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ABSTRACT

In this dissertation, we study the Karhunen-Loève (KL) expansion and the exact

L2 small ball probability for Gaussian processes. The exact L2 small ball probability

is connected to the Laplace transform of the Gaussian process via Sytaja Tauberian

theorem. Using this technique, we solved the problem of finding the exact L2 small

ball estimates for the Slepian process S(t) defined as S(t) = W (t+a)−W (t), 0 ≤ t ≤ 1

for 1/2 ≤ a < 1.

We also prove a conjecture raised by Tanaka on the first moment of the limiting

distribution of the least squares estimator (LSE) of a unit root process. The limiting

random variable is a ratio of quadratic functionals of the m-times integrated Brown-

ian motion. Its expectation can be found by using Karhunen-Loéve expansion and a

property of the orthonormal eigenfunctions of the covariance function of the m-times

integrated Brownian motion.
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Chapter 1

INTRODUCTION

1.1 Gaussian Processes

Gaussian processes have a long history in the studies of probability theory and

statistics. They provide mathematical models of random phenomena ranging from

movements of particles suspended in liquid, fluctuations of stock prices in financial

markets and testing of goodness of fit in statistics.

A stochastic process X on a parametric set T is a family of random variables

X(t), t ∈ T , defined on a probability space (Ω,F ,P). A stochastic process is Gaus-

sian if all of its finite-dimensional distributions are multivariate Gaussian distribu-

tions, that is, for any t1, . . . , tn ∈ T the distribution density of the random vector

(X(t1), . . . , X(tn)) is the n-dimensional normal distribution given by, see

fX(x1, . . . , xn) =
1√

(2π)n det Σ
exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
where x = (x1, . . . , xn)′, µ is the n-dimensional mean vector E[x] and Σ is the n × n

positive definite covariance matrix [Cov[X(ti), X(tj)], i = 1, 2, . . . , n, j = 1, 2, . . . , n.

Equivalently, {X(t), t ∈ T} is a Gaussian process if every finite linear combination∑
atX(t), t ∈ T has a Gaussian distribution on R for at not all equal to zero. The

mean vector and covariance matrix uniquely determine a Gaussian distribution; conse-

quently, the mean function and covariance function of a Gaussian prLoèveocess com-

pletely determine all of the finite-dimensional distributions. Therefore, given a mean

function and a positive definite covariance function, there exists a corresponding Gaus-

sian process that is unique in distribution, see [24]. If a Gaussian process has zero

mean, then it is called a centered Gaussian process, and its properties are entirely

determined by its covariance function.
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The most important one-parameter Gaussian processes are the Wiener process

{Wt}, t ≥ 0 (Brownian motion), the Ornstein-Uhlenbeck process {Yt}, t ∈ R, and

the Brownian bridge {Bt}, t ∈ [0, 1]. These are the centered Gaussian processes with

covariance functions

E[WsWt] = s ∧ t,

E[YsYt] = exp{−|t− s|},

E[BsBt] = s ∧ t− st.

In this dissertation, we investigate the Karhunen-Loève expansion for Gaussian

processes and its applications in small ball probability estimate and statistical problems

arising from time series models.

1.2 Karhunen-Loève Expansion

The Karhunen-Loève expansion is a representation of a stochastic process as an

infinite linear combination of orthogonal functions according to a spectral decomposi-

tion of its correlation function. It is analogous to a Fourier series representation of a

function on a bounded interval. The Karhunen-Loève (KL) expansion is well-known,

and is widely used in many disciplines, including mechanics, signal analysis, imaging

compression, biology, physics, statistics, and finance. It is also known as principal

component analysis (PCA), proper orthogonal decomposition (POD) in the finite di-

mensional case. It has been proposed independently by different authors in the 1940’s,

see [27],[29], and [32].

The KL expansion provides an optimal representation of a process in the mean

square sense. It also gives an important distribution identity for the L2 norm of Gaus-

sian processes, which is very useful in the study of exact L2 small ball probability.

1.3 Summary

This dissertation consists of three parts, which are based on two papers: [17]

and [26].
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In Chapter 2, we review the KL expansion for some classical Gaussian processes.

We also obtain the KL expansion for the Slepian process W (t + a) −W (t), 0 ≤ t ≤ 1

for 1/2 ≤ a < 1.

Chapter 3 is mainly about utilizing results from the KL expansion of the Gaus-

sian processes to obtain their exact L2 small ball estimate. In particular, we obtain

the exact L2 small ball estimate for the Slepian process W (t+ a)−W (t), 0 ≤ t ≤ 1 for

1/2 ≤ a < 1.

We find a property regarding the eigenfunctions of the KL expansion for m-

times integrated Brownian motion in Chapter 4. It is shown that this property can be

applied to prove a conjecture raised by Tanaka on the limiting distribution of the least

squares estimator of the unit root process, see [38], [40].
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Chapter 2

KARHUNEN-LOÈVE EXPANSION OF GAUSSIAN PROCESSES

As mentioned in the Introduction, it is interesting to study the Karhunen-Loève

(KL) expansion of Gaussian processes. We state the theory of KL expansion (see [23],

[6], [11]) and show how to obtain the expansion for some classical Gaussian processes

including Brownian motion, Brownian bridge, integrated Brownian motion, Ornstein-

Uhlenbeck process, and etc. We also discuss the KL expansion of the Slepian process,

i.e., S(t) = W (t + a) −W (t), 0 ≤ t ≤ 1 in three cases: a ≥ 1, see [22] , 1/2 ≤ a < 1

and 0 < a < 1/2. The result can be used to obtain the Laplace transform and exact

L2 small ball probability of the Slepian process which we mention in Chapter 3.

2.1 General Theory

Consider an L2 process {X(t), a ≤ t ≤ b} with zero mean and continuous

covariance K(s, t). It is desirable to find an orthogonal expansion of X(t):

X(t) =
∞∑
k=1

Zkek(t), a ≤ t ≤ b,

where the series converges in L2. We want to have double orthogonality, that is,

1. The Zk are orthogonal random variables with zero mean, i.e., E(ZjZk) = 0, j 6= k.

2. The functions ek are orthonormal, i.e.,

∫ b

a

ej(t)ek(t)dt =

0, j 6= k

1, j = k.

4



The covariance function K(s, t) can be represented as

K(s, t) = E[X(s)X(t)]

= E

[
∞∑
j=1

Zjej(s)
∞∑
k=1

Zkek(t)

]

=
∞∑
k=1

λkek(s)ek(t)

where λk = E(Z2
k). Multiplying the covariance by ek(s) and applying term by term

integration, we obtain∫ b

a

K(s, t)en(s)ds =

∫ b

a

∞∑
k=1

λkek(s)ek(t)en(s)ds

=
∞∑
k=1

λkek(t)

∫ b

a

ek(s)en(s)ds

= λnen(t),

Therefore, if the above expansion exists, the functions ek(t) must be eigenfunc-

tions of the integral operator associated with the covariance function K(s, t), and the

variances λk of the random variables Zk must be the eigenvalues of the operator.

We recall some facts from Hilbert space theory. Suppose that A is an integral

operator on L2[a, b] associated with a continuous, symmetric and nonnegative definite

covariance kernel K defined by

(Ax)(s) =

∫ b

a

K(s, t)x(t)dt, a ≤ s ≤ b, x ∈ L2[a, b].

The eigenfunctions of A span L2[a, b]. The operator A has at most countably many

eigenvalues which are all real, with 0 as the only possible limit point. Furthermore,

the nonnegative-definiteness of the covariance kernel K guarantees that the eigenvalues

are all positive. That is, the eigenvalues of the operator A satisfy λ1 ≥ λ2 ≥ · · · > 0.

The eigenspace corresponding to each eigenvalue λn > 0 is finite dimensional. We take

{ek} to be an orthonormal basis for the space. Then by the Mercer’s theorem below,

we have the convergence for the kernel K(s, t), see [35].
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Theorem 1 (Mercer’s Theorem) Let K : D ×D → R be a continuous symmetric

kernel, where D = [a, b] ⊂ R. Suppose that the operator A generated by the kernel K is

positive. If λk and ek are the eigenvalues and eigenfunctions of A, then for all s, t ∈ D,

K(s, t) =
∞∑
k=1

λkek(s)ek(t),

converges absolutely and uniformly on D ×D.

The following theorem gives the existence of Karhunen-Loève expansion of X(t).

Theorem 2 Let {X(t), a ≤ t ≤ b} be an L2 process with zero mean and continuous

covariance K. Let {en, n = 1, 2, . . .} be an orthonormal basis for the space spanned

by the eigenfunctions of the integral operator associated with K, with en taken as an

eigenfunction corresponding to the eigenvalue λn. Then

X(t) =
∞∑
n=1

Znen(t), a ≤ t ≤ b,

where Zn =
∫ b
a
X(t)en(t)dt, and the Zn are orthogonal random variables with E(Zn) =

0, E[Z2
n] = λn. The series converges in L2 to X(t), uniformly in t; in other words,

E

(X(t)−
n∑
k=1

Znen(t)

)2
→ 0 as n→∞

uniformly for t ∈ [a, b]

Proof. First we show Zn are orthogonal.

E(ZjZk) = E

[∫ b

a

X(t)ej(t)dt

∫ b

a

X(t)ek(t)dt

]
=

∫ b

a

ej(s)

∫ b

a

E [X(s)X(t)] ek(t)dtds

=

∫ b

a

ej(s)

∫ b

a

K(s, t)ek(t)dtds

= λk

∫ b

a

ej(s)ek(s)ds

=

0, if j 6= k,

λk, if j = k.

6



Let Sn(t) =
∑n

k=1 Zkek(t). Then

E
[
(Sn(t)−X(t))2

]
= E

[
S2
n(t)

]
− 2E[X(t)Sn(t)] + E[X2(t)]

=
n∑
k=1

λke
2
k(t)− 2

n∑
k=1

E[X(t)Zk]ek(t) +K(t, t)

=
n∑
k=1

λke
2
k(t)− 2

n∑
k=1

E[X(t)

∫ b

a

X(s)ek(s)ds]ek(t) +K(t, t)

=
n∑
k=1

λke
2
k(t)− 2

n∑
k=1

∫ b

a

E[X(t)X(s)]ek(s)dsek(t) +K(t, t)

=
n∑
k=1

λke
2
k(t)− 2

n∑
k=1

∫ b

a

K(s, t)ek(s)dsek(t) +K(t, t)

=
n∑
k=1

λke
2
k(t)− 2

n∑
k=1

λke
2
k(t) +K(t, t)

= −
n∑
k=1

λke
2
k(t) +K(t, t)

Thus,

E[|Sn(t)−X(t)|2] = K(t, t)−
n∑
k=1

λk|ek(t)|2 → 0 as n→∞,

uniformly for t ∈ [a, b], by Mercer’s theorem.

Corollary 1 If X(t) is a mean zero Gaussian process, then the random variables Zk

are independent and jointly Gaussian.

Proof. Let Ik =
∑n

m=1X(tm)ek(tm)(tm − tm−1) be the Riemann sum of Zk. Then the

Ik’s are jointly Gaussian and so are their limits Zk. Since Zk’s are uncorrelated and

Gaussian, they are independent.

Hence for a zero mean Gaussian process Z(t), 0 ≤ t ≤ 1, with continuous

covariance function

K(s, t) = E[Z(s)Z(t)], for 0 ≤ s, t ≤ 1

its Karhunen-Loève expansion is given by

X(t) =
∞∑
k=1

√
λkek(t)ξk

7



where {λk, ek} are the eigenvalues and eigenfunctions to the Fredholm integral equation

λe(t) =

∫ 1

0

K(s, t)e(s)ds, for 0 ≤ t ≤ 1,

ξk are i.i.d. N(0, 1) random variable, {ek(t)} are orthonormal in L2[0, 1], and K(s, t) =∑∞
k=1 λkek(s)ek(t) where convergence is absolute and uniform on [0, 1]2.

In the following context, we focus on the Karhunen-Loève expansion for Gaus-

sian processes. In fact, there are not many Gaussian processes that have eigenvalues

and eigenfunctions associated with their covariance functions computed explicitly. The

key is to solve the Fredholm integral equation of the second type with the covariance

kernel. This is usually reduced to the problem of solving the corresponding differential

equation with boundary conditions. We review some Gaussian processes that have

known KL expansion and give the KL expansion of Slepian process for the case of

1/2 ≤ a < 1.

2.2 Examples

2.2.1 Brownian Motion

The best known Gaussian process is the Brownian motion, also called Wiener

process, see [14], [33].

Definition 1 A real-valued stochastic process {W (t) : t ≥ 0} is called a standard
Brownian motion if the following hold:

• W(0)=0,

• the process has independent increments, i.e., for all times 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn
the increments W (tn) − W (tn−1),W (tn−1) − W (tn−2), . . . ,W (t2) − W (t1), are
independent random variables,

• for all t ≥ 0 and h > 0, the increments W (t+h)−W (t) are normally distributed
with mean zero and variance h,

• the function t→ W (t) is continuous almost surely.

The covariance function of W (t) is K(s, t) = s ∧ t. It is well-known that, see [2].

8



Theorem 3 For the standard Brownian motion W (t) with covariance function

K(t, s) = Cov(W (t),W (s)) = s ∧ t.

The eigenfunctions of the covariance kernel are

ek(t) =
√

2 sin((k − 1

2
)πt)

and the corresponding eigenvalues are

λk =
1

(k − 1
2
)2π2

Proof. We first compute the eigenvalues of W (t) by substituting K(s, t) = s ∧ t into

Tf(t) =

∫ 1

0

K(s, t)f(s)ds = λf(t).

In order to handle the s ∧ t term, we split the integration range and obtain∫ t

0

sf(s)ds+

∫ 1

t

tf(s)ds = λf(t) (2.1)

By differentiating both sides of of (2.1) with respect to t, we obtain∫ 1

t

f(s)ds = λf ′(t). (2.2)

Differentiating again with repeat to t gives

−f(t) = λf ′′(t). (2.3)

Hence, the general solution has the form

f(t) = A sin(
√
λ−1t) +B cos(

√
λ−1t).

Setting t = 0 in (2.1) we obtain f(0) = 0, setting t = 1 in (2.2) gives f ′(1) = 0 which

implies B = 0 and cos(
√
λ−1) = 0. Thus, the eigenvalues of T are

λk =
1

(k − 1
2
)2π2

9



and the corresponding eigenfunctions are of the form

fk(t) = A sin

(
(k − 1

2
)πt

)
.

Since ∫ 1

0

sin2

(
(k − 1

2
)πt

)
dt =

1

2
,

in order to normalize fk(t), we have A =
√

2.

Theorem 4 There is a sequence {ηi} of independent Gaussian random variables with

mean zero and variance 1 such that

W (t) =
√

2
∞∑
k=1

sin((k − 1
2
)πt)

(k − 1
2
)π

ηk.

2.2.2 Demeaned Brownian Motion

Let W̃ (t) be the demeaned Brownian motion defined as W̃ (t) = W (t)−
∫ 1

0
W (u)du.

It has many applications in econometrics.

Theorem 5 For the demeaned Brownian motion {W̃ (t), 0 ≤ t ≤ 1}, its covariance

function is

K(s, t) = t ∧ s−
(
s− s2

2

)
−
(
t− t2

2

)
+

1

3
.

The eigenvalues of the covariance kernel are

λk =
1

k2π2

and the orthonormal eigenfunctions

ek(t) =
√

2 cos(kπt).

