

GLOBAL IMAGE SEGMENTATION FOR TWO-PHASE AND MULTI-

PHASE GEOMATERIAL CHARACTERIZATION

 by

Kokeb Abay Abera

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Civil Engineering

Spring 2017

© 2017 Kokeb Abay Abera
All Rights Reserved

GLOBAL IMAGE SEGMENTATION FOR TWO-PHASE AND MULTI-PHASE

GEOMATERIAL CHARACTERIZATION

by

Kokeb Abay Abera

Approved: __
 Kalehiwot Nega Manahiloh, Ph.D.
 Professor in charge of thesis on behalf of the Advisory Committee

Approved: __
 Harry W. Shenton III, Ph.D.
 Chair of the Department of Civil and Environmental Engineering

Approved: __
 Babatunde A. Ogunnaike, Ph.D.
 Dean of the College of Engineering

Approved: __
 Ann L. Ardis, Ph.D.
 Senior Vice Provost for Graduate and Professional Education

iii	
	

ACKNOWLEDGMENTS

First and foremost, I would like to thank God, for none of this would have been

possible without him. With great sincerity, I would like to express my gratitude to my

advisor and professor at the University of Delaware, Dr. Kalehiwot Manahiloh, for his

patience, advice, and support during the past two years. It was an honor and a positively

educational experience to have the opportunity to learn and work with him.

I acknowledge my family and friends for their support during my studies,

because it would have been impossible for me to complete my degree and this thesis

without their involvement. I thank my wonderful, loving parents, Abera and Fisaha,

for raising me to achieve great things and to always strive to be the best person that I

can be. I will always be thankful for all of the sacrifices they have made to give me a

great life. I thank my younger brother Abel for being the best, loving brother I could

ask for and always having a wonderful, direct impact on my life throughout the years.

I extend my gratitude to my fellow graduate students for their valuable

suggestions and comments along my journey. There are too many to name, but most

notably, I highly appreciate Mohammad Motalleb Nejad for his guidance in coding.

Finally, I would also like to thank the Center for Advanced Infrastructure and

Transportation (CAIT) at the University of Delaware for the one year fellowship

provided during my studies.

iv	
	

TABLE OF CONTENTS

LIST OF TABLES……………………...…………………………..………............…vi
 LIST OF FIGURES …………………………...….…………….…...……….….....…viii
ABSTRACT…………………………………………………..……………….............xii

 Chapter

1 INTRODUCTION…………………………………………………...…..………1

1.1 Image Segmentation………………………………………….….…1
1.2 Thresholding…………………………………………...……..….....2
1.3 Research Motivation………………………………………...….…..3
1.4 Organization of the Thesis……..………………..………………….6

2 BACKGROUND….………..…………………………………………………...7

 2.1 Image Acquisition and Processing……………………..…7

 2.1.1 Image Segmentation ……………………………...…...........9

 2.2 Literature Review …………………………………………………12

 2.2.1 Image Acquisition Systems . ………………………...……..12

 2.2.1.1 Medical Usage……………...……………………12
 2.2.1.2 Industrial Usage ...……………………………….20
 2.2.1.3 History of Image Acquisition Systems ...……...…33

 2.2.2 Global Image Segmentation ………………………………37

 2.2.2.1 Two-Phase Image Segmentation Techniques ...…37
 2.2.2.2 Multi-Phase Image Segmentation Techniques …..47

 3 IMPLEMENTATION OF GLOBAL THRESHOLDING TECHNIQUES ..….59

 3.1 Two-Phase Thresholding Techniques .……………………………59

 3.1.1 Otsu (1979) Method ..……………………………………..61

v	
	

 3.1.2 Pun (1980) Method .………………………………………62
 3.1.3 Kapur et al. (1985) Method .………………………………63
 3.1.4 Johannsen and Bille (1982) Method ..…………………….64
 3.1.5 Kittler and Illingworth (1986) Method ...…………………65

 3.2 Three-Phase Thresholding Techniques .…………………………..67

 3.2.1 Otsu (1979) Method ..……………………………………..68
 3.2.2 Iterative Otsu Method ..…………………………………...69
 3.2.3 Refined Statistical-Based Method ..……………………….70

4 APPLICATION OF GLOBAL THRESHOLDING TECHNIQUES……..…..73

4.1 The Purpose of Creating a Graphical User Interface (GUI)
…. .Standalone Executable Software……………………………........73

 4.2 Features and Capabilities …………………………………………73

5 RESULTS AND DISCUSSION ..………………………………………..82

 5.1 Two-Phase Geomaterial Specimens .. …………………………….82

 5.1.1 Pervious Concrete and Air ..………………………………82
 5.1.2 Glass Bead and Air ..………………………………………86
 5.1.3 Silica Sand and Air ..………………………………………89

 5.1.4 Summary of Two-Phase Image Segmentation Results…....92

 5.2 Three-Phase Geomaterial Specimens .…………………………….94

 5.2.1 Silica Sand, Water, and Air ...………………...……………94
 5.2.2 Glass Bead, Water, and Air……….......………………..…..99

 5.2.3 Summary of Three-Phase Image Segmentation Results....102

 6 CONCLUSIONS AND FUTURE WORK ……………………..………......107

REFERENCES……………………………………………………………………....…112

 Appendix

 A DIRECTIONS FOR PROPER GUI USAGE……………………...……………119
 B TWO-PHASE IMAGE SEGMENTATION GUI CODE.....................................121
 C THREE-PHASE IMAGE SEGMENTATION GUI CODE.................................213

vi	
	

LIST OF TABLES

Table 1. Region-based segmentation category…………………………………...…11

Table 2. Results of the presence or absence of pulmonary nodules………………...19

 Table 3. Maximum penetrable material thicknesses for common industrial

 materials…………………………………………………………...……....26

Table 4. Comparisons of errors in segmentation for various methods……………...32

Table 5. Typically used threshold algorithms……………………………………….39

Table 6. Classification of 505 real-life bankchecks………………………………....49

Table 7. Experimental results of presented recursive approach………….................51

 Table 8. Threshold values and computational times results of test

images……………………………………………………………...……...53

Table 9. Quantitative results for test images…………………………………….…..57

Table 10. Commonly applied thresholding techniques for porous media……............60

Table 11. Final void ratio results for the porous media specimens………...……...…92

 Table 12. Statistical results and comparisons for the pervious concrete

specimen………………………………………………………………...…93

 Table 13. Statistical results and comparisons for the glass bead

specimen…………………………………………………………………...93

 Table 14. Statistical results and comparisons for the silica sand

specimen…………………………………………………………………...93

Table 15. Processing time comparison for the silica sand specimen…………….…..98

Table 16. Processing time comparison for the glass bead specimen………….........102

vii	
	

Table 17. Refined statistical-based method results for the partially saturated granular
media……………………………………………………………………...104

Table 18. Void ratio statistical results and comparisons for the silica sand

specimen………………………………………………………………….104

Table 19. Void ratio statistical results and comparisons for the glass bead

specimen………………………………………………………………….105

Table 20. Degree of saturation statistical results and comparisons for the silica sand

specimen………………………………………………………………….105

Table 21. Degree of saturation statistical results and comparisons for the glass bead

specimen…………………………………………………….……………106

viii	
	

LIST OF FIGURES

Figure 1. General behavior of soil-water characteristic curves for sand, silt,
 and clay…………………………………………...……………….……..........5

Figure 2. Two-dimensional schematic of specimen installation in an X-ray

 CT chamber………………………………...….………………………...…..8

Figure 3. Three-dimensional schematic of specimen installation in an X-ray

 CT chamber……………………………………………….………………....8

Figure 4. Image segmentation system structure………………..……………...……..11

Figure 5. Conventional x-ray image detection……………………………….……....13

Figure 6. Radiograph of a foot acquired by a CR system pre- and post-

 enhancement……………………………………………………..................14

Figure 7. Front end of fluoroscopy system (1: XRII tube, 2: input screen and
 photocathode, 3: electron optics, 4: output window, 5: tandem lens,
 6: TV camera, 7: amplifier)……………………………………...................15

Figure 8. CT scanning advantages and disadvantages………………….…………....21

Figure 9. Market data. (a) Revenue estimations in the X-ray market, (b)

 Global distribution of CT systems………………………………………....23

Figure 10. Scanning time vs number of features for CMM and CT

 systems…………………………………………………………...............25

Figure 11. Typical spatial resolutions and object sizes for different CT

 systems…………………………………………………………................27

Figure 12. Multi-material assembly: drug delivery device (insulin pen)

 including components of different polymeric materials……………...…..28

Figure 13. Location and dimensions of tested samples…………….………..............30

ix	
	

Figure 14. Comparison of segmentation results…………………………………......32

Figure 15. Point projection X-ray microscopy………………………….......…….…34

Figure 16. First synchrotron-based microscope…………………...…...…………....34

 Figure 17. Attendees and articles/abstracts at X-ray microscopy

 conferences…………………………………………………………….….36

Figure 18. Possible types of errors associated with segmentation………......….…...38

Figure 19. Proposed method applied to a character……………...…………….....…41

Figure 20. Proposed method applied to a texture………………...…………………41

Figure 21. Original images used in Pun’s study…………......……………….……..43

Figure 22. Gray-level histograms with selected entropic thresholds……...………...44

Figure 23. Segmented images with entropic thresholds applied………......………...44

Figure 24. Four test images of study………………………...…………...….………52

Figure 25. Segmentation results for F16 jet test image…………...……...……….....54

Figure 26. Segmentation results for house test image…………………………….....54

Figure 27. Segmentation results for Lena test image……………...……...………....55

Figure 28. Segmentation results for peppers test image………………......................55

Figure 29. Qualitative results for Lena image………………………...……….…….57

Figure 30. Qualitative results for peppers image…………………...………….…….57

Figure 31. Original two-phase image segmentation GUI…………...………….……75

Figure 32. Final two-phase image segmentation GUI……………………………….76

Figure 33. Original three-phase image segmentation GUI…………………………..77

Figure 34. Final three-phase image segmentation GUI……………………………...78

Figure 35. First original image slice of pervious concrete specimen………..............79

x	
		

Figure 36. First cropped image slice of pervious concrete specimen…………...…...83

Figure 37. Pervious concrete results of thresholding techniques (displayed

 image slice segmented with the Otsu (1979) method)…………................83

Figure 38. Segmented pervious concrete slice with different thresholding
 methods applied: (a) Otsu (1979) method, (b) Pun (1980) method,
 (c) Kapur et al. (1985) method, (d) Johannsen and Bille (1982)

 method, (e) Kittler and Illingworth (1986) method………….....................84

Figure 39. First cropped image slice of glass bead specimen…………….……...…..86

Figure 40. Glass bead results of thresholding techniques (displayed image

 slice segmented with the Otsu (1979) method)…………………….....…..87

Figure 41. Segmented glass bead image slice with different thresholding
 methods applied: (a) Otsu (1979) method, (b) Pun (1980) method,
 (c) Kapur et al. (1985) method, (d) Johannsen and Bille (1982)

 method, (e) Kittler and Illingworth (1986) method…………………….…87

Figure 42. First cropped image slice of silica sand specimen………………………..89

Figure 43. Silica sand results of thresholding techniques (displayed image

 slice segmented with the Otsu (1979) method)………………...……..…..90

Figure 44. Segmented silica sand image slice with different thresholding
 methods applied: (a) Otsu (1979) method, (b) Pun (1980) method,
 (c) Kapur et al. (1985) method, (d) Johannsen and Bille (1982)

 method, (e) Kittler and Illingworth (1986) method………...………......…90

Figure 45. First cropped image slice of a partially saturated silica sand

 specimen……………………………………………………………....…..94

Figure 46. Partially saturated silica sand results of thresholding techniques
 (displayed image slice segmented with the Otsu (1979) three-phase

 method)…………………………………………………………………....95

Figure 47. Segmented images of a partially saturated silica sand slice:
 (a) Otsu’s (1979) three-phase method, (b) Iterative Otsu,

 (c) Refined statistical-based method………………..………….................96

xi	
	

Figure 48. Segmented images of a partially saturated silica sand slice:
 (a) Arora et al. (2008) method,
 (b) Refined statistical-based method……………………………………...98

Figure 49. First cropped image slice of a partially saturated glass bead
 specimen…………………………………………………………..….......99

Figure 50. Partially saturated glass bead results of thresholding techniques
 (displayed image slice segmented with the Otsu (1979) three-phase
 method)………………………………………………………………….100

Figure 51. Segmented images of a partially saturated glass bead slice:
 (a) Otsu’s (1979) three-phase method, (b) Iterative Otsu,
 (c) Refined statistical-based method………………………….................100

Figure 52. Segmented images of a partially saturated glass bead slice:
 (a) Arora et al. (2008) method,
 (b) Refined statistical-based method…………………………….............102

xii	
	

ABSTRACT

The effectiveness of five global thresholding techniques, to accurately segment

different two-phase geomaterials (solids and air), was evaluated in this work. X-ray

computed tomography (CT) images taken from pervious concrete, glass bead, and silica

sand specimens were analyzed for evaluating the five chosen methods. The core algorithm

of each of these methods was coded as a standalone graphical user interface (GUI)

application software. From the results, it can be said that, no single image segmentation

technique performs well over a wide range of material and that the performance of each

image segmentation technique varies depending on the type and state of the analyzed

media.

X-ray CT images of three-phase (solids, water, and air) silica sand and glass bead

specimens were analyzed and used for evaluating the segmentation performances of three

methods. Based on the observations made on these methods, a refined statistical-based

global segmentation algorithm is proposed for segmenting partially saturated granular

geomaterials. The findings for the silica sand specimen showed that the proposed technique

estimated void ratio with 1.52 percent error and degree of saturation with 4.35 percent

error. On the other hand, void ratio for the glass bead specimen yielded a high percent error

of 15.63 whereas degree of saturation had a very low percent error of 0.34. By comparing

the results of the proposed technique with the other Otsu-based techniques, it is concluded

xiii	
	

that the proposed algorithm performs better in segmenting three-phase granular

geomaterials.

1	
	

Chapter 1

INTRODUCTION

1.1 Image Segmentation

There are many different types of images. Thermal images, magnetic resonance

images (MRI), and light intensity (visual) images are some examples. Of all image types,

light intensity images are the most common. As alluded to by the name, this type of image

represents the variation of light intensity in a scene (Pal and Pal 1993). Regardless of type,

images can be viewed as digital images. Mathematically speaking, a digital image is a two-

dimensional discrete function, f(x,y) that is digitized in both spatial coordinates and the

magnitude of the feature value (e.g., temperature intensity, light intensity, and depth) (Pal

and Pal 1993). The values of x and y in a discrete function represent row and column

indices, respectively. The meeting of these indices marks a point referred to as a pixel. The

pixel equivalent in three-dimensional space is referred to as a voxel (Razavi 2006;

Manahiloh et al. 2012; Manahiloh 2013).

Image segmentation is a general term that is utilized to describe the process of

separating an area of interest, a pattern, or a subset of pixels with common features in an

image through usage of various techniques (Liao et al. 2001). The pixels in images acquired

via X-ray computed tomography (CT) scanning contain gray-level intensity information.

Each pixel’s intensity varies from black (weakest shade of gray) to white (strongest shade

2	
	

of gray) (Madra et al. 2014). The intensity value for each pixel is saved as an aggregate of

bits. For example, 8-bit images have intensity values varying from 0 to 255. The common

practice in image segmentation is to extract the pixels with the desired color or gray

intensities.

1.2 Thresholding

Since the pioneering work of Brice and Fennema (1970), image segmentation

techniques have undergone immense evolution, including in the direction of histogram

thresholding. Thresholding is a simple yet popular concept that introduces one or more

intensity values to an intensity distribution (i.e., image histogram) of an image where these

values separate the foreground (i.e., objects of interest) from the background. The field of

image thresholding has been well researched, yielding many different models that can be

used to achieve the same result of effectively segmenting an image. Depending on the

constituent elements (i.e., phases) of an image, thresholding techniques could be bi-level

or multi-level (Leedham et al. 2003). Bi-level thresholding techniques introduce one

threshold value to the image histogram and produce an image segmented into two distinct

regions (Kohler 1981; Pal and Pal 1993). “Foreground” and “background” are the terms

applied to the pixel values greater than and less than a threshold value, respectively (Kurita

et al. 1992; Abdullah et al. 2012). Multi-level thresholding methods, on the other hand,

introduce more than one threshold value to the intensity distribution (Kapur et al. 1985;

Arora et al. 2008). Regardless of the approach, the number of segmented regions is always

equal to the number of thresholds plus one.

3	
	

Thresholding techniques are divided into two general classes of global and local

thresholding. While global thresholding techniques use the statistical information of an

intensity value distribution for the total pixels in a given image, local thresholding methods

use the statistical information of a set of neighboring pixels to classify a pixel (Singh et al.

2011). In other words, global thresholding is used to choose a threshold value that is only

dependent on gray-level values while relating to the characteristics of pixels, whereas a

local thresholding approach determines a threshold value through usage of both the gray-

level value and local property of a pixel (e.g., range and variance). Local thresholding

divides an image into several subregions and chooses a threshold for each of these regions.

After such thresholds are applied, a gray-level filtering technique is used to eliminate

discontinuous gray-levels among the subregions.

 The main problem associated with global thresholding techniques is that the effects

of noise (i.e., random variation in pixel intensity) cannot be eliminated by these methods

(Leedham et al. 2003). This results in the lack of prominent peaks forming for all of the

features of interest in an image. However, for segmentation of images with clear distinct

phases, as it is the case with granular materials, global thresholding techniques provide

sufficiently accurate results. Therefore, the research conducted for this thesis focuses on

global thresholding techniques.

1.3 Research Motivation

In the engineering world, laboratory tests are conducted on various specimens to

determine important engineering properties, such as void ratio (e) and degree of saturation

(S%). Depending on the shape of the grains, the grain size distribution, and the packing or

4	
	

arrangement of the grains, granular materials can have a rather wide range of void ratios

(Holtz et al. 2011). Void ratio is an essential component in geotechnical design with regards

to shear strength and volume change. Shear strength plays a role in the evaluation of

bearing capacity of different materials used in geotechnical engineering practice. Volume

change and bearing capacity have a direct effect in the determination of the settlement of

such materials, most notably soils. These two soil behaviors have a pivotal role in

understanding soil-structure interactions, which are crucial for sustainable infrastructure

design.

Degree of saturation is a critical component in understanding the behavior of

unsaturated soils (i.e., partially saturated soils). Figure 1 provides this relation in the form

of a soil-water characteristic curve (SWCC). As shown in the figure, the SWCC is created

by relating soil suction to degree of saturation, or soil water content. Soil suction refers to

total suction, which is defined as the thermodynamic potential of soil pore water relative

to a reference potential of free water (Lu and Likos 2004). Assuming that the three soils in

the figure are all equilibrated at the same matric suction, the clay would have the highest

water content and degree of saturation due to having a very high specific surface area and

charged surfaces; the specific surface areas of sand and silt are lower. Clay pores are also

much smaller than those of sand and silt, which results in clay having the greatest potential

for holding water. The general shape of the SWCC for various soils reflects the dominating

influence of material properties including pore size distribution, grain size distribution,

density, organic material content, clay content, and mineralogy on the pore water retention

behavior (Lu and Likos 2004).

5	
	

The performed work (explained in later chapters) is conducted in order to quickly

and accurately determine the two engineering properties, void ratio and degree of

saturation, on two-phase and multi-phase images of porous geomaterial specimens. X-ray

CT images, taken from two-phase pervious concrete, glass bead, and silica sand specimens

and three-phase glass bead and silica sand specimens, are analyzed with implemented

thresholding techniques. The core algorithms for these techniques are coded using the

MATLAB© (Mathworks 2015) programming language and packaged into a standalone

application software, a graphical user interface (GUI). Rather than performing laboratory

experiments on physical specimens of porous media, three-dimensional X-ray CT images

of the media can be used in conjunction with thresholding techniques to quickly and

accurately obtain the material properties. The chosen thresholding techniques, such as Otsu

(1979), Pun (1980), and Kapur et al. (1985), were originally analyzed on common images

of letters, people, structures, etc. The accuracy of these old yet successful algorithms is

extended to test the segmentation of porous geomaterials.

Figure 1. General behavior of soil-water characteristic curves for sand, silt, and clay
(Modified from Lu and Likos (2004)).

6	
	

1.4 Organization of the Thesis

The remainder of this thesis will provide lengthy, yet informative details on the

process utilized to successfully perform image segmentation for both bi-level and multi-

level geomaterial characterization. Chapter 2 is composed of background information that

is necessary for understanding the logic and reasoning behind the segmentation approach.

This chapter is subdivided into sections on image acquisition, image processing, and

literature reviews, with the last focusing on the history and development of image

acquisition systems, global image segmentation, and local image segmentation. Chapter 3

focuses on the implementation of global thresholding techniques for both the five two-

phase and the three three-phase thresholding techniques chosen for this work. Chapter 4

contains a description on the application of global thresholding techniques. Most notably,

it provides a description of the purpose of creating graphical user interface (GUI)

executable software and corresponding features and capabilities. This chapter also includes

explanations supporting the workability of a two-phase segmentation GUI and a three-

phase segmentation GUI, which were designed for this study. Chapter 5 presents the results

and discussion pertaining to the porous geomaterials analyzed. Chapter 6 comprises the

conclusions of the results, as well as future work.	

7	
	

Chapter 2

BACKGROUND

2.1 Image Acquisition and Processing

In today’s market, various X-ray image acquisition systems, such as

microtomography, computed radiography, and computed tomography, can be utilized for

imaging granular materials. The acquisition system chosen for this work is X-ray computed

tomography (CT), which is an advanced imaging technique that allows for nondestructive

and noninvasive imaging of specimens to depict cross-sectional and three-dimensional

internal structures (Iassonov et al. 2009). Such a system is especially useful for highly

porous materials (Maire et al. 2007).

Figures 2 and 3 provide general schemes for the setup of image acquisition systems

in both two-dimensional and three-dimensional orientations. An X-ray beam, originating

from an X-ray source, passes through a specimen resting upon a pedestal. The pedestal,

which has four degrees of freedom, moves the specimen left and right, forward and

backward, up and down, and rotationally about an axis perpendicular to the beam. The

beam reaches the detector where data that is useful in projecting the internal structural

details of the scanned media is created. During data acquisition, an image slice rendering

of the specimen is obtained once the pedestal completes a full 360-degree rotation. This

process is repeated as the pedestal moves upwards and downwards to acquire the remaining

8	
	

image slices that make up the specimen. Therefore, each image slice represents a portion

of the specimen, and combining all of the slices together yields a virtual three-dimensional

model of the specimen (Madra et al. 2014).

Figure 2. Two-dimensional schematic of specimen installation in an X-ray CT chamber.

Figure 3. Three-dimensional schematic of specimen installation in an X-ray CT chamber.

9	
	

Image processing deals with utilizing algorithmic programs to identify and extract

information from images. Typically, image processing tools convert 8-bit or 16-bit

grayscale images into binary images post-segmentation. For example, 8-bit images have

256 possible grayscale intensity values. Binary images would have grayscale intensity

values of either 0 or 1 (Abdullah et al. 2012). Thus, by converting the grayscale images,

there is a significant reduction in possible grayscale intensity values. This leads to binary

images having a smaller storage space, being easier to manipulate, and being faster to

process when a thresholding algorithm is applied (Arifin and Asano 2006).

