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Abstract 18 

Food production stability against climate variability and extremes is crucial for food security and 19 
is influenced by variations in planted area, harvested area, and yield. Yet research has focused on 20 
yield responses to climate fluctuations, ignoring how planted area and harvestable fraction (i.e., 21 
the ratio of planted area to harvested area) affect production stability. Here we apply a time-series 22 
shock detection approach to county-level data (1978-2020) on seven crops in the US, finding that 23 
shocks (i.e., sudden, statistically significant declines) in planted area and harvestable fraction co-24 
occur with 51%-81% of production shocks, depending on the crop. Decomposing production 25 
shock magnitudes, we find yield fluctuations contribute more for corn (59%), cotton (49%), 26 
soybeans (64%), and winter wheat (40%), whereas planted area and harvestable fraction play a 27 
greater role for others. Additionally, climatic variables explain considerable portions of the 28 
variance in planted area (22%-30%), harvestable fraction (15%-28%), and yield (32%-50%). 29 
These findings demonstrate that crop production shocks are often associated with fluctuations in 30 
planted area and harvestable fraction. This highlights the (largely ignored) importance of producer 31 
decision-making about cropping patterns in stabilizing food production against climate variability 32 
and emphasizes the need to consider all three production components to improve food system 33 
stability. 34 

35 

36 
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Main Text 37 

Many countries are facing growing levels of food insecurity, with 193 million people acutely food 38 

insecure worldwide 1. To achieve the United Nations’ Sustainable Development Goal of Zero 39 

Hunger (SDG2) by 2030, urgent action is needed to ensure food security in all aspects. Least 40 

studied among the four food security pillars (availability, access, utilization, and stability) is food 41 

stability which refers to the ability of an individual, household, or population to have reliable 42 

access to adequate, safe, and nutritious food 2-4. While stability can be affected at any step in the 43 

food supply chain, the largest number of disruption entry points are found at the production stage 44 

5. Food production shocks (i.e., sudden and unexpected losses in production) can be caused by a45 

wide variety of factors including climate variability, extreme weather events, and economic and 46 

political disruptions 6-8. With increasing climate variability 9 and climate extremes expected to 47 

become more frequent, intense, and prolonged 10-12, it is critical to understand the pathways 48 

through which environmental shocks impact production in order to develop more effective 49 

strategies for stabilizing crop production.  50 

Food production instability (i.e., the occurrence and magnitude of year-to-year variability 51 

for a certain period) is determined by variability and shocks in planted area, harvestable fraction 52 

(i.e., the ratio between planted and harvested area), and yield (Box 1), each of which involves 53 

varying degrees of human decision making. Changes in planted area are determined mainly by 54 

farmer decisions before the growing season based on economic, policy, and climatic conditions 55 

13,14. Conversely, harvestable fraction (i.e., the portion of the planted area that is harvestable rather 56 

than lost within-season) is influenced by exogenous natural forces – such as climate extremes – 57 

and to some extent farmer decisions. Flooding, for example, can cause a portion of a field to be 58 

washed away, thereby reducing the harvested area but leaving yield unaffected 15. Farmers may 59 
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also decide not to harvest their crops – perhaps due to low yields, inferior quality, or low market 60 

prices – because the expected low revenue would not justify their time and effort 16,17. For yield, 61 

changes are jointly dictated by within-season management decisions (e.g., irrigation, varietal 62 

choice) and environmental conditions (e.g., heatwave, drought, pests). Yet while all three of these 63 

components (planted area, harvestable fraction, and yield) can influence production outcomes, the 64 

vast majority of research on production instability to date has focused on the role of yield variations 65 

7,18-23. However, there are emerging efforts to understand how the different components of 66 

production contribute to its stability. For instance, some studies showed that production losses 67 

were associated with both harvested area and yield 24,25. Other work in Brazil showed that 68 

harvested area and cropping frequency were more sensitive to climate variability than yield 26. 69 

