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3.6.4 Comparison with Dra̧żkowska et al. 2014 . . . . . . . . . . . . 56
3.6.5 Maximum Particle Size Achieved . . . . . . . . . . . . . . . . 59

4 APPLICATION OF DUST MODEL I: OPACITY, THERMAL
PROFILE AND GRAVITATIONAL INSTABILITY . . . . . . . . 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Global Simulations: Initial Conditions . . . . . . . . . . . . . . . . . 64

4.2.1 The Gas Disk at t = 0 . . . . . . . . . . . . . . . . . . . . . . 67

ix



4.2.2 Turbulence Profile (α): Ionization-Recombination Chemistry . 71
4.2.3 Dust Disk at t = 0 . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.4 Relative velocity of Collision . . . . . . . . . . . . . . . . . . . 76
4.2.5 Collision Outcomes: Sticking & Fragmentation . . . . . . . . . 78

4.3 Opacity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Temperature Calculation: Radiative Transfer . . . . . . . . . . . . . . 80
4.5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 Steady State Timescales . . . . . . . . . . . . . . . . . . . . . 82
4.5.2 Maximum Particle Size Variation with α . . . . . . . . . . . . 83
4.5.3 Maximum Particle Size Variation with Radial Distance . . . . 84
4.5.4 Presence of Small Grains in Upper Atmosphere . . . . . . . . 84
4.5.5 Vertical Dust Distribution for Variable α . . . . . . . . . . . . 85
4.5.6 Opacity, Thermal Profile & Gravitational Stability . . . . . . 86

4.6 DISCUSSIONS & MODEL LIMITATIONS . . . . . . . . . . . . . . . 89

4.6.1 Only Sticking and Fragmentation (SF) collision outcomes . . . 90
4.6.2 Viscous Heating . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6.3 Grain Composition: Silicate Particles . . . . . . . . . . . . . . 91
4.6.4 Radial Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6.5 Choice of vfrag . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.6.6 Power-Law Index . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 APPLICATIONS OF DUST MODEL II: REDUCTION IN GAP
OPENING MASS DUE TO DUST SETTLING . . . . . . . . . . . 112

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2 The Gap-opening Criteria . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.1 Viscous Heating . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.2 Calculation of New Hydrostatic Equilibrium . . . . . . . . . . 121
5.3.3 Achieving Convergence in Settling & Diffusion . . . . . . . . . 122
5.3.4 A Newer Version of RADMC: RADMC-3D . . . . . . . . . . . 123

5.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4.1 Variation of hg with Turbulence Strength α . . . . . . . . . . 124
5.4.2 The Gap-Opening Condition with q . . . . . . . . . . . . . . . 125

x



5.4.3 Gap-Opening Criteria Against Disk Mass . . . . . . . . . . . . 126
5.4.4 Thermal vs Viscous Condition . . . . . . . . . . . . . . . . . . 127

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 CONCLUSION & FUTURE DIRECTIONS . . . . . . . . . . . . . . 137

6.1 Plans for Work in the Immediate Future . . . . . . . . . . . . . . . . 140
6.2 Long Term plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Appendix

A 1D DIFFUSION EQUATION FROM NAVIER-STOKES . . . . . 157
B DERIVATION OF RADIAL DRIFT VELOCITY . . . . . . . . . . 159
C GROWTH AND SETTLING TIMESCALES . . . . . . . . . . . . . 161
D GENERATING RANDOM NUMBER FROM

MAXWELL-BOLTZMANN DISTRIBUTION . . . . . . . . . . . . 163
E VARIABLE TURBULENCE PROFILE . . . . . . . . . . . . . . . . 166
F UTILITARIAN OPACITY MODEL: CUZZI ET AL. 2014 . . . . 171
G PERMISSION LETTERS . . . . . . . . . . . . . . . . . . . . . . . . . 175

xi



LIST OF TABLES

3.1 Variables used in numerical algorithm . . . . . . . . . . . . . . . . 45

4.1 Simulations Performed . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Variables used in theoretical modeling . . . . . . . . . . . . . . . . 73

4.2 Variables used in theoretical modeling . . . . . . . . . . . . . . . . 74

5.1 Simulations Performed . . . . . . . . . . . . . . . . . . . . . . . . . 129

xii



LIST OF FIGURES

1.1 Solid dust grains are the major controller of the optical and radiative
properties of the protoplanetary disks. They also controls the disk
chemistry by assisting the recombination of charged species, which
plays a key role in explaining the observed diversity of planetary
compositions. The physics of dust growth and dynamics and disk
turbulence are mutually interconnected and they influence each
other. Turbulence affects the growth, whereas, the evolving size
distribution of growing solids influences the MHD turbulence by
setting the abundance of charged species. Most importantly, solid
dust grains provide the solid inventory for planet formation. . . . . 3

2.1 The different components for particle relative velocity of collision.
Brownian motion is not shown here. The Figure is taken from
Birnstiel et al. [2010] with permission. . . . . . . . . . . . . . . . . 31

2.2 The Green’s function solution for the accretion equation. While
most of the matter moves inward and accretes on to the star, a small
amount of matter goes radially outward, carrying most of the
angular momentum away as t→∞. . . . . . . . . . . . . . . . . . 32

3.1 A schematic of the settling algorithm implemented in our work. The
vertical dashed black line is the height of the middle of the cell the
particle inhabits. Before each settling step, dust particles of radius a
are spread from the top to the bottom of the vertical column
according to the background dust distribution. A particle of size a is
then redistributed according to the prescription given by Equations
2.63 and 2.64 (solid blue line). Red lines mark boundaries between
cells, and the shaded region shows the probability that the particle
will be moved from the original cell to that particular cell. A similar
Gaussian is considered for each of the Ns dummy particle used in the
settling algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xiii



3.2 Local dust distribution steady state comparison with Windmark
et al. [2012a]. Simulations are for an MMSN disk at radial position
1 au with Σ = 1700 g cm−2, α = 10−4, ρm = 1 g cm−3, T = 280K
and dust to gas mass ratio 0.01. vfrag is taken as 100 cm s−1. The
solid black line shows the data electronically extracted from
Windmark et al. [2012b] and the line with error bars shows the
results from our simulation. The average of 10 simulations with
80000 particles each is plotted. . . . . . . . . . . . . . . . . . . . . 51

3.3 A plot of vertical density profile as a function of height expressed in
terms of vertical scale height with only the turbulent diffusion terms
present. The dust density distribution follows the background
Gaussian gas distribution when the vertical settling term is ignored.
The systematic velocity part contains only the force towards the
density maximum (the inhomogeneous diffusion part) along with the
stochastic turbulent stirring term (turbulent diffusion part). The
solid curve is the Gaussian fit which represents the vertical
stratification of background gas density. This plot ensures the
proper working of our diffusion algorithm and its implementation in
our code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 A test for convergence in vertical settling and diffusion timestep. As
our model implements diffusion in position space, the results are
largely independent of the time step dtsettle we choose for vertical
dust dynamics. The black solid curve shows the initial dust
distribution. The results after 104 years are plotted for different
δtsettle normalized by 1 year. We find an excellent convergence in our
settling and diffusion algorithm. As a result, the algorithm for
vertical dust dynamics, which is otherwise computationally
expensive, can be made more efficient by choosing a larger time step.

54

3.5 The evolution of dust distribution is tracked in a normalized mass
scale. The plot shows (in gray scale) the evolution of m2f(m) at
normalized times 1, 10, 102, 103, 104 and 1.6× 104. f(m) here
represents the dust mass distribution at any instant of time. . . . . 55

xiv



3.6 The blue solid line shows the analytical scale-height for a set of
parameters listed on the figure. The scale heights for different
particle sizes obtained from our settling/diffusion routine are also
shown by + sign. For particles of sizes between 10 to 100µm, the
scale height is slightly smaller than the ones predicted by the
analytical solution, the result being consistent with the findings of
Mulders and Dominik [2012]. . . . . . . . . . . . . . . . . . . . . . 57

3.7 Steady state dust distribution for a vertical column at 5 au for an
MMSN disk with α = 10−4, normalized by midplane value. The
black dashed line shows the analytical dust scale height calculated
using equation 2.67. The solid black lines, from bottom to top, show
the heights where dust density becomes 1/

√
e, 1/e2 and 1/e4.5 of its

midplane value. The white dashed line represents the value
√
〈z2〉

calculated for each dust size from the simulation data. . . . . . . . 58

3.8 The steady state dust distribution for a MMEN model. The plot
shows the vertically averaged dust surface density for a vertical
column at 1 au with Σ = 9900 g cm−2, α = 0.01, ρm = 1 g cm−3,
T = 280 K and a standard dust to gas mass ratio 0.01. vfrag is taken
to be 50 cm s−1. The solid black line shows the data electronically
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ABSTRACT

Despite making a small contribution to total protoplanetary disk

mass, dust affects the disk temperature by controlling the absorption of

starlight. As grains grow from their initial ISM-like size distribution,

settling depletes the disks upper layers of dust and decreases the optical

depth, cooling the interior. In this dissertation, we will discuss the effects

of collisional growth of dust grains and their dynamics on the thermal

and optical profiles of the disk, the vertical distribution of dust grains,

and the possibility that cooling induced by grain growth and settling

could lead to gravitational instability in an otherwise marginally stable

disk. We also discuss how the critical gap-opening mass of a growing

planet changes with the growth, settling and inward radial drift of solids

in the course of a disk’s evolution.

First, we present a new fast and numerically inexpensive Monte

Carlo method with a weighting technique, which models collisional growth

of dust, along with vertical settling, turbulent diffusion and radial drift.

We present a comprehensive description of the structure of the mas-

sively parallel code we have developed. Next, as the first application of

our dust model, we explore three disk models, the Minimum Mass Solar

Nebula (MMSN), the Minimum-Mass Extra-solar Nebula (MMEN), and

xxiii



a heavy disk with higher surface density than the MMEN, and perform

simulations for both constant and spatially variable profiles of the turbu-

lence efficiency, α. The variable profile is computed from the ionization

fraction determined by an ionization-recombination chemical network.

We then calculate wavelength-dependent opacities for the evolving disks

and perform radiative transfer to calculate the temperature profile. We

find that the growth of large particles in the mid-plane can make a mas-

sive disk optically thick at millimeter wavelengths, making it difficult to

determine the surface density of dust available for planet formation in

the inner disk. Finally, we calculate the Toomre Q parameter, a mea-

sure of the disk’s stability to gravitational perturbations, for each disk

model after it reaches a steady state dust-size distribution, and show

that for an initially massive disk, grain growth and settling can reduce

the Toomre Q parameter, making the disk unstable under its self-gravity

and possibly triggering spiral instabilities.

In the second application, we apply our dust model to calculate

the new hydrostatic equilibrium for vertical gas columns and show that

the local gas scale heights become significantly less compared to the

canonical value of h(R)/R ∼ 0.05 for isothermal disk models, and can

become as low as 0.005 in a disk with weak turbulence. We also find

that the gap opening criteria is not sensitive to the mass of the disk, but

basically depends on the turbulence strength. We discuss this result in

the context of the minimum mass for a planet to open a gap in a settled

xxiv



disk, and its possible implications for planet migration.

xxv



Chapter 1

INTRODUCTION

The field of planet formation has come to the forefront of astrophysical research

since the first extrasolar planet 51 Pegasi b was discovered [Mayor and Queloz, 1995].

Following this discovery, the catalog of newly discovered planets has kept growing,

thanks to several planet hunting missions, most notably, the recently decommissioned

Kepler Space Telescope. The previously unknown new population of a few thousand

planets in our galaxy revealed the unexpected distribution of planetary objects around

their host stars and extended our outlook beyond the centuries old single sample,

our own solar system. This overwhelming achievements in the observational aspects

presented us with the obligations of explaining the existence and formation of these

extra-solar planetary systems in a sound theoretical framework.

The process of planet formation starts with the formation of the star when a

molecular cloud collapses due to its own self-gravity. Conservation of the large amount

of angular momentum of the parent cloud dictates that, in most cases, the star is

formed surrounded by a disk of dust and gas. These disks, also known as circumstellar

or protoplanetary disks, are the birth places of the planets where the dusty components

provide the necessary solid inventory for planet formation. So, it is very reasonable

to assume that the observed diversity in the planetary architecture and compositions

must be associated with their birth environment. To gain knowledge of how these disks

evolve and how planets are formed in the course of their evolution, understanding

the complex physical and chemical processes in the nascent planet forming disk is

profoundly important.

As the building blocks of planetesimals and planetary size objects, solid dust

grains are an important part of the planet forming disks. In the process of forming
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the planets, (sub)-micron dust grains grow by several decades in mass. Although a

consensus on the formation mechanism of km-size planetesimals is yet to emerge, the

importance of the growth process upto few tens of cm is well appreciated and agreed

by the community. As below 2000 K, dust is the major source of disk opacity, which

depends on their evolving size distribution, disk opacity is basically set by the spatial

and temporal abundance of solid grains. Moreover, dust grains controls disk chem-

istry and the abundance of volatile elements and water in the early proptoplanetary

environment.

In order to understand the dust evolution, turbulence in the disk demands spe-

cial care. The physics of growth and dynamics of solid bodies and disk turbulence

are mutually interconnected. After the initial growth phase, where Brownian motion

dictates the dust velocities and the tiny sub-micron dust grains grow upto a few tens

of micron, turbulence in the disk gas starts playing the key role in setting the relative

velocities of particle collisions. The effect of turbulence on the dynamics of the dust

particles is generally quantified by a dimensionless Stokes number which determines

the strength of coupling between the dust and the gas. Tightly coupled particles, with

very low Stokes number, follow the gas motion and are the ones most susceptible to gas

turbulence. Solid dust grains, on the other hand, provides an inverse feedback to the

gas motion in two ways. First, the loosely coupled particles alters the gas dynamics by

providing a drag force to the gas; second, the level of magnetohydrodynamic (MHD)

turbulence is affected by the abundance of the charged species, which is controlled by

dust. Dust particles provide the surface area for adsorption of charged species and

thus assist the process of recombination. The very existence of the solid dust grains in

the disk is the main source of the non-ideal MHD effects in disk turbulence. Moreover,

several proposed hydrodynamic processes, such as vertical shear instability and pho-

toelectric instability depends on the size, abundance and vertical distribution of dust

particles.

Modeling grain growth, covering several decades in mass, in a global protoplane-

tary nebula, ranging over several tens of au, is a mammoth task. These simulations are
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Figure 1.1: Solid dust grains are the major controller of the optical and radiative prop-
erties of the protoplanetary disks. They also controls the disk chemistry by assisting
the recombination of charged species, which plays a key role in explaining the observed
diversity of planetary compositions. The physics of dust growth and dynamics and disk
turbulence are mutually interconnected and they influence each other. Turbulence af-
fects the growth, whereas, the evolving size distribution of growing solids influences
the MHD turbulence by setting the abundance of charged species. Most importantly,
solid dust grains provide the solid inventory for planet formation.
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generally performed following two different numerical techniques: (i) solving a partial

differential equation (Smoluchowski’s equation) by an implicit integration method or

(ii) a Monte Carlo technique. Both of these modeling approaches have their merits and

demerits. The implicit integration technique is numerically less expensive, although

has the inherent problem of artificial diffusion in under-resolved simulations. It is also

hard to include particle properties, such as charge, porosity, or different compositions

without making the method prohibitively expensive. A Monte Carlo method, on the

other hand, requires significantly more computer resources to simulate growth and

dynamics. One inherent problem of any Monte Carlo method is that the simulation

needs to follow each collision event in the course of evolution which puts a limit on the

efficiency of the code. However, it is an ideal method to keep track of the individual

particle properties.

The main expense of a Monte Carlo method comes from the N2 nature of the

model, where N is the number of Monte Carlo particles used in the simulation. To

circumvent this problem, as the main part of this dissertation, we have developed a fast

and efficient Monte Carlo method with a weighting technique which is essentially linear

in nature. With the help of this method, we have developed a global numerical model

for the growth and dynamics of solid dust grains in the disk. Our model implements

the collisional physics with sticking and fragmentation. In order to track the dynamics

of growing particles, the model also employs a Monte Carlo position-space Lagrangian

technique to simulate vertical settling and turbulent stirring. The model, in its current

state, implements the inward radial drift of dust as well.

Our model also computes the monochromatic opacities of the evolving dust

grains and we perform dust continuum radiative transfer calculations in order to com-

pute the thermal profile of the disks. We assume local thermodynamics equilibrium

(LTE) in which the local gas and dust temperatures are equal.
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1.1 Structure of this Dissertation

This primary objective of this dissertation is to develop a fast and efficient

numerical model for the growth and dynamics of solid dust grains in protoplanetary

nebulae, starting at an early phase, and apply it in order to understand the role of dust

in some key physical disk processes. In order to present our work in a comprehensive

way, we structure this dissertation as below:

Chapter 2

In this chapter we present a general overview of the theory of evolution of dust

and gas in protoplanetary nebulae. We first review accretion disk theory, followed

by the theory for dust growth and dynamics. We primarily focus on the theoretical

aspects of the literature which are particularly important in the context of our model

building and explaining the results in the later chapters.

Chapter 3

In this chapter, we first present the algorithm of our Monte Carlo dust model

followed by a description of the Monte Carlo position-space Lagrangian method which

implements the vertical dynamics of dust grains. The chapter also elaborates the

method we employ in order to calculate monochromatic opacities of evolving dust

grains following the ‘utilitarian opacity model’ of Cuzzi et al. [2014]. We then describe

the working principles of the publicly available code RADMC and the way we have

used it in our model. The implementation of the model in a computer code is also

presented in detail with special focus on our parallelization algorithm.

Finally, we test our code extensively against results from existing literature

where other methods have been used to simulate dust physics. We also test our code

against analytical results in order to confirm its fidelity and usability.

Chapter 4

In chapter 4, we present our first application of our dust model. We present a to-

tal of 11 global simulations adopting three different disk models with a −3/2 power-law

surface density profile: Minimum Mass Solar Nebula (MMSN), Minimum Mass Extra-

solar Nebula (MMEN) and a ‘heavy’ disk model. We calculate the monochromatic
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opacities and spectral opacities of the evolving grain size distribution as a function

of radial distance and vertical height. We also present the changes in optical depth

at the disk midplane and discuss the possible implications for disk observations and

measurement of disk masses.

Finally, we investigate how Toomre-Q, a parameter which measures the disk’s

stability against self-gravity, changes with grain growth and settling. We report that

in all the simulations performed, Q suffers a small but noticeable reduction which can

potentially make an initially marginally stable disk unstable to gravitational perturba-

tions.

Chapter 5

In this chapter, we present a second application of our dust model and include

radial drift of dust particles as well. We present an investigation of how grain growth

and settling can reduce the gap-opening mass of a growing planetary candidate. To

conduct our research, we use four different disk models with a similar power-law to

chapter 4 and adopt four different values for turbulence strength for each disk. The

main idea follows from the fact that dust settling alters the hydrostatic equilibrium

of a particular vertical column leading to a reduced pressure scale height (hg) and a

thinner gas disk. A planet with a Hill radius greater than the local scale height starts

to open a gap in the disk, dividing the disk into an inner and outer part. A reduction

in hg would allow a smaller planet to open a gap. We investigate this aspect of the

post-formation planetary evolution and find that the disk scale height can get reduced

almost by an order of magnitude due to dust growth and settling in a disk with weak

turbulence. We also find this effect insensitive to the mass of the disk. We discuss our

findings in the context of the observed exoplanet populations.

Chapter 6

We finish this dissertation with concluding remarks in chapter 6. We discuss

the possible avenues in which our model and code can be further extended in order to

make it more realistic.
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Chapter 2

DUST AND GAS IN PROTOPLANETARY DISK: A GENERAL
OVERVIEW

2.1 Introduction

The process of planet formation starts with the gravitational collapse of a molec-

ular cloud, leading to a young star, surrounded by a disk of dust and gas. The disk

around the new-born star is the result of the conservation of angular momentum of the

parent cloud. Although the star contains ∼ 99% of the total mass of the newly formed

star-disk system, the disk has almost all of the angular momentum. Taking our own

solar system as an example, the orbital angular momentum of Jupiter alone is ∼ 102

times higher than that of the solar rotation despite being about 300 times less massive

than the sun. The molecular cloud itself, due to its large length scales, is a reservoir of

a large amount of angular momentum. For example, let’s consider a molecular cloud

with mass Mc ∼ 1.5M� and 0.1 pc wide (1 pc ∼ 3.26 light years) with a typical angular

momentum per unit mass 1021 cm2 s−1. The total angular momentum of the cloud can

thus be estimated as LMC ∼ 1054 g cm2 s−1. If the collapse of this cloud forms a 1 M�

star with a disk, and LMC is fully conserved and contained in the star-disk system, the

angular momentum contained in the disk (Ldisk)

Ldisk =

∫ R0

0

dmR2Ω(R), (2.1)

gives R0, the extent of the disk, as ∼ 104 au. Star formation through cloud collapse,

however, is a complex process, where a single collapse event generally forms multiple

stars, and a substantial fraction of angular momentum is carried away by jets and

winds. Also, magnetic fields with their ideal and non-ideal effects play an important
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role in setting the collapse timescales which agrees well with the timescales calculated

theoretically. If, in the above example, the disk accounts for only 30% of the total

angular momentum of the parent cloud, the resulting R0 can be calculated as ∼ 102 au,

which agrees reasonably well with the observations of protoplanetary disks. Thus, it

can be safely asserted that, the formation of the disk is a robust process parallel to the

formation of stars in most cases.

2.2 The Gaseous Disk

In this section, we describe the basic physics related to the gaseous accretion

disk and its evolution through angular momentum transport. We discuss the radial

and vertical structure of the gas along with its radial temperature profile. We shall also

present a discussion of the diffusive timescale of the disk and the need for turbulence

to match the observed disk lifetimes.

2.2.1 Radial Structure

A typical gaseous protoplanetary disk can extend upto several hundreds of au

in the radial direction. If we consider the disk to be made up of a series of thin gaseous

circular strips, each annulus at a particular radial distance would rotate with different

orbital speeds and hence with different frequencies. Consider a parcel of gas of mass

m at a distance R from the star of mass M?. The balance between the force of stellar

gravity and centrifugal force gives

mΩ2R =
GM?m

R2
. (2.2)

Here Ω is the local orbital frequency, also known as Keplerian frequency, which, from

equation 2.2, is

Ω =

√
GM?

R3
. (2.3)

The velocity with which the fluid parcel rotates, also identified as the azimuthal ve-

locity, can thus be written as vφ = RΩ =
√
GM?/R. This variation of orbital velocity
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with distance results in a differentially rotating disk. Also, the specific angular mo-

mentum of the fluid parcel cal be written as l = R2Ω =
√
GM?R. If we consider two

adjacent rings of gas, the outer ring, moving slower than the inner one, would interact

with the inner ring through friction or viscosity. This would accelerate the outer ring

while the inner ring will be decelerated. Through this mechanism, the fluid parcels

lose angular momentum and spiral into the star, while a small amount of matter moves

radially outward carrying the angular momentum in order to conserve it. This is the

classic picture of what is generally known as accretion disk theory. In later parts of this

dissertation we shall discuss the theory of accretion and angular momentum transport

in more detail.

In general, a protoplanetary disk is modeled in 1, 2, or 3 dimensions using cylin-

drical or spherical coordinate systems. However, it is both analytically and numerically

convenient to model the disk in 1-D where the basic equations are written in terms of

vertically integrated quantities. The gas surface density Σg is obtained by vertically

integrating the gas density ρg as

Σg(R) =

∫ ∞
0

ρg(R, z) dz (2.4)

The true variation of Σg as a function of radial distance is still a matter of active

debate. However, one of the most common forms that is adopted for theoretical and

numerical modeling is a power law profile

Σg(R) = Σ0

(
R

1 au

)−p
. (2.5)

where, Σ0 is the surface density at 1 au and p is the surface density power-law in-

dex. The most widely used power law form of surface density, following the planetary

mass distribution of the solar system, is the so-called Minimum Mass Solar Nebula

(MMSN) model [Hayashi, 1981] where Σ0 = 1700 g cm−2 and p = 3/2. However,
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several research predict that the MMSN model underestimates the disk mass by sig-

nificant factors. From the population of extra-solar planets, assuming their in situ

formation, a more massive model with similar power-law index is predicted by Chiang

and Laughlin [2013], known as Minimum Mass Extra-solar Nebula (MMEN), for which

Σ0 is taken as 9900 g cm−2. However, Raymond and Cossou [2014] has shown that,

for planetary systems with 3 - 6 planets (or planetary candidates), p lies between −3.2

and 0.5. With the current population of confirmed exoplanets, and with an in situ

formation approximation, the median power-law index comes around 1.7. However, it

is important to note that our current ability of exoplanet detection is biased towards

relatively massive planets in close-in orbits, which would definitely result into a steeper

power law profile. Moreover, the addition of planet migration in the post formation

phases would end up with a heavier inner disk compared to the initial stages.

Another widely used disk surface density profile comes from the similarity so-

lution for a viscous accretion disk, described by Lynden-Bell and Pringle [1974] and

further generalized by Hartmann et al. [1998]. This surface density adopts a shallower

power law profile along with an exponential term:

Σ(R) =
Mdisk

πR2
0

(
2− p

2

)(
R

R0

)−p
e−(R/R0)2−p

(2.6)

Here Mdisk is the disk mass and R0 is an arbitrarily chosen radius for normalization.

To characterize the plausible radial variations of the nebula the power-law is chosen

such that p ∈ [0, 3/2] [Cuzzi et al., 2003, Estrada et al., 2016]. Hartmann et al. [1998]

chose Mdisk = 0.2M� and p = 1 with R0 = 10 au. Often the scale parameter R0 is also

chosen according to other criteria. For example, Cuzzi et al. [2003] chose R0 = 4.5 au to

match the specific angular momentum of solar nebula. In general, the nominal values

adopted by several authors lie between 20 - 60 au [Ciesla and Cuzzi, 2006, Garaud,

2007, Brauer et al., 2008, Hughes and Armitage, 2012, Yang and Ciesla, 2012]. As the

values adopted for the parameters above varies widely, a consensus on this issue is yet

to emerge. It is important to note that, equations 2.5 and 2.6 provide only favorable
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initial conditions for Σg(R) which does not remain the same owing to its complex

temporal evolution.

2.2.2 Radial Evolution

The most important aspect of any accretion disk is the radial evolution of the

gas through the transport of angular momentum. According to the accretion disk

theory developed by Lynden-Bell and Pringle [1974] and Pringle [1981], based on the

conservation of mass and momentum of disk gas, the equation governing the evolution

of surface density is

∂Σg

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R

(
νΣgR

1/2
)]
. (2.7)

Here, ν is the kinematic viscosity. Equation 2.7 is a diffusion equation for Σg and is

linear if ν is independent of Σg. Also, the radial velocity of a fluid element in the disk

undergoing accretion can be written as

vg = − 3

R1/2Σg

∂

∂R

(
R1/2νΣg

)
(2.8)

The corresponding mass accretion rate of the disk is Ṁ = −2πRΣgvg, where a positive

value of Ṁ indicates accretion onto the central star. (See Appendix A for a detailed

derivation of equations 2.7 and 2.8 from the Navier-Stokes equation.)

