WATER RELATIONS OF PLANTS AND SOILS

PAUL J. KRAMER JOHN S. BOYER

Water Relations of Plants and Soils

Paul J. Kramer 8 May 1904–24 May 1995 Department of Botany Duke University Durham, North Carolina

John S. Boyer College of Marine Studies and College of Agriculture University of Delaware, Sharp Campus Lewes, Delaware

Academic Press San Diego New York Boston London Sydney Tokyo Toronto

This book is printed on acid-free paper. \bigotimes

Copyright © 1995, 1983 by ACADEMIC PRESS, INC.

All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Academic Press, Inc. A Division of Harcourt Brace & Company 525 B Street, Suite 1900, San Diego, California 92101-4495

United Kingdom Edition published by Academic Press Limited 24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging-in-Publication Data

Kramer, Paul Jackson, date.

Water relations of plants and soils / by Paul J. Kramer, John S. Boyer.

p. cm. Includes bibliographical references and index. ISBN 0-12-425060-2 1. Plant-water relationships. 2. Plants, Effect of soil moisture on. I. Boyer, John S. (John Srickland), date. II. Title. QK870.K72 1995 581.1--dc20 94-48901 CIP

PRINTED IN THE UNITED STATES OF AMERICA 95 96 97 98 99 00 BC 9 8 7 6 5 4 3 2 1

Contents

L	HISTORICAL REVIEW	
	Introduction	1
	Early Research	1
	The Work of Stephen Hales	2
	The Century after Hales	.3
	The Second Half of the 19th Century	4
	Early Plant Physiology in the United States	.5
	The 20th Century	6
	From Osmosis to Water Potential	7
	The Permanent Wilting Percentage	8
	The Absorption of Water	8
	Some General Concepts	8
	Plant Water Balance	9
	Soil–Plant–Atmosphere Continuum and Ohm's Law Analogy	9
	Klebs Concept	9
	The Situation Today	11
	Changing Viewpoints	11
	Increasing Emphasis at the Molecular Level	12
	Summary	13
	Supplementary Reading	14
	· ·	

xiii

•	\circ .
vi (Contents

2	FUNCTIONS AND PROPERTIES OF WATER	
	Introduction	16
	Ecological Importance of Water	16
	Physiological Importance of Water	17
	Functions of Water in Plants	19
	Constituent	20
	Solvent	21
	Reactant	21
	Maintenance of Turgidity	21
	Properties of Water	21
	Unique Physical Properties	21
	Explanation of Unique Properties	24
	Bound Water	28
	Isotopes of Water	29
	Unorthodox Views Concerning Water	29
	Properties of Aqueous Solutions	30
	Pressure Units	31
	Vapor Pressure	.31
	Boiling and Freezing Points	32
	Osmotic Pressure or Osmotic Potential	33
	Chemical Potential of Water	35
	Summary	37
	Supplementary Reading	37
	Appendix 2.1: The van't Hoff Relation	38
	Appendix 2.2: The Chemical Potential	39
	Appendix 2.3: Matric Potentials	41
3	CELL WATER RELATIONS	
	Introduction	42
	Structure	42
	Osmosis	47
	Water Status	49
	Measuring Water Status	53
	Mechanism of Osmosis	.57
	Changes in Water Status	61
	Water Transport	63
	Significance of Reflection Coefficients	. 64
	Rates of Dehydration and Rehydration	68
	Osmotic Adjustment	71
	Water Relations of Cells in Tissues	75
	Summary	79

0	••
Contents	1)11
0011001100	~~~

Supplementary Reading	80
Appendix 3.1: Preservation of Cell Ultrastructure for Electron	
Microscopy	81
Appendix 3.2: Osmotic Potential and Dehydration	81
Appendix 3.3: Rates of Dehydration and Rehydration of Cells	82

