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ABSTRACT 

Side-channel attacks that utilize timing, power consumption, and 

electromagnetic radiation to gain information about an encryption/decryption 

implementation have been demonstrated experimentally to be an effective attack 

against a variety of cryptographic systems. We define a general attack strategy against 

AES-GCM using a simplified model of the cache to predict timing variation due to 

cache-collisions in the sequence of lookups performed by the encryption. The attacks 

presented should be applicable to most high-speed software AES-GCM 

implementations and computing platforms, we have implemented them against 

Openssl-1.0.0-beta3 running on Intel(R) Xeon(R) CPU  5110 and Intel(R) Xeon(R) 

CPU  5520. This is the first time in publication to successfully attack the AES-GCM 

algorithm. While the task of defending AES-GCM against all timing attacks is 

challenging, a small patch can significantly reduce the vulnerability to these specific 

attacks with no performance penalty.
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Chapter 1 

OVERVIEW OF AES-GCM ALGORITHM 

Galois Counter Mode (GCM) is a NIST-standardized mode of operation 

for symmetric key cryptographic block ciphers. Combined with Advanced Encryption 

Standard (AES) encryption, AES-GCM is an authenticated encryption algorithm 

designed to provide both authentication and privacy. This mode is defined for block 

ciphers with a block size of 128 bits. GCM core operation is the multiplication in 128-

bit Galois field, and it’s implemented using key-dependent lookup tables. AES-GCM 

mode is used in the IEEE 802.1AE (MACsec) Ethernet security, ANSI Fibre Channel 

Security Protocols (FC-SP) and etc. The most expensive operations for GCM 

authentication are the multiplications over the field GF(    ). Since it takes time-

memory tradeoffs, the standard implementation is through lookup tables, which are 

pre-computed for a particular value of the secret constant hash key, this kind of 

implementations are not guaranteed to be secure. 

1.1 Detail Algorithm 

AES operates on a 4x4 array of bytes, and is made up by four steps: 

AddRoundKey, SubBytes, ShiftRows and MixColumns. It scrambles a 16-byte input 

using a 16-byte key, and two constant 256-byte tables. Although AES has been under 

scrutiny by cryptanalysts for several years, side-channel attacks, especially cache-

timing attacks proved that it’s not guaranteed to be secure. For GCM, Figure 1.1 

explains the whole operation mode, and each block represents 16-byte data. The 128-
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bit hash key H is generated from the master encryption key K (AES key) as the 

plaintext is all-zero. Ek is the AES encryption function using master key K, multH() 

function calculates the multiplication by the hash key H in GF(    ). Intr() is the 

counter increment function. There are four inputs of authenticated encryption 

operations: 1) master key K; 2) an initial vector IV; 3) a plaintext P and 4) additional 

authenticated data (AAD) A. There are two outputs: 1) a ciphertext C and 2) an 

authenticated tag T [1]. 

GF(    ) uses the polynomial                   . The core 

operation is the Galois field multiplication with hash key H, and the standard 

computation       in software is: 

                                                 (1.1) 

where byte(X, i) denotes the     byte of the element X. Each variable is 16 bytes, so 

the total table memory costs 64 KB. From [1], using the platform as Motorola G4 

processor, the table-driven method takes 13.1 cycles per byte as the throughput, while 

no-table method takes 119 cycles per byte. 
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          Figure 1.1 Analysis of AES-GCM mode 

 

 

1.2 Motivation 

In my thesis, the attacks assume that the computer uses cached memory 

which can be described using a simple model of the cache. Cache stores values which 

are looked up in main memory, while evicting older values in it. Subsequent lookups 

to the same memory address can then get the data directly from the cache, which is 

faster than main memory, this is called a “cache hit.” Since most software exhibits 

temporal locality in memory accesses, caches greatly improve performance, however, 

at the same time it generates the imbalance of execution time. In GCM, the tables are 

generated by hash key H, the attacks in my thesis will focus on them, which may leak 

a great deal of secret information to a timing attack with the input of plaintexts and 
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ciphertexts.  If H is compromised entirely, the authentication assurance will be 

completely lost. Attacker gaining information about this value can then easily deduce 

the secret value H necessary for a forgery attack [1]. 
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Chapter 2 

RELATED WORK 

Side channel attack is any attack based on information gained from the 

physical implementation of a cryptosystem, rather than brute force or theoretical 

weaknesses in the algorithms. For example, timing information, power consumption, 

or even sound can provide an extra source of information which can be exploited to 

break the system. Some side-channel attacks require technical knowledge of the 

internal operation of the system on which the cryptography is implemented, although 

others such as differential power analysis are effective as black-box attacks. 

