d</sub> | 128.8<br>111.0<br>17.8<br>16.0                                                     | 34<br>04<br>0                                              | 128<br>111<br>17<br>15<br>Ρd                                     | 3.56<br>1.04<br>.52<br>5.8<br>1.82 g/cm                           |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion result                                                                                                                                                      | γd                               | 128.8<br>111.0<br>17.8<br>16.0<br>1.75 g/cm <sup>3</sup><br>17.2 kN/m <sup>3</sup> | 34<br>0<br>Final Dry Density<br>Final Dry Unit Weig        | 128<br>111<br>17<br>17<br>15<br>Ρ <sub>d</sub><br>γ <sub>d</sub> | 8.56<br>1.04<br>.52<br>5.8<br>1.82 g/cm <sup>2</sup><br>17.9 kN/m |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              |                                                                                                                                                                  | γ <sub>d</sub><br>s              | 128.8<br>111.0<br>17.8<br>16.0<br>1.75 g/cm <sup>3</sup>                           | 34<br>0<br>Final Dry Density<br>Final Dry Unit Weig<br>4 5 | 128<br>11 <sup>1</sup><br>17<br>15<br>9d<br>9d<br>γd             | 3.56<br>1.04<br>.52<br>5.8<br>1.82 g/cm <sup>2</sup>              |  |  |

| Project:                                                                                  | An expe     | rimenta                          | al investigation of    | the behavio                                         | ehavior of compacted sand/clay mixtures |              |                                  |              |                           |  |
|-------------------------------------------------------------------------------------------|-------------|----------------------------------|------------------------|-----------------------------------------------------|-----------------------------------------|--------------|----------------------------------|--------------|---------------------------|--|
| Sample: Mo                                                                                | dified Pro  | ctor co                          | mpacted, 50% sa        | and 50% bei                                         | ntonite, 17                             | % water conf | tent (M                          | 50B17W       | /)                        |  |
| Consolid. Type                                                                            | EI25-047    | 9                                |                        | Consoli                                             | d. Type                                 | Fixed Ring   | 3                                |              |                           |  |
| Height of Spec.                                                                           | 20          | mm                               | Dia. of Spec.          | 63.5                                                | mm                                      | Area of Sp   | bec.                             | 3166.9       | mm²                       |  |
| Weight of Ring                                                                            | 62.9        | g                                | Wt. of Stone           | 130.03                                              | s g                                     | Wt. of Pap   | ber                              | 0.3          | g                         |  |
| Specific Gravity                                                                          | 2.63        |                                  | Tested By              | Yueru C                                             | hen                                     | Date         |                                  | 3/30/        | 2009                      |  |
| Trimmings                                                                                 | 6           |                                  |                        | 1                                                   |                                         |              | 2                                | 2            |                           |  |
| Tin No.                                                                                   |             |                                  | 4                      | 04                                                  | )4                                      |              |                                  | 405          |                           |  |
| Wt. of Tin (g)                                                                            |             |                                  | 28                     |                                                     | 27                                      | .7           |                                  |              |                           |  |
| Wt. of Tin + Wet Soi                                                                      | l (g)       |                                  | 15                     | 1.72                                                |                                         | 146.43       |                                  |              |                           |  |
| Wt. of Tin + Dry Soil                                                                     |             |                                  | 13                     | 3.83                                                |                                         |              | 128                              | .45          |                           |  |
| Wt. of Dry Soil (g)                                                                       |             |                                  | 10                     | 5.12                                                |                                         |              | 100                              | .75          |                           |  |
| Wt. of Water (g)                                                                          |             |                                  | 17                     | .89                                                 |                                         |              | 17.                              | 98           |                           |  |
| Water Content (%)                                                                         |             |                                  | 1                      | 7.0                                                 |                                         |              | 17                               | .8           |                           |  |
| Average Water Cont                                                                        | ent (%)     |                                  |                        |                                                     | 17.4                                    |              |                                  |              |                           |  |
|                                                                                           |             |                                  |                        |                                                     |                                         |              |                                  |              |                           |  |
| Specimer                                                                                  | I           |                                  | Befor                  | e Test                                              |                                         |              | After                            | Test         |                           |  |
| Tare I.D. No.                                                                             |             |                                  | Ring, Sto              | ne, Paper                                           |                                         |              | 10                               | )1           |                           |  |
| Wt. of Tare + Wet S                                                                       | oil (g)     |                                  | 32                     | 0.79                                                |                                         |              | 155                              | 5.2          |                           |  |
| Wt. of Tare + Dry Se                                                                      | oil (g)     |                                  |                        | -                                                   |                                         |              | 135                              | .81          |                           |  |
| Wt. of Tare (g)                                                                           |             |                                  | 193                    | 3.23                                                |                                         |              | 28.                              | 02           |                           |  |
| Wt. of Wet Soil (g)                                                                       |             |                                  | 12                     | 7.56                                                |                                         |              | 127                              | .18          |                           |  |
| Wt. of Dry Soil (g)                                                                       |             |                                  | 10                     | 7.79                                                |                                         |              | 107                              | .79          |                           |  |
|                                                                                           |             |                                  | 19                     | .77                                                 |                                         |              | 19.                              | 39           |                           |  |
| Wt. of Water (g)                                                                          |             |                                  |                        |                                                     |                                         | 18.0         |                                  |              |                           |  |
| Wt. of Water (g)<br>Water Content (%)                                                     |             |                                  | 18                     | 3.3                                                 |                                         |              | 18                               | .0           |                           |  |
| Water Content (%)                                                                         |             |                                  |                        |                                                     |                                         |              | 18                               | .0           |                           |  |
| Water Content (%)                                                                         |             | ρ <sub>d</sub>                   | 1.70 g/cm              | <sup>3</sup> Final Dr                               | y Density                               |              | 18<br>ρ <sub>d</sub>             | .0<br>1.80   | -                         |  |
| Water Content (%)                                                                         | ıt          | Ρ <sub>d</sub><br>γ <sub>d</sub> |                        | <sup>3</sup> Final Dr                               | y Density<br>y Unit Wei                 | ght          |                                  |              | -                         |  |
| Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion result | γ <sub>d</sub><br>s              | 1.70 g/cm<br>16.7 kN/m | <sup>3</sup> Final Dr<br><sup>3</sup> Final Dr      | y Unit Wei                              | -            | ρ <sub>d</sub>                   | 1.80<br>17.6 | -                         |  |
|                                                                                           |             | γ <sub>d</sub><br>S              | 1.70 g/cm              | <sup>3</sup> Final Dr<br><sup>3</sup> Final Dr<br>4 | y Unit Wei<br>5                         | 6            | Ρ <sub>d</sub><br>γ <sub>d</sub> | 1.80         | g/cm <sup>3</sup><br>kN/m |  |

| Project:                                                   | An expe                  | rimenta           | al investigation c | of the b | behavior    | of compa    | cted sand/c | clay mix          | tures     |             |
|------------------------------------------------------------|--------------------------|-------------------|--------------------|----------|-------------|-------------|-------------|-------------------|-----------|-------------|
| Sample: Mo                                                 | dified Pro               | ctor co           | mpacted, 50% s     | and 5    | 0% bent     | onite, 20%  | % water con | itent (M          | 150B20W   | /)          |
| Consolid. Type                                             | EI25-047                 | '9                |                    | C        | Consolid    | . Туре      | Fixed Rin   | g                 |           |             |
| Height of Spec.                                            | 20                       | mm                | Dia. of Spec.      |          | 63.5        | mm          | Area of S   | pec.              | 3166.9    | $\rm{mm}^2$ |
| Weight of Ring                                             | 62.9                     | g                 | Wt. of Stone       |          | 130         | g           | Wt. of Pa   | per               | 0.3       | g           |
| Specific Gravity                                           | 2.63                     |                   | Tested By          | Y        | 'ueru Ch    | en          | Date        |                   | 3/26/     | 2009        |
| Trimmings                                                  | 3                        |                   |                    | 1        |             |             |             | 2                 | 2         |             |
| Tin No.                                                    |                          |                   | 7                  |          |             | 201         |             |                   |           |             |
| Wt. of Tin (g)                                             |                          |                   | 2                  | 28.16    |             |             |             | 28.               | 88        |             |
| Wt. of Tin + Wet Soil                                      | l (g)                    |                   | 14                 | 45.08    |             |             |             | 157               | .24       |             |
| Wt. of Tin + Dry Soil                                      | (0)                      |                   | 1                  | 25.9     |             |             |             | 13                | 5.9       |             |
| Wt. of Dry Soil (g)                                        |                          |                   | 9                  | 7.74     |             |             |             | 107               | .02       |             |
| Wt. of Water (g)                                           |                          |                   | 1                  | 9.18     |             |             |             | 21.               | 34        |             |
| Water Content (%)                                          |                          |                   | ,                  | 19.6     |             |             | 19.9        |                   |           |             |
| Average Water Cont                                         | ent (%)                  |                   |                    |          |             | 19.8        |             |                   |           |             |
|                                                            |                          |                   |                    |          |             |             |             |                   |           |             |
| Specimen                                                   | l                        |                   | Befo               | ore Tes  | st          |             |             | After             | Test      |             |
| Tare I.D. No.                                              |                          |                   | Ring, St           | one, F   | Paper       |             |             | B-                | 19        |             |
| Wt. of Tare + Wet S                                        | oil (g)                  |                   | 3′                 | 17.05    |             |             |             | 150               | .78       |             |
| Wt. of Tare + Dry Se                                       | oil (g)                  |                   |                    | -        |             |             | 129.8       |                   |           |             |
| Wt. of Tare (g)                                            |                          |                   | 19                 | 93.20    |             |             |             | 27.               | 39        |             |
| Wt. of Wet Soil (g)                                        |                          |                   | 12                 | 23.85    |             |             |             | 123               | .39       |             |
| Wt. of Dry Soil (g)                                        |                          |                   | 1(                 | 02.41    |             |             |             | 102               | .41       |             |
| Wt. of Water (g)                                           |                          |                   | 2                  | 1.44     |             |             |             | 20.               | 98        |             |
| Water Content (%)                                          |                          |                   |                    | 20.9     |             |             |             | 20                | .5        |             |
|                                                            |                          |                   |                    | -        |             |             |             |                   |           |             |
| Initial Dry Density                                        |                          | $\rho_{\text{d}}$ | 1.62 g/cn          |          | inal Dry    |             |             | $\rho_{\text{d}}$ | 1.75      | g/cm        |
| Initial Dry Unit Weigh                                     | nt                       | γd                | 15.8 kN/r          | n° F     | inal Dry    | Unit Weig   | pht         | γd                | 17.1      | kN/m        |
|                                                            |                          |                   |                    |          |             |             |             |                   |           |             |
| End of load deforma                                        |                          |                   | 0                  | <b>`</b> | 4           | 5           | 0           |                   | 7         |             |
| End of load deforma<br>Load Step No.<br>Corrected Def (mm) | tion result<br>1<br>0.08 | -                 | 2 3<br>0.1570 0.2  | 3        | 4<br>0.4420 | 5<br>0.6650 | 6<br>0.9880 | 1                 | 7<br>5100 |             |

| Project:                                                                                                                                                                        | An experimental investigation of<br>Low energy compacted, 85% s |                |              |                                                                                  | the behavior of compacted sand/clay mixtures |            |             |                                                          |                                           |                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------|--------------|----------------------------------------------------------------------------------|----------------------------------------------|------------|-------------|----------------------------------------------------------|-------------------------------------------|----------------------------------------|
| Sample:                                                                                                                                                                         | Low er                                                          | nergy co       | ompacted, 8  | 35% san                                                                          | d 15% kao                                    | linite, 6% | water conte | nt (L15                                                  | K6W)                                      |                                        |
| Consolid. Type                                                                                                                                                                  | EI25-047                                                        | 9              |              |                                                                                  | Consolid                                     | . Туре     | Fixed Ring  | )                                                        |                                           |                                        |
| Height of Spec.                                                                                                                                                                 | 20                                                              | mm             | Dia. of Sp   | ec.                                                                              | 63.5                                         | mm         | Area of Sp  | ec.                                                      | 3166.9                                    | $\rm mm^2$                             |
| Weight of Ring                                                                                                                                                                  | 66.4                                                            | g              | Wt. of Sto   | one                                                                              | 130                                          | g          | Wt. of Pap  | er                                                       | 0.3                                       | g                                      |
| Specific Gravity                                                                                                                                                                | 2.64                                                            |                | Tested By    | 1                                                                                | Yueru Ch                                     | en         | Date        |                                                          | 2/12/                                     | 2009                                   |
| Trimmings                                                                                                                                                                       | 5                                                               |                |              | 1                                                                                |                                              |            |             | 2                                                        | )                                         |                                        |
| Tin No.                                                                                                                                                                         |                                                                 |                |              | MAJI                                                                             | D                                            |            |             | FJ                                                       | -3                                        |                                        |
| Wt. of Tin (g)                                                                                                                                                                  |                                                                 |                |              | 28.6                                                                             |                                              |            |             | 2                                                        | 9                                         |                                        |
| Wt. of Tin + Wet Soil                                                                                                                                                           | (g)                                                             |                |              | 186.7                                                                            | 7                                            |            |             | 193                                                      | 3.9                                       |                                        |
| Wt. of Tin + Dry Soil                                                                                                                                                           | (g)                                                             |                |              | 177.7                                                                            | 7                                            |            |             | 184                                                      | 4.6                                       |                                        |
| Wt. of Dry Soil (g)                                                                                                                                                             |                                                                 |                |              | 149.1                                                                            | 1                                            |            |             | 158                                                      | 5.6                                       |                                        |
| Wt. of Water (g)                                                                                                                                                                |                                                                 |                |              | 9                                                                                |                                              |            |             | 9.                                                       | 3                                         |                                        |
| Water Content (%)                                                                                                                                                               |                                                                 |                |              | 6.0                                                                              |                                              |            |             | 6.                                                       | 0                                         |                                        |
| Average Water Conte                                                                                                                                                             | ent (%)                                                         |                |              |                                                                                  |                                              | 6.0        |             |                                                          |                                           |                                        |
|                                                                                                                                                                                 |                                                                 |                |              |                                                                                  |                                              |            |             |                                                          |                                           |                                        |
| Specimen                                                                                                                                                                        | -                                                               |                |              | Before 7                                                                         | Fest                                         |            |             | After                                                    | Test                                      |                                        |
| Tare I.D. No.                                                                                                                                                                   |                                                                 |                | Rir          | ng, Stone                                                                        | , Paper                                      |            |             | 3/                                                       | Ą                                         |                                        |
| Wt. of Tare + Wet Se                                                                                                                                                            | oil (a)                                                         |                |              |                                                                                  |                                              |            |             | 150                                                      | 0.6                                       |                                        |
|                                                                                                                                                                                 | on (g)                                                          |                |              | 313.1                                                                            | I                                            |            |             |                                                          |                                           |                                        |
| Wt. of Tare + Dry Sc                                                                                                                                                            | (0)                                                             |                |              | 313.1<br>-                                                                       | I                                            |            |             | 144                                                      | 4.3                                       |                                        |
|                                                                                                                                                                                 | (0)                                                             |                |              | 313.1<br>-<br>196.7                                                              |                                              |            |             | 144<br>34                                                | -                                         |                                        |
| Wt. of Tare + Dry Sc                                                                                                                                                            | (0)                                                             |                |              | -                                                                                | 0                                            |            |             |                                                          | .7                                        |                                        |
| Wt. of Tare + Dry Sc<br>Wt. of Tare (g)                                                                                                                                         | (0)                                                             |                |              | 196.7                                                                            | 0<br>0                                       |            |             | 34                                                       | .7<br>5.9                                 |                                        |
| Wt. of Tare + Dry Sc<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                                                  | (0)                                                             |                |              | -<br>196.7<br>116.4                                                              | 0<br>0<br>0                                  |            |             | 34<br>115                                                | .7<br>5.9<br>9.6                          |                                        |
| Wt. of Tare + Dry Sc<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                           | (0)                                                             |                |              | -<br>196.7<br>116.4<br>109.6                                                     | 0<br>0<br>0                                  |            |             | 34<br>11:<br>10:                                         | .7<br>5.9<br>9.6<br>3                     |                                        |
| Wt. of Tare + Dry Sc<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       | (0)                                                             |                |              | 196.7<br>116.4<br>109.6<br>6.80                                                  | 0<br>0<br>0                                  |            |             | 34<br>115<br>109<br>6.                                   | .7<br>5.9<br>9.6<br>3                     |                                        |
| Wt. of Tare + Dry Sc<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                  | (0)                                                             | ρ <sub>d</sub> | 1.73         | 196.7<br>116.4<br>109.6<br>6.80                                                  | 0<br>0<br>0                                  | Density    |             | 34<br>115<br>109<br>6.                                   | .7<br>5.9<br>9.6<br>3                     | g/cm <sup>3</sup>                      |
| Wt. of Tare + Dry Sc<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                  | bil (g)                                                         | Pd<br>γd       | 1.73<br>17.0 | 196.7<br>116.4<br>109.6<br>6.80<br>6.2                                           | 0<br>0<br>0                                  |            | ht          | 34<br>115<br>109<br>6.<br>5.                             | .7<br>5.9<br>9.6<br>3<br>7                | U U                                    |
| Wt. of Tare + Dry Sc<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh | tion results                                                    | γ <sub>d</sub> | 17.0         | 196.7<br>116.4<br>109.6<br>6.80<br>6.2<br>g/cm <sup>3</sup><br>kN/m <sup>3</sup> | 0<br>0<br>0<br>Final Dry                     | Unit Weig  |             | 34<br>11<br>10<br>6.<br>5.<br>Ρ <sub>d</sub>             | 7<br>5.9<br>9.6<br>3<br>7<br>1.83<br>17.9 | U U                                    |
| Wt. of Tare + Dry Sc<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       | bil (g)                                                         | γ <sub>d</sub> |              | 196.7<br>116.4<br>109.6<br>6.80<br>6.2<br>g/cm <sup>3</sup>                      | 0<br>0<br>0<br>Final Dry                     |            | ht 6        | 34<br>11<br>6.<br>5.<br>Ρ <sub>d</sub><br>γ <sub>d</sub> | .7<br>5.9<br>9.6<br>3<br>7<br>1.83        | g/cm <sup>2</sup><br>kN/m <sup>2</sup> |

| Project:                                                                                                                             | An expe     | rimenta             | I investigation            | of the                                                       | behavior                   | f the behavior of compacted sand/clay mixtures |                   |                                              |                        |                           |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|----------------------------|--------------------------------------------------------------|----------------------------|------------------------------------------------|-------------------|----------------------------------------------|------------------------|---------------------------|
| Sample:                                                                                                                              | Low ene     | ergy cor            | npacted, 85% s             | sand 1                                                       | 15% kaolir                 | nite, 8% w                                     | ater content      | t (L15ł                                      | <8W)                   |                           |
| Consolid. Type                                                                                                                       | El25-047    | '9                  |                            |                                                              | Consolid.                  | Туре                                           | Fixed Ring        |                                              |                        |                           |
| Height of Spec.                                                                                                                      | 20          | mm                  | Dia. of Spec.              |                                                              | 63.5                       | mm                                             | Area of Sp        | ec.                                          | 3166.9                 | mm <sup>2</sup>           |
| Weight of Ring                                                                                                                       | 66.3        | g                   | Wt. of Stone               |                                                              | 133.6                      | g                                              | Wt. of Pap        | er                                           | 0.3                    | g                         |
| Specific Gravity                                                                                                                     | 2.64        |                     | Tested By                  | Ì                                                            | Yueru Che                  | en                                             | Date              |                                              | 2/11/                  | 2009                      |
| Trimmings                                                                                                                            | ;           |                     |                            | 1                                                            |                            |                                                |                   | 2                                            | 2                      |                           |
| Tin No.                                                                                                                              |             |                     |                            | 418                                                          |                            |                                                |                   | 41                                           | 5                      |                           |
| Wt. of Tin (g)                                                                                                                       |             |                     |                            | 28.8                                                         |                            |                                                |                   | 28                                           | .8                     |                           |
| Wt. of Tin + Wet Soil                                                                                                                | (g)         |                     | 2                          | 222.7                                                        |                            |                                                |                   | 186                                          | 5.8                    |                           |
| Wt. of Tin + Dry Soil                                                                                                                | (g)         |                     | 2                          | 208.2                                                        |                            |                                                |                   | 175                                          | 5.1                    |                           |
| Wt. of Dry Soil (g)                                                                                                                  |             |                     | 1                          | 179.4                                                        |                            |                                                |                   | 146                                          | 5.3                    |                           |
| Wt. of Water (g)                                                                                                                     |             |                     |                            | 14.5                                                         |                            |                                                |                   | 11                                           | .7                     |                           |
| Water Content (%)                                                                                                                    |             |                     |                            | 8.1                                                          |                            |                                                |                   | 8.                                           | 0                      |                           |
| Average Water Cont                                                                                                                   | ent (%)     |                     |                            |                                                              |                            | 8.0                                            |                   |                                              |                        |                           |
|                                                                                                                                      |             |                     |                            |                                                              |                            |                                                |                   |                                              |                        |                           |
| Specimen                                                                                                                             |             |                     | Befo                       | ore Te                                                       | est                        |                                                |                   | After                                        | Test                   |                           |
| Tare I.D. No.                                                                                                                        |             |                     | Ring, S                    | tone,                                                        | Paper                      |                                                |                   | В                                            | 8                      |                           |
| Wt. of Tare + Wet S                                                                                                                  | oil (g)     |                     | 3                          | 324.7                                                        |                            |                                                |                   | 151                                          | 1.9                    |                           |
| Wt. of Tare + Dry So                                                                                                                 | oil (g)     |                     |                            | -                                                            |                            |                                                |                   | 143                                          | 3.2                    |                           |
| Wt. of Tare (g)                                                                                                                      |             |                     | 2                          | 00.20                                                        | 1                          |                                                |                   | 27                                           | .4                     |                           |
|                                                                                                                                      |             |                     | 1                          | 24.50                                                        | 1                          |                                                |                   | 124                                          | 1.5                    |                           |
| Wt. of Wet Soil (g)                                                                                                                  |             |                     |                            | 2 1.00                                                       |                            |                                                |                   |                                              |                        |                           |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                           |             |                     | 1                          | 15.80                                                        | 1                          |                                                |                   | 115                                          | 5.8                    |                           |
|                                                                                                                                      |             |                     |                            |                                                              | I                          |                                                |                   | 115<br>8.                                    |                        |                           |
| Wt. of Dry Soil (g)                                                                                                                  |             |                     |                            | 15.80                                                        |                            |                                                |                   |                                              | 7                      |                           |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              |             |                     |                            | 15.80<br>8.70                                                |                            |                                                |                   | 8.                                           | 7                      |                           |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         |             | Ρd                  | 1.83 g/cr                  | 15.80<br>8.70<br>7.5<br>m <sup>3</sup> F                     | Final Dry I                | Density                                        |                   | 8.                                           | 7                      | -                         |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         | nt          | Pd<br>γd            | ;                          | 15.80<br>8.70<br>7.5<br>m <sup>3</sup> F                     |                            |                                                | ht                | 8.<br>7.                                     | 7<br>5                 | -                         |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion result | γ <sub>d</sub><br>S | 1.83 g/cr<br>17.9 kN/i     | 15.80<br>8.70<br>7.5<br>m <sup>3</sup> F<br>m <sup>3</sup> F | Final Dry I<br>Final Dry I | Jnit Weig                                      |                   | 8.<br>7.<br>ρ <sub>d</sub>                   | 7<br>5<br>1.92<br>18.8 | -                         |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              |             | γ <sub>d</sub><br>S | 1.83 g/cr<br>17.9 kN/<br>2 | 15.80<br>8.70<br>7.5<br>m <sup>3</sup> F                     | Final Dry I                |                                                | ht<br>6<br>0.8250 | 8.<br>7.<br>Ρ <sub>d</sub><br>γ <sub>d</sub> | 7<br>5<br>1.92         | g/cm <sup>-</sup><br>kN/m |

| Project:                                                                                                                         | An expe     | rimenta             | I investigation of                  | the behavior                | of compa   | cted sand/c        | ted sand/clay mixtures |                  |                           |  |
|----------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|-------------------------------------|-----------------------------|------------|--------------------|------------------------|------------------|---------------------------|--|
| Sample:                                                                                                                          | Low ener    | gy com              | pacted, 85% san                     | d 15% kaolin                | ite, 10% v | vater conter       | nt (L15ł               | <b>&lt;</b> 10W) |                           |  |
| Consolid. Type                                                                                                                   | EI25-047    | '9                  |                                     | Consolid                    | . Туре     | Fixed Rin          | g                      |                  |                           |  |
| Height of Spec.                                                                                                                  | 20          | mm                  | Dia. of Spec.                       | 63.5                        | mm         | Area of S          | pec.                   | 3166.9           | mm <sup>2</sup>           |  |
| Weight of Ring                                                                                                                   | 67.5        | g                   | Wt. of Stone                        | 129.9                       | g          | Wt. of Pap         | ber                    | 0.3              | g                         |  |
| Specific Gravity                                                                                                                 | 2.64        |                     | Tested By                           | Yueru Ch                    | en         | Date               |                        | 2/11/            | 2009                      |  |
| Trimmings                                                                                                                        | ;           |                     |                                     | 1                           |            |                    | 2                      | 2                |                           |  |
| Tin No.                                                                                                                          |             |                     | 2                                   | 13                          |            |                    | 20                     | )5               |                           |  |
| Wt. of Tin (g)                                                                                                                   |             |                     | 27                                  | <b>7</b> .9                 |            |                    | 29                     | .7               |                           |  |
| Wt. of Tin + Wet Soil                                                                                                            | (g)         |                     | 20                                  | 9.6                         |            |                    | 209                    | 9.7              |                           |  |
| Wt. of Tin + Dry Soil                                                                                                            | (g)         |                     | 19                                  | 3.1                         |            |                    | 193                    | 3.5              |                           |  |
| Wt. of Dry Soil (g)                                                                                                              |             |                     | 16                                  | 5.2                         |            |                    | 163                    | 3.8              |                           |  |
| Wt. of Water (g)                                                                                                                 |             |                     | 16                                  | 6.5                         |            |                    | 16                     | .2               |                           |  |
| Water Content (%)                                                                                                                |             |                     | 1(                                  | 0.0                         |            |                    | 9.                     | 9                |                           |  |
| Average Water Cont                                                                                                               | ent (%)     |                     |                                     |                             | 9.9        |                    |                        |                  |                           |  |
|                                                                                                                                  |             |                     |                                     |                             |            |                    |                        |                  |                           |  |
| Specimen                                                                                                                         |             |                     | Befor                               | e Test                      |            |                    | After                  | Test             |                           |  |
| Tare I.D. No.                                                                                                                    |             |                     | Ring, Sto                           | ne, Paper                   |            |                    | В                      | 7                |                           |  |
| Wt. of Tare + Wet S                                                                                                              | oil (g)     |                     | 32                                  | 2.2                         |            |                    | 151                    | 1.6              |                           |  |
| Wt. of Tare + Dry Se                                                                                                             | oil (g)     |                     |                                     | -                           |            |                    | 141                    | 1.3              |                           |  |
| Wt. of Tare (g)                                                                                                                  |             |                     | 197                                 | 7.70                        |            |                    | 28                     | .7               |                           |  |
| Wt. of Wet Soil (g)                                                                                                              |             |                     | 124                                 | 1.50                        |            |                    | 122                    | 2.9              |                           |  |
| Wt. of Dry Soil (g)                                                                                                              |             |                     | 112                                 | 2.60                        |            |                    | 112                    | 2.6              |                           |  |
| Wt. of Water (g)                                                                                                                 |             |                     | 11                                  | .90                         |            |                    | 10                     | .3               |                           |  |
|                                                                                                                                  |             |                     | 10                                  | ).6                         |            |                    | 9.                     | 1                |                           |  |
| Water Content (%)                                                                                                                |             |                     |                                     |                             | -          |                    |                        |                  |                           |  |
| Water Content (%)                                                                                                                |             |                     |                                     |                             |            |                    |                        |                  |                           |  |
| Initial Dry Density                                                                                                              |             | $\rho_{d}$          | 1.78 g/cm <sup>2</sup>              |                             |            |                    | $\rho_{d}$             | 1.89             | -                         |  |
| Initial Dry Density<br>Initial Dry Unit Weigł                                                                                    |             | γd                  | 1.78 g/cm <sup>°</sup><br>17.4 kN/m |                             |            | jht                | Ρ <sub>d</sub><br>Yd   | 1.89<br>18.5     | -                         |  |
| Initial Dry Density<br>Initial Dry Unit Weigł<br>End of load deforma                                                             | tion result | γ <sub>d</sub><br>s | 17.4 kN/m                           | <sup>3</sup> Final Dry      | Unit Weig  | ,                  |                        | 18.5             | -                         |  |
| Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma<br>Load Step No.<br>Corrected Def (mm) |             | γ <sub>d</sub><br>s | 0                                   | <sup>3</sup> Final Dry<br>4 |            | 9ht<br>6<br>1.0130 | γd                     |                  | g/cm <sup>3</sup><br>kN/m |  |

| Project:                                                                                                                             | An expe  | rimenta                          | al investigation of th                                   | ne behavior of compacted sand/clay mixtures |                                      |                                                           |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------|----------------------------------------------------------|---------------------------------------------|--------------------------------------|-----------------------------------------------------------|--|--|
| Sample:                                                                                                                              | Low ener | gy com                           | pacted, 85% sand                                         | 15% kaolinite, 12%                          | water content (L15                   | 5K12W)                                                    |  |  |
| Consolid. Type                                                                                                                       | EI25-047 | 9                                |                                                          | Consolid. Type                              | Fixed Ring                           |                                                           |  |  |
| Height of Spec.                                                                                                                      | 20       | mm                               | Dia. of Spec.                                            | 63.5 mm                                     | Area of Spec.                        | 3166.9 mm <sup>2</sup>                                    |  |  |
| Weight of Ring                                                                                                                       | 67.6     | g                                | Wt. of Stone                                             | 132 g                                       | Wt. of Paper                         | 0.3 g                                                     |  |  |
| Specific Gravity                                                                                                                     | 2.64     |                                  | Tested By                                                | Yueru Chen                                  | Date                                 | 2/10/2009                                                 |  |  |
| Trimmings                                                                                                                            | 5        |                                  | 1                                                        |                                             |                                      | 2                                                         |  |  |
| Tin No.                                                                                                                              |          |                                  | B7                                                       |                                             | 2                                    | 05                                                        |  |  |
| Wt. of Tin (g)                                                                                                                       |          |                                  | 28.7                                                     | 7                                           | 29                                   | 9.6                                                       |  |  |
| Wt. of Tin + Wet Soil                                                                                                                | (g)      |                                  | 157.                                                     | 4                                           | 21                                   | 0.8                                                       |  |  |
| Wt. of Tin + Dry Soil                                                                                                                | (g)      |                                  | 143.                                                     | 5                                           | 19                                   | )1.1                                                      |  |  |
| Wt. of Dry Soil (g)                                                                                                                  |          |                                  | 114.                                                     | 8                                           | 16                                   | 51.5                                                      |  |  |
| Wt. of Water (g)                                                                                                                     |          |                                  | 13.9                                                     | 9                                           | 19                                   | 9.7                                                       |  |  |
| Water Content (%)                                                                                                                    |          |                                  | 12.1                                                     | 1                                           | 12                                   | 2.2                                                       |  |  |
| Average Water Cont                                                                                                                   | ent (%)  |                                  |                                                          | 12.2                                        |                                      |                                                           |  |  |
|                                                                                                                                      |          |                                  |                                                          |                                             |                                      |                                                           |  |  |
| Specimen                                                                                                                             | I        |                                  | Before                                                   | Test                                        | After                                | r Test                                                    |  |  |
| Tare I.D. No.                                                                                                                        |          |                                  | Ring, Stone                                              | e, Paper                                    | 2                                    | 13                                                        |  |  |
| Wt. of Tare + Wet S                                                                                                                  | oil (g)  |                                  | 325.                                                     | 3                                           | 15                                   | 51.4                                                      |  |  |
| Wt. of Tare + Dry Se                                                                                                                 | oil (g)  |                                  | -                                                        |                                             | 13                                   |                                                           |  |  |
|                                                                                                                                      |          |                                  |                                                          |                                             |                                      | 9.9                                                       |  |  |
| Wt. of Tare (g)                                                                                                                      |          |                                  | 199.9                                                    | 90                                          | 2                                    | 9.9<br>7.9                                                |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                               |          |                                  | 199.9<br>125.4                                           |                                             |                                      |                                                           |  |  |
|                                                                                                                                      |          |                                  |                                                          | 40                                          | 12                                   | 7.9                                                       |  |  |
| Wt. of Wet Soil (g)                                                                                                                  |          |                                  | 125.4                                                    | 40                                          | 12<br>1                              | 7.9<br>23.5                                               |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                           |          |                                  | 125.4<br>112.0                                           | 40<br>00<br>0                               | 12<br>1<br>1'                        | 7.9<br>23.5<br>12                                         |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       |          |                                  | 125.4<br>112.0<br>13.4                                   | 40<br>00<br>0                               | 12<br>1<br>1'                        | 7.9<br>3.5<br>12<br>1.5                                   |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                  |          | ρ <sub>d</sub>                   | 125.4<br>112.0<br>13.4                                   | 40<br>00<br>0                               | 12<br>1<br>1'                        | 7.9<br>33.5<br>12<br>1.5<br>0.3                           |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                  | nt       | ρ <sub>d</sub><br>γ <sub>d</sub> | 125.4<br>112.0<br>13.4<br>12.0                           | 40<br>00<br>0<br>0                          | 12<br>1<br>1<br>10<br>Ρ <sub>d</sub> | 7.9<br>13.5<br>12<br>1.5<br>0.3<br>1.85 g/cm              |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh |          | γd                               | 125.4<br>112.0<br>13.4<br>12.0<br>1.77 g/cm <sup>3</sup> | 40<br>00<br>0<br>D<br>Final Dry Density     | 12<br>1<br>1<br>10<br>Ρ <sub>d</sub> | 7.9<br>13.5<br>12<br>1.5<br>0.3<br>1.85 g/cm <sup>3</sup> |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       |          | γd                               | 125.4<br>112.0<br>13.4<br>12.0<br>1.77 g/cm <sup>3</sup> | 40<br>00<br>0<br>D<br>Final Dry Density     | 12<br>1<br>1<br>10<br>Ρ <sub>d</sub> | 7.9<br>13.5<br>12<br>1.5<br>0.3<br>1.85 g/cm <sup>3</sup> |  |  |

| Project:                                                                                | An experimental investigation of |                   |             |                   | e behavior  | of compa    | cted sand/c | lay mi            | tures     |                 |
|-----------------------------------------------------------------------------------------|----------------------------------|-------------------|-------------|-------------------|-------------|-------------|-------------|-------------------|-----------|-----------------|
| Sample:                                                                                 | Low ene                          | ergy cor          | mpacted, 7  | '5% sand          | 25% kaolii  | nite, 6% w  | ater conter | nt (L25           | K6W)      |                 |
| Consolid. Type                                                                          | EI25-047                         | 9                 |             |                   | Consolid.   | Туре        | Fixed Rin   | g                 |           |                 |
| Height of Spec.                                                                         | 20                               | mm                | Dia. of S   | pec.              | 63.5        | mm          | Area of S   | pec.              | 3166.9    | mm <sup>2</sup> |
| Weight of Ring                                                                          | 67.5                             | g                 | Wt. of St   | one               | 128.3       | g           | Wt. of Pa   | per               | 0.3       | g               |
| Specific Gravity                                                                        | 2.64                             |                   | Tested E    | 8y                | Yueru Ch    | en          | Date        |                   | 2/13/     | 2009            |
| Trimmings                                                                               |                                  |                   |             | 1                 |             |             |             | 2                 | 2         |                 |
| Tin No.                                                                                 |                                  |                   |             | 213               |             |             |             | 20                | )5        |                 |
| Wt. of Tin (g)                                                                          |                                  |                   |             | 27.9              | 1           |             |             | 29                | .7        |                 |
| Wt. of Tin + Wet Soil                                                                   | (g)                              |                   |             | 189.0             | 6           |             |             | 196               | 6.5       |                 |
| Wt. of Tin + Dry Soil (                                                                 | (g)                              |                   |             | 180.              | 1           |             |             | 18                | 7.3       |                 |
| Wt. of Dry Soil (g)                                                                     |                                  |                   |             | 152.2             | 2           |             |             | 15                | 7.6       |                 |
| Wt. of Water (g)                                                                        |                                  |                   |             | 9.5               |             |             |             | 9.                | 2         |                 |
| Water Content (%)                                                                       |                                  |                   |             | 6.2               |             |             |             | 5.                | 8         |                 |
| Average Water Conte                                                                     | ent (%)                          |                   |             |                   |             | 6.0         |             |                   |           |                 |
|                                                                                         |                                  |                   |             |                   |             |             |             |                   |           |                 |
| Specimen                                                                                |                                  |                   |             | Before -          | Fest        |             |             | After             | Test      |                 |
| Tare I.D. No.                                                                           |                                  |                   | Ri          | ng, Stone         | , Paper     |             |             | В                 | 8         |                 |
| Wt. of Tare + Wet Sc                                                                    | oil (g)                          |                   |             | 301               |             |             |             | 13                | 33        |                 |
| Wt. of Tare + Dry So                                                                    | il (g)                           |                   |             | -                 |             |             |             | 12                | 7.4       |                 |
| Wt. of Tare (g)                                                                         |                                  |                   |             | 196.1             | 0           |             |             | 28                | .4        |                 |
| Wt. of Wet Soil (g)                                                                     |                                  |                   |             | 104.9             | 0           |             |             | 104               | 4.6       |                 |
| Wt. of Dry Soil (g)                                                                     |                                  |                   |             | 99.00             | C           |             |             | 9                 | 9         |                 |
| Wt. of Water (g)                                                                        |                                  |                   |             | 5.90              | 1           |             |             | 5.                | 6         |                 |
| Water Content (%)                                                                       |                                  |                   |             | 6.0               |             |             |             | 5.                | .7        |                 |
|                                                                                         |                                  |                   |             |                   |             |             |             |                   |           |                 |
| Initial Dry Density                                                                     |                                  | $\rho_{\text{d}}$ | 1.56        | g/cm <sup>3</sup> | Final Dry   |             |             | $\rho_{\text{d}}$ | 1.74      | g/cm            |
|                                                                                         |                                  | γd                | 15.3        | kN/m <sup>3</sup> | Final Dry   | Unit Weig   | ht          | γd                | 17.1      | kN/m            |
| , ,                                                                                     |                                  |                   |             |                   |             |             |             |                   |           |                 |
| End of load deformati                                                                   | on result                        |                   |             | _                 |             | _           | -           |                   | _         |                 |
| Initial Dry Unit Weight<br>End of load deformati<br>Load Step No.<br>Corrected Def (mm) |                                  | S                 | 2<br>0.3710 | 3<br>0.5690       | 4<br>0.7900 | 5<br>1.0900 | 6<br>1.5000 |                   | 7<br>0800 |                 |