Therefore, the demeaned Brownian motion W̃ (t) has the following Karhunen-Loève

expansion

W̃ (t) =
√

2
∞∑
k=1

ek(t)

kπ
ξk

where {ξk} are i.i.d. N(0, 1).

10



Proof. Consider the following integral equation.

λf(t) =

∫ 1

0

[
t ∧ s−

(
s− s2

2

)
−
(
t− t2

2

)
+

1

3

]
f(s)ds

=

∫ t

0

sf(s)ds+

∫ 1

t

tf(s)ds− (t− t2

2
)

∫ 1

0

f(s)ds−
∫ 1

0

(s− s2

2
− 1

3
)f(s)ds

We differentiate the equation with respect to t to get

λf ′(t) = tf(t) +

∫ 1

t

f(s)ds− tf(t)− (1− t)
∫ 1

0

f(s)ds

=

∫ 1

t

f(s)ds− (1− t)
∫ 1

0

f(s)ds.

One more differentiation gives

λf ′′(t) = −f(t) +

∫ 1

0

f(s)ds

Let
∫ 1

0
f(s)ds = C. Then the equation becomes

λf ′′(t) + f(t) = C

We use the boundary conditions f ′(0) = f ′(1) = 0 to find the general solution. It is

easy to see that the differential equation has the complementary solution,

f(t) = C1 cos(
√
λ−1t) + C2 sin(

√
λ−1t).

We compute the derivative of the solution and use the boundary conditions.

f ′(t) = −C1

√
λ−1 sin(

√
λ−1t) + C2

√
λ−1 cos(

√
λ−1t)

0 = f ′(0) = C2

√
λ−1 ⇒ C2 = 0

0 = f ′(1) = −C1

√
λ−1 sin(

√
λ−1)⇒ sin(

√
λ−1) = 0⇒ λ =

1

k2π2
.

Thus, we have the eigenvalues and eigenfunctions,

λk =
1

k2π2

and

fk(t) = C1 cos(kπt).

When we orthonormalize the eigenfunctions, we get

ek(t) =
√

2 cos(kπt).
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2.2.3 Brownian Bridge

A Brownian bridge {B(t), 0 ≤ t ≤ 1} is defined as the Brownian motion W (t)

conditioned on W (1) = 0. It can be represented as B(t) = W (t) − tW (1) or B(t) =

(1 − t)W ( t
1−t) for t ∈ [0, 1]. A Brownian bridge is the result of Donsker’s theorem in

the area of empirical processes. It is also used in the Kolmogorov-Smirnov test in the

area of statistical inference. Its KL expansion can also be computed by solving the

integral equation of its covariance kernel.

Theorem 6 For the Brownian bridge B(t) = W (t)− tW (1), with covariance function

K(t, s) = t ∧ s− ts

can be represented as the series

B(t) =
∞∑
k=1

√
2 sin(kπt)

kπ
ξk.

Proof.

Tf(t) =

∫ 1

0

(t ∧ s− ts)f(s)ds = λf(t) (2.4)

That is ∫ t

0

(s− ts)f(s)ds+

∫ 1

t

(t− ts)f(s)ds = λf(t) (2.5)

Differentiating once with respect t yields

−
∫ 1

0

sf(s)ds+

∫ 1

t

f(s)ds = λf ′(t) (2.6)

Differentiating once more with respect t yields

−f(t) = λf ′′(t) (2.7)

So the general solution has the form

f(t) = A sin(
√
λ−1t) +B cos(

√
λ−1t).

12



Setting t = 0, (2.5) gives f(0) = 0. Setting t = 1, (2.5) gives f(1) = 0. Thus, B = 0

and sin(
√
λ−1) = 0. The eigenvalues are

λk =
1

k2π2
.

The corresponding normalized eigenfunctions are

ek(t) =
f(t)

||f(t)||2
=
√

2 sin(kπt).

2.2.4 Integrated Brownian Motion

The m-times integrated Brownian motion is defined recursively as

Xm(t) =

∫ t

0

Xm−1(s)ds, t ≥ 0,m ≥ 1

for all positive integer m and X0(t) = W (t) where W (t) is the standard Brownian

motion. Using integration by parts, we also have the representation

Xm(t) =
1

m!

∫ t

0

(t− s)mdW (s), m ≥ 0.

When m = 1, the one-time integrated Brownian motion X1(t) is
∫ t
0
W (s)ds, see

[16]. Then,

E[X1(t)] = 0,

Var(X1(t)) = 2

∫ t

0

∫ u

0

E[W (u)W (v)]dvdu

= 2

∫ t

0

∫ u

0

vdvdu =
1

3
t3,

K(s, t) = Cov(X1(s), X1(t))

=
1

2
st(s ∧ t)− 1

6
(s ∧ t)3.

Consider the eigenvalue problem∫ 1

0

K(s, t)φ(s)ds = λφ(t). (2.8)

13



Plug in K(s, t) and rewrite (2.8), we get∫ t

0

(
1

2
s2t− 1

6
s3
)
φ(t)ds+

∫ 1

t

(
1

2
st2 − 1

6
t3
)
φ(s)ds = λφ(t). (2.9)

Differentiating with respect to t successively gives∫ t

0

1

2
s2φ(s)ds+

∫ 1

t

(st− 1

2
t2)φ(s)ds = λφ′(s), (2.10)∫ 1

t

(s− t)φ(s)ds = λφ′′(t), (2.11)

−
∫ 1

t

φ(s)ds = λφ(3)(t), (2.12)

φ(t) = λφ(4)(t). (2.13)

The general solution to (2.13) is of the form

φ(t) = A cos(t/λ1/4) +B sin(t/λ1/4) + C cosh(t/λ1/4) +D sinh(t/λ1/4), (2.14)

where A,B,C, and D are constants. The boundary conditions that determine the

constants are obtained from (2.9)-(2.12):

φ(0) = 0, φ′(0) = 0, φ′′(1) = 0, φ(3)(1) = 0.

From φ(0) = 0, we have C = −A. φ′(0) = 0 gives D = −B. The remaining two

boundary conditions lead to

A(cos(1/λ1/4) + cosh(1/λ1/4)) +B(sin(1/λ1/4) + sinh(1/λ1/4)) = 0,

A(− sin(1/λ1/4) + sinh(1/λ1/4)) +B(cos(1/λ1/4) + cosh(1/λ1/4)) = 0.

In order to have nontrivial solution for A and B, we must have

det

 cos(1/λ1/4) + cosh(1/λ1/4) sin(1/λ1/4) + sinh(1/λ1/4))

− sin(1/λ1/4) + sinh(1/λ1/4)) cos(1/λ1/4) + cosh(1/λ1/4))


=(cos(1/λ1/4) + cosh(1/λ1/4))2 − (sinh(1/λ1/4)2 − sin(1/λ1/4)2)

=2 cos(1/λ1/4) cosh(1/λ1/4) + 2 = 0.
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Theorem 7 ([9], [16]) For the one-time integrated Brownian motion, that is, X1(t) =∫ t
0
W (s)ds, the eigenvalues λ satisfy

cosh

(
1

λ1/4

)
cos

(
1

λ1/4

)
= −1,

and λk ∼ (kπ)−4. The corresponding eigenfunction is given by (2.14), with

A = B, C = −D, A/B = −(sin(1/λ1/4)+sinh(1/λ1/4))/(cos(1/λ1/4)+cosh(1/λ1/4)),

while B is chosen so the function has norm 1.

As m increases, the complexity of the characteristic equation for eigenvalues

also increases. For example, for m = 2 the eigenvalues of X2(t) are given by, see [21],

4 + 4 cos

(
1

λ1/6

)
+ cos2

(
1

λ1/6

)
+ 8 cos

(
1

2λ1/6

)
cosh

( √
3

2λ1/6

)

+ cos

(
1

λ1/6

)
cosh

( √
3

λ1/6

)
= 0.

For the general m-times integrated Brownian motion Xm(t), the covariance

kernel is, see [18], [21],

K(s, t) =
1

(m!)2

∫ s∧t

0

(s− u)m(t− u)mdu.

Successive differentiations of the integral equation∫ 1

0

K(s, t)f(s)ds = λf(t)

give the Sturm-Liouville equation:

λf (2m+2)(t) = (−1)m+1f(t) = (i)2m+2f(t) (2.15)

with boundary conditions

f (k)(0) = f (m+1+k)(1) = 0

for k = 0, 1, . . . ,m. The eigenfunctions thus are the nontrivial functions of the form

f(t) =
2m+1∑
j=0

cje
αjt

15



with αj = λ−1/(2d+2)iωj and ωj = exp( jπ
d+1

i) satisfying the boundary conditions. The

eigenvalues λ’s are determined by setting the determinant of the following matrix

MW =



1 1 · · · 1

ω0 ω1 · · · ω2d+1

...
...

. . .
...

ωd0 ωd1 · · · ωd2d+1

ωd+1
0 eα0 ωd+1

1 eα1 · · · ωd+1
2d+1e

α2d+1

...
...

. . .
...

ω2d+1
0 eα0 ω2d+1

1 eα1 · · · ω2d+1
2d+1e

α2d+1


to be zero.

The authors in [21] simplified the determinant of MW and computed the asymp-

totics of the eigenvalues λk.

Theorem 8 The eigenvalues λk of K(s, t) are

λk =

(
1

(k − 1
2
)π

)2m+2

+O

(
1

k2m+3
exp

(
−kπ sin

(
π

m+ 1

)))
.

In fact, if we modify the boundary conditions for the Sturm-Liouville problem

above to

f(t0) = f ′(t1) = · · · = f (m)(tm) = f (m+1)(tm+1) = · · · = f (2m)(t2m) = f (2m+1)(t2m+1) = 0.

where tj ∈ {0, 1} for all j,
∑

j tj = m + 1 and t2m+1−j = 1 − tj, then we have

a class of m-times integrated Brownian motions depending on the choice of tj. For a

particular choice of {t0, t1, . . . , t2m+1}, ew call the associated centered Gaussian process

a generalized integrated Brownian motion and denote it by X{t0,...,tm}(t). If t0 = t2 =

. . . = t2m = 0, then the process is called an Euler-integrated Brownian motion since

the covariance kernel is just the difference of two Euler polynomials. The covariance

operator of Euler integrated Brownian motion has the eigenvalues exactly equal to

bn = ((n− 1/2)π)−2m−2
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2.2.5 Integrated Brownian Bridge

The m-times integrated Brownian bridge is defined similar to the m-times in-

tegrated Brownian motion. Let B(t) be a standard Brownian bridge for 0 ≤ t ≤ 1.

For integer m ≥ 0, the m-times integrated Brownian bridge on [0, 1] is the Gaussian

process

Ym(t) =

∫ t

0

∫ sm

0

· · ·
∫ s2

0

B(s1)ds1ds2 · · · dsm 0 ≤ t ≤ 1.

The eigenfunctions are given by the same Sturm-Liouville equation as integrated

Brownian motion, see [19]:

λf (2m+2)(t) = (−1)m+1f(t) = (i)2m+2f(t) (2.16)

with boundary conditions

f(0) = f ′(0) = · · · = f (m−1)(0) = f (m)(0)

= f (m)(1) = f (m+2)(1) = f (m+3)(1) = · · · = f (2m+1)(1) = 0.

The eigenvalues are then determined by setting the determinant

det(MB(λ−1/(2m+2)))

equals to zero, where

MB(z) =



1 1 · · · 1

ω0 ω1 · · · ω2m+1

· · · · · · · · · · · ·

ωm0 ωm1 · · · ωm2m+1

ωm0 e
iω0z ωm1 e

iω1z · · · ωm2m+1e
iω2m+1z

ωm+2
0 eiω0z ωm+2

1 eiω1z · · · ωm+2
2m+1e

iω2m+1z

ωm+3
0 eiω0z ωm+3

1 eiω1z · · · ωm+3
2m+1e

iω2m+1z

· · · · · · · · · · · ·

ω2m+1
0 eiω0z ω2m+1

1 eiω1z · · · ω2m+1
2m+1e

iω2m+1z



.
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2.2.6 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck (OU) process is defined by the stochastic differential

equation, see [13]

dX(t) = θ(µ−X(t))dt+ σdW (t), σ > 0, θ ≥ 0

Solving the above SDE, we get

X(t) = X0e
−θt + µ(1− e−θt) +

∫ t

0

σeθ(s−t)dW (s).

The Ornstein-Uhlenbeck process is mean-reverting. Applications of this property in-

cludes interest rate modeling (Vasicek short rate model), see [41], [36], pair trading,

see [15] and etc. It can also be considered as the continuous-time analogue of the

discrete-time AR(1) process. The Ornstein-Uhlenbeck process can be interpreted as a

scaling limit of a discrete process, in the same way that Brownian motion is a scaling

limit of random walks.

We consider two cases depending on how the initial condition X0 := X(0) is

specified. First, let X(0) to be normal random variable N(m0, σ
2
0) independent of

W (t). Then E[X(t)] = m0e
−θt + µ(1 − e−θt). Consider the centered process Y (t) =

X0 −m0e
−θt − µ(1− e−θt), then

Cov(Y (s), Y (t))

= E

[(
(X0 −m0)e

−θt +

∫ t

0

σeθ(u−t)dW (u)

)(
(X0 −m0)e

−θs +

∫ s

0

σeθ(v−s)dW (v)

)]
= E

[∫ t

0

σeθ(u−t)dW (u)

∫ s

0

σeθ(v−s)dW (v)

]
+ E

[
(X0 −m0)

2e−θ(s+t)
]

= σ2e−θ(s+t)E

[∫ t

0

eθudW (u)

∫ s

0

eθvdW (v)

]
+ σ2

0e
−θ(s+t)

=
σ2

2θ
e−θ(s+t)

(
e2θ(s∧t) − 1

)
+ σ2

0e
−θ(s+t)

=
σ2

2θ

(
e−θ|s−t| − e−θ(s+t)

)
+ σ2

0e
−θ(s+t)

As t→∞, Var(Y (t))→ σ2

2θ
the long run variance. If the initial variance σ2

0 is equal to

the long run variance σ2

2θ
, then Y (t) is stationary and the covariance function is

KY (s, t) = Cov(Y (s), Y (t)) =
σ2

2θ
e−θ|s−t|.
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Let

λf(t) =

∫ T

0

KY (s, t)f(s)ds (2.17)

=

∫ t

0

σ2

2θ
e−θ(t−s)f(s)ds+

∫ T

t

σ2

2θ
e−θ(s−t)f(s)ds+

∫ T

0

(
σ2
0 −

σ2

2θ

)
e−θ(s+t)f(s)ds.

(2.18)

Differentiating with respect to t yields,

λf ′(t) = −σ
2

2

∫ t

0

e−θ(t−s)f(s)ds+
σ2

2

∫ T

t

e−θ(s−t)f(s)ds−
(
θσ2

0 −
σ2

2

)∫ T

0

e−θ(s+t)f(s)ds.

Differentiating with respect to t again,

λf ′′(t) =
σ2θ

2

(∫ t

0

e−θ(t−s)f(s)ds+

∫ T

t

e−θ(s−t)f(s)ds

)
+θ2

(
σ2
0 −

σ2

2θ

)∫ T

0

e−θ(s+t)f(s)ds− σ2f(t)

Hence, we obtain

λf ′′(t) + (σ2 − λθ2)f(t) = 0,

and two boundary conditions σ2
0f
′(0) = (σ2 − θσ2

0)f(0),

f ′(T ) = −θf(T ).

The solution of the ODE on [0, T ] has the form f(t) = A cos(ωt) +B sin(ωt) where

ω =

√
σ2 − λθ2

λ

From the boundary conditions we have

ωσ2 cos(ωT ) + (−ω2σ2
0 + θσ2 − θ2σ2

0) sin(ωT ) = 0.