2.1.1 Image Segmentation

The binarization of grayscale images is commonly referred to as image

segmentation and is the foundation for object recognition and computer vision. Image

segmentation partitions an image’s overall histogram into two regions, with the goal of

separating objects of interest (i.e., the foreground) from the background (Kohler 1981).

Segmentation quality is controlled by how well the threshold that separates the regions is

estimated.

Over the last few decades, advancements in technologies for image acquisition and

processing have allowed for tremendous growth in both theory and application of image

segmentation techniques. These techniques are very popular in many fields, such as

agriculture (e.g., (Abdullah et al. 2012)), medicine (e.g., (Sund and Eilertsen 2003)), and

forensics (e.g., (Wen and Chen 2004; Russ 2015)). The restoration of degraded (e.g., aging

resulting in ink fading) scanned documents, including text, line drawings, or other graphics,

can be made possible by image segmentation techniques.

10	
	

Refer to Figure 4, which shows the typical structure of an image segmentation

system. The first main step, preprocessing, is essential in reducing any notable noise (i.e.,

random variation in pixel intensity) if present in the image being analyzed. It is important

to note that this process is completed prior to the image segmentation step. For image

preprocessing, color spaces within the image are transformed into specifically given color

spaces for identifying different portions of an image (Yang and Kang 2009). Techniques

such as a Gaussian filter (Tsai 1995) are used for image smoothing to further minimize any

noise that may hinder segmentation performance. Once an image segmentation algorithm

is chosen, a determined threshold value is used to segment the image into different,

identifiable regions. Post-processing work entails region merging, image marking, and

region extraction. This last step is essential for extracting valuable information from

portions of the segmented image; e.g., to count the number of solid, liquid, and air pixels

for calculating void ratio and degree of saturation in both dry and partially saturated

granular geomaterials. This portion of the segmentation process combines unreasonably

discontinuous regions to allow for a successfully segmented image (Yang and Kang 2009).

Note that the first and third steps may not be used since these steps are dependent on the

quality of the original, raw image and the effectiveness of the chosen image segmentation

algorithm, respectively.

11	
	

Figure 4. Image segmentation system structure (Yang and Kang 2009).

Image segmentation is broken down into three main categories: region-based

segmentation, edge-based segmentation, and special theory-based segmentation (Yang and

Kang 2009). Since this thesis focuses on thresholding techniques, region-based

segmentation is the category of interest (Table 1).

Table 1. Region-based segmentation category (Yang and Kang 2009).

Sub-classes Interpretation
Thresholding Otsu Extract the objects from the

background by setting reasonable
gray threshold Ts for image pixels.

Optimal thresholding
Thresholding image

Region operating Region growing Partition an image into regions that

are similar according to given
criteria, such as gray character, color
character, texture character, etc.

Region splitting and merging
Image matching

12	
	

The sub-classes of region-based segmentation are thresholding (i.e., global

thresholding) and region operating (i.e., local thresholding). The thresholding sub-class is

further divided into Otsu, optimal thresholding, and thresholding image techniques. The

region operating class is subdivided into region growing, region splitting and merging, and

image matching.

Overall, image segmentation is a very powerful tool for obtaining and analyzing

the properties of porous media, such as soil, rocks, concrete, and glass. Rather than

performing laboratory experiments on physical specimens of porous media, images of the

media can be used in conjunction with thresholding techniques to quickly and accurately

yield material properties such as void ratio.

2.2 Literature Review

2.2.1 Image Acquisition Systems

This section contains a literature review for the medical and industrial usage of

image acquisition systems as well as a brief overview of the history and development of

these systems. Two papers are reviewed for medical purposes, two papers for industrial

purposes, and one paper for describing the historical side of image acquisition systems.

2.2.1.1 Medical Usage

The following two papers are reviewed as an example of the medical benefits that

image acquisition systems provide:

1. Digital Image Acquisition and Processing in Medical X-ray Imaging – Aach

et al. (1999)

13	
	

2. A Comparison of Computed Tomography, Computed Radiography, and

Film-Screen Radiography for the Detection of Canine Pulmonary Nodules – Alexander et

al. (2012)

The authors of the first paper discuss popular techniques and future applications of

digital X-ray imaging in medicine. They go over the advantages of using digital imaging

in comparison to conventional analog methods. A real-time image acquisition system, X-

ray fluoroscopy, is examined, and the authors present a unified radiography/fluoroscopy

solid-state detector concept.

A main requirement of successful digital imaging is the separation of image

acquisition and display. Images digitally acquired through conventional analog methods

(using screen/film combinations) can be processed in order to correct accidental

overexposure or underexposure, or to enhance diagnostically relevant information before

display (Aach et al. 1999). Figure 5 shows a simple schematic representing the overall

principle of conventional X-ray image detection. As shown in the figure, the X-ray film is

placed between two intensifying screens. These screens ultimately convert the x radiation

into visible light. The conversion blackens the X-ray film, which can be viewed on a light

box.

(Figure 5 has been removed due to copyright restrictions.

http://electronicimaging.spiedigitallibrary.org/article.aspx?articleid=1097476)

For modern digital imaging, the quality of the separation of image acquisition and

display is determined by comparing the images acquired through digital imaging to those

14	
	

by analog methods. X-ray radiograph is the term given to high resolution projection

images. There are other alternatives for image acquisition, such as computed radiography

(CR) systems. For CR systems, the image receptor is a photostimulable phosphorous plate

in the form of a cassette, which absorbs and stores a significant portion of the incoming X-

ray energy by trapping electrons and holes in elevated energy states (Aach et al. 1999).

This energy can be read by scanning the plate with a laser beam.

Unfortunately, in both analog and digital systems, the quality of acquired images is

diminished by system properties. For instance, limitations of contrast and resolution,

detector sensitivity, and unwanted detector offsets may arise (Aach et al. 1999).

Fortunately, digital systems prove to be superior to analog systems due to having the

capabilities of counterbalancing these degradations with suitable processing approaches

(e.g., offset correction, gain correction, modulation transfer function (MTF) restoration).

As an added bonus, any exposure issues are eliminated thanks to the image receptors

having approximately four orders of magnitude and the option of digitally adjusting the

image’s intensity range. Lastly, methods such as unsharp masking and harmonization can

be used to enhance any relevant detail (Aach et al. 1999). Note that this enhancement is in

regard to less important information in the image. To illustrate the effects that enhancement

techniques can have, Figure 6a is a radiograph of a foot, and Figure 6b is the enhanced

version of the foot.

(Figure 6 has been removed due to copyright restrictions.
http://electronicimaging.spiedigitallibrary.org/article.aspx?articleid=1097476)

15	
	

Harmonization and then unsharp masking were applied for the enhancement of

Figure 6a. Harmonization amplifies middle and high frequencies relative to low ones to

make specific image details more visible. Unsharp masking applies an additional

amplification of high spatial frequencies to give an image a sharper appearance (Aach et

al. 1999). Therefore, it can be seen that Figure 6b is in fact an enhancement of Figure 6a.

X-ray fluoroscopy is a real-time dynamic X-ray imaging modality that allows a

physician to monitor online clinical procedures such as catheterization (i.e., diagnosing and

treating cardiovascular conditions by inserting a long, thin tube into the body) or injection

of contrast agents (i.e., agents that enhance the visibility of blood vessels) (Aach et al.

1999). An illustration of the front end of a fluoroscopy image detection system is provided

in Figure 7. The X-ray image intensifier (XRII) is a vacuum tube containing an input screen

directly attached to a photocathode, electron optics, and a phosphorous screen output

window. Images are detected by a fluorescent cesium iodide (CsI) layer on the input screen.

This is where incoming x radiation is converted to visible photons leading to the

photocathode. The photoelectrons accelerate as they pass through the electron optics, and

visible images are eventually picked up by the camera. The last step of the system is

amplification. For the digitization of 8-bit images, amplification is greater for smaller

signal amplitudes than for larger ones in order to enhance any dark parts of the images

(Aach et al. 1999).

(Figure 7 has been removed due to copyright restrictions.
http://electronicimaging.spiedigitallibrary.org/article.aspx?articleid=1097476)

16	
	

The effects of noise are present in the majority, if not all, of image acquisition

systems. For fluoroscopy image detection, there are two types of system-internal noise

sources: fixed pattern noise and signal shot noise. Fixed pattern noise is caused by

inhomogeneities of the XRII output screen. Signal shot noise is generated by the discrete

nature of the conversion of information carriers, e.g., from luminescence photons into

electrons in the XRII photocathode and the camera (Aach et al. 1999).

Even though XRII/TV camera systems have provided excellent image quality, there

are still associated disadvantages. For one, these systems are particularly heavy and large

in size. This makes the employment of these systems for bedside imaging with mobile

fluoroscopy systems infeasible. Besides physical downsides, the systems suffer from

electronic issues (e.g., vignetting, veiling glare, and geometric distortion). Vignetting is a

phenomenon that results in a significant decrease in output image intensity toward the

circular image boundary, which is caused by the convex shape of the XRII input screen

(Aach et al. 1999). Veiling glare refers to disturbing light in the output images of an XRII

caused by scatter of X-ray quanta, photoelectrons, and light photons inside the XRII, which

reduces contrast (Aach et al. 1999). Vignetting and veiling glare issues can be digitally

neutralized, but the best course of action would be to prevent these issues in the first place.

These problems can be prevented with an all solid-state image sensor independent of

electron and light-optical components, thus resulting in negligible effects of vignetting,

veiling glare, and geometric distortion (Aach et al. 1999).

The paper by Alexander et al. (2012) discusses various image acquisition systems,

specifically computed tomography, computed radiography, and film-screen radiography,

17	
	

for detecting canine pulmonary nodules (i.e., swelling/lumps in the lung area). Computed

tomography (CT) systems are commonly used in veterinary specialty practices to evaluate

the lungs. CT is sometimes the only method used to evaluate the thorax (i.e., part of body

between neck and abdomen) and is especially useful for patients that are already

undergoing CT scanning for the evaluation of tumors. For the detection of pulmonary

nodules, CT is more accurate than radiography due to its superiority of contrast, noise, and

a lack of overlying anatomic noise (Alexander et al. 2012).

In the majority of veterinary practices, computed radiography (CR) replaced film-

screen radiography due to film-screen radiography being more obsolete. CR also

outperforms film-screen radiography in evaluating small structures (e.g., pulmonary

nodules) because of the possibility of scanning a wider range of sizes and the ability to

manipulate radiographic images (Alexander et al. 2012). Besides comparing the different

systems to each other for the detection of pulmonary nodules, the authors compared nodule

size and associated characteristics. An additional study on the experience level, confidence,

and accuracy of the diagnoses of the analysts was performed.

Twenty-three client-owned dogs were chosen for the study, with 24 examinations

completed. Of the 24 examinations, 13 were prospective (i.e., dogs had lumps) and 11 were

retrospective (i.e., dogs had no lumps). Three of the patients were excluded from the study.

One dog underwent surgical removal of liver cancer and had both prospective and

retrospective examinations. Another dog was excluded due to the nodules having a

bronchial distribution that made them very difficult to differentiate from each other

(Alexander et al. 2012). Of the remaining 21 dogs, 7 were golden retrievers; 2 each were

18	
	

German Shepherds, Bernese Mountain Dogs, Labrador Retrievers, and mixed-breeds; and

six were of various other breeds. The dogs ranged from 6-13 years of age. All dogs had at

least a three-view thoracic CR examination and a CT examination of the entire thorax

within 72 hours of each other. Each image was read by two board-certified veterinary

radiologists to create an efficient system for classification. (Alexander et al. 2012).

For each imaging modality, each study was classified as either positive or negative,

where 0-3 represented definitely negative, probably negative, probably positive, and

definitely positive, respectively. Ultimately, any result identified as probably negative or

probably positive was classified as negative or positive, respectively. The lung tissue was

divided into 6 different regions for nodule size and number: right and left middle (RM,

LM), right and left cranial (RCr, LCr), and right and left caudal (RCd, LCd). Nodule

characteristics were classified based on the following: definition (1 = well, 2 =

intermediate, 3 = poor), contour (1 = regular/smooth, 2 = irregular/lobulated), shape

(spherical, oval, polyhedral, other), areas of increased opacity/attenuation representing

mineralization (present/absent), and cavitation and/or bronchogram (present/absent)

(Alexander et al. 2012). Besides the two radiologist observers chosen for this study, four

additional observers were recruited to further assess any findings.

Table 2 lists the results of the presence or absence of pulmonary nodules in the 21

dog subjects. From the 12 dogs that only had CR and CT testing, 7 had negative CR and

CT and 5 had positive CR and CT; there was no disagreement between CR and CT for

these two case types. From the other 9 dogs that also had film-screen radiographs

performed, only one dog had a disagreement between modalities; CR found a single

19	
	

pulmonary nodule whereas film and CT did not.

(Table 2 has been removed due to copyright restrictions.
http://onlinelibrary.wiley.com/doi/10.1111/j.1740-8261.2012.01924.x/full)

The authors found that the greatest number of nodules were detected with CT, as

they expected. The majority of the nodules identified by CT were identified in the RM,

RCd, and LCd regions. This may be due to the fact that the RCr and LCr regions are smaller

than the other four, thus nodules would not be as easily identifiable (Alexander et al. 2012).

Interestingly, there was no difference in the number of nodules between CR and film-

screen radiography. More nodules were expected to appear with CR, because CR has the

benefit of utilizing edge-enhancement filters and has the flexibility of image manipulation

to improve the contrast and resolution of images. Older studies in humans have similarly

shown little to no difference between digital and film-screen radiography in the detection

of pulmonary nodules (Woodard et al. 1998; Månsson et al. 1999). CT detected

significantly smaller nodules, and the minimum nodule size detected by CR and films was

the same. Radiography should be inferior in detecting smaller nodules, particularly in areas

of higher anatomic noise (Ehsan et al. 2003; Nemanic et al. 2006). The smallest nodule

detected by CT, CR, and film-screen radiographs was 2 mm, similar to a minimum

diameter of 3 mm reported on plain films (Armbrust et al. 2005).

Nodule characteristics resembled those commonly described for pulmonary

metastases, a type of lung cancer, found in dogs (Burk and Feeney 2003; Nemanic et al.

2006). The majority of nodules were well defined and spherical. The authors expected the

20	
	

nodules to be better defined with CT because of a lack of confounding overlying vascular

structures and age-related changes with functional tissue of an organ (Alexander et al.

2012).

In conclusion, all three image acquisition systems performed similarly in

determining the presence or absence of pulmonary nodules. However, for the radiographs,

a false-negative diagnosis is a limitation that is associated with solitary nodules (Alexander

et al. 2012). As a whole, CT detected a larger number of nodules than the other systems,

and the observers had the strongest accuracy and agreement on the images acquired from

this system.

2.2.1.2 Industrial Usage

The next two works provide substantial details on the industrial usage of X-ray

acquisition systems:

1. Industrial Applications of Computed Tomography – De Chiffre et al. (2014)

2. X-ray Microtomography Applications for Quantitative and Qualitative

Analysis of Porosity in Woven Glass Fiber Reinforced Thermoplastic – Madra et al. (2014)

The work by De Chiffre et al. (2014) reviews the industrial applications of X-ray

computed tomography (CT) scanning systems. As reported by Kruth et al. (2011), the first

CT scanner was built for medical imaging by Nobel Prize winner Godfrey Hounsfield in

1969. CT became a popular technique for non-destructive testing (NDT) and analysis of

materials since the 1980s. In the industry, computed tomography scanning is useful for

detecting flaws, such as cracks and voids, in various materials. This type of scanning is

21	
	

also beneficial for analyzing a material’s particles. Other than being non-destructive, CT

scanning is non-invasive and is the only up-to-date technology that allows for measuring

the inner and outer geometry of a component while keeping the specimen perfectly intact.

CT systems can be considered the third step in the development of revolutionizing

coordinate metrology (i.e., the process of calibrating and using physical measurements to

quantify the size of a given object or the distance from it). The first step was the

introduction of tactile 3D coordinate measuring machines (CMMs) in the 1970s, and the

second step was the creation of optical 3D scanners in the 1980s (De Chiffre et al. 2014).

An overview of the main advantages and disadvantages of CT scanning are presented in

Figure 8.

Figure 8. CT scanning advantages and disadvantages (Müller 2013).

22	
	

The usage of CT systems increased tremendously following the development of the

first CT system for human-medical purposes. In fact, research and development of NDT

for industrial work in the 1980s was an essential component in identifying pores and

microstructural defects (flaws) of materials (De Chiffre et al. 2014). Testing of two-

dimensional defects extended to electronic production, i.e., printed circuit boards (PCBs).

However, application of CT scanning for three-dimensional measurements posed accuracy

issues. Thankfully, this issue was solved in the early 2000s; a solution was proposed to

apply a conventional three-dimensional coordinate system for traceability and calibration

(De Chiffre et al. 2014). The first coordinate measuring machine with X-ray sensor

capabilities was developed by Werth Messtechnik in 2005, where the findings were

presented to the market during the international fair “Control” in Stuttgart, Germany (De

Chiffre et al. 2014).

Currently, X-ray systems are commonly used for medical applications and are an

emerging market for industrial use. As a result, the needs and features of X-ray systems

are different for these two separate markets. Figure 9a and Figure 9b represent the revenue

estimations in the X-ray market from 2009-2017 and the global distribution of these

systems, respectively. From Figure 9a, the revenue from X-ray systems in 2009 was

estimated to be $344.2 million and was predicted to reach $591.9 million in 2017, thus

showing great growth and interest in this field of work. Figure 9b shows that the majority

of systems are installed in North America (32.2%) followed by Europe (27.5%) and the

countries composing the Pacific region (27.3%), most notably Japan, China, India, and

Russia (De Chiffre et al. 2014). The peak of interest in these systems over the past few

23	
	

decades has opened up many opportunities in other branches of the industry. One such

example is the food industry. CT scanning is favorable for packaging lines so that the

contents of sealed packages, preserving jars, or cans can be checked to see if there are any

contaminants contained within. Another instance is for butcheries and food processing

factories where each piece of meat can be scanned to accurately calculate fat content to set

fair market prices (De Chiffre et al. 2014).

	

 (a) (b)

Figure 9. Market data. (a) Revenue estimations in the X-ray market, (b) Global

distribution of CT systems (De Chiffre et al. 2014).

Many people have developed different types of CT systems due to the peak of

interest in said systems. Two commonly used types are clinical CT scanners and CT

systems for material analysis and implementation for the industrial market. For clinical CT

scanners, the X-ray source is rotated continuously around a stationary material or patient

(if for medical usage) to obtain tomographic images representing slices or portions of the

material or patient. Research on increasing the efficiency of clinical CT scanners has been

24	
	

ongoing for over four decades (Hsieh 2009). CT systems for material analysis and

industrial purposes work differently than clinical scanners. Instead of the X-ray unit

moving around a stationary item, the X-ray unit is kept stationary while the object being

scanned is rotated. Also, since resolution and accuracy requirements are different between

these two types of scanning systems, scanning parameters usually differ significantly

(Kastner 2012). The resolution and accuracy for industrial CT systems can be adjusted by

moving the axis of rotation supporting the object either closer to the source or detector

(Kruth et al. 2011). This cannot be done for standard clinical scanners since the rotation

axis is located between the source and detector. Another difference is that most CT

systems, unlike clinical scanners, apply cone beam geometry and flat panel detectors to

tremendously reduce scanning time while providing good image quality (Goebbels and

Zscherpel 2011).

The five major factors affecting the effectiveness of CT systems are scanning time,

measuring range, maximum penetrable material thicknesses, resolution, and accuracy.

Contrary to coordinate measuring machines (CMM), the scanning time of CT systems is

independent of the number of features that the system measures (Figure 10). The figure

shows that tactile CMM considerably increases in scanning time when the number of

features increases, whereas video CMM does not show as abrupt of a change. Scanning

time is dependent on multiple parameters, including exposure time, number of projections,

and performance of data processing (Kruth et al. 2011). Typical scanning time for industrial

CT systems has shown to range from a few minutes to a few hours (Christoph and Neumann

2011).

25	
	

Figure 10. Scanning time vs number of features for CMM and CT systems
(De Chiffre et al. 2014).

The measuring range capabilities of CT systems vary depending on the type of CT

system being used. The dimensions of objects for scanning are limited by the measuring

volume between the source and detector, system magnification, and the maximum

penetrable material thickness (De Chiffre et al. 2014). The maximum penetrable material

thickness that is penetrable by X-rays depends on the material’s attenuation coefficients

and the X-ray photon energy (De Chiffre et al. 2014). Table 3 provides examples of typical

values for common materials. To optimize the scanning step, the object of interest should

be oriented in a way to reduce the maximum penetrated material thickness. Optimizing

orientation also involves minimizing the variation of penetration depth during object

rotation in order to avoid pixel saturation or extinguishment in X-ray projections

(Weckenmann et al. 2008; Müller 2013).

26	
	

Table 3. Maximum penetrable material thicknesses for common industrial materials
(Weckenmann et al. 2008).

X-ray voltage 130 kV 150 kV 190 kV 225 kV 450 kV
Steel/ceramic 5 mm <8 mm <25 mm <40 mm <70 mm
Aluminum <30 mm <50 mm <90 mm <150 mm <250 mm
Plastic <90 mm <130 mm <200 mm <250 mm <450 mm

Resolution is affected by many factors which influence CT reconstructions,

including performance of the detector, number of projections, focal spot size of the X-ray

source, reconstruction algorithms, and data post-processing (De Chiffre et al. 2014).

Systems with a focal spot size greater than 0.1 mm are referred to as conventional or macro

CT. Microfocus systems (µCT) have a spot size of a few micrometers. Nanofocus systems

(nanoCT) can reach sizes as small as 0.4 µm (Heinzl 2009; Kastner 2011). Synchrotron CT

(sCT) can reach 0.2 µm resolution which can be improved to 0.04 µm resolution when

Kirkpatrick-Baez optics are applied (sCT+KB) (Requena et al. 2009). Figure 11 shows

these values in a plot of spatial resolution versus object size. Lastly, CT accuracy is

dependent on the specific object being measured and the specific parameters chosen for the

measurement process (De Chiffre et al. 2014).

27	
	

Figure 11. Typical spatial resolutions and object sizes for different CT systems (De
Chiffre et al. 2014).

The manufacturing industry is dealing with the issue of products having shorter life

cycles while the variety of the products is increasing, resulting in higher costs and a greater

need for time-efficient labor. Industrial X-ray CT systems would then contribute to

benefiting the industrial development and production chain. CT systems can be used for

the inspection of goods or products while keeping them completely intact. Various

components assembled together can be inspected since there is no guarantee that the

assembled item will properly function, even if each individual component is working prior

to assembly. Figure 12 depicts an example of multi-material assembly of an insulin pen.

28	
	

Figure 12. Multi-material assembly: drug delivery device (insulin pen) including
components of different polymeric materials (Sørensen 2012).