Analytic solution of equation 2.7 is possible if the viscosity ν can be expressed

as a power-law in radial distance. However, by assuming a constant viscosity, it is

possible to understand the basic essence of the accretion process by seeking a Green’s

function solution. Setting ν =constant, lets assume that we start with a system where

all the disk mass Md is contained in a thin ring at a distance R0 from the central star.

In this case the, the initial surface density can be written as

Σ(R, t = 0) =
Md

2πR0

δ(R−R0) (2.9)
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where we have used a δ-function to denote the concentration of the total mass as

R = R0. The solution to equation 2.9 is (Following Armitage [2011])

Σ(x, τ) =
Md

πR2
0

1

τ
x−1/4e−(1+x

2)/τ)I1/4

(
2x

τ

)
. (2.10)

Here two dimensionless variables have been used; x = R/R0 and τ = 12νt/R2
0. I1/4 is

a modified Bessel’s function of the first kind. As t → ∞, the mass of the ring flows

towards R = 0 and a small amount of mass carries away all the angular momentum to

R → ∞. This separation of mass from the angular momentum is the basic feature of

the viscous evolution of the accretion disk.

2.2.3 Viscous Time Scale: Need for Turbulence

Starting from equation 2.7, a variable transformation R̃ = 2R1/2 and Σ̃g =

(3/2)ΣgR̃ along with the assumption that ν is constant, the 1-D diffusion equation can

be expressed in the form of a canonical diffusion equation,

∂Σ̃g

∂t
= K

∂2Σ̃g

∂R̃2
(2.11)

where K is the diffusion coefficient and can be written as K = 12ν/R̃2. From equation

2.11, the diffusion time scale accross a scale ∆R̃ can be estimated as τν ∼ (∆R̃)2/K.

Transforming back to the original variables, we get

τν ∼
(∆R)2

ν
. (2.12)

Assuming a typical value for molecular viscosity ν = 0.01 cm2 s−1, the viscous timescale

becomes ∼ 1013 years, which is larger than the age of the universe. The observed disk

lifetime, on the other hand, is ∼ 3 Myr, clearly points towards some other source

of viscosity. It is widely believed that the viscosity ν in equation 2.12 originates from

turbulence in the disk, both hydrodynamic and magneto-hydrodynamic in nature. The

typical range of values for ν in equation 2.12 required to match the viscous time scale
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with the disk lifetime is ∼ 1010 − 1014. These large values are plausible if and only if

viscosity is originated from the collisions of eddies of different length scales resulting

from turbulence. This type of phenomenological viscosity is also sometimes referred to

as “eddy viscosity”.

In the context of viscous evolution, disks are generally modeled by the famous

α prescription put forward by Shakura and Sunyaev [1973]. The viscosity in an α-disk

is computed from a phenomenological turbulence model and is written as

ν = αcshg (2.13)

where α is a constant denoting the turbulence efficiency. This prescription assumes the

local gas scale height hg as a characteristic length scale and the local thermal speed cs

as a characteristic velocity with the sound propagation time as the characteristic time

scale. In that context, α denotes the efficiency with which the free energy from the

background shear is injecte into the system and cascades down to the Kolmogorov scale

through the inertial range. Typical values of α lies between 10−6 to 10−1 depending on

the physical mechanism responsible for the turbulence in the disk.

Apart from the radial viscous evolution, the turbulence also affects the radial

and vertical mixing of dust particles. For Kolmogorov type turbulence approximation

in the disk, the assumed homogeneity produces a turbulence profile essentially the

same in all aspects. However, the presence of the magnetic field would would intro-

duce an inhomogeneity in the system. This will generate eddies which are elongated

in the direction perpendicular to the mean magnetic fields, producing different tur-

bulence strengths in the radial and vertical directions. Moreover, the shear inherent

to the differentially rotating disk would also introduce a shear driven anisotropy in

the system. As a result, in the most realistic scenario the turbulence, responsible for

angular momentum transport and radial or vertical mixing can differ by a few order of

magnitudes.
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2.2.4 Restating the Mass Conservation for the Disk

The general mass conservation in fluid dynamics reads as

∂ρ

∂t
+∇ · (ρv) = 0 (2.14)

where, v is the fluid velocity. We now assume azimuthal symmetry for simplification

and express equation 2.14 in terms of disk surface density Σ and restate the mass

conservation in the context of an accretion disk. As we have seen before, Σ can be

expressed as

Σ =
1

2π

∫ 2π

0

∫ +∞

−∞
ρ dz dφ (2.15)

where ρ is the gas density. Due to the disk geometry, it is convenient to work on a

cylindrical co-ordinate system, in which, equation 2.14 reads

∂ρ

∂t
+

1

r

∂

∂r
(rρvr) +

1

r

∂

∂φ
(ρvφ) +

∂

∂z
(ρvz) = 0. (2.16)

Here, vr, vφ and vz are the r, φ and z components of the gas velocity. Now we make

an assumption that there is no mass loss in the vertical direction to z = ±∞. With

this, integrating equation 2.16, we get

2π
∂Σ

∂t
+

1

r

∂

∂r
F (2.17)

where

F =

∫ 2π

φ=0

∫ +∞

−∞
rρvr dφ dz (2.18)

= 2πr

∫ +∞

−∞
ρvr dz (2.19)

is the radial mass flux. At this point, we define a density weighted mean radial velocity

v̄r as

v̄r =
1

Σ

∫ +∞

−∞
ρvr dz. (2.20)
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With this the radial mass flux F becomes F = 2πrΣvr and the continuity equation

reads
∂Σ

∂t
+

1

r

∂

∂r
(rΣv̄r) = 0. (2.21)

2.2.5 Angular Momentum Conservation

In this section we discuss the conservation of the angular momentum in an

accretion disk. We also state the necessity of the shearing stress and its role in driving

accretion. The dynamical equation of a fluid flow, also known as the momentum

conservation equation or more famously, the Navier-Stokes equation, can be stated as

ρ
∂ρ

∂t
+ ρ (v · ∇) v = −ρ∇Φ−∇P +∇ · T (2.22)

where P is the fluid pressure and Φ is the external potential. T is the stress tensor with

diagonal elements Trr, Tφφ and Tzz. The viscous stress T can be explicitly expressed

as

T = µ
[
(∇v) + (∇v)T

]
+

(
µb −

2

3
µ

)
(∇ · v) I (2.23)

where µb is the bulk viscosity and µ is the shear viscosity of the fluid. I is the identity

matrix. For circular orbital motion, the only non-vanishing stress component is Trφ

and can be expressed as the product of the viscosity and the shear rate:

Trφ = Tφr = µr
dΩ

dr
. (2.24)

Converting equation 2.22 into cylindrical co-ordinate, the azimuthal component can be

written as

ρ

(
∂v

∂t
+ (v · ∇) v +

vrvφ
r

)
=
ρ

r

∂Φ

∂φ
− 1

r

∂P

∂φ
+

1

r2
∂

∂φ

(
r2Trφ

)
+

1

r

∂

∂φ
Tφφ +

∂

∂z
Tφz (2.25)

Assuming the potential Φ to be axisymmetric, the first term on the RHS of equation

2.25 vanishes. With the fact that the azimuthal velocity vφ = rΩ and the specific
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angular momentum h = r2Ω, equation 2.25 can be recast as

ρvr
dh

dr
=

1

r

∂

∂r

(
r2Trφ

)
+

1

r

∂

∂r
(−rP + rTφφ) +

∂

∂z
(rTφz) . (2.26)

Multiplying equation 2.26 with r and integrating over the full extent of φ and z, we

get

F dh

dr
= −∂G

∂r
(2.27)

where we have used the viscous torque G as

G = −
∫ 2π

0

∫ +∞

−∞
r2Trφ dz dφ. (2.28)

At this point we define a density weighted mean kinematic viscosity as

ν̄ =
1

2πΣ

∫ 2π

0

∫ +∞

−∞
µ dz dφ. (2.29)

With this definition, the viscous torque in equation 2.28 becomes

G = −2πr3ν̄Σ
dΩ

dr
. (2.30)

Using this equation 2.27 can be rewritten as

Σūr
dh

dr
=

1

r

∂

∂r

(
ν̄Σr3

dΩ

dr

)
. (2.31)

Equation 2.31 is the statement of angular momentum conservation for a viscously

evolving accretion disk. Note that the viscous torque in equation 2.28 is negative

which is responsible for the inward mass flow in the disk.
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2.2.6 Viscous Energy Dissipation, Accretion Luminosity & Temperature

Profile

The luminosity of the accretion disk depends on the amount of energy viscously

dissipated in the process of accretion. Understanding the combined effect of viscous

dissipation and radiative cooling is profoundly important in the context of interpreting

disk observations. In this section, we give a quantitative estimate of the viscous heat

dissipation and the resulting accretion luminosity.

To start with, the energy dissipation can be estimated as the product of stress

and strain. As we have seen earlier, the only component of the stress tensor responsible

for driving accretion is the off-diagonal term Trφ. Also, the strain can be expressed as

the velocity gradient in the radial direction and can be written as r dΩ/ dr. Hence, the

viscous energy dissipated per unit time comes out as

Q̇visc = νΣr2
(
dΩ

dr

)2

(2.32)

With Ω =
√
GM/r3 for a Keplerian disk, dΩ/ dr = −(3/2)(Ω/r). Thus, the energy

dissipation rate is

Q̇visc =
9

4
Ω2νΣ. (2.33)

In case of disk observations, ν can be estimated from time dependent phenomena; e.g.,

in dwarf nova outburst, in which case the viscosity comes out as ν ∼ 1015 cm2 s−1.

However, from the observed luminosity of the disk, it is possible to estimate the mass

accretion rate Ṁ . Equation 2.33 above, in terms of Ṁ can be cast as

˙Qvisc =
3ṀΩ2

4π

[
1−

(rin
r

)1/2]
. (2.34)

where rin is the inner radius of the disk. Considering that the viscously dissipated

energy set the temperature of the disk, the radial temperature profile for a classical

17



accretion disk becomes

T 4 =
3GM?Ṁ

8πσr3

[
1−

(rin
r

)1/2]
(2.35)

considering that the viscous heat escapes from both faces of the disk. Here σ is the

Stefan-Boltzmann constant. Equation 2.35 states that at sufficiently large distances

(r >> rin), the temperature of the disk varies as T ∝ r−3/4. Interestingly, this par-

ticular variation is same for a passive disk in which the only source of heating is the

radiation from the star.

2.2.7 Vertical Structure

In the vertical direction, the length scales of a protoplanetary disk can be esti-

mated, to first order approximation, by considering vertical hydrostatic equilibrium. In

general, the disk geometry can be expressed in simplest form in a cylindrical (R, φ, z)

coordinate system. Identifying the vertical direction of the disk as the z-direction, the

equation for hydrostatic equilibrium can be written as

∂P

∂z
= −ρgz. (2.36)

Here ρ is the gas density, gz is the vertical component of the stellar gravity, and P is

the thermodynamic pressure which, in the isothermal approximation, can be written

as P = ρc2s, where cs is the isothermal sound speed. Equation 2.36 leads to Gaussian

vertical stratification of gas density as

ρ(R, z) = ρ0(R)e−z
2/h2g (2.37)

where, ρ0(R) is the midplane gas density at a distance R from the central star, and

hg = cs/Ω is the gas scale height.
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2.3 The Dust Disk & Dust Growth

Apart from gas, another major component of the disk is the dust. In spite of

making a small contribution to total protoplanetary disk mass, dust affects the disk

temperature by controlling absorption of starlight. For temperatures below 2000 K,

the opacities of the disk material are dominated by the dust particles which play an

important role in disk observations. Furthermore, dust provides the solid inventory in

the disk essential for planet formation. Dust also play an active role in determining

the strength of turbulence in the disk, and hence, the process of angular momentum

transport, by controlling the abundances of ions and electrons. MHD turbulence is

strong when there is a strong coupling between the ionized gas and the magnetic fields,

which is set by the local ionization fraction. Dust play a crucial role in that context by

assisting the recombination process through the adsorption of charged particles. In this

section of the dissertation we give a brief overview on the physical processes governing

the dynamics of dust grains in the disk and the temporal evolution of their abundance

and size distributions.

2.3.1 Coupling between Dust and Gas: The Aerodynamic Drag

The dynamics of dust particles in a disk depends on the level of their coupling

with the gas. Apart form the gravitational force of the central star, gas in the disk is

also subjected to a force due to the radial pressure gradient. Adding this to the radial

force balance equation 2.2, a more complete form can be written as,

v2φ
R

=
GM?

R2
+

1

ρ

dP

dR
(2.38)

where, as before, vφ is the azimuthal gas velocity and ρ is the local gas density. The

last term in equation 2.38 indicates the force term originating from the radial pres-

sure gradient. Assuming the radial profile of P has a power-law, the pressure can be

expressed as

P = P0

(
R

R0

)−q
(2.39)
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where q is the power-law index and P0 is the pressure at an arbitrary radius R0.

Writing P = ρc2s, and substituting back in equation 2.38, the azimuthal velocity can

be calculated as

vφ = vK

(
1− q c

2
s

v2K

)1/2

(2.40)

where, vK =
√
GM?/R is local Keplerian velocity. The term c2s/v

2
K can be written in

terms of the disk aspect ratio as (hg(R)/R)2 where hg(R)/R ∼ 0.05 is a reasonable

estimate for the MMSN model with vertically isothermal assumption. Taking Σ ∼ R−1

and T (R) ∼ R−1/2, the value for q comes out to be −3 and equation 2.40 becomes:

vφ ∼ 0.99vK . Hence, the gas in the disk rotates with a velocity slightly smaller than

the local Keplerian velocity.

Dust, on the other hand, behave mostly as a pressureless fluid and does not

experience the force due to the pressure gradient. Hence, a dust particle embedded in

the disk gas experiences a drag through a head wind and collides with gas molecules

until it losses all of its linear momentum. One important aspect of dust dynamics in

such conditions is to estimate the time scale, known as the friction time scale tf , which

is the ratio of the particle momentum to the drag force and gives an estimate of the

time required to change the relative velocity between dust and gas substantially. The

friction time-scale is

tf =


ρm
ρg

a

cs
, if a 6 9

4
λmfp, (2.41)

8

3

ρm
ρg

a

CDvdm
, otherwise. (2.42)

Here, ρm is the material density of dust, a is the size of the dust grain and λmfp is

the mean free path of gas molecules defined as the average distance traveled by gas

molecules between successive collisions and can be written as λmfp = 1/(nσH2). Here

σH2 is the average cross sectional area for hydrogen molecule, the main constituents of

disk gas and n is the number density.

The friction time (or the stopping time) of a dust particle depends on Knudsen
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number, defined by the ratio of the λmfp and the size of the dust grain a;

Kn =
λmfp
a

(2.43)

The friction time in equation 2.41 is valid for the Epstein regime where a 6 (9/4)λmfp,

or Kn > (4/9). Equation 2.42, on the other hand, represents the friction time for

the Stokes regime where a > (9/4)λmfp. In equation 2.42 vdm is the relative velocity

between dust and gas, and CD is the drag coefficient which depends on the Reynolds

number of dust-gas interaction Re, written as Re = 2acs/νmol, where νmol is the gas

molecular viscosity and is written as

νmol =
c̄sλmfp

2
(2.44)

where c̄s is the mean thermal speed. From equation 2.41 and 2.42 it is clear that the

friction times of dust particles depend both on the size of the particles and the gas

density. If gas density increases, the required number of collisions between the dust

particle and gas molecules to extract all of its momentum is achieved in a shorter

time, effectively decreasing tf . A dust particle with a larger size, on the other hand,

needs more collisions with gas molecules to lose all its excess momentum and hence, tf

increases. It is also evident that tf for particles of different sizes will differ depending

on the location in the disk. Hence, for better comparison of the coupling for particles

of different size and gas density, a dimensionless Stokes number is defined as

St = tfΩ. (2.45)

Particles with St = 1 come to match the gas velocity in one local orbital period. For

a wide range of gas densities, sub-micron dust grains have St << 1 and hence, come

quickly to rest in the co-moving gas reference frame.
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2.3.2 Relative Velocity of Collision

Starting from micron and sub-micron size, how dust particles grow through

several decades in mass range by collision is a topic of special interest. The outcome

of a binary collision depends on the relative velocity with which a pair of dust grains

collide. Dust particles, embedded in the disk gas can have five different types of velocity

contributions which depends on the size and coupling efficiency of the dust particles.

For example, the tiny sub-micron and micron size particles execute random zig-zag

motions in the gas and in that phase the contribution from the Brownian motion is

the most important part. As the dust particles grow bigger in size and start to get

decoupled from the gas, the contributions from the individual dust motions in radial,

vertical and azimuthal directions and from the gas turbulence become more important.

The important components of relative velocities that influence the dust growth are

Brownian motion (∆vB), radial drift (∆vR), vertical settling (∆vz), azimuthal drift

(∆vφ) and turbulent gas motion (∆vt). The final relative velocity of collision, combining

all these components, can be written as

vrel = {∆v2B + ∆v2R + ∆v2z + ∆v2φ + ∆v2t }1/2. (2.46)

Below we shall quantify the different components of the velocity acquired by the dust

grains.

2.3.2.1 Brownian Motion (∆vB)

Small dust grains, completely coupled to the gas, are constantly bombarded by

the gas molecules from all directions and acquire a net systematic velocity component,

often known as the Brownian motion. The differential equation expressing this motion,

with the collisions with the gas molecules introduced as a random forcing, is known

as Langevin’s equation. The solution of Langevin’s equation predicts a non-zero mean

squared velocity component for the suspended dust particles. The relative velocity

between two dust particles of masses m1 and m2 arising from Brownian motion is
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given by

vB =

√
8kBT (m1 +m2)

πm1m2

(2.47)

The Brownian motion is important for small dust grains and hence dominates in the

early stages of the evolution of the dust size distribution. As can be seen from equation

2.47, for similar masses m1 and m2, vB ∝ 1/m. Hence, when the dust particles have

grown to ∼ 10µm, the relative velocity contribution from Brownian motion starts to

fade away.

2.3.2.2 Radial Velocity (∆vR)

As seen in section 2.3.1, due to a sub-Keplerian gas velocity, the dust particles

experience a headwind and constantly get bombarded by the gas molecules. In this

process, dust grains lose their angular momentum and start moving radially inward.

The velocity of this inward radial drift is a function of the mass of the dust particles,

and particles of different sizes acquire different drift speeds, giving rise to the radial

component of relative velocity of collision. The inward drift speed of a particle with a

Stokes number St has two components and can be quantified as

vR =
vg

1 + St2
+

2vη
St+ 1

St

(2.48)

where vg is the gas velocity given by equation 2.8. The first term in equation 2.48 is

the contribution from gas velocity. Particles, which are fully coupled to the gas, would

follow the gas accreting inward. This component of the velocity is always directed

inward. The second term above is the contribution from the particle velocity that

arises due to its movement towards the pressure maximum. The term vη in equation

2.48 can be written as

vη =
∇RPg
2ρgΩ

(2.49)

where Pg is the gas pressure. If two dust particles with masses m1 and m2 have Stokes

number St1 and St2 respectively, then the radial component of the relative velocity
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can be written as

∆vR = |vR(St1)− vR(St2)| (2.50)

2.3.2.3 Azimuthal Component (∆vφ)

The relative velocity component arising from the differential azimuthal velocity

of two dust particles can be written as

∆vφ = |vφ(St1)− vφ(St2)| (2.51)

where,

vφ = − vη
St+ 1

St

. (2.52)

Same as above, vη is given by equation 2.49. Neglecting the back reaction from the gas,

vφ can also be stated as the deviation of the azimuthal velocity of the dust particles

from the local Keplerian speed.

2.3.2.4 Vertical Component (vz)

Dust particles, situated at the upper layers of the disk, experience a systematic

movement towards the disk midplane due to the vertical component of the stellar

gravitational force. The settling velocity for a particle of mass m (size a) at a height

z from the midplane can be written as

vz =
a

c̄s

ρm
ρg

Ω2z (2.53)

where, ρm is the material density of dust grains. The differential settling speed between

two particles of masses m1 (size a1) and m2 (size a2) becomes

∆vz = |vz(a1)− vz(a2)| (2.54)
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2.3.2.5 Turbulent Velocity (∆vt)

The last and probably the most complex component of relative velocity contri-

bution comes from the turbulent motion of dust particles. To what extent the turbulent

gas in the disk affects the dust motion depends on the friction time of the dust particle

and how it compares to the eddy crossing time and eddy turnover time of the turbulent

gas. Assuming a Kolmogorov type turbulence model for the disk gas, the velocity of

the kth mode can be written as v(k) =
√

2kE(k), where E(k) is the energy contained

in the kth mode. Also, the turnover time of an eddy of scale l and wavenumber k = 1/l

is tk = l/v(k). Now, if lL is the largest length scale of the turbulence where the inertial

range starts and the energy is injected, and lK be the smallest scale (Kolmogorov scale)

where the energy is dissipated, we can write, lK/lL = Re−3/4, where Re is the Reynolds

number. Also, the timescales tK and tL are related by tK/tL = Re−1/2. Considering

tL ∼ 1/Ω, the Stokes number can be expressed as St = tf/tL.

For a dust particle with Stokes number St encountering an eddy with a turnover

time teddy, if the friction time tf < teddy , the dust particle will lose all of its original

momentum and will align itself with the gas motion before the eddy decays or the

particle leaves the eddy. If, on the other hand, the teddy is small compared to tf , the

eddy only provides a small perturbation to the motion of the dust particle. Based

on this formalism, Ormel and Cuzzi [2007] have given a comprehensive closed form

expression for turbulent relative velocity between two dust grains of stopping times

t1 and t2 with t1 > t2 (and St1 > St2) in three limiting cases. For tightly coupled

particles, where t1, t2 < tK , the relative velocity can be written as

∆v2t = v2g
St1 − St2
St1 + St2

(
St21

St1 +Re−1/2
− St22
St2 +Re−1/2

)
. (2.55)

Here vg is the fluctuation velocity of the gas and is given by vg = (
√

3/2)vkRe
1/4 =

(
√

3/2)vk(tL/tK). In the limit of very small particles where t1 << tK , ∆vt in equation

2.55 becomes

∆v2t = v2g
tL
tK

(St1 − St2)2 . (2.56)
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In the intermediate regime, where tK < t1 < tL, the relative velocity ∆vt is given by

∆v2t = v2g

[
2ya − (1 + ε) +

2

1 + ε

(
1

1 + ya
+

ε3

ya + ε

)]
St1. (2.57)

Here, ε = St2/St1 and ya ≈ 1.6, a constant calculated by Ormel and Cuzzi [2007]. In

the third and final case, where t1 > tL, ∆vt becomes,

∆v2t = v2g

(
1

1 + St1
+

1

1 + St2

)
. (2.58)

From equation 2.58 if both Stokes numbers are large, the relative velocity decreases as

the square root of the smaller stopping time.

2.3.3 Collision Outcomes

The outcome of a modeled collision between two dust particles in a protoplane-

tary environment has many possibilities according to laboratory experiments. On the

experimental side, Güttler et al. [2010] presented 19 possible collisional outcomes for

particles with various mass ratios, speeds, and porosities. However, it is prohibitively

computationally expensive to include all possibilities in a global disk model. For sim-

plicity, in this dissertation we adopt a collisional model that includes only sticking and

fragmentation for all our simulations. We treat collisions as a binary process, identify-

ing the smaller mass as the projectile (mp) and the bigger mass as the target (mt). The

collision outcome is determined by the relative velocity (see §2.3.2 for a description of

our velocity computation). If the particles collide with a velocity less than a threshold

velocity vfrag, they stick and form a new particle with mass mfinal = mp +mt. When

vrel > vfrag, the collision results in fragmentation.

As particles grow by sticking, their eddy-crossing times drop, leading to lower

coupling with the gas and higher collision speeds [Ormel and Cuzzi, 2007]. When the

collision speed reaches vfrag, instead of sticking, both particles fragment. For such

an event the combined mass of the target and the projectile is made to follow a mass

distribution f(m) dm ∝ m−ξ dm with ξ being the fragmentation distribution power law
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index. Here we adopt ξ = 11/6 [Windmark et al., 2012b, Dra̧żkowska et al., 2014, Krijt

and Ciesla, 2016], though we note that some experiments predict a shallower fragment

size distribution with ξ = 9/8 [Blum and Wurm, 2000, Güttler et al., 2010].

When the ratio of target to projectile mass is high and the particles collide

with vrel > vfrag, a possible outcome can be mass-transfer. In this case, in stead of a

catastrophic disruption of the particles a certain fraction of mass is transferred from

projectile to target. Dra̧żkowska et al. [2013] have adopted a value of 20 for mp/mt for

mass transfer event to take place and systematically transferred 10% of the projectile

mass to the target. Mass transfer is generally sought as an alternative pathway for

planetesimal formation [Windmark et al., 2012a, Dra̧żkowska et al., 2013]. However,

Estrada et al. [2016] have shown that in the presence of strong radial drift, the effect

of mass transfer is mitigated. Hence mass-transfer is not included in our models.

Another possible outcome of a binary collision is erosion, where a certain fraction

of target mass is eroded by the projectile and the projectile itself gets fragmented.

Generally this process requires a velocity of collision which is substantially higher that

the values adopted for vfrag. Birnstiel et al. [2011] have shown that in the presence of

erosion in the collision model, the size distribution gets a distinct shallow dip near the

largest end. However, this effect is small and does not significantly affect the nature

and properties of the synthetic observations.

2.3.4 Vertical Diffusion of Dust

Vertical dust settling plays a significant role in determining the dust abundance

as a function of height, which in turn affects the collision frequency, grain size distribu-

tion, and opacity. Dust particles at a certain height z above the midplane settle due to

the vertical component of stellar gravity, while being diffused at the same time due to

gas turbulence. The process of diffusion depends on the level of turbulence efficiency

α and the coupling between the gas and the dust.
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The continuity equation for vertical dust dynamics in 1D is

∂tρd + ∂zF = 0 (2.59)

where F , the total vertical diffusive flux of dust particles, is composed of three compo-

nents: vertical settling due to stellar gravity, diffusion of dust towards density maxima,

and stirring of dust by gas turbulence. The diffusion equation governing all the three

effects can be written as [Dubrulle et al., 1995, Takeuchi and Lin, 2002, Fromang and

Papaloizou, 2006]

∂ρd
∂t

=
∂

∂z

[
Ddρg

∂

∂z

(
ρd
ρg

)]
+

∂

∂z

(
Ω2tfρdz

)
(2.60)

where Dd is the dust diffusion coefficient and is given by

Dd =
Dg

1 + St2
. (2.61)

Here Dg is the gas turbulent diffusivity, Dg = αcshh. Equation 2.60 expresses the

evolution of dust density ρd in terms of the gradient of the tracer concentration ρd/ρg.