Theorem 9 The centered OU process Y(t) has eigenvalues λn = σ2

ω2
n+θ

2 and eigenfunc-

tions en(t) = Kn(ωnσ
2
0 cos(ωnt) + (σ2 − θσ2

0) sin(ωnt)) where Kn is the normalization

constant.
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If the initial condition X0 = 0, then σ0 = 0, we have

en(t) =
1√

T
2
− sin(2ωnT )

4ωn

sin(ωnt)

In the stationary case when σ2
0 = σ2

2θ
,

en(t) = Cn (ωn cos(ωnt) + θ sin(ωnt))

where

Cn =

(
θ

2
(1− cos(2ωnT )) +

ω2
n

2

(
T +

sin(2ωnT )

2ωn

)
+
θ2

2

(
T − sin(2ωnT )

2ωn

))−1/2
.

2.2.7 Anderson-Darling process

Consider the center Gaussian process {Z1(t), 0 < t < 1} with almost surely

continuous sample paths and covariance function

K1(s, t) =
s ∧ t− st√

s(1− s)t(1− t)
for 0 < s, t < 1. (2.19)

The square integral of this process Z1(t) arises as the limit of the statistic

A2
1,n =

∫ 1

0

U2
n(t)

t(1− t)
dt,

where

Un(t) =
1√
n

n∑
i=1

{1{Xi≤t} − t}, 0 ≤ t ≤ 1

is the uniform empirical process. Here Xi = F (Yi), 1 ≤ i ≤ n, F is a specified

continuous distribution function and Y1, . . . , Yn are independent, identically distributed

(i.i.d.) random variables, see [4], [5], [34].

The covariance function K1 in (2.19) can be decomposed into

K1(s, t) =
∞∑
k=1

λkfk(s)fk(t), for 0 < s, t < 1.

where the eigenvalues are

λk =
1

k(k + 1)
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and the eigenfunctions are

fk(t) = 2

√
2k + 1

k(k + 1)

√
t(1− t)P ′k(2t− 1)

with

Pk(x) =
1

2kk!

dk

dxk
(x2 − 1)k

denoting the kth Legendre polynomial.

Therefore, the KL expansion of the Anderson-Darling process Z1(t) is

Z1(t) =
∞∑
k=1

√
λkfk(t)ξk,

where {ξk, k ≥ 1} are i.i.d. N(0, 1) random variables.

Consequently, the asymptotic distribution of A2
1,n is the distribution of the ran-

dom variable

A2
1 =

∫ 1

0

Z1(t) =
∞∑
k=1

λkξ
2
k.

And the characteristic function can be obtained as

E[eiuA
2
1 ] =

∞∏
k=1

(
1− 2iu

k(k + 1)

)−1/2
.

For large n, the distribution of A2
1 provides a good approximation to the distribution

of the test statistic A2
1,n.

Furthermore, [34] generalized the covariance function K1 to

Kµ(s, t) =

(
s ∧ t− st√

s(1− s)t(1− t)

)µ

= K1(s, t)
µ for 0 < s, t < 1. (2.20)

for µ > 0. The corresponding centered Gaussian process Zµ(t) admits the following

decomposition:

Zµ(t) =
∞∑
k=1

√
λµ,kfµ,k(t)ξk,

where

λµ,k =
µ

(µ+ k − 1)(µ+ k)
,

fµ,k(t) =

√
(2µ+ 2k − 1)Γ(2µ+ k)

(k − 1)!
P−µµ+k−1(2t− 1).
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and P µ
v is the Legendre function of the first kind which is the solution to the differential

equation

(1− x2)y′′ − 2xy′ − µ2

1− x2
y = −v(v + 1)y,

where µ, v are two arbitrary complex numbers, −1 ≤ x ≤ 1.

The result is then used in [34] to test independence of multi-dimensional samples.

2.2.8 Mean-centered Brownian Bridge

The mean-centered Brownian bridges are defined by

yK(t) = B(t)− 6Kt(1− t)
∫ 1

0

B(u)du for 0 ≤ t ≤ 1,

where B(t) : 0 ≤ t ≤ 1 is a Brownian bridge and K ∈ R is a constant. The covariance

function can be computed as

K(s, t) = s ∧ t− st− 3K(2−K)s(1− s)t(1− t).

[10] gives the KL expansion for K = 1.

Theorem 10 The process {y1(t) = B(t)− 6t(1− t)
∫ 1

0
B(u)du : 0 ≤ t ≤ 1} has a KL

expansion given by

y1(t) =
∞∑
k=1

1

2kπ
Zk
√

2 sin(2kπt) +
∞∑
k=1

1

2z3/2,k
Z∗k
√

2(cos(z3/2,k(2t− 1))− cos(z3/2,k))

where {Zk : k ≥ 0} and {Z∗k : k ≥ 1} denote two independent sequences of i.i.d. N(0, 1)

random variables and zv,k is the positive zeros of the Bessel function of the first order

Jv(·).

2.2.9 Detrended Brownian Motion and Bridge

Consider the optimization problem, see [3],

min
a,b∈R

∫ 1

0

(X(t)− a− bt)2dt.

The optimal constant a, b must satisfy

∂

∂a

∫ 1

0

(X(t)− a− bt)2dt = 0,
∂

∂b

∫ 1

0

(X(t)− a− bt)2dt = 0.
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It follows that

a = 4

∫ 1

0

X(s)ds− 6

∫ 1

0

sX(s)ds, b = 12

∫ 1

0

sX(s)ds− 6

∫ 1

0

X(s)ds.

Thus, we define the detrended Gaussian process to be the orthogonal component of

the projection,

X̂(t) = X(t)− a− bt = X(t) + (6t− 4)

∫ 1

0

X(s)ds+ (6− 12t)

∫ 1

0

sX(s)ds,

Let X(t) = W (t), then we have the detrended Brownian motion

Ŵ (t) = W (t) + (6t− 4)

∫ 1

0

W (s)ds+ (6− 12t)

∫ 1

0

sW (s)ds.

Similarly, we have the detrended Brownian bridge

B̂(t) = B(t) + (6t− 4)

∫ 1

0

B(s)ds+ (6− 12t)

∫ 1

0

sB(s)ds.

The covariance function can be computed as

KŴ (s, t) = KB̂(s, t) = s∧t−11

10
(t+s)+2(t2+s2)−(t3+s3)−3st2−3ts2+2st3+2ts3+

6

5
st+

2

15

Thus, Ŵ (t) and B̂(t) are the same process on C[0, 1].

Solving the eigenvalue problem∫ 1

0

KŴ (s, t)f(s)ds = λf(t)

by differentiation and using boundary conditions, we obtain the characteristic equation

for the eigenvalues

2(1− cos(λ−1/2))− λ−1/2 sin(λ−1/2) = 0

which can be rewritten as

2−1πλ−1J1/2(2
−1λ−1/2)J3/2(2

−1λ−1/2) = 0, (2.21)

where J1/2(x) and J3/2(x) are the Bessel function of the first kind. Specifically,

J1/2(x) = (2/(πx))1/2 sin(x),

J3/2(x) = (2/(πx))1/2(sin(x)/x− cos(x)).
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The solutions of (2.21) are

λ2k−1 = (2kπ)−2, k = 1, 2, . . . , (2.22)

λ2k = (2z3/2,k)
−2, k = 1, 2, . . . , (2.23)

where z3/2,k are the ordered positive zeros of Bessel function and λ1 > λ2 > · · · > 0.

Theorem 11 The spectrum of the KL expansion for the detrended Brownian motion

Ŵ (t), t ∈ [0, 1] and detrended Brownian bridge is given by (2.22), (2.23), and we have

the distribution identities∫ 1

0

Ŵ (t)2dt =

∫ 1

0

B̂(t)2dt =
∑
k≥1

η2k
4π2k2

+
∑
k≥1

η∗2k
4z23/2,k

.

2.2.10 Slepian Process

Consider the one-dimensional Slepian process which is the increment of a Wiener

process during a fixed time interval a > 0, i.e.,

S(t) = W (t+ a)−W (t), 0 ≤ t ≤ 1,

with W (t) is the standard Brownian motion. Let us consider the Karhunen-Loève

expansion in one-dimensional setting. That is, we need to solve the eigenvalue problem

λf(t) =

∫ 1

0

K(s, t)f(s)ds, 0 ≤ t ≤ 1, a > 0,

where the covariance function K(s, t) can be computed as follows,

K(s, t) = E[S(s)S(t)]

= E[(W (s+ a)−W (s))(W (t+ a)−W (t))]

= E[W (s+ a)W (t+ a) +W (s)W (t)−W (s+ a)W (t)−W (s)W (t+ a)]

= (s+ a) ∧ (t+ a) + s ∧ t− (s+ a) ∧ t− s ∧ (t+ a)

= a+ 2s ∧ t− (s+ a) ∧ t− s ∧ (t+ a)

= 2s ∧ t− s ∧ (t− a)− s ∧ (t+ a)

=

a− |t− s| if |t− s| ≤ a,

0 otherwise,
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for s, t ∈ [0, 1]. Figure 2.1 illustrates the covariance function for a = 1 and a = 1/2.

We discuss the KL decomposition of S(t) in three cases: a ≥ 1, 1/2 ≤ a < 1 and

0 < a < 1/2.

Figure 2.1: Covariance function of the Slepian process for a = 1 and a = 1/2

2.2.10.1 Case a ≥ 1

The a ≥ 1 case was studied in [22]. When a ≥ 1, |s− t| < a. So the covariance

function of S(t) is

K(s, t) = a− |s− t|

for s, t ∈ [0, 1]. Plugging K(s, t) into the integral equation

λf(t) =

∫ 1

0

K(s, t)f(s)ds, 0 ≤ t ≤ 1,

we have

λf(t) =

∫ t

0

(a− t+ s)f(s)ds+

∫ 1

t

(a+ t− s)f(s)ds, 0 ≤ t ≤ 1. (2.24)

Differentiating (2.24) with respect t yields

λf ′(t) = −
∫ t

0

f(s)ds+

∫ 1

t

f(s)ds, (2.25)

Differentiating (2.25) gives λf ′′(t) = −2f(t). Hence, the general solution is

f(t) = c1 sin
√

2λ−1t+ c2 cos
√

2λ−1t. (2.26)
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We set t = 0 and t = 1 in (2.24) and (2.25) to obtain the boundary conditions

f ′(0) + f ′(1) = 0 and f(0) + f(1) = (2a− 1)f ′(0). (2.27)

Substituting into (2.26) into (2.27) yields

(1 + cos
√

2λ−1)c1 − sin
√

2λ−1c2 = 0,

(sin
√

2λ−1 − (2a− 1)
√

2λ−1)c1 + (1 + cos
√

2λ−1)c2 = 0,

Then the equation for the eigenvalues is obtained by setting the determinant of the

above two equations to be zero. That is,

2 + 2 cos
√

2λ−1 − (2a− 1)
√

(2λ)−1 sin
√

2λ−1 = 0,

which simplifies to

cos
√

(2λ)−1(cos
√

(2λ)−1 − (2a− 1)
√

(2λ)−1 sin
√

(2λ)−1) = 0. (2.28)

Therefore, the eigenvalues are implicitly determined by (2.28).

2.2.10.2 Case 1/2 ≤ a < 1

In this case the covariance function is

K(s, t) = 2s ∧ t− s ∧ (t− a)− s ∧ (t+ a),

for s, t ∈ [0, 1]. We consider 1/2 < a < 1 and a = 1/2 separately.

(i) 1/2< a <1.

Noticing that the differential equations obtained by successively differentiate

the integral equation

λf(t) =

∫ 1

0

K(s, t)f(s)ds, 0 ≤ t ≤ 1,

are different for t ∈ [0, 1− a], t ∈ (1− a, a), and t ∈ [a, 1]. We let

f(t) =


f1(t), t ∈ [0, 1− a],

f2(t), t ∈ (1− a, a),

f3(t), t ∈ [1− a, 1],
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for t ∈ [0, 1] and obtain the differential equations for t in the above three subintervals.

1) For t ∈ [1− a, a],

t− a < 0 < t < 1 < t+ a.

Then,

λf(t) =

∫ 1

0

K(s, t)f(s)ds, 1− a ≤ t ≤ a

is equivalent to

λf2(t) =

∫ 1−a

0

(a− t+ s)f1(s)ds+

∫ t

1−a
(a− t+ s)f2(s)ds

+

∫ a

t

(a+ t− s)f2(s)ds+

∫ 1

a

(a+ t− s)f3(s)ds. (2.29)

Differentiating with respect to t, we get

λf ′2(t) = −
∫ 1−a

0

f1(s)ds−
∫ t

1−a
f2(s)ds+

∫ a

t

f2(s)ds+

∫ 1

a

f3(s)ds.

Differentiating twice to obtain

λf ′′2 (t) = −2f2(t).

Hence, the solution is

f2(t) = d1 cos(
√

2λ−1t) + d2 sin(
√

2λ−1t).

2) For t ∈ [0, 1− a],

t− a < 0 < t < t+ a < 1.

Again we solve

λf(t) =

∫ 1

0

K(s, t)f(s)ds, 0 ≤ t ≤ 1− a,

which is,

λf1(t) =

∫ t

0

(a− t+ s)f1(s)ds+

∫ 1−a

t

(a+ t− s)f1(s)ds

+

∫ a

1−a
(a+ t− s)f2(s)ds+

∫ t+a

a

(a+ t− s)f3(s)ds. (2.30)
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Differentiating with respect to t, we get

λf ′1(t) = −
∫ t

0

f1(s)ds+

∫ 1−a

t

f1(s)ds+

∫ a

1−a
f2(s)ds+

∫ t+a

a

f3(s)ds.

Differentiating twice to obtain

λf ′′1 (t) + 2f1(t) = f3(t+ a).

3) For t ∈ [a, 1],

0 < t− a < t < 1 < t+ a.

We have

λf(t) =

∫ 1

0

K(s, t)f(s)ds, a ≤ t ≤ 1

which is,

λf3(t) =

∫ 1−a

t−a
(a− t+ s)f1(s)ds+

∫ a

1−a
(a− t+ s)f2(s)ds

+

∫ t

a

(a− t+ s)f3(s)ds+

∫ 1

t

(a+ t− s)f3(s)ds. (2.31)

Differentiating with respect to t, we get

λf ′3(t) = −
∫ 1−a

t−a
f1(s)ds−

∫ a

1−a
f2(s)ds−

∫ t

a

f3(s)ds+

∫ 1

t

f3(s)ds.

Differentiating twice to obtain

λf ′′3 (t) + 2f3(t) = f1(t− a).

From the discussion above, we haveλf
′′
1 (t) + 2f1(t) = f3(t+ a), t ∈ [0, 1− a],

λf ′′3 (t) + 2f3(t) = f1(t− a), t ∈ [a, 1].

Noticing that t+ a ∈ [a, 1] for t ∈ [0, 1− a] and t− a ∈ [0, 1− a] for t ∈ [a, 1], we solve

the two differential equations together givesλ
2f

(4)
1 (t) + 4λf ′′1 (t) + 3f1(t) = 0, t ∈ [0, 1− a],

λ2f
(4)
3 (t) + 4λf ′′3 (t) + 3f3(t) = 0, t ∈ [a, 1].
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and the solutions are

f1(t) = c1 cos(
√
λ−1t) + c2 sin(

√
λ−1t) + c3 cos(

√
3λ−1t) + c4 sin(

√
3λ−1t) for t ∈ [0, 1− a],

and

f3(t) = c5 cos(
√
λ−1t) + c6 sin(

√
λ−1t) + c7 cos(

√
3λ−1t) + c8 sin(

√
3λ−1t) for t ∈ [a, 1].