| Project:                                                                                                                                                                | An expe  | rimenta  | I investigation of the                                                                 | e behavior of compacted sand/clay mixtures                     |                                                                      |                                                                                |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| Sample:                                                                                                                                                                 | Low ene  | ergy cor | npacted, 75% san                                                                       | d 25% kaolinite, 8%                                            | water content (L25                                                   | 5K8W)                                                                          |  |  |
| Consolid. Type                                                                                                                                                          | EI25-047 | 9        |                                                                                        | Consolid. Type                                                 | Fixed Ring                                                           |                                                                                |  |  |
| Height of Spec.                                                                                                                                                         | 20       | mm       | Dia. of Spec.                                                                          | 63.5 mm                                                        | Area of Spec.                                                        | 3166.9 mm <sup>2</sup>                                                         |  |  |
| Weight of Ring                                                                                                                                                          | 63       | g        | Wt. of Stone                                                                           | 133.7 g                                                        | Wt. of Paper                                                         | 0.3 g                                                                          |  |  |
| Specific Gravity                                                                                                                                                        | 2.64     |          | Tested By                                                                              | Yueru Chen                                                     | Date                                                                 | 2/13/2009                                                                      |  |  |
| Trimmings                                                                                                                                                               |          |          | 1                                                                                      |                                                                |                                                                      | 2                                                                              |  |  |
| Tin No.                                                                                                                                                                 |          |          | 7                                                                                      |                                                                | 2                                                                    | 01                                                                             |  |  |
| Wt. of Tin (g)                                                                                                                                                          |          |          | 28.                                                                                    | 1                                                              | 28                                                                   | 8.8                                                                            |  |  |
| Wt. of Tin + Wet Soil                                                                                                                                                   | (g)      |          | 18                                                                                     | l                                                              | 18                                                                   | 31.2                                                                           |  |  |
| Wt. of Tin + Dry Soil                                                                                                                                                   | (g)      |          | 169                                                                                    | 6                                                              | 16                                                                   | 9.5                                                                            |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                     |          |          | 141                                                                                    | 5                                                              | 14                                                                   | 0.7                                                                            |  |  |
| Wt. of Water (g)                                                                                                                                                        |          |          | 11.                                                                                    | 4                                                              | 1.                                                                   | 1.7                                                                            |  |  |
| Water Content (%)                                                                                                                                                       |          |          | 8.1                                                                                    |                                                                | 8                                                                    | 8.3                                                                            |  |  |
| Average Water Conte                                                                                                                                                     | ent (%)  |          |                                                                                        | 8.2                                                            |                                                                      |                                                                                |  |  |
|                                                                                                                                                                         |          |          |                                                                                        |                                                                |                                                                      |                                                                                |  |  |
|                                                                                                                                                                         |          |          |                                                                                        |                                                                |                                                                      |                                                                                |  |  |
| Specimen                                                                                                                                                                |          |          | Before                                                                                 | Test                                                           | After                                                                | r Test                                                                         |  |  |
| Specimen<br>Tare I.D. No.                                                                                                                                               |          |          | Before<br>Ring, Ston                                                                   |                                                                |                                                                      | r Test<br>19                                                                   |  |  |
| •                                                                                                                                                                       | oil (g)  |          |                                                                                        | e, Paper                                                       | В                                                                    |                                                                                |  |  |
| Tare I.D. No.                                                                                                                                                           |          |          | Ring, Ston                                                                             | e, Paper                                                       | B<br>14                                                              | 19                                                                             |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So                                                                                                                                   |          |          | Ring, Ston                                                                             | e, Paper<br>3                                                  | B<br>14<br>14                                                        | 19<br>9.4                                                                      |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So                                                                                                           |          |          | Ring, Ston<br>319<br>-                                                                 | e, Paper<br>3<br>00                                            | B<br>14<br>14<br>21                                                  | 19<br>9.4<br>90.6                                                              |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                        |          |          | Ring, Ston<br>319<br>-<br>197.                                                         | e, Paper<br>3<br>00<br>30                                      | B<br>14<br>14<br>2<br>1                                              | 19<br>19.4<br>10.6<br>7.4                                                      |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 |          |          | Ring, Ston<br>319<br>-<br>197.<br>122.                                                 | e, Paper<br>3<br>00<br>30<br>20                                | B<br>14<br>14<br>21<br>1<br>1                                        | 19<br>19.4<br>10.6<br>7.4<br>22                                                |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          |          |          | Ring, Ston<br>319<br>-<br>197.<br>122.<br>113.                                         | e, Paper<br>3<br>00<br>30<br>20<br>0                           | B<br>14<br>14<br>2<br>1<br>1<br>11<br>8                              | 19<br>99.4<br>90.6<br>7.4<br>22<br>3.2                                         |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) |          | -        | Ring, Ston<br>319<br>-<br>197.<br>122.<br>113.<br>9.1<br>8.0                           | e, Paper<br>3<br>00<br>30<br>20<br>0                           | B<br>14<br>14<br>2<br>1<br>1<br>11<br>8<br>7                         | 19<br>19.4<br>10.6<br>7.4<br>22<br>3.2<br>3.8<br>2.8                           |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | il (g)   | Ρd       | Ring, Ston<br>319<br>-<br>197.<br>122.<br>113.<br>9.1<br>8.0<br>1.79 g/cm <sup>3</sup> | e, Paper<br>3<br>00<br>30<br>20<br>0<br>5<br>Final Dry Density | Β<br>14<br>14<br>21<br>1<br>1<br>11<br>8<br>7<br>7<br>Ρ <sub>d</sub> | 19<br>19.4<br>10.6<br>7.4<br>22<br>3.2<br>5.8<br>7.8<br>1.91 g/cm              |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Ory Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | t        | γd       | Ring, Ston<br>319<br>-<br>197.<br>122.<br>113.<br>9.1<br>8.0                           | e, Paper<br>3<br>00<br>30<br>20<br>0                           | Β<br>14<br>14<br>21<br>1<br>1<br>11<br>8<br>7<br>7<br>Ρ <sub>d</sub> | 19<br>19.4<br>10.6<br>7.4<br>22<br>3.2<br>5.8<br>7.8<br>1.91 g/cm              |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | t        | γd       | Ring, Ston<br>319<br>-<br>197.<br>122.<br>113.<br>9.1<br>8.0<br>1.79 g/cm <sup>3</sup> | e, Paper<br>3<br>00<br>30<br>20<br>0<br>5<br>Final Dry Density | Β<br>14<br>14<br>21<br>1<br>1<br>11<br>8<br>7<br>7<br>Ρ <sub>d</sub> | 19<br>19.4<br>20.6<br>7.4<br>22<br>3.2<br>3.8<br>2.8<br>1.91 g/cm <sup>2</sup> |  |  |

| Project:                                                                                                                                                                 | An experimental investig |                |            | tion of the                                                                              | cted sand/o                                          | clay mix | tures        |                                                                    |                                                       |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|------------|------------------------------------------------------------------------------------------|------------------------------------------------------|----------|--------------|--------------------------------------------------------------------|-------------------------------------------------------|---------------------------|
| Sample: L                                                                                                                                                                | ow ener                  | gy com         | pacted, 75 | 5% sand 2                                                                                | 25% kaolinite                                        | e, 10% w | vater contei | nt (L25I                                                           | K10W)                                                 |                           |
| Consolid. Type                                                                                                                                                           | El25-047                 | 9              |            |                                                                                          | Consolid.                                            | Гуре     | Fixed Rin    | g                                                                  |                                                       |                           |
| Height of Spec.                                                                                                                                                          | 20                       | mm             | Dia. of S  | pec.                                                                                     | 63.5 r                                               | nm       | Area of S    | pec.                                                               | 3166.9                                                | $\rm{mm}^2$               |
| Weight of Ring                                                                                                                                                           | 67.5                     | g              | Wt. of St  | one                                                                                      | 128.3 g                                              | )        | Wt. of Pa    | per                                                                | 0.3                                                   | g                         |
| Specific Gravity                                                                                                                                                         | 2.64                     |                | Tested B   | Ву                                                                                       | Yueru Cher                                           | n        | Date         |                                                                    | 2/12/                                                 | 2009                      |
| Trimmings                                                                                                                                                                |                          |                |            | 1                                                                                        |                                                      |          |              | 2                                                                  | 2                                                     |                           |
| Tin No.                                                                                                                                                                  |                          |                |            | 7                                                                                        |                                                      |          |              | 20                                                                 | )1                                                    |                           |
| Wt. of Tin (g)                                                                                                                                                           |                          |                | 28.2       |                                                                                          |                                                      | 28.9     |              |                                                                    |                                                       |                           |
| Wt. of Tin + Wet Soil (                                                                                                                                                  | (g)                      |                |            | 221.7                                                                                    | 7                                                    |          |              | 205                                                                | 5.5                                                   |                           |
| Wt. of Tin + Dry Soil (                                                                                                                                                  | g)                       |                |            | 203.4                                                                                    | 1                                                    |          |              | 189                                                                | 9.1                                                   |                           |
| Wt. of Dry Soil (g)                                                                                                                                                      |                          |                |            | 175.2                                                                                    | 2                                                    |          |              | 160                                                                | 0.2                                                   |                           |
| Wt. of Water (g)                                                                                                                                                         |                          |                |            | 18.3                                                                                     |                                                      |          |              | 16                                                                 | .4                                                    |                           |
| Water Content (%)                                                                                                                                                        |                          |                |            | 10.4                                                                                     |                                                      |          |              | 10                                                                 | .2                                                    |                           |
| Average Water Conte                                                                                                                                                      | nt (%)                   |                |            |                                                                                          |                                                      | 10.3     |              |                                                                    |                                                       |                           |
|                                                                                                                                                                          |                          |                |            |                                                                                          |                                                      |          |              |                                                                    |                                                       |                           |
|                                                                                                                                                                          |                          |                |            |                                                                                          |                                                      |          |              |                                                                    |                                                       |                           |
| Specimen                                                                                                                                                                 |                          |                |            | Before 7                                                                                 | 「est                                                 |          |              | After                                                              | Test                                                  |                           |
| Specimen<br>Tare I.D. No.                                                                                                                                                |                          |                | Rir        | Before T<br>ng, Stone                                                                    |                                                      |          |              | After<br>B1                                                        |                                                       |                           |
| ·                                                                                                                                                                        | il (g)                   |                | Rir        |                                                                                          | , Paper                                              |          |              |                                                                    | 19                                                    |                           |
| Tare I.D. No.                                                                                                                                                            | ,                        |                | Rir        | ng, Stone                                                                                | , Paper                                              |          |              | B1                                                                 | 19<br>7.8                                             |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So                                                                                                                                    | ,                        |                | Rir        | ng, Stone                                                                                | , Paper                                              |          |              | B1<br>157                                                          | 19<br>7.8<br>6.3                                      |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi                                                                                                           | ,                        |                | Rir        | ng, Stone<br>327.6<br>-                                                                  | , Paper<br>S<br>0                                    |          |              | B1<br>157<br>146                                                   | 19<br>7.8<br>6.3<br>7.4                               |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)                                                                                        | ,                        |                | Rir        | ng, Stone<br>327.6<br>-<br>196.1                                                         | , Paper<br>5<br>0<br>0                               |          |              | B1<br>157<br>146<br>27                                             | 19<br>7.8<br>6.3<br>7.4<br>0.4                        |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 | ,                        |                | Rir        | ng, Stone<br>327.6<br>-<br>196.1<br>131.5                                                | , Paper<br>5<br>0<br>0<br>0                          |          |              | B1<br>157<br>146<br>27<br>130                                      | 19<br>7.8<br>5.3<br>7.4<br>0.4<br>3.9                 |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          | ,                        |                | Rir        | ng, Stone<br>327.6<br>-<br>196.1<br>131.5<br>118.9                                       | , Paper<br>5<br>0<br>0<br>0<br>0                     |          |              | B1<br>155<br>146<br>27<br>130<br>118                               | 19<br>7.8<br>6.3<br>7.4<br>0.4<br>8.9<br>.5           |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | ,                        |                |            | ng, Stone<br>327.6<br>-<br>196.1<br>131.5<br>118.9<br>12.60<br>10.6                      | , Paper<br>5<br>0<br>0<br>0<br>0                     | ensity   |              | B1<br>157<br>14(<br>27<br>13(<br>11)<br>11<br>9.                   | 19<br>7.8<br>6.3<br>7.4<br>0.4<br>3.9<br>.5<br>7      | 0/000                     |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | il (g)                   | ρ <sub>d</sub> | 1.88       | ng, Stone<br>327.6<br>-<br>196.1<br>131.5<br>118.9<br>12.60<br>10.6<br>g/cm <sup>3</sup> | , Paper<br>5<br>0<br>0<br>0<br>0<br>5<br>Final Dry D |          | lbt          | B1<br>155<br>14€<br>27<br>130<br>118<br>11<br>9.<br>Ρd             | 19<br>7.8<br>6.3<br>7.4<br>0.4<br>3.9<br>.5<br>7<br>7 | -                         |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | il (g)                   | γd             |            | ng, Stone<br>327.6<br>-<br>196.1<br>131.5<br>118.9<br>12.60<br>10.6                      | , Paper<br>5<br>0<br>0<br>0<br>0                     |          | ht           | B1<br>157<br>14(<br>27<br>13(<br>11)<br>11<br>9.                   | 19<br>7.8<br>6.3<br>7.4<br>0.4<br>3.9<br>.5<br>7      | -                         |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | il (g)                   | γd             | 1.88       | ng, Stone<br>327.6<br>-<br>196.1<br>131.5<br>118.9<br>12.60<br>10.6<br>g/cm <sup>3</sup> | , Paper<br>5<br>0<br>0<br>0<br>0<br>5<br>Final Dry D |          | ht 6         | Β1<br>155<br>14(<br>27<br>130<br>11(<br>11<br>9.<br>Ρ <sub>d</sub> | 19<br>7.8<br>6.3<br>7.4<br>0.4<br>3.9<br>.5<br>7<br>7 | g/cm <sup>2</sup><br>kN/m |

| Project:                                                                                                                       | An expe  | erimenta            | I investigation of th                                             | e behavior of compa                                 | cted sand/clay mix                                             | xtures                                |
|--------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|-------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|---------------------------------------|
| Sample:                                                                                                                        | Low ener | gy com              | pacted, 75% sand                                                  | 25% kaolinite, 12% v                                | vater content (L25                                             | K12W)                                 |
| Consolid. Type                                                                                                                 | EI25-047 | 79                  |                                                                   | Consolid. Type                                      | Fixed Ring                                                     |                                       |
| Height of Spec.                                                                                                                | 20       | mm                  | Dia. of Spec.                                                     | 63.5 mm                                             | Area of Spec.                                                  | 3166.9 mm <sup>2</sup>                |
| Weight of Ring                                                                                                                 | 63       | g                   | Wt. of Stone                                                      | 128.3 g                                             | Wt. of Paper                                                   | 0.3 g                                 |
| Specific Gravity                                                                                                               | 2.64     |                     | Tested By                                                         | Yueru Chen                                          | Date                                                           | 2/11/2009                             |
| Trimmings                                                                                                                      | ;        |                     | 1                                                                 |                                                     | :                                                              | 2                                     |
| Tin No.                                                                                                                        |          |                     | MAJI                                                              | D                                                   | FJ                                                             | I-3                                   |
| Wt. of Tin (g)                                                                                                                 |          |                     | 28.6                                                              | 6                                                   | 2                                                              | 9                                     |
| Wt. of Tin + Wet Soil                                                                                                          | (g)      |                     | 196                                                               |                                                     | 18                                                             | 33                                    |
| Wt. of Tin + Dry Soil                                                                                                          | (g)      |                     | 178.                                                              | 3                                                   | 16                                                             | 6.3                                   |
| Wt. of Dry Soil (g)                                                                                                            |          |                     | 149.                                                              | 7                                                   | 13                                                             | 7.3                                   |
| Wt. of Water (g)                                                                                                               |          |                     | 17.7                                                              | ,                                                   | 16                                                             | 6.7                                   |
| Water Content (%)                                                                                                              |          |                     | 11.8                                                              | 3                                                   | 12                                                             | 2.2                                   |
| Average Water Cont                                                                                                             | ent (%)  |                     |                                                                   | 12.0                                                |                                                                |                                       |
|                                                                                                                                |          |                     |                                                                   |                                                     |                                                                |                                       |
| Specimen                                                                                                                       |          |                     | Before                                                            | Test                                                | After                                                          | Test                                  |
| Tare I.D. No.                                                                                                                  |          |                     | Ring, Stone                                                       | e, Paper                                            | 3                                                              | A                                     |
|                                                                                                                                |          |                     |                                                                   |                                                     |                                                                |                                       |
| Wt. of Tare + Wet S                                                                                                            | oil (g)  |                     | 319.                                                              | 5                                                   | 16                                                             | 0.6                                   |
| Wt. of Tare + Wet S<br>Wt. of Tare + Dry So                                                                                    | ,        |                     | 319.<br>-                                                         | 5                                                   | -                                                              | 0.6<br>8.7                            |
|                                                                                                                                | ,        |                     | 319.<br>-<br>191.6                                                |                                                     | 14                                                             |                                       |
| Wt. of Tare + Dry So                                                                                                           | ,        |                     | -                                                                 | 60                                                  | 14<br>34                                                       | 8.7                                   |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                        | ,        |                     | - 191.6                                                           | 60<br>90                                            | 14<br>34<br>12                                                 | 8.7<br>1.7                            |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 | ,        |                     | 191.6<br>127.9                                                    | 50<br>90<br>90                                      | 14<br>34<br>12<br>1                                            | 8.7<br>1.7<br>5.9                     |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          | ,        |                     | 191.6<br>127.9<br>114.0                                           | 50<br>10<br>10<br>0                                 | 14<br>34<br>12<br>1<br>1                                       | 8.7<br>1.7<br>5.9<br>14               |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | ,        |                     | 191.6<br>127.9<br>114.0<br>13.9<br>12.2                           | 50<br>00<br>00<br>2                                 | 14<br>34<br>12<br>1<br>1<br>1<br>1<br>1<br>1                   | 8.7<br>1.7<br>5.9<br>14<br>1.9<br>0.4 |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | bil (g)  | ρ <sub>d</sub>      | 191.6<br>127.9<br>114.0<br>13.9<br>12.2<br>1.80 g/cm <sup>3</sup> | 50<br>50<br>50<br>50<br>5<br>5<br>Final Dry Density | 14<br>34<br>12<br>1 <sup>1</sup><br>11<br>10<br>Ρ <sub>d</sub> | 8.7<br>1.7<br>5.9<br>14<br>1.9<br>0.4 |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | bil (g)  | γd                  | 191.6<br>127.9<br>114.0<br>13.9<br>12.2                           | 50<br>00<br>00<br>2                                 | 14<br>34<br>12<br>1 <sup>1</sup><br>11<br>10<br>Ρ <sub>d</sub> | 8.7<br>1.7<br>5.9<br>14<br>1.9<br>).4 |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | bil (g)  | γ <sub>d</sub><br>s | 191.6<br>127.9<br>114.0<br>13.9<br>12.2<br>1.80 g/cm <sup>3</sup> | 50<br>50<br>50<br>50<br>5<br>5<br>Final Dry Density | 14<br>34<br>12<br>1 <sup>1</sup><br>11<br>10<br>Ρ <sub>d</sub> | 8.7<br>1.7<br>5.9<br>14<br>1.9<br>0.4 |

| Project:                                                                                                      | An expe     | rimenta             | al investigation of                                          | the behavior (                                                         | of compa  | cted sand/cla      | y mixtures                                                 |                    |  |
|---------------------------------------------------------------------------------------------------------------|-------------|---------------------|--------------------------------------------------------------|------------------------------------------------------------------------|-----------|--------------------|------------------------------------------------------------|--------------------|--|
| Sample:                                                                                                       | Low ener    | gy com              | pacted, 75% san                                              | d 25% kaolinit                                                         | te, 14% v | vater content      | (L25K14W)                                                  |                    |  |
| Consolid. Type                                                                                                | EI25-047    | '9                  |                                                              | Consolid.                                                              | Туре      | Fixed Ring         |                                                            |                    |  |
| Height of Spec.                                                                                               | 20          | mm                  | Dia. of Spec.                                                | 63.5                                                                   | mm        | Area of Spe        | ec. 3166                                                   | .9 mm <sup>2</sup> |  |
| Weight of Ring                                                                                                | 63          | g                   | Wt. of Stone                                                 | 132.7                                                                  | g         | Wt. of Pape        | er 0.3                                                     | g                  |  |
| Specific Gravity                                                                                              | 2.64        |                     | Tested By                                                    | Yueru Che                                                              | en        | Date               | 2/1                                                        | 0/2009             |  |
| Trimmings                                                                                                     |             |                     |                                                              | l                                                                      |           |                    | 2                                                          |                    |  |
| Tin No.                                                                                                       |             |                     | FJ                                                           | FJ-3                                                                   |           |                    | MAJID                                                      |                    |  |
| Wt. of Tin (g)                                                                                                |             |                     | 2                                                            | 9                                                                      |           |                    | 28.6                                                       |                    |  |
| Wt. of Tin + Wet Soil                                                                                         | (g)         |                     | 16                                                           | 6.2                                                                    |           |                    | 233.3                                                      |                    |  |
| Wt. of Tin + Dry Soil                                                                                         | (g)         |                     | 149                                                          | 9.5                                                                    |           |                    | 208.5                                                      |                    |  |
| Wt. of Dry Soil (g)                                                                                           |             |                     | 12                                                           | 0.5                                                                    |           |                    | 179.9                                                      |                    |  |
| Wt. of Water (g)                                                                                              |             |                     | 16                                                           | 5.7                                                                    |           |                    | 24.8                                                       |                    |  |
| Water Content (%)                                                                                             |             |                     | 13                                                           | 8.9                                                                    |           |                    | 13.8                                                       |                    |  |
| Average Water Cont                                                                                            | ent (%)     |                     |                                                              |                                                                        | 13.8      |                    |                                                            |                    |  |
|                                                                                                               |             |                     |                                                              |                                                                        |           |                    |                                                            |                    |  |
| Specimen                                                                                                      |             |                     | Before                                                       | e Test                                                                 |           |                    | After Test                                                 |                    |  |
| Tare I.D. No.                                                                                                 |             |                     | Ring, Sto                                                    | ne, Paper                                                              |           |                    | ЗA                                                         |                    |  |
| Wt. of Tare + Wet S                                                                                           | oil (g)     |                     | 32                                                           | 23                                                                     |           |                    | 158.6                                                      |                    |  |
| Wt. of Tare + Dry So                                                                                          | oil (g)     |                     |                                                              |                                                                        |           |                    | 145.9                                                      |                    |  |
| Wt. of Tare (g)                                                                                               |             |                     | 196                                                          | 6.00                                                                   |           |                    | 34.7                                                       |                    |  |
| Wt. of Wet Soil (g)                                                                                           |             |                     | 127                                                          | .00                                                                    |           |                    | 123.9                                                      |                    |  |
|                                                                                                               |             |                     |                                                              |                                                                        |           |                    |                                                            |                    |  |
| Wt. of Dry Soil (g)                                                                                           |             |                     | 111                                                          | .20                                                                    |           |                    |                                                            |                    |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       |             |                     |                                                              | -                                                                      |           |                    | 111.2<br>12.7                                              |                    |  |
|                                                                                                               |             |                     | 15                                                           | -                                                                      |           |                    |                                                            |                    |  |
| Wt. of Water (g)                                                                                              |             |                     | 15.<br>14                                                    | .80<br>.2                                                              |           |                    | 12.7                                                       |                    |  |
| Wt. of Water (g)<br>Water Content (%)                                                                         |             | ρ <sub>d</sub>      | 15.<br>14<br>1.76 g/cm <sup>3</sup>                          | 80<br>9.2<br>Final Dry [                                               |           |                    | 12.7                                                       | 0                  |  |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density                                                  | ıt          | Pd<br>γd            | 15.<br>14                                                    | 80<br>9.2<br>Final Dry [                                               |           | ght                | 12.7<br>11.4                                               | 0                  |  |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion result | γ <sub>d</sub><br>s | 15<br>14<br>1.76 g/cm <sup>3</sup><br>17.2 kN/m <sup>2</sup> | 80<br>.2<br>Final Dry I<br><sup>3</sup> Final Dry I                    | Jnit Weig | -                  | 12.7<br>11.4<br>ρ <sub>d</sub> 1.98<br>γ <sub>d</sub> 19.4 | 0                  |  |
| Wt. of Water (g)                                                                                              |             | γ <sub>d</sub><br>s | 15.<br>14<br>1.76 g/cm <sup>3</sup>                          | 80<br>3.2<br><sup>3</sup> Final Dry I<br><sup>3</sup> Final Dry I<br>4 |           | 9ht<br>6<br>2.0400 | 12.7<br>11.4<br>ρ <sub>d</sub> 1.98                        | 3, 5111            |  |

| Project:                                                                                                      | An expe     | rimenta             | al investigation of                | the beh                                                   | avior   | of compa             | cted sand/o       | clay mix                                     | tures                      |                                        |
|---------------------------------------------------------------------------------------------------------------|-------------|---------------------|------------------------------------|-----------------------------------------------------------|---------|----------------------|-------------------|----------------------------------------------|----------------------------|----------------------------------------|
| Sample:                                                                                                       | Low ener    | gy com              | pacted, 50% sar                    | ıd 50% k                                                  | aolini  | te, 14% v            | ater conte        | nt (L50                                      | K14W)                      |                                        |
| Consolid. Type                                                                                                | EI25-047    | 9                   |                                    | Cor                                                       | nsolid. | Туре                 | Fixed Rin         | g                                            |                            |                                        |
| Height of Spec.                                                                                               | 20          | mm                  | Dia. of Spec.                      | 6                                                         | 3.5     | mm                   | Area of S         | pec.                                         | 3166.9                     | mm <sup>2</sup>                        |
| Weight of Ring                                                                                                | 62.9        | g                   | Wt. of Stone                       | 12                                                        | 29.9    | g                    | Wt. of Pa         | per                                          | 0.3                        | g                                      |
| Specific Gravity                                                                                              | 2.62        |                     | Tested By                          | Yue                                                       | ru Che  | en                   | Date              |                                              | 2/12/                      | 2009                                   |
| Trimmings                                                                                                     | ;           |                     |                                    | 1                                                         |         |                      |                   | 2                                            | 2                          |                                        |
| Tin No.                                                                                                       |             |                     | 4                                  | 18                                                        |         |                      |                   | 41                                           | 5                          |                                        |
| Wt. of Tin (g)                                                                                                |             |                     | 2                                  | 8.8                                                       |         |                      |                   | 28                                           | .8                         |                                        |
| Wt. of Tin + Wet Soil                                                                                         | (g)         |                     | 17                                 | 77.2                                                      |         |                      |                   | 16                                           | 6.6                        |                                        |
| Wt. of Tin + Dry Soil                                                                                         | (g)         |                     | 15                                 | 59.4                                                      |         |                      |                   | 149                                          | 9.8                        |                                        |
| Wt. of Dry Soil (g)                                                                                           |             |                     | 13                                 | 30.6                                                      |         |                      |                   | 12                                           | 21                         |                                        |
| Wt. of Water (g)                                                                                              |             |                     | 1                                  | 7.8                                                       |         |                      |                   | 16                                           | .8                         |                                        |
| Water Content (%)                                                                                             |             |                     | 1                                  | 3.6                                                       |         |                      |                   | 13                                           | .9                         |                                        |
| Average Water Cont                                                                                            | ent (%)     |                     |                                    |                                                           |         | 13.8                 |                   |                                              |                            |                                        |
|                                                                                                               |             |                     |                                    |                                                           |         |                      |                   |                                              |                            |                                        |
| Specimen                                                                                                      |             |                     | Befor                              | re Test                                                   |         |                      |                   | After                                        | Test                       |                                        |
| Tare I.D. No.                                                                                                 |             |                     | Ring, Sto                          | one, Pap                                                  | er      |                      |                   | В                                            | 7                          |                                        |
| Wt. of Tare + Wet S                                                                                           | oil (g)     |                     | 30                                 | )2.2                                                      |         |                      |                   | 13                                           | 7.2                        |                                        |
| Wt. of Tare + Dry So                                                                                          | oil (g)     |                     |                                    | -                                                         |         |                      |                   | 124                                          | 4.5                        |                                        |
| Wt. of Tare (g)                                                                                               |             |                     | 19                                 | 3.10                                                      |         |                      |                   | 28                                           | .7                         |                                        |
| Wt. of Wet Soil (g)                                                                                           |             |                     | 10                                 | 9.10                                                      |         |                      |                   | 108                                          | 8.5                        |                                        |
|                                                                                                               |             |                     |                                    |                                                           |         |                      |                   |                                              | 8                          |                                        |
| Wt. of Dry Soil (g)                                                                                           |             |                     | 95                                 | 5.80                                                      |         |                      |                   | 95                                           | .0                         |                                        |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       |             |                     |                                    | 5.80<br>3.30                                              |         |                      |                   | 95<br>12                                     | -                          |                                        |
|                                                                                                               |             |                     | 13                                 |                                                           |         |                      |                   |                                              | 7                          |                                        |
| Wt. of Water (g)                                                                                              |             |                     | 13<br>1:                           | 3.30<br>3.9                                               |         |                      |                   | 12                                           | 7                          |                                        |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density                                                  |             | ρ <sub>d</sub>      | 13<br>1:<br>1.51 g/cm              | 3.30<br>3.9<br><sup>3</sup> Fina                          | •       | Density              |                   | 12                                           | 1.7<br>.3                  | 0                                      |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh                        |             | γd                  | 13<br>1:                           | 3.30<br>3.9<br><sup>3</sup> Fina                          | •       | Density<br>Jnit Weig | ht                | 12<br>13                                     | 2.7<br>9.3                 | 0                                      |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion result | γd                  | 13<br>1:<br>1.51 g/cm<br>14.8 kN/m | 3.30<br>3.9<br>1 <sup>3</sup> Fina<br>1 <sup>3</sup> Fina | l Dry I | Jnit Weig            |                   | 12<br>13<br>Ρ <sub>d</sub>                   | 2.7<br>3.3<br>1.76<br>17.2 | 0                                      |
| Wt. of Water (g)                                                                                              |             | γ <sub>d</sub><br>s | 13<br>1:<br>1.51 g/cm              | 3.30<br>3.9<br>1 <sup>3</sup> Fina<br>1 <sup>3</sup> Fina | •       |                      | ht<br>6<br>1.4500 | 12<br>13<br>Ρ <sub>d</sub><br>γ <sub>d</sub> | 1.7<br>.3                  | g/cm <sup>2</sup><br>kN/m <sup>2</sup> |

|                                                                                                                                                                          | An expe  | rimenta        | I investigation of th                                                                      | e behavior of compa                                                | acted sand/clay mi                                            | ed sand/clay mixtures                                                        |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|
| Sample: L                                                                                                                                                                | ow energ | gy com         | pacted, 50% sand s                                                                         | 50% kaolinite, 16%                                                 | water content (L50                                            | K16W)                                                                        |  |  |  |
| Consolid. Type                                                                                                                                                           | El25-047 | 9              |                                                                                            | Consolid. Type                                                     | Fixed Ring                                                    |                                                                              |  |  |  |
| Height of Spec.                                                                                                                                                          | 20       | mm             | Dia. of Spec.                                                                              | 63.5 mm                                                            | Area of Spec.                                                 | 3166.9 mm <sup>2</sup>                                                       |  |  |  |
| Weight of Ring                                                                                                                                                           | 66.3     | g              | Wt. of Stone                                                                               | 133.6 g                                                            | Wt. of Paper                                                  | 0.3 g                                                                        |  |  |  |
| Specific Gravity                                                                                                                                                         | 2.62     |                | Tested By                                                                                  | Yueru Chen                                                         | Date                                                          | 2/12/2009                                                                    |  |  |  |
| Trimmings                                                                                                                                                                |          |                | 1                                                                                          |                                                                    | ;                                                             | 2                                                                            |  |  |  |
| Tin No.                                                                                                                                                                  |          |                | 213                                                                                        |                                                                    | 20                                                            | 05                                                                           |  |  |  |
| Wt. of Tin (g)                                                                                                                                                           |          |                | 27.9                                                                                       | 1                                                                  | 29                                                            | 9.7                                                                          |  |  |  |
| Wt. of Tin + Wet Soil (                                                                                                                                                  | (g)      |                | 152.4                                                                                      | 4                                                                  | 16                                                            | 3.3                                                                          |  |  |  |
| Wt. of Tin + Dry Soil (                                                                                                                                                  | g)       |                | 135.                                                                                       | 1                                                                  | 14                                                            | 4.5                                                                          |  |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                      |          |                | 107.2                                                                                      | 2                                                                  | 11                                                            | 4.8                                                                          |  |  |  |
| Wt. of Water (g)                                                                                                                                                         |          |                | 17.3                                                                                       |                                                                    | 18                                                            | 3.8                                                                          |  |  |  |
| Water Content (%)                                                                                                                                                        |          |                | 16.1                                                                                       |                                                                    | 16                                                            | 6.4                                                                          |  |  |  |
| Average Water Conte                                                                                                                                                      | nt (%)   |                |                                                                                            | 16.3                                                               |                                                               |                                                                              |  |  |  |
|                                                                                                                                                                          |          |                |                                                                                            |                                                                    |                                                               |                                                                              |  |  |  |
| Chaolman                                                                                                                                                                 |          |                | Before <sup>-</sup>                                                                        | Foot                                                               | After                                                         | Test                                                                         |  |  |  |
| Specimen                                                                                                                                                                 |          |                | Delute                                                                                     | rest                                                               |                                                               | Test                                                                         |  |  |  |
| Tare I.D. No.                                                                                                                                                            |          |                | Ring, Stone                                                                                |                                                                    |                                                               | 88                                                                           |  |  |  |
| ·                                                                                                                                                                        | il (g)   |                |                                                                                            | , Paper                                                            | E                                                             |                                                                              |  |  |  |
| Tare I.D. No.                                                                                                                                                            | (0)      |                | Ring, Stone                                                                                | , Paper                                                            | E<br>15                                                       | 88                                                                           |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So                                                                                                                                    | (0)      |                | Ring, Stone                                                                                | e, Paper<br>2                                                      | E<br>15<br>1:                                                 | 38<br>1.7                                                                    |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi                                                                                                           | (0)      |                | Ring, Stone<br>324.2                                                                       | a, Paper<br>2<br>0                                                 | E<br>15<br>1:<br>28                                           | 38<br>1.7<br>35                                                              |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)                                                                                        | (0)      |                | Ring, Stone<br>324.:<br>-<br>200.2                                                         | 9, Paper<br>2<br>0<br>0                                            | E<br>15<br>1:<br>28<br>12                                     | 88<br>1.7<br>35<br>3.4                                                       |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 | (0)      |                | Ring, Stone<br>324.2<br>-<br>200.2<br>124.0                                                | a, Paper<br>2<br>0<br>0<br>0                                       | E<br>15<br>1:<br>28<br>12<br>10                               | 88<br>1.7<br>35<br>3.4<br>3.3                                                |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          | (0)      |                | Ring, Stone<br>324.:<br>-<br>200.2<br>124.0<br>106.6                                       | a, Paper<br>2<br>0<br>0<br>0<br>0<br>0                             | E<br>15<br>1:<br>28<br>12<br>10                               | 88<br>1.7<br>35<br>3.4<br>3.3<br>6.6                                         |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | (0)      |                | Ring, Stone<br>324.:<br>200.2<br>124.0<br>106.6<br>17.40<br>16.3                           | a, Paper<br>2<br>00<br>00<br>00<br>00                              | E<br>15<br>1:<br>28<br>12<br>10<br>10<br>16                   | 88<br>1.7<br>35<br>3.4<br>3.3<br>6.6<br>5.7<br>5.7                           |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | (g)      | ρ <sub>d</sub> | Ring, Stone<br>324.2<br>200.2<br>124.0<br>106.6<br>17.40<br>16.3<br>1.68 g/cm <sup>3</sup> | Paper<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>5<br>Final Dry Density | Ε<br>15<br>1:<br>28<br>12<br>10<br>16<br>15<br>Ρ <sub>d</sub> | 88<br>1.7<br>35<br>3.4<br>3.3<br>6.6<br>5.7<br>5.7<br>1.86 g/cm              |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | : (g)    | γd             | Ring, Stone<br>324.:<br>200.2<br>124.0<br>106.6<br>17.40<br>16.3                           | a, Paper<br>2<br>00<br>00<br>00<br>00                              | Ε<br>15<br>1:<br>28<br>12<br>10<br>16<br>15<br>Ρ <sub>d</sub> | 88<br>1.7<br>35<br>3.4<br>3.3<br>6.6<br>5.7<br>5.7<br>1.86 g/cm              |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | : (g)    | γd             | Ring, Stone<br>324.2<br>200.2<br>124.0<br>106.6<br>17.40<br>16.3<br>1.68 g/cm <sup>3</sup> | Paper<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>5<br>Final Dry Density | Ε<br>15<br>1:<br>28<br>12<br>10<br>16<br>15<br>Ρ <sub>d</sub> | 88<br>1.7<br>35<br>3.4<br>3.3<br>6.6<br>5.7<br>5.7<br>1.86 g/cm <sup>2</sup> |  |  |  |

| Project:                                                                                                                             | An expe     | rimenta             | al investigation of                      | the be                                                        | havior  | of compa            | acted sand/ | clay mix                                     | ktures                     |                           |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|------------------------------------------|---------------------------------------------------------------|---------|---------------------|-------------|----------------------------------------------|----------------------------|---------------------------|
| Sample:                                                                                                                              | Low ener    | gy com              | pacted, 50% sar                          | nd 50%                                                        | kaolini | ite, 18%            | water conte | nt (L50                                      | K18W)                      |                           |
| Consolid. Type                                                                                                                       | EI25-047    | '9                  |                                          | Co                                                            | onsolid | . Туре              | Fixed Rir   | ng                                           |                            |                           |
| Height of Spec.                                                                                                                      | 20          | mm                  | Dia. of Spec.                            | (                                                             | 63.5    | mm                  | Area of S   | Spec.                                        | 3166.9                     | $\rm{mm}^2$               |
| Weight of Ring                                                                                                                       | 66.4        | g                   | Wt. of Stone                             |                                                               | 130     | g                   | Wt. of Pa   | iper                                         | 0.3                        | g                         |
| Specific Gravity                                                                                                                     | 2.62        |                     | Tested By                                | Yue                                                           | eru Ch  | en                  | Date        |                                              | 2/11/                      | 2009                      |
| Trimmings                                                                                                                            | 6           |                     |                                          | 1                                                             |         |                     |             | 2                                            | 2                          |                           |
| Tin No.                                                                                                                              |             |                     |                                          | 7                                                             |         |                     |             | 20                                           | 01                         |                           |
| Wt. of Tin (g)                                                                                                                       |             |                     | 28                                       | 8.1                                                           |         |                     |             | 28                                           | 8.8                        |                           |
| Wt. of Tin + Wet Soil                                                                                                                | (g)         |                     | 1                                        | 72                                                            |         |                     |             | 17:                                          | 2.7                        |                           |
| Wt. of Tin + Dry Soil                                                                                                                |             |                     | 14                                       | 19.7                                                          |         |                     |             | 15                                           | 0.6                        |                           |
| Wt. of Dry Soil (g)                                                                                                                  |             |                     | 12                                       | 21.6                                                          |         |                     |             | 12                                           | 1.8                        |                           |
| Wt. of Water (g)                                                                                                                     |             |                     | 2                                        | 2.3                                                           |         |                     |             | 22                                           | 2.1                        |                           |
| Water Content (%)                                                                                                                    |             |                     | 1                                        | 8.3                                                           |         |                     |             | 18                                           | 8.1                        |                           |
| Average Water Cont                                                                                                                   | ent (%)     |                     |                                          |                                                               |         | 18.2                |             |                                              |                            |                           |
|                                                                                                                                      |             |                     |                                          |                                                               |         |                     |             |                                              |                            |                           |
| Specimen                                                                                                                             |             |                     | Befor                                    | re Test                                                       |         |                     |             | After                                        | Test                       |                           |
| Tare I.D. No.                                                                                                                        |             |                     | Ring, Sto                                | one, Pa                                                       | per     |                     |             | B                                            | 19                         |                           |
| Wt. of Tare + Wet S                                                                                                                  | oil (g)     |                     | 32                                       | 23.2                                                          |         |                     |             | 15                                           | 1.4                        |                           |
| Wt. of Tare + Dry Se                                                                                                                 | oil (g)     |                     |                                          | -                                                             |         |                     |             | 13                                           | 4.3                        |                           |
| Wt. of Tare (g)                                                                                                                      |             |                     | 19                                       | 6.70                                                          |         |                     |             | 27                                           | 7.3                        |                           |
|                                                                                                                                      |             |                     | 12                                       | 6.50                                                          |         |                     |             | 124                                          | 4.1                        |                           |
| Wt. of Wet Soil (g)                                                                                                                  |             |                     |                                          | 0.00                                                          |         |                     |             |                                              |                            |                           |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                           |             |                     |                                          | 7.00                                                          |         |                     |             | 10                                           | )7                         |                           |
| (0)                                                                                                                                  |             |                     | 10                                       |                                                               |         |                     |             |                                              | )7<br>7.1                  |                           |
| Wt. of Dry Soil (g)                                                                                                                  |             |                     | 10<br>19                                 | 7.00                                                          |         |                     |             | 17                                           |                            |                           |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              |             |                     | 10<br>19<br>11                           | 7.00<br>9.50<br>8.2                                           |         |                     |             | 17                                           | 7.1                        |                           |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         |             | Ρd                  | 10<br>19<br>11<br>1.69 g/cm              | 7.00<br>9.50<br>8.2<br><sup>3</sup> Fin                       | al Dry  | Density             |             | 17                                           | 7.1                        | -                         |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         | ıt          | Pd<br>γd            | 10<br>19<br>11                           | 7.00<br>9.50<br>8.2<br><sup>3</sup> Fin                       |         | Density<br>Unit Wei | ght         | 17<br>16                                     | 7.1<br>6.0                 | -                         |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion result | γ <sub>d</sub><br>s | 10<br>19<br>11<br>1.69 g/cm<br>16.6 kN/m | 7.00<br>9.50<br>8.2<br><sup>3</sup> Fin                       |         |                     | ght         | 17<br>16<br>Ρ <sub>d</sub>                   | 7.1<br>5.0<br>1.98<br>19.4 | g/cm <sup>°</sup><br>kN/m |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              |             | γ <sub>d</sub><br>s | 10<br>19<br>11<br>1.69 g/cm              | 7.00<br>).50<br>8.2<br><sup>3</sup> Fin<br>1 <sup>3</sup> Fin |         |                     | ght<br>6    | 17<br>16<br>Ρ <sub>d</sub><br>γ <sub>d</sub> | 7.1<br>5.0<br>1.98         | -                         |