After a little algebra, it can be re-written as

∂ρd
∂t

=
∂2Ddρd
∂z2

− ∂

∂z

(
ρdDd

1

ρg

∂ρg
∂z

)
+

∂

∂z

(
ρdzΩ2tf

)
. (2.62)

The term Dd/ρg × ∇ρg arises when the diffusion equation, which operates on the

gradient of tracer concentration ρd/ρg, is transformed into an equation that operates

on the gradient of particle density alone. Equation 2.62 can be solved by a Lagrangian

random walk technique involving a ‘kick’ in position space in terms of a Gaussian

random variable with mean µ and variance σ2 given as

µ = ∆zs +

[
Dd

ρg
∂zρg + ∂zDd(z)

]
δt (2.63)
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σ2 = 2Dd(z)δt+ [(∂zDd)δt]
2 . (2.64)

The terms in the square bracket in equation 2.63 capture two different physical effects

on dust diffusion: the non-uniform gas density and the non-uniform diffusivity. The

last term in equations 2.64 arises due to variations in the dust diffusion coefficient Dd.

The first term in equation 2.64, 2Ddδt, comes from turbulent diffusion and describes

particle stirring.

It is important to note that the same solution can also be written in the ve-

locity space representation. However, as can be seen from equations 2.63 and 2.64,

transforming from position to velocity space brings the time δt to the denominator

and hence, a convergence problem arises. Working in the position space Lagrangian

approach provides the freedom of choosing any timestep for numerical implementation.

2.3.5 Dust Scale Heights

The vertical scale height for dust particles is generally calculated by equating

their vertical settling time scale to the turbulent diffusion time scale for dust particles.

The settling time scale can be written as

tsett =
z

vsett
=
cs
a

ρg
ρm

Ω−2, (2.65)

and the vertical diffusion time scale as

tvisc =
z2

Dd

=
z2(1 + St2)

αcshg
. (2.66)

Comparing equations 2.65 and 2.66, the dust scale height hd becomes

hd = hg

(
1 +

St

α

)−1/2
. (2.67)
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For tightly coupled particles with very small St, the dust scale height becomes close

to the gas scale height hg.

We note that equation 2.67 also gives an approximation to the steady state

dust scale height and has been used for our initial setup. Estrada et al. [2016] use

the same prescription (equation 2.67) for dust scale height to distribute solids in the

vertical direction which extends their model to 1 + 1D from a 1D gas diffusion model.

This method works perfectly fine as the vertical diffusion timescale is small compared

to the inward drift timescale. However, Mulders and Dominik [2012] showed that the

midplane approach of equation 2.67 from Dubrulle et al. [1995] estimates a higher dust

abundance towards the disk surface compared to the abundance obtained when St is

calculated locally. This occurs because, in the approach of Dubrulle et al. [1995] St for

particles with a certain size is calculated using the midplane gas density and such a

particular value of St is used for the whole vertical column. Hence, to compute a more

realistic vertical structure in our disk models with layered accretion, parameters such

as Stokes number for individual particles are calculated locally. Thus, the prescription

from Charnoz et al. [2011] gives a more accurate result.
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Figure 2.1: The different components for particle relative velocity of collision. Brow-
nian motion is not shown here. The Figure is taken from Birnstiel et al. [2010] with
permission.
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Figure 2.2: The Green’s function solution for the accretion equation. While most of
the matter moves inward and accretes on to the star, a small amount of matter goes
radially outward, carrying most of the angular momentum away as t→∞.
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Chapter 3

THE NEW WEIGHTED MONTE CARLO DUST MODEL:
ALGORITHM, IMPLEMENTATION & TEST RESULTS

3.1 Introduction

Planet formation starts with (sub)-micron sized dust particles which grow through

the processes of collisional sticking and fragmentation. Apart from providing the solid

inventory for planets, dust grains control the key disk physical processes as well. Start-

ing from the nature and strength of disk turbulence, the temporal evolution of the disk,

the diversity of planetary composition and chemical compositions of disk materials are

all directly or indirectly affected by the dynamical, thermal and radiative properties

of dust. Hence, performing numerical simulations of global dust evolution with masses

ranging over several decades for a few million year timescale is an important task. Col-

lisional dust growth and dynamics in a planet forming disk are generally modeled by

either solving Smoluchowski’s equation [Nakagawa et al., 1981, Birnstiel et al., 2010]

or with a Monte Carlo simulation [Ormel and Spaans, 2008, Zsom and Dullemond,

2008], or using moments of the dust distribution [Estrada and Cuzzi, 2008]. Although

Smoluchowski’s method of tracking the temporal evolution of dust size distribution is

fast and computationally inexpensive even when the distribution is wide, it has its own

limitations [Ohtsuki et al., 1990, Dra̧żkowska et al., 2014]. Adding additional particle

properties and tracking them through the course of dust evolution, such as porosity,

charge, or compositions, makes this method extremely complex. Also, a lack of ad-

equate resolution in the particle mass range leads to a faster, unphysical growth of

dust. To avoid this systematic error, a fine resolution is required that leads to a high

computation cost. More importantly, the method lacks the inherent stochasticity of

a random dust growth process. The Monte Carlo method of particle growth, on the
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other hand, can capture the stochasticity and more realistically simulate the system’s

physics. Dra̧żkowska et al. [2014] showed in a comparative study that the result of

Monte Carlo techniques are not as sensitive to the resolution of the particle size dis-

tribution. However, for simulating dust behaviors throughout the disk over 10 kyr,

Monte Carlo methods can be computationally expensive. As the error in this method

goes as 1/
√
N , where N is the number of Monte Carlo particles used in the simulation,

a reasonably high value of N is desired to achieve enough fidelity, making the method

an expensive one. Monte Carlo methods also lack the dynamical range that can be

easily achieved by Smoluchowski’s method. In this thesis, we present a new Monte

Carlo model that overcomes these difficulties and can achieve a larger dynamical range

by using a weighting technique. The schematic plot of our Quasi-Linear Monte Carlo

(QLMC) algorithm is shown in Figure 4.1, and the key quantities are listed in Table

3.1.

3.2 Brief Descriptions of Existing Models

The most common and fast way of modeling collisional dust growth through

sticking and fragmentation is the method of solving Smoluchowski’s equation by im-

plicit integration technique. In this method, the coagulation and fragmentation events

are generally modeled as a two-body processes and the number density distribution of

dust is evolved with time using a collision kernel as

∂

∂t
n(m) =

∞∫
0

∞∫
0

K(m,m′,m′′)× n(m′)× n(m′′) dm′ dm′′. (3.1)

Here n(m) represents the number density of particles of mass m with n(m) dm is the

number of particles in a unit volume element with mass ranging between m and m+ dm.

n(m) is related to the dust density ρd by

ρd =

∫ ∞
0

n(m) dm. (3.2)
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In equation 3.1, K(m,m′,m′′) is the collision kernel that incorporates the effect of

different collision outcomes, such as coagulation (sticking) and fragmentation. The

kernel can be explicitly written as

K(m,m′,m′′) =
1

2
S(m′,m′′) · δ(m′ +m′′ −m)

− S(m′,m′′) · δ(m′′ −m)

+
1

2
F (m′,m′′) ·D(m,m′,m′′)

− F (m′,m′′) · δ(m−m′′),

(3.3)

where, m′ and m′′ are the target and projectile masses respectively. Here S is the

sticking kernel, F is the fragmentation kernel and D is the kernel representing the

fragmenting size distribution. As can be seen from equation 3.3, the sticking kernel

is attached to a delta function δ(m′ + m′′ − m) which is true for m = m′ + m′′ that

signifies a sticking event. The fragmentation kernel F (m′,m′′), on the other hand, is

connected to the distribution operator D(m,m′,m′′) that distributes the fragments of

smaller masses in a size distribution with a chosen power-law index. The kernels S

and F are generally written as a product of collision relative velocities vrel(m
′,m′′) and

geometric cross-section of collision σ(a′, a′′) = π(a′+a′′)2, where a′ and a′′ are the radii

of dust particles of masses m′ and m′′ respectively. Equation 3.1 is then solved by an

implicit integration method at each R and z location of the disk. Here, R is the radial

distance from the central star and z is the vertical height over the disk’s midplane.

Another important and well studied method for modeling dust growth through

coagulation and fragmentation is the kinetic Monte Carlo method. This method has

been used with different implementations in various works in the literature (ref). Here,

a certain number (N) of test particles are used to track the evolution of the grain size

distribution with time. First, the rates of collisions for each particle pair are calculated

using the local parameters as rij = nσvrel, where rij is the collision rate between

test particles i and j. Once the distribution is made from all N(N − 1)/2 possible

collision pairs, the successful collision for a particular step is randomly selected from the

35



distribution. The time for that step is then evolved according to the prescription from

[Gillespie, 1975] (See section 3.3.5 for further details). Although it is more convenient

to keep track of dust properties in this method, Monte Carlo algorithms suffer from

the inherent O(N2) nature. Every step of this process involves the calculation of ∼ N2

rate calculations which makes the process computationally expensive. Furthermore,

the error in this process is of the order 1/
√
N , which makes the method less precise if

a small value for N is chosen.

The main goal of this dissertation is to develop with a dust model which is

capable of providing a realistic vertical structure in the course of global dust evolution

while keeping the method within feasible computational reach. Below, we describe our

model in details.

3.3 The New Monte Carlo Model: Algorithm

The algorithm of our dust model is tuned towards achieving a reasonable fidelity

and minimizing the computation expense at the same time. In order to be able to

perform global simulations within a few days of physical time, we have developed a

Monte Carlo dust growth model that is linear in nature. Furthermore, to track the

evolving particle size distribution with a lower number of Monte Carlo particles, we

have implemented a weighting technique in our model. Below we discuss our algorithm

in details and test our model with the results from various other models already existing

in literature.

3.3.1 Selecting Collision Pairs

We start by dividing the total mass range of dust grains in each grid zone into

NH equally spaced logarithmic histogram bins. At any given instant t, N particles

are drawn randomly from the particle mass distribution in that grid zone. We found

converged results for N = 60000 and adopted that value for the simulations presented

here. We denote the first array of Monte Carlo particles in any given grid zone by

subscript ‘q’. (Below we will describe the selection of a second set of Monte Carlo
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particles in each grid cell to serve as potential collision partners.) If Ni is the number

of particles drawn from the ith bin in the particle mass distribution, we have

NH∑
i=1

Ni = N. (3.4)

Given that ρd,i is the dust mass per unit disk volume represented by bin i in the mass

distribution and logmi is the value of logm at the center of ith bin the number density

of particles per cm3 contributed by bin i is nd,i = ρd,i/mi. Finally,

nd,i = find, (3.5)

where nd is the total number density of the dust grains of all masses in the grid cell

and fi is the fractional abundance of dust grains of mass mi, such that

NH∑
i=1

fi = 1. (3.6)

In the same timestep and grid cell, another N particles, denoted by subscript ‘k’, are

drawn randomly from the same particle mass distribution to be the possible collision

partners. The dust mass distribution after a particular timestep is determined by the

outcome of a collision chosen from these N particle pairs (see §2.3.3). Unlike Ormel

et al. [2007] or Zsom and Dullemond [2008], we only partially trace the evolution of a

specific set of particles over time (See §3.3.2).

During the random selection of sets q and k of potential colliders, the number

of particles we draw from each mass bin is fiN , unless particles of mass mi are rare

enough that fiN < 1. Here we introduce a weighting scheme to make sure that the rare

particles are not lost from the simulation, as a few large particles may dramatically

alter the particle mass distribution by sweeping up smaller grains [e.g. Windmark et al.,

2012a]. From the particle mass bins with fiN < 1, a single particle is randomly selected

from each bin’s mass range and a weight wi = fiN is assigned to that particle. For
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particles drawn from bins with fiN > 1, wi = 1. The weight can be interpreted as a

fraction of the particle that truly exists in the distribution. After picking the selected

number of particles from each bin, the order of particles in the two arrays q and k is

randomized.

In each grid zone, for each timestep, we allow only one collision to proceed

successfully. For each particle in set q, collisions with its partner in set k proceed at a

rate

Pk = nkσqkδvqk, (3.7)

collisions per second, where σqk is the collision cross-section π(rq + rk)
2. The relative

collision velocity δvqk is calculated according to the prescription outlined in section

2.3.2. The number density nk, reperesented by the kth particle, is:

nk =
nd,i
Ni

=
find
Ni

, (3.8)

where i is the mass bin corresponding to particle k. At this point, we choose a single

pair of particles from N possible collision pairs from the distribution of Pk obtained

from equation 3.7 by using a single random number drawn from a uniform distribution

between 0 and 1. At any particular step only a single collision is allowed and the

corresponding time is updated by the method explained in §3.3.5.

For a sticking event between two particles of masses mq and mk, the final mass

is set as wqmq+wkmk and is transferred to the bin containing mass mq+mk. Similarly,

for a fragmentation event, the total mass put into the size distribution of fragments

is wqmq + wkmk. After the collision, a new particle mass distribution is calculated.

For the next timestep, the mass distribution is again transformed into number density

space using Equations 3.4-3.6 and the new sets q and k are selected to again make N

particle pairs.

38



3.3.2 A Two-Step Random Selection

The model presented here consists of repeated sampling of the size distribution

to select particles and their collision partners. In the process of collisional growth,

before the fragmenting threshold velocity is reached, the bins towards the higher mass

end of the distribution contribute single particles to the total population of N particles.

It is not always guaranteed that the single particle will be picked during random sam-

pling and hence the growth can be hindered artificially. To circumvent this problem,

the random selection is done in a two-step process. First, the number of particles to

be selected from each bin is calculated according to Equations 3.4 and 3.5 (See §3.3.1).

Next, after ensuring the right number of particles are drawn from each bin, the array

of particles is randomized. The same process is followed for the selection of collision

partners as well.

3.3.3 Mass Conservation

One important part of our code is ensuring mass conservation locally and in

each vertical column (recall that particles are not allowed to migrate radially between

columns). Mass is conserved during collisions, but may be lost or gained in numerical

noise when computing the particle mass histogram after each timestep. Mass loss is

more likely, since the largest and rarest particles contain the bulk of the mass: at

the large end of the size distribution, the difference between the maximum mass in a

histogram bin and the bin center can be a significant fraction of the total particle mass

in the grid zone. We conserve mass in our simulation by updating the total number

density nd in each grid zone after each timestep. The number density change is

nd ←
Mtotal∑
imifi

, (3.9)

ensuring that each mass histogram bin will contain the correct fraction of the grid

zone’s total mass. No bin mi can then lose mass by dropping a particle near its upper

mass boundary. This allows us to conserve mass to almost the machine precision.
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3.3.4 Artificial Oscillation & Partial Particle Tracking

The imposed mass conservation can cause artificial oscillation in the number

of particles at the smaller sizes in the dust-mass spectrum. Given that the masses of

the bigger particles are not necessarily equal to the respective bin center masses, using

equation 3.9 would force the total number of small particles to change to accommodate

a single large particle’s shift to the bin center. We remove the oscillations by retaining

the same individual particles between timesteps in the low-statistics bins instead of

subsuming them into the new particle mass histogram calculated at the end of each

timestep. This technique helps to track the dust growth in a more accurate way. For

this work, we tracked particles from any bin contributing less than 10 particles and

this number is kept constant throughout the simulations.

3.3.5 Calculating the Timestep Between Collisions

After finding the successful collision in each grid zone, the next step in our

simulation is to calculate the timestep δt. Codes that follow the kinetic Monte Carlo

method set δt by first computing Ptotal, the total collision rate from all N(N − 1)/2

possible particle pairs from sets q and k; then using a random number r selected from

uniform distribution between 0 and 1, the timestep is calculated as

δt = − 1

Ptotal
ln(r) (3.10)

[e.g. Gillespie, 1975, Ormel et al., 2007, Zsom and Dullemond, 2008].

It is evident that in our method it is not possible to calculate the time evolution

following Equation 3.10 as we do not calculate the rates for all N(N−1)/2 possible pairs

while selecting the successful collision at any step. Instead, we implement a matrix

partitioning method in which the particles are first binned in the mass histogram. We

now assume that out of these N particles, the Ni ones belonging to the ith histogram

bin represent the same mass mi corresponding to that particular bin center. Moreover,

the original particles being drawn from the number density distribution f(n), every
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particle grouped into a single bin represents the same number density in the underlying

population. So, instead of calculating individual rates, we assume every pair belonging

to the same histogram bin contributes equally to the total rate Ptotal. Considering

that we are calculating the rate between the particles in the ith bin for the first array

and the jth bin for the collision pairs, we calculate the rate of collision for a single

pair by nd,jσijvrel,ij (Note the change in index from q and k to i and j as particles are

represented by their corresponding bins). Thus, the total rate for all the pairs coming

from the ith bin for the first array of particles and jth bin for the collision partners can

be written as:

Pij = nd,jσijvrel,ijNiNj (3.11)

The total collision rate at any point in time is then obtained by summing equation

3.11 over each histogram bin and can be written as:

Ptotal =

NH∑
i=1

NH∑
j=1

nd,jσijvrel,ijNiNj. (3.12)

For collisions between particles of exactly equal mass, the turbulent relative velocity

δvt = 0 when the particle size is very small and no random velocities are excited by

the class 2 eddies for which the particle stopping time (tfric) is less than the eddy

turnover time at the Kolmogorov length scale [see Ormel and Cuzzi, 2007]. Hence, to

accurately capture the turbulent velocity contribution to Ptotal the masses of the Ni and

Nj particles in equation 3.12 are chosen randomly between the bin edges instead of the

mass equal to the bin center. Also, similar to §3.3.4 above, for the particles featuring

low statistics, the exact particle mass is used to calculate the rate. Finally, we use

Equation 3.10 to select the timestep δt, which ranges from a few seconds to ∼ 103

seconds depending on time and location in the disk. For finely spaced particle mass

histograms, Equation 3.12 is an excellent match to the kinetic Monte Carlo method.

In section 3.6 we show that our method closely reproduces a range of results from

the literature. We also check the masses of the largest particles produced by our code
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against analytical estimates (Equation 3.16) of the maximum mass when turbulence

controls the collision speed.

3.3.6 Gaining Efficiency

In general, Monte Carlo is an O(N2) method in which most of the computation

time is spent on calculating the rates of collision between different particle pairs. For N

number of Monte Carlo particles used in the simulation, the O(N2) method involves N2

rate calculations and the CPU time becomes proportional to N2. Our method, being

effectively an O(n) model on the other hand, calculates only N + N2
H collision rates

of which the N2
H is for computing the time evolution. As long as NH � N , the time

saved is significant. Here we use NH = 80 which provides good resolution in the mass

histogram while satisfying N2
H � N . For example, calculating the steady-state size

distribution at a single grid point takes ∼ 3−10 hours to reach steady state depending

on the model parameters with a single processor. The global model with MMEN surface

density and α = 10−5 takes ∼ 3 days with 48 processors. For comparison, Dra̧żkowska

et al. [2013] reported their computation time for a global model as a few weeks.

3.4 Vertical Motion of Particles

Following the model of dust growth through coagulation and fragmentation, our

next job is to implement the settling and turbulent diffusion of dust particles in the

vertical direction. For this, we have adopted the theoretical framework of Charnoz

et al. [2011] as described in section 2.3.4, and implemented the prescription using a

Monte Carlo algorithm. In figure 3.1, we have presented a schematic diagram of the

algorithm. In our implementation, we track the movement of a fairly large number of

particles following the steps below:

1. At each disk radius Rj, select Ns Monte Carlo particles (subscript u) of mass

mi to represent each bin mi in the particle-mass histogram.(We find a smooth

representation of the vertical number density distribution with Ns = 105 and

adopt that value for all simulations presented here.)
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∆  z

µ

σ

Towards Surface Towards Midplane

Figure 3.1: A schematic of the settling algorithm implemented in our work. The vertical
dashed black line is the height of the middle of the cell the particle inhabits. Before
each settling step, dust particles of radius a are spread from the top to the bottom of
the vertical column according to the background dust distribution. A particle of size
a is then redistributed according to the prescription given by Equations 2.63 and 2.64
(solid blue line). Red lines mark boundaries between cells, and the shaded region shows
the probability that the particle will be moved from the original cell to that particular
cell. A similar Gaussian is considered for each of the Ns dummy particle used in the
settling algorithm.
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2. At each disk radius Rj, for each particle mass mi, distribute the Monte Carlo

particles in height zu above the midplane according to the vertical number-density

distribution nd,i(z) from the previous step. At t = 0, the distribution is Gaussian,

following the background gas density profile.

3. Calculate µu and σu for each Monte Carlo particle u according to equations 2.63

and 2.64, replacing δt (collision timestep) with ε × δtsettle (vertical motion fine

timestep).

4. Draw an array of random numbers ru of size Ns from a standard normal distri-

bution. Update the particle heights as

zu,new = zu + µu + ruσu. (3.13)

Repeat for 1/ε iterations.

5. Update number density corresponding to mass mi for each cell following the

fraction of Ns moved out of or received by any particular cell.

6. Repeat the process for each particle size with non-zero contribution to the total

mass.

7. For each vertical cell, calculate the new particle mass histogram before moving

on to the subsequent collision routine.

The vertical diffusion algorithm stated above, depends on the assumed strength

of turbulence in the disk. We assume that MRI, which is subsonic in most parts of

the disk and transonic only near the disk surface layers, is the main source of disk

turbulence. Moreover, the proposed hydrodynamic turbulence mechanisms, such as

vertical shear instability [Nelson et al., 2013], zombie vortex instability [Marcus et al.,

2015], convective overstability [Lyra, 2014] and gravitational instability [Kratter and

Lodato, 2016] produce turbulence with low strengths. To reflect this, we apply sonic

cut-off in the Gaussian distribution of ∆z: no particle may move a greater vertical

44



Table 3.1. Variables used in numerical algorithm

Variable Meaning

NH number of bins in mass histogram
N number of Monte Carlo particles used in each grid zone
mi mass at the center of ith bin of mass histogram
Ni number of particles from ith bin of mass histogram
nd,i number density of particles in ith bin of mass distribution
nd total dust number density including particles of all masses
fi fractional of particles in ith bin of mass histogram

Mtotal total dust mass in a grid cell
wi statistical weight of ith bin of mass histogram
Ns number of Monte Carlo particles used in settling
δt dust evolution timestep

δtsettle settling timestep
∆t radiative transfer timestep

distance than ∆z = csδtsettle. At the disk surface we adopt an outflow boundary

condition so that particles that are turbulently stirred above the top of the grid are

contained in a “ghost zone” and do not re-enter the grid. Our results are not affected

by this assumption as the amount of mass lost to the ghost zone is several orders of

magnitude less than the total dust mass. For dust particles in grid zones along the

disk midplane we use a reflecting boundary condition. If a particular dust particles

crosses the midplane and ends up at some −z, it is assumed that a dust particle of

similar mass crosses the midplane from the bottom part of the disk and end up at a

height +z.
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3.5 Implementation in Code

The Monte Carlo method, along with the settling algorithm is implemented in

a computer massively parallel computer program written in FORTRAN 95/03 along

with a python wrapper for code compilation and user interface. The parallelization

is implemented using MPI-FORTRAN. The python script reads a configuration file

where the user enters the parameters for simulation setup and chooses the particular

collision physics as intended. The code, as of now, can simulate a dust growth model

that includes sticking, fragmentation, erosion and mass transfer. However, for all the

studies presented in this dissertation, only sticking and fragmentation have been used

as the possible outcomes of a binary collision. Below we present the key features of the

code and their implementation.

3.5.1 General Workflow

In our Monte Carlo model, our code performs the simulations for dust growth,

vertical settling and radial drift separately by exploiting the substantial differences

between the time scales associated with each process. First, the total radial range

is divided into nr vertical columns and each vertical column is divided into nz cells,

creating a total of nr × nz cells for the full disk. Each cell in the disk is assigned two

positional indices, one for the radial direction and one for the vertical direction. For

example, a cell with positional indices c and d is the dth cell in the cth vertical column.

The cell numbering in the vertical direction (the index d) at a particular column starts

from the midplane and increases towards the disk surface. Following that, a certain

number of processor (Nproc) is assigned for the simulations. It is important to note

that Nproc can be any number less that nrnz and greater than max[nr, NH ], and is not

limited by any other restriction. However, for more efficient use of the computational

resource, Nproc is chosen to be equal to max[nr, NH ] for reasons stated below. Each

processor starts running the growth model at a particular cell, with the local dust and

gas parameters provided, for a previously specified time scale.
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Once the growth model is simulated for all the cells in the disk, nr processors

(processors with rank 0 to nr − 1) are assigned to perform the vertical settling and

diffusion, one for each column. The full information of dust size distribution for a

particular column is then passed to the respective processor and the vertical dynamics

is performed. For a single column, this operation is performed by a single processor.

Upon completion, the information regarding the size distribution is again broadcast

back to each cell pending further dust growth simulation.

3.5.2 The Flagged Parallelization Algorithm

A typical protoplanetary disk in our simulations ranges from ∼ 0.01 au to

∼ 80 au in the radial direction. As a result, the parameters affecting the dust growth

timescales can vary significantly depending on the distance from the central star. For

example, the gas density at 1 au and 80 au differ by six orders of magnitude, resulting

into a difference of four orders of magnitude in maximum dust size at those locations.

As the physical computation time is loosely proportional to the number of collision

steps performed, time required for the dust growth simulations at different positions in

the disk vary widely. As a result, it is possible that some processors, assigned to outer

cells, finish their job early and sit idle, while processors responsible for cells in the inner

disk are still at work. To minimize this leak in the computation resource, processors

are assigned to a particular cell following a flagged algorithm. In this method, apart

from two positional index, each cell is also assigned a priority index and a binary flag.

First, a quick calculation is done to compute the approximate maximum particle size

achievable in each cell and based on that, each cell is given a priority index, ranging

from 0 to nrnz − 1. So, a cell with a lower priority index will spend more computation

resource to complete the dust growth simulation. The binary flag for each cell can

assume values of 0 or 1 depending on whether the simulation in that cell has been

completed or not. A temporary file is maintained for each cell where the value of the

flag is stored for the processors to look at, and all these files are removed from the

system at the end of the full global simulation.
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Following this initial setup, a particular processor first looks for all the cells

where the value of the flag is 0. It then starts the simulation for the cell with the

lowest priority index number (the maximum cost). Once the simulation in a particular

cell is completed, the value of the flag is changed to 1 in the corresponding file in

order to prevent any other processor to repeat the simulation in the same cell. In

this way, the computation load is distributed evenly among all the processors and the

computation efficiency is maximized.