4 SOIL AND WATER

Introduction	84
Important Characteristics of Soils	84
Composition and Texture	84
Structure and Pore Space	86
Soil Profiles	88
Soil Water Terminology	89
Water Potential	89
Field Capacity	91
Permanent Wilting Percentage	92
Readily Available Water	92
Water Movement within Soils	93
Infiltration	93
Horizontal and Upward Movement	94
Measurement of Soil Water	97
Soil Water Balance	97
Direct Measurement of Soil Water Content	98
Indirect Measurement of Soil Water	99
Other Methods	101
Measurement of Soil Water Potential	102
Control of Soil Water	105
Irrigation	105
Irrigation Scheduling	107
Irrigation Problems	109
Experimental Control of Soil Water Content	110
Summary	113
Supplementary Reading	114
ROOTS AND ROOT SYSTEMS	
Introduction	115
Functions of Poots	115

Functions of Roots	115
Anchorage	116
Roots as Absorbing Organs	116
Synthetic Functions	116
Roots as Sensors of Water Stress	117

viii Contents

Root Growth	118
Epidermis and Root Hairs	120
Endodermis	123
Secondary Growth	124
Root Contraction	124
Rate and Periodicity of Root Growth	125
Depth and Spread of Roots	126
Longevity of Roots	128
The Absorbing Zone of Roots	128
Absorption through Suberized Roots	130
Mycorrhizae	130
Development of Root Systems	134
Root-Shoot Interrelationships	136
Root Grafting	140
Metabolic Cost of Root Systems	142
Environmental Factors Affecting Root Growth	143
Soil Texture and Structure	143
Soil Moisture	145
Soil Aeration	147
Soil Temperature	157
Root Competition	158
Allelopathy	1.59
The Replant Problem	160
Biochemistry of Competition and Infection	160
Atmospheric Conditions	161
Miscellaneous Effects	161
Methods of Studying Root Systems	162
Summary	164
Supplementary Reading	165
THE ABSORPTION OF WATER AND ROOT	
AND STEM PRESSURES	
Introduction	167
Absorption Mechanisms	167
Passive Absorption by Transpiring Plants	168
Osmotic Absorption and Root Pressure	170
Relative Importance of Osmotic and Passive Absorption	172
Characteristics of Root Pressure Exudation	173
Species Differences	173
Guttation	176

6

	Stem Pressures	178
	Maple Sap Flow	170
	Uther Stem Pressures	181
	Latex and Oleoresins Abcomption of Daw and Eog through Leaves	181
	Restors Affecting Water Absorption through Roots	182
	Efficiency of Root Systems in Absorption	183
	Resistances to Water Movement in the Soil–Plant System	187
	Environmental Factors	190
	Efflux of Water from Roots and Hydraulic Lift	198
	Summary	199
	Supplementary Reading	199
7	TRANSPIRATION AND THE ASCENT OF SAP	
	Introduction	201
	The Importance of Transpiration	201
	The Process of Transpiration	204
	Evaporating Surfaces	204
	Driving Forces and Resistances	205
	Energy Relations	207
	Vapor Pressure Gradients	209
	Resistances to Diffusion	211
	Other Factors Affecting Transpiration	214
	Leaves	214
	Disease	223
	Measurement of Transpiration and Evaporation	223
	Measurement of Transpiration of Plants and Leaves	224
	Evapotranspiration from Stands of Plants	230
	The Ascent of Sap	234
	The Conducting System	234
	The Mechanism of Sap Rise	249
	Conduction in Leaves	251
	Use of Xylem Sap by Parasites	253
	Summary	253
	Supplementary Reading	255
8	STOMATA AND GAS EXCHANGE	
	Introduction	2.57
	Historical Review	2.57
	Occurrence and Frequency	2.58