| Project:                                                                             | An expe     | rimenta           | al investigati | on of the         | e behavior  | of compa    | cted sand/c | lay mix           | tures     |                   |
|--------------------------------------------------------------------------------------|-------------|-------------------|----------------|-------------------|-------------|-------------|-------------|-------------------|-----------|-------------------|
| Sample:                                                                              | Low ener    | gy com            | pacted, 50%    | % sand 5          | 50% kaolini | te, 20% v   | ater conter | nt (L50I          | <20W)     |                   |
| Consolid. Type                                                                       | EI25-047    | '9                |                |                   | Consolid.   | Туре        | Fixed Rin   | g                 |           |                   |
| Height of Spec.                                                                      | 20          | mm                | Dia. of Sp     | ec.               | 63.5        | mm          | Area of S   | pec.              | 3166.9    | $mm^2$            |
| Weight of Ring                                                                       | 66.3        | g                 | Wt. of Sto     | ne                | 134.3       | g           | Wt. of Pa   | per               | 0.3       | g                 |
| Specific Gravity                                                                     | 2.62        |                   | Tested By      | 1                 | Yueru Che   | en          | Date        |                   | 2/10/     | 2009              |
| Trimmings                                                                            | 3           |                   |                | 1                 |             |             |             | 2                 |           |                   |
| Tin No.                                                                              |             |                   |                | 418               |             |             |             | 41                | 5         |                   |
| Wt. of Tin (g)                                                                       |             |                   |                | 28.8              |             |             |             | 28                | .8        |                   |
| Wt. of Tin + Wet Soil                                                                | l (g)       |                   |                | 207.3             | 3           |             |             | 207               | 1.7       |                   |
| Wt. of Tin + Dry Soil                                                                | (g)         |                   |                | 178.5             | 5           |             |             | 172               | 2.9       |                   |
| Wt. of Dry Soil (g)                                                                  |             |                   |                | 149.7             | 7           |             |             | 144               | 4.1       |                   |
| Wt. of Water (g)                                                                     |             |                   |                | 28.8              |             |             |             | 28                | .8        |                   |
| Water Content (%)                                                                    |             |                   |                | 19.2              |             |             |             | 20                | .0        |                   |
| Average Water Cont                                                                   | ent (%)     |                   |                |                   |             | 19.6        |             |                   |           |                   |
|                                                                                      |             |                   |                |                   |             |             |             |                   |           |                   |
| Specimen                                                                             | l           |                   |                | Before 7          | 「est        |             |             | After             | Test      |                   |
| Tare I.D. No.                                                                        |             |                   | Ring           | g, Stone          | , Paper     |             |             | B1                | 9         |                   |
| Wt. of Tare + Wet S                                                                  | oil (g)     |                   |                | 321.6             | 6           |             |             | 144               | 1.2       |                   |
| Wt. of Tare + Dry Se                                                                 | oil (g)     |                   |                | -                 |             |             |             | 127               | 7.1       |                   |
| Wt. of Tare (g)                                                                      |             |                   |                | 200.9             | 0           |             |             | 27                | .4        |                   |
| Wt. of Wet Soil (g)                                                                  |             |                   |                | 120.7             | 0           |             |             | 116               | 6.8       |                   |
| Wt. of Dry Soil (g)                                                                  |             |                   |                | 99.70             | )           |             |             | 99                | .7        |                   |
| Wt. of Water (g)                                                                     |             |                   |                | 21.00             | )           |             |             | 17                | .1        |                   |
| Water Content (%)                                                                    |             |                   |                | 21.1              |             |             |             | 17                | .2        |                   |
|                                                                                      |             |                   |                | _                 |             |             |             |                   |           |                   |
| Initial Dry Density                                                                  |             | $\rho_{\text{d}}$ |                | g/cm <sup>3</sup> | Final Dry I |             |             | $\rho_{\text{d}}$ | 1.82      | g/cm <sup>3</sup> |
|                                                                                      | - 1         | γd                | 15.4           | kN/m <sup>3</sup> | Final Dry   | Unit Weig   | ht          | γd                | 17.9      | kN/m              |
| , ,                                                                                  |             |                   |                |                   |             |             |             |                   |           |                   |
| End of load deforma                                                                  | tion result | S                 |                |                   |             |             | -           |                   | 7         |                   |
| Initial Dry Unit Weigh<br>End of load deforma<br>Load Step No.<br>Corrected Def (mm) |             | S                 | 2<br>0.3990    | 3<br>0.6910       | 4<br>1.2100 | 5<br>1.7500 | 6<br>2.2400 | 0.1               | 7<br>7300 |                   |

| Project:                                                                              | An exp       | perimen           | tal investi | gation of t       | he behavio  | or of compa  | acted sand/ | clay mi           | xtures    |      |
|---------------------------------------------------------------------------------------|--------------|-------------------|-------------|-------------------|-------------|--------------|-------------|-------------------|-----------|------|
| Sample:                                                                               | Standard     | Proctor           | compacte    | ed, 85% s         | and 15% k   | aolinite, 5% | % water cor | ntent (S          | 15K5W)    |      |
| Consolid. Type                                                                        | EI25-047     | 9                 |             |                   | Consolid    | . Туре       | Fixed Ring  | g                 |           |      |
| Height of Spec.                                                                       | 20           | mm                | Dia. of S   | pec.              | 63.5        | mm           | Area of S   | pec.              | 3166.9    | mm²  |
| Weight of Ring                                                                        | 63.1         | g                 | Wt. of St   | one               | 130         | g            | Wt. of Pap  | ber               | 0.3       | g    |
| Specific Gravity                                                                      | 2.64         |                   | Tested E    | Ву                | Yueru Ch    | en           | Date        |                   | 1/27/     | 2009 |
| Trimmings                                                                             | 3            |                   |             | 1                 |             |              |             | 2                 | 2         |      |
| Tin No.                                                                               |              |                   |             | 5                 |             |              |             | FJ                | -3        |      |
| Wt. of Tin (g)                                                                        |              |                   |             | 28.9              | )           |              |             | 29                | .1        |      |
| Wt. of Tin + Wet Soil                                                                 | (g)          |                   |             | 126.9             | 9           |              |             | 143               | 3.5       |      |
| Wt. of Tin + Dry Soil                                                                 | (0)          |                   |             | 122               |             |              |             | 137               | 7.7       |      |
| Wt. of Dry Soil (g)                                                                   |              |                   |             | 93.1              |             |              |             | 108               | 3.6       |      |
| Wt. of Water (g)                                                                      |              |                   |             | 4.9               |             |              |             | 5.                | 8         |      |
| Water Content (%)                                                                     |              |                   |             | 5.3               |             |              |             | 5.                | 3         |      |
| Average Water Cont                                                                    | ent (%)      |                   |             |                   |             | 5.3          |             |                   |           |      |
|                                                                                       |              |                   |             |                   |             |              |             |                   |           |      |
| Specimer                                                                              | 1            |                   |             | Before -          | Test        |              |             | After             | Test      |      |
| Tare I.D. No.                                                                         |              |                   | Ri          | ng, Stone         | e, Paper    |              |             | В                 | 7         |      |
| Wt. of Tare + Wet S                                                                   | oil (g)      |                   |             | 313.0             | 6           |              |             | 148               | 3.3       |      |
| Wt. of Tare + Dry So                                                                  | oil (g)      |                   |             | -                 |             |              |             | 142               | 2.4       |      |
| Wt. of Tare (g)                                                                       |              |                   |             | 193.4             | 0           |              |             | 28                | .7        |      |
| Wt. of Wet Soil (g)                                                                   |              |                   |             | 120.2             | 20          |              |             | 119               | 9.6       |      |
| Wt. of Dry Soil (g)                                                                   |              |                   |             | 113.7             | 0           |              |             | 11:               | 3.7       |      |
| Wt. of Water (g)                                                                      |              |                   |             | 6.50              | )           |              |             | 5.                | 9         |      |
| Water Content (%)                                                                     |              |                   |             | 5.7               |             |              |             | 5.                | 2         |      |
|                                                                                       |              |                   |             |                   |             |              |             |                   |           |      |
| Initial Dry Density                                                                   |              | $\rho_{\text{d}}$ | 1.80        | g/cm <sup>3</sup> | Final Dry   |              |             | $\rho_{\text{d}}$ | 1.87      | g/cm |
|                                                                                       | ht.          | γd                | 17.6        | kN/m <sup>3</sup> | Final Dry   | Unit Weigl   | nt          | γd                | 18.3      | kN/m |
| Initial Dry Unit Weigh                                                                | it.          |                   |             |                   |             |              |             |                   |           |      |
| End of load deformat                                                                  | tion results | 3                 |             |                   |             |              |             |                   |           |      |
| Initial Dry Unit Weigh<br>End of load deformat<br>Load Step No.<br>Corrected Def (mm) |              |                   | 2<br>0.1140 | 3<br>0.2410       | 4<br>0.3760 | 5<br>0.5280  | 6<br>0.6630 |                   | 7<br>8030 |      |

| dard Proctor c<br>25-0479<br>20 mm<br>- g<br>2.64 | Dia. of Spec.<br>Wt. of Stone<br>Tested By<br>1<br>213<br>27.9<br>174 | nd 15% kaolinite, 8%<br>Consolid. Type<br>63.5 mm<br>- g<br>Yueru Chen                                                                                                                                | Fixed Ring<br>Area of Spec.<br>Wt. of Paper<br>Date                                                                                                                                                                                                           | 3166.9 mm <sup>2</sup><br>- g<br>1/22/2009                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20 mm<br>- g<br>2.64                              | Wt. of Stone<br>Tested By<br>1<br>213<br>27.9                         | 63.5 mm<br>- g                                                                                                                                                                                        | Area of Spec.<br>Wt. of Paper<br>Date                                                                                                                                                                                                                         | - g<br>1/22/2009<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - g<br>2.64                                       | Wt. of Stone<br>Tested By<br>1<br>213<br>27.9                         | - g                                                                                                                                                                                                   | Wt. of Paper<br>Date                                                                                                                                                                                                                                          | - g<br>1/22/2009<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.64                                              | Tested By<br>1<br>213<br>27.9                                         | Ţ                                                                                                                                                                                                     | Date                                                                                                                                                                                                                                                          | 1/22/2009                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                   | 1<br>213<br>27.9                                                      | Yueru Chen                                                                                                                                                                                            | 2<br>2<br>8                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                   | 213<br>27.9                                                           |                                                                                                                                                                                                       | В                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                                                 | 27.9                                                                  |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                               | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I                                                 |                                                                       |                                                                                                                                                                                                       | ~                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ì                                                 | 174                                                                   |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                               | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   |                                                                       |                                                                                                                                                                                                       | 19                                                                                                                                                                                                                                                            | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   | 163.8                                                                 | 3                                                                                                                                                                                                     | 18                                                                                                                                                                                                                                                            | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   | 135.9                                                                 | )                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                            | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   | 10.2                                                                  |                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                            | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   | 7.5                                                                   |                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                             | .4                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (%)                                               |                                                                       | 7.5                                                                                                                                                                                                   |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                   |                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                   | Before T                                                              | est                                                                                                                                                                                                   | After                                                                                                                                                                                                                                                         | <sup>.</sup> Test                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                   | Ring, Stone,                                                          | , Paper                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (g)                                               | 321.1                                                                 |                                                                                                                                                                                                       | 15                                                                                                                                                                                                                                                            | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| g)                                                | -                                                                     |                                                                                                                                                                                                       | 1:                                                                                                                                                                                                                                                            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                   | 197.00                                                                | D                                                                                                                                                                                                     | 34                                                                                                                                                                                                                                                            | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   | 124.10                                                                | D                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                            | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   | 115.30                                                                | D                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                            | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   | 8.80                                                                  |                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                             | .3                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                   | 7.6                                                                   |                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                             | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                   | 4.00 / 3                                                              |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                               | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                   | 0                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                               | 1.92 g/cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                   | 17.8 kN/m°                                                            | Final Dry Unit Weig                                                                                                                                                                                   | jni γ <sub>d</sub>                                                                                                                                                                                                                                            | 18.8 kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                   | 2 3                                                                   | Δ 5                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                   |                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                               | .0465                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                   | g)                                                                    | (%)<br>Before T<br>Ring, Stone<br>g) 321.1<br>g) -<br>197.00<br>124.10<br>115.30<br>8.80<br>7.6<br>P <sub>d</sub> 1.82 g/cm <sup>3</sup><br>γ <sub>d</sub> 17.8 kN/m <sup>3</sup><br>results<br>1 2 3 | (%) 7.5<br>Before Test<br>Ring, Stone, Paper<br>g) 321.1<br>g) -<br>197.00<br>124.10<br>115.30<br>8.80<br>7.6<br>ρ <sub>d</sub> 1.82 g/cm <sup>3</sup> Final Dry Density<br>γ <sub>d</sub> 17.8 kN/m <sup>3</sup> Final Dry Unit Weig<br>results<br>1 2 3 4 5 | (%)       7.5         Before Test       After         Ring, Stone, Paper       3         g)       321.1       15         g)       -       19         197.00       34         124.10       12         115.30       11         8.80       8         7.6       7 $\rho_d$ 1.82       g/cm <sup>3</sup> Final Dry Density $\rho_d$ $\gamma_d$ 17.8       kN/m <sup>3</sup> Final Dry Unit Weight $\gamma_d$ results       2       3       4       5       6 |

| Project:                                                                                                                             | An expe     | rimenta             | al investigation of t                                                  | he behavior of compa                                                    | acted sand/clay mi                                    | xtures                                            |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|
| Sample: Sta                                                                                                                          | andard Pr   | octor co            | ompacted, 85% sa                                                       | and 15% kaolinite, 10                                                   | % water content (S                                    | 15K10W)                                           |
| Consolid. Type                                                                                                                       | EI25-047    | '9                  |                                                                        | Consolid. Type                                                          | Fixed Ring                                            |                                                   |
| Height of Spec.                                                                                                                      | 20          | mm                  | Dia. of Spec.                                                          | 63.5 mm                                                                 | Area of Spec.                                         | 3166.9 mm <sup>2</sup>                            |
| Weight of Ring                                                                                                                       | 63          | g                   | Wt. of Stone                                                           | 130 g                                                                   | Wt. of Paper                                          | 0.3 g                                             |
| Specific Gravity                                                                                                                     | 2.64        |                     | Tested By                                                              | Yueru Chen                                                              | Date                                                  | 1/26/2009                                         |
| Trimmings                                                                                                                            | 3           |                     | 1                                                                      |                                                                         |                                                       | 2                                                 |
| Tin No.                                                                                                                              |             |                     | 41                                                                     | 5                                                                       | 4                                                     | 18                                                |
| Wt. of Tin (g)                                                                                                                       |             |                     | 28                                                                     | .8                                                                      | 28                                                    | 3.8                                               |
| Wt. of Tin + Wet Soil                                                                                                                | (g)         |                     | 28.8<br>194.1                                                          |                                                                         |                                                       | 4.9                                               |
| Wt. of Tin + Dry Soil                                                                                                                |             |                     | 194.1204.9179.8189.9                                                   |                                                                         |                                                       |                                                   |
| Wt. of Dry Soil (g)                                                                                                                  |             |                     | 15                                                                     | 1                                                                       | 16                                                    | 1.1                                               |
| Wt. of Water (g)                                                                                                                     |             |                     | 14.                                                                    | .3                                                                      | 1                                                     | 5                                                 |
| Water Content (%)                                                                                                                    |             |                     | 9.                                                                     | 5                                                                       | 9                                                     | .3                                                |
| Average Water Cont                                                                                                                   | ent (%)     |                     |                                                                        | 9.4                                                                     |                                                       |                                                   |
|                                                                                                                                      |             |                     |                                                                        |                                                                         |                                                       |                                                   |
| Specimen                                                                                                                             |             |                     | Before                                                                 | Test                                                                    | After                                                 | Test                                              |
| Tare I.D. No.                                                                                                                        |             |                     | Ring, Stor                                                             | ne, Paper                                                               |                                                       | 5                                                 |
| Wt. of Tare + Wet S                                                                                                                  | oil (g)     |                     | 320                                                                    | ).8                                                                     | 15                                                    | 5.1                                               |
| Wt. of Tare + Dry Se                                                                                                                 | oil (g)     |                     | -                                                                      |                                                                         | 14                                                    | 4.7                                               |
| Wt. of Tare (g)                                                                                                                      |             |                     | 193                                                                    | .30                                                                     | 28                                                    |                                                   |
|                                                                                                                                      |             |                     |                                                                        |                                                                         |                                                       | 3.9                                               |
| Wt. of Wet Soil (g)                                                                                                                  |             |                     | 127.                                                                   |                                                                         | 12                                                    | 6.2                                               |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                           |             |                     | 127.<br>115.                                                           | .50                                                                     |                                                       |                                                   |
|                                                                                                                                      |             |                     |                                                                        | .50<br>.80                                                              | 11                                                    | 6.2                                               |
| Wt. of Dry Soil (g)                                                                                                                  |             |                     | 115                                                                    | .50<br>.80<br>70                                                        | 11<br>1(                                              | 6.2<br>5.8                                        |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         |             |                     | 115.<br>11.<br>10.                                                     | .50<br>.80<br>70<br>.1                                                  | 11<br>1(                                              | 6.2<br>5.8<br>).4<br>.0                           |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         |             | ρ <sub>d</sub>      | 115.<br>11.<br>10.<br>1.83 g/cm <sup>3</sup>                           | 50<br>.80<br>70<br>.1<br>Final Dry Density                              | 11<br>1(<br>9<br>Ρ <sub>d</sub>                       | 6.2<br>5.8<br>).4<br>.0<br>1.91 g/cm              |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh                        |             | γd                  | 115.<br>11.<br>10.                                                     | 50<br>.80<br>70<br>.1<br>Final Dry Density                              | 11<br>1(<br>9<br>Ρ <sub>d</sub>                       | 6.2<br>5.8<br>).4<br>.0<br>1.91 g/cm              |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion result | γ <sub>d</sub><br>S | 115.<br>11.<br>10.<br>1.83 g/cm <sup>3</sup><br>17.9 kN/m <sup>3</sup> | .50<br>.80<br>70<br>.1<br>Final Dry Density<br>Final Dry Unit Wei       | 11<br>1(<br>9<br>P <sub>d</sub><br>ght γ <sub>d</sub> | 6.2<br>5.8<br>).4<br>.0<br>1.91 g/cm<br>18.7 kN/m |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                              |             | γ <sub>d</sub><br>s | 115.<br>11.<br>10.<br>1.83 g/cm <sup>3</sup>                           | 50<br>.80<br>70<br>.1<br>Final Dry Density<br>Final Dry Unit Wei<br>4 5 | 11<br>10<br>9<br>Pd<br>βht γd                         | 6.2<br>5.8<br>0.4<br>.0<br>1.91 g/cm              |

| Project:                                                                             | An expe     | rimenta           | al investigat | ion of th         | e behavior  | of compa     | acted sand/o | clay mix          | ktures      |        |
|--------------------------------------------------------------------------------------|-------------|-------------------|---------------|-------------------|-------------|--------------|--------------|-------------------|-------------|--------|
| Sample: Sta                                                                          | andard Pr   | octor co          | ompacted, 8   | 85% san           | d 15% kac   | olinite, 129 | % water cor  | ntent (S          | 15K12W      | ')     |
| Consolid. Type                                                                       | EI25-047    | '9                |               |                   | Consolid    | l. Type      | Fixed Rin    | ng                |             |        |
| Height of Spec.                                                                      | 20          | mm                | Dia. of Sp    | bec.              | 63.5        | mm           | Area of S    | pec.              | 3166.9      | $mm^2$ |
| Weight of Ring                                                                       | 63.1        | g                 | Wt. of Sto    | one               | 130         | g            | Wt. of Pa    | per               | 0.3         | g      |
| Specific Gravity                                                                     | 2.64        |                   | Tested By     | y                 | Yueru Ch    | ien          | Date         |                   | 1/28/       | /2009  |
| Trimmings                                                                            | 5           |                   |               | 1                 |             |              |              | 2                 | 2           |        |
| Tin No.                                                                              |             |                   |               | B7                |             |              |              | MA                | JID         |        |
| Wt. of Tin (g)                                                                       |             |                   |               | 28.7              |             |              |              | 28                | 3.4         |        |
| Wt. of Tin + Wet Soil                                                                | (g)         |                   |               | 261.7             | 7           |              |              | 24                | 8.3         |        |
| Wt. of Tin + Dry Soil                                                                | (g)         |                   |               | 236.8             | 3           |              |              | 224               | 4.6         |        |
| Wt. of Dry Soil (g)                                                                  |             |                   |               | 208.              | 1           |              |              | 19                | 6.2         |        |
| Wt. of Water (g)                                                                     |             |                   |               | 24.9              | 1           |              |              | 23                | 3.7         |        |
| Water Content (%)                                                                    |             |                   |               | 12.0              | 1           |              |              | 12                | 2.1         |        |
| Average Water Cont                                                                   | ent (%)     |                   |               |                   |             | 12.0         |              |                   |             |        |
|                                                                                      |             |                   |               |                   |             |              |              |                   |             |        |
| Specimen                                                                             |             |                   |               | Before 7          | Fest        |              |              | After             | Test        |        |
| Tare I.D. No.                                                                        |             |                   | Rin           | g, Stone          | , Paper     |              |              | 21                | 13          |        |
| Wt. of Tare + Wet S                                                                  | oil (g)     |                   |               | 318.2             | 2           |              |              | 15                | 0.5         |        |
| Wt. of Tare + Dry So                                                                 | oil (g)     |                   |               | -                 |             |              |              | 13                | 9.1         |        |
| Wt. of Tare (g)                                                                      |             |                   |               | 193.4             | 0           |              |              | 27                | <b>'</b> .9 |        |
| Wt. of Wet Soil (g)                                                                  |             |                   |               | 124.8             | 0           |              |              | 12                | 2.6         |        |
| Wt. of Dry Soil (g)                                                                  |             |                   |               | 111.2             | 0           |              |              | 11                | 1.2         |        |
| Wt. of Water (g)                                                                     |             |                   |               | 13.60             | C           |              |              | 11                | .4          |        |
| Water Content (%)                                                                    |             |                   |               | 12.2              |             |              |              | 10                | ).3         |        |
|                                                                                      |             |                   |               |                   |             |              |              |                   |             |        |
| Initial Dry Density                                                                  |             | $\rho_{\text{d}}$ |               | g/cm <sup>3</sup> | Final Dry   | Density      |              | $\rho_{\text{d}}$ | 1.85        | g/cm   |
|                                                                                      | nt          | γd                | 17.2          | kN/m <sup>3</sup> | Final Dry   | Unit Wei     | ght          | γd                | 18.1        | kN/m   |
| Initial Dry Unit Weigh                                                               |             |                   |               |                   |             |              |              |                   |             |        |
| Initial Dry Unit Weigh<br>End of load deforma                                        | tion result |                   |               |                   |             |              |              |                   | _           |        |
| Initial Dry Unit Weigh<br>End of load deforma<br>Load Step No.<br>Corrected Def (mm) |             |                   | 2<br>0.3680   | 3<br>0.5000       | 4<br>0.6300 | 5<br>0.7820  | 6<br>0.9020  |                   | 7<br>0200   |        |

| Project:                                                                                                           | An expe   | rimenta                          | al investigation of th                                          | he behavior of comp                    | acted sand/clay mi             | xtures                                            |
|--------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------|-----------------------------------------------------------------|----------------------------------------|--------------------------------|---------------------------------------------------|
| Sample: Star                                                                                                       | ndard Pro | octor co                         | ompacted, 85% sa                                                | nd 15% kaolinite, 14                   | % water content (              | S15K14W)                                          |
| Consolid. Type                                                                                                     | El25-047  | 9                                |                                                                 | Consolid. Type                         | Fixed Ring                     |                                                   |
| Height of Spec.                                                                                                    | 20        | mm                               | Dia. of Spec.                                                   | 63.5 mm                                | Area of Spec.                  | 3166.9 mm <sup>2</sup>                            |
| Weight of Ring                                                                                                     | 63        | g                                | Wt. of Stone                                                    | 130 g                                  | Wt. of Paper                   | 0.3 g                                             |
| Specific Gravity                                                                                                   | 2.64      |                                  | Tested By                                                       | Yueru Chen                             | Date                           | 1/29/2009                                         |
| Trimmings                                                                                                          |           |                                  | 1                                                               |                                        |                                | 2                                                 |
| Tin No.                                                                                                            |           |                                  | 415                                                             | 5                                      | MA                             | JID                                               |
| Wt. of Tin (g)                                                                                                     |           |                                  | 28.                                                             | 7                                      | 2                              | 8.6                                               |
| Wt. of Tin + Wet Soil                                                                                              | (g)       |                                  | 235                                                             | 6                                      | 21                             | 1.4                                               |
| Wt. of Tin + Dry Soil (                                                                                            | g)        |                                  | 210                                                             | 3                                      | 18                             | 9.2                                               |
| Wt. of Dry Soil (g)                                                                                                |           |                                  | 181                                                             | 6                                      | 16                             | 60.6                                              |
| Wt. of Water (g)                                                                                                   |           |                                  | 25.                                                             | 3                                      | 2                              | 2.2                                               |
| Water Content (%)                                                                                                  |           |                                  | 13.                                                             | 9                                      | 1                              | 3.8                                               |
| Average Water Conte                                                                                                | nt (%)    |                                  |                                                                 | 13.9                                   |                                |                                                   |
|                                                                                                                    |           |                                  |                                                                 |                                        |                                |                                                   |
| Specimen                                                                                                           |           |                                  | Before                                                          | Test                                   | Afte                           | r Test                                            |
| Tare I.D. No.                                                                                                      |           |                                  | Ring, Ston                                                      | e, Paper                               | 3                              | BA                                                |
| Wt. of Tare + Wet So                                                                                               | il (g)    |                                  | 317                                                             | 7                                      | 15                             | 5.7                                               |
| Wt. of Tare + Dry Soi                                                                                              | l (g)     |                                  | -                                                               |                                        | 14                             | 3.5                                               |
| Wt. of Tare (g)                                                                                                    |           |                                  | 193.                                                            | 30                                     | 3                              | 4.7                                               |
| Wt. of Wet Soil (g)                                                                                                |           |                                  | 124.                                                            | 40                                     | 1                              | 21                                                |
|                                                                                                                    |           |                                  | 108.                                                            | 80                                     | 10                             | 8.8                                               |
| Wt. of Dry Soil (g)                                                                                                |           |                                  | 100.                                                            | 50                                     | TC TC                          | 0.0                                               |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                            |           |                                  | 15.6                                                            |                                        |                                | 2.2                                               |
|                                                                                                                    |           |                                  |                                                                 | 60                                     | 1:                             |                                                   |
| Wt. of Water (g)                                                                                                   |           |                                  | 15.6                                                            | 60                                     | 1:                             | 2.2                                               |
| Wt. of Water (g)<br>Water Content (%)                                                                              |           | ρ <sub>d</sub>                   | 15.6                                                            | 60                                     | 1:                             | 2.2<br>1.2<br>1.82 g/cm <sup>2</sup>              |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density                                                       |           | Ρ <sub>d</sub><br>γ <sub>d</sub> | 15.6<br>14.                                                     | 50<br>3                                | 1:<br>1<br>Ρ <sub>d</sub>      | 2.2<br>1.2<br>1.82 g/cm                           |
| Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weight<br>End of load deformation |           | γd                               | 15.6<br>14.<br>1.72 g/cm <sup>3</sup><br>16.8 kN/m <sup>3</sup> | 50<br>3<br>Final Dry Density           | 1:<br>1<br>Ρ <sub>d</sub>      | 2.2<br>1.2<br>1.82 g/cm <sup>2</sup><br>17.8 kN/m |
| Wt. of Water (g)                                                                                                   |           | γ <sub>d</sub><br>S              | 15.6<br>14.<br>1.72 g/cm <sup>3</sup>                           | Final Dry Density<br>Final Dry Unit We | 1:<br>1<br>ight γ <sub>d</sub> | 2.2<br>1.2<br>1.82 g/cm <sup>2</sup>              |

| Project:                                                                                  | An expe     | rimenta                          | I investigation of th                            | e behavior of compa                             | cted sand/clay mi                         | xtures                              |  |
|-------------------------------------------------------------------------------------------|-------------|----------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------|-------------------------------------|--|
| Sample: S                                                                                 | tandard F   | Proctor of                       | compacted, 75% sa                                | nd 25% kaolinite, 69                            | % water content (S                        | 25K6W)                              |  |
| Consolid. Type                                                                            | EI25-047    | '9                               |                                                  | Consolid. Type                                  | Fixed Ring                                |                                     |  |
| Height of Spec.                                                                           | 20          | mm                               | Dia. of Spec.                                    | 63.5 mm                                         | Area of Spec.                             | 3166.9 mm <sup>2</sup>              |  |
| Weight of Ring                                                                            | 66.4        | g                                | Wt. of Stone                                     | 128.2 g                                         | Wt. of Paper                              | 0.3 g                               |  |
| Specific Gravity                                                                          | 2.64        |                                  | Tested By                                        | Yueru Chen                                      | Date                                      | 1/29/2009                           |  |
| Trimmings                                                                                 | 3           |                                  | 1                                                |                                                 | :                                         | 2                                   |  |
| Tin No.                                                                                   |             |                                  | 213                                              |                                                 | E                                         | 57                                  |  |
| Wt. of Tin (g)                                                                            |             |                                  | 28                                               |                                                 | 28                                        | 3.8                                 |  |
| Wt. of Tin + Wet Soi                                                                      | l (g)       |                                  | 181.3                                            | 8                                               | 19                                        | 0.1                                 |  |
| Wt. of Tin + Dry Soil                                                                     | (g)         |                                  | 172.                                             | 6                                               | 18                                        | 0.5                                 |  |
| Wt. of Dry Soil (g)                                                                       |             |                                  | 144.0                                            | 6                                               | 15                                        | 1.7                                 |  |
| Wt. of Water (g)                                                                          |             |                                  | 9.2                                              |                                                 | 9                                         | .6                                  |  |
| Water Content (%)                                                                         |             |                                  | 6.4                                              |                                                 | 6                                         | .3                                  |  |
| Average Water Cont                                                                        | ent (%)     |                                  |                                                  | 6.3                                             |                                           |                                     |  |
|                                                                                           |             |                                  |                                                  |                                                 |                                           |                                     |  |
| Specimen                                                                                  | 1           |                                  | Before                                           | Test                                            | After                                     | Test                                |  |
| Tare I.D. No.                                                                             |             |                                  | Ring, Stone                                      | e, Paper                                        | F                                         | I-3                                 |  |
| Wt. of Tare + Wet S                                                                       | oil (g)     |                                  | 306.                                             | 9                                               | 14                                        | 0.6                                 |  |
| Wt. of Tare + Dry So                                                                      | oil (g)     |                                  | -                                                |                                                 | 13                                        | 4.3                                 |  |
| Wt. of Tare (g)                                                                           |             |                                  | 194.9                                            | 0                                               | 29                                        | 9.1                                 |  |
| Wt. of Wet Soil (g)                                                                       |             |                                  | 112.0                                            | 0                                               | 11                                        | 1.5                                 |  |
| Wt. of Dry Soil (g)                                                                       |             |                                  | 105.2                                            | 20                                              | 10                                        | 5.2                                 |  |
|                                                                                           |             |                                  | 6.80                                             | )                                               | 6                                         | .3                                  |  |
| Wt. of Water (g)                                                                          |             |                                  |                                                  |                                                 | 6.3<br>6.0                                |                                     |  |
| Wt. of Water (g)<br>Water Content (%)                                                     |             |                                  | 6.5                                              |                                                 | 6                                         | .0                                  |  |
|                                                                                           |             |                                  |                                                  |                                                 | 6                                         | .0                                  |  |
| Water Content (%)                                                                         |             | ρ <sub>d</sub>                   | 6.5<br>1.66 g/cm <sup>3</sup>                    | Final Dry Density                               | Ρ <sub>d</sub>                            | 1.77 g/cm                           |  |
| Water Content (%)                                                                         | ıt          | Ρ <sub>d</sub><br>γ <sub>d</sub> |                                                  |                                                 | Ρ <sub>d</sub>                            | 1.77 g/cm                           |  |
| Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deforma | tion result | γ <sub>d</sub><br>s              | 1.66 g/cm <sup>3</sup><br>16.3 kN/m <sup>3</sup> | Final Dry Density<br>Final Dry Unit Wei         | Ρ <sub>d</sub><br>ght γ <sub>d</sub>      | 1.77 g/cm <sup>°</sup><br>17.3 kN/m |  |
|                                                                                           |             | γ <sub>d</sub><br>s              | 1.66 g/cm <sup>3</sup>                           | Final Dry Density<br>Final Dry Unit Weig<br>4 5 | ρ <sub>d</sub><br>ght γ <sub>d</sub><br>6 | 1.77 g/cm                           |  |

| Project:                                                                                                                                 | An expe     | rimenta             | I investigatior | ۱ of the                                                      | e behavior of compa                           | cted sand/clay mi                        | xtures                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|-----------------|---------------------------------------------------------------|-----------------------------------------------|------------------------------------------|----------------------------------------------------------|
| Sample: S                                                                                                                                | tandard F   | roctor              | compacted, 7    | 5% sa                                                         | nd 25% kaolinite, 8%                          | % water content (S                       | 325K8W)                                                  |
| Consolid. Type                                                                                                                           | EI25-047    | '9                  |                 |                                                               | Consolid. Type                                | Fixed Ring                               |                                                          |
| Height of Spec.                                                                                                                          | 20          | mm                  | Dia. of Spec    | ).                                                            | 63.5 mm                                       | Area of Spec.                            | 3166.9 mm <sup>2</sup>                                   |
| Weight of Ring                                                                                                                           | 66.4        | g                   | Wt. of Stone    | )                                                             | 128.3 g                                       | Wt. of Paper                             | 0.3 g                                                    |
| Specific Gravity                                                                                                                         | 2.64        |                     | Tested By       |                                                               | Yueru Chen                                    | Date                                     | 1/27/2009                                                |
| Trimmings                                                                                                                                | ;           |                     |                 | 1                                                             |                                               |                                          | 2                                                        |
| Tin No.                                                                                                                                  |             |                     |                 | MAJI                                                          | C                                             | 4                                        | 15                                                       |
| Wt. of Tin (g)                                                                                                                           |             |                     |                 | 28.6                                                          |                                               | 28                                       | 3.7                                                      |
| Wt. of Tin + Wet Soil                                                                                                                    | (g)         |                     |                 | 196.5                                                         | 5                                             | 20                                       | 1.3                                                      |
| Wt. of Tin + Dry Soil                                                                                                                    | (g)         |                     |                 | 184.3                                                         | 3                                             | 18                                       | 8.4                                                      |
| Wt. of Dry Soil (g)                                                                                                                      |             |                     |                 | 155.7                                                         | 7                                             | 15                                       | 9.7                                                      |
| Wt. of Water (g)                                                                                                                         |             |                     |                 | 12.2                                                          |                                               | 1:                                       | 2.9                                                      |
| Water Content (%)                                                                                                                        |             |                     |                 | 7.8                                                           |                                               | 8                                        | .1                                                       |
| Average Water Cont                                                                                                                       | ent (%)     |                     |                 |                                                               | 8.0                                           |                                          |                                                          |
|                                                                                                                                          |             |                     |                 |                                                               |                                               |                                          |                                                          |
| Specimen                                                                                                                                 |             |                     | Be              | efore T                                                       | est                                           | After                                    | r Test                                                   |
| Tare I.D. No.                                                                                                                            |             |                     | Ring,           | Stone                                                         | , Paper                                       | 3                                        | BA                                                       |
| Wt. of Tare + Wet S                                                                                                                      | oil (g)     |                     |                 | 315.9                                                         | 9                                             | 15                                       | 5.3                                                      |
| Wt. of Tare + Dry So                                                                                                                     | oil (g)     |                     |                 | -                                                             |                                               | 14                                       | 7.1                                                      |
| Wt. of Tare (g)                                                                                                                          |             |                     |                 | 195.0                                                         | 0                                             | 34                                       | 4.7                                                      |
|                                                                                                                                          |             |                     |                 |                                                               |                                               | 40                                       |                                                          |
| Wt. of Wet Soil (g)                                                                                                                      |             |                     |                 | 120.9                                                         | 0                                             | 12                                       | 0.6                                                      |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                               |             |                     |                 | 120.9<br>112.4                                                |                                               |                                          | 0.6<br>2.4                                               |
|                                                                                                                                          |             |                     |                 |                                                               | 0                                             | 11                                       |                                                          |
| Wt. of Dry Soil (g)                                                                                                                      |             |                     |                 | 112.4                                                         | 0                                             | 11<br>8                                  | 2.4                                                      |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                             |             |                     |                 | 112.4<br>8.50<br>7.6                                          | 0                                             | 11<br>8                                  | 2.4<br>5.2<br>5.3                                        |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                             |             | ρ <sub>d</sub>      | 0               | 112.4<br>8.50<br>7.6                                          | 0<br>Final Dry Density                        | 11<br>8<br>7<br>Ρd                       | 2.4<br>3.2<br>3.3<br>1.86 g/cm                           |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh                            |             | γd                  | 0               | 112.4<br>8.50<br>7.6                                          | 0                                             | 11<br>8<br>7<br>Ρd                       | 2.4<br>3.2<br>3.3<br>1.86 g/cm                           |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deformation | tion result | γ <sub>d</sub><br>S | 17.4 ki         | 112.44<br>8.50<br>7.6<br>⁄cm <sup>3</sup><br>V/m <sup>3</sup> | 0<br>Final Dry Density<br>Final Dry Unit Weiq | 11<br>8<br>7<br>Pα<br>ght γ <sub>d</sub> | 2.4<br>2.2<br>3.3<br>1.86 g/cm <sup>2</sup><br>18.2 kN/m |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh                            |             | γ <sub>d</sub><br>S | 17.4 kM         | 112.4<br>8.50<br>7.6                                          | 0<br>Final Dry Density                        | 11<br>8<br>7<br>Pd<br>ght γd             | 2.4<br>3.2<br>3.3<br>1.86 g/cm <sup>2</sup>              |