3.5.3 The Modular Structure of the Code

Throughout the process of developing our code, we have been specially careful

to design it in a user-friendly way so that any third party user can adapt the code and

run it in a minimum possible way. To serve this purpose, our code has been written

in a highly modular form. For the code setup, the user first needs to specify the dust

collision physics s/he intends to implement. The options are chosen by modifying the

file ‘physics.conf’ file. The file looks as below:

[tablesize=2]

## CHOOSE THE PHYSICS YOU ARE INTENDED TO SIMULATE

## ‘YES’ or ‘NO’

STICKING ‘YES’

FRAGMENTATION ‘YES’

BOUNCING ‘NO’

MASS-TRANSFER ‘NO’

EROSION ‘NO’

VERTICAL-SETTLING ‘YES’

TURB-DIFFUSION ‘YES’

RADIAL-DRIFT ‘YES’

VARIABLE-ALPHA ‘NO’

Once the desired dust physics is chosen, the required parameters need to be

specified in a separate file named ‘configure.conf’. A typical configuration file looks as

48



below:

# INITIAL PARAMETERS FOR SIMULATION SETUP

#

# Inner Disk Radius (AU)

0.06

# Outer Disk radius (AU)

80.0

# Number of Monte Carlo Particles for each cell

60000

# Number of radial grids (n_r)

48

# Number of cells in each vertical column (n_z)

32

# Number of bins in mass histogram (N_h)

50

# Number of processors (N_proc)

64

# Type of gas surface density profile (power-law / self-similar)

"power-law"

# Value of Sigma_0: Will be read iff Surface density is given as

# power-law

1700.0

# Disk Mass (In Solar Mass): Will be used iff surface density profile

# is given as self-similar

0.02

### INFORMATIONS TO CREATE ‘fragmentation.h’ HEADER FILE

# Fragmentation Threshold Velocity (cm/s)

100.0

# Fragmentation criteria (velocity-dependent/target-mass)

# velocity-dependent: For Windmark et al 2012 criteria

# target-mass: For largest fragment=target mass

"target-mass"
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# fragmentation power-law

1.833

# Size of smallest fragment (in micron)

0.1

### INFORMATIONS TO CREATE ‘mass_transfer.h’ HEADER FILE

# These inputs will be used iff mass-transfer is chosen in

# ‘physics.conf’ file

# User defined ratio of target mass to projectile mass

20.0

# Percentage of projectile mass to be transferred

10.0

Once this file is set by the user, a python script reads the configuration file, generates

the initial input files for the simulations to start, and finally, compiles the code with

the files opted by the user. The collision for icy bodies is not yet implemented in our

code and implementing that is our plan for immediate future.

3.6 Code Test Results

As a test of our model, we now present our results and compare them with

various results, already existing in the literature. In order to examine the fidelity of our

model, we have tested our results against those obtained by both implicit integration

[Windmark et al., 2012b] and Monte Carlo method [Dra̧żkowska et al., 2014]. First,

we have tested our model against the results of Windmark et al. [2012b] where a local

dust growth simulation is presented with the exact same collision physics implemented.

Then, we have tested our model for simulations in a full vertical column and compared

the results with the ones from Dra̧żkowska et al. [2014].

3.6.1 Comparison with Windmark et al. 2012(a)

We make a comparison test with the results from Windmark et al. [2012b]

where a local simulation is performed with a sticking and fragmentation (SF) model
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Figure 3.2: Local dust distribution steady state comparison with Windmark et al.
[2012a]. Simulations are for an MMSN disk at radial position 1 au with Σ = 1700
g cm−2, α = 10−4, ρm = 1 g cm−3, T = 280K and dust to gas mass ratio 0.01. vfrag
is taken as 100 cm s−1. The solid black line shows the data electronically extracted
from Windmark et al. [2012b] and the line with error bars shows the results from our
simulation. The average of 10 simulations with 80000 particles each is plotted.
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without any velocity distribution. The local dust growth simulation in this case has

been performed at a radial distance of 1 au form the central star with an MMSN

disk model. The surface density in this case is Σ = 1700 g cm−2 and the turbulence

parameter α = 10−4. The temperature used in the simulation is 280 K with a material

density of dust particles ρm = 1 g cm−3. The fragmenting threshold velocity is taken

as vfrag = 100 cm s−1. The data for comparison have been extracted electronically

from figure 2, top panel of Windmark et al. [2012b]. As we can see from figure 3.2,

our model shows an excellent match in the smaller mass range of the distribution and

it deviates slightly in the higher end. In figure 3.2, the points in the extreme right

miss the reference plot beyond the error bars which can be attributed to the bigger

dynamical range obtained by introducing the weighing method.

3.6.2 Test for Settling and Diffusion Algorithm

Our vertical motion algorithm follows Charnoz et al. [2011]. In addition to

settling and diffusion toward the density maximum, we give particles “kicks” in their

z-coordinate (according to equations 2.63 and 2.64) to simulate a random walk caused

by turbulent diffusion. In the absence of the settling term, the vertical motion of dust

particles will be controlled only by the diffusion terms, both homogeneous and inho-

mogeneous. As a result, the dust distribution should follow the background gas density

distribution, which is Gaussian. We have plotted our test results in figure 3.3, where

the vertical dust density in plotted against the vertical height. The dashed black curve

represents the vertical gas density stratification. We verify that our turbulent diffusion

algorithm, with both homogeneous and inhomogeneous diffusion part, produces dust

volume density ρd(z) that matches our analytical description of ρg(z), multiplied by

a constant factor η (the abundance ratio). In Figure 3.4, we show that our results

are independent of the choice of ε× δtsettle. As described before, we have adopted the

position space approach to implement our vertical diffusion algorithm, for which the

method converges well for our choice of δtsettle.
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Figure 3.3: A plot of vertical density profile as a function of height expressed in terms
of vertical scale height with only the turbulent diffusion terms present. The dust
density distribution follows the background Gaussian gas distribution when the vertical
settling term is ignored. The systematic velocity part contains only the force towards
the density maximum (the inhomogeneous diffusion part) along with the stochastic
turbulent stirring term (turbulent diffusion part). The solid curve is the Gaussian fit
which represents the vertical stratification of background gas density. This plot ensures
the proper working of our diffusion algorithm and its implementation in our code.
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Figure 3.4: A test for convergence in vertical settling and diffusion timestep. As our
model implements diffusion in position space, the results are largely independent of
the time step dtsettle we choose for vertical dust dynamics. The black solid curve shows
the initial dust distribution. The results after 104 years are plotted for different δtsettle
normalized by 1 year. We find an excellent convergence in our settling and diffusion
algorithm. As a result, the algorithm for vertical dust dynamics, which is otherwise
computationally expensive, can be made more efficient by choosing a larger time step.
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Figure 3.5: The evolution of dust distribution is tracked in a normalized mass scale.
The plot shows (in gray scale) the evolution of m2f(m) at normalized times 1, 10, 102,
103, 104 and 1.6× 104. f(m) here represents the dust mass distribution at any instant
of time.
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3.6.3 Vertical Dust Scale Height

Figure 3.6 compares our numerical calculations of the dust scale height with the

analytical approximation given by Equation 2.67. The individual scale heights for dust

particles, computed numerically, match perfectly well with the analytical calculation

for dust size less than 1µm and greater than 1 mm. However, for size ranging from a

few micron to a few hundred micron, the analytical results slightly overestimate the

scale heights. The approach by Dubrulle et al. [1995] calculates the stokes number of

dust particles using the midplane gas density and hence, assumes a higher coupling

between dust and gas in the upper layers of the disk. This effect underestimates the

efficiency of dust settling. In our numerical model, like Mulders and Dominik [2012],

we find that calculating the Stokes number locally produces lower dust abundance at

the disk surface. A similar effect is shown in figure 3.7 where the result from combined

dust growth and settling simulation result for a vertical column at 5 au of an MMSN

disk is shown. The steady state dust volume density normalized by their midplane

value is plotted as a function of dust size a and vertical height. The value for α is

chosen as 10−4. As can be seen from the figure, the scale height for dust particles

matches fairly well except for a less abundance in the upper layers of the disk.

3.6.4 Comparison with Dra̧żkowska et al. 2014

We now present the size distributions computed by our model and compare

them with models in the literature. In figure 3.8 we compare our steady state results

for a 1-D vertical column with results from the paper of Dra̧żkowska et al. [2014]

for the same physical parameters. Our model includes sticking and fragmentation

only, whereas the Dra̧żkowska et al. [2014] model, in addition, includes mass transfer.

However, Dra̧żkowska et al. [2014] mentioned that panel 3 of their Figure 1 represents

the vertically averaged steady state size distribution they would have achieved without

mass transfer; it is this steady state that we plot in Figure 3.8. Once the distribution

hits the fragmentation barrier growth is stalled unless mass transfer is included.
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listed on the figure. The scale heights for different particle sizes obtained from our
settling/diffusion routine are also shown by + sign. For particles of sizes between 10
to 100µm, the scale height is slightly smaller than the ones predicted by the analytical
solution, the result being consistent with the findings of Mulders and Dominik [2012].
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For this particular comparison test we have included a velocity distribution to

calculate the collision velocity of dust particles. Considering the system is in collisional

equilibrium, a Maxwellian velocity distribution is assumed as

f(v) =

√
54

π

v2

v2rms
e−3v

2/2v2rms . (3.14)

[Windmark et al., 2012b], where vrms is taken as the local relative velocity calculated

using the formalism outlined in §2.3.2. The collision velocity is randomly drawn from

this distribution using random numbers. See Appendix D for further details of the

method adopted.

3.6.5 Maximum Particle Size Achieved

As a further code test, we compare the maximum particle radius amax that our

code produces with analytical estimates of amax for the case in which relative velocities

are dominated by turbulence. Initially, for tiny dust grains of micron and sub-micron

sizes, the particle relative velocities are dominated by Brownian motion (figure 4.5) and

collisional growth is efficient. When the particle size exceeds ∼ 100µm gas turbulence

becomes dominant in setting vrel, until collisions between the largest particles reach

the fragmenting threshold velocity, vfrag. Given that our collision model includes only

sticking and fragmentation (“SF”), grain growth does not continue (but, see results

from Dra̧żkowska et al. [2014] on continued growth when mass transfer is included).

The largest eddy turnover time is tL ∼ L/UL, where L is the largest scale

of the inertial range and UL is the characteristic velocity
√
αcs. Taking L ∼

√
αhg

[Schräpler and Henning, 2004], the largest eddy turnover time becomes tL ∼ 1/Ω.

Hence, for particles with stopping time of the same order as tL the Stokes number is

St = tLΩ ∼ 1. On the other hand, the smallest eddy turnover time at the dissipation

scale, tη, is tη ∼ Re−1/2tL [Kolmogorov, 1941], where Re, the Reynold’s number, is

the ratio of turbulent and molecular viscosity νT/νm [Ormel et al., 2007]. In all our

simulations, the maximum particle size at disk midplane lies within the intermediate
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Figure 3.8: The steady state dust distribution for a MMEN model. The plot shows
the vertically averaged dust surface density for a vertical column at 1 au with Σ =
9900 g cm−2, α = 0.01, ρm = 1 g cm−3, T = 280 K and a standard dust to gas
mass ratio 0.01. vfrag is taken to be 50 cm s−1. The solid black line shows the data
electronically extracted from Dra̧żkowska et al. [2014] and the line with error bars shows
results from our simulations where the average from 10 runs with 80000 particles each is
presented. For these simulations, the collision velocity is extracted from a Maxwellian
velocity distribution where the relative velocity calculated from §2.3.2 is used as vrms.
The dashed black line is the same model, but with a fragmentation prescription exactly
the same as [Windmark et al., 2012b] and the largest fragment is not set equal to the
target (an offset by a factor of 10 is added for clarity). The proximity of this plot
with the original blue plot indicates that the overall shape of the dust distribution
is not sensitive to the fine details of fragmentation physics. The timescale for the
steady-state, however, is ∼ 21 years compared to ∼ 16 years for the original test.
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turbulent regime of Ormel and Cuzzi [2007, equation 28] where tη < tfric < tL. Thus,

following Birnstiel et al. [2011], the Stokes number for the largest particle is

Stmax =
v2frag
2αc2s

, (3.15)

which corresponds to a maximum particle radius

amax =
v2fragρg

2αcsΩρm
. (3.16)
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Chapter 4

APPLICATION OF DUST MODEL I: OPACITY, THERMAL PROFILE
AND GRAVITATIONAL INSTABILITY

4.1 Introduction

While most planets form “bottom-up” from dust particles accumulating into

pebbles, planetesimals, and then solid cores [Lissauer and Stewart, 1993, Pollack et al.,

1996, Morbidelli et al., 2012], some massive giant planets and brown dwarfs may form by

top-down collapse in fragmenting protostellar disks [Kratter and Lodato, 2016, Boss,

1997]. Despite inferred low disk masses [Andrews et al., 2013, Ansdell et al., 2016,

Pascucci et al., 2016] and stringent cooling requirements for fragmentation [Gammie,

2001, Boley et al., 2006, Stamatellos and Whitworth, 2008, 2009] observational evidence

has been emerging that suggests some disks are gravitationally unstable [Kwon et al.,

2011, Jin et al., 2016, Pérez et al., 2016, Tobin et al., 2016]. Furthermore, disk masses

may be substantially underestimated due to the assumed value of the gas-to-dust ratio

[Bergin et al., 2013, McClure et al., 2016, Miotello et al., 2017, Tsukamoto et al.,

2017, Yu et al., 2017], and the companion mass-ratio distribution for B- and A-type

primaries is separation-dependent, suggesting that close companions may originate in

circumprimary disks rather than cloud core fragments [Gullikson et al., 2016]. Evidence

that instability and fragmentation are taking place in at least a few astrophysical

systems gives theorists a mandate to identify plausible ways to trigger them, at least

in disks with high gas masses.

Disk cooling, which must occur on dynamical timescales for fragments to form

[Gammie, 2001], is regulated by dust opacity [Cai et al., 2006, Boley et al., 2010,

Cossins et al., 2010, Podolak et al., 2011, Lin and Kratter, 2016]. The odds of frag-

mentation increase when the disk becomes optically thin to its own thermal radiation,
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allowing it to cool quickly [Meru and Bate, 2010]. Grain growth, which significantly

lowers disk opacity, proceeds rapidly: even some Class 0 YSOs, which have ages under

200,000 years [Enoch et al., 2009], show some degree of dust growth via the core-

shine effect [Steinacker et al., 2010, 2015], or have non-ISM spectral indices [Jørgensen

et al., 2007, Ricci et al., 2010, Chiang et al., 2012]. As disks evolve, the largest ob-

served (or inferred) grain sizes increase from millimeter in the Class-I phase [Miotello

et al., 2014] to centimeter in the T-Tauri phase [Pérez et al., 2012, 2015, Tazzari et al.,

2016]. Here we examine the extent to which grain growth alone—with no other triggers

such as infall—can alter a disk’s gravitational stability to axisymmetric perturbations.

The effect of self-gravity in a protoplanetary disk is multifaceted. Apart from impli-

cations for planet formation, gravitational instability (GI) can contribute to angular

momentum transport by producing turbulent stresses [Gammie, 2001, Baehr et al.,

2017]. Our work thus also helps address the broader question of how dust can affect

gas dynamics in disks. Also, we make a detailed study on how the disk opacity and

temperature profile evolve as the grains grow and settle towards the midplane. It is

expected that the monochromatic opacities in the longer wavelengths would increase

as the total dust mass get transferred towards the bigger particles, while opacities for

shorter wavelengths would decrease. So, it is important to know how these changes in

opacities would affect the general disk physics and how they are affected by the choice

of parameters in the dust growth model. In this chapter, we address these questions

through a series of global simulations performed using our dust model described in

chapter 3.

4.2 Global Simulations: Initial Conditions

In Figure 4.1, we present a schematic diagram of the general work-flow of our

global simulations. Also, Figure 4.2 shows the general components of the full model

that will be used for our science simulations. We now proceed to describe our disk

models that are used for dust growth and settling calculations. All key quantities

are summarized in Table 4.1. The central star is assumed to be a pre-main-sequence
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Figure 4.1: A pictorial depiction of the numerical algorithm implemented in this work.
In this work, the gas density is held constant and we do not update the gas scale height
of the disk through the course of our simulations.

Figure 4.2: A detailed structure of our code and its different components. The physics
of erosion and mass-transfer are printed in red as these effects are not included in our
science simulations. Also, radial drift is not included in the simulations presented in
this chapter.
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classical T-Tauri star with a mass M? = 0.95M�. In all our simulations, the disk

is represented in a cylindrical coordinate system (R, φ, z) with R being the distance

from the central star and z the height above the midplane. We assume that the disk is

axisymmetric and vertically symmetric with respect to its midplane. We make a 1+1D

disk model in (R, z) by decoupling the radial and vertical dimensions and simulating

every vertical column independently. Here we do not perform gas evolution; the dust

evolves against the background of a fixed gas disk with turbulent speeds specified

analytically (§4.2.2). We assume that the gas and dust temperatures are equal, with

the dust opacity regulating the thermal structure of the disk.

We are focused primarily on an accurate temperature structure, which plays a

significant role in determining the Toomre-Q parameter, a measure of stability against

self-gravity [Toomre, 1964]:

Q =
csΩ

πGΣg

. (4.1)

As we have already defined in chapter 2, in Equation 4.1, cs is the local sound speed,

Ω is the local angular frequency, and Σg is the gas surface density. The parameter

Q is the measure of stability of the disk under self-gravity against thermal and shear

effects. Theoretically Q = 1 is the exact threshold in the linear stability analysis for

axisymmetric perturbations. However, for non-axisymmetric perturbations the critical

value for Q is slightly higher than 1 and the instability gives rise to spiral modes

instead of ring-like structure [e.g. Papaloizou and Savonije, 1991, Nelson, 1998, Mayer

et al., 2002, Johnson and Gammie, 2003, Pickett et al., 2003]. Nelson [1998] reported

the value of Q = 1.5 for the onset of spiral instabilities, while isothermal simulations

by Johnson and Gammie [2003] achieved fragmentation at Q = 1.4. Similarly the

SPH simulations by Mayer et al. [2002] find the growth of a two-armed mode until

fragmentation takes place at Q = 1.4. In this paper we shall use the value 1.4 as the

critical value of Q for which instability sets in. However, we caution that the disk’s

vertical thickness, which mimics a pressure term, may also provide support against

self-gravity, lowering the threshold value to Q ∼ 0.7 [Kratter and Lodato, 2016, Baehr
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et al., 2017].

Two important assumptions of our model are:

1. Although the disk is turbulent and the turbulent speeds help determine the par-

ticle collision speeds, we do not include viscous heating: we assume that stellar

illumination is the dominant heat source [e.g. Yu et al., 2016].

2. We assume no radial drift for dust particles. For the parameters we consider here,

the radial drift timescale is long compared to the growth and settling timescales

of dust grains.

4.2.1 The Gas Disk at t = 0

To construct our disk models at t = 0, we assume a power law temperature

profile in the radial direction as

T (R) = 280×
(

R

1 au

)−1/2
. (4.2)

We also assume that each vertical column is isothermal at t = 0. The isothermal

assumption is used only to generate the initial setup; after the simulation is initiated,

the temperature profile of the disk is governed by the evolving dust opacity. Assuming

vertical hydrostatic equilibrium, the initial gas density profile is written as

ρg (R, z) = ρ0 (R) e−(z2/2h2g) (4.3)

where ρ0 (R) = Σg/
√

2πh is the midplane density and hg is the local gas scale height,

given by

hg = cs/Ω, (4.4)

where Ω is the Keplerian angular speed and cs = (kbT/µmp)
1/2 is the local isothermal

sound speed with kb the Boltzmann constant, µ the mean molecular weight, taken as

2.33, and mp the proton mass.
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Figure 4.3: Surface density profile for the disk models: MMSN, MMEN and H1. The
black horizontal line corresponds to Σg = 20 g cm−2 which is the surface density
threshold at the outer edge of the dead-zone. As can be seen from the plot, the surface
density is more than 20 g cm−2 out to ∼ 65 au for the MMEN model. For H1 model the
surface density is more than the threshold for the full radial extent of our simulations.
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ṀMMSN :α= 10−4
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tively for the MMSN (blue) and MMEN (green) disk models. The mass accretion rates,
Ṁ , with constant α = 10−3, 10−4, and 10−5 respectively for MMSN (blue) and MMEN
(green) disk models. Ṁ is calculated from the classical accretion theory.
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We investigate the gravitational stability of two different disk models and use

an additional model for code tests. The minimum-mass solar nebula [MMSN; Hayashi,

1981] is our test laboratory; we conducted simulations to compare with literature re-

sults, but mention a priori that grain growth and settling cannot trigger instability in

the low-mass MMSN. For science simulations we adopt the minimum-mass extrasolar

nebula [MMEN; Chiang and Laughlin, 2013], which is substantially heavier than the

MMSN but has the same surface density power law index. The model surface densities

are as follow:

Σg(R) = 1.7× 103
(
R
1au

)−3/2
g cm−2 (MMSN)

Σg(R) = 104
(
R
1au

)−3/2
g cm−2 (MMEN),

where Σg(R) is the surface density at radius R (see Table 4.1 for variable definitions).

Finally, we consider a heavy disk model which is only marginally stable at t = 0 with

the surface density profile

Σg(R) ∼ 1.5× 104

(
R

1au

)−3/2
g cm−2. (4.5)

In the following, test simulations of the MMSN are identified by ‘T’ and those of the

MMEN by ‘F’ (see Table 4.1, which lists the simulations performed in this paper).

The heavy disk model is named H1. The surface density profiles (Σg(R)) for all disk

models are shown in the figure 4.3. We simulate a radial range of Rmin = 0.1 au to

Rmax = 75 au. With such radial extent, the disk masses are approximately 0.018,

0.12 and 0.18 M� for MMSN, MMEN and H1 respectively. In the vertical direction,

we extend the grid to 4hg above the midplane in each radial grid zone; we ignore

regions with z > 4hg as dust density above that height is less than 0.1% of that

in the midplane even at t = 0. The 40 radial zones are equispaced in log(R), and

function independently: particles do not move between vertical columns due to the

omission of radial drift. We divide each column into 32 cells equispaced in z, 8 cells
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Table 4.1. Simulations Performed

Simulation Σ(R) vfragα Mdisk/M? αminName profile cm s−2

T1a MMSN 10−3 100 0.018 · · ·
T2a MMSN 10−4 100 0.018 · · ·
T3a MMSN 10−5 100 0.018 · · ·
T4a MMSN variable 100 0.018 10−5

F1 MMEN 10−3 50 0.12 · · ·
F2 MMEN 10−4 50 0.12 · · ·
F3 MMEN 10−5 50 0.12 · · ·
F4 MMEN 10−3 100 0.12 · · ·
F5 MMEN 10−4 100 0.12 · · ·
F6 MMEN 10−5 100 0.12 · · ·
F7 MMEN variable 100 0.12 10−5

F8 MMEN variable 100 0.12 10−4

H1 equation 4.5 variable 100 0.18 10−5

Note. — Science simulation set: Two different disk surface density
profiles with α = 10−3, 10−4, 10−5 and variable.

aCode test

per scale height. The typical mass accretion rates (Ṁ) for MMSN and MMEN models,

calculated according to the classical accretion theory [Hartmann et al., 1998], are also

shown in figure 4.4.

4.2.2 Turbulence Profile (α): Ionization-Recombination Chemistry

It is believed that a protoplanetary nebula is turbulent due to several proposed

hydrodynamic [Lovelace et al., 1999, Lyra, 2014, Nelson et al., 2013, Marcus et al., 2015]

and magneto-hydrodynamic [Balbus and Hawley, 1991, Turner et al., 2014] instabilities.

However, we assume that the magnetorotational instability (MRI) is the source of

turbulence in all our disk models. For our first set of simulations (T1, T2, T3, and F1

- F6) we adopt the spatially uniform α viscosity prescription [Shakura and Sunyaev,
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1973]

ν = αcshg, (4.6)

where ν is the turbulent viscosity. For simulations with variable α(R, z) (T4, F7,

F8 and H1), we simulate a disk with layered accretion [e.g. Gammie, 1996]. MHD

turbulence depends on how the gas is coupled to the magnetic field, which strongly

depends on the degree of ionization. For simulations with variable α, we adopt the

ionization prescription of Landry et al. [2013], who consider cosmic rays, stellar X-rays

and radionuclides as the ionization sources. The model first calculates the equilib-

rium abundances of charged species by solving a simplified set of chemical reactions,

including grain surface reactions and the metal atoms’ adsorption and desorption on

the grains, adopted from Ilgner and Nelson [2006]. In the regime where recombination

mostly occurs on the grain surface, the simplified model gives similar results to a de-

tailed chemical model. Subsequently, the Ohmic (ηO) and ambipolar (ηA) diffusivities

are calculated and α(R, z) is computed. The minimum turbulent efficiency, αmin, due

to large scale fields in the dead zone, is taken as 10−5 [Turner et al., 2007]. For details

of how we compute the spatially non-uniform α profile see appendix E. We note that

hydrodynamic instabilities can provide viscosity even in magnetically inactive regions

[Lyra, 2014, Nelson et al., 2013]. These instabilities can maintain a higher value of

α which will affect the global dust evolution in the disk. To test how higher αmin

affects the size distribution, we have chosen one model (F8) with a minimum value for

α = 10−4 at the midplane.
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Table 4.2. Variables used in theoretical modeling

Variable Meaning

cs local isothermal sound speed
Σg gas surface density
κ epicyclic frequency
Ω Keplerian frequency
R orbital distance from central star
α turbulence strength
M? stellar mass (mass of central star)
ρg gas volume density
ρd dust volume density
ρm material density of dust
n0 Dust number density at midplane at t = 0
hg local gas pressure scale height
hd dust scale height
a radius of dust particles
η dust to gas mass ratio
tfric friction/stopping time
vrel relative velocity of collision
vfrag fragmentation threshold velocity
vdm relative speed of dust grains and gas molecules
Vg gas dispersion velocity
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Table 4.2 (cont’d)

Variable Meaning

λmfp mean free path
St Stokes number
ξ fragmentation power law index
Dg gas diffusion coefficient
Dd dust diffusion coefficient
κλ monochromatic opacity
〈κ〉ρd density weighted opacity
tη smallest eddy turnover time
tL largest eddy turnover time
Re Reynolds number
λ wavelength of photon radiation

After the initial calculation of turbulence efficiencies, we do not evolve the

α(R, z) profile with time in the course of our simulations. The initial prescription

from Landry et al. [2013] assumes a nominal 1µm grain size. Due to grain growth

and settling, the gas-to-solid ratio decreases at the midplane by almost an order of

magnitude from its initial value. This evolving gas-to-solid ratio would alter the height

of the dead-zone above the midplane as the disk evolves. Okuzumi and Hirose [2012]

confirmed this trend with their grain evolution model in which the dead-zone ini-

tially shrinks, with its upper boundary contracting towards the midplane, and then

extends vertically again. We note that for a self-consistent treatment, varying α(R, z)

and hence the thickness of the dead-zone would be necessary. We leave the improved

α(R, z) prescription for future work.