In conclusion, there is a large number of industrial applications for X-ray computed

tomography scanning. This market may not be old and proven, like for medical purposes,

but industrial applications are rapidly growing, e.g., in the manufacturing industry,

electrical devices, and food industry. Future concerns entail extending CT practicality to a

greater range, improving worker operation, having a better economy of the measurements

process, and having a faster cycle time for a measurement according to the cycle time of

manufacturing (De Chiffre et al. 2014).

Madra et al. (2014) obtained a three-dimensional representation of woven glass

fiber reinforced thermoplastic composite by means of X-ray microtomography. Polymer

matrix composite materials have recently become very popular and were previously

inaccessible due to high manufacturing and development costs. Limitations in controlling

material parameters resulted in over-constrained designs and poor performance (Madra et

al. 2014). Over the last few decades, advancements in the comprehension of the physics

and mechanics driving materials has allowed for the invention of methods capable of

processing thermoplastic matrices. Further studies on the manufacturing processes and

29	
	

mechanical behavior of thermoplastic composites will allow for the better design of

structural parts to optimize the performance to cost ratio (Madra et al. 2014). Most notably,

thermoplastics reinforced with glass fiber are of great interest for the aeronautical and

automobile industries.

The classical Archimedes method is a technique for measuring porosity content.

The technique is useful for testing large amounts of material but not for micro-pores, which

cannot be identified by the method. This leads to a more precise approach for porosity

estimation, being optical or Scanning Electron Microscopy (SEM). Many other methods

exist as well, such as ultrasonic detection and active thermography (Mayr et al. 2011). X-

ray microtomography provides complete three-dimensional representations of scanned

structures. Related studies help with identification of various mechanical parameters,

monitoring of crack propagation, or characterization of phase composition for different

types of materials (Scott et al. 2011; Eric et al. 2012; Cosmi and Bernasconi 2013; Etaati

et al. 2013; Seltzer et al. 2013). With constant development of image processing tools, both

two-phase (material+air) materials and multiphase composites can be examined (Maire et

al. 2001; Maire et al. 2007; Requena et al. 2009; Scott et al. 2011). The authors applied

various image segmentation techniques to acquire segmented images for analyzing

porosity on the global, layer, and single yarn scale.

A laminate of thermoplastic reinforced with glass fiber, supplied by Ecole des

Mines de Douai, France, was consolidated under pressure to prepare for testing. Two

materials were considered: P1 with bulk porosity of 0.45% measured by the Archimedes

method and P2 with bulk porosity 1% (Madra et al. 2014). Six specimens were cut from

30	
	

manufactured sheets (Figure 13).

Figure 13. Location and dimensions of tested samples (Madra et al. 2014).

Microtomography scans were obtained at Laboratoire Mateis of INSA Lyon,

France, using X-ray microtomography (Salvo et al. 2003). Images had attenuation

coefficients relating to grayscale, with 0 representing white/fibers and 255 representing

black/porosity. Any further image processing was completed by ImageJ/Fiji (Schindelin et

al. 2012). Unfortunately, the results showed that standard thresholding methods would

deem unsatisfactory results due to noise and low contrast caused by low resolution.

Therefore, a learning algorithm, Trainable Weka Segmentation, was used. Training

31	
	

features, such as Gaussian blur and Hessian were applied. Specifically for this study,

images were segmented into three or four classes (Madra et al. 2014). Figure 14 illustrates

the segmentation results from the techniques tested: thresholding and median filtering and

the Trainable Weka Segmentation method. The black, gray, and white regions on the

images correspond to resin, fibers, and porosity, respectively. Table 4 lists the

segmentation average and standard deviation errors for the three different techniques

utilized, with the third being standard thresholding without any additional filtering applied.

Overall, the Weka Segmentation provides the best results with relatively low standard

deviation. The thresholding without filtering method yields the greatest noise and

misclassifies areas as porosity. Even though median filtering decreases the present noise,

the technique still does not reach the effectiveness of learning algorithms (Madra et al.

2014).

32	
	

Figure 14. Comparison of segmentation results: (a) original slice from microtomography;
(b) segmentation by thresholding and median filtering; (c) trainable weka segmentaion

(Madra et al. 2014).

Table 4. Comparisons of errors in segmentation for various methods

(Madra et al. 2014).

Method Porosity error Fiber error
 Average (%) Standard

deviation (%)
Average (%) Standard

deviation (%)
Thresholding 80.1 30.4 42.3 23.7
Thresholding + median 53.6 37.1 38.2 19.2
Weka segmentation 9.8 4.7 12.3 6.7

33	
	

The results provide a positive outlook for the future of deriving indicators for

optimizing the manufacturing process. These indicators can be obtained from a porosity

distribution at various scales (i.e., global, layer, and single yarn scales). The quality of the

microtomography results as well as the segmentation process parameters directly affect

microtomography quality (Madra et al. 2014). The implementation of learning algorithms

allowed the scans of the glass fiber reinforced thermoplastics to yield acceptable results.

Future work entails testing the learning algorithms on less contrasted images that have

similar attenuation coefficients (e.g., carbon fiber).

2.2.1.3 History of Image Acquisition Systems

The final paper reviewed provides a summary on the history, growth, and future of

image acquisition systems from 1895 to 2008:

1. The History and Future of X-ray Microscopy – Kirz and Jacobsen (2009)

The usage of image acquisition systems was made possible following Wilhelm

Röntgen’s discovery of X-rays in 1895 (Röntgen 1896). Pioneers of the image acquisition

field understood the nature of X-rays and developed absorption and emission spectroscopy

(Kirz and Jacobsen 2009). The pioneers also were able to establish point-projection

microscopy with a resolution of a few microns (Malsch 1939). Even the famous physicist

Albert Einstein worked with X-ray technology, more specifically X-ray optics. Einstein

(1918) suggested that the index of refraction (i.e., deflection of X-ray beams off of an

object) in most materials should be slightly less than 1.

Following the conclusion of World War II in 1945, numerous people became

34	
	

interested in working with X-ray microscopy. For instance, Arne Engström of Sweden

developed the technique of quantitative elemental imaging (Engström 1946). At

Cambridge University, Cosslett and Nixon began to work in point projection X-ray

microscopy (Figure 15) and extended their expertise to X-ray analysis in the electron

microscope (Cosslett 1959).

Figure 15. Point projection X-ray microscopy (Cosslett 1959).

The 1970s introduced the first light-based X-ray microscopes. Horowitz and

Howell (1972) presented the first developed synchrotron-based X-ray microscope, as

shown in Figure 16. The beam stop, located above the x,y transducer, absorbs emitted X-

ray energy which reduces the scattering of the background, i.e., noise.

(Figure 16 has been removed due to copyright restrictions.
http://xrm.phys.northwestern.edu/research/pdf_papers/1972/horowitz_science_1972.pdf)

35	
	

Attempts to create other variations of X-ray systems were made in the 1980s and

early 1990s as a follow-up to the success of synchrotron light sources. In particular, a

research group at King’s College built a scanning transmission X-ray microscope (STXM)

(Morrison et al. 1989). The first X-ray lasers were demonstrated at Livermore and

Princeton (Trebes et al. 1987; Skinner et al. 1990; Da Silva et al. 1992), but were deemed

unsuitable for microscopy experiments due to only outputting a few pulses per day.

At the time, the unfamiliarity and newness of the field of X-ray microscopy led

researchers down a wrong path. Professor Baldini from Harvard teamed up with scientists

at IBM for flash-contact-microscopy of blood platelets (Feder et al. 1985). One of the

images of the blood platelets actually appeared in the Science section of The New York

Times on January 15, 1985; however, the image was later discovered by the authors not to

be an image but rather a platelet stuck on the detector.

X-ray microscopy reached a point in the early 2000s where there was no longer

question of the practicality of this technology (Kirz and Jacobsen 2009). This technique

has proven, through time, to be a reliable method for image acquisition. In fact, the

community involved in such work (see Figure 17) has drastically grown in attendees and

articles/abstracts written for conferences from 1983 to 2008. The growth was substantial

for X-ray microscopy, where the technology’s early potential (Horowitz and Howell 1972;

Jacobsen 1992) was realized by new zone plates, compound refractive lenses, multilayer

Laue lenses, and Kirkpatrick-Baez optics (Maser et al. 2004; Kang et al. 2006).

36	
	

Figure 17. Attendees and articles/abstracts at X-ray microscopy conferences (Schmahl

and Rudolph 1984).

The future of X-ray microscopy is a promising one; one specific area with the

possibility of rapid growth is multi-dimensional microscopy. It is important to note that the

added dimension, being space, energy, or time, requires extra precautions for preventing

radiation damage (Kirz and Jacobsen 2009). One of the most important advantages of X-

rays is their penetrating power, where much of the demand in applications is to examine

samples too thick for electron microscopes (Sayre et al. 1976; Grimm et al. 1998; Jacobsen

et al. 1998). As powerful as two-dimensional images are, they are not as informative as

three-dimensional images, which can provide a better representation of the internal

structures of the object scanned. One recent, major development in three-dimensional

microscopy lies with the tomographic TXM instruments built by Xradia, which can provide

images with features even smaller than 60 nm (Yin et al. 2006; Chen et al. 2008; Chu et al.

2008).

37	
	

2.2.2 Global Image Segmentation

2.2.2.1 Two-Phase Image Segmentation Techniques

In order to provide further information on the development and testing of bi-level

image segmentation techniques, this section contains literature reviews for the following

four journal papers:

1. A Segmentation System Based on Thresholding – Kohler (1981)

2. A Threshold Selection Method from Gray-Level Histograms – Otsu (1979)

3. A New Method for Grey-Level Picture Thresholding using the Entropy of

the Histogram – Pun (1980)

4. A Survey of Thresholding Techniques – Sahoo et al. (1988)

The first paper by Kohler (1981) proposes a segmentation algorithm for obtaining

multiple threshold values. Generally, an image segmentation algorithm divides an image

into sets of pixels referred to as regions. Successful segmentation is achieved when there

is a high correlation between entities in the “real world” (e.g., objects) and segmentation

regions. The algorithms can be classified into the following two groups: a group where

regions are created in an image based on similar pixel characteristics or features and a

group where edges in an image, corresponding to object discontinuities based on

differences in pixel characteristics or features, are located. As previously mentioned in

Chapter 1, a single threshold value is used to divide an image into two different regions.

Some images with a clear foreground-background relationship have a single threshold

value that detects all object boundaries. On the other hand, more complex images cannot

38	
	

be expected to have a single threshold value that detects all object boundaries. In such a

case, a segmentation algorithm is defined in terms of n thresholds rather than a single

threshold, where the n thresholds are composed of n+1 classes, or regions.

There are three types of errors that can qualitatively deem the segmentation of an

image unsuccessful (Figure 18). Type one error occurs when the segmented image contains

boundaries that are not present in the “correct” segmentation and thus do not correspond

to any real object discontinuities in the image. Type two error occurs when the segmented

image misses edges that appear in the “correct” segmented image. Lastly, type three error

occurs when an object boundary is in the proper location in the “correct” segmentation but

is at a different location in the computed segmentation. These errors typically arise when

there are inaccuracies with the transformation between a spatially continuous image and

its discrete representation. In most cases, it is easier to correct type three errors than type

one and two errors.

Figure 18. Possible types of errors associated with segmentation (Kohler 1981).

39	
	

An optimal threshold value is one that minimizes the potential for any of the above

errors, especially with types one and two being more common. Table 5 below lists seven

(M1-M7) generally used threshold algorithms. The Standard Feature Histogram Method

(M1) is one of the most used algorithms and is based on the assumption that different

regions of an image are detected on the basis of feature activity, where different peaks in

the feature histogram correspond to different image regions. However, there are two main

concerns with using this method. If the valleys between histogram peaks are long and flat,

threshold selection becomes difficult. Threshold selection is also difficult if the edge

information in the image is not utilized (Kohler 1981). The Gradient Weighted Feature

Histogram Method (M2) is another thresholding option that overcomes these limitations.

Gradient information is added to the histogram through the reduction of the relative weight

of histogram entries with high gradient magnitudes. This method would hopefully result in

sharper peaks and valleys of the histogram.

(Table 5 has been removed due to copyright restrictions.
http://www.sciencedirect.com/science/article/pii/S0146664X81800159)

 The second paper by Otsu (1979) proposed one of the most widely used global

thresholding methods. An important step of image processing is the extraction of objects

from the background through applying a threshold value determined from gray-level pixel

information. According to Otsu (1979), the ideal threshold value would be an intensity

value located at a sharp valley between peaks representing objects and the background of

the gray-level intensity distribution. Though, the determination of this value is not that

40	
	

simple; images can have histograms containing noise, the valleys could be flat and long,

or the peaks can have significant differences in height. To ensure that these difficulties are

overcome, Otsu created a method (Otsu 1979) that chooses an optimal threshold value

through an automatic process without any prior knowledge of any pixel information; only

the gray-level histogram is known.

The Otsu (1979) method calculates the optimal threshold through separability of

the two classes (foreground and background) through minimizing within-class variance or

maximizing between-class variance. In other words, the optimal threshold is located where

the summation of the foreground and background spreads are at a minimum (Otsu 1979).

Otsu (1979) ran several experiments to test the effectiveness of his proposed method.

Figure 19a represents an original gray-level image of the character “A,” Figure 19b is the

resulting segmented image, Figure 19c is the original image’s histogram with the selected

threshold value marked with an arrow, and Figure 19d shows the results obtained by

analysis. Figure 20 follows the same representation as Figure 19, with the original image

instead being a texture. The original image in Figure 19 has 16 gray-levels (4-bit image)

whereas the original image in Figure 20 has 64 gray-levels (6-bit image).

41	
	

Figure 19. Proposed method applied to a character (Otsu 1979).

Figure 20. Proposed method applied to a texture (Otsu 1979).

42	
	

The segmentation results prove that the Otsu (1979) method is simple to use and

provides straightforward analyses for otherwise difficult images. An optimal threshold is

stably, effectively, and reliably chosen, and this method also allows for other image

properties to be determined rather than just a threshold value (e.g., estimation of class mean

levels). Therefore, Otsu believed that this method should be viewed as a standard

thresholding method, being quite possibly the simplest method for determining an

automatic threshold value for a wide variety of images. For these reasons, the Otsu (1979)

method is one of the chosen thresholding techniques for the geomaterial characterization

of this work. The mathematical expressions for this method are presented in Chapter 3.

In the third paper, Pun (1980) realized the same disadvantages that arise with

identifying thresholds for images containing noise, as Otsu (1979) did. Just how Otsu

proposed a technique to combat these issues, Pun offered a method that he believed to be

more global and efficient than the Otsu (1979) separability function. Also, as seen with the

Otsu (1979) method, this proposed method does not require information about the image

other than the gray-level histogram. The gray-level histogram is considered to depend only

on the number of gray-levels and is hence independent of the image. An assumption is

made that the relationship between the total pixels at a specific intensity value is

statistically independent from the number of pixels at a nearby intensity value. For

“realistic” pictures, this assumption is not necessarily true, but it is still utilized because

the derivation of the thresholding algorithm is greatly simplified while still providing good

results (Pun 1980).

The testing of the Pun (1980) algorithm began by obtaining experimental results

43	
	

using two images with 256 gray-levels (8-bit images). Figure 21a represents the first image

(a cameraman) and Figure 21b represents the second image (a building). Figures 22a and

22b correspond to the original gray-level histograms for these images with the selected

entropic thresholds indicated on the histograms. Lastly, Figures 23a and 23b show the new,

segmented images with the corresponding threshold values applied.

Figure 21. Original images used in Pun’s study (Pun 1980).

44	
	

Figure 22. Gray-level histograms with selected entropic thresholds (Pun 1980).

Figure 23. Segmented images with entropic thresholds applied (Pun 1980).

45	
	

The results yielded through the Pun (1980) method show that Pun proposed a

successful method of automatically selecting a threshold from a gray-level histogram

through the concept of entropy. Generally speaking, the Pun (1980) method has several

advantages. This method effectively and stably selects a threshold value from the global

information of an image’s histogram and the proposed algorithm is simple to implement

while leading to decreased computational time. Thus, the Pun (1980) method is the second

algorithm chosen for bi-level geomaterial characterization. As with the Otsu (1979)

method, the equations for the Pun (1980) method are provided in Chapter 3.

The fourth paper by Sahoo et al. (1988) was very important since the remaining

three thresholding techniques for bi-level image segmentation were chosen from this work.

These methods, which will be discussed below, underwent a pre-analysis on a given set of

test images from photographs of a portrait or natural scenes to prove their effectiveness.

The global thresholding techniques analyzed in this work are divided into point-dependent

and region-dependent techniques. A thresholding method is point-dependent if the optimal

threshold is determined from the gray-level of each pixel. A thresholding method is region-

dependent if the optimal threshold is determined from the local gray-level in the

neighborhood of each pixel. Since the Otsu (1979) and the Pun (1980) methods were

chosen for implementation, which are both point-dependent global thresholding

techniques, the remaining three techniques were chosen from this same category. One such

method, the p-tile method, assumes that an image consists of dark objects in a light

background and that the threshold is determined through knowledge of the object area. The

mode method is applicable to images with a bimodal histogram that has distinct objects

46	
	

and background. The shortcoming of this method is that it cannot be applied to images with

very unequal peaks or broad and flat valleys. Another subcategory of point-dependent

techniques is the histogram concavity analysis method. This method can be applied when

valleys are not present in the gray-level histogram of images, therefore overcoming some

limitations of the mode method. Instead of focusing on valleys, the histogram concavity

analysis method defines a good threshold value to be located at the “shoulder” of the

histogram (Sahoo et al. 1988).

Even though the above methods proved to be successfully implemented, they were

not considered as potential candidates for the remaining three techniques due to the ease

and applicability of the following three methods. Two of the methods, suggested by Kapur

et al. (1985) and Johannsen and Bille (1982), are included in the entropic methods

subcategory of point-dependent techniques. For the Kapur et al. (1985) method, the optimal

threshold value is determined by deriving two probability distributions of the classes from

the original gray-level distribution of an image (Kapur et al. 1985). The Johannsen and

Bille (1982) method finds the optimal threshold value by dividing the set of gray-levels

into two parts to minimize the interdependence between them (Johannsen and Bille 1982).

The fifth and final method used for analysis is the Kittler and Illingworth (1986) method.

This technique determines the optimal threshold value by viewing the gray-level histogram

as an estimation of the probability density function representing the gray-levels of the

foreground and background pixels in an image. This method also assumes that these two

categories of pixels are normally distributed with priori probability, mean, and standard

deviation (Kittler and Illingworth 1986; Arifin and Asano 2006). Further details for these

47	
	

three techniques are found in Chapter 3.

2.2.2.2 Multi-Phase Image Segmentation Techniques

This section contains the literature review of three journal papers supporting the

evolution of multi-level image segmentation techniques:

1. A Recursive Thresholding Technique for Image Segmentation – Cheriet et

al. (1998)

2. A Fast Algorithm for Multilevel Thresholding – Liao et al. (2001)

3. Multilevel Thresholding for Image Segmentation through a Fast Statistical

Recursive Algorithm – Arora et al. (2008)

As mentioned previously, the Otsu (1979) method is considered to be a standard

thresholding method, quite possibly one of the most reliable methods for determining the

automatic threshold value for a wide variety of images. Not only can this method perform

bi-level segmentation, but it can also be extended to perform multi-level segmentation as

well (Otsu 1979).

The paper by Cheriet et al. (1998) presents a recursive approach that is an extension

of the Otsu (1979) method for image segmentation. Over the last few decades, a substantial

amount of research has focused on image segmentation and the creation of numerous

methods. However, region-based and edge-based techniques are two main types that are

widely used. Region-based techniques create boundaries for threshold selection by

identifying areas of an image with pixels that have homogeneous properties. Edge-based

techniques find local discontinuities between pixels and connect them to form boundaries

48	
	

(Cheriet et al. 1998). Nevertheless, these types of techniques are complementary where

practical usage of a type depends on the type of image being analyzed.

There is great interest in the study of image segmentation of document images (e.g.,

maps, engineering drawings, newspapers, and magazines) to allow for the simple

extraction of relevant information. In the case of this study, the presented recursive

approach utilizes region-based concepts to segment gray-level document images. As an

extension of the Otsu (1979) method, the Cheriet et al. (1998) approach segments the

brightest object at each repetition, ultimately leaving the darkest object in the image at the

end of repetition. The recursive process is completed once no new peaks in the gray-level

histogram can be found or when regions become too small. As an added bonus, the

recursive process is not limited to a specific number of objects.

The Cheriet et al. (1998) technique was trained on 220 real-life bank checks to

select an optimal value, S. S represents the criteria used to determine if two object classes

have homogeneous properties or not. The training set of checks yielded an S value of 95%.

Thus, if two classes do not share at least 95% of homogeneous properties (i.e., pixels

belonging to the same object classification), than a threshold value is used to separate these

classes. The performance of the technique was then tested on 505 different checks. Visual

inspection was performed on these checks to create a classification system, as per Table 6.

Table 7 lists the experimental results for both the training and testing sets of checks.

49	
	

Table 6. Classification of 505 real-life bank checks (Cheriet et al. 1998).

Letter Description
D Dark background or dark handwriting

 D+ Very dark background or very dark handwritten information
S Simple and homogeneous background with no figures
C Complex background with homogeneous figures considered as one object

 C+ Complex background with nonhomogeneous figures considered as multiobjects
t Thin handwritten information
T Thick handwritten information
L Very light handwritten information

 L+ Light but not dark handwritten information

The results in Table 7 indicate that the training and testing check sets yield

satisfactory results for when the target object for each recursion is the darkest object in the

image. Interestingly, the Cheriet et al. (1998) method does not perform segmentation well

when the target object is not the darkest object, as seen for the categories of 20 and 14

checks tested with 0% performance.

The second paper by Liao et al. (2001) proposes a faster version of the Otsu (1979)

method to improve the computational efficiency for selection of multiple optimal

thresholds. Normally, the Otsu (1979) method is very sufficient for real world images with

regard to uniformity and shape measures (Sahoo et al. 1988). Although the Otsu (1979)

method is highly effective, it has shown to take too much time, computationally, to be

practical for multi-level threshold selection. The thorough search to maximize the between-

class variance takes a greater amount of time as the number of classes in an image increase.

The authors first analyzed how the Otsu (1979) method would be expanded for multi-level

segmentation before the presented algorithm was created. Regardless of the number of

classes being segmented, the summation of the cumulative probability functions of the

50	
	

classes always equals one. Also, an image’s mean is determined from the sum of the means

of the classes weighted by the respective cumulative probabilities. With this information,

the original between-class variance can be modified to find the optimal thresholds for

separating all the classes of an image. As mentioned, the modification of the between-class

variance does not speed up computational time, but portions of the modified between-class

variance can be precomputed and stored in a “look-up table” to do so (Liao et al. 2001).

The Liao et al. (2001) method uses the modified between-class variance in conjunction

with the cumulative probability (zeroth order moment) and the mean (first order moment)

of a class to determine the class’s threshold value.

51	
	

Table 7. Experimental results of presented recursive approach (Cheriet et al. 1998).