| Project:                                                                                                                                                | An expe    | rimenta                          | I investigation of the                                | ne behavior of compa                     | acted sand/clay mi                | xtures                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------|-------------------------------------------------------|------------------------------------------|-----------------------------------|----------------------------------------------------------------|
| Sample: Sta                                                                                                                                             | andard Pro | octor co                         | ompacted, 75% sa                                      | nd 25% kaolinite, 109                    | % water content (S                | 25K10W)                                                        |
| Consolid. Type                                                                                                                                          | EI25-047   | 9                                |                                                       | Consolid. Type                           | Fixed Ring                        |                                                                |
| Height of Spec.                                                                                                                                         | 20         | mm                               | Dia. of Spec.                                         | 63.5 mm                                  | Area of Spec.                     | 3166.9 mm <sup>2</sup>                                         |
| Weight of Ring                                                                                                                                          | 66.4       | g                                | Wt. of Stone                                          | 130 g                                    | Wt. of Paper                      | 0.3 g                                                          |
| Specific Gravity                                                                                                                                        | 2.64       |                                  | Tested By                                             | Yueru Chen                               | Date                              | 1/23/2009                                                      |
| Trimmings                                                                                                                                               | 3          |                                  | 1                                                     |                                          |                                   | 2                                                              |
| Tin No.                                                                                                                                                 |            |                                  | MAJ                                                   | ID                                       | E                                 | 88                                                             |
| Wt. of Tin (g)                                                                                                                                          |            |                                  | 28.                                                   | 5                                        | 28                                | 3.4                                                            |
| Wt. of Tin + Wet Soi                                                                                                                                    | l (g)      |                                  | 129                                                   | .9                                       | 13                                | 1.8                                                            |
| Wt. of Tin + Dry Soil                                                                                                                                   | (g)        |                                  | 12                                                    | 1                                        | 12                                | 2.9                                                            |
| Wt. of Dry Soil (g)                                                                                                                                     |            |                                  | 92.                                                   | 5                                        | 94                                | 4.5                                                            |
| Wt. of Water (g)                                                                                                                                        |            |                                  | 8.9                                                   | )                                        | 8                                 | .9                                                             |
| Water Content (%)                                                                                                                                       |            |                                  | 9.6                                                   | 3                                        | 9                                 | .4                                                             |
| Average Water Cont                                                                                                                                      | ent (%)    |                                  |                                                       | 9.5                                      |                                   |                                                                |
|                                                                                                                                                         |            |                                  |                                                       |                                          |                                   |                                                                |
| Specimen                                                                                                                                                | I          |                                  | Before                                                | Test                                     | After                             | Test                                                           |
| Tare I.D. No.                                                                                                                                           |            |                                  | Ring, Ston                                            | e, Paper                                 |                                   | 5                                                              |
| Wt. of Tare + Wet S                                                                                                                                     | oil (g)    |                                  | 335                                                   | 5                                        | 16                                | 6.3                                                            |
| Wt. of Tare + Dry Se                                                                                                                                    |            |                                  |                                                       |                                          |                                   |                                                                |
| W. OF TALE + DIY SC                                                                                                                                     | oil (g)    |                                  | -                                                     |                                          | 15                                | 4.9                                                            |
| Wt. of Tare (g)                                                                                                                                         | oil (g)    |                                  | 196.                                                  | 70                                       | -                                 |                                                                |
| -                                                                                                                                                       | oil (g)    |                                  | -<br>196.<br>138.                                     |                                          | 28                                | 4.9                                                            |
| Wt. of Tare (g)                                                                                                                                         | oil (g)    |                                  |                                                       | 30                                       | 28<br>13                          | 4.9<br>3.9                                                     |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                                                  | oil (g)    |                                  | 138.                                                  | 30<br>00                                 | 28<br>13<br>1:                    | 4.9<br>3.9<br>7.4                                              |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                           | oil (g)    |                                  | 138.<br>126.                                          | 30<br>00<br>30                           | 28<br>13<br>1.<br>11              | 4.9<br>3.9<br>7.4<br>26                                        |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       | oil (g)    |                                  | 138.<br>126.<br>12.3                                  | 30<br>00<br>30                           | 28<br>13<br>1.<br>11              | 4.9<br>3.9<br>7.4<br>26<br>1.4                                 |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                  | oil (g)    | ρ <sub>d</sub>                   | 138.<br>126.<br>12.3                                  | 30<br>00<br>30                           | 28<br>13<br>1.<br>11              | 4.9<br>3.9<br>7.4<br>26<br>1.4                                 |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                  |            | ρ <sub>d</sub><br>γ <sub>d</sub> | 138.<br>126.<br>12.3<br>9.8                           | 30<br>00<br>30<br>3                      | 2ξ<br>13<br>1<br>1<br>1<br>9<br>9 | 4.9<br>3.9<br>7.4<br>26<br>1.4<br>.0<br>2.14 g/cm <sup>2</sup> |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh | nt         | γd                               | 138.<br>126.<br>12.3<br>9.8<br>1.99 g/cm <sup>3</sup> | 30<br>00<br>30<br>3<br>Final Dry Density | 2ξ<br>13<br>1<br>1<br>1<br>9<br>9 | 4.9<br>3.9<br>7.4<br>26<br>1.4<br>.0<br>2.14 g/cm <sup>3</sup> |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       | nt         | γd                               | 138.<br>126.<br>12.3<br>9.8<br>1.99 g/cm <sup>3</sup> | 30<br>00<br>30<br>3<br>Final Dry Density | 2ξ<br>13<br>1<br>1<br>1<br>9<br>9 | 4.9<br>3.9<br>7.4<br>26<br>1.4<br>.0<br>2.14 g/cm <sup>3</sup> |

| Project:                                                                                                                                                                        | An expe   | rimenta                          | I investigation of th                                                  | e behavior of compa                     | cted sand/clay mix                                          | ktures                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------|------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|
| Sample: Sta                                                                                                                                                                     | andard Pr | octor co                         | ompacted, 75% sar                                                      | nd 25% kaolinite, 12%                   | 6 water content (S                                          | 25K12W)                                                                     |
| Consolid. Type                                                                                                                                                                  | EI25-047  | '9                               |                                                                        | Consolid. Type                          | Fixed Ring                                                  |                                                                             |
| Height of Spec.                                                                                                                                                                 | 20        | mm                               | Dia. of Spec.                                                          | 63.5 mm                                 | Area of Spec.                                               | 3166.9 mm <sup>2</sup>                                                      |
| Weight of Ring                                                                                                                                                                  | 66.4      | g                                | Wt. of Stone                                                           | 128.3 g                                 | Wt. of Paper                                                | 0.3 g                                                                       |
| Specific Gravity                                                                                                                                                                | 2.64      |                                  | Tested By                                                              | Yueru Chen                              | Date                                                        | 1/26/2009                                                                   |
| Trimmings                                                                                                                                                                       |           |                                  | 1                                                                      |                                         | 2                                                           | 2                                                                           |
| Tin No.                                                                                                                                                                         |           |                                  | MAJI                                                                   | D                                       | В                                                           | 8                                                                           |
| Wt. of Tin (g)                                                                                                                                                                  |           |                                  | 28.6                                                                   | 3                                       | 28                                                          | 8.5                                                                         |
| Wt. of Tin + Wet Soil                                                                                                                                                           | (g)       |                                  | 183.                                                                   | 7                                       | 17                                                          | 7.9                                                                         |
| Wt. of Tin + Dry Soil                                                                                                                                                           | (g)       |                                  | 167.                                                                   | 5                                       | 16                                                          | 2.5                                                                         |
| Wt. of Dry Soil (g)                                                                                                                                                             |           |                                  | 138.                                                                   | 9                                       | 1:                                                          | 34                                                                          |
| Wt. of Water (g)                                                                                                                                                                |           |                                  | 16.2                                                                   | 2                                       | 15                                                          | 5.4                                                                         |
| Water Content (%)                                                                                                                                                               |           |                                  | 11.7                                                                   | 7                                       | 11                                                          | .5                                                                          |
| Average Water Cont                                                                                                                                                              | ent (%)   |                                  |                                                                        | 11.6                                    |                                                             |                                                                             |
|                                                                                                                                                                                 |           |                                  |                                                                        |                                         |                                                             |                                                                             |
| Specimen                                                                                                                                                                        |           |                                  | Before                                                                 | Test                                    | After                                                       | Test                                                                        |
| Tare I.D. No.                                                                                                                                                                   |           |                                  | Ring, Stone                                                            | e, Paper                                | FJ                                                          | -3                                                                          |
|                                                                                                                                                                                 |           |                                  |                                                                        |                                         | 16                                                          |                                                                             |
| Wt. of Tare + Wet S                                                                                                                                                             | oil (g)   |                                  | 330.                                                                   | 5                                       | 10.                                                         | 2.2                                                                         |
| Wt. of Tare + Wet S<br>Wt. of Tare + Dry So                                                                                                                                     | (0)       |                                  | 330.<br>-                                                              | 5                                       | -                                                           | 2.2<br>0.1                                                                  |
|                                                                                                                                                                                 | (0)       |                                  | 330.<br>-<br>195.0                                                     | -                                       | 15                                                          |                                                                             |
| Wt. of Tare + Dry So                                                                                                                                                            | (0)       |                                  | -                                                                      | 00                                      | 15<br>2                                                     | 0.1                                                                         |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                                                                         | (0)       |                                  | -<br>195.0                                                             | 00                                      | 15<br>2<br>13                                               | 0.1<br>9                                                                    |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                                                  | (0)       |                                  | 195.0<br>135.0                                                         | 00<br>50<br>0                           | 15<br>2<br>13<br>12                                         | 0.1<br>9<br>3.2                                                             |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                           | (0)       |                                  | -<br>195.0<br>135.9<br>121.7                                           | 00<br>50<br>10<br>0                     | 15<br>2<br>13<br>12<br>12                                   | 0.1<br>9<br>3.2<br>1.1                                                      |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       | (0)       |                                  | -<br>195.(<br>135.;<br>121. <sup>-</sup><br>14.4                       | 00<br>50<br>10<br>0                     | 15<br>2<br>13<br>12<br>12                                   | 0.1<br>9<br>3.2<br>1.1<br>2.1                                               |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                  | (0)       | ρ <sub>d</sub>                   | -<br>195.(<br>135.;<br>121. <sup>-</sup><br>14.4                       | 00<br>50<br>10<br>0                     | 15<br>2<br>13<br>12<br>12                                   | 0.1<br>9<br>3.2<br>1.1<br>2.1<br>0.0                                        |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                  | bil (g)   | ρ <sub>d</sub><br>γ <sub>d</sub> | -<br>195.(<br>135.(<br>121. <sup>-</sup><br>14.4<br>11.(               | 00<br>50<br>10<br>0                     | 15<br>2<br>13<br>12<br>12<br>12<br>10<br>Γd                 | 0.1<br>9<br>3.2<br>1.1<br>2.1<br>0.0<br>2.11 g/cm <sup>2</sup>              |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh | bil (g)   | γd                               | -<br>195.(<br>135.(<br>121.7<br>14.4<br>11.(<br>1.91 g/cm <sup>3</sup> | 00<br>50<br>0<br>0<br>Final Dry Density | 15<br>2<br>13<br>12<br>12<br>12<br>10<br>Γd                 | 0.1<br>9<br>3.2<br>1.1<br>2.1<br>0.0<br>2.11 g/cm <sup>2</sup><br>20.6 kN/m |
| Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       | bil (g)   | γ <sub>d</sub><br>S              | -<br>195.(<br>135.(<br>121.7<br>14.4<br>11.(<br>1.91 g/cm <sup>3</sup> | 00<br>50<br>0<br>0<br>Final Dry Density | 15<br>2<br>13<br>12<br>12<br>12<br>10<br>μht γ <sub>d</sub> | 0.1<br>9<br>3.2<br>1.1<br>2.1<br>0.0<br>2.11 g/cm <sup>5</sup>              |

| Project:                                                                                                                                                                    | An experim   | ental investigatio              | n of the                                                                                | behavior of com                      | pacted sand/clay | <sup>,</sup> mixtures                                       |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------|------------------|-------------------------------------------------------------|--------------|
| Sample: Star                                                                                                                                                                | ndard Procto | or compacted, 75                | % sanc                                                                                  | 1 25% kaolinite, 1                   | 4% water conten  | t (S25K14W)                                                 |              |
| Consolid. Type E                                                                                                                                                            | 125-0479     |                                 |                                                                                         | Consolid. Type                       | Fixed Ring       |                                                             |              |
| Height of Spec.                                                                                                                                                             | 20 m         | m Dia. of Spec                  | с.                                                                                      | 63.5 mm                              | Area of Spec     | 3166.9                                                      | mm²          |
| Weight of Ring                                                                                                                                                              | 66.4 g       | Wt. of Stone                    | e                                                                                       | 128.3 g                              | Wt. of Paper     | 0.3                                                         | g            |
| Specific Gravity                                                                                                                                                            | 2.64         | Tested By                       |                                                                                         | Yueru Chen                           | Date             | 1/28/2                                                      | 009          |
| Trimmings                                                                                                                                                                   |              |                                 | 1                                                                                       |                                      |                  | 2                                                           |              |
| Tin No.                                                                                                                                                                     |              |                                 | 415                                                                                     |                                      |                  | FJ-3                                                        |              |
| Wt. of Tin (g)                                                                                                                                                              |              |                                 | 28.7                                                                                    |                                      |                  | 29                                                          |              |
| Wt. of Tin + Wet Soil (                                                                                                                                                     | g)           |                                 | 223.7                                                                                   |                                      |                  | 190.4                                                       |              |
| Wt. of Tin + Dry Soil (g                                                                                                                                                    | g)           |                                 | 200                                                                                     |                                      |                  | 170.8                                                       |              |
| Wt. of Dry Soil (g)                                                                                                                                                         |              |                                 | 171.3                                                                                   |                                      |                  | 141.8                                                       |              |
| Wt. of Water (g)                                                                                                                                                            |              |                                 | 23.7                                                                                    |                                      |                  | 19.6                                                        |              |
| Water Content (%)                                                                                                                                                           |              |                                 | 13.8                                                                                    |                                      |                  | 13.8                                                        |              |
| Average Water Conter                                                                                                                                                        | nt (%)       |                                 |                                                                                         | 13.8                                 |                  |                                                             |              |
|                                                                                                                                                                             |              |                                 |                                                                                         |                                      |                  |                                                             |              |
| Specimen                                                                                                                                                                    |              | B                               | efore T                                                                                 | est                                  | A                | fter Test                                                   |              |
| opeeimen                                                                                                                                                                    |              |                                 | 0.0.0 .                                                                                 | 651                                  |                  |                                                             |              |
| Tare I.D. No.                                                                                                                                                               |              |                                 | Stone,                                                                                  |                                      |                  | 5                                                           |              |
| •                                                                                                                                                                           | il (g)       |                                 |                                                                                         | Paper                                |                  |                                                             |              |
| Tare I.D. No.                                                                                                                                                               |              |                                 | Stone,                                                                                  | Paper                                |                  | 5                                                           |              |
| Tare I.D. No.<br>Wt. of Tare + Wet Soi                                                                                                                                      |              |                                 | Stone,                                                                                  | Paper                                |                  | 5<br>154                                                    |              |
| Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soil                                                                                                            |              |                                 | Stone,<br>323.3<br>-                                                                    | Paper                                |                  | 5<br>154<br>141.4                                           |              |
| Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soil<br>Wt. of Tare (g)                                                                                         |              |                                 | Stone,<br>323.3<br>-<br>195.00                                                          | Paper<br>)                           |                  | 5<br>154<br>141.4<br>28.9                                   |              |
| Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soil<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                  |              |                                 | Stone,<br>323.3<br>-<br>195.00<br>128.30                                                | Paper<br>)<br>)                      |                  | 5<br>154<br>141.4<br>28.9<br>125.1                          |              |
| Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soil<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                           |              |                                 | Stone,<br>323.3<br>-<br>195.00<br>128.30<br>112.50                                      | Paper<br>)<br>)                      |                  | 5<br>154<br>141.4<br>28.9<br>125.1<br>112.5                 |              |
| Tare I.D. No.<br>Wt. of Tare + Wet Soil<br>Wt. of Tare + Dry Soil<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | (g)          | Ring,                           | Stone,<br>323.3<br>-<br>195.00<br>128.30<br>112.50<br>15.80<br>14.0                     | Paper<br>)<br>)                      |                  | 5<br>154<br>141.4<br>28.9<br>125.1<br>112.5<br>12.6<br>11.2 |              |
| Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soil<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)  | (g)          | Ring,<br>ρ <sub>d</sub> 1.78 g, | Stone,<br>323.3<br>-<br>195.00<br>128.30<br>112.50<br>15.80<br>14.0<br>/cm <sup>3</sup> | Paper<br>)<br>)<br>Final Dry Density |                  | 5<br>154<br>141.4<br>28.9<br>125.1<br>112.5<br>12.6<br>11.2 | •            |
| Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soil<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)  | (g)          | Ring,<br>ρ <sub>d</sub> 1.78 g, | Stone,<br>323.3<br>-<br>195.00<br>128.30<br>112.50<br>15.80<br>14.0<br>/cm <sup>3</sup> | Paper<br>)<br>)                      |                  | 5<br>154<br>141.4<br>28.9<br>125.1<br>112.5<br>12.6<br>11.2 | •            |
| Tare I.D. No.<br>Wt. of Tare + Wet Soil<br>Wt. of Tare + Dry Soil<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | (g)          | Ring,<br>ρ <sub>d</sub> 1.78 g, | Stone,<br>323.3<br>-<br>195.00<br>128.30<br>112.50<br>15.80<br>14.0<br>/cm <sup>3</sup> | Paper<br>)<br>)<br>Final Dry Density |                  | 5<br>154<br>141.4<br>28.9<br>125.1<br>112.5<br>12.6<br>11.2 | g/cm<br>kN/m |

| Project:                                                                                                                                                               | / in oxpe                | menta               | al investigation of the behavior of compacted sand/clay mixtures                                  |                                                                        |                  |                                                                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------|-------------------------------------------------------------------|--|--|--|
| Sample: Sta                                                                                                                                                            | andard Pr                | octor co            | ompacted, 50% s                                                                                   | and 50% kaolinite, 1                                                   | 12% water conten | t (S50K12W)                                                       |  |  |  |
| Consolid. Type                                                                                                                                                         | EI25-047                 | 79                  |                                                                                                   | Consolid. Type                                                         | Fixed Ring       |                                                                   |  |  |  |
| Height of Spec.                                                                                                                                                        | 20                       | mm                  | Dia. of Spec.                                                                                     | 63.5 mm                                                                | Area of Spec     | c. 3166.9 mm <sup>2</sup>                                         |  |  |  |
| Weight of Ring                                                                                                                                                         | 63                       | g                   | Wt. of Stone                                                                                      | 128.2 g                                                                | Wt. of Paper     | 0.3 g                                                             |  |  |  |
| Specific Gravity                                                                                                                                                       | 2.62                     |                     | Tested By                                                                                         | Yueru Chen                                                             | Date             | 1/23/2009                                                         |  |  |  |
| Trimmings                                                                                                                                                              | ;                        |                     |                                                                                                   | 1                                                                      |                  | 2                                                                 |  |  |  |
| Tin No.                                                                                                                                                                |                          |                     | F                                                                                                 | -3                                                                     |                  | 415                                                               |  |  |  |
| Wt. of Tin (g)                                                                                                                                                         |                          |                     | 2                                                                                                 | 9                                                                      |                  | 28.7                                                              |  |  |  |
| Wt. of Tin + Wet Soil                                                                                                                                                  | (g)                      |                     | 17                                                                                                | 8.8                                                                    |                  | 154.6                                                             |  |  |  |
| Wt. of Tin + Dry Soil                                                                                                                                                  | of Tin + Dry Soil (g)    |                     |                                                                                                   | 63                                                                     |                  | 141.2                                                             |  |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                    |                          | 134 112.5           |                                                                                                   |                                                                        |                  | 112.5                                                             |  |  |  |
| Wt. of Water (g)                                                                                                                                                       |                          |                     | 15                                                                                                | i.8                                                                    |                  | 13.4                                                              |  |  |  |
| Water Content (%)                                                                                                                                                      |                          |                     | 11                                                                                                | 15.8 13.4<br>11.8 11.9                                                 |                  |                                                                   |  |  |  |
| Average Water Cont                                                                                                                                                     | ent (%)                  |                     |                                                                                                   | 11.9                                                                   |                  |                                                                   |  |  |  |
|                                                                                                                                                                        | e Water Content (%) 11.9 |                     |                                                                                                   |                                                                        |                  |                                                                   |  |  |  |
|                                                                                                                                                                        |                          |                     |                                                                                                   |                                                                        |                  |                                                                   |  |  |  |
| Specimen                                                                                                                                                               |                          |                     | Befor                                                                                             | e Test                                                                 | A                | fter Test                                                         |  |  |  |
| Specimen<br>Tare I.D. No.                                                                                                                                              |                          |                     |                                                                                                   | e Test<br>ne, Paper                                                    | A                | fter Test<br>418                                                  |  |  |  |
| •                                                                                                                                                                      |                          |                     | Ring, Sto                                                                                         |                                                                        | A                |                                                                   |  |  |  |
| Tare I.D. No.                                                                                                                                                          | oil (g)                  |                     | Ring, Sto                                                                                         | ne, Paper                                                              | A                | 418                                                               |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S                                                                                                                                   | oil (g)                  |                     | Ring, Sto<br>30                                                                                   | ne, Paper                                                              | A                | 418<br>137.9                                                      |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So                                                                                                           | oil (g)                  |                     | Ring, Sto<br>30<br>19 <sup>4</sup>                                                                | ne, Paper<br>1.4                                                       |                  | 418<br>137.9<br>126.8                                             |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                        | oil (g)                  |                     | Ring, Sto<br>30<br>19 <sup>7</sup><br>105                                                         | ne, Paper<br>1.4<br>-<br>.50                                           |                  | 418<br>137.9<br>126.8<br>28.35                                    |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 | oil (g)                  |                     | Ring, Sto<br>30<br>19<br>109<br>98                                                                | ne, Paper<br>1.4<br>.50<br>9.90                                        |                  | 418<br>137.9<br>126.8<br>28.35<br>109.55                          |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          | oil (g)                  |                     | Ring, Sto<br>30<br>19 <sup>7</sup><br>109<br>98<br>11                                             | ne, Paper<br>1.4<br>.50<br>0.90<br>45                                  |                  | 418<br>137.9<br>126.8<br>28.35<br>109.55<br>98.45                 |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | oil (g)                  |                     | Ring, Sto<br>30<br>19 <sup>-</sup><br>109<br>98<br>11<br>1 <sup>-</sup>                           | ne, Paper<br>1.4<br>.50<br>9.90<br>.45<br>.6                           |                  | 418<br>137.9<br>126.8<br>28.35<br>109.55<br>98.45<br>11.1<br>11.3 |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | oil (g)<br>bil (g)       | ρ <sub>d</sub>      | Ring, Sto<br>30<br>19 <sup>7</sup><br>105<br>98<br>11<br>1 <sup>7</sup><br>1.55 g/cm <sup>2</sup> | ne, Paper<br>1.4<br>.50<br>990<br>.45<br>.45<br>.6<br>Final Dry Densit | У                | 418<br>137.9<br>126.8<br>28.35<br>109.55<br>98.45<br>11.1<br>11.3 |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | oil (g)<br>bil (g)       | γd                  | Ring, Sto<br>30<br>19 <sup>-</sup><br>109<br>98<br>11<br>1 <sup>-</sup>                           | ne, Paper<br>1.4<br>.50<br>990<br>.45<br>.45<br>.6<br>Final Dry Densit | У                | 418<br>137.9<br>126.8<br>28.35<br>109.55<br>98.45<br>11.1<br>11.3 |  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | oil (g)<br>bil (g)       | γ <sub>d</sub><br>s | Ring, Sto<br>30<br>19 <sup>7</sup><br>105<br>98<br>11<br>1 <sup>7</sup><br>1.55 g/cm <sup>2</sup> | ne, Paper<br>1.4<br>.50<br>990<br>.45<br>.45<br>.6<br>Final Dry Densit | У                | 418<br>137.9<br>126.8<br>28.35<br>109.55<br>98.45<br>11.1<br>11.3 |  |  |  |

| Project:                                                                                                                                                                                                                                                   | An expe            | rimenta             | l investiga | ation of th                                                                             | ion of the behavior of compacted sand/clay mixtures        |            |             |                                                             |                                                         |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------|------------|-------------|-------------------------------------------------------------|---------------------------------------------------------|-----------------|
| Sample: Sta                                                                                                                                                                                                                                                | andard Pr          | octor co            | ompacted,   | 50% san                                                                                 | d 50% kaoli                                                | inite, 14% | 6 water con | itent (S                                                    | 50K14W                                                  | )               |
| Consolid. Type                                                                                                                                                                                                                                             | EI25-047           | '9                  |             |                                                                                         | Consolid.                                                  | Туре       | Fixed Rin   | g                                                           |                                                         |                 |
| Height of Spec.                                                                                                                                                                                                                                            | 20                 | mm                  | Dia. of S   | pec.                                                                                    | 63.5                                                       | mm         | Area of S   | pec.                                                        | 3166.9                                                  | mm <sup>2</sup> |
| Weight of Ring                                                                                                                                                                                                                                             | 66.4               | g                   | Wt. of St   | one                                                                                     | 128.3                                                      | g          | Wt. of Pa   | per                                                         | 0.3                                                     | g               |
| Specific Gravity                                                                                                                                                                                                                                           | 2.62               |                     | Tested E    | By                                                                                      | Yueru Che                                                  | en         | Date        |                                                             | 1/29/                                                   | 2009            |
| Trimmings                                                                                                                                                                                                                                                  | 3                  |                     | 1           |                                                                                         |                                                            |            |             | 2                                                           |                                                         |                 |
| Tin No.                                                                                                                                                                                                                                                    |                    |                     | 418         |                                                                                         |                                                            |            |             | В                                                           | 8                                                       |                 |
| Wt. of Tin (g)                                                                                                                                                                                                                                             |                    |                     | 28.9        |                                                                                         |                                                            |            |             | 28                                                          | .5                                                      |                 |
| Wt. of Tin + Wet Soil                                                                                                                                                                                                                                      | l (g)              |                     |             | 164.4                                                                                   | 4                                                          |            |             | 184                                                         | 4.2                                                     |                 |
| Wt. of Tin + Dry Soil                                                                                                                                                                                                                                      |                    |                     |             | 146.9                                                                                   | 9                                                          |            |             | 164                                                         | 4.2                                                     |                 |
| Wt. of Dry Soil (g)                                                                                                                                                                                                                                        |                    |                     | 118         |                                                                                         |                                                            |            | 135.7       |                                                             |                                                         |                 |
| Wt. of Water (g)                                                                                                                                                                                                                                           |                    |                     |             | 17.5                                                                                    | i                                                          |            | 20          |                                                             |                                                         |                 |
| Water Content (%)                                                                                                                                                                                                                                          |                    |                     |             | 14.8                                                                                    | 20<br>14.7                                                 |            |             |                                                             |                                                         |                 |
|                                                                                                                                                                                                                                                            | opt (0/)           | 14.8                |             |                                                                                         |                                                            |            |             |                                                             |                                                         |                 |
| Average Water Cont                                                                                                                                                                                                                                         | ent (%)            |                     | 14.8        |                                                                                         |                                                            |            |             |                                                             |                                                         |                 |
| Average Water Cont                                                                                                                                                                                                                                         | ent (%)            |                     |             |                                                                                         |                                                            | 14.8       |             |                                                             |                                                         |                 |
| Average Water Cont<br>Specimen                                                                                                                                                                                                                             | . ,                |                     |             | Before 1                                                                                | Гest                                                       | 14.8       |             | After                                                       | Test                                                    |                 |
| •                                                                                                                                                                                                                                                          | . ,                |                     | Ri          | Before ⊺<br>ng, Stone                                                                   |                                                            | 14.8       |             | After<br>5                                                  |                                                         |                 |
| Specimen                                                                                                                                                                                                                                                   | 1                  |                     | Ri          |                                                                                         | , Paper                                                    | 14.8       |             |                                                             | 5                                                       |                 |
| Specimen<br>Tare I.D. No.                                                                                                                                                                                                                                  | oil (g)            |                     | Ri          | ng, Stone                                                                               | , Paper                                                    | 14.8       |             | 5                                                           | 5<br>D.6                                                |                 |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S                                                                                                                                                                                                           | oil (g)            |                     | Ri          | ng, Stone                                                                               | e, Paper<br>1                                              | 14.8       |             | 5<br>150                                                    | 5<br>0.6<br>5.7                                         |                 |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So                                                                                                                                                                                   | oil (g)            |                     | Ri          | ng, Stone<br>317.4                                                                      | e, Paper<br>1<br>0                                         | 14.8       |             | 5<br>150<br>135                                             | 5<br>0.6<br>5.7<br>3.9                                  |                 |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                                                                                                | oil (g)            |                     | Ri          | ng, Stone<br>317.4<br>-<br>195.0                                                        | e, Paper<br>1<br>0<br>0                                    | 14.8       |             | 5<br>150<br>135<br>28                                       | 5<br>D.6<br>5.7<br>6.9<br>1.7                           |                 |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                                                                         | oil (g)            |                     | Ri          | ng, Stone<br>317.<br>-<br>195.0<br>122.1                                                | a, Paper<br>1<br>0<br>0<br>0                               | 14.8       |             | 5<br>150<br>135<br>28<br>122                                | 5<br>0.6<br>5.7<br>6.9<br>1.7<br>6.8                    |                 |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                                                              | oil (g)            |                     | Ri          | ng, Stone<br>317.<br>-<br>195.0<br>122.1<br>106.8                                       | e, Paper<br>1<br>0<br>0<br>0<br>0<br>0                     | 14.8       |             | 5<br>150<br>135<br>28<br>12 <sup>2</sup><br>106             | 5<br>0.6<br>5.7<br>9.9<br>1.7<br>6.8                    |                 |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                  | oil (g)            |                     |             | ng, Stone<br>317. <sup>-</sup><br>195.0<br>122.1<br>106.8<br>15.3(<br>14.3              | a, Paper<br>1<br>0<br>0<br>0<br>0<br>0<br>0                |            |             | 5<br>150<br>135<br>28<br>12 <sup>-</sup><br>100<br>14<br>14 | 5<br>0.6<br>5.7<br>0.9<br>1.7<br>6.8<br>.9<br>.0        |                 |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Wet Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         | oil (g)            | ρ <sub>d</sub>      | 1.69        | ng, Stone<br>317.<br>-<br>195.0<br>122.1<br>106.8<br>15.30<br>14.3<br>g/cm <sup>3</sup> | e, Paper<br>1<br>0<br>0<br>0<br>0<br>0<br>5<br>Final Dry E | Density    |             | 5<br>150<br>135<br>28<br>12<br>106<br>14<br>14<br>14        | 5<br>0.6<br>5.7<br>.9<br>1.7<br>5.8<br>.9<br>.0<br>1.80 | -               |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh | oil (g)<br>oil (g) | γd                  |             | ng, Stone<br>317. <sup>-</sup><br>195.0<br>122.1<br>106.8<br>15.3(<br>14.3              | a, Paper<br>1<br>0<br>0<br>0<br>0<br>0<br>0                | Density    | ht          | 5<br>150<br>135<br>28<br>12 <sup>-</sup><br>100<br>14<br>14 | 5<br>0.6<br>5.7<br>0.9<br>1.7<br>6.8<br>.9<br>.0        | g/cm<br>kN/m    |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Wet Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                         | oil (g)<br>oil (g) | γ <sub>d</sub><br>s | 1.69        | ng, Stone<br>317.<br>-<br>195.0<br>122.1<br>106.8<br>15.30<br>14.3<br>g/cm <sup>3</sup> | e, Paper<br>1<br>0<br>0<br>0<br>0<br>0<br>5<br>Final Dry E | Density    | ht          | 5<br>150<br>135<br>28<br>12<br>106<br>14<br>14<br>14        | 5<br>0.6<br>5.7<br>.9<br>1.7<br>5.8<br>.9<br>.0<br>1.80 | -               |

| Project:                                                                                                      | An expe              | rimenta             | I investigation of th                  | f the behavior of compacted sand/clay mixtures |                          |                                      |  |  |
|---------------------------------------------------------------------------------------------------------------|----------------------|---------------------|----------------------------------------|------------------------------------------------|--------------------------|--------------------------------------|--|--|
| Sample: Sta                                                                                                   | andard Pr            | octor co            | ompacted, 50% sa                       | nd 50% kaolinite, 16                           | % water content (        | S50K16W)                             |  |  |
| Consolid. Type                                                                                                | El25-047             | '9                  |                                        | Consolid. Type                                 | Fixed Ring               |                                      |  |  |
| Height of Spec.                                                                                               | 20                   | mm                  | Dia. of Spec.                          | 63.5 mm                                        | Area of Spec.            | 3166.9 mm <sup>2</sup>               |  |  |
| Weight of Ring                                                                                                | -                    | g                   | Wt. of Stone                           | - g                                            | Wt. of Paper             | - g                                  |  |  |
| Specific Gravity                                                                                              | 2.62                 |                     | Tested By                              | Yueru Chen                                     | Date                     | 1/26/2009                            |  |  |
| Trimmings                                                                                                     | \$                   |                     | 1                                      |                                                |                          | 2                                    |  |  |
| Tin No.                                                                                                       |                      |                     | B7                                     |                                                | 2                        | 13                                   |  |  |
| Wt. of Tin (g)                                                                                                |                      |                     | 28.                                    | 7                                              | 2                        | 7.9                                  |  |  |
| Wt. of Tin + Wet Soil                                                                                         | n + Wet Soil (g)     |                     |                                        | 7                                              | 15                       | 57.5                                 |  |  |
| Wt. of Tin + Dry Soil                                                                                         | (g)                  |                     | 129                                    | 9                                              | 139.7<br>111.8           |                                      |  |  |
| Wt. of Dry Soil (g)                                                                                           |                      |                     | 101                                    | 2                                              |                          |                                      |  |  |
| Wt. of Water (g)                                                                                              |                      |                     | 15.8                                   | 3                                              | 111.8                    |                                      |  |  |
| Water Content (%)                                                                                             |                      |                     | 15.0                                   | 6                                              | 1                        | 5.9                                  |  |  |
| Average Water Cont                                                                                            | ent (%)              |                     |                                        | 15.8                                           |                          |                                      |  |  |
|                                                                                                               |                      |                     |                                        |                                                |                          |                                      |  |  |
| Specimen                                                                                                      |                      |                     | Before                                 | Test                                           | Afte                     | r Test                               |  |  |
| Tare I.D. No.                                                                                                 |                      |                     | Ring, Ston                             | e, Paper                                       | :                        | BA                                   |  |  |
| Wt. of Tare + Wet S                                                                                           | oil (g)              |                     | 325                                    | 9                                              | 16                       | 3.2                                  |  |  |
| Wt. of Tare + Dry So                                                                                          | Dry Soil (g) - 146.1 |                     |                                        | 6.1                                            |                          |                                      |  |  |
| Wt. of Tare (g)                                                                                               |                      |                     | 196.                                   | 70                                             | 3                        | 4.7                                  |  |  |
| Wt. of Wet Soil (g)                                                                                           |                      |                     | 129.:                                  | 20                                             | 12                       | 28.5                                 |  |  |
| (3)                                                                                                           |                      |                     |                                        |                                                | 111.4                    |                                      |  |  |
| Wt. of Dry Soil (g)                                                                                           |                      |                     | 111.4                                  | 40                                             | 11                       | 1.4                                  |  |  |
| (0)                                                                                                           |                      |                     | 111.<br>17.8                           | -                                              |                          | 1.4<br>7.1                           |  |  |
| Wt. of Dry Soil (g)                                                                                           |                      |                     |                                        | 0                                              | 1                        |                                      |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       |                      |                     | 17.8                                   | 0                                              | 1                        | 7.1                                  |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                  |                      | ρ <sub>d</sub>      | 17.8                                   | 0                                              | 1                        | 7.1<br>5.4                           |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                  | nt                   | Pd<br>γd            | 17.8<br>16.1                           | 0                                              | 1<br>1<br>Ρ <sub>d</sub> | 7.1<br>5.4<br>1.90 g/cm              |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh |                      | γd                  | 17.8<br>16.1<br>1.76 g/cm <sup>3</sup> | 0<br>)<br>Final Dry Density                    | 1<br>1<br>Ρ <sub>d</sub> | 7.1<br>5.4<br>1.90 g/cm              |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                       |                      | γ <sub>d</sub><br>s | 17.8<br>16.1<br>1.76 g/cm <sup>3</sup> | 0<br>)<br>Final Dry Density                    | 1<br>1<br>Ρ <sub>d</sub> | 7.1<br>5.4<br>1.90 g/cm <sup>3</sup> |  |  |

|                                                                                                                                                                         | ect: An experimental investigation of the behavior of compacted sand/clay mixtures |                |                        |                                                                                       |                                             |           |           |                                                             |                                                      |                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------|------------------------|---------------------------------------------------------------------------------------|---------------------------------------------|-----------|-----------|-------------------------------------------------------------|------------------------------------------------------|---------------------------|
| Sample: Sta                                                                                                                                                             | indard Pr                                                                          | octor co       | ompacted,              | 50% san                                                                               | d 50% kaolin                                | nite, 18% | water con | tent (S                                                     | 50K18W                                               | )                         |
| Consolid. Type                                                                                                                                                          | El25-047                                                                           | '9             |                        |                                                                                       | Consolid. T                                 | Гуре      | Fixed Rin | g                                                           |                                                      |                           |
| Height of Spec.                                                                                                                                                         | 20                                                                                 | mm             | Dia. of Sp             | Dec.                                                                                  | 63.5 n                                      | nm        | Area of S | pec.                                                        | 3166.9                                               | mm <sup>2</sup>           |
| Weight of Ring                                                                                                                                                          | 66.4                                                                               | g              | Wt. of Sto             | one                                                                                   | 129.6 g                                     | ļ         | Wt. of Pa | ber                                                         | 0.3                                                  | g                         |
| Specific Gravity                                                                                                                                                        | 2.62                                                                               |                | Tested B               | y                                                                                     | Yueru Cher                                  | ו         | Date      |                                                             | 1/28/                                                | 2009                      |
| Trimmings                                                                                                                                                               |                                                                                    |                |                        | 1                                                                                     |                                             |           |           | 2                                                           | 2                                                    |                           |
| Tin No.                                                                                                                                                                 |                                                                                    |                | 3A                     |                                                                                       |                                             |           |           | 41                                                          | 8                                                    |                           |
| Wt. of Tin (g)                                                                                                                                                          |                                                                                    |                |                        | 34.8                                                                                  |                                             |           |           | 28                                                          | .9                                                   |                           |
| Wt. of Tin + Wet Soil                                                                                                                                                   | (g)                                                                                |                |                        | 202.2                                                                                 | 1                                           |           |           | 174                                                         | 4.3                                                  |                           |
| Wt. of Tin + Dry Soil                                                                                                                                                   | of Tin + Dry Soil (g)                                                              |                |                        | 176.2                                                                                 | 2                                           |           |           | 152                                                         | 2.2                                                  |                           |
| Wt. of Dry Soil (g)                                                                                                                                                     |                                                                                    |                | 141.4 123.3            |                                                                                       |                                             |           | 3.3       |                                                             |                                                      |                           |
| Wt. of Water (g)                                                                                                                                                        |                                                                                    |                |                        | 25.9                                                                                  |                                             |           | 22.1      |                                                             |                                                      |                           |
| Water Content (%)                                                                                                                                                       |                                                                                    |                | 25.9 22.1<br>18.3 17.9 |                                                                                       |                                             |           | .9        |                                                             |                                                      |                           |
| Average Water Conte                                                                                                                                                     | ent (%)                                                                            |                |                        |                                                                                       |                                             | 18.1      |           |                                                             |                                                      |                           |
|                                                                                                                                                                         |                                                                                    | t (%) 18.1     |                        |                                                                                       |                                             |           |           |                                                             |                                                      |                           |
|                                                                                                                                                                         |                                                                                    |                |                        |                                                                                       |                                             |           |           |                                                             |                                                      |                           |
| Specimen                                                                                                                                                                |                                                                                    |                |                        | Before 1                                                                              | Test                                        |           |           | After                                                       | Test                                                 |                           |
| Specimen<br>Tare I.D. No.                                                                                                                                               |                                                                                    |                | Rin                    | Before 1<br>g, Stone                                                                  |                                             |           |           | After<br>B                                                  |                                                      |                           |
| •                                                                                                                                                                       | oil (g)                                                                            |                | Rin                    |                                                                                       |                                             |           |           |                                                             | 8                                                    |                           |
| Tare I.D. No.                                                                                                                                                           |                                                                                    |                | Rin                    | g, Stone                                                                              |                                             |           |           | В                                                           | 8<br>1.5                                             |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So                                                                                                                                   |                                                                                    |                | Rin                    | g, Stone                                                                              | , Paper                                     |           |           | B<br>15 <sup>-</sup>                                        | 8<br>1.5<br>4.7                                      |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So                                                                                                           |                                                                                    |                | Rin                    | g, Stone<br>322<br>-                                                                  | , Paper<br>0                                |           |           | B<br>15 <sup>-</sup><br>134                                 | 8<br>1.5<br>4.7<br>.5                                |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                        |                                                                                    |                | Rin                    | g, Stone<br>322<br>-<br>196.3                                                         | , Paper<br>0<br>0                           |           |           | B<br>15 <sup>-</sup><br>134<br>28                           | 8<br>1.5<br>4.7<br>.5<br>23                          |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 |                                                                                    |                | Rin                    | g, Stone<br>322<br>-<br>196.3<br>125.7                                                | , Paper<br>0<br>0<br>0                      |           |           | B<br>15 <sup>-</sup><br>134<br>28<br>12                     | 8<br>1.5<br>4.7<br>.5<br>23<br>5.2                   |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          |                                                                                    |                | Rin                    | g, Stone<br>322<br>-<br>196.3<br>125.7<br>106.2                                       | , Paper<br>0<br>0<br>0                      |           |           | B<br>15 <sup>4</sup><br>134<br>28<br>12<br>106              | 8<br>1.5<br>4.7<br>.5<br>23<br>5.2<br>.8             |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) |                                                                                    |                |                        | g, Stone<br>322<br>-<br>196.3<br>125.7<br>106.2<br>19.5(<br>18.4                      | , Paper<br>0<br>0<br>0                      | ensity    |           | B<br>15 <sup>-1</sup><br>28<br>12<br>100<br>16<br>15        | 8<br>1.5<br>1.7<br>.5<br>23<br>5.2<br>.8<br>.8       |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | il (g)                                                                             | ρ <sub>d</sub> | 1.68                   | g, Stone<br>322<br>-<br>196.3<br>125.7<br>106.2<br>19.50<br>18.4<br>g/cm <sup>3</sup> | , Paper<br>0<br>0<br>0<br>)<br>Final Dry De | •         | bt        | Β<br>15 <sup>-1</sup><br>134<br>28<br>12<br>106<br>16<br>15 | 8<br>1.5<br>4.7<br>.5<br>23<br>5.2<br>.8<br>.8<br>.8 | g/cm                      |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | t                                                                                  | γd             |                        | g, Stone<br>322<br>-<br>196.3<br>125.7<br>106.2<br>19.5(<br>18.4                      | , Paper<br>0<br>0<br>0                      | •         | ht        | B<br>15 <sup>-1</sup><br>28<br>12<br>100<br>16<br>15        | 8<br>1.5<br>1.7<br>.5<br>23<br>5.2<br>.8<br>.8       | g/cm <sup>*</sup><br>kN/m |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | t                                                                                  | γd             | 1.68                   | g, Stone<br>322<br>-<br>196.3<br>125.7<br>106.2<br>19.50<br>18.4<br>g/cm <sup>3</sup> | , Paper<br>0<br>0<br>0<br>)<br>Final Dry De | •         | ht        | Β<br>15 <sup>-1</sup><br>134<br>28<br>12<br>106<br>16<br>15 | 8<br>1.5<br>4.7<br>.5<br>23<br>5.2<br>.8<br>.8<br>.8 | 0                         |