4.2.3 Dust Disk at t = 0

To model the dust size distribution at t = 0, we adopt a grain-size distribution

with an MRN [Mathis et al., 1977] power-law index, N(a) ∝ a−3.5 where N(a) da is

the number of dust particles of radii between [a, a+ da]. We consider that dust grains
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already grow beyond the ISM size in the molecular cloud phase [Suttner and Yorke,

2001] and adopt the maximum and minimum sizes of the dust size distribution at

t = 0 as amax = 1.0µm and amin = 0.1µm. To begin our grain growth and settling

simulation, we make two assumptions:

1. Gas and dust of all sizes are dynamically coupled and well mixed at t = 0, with

Stt=0 � 1 (this will not be true at later times);

2. The dust-to-gas mass ratio is η = 0.01, similar to the interstellar medium (ISM).

In the strongly coupled dust assumption, the initial dust scale height can be

well approximated by the gas scale height (equation 2.67). Also, we can assume that

the dust will follow the exact same Gaussian stratification as the background gas. We

estimate the total dust mass and vertical dust density stratification in a particular

column from the knowledge of surface density as Mdust = η Σ(R). Also,

Mdust =

∫ amax

amin

4

3
πa3ρm

dN

da
da = ηΣ(R) (4.7)

and the total number of particles N in the vertical column can be written as,

N =

∫ amax

amin

dN

da
da = A

∫ amax

amin

a−3.5 da (4.8)

=
2

5
A
[
(amin)−5/2 − (amax)

−5/2] (4.9)

where A is the pre-factor of MRN particle size distribution and can be obtained from

equation 4.7,

A =
Mdust

8
3
πρm(

√
amax −

√
amin)

(4.10)

The assumed Gaussian profile of dust number density in the z direction gives

N =

∫
n(z) dz = n0

∫ ∞
0

e−z
2/h2d dz = n0

∫ ∞
0

e−z
2/h2g dz (4.11)
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where n(z) is dust number density with n0 being that in the midplane. Equation 4.11

gives

n0 =
N√
2πhg

(4.12)

After the calculation of n0, the initial dust size distribution is then computed, following

a Gaussian, for the full vertical column.

4.2.4 Relative velocity of Collision

We consider five different contributions to the particle relative velocity (see figure

4.5): Brownian motion (δvB), turbulent motion (δvt), vertical settling (δvz), radial drift

(δvr) and azimuthal motion (δvφ). Our simulations are azimuthally symmetric and we

do not allow particles to move between radial grid zones. However, we include δvr and

δvφ contributions to vrel to improve the accuracy of our collision outcomes. Although

it may seem physically inconsistent to include δvr in the velocity calculation while

forbidding radial motion in our grid, δvr and δvφ contribute significantly to collision

velocities only for a > 10 cm as demonstrated by Estrada et al. [2016]. The presence

of such large dust particles is rare in our simulations, and radial drift is important over

a timescale much larger than a time when we obtain steady states for the dust size

distribution. The relative velocity of collision is calculated as

vrel =
√∑

δv2i , (4.13)

where i represents each of the five velocity contributions mentioned above.

For the smallest particles, Brownian motion is the dominant contribution to vrel,

giving δvB =
√

[8kT (mp +mt)/(πmpmt)] (where k is the Boltzmann constant). The

collision velocities of dust particles with radii greater than a few µm are dominated by

the gas turbulence. To calculate δvt, we follow the closed-form velocity prescription of

Ormel and Cuzzi [2007] (their equations 26, 28 and 29). §3.4 describes our algorithm

for computing δvz. We compute δvr and δvφ using equations 6, 7, and 18 of Okuzumi

and Hirose [2012].
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Figure 4.5: The relative velocity between different particle sizes in log scale in the
unit of cm s−1 (equation 4.13) with contributions from Brownian motion, turbulence,
settling, radial and azimuthal drift as mentioned in section 2.3.2. The velocity profile
is plotted for Σg = 330 g cm−2, η = 0.01, T = 115K, and α = 10−3 at a distance of 3
au from the central star. Parameters listed above are directly taken from Windmark
et al. [2012a]; see their Figure 6.
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4.2.5 Collision Outcomes: Sticking & Fragmentation

We treat dust collisions as a binary process, identifying the smaller mass as

the projectile (mp) and the bigger mass as the target (mt). The collision outcome is

determined by the relative velocity (see §2.3.2 for a description of our velocity com-

putation). For all our science simulations, we have restricted our collision model to

sticking and fragmentation (SF) only. If the particles collide with a velocity less than a

threshold velocity vfrag, they stick and form a new particle with mass mfinal = mp+mt.

When vrel > vfrag, the collision results in fragmentation. For such an event the com-

bined mass of the target and the projectile is made to follow a mass distribution

f(m) dm ∝ m−ξ dm with ξ being the fragmentation distribution power law index.

Here we adopt ξ = 11/6 [Windmark et al., 2012b, Dra̧żkowska et al., 2014, Krijt and

Ciesla, 2016], though we note that some experiments predict a shallower fragment size

distribution with ξ = 9/8 [Blum and Wurm, 2000, Güttler et al., 2010]. The smallest

fragments are monomers of 0.1µm. The largest body in the fragment mass distribution

is set equal to the target mass as in Dra̧żkowska et al. [2014] (personal communication).

We note that setting the mass of the largest particle of the fragmenting distri-

bution equal to that of the target is equivalent to assuming that the target is immune

to fragmentation. Laboratory experiments, in fact, show that the mass of the largest

fragment is dependent on the collision velocity [Güttler et al., 2010]. We, however,

have found that the overall shape of the steady state size distribution is not very sen-

sitive to the fine details of the fragmentation prescription. The abundance of the small

grains, originating from the fragmentation of bigger dust particles, is rather dependent

more on the power-law index of the fragment’s size distribution, in agreement with the

analytical treatment of Birnstiel et al. [2011]. In Figure 3.8, we have presented the test

results with two different fragmentation prescriptions and the results are very similar.

However, the timescale for reaching the steady state differs by a few years between

these two results.

Regarding other collisional outcomes, which we have neglected for our science

simulations, inclusion of bouncing in the model slows down the growth process and
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the growth timescale may even become comparable to the timescale for radial drift

[Estrada et al., 2016], which is not included in our model yet. Furthermore, bouncing

effect restricts the growth of particles [Windmark et al., 2012a] limiting the maximum

Stokes number of the evolving size distribution [See figure 2 of Estrada et al., 2016].

Inclusion of mass transfer helps dust particles to grow indefinitely and is considered

a possible pathway to planetesimal formation [Dra̧żkowska et al., 2013] if drift is ne-

glected. Estrada et al. [2016], on the other hand, have shown that under more realistic

conditions where radial drift is included, the effect of mass-transfer is limited. The pri-

mary objective of this work is to examine how the disk’s temperature profile responds

to grain growth and settling. Given that grains of size similar to the peak wavelengths

of star and disk emission control the temperature structure, we do not include the

mass transfer/planetesimal formation pathway in this paper. Furthermore, although

target erosion is the most likely outcome of high-speed collisions between particles of

significantly different masses [e.g. Windmark et al., 2012a], we neglect erosion due to

computational constraints. Instead, we assume that all collisions with vrel > vfrag lead

to fragmentation, as in the “SF” simulations of Windmark et al. [2012b]. We also

assume that the dust particles remain compact spheres throughout their growth and

fragmentation.

4.3 Opacity Model

After computing the dust number density n(a,R, z), we require an opacity pre-

scription to find the disk temperature T (r, z). For the majority of the disk mass, which

lies near the midplane, it is reasonable to assume that the gas and dust temperatures

are equal. For temperatures less than ∼ 2000 K, dust is the dominant opacity source

[e.g. Kama et al., 2009], so we neglect the opacity of gas to opacities. We adopt the

“Utilitarian opacity model” from Cuzzi et al. [2014] (See section F for a brief description

of the model) to calculate the extinction efficiencies Q(λ, a) as a function of wavelength

and dust size. Following the calculation of extinction efficiency, the opacity per gram
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of dust is calculated as

κλ(a) =
3

4
Q(λ, a)

1

aρm
. (4.14)

We assume that the composition of dust particles is 100% astronomical silicate,

[FexMg1−x]SiO3 with x = 0.3, and has a material density ρm = 3.4 g cm−3. The

real and imaginary refractive indices are taken directly from the MPIA website1. The

reader is advised to look into Cuzzi et al. [2014] for further details of the model. See

figure 4.6 for the dust opacities calculated using C14 and adopted in radiative transfer

calculations.

4.4 Temperature Calculation: Radiative Transfer

We compute the temperature profile of the disk using RADMC-2D [Dullemond

and Dominik, 2004]. The code performs Monte-Carlo dust continuum radiative transfer

based on the method of Bjorkman and Wood [2001] with modifications to produce

smoother results with a reasonable number of photons. The working principle of this

code involves dividing the luminosity of the source into a finite but large enough number

of photon packets, each with the same amount of energy. However, the number of

physical photons, actually contained by each packet, depends on the frequency. After

a photon packet is injected into the disk with an assigned random frequency chosen

from the spectral energy distribution of the central star, the code follows the packet

through absorption and scattering by dust grains. The photons once absorbed by the

dust get re-emitted immediately with frequencies randomly chosen from the difference

between the thermal spectra before and after the packet is absorbed. This process

continues until the photon escapes from the disk through its physical boundary. The

increase in temperature of the cell, where absorption/re-emission or scattering takes

place, is computed after each event. The frequency of the incident photon and the dust

opacity at that frequency are used for temperature re-calculation.

1 https://www2.mpia-hd.mpg.de/home/henning/Dust_opacities/Opacities/opacities.html
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Figure 4.6: Opacity as a function of wavelength for 100% silicate grains. The opacities
shown are for dust sizes between 0.1 µm to 1 mm, from top to bottom, equi-spaced in
log scale. The ratio of the particle diameters between any two successive lines in the
figure is 2.78.
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To use the code, we treat dust of each size of our histogram as separate species

and provide RADMC the monochromatic absorption and scattering opacity per gram

of dust calculated using equation 4.14. Based on convergence tests, we find that we

achieve an accurate temperature profile using 106 photon packets.

Note that the vertical temperature structure at a particular column at t = 0

obtained from RADMC is different than the canonical power-law temperature profile

given by Equation 4.2, which assumes the vertical column to be isothermal. We have

used the isothermal prescription to define the initial gas scale height hg which remains

the same throughout the simulation as the dust physics is implemented on a fixed

gas background.This implies that our steady state solutions are not in hydrostatic

equilibrium. The disk interior is cooler than the initial stage, so restoring vertical force

balance would make the disk even thinner.

4.5 RESULTS

We now move on to present the results of our dust growth, settling, and turbulent

diffusion simulations in this section. We first report the steady state timescales of our

simulations in §4.5.1 followed by general results for evolving dust size distribution as a

function of disk parameters in Sections 4.5.2 to 4.5.5. In section 4.5.6, we present our

results for evolving disk opacity, temperature profile and gravitational stability under

axisymmetric perturbations.

4.5.1 Steady State Timescales

For a given disk mass, the time to reach a steady state increases with vfrag

and decreases as the value of α increases. In all simulations the final steady state is

reached within ∼ 3× 104 years. For example, for the MMEN model, the timescales of

the results shown for disk with α = 10−3, 10−4 and 10−5, and vfrag = 50 cm s−1 are

∼ 23, 000, 27, 000 and 29, 000 years, respectively. However, the growth and vertical

diffusion timescales are shorter than the timescales through which the simulations are

run. For example, the maximum particle size is achieved in the MMSN model at 10 au
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with α = 10−5 within ∼ 2500 years. When α is increased, the growth process is

affected in two ways. First, the relative velocity of collisions increases due to increased

turbulence strength, reaching vfrag faster and restricting the growth. Secondly, the

collision timescale decreases due to increased collision velocity (τc ∼ 1/nσvrel). Both

these effects reduce the time required to reach the maximum grain size. As an example,

the growth timescale for the same MMSN model at 10 au is ∼ 2200 years for α = 10−4,

and ∼ 1600 years for α = 10−3. For MMEN disk models the growth timescales for

α = 10−4 and 10−5 at 10 au are ∼ 2300 and ∼ 2900 years, respectively.

The vertical diffusion timescales generally vary between ∼ 103− 106 years, with

the longer timescales being relevant only for strongly coupled (sub)µm particles in the

inner disk. However, using local dust-gas coupling by calculating local Stokes numbers

results in a shorter diffusion timescale compared to the Stokes number calculated using

the midplane values [Mulders and Dominik, 2012]. The enhanced dust abundances

in regions near the midplane generate particles slightly bigger than those estimated

theoretically using equation 3.16 (see Figure 4.13). Hence, although the results do not

change significantly beyond∼ 15000 years, we run our simulations until t ∼ 30000 years

to be absolutely sure that the size distributions we present here are the true steady

state results.

4.5.2 Maximum Particle Size Variation with α

As the maximum particle size achieved through collisional dust growth varies

inversely with α, the largest size of the particle decreases as the disk becomes more

turbulent. In simulations including radial drift and coagulation, but not fragmentation,

Brauer et al. [2008] find a similar trend for the most common particle size (which

we also see in our results) but note that the effect is modest: only a factor of two

increase in predominant particle size with a 102 decrease in α. We find that a factor-

of-10 decrease in α yields nearly a factor-of-10 increase in maximum particle size at a

given radius—true for both our test simulations of the MMSN (not pictured) and our

science simulations of the MMEN (See Figure 4.8). Note that this difference originates
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from the adopted value of the fragmentation velocity as well (see Section 4.6 for more

discussion). Brauer et al. [2008] suggested that turbulent stirring at higher values of α

keeps number densities nd(R, z) lower, leading to less frequent collisions and frustrated

growth. Our simulations have the added effect of more vigorous fragmentation at high

α due to the higher relative velocities from stronger turbulence [Weidenschilling, 1984].

4.5.3 Maximum Particle Size Variation with Radial Distance

Particles reach larger sizes in the inner disk than in the outer disk, as seen

in figures 4.8 for MMEN and Figures 4.10, 4.11 and 4.12 for MMSN disk models.

Figure 4.9 shows Stokes number as a function of z/hg at 5, 10, and 30 AU for three

different grain sizes in the MMSN and MMEN models. Particles in the outer disk

have higher Stokes number at a given grain size and value of z/hg than particles

in the inner disk, and so decouple from the gas more easily. Small particles in the

outer disk can then attain high values of vrel [e.g. Ormel and Cuzzi, 2007] and hit the

fragmentation threshold velocity, while the same particles in the inner disk would keep

growing [Birnstiel et al., 2009, Estrada et al., 2016].

4.5.4 Presence of Small Grains in Upper Atmosphere

Even weak turbulence can keep particles as large as 0.1 mm stirred into the

disk’s upper layers [e.g. Dubrulle et al., 1995]. Figure 4.13 shows ρd(a) at the midplane

and 3hg at 5 AU for model T2 (MMSN, α = 10−4). Although α = 10−4 is near

the lower limit of expected turbulent efficiency due to the likely onset of hydrodynamic

instabilities where MRI is inactive [e.g. Nelson et al., 2013], it is still possible to find 0.1-

mm particles at 3hg. Local, single-cell simulations without any vertical motion (solid

lines) show that the maximum particle size that can grow at 3hg is only ∼ 30 µm;

turbulent diffusion introduces particles with five times larger radii that grew near the

midplane.

In all our simulations, we have used an outflow boundary condition where par-

ticles leaving the surface of the disk are not tracked. However, as can be seen from
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Figures 4.8, the dust density in the upper layers of the disk at ∼ 3hg is already several

orders of magnitude less than that of the midplane. The same trend can be observed in

our test simulations T1-T4 as well in Figures 4.10 to 4.12. As a result, an insignificant

grain mass is lost over the course of the simulation (∆m/m . 10−6). Also, the vertical

temperature profile becomes flat at the upper layers of the disk as can be seen in Figure

4.14. Furthermore, in Figure 4.15 we have plotted the vertical optical depth integrated

from disk surface to the midplane. The optical depth falls several orders of magnitude

below unity within one scale height above the midplane in both short (150µm) and

long (1 mm) wavelengths. This suggests that our choice of the particular boundary

condition at the disk’s surface does not affect the vertical temperature stratification.

4.5.5 Vertical Dust Distribution for Variable α

We now turn to disk models with variable α(R, z). Figures 4.16, 4.17 and

4.18 show steady-state dust density distributions ρd(a, z) at 50 au for simulations T4

(MMSN), F7 (MMEN) and H1 respectively. The black dashed lines show α(R, z) as

calculated using the methods of Landry et al. [2013]. In each disk, at 50 au we can

see the existence of a dead-zone: the midplane is quiescent, with α(z = 0) = 10−5

due to suppression of MRI turbulence (a value that might be low enough to trigger

hydrodynamical instabilities, which is the case for F8); and the surface layers have

strong turbulence [e.g. Gammie, 1996] (though the turbulence may be confined to

heights above the upper z-axis limit in Figures 4.16 to 4.18). Unsurprisingly, there is

a strong vertical stratification in dust density that mirrors the rapid change in α(z).

Any particle that dips below z/hg = 1.5–2 is unlikely to be kicked upward again due

to the weak turbulence, so grains stay sequestered near the midplane. Also, we can see

a local accumulation of small dust grains with a . 10µm at a height where α suffers a

sharp transition. While disks with constant α(R, z) have dust density profiles that are

vertically Gaussian, disks with variable α(R, z) have vertical dust density profiles that

are strongly non-Gaussian, having a sharp cutoff at some height z.
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The fact that different disk models used in this paper have different size distri-

butions ρd(a,R, z) means that they will have different vertical optical depths, angles

at which starlight is absorbed, and temperature structures. We explore the opacity,

optical depth, and gravitational stability of our model disks in the next section.

4.5.6 Opacity, Thermal Profile & Gravitational Stability

In this subsection, we present our results of the opacity calculations and tem-

perature profile of the evolving disk. In Figures 4.19 and 4.20, we show opacity as a

function of wavelength for t = 0 and steady-state size distributions at 10 au in the

MMSN (T2-T4) and MMEN (F5-F7) models, all with vfrag = 100 cm s−1. Figures

4.21 and 4.22 show the same for 30 au. We define the mean opacity of a grain size

distribution 〈κ〉ρd as

〈κ(λ)〉ρd =

∫
ρd(a)κλ(a) da∫
ρd(a) da

. (4.15)

Grains absorb and emit light most efficiently at wavelengths shorter than 2πa at which

point the profile of opacity of dust starts to drop. We see that in steady state, the

opacity contribution from small grains at the disk midplane has decreased by 2–3 orders

of magnitude from t = 0 due to grain growth. Meanwhile, the opacity contribution

from particles with a & 30µm has increased. At height 3hg, the mean opacity across

the size distribution does not evolve as much between t = 0 and steady state, though

an opacity deficit develops from 1–5 µm as the 0.1 µm monomers are left behind due

to selective grain settling. This reduction in opacity is also prominent in the top-most

curve of figure 4.6. The silicate resonance features at 10–20 µm, which are produced

by warm grains of 1 . a . 10µm, also weaken in the midplane, nearly disappearing

for the disks with α = 10−5. The decrease in opacity at short wavelengths can be

attributed to the collisional growth of dust which reduces the abundance of particles

with sizes 2πa . λ, for which the opacity curve is wavelength independent. Larger dust

particles, due to their sizes exceeding short wavelengths, gain no extinction efficiency

but decrease in physical area per unit mass by a factor of the radius. This is also the
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reason why the opacity increases at longer wavelengths as dust particles reach those

sizes due to collisional growth.

The optical depth, defined by

τ =

∫ ∞
0

κρ dz (4.16)

is also affected by the growth and settling of dust grains. Figure 4.24 shows the optical

depth from surface to midplane of models F4-F6 [MMEN, constant α(R, z)] plus t = 0

at four different wavelengths. Grain growth depletes the small grains and causes the

optical depth at λ = 3µm and λ = 10µm to decrease as the disk reaches steady state.

At λ = 100µm, all disks with steady-state size distributions are still more optically thin

than the t = 0 disk. Finally, at λ = 1 mm, the steady-state disks with α(R, z) = 10−5

and 10−4 have increased their optical depth since t = 0 (at least within 35 AU of the

star). For α(R, z) = 10−4, the disk becomes optically thick at 1 mm inside 10 AU.

Figure 4.24 provides a caution that calculating the surface density of grains available

for planet formation in the inner disk from (sub)millimeter observations [e.g. Andrews

et al., 2013] might not work, as the disk emission may be optically thick as has already

been suggested by ALMA observations (e.g., HL Tau disk).

In Figure 4.25 we show the optical depth (τ) for simulations F7 and F8 at

λ = 150µm with variable α profile and αmin = 10−4 and 10−5, respectively. The

optical depths at the outer radii are much lower for αmin = 10−5 than for αmin = 10−4.

However, Nelson et al. [2013], Klahr and Hubbard [2014], Lyra [2014], Marcus et al.

[2015] have suggested that hydrodynamic instabilities capable of sustaining angular

momentum transport can operate in magnetically dead zones, making αmin = 10−4 a

more physically realistic value.

The opacities in our models can be directly compared to those of Estrada et al.

[2016]. The solid red line in Figure 4.25 is the optical depth τ = κRΣ/2 based on the

Rosseland mean opacity κR. The data have been electronically extracted from two

separate subfigures of Figures 3 and 4 of Estrada et al. [2016] (κ from the top row

87



of Figure 3 and Σ from top row of Figure 4) and interpolated onto the same radial

gridpoints as in our models. The Rosseland mean optical depth is roughly equivalent

to optical depth at the wavelength where the Planck function peaks, which is ∼ 150µm

in the typical temperature ranges in the Estrada et al. [2016]. The optical depth from

Estrada et al. [2016] is an order of magnitude more that our values at ∼ 30 au, followed

by a sharp decrease in the outer nebula.

The optical depth differences between our model and E16 are likely due to

advection by gas: the E16 disk has a maximum outward gas mass flux at 20 au (see

their Figure 4), with outward gas motion everywhere outside 7 au. We believe the

gas flow is carrying grains outward so that they pile up at 30 au, causing the large

bump in optical depth. The E16 grain pileup is probably also sourced by inward radial

drift from the outer edges of the disk, correlated with the sharp drop in optical depth

beyond 60 au. Other differences between our model and E16 are grain composition

(they use ice opacities where T < 160 K where we assume silicates throughout the disk

for consistency with our collision model), α = 4 × 10−4 throughout the disk (Figure

4.25 is from our models with variable α), and surface density (bottom of Figure 4.25).

The comparison with E16 highlights the importance of gas velocity: in our work, we

treat the gas only as a fixed background against which particles evolve. We justify this

assumption by the short timescale over which the grain size distribution reaches steady

state, but note that even if the gas mass distribution does not significantly evolve over

the course of a simulation, the gas velocities may be important when computing the

radial distribution of solids.

We expect the changes in mean thermal opacity as a function of wavelength

to affect the temperature of the disk interior. Stellar photons are absorbed at a high

latitude in the disk where they are re-emitted towards the midplane, heating the disk

interior. This energy is then re-radiated and escapes vertically to space resulting into

cooling. A vertical column with higher optical depth will absorb more photons only to

re-emit them towards the midplane and disk surface, making it harder for the photons

to escape the disk vertically at the same time. Moreover, the grazing angle at which
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starlight penetrates the disk becomes smaller as dust settling proceeds [Chiang and

Goldreich, 1997, Hasegawa and Pudritz, 2011] due to the lack of dust particles high

up in the disk, which decreases the photon absorption efficiency as well. Clearly, as

the optical depth decreases through the process of grain growth and settling, passive

heating becomes less efficient and the interior disk temperature decreases, ultimately

lowering the value of Q parameter.

In figure 4.26 we plot the Q (Equation 4.1; left axis, solid lines) and midplane

temperature (right axis, dashed lines) as a function of R for MMEN models F2-F4

(left) and disk H1. Both disks show that the midplane temperature decrease and cor-

responding drop in Q as the disk evolves from t = 0 to steady state. The disk with

the least efficient turbulence at the midplane [α(R, z) = 10−5] becomes the coldest

and least stable to axisymmetric perturbations. For model H1 (variable α), the drop

in Q(R) caused by grain growth pulls the disk below the Q = 1.4 threshold [e.g. Pa-

paloizou and Savonije, 1991, Nelson, 1998, Mayer et al., 2002, Johnson and Gammie,

2003, Pickett et al., 2003]—at which non-axisymmetric modes may begin to grow expo-

nentially beyond ∼ 20 au. In Figure 4.27, we present a similar plot for the models F7

and F8 where vfrag is taken as 100 cm s−1. Two different values for αmin are used for

the variable α profile: 10−4 and 10−5 for the midplane. As expected, the temperature

at the midplane is higher for αmin = 10−4 compared to αmin = 10−5 by ∼ 5 K inside 20

au. Beyond 20 au the temperature difference is ∼ 2−3 K. Overall, the radial midplane

temperature profile is not very sensitive to the choice of αmin, specially at the outer

radii. However, the inclusion of viscous heating may result in a bigger temperature

difference in the inner part of the disk.

4.6 DISCUSSIONS & MODEL LIMITATIONS

Here we have presented a proof-of-concept experiment showing that grain growth

alone, with no triggers such as infall or vortices, may be able to drive a massive proto-

planetary disk to gravitational instability. Yet instability does not necessarily lead to
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the formation of sub-stellar companion, and only if our adopted assumptions are ful-

filled, our conclusions become fully applicable to observed protoplanetary disks. Here

we discuss the limitations of our model and the robustness of our conclusions.

4.6.1 Only Sticking and Fragmentation (SF) collision outcomes

Out of many collision outcomes—up to nine possible collision outcomes pre-

sented by Güttler et al. [2010] but notably erosion, mass transfer, and bouncing [Wind-

mark et al., 2012a]—we have restricted our simulations to just sticking and fragmen-

tation. Any outcome that tends to keep particles small, such as bouncing or erosion,

would work against grain settling and disk instability. Also, we have not included

planetesimal formation or planet growth, though large bodies increase the velocity dis-

tributions of nearby objects, leading to more destructive collisions [e.g. Dobinson et al.,

2016]. Our simulations only apply to young disks at the very beginning of disk evolu-

tion. However, it is important to remark that larger grains may already be present in

young stellar objects [Jørgensen et al., 2007, Steinacker et al., 2010, Ricci et al., 2010,

Cox et al., 2015].

4.6.2 Viscous Heating

Although we assume that our disks are MRI-turbulent, we do not include viscous

heating but assume that the disk is heated only by stellar photons. The importance of

accretion heating depends on the disk accretion rate. For disks with a higher accretion

rate, the region where accretion heating dominates expands towards the outer disk.