While these few studies suggest the importance of other non-yield components for determining 70 

production outcomes, the extent to which all three components of production (planted area, 71 

harvestable fraction, and yield) influence stability across different crops and regions is unknown 72 

14. Improving our understanding beyond yield variations can provide a more complete picture of73 

the vulnerabilities of current crop production practices and can better inform strategies for adapting 74 

crop production to increasingly variable and extreme climate and other natural and human-made 75 

disruptions. 76 

Here we focus on crop production shocks in the United States, the world’s largest producer 77 

and exporter of cereal grains 27. Because of its important role in the global food system, 78 

understanding the components that most contribute to US production shocks can improve 79 

strategies to ensure stable and reliable crop production and better protect national and global food 80 

supplies. To this end, we investigate how variations in planted area, harvestable fraction, and yield 81 

contribute to US crop production shocks and the extent to which these three components are 82 
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affected by climate variability and extremes. We first assemble 43 years (1978-2020) of county-83 

level agricultural data for 7 major crops (barley, corn, cotton, sorghum, soybeans, spring wheat, 84 

and winter wheat), which account for 70% of US cropland 28. We then detect shocks (i.e., sudden 85 

and statistically significant decreases) in production and its components – planted area, harvestable 86 

fraction, and yield – using an automated quantitative statistical method that captures sudden 87 

changes in time series while ignoring long-term gradual fluctuations 29. Through this approach, we 88 

quantify the number of years with production shocks (frequency) and estimate their co-occurrence 89 

with shocks in each of the three components. We then use a decomposition approach to investigate 90 

to what extent each of the three components contributes to the magnitude of production shocks 30. 91 

Finally, we build random forest regression models to determine to what extent inter-annual 92 

variations in production and its three components are explained by climate variability and extremes. 93 

Together, these lines of investigation can provide valuable insights beyond the role of yield in 94 

influencing production stability and can serve as a basis for expanding the option space for 95 

interventions to address climate-related crop production losses.  96 

 97 

Production Shock Frequency 98 

Using an automated quantitative statistical shock detection method 29, we detected instances of 99 

negative deviations of production (hereafter, production shocks) ranging from 449 total negative 100 

shocks (for spring wheat) to 2532 shocks (for corn) in all counties between 1978 to 2020 (shock 101 

can only be detected from the second year)– the years for which data were available for all study 102 

crops. Production shocks varied both spatially and temporally between crops (Fig. 1). Production 103 

shock frequency has increased significantly for corn, cotton and soybeans (P<0.05, two-tailed 104 

Mann-Kendall test), with no significant trends in shock frequency being observed for all other 105 
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study crops. In terms of geographic heterogeneity, we observed higher shock frequencies in Iowa, 106 

Illinois, and Missouri for corn, soybeans, and winter wheat, and in North Dakota for barley and 107 

spring wheat (Fig. 1). 108 

We then compared the co-occurrence of production shocks with shocks in each of the three 109 

components of production. We found that more than half of the production shocks for 6 of the 7 110 

study crops (barley, corn, cotton, sorghum, winter wheat, and spring wheat) co-occurred with 111 

shocks of area-related components (Fig. 2, Fig. S1). Conversely, for soybeans, the association with 112 

yield shocks dominates, co-occurring with 65% of production shocks. Across all seven crops, 113 

shocks related to planted area co-occurred with between 33% and 53% of production shocks, 114 

whereas shocks associated with harvestable fraction co-occurred with between 19% and 43% of 115 

production shocks. We found that between 17% and 31% of production shocks were associated 116 

with a combination of yield and area-related shocks, highlighting the fact that these components 117 

of production are not entirely independent of one another, depending on the nature of the disruption. 118 

We also compared shock outcomes between rain-fed and irrigated conditions across three crops – 119 

corn, winter wheat, and soybeans – for which there was sufficient data from 1978 to 2018 (Fig. 120 