| Project:An experimental investigation of the behavior of compacted sand/clay mixturesSample:Standard Proctor compacted, 50% sand 50% kaolinite, 20% water content (S50K20W) |                                                        |                |                                                       |                                          |                            | xtures                                  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------|-------------------------------------------------------|------------------------------------------|----------------------------|-----------------------------------------|--|--|
| Sample: St                                                                                                                                                                  | andard Pr                                              | octor co       | ompacted, 50% sa                                      | nd 50% kaolinite, 20                     | % water content (S         | \$50K20W)                               |  |  |
| Consolid. Type                                                                                                                                                              | EI25-047                                               | 9              |                                                       | Consolid. Type                           | Fixed Ring                 |                                         |  |  |
| Height of Spec.                                                                                                                                                             | 20                                                     | mm             | Dia. of Spec.                                         | 63.5 mm                                  | Area of Spec.              | 3166.9 mm <sup>2</sup>                  |  |  |
| Weight of Ring                                                                                                                                                              | 66.4                                                   | g              | Wt. of Stone                                          | 128.3 g                                  | Wt. of Paper               | 0.3 g                                   |  |  |
| Specific Gravity                                                                                                                                                            | 2.62                                                   |                | Tested By                                             | Yueru Chen                               | Date                       | 1/27/2009                               |  |  |
| Trimmings                                                                                                                                                                   | 5                                                      |                | 1                                                     |                                          |                            | 2                                       |  |  |
| Tin No.                                                                                                                                                                     |                                                        |                | 21                                                    | 3                                        | 4                          | 18                                      |  |  |
| Wt. of Tin (g)                                                                                                                                                              |                                                        |                | 27.                                                   | 9                                        | 28                         | 8.8                                     |  |  |
| Wt. of Tin + Wet Soi                                                                                                                                                        | /t. of Tin + Wet Soil (g)<br>/t. of Tin + Dry Soil (g) |                |                                                       | .6                                       | 19                         | 6.5                                     |  |  |
| Wt. of Tin + Dry Soil                                                                                                                                                       | + Dry Soil (g)                                         |                |                                                       | .3                                       | 16                         | 8.7                                     |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                         |                                                        |                | 121                                                   | .4                                       | 139.9<br>27.8<br>19.9      |                                         |  |  |
| Wt. of Water (g)                                                                                                                                                            |                                                        |                | 24.                                                   | 3                                        |                            |                                         |  |  |
| Water Content (%)                                                                                                                                                           |                                                        |                | 20.                                                   | 0                                        |                            |                                         |  |  |
| Average Water Cont                                                                                                                                                          | ent (%)                                                |                |                                                       | 19.9                                     |                            |                                         |  |  |
|                                                                                                                                                                             |                                                        |                |                                                       |                                          |                            |                                         |  |  |
| Specimen                                                                                                                                                                    | 1                                                      |                | Before                                                | Test                                     | After                      | r Test                                  |  |  |
| Tare I.D. No.                                                                                                                                                               |                                                        |                | Ring, Ston                                            | ie, Paper                                | E                          | 38                                      |  |  |
| Wt. of Tare + Wet S                                                                                                                                                         | oil (g)                                                |                | 319                                                   | .1                                       | 14                         | 8.6                                     |  |  |
| Wt. of Tare + Dry Se                                                                                                                                                        | oil (g)                                                |                | -                                                     |                                          | 13                         | 1.8                                     |  |  |
| Wt. of Tare (g)                                                                                                                                                             |                                                        | 195.00         |                                                       |                                          |                            |                                         |  |  |
|                                                                                                                                                                             |                                                        |                |                                                       | .00                                      | 20                         | 8.5                                     |  |  |
| Wt. of Wet Soil (g)                                                                                                                                                         |                                                        |                | 124.                                                  |                                          |                            | 8.5<br>20.1                             |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                                                                  |                                                        |                |                                                       | 10                                       | 12                         |                                         |  |  |
|                                                                                                                                                                             |                                                        |                | 124.                                                  | 10<br>30                                 | 12<br>10                   | 20.1                                    |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                         |                                                        |                | 124.<br>103.                                          | 10<br>30<br>80                           | 12<br>10<br>1(             | 20.1<br>03.3                            |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                                                                |                                                        | 0-             | 124.<br>103.<br>20.8<br>20.                           | 10<br>30<br>80<br>1                      | 12<br>10<br>10<br>10       | 20.1<br>13.3<br>6.8<br>6.3              |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                                                                |                                                        | ρ <sub>d</sub> | 124.<br>103.<br>20.8<br>20.<br>1.63 g/cm <sup>3</sup> | 10<br>30<br>80<br>1<br>Final Dry Density | 12<br>10<br>10<br>10<br>Ρd | 20.1<br>13.3<br>6.8<br>6.3<br>1.91 g/cm |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigl                                                               |                                                        | γd             | 124.<br>103.<br>20.8<br>20.                           | 10<br>30<br>80<br>1<br>Final Dry Density | 12<br>10<br>10<br>10<br>Ρd | 20.1<br>13.3<br>6.8<br>6.3              |  |  |
| Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                                                                     |                                                        | γd             | 124.<br>103.<br>20.8<br>20.<br>1.63 g/cm <sup>3</sup> | 10<br>30<br>80<br>1<br>Final Dry Density | 12<br>10<br>10<br>10<br>Ρd | 20.1<br>13.3<br>6.8<br>6.3<br>1.91 g/cm |  |  |

| Project:                                                                                                                                                                            | An experimental investigation of the behavior of compacted sand/clay mixtures<br>Modified Proctor compacted, 85% sand 15% kaolinite, 4% water content (M15K4W) |              |              |                                                                  |                                    |                              |                                                           |                  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|------------------------------------------------------------------|------------------------------------|------------------------------|-----------------------------------------------------------|------------------|--|--|
| Sample:                                                                                                                                                                             | Modified                                                                                                                                                       | Proctor      | compacte     | ed, 85% sa                                                       | and 15% kaolinite, 49              | % water content (            | M15K4W)                                                   |                  |  |  |
| Consolid. Type                                                                                                                                                                      | EI25-047                                                                                                                                                       | 9            |              |                                                                  | Consolid. Type                     | Fixed Ring                   |                                                           |                  |  |  |
| Height of Spec.                                                                                                                                                                     | 20                                                                                                                                                             | mm           | Dia. of S    | Spec.                                                            | 63.5 mm                            | Area of Spec.                | 3166.9 m                                                  | m²               |  |  |
| Weight of Ring                                                                                                                                                                      | 66.4                                                                                                                                                           | g            | Wt. of S     | tone                                                             | 130 g                              | Wt. of Paper                 | 0.3 g                                                     |                  |  |  |
| Specific Gravity                                                                                                                                                                    | 2.64                                                                                                                                                           |              | Tested E     | Зу                                                               | Yueru Chen                         | Date                         | 2/3/200                                                   | 9                |  |  |
| Trimminan                                                                                                                                                                           |                                                                                                                                                                |              |              | 4                                                                |                                    |                              | 2                                                         |                  |  |  |
| Trimmings                                                                                                                                                                           | 5                                                                                                                                                              |              |              | 1                                                                | <b>D</b>                           |                              | 2                                                         |                  |  |  |
| Tin No.                                                                                                                                                                             |                                                                                                                                                                |              |              | MAJI                                                             |                                    |                              | 418                                                       |                  |  |  |
| Wt. of Tin (g)                                                                                                                                                                      | ,                                                                                                                                                              |              |              |                                                                  |                                    |                              | 28.8                                                      |                  |  |  |
| Wt. of Tin + Wet Soil                                                                                                                                                               | (0)                                                                                                                                                            | 219<br>212.3 |              |                                                                  |                                    |                              | 09.1                                                      |                  |  |  |
| Wt. of Tin + Dry Soil                                                                                                                                                               | (g)                                                                                                                                                            |              |              |                                                                  |                                    |                              |                                                           |                  |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                                 |                                                                                                                                                                |              |              |                                                                  | ö                                  | 173.5                        |                                                           |                  |  |  |
| Wt. of Water (g)                                                                                                                                                                    |                                                                                                                                                                |              |              | 6.7                                                              |                                    |                              | 6.8                                                       |                  |  |  |
| Water Content (%)                                                                                                                                                                   |                                                                                                                                                                |              |              | 3.6                                                              |                                    | 3.9                          |                                                           |                  |  |  |
|                                                                                                                                                                                     | 4                                                                                                                                                              |              |              |                                                                  |                                    |                              |                                                           |                  |  |  |
| Average Water Conte                                                                                                                                                                 | ent (%)                                                                                                                                                        |              |              |                                                                  | 3.8                                |                              |                                                           |                  |  |  |
| Average Water Conte                                                                                                                                                                 |                                                                                                                                                                |              |              | Before                                                           |                                    | Afte                         | er Test                                                   |                  |  |  |
| -                                                                                                                                                                                   |                                                                                                                                                                |              | R            | Before <sup>-</sup>                                              | Test                               |                              | er Test<br>213                                            |                  |  |  |
| Specimen                                                                                                                                                                            | )                                                                                                                                                              |              | R            |                                                                  | Test<br>e, Paper                   | 2                            |                                                           |                  |  |  |
| Specimen<br>Tare I.D. No.                                                                                                                                                           | oil (g)                                                                                                                                                        |              | R            | ing, Stone                                                       | Test<br>e, Paper                   | 2<br>1                       | 213                                                       |                  |  |  |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So                                                                                                                                   | oil (g)                                                                                                                                                        |              | R            | ing, Stone                                                       | Test<br>e, Paper                   | 2<br>1.<br>1.                | 213<br>43.4                                               |                  |  |  |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So                                                                                                           | oil (g)                                                                                                                                                        |              | R            | ing, Stone<br>312<br>-                                           | Test<br>e, Paper<br>70             | 2<br>1<br>1<br>2             | 213<br>43.4<br>39.1                                       |                  |  |  |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                        | oil (g)                                                                                                                                                        |              | R            | ing, Stone<br>312<br>-<br>196.7                                  | Test<br>e, Paper<br>0              | 2<br>1.<br>1.<br>2<br>1      | 213<br>43.4<br>39.1<br>28.7                               |                  |  |  |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 | oil (g)                                                                                                                                                        |              | R            | ing, Stone<br>312<br>-<br>196.7<br>115.3                         | Test<br>e, Paper<br>70<br>60<br>60 | 2<br>1,<br>1<br>2<br>1<br>1  | 213<br>43.4<br>39.1<br>28.7<br>14.7                       |                  |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                      | oil (g)                                                                                                                                                        |              | R            | ing, Stone<br>312<br>-<br>196.7<br>115.3<br>110.4                | Test<br>e, Paper<br>70<br>60<br>60 | 2<br>1.<br>1.<br>2<br>1<br>1 | 213<br>43.4<br>39.1<br>28.7<br>14.7<br>10.4               |                  |  |  |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | oil (g)                                                                                                                                                        |              |              | ing, Stone<br>312<br>-<br>196.7<br>115.3<br>110.4<br>4.90<br>4.4 | Test<br>e, Paper<br>70<br>90<br>90 | 2<br>1<br>1<br>2<br>1<br>1   | 213<br>43.4<br>39.1<br>28.7<br>14.7<br>10.4<br>4.3<br>3.9 |                  |  |  |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | oil (g)<br>Dil (g)                                                                                                                                             | Pa<br>γa     | 1.74<br>17.1 | ing, Stone<br>312<br>-<br>196.7<br>115.3<br>110.4<br>4.90        | Test<br>e, Paper<br>70<br>60<br>60 | 2<br>1.<br>1<br>2<br>1<br>1  | 213<br>43.4<br>39.1<br>28.7<br>14.7<br>10.4<br>4.3<br>3.9 | /cm <sup>^</sup> |  |  |

0.2260 0.3760 0.5330

0.7290

0.8940

1.0600

Corrected Def (mm)

0.1350

| Project:                                                                                                                                                                                                  | An expe            | menta               | l investigati  |                                                                                  |                                             | or of compacted sand/clay mixtures |            |                                                  |                                                       |                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|----------------|----------------------------------------------------------------------------------|---------------------------------------------|------------------------------------|------------|--------------------------------------------------|-------------------------------------------------------|---------------------------|--|
| Sample: N                                                                                                                                                                                                 | Iodified P         | roctor c            | ompacted,      | 85% sar                                                                          | nd 15% kaolii                               | nite, 6%                           | water cont | ent (M                                           | 15K6W)                                                |                           |  |
| Consolid. Type                                                                                                                                                                                            | EI25-047           | 79                  |                |                                                                                  | Consolid. T                                 | уре                                | Fixed Ring | g                                                |                                                       |                           |  |
| Height of Spec.                                                                                                                                                                                           | 20                 | mm                  | Dia. of Sp     | ec.                                                                              | 63.5 m                                      | nm                                 | Area of S  | pec.                                             | 3166.9                                                | mm <sup>2</sup>           |  |
| Weight of Ring                                                                                                                                                                                            | 63                 | g                   | Wt. of Sto     | ne                                                                               | 128.3 g                                     | I                                  | Wt. of Pap | ber                                              | 0.3                                                   | g                         |  |
| Specific Gravity                                                                                                                                                                                          | 2.64               |                     | Tested By      | 1                                                                                | Yueru Chen                                  | ١                                  | Date       |                                                  | 1/30/                                                 | 2009                      |  |
| Trimmings                                                                                                                                                                                                 | 3                  |                     |                | 1                                                                                |                                             |                                    | 2          |                                                  |                                                       |                           |  |
| Tin No.                                                                                                                                                                                                   |                    |                     |                | MAJI                                                                             | D                                           |                                    |            | -                                                |                                                       |                           |  |
| Wt. of Tin (g)                                                                                                                                                                                            |                    |                     |                | 28.7                                                                             |                                             |                                    |            |                                                  |                                                       |                           |  |
| Wt. of Tin + Wet Soil                                                                                                                                                                                     | l (g)              |                     |                | 158.6                                                                            | 6                                           |                                    | -          |                                                  |                                                       |                           |  |
| Wt. of Tin + Dry Soil                                                                                                                                                                                     | (g)                |                     | 151.3<br>122.6 |                                                                                  |                                             |                                    |            | -                                                |                                                       |                           |  |
| Wt. of Dry Soil (g)                                                                                                                                                                                       |                    |                     |                | 122.6                                                                            | 6                                           |                                    |            | -                                                |                                                       |                           |  |
| Wt. of Water (g)                                                                                                                                                                                          |                    |                     |                | 7.3                                                                              |                                             |                                    |            | -                                                |                                                       |                           |  |
| Water Content (%)                                                                                                                                                                                         |                    |                     |                | 6.0                                                                              |                                             |                                    |            | -                                                |                                                       |                           |  |
|                                                                                                                                                                                                           |                    |                     |                |                                                                                  |                                             |                                    |            |                                                  |                                                       |                           |  |
| Average Water Cont                                                                                                                                                                                        | ent (%)            |                     |                |                                                                                  |                                             | 6.0                                |            |                                                  |                                                       |                           |  |
| Average Water Cont                                                                                                                                                                                        | ent (%)            |                     |                |                                                                                  |                                             | 6.0                                |            |                                                  |                                                       |                           |  |
| Average Water Cont<br>Specimen                                                                                                                                                                            |                    |                     |                | Before T                                                                         | 「est                                        | 6.0                                |            | After                                            | Test                                                  |                           |  |
| -                                                                                                                                                                                                         |                    |                     |                | Before T<br>g, Stone                                                             |                                             | 6.0                                |            | After<br>3/                                      |                                                       |                           |  |
| Specimen                                                                                                                                                                                                  | · · ·              |                     |                |                                                                                  | , Paper                                     | 6.0                                |            |                                                  | 4                                                     |                           |  |
| Specimen<br>Tare I.D. No.                                                                                                                                                                                 | oil (g)            |                     |                | g, Stone                                                                         | , Paper                                     | 6.0                                |            | 3/                                               | 4<br>).6                                              |                           |  |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S                                                                                                                                                          | oil (g)            |                     |                | g, Stone                                                                         | , Paper<br>9                                | 6.0                                |            | 3/<br>160                                        | 4<br>).6<br>3.8                                       |                           |  |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So                                                                                                                                  | oil (g)            |                     |                | g, Stone<br>317.9<br>-                                                           | , Paper<br>9<br>0                           | 6.0                                |            | 3/<br>160<br>153                                 | A<br>).6<br>3.8<br>.7                                 |                           |  |
| Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                                                           | oil (g)            |                     |                | g, Stone<br>317.9<br>-<br>191.6                                                  | , Paper<br>9<br>0<br>0                      | 6.0                                |            | 3/<br>160<br>153<br>34                           | A<br>).6<br>3.8<br>.7<br>5.9                          |                           |  |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                        | oil (g)            |                     |                | g, Stone<br>317.9<br>-<br>191.6<br>126.3                                         | , Paper<br>9<br>0<br>0                      | 6.0                                |            | 3/<br>160<br>153<br>34<br>125                    | A<br>0.6<br>3.8<br>.7<br>5.9<br>0.1                   |                           |  |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                 | oil (g)            |                     |                | g, Stone<br>317.9<br>-<br>191.6<br>126.3<br>119.1                                | , Paper<br>9<br>0<br>0                      | 6.0                                |            | 3/<br>160<br>153<br>34<br>125<br>119             | A<br>0.6<br>3.8<br>.7<br>5.9<br>0.1<br>8              |                           |  |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | oil (g)            |                     | Ring           | g, Stone<br>317.9<br>191.6<br>126.3<br>119.1<br>7.20<br>6.0                      | , Paper<br>9<br>0<br>0<br>0                 |                                    |            | 3/<br>160<br>153<br>34<br>125<br>119<br>6.<br>5. | A<br>).6<br>3.8<br>.7<br>5.9<br>9.1<br>8<br>7         |                           |  |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Wet Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                        | oil (g)<br>bil (g) | ρ <sub>d</sub>      | Ring<br>1.88   | g, Stone<br>317.9<br>191.6<br>126.3<br>119.1<br>7.20<br>6.0<br>g/cm <sup>3</sup> | , Paper<br>9<br>0<br>0<br>0<br>Final Dry De | ensity                             | ht         | 3/<br>160<br>153<br>34<br>125<br>6.<br>5.        | A<br>).6<br>3.8<br>.7<br>5.9<br>).1<br>8<br>7<br>1.95 | -                         |  |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | oil (g)<br>bil (g) | γd                  | Ring<br>1.88   | g, Stone<br>317.9<br>191.6<br>126.3<br>119.1<br>7.20<br>6.0                      | , Paper<br>9<br>0<br>0<br>0                 | ensity                             | ht         | 3/<br>160<br>153<br>34<br>125<br>119<br>6.<br>5. | A<br>).6<br>3.8<br>.7<br>5.9<br>9.1<br>8<br>7         | g/cm <sup>°</sup><br>kN/m |  |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Wet Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                        | oil (g)<br>bil (g) | γ <sub>d</sub><br>s | Ring<br>1.88   | g, Stone<br>317.9<br>191.6<br>126.3<br>119.1<br>7.20<br>6.0<br>g/cm <sup>3</sup> | , Paper<br>9<br>0<br>0<br>0<br>Final Dry De | ensity                             | ht         | 3/<br>160<br>153<br>34<br>125<br>6.<br>5.        | A<br>).6<br>3.8<br>.7<br>5.9<br>).1<br>8<br>7<br>1.95 | -                         |  |

| Project:                                                                                                    | An expe     | rimenta             | al investigati | on of the         | e behavior               | of compa                 | compacted sand/clay mixtures |          |                   |                 |
|-------------------------------------------------------------------------------------------------------------|-------------|---------------------|----------------|-------------------|--------------------------|--------------------------|------------------------------|----------|-------------------|-----------------|
| Sample: N                                                                                                   | lodified P  | roctor c            | compacted,     | 85% sar           | nd 15% kao               | olinite, 8%              | water con                    | tent (M  | 15K8W)            |                 |
| Consolid. Type                                                                                              | EI25-047    | '9                  |                |                   | Consolid                 | . Туре                   | Fixed Rin                    | ıg       |                   |                 |
| Height of Spec.                                                                                             | 20          | mm                  | Dia. of Sp     | ec.               | 63.5                     | mm                       | Area of S                    | pec.     | 3166.9            | mm <sup>2</sup> |
| Weight of Ring                                                                                              | 66.4        | g                   | Wt. of Sto     | ne                | 128.3                    | g                        | Wt. of Pa                    | per      | 0.3               | g               |
| Specific Gravity                                                                                            | 2.64        |                     | Tested By      | 1                 | Yueru Ch                 | en                       | Date                         |          | 2/1/2             | 2009            |
| Trimmings                                                                                                   | ;           |                     |                | 1                 |                          |                          |                              | 2        | 2                 |                 |
| Tin No.                                                                                                     |             |                     | B-19           |                   |                          |                          |                              | 20       | 01                |                 |
| Wt. of Tin (g)                                                                                              |             |                     |                | 27.4              |                          |                          |                              | 28       | 8.8               |                 |
| Wt. of Tin + Wet Soi                                                                                        | (g)         |                     |                | 179.5             | 5                        |                          |                              | 203      | 3.3               |                 |
| Wt. of Tin + Dry Soil                                                                                       | (g)         |                     |                |                   |                          |                          |                              | 19       | 0.6               |                 |
| Wt. of Dry Soil (g)                                                                                         |             |                     |                | 161.8             |                          |                          |                              |          |                   |                 |
| Wt. of Water (g)                                                                                            |             |                     |                | 11.1              |                          |                          | 12.7                         |          |                   |                 |
| Water Content (%)                                                                                           |             |                     |                | 7.9               |                          |                          | 7.8                          |          |                   |                 |
| Average Water Cont                                                                                          | ent (%)     |                     |                |                   |                          | 7.9                      |                              |          |                   |                 |
|                                                                                                             |             |                     |                |                   |                          |                          |                              |          |                   |                 |
| Specimen                                                                                                    |             |                     | I              | Before 7          | Fest                     |                          |                              | After    | Test              |                 |
| Tare I.D. No.                                                                                               |             |                     | Ring           | g, Stone          | , Paper                  |                          |                              | 20       | 05                |                 |
| Wt. of Tare + Wet S                                                                                         | oil (g)     |                     |                | 320.6             | 6                        |                          |                              | 15       | 4.6               |                 |
| Wt. of Tare + Dry Se                                                                                        | oil (g)     |                     |                | -                 |                          |                          |                              | 14       | 5.8               |                 |
| Wt. of Tare (g)                                                                                             |             |                     | 195.00         |                   |                          | 29                       | ).7                          |          |                   |                 |
| Wt. of Wet Soil (g)                                                                                         |             |                     |                | 125.6             | 0                        |                          |                              | 124      | 4.9               |                 |
| Wt. of Dry Soil (g)                                                                                         |             |                     |                | 116.1             | 0                        |                          |                              | 11       | 6.1               |                 |
| Wt. of Water (g)                                                                                            |             |                     |                | 9.50              |                          |                          |                              | 8        | .8                |                 |
| Water Content (%)                                                                                           |             |                     |                | 8.2               |                          |                          |                              | 7.       | .6                |                 |
|                                                                                                             |             |                     | 4.00           | . 3               | <b>E</b> : 1 <b>D</b>    | <b>D</b> "               |                              |          | 4.00              |                 |
|                                                                                                             |             |                     | 1.83           | g/cm <sup>3</sup> | Final Dry                | Density                  |                              | $\rho_d$ | 1.90              | g/cm            |
|                                                                                                             |             | $\rho_d$            |                | -                 |                          |                          | 1.1                          |          | 40 7              | /               |
| Initial Dry Unit Weigh                                                                                      |             | γd                  |                | kN/m <sup>3</sup> | Final Dry                | Unit Weig                | ht                           | γd       | 18.7              | kN/m            |
| Initial Dry Unit Weigh<br>End of load deforma                                                               | tion result | γ <sub>d</sub><br>s | 18.0           | kN/m <sup>3</sup> |                          | _                        |                              | γd       | -                 | kN/m            |
| Initial Dry Density<br>Initial Dry Unit Weigł<br>End of load deforma<br>Load Step No.<br>Corrected Def (mm) |             | γ <sub>d</sub><br>S |                | -                 | Final Dry<br>4<br>0.3658 | Unit Weig<br>5<br>0.4851 | ht<br>6<br>0.6147            |          | 18.7<br>7<br>7518 | kN/m            |

| Project:                                                                              | An expe    | rimenta     | al investiga | ation of th       | e behavior | of compa    | cted sand/c | lay mix           | tures     |        |
|---------------------------------------------------------------------------------------|------------|-------------|--------------|-------------------|------------|-------------|-------------|-------------------|-----------|--------|
| Sample: Mo                                                                            | dified Pro | octor co    | mpacted,     | 85% san           | d 15% kaol | inite, 10%  | water cont  | tent (M           | 15K10W    | )      |
| Consolid. Type                                                                        | EI25-047   | '9          |              |                   | Consolid   | . Туре      | Fixed Rin   | g                 |           |        |
| Height of Spec.                                                                       | 20         | mm          | Dia. of S    | pec.              | 63.5       | mm          | Area of S   | pec.              | 3166.9    | $mm^2$ |
| Weight of Ring                                                                        | 66.4       | g           | Wt. of St    | tone              | 128.3      | g           | Wt. of Pa   | per               | 0.3       | g      |
| Specific Gravity                                                                      | 2.64       |             | Tested E     | Зу                | Yueru Ch   | en          | Date        |                   | 2/5/2     | 2009   |
| Trimmings                                                                             |            |             | 1            |                   |            |             | 2           |                   |           |        |
| Tin No.                                                                               |            |             |              | 415               |            |             |             | 41                | 8         |        |
| Wt. of Tin (g)                                                                        |            |             |              | 28.8              | 5          |             |             | 28                | .8        |        |
| Wt. of Tin + Wet Soil                                                                 | (g)        |             |              | 187.              | 6          |             |             | 213               | 3.2       |        |
| Wt. of Tin + Dry Soil                                                                 |            |             |              | 173.              | 9          |             |             | 196               | 6.9       |        |
| Wt. of Dry Soil (g)                                                                   |            | 145.1 168.1 |              |                   |            | 3.1         |             |                   |           |        |
| Wt. of Water (g)                                                                      |            |             |              | 13.7              |            |             | 16.3        |                   |           |        |
| Water Content (%)                                                                     |            |             |              | 9.4               |            |             |             | 9.                | 7         |        |
| Average Water Conte                                                                   | ent (%)    |             |              |                   |            | 9.6         |             |                   |           |        |
|                                                                                       |            |             |              |                   |            |             |             |                   |           |        |
| Specimen                                                                              |            |             |              | Before            | Test       |             |             | After             | Test      |        |
| Tare I.D. No.                                                                         |            |             | Ri           | ng, Stone         | e, Paper   |             |             | В                 | 7         |        |
| Wt. of Tare + Wet Se                                                                  | oil (g)    |             |              | 325.              | 2          |             |             | 157               | 7.6       |        |
| Wt. of Tare + Dry Sc                                                                  | oil (g)    |             |              | -                 |            |             |             | 14                | 17        |        |
| Wt. of Tare (g)                                                                       |            |             |              | 195.0             | 0          |             |             | 28                | .7        |        |
| Wt. of Wet Soil (g)                                                                   |            |             |              | 130.2             | 20         |             |             | 128               | 3.9       |        |
| Wt. of Dry Soil (g)                                                                   |            |             |              | 118.3             | 0          |             |             | 118               | 3.3       |        |
| Wt. of Water (g)                                                                      |            |             |              | 11.9              | 0          |             |             | 10                | .6        |        |
| Water Content (%)                                                                     |            |             |              | 10.1              |            |             |             | 9.                | 0         |        |
|                                                                                       |            |             |              | 2                 |            | _           |             |                   |           |        |
| Initial Dry Density                                                                   |            | $\rho_{d}$  | 1.87         | g/cm <sup>3</sup> | Final Dry  |             |             | $\rho_{\text{d}}$ | 1.94      | g/cm   |
|                                                                                       |            |             | 18.3         | kN/m <sup>3</sup> | Final Dry  | Unit Weig   | ht          | γd                | 19.0      | kN/m   |
| Initial Dry Unit Weigh                                                                |            | γd          | 10.5         |                   |            |             |             |                   |           |        |
| Initial Dry Unit Weigh<br>End of load deformat                                        | ion result | S           |              |                   |            | -           | <u> </u>    |                   | 7         |        |
| Initial Dry Unit Weigh<br>End of load deformat<br>Load Step No.<br>Corrected Def (mm) |            | S           | 2            | 3                 | 4          | 5<br>0.5590 | 6<br>0.6680 | 0.1               | 7<br>7720 |        |

| Project: An experimental investigation of the behavior of compacted sand/clay mixtures                                                                                                                                        |                                         |                                                                                               |                                                       |                                                |                                                                |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|--|--|
| Sample: Mo                                                                                                                                                                                                                    | dified Proctor of                       | compacted, 75% sar                                                                            | nd 25% kaolinite, 3%                                  | 6 water content (M                             | 25K3W)                                                         |  |  |
| Consolid. Type E                                                                                                                                                                                                              | 125-0479                                |                                                                                               | Consolid. Type                                        | Fixed Ring                                     |                                                                |  |  |
| Height of Spec.                                                                                                                                                                                                               | 20 mm                                   | Dia. of Spec.                                                                                 | 63.5 mm                                               | Area of Spec.                                  | 3166.9 mm <sup>2</sup>                                         |  |  |
| Weight of Ring                                                                                                                                                                                                                | 66.3 g                                  | Wt. of Stone                                                                                  | 128.3 g                                               | Wt. of Paper                                   | 0.3 g                                                          |  |  |
| Specific Gravity                                                                                                                                                                                                              | 2.64                                    | Tested By                                                                                     | Yueru Chen                                            | Date                                           | 2/6/2009                                                       |  |  |
| Trimmings                                                                                                                                                                                                                     |                                         | 1                                                                                             |                                                       | 2                                              |                                                                |  |  |
| Tin No.                                                                                                                                                                                                                       |                                         | 418                                                                                           |                                                       | 4                                              | 15                                                             |  |  |
| Wt. of Tin (g)                                                                                                                                                                                                                |                                         | 28.8                                                                                          |                                                       | 28                                             | 3.7                                                            |  |  |
| Wt. of Tin + Wet Soil (g                                                                                                                                                                                                      | g)                                      | 205.2                                                                                         | 2                                                     | 20                                             | 7.8                                                            |  |  |
| Wt. of Tin + Dry Soil (g                                                                                                                                                                                                      | )                                       | 199.4                                                                                         | 1                                                     | 20                                             | 2.1                                                            |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                                                                           |                                         | 170.6 173.4                                                                                   |                                                       |                                                |                                                                |  |  |
| Wt. of Water (g)                                                                                                                                                                                                              |                                         | 5.8                                                                                           |                                                       | 5.7                                            |                                                                |  |  |
| Water Content (%)                                                                                                                                                                                                             |                                         | 3.4                                                                                           |                                                       | 3                                              | .3                                                             |  |  |
| Average Water Conten                                                                                                                                                                                                          | nt (%)                                  |                                                                                               | 3.3                                                   |                                                |                                                                |  |  |
|                                                                                                                                                                                                                               |                                         |                                                                                               |                                                       |                                                |                                                                |  |  |
|                                                                                                                                                                                                                               |                                         |                                                                                               |                                                       |                                                |                                                                |  |  |
| Specimen                                                                                                                                                                                                                      |                                         | Before 7                                                                                      | 「est                                                  | After                                          | Test                                                           |  |  |
| Specimen<br>Tare I.D. No.                                                                                                                                                                                                     |                                         | Before T<br>Ring, Stone                                                                       |                                                       |                                                | <sup>-</sup> Test<br>88                                        |  |  |
| ·                                                                                                                                                                                                                             | l (g)                                   |                                                                                               | , Paper                                               | B                                              |                                                                |  |  |
| Tare I.D. No.                                                                                                                                                                                                                 |                                         | Ring, Stone                                                                                   | , Paper                                               | B<br>14                                        | 38                                                             |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Soil                                                                                                                                                                                       |                                         | Ring, Stone                                                                                   | , Paper<br>5                                          | E<br>14<br>14                                  | 38<br>5.2                                                      |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Soil<br>Wt. of Tare + Dry Soil                                                                                                                                                             |                                         | Ring, Stone<br>312.5                                                                          | , Paper<br>5<br>0                                     | E<br>14<br>14<br>28                            | 88<br>5.2<br>1.4                                               |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Soil<br>Wt. of Tare + Dry Soil<br>Wt. of Tare (g)                                                                                                                                          |                                         | Ring, Stone<br>312.{<br>-<br>194.9                                                            | , Paper<br>5<br>0<br>0                                | E<br>14<br>14<br>28<br>11                      | 88<br>5.2<br>1.4<br>3.5                                        |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Soil<br>Wt. of Tare + Dry Soil<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                                                   |                                         | Ring, Stone<br>312.{<br>-<br>194.9<br>117.6                                                   | , Paper<br>5<br>0<br>0                                | E<br>14<br>14<br>28<br>11                      | 88<br>5.2<br>1.4<br>3.5<br>6.7                                 |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Soil<br>Wt. of Tare + Dry Soil<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                            |                                         | Ring, Stone<br>312.5<br>-<br>194.9<br>117.6<br>112.9                                          | , Paper<br>5<br>0<br>0                                | E<br>14<br>14<br>28<br>11<br>11<br>3           | 88<br>5.2<br>1.4<br>3.5<br>6.7<br>2.9                          |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Soil<br>Wt. of Tare + Dry Soil<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                   | (g)                                     | Ring, Stone<br>312.<br>-<br>194.9<br>117.6<br>112.9<br>4.70<br>4.2                            | , Paper<br>5<br>0<br>0<br>0                           | E<br>14<br>14<br>28<br>11<br>11<br>3<br>3      | 88<br>5.2<br>1.4<br>3.5<br>6.7<br>2.9<br>.8<br>.4              |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Soil<br>Wt. of Tare + Dry Soil<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                   | (g)<br>ρ <sub>d</sub>                   | Ring, Stone<br>312.5<br>-<br>194.9<br>117.6<br>112.9<br>4.70<br>4.2<br>1.78 g/cm <sup>3</sup> | , Paper<br>5<br>0<br>0<br>0<br>5<br>Final Dry Density | Ε<br>14<br>14<br>28<br>11<br>11<br>3<br>3<br>2 | 88<br>5.2<br>1.4<br>3.5<br>6.7<br>2.9<br>.8<br>.4<br>1.88 g/cm |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Soil<br>Wt. of Tare + Dry Soil<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weight | (g)<br>ρ <sub>d</sub><br>γ <sub>d</sub> | Ring, Stone<br>312.<br>-<br>194.9<br>117.6<br>112.9<br>4.70<br>4.2                            | , Paper<br>5<br>0<br>0<br>0                           | Ε<br>14<br>14<br>28<br>11<br>11<br>3<br>3<br>2 | 88<br>5.2<br>1.4<br>3.5<br>6.7<br>2.9<br>.8<br>.4              |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Soil<br>Wt. of Tare + Dry Soil<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                        | (g)<br>ρ <sub>d</sub><br>γ <sub>d</sub> | Ring, Stone<br>312.5<br>-<br>194.9<br>117.6<br>112.9<br>4.70<br>4.2<br>1.78 g/cm <sup>3</sup> | , Paper<br>5<br>0<br>0<br>0<br>5<br>Final Dry Density | Ε<br>14<br>14<br>28<br>11<br>11<br>3<br>3<br>2 | 88<br>5.2<br>1.4<br>3.5<br>6.7<br>2.9<br>.8<br>.4<br>1.88 g/cm |  |  |

| Project:                                                                                                      | An experimental investigation of the behavior of compacted sand/clay mixtures |          |                     |                                  |            |                         |             |                   |                   |         |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------|---------------------|----------------------------------|------------|-------------------------|-------------|-------------------|-------------------|---------|
| Sample: M                                                                                                     | odified P                                                                     | roctor o | compacted           | l, 75% sa                        | nd 25% kao | olinite, 6%             | water cont  | tent (M           | 25K6W)            |         |
| Consolid. Type                                                                                                | EI25-047                                                                      | 9        |                     |                                  | Consolid   | Туре                    | Fixed Rin   | g                 |                   |         |
| Height of Spec.                                                                                               | 20                                                                            | mm       | Dia. of S           | spec.                            | 63.5       | mm                      | Area of S   | pec.              | 3166.9            | $mm^2$  |
| Weight of Ring                                                                                                | 63                                                                            | g        | Wt. of S            | tone                             | 128.3      | g                       | Wt. of Pa   | per               | 0.3               | g       |
| Specific Gravity                                                                                              | 2.64                                                                          |          | Tested E            | Ву                               | Yueru Ch   | en                      | Date        |                   | 2/3/2             | 2009    |
| Trimmings                                                                                                     |                                                                               |          |                     | 1                                |            |                         |             |                   | 2                 |         |
| Tin No.                                                                                                       |                                                                               |          | 415                 |                                  |            |                         |             | FJ                | I-3               |         |
| Wt. of Tin (g)                                                                                                |                                                                               |          |                     | 28.7                             | ,          |                         |             | 2                 | 9                 |         |
| Wt. of Tin + Wet Soil                                                                                         | (g)                                                                           |          |                     | 198.                             | 5          |                         |             | 19                | 92                |         |
| Wt. of Tin + Dry Soil (                                                                                       | of Tin + Dry Soil (g)                                                         |          |                     | 188.                             | 8          |                         |             | 182               | 2.4               |         |
| Wt. of Dry Soil (g)                                                                                           |                                                                               |          |                     | 160.1 153.4                      |            |                         |             |                   |                   |         |
| Wt. of Water (g)                                                                                              |                                                                               |          |                     | 9.7                              |            |                         | 9.6         |                   |                   |         |
| Water Content (%)                                                                                             |                                                                               |          |                     | 6.1                              |            |                         |             | 6.                | .3                |         |
| Average Water Conte                                                                                           | ent (%)                                                                       |          |                     |                                  |            | 6.2                     |             |                   |                   |         |
|                                                                                                               |                                                                               |          |                     |                                  |            |                         |             |                   |                   |         |
| Specimen                                                                                                      |                                                                               |          |                     | Before -                         | Test       |                         |             | After             | Test              |         |
| Tare I.D. No.                                                                                                 |                                                                               |          | Ri                  | ng, Stone                        | e, Paper   |                         |             | 3.                | A                 |         |
| Wt. of Tare + Wet So                                                                                          | oil (g)                                                                       |          |                     | 317.                             | 7          |                         |             | 160               | 0.7               |         |
| Wt. of Tare + Dry So                                                                                          | il (g)                                                                        |          |                     | -                                |            |                         |             | 153               | 3.3               |         |
| Wt. of Tare (g)                                                                                               |                                                                               |          |                     | 191.6                            | 60         |                         |             | 34                | l.7               |         |
| Wt. of Wet Soil (g)                                                                                           |                                                                               |          |                     | 126.1                            | 0          |                         | 126         |                   |                   |         |
| Wt. of Dry Soil (g)                                                                                           |                                                                               |          |                     | 118.6                            | 60         |                         |             | 118               | 8.6               |         |
| Wt. of Water (g)                                                                                              |                                                                               |          |                     | 7.50                             | )          |                         |             | 7.                | .4                |         |
| Water Content (%)                                                                                             |                                                                               |          |                     | 6.3                              |            |                         |             | 6.                | .2                |         |
|                                                                                                               |                                                                               |          |                     |                                  |            |                         |             |                   |                   |         |
|                                                                                                               |                                                                               | $\rho_d$ | 1.87                | g/cm <sup>3</sup>                | Final Dry  |                         |             | $\rho_{\text{d}}$ | 1.96              | g/cm    |
|                                                                                                               |                                                                               |          |                     |                                  |            | 1 1 - 1 ( ) ( / - 1 - 1 |             |                   |                   | L NI/ma |
| Initial Dry Unit Weigh                                                                                        |                                                                               | γd       | 18.4                | kN/m <sup>3</sup>                | Final Dry  | Unit weig               | ht          | γd                | 19.2              | KIN/M   |
| Initial Dry Unit Weigh<br>End of load deformati                                                               | ion result                                                                    |          | -                   |                                  |            |                         |             | γd                |                   | KIN/M   |
| Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deformati<br>Load Step No.<br>Corrected Def (mm) |                                                                               | S        | 18.4<br>2<br>0.0559 | kN/m <sup>3</sup><br>3<br>0.1500 | 4          | 5<br>0.4450             | 6<br>0.6480 |                   | 19.2<br>7<br>8890 | kN/m    |