Differential power analysis (DPA) is a side-channel attack which involves 

statistically analyzing power consumption measurements from a cryptosystem. The 

attack exploits biases varying power consumption of microprocessors or other 

hardware while performing operations using secret keys. DPA attacks have signal 

processing and error correction properties which can extract secrets from 

measurements which contain too much noise to be analyzed using simple power 

analysis. Using DPA, an adversary can obtain secret keys by analyzing power 

consumption measurements from multiple cryptographic operations performed by a 

vulnerable smart card or other device. The most powerful DPA attacks are based on 

statistical methods pioneered by Kocher [2]. 

Differential fault analysis is another type of side channel attack. The 

principle is to induce faults (unexpected environmental conditions) into cryptographic 

implementations, to reveal their internal states. Biham [3] and Boneh [4] found that a 
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smartcard containing an embedded processor might be subjected to high temperature, 

unsupported supply voltage or current, excessively high overclocking, strong electric 

or magnetic fields, or even ionizing radiation to influence the operation of the 

processor. The processor may begin to output incorrect results due to physical data 

corruption, which may help a cryptanalyst deduce the instructions that the processor is 

running, or what its internal data state is. 

Cache-timing attacks are software side-channel attacks exploiting the 

timing variability of data loads from memory. This variability is due to the fact that all 

modern microprocessors use a hierarchy of caches to reduce load latency. Kocher [5] 

was the first to suggest cache-timing attacks against cryptographic algorithms that load 

data from positions that are dependent on secret information. Initially, timing attacks 

were mostly mentioned in the context of public-key algorithms until Kelsey et al. and 

Page [6] considered timing attacks, including cache-timing attacks, against secret-key 

algorithms. 

Bernstein demonstrated a different type of timing attack against AES in 

2005 [7] which can be thought of as a statistical timing attack. He found that the first 

round of encryption is simply the bytes          , and these bytes are used as the 

indices of the lookup tables, so the running time is directly affected by each of the 

values. He first collected a large volume of timing data for each value of an input byte 

using both target machine and reference machine, and then he correlated the data to 

recover the key. Joseph Bonneau made a successful white-box timing attacks on AES 

[8], which used expected timing effects due to the structure of the cipher. He uses 

require timing data and known plaintext and ciphertext, and implement the last round 

attack using random walk and belief propagation methodology. Acıiçmez [9] found 
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that attack can be used to obtain secret AES keys of remote cryptosystems if the server 

under attack runs on a multitasking or simultaneous multithreading system with a 

large enough workload. 

 My thesis is the first publication to successfully attack AES-GCM. It 

focuses on an approach that requires no specific information about the target platform 

with only information of timing data and known plaintext and ciphertext. Since the 

GCM is built on GF(    ),  we also need the extended Euclidean algorithm for the 

calculation. 
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Chapter 3 

ATTACK MODEL AND STRATEGY 

There is a complicating fact that modern caches do not store individual 

bytes, but groups of bytes from consecutive “lines” of main memory. Line size varies 

between 64 or 128 bytes on more recent Intel or AMD processors. Since the usual size 

of GCM table entries is 16 bytes, groups of 4 consecutive table entries share a line in 

the cache on an Intel Xeon CPU. So, for any bytes l, l′ which are equal ignoring the 

lower 2 bits, looking up address l will cause an ensuing access to l′ to hit in cache. 

3.1 Attack Model 

 We pick inputs of the two multiplications, for example: X, Y: 

                                                 (3.1) 

                                                 (3.2) 

A cache collision occurs when                        From the complications we 

denote:    
      

   (< > represents the most significant bit) and now we 

formalize the assumption: 

Cache-Collision Assumption: For any pair of lookups i, j, given a large 

number of random AES-GCM encryptions with the same key, the average time when 

            will be less than the average time when            . 

This assumption rests on the approximation that the individual table lookups in the 

sequence are effectively independent for random plaintexts, which seems to hold in 

practice. This assumption greatly oversimplifies many the intricacies of modern 
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caches. The notion of using collisions in the cache is by no means unique to my thesis. 

Because caches are specifically designed to behave differently in the presence of a 

collision a non-collision, they are a natural side channel for attacking AES-GCM. This 

general notion has been used in several other attacks on AES. 

3.2 Second Round Attack 

A natural approach to attack AES-GCM is to analyze the table lookups 

performed in the second round, because it does multiplication with H for the first time 

in the process, and easily leaves the trace to search. From Fig 1.1, A is Auth Data1, C0 

is Ciphertext 1, the cache collision occurs when                     To 

make the equation simplified, we set A = 0x00…01 so that                 

The goal of the attack is to record timing data for random cipher texts at 

each value of              . For each ciphertext/time pair observed, the 

encryption time is used to update a table of average times t[i, j] for all values i, j. The 

goal to find one value for each i, j such                     where       is the average 

encryption time over all      . 