Therefore, for t ∈ [0, 1], we have

f(t) =


c1 cos(

√
λ−1t) + c2 sin(

√
λ−1t) + c3 cos(

√
3λ−1t) + c4 sin(

√
3λ−1t), t ∈ [0, 1− a],

d1 cos(
√

2λ−1t) + d2 sin(
√

2λ−1t), t ∈ (1− a, a),

c5 cos(
√
λ−1t) + c6 sin(

√
λ−1t) + c7 cos(

√
3λ−1t) + c8 sin(

√
3λ−1t), t ∈ [a, 1].

(2.32)

as the eigenfunction of the integral equation

λf(t) =

∫ 1

0

K(s, t)f(s)ds, 0 ≤ t ≤ 1.

For convenience, we write

f(t) =



c1 cos(
√
λ−1t) + c2 sin(

√
λ−1t) + c3 cos(

√
3λ−1t) + c4 sin(

√
3λ−1t), t ∈ [0, 1− a],

D1 cos(
√

2λ−1(t− (1− a)) +D2 sin(
√

2λ−1(t− (1− a)), t ∈ (1− a, a),

C5 cos(
√
λ−1(t− a)) + C6 sin(

√
λ−1(t− a))

+C7 cos(
√

3λ−1(t− a)) + C8 sin(
√

3λ−1(t− a)), t ∈ [a, 1].

(2.33)

Now the equation λf ′′1 (t) + 2f1(t) = f3(t + a), t ∈ [0, 1 − a] gives C5 = c1, C6 = c2,

C7 = −c3, and C8 = −c4. That is,

f(t) =



c1 cos(
√
λ−1t) + c2 sin(

√
λ−1t) + c3 cos(

√
3λ−1t) + c4 sin(

√
3λ−1t), t ∈ [0, 1− a],

D1 cos(
√

2λ−1(t− (1− a)) +D2 sin(
√

2λ−1(t− (1− a)), t ∈ (1− a, a),

c1 cos(
√
λ−1(t− a)) + c2 sin(

√
λ−1(t− a))

−c3 cos(
√

3λ−1(t− a))− c4 sin(
√

3λ−1(t− a)), t ∈ [a, 1].

(2.34)
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Furthermore, by using f2(1− a) = f1(1− a), and f ′2(1− a) = f ′1(1− a), we obtain

D1 = c1 cos(
√
λ−1(1− a)) + c2 sin(

√
λ−1(1− a)) + c3 cos(

√
3λ−1(1− a)) + c4 sin(

√
3λ−1(1− a)),

(2.35)

√
2D2 = −c1 sin(

√
λ−1(1− a))+c2 cos(

√
λ−1(1− a))

−
√

3c3 sin(
√

3λ−1(1− a)) +
√

3c4 cos(
√

3λ−1(1− a)).

(2.36)

Using f2(a) = f3(a) and f ′2(a) = f ′3(a), we get

c1 − c3 = cos(
√

2/λ(2a− 1))D1 + sin(
√

2/λ(2a− 1))D2, (2.37)

c2 −
√

3c4 = −
√

2 sin(
√

2/λ(2a− 1))D1 +
√

2 cos(
√

2/λ(2a− 1))D2. (2.38)

Computing

λf ′2(1− a) = −
∫ 1−a

0

f1(s)ds+

∫ a

1−a
f2(s)ds+

∫ 1

a

f3(s)ds,

we obtain

− sin(
√

3/λ(1− a))c3 + [cos(
√

3/λ(1− a))− 1]c4 (2.39)

+

√
6

4
sin(
√

2/λ(2a− 1))D1 −
√

6

4
[cos(

√
2/λ(2a− 1)) + 1]D2 = 0. (2.40)

Finally, we compute λf3(a) using (2.31). That is,

λf3(a) =

∫ 1−a

0

sf1(s)ds+

∫ a

1−a
sf2(s)ds+

∫ 1

a

(2a− s)f3(s)ds.
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This gives us

√
λ

[
a sin(

√
1

λ
(1− a))c1 +

(
−a cos(

√
1

λ
(1− a)) + a

)
c2

− 3a− 2√
3

sin(

√
3

λ
(1− a))c3 +

(
3a− 2√

3
cos(

√
3

λ
(1− a))− a√

3

)
c4

+
a√
2

sin(

√
2

λ
(2a− 1))D1 +

(
− a√

2
cos(

√
2

λ
(2a− 1)) +

1− a√
2

)
D2

]

+ λ

[
−c1 +

(
1

3
+

2

3
cos(

√
3

λ
(1− a))

)
c3 +

2

3
sin(

√
3

λ
(1− a))c4

+

(
1

2
cos(

√
2

λ
(2a− 1))− 1

2

)
D1 +

(
1

2
sin(

√
2

λ
(2a− 1))

)
D2

]
= 0. (2.41)

Putting equations (2.35), (2.36), (2.37), (2.38), (2.40), and (2.41) together, we must

have the determinant of the coefficient matrix to be singular for c1, c2, c3, c4, D1 and D2

to have a nontrivial solution. After some matrix simplification, we have the equation

that determines the eigenvalues as

√
λM(λ) + λN(λ) = 0, (2.42)

or equivalently, 1√
λ
M(λ) +N(λ) = 0, where

M(λ)

=
4a− 1√

6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cos
√

1
λ
(1− a) sin

√
1
λ
(1− a) cos

√
3
λ
(1− a) sin

√
3
λ
(1− a) −1 0

− sin
√

1
λ
(1− a) cos

√
1
λ
(1− a) 0 0 0 −

√
2
4

1 0 −1 0 − cos
√

2
λ
(2a− 1) − sin

√
2
λ
(2a− 1)

0 0 0 −4
√
3

3

√
2 sin

√
2
λ
(2a− 1) −

√
2 cos

√
2
λ
(2a− 1)

0 0 − sin
√

3
λ
(1− a) cos

√
3
λ
(1− a) 0 −

√
6
4

0
√

3 0 1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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and

N(λ)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

cos
√

1
λ
(1− a) sin

√
1
λ
(1− a) cos

√
3
λ
(1− a) sin

√
3
λ
(1− a) −1 0

− sin
√

1
λ
(1− a) cos

√
1
λ
(1− a) −

√
3 sin

√
3
λ
(1− a)

√
3 cos

√
3
λ
(1− a) 0 −

√
2

1 0 −1 0 − cos
√

2
λ
(2a− 1) − sin

√
2
λ
(2a− 1)

0 1 0 −
√

3
√

2 sin
√

2
λ
(2a− 1) −

√
2 cos

√
2
λ
(2a− 1)

0 0 − sin
√

3
λ
(1− a) cos

√
3
λ
(1− a)− 1

√
6
4

sin
√

2
λ
(2a− 1) −

√
6
4

cos
√

2
λ
(2a− 1)−

√
6
4

−1 0 1
3

+ 2
3

cos
√

3
λ
(1− a) 2

3
sin
√

3
λ
(1− a) 1

2
cos
√

2
λ
(2a− 1)− 1

2
1
2

sin
√

2
λ
(2a− 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It is difficult to directly solve for λ’s from (2.42). However, the equation (2.42) can

give us the small ball estimate of the process and we will show this in Chapter 3.

(i) a =1/2.

Let

f(t) =

f1(t), t ∈ [0, 1/2],

f3(t), t ∈ (1/2, 1],

for t ∈ [0, 1]. By expanding the integral equation and applying successive differentia-

tions similar to the case 1/2 < a < 1, we have

λf ′′1 (t) + 2f1(t) = f3(t+ 1/2) t ∈ [0, 1/2]

λf ′′3 (t) + 2f3(t) = f1(t− 1/2) t ∈ (1/2, 1].

Let φ1(t) := f1(t) and φ2(t) := f3(t+ 1/2) for 0 ≤ t ≤ 1/2. On the interval [0,1/2], the

system of differential equations above becomes

λφ′′1(t) + 2φ1(t) = φ2(t),

λφ′′2(t) + 2φ2(t) = φ1(t).
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From the original integral equation setting, we have the following boundary conditions

at both end points of [0, 1/2]:

φ1(1/2) = φ2(0),

φ′1(1/2) = φ′2(0),

φ1(0) =

∫ 1/2

0

(1/2− s)φ1(s) ds,

φ2(1/2) =

∫ 1/2

0

s φ2(s) ds.

The boundary conditions give the equation for determining the eigenvalue λ as

λ−1

(
√

3 cos

√
λ−1

2
sin

√
3λ−1

2
+ 3 sin

√
λ−1

2
cos

√
3λ−1

2
−
√

3 sin

√
3λ−1

2
+ 3 sin

√
λ−1

2

)

+
√
λ−1

(
2
√

3 sin

√
λ−1

2
sin

√
3λ−1

2
− 5 cos

√
λ−1

2
cos

√
3λ−1

2
− 4 cos

√
λ−1

2
− 4 cos

√
3λ−1

2
− 5

)
= 0.

2.2.10.3 Case 0 < a < 1/2

The method for the case 1/2 ≤ a < 1 does not work for the case 0 < a < 1/2

and the characteristic equation that determines the eigenvalues is still unknown. We

will study this in our future research.

33



Chapter 3

SMALL BALL PROBABILITY OF GAUSSIAN PROCESSES

3.1 Introduction

For a given continuous stochastic process X(t), t ∈ [0, 1], the small deviation

probability concerns the asymptotic behavior of P (||X|| ≤ ε) as ε→ 0+, where || · || is

a norm on the space C[0, 1]. We use

||f ||p =

(
∫ 1

0
|f(t)|pdt)1/p for 1 ≤ p <∞,

sup0≤t≤1 |f(t)| for p =∞

to denote the Lp-norm on C[0, 1], 1 ≤ p ≤ ∞. The survey paper [31] covers the

development of theory on small ball probability for Lp-norm of the stochastic pro-

cess X. In this chapter, we discuss the exact small ball probability in the most

explored case of L2-norm. By Karhunen-Loève theorem, we have the distributional

identity ||X||22 =
∑∞

n=1 λnξ
2
n, where λn are the eigenvalues of the associated covariance

kernel and ξn are i.i.d. standard normal random variables. The small ball problem

P (||X||22 ≤ ε) = P (
∑∞

n=1 λnξ
2
n ≤ ε) was solved in [37] in an implicit way if the eigen-

values are known. However for most of the Gaussian processes, the eigenvalues of their

covariance functions are still unknown. When the Karhunen-Loève expansion for a

given Gaussian process can be found in some reasonable form, the L2 small ball prob-

abilities can be treated using the the comparison theorems in [30] and [20]. If we can

obtain approximation of the eigenvalues, the comparison theorems build connection

between the original process and the process with the approximated eigenvalues and

the problem can be solved. This is the case for Brownian motion, fractional Brownian

motion and Brownian sheets, etc.
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We review the method and examples in [19] and compute the small ball rate for

Slepian process in this chapter.

3.2 General Theory

Suppose that a centered Gaussian process {Xt, a ≤ t ≤ b} has KL expansion

Xt =
∑∞

i=1

√
λiei(t)ξi. Then by

||X||22 =

∫ b

a

X2
t dt

d
=
∞∑
n=1

λnξ
2
n,

finding the exact L2 small ball probability P (||Xt||2 ≤ ε) is equivalent to finding the

asymptotic behavior of

P

(
∞∑
n=1

λnξ
2
n ≤ ε

)
.

This problem has been solved in [37] by the following theorem when the eigenvalues

λn are known.

Theorem 12 If λn > 0 and
∑∞

n=1 λn < +∞, then as ε→ 0

P

(
∞∑
n=1

λnξ
2
n ≤ ε2

)
∼

(
4π

∞∑
n=1

(
λnγλ

1 + 2λnγλ
)2

)−1/2
· exp

(
ε2γλ −

1

2

∞∑
n=1

log(1 + 2λnγλ)

)

where γλ = γλ(ε) is uniquely determined, for ε > 0 small enough, by the equation

ε2 =
∞∑
n=1

λn
1 + 2λnγλ

.

Although the above theorem is still difficult to apply due to the series and implicit

relation between ε and γλ, the problem is considered solved theoretically. If the eigen-

values of Xt can not be found explicitly, since the Laplace transform of the process

is

L(t) = E(exp(−t||X||22)) =

(
∞∏
n=1

(1 + 2tλn)

)−1/2
one can obtain the small ball probability by the function L(t).

Gao, Hanning, Lee and Torcaso gives a method to compute the Laplace trans-

form for many Gaussian processes via Hadamard factorization of an entire function

35



f(z) in [19]. Let M(r) = max |f(z)| for |z| = r. The order λ ≥ 0 of an entire function

f(z) is the smallest number that M(r) ≤ er
λ+ε

for any ε > 0 and sufficiently large r,

formally defined as

λ = lim sup
r→∞

log logM(r)

log r
.

Theorem 13 (Hadamard’s Factorization Theorem) Let f(z) be an entire func-

tion and {zk} be its zeros with 0 excluded and all zeros are repeated according to their

multiplicity. Suppose the order of f(z) is λ, then

f(z) = zmeH(z)

∞∏
k=1

(
1− z

zk

)
ePd(z/zk),

where the integer m ≥ 0 is the multiplicity of 0, d ≥ 0 is an integer such that d ≤ λ <

d+ 1, H(z) is a polynomial of degree ≤ d, and Pd(z) = z + z2/2 + · · ·+ zd/d.

If f is an entire function of order λ < 1, and f(0) 6= 0. Then d = 0, H(z) is a

constant, and
f(z)

f(0)
=
∞∏
n=1

(
1− z

zn

)
.

It is well-known that

L(s) = E(exp(−s||X||22)) =

(
∞∏
n=1

(1 + 2sλn)

)−1/2
If the zeros of f are zn = 1/λn and f is entire with order λ < 1 and f(0) 6= 0, then

L(s) = E(exp(−s||X||22)) =

(
∞∏
n=1

(1 + 2sλn)

)−1/2
=

(
f(−2t)

f(0)

)−1/2
.

That is,

Theorem 14 Let X be a Gaussian process whose covariance operator has nonzero

eigenvalues λn, repeated according to their multiplicity. Suppose there is an entire

function f(z) of order λ < 1, such that, zn = 1/λn, n ≥ 1, are the only zeros, counting

multiplicities, of f(z). Then the Laplace transform of ||X||22 =
∑∞

n=1 λnξ
2
n can be

expressed as

E(exp(−t||X||22)) =

(
f(−2t)

f(0)

)−1/2
.
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Thus, Theorem 1 can be rewritten as

Theorem 15 ([37] Sytaja Tauberian Theorem)

P

(
∞∑
n=1

λnξ
2
n ≤ ε2

)
∼
(
−2πt2h′′(t)

)−1/2 · exp
(
tε2 − h(t)

)
where h(t) = − logL(t) where L(t) is the Laplace transform and t = t(ε) satisfies

tε2 − th′(t)√
−t2h′′(t)

→ 0.

When the eigenvalues can not be found explicitly, but can be approximated, the

comparison theorem by [30] provides a way to obtain the exact small ball rate for the

original process when the small ball rate of the process with the asymptotic eigenvalues

is known.