| Project: An experimental investigation of the behavior of compacted sand/clay mixtures |                       |                   |             |                   |             |             |             |                   |           |        |
|----------------------------------------------------------------------------------------|-----------------------|-------------------|-------------|-------------------|-------------|-------------|-------------|-------------------|-----------|--------|
| Sample: N                                                                              | lodified P            | roctor c          | compacted,  | 75% sa            | nd 25% ka   | olinite, 8% | water con   | tent (M           | 25K8W)    |        |
| Consolid. Type                                                                         | El25-047              | <b>'</b> 9        |             |                   | Consolid    | . Туре      | Fixed Rin   | g                 |           |        |
| Height of Spec.                                                                        | 20                    | mm                | Dia. of Sp  | Dec.              | 63.5        | mm          | Area of S   | pec.              | 3166.9    | $mm^2$ |
| Weight of Ring                                                                         | 66.4                  | g                 | Wt. of Sto  | one               | 130         | g           | Wt. of Pa   | per               | 0.3       | g      |
| Specific Gravity                                                                       | 2.64                  |                   | Tested By   | у                 | Yueru Ch    | en          | Date        |                   | 1/30/     | 2009   |
| Trimmings                                                                              |                       |                   |             | 1                 | 2           |             |             |                   |           |        |
| Tin No.                                                                                |                       |                   | 415         |                   |             |             |             | FJ                | I-3       |        |
| Wt. of Tin (g)                                                                         |                       |                   |             | 28.7              |             |             |             | 2                 | 9         |        |
| Wt. of Tin + Wet Soil                                                                  | (g)                   |                   |             | 144.2             | 2           |             |             | 14                | 7.1       |        |
| Wt. of Tin + Dry Soil                                                                  | of Tin + Dry Soil (g) |                   |             | 135.9             | 5           |             |             | 138               | 8.2       |        |
| Wt. of Dry Soil (g)                                                                    |                       | 106.8 109.2       |             |                   |             | 9.2         |             |                   |           |        |
| Wt. of Water (g)                                                                       |                       |                   |             | 8.7               |             |             | 8.9         |                   |           |        |
| Water Content (%)                                                                      |                       |                   |             | 8.1               |             |             |             | 8.                | .2        |        |
| Average Water Conte                                                                    | ent (%)               |                   |             |                   |             | 8.1         | I           |                   |           |        |
|                                                                                        |                       |                   |             |                   |             |             |             |                   |           |        |
| Specimen                                                                               |                       |                   |             | Before 7          | Fest        |             |             | After             | Test      |        |
| Tare I.D. No.                                                                          |                       |                   | Rin         | g, Stone          | , Paper     |             |             | 41                | 18        |        |
| Wt. of Tare + Wet S                                                                    | oil (g)               |                   |             | 330.8             | 3           |             | 162.5       |                   |           |        |
| Wt. of Tare + Dry So                                                                   | oil (g)               |                   |             | -                 |             |             |             | 152.9             |           |        |
| Wt. of Tare (g)                                                                        |                       |                   |             | 196.7             | 0           |             |             | 28                | 8.9       |        |
| Wt. of Wet Soil (g)                                                                    |                       |                   |             | 134.1             | 0           |             |             | 133               | 3.6       |        |
| Wt. of Dry Soil (g)                                                                    |                       |                   |             | 124.0             | 0           |             |             | 12                | 24        |        |
| Wt. of Water (g)                                                                       |                       |                   |             | 10.10             | C           |             |             | 9.                | .6        |        |
| Water Content (%)                                                                      |                       |                   |             | 8.1               |             |             |             | 7.                | .7        |        |
|                                                                                        |                       |                   |             | _                 |             |             |             |                   |           |        |
| Initial Dry Density                                                                    |                       | $\rho_{\text{d}}$ | 1.96        | g/cm <sup>3</sup> | Final Dry   |             |             | $\rho_{\text{d}}$ | 2.07      | g/cm   |
|                                                                                        | 4                     | γd                | 19.2        | kN/m <sup>3</sup> | Final Dry   | Unit Weig   | ht          | γd                | 20.3      | kN/m   |
| , ,                                                                                    |                       |                   |             |                   |             |             |             |                   |           |        |
| End of load deformat                                                                   | ion result            | S                 |             |                   |             |             |             |                   | _         |        |
| Initial Dry Unit Weigh<br>End of load deformat<br>Load Step No.<br>Corrected Def (mm)  |                       | S                 | 2<br>0.2972 | 3<br>0.3759       | 4<br>0.6604 | 5<br>0.7722 | 6<br>0.8941 |                   | 7<br>0566 |        |

| Project:                                                                                                                                                                  | Allexper   | menta   | I investiga    | tion of the                                                                              | e behavior o                                    | or compa   | cted sand/c   | lay mix                                                   | tures                                           |                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|----------------|------------------------------------------------------------------------------------------|-------------------------------------------------|------------|---------------|-----------------------------------------------------------|-------------------------------------------------|---------------------------|
| Sample: Moo                                                                                                                                                               | dified Pro | ctor co | mpacted,       | 75% sand                                                                                 | d 25% kaolii                                    | nite, 10%  | water cont    | ent (M                                                    | 25K10W                                          | )                         |
| Consolid. Type E                                                                                                                                                          | EI25-0479  | )       | Consolid. Type |                                                                                          |                                                 | Fixed Ring |               |                                                           |                                                 |                           |
| Height of Spec.                                                                                                                                                           | 20         | mm      | Dia. of Sp     | pec.                                                                                     | 63.5 mm                                         |            | Area of Spec. |                                                           | 3166.9 mm <sup>2</sup>                          |                           |
| Weight of Ring                                                                                                                                                            | 66.3       | g       | Wt. of Sto     | one                                                                                      | 130                                             | g          | Wt. of Pap    | ber                                                       | 0.3                                             | g                         |
| Specific Gravity                                                                                                                                                          | 2.64       |         | Tested B       | у                                                                                        | Yueru Che                                       | en         | Date          |                                                           | 2/2/2                                           | 2009                      |
| Trimmings                                                                                                                                                                 |            |         |                | 1                                                                                        |                                                 |            |               | 2                                                         | 2                                               |                           |
| Tin No.                                                                                                                                                                   |            |         |                | 418                                                                                      |                                                 |            |               | FJ                                                        | -3                                              |                           |
| Wt. of Tin (g)                                                                                                                                                            |            |         |                | 28.8                                                                                     |                                                 |            |               | 29                                                        | 9                                               |                           |
| Wt. of Tin + Wet Soil (                                                                                                                                                   | (g)        |         |                | 176.6                                                                                    | 6                                               |            |               | 172                                                       | 2.2                                             |                           |
| Wt. of Tin + Dry Soil (                                                                                                                                                   | g)         |         |                | 163.3                                                                                    | 3                                               |            |               | 159                                                       | 9.4                                             |                           |
| Wt. of Dry Soil (g)                                                                                                                                                       |            |         |                | 134.5                                                                                    | 5                                               |            |               | 130                                                       | ).4                                             |                           |
| Wt. of Water (g)                                                                                                                                                          |            |         | 13.3           |                                                                                          |                                                 |            | 12.8          |                                                           |                                                 |                           |
| Water Content (%)                                                                                                                                                         |            |         | 9.9            |                                                                                          |                                                 |            | 9.8           |                                                           |                                                 |                           |
| Average Water Conte                                                                                                                                                       | nt (%)     |         | 9.9            |                                                                                          |                                                 |            |               |                                                           |                                                 |                           |
|                                                                                                                                                                           |            |         |                |                                                                                          |                                                 |            |               |                                                           |                                                 |                           |
| Specimen                                                                                                                                                                  |            |         |                |                                                                                          |                                                 |            |               |                                                           |                                                 |                           |
| Specimen                                                                                                                                                                  |            |         |                | Before 1                                                                                 | 「est                                            |            |               | After                                                     | Test                                            |                           |
| Specimen<br>Tare I.D. No.                                                                                                                                                 |            |         | Rir            | Before T<br>ng, Stone                                                                    |                                                 |            |               | After<br>B                                                |                                                 |                           |
| •                                                                                                                                                                         | il (g)     |         | Rir            |                                                                                          | , Paper                                         |            |               |                                                           | 7                                               |                           |
| Tare I.D. No.                                                                                                                                                             |            |         | Rir            | ng, Stone                                                                                | , Paper                                         |            |               | B                                                         | 7<br>5.7                                        |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So                                                                                                                                     |            |         | Rir            | ng, Stone                                                                                | , Paper<br>3                                    |            |               | B<br>165                                                  | 7<br>5.7<br>4.3                                 |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soi                                                                                                           |            |         | Rir            | ng, Stone<br>334.8<br>-                                                                  | , Paper<br>3<br>0                               |            |               | B<br>165<br>154                                           | 7<br>5.7<br>4.3<br>.7                           |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)                                                                                         |            |         | Rir            | ng, Stone<br>334.8<br>-<br>196.6                                                         | , Paper<br>3<br>0<br>0                          |            |               | B <sup>7</sup><br>165<br>154<br>28                        | 7<br>5.7<br>4.3<br>.7<br>87                     |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 |            |         | Rir            | ng, Stone<br>334.8<br>-<br>196.6<br>138.2                                                | , Paper<br>3<br>0<br>0<br>0                     |            |               | B<br>165<br>154<br>28<br>13                               | 7<br>5.7<br>4.3<br>.7<br>37<br>5.6              |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          |            |         | Rir            | ng, Stone<br>334.8<br>-<br>196.6<br>138.2<br>125.6                                       | , Paper<br>3<br>0<br>0<br>0<br>0                |            |               | B<br>165<br>154<br>28<br>13<br>125                        | 7<br>5.7<br>4.3<br>.7<br>37<br>5.6<br>.4        |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) |            |         |                | ng, Stone<br>334.{<br>196.6<br>138.2<br>125.6<br>12.6(<br>10.0                           | , Paper<br>3<br>0<br>0<br>0                     | Dansin     |               | B<br>165<br>28<br>13<br>125<br>11<br>9.                   | 7<br>5.7<br>4.3<br>.7<br>5.6<br>.4<br>1         |                           |
| Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | l (g)      | βď      | 1.98           | ng, Stone<br>334.8<br>-<br>196.6<br>138.2<br>125.6<br>12.60<br>10.0<br>g/cm <sup>3</sup> | , Paper<br>3<br>0<br>0<br>0<br>)<br>Final Dry [ | •          | ht            | Β<br>165<br>28<br>13<br>125<br>11<br>9.<br>Ρd             | 7<br>5.7<br>4.3<br>.7<br>5.6<br>.4<br>1<br>2.12 | 0                         |
| Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | l (g)      | γd      |                | ng, Stone<br>334.{<br>196.6<br>138.2<br>125.6<br>12.6(<br>10.0                           | , Paper<br>3<br>0<br>0<br>0                     | •          | ht            | B<br>165<br>28<br>13<br>125<br>11<br>9.                   | 7<br>5.7<br>4.3<br>.7<br>5.6<br>.4<br>1         | 0                         |
| Tare I.D. No.<br>Wt. of Tare + Wet Soi<br>Wt. of Tare + Dry Soi<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | l (g)      | γd      | 1.98           | ng, Stone<br>334.8<br>-<br>196.6<br>138.2<br>125.6<br>12.60<br>10.0<br>g/cm <sup>3</sup> | , Paper<br>3<br>0<br>0<br>0<br>)<br>Final Dry [ | •          | ht            | Β<br>165<br>28<br>13<br>125<br>11<br>9.<br>Ρ <sub>d</sub> | 7<br>5.7<br>4.3<br>.7<br>5.6<br>.4<br>1<br>2.12 | g/cm <sup>°</sup><br>kN/m |

|                                                                                                                                                                         | Allexpelli     | nenta                            | tal investigation of the behavior of compacted sand/clay mixtures                               |                                                                  |                                                                                 |                                                               |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| Sample: Mo                                                                                                                                                              | dified Proc    | tor co                           | pacted, 75% sand 25% kaolinite, 12% water content (M25K12W)                                     |                                                                  |                                                                                 |                                                               |  |  |
| Consolid. Type                                                                                                                                                          | EI25-0479      |                                  |                                                                                                 | Consolid. Type                                                   | Fixed Ring                                                                      |                                                               |  |  |
| Height of Spec.                                                                                                                                                         | 20 1           | mm                               | Dia. of Spec.                                                                                   | 63.5 mm                                                          | Area of Spec.                                                                   | 3166.9 mm <sup>2</sup>                                        |  |  |
| Weight of Ring                                                                                                                                                          | 63             | g                                | Wt. of Stone                                                                                    | 130 g                                                            | Wt. of Paper                                                                    | 0.3 g                                                         |  |  |
| Specific Gravity                                                                                                                                                        | 2.64           |                                  | Tested By                                                                                       | Yueru Chen                                                       | Date                                                                            | 2/5/2009                                                      |  |  |
| Trimmings                                                                                                                                                               |                |                                  | 1                                                                                               |                                                                  |                                                                                 | 2                                                             |  |  |
| Tin No.                                                                                                                                                                 |                |                                  | FJ-3                                                                                            | 5                                                                | МА                                                                              | JID                                                           |  |  |
| Wt. of Tin (g)                                                                                                                                                          | Vt. of Tin (g) |                                  |                                                                                                 |                                                                  | 28                                                                              | 8.6                                                           |  |  |
| Wt. of Tin + Wet Soil (g)                                                                                                                                               |                |                                  | 186.2                                                                                           | 2                                                                | 21                                                                              | 2.8                                                           |  |  |
| Wt. of Tin + Dry Soil (                                                                                                                                                 | (g)            |                                  | 170                                                                                             |                                                                  | 19                                                                              | 3.7                                                           |  |  |
| Wt. of Dry Soil (g)                                                                                                                                                     |                |                                  | 141                                                                                             |                                                                  | 16                                                                              | 5.1                                                           |  |  |
| Wt. of Water (g)                                                                                                                                                        |                |                                  | 16.2                                                                                            |                                                                  | 19.1                                                                            |                                                               |  |  |
| Water Content (%)                                                                                                                                                       |                |                                  | 11.5                                                                                            | i                                                                | 11.6                                                                            |                                                               |  |  |
| Average Water Conte                                                                                                                                                     | ent (%)        |                                  |                                                                                                 | 11.5                                                             |                                                                                 |                                                               |  |  |
|                                                                                                                                                                         |                |                                  |                                                                                                 |                                                                  |                                                                                 |                                                               |  |  |
| Specimen                                                                                                                                                                |                |                                  |                                                                                                 | _                                                                |                                                                                 |                                                               |  |  |
| Specimen                                                                                                                                                                |                |                                  | Before -                                                                                        | Fest                                                             | After                                                                           | Test                                                          |  |  |
| Tare I.D. No.                                                                                                                                                           |                |                                  | Before<br>Ring, Stone                                                                           |                                                                  |                                                                                 | Test<br>A                                                     |  |  |
| •                                                                                                                                                                       | oil (g)        |                                  |                                                                                                 | , Paper                                                          | 3                                                                               |                                                               |  |  |
| Tare I.D. No.                                                                                                                                                           | (0)            |                                  | Ring, Stone                                                                                     | , Paper                                                          | 3<br>16                                                                         | A                                                             |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Sc                                                                                                                                   | (0)            |                                  | Ring, Stone                                                                                     | e, Paper<br>3                                                    | 3<br>16<br>15                                                                   | A<br>3.4                                                      |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Sc<br>Wt. of Tare + Dry So                                                                                                           | (0)            |                                  | Ring, Stone<br>323.:<br>-                                                                       | 9, Paper<br>3<br>0                                               | 3<br>16<br>15<br>34                                                             | A<br>3.4<br>1.4                                               |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Sc<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                        | (0)            |                                  | Ring, Stone<br>323.<br>-<br>193.3                                                               | 9, Paper<br>3<br>0<br>0                                          | 3<br>16<br>15<br>34<br>12                                                       | A<br>3.4<br>1.4<br>4.8                                        |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Sc<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                 | (0)            |                                  | Ring, Stone<br>323.:<br>-<br>193.3<br>130.0                                                     | 9, Paper<br>3<br>00<br>0                                         | 3<br>16<br>15<br>34<br>12<br>11                                                 | A<br>3.4<br>1.4<br>I.8<br>8.6                                 |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Sc<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                          | (0)            |                                  | Ring, Stone<br>323.<br>-<br>193.3<br>130.0<br>116.6                                             | 9, Paper<br>3<br>0<br>0<br>0<br>0<br>0                           | 3<br>16<br>15<br>34<br>12<br>11<br>11<br>11                                     | A<br>3.4<br>1.4<br>8.8<br>8.6<br>6.6                          |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Sc<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | (0)            |                                  | Ring, Stone<br>323.3<br>-<br>193.3<br>130.0<br>116.6<br>13.40<br>11.5                           | e, Paper<br>3<br>0<br>0<br>0<br>0<br>0                           | 3<br>16<br>15<br>34<br>12<br>11<br>1<br>1<br>1<br>1<br>1<br>10                  | A<br>3.4<br>1.4<br>4.8<br>8.6<br>6.6<br>2<br>0.3              |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | il (g)         | ρ <sub>d</sub>                   | Ring, Stone<br>323.3<br>-<br>193.3<br>130.0<br>116.6<br>13.40<br>11.5<br>1.84 g/cm <sup>3</sup> | e, Paper<br>3<br>0<br>0<br>0<br>0<br>0<br>5<br>Final Dry Density | 3<br>16<br>15<br>34<br>12<br>11<br>1<br>1<br>1<br>1<br>2<br>0<br>Ρ <sub>d</sub> | A<br>3.4<br>1.4<br>4.8<br>8.6<br>6.6<br>2<br>0.3<br>2.00 g/cm |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | t              | ρ <sub>d</sub><br>γ <sub>d</sub> | Ring, Stone<br>323.3<br>-<br>193.3<br>130.0<br>116.6<br>13.40<br>11.5                           | e, Paper<br>3<br>0<br>0<br>0<br>0<br>0                           | 3<br>16<br>15<br>34<br>12<br>11<br>1<br>1<br>1<br>1<br>2<br>0<br>Ρ <sub>d</sub> | A<br>3.4<br>1.4<br>4.8<br>8.6<br>6.6<br>2<br>0.3              |  |  |
| Tare I.D. No.<br>Wt. of Tare + Wet Sc<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                      | t              | , a                              | Ring, Stone<br>323.3<br>-<br>193.3<br>130.0<br>116.6<br>13.40<br>11.5<br>1.84 g/cm <sup>3</sup> | e, Paper<br>3<br>0<br>0<br>0<br>0<br>0<br>5<br>Final Dry Density | 3<br>16<br>15<br>34<br>12<br>11<br>1<br>1<br>1<br>1<br>2<br>0<br>Ρ <sub>d</sub> | A<br>3.4<br>1.4<br>4.8<br>8.6<br>6.6<br>2<br>0.3<br>2.00 g/cm |  |  |

| Project:                                                                                                                             | An expe                 | rimenta        | tal investigation of the behavior of compacted sand/clay mixtures |        |                            |            |                   |                      |                        |                           |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|-------------------------------------------------------------------|--------|----------------------------|------------|-------------------|----------------------|------------------------|---------------------------|
| Sample: Mod                                                                                                                          | ified Pro               | ctor co        | mpacted, 50%                                                      | sand   | 50% kaoli                  | nite, 10%  | water cont        | ent (M               | 50K10W                 | )                         |
| Consolid. Type E                                                                                                                     | 125-047                 | 9              | Consolid. Type                                                    |        |                            | Fixed Ring |                   |                      |                        |                           |
| Height of Spec.                                                                                                                      | 20                      | mm             | Dia. of Spec.                                                     |        | 63.5 mm                    |            | Area of Spec.     |                      | 3166.9 mm <sup>2</sup> |                           |
| Weight of Ring                                                                                                                       | 63                      | g              | Wt. of Stone                                                      |        | 130                        | g          | Wt. of Pa         | per                  | 0.3                    | g                         |
| Specific Gravity                                                                                                                     | 2.62                    |                | Tested By                                                         |        | Yueru Che                  | en         | Date              |                      | 2/6/2                  | 2009                      |
| Trimmings                                                                                                                            |                         |                |                                                                   | 1      |                            |            |                   | 2                    | 2                      |                           |
| Tin No.                                                                                                                              |                         |                | :                                                                 | 205    |                            |            |                   | 21                   | 3                      |                           |
| Wt. of Tin (g)                                                                                                                       | of Tin (g)              |                |                                                                   | 29.6   |                            |            |                   | 27                   | .8                     |                           |
| Wt. of Tin + Wet Soil (g)                                                                                                            |                         |                |                                                                   | 140    |                            |            |                   | 153                  | 3.3                    |                           |
| Wt. of Tin + Dry Soil (g                                                                                                             | J)                      |                | 1                                                                 | 30.4   |                            |            |                   | 142                  | 2.6                    |                           |
| Wt. of Dry Soil (g)                                                                                                                  |                         |                | 1                                                                 | 00.8   |                            |            |                   | 114                  | 4.8                    |                           |
| Wt. of Water (g)                                                                                                                     |                         |                | 9.6                                                               |        |                            |            |                   | 10                   | .7                     |                           |
| Water Content (%)                                                                                                                    |                         |                | 9.5                                                               |        |                            |            | 9.3               |                      |                        |                           |
| Average Water Conter                                                                                                                 | nt (%)                  |                | 9.4                                                               |        |                            |            |                   |                      |                        |                           |
|                                                                                                                                      |                         |                |                                                                   |        |                            |            |                   |                      |                        |                           |
| Specimen                                                                                                                             |                         |                | Befo                                                              | ore Te | est                        |            |                   | After                | Test                   |                           |
| Tare I.D. No.                                                                                                                        |                         |                | Ring, Stone, Paper                                                |        |                            |            | B7                |                      |                        |                           |
| Wt. of Tare + Wet Soi                                                                                                                | l (g)                   |                | 318.2                                                             |        |                            |            | 153               |                      |                        |                           |
| Wt. of Tare + Dry Soil                                                                                                               | (g)                     |                | -                                                                 |        |                            |            | 141.7             |                      |                        |                           |
| Wt. of Tare (g)                                                                                                                      |                         |                | 193.30                                                            |        |                            |            | 28.7              |                      |                        |                           |
| Wt. of Wet Soil (g)                                                                                                                  |                         |                | 12                                                                | 24.90  | )                          |            | 124.3             |                      |                        |                           |
| Wt. of Dry Soil (g)                                                                                                                  |                         |                | 11                                                                | 13.00  | )                          |            | 113               |                      |                        |                           |
| Wt. of Water (g)                                                                                                                     |                         |                | 1                                                                 | 1.90   |                            |            | 11.3              |                      |                        |                           |
|                                                                                                                                      |                         |                | 1                                                                 | 10.5   |                            |            | 10.0              |                      |                        |                           |
| Water Content (%)                                                                                                                    |                         |                |                                                                   |        |                            |            |                   |                      |                        |                           |
| Water Content (%)                                                                                                                    |                         |                |                                                                   |        |                            |            |                   |                      |                        |                           |
|                                                                                                                                      |                         | $\rho_{d}$     | 1.78 g/cn                                                         |        | Final Dry [                | •          |                   | $\rho_{d}$           | 1.86                   | 0                         |
| Initial Dry Density<br>Initial Dry Unit Weight                                                                                       |                         | γd             |                                                                   |        | Final Dry I<br>Final Dry I | •          | ht                | ρ <sub>d</sub><br>γd | 1.86<br>18.2           | 0                         |
| Initial Dry Density<br>Initial Dry Unit Weight<br>End of load deformatic                                                             |                         | γd             | 1.78 g/cn<br>17.5 kN/r                                            | m³     | Final Dry l                | Jnit Weig  |                   |                      | 18.2                   | 0                         |
| Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weight<br>End of load deformatic<br>Load Step No.<br>Corrected Def (mm) | on results<br>1<br>0.02 | γ <sub>d</sub> | 1.78 g/cn<br>17.5 kN/r<br>2 3                                     |        |                            | •          | ht<br>6<br>0.5588 | γd                   |                        | g/cm <sup>3</sup><br>kN/m |

| Project:                                                                                                                                                                                                   | An expe            | rimenta             | l investigati  | on of the                                                                          | e behavior o                                         | of compa   | cted sand/c   | lay mix                                                     | tures                                                 |                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|----------------|------------------------------------------------------------------------------------|------------------------------------------------------|------------|---------------|-------------------------------------------------------------|-------------------------------------------------------|---------------------------|
| Sample: Mo                                                                                                                                                                                                 | odified Pro        | octor co            | mpacted, 50    | 0% sand                                                                            | d 50% kaolii                                         | nite, 12%  | water cont    | tent (M                                                     | 50K12W                                                | )                         |
| Consolid. Type                                                                                                                                                                                             | EI25-047           | <b>'</b> 9          | Consolid. Type |                                                                                    |                                                      | Fixed Ring |               |                                                             |                                                       |                           |
| Height of Spec.                                                                                                                                                                                            | 20                 | mm                  | Dia. of Sp     | ec.                                                                                | 63.5 mm                                              |            | Area of Spec. |                                                             | 3166.9 mm <sup>2</sup>                                |                           |
| Weight of Ring                                                                                                                                                                                             | 66                 | g                   | Wt. of Stor    | ne                                                                                 | 128.3                                                | g          | Wt. of Pa     | per                                                         | 0.3                                                   | g                         |
| Specific Gravity                                                                                                                                                                                           | 2.62               |                     | Tested By      |                                                                                    | Yueru Che                                            | en         | Date          |                                                             | 2/5/2                                                 | 2009                      |
| Trimmings                                                                                                                                                                                                  | ;                  |                     |                | 1                                                                                  |                                                      |            |               | 2                                                           | 2                                                     |                           |
| Tin No.                                                                                                                                                                                                    |                    |                     |                | 213                                                                                |                                                      |            |               | 20                                                          | )5                                                    |                           |
| Wt. of Tin (g)                                                                                                                                                                                             | of Tin (g)         |                     |                | 27.8                                                                               |                                                      |            |               | 29                                                          | .6                                                    |                           |
| Wt. of Tin + Wet Soil                                                                                                                                                                                      | (g)                |                     |                | 176                                                                                |                                                      |            |               | 168                                                         | 3.2                                                   |                           |
| Wt. of Tin + Dry Soil                                                                                                                                                                                      | (g)                |                     |                | 159.6                                                                              | 6                                                    |            |               | 15                                                          | 53                                                    |                           |
| Wt. of Dry Soil (g)                                                                                                                                                                                        |                    |                     |                | 131.8                                                                              | 3                                                    |            |               | 123                                                         | 3.4                                                   |                           |
| Wt. of Water (g)                                                                                                                                                                                           |                    |                     | 16.4           |                                                                                    |                                                      |            | 15.2          |                                                             |                                                       |                           |
| Water Content (%)                                                                                                                                                                                          |                    |                     | 12.4           |                                                                                    |                                                      |            | 12.3          |                                                             |                                                       |                           |
| Average Water Conte                                                                                                                                                                                        | ent (%)            |                     | 12.4           |                                                                                    |                                                      |            |               |                                                             |                                                       |                           |
| 3                                                                                                                                                                                                          |                    |                     |                |                                                                                    |                                                      |            |               |                                                             |                                                       |                           |
|                                                                                                                                                                                                            |                    |                     |                |                                                                                    |                                                      |            |               |                                                             |                                                       |                           |
| Specimen                                                                                                                                                                                                   |                    |                     | I              | Before T                                                                           | Test                                                 |            |               | After                                                       | Test                                                  |                           |
| -                                                                                                                                                                                                          |                    |                     |                | Before T<br>g, Stone                                                               |                                                      |            |               | After<br>B                                                  |                                                       |                           |
| Specimen                                                                                                                                                                                                   |                    |                     |                |                                                                                    | , Paper                                              |            |               |                                                             | 8                                                     |                           |
| Specimen<br>Tare I.D. No.                                                                                                                                                                                  | oil (g)            |                     |                | g, Stone                                                                           | , Paper                                              |            |               | В                                                           | 8<br>9.1                                              |                           |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S                                                                                                                                                           | oil (g)            |                     |                | g, Stone                                                                           | , Paper<br>2                                         |            |               | B<br>159                                                    | 8<br>9.1<br>5.7                                       |                           |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So                                                                                                                                  | oil (g)            |                     |                | g, Stone<br>326.2<br>-                                                             | , Paper<br>2<br>0                                    |            |               | B<br>159<br>145                                             | 8<br>9.1<br>5.7<br>.5                                 |                           |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)                                                                                                               | oil (g)            |                     |                | g, Stone<br>326.2<br>-<br>194.6                                                    | , Paper<br>2<br>0<br>0                               |            |               | B<br>159<br>145<br>28                                       | 8<br>9.1<br>5.7<br>.5<br>0.6                          |                           |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet Si<br>Wt. of Tare + Dry Sc<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                        | oil (g)            |                     |                | g, Stone<br>326.2<br>-<br>194.6<br>131.6                                           | , Paper<br>2<br>0<br>0<br>0                          |            |               | B<br>159<br>149<br>28<br>130                                | 8<br>9.1<br>5.7<br>.5<br>).6<br>7.2                   |                           |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                 | oil (g)            |                     |                | g, Stone<br>326.2<br>-<br>194.6<br>131.6<br>117.2                                  | , Paper<br>2<br>0<br>0<br>0<br>0                     |            |               | B<br>159<br>145<br>28<br>130<br>117                         | 8<br>9.1<br>5.7<br>.5<br>0.6<br>7.2<br>.4             |                           |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet S<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                         | oil (g)            |                     | Ring           | g, Stone<br>326.2<br>-<br>194.6<br>131.6<br>117.2<br>14.4(<br>12.3                 | , Paper<br>2<br>0<br>0<br>0                          |            |               | B<br>159<br>14<br>28<br>130<br>117<br>13<br>13              | 8<br>9.1<br>5.7<br>.5<br>0.6<br>7.2<br>.4<br>.4       |                           |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Wet Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                        | oil (g)<br>bil (g) | Ρ <sub>d</sub>      | Ring<br>1.85   | g, Stone<br>326.2<br>194.6<br>131.6<br>117.2<br>14.4(<br>12.3<br>g/cm <sup>3</sup> | , Paper<br>2<br>0<br>0<br>0<br>0<br>)<br>Final Dry [ | Density    | tht           | B<br>159<br>149<br>28<br>130<br>117<br>13<br>11<br>29<br>11 | 8<br>9.1<br>5.7<br>.5<br>0.6<br>7.2<br>.4<br>.4<br>.4 | 0                         |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%) | oil (g)<br>bil (g) | γd                  | Ring<br>1.85   | g, Stone<br>326.2<br>-<br>194.6<br>131.6<br>117.2<br>14.4(<br>12.3                 | , Paper<br>2<br>0<br>0<br>0                          | Density    | Jht           | B<br>159<br>14<br>28<br>130<br>117<br>13<br>13              | 8<br>9.1<br>5.7<br>.5<br>0.6<br>7.2<br>.4<br>.4       | g/cm <sup>2</sup><br>kN/m |
| Specimen<br>Tare I.D. No.<br>Wt. of Tare + Wet So<br>Wt. of Tare + Dry So<br>Wt. of Tare (g)<br>Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                             | oil (g)<br>bil (g) | γ <sub>d</sub><br>s | Ring<br>1.85   | g, Stone<br>326.2<br>194.6<br>131.6<br>117.2<br>14.4(<br>12.3<br>g/cm <sup>3</sup> | , Paper<br>2<br>0<br>0<br>0<br>0<br>)<br>Final Dry [ | Density    | jht 6         | B<br>159<br>149<br>28<br>130<br>117<br>13<br>11<br>29<br>11 | 8<br>9.1<br>5.7<br>.5<br>0.6<br>7.2<br>.4<br>.4<br>.4 | 0                         |

| Project:                                                                                                                                                        | An expe                    | rimenta                          | I investigation of                                            | the behavior of compa                                                                                  | acted sand/clay mi                                     | xtures                                                                 |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------|--|--|
| Sample: Mo                                                                                                                                                      | odified Pro                | ctor co                          | mpacted, 50% sa                                               | and 50% kaolinite, 14%                                                                                 | % water content (M                                     | 50K14W)                                                                |  |  |
| Consolid. Type                                                                                                                                                  | El25-047                   | 9                                |                                                               | Consolid. Type                                                                                         | Fixed Ring                                             |                                                                        |  |  |
| Height of Spec.                                                                                                                                                 | 20                         | mm                               | Dia. of Spec.                                                 | 63.5 mm                                                                                                | Area of Spec.                                          | 3166.9 mm <sup>2</sup>                                                 |  |  |
| Weight of Ring                                                                                                                                                  | 63                         | g                                | Wt. of Stone                                                  | 128.3 g                                                                                                | Wt. of Paper                                           | 0.3 g                                                                  |  |  |
| Specific Gravity                                                                                                                                                | 2.62                       |                                  | Tested By                                                     | Yueru Chen                                                                                             | Date                                                   | 1/30/2009                                                              |  |  |
| Trimmings                                                                                                                                                       |                            |                                  |                                                               | 1                                                                                                      | :                                                      | 2                                                                      |  |  |
| Tin No.                                                                                                                                                         |                            |                                  | E                                                             | 37                                                                                                     | 2                                                      | 13                                                                     |  |  |
| Wt. of Tin (g)                                                                                                                                                  | Vt. of Tin (g)             |                                  |                                                               | 3.7                                                                                                    | 27                                                     | 7.9                                                                    |  |  |
| Wt. of Tin + Wet Soil                                                                                                                                           | (g)                        |                                  | 12                                                            | 8.6                                                                                                    | 14                                                     | 7.9                                                                    |  |  |
| Wt. of Tin + Dry Soil                                                                                                                                           | (g)                        |                                  | 11                                                            | 6.3                                                                                                    | 13                                                     | 2.5                                                                    |  |  |
| Wt. of Dry Soil (g)                                                                                                                                             |                            |                                  | 87                                                            | 7.6                                                                                                    | 10                                                     | 4.6                                                                    |  |  |
| Wt. of Water (g)                                                                                                                                                |                            |                                  | 12                                                            | 2.3                                                                                                    | 15                                                     | 5.4                                                                    |  |  |
| Water Content (%)                                                                                                                                               |                            |                                  | 14                                                            | 4.0                                                                                                    | 14.7                                                   |                                                                        |  |  |
| Average Water Cont                                                                                                                                              | ent (%)                    |                                  |                                                               | 14.4                                                                                                   |                                                        |                                                                        |  |  |
|                                                                                                                                                                 |                            |                                  |                                                               |                                                                                                        |                                                        |                                                                        |  |  |
| Specimen                                                                                                                                                        |                            |                                  | Befor                                                         | e Test                                                                                                 | After                                                  | After Test                                                             |  |  |
| Tare I.D. No.                                                                                                                                                   |                            |                                  | Ring, Sto                                                     | ne, Paper                                                                                              | 3A                                                     |                                                                        |  |  |
| Wt. of Tare + Wet S                                                                                                                                             | oil (g)                    |                                  | 32                                                            | 5.6                                                                                                    | 169                                                    |                                                                        |  |  |
| Wt. of Tare + Dry So                                                                                                                                            | Wt. of Tare + Dry Soil (g) |                                  |                                                               |                                                                                                        | 152.2                                                  |                                                                        |  |  |
| Wt. of Tare (g)                                                                                                                                                 |                            |                                  |                                                               | -                                                                                                      | 15                                                     | 2.2                                                                    |  |  |
| Wt. of Tare (g)                                                                                                                                                 | (9)                        |                                  | 191                                                           | -<br>1.60                                                                                              | -                                                      | 2.2<br>4.7                                                             |  |  |
| Wt. of Tare (g)<br>Wt. of Wet Soil (g)                                                                                                                          | (3)                        |                                  | -                                                             | -<br>1.60<br>4.00                                                                                      | 34                                                     |                                                                        |  |  |
|                                                                                                                                                                 |                            |                                  | 134                                                           |                                                                                                        | 34<br>13                                               | 4.7                                                                    |  |  |
| Wt. of Wet Soil (g)                                                                                                                                             |                            |                                  | 134<br>117                                                    | 4.00                                                                                                   | 34<br>13<br>11                                         | 4.7<br>4.3                                                             |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)                                                                                                                      |                            |                                  | 134<br>117<br>16                                              | 4.00<br>7.50                                                                                           | 34<br>13<br>11<br>16                                   | 4.7<br>4.3<br>7.5                                                      |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                                  |                            |                                  | 134<br>117<br>16<br>14                                        | 4.00<br>7.50<br>5.50<br>4.0                                                                            | 34<br>13<br>11<br>16                                   | 4.7<br>4.3<br>7.5<br>5.8<br>4.3                                        |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                             |                            | ρ <sub>d</sub>                   | 134<br>117<br>16<br>14<br>1.86 g/cm                           | 4.00<br>7.50<br>.50<br>4.0<br><sup>3</sup> Final Dry Density                                           | 34<br>13<br>11<br>16<br>14<br>Ρ <sub>d</sub>           | 4.7<br>4.3<br>7.5<br>5.8<br>4.3<br>1.94 g/cm                           |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)                                                                             |                            | ρ <sub>d</sub><br>γ <sub>d</sub> | 134<br>117<br>16<br>14                                        | 4.00<br>7.50<br>.50<br>4.0<br><sup>3</sup> Final Dry Density                                           | 34<br>13<br>11<br>16<br>14<br>Ρ <sub>d</sub>           | 4.7<br>4.3<br>7.5<br>5.8<br>4.3<br>1.94 g/cm <sup>2</sup>              |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)<br>Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weigh<br>End of load deformation | nt<br>tion result          | γd                               | 134<br>117<br>16<br>12<br>1.86 g/cm <sup>2</sup><br>18.2 kN/m | 4.00<br>7.50<br>4.0<br><sup>3</sup> Final Dry Density<br><sup>3</sup> Final Dry Unit Wei               | 34<br>13<br>11<br>16<br>14<br>Pd<br>ght γd             | 4.7<br>4.3<br>7.5<br>5.8<br>4.3<br>1.94 g/cm <sup>2</sup><br>19.0 kN/m |  |  |
| Wt. of Wet Soil (g)<br>Wt. of Dry Soil (g)<br>Wt. of Water (g)                                                                                                  | nt                         | γ <sub>d</sub><br>s              | 134<br>117<br>16<br>14<br>1.86 g/cm                           | 4.00<br>7.50<br>.50<br>4.0<br><sup>3</sup> Final Dry Density<br><sup>3</sup> Final Dry Unit Wei<br>4 5 | 34<br>13<br>11<br>16<br>14<br>9d<br>ght γ <sub>d</sub> | 4.7<br>4.3<br>7.5<br>5.8<br>4.3<br>1.94 g/cm <sup>2</sup>              |  |  |