Contents

Stomatal Functioning	260
Guard Cells	260
Stomatal Behavior	262
Mechanism of Stomatal Opening and Closing	263
Factors Affecting Stomatal Aperture	265
The Role of Light	265
Carbon Dioxide	267
Humidity	268
Temperature	269
Wind	270
Mineral Nutrition	271
Stomata and Air Pollution	271
Stomata and Fungi	272
Internal Factors Affecting Stomata	272
Anomalous Behavior of Stomata	273
Cycling	273
Heterogeneity in Stomatal Response	274
Optimization	276
Diffusive Capacity of Stomata	277
Bulk Flow in Leaves	277
Measurement of Stomatal Aperture and Conductance	277
Visual Observations	279
Infiltration	279
Porometers	280
Summary	281
Supplementary Reading	282

9	ION TRANSPORT AND NITROGEN METABOLISM	1
	Introduction	283
	Ion Uptake and Transport	285
	Optimum Conditions	285
	Effects of Dehydrating Conditions	290
	Nitrogen Metabolism	291
	Nitrogen Fixation	294
	Nitrate Metabolism	298
	Protein Synthesis	301
	Dehydration and Root/Shoot Signals	304
	Dehydration and Enzyme Activity	306
	Direct Enzyme Effects	306
	Regulator Hypothesis of Enzyme Control	308

x

		Contents	xi
	Summary		310
	Supplementary Reading		312
10	PHOTOSYNTHESIS AND RESPIRATION		
	Introduction		313
	Photosynthesis and Water Availability		315
	Flooding and Dehydration of Soil		315
	Mechanisms of the Photosynthesis Response		319
	Respiration Changes		319
	Substrate Starvation		321
	Metabolic Inhibition		328
	Plant Signals That Trigger the Metabolic Response		332
	Acclimation		336
	Recovery		337
	Translocation		340
	Summary		341
	Supplementary Reading		342
11	GROWTH		
	Introduction		344
	Growth of Single Cells		346
	Growth in Complex Tissues		351
	Growth-Induced Water Potentials		353
	Gradients in Water Potential during Growth		354
	Transpiration and Growth		358
	Growth at Low Water Potentials		360
	Primary Signals		363
	Metabolic Changes		366
	Ecological and Agricultural Significance		372
	Summary		374
	Supplementary Reading		375
12	EVOLUTION AND AGRICULTURAL WATER USE		
	Introduction		377
	Measuring Evolutionary Pressures		378
	Environmental Limitations on Yield		380
	Water Use Efficiency		383
	Measuring Water Use Efficiency		387
	Drought Tolerance		390
	Improvement of Drought Tolerance		391
	Water Deficits and Reproduction		395

xii Contents

Desiccation	398
Antitranspirants	400
Summary	402
Supplementary Reading	403
References	405
	105

Index

482

Preface

Everyone who grows plants, whether a single geranium in a flower pot or hundreds of acres of corn or cotton, is aware of the importance of water for successful growth. Water supply not only affects the yield of gardens and field crops, but also controls the distribution of plants over the earth's surface, ranging from deserts and grasslands to rain forests, depending on the amount and seasonal distribution of precipitation. However, few people understand fully why water is so important for plant growth. This book attempts to explain its importance by showing how water affects the physiological processes that control the quantity and quality of growth. It is a useful introduction for students, teachers, and investigators in both basic and applied plant science, including botanists, crop scientists, foresters, horticulturists, soil scientists, and even gardeners and farmers who desire a better understanding of how their plants grow. An attempt has been made to present the information in terms intelligible to readers with various backgrounds. If the treatment of some topics seems inadequate to specialists in certain fields, they are reminded that the book was not written for specialists, but as an introduction to the broad field of plant water relations. As an aid in this respect, a laboratory manual is available with detailed instructions for some of the more complex methods (I. S. Bover in "Measuring the Water Status of Plants and Soils," Academic Press, San Diego, 1995).