Theorem 16 If
∑∞

n=1 |1− an/bn| <∞, then as ε→ 0

P

(
∞∑
n=1

anξ
2
n ≤ ε2

)
∼

(
∞∏
n=1

bn/an

)1/2

P

(
∞∑
n=1

bnξ
2
n ≤ ε2

)
,

where an, bn are positive and
∑∞

n=1 an < ∞,
∑∞

n=1 bn < ∞. Furthermore, if an ≥ bn

for n large, then P (
∑∞

n=1 anξ
2
n ≤ ε2) and P (

∑∞
n=1 bnξ

2
n ≤ ε2) have the same order of

magnitude as ε→ 0 if and only if
∑∞

n=1 |1− an/bn| <∞.

Gao, Hannig, Lee, Torcaso [19] refined the comparison theorem and gives the

optimal condition as follows

Theorem 17 If
∏∞

n=1(an/bn) <∞, then as ε→ 0

P

(
∞∑
n=1

anξ
2
n ≤ ε2

)
∼

(
∞∏
n=1

bn/an

)1/2

· P

(
∞∑
n=1

bnξ
2
n ≤ ε2

)

In the Chapter 2, we reviewed the Karhunen-Loève expansion for several Gaus-

sian processes. In the following context, we will review the exact L2 small ball proba-

bility for some of the Gaussian processed mentioned in Chapter 2 and obtain the exact

L2 small ball rate for the Slepian process when the parameter a satisfies 1/2 ≤ a ≤ 1.
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3.3 Examples

3.3.1 Brownian Motion

The exact L2 small ball probability for Brownian motion was given by [7]. That

is,

P (||W ||2 ≤ ε) ∼ 4√
π
ε exp

(
− 1

8ε2

)
for ε→ 0.

This result is the most fundamental result for the exact L2 small ball of Gaussian

processes. Since the eigenvalues of the Brownian motion is λn = ((n− 1/2)2π2)−1, we

can apply the comparison theorems to processes that have asymptotic eigenvalues to

obtain their exact L2 small ball probability. For example, [25] studied

P

(
∞∑
n=1

anξ
2
n ≤ ε2

)

where ξn are i.i.d. standard normal random variables, and

an =

(
2

⌊
n+ 1

2

⌋
− 1

)−2
We take bn = (n− 1/2)−2, then

P

(
∞∑
n=1

bnξ
2
n ≤ ε2

)
= P (||X||22 ≤ ε2/π2) ∼ 4

π
√
π
ε exp

(
− π

2

8ε2

)
It is easy to see that(

∞∏
n=1

an
bn

)1/2

=
∞∏
k=1

(
1− 1

4(2k − 1)2

)
=

1√
2
.

By comparison theorem,

P

(
∞∑
n=1

anξ
2
n ≤ ε2

)
∼ 4
√

2π−3/2ε exp

(
− π

2

8ε2

)

3.3.2 Brownian Bridge

Let B(t), 0 ≤ t ≤ 1 be the Brownian bridge. The exact small ball probability of

B(t) was first given by [4]
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Proposition 1 Let {B(t) : 0 ≤ t ≤ 1} be a Brownian bridge. Then as ε→ 0,

P

(∫ 1

0

B2(t)dt < ε

)
= P

(
∞∑
n=1

1

π2n2
ξ2n < ε

)
∼ 4√

2π
· exp

(
− 1

8ε

)
.

3.3.3 Transformed Brownian Bridge

Proposition 2 For α > 0 and β = 1− α−1 < 1,

P

(∫ 1

0

B2(tα)dt ≤ ε2
)(

= P

(∫ 1

0

1

tβ
B2(t)dt ≤ αε2

))
∼ cαε

− α−1
2(α+1) exp

(
− α

2(α + 1)2
· 1

ε2

)
as ε→ 0, where cα is a positive constant.

Proposition 3 For α > 0 and β = 1− α−1 < 1,

P

(∫ 1

0

B2(tα)dt ≤ ε2
)(

= P

(∫ 1

0

1

tβ
B2(t)dt ≤ αε2

))
∼ cαε

1/2−v exp

(
− v

2(α + 1)
· ε−2

)
as ε→ 0, where

cα = 2π−1/4
(

v

α + 1

) v
2
− 1

4

(Γ(v + 1))−1/2 and v =
α

α + 1

Lemma 1 The Laplace transform of the squared L2 norm of B(tα) is

E(exp{−t||B(tα)||22}) =

(
c
√

2t

2

)v/2 (
Γ(1 + v)Iv

(
c
√

2t
))−1/2

,

where Iv is the modified Bessel function of fractional order

v =
α

α + 1
and c =

2
√
α

α + 1
.

Proof. For α > 0, {B(tα) : 0 ≤ t ≤ 1} is a Gaussian process with mean zero

and covariance function K(s, t) = sα ∧ tα − sαtα. We need to find the eigenvalues λn

of the equation λf(t) =
∫ 1

0
K(s, t)f(s)ds, which is

λf(t) = (1− tα)

∫ 1

0

sαf(s)ds+ tα
∫ 1

t

(1− sα)f(s)ds

with boundary condition f(0) = 0 and f(1) = 0. By differentiation the equation

becomes

λtf ′′(t)− λ(α− 1)f ′(t) + αtαf(t) = 0
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The general solution is, see [28]

f(t) = c1t
α/2Jα/(α+1)(2(α + 1)−1

√
α/λt(α+1)/2) + c2t

α/2J−α/(α+1)(2(α + 1)−1
√
α/λt(α+1)/2)

= c1t
α/2Jv(cλ

−1/2t(α+1)/2) + c2t
α/2J−v(cλ

−1/2t(α+1)/2)

where Jv(x) is the Bessel function. Using the boundary condition f(0) = 0 and f(1) =

0, we obtain the eigenvalues as the solutions of

Jv
(
cλ−1/2

)
= 0.

We take f(t) = Jv(ct
1/2)/tv/2, then f(t) is entire of order 1/2, see [1] formula 9.1.10,

9.1.62 and 9.2.1. Since limt→0 f(t) = 1/(2vΓ(1+v)) and Iv(x) = e−
1
2
vπiJv(ix) for x > 0

see formula 9.6.3, it can be obtained that

L(t) =

(
f(−2t)

f(0)

)−1/2
=

(
c
√

2t

2

)v/2 (
Γ(1 + v)Iv(c

√
2t)
)−1/2

.

Apply Sytaja Tauberian theorem to the Laplace theorem of B(tα), the small

ball rate can be directly obtained as in the above theorem.

On the other hand, the limit comparison theorem can also be used to find the

small ball rate. Using the asymptotic formula for zeros of the Bessel function, see [42],

we have
2

α + 1

√
α

λn
=

(
n+

α− 1

4(α + 1)

)
π +O

(
1

n

)
which shows that

∞∑
n=1

∣∣∣∣∣ 4α

(α + 1)2π2

(
n+

α− 1

4(α + 1)

)−2
· 1

λn
− 1

∣∣∣∣∣ <∞
Thus, by Theorem 15, we obtain

P

(∫ 1

0

B2(tα)dt ≤ ε2
)

= P

(
∞∑
n=1

λnξ
2
n ≤ ε2

)

∼ DαP

(
∞∑
n=1

4α

(α + 1)2π2
·
(
n+

α− 1

4(α + 1)

)−2
ξ2n ≤ ε2

)

∼ Cαε
−(α−1)/(2(α+1)) exp

(
− α

2(α + 1)2
· 1

ε2

)
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3.3.4 Integrated Brownian Motion

The m-times integrated Brownian motion is defined recursively by

Xm(t) =

∫ t

0

Xm−1(s)ds, t ≥ 0,m ≥ 1

for all positive integer m and X0(t) = W (t) where W (t) is the standard Brownian

motion. Using integration by parts, we also have the representation

Xm(t) =
1

m!

∫ t

0

(t− s)mdW (s), m ≥ 0.

The covariance kernel is

K(s, t) =
1

(m!)2

∫ s∧t

0

(s− u)m(t− u)mdu.

By successively differentiating∫ 1

0

K(s, t)f(s)ds = λf(t)

(2m+ 2) times, we obtain the following Sturm-Liouville problem:

λf (2m+2)(t) = (−1)m+1f(t), 0 < t < 1

f(0) = f ′(0) = · · · = f (m)(0) = f (m+1)(1) = · · · = f (2m)(1) = f (2m+1)(1) = 0

The eigenfunctions are the nontrivial functions of the form

f(t) =
2m+1∑
j=0

cje
iαjt

with αj = λ−1/(2m+2)iωj and ωj = exp( jπ
m+1

i). Using boundary conditions, we obtain

that

MW (λ−1/(2m+2))C = 0
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where

MW (t) =



1 1 · · · 1

ω0 ω1 · · · ω2m+1

· · · · · · · · · · · ·

ωm0 ωm1 · · · ωm2m+1

ωm+1
0 eiω0z ωm+1

1 eiω1z · · · ωm+1
2m+1e

iω2m+1z

ωm+2
0 eiω0z ωm+2

1 eiω1z · · · ωm+2
2m+1e

iω2m+1z

· · · · · · · · · · · ·

ω2m+1
0 eiω0z ω2m+1

1 eiω1z · · · ω2m+1
2m+1e

iω2m+1z


and

C = [c0, c1, . . . , c2m+1]
′.

The characteristic determinant for the eigenvalues is det(MW (λ−1/(2m+2))) = 0. We

get

g(t) = det(MW (t1/(2m+2)))

is of order 1/(2m+ 2) and g(0) = (−i)m(2m+ 2)m+1. We use the following notation

vj = ei
2j+1
2m+2

π, and βj = (2t)1/(2m+2)ivj.

Lemma 2 The Laplace transform of the squared L2 norm of m-times integrated Brow-

nian motion is

E(exp{−t||Xm||22}) = (2m+ 2)(m+1)/2| detNW (t)|−1/2

where

NW (t) =



1 1 · · · 1

ω0 ω1 · · · ω2m+1

· · · · · · · · · · · ·

ωm0 ωm1 · · · ωm2m+1

ωm+1
0 eβ0 ωm+1

1 eβ1 · · · ωm+1
2m+1e

β2m+1

· · · · · · · · · · · ·

ω2m+1
0 eβ0 ω2m+1

1 eβ1 · · · ω2m+1
2m+1e

β2m+1
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For the case of m = 1, 2, the above formula simplify to:

E(exp{−t||X1||22}) = 2
(
2 + cos(23/4t1/4) + cosh(23/4t1/4)

)−1/2
E(exp{−t||X2||22}) = 6

(
9 + 16 cos(31/22−5/6t1/6) cosh(2−5/6t1/6)

+8 cosh(21/6t1/6) + 2 cos(21/631/2t1/6) cosh(21/6t1/6) + cosh(27/6t1/6)
)−1/2

Again by Sytaja Tauberin theorem,

Theorem 18

P (||Xm||2 ≤ ε) ∼ CW
m ε

1
2m+2 exp{−Dmε

− 2
2m+1}

where

Dm =
2m+ 1

2

(
(2m+ 2) sin

π

2m+ 2

)− 2m+2
2m+1

CW
m =

(2m+ 2)(m+1)/2

| detU |

(
2m+ 2

(2m+ 1)π

)[
(2m+ 2) sin

π

2m+ 2

](m+1)/(2m+1)

and

U =



1 1 · · · 1

ω0 ω1 · · · ωm

ω2
0 ω2

1 · · · ω2
m

· · · · · · · · · · · ·

ωm0 ωm1 · · · ωmm


Remark: For the usual 1- and 2-times integrated Brownian mitons, respectively,

as ε→ 0,

P (||X1|| ≤ ε) ∼ 8
√

2√
3π
ε1/3 exp{−3

8
ε−2/3}

P (||X2|| ≤ ε) ∼ 36(31/10)√
5π

ε1/5 exp{− 5

6(31/5)
ε−2/5}

The authors in [21] used comparison theorem and obtained the small ball rate for

general m-times integrated Brownian motion, and in [18] they used complex analysis

method and obtained further result.
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3.3.5 Integrated Brownian Bridge

Lemma 3 The Laplace transform of the squared L2-norm of m-times integrated Brow-

nian bridge is

E(exp{−t||Ym||22}) = (2t)1/(4m+4)(2m+ 2)(m+1)/2| detNB(t)|−1/2

where

NB(t) =



1 1 · · · 1

ω0 ω1 · · · ω2m+1

· · · · · · · · · · · ·

ωm0 ωm1 · · · ωm2m+1

ωm0 e
β0 ωm1 e

β1 · · · ωm2m+1e
β2m+1

ωm+2
0 eβ0 ωm+2

1 eβ1 · · · ωm+2
2m+1e

β2m+1

ωm+3
0 eβ0 ωm+3

1 eβ1 · · · ωm+3
2m+1e

β2m+1

· · · · · · · · · · · ·

ω2m+1
0 eβ0 ω2m+1

1 eβ1 · · · ω2m+1
2m+1e

β2m+1


The m-times integrated Brownian bridge Ym(t), 0 ≤ t ≤ 1 is defined recursively

by

Ym(t) =

∫ 1

0

Ym−1(s)ds, t ≥ 0,m ≥ 1

for all positive integer m and Y0(t) = B(t) where B(t) is the standard Brownian bridge.

or equivalently,

Ym(t) =

∫ t

0

∫ sm

0

∫ sm−1

0

· · ·
∫ s2

0

B(s1)ds1ds2 · · · dsm.

The covariance kernel is

K(s, t) =
1

(m!)2

∫ s∧t

0

(s− u)m(t− u)mdu.

By successively differentiating∫ 1

0

K(s, t)f(s)ds = λf(t)
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(2m+ 2) times, we obtain the following Sturm-Liouville problem:

λf (2m+2)(t) = (−1)m+1f(t), 0 < t < 1

f(0) = f ′(0) = · · · = f (m)(0) = f (m)(1) = f (m+2)(1) = f (m+3)(1) = · · · = f (2m)(1) = f (2m+1)(1) = 0.

The eigenfunctions are the nontrivial functions of the form

f(t) =
2m+1∑
j=0

cje
iαjt

with αj = λ−1/(2m+2)iωj and ωj = exp( jπ
m+1

i). Using boundary conditions, we obtain

that

MB(λ−1/(2m+2))C = 0

where

MB(z) =



1 1 · · · 1

ω0 ω1 · · · ω2m+1

· · · · · · · · · · · ·

ωm0 ωm1 · · · ωm2m+1

ωm0 e
iω0z ωm1 e

iω1z · · · ωm2m+1e
iω2m+1z

ωm+2
0 eiω0z ωm+2

1 eiω1z · · · ωm+2
2m+1e

iω2m+1z

ωm+3
0 eiω0z ωm+3

1 eiω1z · · · ωm+3
2m+1e

iω2m+1z

· · · · · · · · · · · ·

ω2m+1
0 eiω0z ω2m+1

1 eiω1z · · · ω2m+1
2m+1e

iω2m+1z


and

C = [c0, c1, . . . , c2m+1]
′.