Eventually, the value of j will become accurate guesses, which should be 

the only values which cause significantly low encryption times. However, it’s not 

always obvious to find the lowest timing value. The data processing can be done off-

line by the attacker after the data is collected. Another t-test will check if the value is 

significantly lower of the mean. Meanwhile, a set of limited data will be saved in case 

the lowest timing data doesn’t come out the real hash key. 

In experiments most of H bytes are not matched. One possible assumption 

is that the AES execution in the second round polluted the results. They may use look-

up table based AES so that generating the big peaks. 
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3.3 Final Round Attack 

To design a non polluted attack, we consider the final round of encryption. 

Since there’s no AES executed between last two multiplications, 16 bytes plaintext is 

used in the experiment so that the algorithm halts at “Counter 1”, see Fig 3.2. 

To make it simplified, we set A = 0x00…0 here, so the first input is C0 (it 

was            before), and the second input is                    . 

 

 

 

 Fig 3.1 Final round attack model 

 

 

To get cache collision:                             , or after 

rearranging, 
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                        
  >     (3.3) 

 

From (1), we find that            is already fixed, so H can be found only through 

the ciphertexts. Plaintexts satisfying this equation should have a lower average 

encryption time due to the collisions, while the hard part is to calculate the inverse of 

C0 in         . We implemented the code using extended Euclidean algorithm. 
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Chapter 4 

RESULTS 

Table 4.1 presents statistical data for the number of (C, t) pairs seen before 

the attack recovers a full 128-bit hash key H, from attacks against 10 random keys. 

The software platform is Openssl-1.0.0-beta3. For the 10 random keys, all the attacks 

on Intel 5110 succeeded, while there were 3 out of 10 failed on Intel 5520. The result 

shows that the latest Intel CPU has some complications which may be due to the 

hardware pre-fetch mechanism and out-of-order instruction execution. 

Table 4.1 Median Sample and Successful Rate.  Intel Xeron 5110 shows 

consistent successful rate while 70% were successful against Intel Xeon 

5520 . 

CPU Median Sample Successful Rate 

 Intel(R) Xeon(R) CPU  5110       100% 

   

 Intel(R) Xeon(R) CPU  5520       70% 
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     Fig 4.1 Data collection graphs from     through    samples, they show the 

convergence of one byte of the real key. 

 

 

From     through    data sample collection, the lowest timing data varies, yet 

converge to the same point subsequently. From Fig 4.1, we can find that in     data 

sample, the collection time gradually increases in the byte range of 150 to 250. In     

and     data sample, however, the data block in the byte range of 200 to 250 is 

agglomerated more significantly and much higher than the time in the byte range of 

150 to 200, indicating that the timing data converge to several blocks due to the effect 

of cache collision. Meanwhile, in     data sample, we can find some timing data 

between 0 and 1 msec in the byte range of 0 to 50, while these data disappear in 

    data sample. This infers that some correlated data gradually converge into a block 

rather than distribute uniformly. The least time happens when the byte is 220 (DC) in 
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    data sample, we’ll run     data sample once more to check if the least time 

condition holds. 

 

 

      

  Fig 4.2 The data collection results from     samples. 

    

From Fig 4.2, after     data sample collection, the lowest timing data 

locates at the same value 220, so the whole procedure stops and we conclude that the 

byte we mined is 220 (DC), meantime the pattern is classified significantly.            
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           Fig 4.3 The variance of real key average ranking during each iteration 

 

 

 Fig 4.3 shows the average rank of the real key for each collecting iteration. 

Our research shows a solid improvement of the convergence running more samples. In 

principle, we conclude that the attack is robust due to its convergence. 
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Chapter 5 

IMPLEMENTATION NOTES 

The program first generates a large number of timing samples by 

repeatedly triggering one encryption for a random plaintext using an OpenSSL library 

call and recording the resulting ciphertext along with a processor cycle count. Each 

timing/ciphertext pair is added to a large buffer after being recorded, this allows a 

minimum of activity in between encryptions. An explicit cache eviction routine is 

called before each encryption, no other work is done between encryptions. 

After generating a large number of samples, the attack algorithm is called 

with a small set of the data. It is incrementally given more of the data until it succeeds 

in recovering the key. Samples are not used if their time is more than twice the lowest 

time seen, this eliminates noise due to page faults and context switches. 