For a classical T-Tauri star with an accretion rate of Ṁ ∼ 10−8M� yr−1, the iceline

is located around 2 AU [Hasegawa and Pudritz, 2011, Min et al., 2011]. The heating

due to the central star varies as R−1/2 while the heating due to the accretion process

is much steeper with an R−3/4 variation [see Dullemond et al., 2007, for a detailed

review]. Hence, for classical T-Tauri stars, with an Ṁ ∼ 10−8M� year−1 the viscous

heating dominates only within 1 − 2AU [Jang-Condell and Sasselov, 2004, Yu et al.,

2016] (Also see our figure 4.3). Landry et al. [2013] argue that outside the disk region
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where Σ ∼ 20 g cm−2 the disk can be assumed to be fully MRI-active. Our MMEN

and H1 disk models are substantially heavier that those used in Landry et al. [2013]

(See table 4.1), which extends the dead zone to beyond 65 au for heavy disk models.

In figure 4.3, we have shown the surface density profile for our MMEN and H1 disk

models, where the surface density is more than the 20 g cm−2 threshold throughout the

radial range of our simulations. However, we expect that the disks with α(R, z) = 10−3

might be significantly warmer than what our RADMC simulations of passive heating

predict, and so do not include these disks in Figure 4.26 or make predictions about

their gravitational stability.

Apart from the viscous accretion, the disk angular momentum can be removed

by magnetically induced disk winds if the vertical magnetic flux is relatively strong.

For such cases, accretion heating can be neglected even in the inner part of the disk

since the value of α due to disk turbulence should be relatively small [Bai, 2016, 2017,

Simon et al., 2018]. The existence of a disk wind and its fractional contribution in

angular momentum transport is a matter under debate [Hasegawa et al., 2017]. In our

model, a disk wind would add an additional advection term for small, fully coupled

dust particles. Disk winds are outside the scope of this work and merit separate

investigation. However, although not consistent in the upper layers of the disk, our

models with low α can mimic the disk wind effect at the midplane.

4.6.3 Grain Composition: Silicate Particles

The literature on collision outcomes is far more extensive for silicates than for

any other protoplanetary disk constituent, which led us to restrict our study to silicate

particles. However, our model disks are cold enough that particles almost everywhere

should be ice-coated, which would change both their opacity and their sticking effi-

ciency. Estrada et al. [2016] and Krijt et al. [2016] have already explored collisions of

icy grains. Modeling volatiles also demands the addition of evaporation fronts where

solid growth is enhanced. In certain cases the dust-to-gas abundance ratio can be in-

creased by an order of magnitude [see figure 20 of Estrada et al., 2016]. In the context
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of disk opacities, porous icy grains would allow particles to grow further due to a higher

fragmenting threshold velocity, reducing the abundance of small particles. This effect

will lower the opacities at the shorter wavelengths while increasing the opacities at

longer wavelengths. Once experimental data on collisions of icy bodies [e.g. Shimaki

and Arakawa, 2012, Yasui et al., 2014, Deckers and Teiser, 2016] becomes more com-

plete, it would be worth repeating our experiment with collision outcomes, velocity

thresholds, and opacities appropriate to porous ice.

4.6.4 Radial Drift

For this initial experiment we have not included radial drift in our simulations,

though we plan to add it in future work. According to Birnstiel et al. [2010, 2011],

Dra̧żkowska et al. [2013], Estrada et al. [2016], the outer disk beyond 20–25 au should be

drift-dominated, with the particle size spectrum significantly altered. Consequentially,

radial drift might result in a cooler outer disk than what is predicted in this work due

to the reduction in the efficiency of passive heating, by lowering its opacity to (sub)-

mm radiation, while increasing the (sub)-mm opacity in the inner disk. However, the

drift timescale is longer than the vertical settling/diffusion timescale for dust particles

[Birnstiel et al., 2010].

With our disk setup, the width of the annuli at 40 and 70 au are 7.5 and 14 au

respectively, whereas the particles of maximum sizes at those positions travel ∼ 6.5 and

12 au respectively in a timescale of ∼ 104 years for an MMEN disk model. Similarly

in the inner disk, the width of the column at 5 au is ∼ 1.2 au with the maximum drift

in the same timescale is ∼ 0.9 au. These comparisons suggest that inward radial drift

is an important but not dominant effect over the simulation period.

Also, Estrada et al. [2016] showed that radial drift becomes important in the

outer disk in limiting the particle size corresponding to St ∼ 0.1. So, inclusion of

radial drift might have some effect on our growth model as well even in somewhat

shorter timescales. However, we note that Estrada et al. [2016] also included bouncing
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in their model, which slows the growth process, possibly making the growth timescale

comparable to the radial drift timescale.

4.6.5 Choice of vfrag

For this work we set vfrag = 100 cm s−1 for all our disk models except F1 - F3,

for which vfrag = 50 cm s−1, allowing us to explore our results’ sensitivity to fragment-

ing threshold velocity. Literature values for vfrag include 100 cm s−1 [experiment F1

by Güttler et al., 2010], 80 cm s−1 [Monte Carlo models of Dra̧żkowska et al., 2013],

and 50 cm s−1 [further work by Dra̧żkowska et al., 2014]. Though there is uncertainty

on the appropriate value of vfrag for silicate particles, especially when considering vari-

ations such as porosity or aggregate type, our choice of relatively low vfrag helps keep

our maximum particle sizes low, thereby minimizing Stokes numbers and keeping our

neglect of radial drift appropriate. Our conclusion that grain growth and settling can

trigger non-axisymmetric instability might not apply to disks with stronger particles

that better resist fragmentation, where drift can alter the size spectrum.

The dependence of disk opacity on the choice of vfrag can be estimated from

figure 4.23 where the spectral opacities for simulations F1 - F3 and F4 - F6 are plotted

for both the mid-plane and at 3 scale-heights at 30 au. For λ . 100µm, the opacity is

higher for vfrag = 50 cm s−1 compared to 100 cm s−1. This difference is amplified for

lower value of α. A higher vfrag with a lower turbulence efficiency for a similar surface

density puts more mass in the larger particles leaving a small fraction of the total

mass for the smaller grains, which are mostly responsible for photon absorption. This

effect lowers the opacity of the disk and changes the temperature profile. This trend,

however, reverses for λ & 100µm and larger, due to the smaller maximum size attained

in lower vfrag case. Increasing vfrag could also intensify the tendency of dust evolution

to trigger gravitational instability: Figure 4.7 shows the particle size spectrum (solid

lines, solid axes) and wavelength-dependent opacity (dashed lines, dashed axes) for the

same region of the disk but with two different values of vfrag. Higher vfrag decreases

the opacity at λ . 1 mm but increases it for longer wavelengths, the very effect that
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helps decrease Q (§4.5.6, Figures 4.19 to 4.22 and 4.24). The experiments presented

here do not cover a wide enough parameter space in collision outcomes for us to be

sure that there is a general tendency for grain growth to reduce a disk’s gravitational

stability.

4.6.6 Power-Law Index

In our simulations with different disk models, the disk masses are controlled by

varying the value of Σ0, keeping the power law index of surface density profile p = 3/2.

As we have discussed in chapter 2 (Section 2.2.1), another widely used power law index

for the surface density profile is p = 1. p = 1 makes the inner disk less heavy due to a

shallower radial profile of surface density. How these two different profiles would result

into different final states of the disk is still not clear as no direct comparison tests have

yet to exist in the literature. Most likely, in the presence of an inward radial drift,

the mass flux due to viscous accretion would be different in two cases. However, in

our simulations presented in this chapter, radial drift is not included and each vertical

column evolves independently. The evolution of dust density stratification, optical

depths and changes in opacities thus depend solely by knowing the column density at

a particular distance from the central star. Hence, p = 1 would only shift the results

of our simulations radially outward keeping the basic nature of our findings the same.

It is also important to note that the recent SMA and ALMA observations in

the dust continuum in the millimeter wavelengths reveals a surface density power law

more consistent with p = 1 [Andrews et al., 2013]. These observations are made for

disk which already underwent a significant evolution. It is thus not very reasonable to

assume that the same power law holds good at t = 0, given our current understanding

of the micro-physics of a protostellar disk.

4.7 CONCLUSION

In this chapter, we have applied our global dust model, developed in chapter 3,

to perform a series of global simulations to track dust evolution in a planet forming
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disk. We have used three disk models with different surface densities and have employed

both spatially constant and variable turbulence efficiency (α) prescriptions. Our main

findings are:

• The collisional growth of dust grains through sticking and fragmentation transfers

most of the solid mass to larger particles, leaving a small portion of the total dust

mass in the µm and sub-µm dust grains which provide most of the surface area for

photon absorption. This results in a reduction in midplane opacities at smaller

wavelengths by 3 − 4 orders of magnitude compared to the initial values. At

the disk surface, however, the opacities decrease mainly due to depletion of dust

grains by settling and inefficient growth of the dust particles due to weak coupling

between dust and gas.

• Grain growth and settling tend to decrease the optical depths (τ) from disk’s

surface to its midplane at short wavelengths (λ . 10µm) by a couple of orders

of magnitude, while increasing τ at mm and sub-mm wavelengths. For a typical

value of α = 10−4, the optical depths at 1 mm inside 30 au exceed unity, which

may be problematical for disk mass calculations from (sub)millimeter observa-

tions.

• In spite of the depletion of solids in the upper layers of the disk, grains of

(sub)micron sizes are stirred high up in the inner disk even when the turbulence

strength is small. This effect becomes more prominent when strong turbulence

in the disk surface is considered. Because of strong coupling, these dust particles

would follow the gas motion in the presence of a disk wind is present, altering

the opacities in the disk atmosphere, an essential physical process requiring an

in-depth investigation.

• The optical and thermal profiles of the disk are sensitive to the fragmenting

threshold velocity (vfrag) chosen for modeling the collisional dust growth. We

found the opacities at short wavelengths to be 5 − 10 times smaller for vfrag =
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100 cm s−1 compared to 50 cm s−1. An even higher value of vfrag, traditionally

chosen for porous icy aggregates would alter the outcomes significantly.

• Grain growth and settling can bring an initially marginally stable protoplane-

tary disk down below a Toomre Q = 1.4 threshold at which non-axisymmetric

gravitational instabilities may grow. We find that the disk interior cools as the

disk’s surface layers are heavily depleted of small grains once the size distribution

reaches a steady state, decreasing its stability to gravitational perturbations. As

disks with low turbulent efficiency α(R, z) have lower collision speeds, and al-

low grains to grow and settle more efficiently than disks with active turbulence,

we expect to find grain-triggered instability primarily in weakly turbulent disks.

The model in which we find Q < 1.4 throughout most of the disk is extremely

massive, with almost ten times the surface density of the minimum-mass solar

nebula. Interestingly, this massive disk is consistent with what theorists propose

is necessary for giant planet formation [e.g. Lissauer et al., 2009], but is much

larger than typical values inferred from disk observations [Andrews et al., 2013,

Ansdell et al., 2016, Pascucci et al., 2016, e.g.]. However, given the evidence that

disk masses are systematically underestimated [McClure et al., 2016, Yu et al.,

2017, e.g.], our model H1 “heavy” disk mass may be physically plausible.

• Finally, we note that disk instability may not necessarily lead to brown dwarf or

star formation, though companions can form in overdense spiral arms [e.g. Kratter

and Lodato, 2016]. Disks that become gravitationally unstable may transport

angular momentum by gravitoturbulence [Gammie, 2001, Shi and Chiang, 2014,

e.g.], or growing spiral modes may saturate [Cossins et al., 2009], keeping the

disk marginally stable. Further work would be necessary to track the eventual

dynamical outcome of the grain growth and settling studied here.
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Figure 4.7: The effect of fragmenting threshold velocity on grain size and opacity. The
solid curves represent the steady-state dust distributions for vfrag = 100 cm s−1 (solid
red) and 50 cm s−1 (solid black) for the same location in the disk. The dashed curves
show the corresponding mean opacity with the axes placed on right and top. 〈κ〉ρd
differs by a factor of ∼ 2 between the models.
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Figure 4.8: Steady state dust distribution for MMEN disk model with α = 10−3 (F1),
10−4 (F2), and 10−5 (F3) from top to bottom for vertical columns at 5, 10 and 30
au (from left to right). The colorbar in each case represents dust density (g cm−3

of disk volume) in log scale. The dotted vertical lines show the maximum dust size
permissible according to equation 3.16. Grain growth and settling as a function of α
can be seen by comparing figures from different rows. Also, the growth becomes less
effective as we move towards the outer disk regions due to the lower gas density and
higher Stokes number of dust particles. Similar sized grains attain vfrag faster in the
outer disk because of the low dust-gas coupling. The spikes in the figures are due to
Monte Carlo noise.
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F2).
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Figure 4.10: Steady-state dust density distribution ρd(a, z) for our T2 test model
(MMSN; α = 10−4) at 5 au. The colorbar is the same as Figure 4.12 and repre-
sents the dust density in log scale. The visible spikes in the surface plots originate
from the Monte Carlo noise in the simulations. The vertical dashed line denotes the
maximum particle size allowed according to equation 3.16. Our simulations agree well
with analytical results.
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the log of dust volume density in g cm−3.
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Figure 4.12: Steady-state dust density distribution ρd(a, z) for our T2 test model
(MMSN; α = 10−4) at 30 au.
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102



4 3 2 1 0
log10a(cm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
h

6 5 4 3 2 1
log10α

MMSN (T4)

Figure 4.16: Steady-state dust density distribution with variable α(R, z) profile for
MMSN disk model at 50 au. The colorbar is same as Figure 4.18 and represents dust
density (mass per unit disk volume) in log scale. The values of α(R, z), obtained from
the ionization-recombination chemistry model of Landry et al. [2013], are shown with
black dashed line with the axis on the top of each plot. The pattern of the steady-state
distributions is markedly different from that for constant α profile shown in Figure
4.8. Dust becomes sequestered in the midplane dead zone, where weak turbulence
prevents grains from getting kicked upward. In all the simulations, a slightly higher
concentration of smaller dust grains is obtained at heights above where α(z) makes
a sharp transition. However, this feature may not be present for an α(R, z) profile
evolving in time with the evolution of gas-to-solid ratio.
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Figure 4.17: Steady-state dust density distribution with variable α(R, z) profile for
MMEN disk model at 50 au with vfrag = 100 cm s−1. The explanation of this plot is
similar to Figures 4.16. The colorbar is same as Figure 4.18.
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Figure 4.19: Opacities 〈κ(λ)〉ρd from the t = 0 disk (solid line) and the steady-state size
distributions (dashed lines) for the MMSN and MMEN disk models at the midplane
of a vertical column at R = 10 au.

10-5 10-4 10-3 10-2 10-1 100

log10λ (cm)

10-4

10-3

10-2

10-1

100

101

102

103

104

105

〈〉  c
m

2
 g
−

1

10 au: 3 Scale-Height

t=0

α= 10−4;MMSN

α= 10−4;MMEN

α= 10−5;MMSN

α= 10−5;MMEN

α :  variable;MMSN

α :  variable;MMEN

Figure 4.20: Opacities 〈κ(λ)〉ρd from the t = 0 disk (solid line) and the steady-state
size distributions (dashed lines) for the MMSN and MMEN disk models at 3 scale
heights above the midplane of a vertical column at 10 au. Grain growth significantly
reduces the short-wavelength opacity and increases the long-wavelength opacity at the
midplane, while having much weaker effects at z = 3hg. Depending on the position in
the disk and strength of the turbulence, the quantity 〈κ〉ρd can differ by more than an
order of magnitude.
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30 au: Mid-Plane
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Figure 4.21: Opacities 〈κ(λ)〉ρd from the t = 0 disk (solid line) and the steady-state size
distributions (dashed lines) for the MMSN and MMEN disk models at the midplane
of a vertical column as Figure 4.19 but at R = 30 au.
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Figure 4.22: Opacities 〈κ(λ)〉ρd from the t = 0 disk (solid line) and the steady-state
size distributions (dashed lines) for the MMSN and MMEN disk models at z = 3hg of
a vertical column as Figure 4.20 but at R = 30 au.
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MMEN: 3hg at 30 au

t=0

α= 10−3 : vfrag = 50 cm s−1;

α= 10−3 : vfrag = 100 cm s−1

α= 10−4 : vfrag = 50 cm s−1

α= 10−4 : frag = 100 cm s−1
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Figure 4.23: Spectral opacities 〈κ(λ)〉ρd at mid-plane (left) and 3 scale-heights above
(right) for simulations with MMEN disk models with vfrag = 50 (F1, F2 and F3) and
100 cm s−1 (F4, F5 and F6) at a radial distance of 30 au from the central star. For
λ < 100µm, lower vfrag leads to higher opacity, while higher vfrag allows larger particles
to stick, decreasing the opacity. The relationship between vfrag and opacity is especially
strong for low values of α. This trend, however, reverses for λ ∼ 100µm and larger,
due to the smaller maximum size attained in the lower vfrag case (see equation 3.16).
At the disk surface (right plot), the behavior is the same, although the differences in
opacities are small due to restricted grain growth arising due to lower gas density and
weak coupling between gas and dust.
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Figure 4.24: Optical depth τ(R) integrated from the disk surface to the midplane for
the MMEN models F4 - F6 with constant α. The dashed horizontal line in each figure
shows τ = 1. At λ = 3µm and λ = 10µm the optical depth, which is provided by
the smallest grains, drops as grain growth becomes more efficient (decreasing α). At
λ = 100µm the disk with the highest optical depth at R > 30 AU has α = 10−4.
Finally, while the disk starts out optically thin at λ = 1 mm outside 3 AU, its optical
depth increases once grains begin to grow. For α = 10−4, the disk even becomes
optically thick out to R = 40 AU once the dust size distribution reaches steady state.
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Figure 4.25: Top: Steady state optical depth τ at 150µm as a function of radial
distance for models F7 (solid black) and F8 (dashed black) with variable α profile with
αmin = 10−5 and 10−4, respectively at the midplane. αmin = 10−4 at the midplane
is more consistent with a turbulence model where hydrodynamic processes contribute
to angular momentum transport [Nelson et al., 2013, Stoll and Kley, 2014, Estrada
et al., 2016, Turner et al., 2014]. The red solid line is the Rosseland mean optical
depth from Estrada et al. [2016], who find peak dust emission at λ ∼ 150µm, with
α = 4 × 10−4. Gas advection in the E16 model causes the optical depth bump at
∼ 30 au; since we hold the gas surface density fixed in our simulations, we are not able
to assess whether grains should pile up anywhere in our model disks. Other differences
between our optical depths and those of Estrada et al. (2016) are likely caused by
grain composition (silicate vs. ice) and radial drift, which removes most of the grains
from R > 60 AU. Bottom: The surface densities for the MMEN disk model and that
from the model of E16.
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Figure 4.26: Toomre Q parameter and midplane temperature as a function of radius
for MMEN (F5 - F7, vfrag = 100 cm s−1, top) and H1 (bottom) disk model. Solid
lines show Q(R) referenced to the left axis and dashed lines show midplane temperature
referenced to the dashed right axis. The dotted horizontal line denotes Q = 1.4, a value
where the disk might become unstable to non-axisymmetric perturbations (e.g. spiral
modes) [Papaloizou and Savonije, 1991, Nelson, 1998, Mayer et al., 2002, Johnson and
Gammie, 2003, Pickett et al., 2003]. For both disks Q(R) can drop by 0.3−0.4 from its
initial value, with the biggest drops in Q and T associated with disks with the weakest
turbulence. The spiky features in the temperature profile and hence in Q profile for
the inner disk regions arise due to Monte Carlo noise in the RADMC calculations.
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Figure 4.27: A figure similar to figure 4.26 for the models F7 and F8 where vfrag =
100 cm s−1 is used and the α profile is variable with αmin at the midplane equal to
10−5 (green) and 10−4 (blue), respectively. The temperatures are also shown with the
dashed curves and with an axis placed on the right-hand-side. The overall temperature
difference is not highly sensitive to the minimum value of α, especially in the outer
disk. The dashed black horizontal line corresponds to Q = 1.4.
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Chapter 5

APPLICATIONS OF DUST MODEL II: REDUCTION IN GAP
OPENING MASS DUE TO DUST SETTLING

5.1 Introduction

Starting from the collisional growth of sub-micron size dust particles, the process

of planet formation proceeds through several phases. The extraordinary diversity of the

masses and orbital locations of planets, determined in recent high-resolution ground

and space based telescopic observations, has confirmed that post formation evolution

of planetary bodies is as crucial as the processes responsible for forming planetesimals

and planetary cores. According to the current confirmed exo-planetary population,

planet mass ranges from as small as the mass of Mercury all the way upto several

Jupiter masses. Similarly, a surprising distribution of semi-major axis is also notable

in that giant planets with masses ∼ 0.5 MJup or more are observed in close-in orbits

[Armitage, 2007, Kley and Nelson, 2012, Raymond and Cossou, 2014]. The difficulties

of forming these close-in planets in-situ is problematic for both of the planet forming

scenarios of core-accretion and gravitational fragmentation. This problem led to the

idea of planetary migration where planets are formed in wide orbits and move inward

by interacting gravitationally with the gas disk [Goldreich and Tremaine, 1979, Lin

and Papaloizou, 1993, Kley and Nelson, 2012, Baruteau et al., 2014].

In the initial stages of planet formation the gaseous component of the disk

controls the growth and dynamics of the solids. However, in the later stages, the

planetesimals and protoplanets impact the gas dynamics and modify the disk’s gas

surface density structure of the disk. During this time the planetary bodies also suffer

a change in their orbits by moving inward or outward, depending on the local physical

parameters of the disk. The post formation evolution has two distinct phases. In
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the first phase, the orbital migration takes place due to the interaction between the

planet and the gas disk. In contrast, the second phase originates from the planet-

planet or planet-planetesimal scattering after the gas disk has fully dispersed [Hahn

and Malhotra, 1999, Terquem and Papaloizou, 2002, Chatterjee et al., 2008, Jurić and

Tremaine, 2008].

When a planet is embedded in the gas disk, the gas experiences torques from

the planet and the disk itself. The relative strengths of the two torques exerted on the

disk material modifies the local structure of the gas surface density. In this process,

the planet receives angular momentum from the inner part of the disk and transfers

some angular momentum to the outer disk [Lin and Papaloizou, 1979, Goldreich and

Tremaine, 1979, 1980]. By the interaction with the disk through an exchange of angular

momentum the planet pushes the inner disk inward and the outer disk outward, which

reduces the local surface density in the vicinity of the planet. Turbulent diffusion of

the gaseous disk material, on the other hand, tries to fill this low density region. If

the planet can disperse the material in a timescale shorter than the timescale in which

material is replenished, a gap is created in the disk.

The effect of a planet induced gap in a gaseous disk on the post formation

planetary evolution is two-fold. Before the gap is created, the planet in the gas disk

is subjected to what is called type I migration, which arises due to the unbalanced

torque exerted on the planet by the disk. As the torque exerted by the outer disk is

generally stronger than the that by inner disk, the planet loses angular momentum due

to the unbalanced torque and spirals inward [Tanaka et al., 2002]. Several works have

shown that, for a disk with a smoothly varying surface density, the timescale for type

I migration is too fast to reproduce the observed planetary population [Ward, 1997,

Nelson et al., 2000, Tanaka et al., 2002, D’Angelo et al., 2003, Hasegawa and Pudritz,

2010]. However, once a gap is created, the planet enters into the type II migration

regime, where planet migration happens on the viscous timescale of the disk. The type

II migration timescale is longer than that of type I migration in the planet dominated

regime for high mass planets.
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Secondly, in terms of the formation of planets, a gap can stall the growth of a

planet or at least can slow it down. Once a planetary core of several Earth masses is

reached, the planet tends to accrete the matter (dust and planetesimals) in its vicinity.

This leads to a rapid growth of the planet in the final stages of formation. However,

once a gap is induced by the planet itself due to its growing mass, the matter available

for the planet to accrete depletes and the growth slows down significantly.

In this chapter we focus on how dust growth and settling can abet the process of

gap formation. We have seen in chapter 4 that the overall growth and vertical settling

of solid bodies result into a cooling of the disk midplane. This alters the vertical

stratification of the gas density in the disk, and hence, the local disk scale height of

the gas. Our main objective is to investigate whether the changed vertical structure

can alter the criteria for opening a gap. If so, how does it affect the critical mass of

the growing protoplanet that can tidally disperse all the matter around it to induce a

significant dip in the local surface density.

5.2 The Gap-opening Criteria

As the mass of a growing planetary candidate increases, the strength of the

gravitational interaction between the planet and the disk gas increases as well. This

interaction acts in the form of a torque with which the disk and the planet exchange

angular momentum. A planetary mass object influences the disk in two ways. First, it

divides the disk into inner and outer parts and second, it launches spiral arms which

are over-dense regions. These spiral arms play a key role in the process of angular

momentum exchange. As can be seen in Figure 5.1, the planet induces the spiral

arms which are then sheared due to Keplerian rotation of the disk. The inner spiral

leads the planet whereas the outer one trails it. The creation of the spiral arms by

the planet destroys the symmetry of gas distribution of the disk around the planet.

The torque produced by the spiral arms can be easily understood from Figure 5.1.

The gravitational attraction between the outer spiral and the planet tends to slow the

planet down. In this process, the planet loses angular momentum and moves inward.
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Figure 5.1: left: The Figure on the left shows the morphology of spiral arms created
by a planet. The inner spiral leads the planet while the outer one trails. The planet
in this case is orbiting in a counter-clockwise direction. Right: The Figure shows how
a planet divides a disk into an inner and outer part separated by a co-rotation zone.
The fluid parcel exchanges angular momentum with the planet while crossing through
the horseshoe region of the co-rotation orbit. Figure is taken from Kley and Nelson
[2012] with the authors’ permission.

The interaction with the inner spiral arm, on the other hand, tries to accelerate the

planet providing it more angular momentum. The relative strength of the two effects

determines the final trajectory of the planet through the disk.

The gravitational potential of the planet at a point in the disk can be expressed

as a sum of Fourier components [Goldreich and Tremaine, 1979] and can be written as

ψp(R, φ, t) = − Gmp

|~Rp(t)− ~R
=

∞∑
m=0

ψm(R) cos [m (φ− φp(t))] (5.1)

where mp is the mass of the planet and φp(t) = Ωpt is the azimuth angle of the planet.

Here, Ωp is the pattern speed. The ψm(R) are the Fourier components of the potential

for the mth mode, rotating with the pattern speed Ωp [Goldreich and Tremaine, 1979,

1980, Meyer-Vernet and Sicardy, 1987, Kley and Nelson, 2012, Baruteau et al., 2014].