Number of
Check
Images

Image
Size

(MB)

Background/
Foreground

Classification

Computation
Time (s)

Performance
Analysis

Training Set

86 1.3 D S / t D+ 16 99% - 100%
61 1.4 D C / t D+ 18 96% - 100%
47 1.5 D C / {t, T} L+ 21 85% - 100%
26 1.5 D C+ / {t, T}

D+
23 73% - 84%

Testing Set

68 1.4 D S / {t, T} D+ 17 99% - 100%
74 1.5 D S / {t, T} L+ 19 96% - 100%
58 1.4 D S / {t, T} L 16 85% - 100%
33 1.5 D + S / {t, T}

{D+, L+, L}
18 73% - 84%

47 1.4 D C / {t, T}
D+

20 98% - 100%

56 1.4 D C / {t, T} L+ 19 93% - 100%
31 1.5 D C / {t, T} L 21 81% - 100%
21 1.4 D + C / {t, T}

{D+, L+, L}
20 59% - 81%

48 1.6 D C+ / {t, T}
D+

23 98% - 100%

35 1.6 D C+ / {t, T}
L+

22 90% - 100%

20 1.4 D C+ / {t, T} L 19 0%
14 1.5 D+ C+ / {t, T}

{D+, L+, L}
13 0%

Liao et al. (2001) tested their method on four different images: an F16 jet, a house,

a woman named Lena, and peppers. These images are displayed in Figure 24, and the four

images have 256 gray-level intensities (8-bit images). Table 8 lists the results of the

method’s threshold values for when 2, 3, 4, and 5 classes are segmented. Also, the table

52	
	

provides the computational time for each image with both the Otsu (1979) method (with

and without recursion) and the proposed algorithm. For qualitative purposes, Figures 25-

28 show the bi-level, tri-level, four-level, and five-level segmented images based on the

threshold values of Table 8.

Figure 24. Four test images of study (Liao et al. 2001).

53	
	

Table 8. Threshold values and computational times results of test images
(Liao et al. 2001).

Images

Thresholds
Computation Times

Otsu’s Method Proposed Method
With Recursion

Without Recursion
Classes 2 3 4 5 2 3 4 5 2 3 4 5
F16 Jet 156 111

172
96
149
191

86
130
171
202

<1 s
<1 s

<1 s
1 s

5 s
70 s

6 m
1 h

<1 s <1 s 1 s 37 s

House 147 88
154

86
130
177

64
92
131
178

<1 s
<1 s

<1 s
1 s

6 s
91 s

7.5 m
1.5 h

<1 s <1 s 1 s 68 s

Lena 101 77
145

56
106
159

46
83
119
164

<1 s
<1 s

<1 s
2 s

9 s
166 s

12 m
2.5 h

<1 s <1 s 1 s 107 s

Peppers 102 81
142

43
98
152

40
88
134
173

<1 s
<1 s

<1 s
1 s

7 s
105 s

8.5 m
1.7 h

<1 s <1 s 1 s 77 s

54	
	

Figure 25. Segmentation results for F16 jet test image (Liao et al. 2001).

Figure 26. Segmentation results for house test image (Liao et al. 2001).

55	
	

Figure 27. Segmentation results for Lena test image (Liao et al. 2001).

Figure 28. Segmentation results for peppers test image (Liao et al. 2001).

56	
	

The computational times in Table 8 are essentially the same between bi-level and

tri-level cases for the Otsu (1979) method regardless of whether recursion is used. On the

other hand, recursion significantly decreases computational time for four-level and five-

level cases. For example, recursion decreases four-level computation time for the F16 jet

image by 65 seconds and by 54 minutes for the five-level case. The other three test images

yield significant decrease in computation time for these two levels as well. Besides the

algorithm of this study having a faster computational time than the Otsu (1979) original

method, the Liao et al. (2001) algorithm yields the same threshold values as the Otsu (1979)

method, therefore proving to be an overall superior technique to that of Otsu (1979).

The last paper by Arora et al. (2008) offers a fast, recursive algorithm for multi-

level threshold image segmentation. The approach used an image’s gray-level pixels to

determine the mean and variance for segmentation of the image into multiple levels. Two

main points were considered when the authors created this algorithm. The first is that a

Gaussian distribution would represent an estimation of an image’s histogram, because a

majority of image histograms have pixels that tend to have high frequency values close to

a specific value such as the mean. The other main point is that the human eye is not very

sensitive to image features at extreme pixel values, but it is sensitive to features at mid-

range intensity values. This suggests that it is once again useful to concentrate on the mean

intensity value of an image.

The procedure followed for the Arora et al. (2008) method is quite simple. For

example, assume that the image being segmented requires two threshold values to separate

two objects and background classes from one another. The mean and standard deviation of

57	
	

all of the pixels in the image (pixels ranging from a to b, where a is the smallest gray-level

pixel value and b is the largest gray-level pixel value, initially) are determined and sub-

range boundaries, T1 and T2, are found by utilizing this information. The pixels are then

grouped into two intervals: pixels ranging from a to T1 and pixels ranging from T2 to b.

Lastly, the weighted means of each interval are calculated, which provides the two

threshold values for segmentation. Note that these steps can be repeated if more threshold

values are desired. In such a case, the values of a and b are reassigned as T1+1 and T2-1,

respectively. Two test images that are popular for image segmentation, a woman named

Lena and peppers, were used to test the Arora et al. (2008) algorithm. Figure 29 represents

the Lena image, where 29a is the original gray-level image, 29b is the gray-level histogram,

and 29c-29f are the segmented image with 2 thresholds, 4 thresholds, 6 thresholds, and 8

thresholds applied, respectively. Figure 30, for the peppers image, follows the same

representation as Figure 29. Table 9 also provides quantitative results for these two images

for both the proposed (2008) algorithm and the conventional Otsu (1979) method for multi-

level thresholding.

(Figure 29 has been removed due to copyright restrictions.
http://www.sciencedirect.com/science/article/pii/S0167865507002905)

(Figure 30 has been removed due to copyright restrictions.
http://www.sciencedirect.com/science/article/pii/S0167865507002905)

(Table 9 has been removed due to copyright restrictions.
http://www.sciencedirect.com/science/article/pii/S0167865507002905)

58	
	

Figures 29 and 30 show that the Arora et al. (2008) algorithm successfully segments

the original images; a segmented image looks visually more like the original image as the

number of thresholds increase from 2 to 8. Table 9 provides evidence that the Otsu (1979)

multi-level thresholding technique takes a much larger amount of time to calculate multiple

threshold values in comparison to the Arora et al. (2008) recursive technique. Besides being

computationally faster, the Arora et al. (2008) method provides the same threshold values

as the Otsu (1979) method.

Three thresholding techniques were chosen for implementation to analyze multi-

phase geomaterials. Otsu (1979) was chosen due to its history of being reliable. A

technique called Iterative Otsu was created, which is a modification of the Otsu (1979)

method to include a recursive process. Lastly, a technique named the Refined statistical-

based method was developed as a modification of the Arora et al. (2008) method. In

accordance with the formulations of the five bi-level techniques contained in Chapter 3,

the formulations of the chosen three multi-level techniques are available in Chapter 3 as

well.

59	
	

Chapter 3

IMPLEMENTATION OF GLOBAL THRESHOLDING TECHNIQUES

3.1 Two-Phase Thresholding Techniques

Through previously conducted literature review, five global thresholding

techniques, namely Otsu (1979), Pun (1980), Kapur et al. (1985), Johannsen and Bille

(1982), and the Kittler and Illingworth (1986) methods, were chosen for application to

multiple two-phase porous media. Table 10 lists some of the commonly applied

thresholding techniques for two-dimensional “slice-by-slice” processing of porous media,

which also includes the five implemented techniques of this study.

60	
	

Table 10. Commonly applied thresholding techniques for porous media.
	

Technique Material Thresholding Technique
Baveye et al. (2010),

Carminati et al. (2007),
Soil
Soil

3D Thresholding
3D Thresholding

Culligan et al. (2006), Glass Beads 3D Thresholding
Jassogne et al. (2007), Soil 2D Thresholding

Johannsen and Bille (1982), - 2D Thresholding
Kaestner et al. (2008), Soil 3D Thresholding

Kapur et al. (1985), - 2D Thresholding
Kittler and Illingworth (1986), - 2D Thresholding

Kurita et al. (1992), Glass Beads, Sandstone 2D Thresholding
Lee et al. (2008), Soil 2D Thresholding

Nunan et al. (2006), Aggregates 2D Thresholding
Ojeda-Magaña et al. (2014), Soil 3D Thresholding

Otsu (1979), - 2D Thresholding
Pun (1980), - 2D Thresholding

Ridler et al. (1978), Glass Beads 2D Thresholding
Schaap et al. (2007), Glass Beads 3D Thresholding
Schlüter et al. (2010), Soil 2D Thresholding
Van Geet et al. (2003), Limestone, Sandstone 3D Thresholding

Vogel et al. (2005), Sintered Glass 3D Thresholding
Wildenschild et al. (2002) Sand 3D Thresholding

Each of the five chosen algorithms were programmed with MATLAB (Mathworks

2015). A subroutine that calculates and reports the void ratio from X-ray CT images was

created and applied. Generally, the subroutine reads an image slice, crops it to a circle of

appropriate size (so that the number of pixels are not over- or under-estimated), segments

it by applying a chosen thresholding technique, and counts the number of void and solid

pixels in the segmented image. Void ratio is determined by dividing the number of void

pixels by the number of solid pixels. Since the scanned images represent a two-phase

system, the total number of pixels are composed of air and solids. Once all of the image

slices are processed, results are combined and reported as the void ratio of the specimen.

61	
	

For computational efficiency, each analyzed image was converted to an 8-bit

image, meaning that the grayscale pixel intensities range from 0-255, where pixels closer

to the 0 end are colored black and pixels closer to the 255 end are white. For MATLAB©

coding purposes, this range is taken to be from 1-256. Since the segmentation program is

applied for two-phase images, void pixels are equal to air pixels. Therefore, any pixels less

than a threshold value are black which corresponds to air and any pixels greater than a

threshold value are white which corresponds to solids. In the images analyzed in this study,

the process of reducing the bit depth from 16-bit to 8-bit does not result in a significant

loss of information. This could be attributed to the fact that the specimens were made of

“larger” sized granular media and important details were well preserved in the 8-bit images.

3.1.1 Otsu (1979) Method

Otsu (1979) calculates the optimal threshold through separability of the two classes,

namely the foreground and background, by minimizing within-class variance or

maximizing between-class variance. In other words, the optimal threshold is located where

the summation of the foreground and background spreads are at a minimum (Otsu 1979).

Equations 1-4 are used for this method, where the optimal threshold value (t) is taken as

the pixel value yielding the maximum value from Equation 4.

62	
	

c

pi
mean

i

c

i
*

1
å
== (1)

c

pi
meanli

t

i
iå

-

==

1

1
*

 (2)

c

pi
meangi

c

ti
iå

==
*

 (3)

{ } { } }**max{arg 2
1

1

2 åå
=

-

=

-+-=
c

ti
i

t

i
i meanmeangipmeanmeanlipt (4)

In the above equations, c is the highest possible pixel value in an image (here, since

8-bit images are processed in MATLAB©, the highest possible value is 256); i represents

a pixel value within the range of one up to c; p represents the individual pixel frequencies;

mean, meanli, and meangi represent the mean of an image’s pixel intensities ranging from

one to c, one to t-1, and t to c, respectively.

3.1.2 Pun (1980) Method

In the Pun (1980) method, an assumption is made that the relationship between the

number of pixels at a specific gray-level is statistically independent from the number of

pixels at a nearby gray-level. Realistically, this assumption is not necessarily true, but is

taken to be factual since this thresholding algorithm’s derivation is greatly simplified while

providing reasonable results (Pun 1980). Equations 5-8 are utilized for the Pun (1980)

method, where the optimal threshold value (t) is determined when the criteria set by

Equation 8 is achieved.

63	
	

n
inpi
)(

= (5)

å
=

³
m

i
ip

1

5.0 (6)

ie

c

i
i

ie

m

i
i

pp

pp

log*

log*

1

1

å

å

=

==a (7)

5.0,
5.0

1
,{

1 £
>

-
=å

= a
a

a
at

i
ip (8)

In Equations 5-8, pi is the probability of occurrence of gray-level i; n(i) corresponds

to the total number of pixels at a specific pixel value i; n represents the total number of

pixels in an image; m is the smallest pixel value that satisfies Equation 6; α is the anisotropy

coefficient representing the ratio of the average quantity of information of white and black

pixels; c is the highest possible pixel value in an image.

3.1.3 Kapur et al. (1985) Method

The Kapur et al. (1985) method first derives two probability distributions

(foreground and background) from the original gray-level distribution of an image and then

determines the entropies associated with each distribution. The optimal threshold is taken

as the gray-level that has the greatest summation of the two entropies (Kapur et al. 1985).

Equations 9-15 represent this algorithm, where the optimal threshold value (t) refers to the

pixel value that results in the maximum value of Equation 15.

64	
	

n
inpi
)(

= (9)

ie

c

i
ii ppH log*

1
å
=

-= (10)

å
=

=
t

i
it pP

1
 (11)

ie

t

i
it ppH log*

1
å
=

-= (12)

t

t
tea P
H

PH += log (13)	

)1(
)(

)1(log
t

ti
teb P

HH
PH

-
-

+-= (14)	

}max{arg ba HHt += (15)

In the above equations, pi is the probability of occurrence of gray-level i; c is the

highest possible pixel value in an image; Ha and Hb represent the two probability

distributions derived from the original gray-level distribution of the image.

3.1.4 Johannsen and Bille (1982) Method

The fourth algorithm, Johannsen and Bille (1982), is represented by Equations 16-

18. Through utilizing the entropy of the gray-level histogram of an image, this method

determines the optimal threshold value by dividing the set of gray-levels into foreground

and background classes, in order to minimize the interdependence between them (Sahoo et

al. 1988). The minimum value produced from Equation 18 corresponds to the optimal

65	
	

threshold value (n*).

)](log*)(log*[*1)(log)(1

1

1

11

1

ååå
å

-

=

-

==

=

+-=
n

i ie
n

i inen
n

i n

i i
ie pppp

p
pnS (16)

)](log*)(log*[*1)(log)(
11

_

ååå
å +=+==

=

+-=
c

ni ie
c

ni inen
c

ni c

ni i
ie pppp

p
pnS (17)

))()(min(arg
_

* nSnSn += (18)

For Equations 16-18, pi corresponds to the probability of occurrence of gray-level

i; pn represents the probability of occurrence of the pixel value following the one being

analyzed (e.g., if i=25, pn represents the probability for pixel value 26); n = t+1; c is the

highest possible pixel value in an image; S(n) and 𝑆(n) represent the two parts that the set

of gray-levels are divided into.

3.1.5 Kittler and Illingworth (1986) Method

The fifth and final method that will be used for analysis is the	Kittler and Illingworth

(1986) method. The Kittler and Illingworth (1986) method determines the optimal

threshold value by viewing the gray-level histogram as an estimation of the probability

density function representing the gray-levels of the foreground and background pixels in

an image. This method assumes that these two categories of pixels are normally distributed

with priori probability, mean, and standard deviation (Sahoo et al. 1988).	The algorithm

for the	Kittler and Illingworth (1986) method is presented by Equations 19-26, where the

optimal threshold value (t) is the minimum value of the criterion function of Equation 26.

66	
	

å
=

=
t

j
jPP

1
1 (19)

å
-

+=

=
1

1
2

c

tj
jPP (20)

1

1
1

)*(

P

jP
t

j
jå

==µ (21)

2

1

1
2

)*(

P

jP
c

tj
jå

-

+==µ (22)	

1

1

2
1

2
1

)(

P

Pj
t

j
jå

=

´-
=

µ
s (23)	

2

1

1

2
2

2
2

)(

P

Pj
c

tj
jå

-

+=

´-
=

µ
s (24)	

)log*log*(*2)log*log*(*21 22112211 PPPPPPJ eeee +-++= ss (25)

)min(arg* Jt = (26)	

For Equations 19-26, P1 and P2, µ1 and µ2, σ1
2 and σ2

2, and σ1 and σ2 represent the

priori probability, mean, variance, and standard deviation of the foreground and

background pixels, respectively; c is the highest possible pixel value in an image.

67	
	

3.2 Three-Phase Thresholding Techniques

As seen in the above Table 10, various examples of thresholding techniques that

have been applied for porous media analysis since 1978 are provided. These techniques are

applicable in both two-dimensional and three-dimensional image processing. As listed in

the table, images of granular soils and glass bead specimens were used for validating the

thresholding algorithms chosen by the authors. For this work, multi-phase segmentation

refers to three-phase segmentation. In an attempt to further the field of image segmentation

of partially saturated granular media, this study proposes a new, three-phase image

segmentation technique in which a refined statistical-based thresholding algorithm is

employed.

As previously indicated in Section 3.1, the algorithms representing the modification

and extensions of the Otsu (1979) method, as well as the one proposed here, were coded

with MATLAB© (Mathworks 2015). Three of the techniques, the Otsu (1979) three-phase,

Iterative Otsu, and the Refined statistical-based methods, were modified for proper

application in MATLAB©. Once again, for coding purposes, the range of grayscale pixel

intensities for the analyzed 8-bit images is taken to be from 1-256, rather than 0-255.

Three-phase images (solids, water, and air) of unsaturated granular geomaterials

were used for characterization. Each technique searches for two optimum threshold values,

namely threshold one (t1) and threshold two (t2). Pixels greater than t1 refer to solid

particles and will be rendered with white color during segmentation. Pixels less than t2

refer to air pixels and will be rendered black during segmentation. Any pixel between t1

and t2 refers to water pixels and will be colored gray. Once a technique chooses the pixel

68	
	

values yielding the optimal thresholds, three-phase segmentation is performed and the

geomaterial’s void ratio and degree of saturation are calculated from the segmented images.

Void ratio is determined by dividing the number of void pixels by the number of solid

pixels. Degree of saturation is determined by dividing the number of water pixels by the

number of void pixels, expressed as a percentage. Since the scanned images represent a

three-phase system, void pixels consist of water and air pixels.

3.2.1 Otsu (1979) Method

Nobuyuki Otsu proposed one of the oldest and most widely used global

thresholding techniques, where an optimal threshold value is selected as the pixel value

located at a sharp valley between peaks representing the objects and background of an

image’s gray-level histogram (Otsu 1979). The basis of this technique separates the two

classes by minimizing within-class variance or maximizing between-class variance for

optimal threshold selection. In other words, the optimal threshold value is the pixel value

that results in the minimized summation of the foreground and background spreads (Sahoo

et al. 1988).

Equations 27-30 are used for the Otsu (1979) three-phase method, where the

optimal threshold values (i.e., t1 and t2) are taken as the pixel values yielding the maximum

value of Equation 30. Note that these four equations are first applied to the entire range of

pixels represented by the gray-level histogram to obtain threshold one. Threshold two is

then determined by applying the same four equations, but this time to a refined histogram

ranging from the smallest pixel value to the value of threshold one.

69	
	

m

fi
mean

i

m

i
*

1
å
== (27)

m

fi
meanli

t

i
iå

-

==

1

1
*

 (28)

m

fi
meangi

m

ti
iå

==
*

 (29)

{ } { } }**max{arg 2
1

1

2 åå
=

-

=

-+-=
m

ti
i

t

i
i meanmeangifmeanmeanlift (30)

In the above equations, m is the highest possible pixel value in an image (here, since

8-bit images are processed in MATLAB©, the highest possible value is 256); i represents

a pixel value within the range of one up to m; f represents the individual pixel frequencies;

mean, meanli, and meangi represent the mean of an image’s pixel intensities ranging from

one to m, one to t-1, and t to m, respectively; t refers to the optimal threshold value of either

t1 or t2.

3.2.2 Iterative Otsu Method

As with the previous method, the Iterative Otsu method calculates threshold one

(t1) with Equations 27-30. The initial value for threshold two (t2) is calculated with

Equations 31-33. The reason for expanding the Otsu (1979) three-phase method into the

Iterative Otsu Method is because the procedure followed for finding the threshold two

value through the Otsu (1979) three-phase method does not necessarily result in the optimal

70	
	

value. The usage of Equations 34-36 determines a threshold value referred to as threshold

new (tnew). Equations 34-36 are then used again in a loop (threshold new is assigned as

threshold two) and the loop terminates once the value of threshold new is within two gray-

level pixel values of the previous iteration. Once this criterion is met, the value associated

with threshold new will be assigned as the optimal value of threshold two.

å
å

=

== 1

1

1

1
*

1 t

i i

t

i i

f

fi
mean (31)

å
å

+=

+== m

ti i

m

ti i

f

fi
mean

11

11
*

2 (32)

()
2

212 meanmeant +
= (33)

å
å

=

== 2

1

2

1
*

3 t

i i

t

i i

f

fi
mean (34)

å
å

+=

+== m

ti i

m

ti i

f

fi
mean

12

12
*

4 (35)

()
2

432/ meanmeanttnew +
= (36)

3.2.3 Refined Statistical-Based Method

Equations 37-38 represent the Refined statistical-based method where the optimal

values for threshold one and two are determined for extracting three phases of a partially

saturated granular media by assuming that the thresholding values are located within

71	
	

unknown numbers of standard deviation from the left and right of the mean pixel intensity

values. This proposed method follows the concept that numerous distributions have a

tendency to follow the Dirac delta function with the peak located near to the mean pixel

intensity values (Arora et al. 2008). The mean (µ) and standard deviation (σ) of the

frequencies of all of the pixels in the image are determined. As mentioned in the work of

Arora et al. (2008), many images contain normally distributed histograms. An estimation

of such a histogram is a Gaussian distribution. Such histograms have high frequency values

concentrated around a certain value (i.e., the mean pixel intensity value). Also, on a visual

standpoint, it is much easier to distinguish objects from the background at intensity values

near to the mean. However, not all images have histograms with normal distributions.

Fitting parameters, k1 and k2, are then utilized to provide effectively segmented images

with asymmetric or skewed histograms. Through alteration of the fitting parameters, the

concepts applied for normally distributed histograms adapt to non-uniform distributions.

The work of Arora et al. (2008) provides similar equations to those in Equations

37-38. However, the methodology of that work consists of finding two or more

thresholding values to represent an image with multiple shades of intensity. Here, the three

different phases of partially saturated granular geomaterials are to be accurately captured,

which implies the usage of two thresholding values and imposes a trial and error approach.

The authors chose a value of one for both k1 and k2, for simplicity. The images used in

that study were random (e.g., a women, peppers, jet, and a house). The proposed method

does not provide successful segmented images for the geomaterials of this study when the

values of k1 and k2 are equal to one. By adjusting these parameters, it is seen that the

72	
	

method is more sensitive to the value of k1 than the value of k2. A trial and error process

was implemented to search for k1 and k2 values to obtain a segmented image that

effectively captures all of the portions of the raw image. For the geomaterials used in this

study, it is recommended that k1 ranges from zero to two and k2 ranges from zero to three,

while ensuring that k2 is always greater than k1. These conditions for the fitting parameters

vary depending on the type of images being analyzed. Overall, the proposed method

provides faster processing time than both the Arora et al. (2008) and Otsu (1979) three-

phase methods and superior thresholding values than the Otsu (1979) three-phase method.