The characteristic determinant for the eigenvalues is det(MB(λ−1/(2m+2))) = 0. Then

we get

g(t) = det(MB(t1/(2m+2)))

is of order 1/(2m+ 2).
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For the case m = 1, the Lemma 3 simplifies to

E(exp{−t||Y1||22}) =

(
27/4t1/4

sin(23/4t1/4) + sinh(23/4t1/4)

)1/2

Theorem 19

P (||Ym||2 ≤ ε) ∼ CB
m exp{−Dmε

− 2
2m+1}

where

Dm =
2m+ 1

2

(
(2m+ 2) sin

π

2m+ 2

)− 2m+2
2m+1

CB
m =

(
(2m+ 2)m+3 sin π

2m+2

(2m+ 1)π| detU detV |

)1/2

and

U =



1 1 · · · 1

ω0 ω1 · · · ωm

ω2
0 ω2

1 · · · ω2
m

· · · · · · · · · · · ·

ωm0 ωm1 · · · ωmm


, V =



ωmm+1 ωmm+2 · · · ωm2m+1

ωm+2
m+1 ωm+2

m+2 · · · ωm+2
2m+1

ωm+3
m+1 ωm+3

m+2 · · · ωm+3
2m+1

· · · · · · · · · · · ·

ω2m+1
m+1 ω2m+1

m+2 · · · ω2m+1
2m+1


3.3.6 Ornstein-Uhlenbeck Process

Consider the stationary Ornstein-Uhlenbeck process X(t) on the interval [0,1],

that is, the centered Gaussian process determined by the covariance kernel K(s, t) =

e−α|t−s|/(2α). We have the Laplace transform of X(t) as

Theorem 20 For the stationary Ornstein-Uhlenbeck process X with parameter α > 0,

E(exp(−σ||X||22)) = eα/2
(

σ + α2

α
√
α2 + 2σ

sinh(
√
α2 + 2σ) + cosh(

√
α2 + 2σ)

)−1/2
.

Now consider the Ornstein-Uhlenbeck process X0 starting at 0, that it, the cen-

tered Gaussian process with the covariance kernel K(s, t) = (e−α|t−s| − e−α(t+s))/(2α).

Theorem 21 For the Ornstein-Uhlenbeck process X0 starting at 0 with parameter α ∈

R,

E(exp(−σ||X0||22)) = eα/2
(

α√
α2 + 2σ

sinh(
√
α2 + 2σ) + cosh(

√
α2 + 2σ)

)−1/2
.
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Corollary 2 Let X be the stationary Ornstein-Uhlenbeck process with parameter α >

0, then

P (||X||2 ≤ ε) ∼ 8

√
α

π
eα/2ε2 exp(−1

8
ε−2), as ε→ 0.

Let X0 be the Ornstein-Uhlenbeck process starting at 0 with parameter α ∈ R, then

P (||X0||2 ≤ ε) ∼ 4√
π
eα/2ε2 exp(−1

8
ε−2), as ε→ 0.

We omit the proofs.

3.3.7 Slepian Process

In this section, we review the small ball probability for Slepian process for a ≥ 1

and obtain the small ball probability for Slepian process for 1/2 ≤ a < 1 based on the

KL expansion from Chapter 2.

3.3.7.1 Case a ≥ 1

From [22], the Laplace transform for Slepian process S(t)
d
=W (t+a)−W (t) for

a ≥ 1 is

L(λ) = Ee−λ
∫ 1
0 S

2(t)dt =
[
cosh

√
λ
(

cosh
√
λ+ (2a− 1)

√
λ sinh

√
λ
)]−1/2

.

Let h(t) = − logL(t). We compute the asymptotic behavior of h(t), th′(t) and t2h′′(t)

as t→∞.

h(t) = t1/2 +
1

4
log t+

1

2
log

(
1

4
(2a− 1)

)
+ o(1),

th′(t) =
1

2
t1/2 +

1

4
+ o(1),

t2h′′(t) = −1

4
t1/2 − 1

4
+ o(1).

Choose t1/2 = 1
2
ε−2, then

tε2 − th′(t)√
−t2h′′(t)

→ 0

as t→∞. Therefore,

P(||S||22 ≤ ε2) ∼ 4
√

2√
π(2a− 1)

ε2 exp

(
−1

4
ε−2
)
.
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In particular if a = 1,

P(||S||22 ≤ ε2) ∼ 4
√

2√
π
ε2 exp

(
−1

4
ε−2
)
,

which is the same as in [22].

3.3.7.2 Case 1/2 ≤ a < 1

For 1/2 ≤ a < 1, we have the following two theorems for 1/2 < a < 1 and

a = 1/2 respectively.

Theorem 22 For 1/2 < a < 1,

P(‖S‖2 < ε) ∼ 8ε2√
βπα3/2

e−
1
16
α2ε−2

,

where

α =
√

6 +
√

2− 2 + 4a−
√

6a−
√

2a,

β =
6
√

3 + 6
√

2 + 2
√

6 + 3

288
(4a− 1).

Proof. If we let g(t) = t1/2M(1/t) +N(1/t), then by Theorem 2 of [19], we have

L(s) := E exp

(
−s
∫ 1

0

|X(t)|2dt
)

=

(
g(−2s)

g(0)

)−1/2
.

Denote x = λ−1/2(1− a) and b =
√
2(2a−1)
1−a , then direct computation gives

M (λ) =
4a− 1

2
√

6

[
4
√

3 sinx[cos(
√

3x) cos(
√

2(2a− 1)x) +
√

6 sin(
√

2(2a− 1)x)[cosx cos(
√

3x) + 1]

+4 sin(
√

3x)[cosx cos[
√

2(2a− 1)x]− 1]− 6
√

2 sinx sin
√

3x sin[
√

2(2a− 1)x]
]
,

and

N (λ) =
−13
√

2

6
− 2
√

2 cos(x) +
2
√

2

3
cos(
√

3x) +

√
2

2
cos(x) cos(

√
3x) +

√
2

2
cos(bx)

+
2
√

2

3
cos(x) cos(bx)− 2

√
2 cos(

√
3x) cos(bx)− 13

√
2

6
cos(x) cos(

√
3x) cos(bx)

+

√
6

3
sin(x) sin(

√
3x) +

√
6

3
cos(bx) sin(x) sin(

√
3x) + sin(x) sin(bx)

− cos(
√

3x) sin(x) sin(bx)− 5
√

3

3
sin(
√

3x) sin(bx)− 5
√

3

3
cos(x) sin(

√
3x) sin(bx)
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Thus,

L(t) =
[
13/36 + cosh(

√
2
√
t(a− 1))/3− cosh(2

√
t(2a− 1))/12− cosh(

√
6
√
t(a− 1))/9

− (cosh(2
√
t(2a− 1)) cosh(

√
2
√
t(a− 1)))/9 + (cosh(2

√
t(2a− 1)) cosh(

√
6
√
t(a− 1)))/3

− (cosh(
√

2
√
t(a− 1)) cosh(

√
6
√
t(a− 1)))/12− (

√
t sinh(2

√
t(2a− 1)))/12

+ (
√

2 sinh(2
√
t(2a− 1)) sinh(

√
2
√
t(a− 1)))/12

− (5
√

6 sinh(2
√
t(2a− 1)) sinh(

√
6
√
t(a− 1)))/36

+ (
√

3 sinh(
√

2
√
t(a− 1)) sinh(

√
6
√
t(a− 1)))/18 + (

√
2
√
t sinh(

√
2
√
t(a− 1)))/6

− (
√

6
√
t sinh(

√
6
√
t(a− 1)))/18 + (a

√
t sinh(2

√
t(2a− 1)))/3

+ (13 cosh(2
√
t(2a− 1)) cosh(

√
2
√
t(a− 1)) cosh(

√
6
√
t(a− 1)))/36

− (
√

2 cosh(
√

6
√
t(a− 1)) sinh(2

√
t(2a− 1)) sinh(

√
2
√
t(a− 1)))/12

+ (
√

3 cosh(2
√
t(2a− 1)) sinh(

√
2
√
t(a− 1)) sinh(

√
6
√
t(a− 1)))/18

− (5
√

6 cosh(
√

2
√
t(a− 1)) sinh(2

√
t(2a− 1)) sinh(

√
6
√
t(a− 1)))/36

− (
√
t cosh(

√
2
√
t(a− 1)) cosh(

√
6
√
t(a− 1)) sinh(2

√
t(2a− 1)))/12

− (2
√

2a
√
t sinh(

√
2
√
t(a− 1)))/3 + (2

√
6a
√
t sinh(

√
6
√
t(a− 1)))/9

+ (
√

2
√
t cosh(2

√
t(2a− 1)) cosh(

√
6
√
t(a− 1)) sinh(

√
2
√
t(a− 1)))/6

+ (
√

6
√
t cosh(2

√
t(2a− 1)) cosh(

√
2
√
t(a− 1)) sinh(

√
6
√
t(a− 1)))/18

+ (a
√
t cosh(

√
2
√
t(a− 1)) cosh(

√
6
√
t(a− 1)) sinh(2

√
t(2a− 1)))/3

− (
√

3
√
t sinh(2

√
t(2a− 1)) sinh(

√
2
√
t(a− 1)) sinh(

√
6
√
t(a− 1)))/6

− (2
√

2a
√
t cosh(2

√
t(2a− 1)) cosh(

√
6
√
t(a− 1)) sinh(

√
2
√
t(a− 1)))/3

− (2
√

6a
√
t cosh(2

√
t(2a− 1)) cosh(

√
2
√
t(a− 1)) sinh(

√
6
√
t(a− 1)))/9

+(2
√

3a
√
t sinh(2

√
t(2a− 1)) sinh(

√
2
√
t(a− 1)) sinh(

√
6
√
t(a− 1)))/3

]−1/2
=
[
β
√
teα
√
t(1 +O(1/

√
t))
]−1/2
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where

α =
√

6 +
√

2− 2 + 4a−
√

6a−
√

2a,

β =
6
√

3 + 6
√

2 + 2
√

6 + 3

288
(4a− 1),

which is valid for 1/2 < a < 1. Then

logL(s) = logE exp

(
−s
∫ 1

0

|X(t)|2dt
)

=− 1

2
α
√
s− 1

4
log s− 1

2
log β +O(s−1/2)

as s→∞. Let h(s) = − logL(s). We have

h(s) =
1

2
αs1/2 +

1

4
log s+

1

2
log β +O(1/

√
s),

sh′(s) =
1

4
αs1/2 +O(1),

s2h′′(s) = −1

8
αs1/2 +O(1),

as s → ∞. In particular, if we choose
√
s = 1

4
αε−2, by using the Sytaja Tauberian

theorem, we have

P(‖S‖2 < ε) ∼ (−2πs2h′′(s))−1/2 exp(sε2 − h(s)) ∼ 8ε2√
βπα3/2

e−
1
16
α2ε−2

.

Theorem 23 For a = 1/2,

P(‖S‖2 < ε) ∼ 8ε2√
βπα3/2

e−
1
16
α2ε−2

, as ε→∞,

where

α =

√
6 +
√

2

2
, β =

√
6 + 3

√
2

72
.

Proof. For a = 1/2, the eigenvalues of S is determined by the equation

λ−1

(
√

3 cos

√
λ−1

2
sin

√
3λ−1

2
+ 3 sin

√
λ−1

2
cos

√
3λ−1

2
−
√

3 sin

√
3λ−1

2
+ 3 sin

√
λ−1

2

)

+
√
λ−1

(
2
√

3 sin

√
λ−1

2
sin

√
3λ−1

2
− 5 cos

√
λ−1

2
cos

√
3λ−1

2
− 4 cos

√
λ−1

2
− 4 cos

√
3λ−1

2
− 5

)
= 0.
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Define

g(t) =t

(
√

3 cos

√
t

2
sin

√
3t

2
+ 3 sin

√
t

2
cos

√
3t

2
−
√

3 sin

√
3t

2
+ 3 sin

√
t

2

)

+
√
t

(
2
√

3 sin

√
t

2
sin

√
3t

2
− 5 cos

√
t

2
cos

√
3t

2
− 4 cos

√
t

2
− 4 cos

√
3t

2
− 5

)
.

Then,

L(t) =

(
g(−2t)

g(0)

)−1/2
=

5

18
+

2

9
cosh

(√
3t

2

)
+

2

9
cosh

(√
t

2

)
+

5

18
cosh

(√
3t

2

)
cosh

(√
t

2

)

+

√
3

9
sinh

(√
3t

2

)
sinh

(√
t

2

)
+
√
t

[√
2

6
sinh

(√
t

2

)
−
√

6

18
sinh

(√
3t

2

)

+

√
6

18
cosh

(√
t

2

)
sinh

(√
3t

2

)
+

√
2

6
cosh

(√
3t

2

)
sinh

(√
t

2

)]

=
[
β
√
teα
√
t(1 +O(1/

√
t))
]−1/2

,

where

α =

√
6 +
√

2

2
, β =

√
6 + 3

√
2

72
.

The theorem is proved by exactly the same argument as in Theorem 22.
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Chapter 4

APPLICATION OF KARHUNEN-LOÈVE EXPANSION IN TIME
SERIES MODELS

In this Chapter, we show the weak convergence of discrete processes to contin-

uous Gaussian processes by functional central limit theorem and continuous mapping

theorem. Then, we prove a conjecture on the expectation of the least squares estimate

of the integrated process by [38].

4.1 Convergence of Discrete Processes

Theorem 24 (Functional Central Limit Theorem) Suppose that ut ∼ iid(0, σ2),

and the stochastic process Xn is defined by

Xn(t) =
1√
n

[nt]∑
k=1

uk +
1√
n

(nt− [nt])u[nt]+1,
k − 1

n
≤ t ≤ k

n
,

Then
Xn(t)

σ

d→ W (t).

Theorem 25 Suppose that ut ∼ iid(0, σ2), 0 ≤ t ≤ 1 and the stochastic process Xn is

defined by

X̄n(t) =
1√
n

[nt]∑
k=1

(uk − ū) +
1√
n

(nt− [nt]) (u[nt]+1 − ū) = Xn(t)− tXn(1),

where ū =
∑n

j=1 uj/n. Then

X̄n(t)

σ

d→ B(t),

where B(t) = W (t)− tW (1) is the one-dimensional Brownian bridge on [0, 1].
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Theorem 26 Suppose that ut ∼ iid(0, σ2), and the stochastic process Xn is defined by

X̃n(t) =
1√
n

[nt]∑
k=1

uk −
1

n

n∑
k=1

(
1√
n

k∑
i=1

ui

)
+

1√
n

(nt− [nt])u[nt]+1,

Then
X̃n(t)

σ

d→ Y (t),

where Y (t) = W (t)−
∫ 1

0
W (t)dt is the demeaned Brownian motion on [0, 1].

Theorem 27 (Continuous Mapping Theorem) Let h(x) be a continuous function.

If Xn
d→ X, then h(Xn)

d→ h(X).

Now we look at some examples.

Example 1 Consider the discrete process yj modeled by

yj = ρyj−1 + εj, y0 = 0, (j = 1, . . . , T ),

where the true value of ρ is 1 and {εj} ∼ i.i.d. (0, σ2). We find the weak convergence

of the statistic T (ρ̂− 1) where

ρ̂ =

∑T
j=2 yj−1yj∑T
j=2 y

2
j−1

.

It can be directly computed that

T (ρ̂− 1) =
1

T

T∑
j=2

yj−1(yj − yj−1)

/[
1

T 2

T∑
j=2

y2j−1

]

= UT/VT

where

UT =
1

T

T∑
j=2

yj−1(yj − yj−1)

=
1

2
X2
T (1)− 1

2T

T∑
j=1

ε2j ,

VT =
1

T 2

T∑
j=2

y2j−1

=
1

T

T∑
j=1

X2
T

(
j

T

)
− 1

T 2
y2T .
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Define a continuous function h(x) = (h1(x), h2(x)) for x ∈ C, where

h1(x) =
1

2
x2(1), h2(x) =

∫ 1

0

x2(t)dt.