The total torque on the planet exerted by the disk can thus be written as

Γtotal = −
∫

Σ
(
~R× ~F

)
dS =

∫
Σ
(
~R×∇ψp

)
dS =

∫
Σ
∂ψp
∂φ

dS (5.2)
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where the integration is carried out over the disk and dS is a surface element. When

the planet mass grows beyond a critical point, the strength of the mutual gravitational

interaction and the exchange of angular momentum increases. If the angular momen-

tum exchanged by the planet is not sufficiently carried away by the spiral arms due

to viscous dissipation or shock waves, and is locally deposited in the disk, angular

momentum is lost by the material in the inner disk and gained by the gas in the outer

disk. In both cases, the disk material is repelled by the planet and a gap is created.

Whether a planet would open a gap depends on two conditions. First, The

thickness of the disk has to be small enough such that the matter can not accrete past

the planet. If the thickness of the disk becomes smaller than the Hill radius of the

planet, the gas from the outer disk would come within the Hill radius of the planet

while being accreted by the central star. As the planet’s gravity dominate over the

stellar gravity within its Hill radius, the gas would be accreted by the planet in stead

of reaching the central star. The diffusive accretion of the gas from the inner disk,

however, continues over the viscous timescale and a gap is opened. This condition

is quantified by setting the Hill radius of the planet greater than the local disk scale

height:

RH = ap

(
mp

M?

)1/3

≥ hg. (5.3)

Here, RH is the Planet’s Hill radius within which the planet’s gravity dominates over

the stellar gravity, and ap is the planet’s semi-major axis. This is also sometimes

referred to as the thermal condition for opening a gap. For a typical MMSN disk model

with isothermal conditions the aspect ratio hg(R)/R ∼ 0.05. For mp/M? ∼ 10−4, the

minimum mass for the planet required to open a gap is ∼ 0.1 MJup.

Second, the viscous condition, requires that viscosity in the disk does not close

the gap by filling material into it too quickly. This condition can be stated as τtidal <

τvisc, where τtidal is the timescale in which material is removed from the gap, and τvisc

is the timescale in which the disk fills in the gap viscously. Writing the torque as

Γ = dJ/ dt, where J is the angular momentum of the disk gas in the vicinity of the
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planet, the above condition can be stated as

(
dJ

dt

)
tidal

≥
(
dJ

dt

)
visc

. (5.4)

Following Goldreich and Tremaine [1979], Lin and Papaloizou [1979, 1986], the rate of

angular momentum transfer from the planet to the disk can be written as

(
dJ

dt

)
tidal

= fq2Σa2pΩ
2
(ap
b

)3
(5.5)

where f ∼ 0.23 is a constant, ap is the planet’s semi-major axis, q = mp/M? is the

ratio of planet to stellar mass and b = ap −R is the impact parameter for fluid parcel

passing the planet’s orbit. The rate of transfer of angular momentum by the viscous

disk can be written following Lynden-Bell and Pringle [1974] as

(
dJ

dt

)
visc

= 3πνΣa2pΩp (5.6)

where ν = αcshg is the disk viscosity. Applying equations 5.5 and 5.6 in equation 5.4,

we get

q >
40ν

a2pΩp

. (5.7)

Crida et al. [2006] combined the criteria of equations 5.3 and 5.4 to present a

unified gap opening criteria as

p =
3

4

hg
RH

+
50

qR
6 1 (5.8)

where R = Ωpa
2
p/ν is the Reynolds number. For a typical MMSN disk model with

hg(R)/R ∼ 0.05, α = 0.01 and q ∼ 10−3, the mass of the planet required to open a

gap is ∼ 2.5 MJup. We note that the viscous condition, being more stringent than the

thermal condition, determines the opening of the gap.
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5.3 Simulation Setup

The global modeling of a protoplanetary disk and planet formation are gener-

ally performed in one or two dimensions. Although, full 3-D global simulations are

recently being performed using codes, such as FARGO3D [Masset, 2000], our present

computational capacity does not allow us to resolve the disk and its micro-physics in

full detail. Often, the numerical simulations are performed in two dimensions where

the disk models are either vertically or azimuthally averaged. For simulations of dust

growth and settling, a vertical slice of the disk is taken into consideration and an az-

imuthal symmetry is assumed. One of the most important aspect of dust modeling is

the generation of synthetic images which are often used as the templates to interpret

the observations. Hence, the vertical dust structure is more relevant and important,

as our observations are based on the vertical optical depths, specially for the face-on

disks.

The post-formation planetary evolutions through planet migrations, on the other

hand, mostly take place near the disk midplane. In this case, the non-axisymmetric

structures, such as spiral arms, play an important role. So, these simulations are gener-

ally performed using disk models which are vertically averaged, and the computational

power is fully utilized to resolve the R − φ plane of the disks. In this chapter, we are

going to investigate how the process of dust settling reduces the gap-opening mass of

a growing proto-planet, and we are mostly interested in the evolution of the detailed

vertical structure of the dust size distributions. Hence, we shall be restricted to the

pre-formation phases of planet formation and shall use the same dust model as pre-

sented in chapter 3. However, unlike our first applications of the dust model in chapter

4, the simulations and results presented here include radial drift of dust particles.

To conduct our investigations on the reduction in gap opening mass due to dust

settling, we have used four different disk models with different masses. The disk surface
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density profile is taken as

Σ(R) = Σ0

(
R

1 au

)−3/2
, (5.9)

where four different values of Σ0 have been adopted. The corresponding disk masses

are 0.018 M�, 0.04 M�, 0.07 M� and 0.1 M� where values for Σ0 are 1700, 4400, 7200

and 9900 g cm−2 respectively. We note that the first and the fourth disk models are the

well-known MMSN and MMEN disks we have used in our applications in the previous

chapter. For each disk, we have use four different values of α: 10−2, 10−3, 10−4 and

10−5 (See table 5.1 for a detailed list of the simulations with their respective names).

In this chapter, we have not used the variable α profile for our simulations.

The inner disk radius Rin is taken as 0.06 au and the outer radius is Rout =

85 au. Each disk model is extends to 4 scale heights in the vertical direction above the

midplane. The total radial range is divided into 48 vertical columns equi-spaced in log

space with Ri+1/Ri = 1.167. Each column is divided into 32 vertical grids. All the

simulations are run for 75000 years after which the final snapshots have been taken.

The initial dust size distribution is adopted with the assumption that grain

growth starts at the molecular cloud phase and the range of distribution is chosen with

minimum particle size amin = 0.1µm and largest particle size amax = 10µm. Also,

an MRN like power-law with index −3.5 has been used, which makes the initial dust

distribution N(a) da ∼ a−3.5 da. The calculation of the initial number density in each

cell is calculated using the formalism of section 4.2.3. The total mass range of dust

is divided into 50 equally spaced bins in log space. The collision model implemented

includes sticking and fragmentation only, with a fragmenting threshold velocity vfrag =

100 cm s−1. The dust particles are assumed to be spherical pure silicate grains. The

vertical settling and turbulent stirring algorithm is applied every 1000 years, and the

radial drift routine is applied every 5000 years in the course of the simulations.
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5.3.1 Viscous Heating

There are essentially two distinct sources of disk heating. The disk can be heated

passively by the stellar photons absorbed by the upper layers of the disk. The disk can

also be heated actively by the viscous dissipation of the gravitational energy released

as a part of the process of accretion. In the previous chapter we included only the

stellar photons as the source of disk heating which was modeled by a radiative transfer

routine. In this chapter of the dissertation we extend our model to include the viscous

heating.

The theory of viscous heating is described in section 2.2.6 in detail. It is possible

to include the effect numerically as a part of radiative transfer model by considering

photons originating from the disk itself and tracking their path in a Monte Carlo

fashion. However, we adopt a more analytical approach to include viscous heating in

our work in order to calculate the temperature profile.

To calculate the vertical thermal stratification, we assume that most of the

heating due to viscous dissipation occur near the midplane, z = 0. The optical depth

of the midplane can be approximately stated as τ = (1/2)κRΣ(R), where κR is the

Rosseland mean opacity and Σ(R) is the total column mass of the disk at a distance R

from the central star. We also assume that the column is optically thick with τ >> 1

which is a reasonable approximation as per our findings in chapter 4. Considering

that the energy is transported vertically through radiative diffusion, the flux F can be

written as

F = −16σT 3

3κRρ

dT

dz
(5.10)

where dT/ dz is the vertical temperature gradient and σ is the Stefan-Boltzmann con-

stant. Integrating equation 5.10 gives

∫ Tvisc(z)

T0

T 3 dT = −F 3

16σ

∫ z

0

κRρ(z) dz (5.11)
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which, in the limit τ >> 1 evaluates as

T 4
0

Tvisc(z)4
≈ 3

4
τ. (5.12)

Using equation 5.12 we can find the temperature associated with viscous heating as a

function of height z where T0 is calculated using equation 2.35 given in section 2.2.6. As

the viscous heat is assumed to be fully dissipated at the disk midplane, unlike chapter

4, the opatical depths τ here is calculated towards the surface from the disk midplane.

If Teff be the effective disk temperature and Tirr is the temperature associated with

the passive heating then

T 4
eff = T 4

visc + T 4
irr. (5.13)

Here, we get Tirr as the output of the radiative transfer calculation. The final temper-

ature of the disk as a function of R and z is calculated using equation 5.13.

5.3.2 Calculation of New Hydrostatic Equilibrium

The main aspect of this investigation is to calculate the evolving vertical struc-

ture of the gas density with the evolving temperature stratification. The equation for

vertical hydrostatic equilibrium is

∂P

∂z
= −ρgz (5.14)

where P is gas pressure and gz is the vertical component of stellar gravity. With

P = ρc2s, equation 5.14 becomes

ρ
∂c2s
∂z

+ c2s
∂ρ

∂z
= −ρgz. (5.15)

This can be further simplified to

∂ ln ρ

∂z
= −S(z), (5.16)
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where

S(z) = − 1

c2s

(
gz +

∂c2s
∂z

)
. (5.17)

Here, ∇zc
2
s = ∂c2s/∂z. The sound speed is calculated as cs =

√
KBTeff/µmp, where

Teff is calculated following the prescription outlined in section 5.3.1. Equation 5.16

is then numerically solved using a second order Runge-Kutta integration routine to

calculate the new hydrostatic equilibrium.

5.3.3 Achieving Convergence in Settling & Diffusion

One important aspect of the simulations presented here is to achieve a con-

vergence in the vertical dust distribution. The vertical settling and diffusion of dust

particles are implemented following the prescription of section 3.4 in which the Stokes

number of the dust particles are calculated using the local gas parameters instead of

the midplane gas density. Every time we calculate a new hydrostatic equilibrium in

the vertical direction for a particular column, the gas density stratification is altered.

This would lead to new values of Stokes number for dust grains changing the strength

of coupling between the gas and the dust.

In order to attain a convergence in the vertical dust distribution, the settling and

diffusion routine is repeated along with the calculations of hydrostatics equilibrium and

radiative transfer. At any particular step and for a particular vertical column, once the

new gas density is calculated using the temperature output of the radiative transfer,

the settling and diffusion algorithm is run and the temperature is calculated. If the

new temperature differ from the previous one by more than a previously set tolerance

level, the gas densities are again calculated using the new temperature profile and so

on. This process is repeated until a convergence in temperature, dust density and gas

density is attained. The tolerance for temperature difference is set a 1 K, which is

∼ 3 − 5% of the midplane temperature beyond ∼ 20 au. In all our simulations, a

convergence is obtained within 4 iterations.
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5.3.4 A Newer Version of RADMC: RADMC-3D

Unlike the simulations in chapter 4, we have used a newer version of the Monte

Carlo radiative transfer code RADMC; RADMC-3D. As described in section 4.4, the

code generates a user defined number of photon packets and tracks their movement

through scattering and absorption. One inherent drawback of this method is the neces-

sity of tracking each photon absorption or scattering event until the photon escapes the

disk through the disk surface. In our disk models, dust settling along with collisional

growth increases the optical depth of the midplane, specially in the inner region. Also,

our disk models, which are significantly more massive than the MMSN disk are opti-

cally thick. While calculating the temperature profile by RADMC-2D, some photons

get captured in the optically thick region and suffer a large number of absorption and

scattering events before they escape the region. This effect increases the computation

time substantially. As a result, out of 106 photon packets, a few hundred photons take

more than 90% of the computation time.

To avoid this problem, the newer version, RADMC-3D introduced an option

of a modified random walk of the photons packets. With this approximation, when a

particular packet is trapped in a region with high optical depth, in stead of following

all the events suffered by the photons, the corresponding increase in temperature in

the particular region is calculated using a semi-analytical approximation. With this

added feature, the calculations of passive heating of the disk with 107 photons take less

than 15 minutes, whereas, RADMC-2D requires more than 3 hours to compute the disk

temperature with 106 photons. Moreover, RADMC-3D offers a parellel multi-processor

version which helps accelerate the process even further.

5.4 Results & Discussion

In this section, we present the results of the simulations performed (Table 5.1)

and discuss how dust growth and settling affects the critical mass of a gap-opening

planet. We have analyzed our results using four different values for the ratio of the

planet to stellar mass q: 10−6, 10−5, 10−4 and 10−3. With the stellar mass M? =
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0.95 M� used in all our simulations, q = 10−3 closely corresponds to a Jupiter mass

planet, q = 10−4 is equivalent to a planet slightly less massive than Saturn and q = 10−5

is a planet within the same order of the mass of Neptune. The results presented here

are based on the dust distribution obtained at 75000 years.

5.4.1 Variation of hg with Turbulence Strength α

Figure 5.2 shows the gas scale heights (hg) as a function of radial distance from

the central star, calculated from the new vertical hydrostatic equilibrium. The black

dashed line in each sub-figure of Figure 5.2 corresponds to the scale height for an

isothermal vertical column. As we have seen in chapter 2, the isothermal assumption

for a vertical column provides a Gaussian density stratification, which for an R−3/2

variation of surface density, corresponds to an aspect ratio of the disk hg(R)/R ∼ 0.05.

The scale heights for a settled disk, on the other hand, are smaller compared to the

unsettled one. For example, in the disk with Mdisk = 0.018 M� (Figure 5.2 a) the scale

height is decreased by more than a factor of 3 for the highest turbulence strength.

The variation of hg with the turbulence strength is also clearly visible in Figure

5.2. As the value of α decreases, the scale height becomes smaller. hg for α = 10−5

(solid red line) is 3 − 5 times smaller than that for α = 10−2 (solid cyan line). This

trend is similar for all the disk models (sub-figures a to d; Figure 5.2) used in our

simulations. The aspect ratio of the disk also decreases significantly from the typical

isothermal hydrostatic scale heights. The aspect ratio for α = 10−2 goes down to

0.02, that for α = 10−4 becomes ∼ 0.01. hg(R)/R becomes minimum for α = 10−5

which is expected from the settling point of view. For low turbulence strength, the

vertical diffusion of dust particles is slow and settling towards the midplane becomes

more effective. Moreover, a lower value of α would be beneficial to dust growth and

bigger dust grains would settle more rapidly compared to the smaller ones. Due to this

combined effect, the overall decrease in midplane temperature is more for lower values

of α, a result already confirmed in chapter 4. Hasegawa and Pudritz [2011] reported a

10% reduction in disk scale height due to dust settling. However, their work does not
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include the growth and drift of dust grains. Using a more sophisticated model for dust

growth, our results from Figure 5.2 shows that the scale heights are reduced by more

than 50% in all disk models.

It is important to remark that the scale height is calculated from a hydrostatic

equilibrium which is dependent on the vertical temperature gradient, not the tempera-

ture itself. Hence, the reduction in scale height is basically controlled by the segregation

of the regions near the midplane rather than the total decrease in temperature at the

midplane. The more the midplane becomes optically thick at the longer wavelengths, in

which the dust grains in the upper layers emit their radiations, the more it contributes

to a higher temperature gradient. A lower value of α achieves this in two ways. First,

more growth of dust particles ensures that the solid abundance in the upper layers of

the disk is reduced, leaving very few small dust grains for absorption of stellar photons.

Second, the settling of bigger dust grains, easily achievable with a lower α, confirms

that the midplane becomes optically thick. The combined effect of the two processes

lead to a higher temperature gradient in the vertical direction for a lower turbulence

strength.

5.4.2 The Gap-Opening Condition with q

In Figures 5.3 to 5.6, we have presented our calculation of the gap opening

criteria following equation 5.8 [Crida et al., 2006]. The black dashed line in each plot

corresponds to p = 1 below which a planet will open a gap in the gas disk. Also, in each

case the the dashed lines with the same color represent the same condition calculated

using an isothermal disk. As can be seen in Figure 5.3, a Jupiter mass planet in an

MMSN disk with Mdisk = 0.018 M� (q = 0.001, sub-figure (d)) will open a gap inside

10 au for α as high as 10−2, which would not be possible without the growth and

settling of dust grains (red dashed line). However, beyond 10 au, a lower value of α is

required in order for the tidal torque to overcome the viscous effect of the disk. For

disks with Mdisk = 0.018 M� and above, a gap is possible upto 20 au for the planet

with the same mass. It is, however, not possible for a Neptune mass planet (q = 10−5)
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to open a gap with α & 10−4, although a gap can be created with α = 10−5 (sub-figure

(b)). For q = 10−4, a gap is not opened for α = 10−3 beyond ∼ 10 au.

The gap opening radius for the Jupiter mass planet shifts to ∼ 20 au for the

heavier MMEN disk with Mdisk = 0.01 M�. However, a planet with q = 10−4 opens a

gap in all disk models for values of α as high as 10−3 which is not feasible otherwise.

The smallest planet used in our simulations, with q = 10−6, produces a small tidal

torque relative to the viscous effect and hence can satisfy the gap-opening criteria only

for α = 10−5 case. We note that, although we expect a magnetic dead zone inside

10 − 15 au for low turbulence strength, the proposed hydrodynamic turbulence most

likely increase the level of turbulence. Hence, α = 10−5 is probably not a very realistic

value for a protoplanetary disk.

5.4.3 Gap-Opening Criteria Against Disk Mass

In Figure 5.7 we show the effect of the gap-opening condition of equation 5.8

as a function of disk mass for a planet mass similar to that of Saturn, q = 10−4. We

have used two different values of α; 10−2 (Figure 5.7 top) and 10−3 (Figure 5.7 bottom)

to illustrate the variation. As can be seen, the criterion remains almost independent

of the disk mass. For α = 10−2 the value of p remains almost same for all four disk

models through the entire radial range. The same can be said for α = 10−3 case in

spite of small differences across the disk masses. This disk mass independence is also

noticeable in Figures 5.3 to 5.6 where the gap opening criteria is sensitive to turbulence

level but not as much on the disk mass.

A massive disk allows for more growth of dust particles which are subjected

to more efficient settling. This effect results into an colder midplane (See chapter 4)

compared to a less massive disk. The four sub-figures of Figure 5.2 show that the new

gas scale height of the settled disks are not sensitive to disk mass (compare plots of

same color in the sub-figures). Hence, it is clear that the tidal part of the gap-opening

condition in equation 5.8 is not sensitive to disk mass. The viscous condition, however,

depends on the disk viscosity, which in the analytical framework used in this chapter,
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is simply ν = αcshg. As the disk temperatures do not change significantly, and the

local sound speed cs ∝
√
T , ν do not change substantially with the disk mass.

5.4.4 Thermal vs Viscous Condition

We end this section by discussing the relative importance of the thermal and

viscous gap-opening conditions and how they get affected by the planet masses and

turbulence strength. In Figure 5.8 we show the two terms of equation 5.8 separately.

The first term, the thermal part, is shown as the black dashed line in each plot. This

condition depends on the planets Hill radius and is independent of the value of α.

The viscous part, on the other hand, solely depends on α and the corresponding disk

viscosity.

As can be seen in Figure 5.8, starting with q = 10−5 (sub-figure (a)), the term

ap(mp/M?)
1/3 increases with the growing planet mass and is maximum for q = 10−3.

With the increase of the planet mass mp the strength of the tidal torque becomes

higher as the torque is proportional to m2
p. A heavier planet can remove material from

its orbit more easily than a lower mass planet. The viscous torque, however, increases

with the value of α and is maximum for α = 10−2. Due to the small mass, it is not

possible for a Neptune mass planet (q = 10−5) to overcome the viscous effect even

with α = 10−5. A Saturn mass planet can open a gap outside 20 au in a disk with

low viscosity (Figure 5.8c). The tidal torque of a Jupiter mass planet with q = 10−3,

however, can overcome the viscous torque even in a highly turbulent disk.

5.5 Conclusion

In this chapter we have presented the results of 16 global simulations with dust

growth and settling using the model developed in chapter 3. We have used four different

disk models with varying mass and have adopted four different values of α for each

disk. From the results of our simulations our main findings are:

1. The growth and settling and dust grains in a disk alters the hydrostatic equi-

librium of a vertical column that reduces the disk scale heights. Depending on
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the level of turbulence in the disk, the scale height can be 3 − 8 times smaller

than that of an isothermal disk with Gaussian density stratification. The aspect

ratio of the disk can be as low as 0.005, much lower than 0.05, the value adopted

widely in literature.

2. Gap opening by a planet becomes relatively easier in a settled disk compared to

an unsettled one. A planet with a mass similar to Saturn can open a gap inside

10− 15 au of a disk with α as high as 10−2.

3. The gap opening criteria is not sensitive to the disk mass. As the disk mass

increases, the angular momentum exchange becomes more efficient increasing

the tidal torque. This effect, however, is balanced by the increased accretion rate

for a higher mass disk.

It will be truly interesting to run our simulations with the vertically variable α

profile and to investigate how that alters the overall disk scale height. Moreover, it is

important to understand how a more realistic turbulence profile alters the gap-opening

criteria for planets with different masses. As we are currently working on improving

our dust model with the inclusion of icy gain compositions and disk winds, which we

believe would have big impacts on the turbulence profile, we leave these investigations

for the future.

128



Table 5.1. Simulations Performed

Simulation Σ0 vfragα Mdisk/M?Name g cm−2 cm s−1

A1 1700 10−2 100 0.018
A2 1700 10−3 100 0.018
A3 1700 10−4 100 0.018
A4 1700 10−5 100 0.018

B1 4400 10−2 100 0.04
B2 4400 10−3 100 0.04
B3 4400 10−4 100 0.04
B4 4400 10−5 100 0.04

C1 7200 10−2 100 0.07
C2 7200 10−3 100 0.07
C3 7200 10−4 100 0.07
C4 7200 10−5 100 0.07

D1 9900 10−2 100 0.1
D2 9900 10−3 100 0.1
D3 9900 10−4 100 0.1
D4 9900 10−5 100 0.1

Note. — Simulation set: Four different disk surface
density profiles with α = 10−2, 10−3, 10−4 and 10−5.
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Figure 5.2: The variation of gas scale height as a function of radial distance R. The
black dashed line is the scale height from the isothermal disk approximation which
generates a Gaussian vertical density stratification. The new scale heights after the
altered hydrostatic equilibrium become significantly lower as the turbulence in the disk
becomes weaker. The aspect ratio, which for α = 10−2 is ∼ 0.02, becomes as small as
0.005 for α = 10−5.
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Figure 5.3: The gap-opening condition from equation 5.8 as a function of R and α
for disk mass Mdisk = 0.018 M�. A dashed line with the same color corresponds to p
calculated for an isothermal disk.
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Figure 5.4: The gap-opening condition from equation 5.8 as a function of R and α for
disk mass Mdisk = 0.04 M� (Similar to Figure 5.3).
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Figure 5.5: The gap-opening condition from equation 5.8 as a function of R and α for
disk mass Mdisk = 0.07 M� (Similar to Figure 5.3).
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Figure 5.6: The gap-opening condition from equation 5.8 as a function of R and α for
disk mass Mdisk = 0.1 M� (Similar to Figure 5.3). This disk is same as the MMEN
disk model used for simulations in chapter 4.
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Figure 5.8: A comparison of relative strength of thermal and viscous conditions for
gap opening for an MMSN disk model with four different planet masses. As the mass
of the planet increases, the tidal torque becomes larger and for q = 10−3 the torque
becomes significant to compete against the viscous effect for a highly turbulent disk
(Sub-figure (d))
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Chapter 6

CONCLUSION & FUTURE DIRECTIONS

In this dissertation titled “Planet Formation in a Dusty Disk: Effect of Colli-

sional Dust Growth & Dynamics”, we have developed a new weighted Monte Carlo

model of collisional dust growth along with a Monte Carlo Lagrangian prescription

for settling, and turbulent stirring, combined with wavelength dependent opacity cal-

culations and radiative transfer. The dust growth model includes sticking and frag-

mentation, and the radiative transfer is performed using the publicly available code

RADMC-2D/3D. The monochromatic opacity calculations are performed following the

Utilitarian Opacity Model by Cuzzi et al. [2014].

To implemented our model, we have developed a massively parallel code in

FORTRAN 95/03 with a python wrapper to setup the user interface and code com-

pilation. In order to use the computational resource in a more efficient way, we have

developed a flagged parallelization routine and designed the code in a modular form

for a comprehensive user interface. Our model and code is fast and efficient due to

the linear nature of the Monte Carlo algorithm, compared to Monte Carlo methods

existing in the literature. Our code can finish a single global simulation in 3− 5 days

depending on the disk models compared to a few weeks time for existing methods.

As an application to the dust model, we have first presented a total of 11 global

simulation with three different disk masses: Minimum Mass Solar Nebula (MMSN),

Minimum Mass Extra-solar Nebula (MMEN) and a heavy disk model. In all cases,

we have used a −3/2 power-law surface density profile and the respective disk masses

are 0.018M�, 0.12M� and 0.18M�. From the results of these simulations we have

found that irrespective of the disk model used the collisional dust growth reduces the

opacity at the disk midplane at shorter wavelengths by 3-4 orders of magnitude and
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the opacities at mm/sub-mm wavelengths increase. The opacities at the disk surface

layers, however, decreases throughout, mostly due to inefficient growth of dust particles

in these regions and the reduction in dust abundance due to dust settling. This effect

is also dependent on the level of turbulence strength. For example, dust in a disk with

α = 10−5 settle more efficiently compared to a disk with α = 10−3 where dust settling

is mitigated by the efficient vertical stirring by disk turbulence.

We have also explored the evolving optical depth τ of the disk calculated by

integrating the monochromatic opacities from the disk surface to the midplane. Our

simulations have found that the optical depth at wavelengths λ ≤ 10µm are reduced

due to dust growth and settling and that in the mm/sub-mm wavelength regime it

increases by at least an order of magnitude or more depending on the disk model.

For the MMEN and the heavy disk model τ is always greater than 10 inside of 30 au

making it difficult to observationally probe the disk midplane through observations.

This will pose a problem in inferring the disk mass from (sub)millimeter observations.

In our set of simulations with the MMEN disk model we have used two different

fragmentation threshold velocities for the dust particles; 50 cm s−1 and 100 cm s−1.