5.1 Cache Eviction 

All of the attacks described in this paper require the AES-GCM lookup 

tables to be out of the cache prior to an encryption operation. If all tables are cached, 

which would occur during a long run of consecutive encryptions, then cache collisions 

will not reduce timing. In a real attack scenario, an attacker must have some ability to 

remove the tables from cache before an encryption. The most likely approach would 

be simply waiting. If the target machine is doing other work, the tables will probably 

be quickly evicted from memory as other processes load their own data. 



 

 

17 

5.2 Extended Euclidean Algorithm 

Currently there’s no resource to support the expensive inverse calculation 

in GF(    ). From our experiments, the extended Euclidean algorithm [10] is 

introduced. The extended Euclidean algorithm is an extension to the Euclidean 

algorithm for finding the greatest common divisor (GCD) of two integers. We define 

the polynomial                   , and we also introduce the element a(x) 

whose inverse is desired, then an iterative method of the algorithm suitable for 

determining the inverse is given by the following. 

 

remainder[1] := f(x) 

remainder[2] := a(x) 

auxiliary[1] := 0 

auxiliary[2] := 1 

i := 2 

while remainder[i] > 1 

    i := i + 1 

    remainder[i] := remainder(remainder[i-2] / remainder[i-1]) 

    quotient[i] := quotient(remainder[i-2] / remainder[i-1]) 

    auxiliary[i] := -quotient[i] * auxiliary[i-1] + auxiliary[i-2] 

inverse := auxiliary[i] 
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Chapter 6 

COUNTERMEASURES AND CONCLUSION 

Solutions requiring special hardware support are probably not practical, 

we cannot guarantee the encryption will take constant time without crippling 

performance. A more realistic approach may be software designed to prevent the data 

that is leaked from being useful. Köpf [11] gave algorithms that efficiently and 

optimally adjust the trade-off for given constraints on the side-channel leakage or on 

the efficiency of the cryptosystem. Kasper [12] presented the first constant-time 

implementation of AES-GCM thus offering a full suite of timing-analysis resistant 

software for authenticated encryption. However, some simple changes in the code will 

successfully achieve the countermeasures. The pseudo codes are listed as below: 

 

Previous Pseudo Code: 

static int GCM_mult_level( 

      unsigned char *Z, 

      unsigned char *X, 

      unsigned char t[16][256][16]) 

{ 

  int i; 

  unsigned char tmp[16]; 

 

  /* Everything has been precalculated, so just loop through each byte and 

     the corresponding table and add the value at that point in the table 

     onto the result in Z. */ 

 

  memcpy(tmp, X, 16); 

  memset(Z, 0x00, 16); 

  for (i = 0; i < 16; i++) { 
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    xor(Z, Z, t[i][tmp[i]], 16); //Using the 64kb table 

  } 

  return 0; 

} 

 

Modified Pseudo Code: 

static int GCM_mult_level( 

      unsigned char *Z, 

      unsigned char *X, 

      unsigned char t[16][16]) 

{ 

  int i; 

  int j; 

  int tabi; 

  int remi; 

  unsigned char tmp[16]; 

 

  /* we need to shift everything over as we index the table (multiply).We 

start at the high degrees and move down so that the values at the high 

degree get multiplied over (shifted right) as we go. 

*/ 

  memcpy(tmp, X, 16); 

  memset(Z, 0x00, 16); 

  for (i = 31; i > 0; i--) { 

    tabi = (i & 0x01) ? tmp[i >> 1] & 0x0F : (tmp[i >> 1] >> 4) & 0x0F; 

    xor(Z, Z, t[tabi], 16); 

 

    remi = Z[15] & 0x0F; 

    for (j = 31; j > 0; j--) { 

      Z[j >> 1] = (j & 0x01) 

 ? (Z[j >> 1] >> 4) & 0x0F 

 : ((Z[(j >> 1) - 1] << 4) & 0xF0) | Z[j >> 1]; 

    } 

    Z[0] &= 0x0F; 

    Z[0] ^= rem_table_4bit[remi][0]; 

    Z[1] ^= rem_table_4bit[remi][1]; 

  } //Using exact calculation 

 

  tabi = (tmp[0] >> 4) & 0x0F; 

  xor(Z, Z, t[tabi], 16); 

 

  return 0; 

} 
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The original code function requires the pre-calculated 64kb table located 

in the cache to achieve the performance. By modifying the function using exact 

calculation, we can greatly increase resistance of the common AES-GCM 

implementation to last round attacks with no performance penalty by eliminating the 

special lookup table. 

In principle, the attack in this paper only requires timing data and known 

plaintext and ciphertext. It makes clear the need for software AES-GCM 

implementations to protect against timing variation due to cached memory, although it 

remains to be seen if the timing data which could be obtained is accurate enough, also 

with some additional complications, especially for the latest CPU. 
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