Then

UT = h1(XT )− 1

2T

T∑
j=1

ε2j ,

VT = h2(XT ) +RT −
1

T 2
y2T ,

where

RT =
1

T

T∑
j=1

X2
T

(
j

T

)
−
∫ 1

0

X2
T (t)dt

=
T∑
j=1

∫ j/T

(j−1)/T

[
X2
T

(
j

T

)
−X2

T (t)

]
dt

Now we can deduce that(
UT
σ2
,
VT
σ2

)
d→
(
h1(W )− 1

2
, h2(W )

)
The theorem of continuous mapping yields

T (ρ̂− 1)
d→
h1(W )− 1

2

h2(W )

=
1
2
(W 2(1)− 1)∫ 1

0
W 2(t)dt

=

∫ 1

0
W (t)dW (t)∫ 1

0
W 2(t)dt

.

Example 2 Let us construct the I(2) process {y(2)j } generated by

(1− L)2y
(2)
j = εj, y

(2)
−1 = y

(2)
0 = 0, (j = 1, . . . , n),

where {εj} is i.i.d.(0, σ2) with σ2 > 0. Obviously,

y
(2)
j = y

(2)
j−1 + y

(1)
j = y

(1)
1 + · · ·+ y

(1)
j ,
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where {y(1)j } is the I(1) process following

y
(1)
j = y

(1)
j−1 + εj, y

(1)
0 = 0.

Let

Y (1)
n (t) =

1√
n
y
(1)
[nt] + (nt− [nt])

1√
n
ε[nt]+1

=
1√
n

j∑
i=1

εi + n

(
t− j

n

)
1√
n
εj,

j − 1

n
≤ t ≤ j

n

and

Y (2)
n (t) =

1

n
√
n
y
(2)
[nt] + (nt− [nt])

1

n
√
n
y
(1)
[nt]+1

=
1

n

j∑
i=1

Y (1)
n

(
i

n

)
+ n

(
t− j

n

)
1

n
√
n
y
(1)
j ,

j − 1

n
≤ t ≤ j

n

It follows from Donsker’s theorem that

Y
(1)
n

σ
→ W.

Also it can be shown that
Y

(2)
n

σ
→ F1.

Now we consider weak convergence to the general n-fold integrated Brownian motion

Xn. Construct the I(d) process {y(d)j } generated by

(1− L)dy
(d)
j = εj, (j = 1, . . . , n),

with y
(d)
−(d−1) = y

(d)
−(d−2) = · · · = y

(d)
0 = 0 and {εj} being i.i.d.(0, σ2). We have

y
(d)
j = y

(d)
j−1 + y

(d−1)
j = y

(d−1)
1 + · · ·+ y

(d−1)
j , y

(0)
j = εj

and put, for d ≥ 2,

Y (d)
n (t) =

1

nd−1/2
y
(d)
[nt] + (nt− [nt])

1

nd−1/2
y
(d−1)
[nt]+1

=
1

n

j∑
i=1

Y (d−1)
n

(
i

n

)
+ n

(
t− j

n

)
1

nd−1/2
y
(d−1)
j ,

j − 1

n
≤ t ≤ j

n
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It can be proved using induction that

Y
(d)
n

σ
→ Xn−1.

Example 3 The near random walk process

yj =

(
1− β

n

)
yj−1 + εj, (j = 1, . . . , n),

converges weakly to the OU process X(t) where {εj} is assumed to be i.i.d.(0, σ2) and

dX(t) = −βX(t)dt+ dw(t)⇒ X(t) = e−βtX(0) + e−βt
∫ t

0

eβsdw(s).

4.2 Tanaka’s Conjecture

The following content is based on [26]. Consider the integrated process

(1− L)dyj = εj, j = 1, . . . , T

where L is the lag operator such that Lyj = yj−1, d is a positive integer, y0 = 0 and {εj}

is an i.i.d. sequence with mean 0 and variance σ2. The process {yj} is also known as

unit root process which is a nonstationary time series model. The authors in [43] and

[12] showed that when d = 1 the least squares estimate (LSE) of the autoregressive

coefficient of the the process converges in distribution to a functional of stochastic

integrals of Brownian motion. It was shown in [8] and [38] by the functional central

limit theorem that for d > 1, the statistic

ρ̂ =

∑T
t=1 yt−1yt∑T
t=1 y

2
t−1

(4.1)

converges asymptotically to a functional of stochastic integrals of integrated Brownian

motion. Specifically,

T (ρ̂− 1)⇒


(W 2(1)−1)/2∫ 1

0 W
2(t)dt

, d = 1,

X2
d−1(1)/2∫ 1

0 X
2
d−1(t)dt

, d > 1
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where W (t) is the Brownian motion and Xd(t) is the d-fold integrated Brownian motion

defined recursively as

Xd(t) =

∫ t

0

Xd−1(s)ds, t ≥ 0, d ≥ 1,

for all positive integer d and X0(t) = W (t). As pointed out in [39], ρ̂ in equation (4.1)

can also be interpreted as the least squares estimator (LSE) of the coefficient ρ of the

following model:

yj = ρyj−1 + vj, (1− L)d−1vj = εj, j = 1, . . . , T

The limiting distribution of the LSE is of interest for statistical inference. For the case

d = 1, the LSE is the Dickey-Fuller statistic. The analytic form of the density function

of its limiting distribution is known to be difficult and earlier researches approximate

the distribution by Monte Carlo simulations and by numerical inversion of its Laplace

transform. For d = 2 and 3, Tanaka in [38] computed the Laplace transform of the

limiting distribution using Girsanov theorem. For d ≥ 4, the Laplace transform is too

complicated to compute and an analytic form of the density function for a general d is

difficult to find. However, it has been noticed in [38] that

E

[
X2
d(1)/2∫ 1

0
X2
d(t)dt

]
= d+ 1

for d = 1, 2. Thus, he naturally conjectured that for any positive integer d, it holds

that

E

[
X2
d(1)/2∫ 1

0
X2
d(t)dt

]
= d+ 1.

In the following context, we provide a method to compute expectation of the

above type of functional using the Karhunen-Loève (KL) expansion of Xd(t) and thus

prove the conjecture.
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4.3 Application of Karhunen-Loève Expansion of Integrated Brownian Mo-

tion

As discussed in Chapter 2 and 3, the eigenfunctions of the m-times integrated

Brownian motion Xd(t) satisfy the following Sturm-Liouville problem:

λf (2d+2)(t) = (−1)d+1f(t) = (i)2d+2f(t)

with boundary conditions

f (k)(0) = f (d+1+k)(1) = 0

for k = 0, 1, . . . , d. Thus, the eigenfunctions are the nontrivial functions of the form

f(t) =
2d+1∑
j=0

cje
αjt (4.2)

with αj = λ−1/(2d+2)iωj and ωj = exp( jπ
d+1

i) satisfying the boundary conditions. The

eigenvalues λ’s are determined by setting the determinant of the following matrix

M =



1 1 · · · 1

ω0 ω1 · · · ω2d+1

...
...

. . .
...

ωd0 ωd1 · · · ωd2d+1

ωd+1
0 eα0 ωd+1

1 eα1 · · · ωd+1
2d+1e

α2d+1

...
...

. . .
...

ω2d+1
0 eα0 ω2d+1

1 eα1 · · · ω2d+1
2d+1e

α2d+1


to be zero.

We study the behavior of the orthonomal eigenfunctions of Xd(t) for any positive

integer d at t = 1 and show that this is the key for evaluating the expectation. First, we

introduce a lemma regarding the upper half of a discrete Fourier matrix. The lemma

contains some interesting facts on the discrete Fourier matrix. Its proof is placed at

the end of the article.

Lemma 4 Let ω = exp
(
iπ
d+1

)
to be the (2d + 2)-th root of unity. Define M̃ to be the

(d+ 1)× (2d+ 2) matrix with entries

M̃jk = ω(j−1)(k−1),
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for j = 1, . . . , d+ 1, k = 1, . . . , 2d+ 2, i.e. the submatrix of matrix M consisting of its

first d+ 1 rows. Let c = [c0, c1, . . . , c2d+1]
′ be a vector in the null space of M̃ , that is,

M̃c = 0.

The vector c satisfies the following properties:

(1)
2d+1∑
j,k=0

|j−k|6=d+1

cjck
ωj + ωk

= 0.

(2)
2d+1∑
j,k=0

|j−k|6=d+1

(−1)j+k
cjck

ωj + ωk
= 0.

(3)
2d+1∑
j,k=0

(−1)j+kcjck − (2d+ 2)
∑

|j−k|=d+1

(−1)j+kcjck = 0.

Theorem 28 For the d-th integrated Brownian motion Xd(t), which has a Karhunen-

Loève expansion

Xd(t) =
∞∑
k=1

√
λkek(t)ξk ,

its orthonomal eigenfunctions satisfy that

e2k(1) = 2d+ 2

for every positive integer k.

Proof. The vector c = [c0, c1, . . . , c2d+1]
′ are nontrivial solutions of the matrix equation

Mc = 0, i.e. c is in the null space of matrix M . Let c̄ = [c̄0, c̄1, . . . , c̄2d+1]
′ with

c̄i = (−1)ieαici. Then Mc = 0 can be represented by two equationsM̃c = 0,

M̃ c̄ = 0.

Since f(t) is an eigenfunction, for any k we may write

e2k(1) =
f 2(1)∫ 1

0
f 2(t)dt

.
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Thus we only have to show that

f 2(1) = (2d+ 2)

∫ 1

0

f 2(t)dt. (4.3)

Plugging equation (4.2) into (4.3) yields

2d+1∑
j,k=0

cjcke
αj+αk = (2d+ 2)

2d+1∑
j,k=0

|j−k|6=d+1

cjck
αj + αk

(eαj+αk − 1) + (2d+ 2)
∑

|j−k|=d+1

cjck.

(4.4)

Rearranging the terms in equation (4.4) and substituting cje
αj with (−1)j c̄j, we have

(2d+ 2)
2d+1∑
j,k=0

|j−k|6=d+1

cjck
αj + αk

− (2d+ 2)
2d+1∑
j,k=0

|j−k|6=d+1

(−1)j+k
c̄j c̄k

αj + αk

+
2d+1∑
j,k=0

cjcke
αj+αk − (2d+ 2)

∑
|j−k|=d+1

cjck = 0. (4.5)

As both c and c̄ are in the null space of M̃ , by the Lemma 4, we obtain

2d+1∑
j,k=0

|j−k|6=d+1

cjck
αj + αk

=
1

λ−1/(2d+2)i

2d+1∑
j,k=0

|j−k|6=d+1

cjck
ωj + ωk

= 0

2d+1∑
j,k=0

|j−k|6=d+1

(−1)j+k
c̄j c̄k

αj + αk
=

1

λ−1/(2d+2)i

2d+1∑
j,k=0

|j−k|6=d+1

(−1)j+k
c̄j c̄k

ωj + ωk
= 0

and
2d+1∑
j,k=0

cjcke
αj+αk − (2d+ 2)

∑
|j−k|=d+1

cjck = 0.

Hence, we have proven equation (4.5) and therefore e2k(1) = 2d+ 2.

Proof of Lemma 4. Obviously, when |j − k| = d + 1, ωj + ωk = 0. Define cA =

[c0, c2, c4, . . . , c2d]
′, cB = [c1, c3, c5, . . . , c2d+1]

′. The matrix equation M̃c = 0 can be
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rewritten as M̃1cA + M̃2cB = 0, where

M̃1 =



1 1 1 · · · 1

1 ω2 ω4 · · · ω2d

1 (ω2)2 (ω4)2 · · · (ω2d)2

...
...

...
. . .

...

1 (ω2)d (ω4)d · · · (ω2d)d


, M̃2 =



1 1 1 · · · 1

ω ω3 ω5 · · · ω2d+1

ω2 (ω3)2 (ω5)2 · · · (ω2d+1)2

...
...

...
. . .

...

ωd (ω3)d (ω5)d · · · (ω2d+1)d


.

Thus, we obtain that cA = −M̃−1
1 M̃2cB. Also, it is easily seen that M̃2 = diag(1, ω, . . . , ω2d+1)M̃1.

Since M̃1 is a discrete Fourier matrix, the entries of its inverse M̃−1
1 can be computed

as

(M̃−1
1 )ij =

1

d+ 1
ω−(i−1)(j−1), i, j = 1, . . . , d+ 1.

Let Y = M̃−1
1 M̃2, direct computation also gives

Yij =
2

d+ 1
· 1

1− ω2j−2i+1
,

Y −1ij =
2

d+ 1
· 1

1− ω2j−2i−1 , i, j = 1, . . . , d+ 1.

We formulate the quadratic forms (1) - (3) in terms of matrices and prove them

as follows:

(1)

2d+1∑
j,k=0

|j−k|6=d+1

cjck
ωj + ωk

=
[
c′A c′B

]A11 A12

A21 A22

cA
cB


= c′AA11cA + c′BA21cA + c′AA12cB + c′BA22cB

= c′B [Y ′A11Y − A21Y − Y ′A12 + A22] cB
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where matrices A11, A12, A21 and A22 are different depending on whether d is even

or odd. When d is even, then

(A11)ij =
1

ω2(i−1) + ω2(j−1) ,

(A22)ij =
1

ω2i−1 + ω2j−1 ,

(A12)ij =

0, if |2i− 2j − 1| = d+ 1,

1
ω2(i−1)+ω2j−1 , o.w.

(A21)ij = (A12)ji

When d is odd, then

(A11)ij =

0, if |i− j| = (d+ 1)/2,

1
ω2(i−1)+ω2(j−1) , o.w.

(A22)ij =

0, if |i− j| = (d+ 1)/2,

1
ω2i−1+ω2j−1 , o.w.

(A12)ij =
1

ω2(i−1) + ω2j−1 ,

(A21)ij = (A12)ji

From Proposition 4 and Proposition 5 below, we have that

Y ′A11Y + A22 − A21Y − Y ′A12 = 0

and therefore
2d+1∑
j,k=0

|j−k|6=d+1

cjck
ωj + ωk

= 0.

(2) The proof of (2) is similar to the proof of (1).

2d+1∑
j,k=0

|j−k|6=d+1

(−1)j+k
cjck

ωj + ωk
=[c′Ac

′
B]

 A11 −A12

−A21 A22

cA
cB


=c′AA11cA − c′BA21cA − c′AA12cB + c′BA22cB

=c′B [Y ′A11Y + A21Y + Y ′A12 + A22] cB
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By Proposition 4 and Proposition 5 below,

Y ′A11Y + A21Y + Y ′A12 + A22 = 0.

Hence,

2d+1∑
j,k=0

|j−k|6=d+1

(−1)j+k
cjck

ωj + ωk
= 0.

(3) Using Proposition 6, we have

2d+1∑
j,k=0

(−1)j+kcjck =
[
c′A c′B

] J −J

−J J

cA
cB


= c′AJcA − c′BJcA − c′AJcB + c′BJcB

= c′B [Y ′JY + JY + Y ′J + J ] cB

= 4c′BJcB.

When d is even,

(2d+ 2)
∑

|j−k|=d+1

(−1)j+kcjck = (2d+ 2)
[
c′A c′B

] 0 G

G′ 0

cA
cB


= (2d+ 2)(c′BG

′cA + c′AGcB)

= (2d+ 2)c′B [G′Y + Y ′G] cB

where matrix G is defined as

Gij =

1, if |i− j − 1
2
| = 1

2
(d+ 1),

0, o.w

Matrix multiplication of Y ′ and G yields,

(Y ′G)ij =
2

d+ 1
· 1

1− ω2i−2j+d+1
=

2

d+ 1
· 1

1 + ω2i−2j

and

(G′Y )ij =
2

d+ 1
· 1

1 + ω2j−2i .
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For any i and j, (Y ′G)ij and (G′Y )ij are conjugate of each other and their real

parts are both 1
d+1

. Thus, (2d+ 2)(G′Y + Y ′G) = 4J .