S2). Not surprisingly, we found that shocks of area-related components co-occur more often with 121 

production shocks under irrigated conditions (potentially due to the buffering effects of irrigation 122 

on yield), whereas in rain-fed conditions, shocks related to yield comprise the majority of 123 

production shock co-occurrences. Looking across all component shocks (i.e., not limited to those 124 

co-occurring with production shocks), we found that shocks in any individual component are 125 

unlikely to result in production shocks (Table S1). Further, we find that the presence of co-126 

occurring shocks in harvestable fraction and yield is still unlikely (except for corn) to result in a 127 
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production shock in the same year, suggesting that in many cases planted area may have played an 128 

important compensatory role in mitigating production shocks (Table S1). 129 

 130 

Production Shock Magnitude 131 

We next quantified the magnitude of each of the detected production shocks and decomposed the 132 

contributions of each of the three components. On average, yield accounted for the largest portion 133 

of the production shock magnitude (31%-64%) across the study crops, followed closely by planted 134 

area (22%-53%), and then harvestable fraction (5%-29%) (Fig. 3, Fig. S3-S4). Yield was dominant 135 

in explaining the magnitude of production shocks for corn (average of 59% across available years), 136 

cotton (49%), soybeans (64%), and winter wheat (40%). Planted area was more important for 137 

barley (50% on average), sorghum (48%), and spring wheat (53%). As expected, the contribution 138 

of harvestable fraction shocks appears to be larger for crops with longer growing periods (GPs), 139 

while it is smaller for crops with shorter GPs. Over time, we also observed changing influences of 140 

the three components on production shock magnitude. For instance, while harvestable fraction 141 

represents a relatively small contribution to production shock magnitude for most crops, we saw 142 

an overall statistically significant increasing trend (P<0.01) of its contribution in corn (Table S2), 143 

and a fluctuating large proportion in cotton and winter wheat (Fig. 3). We also found a significant 144 

decreasing trend (P<0.01) of the contribution of yield in cotton (Table S2).  145 

 146 

Links Between Climate Indicators and Agricultural Factors 147 

Lastly, we employed random forest models to examine associations between climate variables (i.e., 148 

climate variability and extremes) (Table S3) and anomalies in planted area, harvestable fraction, 149 
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and yield. While we expect that anomalies in these components will largely be affected by climate 150 

variables in the same GP, we also considered a 1-GP lag between climate variables and the planted 151 

area, as farmers may base their planting decisions partially on the (un)favorability of climate 152 

conditions in the previous GP (Fig. S5). We found that climate variability and extremes explain 153 

between 32% and 50% of yield anomalies, with yields for soybean (50%), corn (38%), and barley 154 

(37%) having the highest associations (Fig. 4). For planted area anomalies, we found that climate 155 

variables explained between 22% (for barley) and 31% (for cotton) of their variance. We obtained 156 

similar results when using climate variables from the previous GP (Fig. S5). Finally for harvestable 157 

fraction, we found that climate variables explained between 15% (spring wheat) and 24% 158 

(soybeans) of anomalies. The explanatory power of climate variables was highest for yield 159 

anomalies, then planted area, and lastly harvestable fraction. The relatively low associations with 160 

harvestable fraction may be because indicators for climate extremes considered in this study could 161 

not (due to data limitations) include variables of natural disasters (e.g., flooding, landslides, etc.), 162 

which are presumably the most influential factors on harvestable fraction 25, and re-planting in the 163 

same growing season after disaster. Across all three components and all crops, we found that 164 

temperature-related variables rank highest in importance (Table S4). These findings thus suggest 165 

that all components of production merit consideration as avenues for climate adaptation, 166 

particularly with regard to temperature. We note that our approach – which focuses on sudden, 167 

short-term reductions – likely does not capture the effects of longer-term, persistent climate 168 

extremes (e.g., multi-year droughts) which can also exercise influence on levels of crop production. 169 

 170 
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Discussion 171 

The rise in climate variability, climate extremes, and other disruptions poses a growing threat to 172 

the stability of food supply chains. This is especially true for production which has numerous entry 173 

points for environmental, economic, and political disruptions 5,31, now and in the future 32-34. 174 