÷
ø
ö

ç
è
æ -

+=
2

)12(*1 kkabst sµ (37)

÷
ø
ö

ç
è
æ +

=
2

)21(*2 kkabst s
 (38)

73	
	

Chapter 4

APPLICATION OF GLOBAL THRESHOLDING TECHNIQUES

4.1 The Purpose of Creating a Graphical User Interface (GUI) Standalone

Executable Software

A graphical user interface (GUI) is a type of user interface that allows for user-

friendly interaction with electronic devices through icons such as pushbuttons and

dropdown menus. There are five chosen thresholding techniques for two-level image

segmentation and three techniques for three-level segmentation. Since the algorithms were

written in MATLAB©, this software would need to be available to the user to allow for

proper execution of these subroutines. Also, multiple script windows would have to be

open to run all of the techniques which would be an inefficient approach. Therefore,

creating a GUI bypasses software requirements and neatly displays all of the techniques

and results on one screen. A GUI is treated as a standalone executable software, meaning

that the interface can be installed on computers just like any other software (e.g., Microsoft

Word, Google Chrome, and Adobe Acrobat).

4.2 Features and Capabilities

A GUI was created for two-phase and three-phase image segmentation, as shown

by Figures 31-34. Figure 31 depicts the two-phase image segmentation GUI that was

originally created for geomaterial analysis. As seen in the figure, the GUI mostly consists

74	
	

of pushbuttons which makes overall execution time-consuming. For example, to determine

the void ratio for Otsu’s (1979) method, the button labeled “Otsu 2 Phase” and its

corresponding “Void Ratio” button would both have to be pressed. Ten buttons would have

to be pushed to determine the void ratio for all five techniques with many more for

obtaining other parameters. In order to increase efficiency and make the GUI more user-

friendly, a final version of the program was created (Figure 32). By comparing Figure 32

to Figure 31, it is clear that the GUI in Figure 32 is cleaned up with significantly less

buttons that are replaced with dropdown menus. The same reasoning follows for the three-

phase segmentation programs displayed in Figures 33 and 34.

75	
	

Figure 31. Original two-phase image segmentation GUI.

76	
	

Figure 32. Final two-phase image segmentation GUI.

77	
	

Figure 33. Original three-phase image segmentation GUI.

78	
	

Figure 34. Final three-phase image segmentation GUI.

Even though two separate GUIs were created, they both have the same main

features and capabilities. In Figures 32 and 34, there are three toolbar buttons: File, Tools,

and Help. File subdivides into “Load Images,” “New Project,” “Close Program,” and “Save

Segmented Images.” Tools branches into “Adjust Contrast and Brightness” and “Export

Data to Excel.” Lastly, Help contains “User Guide” and “About Us” information. These

tools were added to further increase the ease of using the programs.

79	
	

For proper software execution, the first button to push is “Rename Images” which

renames all of the images of interest to a format understood by the software. The next

button, “Crop All Images,” first selects a folder to save the cropped images to and then

displays the first image slice of the set in the “Load Image” window. A real-time ellipse is

drawn around the specimen to ensure that the specimen is properly cropped with the

capabilities of using a circular-shaped crop. The images that are to be segmented must be

cropped to ensure that calculations are performed only for the specimen. In other words,

images are composed of pixels whose information is stored in a matrix. Such matrices can

be either square-shaped or rectangular-shaped. If the specimen in an image is circular-

shaped, portions of the four corners of the image would not include any of the specimen.

For clarification, see Figure 35 which shows the first image slice of the two-phase pervious

concrete specimen.

Figure 35. First original image slice of pervious concrete specimen.

80	
	

As shown in the figure, the four black corners do not contain any of the specimen.

If this image is not cropped, the thresholding techniques would mistake these black

portions as air, thus greatly overestimating the specimen’s void ratio. Depending on how

the specimens were scanned and how the image slices were presented, image slice

renderings could include the container that the specimen was scanned in and a scale for the

sizes of the particles. Regardless, these inclusions would result in inaccurate results, further

solidifying the need for image cropping. Automatic cropping has proven to be

undependable, due to being greatly affected by the conditions in which a specimen is

scanned and how the scanned images are rendered. Automatic cropping procedures attempt

to locate the boundaries of a specimen based on pixel information and will incorrectly

assume that the cropped boundaries include portions of the container and the scale. This

occurrence also holds true if the specimen is not centered during imaging. Therefore, the

program allows the user to manually draw the cropping window, on top of the opened X-

ray image, and save it. The same cropping is automatically applied to the rest of the image

slices and these slices are resaved as well. The cropped images are saved with a .png

extension so that the images’ backgrounds are transparent to prevent any inaccurate pixel

counts. Once all of the scanned images are successfully cropped and saved, “Load Images”

displays the first cropped image and its corresponding image histogram of grayscale pixel

frequency versus grayscale pixel intensity. A horizontal scrollbar can be clicked to view

the remaining image slices and their associated histograms. For viewing purposes only, the

contrast and brightness of each image can be adjusted in the “Image Brightness” window.

The next task is to select the segmentation method of interest from the dropdown

81	
	

menu and click “Run” to select the folder containing all of the cropped image slices. The

GUI will run through the algorithm and displays the segmented image in the “Segmented

Image” window, the void ratio value, and the average threshold one value for all of the

images. The horizontal scrollbar can be used again to view the remaining segmented slices.

The option to view the threshold one value for a single image slice is available. Lastly, all

of the segmented images for each thresholding technique can be saved to the folder

containing the cropped images and all of the results can be easily exported to Microsoft

Excel. Between the two-phase and three-phase GUIs, the three-phase GUI also calculates

the degree of saturation and the average threshold two value for all of the images.

82	
	

Chapter 5

RESULTS AND DISCUSSION

5.1 Two-Phase Geomaterial Specimens

The five thresholding techniques described in Chapter 3 Section 3.1 were applied

to X-ray CT images obtained for three different specimens. These specimens were

composed of pervious concrete, glass bead, and silica sand, where the two phases are solids

and air. In order to qualitatively analyze the results of the five techniques, and present that

discussion here, the segmentation results of each method is represented by the first image

slice for the image set of each specimen.

5.1.1 Pervious Concrete and Air

The pervious concrete specimen was originally 100 mm in diameter and was newly

prepared in a laboratory setting. Three hundred and thirty-five image slices were obtained

for this specimen through X-ray CT scanning. The laboratory measured gravimetric void

ratio was 0.26. Figure 36 shows the first image slice with the applied manual crop as

displayed in the standalone software developed as part of this study. The calibrated size of

this cropped specimen was approximately 68 mm in diameter.

83	
	

Figure 36. First cropped image slice of pervious concrete specimen.

Figure 37. Pervious concrete results of thresholding techniques (displayed image slice
segmented with the Otsu (1979) method).

84	
	

Figure 37 above shows the quantitative results from the applied thresholding

techniques. The void ratio, threshold value for the first image slice (T1), and the average

threshold value (AT1) for the set of image slices per method is displayed in the figure.

Also, for visual purposes, the figure depicts the cropped image of the original first image

slice, its gray-level histogram, and the resulting segmented image with the Otsu (1979)

method applied. To assist with qualitative analyses, Figure 38 presents the segmentation of

the first image slice per thresholding method.

Figure 38. Segmented pervious concrete slice with different thresholding methods
 applied: (a) Otsu (1979) method, (b) Pun (1980) method, (c) Kapur et al.

 (1985) method, (d) Johannsen and Bille (1982) method, (e)	Kittler and
Illingworth (1986) method.

The void ratio for Otsu (1979), Pun (1980), Kapur et al. (1985), Johannsen and

Bille (1982), and the Kittler and Illingworth (1986) methods were 1.076, 1.33, 0.28, 0.20,

and 0.21, respectively. As previously mentioned, the laboratory measured void ratio was

found to approximately be 0.26. For the first image slice, the Pun (1980) method had the

85	
	

highest threshold value (T1=186), followed by Otsu (1979) (T1=183), Kapur et al. (1985)

(T1=152), Kittler and Illingworth (1986) (T1=149), and the Johannsen and Bille (1982)

methods (T1=131). On average, the threshold values for the entire image set for these five

techniques were 148, 145, 122, 109, and 111, respectively.

From a quantitative standpoint, for the pervious concrete specimen, the results from

the Otsu (1979) and Pun (1980) methods were the least accurate of the five thresholding

techniques. Qualitatively speaking, the segmentation of this image slice by these two

methods eroded away too much of the solid particles, more so with the Pun (1980) method.

The average threshold values for these methods were very close to one another and helped

validate this argument. Since their algorithms determined the thresholds to be this high, the

methods yielded unrealistic void counts for the specimen. Therefore, it can be deduced that

an acceptable segmentation technique must have an average threshold value much lower

than what was seen with these two methods.

The void ratios from Kapur et al. (1985), Johannsen and Bille (1982), and the Kittler

and Illingworth (1986) methods were very similar to one another. Relatively speaking, the

best segmentation technique for this image set was the Kapur et al. (1985) method.

Quantitatively, this technique’s void ratio was the closest to the laboratory measured void

ratio. For further validation, the image processing program, Image-Pro©, yielded a void

ratio of 0.30 which was also relatively close to the result from the Kapur et al. (1985)

method. Qualitatively, this method came the closest to accurately capturing the size and

shape of the solid particles in the original image, whereas the other two methods had the

solid particles being more filled and widened.

86	
	

5.1.2 Glass Bead and Air

The original glass bead specimen was 10 mm in diameter and eleven image slices

(first cropped image slice depicted as Figure 39) were obtained for this specimen through

X-ray CT scanning. The cropped images contained the entire specimen, so the diameter

remained as 10 mm. Figure 40 provides the quantitative results of the applied thresholding

methods (first image slice used for T1) and the qualitative results of the first image slice

with the Otsu (1979) method applied. Figure 41 presents the segmentation of the first image

slice with each thresholding method applied.

Figure 39. First cropped image slice of glass bead specimen.

87	
	

Figure 40. Glass bead results of thresholding techniques (displayed image slice
segmented with the Otsu (1979) method).

Figure 41. Segmented glass bead image slice with different thresholding methods
 applied: (a) Otsu (1979) method, (b) Pun (1980) method, (c) Kapur et al.

 (1985) method, (d) Johannsen and Bille (1982) method, (e) Kittler and
Illingworth (1986) method.

88	
	

Quantitatively, the void ratio of 17.96 obtained through the Kittler and Illingworth

(1986) method was very inaccurate. From Figure 41e, it can be seen that this technique

poorly segmented the image, treating the majority of solid pixels as void pixels. The

threshold value of 146 for the first image slice and the average threshold value of 147 for

the set of image slices were far too large. The Johannsen and Bille (1982) method yielded

the smallest void ratio of 0.61, followed by Otsu (1979) (e=0.80), Kapur et al. (1985)

(e=0.91), and the Pun (1980) methods (e=1.14). The corresponding threshold values for

the first image slice were 76, 105, 117, and 127, respectively. The average threshold values

for the set of image slices were 72, 104, 116, and 127, respectively. For a basis of

comparison, Image-Pro© yielded a void ratio of 0.89. Thus, the Kapur et al. (1985) method

provided the best segmentation, quantitatively.

By qualitatively analyzing the segmentation results, it can immediately be seen that

Pun (1980) and the Kittler and Illingworth (1986) methods yielded unacceptable

segmentations. The specimen segmented by the Pun (1980) method had small black dots

scattered across the glass beads, indicating more voids and hence a higher threshold value

than what is realistic. The Kittler and Illingworth (1986) method yielded the highest

threshold value of all the techniques which explained why this method barely captured any

of the glass beads. For the Johannsen and Bille (1982) method, the glass beads were slightly

too filled and widened. This was visually identifiable since this segmentation resulted in

the formation of contact points where gaps should have resided. Otsu (1979) and the Kapur

et al. (1985) methods were the two best segmentation options which also had void ratios

closest to the Image-Pro© void ratio. The Otsu (1979) method resulted in unwanted contact

89	
	

points between the glass beads in various locations of the specimen, although not as

profound as with the Johannsen and Bille (1982) method. So, overall, the Kapur et al.

(1985) method yielded the best results quantitatively and qualitatively for the glass bead

specimen.

5.1.3 Silica Sand and Air

The third and last specimen analyzed for two-level geomaterial characterization

was silica sand with a specimen diameter of 6.35 mm. Ten image slices were utilized (first

cropped image slice represented by Figure 42) for the analysis. The specimen was cropped

to a diameter of 4.48 mm. Figure 43 shows the results from the standalone program with

T1 calculated for the first image slice and the segmentation of this slice displayed with the

Otsu (1979) method as well. Figure 44 presents the segmentation of the first image slice

with each thresholding method applied.

Figure 42. First cropped image slice of silica sand specimen.

90	
	

Figure 43. Silica sand results of thresholding techniques (displayed image slice
segmented with the Otsu (1979) method).

Figure 44. Segmented silica sand image slice with different thresholding methods
 applied: (a) Otsu (1979) method, (b) Pun (1980) method, (c) Kapur et al.

 (1985) method, (d) Johannsen and Bille (1982) method, (e)	Kittler and
Illingworth (1986) method.

91	
	

From Figure 43, the void ratio of 9.031 obtained through the Kapur et al. (1985)

method seems too high, meaning that the corresponding threshold values of 195, for the

first image slice and the whole set of image slices, were not realistic. This value suggested

that the original silica sand specimen was significantly composed of more air than sand

particles, which was not the case. For the other image segmentation techniques, the method

with the highest void ratio was the Pun (1980) method (e=1.96), followed by Otsu (1979)

(e=0.85), Kittler and Illingworth (1986) (e=0.68), and the Johannsen and Bille (1982)

(e=0.66) methods. The threshold values for the first image slice for these methods were

181, 141, 100, and 39, respectively. The average threshold values for the four methods

were 180, 142, 97, and 85, respectively. Comparing to the void ratio of 0.77 that was

obtained from Image-Pro©, the Otsu (1979) method was the best segmentation technique

for the silica sand specimen.

Qualitatively, starting with the Pun (1980) method, the segmented image slice in

Figure 44b shows that the solid particles are too eroded away, in comparison to the original

image slice. In other words, the chosen threshold value was too high since the segmented

image visually contained too much air. The Johannsen and Bille (1982) method had the

lowest threshold value which caused the solid particles to be too filled (Figure 44d). Lastly,

Otsu (1979) and the Kittler and Illingworth (1986) methods provided similar qualitative

results. However, the Otsu (1979) method was more capable of capturing the visible cracks

in the silica sand particles. As a result, the Otsu (1979) method was chosen as the best

image segmentation technique for the silica sand specimen.

92	
	

5.1.4 Summary of Two-Phase Image Segmentation Results

Table 11 provides a summary of the final void ratio results for the porous media

analyzed in this study. Tables 12-14 provide statistical descriptors and comparisons of the

five techniques for each of the porous media analyzed. Note that for Table 13 the Kittler

and Illingworth (1986) method was excluded from the statistical comparison due to the

produced void ratio being a wild outlier. The same reasoning applied for why the Kapur et

al. (1985) method was not included in Table 14. The results of these tables collectively

show that the methods as a whole work best for the glass bead specimen due to this

specimen having the lowest coefficient of variation. This is followed by the silica sand

specimen and the pervious concrete specimen. Individually, the application of the Kapur

et al. (1985) method to the glass bead specimen yielded the least segmentation error

(1.71%). Contrarily, the best segmentation technique with the greatest segmentation error

(10.49%) was the Otsu (1979) method for the silica sand specimen.

Table 11. Final void ratio results for the porous media specimens.

Porous Media Best
Segmentation

Technique

Chosen
Technique’s
Void Ratio

Image-Pro
Void Ratio

Percent
Error

Pervious Concrete Kapur et al. (1985) 0.28 0.30 6.89%
Glass Bead Kapur et al. (1985) 0.91 0.89 1.71%
Silica Sand Otsu (1979) 0.85 0.77 10.49%

93	
	

Table 12. Statistical results and comparisons for the pervious concrete specimen.

Porous
Media

Image Segmentation
Technique

Void
Ratio

Error Standard
Deviation

Coefficient
of

Variation
(CV)

Pervious
Concrete

Otsu (1979) 1.076 0.61

0.46

74.25%
Pun (1980) 1.33 1.065

Kapur et al. (1985) 0.28 0.00042
Johannsen and Bille (1982) 0.20 0.0010

Kittler and Illingworth (1986) 0.21 0.0081
Image-Pro 0.30 ----------

Table 13. Statistical results and comparisons for the glass bead specimen.

Porous
Media

Image Segmentation
Technique

Void
Ratio

Error Standard
Deviation

Coefficient
of

Variation
(CV)

Glass
Bead

Otsu (1979) 0.80 0.0090

0.19

21.82%
Pun (1980) 1.14 0.059

Kapur et al. (1985) 0.91 0.00024
Johannsen and Bille (1982) 0.61 0.078

Image-Pro 0.89 ----------

Table 14. Statistical results and comparisons for the silica sand specimen.

Porous
Media

Image Segmentation
Technique

Void
Ratio

Error Standard
Deviation

Coefficient
of

Variation
(CV)

Silica
Sand

Otsu (1979) 0.85 0.0066

0.54

51.49%
Pun (1980) 1.96 1.41

Johannsen and Bille (1982) 0.66 0.012
Kittler and Illingworth (1986) 0.68 0.0078

Image-Pro 0.77 --------
	

	

94	
	

5.2 Three-Phase Geomaterial Specimens

The three thresholding techniques described in the preceding section were applied

to X-ray CT images obtained for two different partially saturated specimens (composed of

solids, water, and air), made out of silica sand and glass bead. For presentation purposes,

and comparison of the performance of each thresholding technique, the first image slice of

the image set for each specimen is used.

5.2.1 Silica Sand, Water, and Air

The silica sand specimen had an original and cropped diameter of 6.35 mm and was

newly prepared in a laboratory setting. Ninety image slices were obtained for this specimen

through X-ray CT scanning. In order to quantitatively verify the accuracy of the results of

the three techniques, the void ratio and degree of saturation for this specimen were also

determined with the image processing software, Image-Pro©. These values were found to

be 0.66 and 37.71%, respectively. Figure 45 shows the first silica sand image slice with the

applied manual crop as displayed in the standalone software developed as part of this study.

Figure 45. First cropped image slice of a partially saturated silica sand specimen.

95	
	

Figure 46. Partially saturated silica sand results of thresholding techniques (displayed
 image slice segmented with the Otsu (1979) three-phase method).

Figure 46 represents the quantitative results from the applied thresholding

techniques. The void ratio and degree of saturation of the specimen, and average values of

threshold one and threshold two per technique, are displayed in the figure. The values of

threshold one and threshold two for the first image slice are also provided for each

technique. The raw and segmented X-ray CT images of the first slice are displayed together

with its corresponding gray-level histogram. In this specific case, the Otsu (1979) three-

phase segmentation technique was applied. Figure 47 presents the segmented images, for

the same image slice, when different thresholding methods are applied.

96	
	

Figure 47. Segmented images of a partially saturated silica sand slice:
 (a) Otsu (1979) three-phase method, (b) Iterative Otsu, (c) Refined

statistical-based method.

Figure 46 shows that the Otsu (1979) three-phase method, Iterative Otsu method,

and the Refined statistical-based method calculated void ratios of 0.88, 0.88, and 0.67,

respectively. The two Otsu-based methods produced the same average threshold one value

of 172. In this context, “average” refers to the average of threshold values calculated for

all images in the set. As a result, the Otsu (1979) three-phase method and the Iterative Otsu

method yielded the same number of solid pixels, hence explaining the same void ratio value

between these methods. The three methods had average threshold two values of 151, 109,

and 88, respectively. The value for the degree of saturation varied with threshold two due

to degree of saturation being a relationship between water and void pixels. Specifically for

the Otsu-based methods, due to the number of solid pixels remaining the same, a lower

threshold two value resulted in a higher degree of saturation, and vice versa. The degree of

saturation for the Otsu (1979) three-phase method and the Iterative Otsu method were

97	
	

determined as 16.94% and 41.45%, respectively. Quantitatively, these methods

overestimated void ratio. This led to the solid particles in Figure 47a-47b being slightly too

eroded. The Otsu (1979) three-phase method greatly underestimated the degree of

saturation with more than 50% error, as compared to the degree of saturation obtained from

Image-Pro© (visible in Figure 47a). The Iterative Otsu method slightly overestimated the

degree of saturation, in regards to Image-Pro©, by approximately 10%. However, as

observed in Figure 47b, the segmented silica sand specimen has portions containing water

not appearing in the original image slice or portions lacking water and thus containing more

voids.

On average, the Refined statistical-based method had the smallest threshold two

value and a degree of saturation value of 39.35%. The k1 and k2 parameters for this method

were chosen as 1.9 and 2.5, respectively. A trial-and-error process was utilized to obtain

parameters that resulted in segmented images which effectively captured the three phases

of the raw images. For this method, the average value of threshold one was found to be

158, indicating that more solid pixels and less void spaces were captured in the

segmentation. By comparing the results of Figure 47a-47c, it is apparent that Figure 47c

accurately contains more bridges of water between the solid particles and less voids within

the solid particles, as seen in the original slice (Figure 45). Quantitatively, the void ratio

and degree of saturation results of the proposed method are very accurate to the results of

Image-Pro©, with approximately 1.5% and 4% errors, respectively. The effectiveness of

the proposed method was tested against the Arora et al. (2008) method while qualitatively

keeping the segmentations the same (Figure 48). Note that the values of k1 and k2 differ

98	
	

between the methods since the role of these parameters in the algorithms are not the same.

The proposed method was found to have significantly faster processing time, than

both the Arora et al. (2008) and Otsu (1979) three-phase methods, as shown in Table 15.

For these reasons, the proposed method proved to be superior to the Arora et al. (2008)

method. In conclusion, the segmentation of the silica sand specimen was best captured by

the Refined statistical-based method, both qualitatively and quantitatively.

Figure 48. Segmented images of a partially saturated silica sand slice:
 (a) Arora et al. (2008) method, (b) Refined statistical-based method.

Table 15. Processing time comparison for the silica sand specimen.

Method Processing
Time (s)

Percent Decrease
(Arora to Refined
statistical-based)

Percent Decrease
(Otsu to Refined
statistical-based)

Arora et al.

(k1=0.62, k2=3.85)

5.79

70.12%

70.63%
Otsu’s (1979) three-phase 5.89

Refined statistical-based
(k1=1.9, k2=2.5)

1.73

99	
	

5.2.2 Glass Bead, Water, and Air

The glass bead specimen had an original and cropped diameter of 10 mm and ninety

image slices, first image slice depicted as Figure 49, were obtained for this specimen

through X-ray CT scanning, as with the silica sand specimen. Figure 50 provides the

quantitative results of the applied thresholding techniques (first image slice used for

calculating T1) and the segmentation of the first image slice with the Otsu (1979) three-

phase method applied. Lastly, Figure 51 presents the segmentation of the first glass bead

image slice per thresholding technique. The Image-Pro© void ratio and degree of saturation

values were found to be 0.64 and 43.49%, respectively.

Figure 49. First cropped image slice of a partially saturated glass bead specimen.

100	
	

Figure 50. Partially saturated glass bead results of thresholding techniques (displayed
image slice segmented with the Otsu (1979) three-phase method).

Figure 51. Segmented images of a partially saturated glass bead slice:
(a) Otsu (1979) three-phase method, (b) Iterative Otsu, (c) Refined statistical-based

method.