When d is odd,

(2d+ 2)
∑

|j−k|=d+1

(−1)j+kcjck = (2d+ 2)
[
c′A c′B

]H 0

0 H

cA
cB


= (2d+ 2)(c′AHcA + c′BHcB)

= (2d+ 2)c′B [Y ′HY +H] cB

where H is defined as

Hij =

1, if |i− j| = 1
2
(d+ 1),

0, o.w

By simple computation

(Y ′H)ij =
2

d+ 1
· 1

1− ω2i−2j−m =
2

d+ 1
· 1

1 + ω2i−2j+1

(HY −1)ij =
2

d+ 1
· 1

1− ω2j−2i−m−2 =
2

d+ 1
· 1

1 + ω2j−2i−1

Since (Y ′H)ij and (HY −1)ij are conjugate of each other and their real parts are

both 1
d+1

, (Y ′H)ij + (HY −1)ij = 2
d+1

. Thus, (2d + 2)(Y ′H + HY −1) = 4J and

by Proposition 6, (2d + 2)(Y ′HY + H) = (2d + 2)(Y ′H + HY −1)Y = 4JY = 4J .

Combining the case of even and odd, we have proved that

2d+1∑
j,k=0

(−1)j+kcjck − (2d+ 2)
∑

|j−k|=d+1

(−1)j+kcjck = 0.

Proposition 4 A21Y + Y ′A12 = 0.

Proof. Since the matrices A21 and A12 are different depending on d even or odd, we

divide our proof into two cases. When d is even, the ij-th entry of A21Y + Y ′A12 is

d+1∑
k=1,

|2j−2k+1|6=d+1

1

ω2j−1 + ω2(k−1) ·
1

1− ω2i−2k+1
+

d+1∑
k=1,

|2i−2k+1|6=d+1

1

ω2i−1 + ω2(k−1) ·
1

1− ω2j−2k+1
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Multiplying each summand by ω2i−1 +ω2j−1, and decomposing each of them by partial

fraction, we obtain

(ω2i−1 + ω2j−1)
d+1∑
k=1,

|2j−2k+1|6=d+1

1

ω2j−1 + ω2(k−1) ·
1

1− ω2i−2k+1

=
d+1∑
k=1,

|2j−2k+1|6=d+1

ω2k−1(ω2i + ω2j)

(ω2k−1 + ω2j)(ω2k−1 − ω2i)

=
d+1∑
k=1,

|2j−2k+1|6=d+1

(
ω2k−1

ω2k−1 − ω2i
− ω2k−1

ω2k−1 + ω2j

)

=
d+1∑
k=1,

|2j−2k+1|6=d+1

(
1

1− ω2i−2k+1
− 1

1 + ω2j−2k+1

)

and

(ω2i−1 + ω2j−1)
d+1∑
k=1,

|2i−2k+1|6=d+1

1

ω2i−1 + ω2(k−1) ·
1

1− ω2j−2k+1

=
d+1∑
k=1,

|2i−2k+1|6=d+1

ω2k−1(ω2i + ω2j)

(ω2k−1 − ω2j)(ω2k−1 + ω2i)

=
d+1∑
k=1,

|2i−2k+1|6=d+1

(
ω2k−1

ω2k−1 − ω2j
− ω2k−1

ω2k−1 + ω2i

)

=
d+1∑
k=1,

|2i−2k+1|6=d+1

(
1

1− ω2j−2k+1
− 1

1 + ω2i−2k+1

)

|2j−2k+1| 6= d+1 is equivalent to k 6= j−d/2 and k 6= j+d/2+1. Since 1 ≤ k ≤ d+1,

then for 1 ≤ j ≤ md/2, k 6= j − d/2, and for d/2 + 1 ≤ j ≤ d + 1, k 6= j + d/2 + 1.
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Thus,

d+1∑
k=1,

|2j−2k+1|6=d+1

1

1− ω2i−2k+1
+

d+1∑
k=1,

|2i−2k+1|6=d+1

1

1− ω2j−2k+1

=2
d+1∑
k=1

1

1− ω2i−2k+1
−

1{1≤j≤d/2}
1− ω2i−2j+d+1

−
1{d/2+1≤j≤d+1}

1− ω2i−2j−m−1 −
1{1≤i≤d/2}

1− ω2j−2i+d+1
−

1{d/2+1≤i≤d+1}

1− ω2j−2i−m−1

=2
d+1∑
k=1

1

1− ω2i−2k+1
−

1{1≤j≤d/2}
1 + ω2i−2j −

1{d/2+1≤j≤d+1}

1 + ω2i−2j −
1{1≤i≤d/2}
1 + ω2j−2i −

1{d/2+1≤i≤d+1}

1 + ω2j−2i

Noting the fact that

<
(

1

1± ωk

)
=

1

2
for any integer k,

and ω2i−2j is conjugate of ω2j−2i. By symmetry, we have

d+1∑
k=1,

|2j−2k+1|6=d+1

1

1− ω2i−2k+1
+

d+1∑
k=1,

|2i−2k+1|6=d+1

1

1− ω2j−2k+1

=2
d+1∑
k=1

1

1− ω2i−2k+1
−

1{1≤j≤d/2}
1 + ω2i−2j −

1{d/2+1≤j≤d+1}

1 + ω2i−2j −
1{1≤i≤d/2}
1 + ω2j−2i −

1{d/2+1≤i≤d+1}

1 + ω2j−2i

=d+ 1− 2 · 1

2
= d.

Similarly,

d+1∑
k=1,

|2i−2k+1|6=d+1

1

1 + ω2i−2k+1
+

d+1∑
k=1,

|2j−2k+1|6=d+1

1

1 + ω2j−2k+1
= d · 1

2
+ d · 1

2
= d.

Thus,

d+1∑
k=1,

|2j−2k+1|6=d+1

1

ω2j−1 + ω2(k−1) ·
1

1− ω2i−2k+1
+

d+1∑
k=1,

|2i−2k+1|6=d+1

1

ω2i−1 + ω2(k−1) ·
1

1− ω2j−2k+1

=
1

ω2i−1 + ω2j−1

 d+1∑
k=1,

|2j−2k+1|6=d+1

(
1

1− ω2i−2k+1
− 1

1 + ω2j−2k+1

)

+
d+1∑
k=1,

|2i−2k+1|6=d+1

(
1

1− ω2j−2k+1
− 1

1 + ω2i−2k+1

) = 0.
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When d is odd, the ij-th entry of A21Y + Y ′A12 is

d+1∑
k=1

1

ω2i−1 + ω2(k−1) ·
1

1− ω2j−2k+1
+

d+1∑
k=1

1

ω2(k−1) + ω2j−1 ·
1

1− ω2i−2k+1
.

By symmetry,

d+1∑
k=1

(
1

1− ω2i−2k+1
+

1

1− ω2j−2k+1

)
=

d+1∑
k=1

(
1

1 + ω2i−2k+1
+

1

1 + ω2j−2k+1

)
= d+ 1.

Then

d+1∑
k=1

1

ω2i−1 + ω2(k−1) ·
1

1− ω2j−2k+1
+

d+1∑
k=1

1

ω2(k−1) + ω2j−1 ·
1

1− ω2i−2k+1

=
1

ω2i−1 + ω2j−1

(
d+1∑
k=1

(
1

1− ω2j−2k+1
− 1

1 + ω2i−2k+1

)
+

d+1∑
k=1

(
1

1− ω2i−2k+1
− 1

1 + ω2j−2k+1

))

=
1

ω2i−1 + ω2j−1

(
d+1∑
k=1

(
1

1− ω2j−2k+1
+

1

1− ω2i−2k+1

)
−

d+1∑
k=1

(
1

1 + ω2i−2k+1
+

1

1 + ω2j−2k+1

))
=0.

Proposition 5 Y ′A11 + A22Y
−1 = 0.

Proof. When d is even, the ij-th entry of Y ′A11 + A22Y
−1 is

d+1∑
k=1

1

ω2(j−1) + ω2(k−1) ·
1

1− ω2i−2k+1
+

d+1∑
k=1

1

ω2i−1 + ω2k−1 ·
1

1− ω2j−2k−1

By symmetry,

d+1∑
k=1

(
1

1− ω2i−2k+1
+

1

1− ω2j−2k−1

)
=

d+1∑
k=1

(
1

1 + ω2i−2k +
1

1 + ω2j−2k

)
= d+ 1.

Then

d+1∑
k=1

1

ω2(j−1) + ω2(k−1) ·
1

1− ω2i−2k+1
+

d+1∑
k=1

1

ω2i−1 + ω2k−1 ·
1

1− ω2j−2k−1

=
1

ω2i−1 + ω2(j−1)

(
d+1∑
k=1

(
1

1− ω2i−2k+1
− 1

1 + ω2j−2k

)
+

d+1∑
k=1

(
1

1− ω2j−2k−1 −
1

1 + ω2i−2k

))

=
1

ω2i−1 + ω2(j−1)

(
d+1∑
k=1

(
1

1− ω2i−2k+1
+

1

1− ω2j−2k−1

)
−

d+1∑
k=1

(
1

1 + ω2i−2k +
1

1 + ω2j−2k

))
=0.
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When d is odd, the ij-th entry of Y ′A11 + A22Y
−1 is

d+1∑
k=1,

|k−j|6=(d+1)/2

1

ω2(k−1) + ω2(j−1) ·
1

1− ω2i−2k+1
+

d+1∑
k=1,

|i−k|6=(d+1)/2

1

ω2i−1 + ω2k−1 ·
1

1− ω2j−2k−1 .

By symmetry,

d+1∑
k=1,

|k−j|6=(d+1)/2

(
1

1− ω2i−2k+1
+

1

1− ω2j−2k−1

)
=

d+1∑
k=1,

|i−k|6=(d+1)/2

(
1

1 + ω2i−2k +
1

1 + ω2j−2k

)
.

Then,

d+1∑
k=1,

|k−j|6=(d+1)/2

1

ω2(k−1) + ω2(j−1) ·
1

1− ω2i−2k+1
+

d+1∑
k=1,

|i−k|6=(d+1)/2

1

ω2i−1 + ω2k−1 ·
1

1− ω2j−2k−1

=
1

ω2i−1 + ω2j−2

 d+1∑
k=1,

|k−j|6=(d+1)/2

(
1

1− ω2i−2k+1
− 1

1 + ω2j−2k)

)

+
d+1∑
k=1,

|i−k|6=(d+1)/2

(
1

1− ω2j−2k−1 −
1

1 + ω2i−2k

) = 0.

Thus, Y ′A11 + A22Y
−1 = 0.

Proposition 6

Y J = J, Y ′J = J

Proof.

(Y J)ij =
2

d+ 1

d+1∑
k=1

1

1− ω2k−2i+1
=

2

d+ 1

d+1∑
k=1

1

1− ω2k−1 = 1,

and

(Y ′J)ij =
2

d+ 1

d+1∑
k=1

1

1− ω2i−2k+1
=

2

d+ 1

d+1∑
k=1

1

1− ω2k−1 = 1.
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4.4 Expectation of the Limiting Distribution

Theorem 29 Suppose that X(t) is a mean zero Gaussian process, with its KL expan-

sion given by

X(t) =
∞∑
k=1

√
λkek(t)ξk.

If e2k(1) = c, then

E

[
X2(1)/2∫ 1

0
X2(t)dt

]
= c/2.

Proof. Denote the Laplace transform of J =
∫ 1

0
X2(t)dt by φ(u). Then for u > 0,

φ(u) =E [exp(−uJ )] = E

[
exp

{
−u

∞∑
m=1

λmξ
2
m

}]

=
∞∏
m=1

E
[
exp

{
−uλmξ2m

}]
=
∞∏
m=1

(1 + 2uλm)−1/2

Making use of the following identity

1

a
=

∫ ∞
0

e−audu, a > 0,
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we have

E

[
X2(1)/2∫ 1

0
X2(t)dt

]

=
1

2
E

[
X2(1)

∫ ∞
0

exp

{
−u
∫ 1

0

X2(t)dt

}
du

]

=
1

2
E

( ∞∑
k=1

√
λkek(1)ξk

)2 ∫ ∞
0

exp

{
−u

∞∑
m=1

λmξ
2
m

}
du


=

1

2

∫ ∞
0

E

[(
∞∑

k,j=1

√
λkλjek(1)ej(1)ξkξj

)
∞∏
m=1

exp
{
−uλmξ2m

}]
du

=
1

2

∫ ∞
0

∞∑
k,j=1

√
λkλjek(1)ej(1) · E

[
ξkξj

∞∏
m=1

exp
{
−uλmξ2m

}]
du

=
1

2

∫ ∞
0

∞∑
k=1

λke
2
k(1) · E

[
ξ2k

∞∏
m=1

exp
{
−uλmξ2m

}]
du

=
1

2

∫ ∞
0

∞∑
k=1

λke
2
k(1) ·

∞∏
m6=k

E
[
exp

{
−uλmξ2m

}]
· E
[
ξ2k exp

{
−uλkξ2k

}]
du.

Here ξ2k has Chi-squared distribution and it’s well-known that its moment generating

function is

E
[
exp

{
−tξ2m

}]
= (1 + 2t)−1/2. (4.6)

Differentiating equation (4.6), we obtain

E
[
ξ2k exp{−tξ2k}

]
= (1 + 2t)−3/2.
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It follows that,

E

[
X2(1)/2∫ 1

0
X2(t)dt

]

=
1

2

∫ ∞
0

∞∑
k=1

λke
2
k(1) ·

∞∏
m 6=k

(1 + 2uλm)−1/2 · (1 + 2uλk)
−3/2du

=
1

2

∫ ∞
0

∞∏
m=1

(1 + 2uλm)−1/2 ·
∞∑
k=1

λke
2
k(1) · (1 + 2uλk)

−1du

=
1

2

∫ ∞
0

∞∏
m=1

(1 + 2uλm)−1/2 ·
∞∑
k=1

e2k(1) · d
du

log
[
(1 + 2uλk)

1/2
]
du

=
1

2

∫ ∞
0

φ(u) ·
∞∑
k=1

e2k(1) · d
du

log
[
(1 + 2uλk)

1/2
]
du

=
c

2

∫ ∞
0

φ(u) ·
∞∑
k=1

d

du
log
[
(1 + 2uλk)

1/2
]
du

=
c

2

∫ ∞
0

φ(u) · d
du

log

[
∞∏
k=1

(1 + 2uλk)
1/2

]
du

=− c

2

∫ ∞
0

φ(u) · d
du

log [φ(u)] du = − c
2

∫ ∞
0

dφ(u)

=− c

2

(
lim
u→∞

φ(u)− φ(0)
)

=
c

2
.

The Tanaka’s conjecture is now a direct corollary of Theorem 29.

Corollary 3 For any positive integer d,

E

[
X2
d(1)/2∫ 1

0
X2
d(t)dt

]
= d+ 1.

Remark. If we let X(t) be the Brownian bridge B(t) = W (t) − tW (1), then clearly

B(1) = 0, and

E

[
B2(1)/2∫ 1

0
B2(t)dt

]
= 0,

which can also be verified by its eigenfunction fk(t) = sin(kπt) using the above ap-

proach.
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[10] Paul Deheuvels. A Karhunen-Loève expansion for a mean-centered Brownian
bridge. Statistics & Probability Letters, 77(12):1190–1200, 2007.

[11] Paul Deheuvels and Guennadi V. Martynov. A Karhunen-Loève decomposition of
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