| Project:                                                                             | An expe     | erimenta          | al investigatio    | on of the         | e behavior  | of compa    | cted sand/c | lay mix           | tures     |        |
|--------------------------------------------------------------------------------------|-------------|-------------------|--------------------|-------------------|-------------|-------------|-------------|-------------------|-----------|--------|
| Sample: Mo                                                                           | odified Pro | octor co          | mpacted, 50        | 0% sand           | d 50% kaoli | inite, 16%  | water cont  | ent (M            | 50K16W    | )      |
| Consolid. Type                                                                       | El25-047    | 79                | Consolid. Type     |                   |             | Fixed Ring  |             |                   |           |        |
| Height of Spec.                                                                      | 20          | mm                | Dia. of Spe        | ec.               | 63.5        | mm          | Area of S   | pec.              | 3166.9    | $mm^2$ |
| Weight of Ring                                                                       | 63          | g                 | Wt. of Stor        | ne                | 128.3       | g           | Wt. of Pa   | per               | 0.3       | g      |
| Specific Gravity                                                                     | 2.62        |                   | Tested By          |                   | Yueru Che   | en          | Date        |                   | 2/2/2     | 2009   |
| Trimmings                                                                            | 5           |                   |                    | 1                 |             |             |             | 2                 | 2         |        |
| Tin No.                                                                              |             |                   |                    | 415               |             |             |             | MA                | JID       |        |
| Wt. of Tin (g)                                                                       |             |                   |                    | 28.7              |             |             |             | 28                | .4        |        |
| Wt. of Tin + Wet Soil (g)                                                            |             |                   |                    | 172.4             | 1           |             |             | 194               | 4.7       |        |
| Wt. of Tin + Dry Soil                                                                | (g)         |                   |                    | 152.7             | 7           |             |             | 17 <sup>.</sup>   | 1.5       |        |
| Wt. of Dry Soil (g)                                                                  |             |                   |                    | 124               |             |             |             | 143               | 3.1       |        |
| Wt. of Water (g)                                                                     |             |                   | 19.7               |                   |             |             | 23.2        |                   |           |        |
| Water Content (%)                                                                    |             |                   |                    | 15.9              |             |             | 16.2        |                   |           |        |
| Average Water Cont                                                                   | ent (%)     |                   | 16.0               |                   |             |             |             |                   |           |        |
|                                                                                      |             |                   |                    |                   |             |             |             |                   |           |        |
| Specimen                                                                             |             |                   | Before Test        |                   |             |             | After Test  |                   |           |        |
| Tare I.D. No.                                                                        |             |                   | Ring, Stone, Paper |                   |             |             | 3A          |                   |           |        |
| Wt. of Tare + Wet S                                                                  | oil (g)     |                   | 321.9              |                   |             |             | 163.6       |                   |           |        |
| Wt. of Tare + Dry So                                                                 | oil (g)     |                   | -                  |                   |             |             | 147.3       |                   |           |        |
| Wt. of Tare (g)                                                                      |             |                   | 191.60             |                   |             |             | 34.7        |                   |           |        |
| Wt. of Wet Soil (g)                                                                  |             |                   | 130.30             |                   |             |             | 128.9       |                   |           |        |
| Wt. of Dry Soil (g)                                                                  |             |                   |                    | 112.6             | 0           |             | 112.6       |                   |           |        |
| Wt. of Water (g)                                                                     |             |                   |                    | 17.70             | )           |             | 16.3        |                   |           |        |
| Water Content (%)                                                                    |             |                   |                    | 15.7              |             |             | 14.5        |                   |           |        |
|                                                                                      |             |                   |                    | _                 |             |             |             |                   |           |        |
| Initial Dry Density                                                                  |             | $\rho_{\text{d}}$ |                    | g/cm <sup>3</sup> | Final Dry   |             |             | $\rho_{\text{d}}$ | 1.93      | g/cm   |
|                                                                                      |             | γd                | 17.4               | kN/m <sup>3</sup> | Final Dry   | Unit Weig   | lht         | γd                | 18.9      | kN/m   |
| , ,                                                                                  |             |                   |                    |                   |             |             |             |                   |           |        |
| End of load deforma                                                                  | tion result | ts                | -                  | 0                 |             | -           |             |                   | 7         |        |
| Initial Dry Unit Weigh<br>End of load deforma<br>Load Step No.<br>Corrected Def (mm) |             | ts                | 2<br>0.2616        | 3<br>0.3505       | 4<br>0.5080 | 5<br>0.7798 | 6<br>1.1633 | 4                 | 7<br>5545 |        |

| Project:                                                                                     | An expe        | rimenta             | al investigation of the behavior of compacted sand/clay mixtures |                                                     |                                           |                                            |  |  |
|----------------------------------------------------------------------------------------------|----------------|---------------------|------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|--------------------------------------------|--|--|
| Sample: Mo                                                                                   | dified Pro     | octor co            | mpacted, 50% sar                                                 | nd 50% kaolinite, 18%                               | % water content (M                        | 150K18W)                                   |  |  |
| Consolid. Type                                                                               | EI25-047       | 9                   |                                                                  | Consolid. Type                                      | Fixed Ring                                |                                            |  |  |
| Height of Spec.                                                                              | 20             | mm                  | Dia. of Spec.                                                    | 63.5 mm                                             | Area of Spec.                             | 3166.9 mm <sup>2</sup>                     |  |  |
| Weight of Ring                                                                               | 63             | g                   | Wt. of Stone                                                     | 130.4 g                                             | Wt. of Paper                              | 0.3 g                                      |  |  |
| Specific Gravity                                                                             | 2.62           |                     | Tested By                                                        | Yueru Chen                                          | Date                                      | 2/5/2009                                   |  |  |
| Trimmings                                                                                    |                |                     | 1                                                                |                                                     |                                           | 2                                          |  |  |
| Tin No.                                                                                      |                |                     | 20'                                                              | 1                                                   | В                                         | -19                                        |  |  |
| Wt. of Tin (g)                                                                               | Vt. of Tin (g) |                     |                                                                  | 8                                                   | 2                                         | 7.4                                        |  |  |
| Wt. of Tin + Wet Soil (g)                                                                    |                |                     | 179                                                              | .2                                                  | 17                                        | 9.8                                        |  |  |
| Wt. of Tin + Dry Soil (                                                                      | g)             |                     | 156                                                              | .5                                                  | 1                                         | 57                                         |  |  |
| Wt. of Dry Soil (g)                                                                          |                |                     | 127                                                              | .7                                                  | 12                                        | 9.6                                        |  |  |
| Wt. of Water (g)                                                                             |                |                     | 22.                                                              | 7                                                   | 22.8                                      |                                            |  |  |
| Water Content (%)                                                                            |                |                     | 17.                                                              | 8                                                   | 17.6                                      |                                            |  |  |
| Average Water Conte                                                                          | ent (%)        |                     |                                                                  | 17.7                                                |                                           |                                            |  |  |
|                                                                                              |                |                     |                                                                  |                                                     |                                           |                                            |  |  |
| Specimen                                                                                     |                |                     | Before                                                           | Test                                                | Afte                                      | After Test                                 |  |  |
| Tare I.D. No.                                                                                |                |                     | Ring, Ston                                                       | e, Paper                                            | 7                                         |                                            |  |  |
| Wt. of Tare + Wet Sc                                                                         | oil (g)        |                     | 322                                                              | .8                                                  | 155.1                                     |                                            |  |  |
| Wt. of Tare + Dry So                                                                         | il (g)         |                     | -                                                                |                                                     | 138                                       |                                            |  |  |
| Wt. of Tare (g)                                                                              |                |                     | 193.                                                             | 70                                                  | 28.1                                      |                                            |  |  |
| Wt. of Wet Soil (g)                                                                          |                |                     | 129.                                                             | 10                                                  | 127                                       |                                            |  |  |
| Wt. of Dry Soil (g)                                                                          |                |                     | 109.                                                             | 90                                                  | 109.9                                     |                                            |  |  |
| Wt. of Water (g)                                                                             |                | 19.2                | 20                                                               | 17.1                                                |                                           |                                            |  |  |
| Wt. of Water (g)                                                                             |                |                     | 10.2                                                             |                                                     |                                           |                                            |  |  |
| Wt. of Water (g)<br>Water Content (%)                                                        |                |                     | 17.                                                              | -                                                   | 1:                                        | 5.6                                        |  |  |
| ( <u> </u> )                                                                                 |                |                     | 17.                                                              | 5                                                   | 1:                                        | 5.6                                        |  |  |
| Water Content (%)                                                                            |                | ρ <sub>d</sub>      | 17.<br>1.74 g/cm <sup>3</sup>                                    | 5<br>Final Dry Density                              | $\rho_d$                                  | 5.6<br>1.94 g/cm <sup>2</sup>              |  |  |
| Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weight                          |                | γd                  | 17.                                                              | 5                                                   | $\rho_d$                                  | 5.6<br>1.94 g/cm <sup>2</sup>              |  |  |
| Water Content (%)<br>Initial Dry Density<br>Initial Dry Unit Weight<br>End of load deformati | on result      | γd                  | 17.<br>1.74 g/cm <sup>3</sup><br>17.0 kN/m <sup>3</sup>          | 5<br>Final Dry Density<br>Final Dry Unit Wei        | ρ <sub>d</sub><br>ght γ <sub>d</sub>      | 5.6<br>1.94 g/cm <sup>*</sup><br>19.0 kN/m |  |  |
| (2)                                                                                          |                | γ <sub>d</sub><br>s | 17.<br>1.74 g/cm <sup>3</sup>                                    | 5<br>Final Dry Density<br>Final Dry Unit Wei<br>4 5 | ρ <sub>d</sub><br>ght γ <sub>d</sub><br>6 | 5.6<br>1.94 g/cm <sup>3</sup>              |  |  |

#### **APPENDIX H**

#### **DEFORMATION – TIME CURVES**

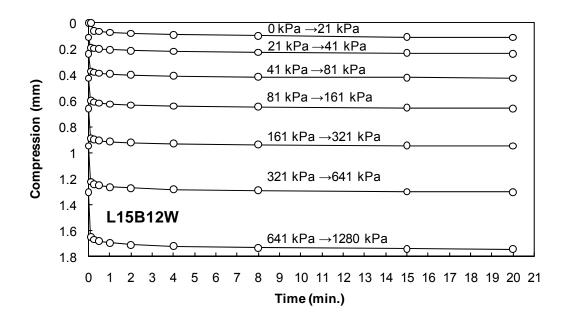



Figure H.1. Compression VS. Time (L15B12W)

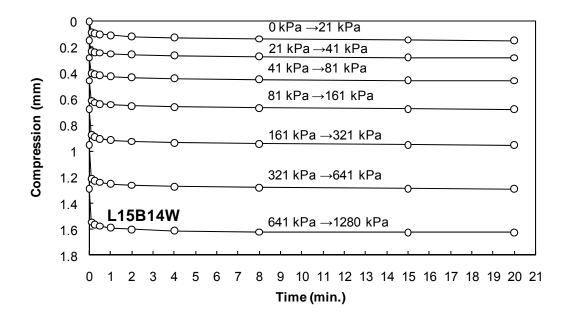



Figure H.2. Compression VS. Time (L15B14W)

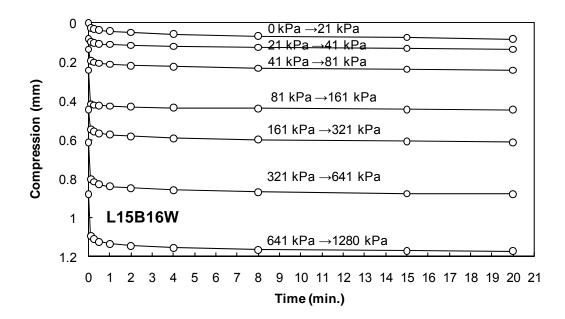



Figure H.3. Compression VS. Time (L15B16W)

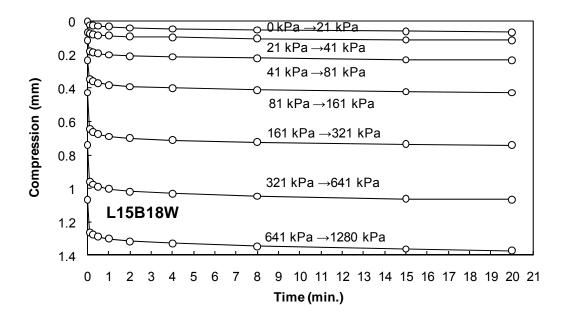



Figure H.4. Compression VS. Time (L15B18W)

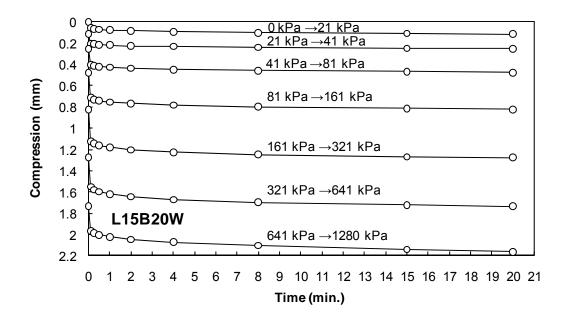



Figure H.5. Compression VS. Time (L15B20W)

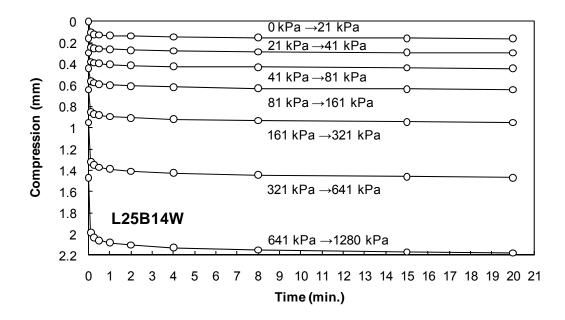



Figure H.6. Compression VS. Time (L25B14W)

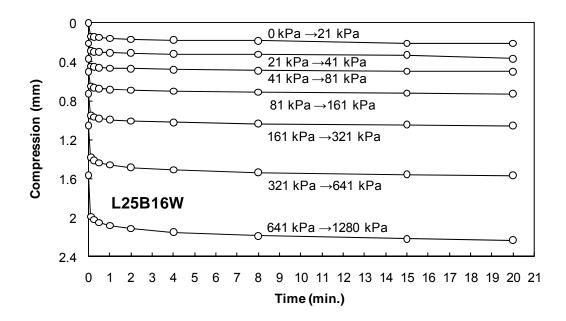



Figure H.7. Compression VS. Time (L25B16W)

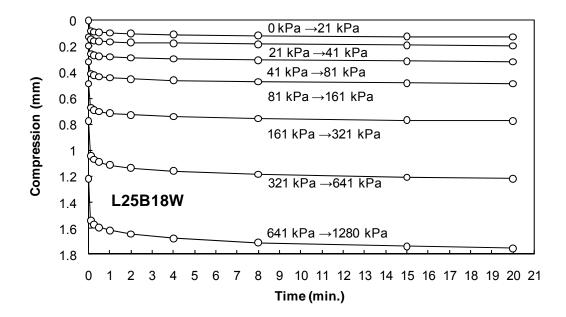



Figure H.8. Compression VS. Time (L25B18W)

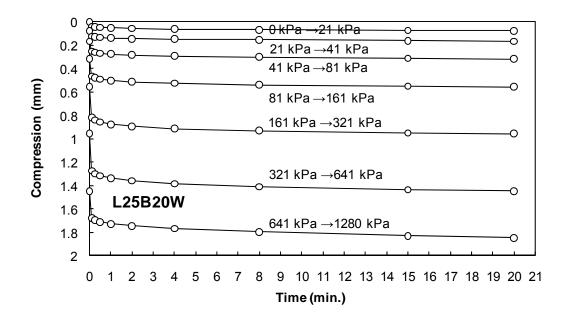



Figure H.9. Compression VS. Time (L25B20W)

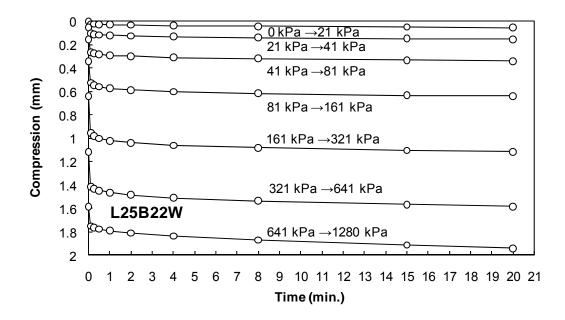



Figure H.10. Compression VS. Time (L25B22W)

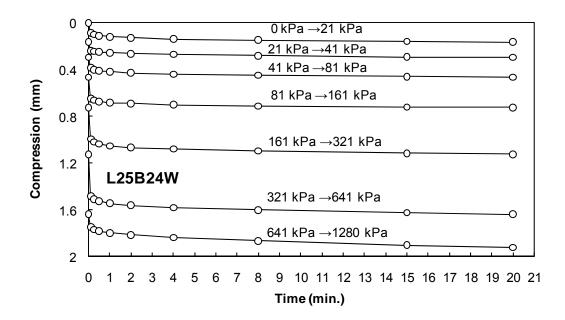



Figure H.11. Compression VS. Time (L25B24W)

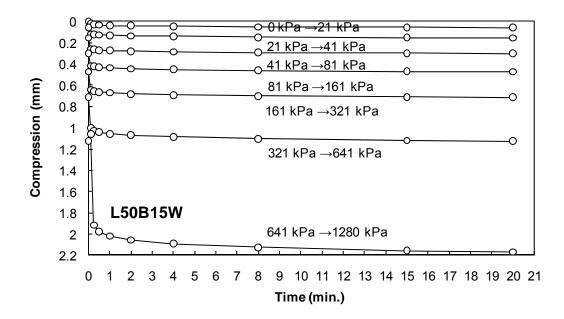



Figure H.12. Compression VS. Time (L50B15W)

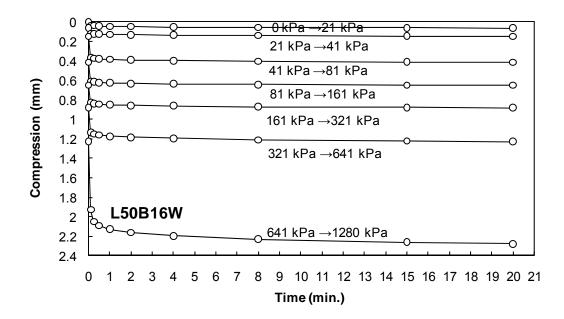



Figure H.13. Compression VS. Time (L50B16W)

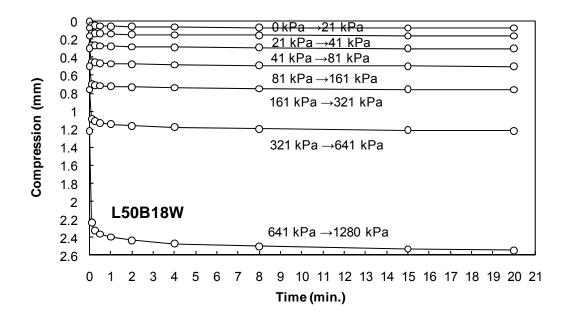



Figure H.14. Compression VS. Time (L50B18W)

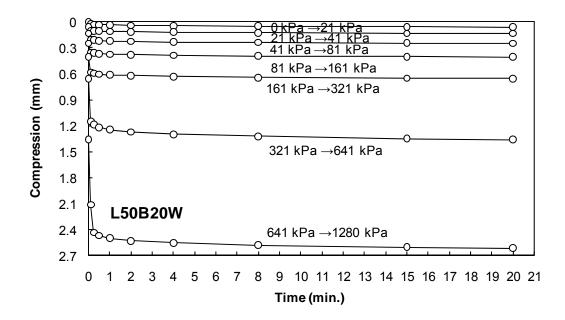



Figure H.15. Compression VS. Time (L50B20W)

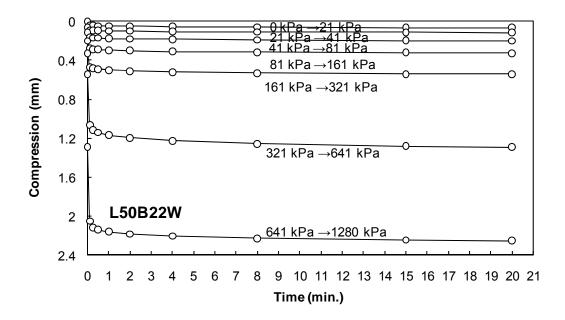



Figure H.16. Compression VS. Time (L50B22W)

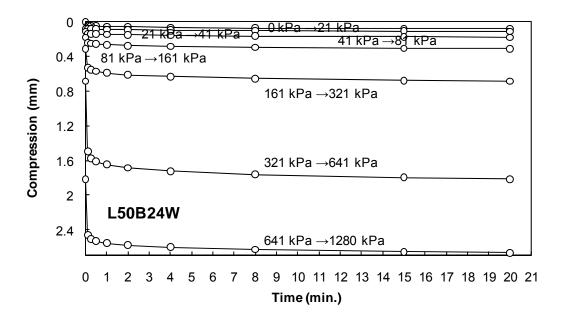



Figure H.17. Compression VS. Time (L50B24W)

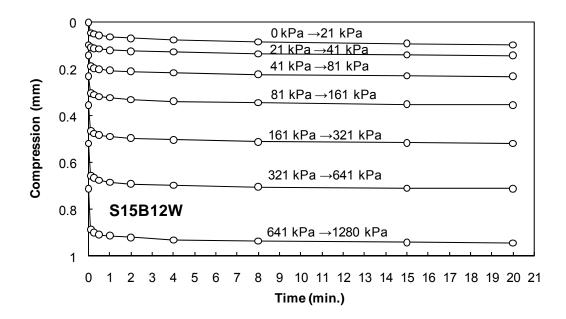



Figure H.18. Compression VS. Time (S15B12W)

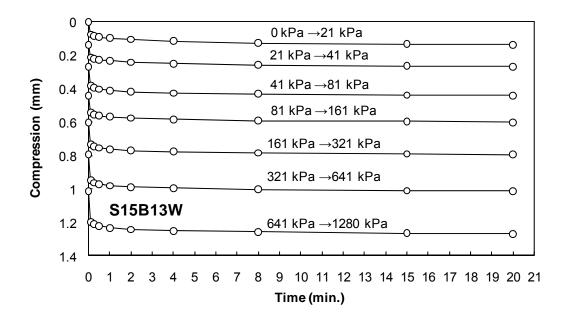



Figure H.19. Compression VS. Time (S15B13W)

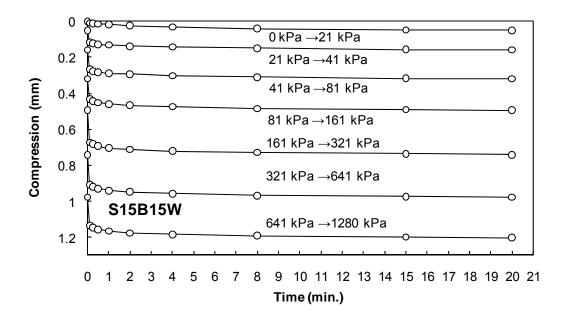



Figure H.20. Compression VS. Time (S15B15W)

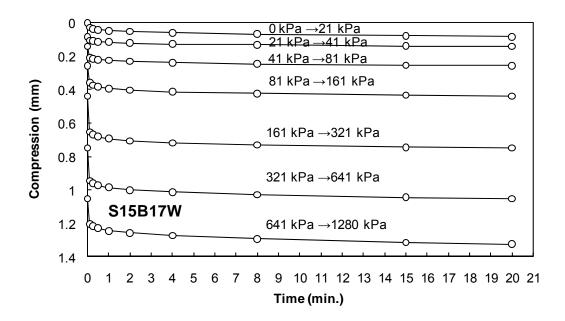



Figure H.21. Compression VS. Time (S15B17W)

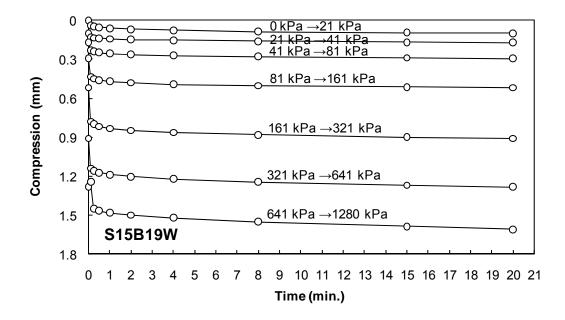



Figure H.22. Compression VS. Time (S15B19W)

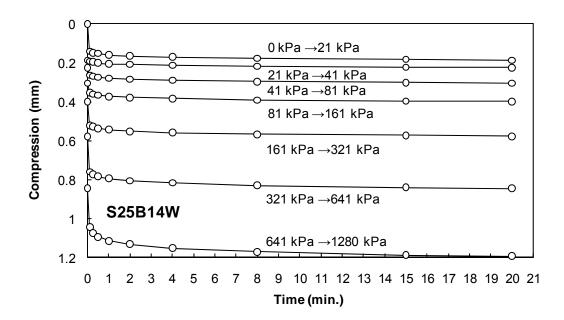



Figure H.23. Compression VS. Time (S25B14W)

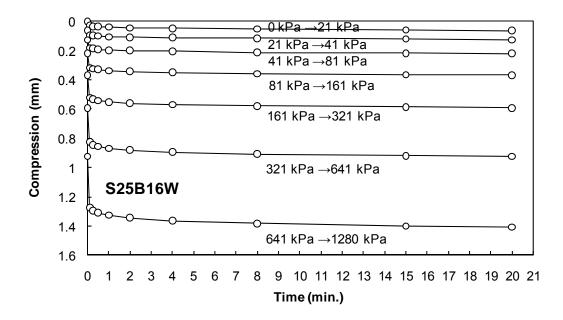



Figure H.24. Compression VS. Time (S25B16W)

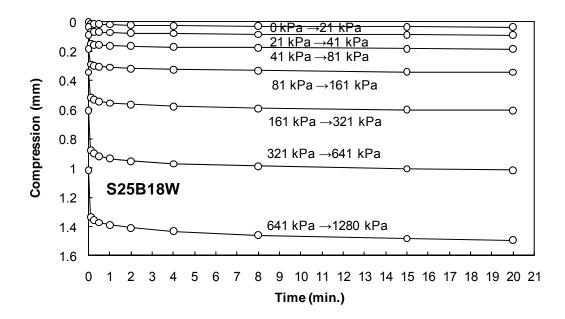



Figure H.25. Compression VS. Time (S25B18W)

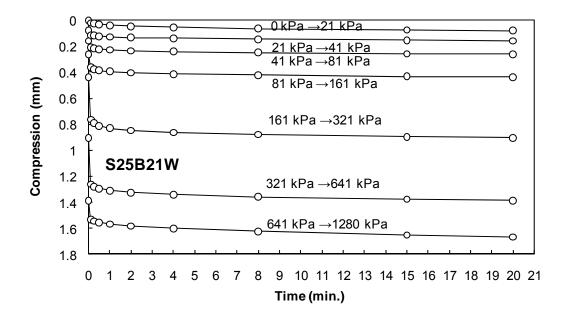



Figure H.26. Compression VS. Time (S25B21W)

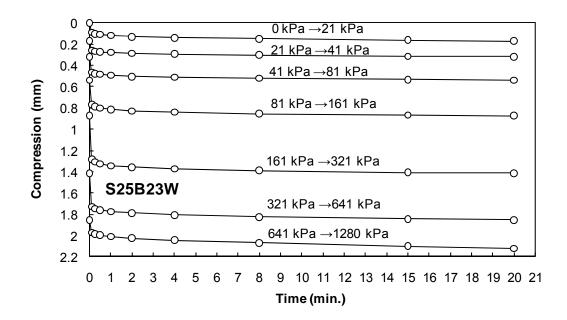



Figure H.27. Compression VS. Time (S25B23W)

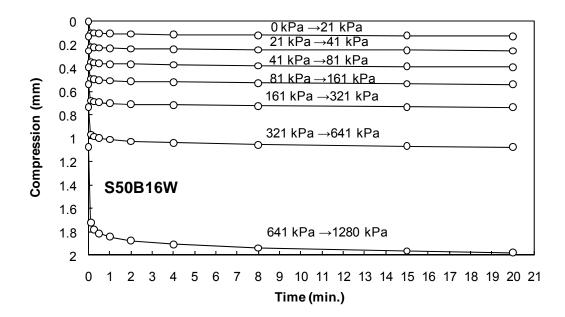



Figure H.28. Compression VS. Time (S50B16W)

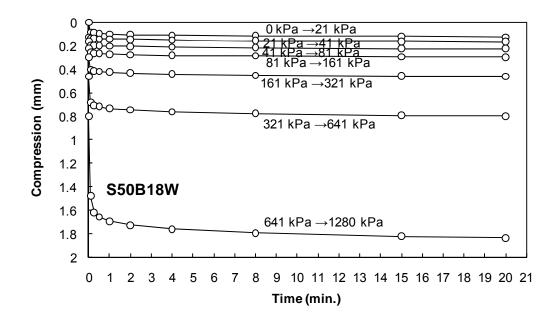



Figure H.29. Compression VS. Time (S50B18W)

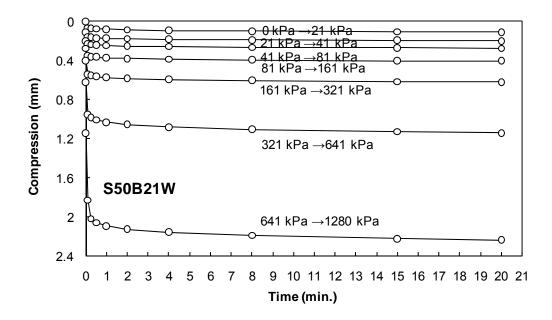



Figure H.30. Compression VS. Time (S50B21W)

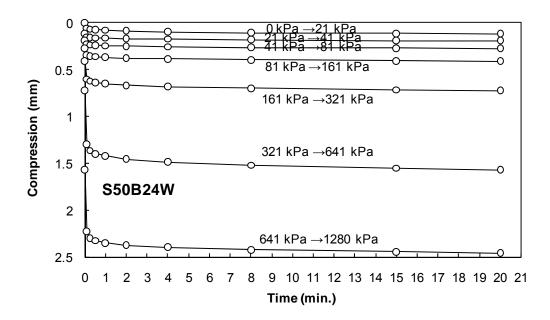



Figure H.31. Compression VS. Time (S50B24W)

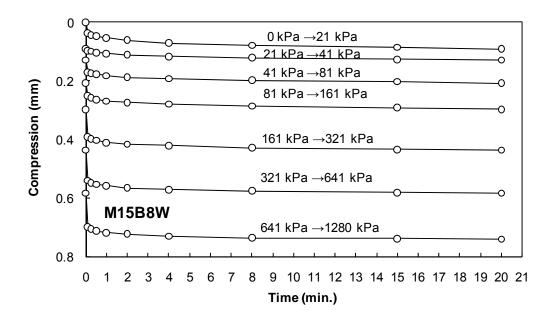



Figure H.32. Compression VS. Time (M15B8W)

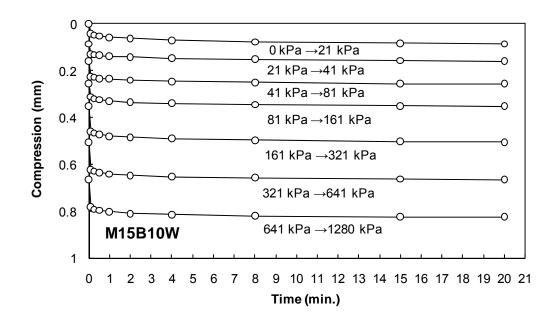



Figure H.33. Compression VS. Time (M15B10W)

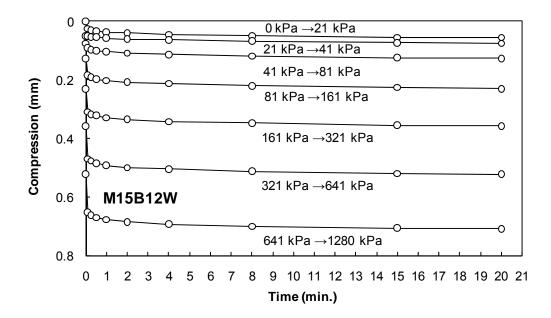



Figure H.34. Compression VS. Time (M15B12W)

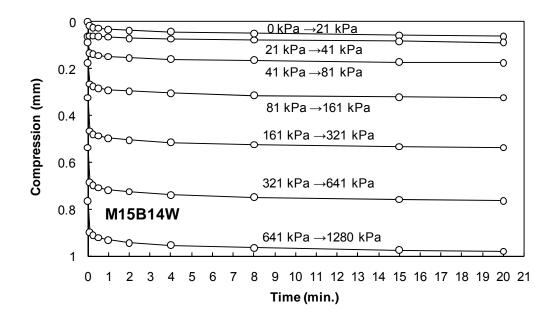



Figure H.35. Compression VS. Time (M15B14W)

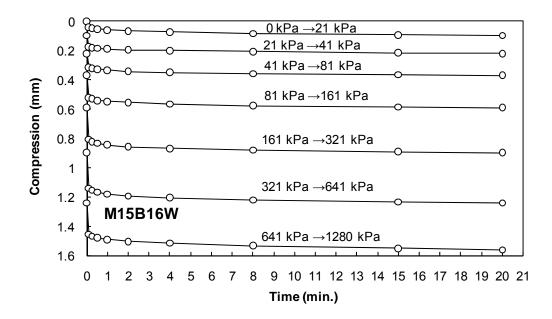



Figure H.36. Compression VS. Time (M15B16W)

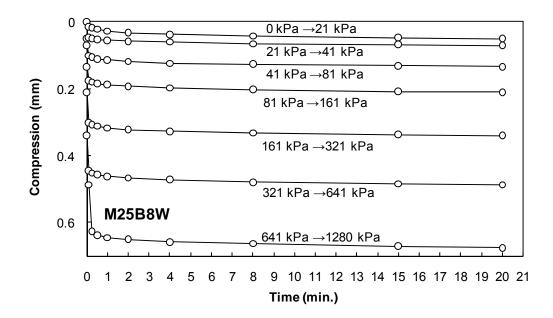



Figure H.37. Compression VS. Time (M25B8W)

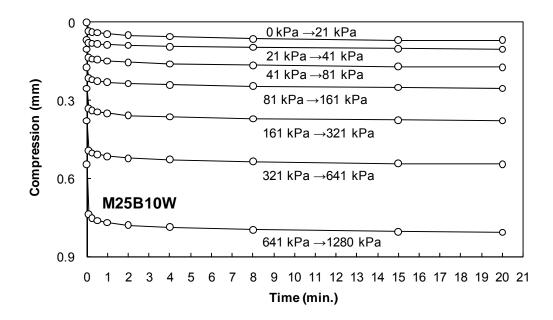



Figure H.38. Compression VS. Time (M25B10W)

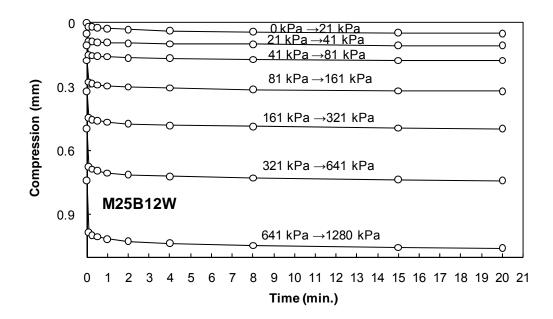



Figure H.39. Compression VS. Time (M25B12W)

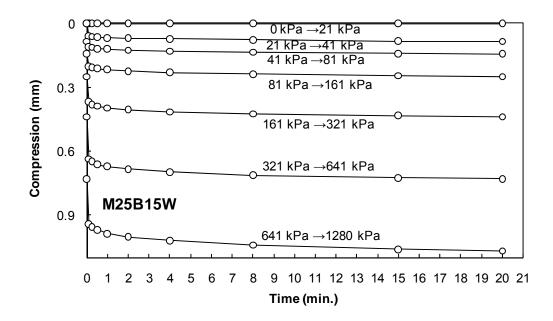



Figure H.40. Compression VS. Time (M25B15W)

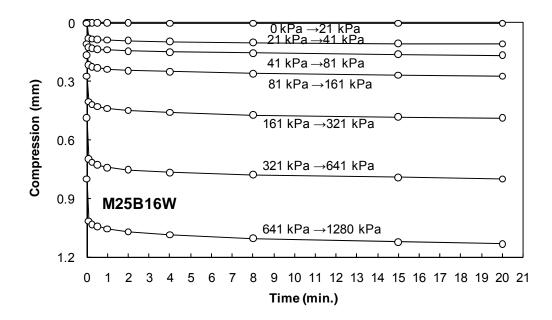



Figure H.41. Compression VS. Time (M25B16W)

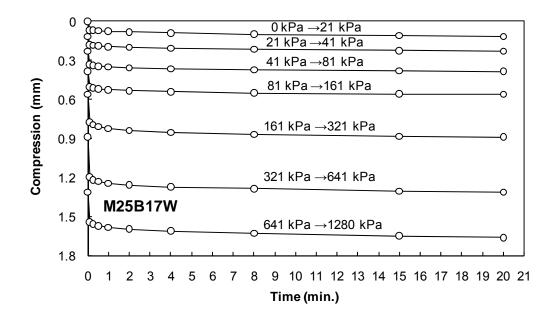



Figure H.42. Compression VS. Time (M25B17W)

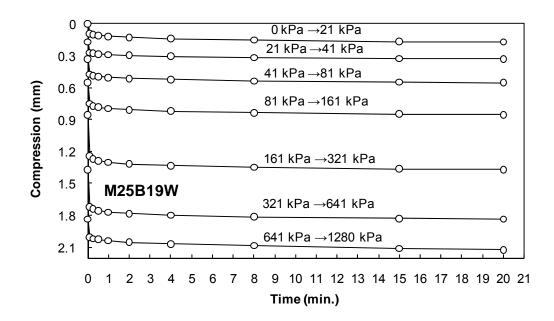



Figure H.43. Compression VS. Time (M25B19W)

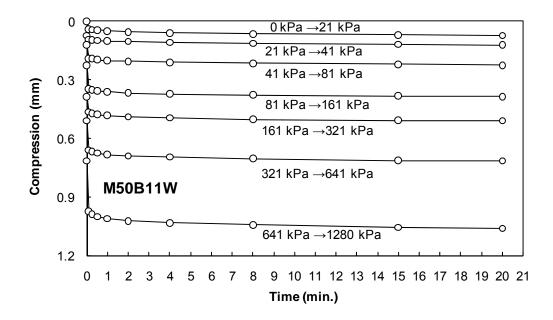



Figure H.44. Compression VS. Time (M50B11W)

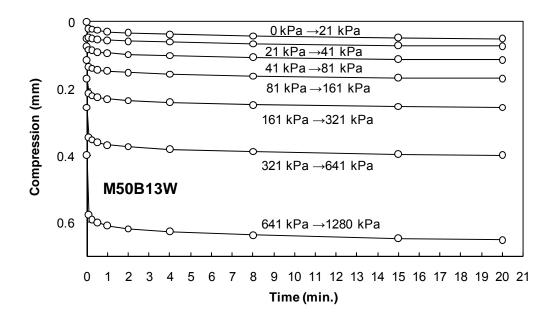



Figure H.45. Compression VS. Time (M50B13W)

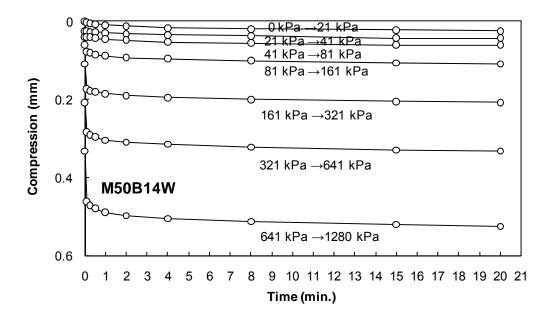



Figure H.46. Compression VS. Time (M50B14W)