Responding to these growing disruptions requires a comprehensive view of production and the 175 

components that dictate its outcomes. To this end, this study provides new insights into the extent 176 

to which the three factors (planted area, harvestable fraction, and yield) affect production stability 177 

and the degree to which they are affected by climate variability and extremes. We found that 178 

planted area, harvestable fraction, and yield all substantially influence both the frequency and 179 

magnitude of production shocks to varying degrees across crops. Considering shock frequency, 180 

shocks of area-related components co-occur with at least 50% of production shocks across all crops 181 

while yield-related shocks account for more than 31%. Although the effect of area-related 182 

components on production shock magnitude is generally lower than yield, we found large effects 183 

for certain crops (e.g., spring wheat) which deserve particular attention. Further, we found that 184 

climate variability and extremes can explain substantial fractions of the observed variations in each 185 

of the three components, indicating that there is a combination of complex factors (both climate-186 

related and otherwise) that can contribute to instability in production. Together our results 187 

underline the importance of considering all three components to develop holistic approaches to 188 

improve production stability and the ability to withstand and recover from disruptions under 189 

ongoing climate change. Understanding the reasons behind the crop-to-crop differences in the 190 

relative importance of the three components will be an important next step of inquiry towards the 191 

development of adaptation strategies. 192 
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Addressing food production shocks has direct implications for the entire food supply chain, 193 

negatively affecting food supply stability and posing a threat to food security. Limited availability 194 

of food can be a direct consequence of a production shock. At the same time, food production 195 

instability can dramatically increase food prices when stock is limited, lowering consumer 196 

purchasing power and potentially compromising human nutritional status, particularly among 197 

lower-income groups 35,36. Sudden declines in production may also result in a decrease in food 198 

stocks; for instance, global grain reserves in 2008 fell to 18% of annual demand 37, which 199 

aggravated food system vulnerability. Because countries are becoming more reliant on global food 200 

trade, production shocks are affecting not only local markets and consumers but also global and 201 

distant markets when shocks cascade through the food trade network 5,38. Despite international 202 

trade increasing the availability and diversity of food 39,40, it also exposes people to external 203 

disruptions in food production, particularly in regions that rely heavily on imports 41,42. For 204 

instance, drought and extreme heat in 2012 caused a decline in US agricultural production that 205 

subsequently led to increases in global grain prices and compromised food access worldwide, 206 

especially for the world's poorest people 43. This growing interconnectivity of nations means that 207 

increasing the stability of major grain producing nations’ food production is a promising strategy 208 

for protecting global food security. 209 

Our findings demonstrate that efforts are required in all components to stabilize production 210 

(with an exclusive focus on yield stability severely constraining the solution space) and that the 211 

stability of production is influenced by a variety of factors, including climate variability and 212 

extremes to a considerable degree. As such, holistic approaches that account for a variety of 213 

potential economic, political, and environmental disruptions – and their collective influences on 214 

all three components of production – are necessary to truly enhance the stability of crop production. 215 
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Yield has received the bulk of research and policy attention over the past few decades, with 216 

governments, international organizations, and other agencies developing cultivars with climate-217 

resilient traits (e.g., heat tolerance) as well as practices to reduce the effects of environmental 218 

fluctuations on crop yields (e.g., agricultural inputs such as irrigation and soil organic matter) 23,44. 219 

But such interventions provide little opportunity for improving the stability of planted areas and 220 

harvestable fractions, which are influenced through entirely different mechanisms. For instance, 221 

planted area is determined by farmer decisions which are influenced by a host of factors including 222 

environmental policies (e.g., the US’s Conservation Reserve Program), market demand and food 223 

prices (which enable farmers to select the most profitable crops year after year), and farmer 224 

experience in accordance with weather forecasts over time. Economic incentives that account for 225 

these various influences can help to avoid sudden shifts in planted areas from year to year. In 226 

addition, harvestable fraction is influenced by both extreme events and farmer decisions. While 227 

extreme events remain difficult to predict, a suite of proactive actions can ameliorate their effects 228 

on harvestable fraction, including shifting cropping patterns, adjusting planting times to prevent 229 

loss of harvested area caused by environmental disruptions, and zoning within cropland to avoid 230 

utilizing land with a high probability of experiencing localized extreme events (e.g., floods). 231 