We begin with a brief review of the research on plant water relations from Aristotle to the 20th century, including the development of such basic concepts as plant water balance, the soil-plant-atmosphere continuum, and the Klebs concept showing that both genetic potentialities and environmental factors

xiv Preface

modify growth through their effects on physiological processes and conditions. Some current questions, such as the role of roots as sensors of water stress and the increasing importance of investigations at the cellular and molecular level, are mentioned briefly in preparation for later discussion. Succeeding chapters are devoted to the unique properties of water and to cell water relations, providing an opportunity to define some of the terminology and units used in later chapters. Cell water relations are discussed in detail because they are basic to later discussions of plant water relations. Soil is discussed as a reservoir for water and a medium for root growth, root structure and growth are discussed with respect to the absorption of water and minerals, and the transport of water to the transpiring shoots is discussed in detail. Considerable attention is given to transpiration and the role of stomata in controlling it because transpiration often dominates plant water relations. Finally, we discuss the effects of water deficits on various physiological processes that control growth and yield of plants.

There is considerable cross referencing among chapters but there is also some repetition of material in various chapters. This is intended to make each chapter a fairly complete unit that can be read without excessive referral to other chapters, facilitating use of the book as a reference.

The need for a book summarizing modern views on plant water relations has been increased by the large volume of publications and the changes in viewpoint that have occurred in recent years. A number of books on plant water relations have appeared, but most of them are collections of papers on special topics. This book attempts to present the entire field of water relations in an organized manner, using current concepts and a consistent, simple terminology. Emphasis is placed on the interdependence of various processes. For example, the rate of water absorption is closely linked to the rate of transpiration by the sap stream in the vascular system, and it also is affected by resistance to water flow into roots and by soil factors affecting the availability of water. The rate of transpiration depends primarily on the energy supply, the stomatal opening, and the leaf water supply. Proper functioning of the physiological processes involved in growth requires a favorable water balance, which is controlled by relative rates of water absorption and water loss by transpiration. These complex interrelationships are discussed and described in modern terminology.

The large volume of publications in recent years makes it impossible to cite all of the relevant literature and many good papers have been omitted. Nevertheless, the bibliography is extensive enough to serve as an introduction to the literature in most areas of plant water relations research.

The present lively research activity is producing significant changes in explanations of various phenomena, and some long held views may have to be modified or abandoned. Examples of new trends are the recent emphasis on roots rather than leaves as primary sensors of water stress, the role of cell wall metabolism versus turgor in cell expansion, questions concerning the validity of water potential as a measure of plant water status, and the importance of osmotic adjustment. Even the cohesion theory of the ascent of sap is being questioned. Another new concept is the ecological importance of "hydraulic lift," or the supplying of water to shallow rooted plants by deeper rooted plants. Research at the molecular level is providing a better understanding of the reasons for such phenomena as differences in drought tolerance among species and cultivars. It also suggests the possibility of increasing plant drought tolerance by the genetic engineering of crop plants to minimize the effects of water stress.

Differences in opinion among various investigators are discussed, and in some instances the authors have indicated their preference, but it is pointed out that in many instances more research is needed before conclusions can be reached. We hope the uncertainty about some phenomena will challenge investigators to develop better explanations. Readers are reminded that so-called scientific facts often are merely the most logical explanations that can be developed from the available information. As additional research provides more information, it frequently becomes necessary to revise generally accepted explanations, and some that seem logical today may become untenable later.

This book owes more to interactions with other scientists than can be easily identified. We are indebted to our many graduate students and postdoctoral research associates and to our colleagues for their valuable suggestions. We especially acknowledge E. L. Fiscus, M. R. Kaufmann, J. S. MacFall, and C. D. Raper, Jr., for their useful comments on several chapters. We also acknowledge the assistance of Peggy Conlon in Dr. Boyer's office in typing several chapters and in preparing the bibliography, Dr. An-Ching Tang for preparing the artwork in several chapters, and the secretaries in the Duke University Department of Botany office who patiently typed and revised several chapters so many times.

> Paul J. Kramer John S. Boyer