101	
	

Following the same algorithmic trend as observed with the results of the silica sand

specimen, the Otsu (1979) three-phase method and the Iterative Otsu method yielded the

same void ratio of 0.85 and average threshold one value of 159. Respectively, the degree

of saturations were 14% and 15.26%. By analyzing Figure 51a-51b, the segmentations

failed to capture the majority of the water pixels seen in the original slice. This is due to

the methods determining threshold two values that were too high. A higher threshold two

values results in a segmented image containing less water pixels and more air pixels, hence

resulting in a lower degree of saturation. Even though the Iterative Otsu method did a

slightly better job at capturing the water pixels than the Otsu (1979) three-phase method,

the degree of saturation was still approximately three times smaller than the Image-Pro©

value. The void ratio and degree of saturation for the Refined statistical-based method, with

k1=1.35 and k2=1.75, were 0.74 and 43.64%, respectively. For this method, the average

values of threshold one and threshold two were 141 and 50, respectively.

The proposed method’s average threshold two value is more than two times smaller

than that of the two Otsu-based techniques. This decrease led to significantly more water

pixels being captured, as visible in Figure 51c. Quantitatively, the degree of saturation of

the proposed method was very accurately determined, in comparison to the Image-Pro©

value, with approximately 0.34% error. As with the silica sand specimen, the superiority

of the Refined statistical-based method to the Arora et al. (2008) method was evaluated.

Once again, the processing time for the proposed method was much faster (Table 16) with

the segmentation of the glass bead specimen remaining the same between the Arora et al.

(2008) and proposed methods (Figure 52). Over all, the segmentation of the glass beads

102	
	

specimen was best captured by the Refined statistical-based method.

Table 16. Processing time comparison for the glass bead specimen.

Method Processing
Time (s)

Percent Decrease
(Arora to Refined
statistical-based)

Percent Decrease
(Otsu to Refined
statistical-based)

Arora et al.
(k1=0.19, k2=4.55)

6.21

84.54%

80.49% Otsu’s (1979) three-phase 4.92
Refined statistical-based

(k1=1.35, k2=1.75)
0.96

Figure 52. Segmented images of a partially saturated glass bead slice:
 (a) Arora et al. (2008) method, (b) Refined statistical-based method.

5.2.3 Summary of Three-Phase Image Segmentation Results

Table 17 lists the final results of the Refined statistical-based method for the

partially saturated granular media. Tables 18-21 provide statistical results for the three

methods applied to each geomaterial. The proposed method’s results for the silica sand

103	
	

specimen showed that there were moderately low percent errors of 1.52 and 4.35 for void

ratio and degree of saturation, respectively, in comparison to the values provided by Image-

Pro©. The results of the glass bead specimen interestingly showed that the percent error

associated with void ratio was a high 15.63 and the percent error associated with degree of

saturation was a very low 0.34.

As indicated previously, threshold one separated solid pixels from water and air

pixels and threshold two separated water pixels from air pixels. The percent errors for the

silica sand specimen suggested that the fitting parameters, k1 and k2, for the Refined

statistical-based method had a greater influence on threshold two and had a low effect on

threshold one. On the other hand, the chosen fitting parameters for the glass bead specimen

had a great influence on threshold one and not so much for threshold two; threshold two

adjusted accordingly to the threshold one value.

These findings led to the hypothesis that the proposed Refined statistical-based

method was more accurate at determining one geomaterial property rather than multiple

properties (e.g., void ratio and degree of saturation). More images of partially saturated

granular media would have to be analyzed to test the validity of this hypothesis. Regardless,

the freedom and flexibility of choosing fitting parameters proved this method’s superiority

to the other two Otsu-based methods. Being able to apply a range of fitting parameters

allows the proposed method to be adaptable to a wide range of images.

	
	
	
	
	
	

104	
	

Table 17. Refined statistical-based method results for the partially saturated granular
media.

Granular

Media
Image

Segmentation
Technique

Void
Ratio

Degree of
Saturation

Percent
Error
(Void
Ratio)

Percent
Error

(Degree of
Saturation)

Silica Sand Refined statistical-
based method

(k1=1.9, k2=2.5)

0.67 39.35% 1.52% 4.35%

Glass Bead Refined statistical-
based method

(k1=1.35, k2=1.75)

0.74 43.64% 15.63% 0.34%

Table 18. Void ratio statistical results and comparisons for the silica sand specimen.

Geomaterial Image

Segmentation
Technique

Void
Ratio

Error Standard
Deviation

Coefficient
of

Variation
(CV)

Silica Sand

Otsu’s (1979)
three-phase

method

0.88 0.045

0.099

12.22%
Iterative Otsu

method
0.88 0.045

Refined statistical-
based method

(k1=1.9, k2=2.5)

0.67 0.0001

Image-Pro 0.66 --------

105	
	

Table 19. Void ratio statistical results and comparisons for the glass bead specimen.

Geomaterial Image
Segmentation

Technique

Void
Ratio

Error Standard
Deviation

Coefficient
of

Variation
(CV)

Glass Bead

Otsu’s (1979)
three-phase method

0.85 0.044

0.052

6.38%

Iterative Otsu
method

0.85 0.044

Refined statistical-
based method

(k1=1.35, k2=1.75)

0.74 0.01

Image-Pro 0.64 --------

Table 20. Degree of saturation statistical results and comparisons for the silica sand

specimen.

Geomaterial Image
Segmentation

Technique

Degree of
Saturation

Error Standard
Deviation

Coefficient
of

Variation
(CV)

Silica Sand

Otsu’s (1979)
three-phase

method

16.94% 0.043

0.11

34.05%
Iterative Otsu

method
41.45% 0.0014

Refined statistical-
based method

(k1=1.9, k2=2.5)

39.35% 0.00027

Image-Pro 37.71% --------

106	
	

Table 21. Degree of saturation statistical results and comparisons for the glass bead
specimen.

Geomaterial Image

Segmentation
Technique

Degree of
Saturation

Error Standard
Deviation

Coefficient
of

Variation
(CV)

Glass Bead

Otsu’s (1979)
three-phase method

14% 0.087

0.14

56.32%

Iterative Otsu
method

15.26% 0.080

Refined statistical-
based method

(k1=1.35, k2=1.75)

43.64% 0.0000023

Image-Pro 43.49% --------

107	
	

Chapter 6

CONCLUSIONS AND FUTURE WORK

Five automatic thresholding techniques, namely the Otsu (1979), Pun (1980),

Kapur et al. (1985), Johannsen and Bille (1982), and Kittler and Illingworth (1986)

methods, were chosen for image segmentation of two-phase porous media. Since these

techniques dealt with two-phase image segmentation, one threshold value, namely

threshold one, was determined to separate the foreground/objects and background/air

classes from each other. Pixels less than threshold one were referred to as void/air pixels

and were colored black, and pixels greater than threshold one were referred to as solid

pixels and were colored white. The algorithms for the five chosen thresholding techniques

were coded in MATLAB© ultimately to determine material properties such as void ratio

(e) for image slices obtained from an X-ray CT device.

The determination of an optimal threshold value varied from technique to technique

due to differences in the execution of mathematical algorithms. The Otsu (1979) method

found the optimal threshold value through the minimization of the within-class variance of

the foreground and background classes of an image’s gray-level histogram. The Pun (1980)

method made the assumption that pixel information was statistically independent from one

another. The Kapur et al. (1985) method chose the optimal threshold value by determining

two probability distributions representing the foreground and background classes. The

108	
	

Johannsen and Bille (1982) method determined the threshold value to be the gray-level

pixel value resulting in the minimum interdependence between the foreground and

background classes. Lastly, the Kittler and Illingworth (1986) method considered the gray-

level histogram to be an estimation of the probability density function of the foreground

and background classes. This method assumed that the pixels within these two classes were

normally distributed and thus calculated the threshold value through utilization of pixel

probability, mean, and standard deviation.

In order to analyze the effectiveness of the thresholding techniques, the five

thresholding techniques, discussed above, were applied to pervious concrete, glass bead,

and silica sand specimens. Three hundred and thirty-five image slices were analyzed for

the pervious concrete specimen, and the cropped size of this specimen was approximately

68 mm in diameter. The method proposed by Kapur et al. (1985) yielded the best results

qualitatively and quantitatively (e=0.28) to the laboratory-measured void ratio of 0.26 and

the Image-Pro© void ratio of 0.30. Eleven image slices were utilized for the 10 mm in

diameter glass bead specimen. Once again, the method proposed by Kapur et al. (1985)

gave the best results with an average void ratio of 0.91, as compared to the Image-Pro©

void ratio of 0.89. Ten image slices with a cropped diameter of 4.48 mm were used for the

analysis of the silica sand specimen. For these set of images, the Otsu (1979) method was

the most successful image segmentation technique, yielding a void ratio of 0.85 (Image-

Pro© e=0.77).

Interestingly, the results of the applied image segmentation techniques for the three

porous media specimens do not follow a specific type of trend. The analysis of the pervious

109	
	

concrete specimen showed that the Kapur et al. (1985) method was the best technique,

whereas the Pun (1980) method was the least accurate for this specimen. For the glass bead

specimen, the Kapur et al. (1985) method proved most successful, and the Kittler and

Illingworth (1986) method was clearly the least successful. Lastly, the segmentation of the

silica sand specimen was best captured by the Otsu (1979) method and was least captured

by the Kapur et al. (1985) method (in contrast with the pervious concrete and glass bead

specimens). Therefore, it was difficult to make pre-analysis assumptions on which of the

five techniques performed the best; the performance of the techniques varied based on the

type of porous media analyzed.

The refined statistics-based method was proposed to effectively segment three-

phase images of partially saturated granular geomaterials. Two other methods, the Otsu

(1979) three-phase and the Iterative Otsu methods, were utilized for relative evaluation of

the proposed algorithm. Since these three techniques dealt with three-phase (solids, water,

and air) image segmentation, two threshold values, namely threshold one and threshold

two, were required for proper image segmentation. Pixels greater than threshold one and

less than threshold two were regarded as belonging to the solid and gas phases,

respectively. Pixels between the two threshold-values were taken as belonging to the water

phase. The algorithms for the three thresholding techniques were coded into MATLAB©

ultimately to determine index properties of the analyzed media such as void ratio and

degree of saturation.

The Otsu (1979) three-phase method was first evaluated as a thresholding option,

because it is one of the oldest, simplest, and most successful methods for determining

110	
	

automatic threshold values for different image types. An optimal threshold value was found

by minimizing the within-class variance of the foreground and background classes of an

image’s gray-level histogram. For the two geomaterials analyzed, this method yielded

reasonable values for threshold one but not so much for threshold two.

The Iterative Otsu method stemmed from the Otsu (1979) three-phase method in

an attempt to more accurately calculate threshold two. The algorithm’s loop terminated

once the threshold value was within two gray-level pixels of the previous iteration.

A new thresholding technique, namely the refined statistics-based method was

proposed in this work. This method was a refinement of the Arora et al. (2008) method

which used recursive subrange identification. The proposed method was found to have a

faster processing time without diminishing segmentation quality. The percent errors

associated with the silica sand specimen showed that segmentation results were more

heavily influenced by threshold two than threshold one. The reverse was found to be true

for the glass bead specimen. These findings suggested that the proposed method was more

accurate at determining one geomaterial property rather than multiple properties.

The refined statistics-based method proved to be a very flexible technique for image

segmentation. The technique allowed for user input that enabled the adaptability of the

algorithm for various images of interest. The fast execution and flexibility of this algorithm

confirmed the superiority of the proposed method to the Otsu-based techniques.

Future work will entail testing the chosen two-phase and three-phase techniques for

different soil mixtures, such as mixtures containing silica sand and biochar or soils

amended with polymers. This would be done to understand the behavior of soils when

111	
	

mixed with artificially or naturally produced materials. In addition, the segmented images

can be used to investigate the fabric of a soil to extract microstructural parameters for use

in constitutive models. In this regard, the role of fabric can be expanded to gain a better

understanding of the relationship between different parameters, such as for the parameters

used to create a soil-water characteristic curve (SWCC) in unsaturated soils. Regardless,

the eight evaluated image segmentation techniques could very well open up more

possibilities in the field of multi-phase image segmentation of porous media.

112	
	

REFERENCES

Aach, T., Schiebel, U. and Spekowius, G. (1999). Digital image acquisition and
processing in medical x-ray imaging. Journal of Electronic Imaging 8(1): 7-22.

Abdullah, S. L. S., Hambali, H. A. and Jamil, N. (2012). Segmentation of Natural Images
Using an Improved Thresholding-Based Technique. Procedia Engineering 41: 938-944.

Alexander, K., Joly, H., Blond, L., D'Anjou, M. A., Nadeau, M. E., Olive, J. and
Beauchamp, G. (2012). A comparison of computed tomography, computed radiography,
and film-screen radiography for the detection of canine pulmonary nodules. Vet Radiol
Ultrasound 53(3): 258-265.

Arifin, A. Z. and Asano, A. (2006). Image segmentation by histogram thresholding using
hierarchical cluster analysis. Pattern Recognition Letters 27(13): 1515-1521.

Armbrust, L. J., Hoskinson, J. J., Biller, D. S., Mackenzie Ostmeyer, R., Milliken, G. A.
and Choi, J. (2005). COMPARISON OF DIGITIZED AND DIRECT VIEWED
(ANALOG) RADIOGRAPHIC IMAGES FOR DETECTION OF PULMONARY
NODULES. Veterinary Radiology & Ultrasound 46(5): 361-367.

Arora, S., Acharya, J., Verma, A. and Panigrahi, P. K. (2008). Multilevel thresholding for
image segmentation through a fast statistical recursive algorithm. Pattern Recognition
Letters 29(2): 119-125.

Brice, C. R. and Fennema, C. L. (1970). Scene analysis using regions. Artificial
Intelligence 1(3): 205-226.

Burk, R. L. and Feeney, D. A. (2003). Small animal radiology and ultrasonography: a
diagnostic atlas and text. Philadelphia, Saunders.

Chen, Y. T., Lo, T. N., Chu, Y. S., Yi, J., Liu, C. J., Wang, J. Y., Wang, C. L., Chiu, C.
W., Hua, T. E., Hwu, Y., Shen, Q., Yin, G. C., Liang, K. S., Lin, H. M., Je, J. H. and
Margaritondo, G. (2008). Full-field hard x-ray microscopy below 30 nm: a challenging
nanofabrication achievement. Nanotechnology 19(39): 395302.

Cheriet, M., Said., J. N. and Suen., C. Y. (1998). A recursive thresholding technique for
image segmentation. IEEE Transactions on Image Processing 7(6): 918-921.

113	
	

Christoph, R. and Neumann, H. (2011). X-ray Tomography in Industrial Metrology.
Munich, Süddeutscher verlag onpact GmbH.

Chu, Y. S., Yi, J. M., De Carlo, F., Shen, Q., Lee, W.-K., Wu, H. J., Wang, C. L., Wang,
J. Y., Liu, C. J., Wang, C. H., Wu, S. R., Chien, C. C., Hwu, Y., Tkachuk, A., Yun, W.,
Feser, M., Liang, K. S., Yang, C. S., Je, J. H. and Margaritondo, G. (2008). Hard-x-ray
microscopy with Fresnel zone plates reaches 40nm Rayleigh resolution. Applied Physics
Letters 92(10): 103119.

Cosmi, F. and Bernasconi, A. (2013). Micro-CT investigation on fatigue damage
evolution in short fibre reinforced polymers. Composites Science and Technology 79: 70-
76.

Cosslett, V. E. (1959). The comparative merits of different methods of microradiography.
Applied Scientific Research, Section B 7(1): 338-343.

Da Silva, L., Trebes, J., Balhorn, R., Mrowka, S., Anderson, E., Attwood, D., Barbee, T.,
Brase, J., Corzett, M., Gray, J. and et, a. (1992). X-ray laser microscopy of rat sperm
nuclei. Science 258(5080): 269-271.

De Chiffre, L., Carmignato, S., Kruth, J. P., Schmitt, R. and Weckenmann, A. (2014).
Industrial applications of computed tomography. CIRP Annals - Manufacturing
Technology 63(2): 655-677.

Ehsan, S., Michael, J. F., Edward, P. and William, R. E. (2003). Subtle Lung Nodules:
Influence of Local Anatomic Variations on Detection. Radiology 228(1): 76-84.

Einstein, A. (1918). Bemerkung zu Ernst Gehrckes Notiz ‘Über den Äther’ (Comment on
Ernst Gehrcke 'On the Aether'). Verhandlungen der Deutschen Physikalischen
Gesellschaft.

Engström, A. (1946). Quantitative micro- and histochemical elementary analysis by
Roentgen absoprtion spectrography. Acta Radiologica: 1-106.

Eric, J., Yuan, X. and Ian, M. (2012). Characterisation of voids in fibre reinforced
composite materials. NDT & E International: 122-127.

Etaati, A., Wang, H., Pather, S., Yan, Z. and Abdanan Mehdizadeh, S. (2013). 3D X-ray
microtomography study on fibre breakage in noil hemp fibre reinforced polypropylene
composites. Composites Part B: Engineering 50: 239-246.

Feder, R., Banton, V., Sayre, D., Costa, J., Baldini, M. and Kim, B. (1985). Direct
imaging of live human platelets by flash x-ray microscopy. Science 227(4682): 63-64.

114	
	

Goebbels, J. and Zscherpel, Z. (2011). Proc. of Int. Symposium on Digital Industrial
Radiology and Computed Tomography.

Grimm, R., Singh, H., Rachel, R., Typke, D., Zillig, W. and Baumeister, W. (1998).
Electron tomography of ice-embedded prokaryotic cells. Biophysical Journal 74(2 Pt 1):
1031-1042.

Heinzl, C. (2009). Analysis and Visualization of Industrial CT Data. Institute of
Computer Graphics and Algorithms. Vienna, Austria, Vienna University of Technology.

Holtz, R. D., Kovacs., W. D. and Sheahan., T. C. (2011). An Introduction to
Geotechnical Engineering. Upper Saddle River, New Jersey, Pearson.

Horowitz, P. and Howell, J. A. (1972). A Scanning X-Ray Microscope Using
Synchrotron Radiation. Science 178(4061): 608-611.

Hsieh, J. (2009). Computed Tomography Principles, Design, Artifacts, and Recent
Advances. Hoboken, New Jersey, John Wiley & Sons.

Iassonov, P., Gebrenegus, T. and Tuller, M. (2009). Segmentation of X-ray computed
tomography images of porous materials: A crucial step for characterization and
quantitative analysis of pore structures. Water Resources Research 45(9): 1-12.

Jacobsen, C. (1992). Making Soft X-Ray Microscopy Harder: Considerations for Sub-0.1
µm Resolution Imaging at ~ 4 Å Wavelengths. X-Ray Microscopy III: Proceedings of the
Third International Conference, London, September 3–7, 1990. A. G. Michette, G. R.
Morrison and C. J. Buckley. Berlin, Heidelberg, Springer Berlin Heidelberg: 274-277.

Jacobsen, C., Medenwaldt, R. and Williams, S. (1998). A Perspective on Biological X-
Ray and Electron Microscopy. X-Ray Microscopy and Spectromicroscopy: Status Report
from the Fifth International Conference, Würzburg, August 19–23, 1996. J. Thieme, G.
Schmahl, D. Rudolph and E. Umbach. Berlin, Heidelberg, Springer Berlin Heidelberg:
197-206.

Johannsen, G. and Bille, J. (1982). A threshold selection method using information
measures. Int. Conf. Pattern Recognition, Munich, Germany.

Kang, H. C., Maser, J., Stephenson, G. B., Liu, C., Conley, R., Macrander, A. T. and
Vogt, S. (2006). Nanometer Linear Focusing of Hard X Rays by a Multilayer Laue Lens.
Physical Review Letters 96(12): 127401.

Kapur, J. N., Sahoo, P. K. and Wong, A. K. C. (1985). A new method for gray-level
picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and
Image Processing 29(3): 273-285.

115	
	

Kastner, J. (2011). X-ray Computed Tomography for the Development of Materials and
Components. Vienna, Austria, Vienna University of Technology.

Kastner, J. (2012). Proc. of Int. Conf. on Industrial Computed Tomography, Wels,
Austria.

Kirz, J. and Jacobsen, C. (2009). The history and future of X-ray microscopy. Journal of
Physics: Conference Series 186: 012001.

Kittler, J. and Illingworth, J. (1986). Minimum error thresholding. Pattern Recognition
19(1): 41-47.

Kohler, R. (1981). A segmentation system based on thresholding. Computer Graphics
and Image Processing 15(4): 319-338.

Kruth, J. P., Bartscher, M., Carmignato, S., Schmitt, R., De Chiffre, L. and Weckenmann,
A. (2011). Computed tomography for dimensional metrology. CIRP Annals -
Manufacturing Technology 60(2): 821-842.

Kurita, Y., Tsuboi, R., Ueki, R., Rifkin, D. B. and Ogawa, H. (1992).
Immunohistochemical localization of basic fibroblast growth factor in wound healing
sites of mouse skin. Archives of Dermatological Research 284(4): 193-197.

Leedham, G., Yan, C., Takru, K., Joie and Mian, L. (2003). Comparison of some
thresholding algorithms for text/background segmentation in difficult document images.

Liao, P., Chen, T. and Chung, P. (2001). A Fast Algorithm for Multilevel Thresholding.
J. Inf. Sci. Eng. 17(5): 713-727.

Lu, N. and Likos, W. J. (2004). Unsaturated Soil Mechanics. Hoboken, New Jersey, John
Wiley & Sons.

Madra, A., Hajj, N. E. and Benzeggagh, M. (2014). X-ray microtomography applications
for quantitative and qualitative analysis of porosity in woven glass fiber reinforced
thermoplastic. Composites Science and Technology 95: 50-58.

Maire, E., Babout, L., Buffiere, J. Y. and Fougeres, R. (2001). Recent results on 3D
characterisation of microstructure and damage of metal matrix composites and a metallic
foam using X-ray tomography. Materials Science and Engineering: A 319–321: 216-219.

Maire, E., Colombo, P., Adrien, J., Babout, L. and Biasetto, L. (2007). Characterization
of the morphology of cellular ceramics by 3D image processing of X-ray tomography.
Journal of the European Ceramic Society 27(4): 1973-1981.

116	
	

Malsch, F. (1939). Erzeugung stark vergrößerter Röntgen-Schattenbilder (Generation of
highly enlarged x-ray shadows). Naturwissenschaften: 854-855.

Manahiloh, K. N. (2013). Microstructural analysis of unsaturated granular soils using X-
ray Computed Tomography. Civil nd Environmental Engineering. Pullman, Washington
State University. Ph.D.: 156.

Manahiloh, K. N., Muhunthan, B., Kayhanian, M. and Gebremariam, S. Y. (2012). X-
Ray Computed Tomography and Nondestructive Evaluation of Clogging in Porous
Concrete Field Samples. Journal of Materials in Civil Engineering 24(8): 1103-1109.

Månsson, L. G., Kheddache, S., Lanhede, B. and Tylén, U. (1999). Image quality for five
modern chest radiography techniques: a modified FROC study with an anthropomorphic
chest phantom. European Radiology 9(9): 1826-1834.

Maser, J., Stephenson, G. B., Vogt, S., Yun, W., Macrander, A., Kang, H. C., Liu, C. and
Conley, R. (2004). Multilayer Laue lenses as high-resolution x-ray optics. Design and
Microfabrication of Novel X-Ray Optics II.