Meanwhile, strategies that improve crop quality, price and market access could encourage 232 

harvesting and thus reduce harvestable fraction losses at the harvest stage.  233 

Stabilizing food production is a growing challenge for agricultural development. Although 234 

governments and researchers have worked to increase yield stability 19,45,46, focusing only on yield 235 

may miss a variety of important opportunities to stabilize production in the face of disruptions. 236 

This is well aligned with recent calls in the sustainability science community to actively design 237 

and manage response diversity to a growing suite of disruptions 47. Our findings reveal that the 238 
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relative importance of the different components of production varies by crop. Some crops are 239 

grown in a variety of locations throughout the United States (e.g., corn, winter wheat), allowing 240 

our approach to be applied at regional scales to tailor strategies to local circumstances. As such, 241 

developing strategies that employ a suite of interventions targeted at planted area, harvestable 242 

fraction, and yield offers the greatest flexibility for responding to local vulnerabilities and a variety 243 

of potential climatic and non-climatic disruptions.  244 

Materials and Methods 245 

Data 246 

We rely on USDA Survey (USDA) data for US county-level harvestable fraction, planted area, 247 

yield, and production for 7 field crops), covering 70 % of planted area in the US 28. Harvested area 248 

is the product of harvestable fraction and planted area. We separate the two components in order 249 

to better disentangle the influence of human and environmental influences on area-related shocks 250 

to production, with harvestable fraction more affected by within-season environmental factors, and 251 

planted area largely influenced by farmer decisions. Our analysis is limited to crops with available 252 

county data that represent 60% or more of national production for 20 consecutive years. The study 253 

covers the years 1978 to 2020, which are the years for which data were available across all study 254 

crops. It should be noted that the data for barley does not fully meet our criteria for inclusion after 255 

2014, but we have examined them in the interest of completeness. Data for climatic variables were 256 

derived from the PRISM database 48, which provides high resolution (4km) daily and monthly 257 

mean, maximum and minimum temperature, and precipitation data for the whole US from 1981 to 258 

2020. All the spatial data were re-gridded to county level by taking an area-weighted average of 259 

the grid cells within each county. Growing period data was derived from the latest USDA Usual 260 

Planting and Harvesting Dates in 2010 49. Although climate change has altered sowing dates and 261 

Accepted Manuscript 
Version of Record at: https://doi.org/10.1038/s41893-023-01152-2



crop phenology, we used fixed crop calendars for calculating growing-season climate indices 50, 262 

as recent observed shifts in planting and harvesting dates have been less than 5 days per 1°C 263 

warming 51. Using the example of corn, we find that our results are not sensitive to this choice of 264 

crop calendar (Table S5). Growing periods were then converted from dates to months to calculate 265 

climate variables over all months of each crop’s growing period. Following Vogel et al 20, climate 266 

variables calculated in our study include mean monthly temperature (tmp), mean monthly 267 

precipitation (pre), maximum temperature (TXx), minimum temperature (TNn), warm day 268 

frequency (TX90p), cold night frequency (TN10p), maximum 5-day rainfall (Rx5day), diurnal 269 

temperature range (dtr), frost day frequency (frs), mean SPI-6, and mean SPEI-6 (Table S3). 270 

Climate variability is represented by the first two variables (tmp and pre), and climate extremes 271 

are represented by the others. All county-level agricultural and climate variables were detrended 272 

using the Singular Spectrum Analysis (SSA) method in R, to remove temporal trends due to 273 

technological progress, management changes, and long-term climatic changes. Because climate 274 

variables in particular can exhibit distinct temporal trends, detrending prevents the explained 275 

variance from being inflated as a result of the regression of two strongly trending variables. Except 276 

for SPEI-6 and SPI-6 (which are already standardized), all variables were then standardized by 277 

dividing by their standard deviation to enable the comparison of values across different locations. 278 