We have found that the final steady state size distributions differ significantly when

different values for fragmenting velocities (vfrag) are adopted. With increasing values

of vfrag, the size of the largest particle increases and more mass gets transferred to the

higher end of the particle size distribution, leaving less mass for the smaller micron

and sub-micron size dust grains. As smaller grains provide the maximum surface area

for photon absorption, and hence make the largest contributions to disk opacities, the

optical properties of the disk are sensitive to the value of vfrag chosen for simulated

models. We have found that the opacities at the smaller wavelengths are upto an

order of magnitude less for vfrag = 100 cm s−1 compared to simulations using vfrag =

50 cm s−1 cases. In all our simulations we have assumed only silicate grains for which

vfrag lies anywhere between 20− 190 cm s−1 according to the laboratory experiments.

For icy grains, however, the fragmentation velocity can reach upto 5 m s−1 which would

lower the disk opacities even further.
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In our simulations, once a pair of particles collide with a relative velocity greater

than the fragmenting threshold velocity, the fragments are distributed in a power-law

distribution which extends all the way to monomer size particles in the lower size limit.

The size of the largest fragment for such events, however, is still a matter of active

debate. From several laboratory experiments, it has been found that the largest mass of

the fragment should follow a power-law in the collision velocity and it would be smaller

for a more catastrophic collision. In some works the mass of the largest fragment is

chosen to be the same as the target mass, and the total mass of the target and projectile

is distributed through the full range of fragment masses. This is the approach that

we have adopted in our model. We, however, have found that the shape of the final

steady state size distribution is not sensitive to the adopted fragmentation model.

Moreover, differences are even less insignificant when vertical settling and turbulent

diffusion is included. Our simulations have pointed out that it is the composition of

dust particles rather than the fine details of collision physics that affects the final dust

size distribution and spatial abundance of solids.

In addition to the above points, our simulations have revealed that dust growth

and settling can cause a small but detectable reduction in the Toomre-Q parameter,

a measure of a disk’s stability against self-gravity. Due to growth, bigger particles

can settle more efficiently towards the disk midplane, leaving only a small fraction of

total dust mass in the upper layers of the disk. The absorption of stellar photons then

becomes less efficient and the disk midplane becomes cooler. As a result, the value of

the Toomre-Q decreases in the midplane. We have found a reduction in Q by 0.3− 0.4

from the initial value for both the MMEN and Heavy disk model. Also, this reduction

makes the Heavy disk, which was initially marginally stable, unstable by bringing Q

below 1.4, the threshold for gravitational instability. However, it is important to note

that, the said instability in the disk is a necessary, but not a sufficient condition, for

forming giant planets or sub-stellar companions through gravitational fragmentation.

A value for Q less than 1.4 can lead to a steady gravo-turbulent state or sustaining

spiral structure depending on the complex radiative feedback of the disk.
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6.1 Plans for Work in the Immediate Future

Modeling dust growth through collisional sticking and fragmentation ranging

over several decades in mass, in a protoplanetary disk ranging several hundreds of au,

is a mammoth task. We have invested a significant amount of effort in the past few

years to build an efficient theoretical and numerical model as a part of this dissertation.

However, there are still a number of directions in which our work can be extended

by adding more physics and enhancing the fidelity of our model. As an immediate

extension of our dust model we have already started working on two different projects

which would help us understand the complex interplay of different processes in the disk

even better.

A time varying turbulence profile: So far, in all our simulations with a

variable turbulence profile we have kept the value of α calculated at t = 0 fixed over the

course of our simulations. However, we have seen that the turbulence profile calculated

from the ionization-recombination balance using a chemical network depends on the

local dust abundance and the dust size distribution. As a result, it is not very physical

to assume a temporally static α calculated at t = 0 as the steady state dust size

distribution is significantly different from the initial distribution.

We are currently running a series of simulations to compute the detailed vertical

structure with time varying turbulence profile. We have selected three vertical columns

at a distance 1, 3 and 10 au from the central star. The simulations are started with the

usual MRN size distribution and the same chemical network of chapter 4 is being used.

In this work, we have made a look-up table for Ohmic, ambipolar and Hall diffusivities

as a function of dust abundance, gas density, temperature and ionization fraction. In

order to gain computational efficiency, the turbulence profile of each vertical column is

updated using these look-up tables instead of running the chemical models dynamically.

We are also performing a parameter study on the metallicity (dust to gas mass ratio)

of the disk and the midplane plasma β, a measure of strength of the magnetic fields.

Recent research has revealed that chondrules in the Semarkona meteorites were formed

in a protoplanetary nebula with a magnetic field strength of ∼ 50µT. We shall use
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magnetic fields of this order. Through this work, we would like to investigate the effect

of turbulence on the efficiency of planet formation at the midplane. Also, we would

like to see the temporal variation of the height of the magnetic dead-zone. It has also

been proposed recently that the upper boundary of the dead zone is basically at the

τ = 1 surface. We expect to confirm this proposal through this work. Moreover, the

evolution of the gas dispersion velocity at the midplane, which has direct impact on

the growth of dust particles, will be on the list of our special interests.

Including collisions of icy dust grains: Our model and code already include

a detailed temperature calculation which is performed by a radiative transfer method

for passive heating by stellar photons. The viscous heating is included using an optical

depth technique in an analytical way as a part of post-processing. Our computation of

the thermal profile gives us the temperature of the disk as a function of radial distance

(R) and height above the midplane (z). Collisions of non-icy silicate grains differ

from that of icy bodies in the fragmenting threshold velocity and power-law index of

fragmentation products. So, it is straight forward to implement icy collisions by only

changing the value of vfrag and the respective power-law index. Our new model will

check the temperature of the cell before assigning the job to a particular processor,

and depending on the temperature, the values for the particular parameters will be

provided. For cell temperature less than 160 K, ice collisions will be implemented. In

addition, our plan also includes the modeling of ice melting inside the snow line and

the enhancement of gas pressure at those regions. However, the specific physical model

for implementation of snow-line is yet to be finalized.

6.2 Long Term plans

The field of planet formation and disk evolution is moving fast. With the in-

creased observing power of both ground and space based telescope, we are at a position

to probe these astrophysical objects with greater details. Moreover, the James Webb

Space Telescope (JWST), due to be launched in 2021, and the proposed ground based
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Next Generation Very Large Array (ngVLA) will enable us with unprecedented reso-

lution. To enhance the scientific outcomes of these observations it is imperative that

the theorists come up with state-of-the-art models with high fidelity, achieving which

is our long term goal with our current dust model.

Adding gas dynamics: Our model so far contains only dust physics on a

static gas background. This can be justified by the fact that we run our simulations

for timescales which are shorter compared to the gas diffusion timescale. However, to

simulate protoplanetary nebulae for million years timescales, it is important to add

the gas dynamics to our model. The initial idea is to model the gas evolution in a 1D

format utilizing the theory described in chapter 2. The dust dynamics in the disk is

affected by the gas through a drag force. The gas, on the other hand, is affected by the

solid particles through their optical and thermodynamic properties. Including these

effects will bring our simulations closer to the real picture where the simulation results

can be used as a template to test against the observations with reasonable confidence.

Once the gas dynamics is included in the model, natural extensions would be

to add mass loss through disk winds and implementing a more advanced chemical

model. Disk winds have been proposed as an alternative to turbulence to solve the

puzzle of angular momentum transport. As we have already seen through our global

simulations, small dust grains are almost always present in the upper layers of the disk.

In the presence of a disk wind, dust grains from the disk surface can escape the disk,

resulting in a very different dust stratification. This effect will most likely change the

optical depths of the disk and hence, its observational appearance.

On the spectroscopic side, the output of the global simulations can be post-

processed by a chemical network involving species, such as H, He, C, Ne, S, Mg, Fe,

Si and Ar, along with photo-dissociation and photo-ionization by EUV, FUV, X-ray

photons and cosmic rays. According to the existing chemical models, the gas is primar-

ily heated by X-rays, grain photoelectric heating by polycyclic aromatic hydrocarbons

(PAH), cosmic rays, exothermic chemical reactions, collisional de-excitation of vibra-

tionally excited H2 by FUV, formation heating by H2, collisions with warmer dust
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grains and photo-ionization of carbon. The gas cools predominantly due to line emis-

sion and collisions with cooler dust grains. With the output from the chemical models,

the non-LTE spectral line radiative transfer code can give us reliable synthetic spectra.
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Appendix A

1D DIFFUSION EQUATION FROM NAVIER-STOKES

In this appendix, we present the full derivation of equations 2.7 and 2.8 starting

from the classic Navier Stokes equation. We have already seen the modified form

of mass and angular momentum conservation equation for a viscous accretion disk.

Starting from equations 2.21 and 2.31, we now eliminate v̄r. From equation 2.31, v̄r

can be written as

v̄r =
1

rΣ

(
dr

dh

)
∂

∂r

(
ν̄Σr3

dΩ

dr

)
(A.1)

Now, using the mass conservation equation, equation 2.21, substituting v̄r, we get

∂Σ

∂t
+

1

r

∂

∂r

[
rΣ

1

rΣ

(
dr

dh
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∂
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= 0. (A.2)

=⇒ ∂Σ
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+

1

r

∂

∂r

[(
dr

dh

)
∂
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(
ν̄Σr3

dΩ

dr

)]
= 0. (A.3)

Now, the specific angular momentum h can be written as

h = rΩ =
√
GM?r (A.4)

=⇒ dh

dr
=

1

2

√
GM?

r
(A.5)

Also, dΩ/ dr = −(3/2)
√
GM?/r5. Using these in equation A.3, we get

∂Σ

∂t
=

3

r

∂

∂r

[
r1/2

∂
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(
ν̄Σr1/2

)]
(A.6)
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which is the desired diffusion equation for a viscous accretion disk.
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Appendix B

DERIVATION OF RADIAL DRIFT VELOCITY

To derive the radial drift velocity of dust particles due to gas drag, we can start

from equation 2.40. Equation 2.40 can be re-written as

vφ,g = vK (1− η)1/2 (B.1)

where

η = n
c2s
v2K
. (B.2)

Here we use vr and vφ as the radial and azimuthal velocity of dust particles and vr,g

and vφ,g as the same for gas molecules. Including the drag force on dust from the gas,

the radial and azimuthal equations of motion for dust grains can be written as

dvr
dt

=
v2φ
R
− Ω2R− 1

tf
(vr − vr,g) (B.3)

and
d

dt
(Rvφ) = −R

tf
(vφ − vφ,g) . (B.4)

In equations B.3 and B.4, the last terms are a drag term or a mechanical relaxation term

which basically states that the gas velocity components are relaxed to gas velocities in

a friction time scale tf (See section 2.3.1). Now, the LHS of equation B.4 can be stated

as
d

dt
(Rvφ) =

d

dR
(Rvφ)

dR

dt
=

1

2
vRvK (B.5)
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where we have used dR/ dt = vR. Substituting this in equation B.4, we get

vφ − vφ,g ≈ −
vRvKtf

2R
. (B.6)

The radial equation can be re-written as

dvR
dt

= −ηv
2
k

R
+

2vk
R

(vφ − vφ,g)−
1

tf
(vr − vr,g) (B.7)

where we have substituted Ω from equation B.2 in equation B.3 as below:

v2φ,g = v2k − ηv2k (B.8)

=⇒ v2k = v2φ,g + ηv2k (B.9)

Substituting v2K in equation B.3 and using vφ ≈ vφ,g ≈ vk, we can arrive at equation

B.7. Eliminating vφ − vφ,g from equation B.6 and B.7, we get

vr = vK
−η

vktf
R

+ R
vKtf

. (B.10)

Using St = tfΩ, equation B.10 becomes,

vr = − ηvK
St+ 1

St

(B.11)
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Appendix C

GROWTH AND SETTLING TIMESCALES

In the existing dust models which are vertically global, a vertically averaged

steady state is assumed. This might be a good approximation for the inner radii, but

can fail in regions where the growth timescale is comparable to the settling timescale.

Below, we make estimates of the two timescales.

The growth timescale for dust particles (tg) can be cast as

tg ∼
∣∣∣∣ d lnm

dt

∣∣∣∣−1 =
m

ṁ
(C.1)

with

ṁ =
dm

dt
∼ ∆m

∆t
∼ m

1/nσv
. (C.2)

Hence, the growth timescale can be written as:

tg ∼
m

ρdσv
=

4

3η

aρm√
αρgcs

, (C.3)

where η is the abundance ratio and v ∼
√
αcs is the collision velocity in the intermediate

turbulent regime.

The settling time scale, on the other hand, can be written as:

ts =

∣∣∣∣ d ln z

dt

∣∣∣∣−1 ∼ z

vz
(C.4)

Using equation 2.53,

ts ∼
cs
a

ρg
ρm

Ω−2 (C.5)

Comparing the two timescales, we have:
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tg
ts
∼ 4

3η

a2ρ2m√
αρ2gh

2
g

∼ 4

3η

a2ρ2m√
αh2gρ

2
0

ez
2/h2g (C.6)

Equation C.6 clearly shows that as we move towards the disk surface the gas density,

and hence, dust number density decreases making it longer for dust particles to grow.

The vertical component of gravity on the other hand is roughly propostional to height

z, in a first order approximation, leading to a faster settling. Setting equation C.6 ∼ 1

(tg = ts),

z

hg
∼
[
ln

(
3η

8π

√
αΣ2

g

a2ρ2m

)]1/2
(C.7)

where we have used ρ0 = Σg/
√

2πhg. A simple estimate for an MMSN disk at 1 au

with α = 10−4, a = 1 mm and ρm = 1 g cm−3 gives z/hg ∼ 3. Therefore, for disk

models extending upto 4 − 5 scale-heights in the vertical direction, the steady state

will be influenced by the settling of dust particles. In the outer region of the disk, this

effect is more stringent at a lower distance from the mid-plane
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Appendix D

GENERATING RANDOM NUMBER FROM
MAXWELL-BOLTZMANN DISTRIBUTION

A substantial part of our computation time is spent in drawing random numbers

from different distributions, such as normal or Maxwell-Boltzmann. In our code, we

use a single random number generator which can generates random numbers from a

uniform distribution between 0 and 1. To generate random numbers from a normal

distribution, we use the Box-Muller Transform. If r1 and r2 are two random numbers

generated from the uniform distribution, then

n1 =
√
−2 ln r1 cos (2πr2) , (D.1)

n2 =
√
−2 ln r2 sin (2πr1) (D.2)

will be two independent random numbers from standard normal distribution. In this

case, if r1 and r2 are the two arrays of size N , n1 and n2 will produce two arrays of

independent random numbers of size N .

Generating the random number from Maxwell-Boltzmann distribution can be

done by either an acceptance-rejection method of by using a cumulative distribution

function.However, we exploit the fact that when a Gaussian integral of type

FGaussian ∼ exp

(
− v2

2σ2

)
(D.3)
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Figure D.1: A depiction of the process of random number generation from the Maxwell-
Boltzmann (MB) distribution. The top panels show the three sets of random numbers
from a normal distribution with mean µ = 0 and standard deviation σ = 1. These are
identified as the three components of the particle velocities. The lower panel shows
the MB distribution generated. The black dashed vertical line corresponds to the rms
value of the MB distribution which is

√
3 in this case.

164



is integrated over the surface of the sphere, we get a Maxwell-Boltzmann of the form

FMB ∼ v2exp

(
− v2

2σ2

)
. (D.4)

Physically, the individual velocity components of a particle follow a normal distribution,

whereas, the scalar velocity of the particles in a box follows the Maxwell-Boltzmann

distribution. So, to generate random numbers from MB distribution, we first generate

three independent random number from standard normal distribution and take the

square root of the sum of their squares. In figure D.1 we have shown this process

where the three plots in the top panel are three sets of random numbers with mean

µ = 0 and standard deviation σ = 1. The plot in the lower panel shows the MB

distribution generated with an rms value of
√

3 (the dashed vertical black line).
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Appendix E

VARIABLE TURBULENCE PROFILE

The calculation of an α profile that varies vertically according to the dust dis-

tribution and dust abundance is motivated from the method adopted by [Landry et al.,

2013] which is based on model 4 of Ilgner and Nelson [2006]. As the main source of tur-

bulence in our disk is magnetorotational instability (MRI), we first describe the MRI

activity criteria, followed by the model for ionization-recombination chemistry which

is used to calculate the electron and ion abundances that control the level of coupling

between the gas and the magnetic fields.

The MHD induction equation, with all the non-ideal terms can be written as

∂B

∂t
= ∇× (v ×B)−∇×

[
ηO∇×B + ηH (∇×B)× B̂ + ηA (∇×B)⊥

]
. (E.1)

Here, v is the gas velocity and B is the magnetic field, with B̂ the unit vector point-

ing in the direction of the magnetic field. ηO, ηH and ηA are the Ohmic, Hall and

Ambipolar diffusivities respectively. The non-ideal terms, in the square bracket, arise

from collisional effects of ions with the neutrals, which are mostly molecular hydrogen

and dust grains in our case.

The dominance of the Ohmic term can be determined from the Elsasser number,

defined as

Λ =
v2Az
ηOΩ

(E.2)

where, vAz is the z-component of the Alfvén speed. When Λ reaches unity, the Ohmic

term in equation E.1 dominates. According to Sano and Miyama [1999], the most
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unstable MRI mode in this case can be given as

λlocal ≈ max{λideal, λres} (E.3)

where

λideal = 2π
vAz
Ω

(E.4)

and

λres = 2π
ηO
vAz

. (E.5)

So, physically, Λ is the ratio of the largest unstable wavelength to the diffusive length

scale. Turner and Sano [2008] showed that the magnetic pressure of the toroidal com-

ponent of the magnetic fields in MRI turbulence is 10 to 30 times greater than that of

the vertical component. Hence, the vertical component of Alfvén speed can be written

as

v2Az =
1

10
v2A (E.6)

with VA = B/
√

4πρ. Thus, Λ & 1 criteria ensures that the most unstable wavelength

can grow in a timescale shorter that the time in which charged particles can diffuse

across the magnetic fields.

Ambipolar diffusion, the second non-ideal contribution in the square bracket in

equation E.1, arises from the relative motion between charges and neutral species. In a

typical protoplanetary disk, the ion density is negligible and the electron recombination

time is small compared to the local orbital time 1/Ω [Bai, 2011]. In such conditions,

in stead of the continuity equation, the ion density is determined by the ionization-

recombination equilibrium, characterized by the parameter Am [Chiang and Murray-

Clay, 2007]. Am can be written as:

Am =
γρi
Ω

(E.7)
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where, ρi is the ion density and γ is the ion-neutral drag coefficient, given by

γ =
〈σniwni〉
mn +mi

. (E.8)

Here, σni is effective cross section for ion-neutral collisions and wni is the relative

velocity and 〈··〉 is the temporal average.

Magnetic field strength is generally parametrized by the parameter β, a ratio of

thermal pressure to magnetic pressure, and can be written as:

β =
8πP

|B|2
(E.9)

where, P is the thermal pressure. Bai [2011] have shown that the MRI turbulence is

sustained in the disk only for small value of the magnetic fields which sets a lower limit

for β as a function of Am as:

βmin(Am) =

[(
50

Am1.2

)2

+

(
8

Am0.3
+ 1

)2
]1/2

. (E.10)

Ambipolar diffusion becomes more important as the maximum field strength increases,

irrespective of field geometry. Hence, for Am << 1, MRI can be sustained for a

sufficiently weak field. This particular non-ideal effect is a specially important at the

upper atmospheres of the disk where the gas density is low and ionizations by cosmic

rays and X-rays are effective.

To calculate the turbulence profile, the next step is to calculate the three non-

ideal diffusivities. For a given ionized species j, the ratio of Lorentz force to the drag

force can be written as:

βi =
ZjeB

mjcγjρ
(E.11)

where, for the species j, Zje is the charge, mj is the mass and c is the speed of light

in vacuum. Following Wardle [2007], for each diffusion regime, the conductivities can
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then be calculated by summing over all charged species;

σO =
ec

B

∑
j

njZjβj (E.12)

σH =
ec

B

∑
j

njZj
1 + β2

j

(E.13)

σP =
ec

B

∑
j

njZjβj
1 + β2

j

(E.14)

where, nj is the number density for species j. Finally, the diffusivities can be written

as,

ηO =
c2

4πσO
(E.15)

ηH =
c2

4πσ⊥

σH
σ⊥

(E.16)

ηA =
c2

4πσ⊥

σP
σ⊥
− ηO (E.17)

where, σ⊥ =
√
σ2
H + σ2

P .

For computing the equilibrium abundance of species nj, a simple chemical re-

action network, based on model4 of Ilgner and Nelson [2006], has been used. The

chemical network consists of the following equations:

H2 + X→ H+
2 + e− (E.18)

H+
2 + H2 → H+

3 + H (E.19)

H+
3 + CO→ HCO + H2 (E.20)

2H + g→ H2 + g (E.21)

HCO+ + e− → CO + H (E.22)

HCO+ + Mg→ Mg+ + CO + H (E.23)

Mg+ + e− → Mg (E.24)
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In this chemical model, HCO+ is the representative molecular ion, Mg+ is the repre-

sentative metal ion and g is the grain. X is the ionizing energetic particle, generally

cosmic rays or X-rays. Also, in this network, every species is created in at least one

reaction and destroyed in at least another reaction giving rise to an overall chemical

balance. Thus, the reaction producing ions or electrons reduces to

2H2 + 2X + 2CO→ H2 + 2HCO+ + 2e− (E.25)

Thus the underlying process can be stated as: each energetic particle (X) striking a

hydrogen molecule, produces one electron and one ion. To construct our look-up table,

equations E.18 to E.24 are approximated as

H2 + X→ HCO+ + e− (E.26)

HCO+ + e− → H2. (E.27)

Since HCO abundance is orders of magnitude less than that of molecular hydrogen in

a typical protoplanetary condition, forming ions leaves the H2 abundance unchanged.

Similarly, due to less abundance, CO destruction and regeneration is not modeled in

this method. with these conditions, equation E.23 becomes

HCO+ + Mg→ Mg+ + H2. (E.28)

The chemical network thus boils down to equations E.24, E.26, E.27 and E.28 in tandem

with the grain surface reaction described by Ilgner and Nelson [2006].
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Appendix F

UTILITARIAN OPACITY MODEL: CUZZI ET AL. 2014

Calculating opacity of dust composition for interstellar medium or solar neb-

ula is a long standing complex problem due to complicated structure and material

properties of dust aggregates. Exoplanet birth environments are no exceptions be-

cause of observational constraints and parametric uncertainties. Several commendable

efforts have been made to estimate opacity using different theories like particles in

dipole approximation (ref), spherical solid grains with Mie scattering (ref) and frac-

tals in discrete dipole approximation (ref) to name a few. Detailed calculations with

all aforesaid prescriptions are computationally expensive. Cuzzi et al. [2014], on the

other hand, proposes an opacity model as a combination of effective medium theory

with small-particle closed-form expression with a simplified transition to the geometric

optics regime.

The intensity of radiation can be quantified as:

I = I0e
−κeρl (F.1)

where I0 is initial incident radiation, κe is total opacity, ρ is volume mass density

of gas and dust mixture and l is the optical path length. Extinction of a radiation

beam is a function of two distinct additive mechanisms; scattering and absorption.

The extinction efficiency, Qe is thus written as a sum of absorption efficiency Qa and

scattering efficiency Qs.

Qe = Qa +Qs (F.2)

Calculations of efficiencies for a particular λ is dependent on the relative size and

wavelength of incident radiation. Grains absorb and emit radiation most effectively at a
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wavelength comparable to their size. To capture this scenario, the opacity prescription

is parametrized in terms of x = 2πa/λ, the geometric factor of grains with average

radius a. Regions where x << 1 is known as the Rayleigh regime and the opposite case

is called the geometric optics regime. With this setup, the opacities are calculated as:

κe,λ =
1

ρg

∫
πr2n(r)Qe(r, λ) dr (F.3)

where, κe,λ is the total extinction opacity as a function of Qe, the extinction efficiency.

At this point the model is only left with the calculation of Qe by calculating Qa and

Qs separately with a careful smooth transition from the Rayleigh to geometric optics

regimes. In the limit of x << 1, Qa and Qs, in terms of real (nr) and imaginary (ni)

refractive indices can be written as:

Qa =
24xnrni
(n2

r + 2)2
(F.4)

Qs =
8x4

3

(n2
r − 1)2

(n2
r + 2)2

(F.5)

The expression of Qa as in equation F.4 is applicable for the whole grain size spectrum.

For scattering efficiency, Qs, however, this is not the case and a separate expression is

used for the Mie transition region as below,

Qs =
1

2
(2x)2(nr − 1)2

(
1 +

(
ni

nr − 1

)2
)

(F.6)

the transition value being x0 = 1.3. In addition, Cuzzi et al. [2014] takes into account

the effect of the scattering phase factor g defined as below:

g = 〈cos θ〉 =

∫
P (Θ) cos Θ sin Θ dΘ∫
P (Θ) sin Θ dΘ

(F.7)

For isotropic scattering, g = 0, which is a good approximation for particles in Rayleigh
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regime. For larger particles, g can approach unity with a substantial amount of forward

scattering.

One key simplifying feature of the C14 model is that the values of Qe and Qs

asymptotically reach a value of 2 for lossless particles (Qa = 0). However, if absorption

is present, Qs trends downward and approaches unity. This directly allows them to

make the following modelling:

Q′e = Qe − gQs = Qa +Qs(1− g) (F.8)

Also, instead of performing a full Mie calculation, C14 present a simplified choice for

the value of g ( equations 15 & 16 of C14);

for ni < 1 : g = 0.7(x/3)2 if x < 3, and g ≈ 0.7 if x > 3 (F.9)

for ni > 1 : g ≈ −0.2 if x < 3, and g ≈ 0.5 if x > 3 (F.10)

The final piece of model setting a value for growing values of Qa and Qs to a constant

in geometric optics regime:

Qa < 1 and Qs(1− g) < 1 (F.11)

With all formalisms noted above, the model finally calculates the monochromatic opac-

ity for grains for mixed composition as:

κe,λ =
1

ρg

∑
j

βj

∫
n(r)πr2Q′e,j(r, λ) dr (F.12)

=
1

ρg

∫
n(r)πr2

(∑
βjQ

′
e,λ(r, λ)

)
dr

where βj is the fractional number of particles of species j. In our work we find
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monochromatic opacity normalized by dust density in stead of gas density to be con-

sistent with RADMC.

The final piece of the opacity model takes care of porosity of dust aggregates. It

is interesting to note that the above model circumvents the detailed Mie calculation in

the transition region of relative particle size. Opacity calculated using effective medium

theory usually takes an average over the size distribution. Considering porosity trans-

fers the averaging from the wavelength domain to the dust size domain and produces

a consistent result.
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Appendix G

PERMISSION LETTERS
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Figure G.1: The letter of permission from Dr. Tilman Birnstiel for Figure 2.1.
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Figure G.2: The letter of permission from Dr. Richard Nelson for Figure 5.1.
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