Mathworks (2015). MATLAB. Natick, Massachusetts, Mathworks Inc.

Mayr, G., Plank, B., Sekelja, J. and Hendorfer, G. (2011). Active thermography as a
quantitative method for non-destructive evaluation of porous carbon fiber reinforced
polymers. NDT & E International 44(7): 537-543.

Morrison, G. R., Bridgwater, S., Browne, M. T., Burge, R. E., Cave, R. C.,
Charalambous, P. S., Foster, G. F., Hare, A. R., Michette, A. G., Morris, D., Taguchi, T.
and Duke, P. J. (1989). Development of x-ray imaging at the Daresbury SRS. Review of
Scientific Instruments 60(7): 2464-2467.

Müller, P. (2013). Coordinate Metrology by Traceable Computed Tomography,
Technical University of Denmark.

Nemanic, S., London, C. A. and Wisner, E. R. (2006). Comparison of Thoracic
Radiographs and Single Breath-Hold Helical CT for Detection of Pulmonary Nodules in
Dogs with Metastatic Neoplasia. Journal of Veterinary Internal Medicine 20(3): 508-515.

Otsu, N. (1979). Threshold Selection Method from Gray-Level Histograms. IEEE Trans.
Syst., Man Cybernetics SMC-9(1): 62-66.

Pal, N. R. and Pal, S. K. (1993). A review on image segmentation techniques. Pattern
Recognition 26(9): 1277-1294.

117	
	

Pun, T. (1980). A new method for grey-level picture thresholding using the entropy of the
histogram. Signal Processing 2(3): 223-237.

Razavi, M. R. (2006). Experimental and numerical investigation of shear localization in
granular material. Civil and Environmental Engineering. Pullman, Washington State
University. PhD Dissertation.

Requena, G., Cloetens, P., Altendorfer, W., Poletti, C., Tolnai, D., Warchomicka, F. and
Degischer, H. P. (2009). Sub-micrometer synchrotron tomography of multiphase metals
using Kirkpatrick–Baez optics. Scripta Materialia 61(7): 760-763.

Röntgen, W. (1896). Ueber eine neue Art von Strahlen (On a new kind of rays).
Conference reports of Würzburg Physik.-medic. Society., Würzburg, Germany.

Russ, J. C. (2015). Forensic Uses of Digital Imaging, Second Edition, CRC Press.

Sahoo, P. K., Soltani, S. and Wong, A. K. C. (1988). A survey of thresholding
techniques. Computer Vision, Graphics, and Image Processing 41(2): 233-260.

Salvo, L., Cloetens, P., Maire, E., Zabler, S., Blandin, J. J., Buffière, J. Y., Ludwig, W.,
Boller, E., Bellet, D. and Josserond, C. (2003). X-ray micro-tomography an attractive
characterisation technique in materials science. Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with Materials and Atoms 200: 273-286.

Sayre, D., Kirz, J., Feder, R., Kim, D. M. and Spiller, E. (1976). Transmission
microscopy of unmodified biological materials. Comparative radiation dosages with
electrons and ultrasoft X-ray photons. Ultramicroscopy 2: 337-349.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J.,
Hartenstein, V., Eliceiri, K., Tomancak, P. and Cardona, A. (2012). Fiji: an open-source
platform for biological-image analysis. Nat Meth 9(7): 676-682.

Schmahl, G. and Rudolph, D. (1984). Introduction. X-Ray Microscopy: Proceedings of
the International Symposium, Göttingen, Fed. Rep. of Germany, September 14–16, 1983.
G. Schmahl and D. Rudolph. Berlin, Heidelberg, Springer Berlin Heidelberg: 1-2.

Scott, A. E., Mavrogordato, M., Wright, P., Sinclair, I. and Spearing, S. M. (2011). In situ
fibre fracture measurement in carbon–epoxy laminates using high resolution computed
tomography. Composites Science and Technology 71(12): 1471-1477.

Seltzer, R., González, C., Muñoz, R., Llorca, J. and Blanco-Varela, T. (2013). X-ray
microtomography analysis of the damage micromechanisms in 3D woven composites

118	
	

under low-velocity impact. Composites Part A: Applied Science and Manufacturing 45:
49-60.

Singh, T. R., Roy, S., Singh, O. I., Sinam, T. and Singh, K. M. (2011). A new local
adaptive Thresholding technique in Binarization. International Journal of Computer
Science Issues 8(2): 271-277.

Skinner, C. H., DiCicco, D. S., Kim, D., Rosser, R. J., Suckewer, S., Gupta, A. P. and
Hirschberg, J. G. (1990). Contact microscopy with a soft X-ray laser. Journal of
Microscopy 159(1): 51-60.

Sørensen, T. (2012). CT Scanning in the Medical Device Industry. Industrial
Applications of CT Scanning - Possibilities & Challenges in the Manufacturing Industry.
Kongens Lyngby, Denmark.

Sund, R. and Eilertsen, K. (2003). An algorithm for fast adaptive image binarization with
applications in radiotherapy imaging. IEEE Transactions on Medical Imaging 22: 22-28.

Trebes, J. E., Brown, S. B., Campbell, E. M., Matthews, D. L., Nilson, D. G., Stone, G. F.
and Whelan, D. A. (1987). Demonstration of X-ray Holography with an X-ray Laser.
Science 238(4826): 517-519.

Tsai, D. (1995). A fast thresholding selection procedure for multimodal and unimodal
histograms. Pattern Recognition Letters 16(6): 653-666.

Weckenmann, A., Krämer, P. and Potschies, B. (2008). Artefact for 3D CT
measurements of electronic assemblies. Industrielle Computertomografie.

Wen, C. Y. and Chen, J. K. (2004). Multi-resolution image fusion technique and its
application to forensic science. Forensic Science International 140(2–3): 217-232.

Woodard, P. K., Slone, R. M., Sagel, S. S., Fleishman, M. J., Gutierrez, F. R., Reiker, G.
G., Pilgram, T. K. and Jost, R. G. (1998). Detection of CT-proved pulmonary nodules:
comparison of selenium-based digital and conventional screen-film chest radiographs.
Radiology 209(3): 705-709.

Yang, Q. and Kang, W. (2009). General Research on Image Segmentation Algorithms
International Journal of Image, Graphics and Signal Processing 1: 1-8.

Yin, G., Tang, M.-T., Song, Y.-F., Chen, F.-R., Liang, K. S., Duewer, F. W., Yun, W.,
Ko, C.-H. and Shieh, H.-P. D. (2006). Energy-tunable transmission x-ray microscope for
differential contrast imaging with near 60nm resolution tomography. Applied Physics
Letters 88(24): 241115.

119	
	

	

Appendix A

DIRECTIONS FOR PROPER GUI USAGE

Note: The same directions apply to both the two-phase and multi-phase GUIs, since the

interfaces were created in the same manner.

1. Click “Rename Images.” This button renames all of the images in the folder of interest.

Make sure that the original images are saved to a folder.

2. Click “Crop All Images.” This button crops the renamed images and saves the cropped

images to a folder of choice. In order to apply cropping, please double click within the

drawn ellipse.

3. Click “Load Image.” This button loads the first cropped image and its corresponding

histogram. If necessary, the contrast and brightness of the image can be adjusted as well,

for visual purposes. The slider allows for the viewing of all of the remaining cropped

images and their histograms.

4. After choosing a segmentation method, click “Run.” This button allows for the selection

of all of the cropped images. For the two-phase GUI, the void ratio (e) and average

threshold value for all the cropped images are displayed. For the multi-phase GUI, the

void ratio (e), degree of saturation, and the two average threshold values for all of the

120	
	

cropped images are displayed. The segmentation of the first cropped image is shown and

the slider allows for the viewing of the remaining cropped images with the chosen

segmentation method applied.

5. The “Export Data to Excel” button saves the void (e) and average threshold values for all

images, per segmentation technique, to an Excel file for the two-phase GUI. In regards to

the multi-phase GUI, the void ratio (e), degree of saturation, and the two average

threshold values are exported.

121	
	

Appendix B

TWO-PHASE IMAGE SEGMENTATION GUI CODE

function varargout = TwoPhaseImageSegmentation(varargin)

gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn',

@TwoPhaseImageSegmentation_OpeningFcn, ...
 'gui_OutputFcn',

@TwoPhaseImageSegmentation_OutputFcn, ...
 'gui_LayoutFcn', [], ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

% --- Executes just before TwoPhaseImageSegmentation GUI is

visible.
function TwoPhaseImageSegmentation_OpeningFcn(hObject, eventdata,

handles, varargin)
set(gcf, 'units', 'normalized', 'position', [.5 .5 .4 .55])

% Choose default command line output for TwoPhaseImageSegmentation
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes TwoPhaseImageSegmentation wait for user response

(see UIRESUME)

set(handles.axes1,'DataAspectRatio',[2 3 3]);
set(handles.axes4,'DataAspectRatio',[2 3 3]);
set(handles.axes2,'DataAspectRatio',[2 3 3]);
set(handles.axes3,'DataAspectRatio',[2 3 3]);

122	
	

% --- Outputs from this function are returned to the command line.
function varargout = TwoPhaseImageSegmentation_OutputFcn(hObject,

eventdata, handles)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in RenameImages.
function RenameImages_Callback(hObject, eventdata, handles)
a = uigetdir;
A =dir(fullfile(a, '*.bmp'));
fileNames = { A.name };
for iFile = 1 : numel(A)
 newName = fullfile(a, sprintf('1.%02d.bmp', iFile));
 movefile(fullfile(a, fileNames{ iFile }), newName);
end

AA =dir(fullfile(a, '*.tif'));
fileNames = { AA.name };
for iFile = 1 : numel(AA)
 newName = fullfile(a, sprintf('1.%02d.bmp', iFile));
 movefile(fullfile(a, fileNames{ iFile }), newName);
end

AA =dir(fullfile(a, '*.jpg'));
fileNames = { AA.name };
for iFile = 1 : numel(AA)
 newName = fullfile(a, sprintf('1.%02d.bmp', iFile));
 movefile(fullfile(a, fileNames{ iFile }), newName);
end

AA =dir(fullfile(a, '*.png'));
fileNames = { AA.name };
for iFile = 1 : numel(AA)
 newName = fullfile(a, sprintf('1.%02d.bmp', iFile));
 movefile(fullfile(a, fileNames{ iFile }), newName);
end

AA =dir(fullfile(a, '*.gif'));
fileNames = { AA.name };
for iFile = 1 : numel(AA)
 newName = fullfile(a, sprintf('1.%02d.bmp', iFile));
 movefile(fullfile(a, fileNames{ iFile }), newName);
end

function numImages_Callback(hObject, eventdata, handles)
updateSlider(handles);

function updateSlider(handles)
% This function updates the slider to have the correct min, max,

value, and
% step size

% Get the current slice number which were stored in the figure

123	
	

axes
sliceNum = getappdata(handles.axes1,'sliceNum');
if(isempty(sliceNum))%may be empty if the figure has not been

initialized
 sliceNum = 1; %set it to a default
end

% Get the number written in the text box which is the maximum

number of
% images to be viewed
NumImageslice = str2double(get(handles.numImages,'String'));

% There are only NumImageslice - 1 images total, because we start

at 1
step = 1/(NumImageslice - 1);

% Set values for the slider bar
set(handles.imageSlider, 'Max', NumImageslice);
set(handles.imageSlider, 'Min', 1);
set(handles.imageSlider, 'SliderStep', [step step]);

% Set current value to the slice we are viewing
set(handles.imageSlider, 'Value', sliceNum);

% --- Executes during object creation, after setting all

properties.
function numImages_CreateFcn(hObject, eventdata, handles)
% hObject handle to numImages (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function CropButton_Callback(hObject, eventdata, handles)
axes(handles.axes1);
AA = uigetdir('','Please Select the Folder to Save the Cropped

Images to');
cd (AA);
[FileName,PathName] =

uigetfile({'*.jpg;*.tif;*.bmp;*.png;*.gif','All Image Files'},'Please
Select First Renamed Image');

imagefiles1 = dir([PathName '*.jpg']);
imagefiles2 = dir([PathName '*.tif']);
imagefiles3 = dir([PathName '*.bmp']);
imagefiles4 = dir([PathName '*.png']);
imagefiles5 = dir([PathName '*.gif']);

124	
	

imagefiles = [imagefiles1; imagefiles2; imagefiles3; imagefiles4;
imagefiles5];

nfiles = length(imagefiles); % Number of files found

image = imread([PathName FileName]);

% Following lines to change image matrix into a square sized

matrix

image=im2uint8(image);
SIZI=size(image);
if numel(SIZI)>2
 if SIZI(1,3)>=3
 image=image(:,:,1:3);
 image=rgb2gray(image);
 end
end

 % Reducing the image matrix into a square sized matrix

 if SIZI(1,1)~=SIZI(1,2)
 SIZim=size(image);
 Divs=round((max(size(image))-min(size(image)))/2);
 if SIZim(1,1)== max(size(image))
 image=image(Divs+1:SIZim(1,1)-Divs+1,:);
 else
 image=image(:,Divs+1:SIZim(1,2)-Divs+1);
 end
 end

imshow(image) %needed to use imellipse
user_defined_ellipse = imellipse(gca, []); % creates user defined

ellipse object.

MASK = double(user_defined_ellipse.createMask());
addNewPositionCallback(user_defined_ellipse,@(p)

title(mat2str(p,3)));

fcn =

makeConstrainToRectFcn('imellipse',get(gca,'XLim'),get(gca,'YLim'));
accepted_pos=wait(user_defined_ellipse); % You need to click twice

to continue.
MASK = double(user_defined_ellipse.createMask());

for i=1:nfiles

 currentfilename = imagefiles(i).name;
 currentimage = imread([PathName currentfilename]);

 currentimage=im2uint8(currentimage);
 SIZI=size(currentimage);
 if numel(SIZI)>2
 if SIZI(1,3)>=3
 currentimage=currentimage(:,:,1:3);

125	
	

 currentimage=rgb2gray(currentimage);
 end
 end

 if SIZI(1,1)~=SIZI(1,2)
 SIZim=size(currentimage);
 Divs=round((max(size(currentimage))-

min(size(currentimage)))/2);
 if SIZim(1,1)== max(size(currentimage))
 currentimage=currentimage(Divs+1:SIZim(1,1)-Divs+1,:);
 else
 currentimage=currentimage(:,Divs+1:SIZim(1,2)-Divs+1);
 end
 end
 new_image_name = [PathName 'CroppedImage_' currentfilename];
 [pathstr,name,ext] = fileparts(new_image_name);
 new_image_name=fullfile(name);
 new_image_name = [new_image_name '.png']; % making the image

.png so it can be transparent
 imwrite(currentimage, new_image_name,'png','Alpha',MASK);
end

msg = msgbox('Congratulations! All images have been cropped!');
waitfor(msg);
% --- Executes on slider movement.
function imageSlider_Callback(hObject, eventdata, handles)
% hObject handle to imageSlider (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine

range of slider
%get the current value on the slider
imageSlider_value = get(hObject,'Value');

% Get the current max value from the slider
numImages = get(handles.imageSlider, 'Max');

% Calculate the image number to display
imageNum = floor(imageSlider_value)...
 + (sign(imageSlider_value)...
 * (abs(imageSlider_value) - floor(imageSlider_value)

)...
 * numImages);

%Create a string from the number which always has 2 digits
str = sprintf('%02.0f',imageNum);

%Retrieve filename data from app data
ptNum = getappdata(handles.axes1, 'ptNum');
imageType = getappdata(handles.axes1, 'imageType');
filepath = getappdata(handles.axes1, 'filePath');

126	
	

%Create the filename as a cell string
filename = strcat(ptNum, '.', str, '.', imageType);

%Create full path to the image
imageStr = [filepath, filename{1}];

%Read in image data
image = imread(imageStr);

%Bring current axes in focus and show image
axes(handles.axes1);
imshow(image, []); %[] = [Imin Imax]

axes(handles.axes4);
imshow(image,[]);

%Store image data and slice number in axes
setappdata(handles.axes1, 'image', image);
setappdata(handles.axes1, 'sliceNum', imageSlider_value);

axes(handles.axes2);
sizeofmatrix = size(image,1);
[Row,Col,r]=MaskPortion(image);
c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;

for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=image(i,j);
 c1(i,j)=image(i,j);
 end
 end
end
histogram(c);

set(handles.CurrentName, 'String', filename)

 contents = get(handles.Methods,'String');
 MethodName = contents{get(handles.Methods,'Value')};

 if strcmp(MethodName, 'Otsu ')
 axes(handles.axes3);
 sizeofmatrix = size(image,1);
 [Row,Col,r]=MaskPortion(image);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;

127	
	

 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=image(i,j);
 c1(i,j)=image(i,j);
 end
 end
 end

e=uint8(c);
p=imhist(e);
mean=0;
for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end

 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;

128	
	

 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

imshow(c2,[]);
 end

%%%

 if strcmp(MethodName, 'Pun ')
 axes(handles.axes3);
 sizeofmatrix = size(image,1);
 [Row,Col,r]=MaskPortion(image);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=image(i,j);
 c1(i,j)=image(i,j);
 end
 end
 end

% Automatic Threshold using Pun's Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);

for i=1:256
 pi(i)=p(i)/n;
end

for i=1:256
 Sumpi=sum(pi(1:i));
 if Sumpi>=0.5
 m=i;
 break
 end
end

129	
	

 numerator = pi(1:m).*log(pi(1:m));
 numerator = nansum(numerator);

 for i=1:256
 denominator = pi(1:i).*log(pi(1:i));
 end

 denominator = nansum(denominator);

 alpha = numerator/denominator;

 if alpha <=0.5
 correctedalpha = 1-alpha;
 else
 correctedalpha = alpha;
 end

 for i=1:256
 Summationpi=sum(pi(1:i));
 if Summationpi>=correctedalpha
 Threshold = i;
 break
 end
 end

 Threshold1 = Threshold;

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end
imshow(c2,[]);

 end

 %%%

 if strcmp(MethodName, 'Kapur, Sahoo, and Wong')
 axes(handles.axes3);

130	
	

 sizeofmatrix = size(image,1);
 [Row,Col,r]=MaskPortion(image);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;

 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c1(i,j)=image(i,j);
 end
 end
 end

% Automatic Threshold using Kapur, Sahoo, and Wong Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

pi1= pi1(pi1(:,1)>0.0001,:);

size(pi1,1);
c=size(pi1,1);

sumt = zeros(c,1);
Ht= zeros(c,1);
Pt=zeros(c,1);
Ha=zeros(c,1);
Hb=zeros(c,1);

for t = 1:c

 Hi= -sum(pi1(1:c).*log(pi1(1:c)));

 for i = 1:c
 Pt(i)=0;

131	
	

 Ht(t)=0;
 Pt(i) = sum(pi1(1:i))+Pt(i);
 Ht(t) = -sum(pi1(1:t).*log(pi1(1:t)))+Ht(t);
 Ha(i) = log(Pt(i))+(Ht(i)/Pt(i));
 Hb(i) = log(1-Pt(i))+((Hi-Ht(i))/(1-Pt(i)));
 Hb(i)=real(Hb(i));
 end

 sumt=Ha+Hb;
 sumt(:,2)=pi1(:,2);
 maxrow=max(sumt(:,1));
 Threshold1=max(sumt(sumt(:,1)==maxrow,2));

end

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end
imshow(c2,[]);

 end

%%%

 if strcmp(MethodName, 'Johannsen and Bille')
 axes(handles.axes3);
 sizeofmatrix = size(image,1);
 [Row,Col,r]=MaskPortion(image);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=image(i,j);
 c1(i,j)=image(i,j);

132	
	

 end
 end
 end

% Automatic Threshold using Johannsen and Bille Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

pi1= pi1(pi1(:,1)>0.0001,:);

size(pi1,1);
c=size(pi1,1);

 sumt = zeros(c,1);
 Pn=zeros(c,1);
 Pt=zeros(c,1);
 Pi=zeros(c,1);
 Pr=zeros(c,1);
 Sn=zeros(c,1);
 Sn_bar=zeros(c,1);

for t=1:c
 n=t+1;

 Pn(t)=sum(pi1(1:n));
 Pt(t)=sum(pi1(1:n-1));

 Sn(t)=(log(Pn(t)))-

(1/Pn(t)).*(((pi1(n)).*log(pi1(n)))+(Pt(t).*log(Pt(t))));
 Sn(t)=real(Sn(t));

 Pi(t)=sum(pi1(n:c));
 Pr(t)=sum(pi1(n+1:c));

 Sn_bar(t)=(log(Pi(t)))-

(1/Pi(t)).*(((pi1(n)).*log(pi1(n)))+(Pr(t).*log(Pr(t))));
 Sn_bar(t)=real(Sn_bar(t));

133	
	

 sumt=Sn+Sn_bar;
 sumt(:,2)=pi1(:,2);
 minrow=min(sumt(:,1));
 Threshold1=min(sumt(sumt(:,1)==minrow,2));

end

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end
imshow(c2,[]);
 end

%%%

 if strcmp(MethodName, 'Kittler and Illingworth')
 axes(handles.axes3);
 sizeofmatrix = size(image,1);
 [Row,Col,r]=MaskPortion(image);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=image(i,j);
 c1(i,j)=image(i,j);
 end
 end
 end

% Automatic Threshold using Kittler and Illingworth Method

e=uint8(c);
p=imhist(e);
n=sum(p);

134	
	

pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

size(pi1,1);
c=size(pi1,1);

 P1=zeros(c,1);
 P2=zeros(c,1);
 u1=zeros(c,1);
 u2=zeros(c,1);
 s1=zeros(c,1);
 s1_d=zeros(c,1);
 s1_final=zeros(c,1);
 s2_final=zeros(c-2,1);
 J=zeros(c-2,1);

 for i=1:c
 g=1:i;
 g1=i+1:c-1;
 P1(i)=sum(pi1(1:i));
 P2(i)=sum(pi1(i+1:c-1));
 u1(i)=sum(pi1(1:i).*g)/P1(i);
 u2(i)=sum(pi1(i+1:c-1).*g1)/P2(i);
 u2=u2(isfinite(u2));
 u2=u2(u2~=0);
 u2_final=u2';
 s1(i)=0;

 for ii=1:i
 s1(i)=((ii-u1(i))^2*pi1(ii));
 s1_n=cumsum(s1);
 s1_d(i)=P1(ii);
 s1_dd=s1_d;
 s1_final=s1_n./s1_dd;

 end

 G3=([2:c-1]);
 G4=G3';
 A=u2_final(:,1);

 end

135	
	

 B=pi1([2:c-1]);
 Pi1_adj=B';
 s2_n=Pi1_adj.*(G4-A).^2;

 for i = 1:c
 for ii = i:c-2
 s2_final(ii)=sum(s2_n(i+1:c-2))/P2(ii);

 end

 end

 s1_final=sqrt(s1_final);
 s2_final=sqrt(s2_final);

 P1=P1([1:c-2]);
 P2=P2([1:c-2]);
 s1_final=s1_final([1:c-2]);
J=1+2.*((P1.*log(s1_final))+(P2.*log(s2_final)))-