  279 

Shock Detection 280 

To identify and match the shock occurrence among planted area, harvestable fraction, yield, and 281 

production in all counties all crops, we adopted an automated quantitative statistical shock 282 

detection method following Gephart et al 29. It is a method to capture sudden drops in a time series, 283 

with less sensitivity to high variable data and long-term, gradual fluctuations. The process of shock 284 
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detection is mainly divided into four steps (Fig. S6): (a) fit the time series data by LOWESS 285 

regression (i.e., locally weighted smoothing, red line in the Fig. S6(a)) with a span of 2/3; (b) 286 

calculate residuals (i.e., the difference between the fitted and actual values, Fig. S6(b)); (c) plot 287 

residuals against the time-lagged residuals (i.e., residuals of its previous year, Fig. S6(c)); and (d) 288 

use Cook’s Distance to identify extreme points in the regression of residuals versus time-lagged 289 

residuals (Fig. S6(d)).  Counties with fewer than 20 data points were excluded due to their poor 290 

performance in shock detection. Points with Cook’s D greater than the 4/N (N is the number of 291 

data points in a time series) were identified as shocks. While this shock detection method can 292 

identify both positive and negative deviations, we only considered production losses (i.e., negative 293 

production anomalies). Shocks for which the corresponding production data either did not have a 294 

value in the previous year or had a value identical to the previous year were not considered, due to 295 

data irregularities. Using this method, we identified shocks in all counties and all crops for each 296 

of the four agricultural variables (e.g., planted area, harvestable fraction, yield, and production). 297 

To compare the frequency of production shocks to those in its three component factors, we 298 

examined whether each of the three components also experienced shocks when a production shock 299 

occurred. For example, corn production in Iowa County in Wisconsin had 5 production shocks 300 

over 43 years, and 3 of them happened in the same year as harvestable fraction shocks. Then we 301 

specified that 3 harvestable fraction shocks coincide with production shocks (Fig. S7). The same 302 

approach is used for shocks in yield and planted area. Thus, we determined the number of 303 

production shocks that co-occur with planted area, harvestable fraction, and yield shocks. It is 304 

worth noting that a production shock can occur in conjunction with shocks in several components, 305 

or it may not co-occur at all. As the shock detection method only captures relatively large drops 306 

and ignores gradual fluctuations and deals with each component of production independently, the 307 
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two main reasons for no co-occurrences are 1) because the changes in the three components are 308 

minor but amplify one another; or 2) there is high variability in the time series of one or more of 309 

the components and a shock is not statistically detectable.  Note that the shock frequency 310 

evaluation of our study does not account for differences in the area of each county.  Because shocks 311 

were counted by county, this may potentially mute the average effect of the component shocks in 312 

the counties with larger areas and higher production.   313 

 314 

Shock Decomposition 315 

Based on the detected production shocks, we used a decomposition method 30 to measure the 316 

contribution of each component to the magnitude of production shocks. Decomposition follows 317 

the index decomposition analysis (IDA) 52 to express the overall change in an aggregate quantity 318 

as a sum of contributions from each of its components. The production of each county i is the 319 

product of planted area (A), harvestable fraction (F), and yield (Y). We used additive 320 

decompositions in IDA that converts the difference of national production between two 321 

consecutive years (Eq. 1, difference of all counties between year t and t-1) into the sum of 322 

contributions from each component (Eq. 2), by calculating the logarithmic mean Divisia Index (Eq. 323 

3, example for yield). This approach was applied to every two consecutive years to estimate the 324 

contributions of each component to annual national production loss caused by production shocks 325 

as: 326 

∆ = −  = ∑ − ∑       (1) 327 

∆ =  ∆ +  ∆ +  ∆         (2) 328 

∆ =  ∑ ( − )/(   − ) × ( )  (3). 329 
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 330 