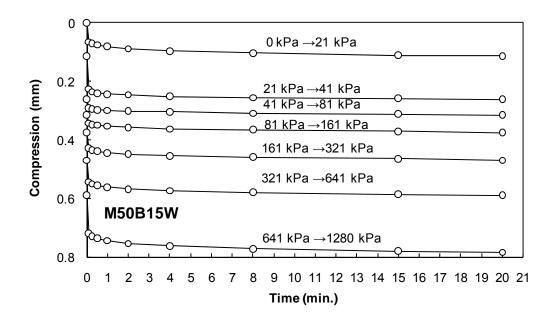



Figure H.47. Compression VS. Time (M50B15W)

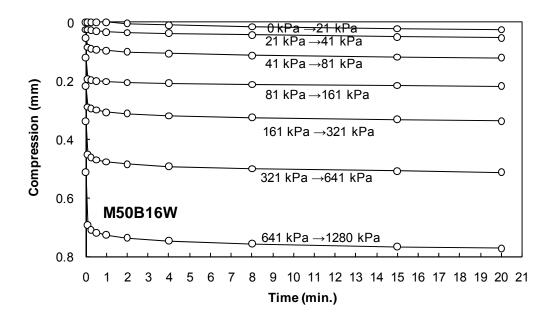



Figure H.48. Compression VS. Time (M50B16W)

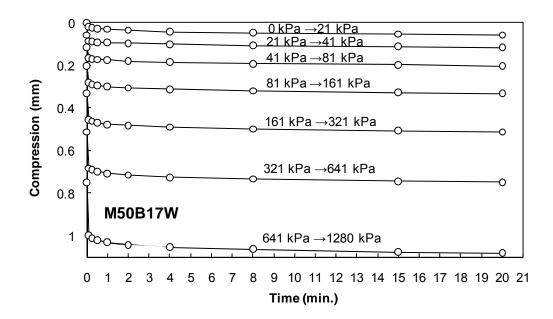



Figure H.49. Compression VS. Time (M50B17W)

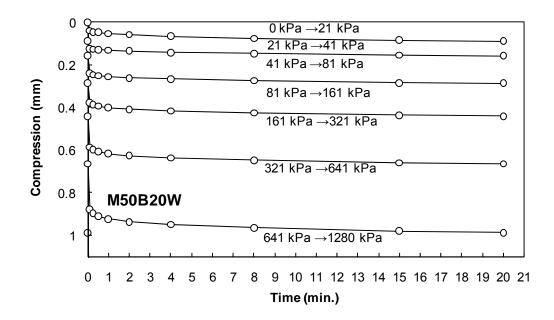



Figure H.50. Compression VS. Time (M50B20W)

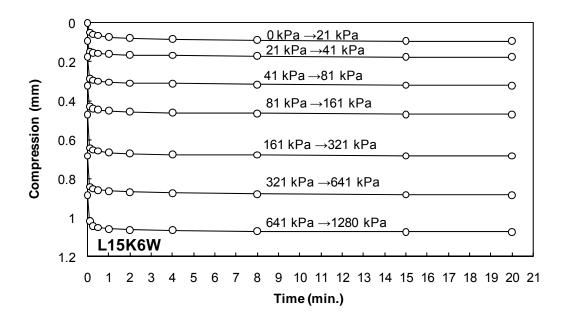



Figure H.51. Compression VS. Time (L15K6W)

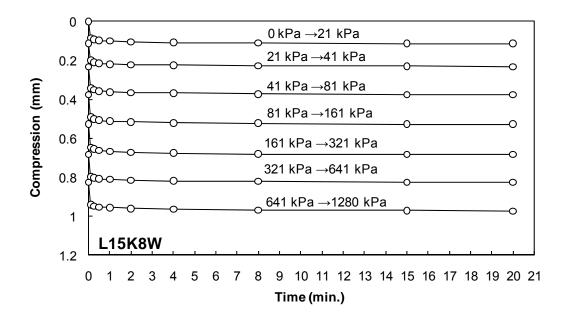



Figure H.52. Compression VS. Time (L15K8W)

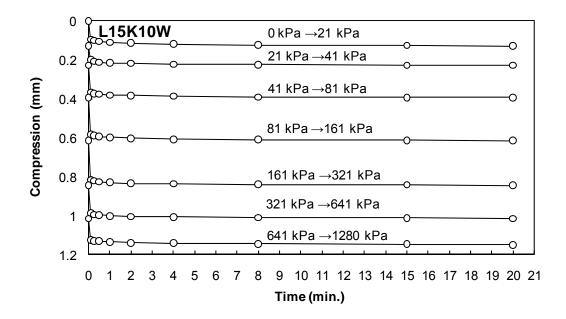



Figure H.53. Compression VS. Time (L15K10W)

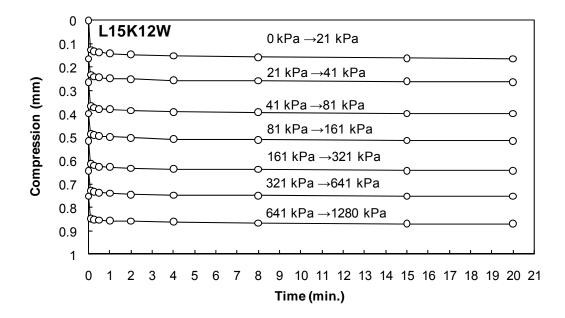



Figure H.54. Compression VS. Time (L15K12W)

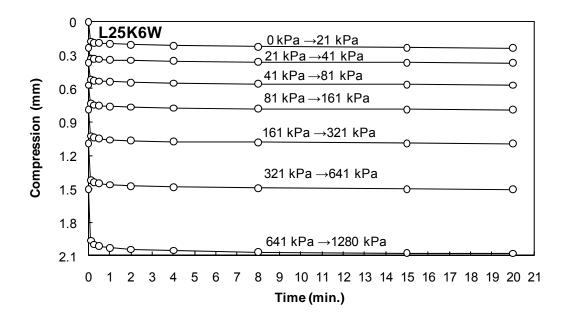



Figure H.55. Compression VS. Time (L25K6W)

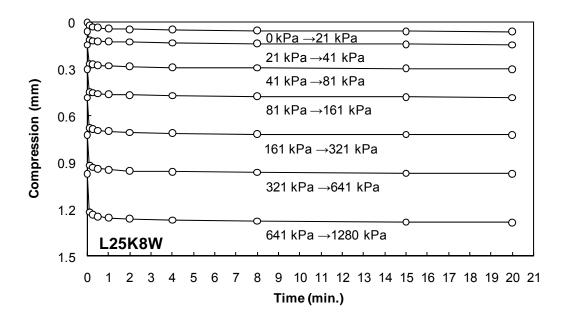



Figure H.56. Compression VS. Time (L25K8W)

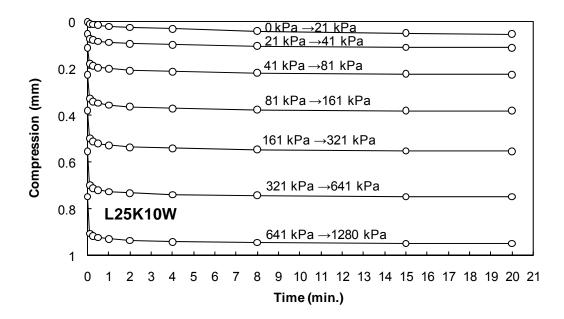



Figure H.57. Compression VS. Time (L25K10W)

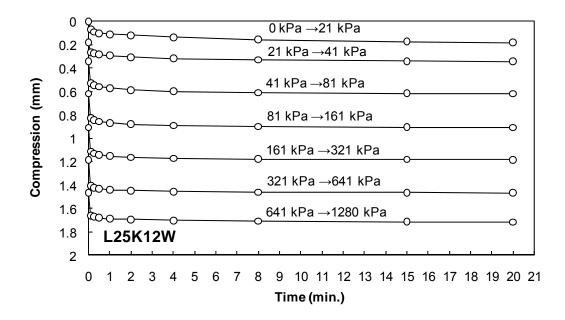



Figure H.58. Compression VS. Time (L25K12W)

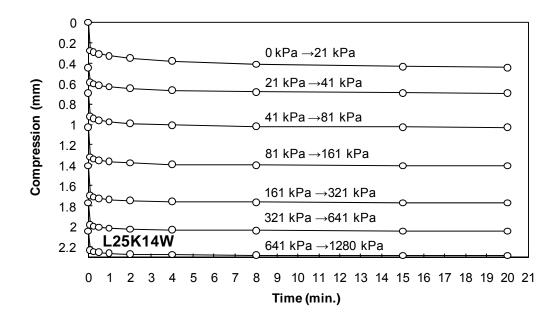



Figure H.59. Compression VS. Time (L25K14W)

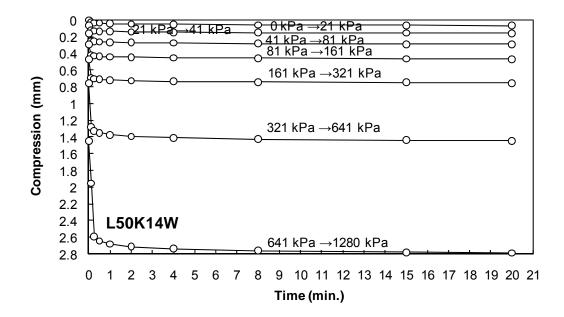



Figure H.60. Compression VS. Time (L50K14W)

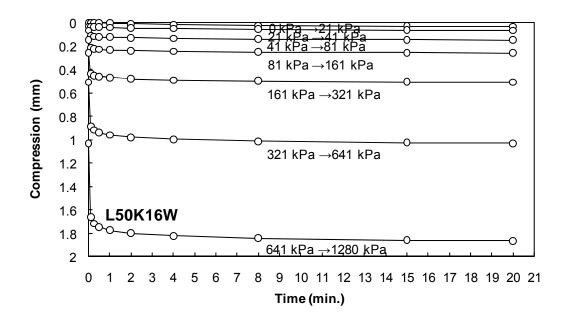



Figure H.61. Compression VS. Time (L50K16W)

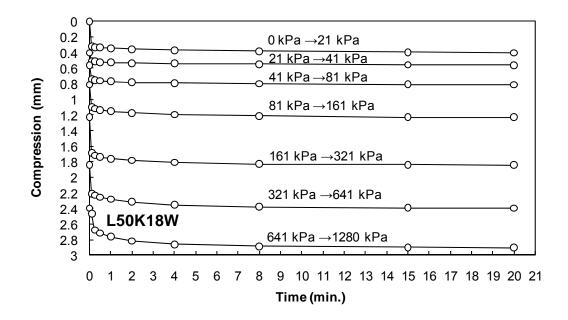



Figure H.62. Compression VS. Time (L50K18W)

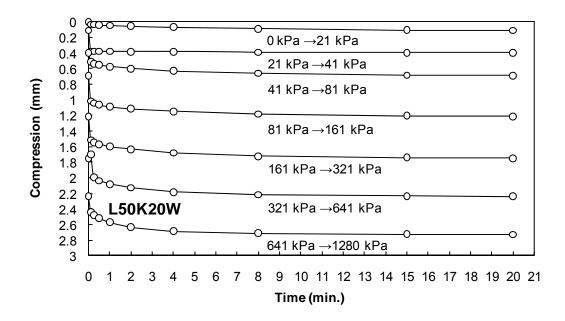



Figure H.63. Compression VS. Time (L50K20W)

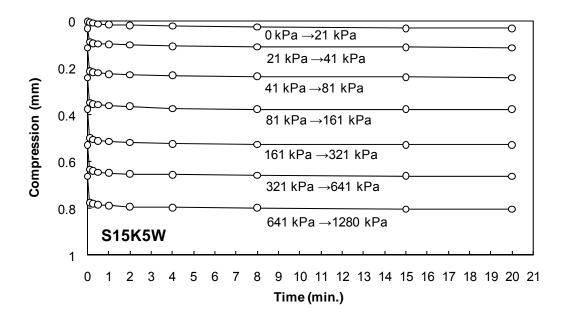



Figure H.64. Compression VS. Time (S15K5W)

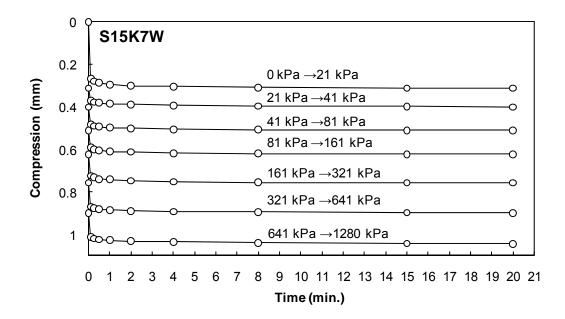



Figure H.65. Compression VS. Time (S15K7W)

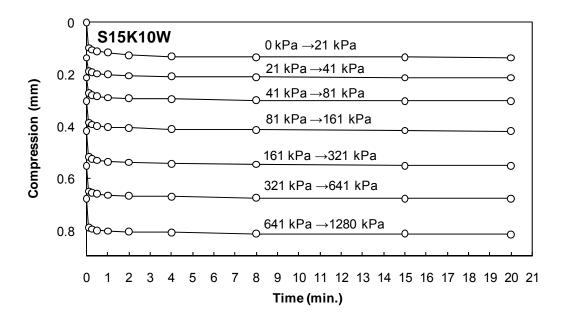



Figure H.66. Compression VS. Time (S15K10W)

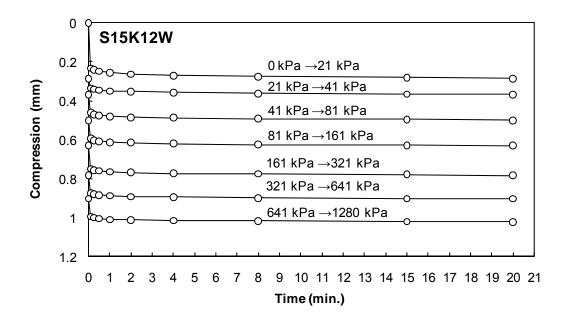



Figure H.67. Compression VS. Time (S15K12W)

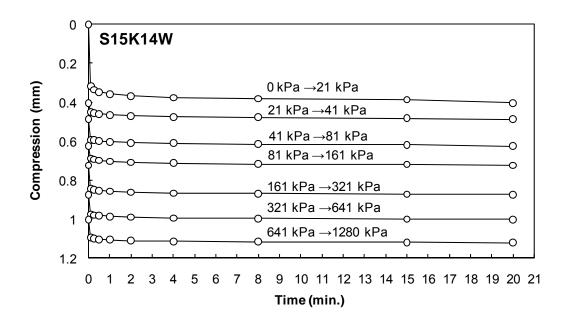



Figure H.68. Compression VS. Time (S15K14W)

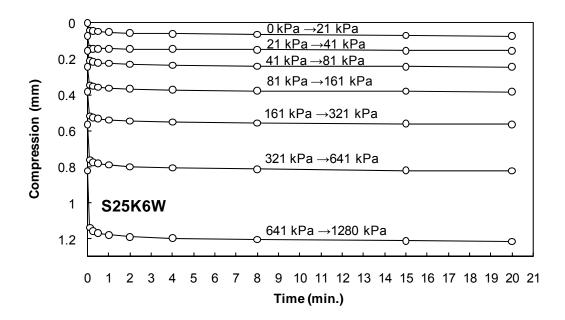



Figure H.69. Compression VS. Time (S25K6W)

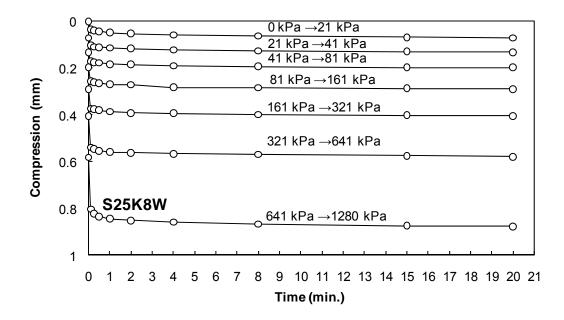



Figure H.70. Compression VS. Time (S25K8W)

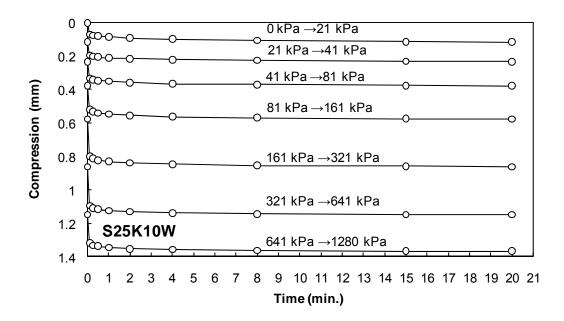



Figure H.71. Compression VS. Time (S25K10W)

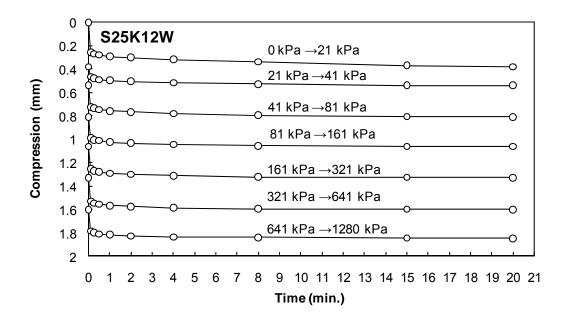



Figure H.72. Compression VS. Time (S25K12W)

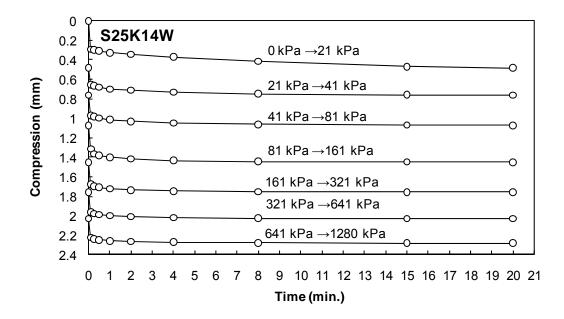



Figure H.73. Compression VS. Time (S25K14W)

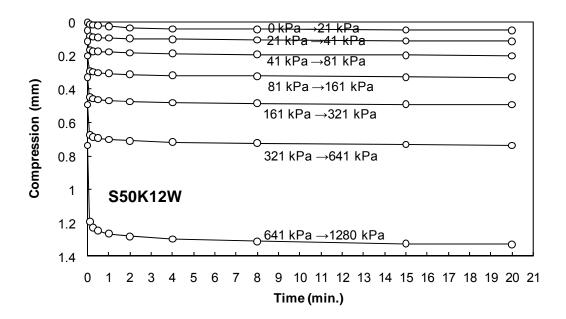



Figure H.74. Compression VS. Time (S50K12W)

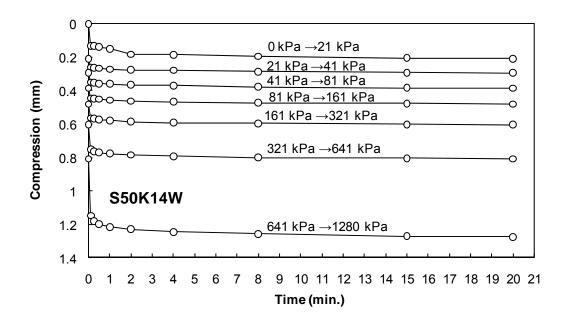



Figure H.75. Compression VS. Time (S50K14W)

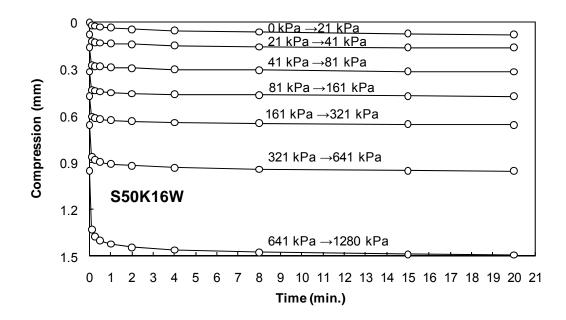



Figure H.76. Compression VS. Time (S50K16W)

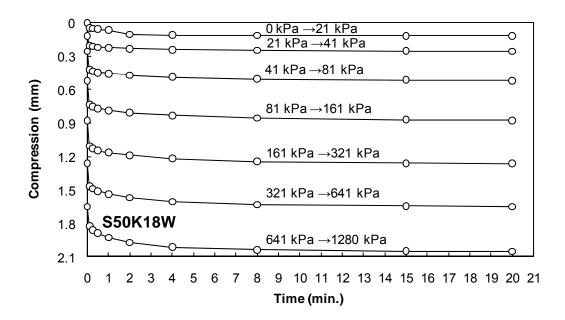



Figure H.77. Compression VS. Time (S50K18W)

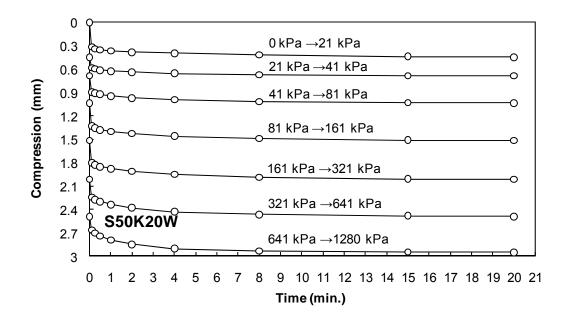



Figure H.78. Compression VS. Time (S50K20W)

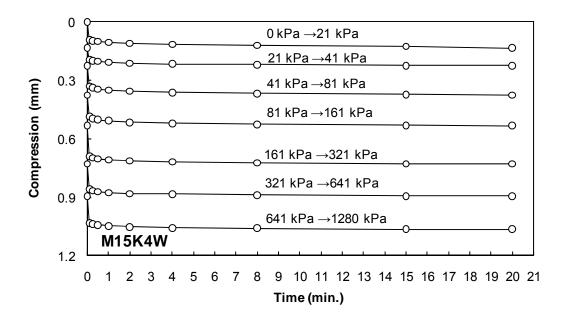



Figure H.79. Compression VS. Time (M15K4W)

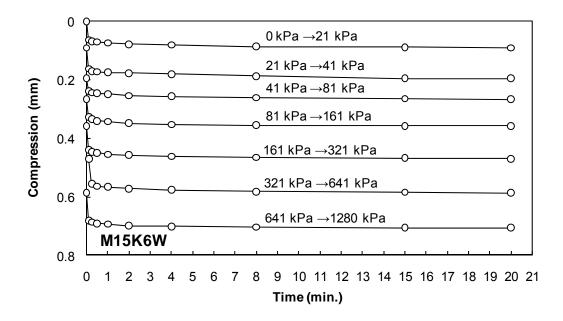



Figure H.80. Compression VS. Time (M15K6W)

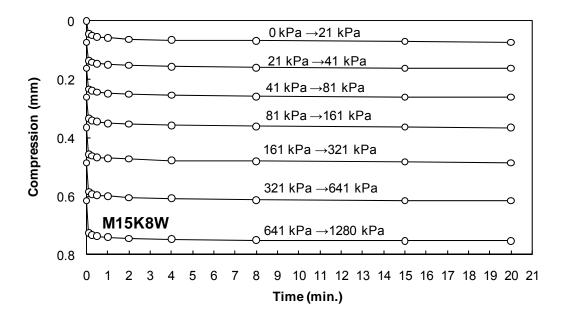



Figure H.81. Compression VS. Time (M15K8W)

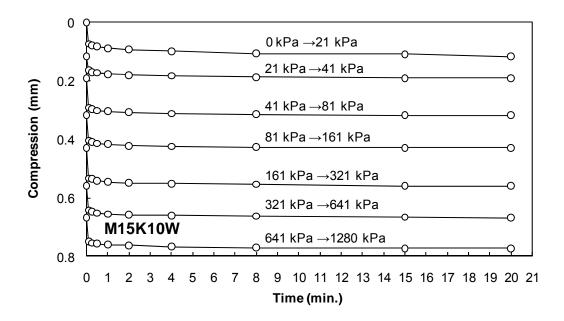



Figure H.82. Compression VS. Time (M15K10W)

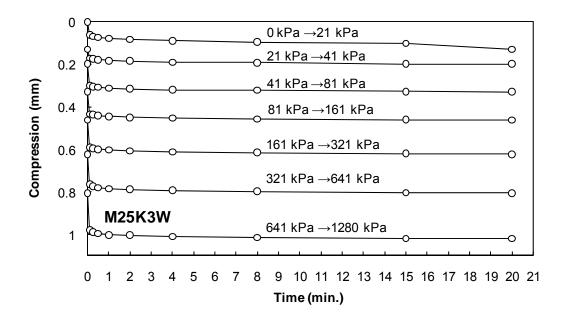



Figure H.83. Compression VS. Time (M25K3W)

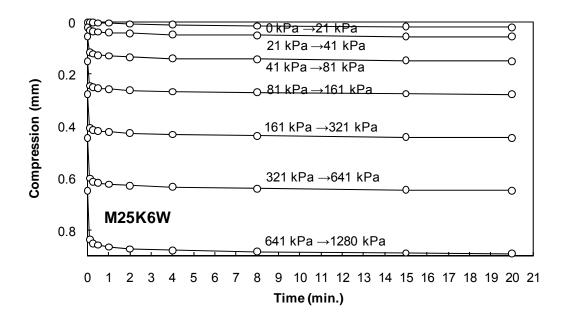



Figure H.84. Compression VS. Time (M25K6W)

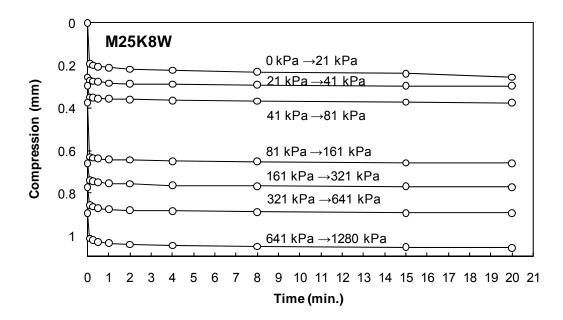



Figure H.85. Compression VS. Time (M25K8W)

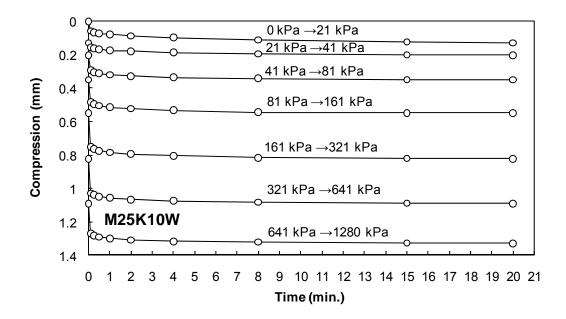



Figure H.86. Compression VS. Time (M25K10W)

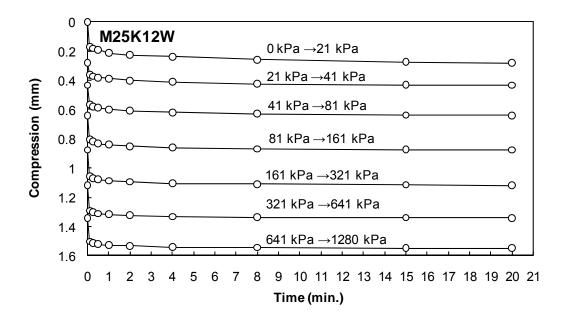



Figure H.87. Compression VS. Time (M25K12W)

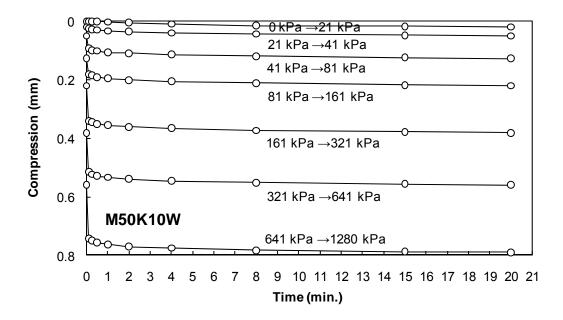



Figure H.88. Compression VS. Time (M50K10W)

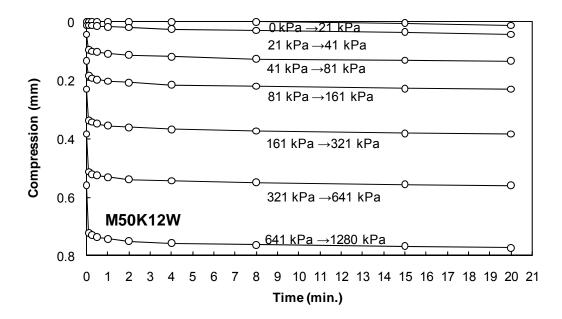



Figure H.89. Compression VS. Time (M50K12W)

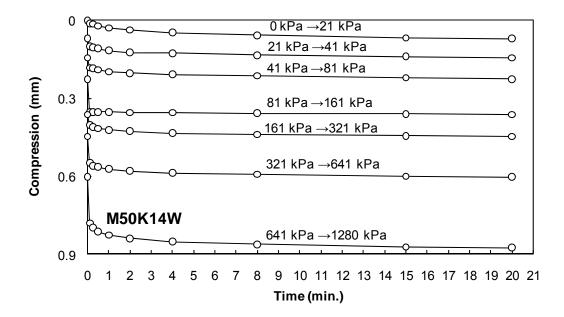



Figure H.90. Compression VS. Time (M50K14W)

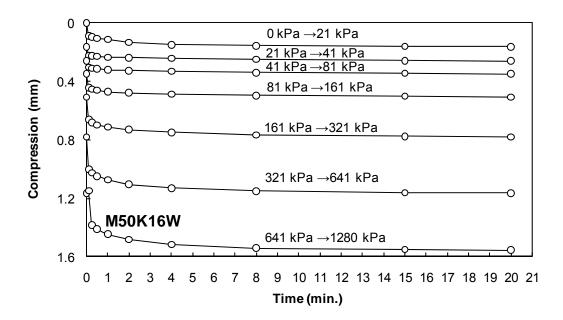



Figure H.91. Compression VS. Time (M50K16W)

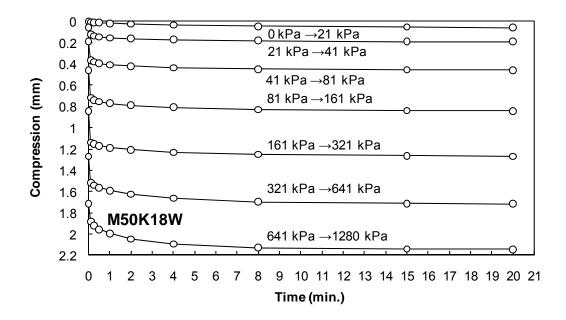



Figure H.92. Compression VS. Time (M50K18W)

## REFERENCES

- ASTM (2002). "Designation: D 422-63, Standard Test Methods for Particle-Size Analysis of Soils." Annual Book of ASTM Standards, Volume 04.08, Soil and Rock; Building Stones, ASTM, Philadelphia, PA.
- ASTM (2000). "Designation: D 698-00, Standard Test Methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft<sup>3</sup> (600 kN-m/m<sup>3</sup>))." Annual Book of ASTM Standards, Volume 04.08, Soil and Rock; Building Stones, ASTM, Philadelphia, PA.
- ASTM (2006). "Designation: D854-06, Standard Test Methods for Specific Gravity of Soils." Annual Book of ASTM Standards, vol. 04.08, Soil and Rock; Building Stones, ASTM, Philadelphia, PA.
- ASTM (2007). "Designation: D1556-07, Standard Test Method for Density and Unit Weight of Soil in Place by The Sand-Cone Method." Annual Book of ASTM Standards, vol. 04.08, Soil and Rock; Building Stones, ASTM, Philadelphia, PA.
- ASTM (2007). "Designation: D1557-07, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft<sup>3</sup> (2,700 kN-m/m<sup>3</sup>))." Annual Book of ASTM Standards, vol. 04.08, Soil and Rock; Building Stones, ASTM, Philadelphia, PA.
- ASTM (2003). "Designation: D2850-03a, Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils." Annual Book of ASTM Standards, vol. 04.08, Soil and Rock; Building Stones, ASTM, Philadelphia, PA.
- ASTM (2005). "Designation: D4318-05, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils." Annual Book of ASTM Standards, vol. 04.08, Soil and Rock; Building Stones, ASTM, Philadelphia, PA.
- ASTM (2004). "Designation: D6913-04, Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis." Annual Book of ASTM Standards, vol. 04.08, Soil and Rock; Building Stones, ASTM, Philadelphia, PA.
- ASTM (2004). "Designation: D2435-04, Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading." Annual Book

of ASTM Standards, vol. 04.08, Soil and Rock; Building Stones, ASTM, Philadelphia, PA.

American Colloid Company (1995). Technical Data Sheet, Volclay GPG 30.

- Akgun, H., Kockar, M. K., and Akturk, O. (2006). "Evaluation of a Compacted Bentonite/Sand Seal for underground Waste Repository Isolation." Environmental Geology, Volume 50, 331-337.
- Carrier, W. D. (2000). "Compressibility of A Compacted Sand." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 3, 273-275.
- Casagrande, A., and Hirschfeld, R.C. (1960). "Stress-Deformation and Strength Characteristic of A Clay Compacted to A Constant Dry Unit Weight." Proceedings, Research Conference on the Shear Strength of Cohesive Soils, ASCE, Boulder, Colorado, 359-417.
- Chapuis, R. P. (1990). "Sand-Bentonite Liners: Predicting Permeability from Laboratory Tests." Canadian Geotechnical Journal 27, 47-57.
- Daniel, D. E., Benson, C. H. (1990). "Water Content-Density Criteria for Compacted Soil Liners." Journal of Geotechnical Engineering ASCE, Vol. 116, No. 12, 1811-1830.
- Daniel, D.E., and Olson, R.E. (1974). "Stress-Strain Properties of Compacted Clays." Journal of the Geotechnical Engineering Division, ASCE, Vol. 100, No. GT10, Proc. Paper 10869, 1123-1136.
- Diamond, S. (1971). "Microstructure and Pore Structure of Impact-Compacted Clays." Clays and Clay Minerals 19, 239-249.
- Dixon, D. A., Gray, M. N., and Thomas, A. W. (1985). "A Study of The Compaction Properties of Potential Clay-Sand Buffer Mixtures for Use in Nuclear Fuel Waste Disposal." Engineering Geology, 21, 247-255.
- Duncan, J. M., Byrne, P., Wong, K. S., and Mabry, P. (1980). "Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analysis of Stresses and Movements in Soil Masses." Report No. UCB/GT/80-01, Dept. Civil Engineering, U. C. Berkeley.
- Fukue, M., Okusa, S., and Nakamura, T. (1986). "Consolidation of Sand-Clay Mixtures." Consolidation of Soils: Testing and Evaluation, ASTM STP 892. R.

N. Yong and F. C. Townsend, Eds., American Society for Testing and Materials, Philadelphia, 627-641.

- Gradwell, M. W., and Birrell, K. S. (1954). "Physical Properties of Certain Volcanic Clays." New Zealand Jnl. Sci. Technol. B36, No. 2, 37-48.
- Hodek, R. J., and Lovell, C. W. (1979). "A New Look at Compaction Processes in Fills." Bull Assoc. Eng. Geol. 16 (4), 489-499.
- Holtz, R. D., and Kovacs, W. D. (1981). "An Introduction to Geotechnical Engineering." Prentice-Hall, Englewood Cliffs, NJ.
- Holtz, W. G., and Willard, M. (1956). "Triaxial Shear Characteristics of Clayey Gravel Soils." Journal of Soil Mechanics and Foundation Engineering, ASCE, 82,1-22.
- Ito, H., and Hideo, K. (2008). "Dynamic Compaction Properties of Bentonite-Based Materials." Engineering Geology, 98, 133-143.
- Jafari, M. K., and Shafiee, A. (2004). "Mechanical Behavior of Compacted Composite Clays." Canadian Geotechnical Journal, 41, 1152-1167.
- Lambe, T. W. (1958). "The Structure of Compacted Clay." Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 84, No. SM2, May.
- Lambe, T. W., and Whitman, R. V. (1969). Soil Mechanics. Wiley New York.
- Leonards, G. A. (1952). "Discussion to "Effect of Compaction on Soil Properties." By S. D. Wilson, Proceedings Conference on Soil Stabilization, M. I. T., June, 159-161.
- Lovell, C. W., and Johnson, J. M. (1981). "Shearing Behavior of Compacted Clay after Saturation." Laboratory Shear Strength of Soil. ASTM STP 740. R. N. Yong and F.C. Townsend, Eds., American society for Testing and Materials, 277-293.
- Lee, K. L., and Haley, S. C. (1968). "Strength of Compacted Clay at High Pressure." Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM6, Proc. Paper 5561, Nov., 117-141.
- Nwabuokei, S. O., and Lovell, C. W. (1986). "Compressibility and Settlement of Compacted Fills." Consolidation of Soils: Testing and Evaluation. ASTM STP

892, R. N. Yong and F. C. Townsend, Eds., American Society for Testing and Materials, Philadelphia, 184-202.

- Miller, E.A., and Sowers, G.F. (1957). "Strength Characteristics of Soil-Aggregate Mixtures." Highway Research Board Bulletin, 183, 16-23.
- Mitchell, J.K. (1993). Fundamentals of Soil Behavior. John Wiley & Sons, New York.
- Oda, M. (1972). "Initial Fabrics and Their Relations to Mechanical Properties of Granular Material." Soils and Foundations, 12(1), 17-36.
- Oda, M. (1972). "The Mechanism of Fabric Changes during Compressional Deformation of Sand." Soil and Found., Japan, 12(2), 1-18.
- Richter, S. D. (1991). "Degradation of Clay under Hydraulic Transport Conditions." MSCE thesis. University of Delaware. Newark, DE. 1991.
- Rutledge, P. C. (1947). "Cooperative Triaxial Shear Research Program." Progress Report on Soil Mechanics Fact Finding Survey, U. S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Seed, H. B., and Chan, C. K. (1959). "Structure and Strength Characteristics of Compacted Clays." Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 85, No. SM 6, 1959, 31-47.
- Seed, H. B., and Monismith, C. L. (1954) "Some Relationships between Density and Stability of Subgrade Soils." Highway Research Board, Bulletin 93.
- Shroff A. V. and Shah D. L. (2003). Soil Mechanics and Geotechnical Engineering. Taylor & Francis.
- Sloane, R. L., Kell, T. R. (1966). "The Fabric of Mechanically Compacted Kaolin." Clays and Clay Minerals 14, 289-295.
- Sowers, G. F. (1963). "Engineering Properties of Residual Soils Derived from Igneous and Metamorphic Rocks." Proc. 2<sup>nd</sup> Pan. Amer. Conf. Soil Mech. Brazil 1, 39-62.
- Taylor, D.W. (1948). Fundamentals of Soil Mechanics, John Wiley & Sons, Inc., New York, 700 pp.
- Thevanayagam, S., and Mohan, S. (2000). "Intergranular State Variables and Stress-Strain Behavior of Silty Sands." Geotechnique 50(1), 1-23.

- Vargas, M. (1953). "Some Engineering Properties of Residual Clay Soils Occuring in Southern Brazil. Proc. 3<sup>rd</sup> Int. Conf. Soil Mech., Zurich 1, 67-71.
- Wahls, H. E., Fisher, C. P., and Langfelder, L. J. (1966). "The Compaction of Soil and Rock for Highway Purposes." U. S. Dept. of Commerce, Bureau of Public Roads, FHWA-RD-73-8, 457 pp.
- Wallace, K.B. (1973). "Structural Behavior of Residual Soils of the Continually Wet Highlands of Papua New Guinea." Geotechnique, 23(2), 203-218.
- Wiebe, B., Graham, J., Tang, G. X., and Dixon, D. (1998). "Influence of Pressure, Saturation, and Temperature on the Behavior of Unsaturated Sand-Bentonite." Canadian Geotechnical Journal, 35(2), 194-205.
- Wilson, S. D. (1950). "Small Soil Compaction Apparatus Duplicates Field Results Closely." Engineering News Record, Vol. 145, No. 18, 34-36.
- Wilson, S.D. (1952). "Effect of Compaction on Soil Properties." Proceedings, Conference on Soil Stabilization, M.I.T., June, 148-158.
- Woodsum, H. C. (1951). "The Compressibility of Two Compacted Clays." MSCE Thesis, Purdue University, West Lafayette, Indiana, June, 69pp.
- Yin, J. H. (1999). "Properties and Behavior of Hong Kong Marine Deposit with Different Clay Contents." Canadian Geotechnical Journal 36, 1085-1095.
- Yong, R. N, Warkentin, P. B. (1975). Soil Properties and Behavior. Elsevier, New York.