Random Forest and Cross-Validation 331 

 We applied a Random Forest machine learning algorithm to evaluate the correlation between each 332 

agricultural variable (e.g., planted area, harvestable fraction, yield, and production) and a suite of 333 

climate variables (Table S3). “Random Forests” is a non-parametric statistical method, using 334 

decision trees to make regression or classification and is robust to overfitting 53. This method has 335 

been previously applied in the analysis of yield or production anomalies in association with climate 336 

variables 20,54.  337 

The Random Forest model was built to examine the relationship between the anomalies 338 

(i.e., deviations from an overall trend) of each agricultural variable and all climate indicators for 339 

each crop. All data was randomly partitioned into an 80%/20% split for training and validation. 340 

Hyperparameters (i.e., number of trees to build, maximum depth of the tree, minimum leaf node 341 

size, and number of features to use for splitting) used in each model were tuned based on a Grid 342 

Search approach 55. To estimate and compare the variance explained by climate for each 343 

agricultural variable, we calculated R2 values from cross-validated predictions. We further 344 

generated “variable importance ranks” to assess the relative effect of the climate indicators on each 345 

agricultural variable for each crop. 346 

 347 
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Figure Captions 366 

 367 

Fig. 1. Production shock frequency and hotspot maps for study crops. The left panel (a) 368 

shows the production shock per county from 1978 to 2020. The asterisk indicates a statistically 369 

significant trend (P< 0.05, two-sided; corn: p = 0.015; cotton: p = 0.009; soybeans: p = 0.017). N 370 

represents the total number shocks for the whole time period. The right panel (b) shows the maps 371 

of shock frequency in each county over the study period. The total number of counties (n) 372 

examined is included in the bracket. Values higher than 0.1 are displayed in red.   373 

 374 

Fig. 2. Proportion of production shocks co-occurring with different component shocks. 375 

Solid brackets indicate yield-related shocks, and dashed brackets include area-related shocks. 376 

Note that a small fraction of production shocks co-occurred with both yield and area-related 377 

shocks. The fraction of total detected production shocks that did not have co-occurring shocks 378 

with any of the three components are not shown in this figure. The two main reasons for no co-379 

occurrence are because 1) the changes in the three components are minor but amplify one 380 

another; or 2) there is high variability in the time series of one or more of the components and a 381 

shock is not statistically detectable.  382 

 383 

Fig. 3. Annual contribution from planted area, harvestable fraction, and yield to shock-384 

related production losses. For each year for a specific crop, counties with production shocks were 385 

summed to represent the national production loss due to production shocks. Each component's 386 

contribution to the total loss was then calculated via shock decomposition 30. The gap years (e.g., 387 

1979 for cotton) mean that no production shock was detected across all counties for that crop.  388 
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 389 

Fig. 4. Explained variance from Random Forest regressions. Predictor variables are the climate 390 

variables listed in Table S3. Response variables are the anomalies of the three agricultural 391 

components.  392 

  393 
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Box 1. Production outcomes of component shocks. 394 

Crop production is calculated as the product of yield and harvested area. Harvested area can be 395 

further separated into planted area times harvestable fraction (calculated as the ratio of harvested 396 

to planted area). Each of these components can suffer a sudden loss independent of the other but 397 

still have the same consequences for production outcomes, as shown in the illustration below. In 398 

the first scenario, a smaller amount of area is planted compared to the other two scenarios, but 399 

there are no shocks to harvestable fraction or yield. In the second scenario, only half of the planted 400 

area was harvestable but yield was unaffected. In the third scenario, there is no difference between 401 

planted area and harvested area but yield is reduced by half. Across all of these scenarios, shocks 402 

in different components contribute to the same amount of production loss. In addition, should more 403 

than one component experience a shock at the same time, this would collectively amplify the 404 

resultant production shock. Note that these scenarios presume single season per year, and the sum 405 

of seasonal production is additionally required for multi-cropping systems. 406 

 407 

  408 
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