2.*((P1.*log(P1))+(P2.*log(P2)));
J=J(~isinf(J));

minrow=max(J);
Threshold1=max(find(J>=minrow));

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end
imshow(c2,[]);
 end

% --- Executes during object creation, after setting all

properties.
function imageSlider_CreateFcn(hObject, eventdata, handles)
% hObject handle to imageSlider (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

136	
	

CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function CurrentName_Callback(hObject, eventdata, handles)
% hObject handle to CurrentName (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of CurrentName as

text
% str2double(get(hObject,'String')) returns contents of

CurrentName as a double

set(handles.CurrentName, 'String', [pathName filename])

% --- Executes during object creation, after setting all

properties.
function CurrentName_CreateFcn(hObject, eventdata, handles)
% hObject handle to CurrentName (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in AdjustContrastandBrightness.
function AdjustContrastandBrightness_Callback(hObject, eventdata,

handles)
% hObject handle to AdjustContrastandBrightness (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)
%

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
%
axes(handles.axes4);
imcontrast(gcf);

% --- Executes on button press in Run.
function Run_Callback(hObject, eventdata, handles)
 contents = get(handles.Methods,'String');
 MethodName = contents{get(handles.Methods,'Value')};

137	
	

 getappdata(handles.axes1,'fileName');

number_Of_Air_T=0;
number_Of_Solid_T=0;

contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};
getappdata(handles.axes1,'fileName');

%%%

if strcmp(MethodName, 'Otsu ')
 set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 d = uigetdir('','Please Select the Folder Containing the Cropped

Images');
 cd(d);
 q=dir('*.png');
 b = numel(q);

 I=imread('CroppedImage_1.01.png');
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);

c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
end

% Automatic Threshold using Otsu's Method

e=uint8(c);
p=imhist(e);
mean=0;
for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;

138	
	

 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end

 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

axes(handles.axes3);
imshow(c2,[]);

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
sizeofmatrix = size(I,1);

c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;
for i=1:sizeofmatrix

139	
	

 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
end

% Automatic Threshold using Otsu's Method

e=uint8(c);
p=imhist(e);
mean=0;
for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end

 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix

140	
	

 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

end

void_ratio = number_Of_Air_T/number_Of_Solid_T;

v=void_ratio;
v=num2str(v);
set(handles.VoidText, 'String', v);
end

%%%

number_Of_Air_T=0;
number_Of_Solid_T=0;

 if strcmp(MethodName, 'Pun ')

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 d = uigetdir('','Please Select the Folder Containing

the Cropped Images');
 cd(d);
 q=dir('*.png');
 b = numel(q);

 I=imread('CroppedImage_1.01.png');
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);

c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2

141	
	

 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
end

% Automatic Threshold using Pun's Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);

for i=1:256
 pi(i)=p(i)/n;
end

for i=1:256
 Sumpi=sum(pi(1:i));
 if Sumpi>=0.5
 m=i;
 break
 end
end

 numerator = pi(1:m).*log(pi(1:m));
 numerator = nansum(numerator);

 for i=1:256
 denominator = pi(1:i).*log(pi(1:i));
 end

 denominator = nansum(denominator);

 alpha = numerator/denominator;

 if alpha <=0.5
 correctedalpha = 1-alpha;
 else
 correctedalpha = alpha;
 end

 for i=1:256
 Summationpi=sum(pi(1:i));
 if Summationpi>=correctedalpha
 Threshold = i;
 break
 end
 end

 Threshold1 = Threshold;

142	
	

% Portion of Code that Calculates the Porosity and Void Ratio of
the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

axes(handles.axes3);
imshow(c2,[]);

 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
sizeofmatrix = size(I,1);

c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
end

% Automatic Threshold using Pun's Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);

for i=1:256
 pi(i)=p(i)/n;
end

143	
	

for i=1:256
 Sumpi=sum(pi(1:i));
 if Sumpi>=0.5
 m=i;
 break
 end
end

 numerator = pi(1:m).*log(pi(1:m));
 numerator = nansum(numerator);

 for i=1:256
 denominator = pi(1:i).*log(pi(1:i));
 end

 denominator = nansum(denominator);

 alpha = numerator/denominator;

 if alpha <=0.5
 correctedalpha = 1-alpha;
 else
 correctedalpha = alpha;
 end

 for i=1:256
 Summationpi=sum(pi(1:i));
 if Summationpi>=correctedalpha
 Threshold = i;
 break
 end
 end

 Threshold1 = Threshold;

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

144	
	

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

end

void_ratio = number_Of_Air_T/number_Of_Solid_T;

v=void_ratio;
v=num2str(v);
set(handles.VoidText, 'String', v);
 end

%%%

 if strcmp(MethodName, 'Kapur, Sahoo, and Wong')
 set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 d = uigetdir('','Please Select the Folder Containing the Cropped

Images');
 cd(d);
 q=dir('*.png');
 b = numel(q);

%%%

 I=imread('CroppedImage_1.01.png');
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);

c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
end

% Automatic Threshold using Kapur, Sahoo, and Wong Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256

145	
	

 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

pi1= pi1(pi1(:,1)>0.0001,:);

size(pi1,1);
c=size(pi1,1);

sumt = zeros(c,1);
Ht= zeros(c,1);
Pt=zeros(c,1);
Ha=zeros(c,1);
Hb=zeros(c,1);

for t = 1:c

 Hi= -sum(pi1(1:c).*log(pi1(1:c)));

 for i = 1:c
 Pt(i)=0;
 Ht(t)=0;
 Pt(i) = sum(pi1(1:i))+Pt(i);
 Ht(t) = -sum(pi1(1:t).*log(pi1(1:t)))+Ht(t);
 Ha(i) = log(Pt(i))+(Ht(i)/Pt(i));
 Hb(i) = log(1-Pt(i))+((Hi-Ht(i))/(1-Pt(i)));
 Hb(i)=real(Hb(i));
 end

 sumt=Ha+Hb;
 sumt(:,2)=pi1(:,2);
 maxrow=max(sumt(:,1));
 Threshold1=max(sumt(sumt(:,1)==maxrow,2));

end

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2

146	
	

 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

axes(handles.axes3);
imshow(c2,[]);
clear Threshold1;

%%%
 if strcmp(MethodName, 'Kapur, Sahoo, and Wong')
 for ka = 1:b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
sizeofmatrix = size(I,1);

c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;

for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
end

% Automatic Threshold using Kapur, Sahoo, and Wong Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);

147	
	

 pi1(N,2)=pi(q,2);
 end
end

pi1= pi1(pi1(:,1)>0.0001,:);

size(pi1,1);
c=size(pi1,1);

sumt = zeros(c,1);
Ht= zeros(c,1);
Pt=zeros(c,1);
Ha=zeros(c,1);
Hb=zeros(c,1);

for t = 1:c
 Hi= -sum(pi1(1:c).*log(pi1(1:c)));

 for i = 1:c
 Pt(i)=0;
 Ht(t)=0;
 Pt(i) = sum(pi1(1:i))+Pt(i);
 Ht(t) = -sum(pi1(1:t).*log(pi1(1:t)))+Ht(t);
 Ha(i) = log(Pt(i))+(Ht(i)/Pt(i));
 Hb(i) = log(1-Pt(i))+((Hi-Ht(i))/(1-Pt(i)));
 Hb(i)=real(Hb(i));
 end

 sumt=Ha+Hb;
 sumt(:,2)=pi1(:,2);
 maxrow=max(sumt(:,1));

 Threshold1a=max(sumt(sumt(:,1)==maxrow,2));
 Threshold1(ka,1)=max(sumt(sumt(:,1)==maxrow,2));

end

 end

Threshold1=sum(Threshold1(1:b));
Threshold1=Threshold1/(b);
Threshold1=round(Threshold1);
AT1=Threshold1;
AT1=num2str(AT1);
set(handles.AT1Box, 'String', AT1);

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;

148	
	

 if d <= (r)^2
 if c1(i,j)<Threshold1a
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

end

void_ratio = number_Of_Air_T/number_Of_Solid_T

v=void_ratio;
v=num2str(v);
set(handles.VoidText, 'String', v);
 end

if strcmp(MethodName, 'Johannsen and Bille')

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 d = uigetdir('','Please Select the Folder Containing the

Cropped Images');
 cd(d);
 q=dir('*.png');
 b = numel(q);

 I=imread('CroppedImage_1.01.png');
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);

c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
end

149	
	

% Automatic Threshold using Johannsen and Bille Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

size(pi1,1);
c=size(pi1,1);

 sumt = zeros(c,1);
 Pn=zeros(c,1);
 Pt=zeros(c,1);
 Pi=zeros(c,1);
 Pr=zeros(c,1);
 Sn=zeros(c,1);
 Sn_bar=zeros(c,1);

for t=1:c
 n=t+1;

 Pn(t)=sum(pi1(1:n));
 Pt(t)=sum(pi1(1:n-1));

 Sn(t)=(log(Pn(t)))-

(1/Pn(t)).*(((pi1(n)).*log(pi1(n)))+(Pt(t).*log(Pt(t))));
 Sn(t)=real(Sn(t));

 Pi(t)=sum(pi1(n:c));
 Pr(t)=sum(pi1(n+1:c));

 Sn_bar(t)=(log(Pi(t)))-

(1/Pi(t)).*(((pi1(n)).*log(pi1(n)))+(Pr(t).*log(Pr(t))));
 Sn_bar(t)=real(Sn_bar(t));

 sumt=Sn+Sn_bar;
 pi1_final=pi1(15:end,:);
 sumt=sumt(15:end);
 sumt(:,2)=pi1_final(:,2);

 minrow=min(sumt(:,1));

150	
	

 Threshold1=min(sumt(sumt(:,1)==minrow,2))

end

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

axes(handles.axes3);
imshow(c2,[]);

 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
sizeofmatrix = size(I,1);

c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
end

% Automatic Threshold using Johannsen and Bille Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);

151	
	

for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

size(pi1,1);
c=size(pi1,1);

 sumt = zeros(c,1);
 Pn=zeros(c,1);
 Pt=zeros(c,1);
 Pi=zeros(c,1);
 Pr=zeros(c,1);
 Sn=zeros(c,1);
 Sn_bar=zeros(c,1);

for t=1:c
 n=t+1;

 Pn(t)=sum(pi1(1:n));
 Pt(t)=sum(pi1(1:n-1));

 Sn(t)=(log(Pn(t)))-

(1/Pn(t)).*(((pi1(n)).*log(pi1(n)))+(Pt(t).*log(Pt(t))));
 Sn(t)=real(Sn(t));

 Pi(t)=sum(pi1(n:c));
 Pr(t)=sum(pi1(n+1:c));

 Sn_bar(t)=(log(Pi(t)))-

(1/Pi(t)).*(((pi1(n)).*log(pi1(n)))+(Pr(t).*log(Pr(t))));
 Sn_bar(t)=real(Sn_bar(t));

 sumt=Sn+Sn_bar;
 pi1_final=pi1(15:end,:);
 sumt=sumt(15:end);
 sumt(:,2)=pi1_final(:,2);
 minrow=min(sumt(:,1));
 Threshold1=min(sumt(sumt(:,1)==minrow,2))

end

% Portion of Code that Calculates the Porosity and Void Ratio of

152	
	

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

end

void_ratio = number_Of_Air_T/number_Of_Solid_T;

v=void_ratio;
v=num2str(v);
set(handles.VoidText, 'String', v);
end

%%%

 if strcmp(MethodName, 'Kittler and Illingworth')

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 d = uigetdir('','Please Select the Folder Containing the

Cropped Images');
 cd(d);
 q=dir('*.png');
 b = numel(q);

 I=imread('CroppedImage_1.01.png');
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);

c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;
for i=1:sizeofmatrix
 for j=1:sizeofmatrix

153	
	

 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
end

% Automatic Threshold using Kittler and Illingworth Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

size(pi1,1);
c=size(pi1,1);

 P1=zeros(c,1);
 P2=zeros(c,1);
 u1=zeros(c,1);
 u2=zeros(c,1);
 s1=zeros(c,1);
 s1_d=zeros(c,1);
 s1_final=zeros(c,1);
 s2_final=zeros(c-2,1);
 J=zeros(c-2,1);

 for i=1:c
 g=1:i;
 g1=i+1:c-1;
 P1(i)=sum(pi1(1:i));
 P2(i)=sum(pi1(i+1:c-1));
 u1(i)=sum(pi1(1:i).*g)/P1(i);
 u2(i)=sum(pi1(i+1:c-1).*g1)/P2(i);
 u2=u2(isfinite(u2));
 u2=u2(u2~=0);
 u2_final=u2';
 s1(i)=0;

154	
	

 for ii=1:i
 s1(i)=((ii-u1(i))^2*pi1(ii));
 s1_n=cumsum(s1);
 s1_d(i)=P1(ii);
 s1_dd=s1_d;
 s1_final=s1_n./s1_dd;

 end

 G3=([2:c-1]);
 G4=G3';
 A=u2_final(:,1);

 end

 B=pi1([2:c-1]);
 Pi1_adj=B';
 s2_n=Pi1_adj.*(G4-A).^2;

 for i = 1:c
 for ii = i:c-2
 s2_final(ii)=sum(s2_n(i+1:c-2))/P2(ii);

 end

 end

 s1_final=sqrt(s1_final);
 s2_final=sqrt(s2_final);

 P1=P1([1:c-2]);
 P2=P2([1:c-2]);
 s1_final=s1_final([1:c-2]);
J=1+2.*((P1.*log(s1_final))+(P2.*log(s2_final)))-

2.*((P1.*log(P1))+(P2.*log(P2)));
J=J(~isinf(J));

minrow=max(J);
Threshold1=max(find(J>=minrow));

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else

155	
	

 c2(i,j)=100;
 end

 end
 end
end

axes(handles.axes3);
imshow(c2,[]);

 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
sizeofmatrix = size(I,1);

c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
end

% Automatic Threshold using Kittler and Illingworth Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

size(pi1,1);
c=size(pi1,1);

156	
	

 P1=zeros(c,1);
 P2=zeros(c,1);
 u1=zeros(c,1);
 u2=zeros(c,1);
 s1=zeros(c,1);
 s1_d=zeros(c,1);
 s1_final=zeros(c,1);
 s2_final=zeros(c-2,1);
 J=zeros(c-2,1);

 for i=1:c
 g=1:i;
 g1=i+1:c-1;
 P1(i)=sum(pi1(1:i));
 P2(i)=sum(pi1(i+1:c-1));
 u1(i)=sum(pi1(1:i).*g)/P1(i);
 u2(i)=sum(pi1(i+1:c-1).*g1)/P2(i);
 u2=u2(isfinite(u2));
 u2=u2(u2~=0);
 u2_final=u2';
 s1(i)=0;

 for ii=1:i
 s1(i)=((ii-u1(i))^2*pi1(ii));
 s1_n=cumsum(s1);
 s1_d(i)=P1(ii);
 s1_dd=s1_d;
 s1_final=s1_n./s1_dd;

 end

 G3=([2:c-1]);
 G4=G3';
 A=u2_final(:,1);

 end

 B=pi1([2:c-1]);
 Pi1_adj=B';
 s2_n=Pi1_adj.*(G4-A).^2;

 for i = 1:c
 for ii = i:c-2
 s2_final(ii)=sum(s2_n(i+1:c-2))/P2(ii);

 end

 end

 s1_final=sqrt(s1_final);
 s2_final=sqrt(s2_final);

 P1=P1([1:c-2]);

157	
	

 P2=P2([1:c-2]);
 s1_final=s1_final([1:c-2]);
J=1+2.*((P1.*log(s1_final))+(P2.*log(s2_final)))-

2.*((P1.*log(P1))+(P2.*log(P2)));
J=J(~isinf(J));

minrow=max(J);
Threshold1=max(find(J>=minrow));
Threshold1a(ka,1)=max(find(J>=minrow));

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

end

void_ratio = number_Of_Air_T/number_Of_Solid_T;

v=void_ratio;
v=num2str(v);
set(handles.VoidText, 'String', v);

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);
Threshold1a=round(Threshold1a);
AT1=Threshold1a;
AT1=num2str(AT1);
set(handles.AT1Box, 'String', AT1);
 end

%%%

number_Of_Air_T=0;

158	
	

number_Of_Solid_T=0;

 contents = get(handles.Methods,'String');
 MethodName = contents{get(handles.Methods,'Value')};
 getappdata(handles.axes1,'fileName');

 if strcmp(MethodName, 'Otsu ')
 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Otsu's Method

e=uint8(c);
p=imhist(e);
mean=0;
for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end

159	
	

 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1(ka,1)=find(sumt==max(sumt));
end
Threshold1=sum(Threshold1(1:b));
Threshold1=Threshold1/(b);
Threshold1=round(Threshold1);
AT1=Threshold1;
AT1=num2str(AT1);
set(handles.AT1Box, 'String', AT1);
 end
%%%

 if strcmp(MethodName, 'Pun ')
 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Pun
e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);

for i=1:256
 pi(i)=p(i)/n;
end

for i=1:256
 Sumpi=sum(pi(1:i));
 if Sumpi>=0.5
 m=i;

160	
	

 break
 end
end

 numerator = pi(1:m).*log(pi(1:m));
 numerator = nansum(numerator);

 for i=1:256
 denominator = pi(1:i).*log(pi(1:i));
 end

 denominator = nansum(denominator);

 alpha = numerator/denominator;

 if alpha <=0.5
 correctedalpha = 1-alpha;
 else
 correctedalpha = alpha;
 end

 for i=1:256
 Summationpi=sum(pi(1:i));
 if Summationpi>=correctedalpha
 Threshold = i;
 break
 end
 end

 Threshold1(ka,1) = Threshold;
end

Threshold1=sum(Threshold1(1:b));
Threshold1=Threshold1/(b);
Threshold1=round(Threshold1);
AT1=Threshold1;
AT1=num2str(AT1);
set(handles.AT1Box, 'String', AT1);
 end

 %%%

 if strcmp(MethodName, 'Johannsen and Bille')
 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix

161	
	

 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Johannsen and Bille Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

size(pi1,1);
c=size(pi1,1);

 sumt = zeros(c,1);
 Pn=zeros(c,1);
 Pt=zeros(c,1);
 Pi=zeros(c,1);
 Pr=zeros(c,1);
 Sn=zeros(c,1);
 Sn_bar=zeros(c,1);

for t=1:c
 n=t+1;

 Pn(t)=sum(pi1(1:n));
 Pt(t)=sum(pi1(1:n-1));

 Sn(t)=(log(Pn(t)))-

(1/Pn(t)).*(((pi1(n)).*log(pi1(n)))+(Pt(t).*log(Pt(t))));
 Sn(t)=real(Sn(t));

 Pi(t)=sum(pi1(n:c));
 Pr(t)=sum(pi1(n+1:c));

 Sn_bar(t)=(log(Pi(t)))-

162	
	

(1/Pi(t)).*(((pi1(n)).*log(pi1(n)))+(Pr(t).*log(Pr(t))));
 Sn_bar(t)=real(Sn_bar(t));

 sumt=Sn+Sn_bar;
 pi1_final=pi1(15:end,:);
 sumt=sumt(15:end);
 sumt(:,2)=pi1_final(:,2);
 minrow=min(sumt(:,1));
 Threshold1(ka,1)=min(sumt(sumt(:,1)==minrow,2));

end

end
Threshold1=sum(Threshold1(1:b));
Threshold1=Threshold1/(b);
Threshold1=round(Threshold1);
AT1=Threshold1;
AT1=num2str(AT1);
set(handles.AT1Box, 'String', AT1);
 end

 function VoidText_Callback(hObject, eventdata, handles)
% hObject handle to VoidText (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of VoidText as

text
% str2double(get(hObject,'String')) returns contents of

VoidText as a double

% --- Executes during object creation, after setting all

properties.
function VoidText_CreateFcn(hObject, eventdata, handles)
% hObject handle to VoidText (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function AT1Box_Callback(hObject, eventdata, handles)
% hObject handle to AT1Box (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

163	
	

% Hints: get(hObject,'String') returns contents of AT1Box as text
% str2double(get(hObject,'String')) returns contents of

AT1Box as a double

% --- Executes during object creation, after setting all

properties.
function AT1Box_CreateFcn(hObject, eventdata, handles)
% hObject handle to AT1Box (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in SingleThreshold.
function SingleThreshold_Callback(hObject, eventdata, handles)
number_Of_Air_T=0;
number_Of_Solid_T=0;
contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};
getappdata(handles.axes1,'fileName');

 if strcmp(MethodName, 'Otsu ')
 A = uigetfile({'*.jpg;*.tif;*.bmp;*.png;*.gif','All

Image Files'},'Please Select A Cropped Image from Folder that
Appears');

 I=imread(A);
 set(handles.Name, 'String', A);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Otsu's Method

e=uint8(c);

164	
	

p=imhist(e);
mean=0;
for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end

 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));

T1=Threshold1;
T1=num2str(T1);
set(handles.T1Box, 'String', T1);
 end

%%%

if strcmp(MethodName, 'Pun ')

 A = uigetfile({'*.jpg;*.tif;*.bmp;*.png;*.gif','All Image

Files'},'Please Select An Image');
 I=imread(A);
 set(handles.Name, 'String', A);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;

165	
	

 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Pun

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);

for i=1:256
 pi(i)=p(i)/n;
end

for i=1:256
 Sumpi=sum(pi(1:i));
 if Sumpi>=0.5
 m=i;
 break
 end
end

 numerator = pi(1:m).*log(pi(1:m));
 numerator = nansum(numerator);

 for i=1:256
 denominator = pi(1:i).*log(pi(1:i));
 end

 denominator = nansum(denominator);

 alpha = numerator/denominator;

 if alpha <=0.5
 correctedalpha = 1-alpha;
 else
 correctedalpha = alpha;
 end

 for i=1:256
 Summationpi=sum(pi(1:i));
 if Summationpi>=correctedalpha
 Threshold = i;
 break
 end

166	
	

 end

Threshold1 = Threshold;
T1=Threshold1;
T1=num2str(T1);
set(handles.T1Box, 'String', T1);
end

%%%

if strcmp(MethodName, 'Kapur, Sahoo, and Wong')
 A = uigetfile({'*.jpg;*.tif;*.bmp;*.png;*.gif','All Image

Files'},'Please Select An Image');
 I=imread(A);
 set(handles.Name, 'String', A);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Kapur, Sahoo, and Wong Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

pi1= pi1(pi1(:,1)>0.0001,:);

167	
	

size(pi1,1);
c=size(pi1,1);

sumt = zeros(c,1);
Ht= zeros(c,1);
Pt=zeros(c,1);
Ha=zeros(c,1);
Hb=zeros(c,1);

for t = 1:c

 Hi= -sum(pi1(1:c).*log(pi1(1:c)));

 for i = 1:c
 Pt(i)=0;
 Ht(t)=0;
 Pt(i) = sum(pi1(1:i))+Pt(i);
 Ht(t) = -sum(pi1(1:t).*log(pi1(1:t)))+Ht(t);
 Ha(i) = log(Pt(i))+(Ht(i)/Pt(i));
 Hb(i) = log(1-Pt(i))+((Hi-Ht(i))/(1-Pt(i)));
 Hb(i)=real(Hb(i));
 end

 sumt=Ha+Hb;
 sumt(:,2)=pi1(:,2);
 maxrow=max(sumt(:,1));
 Threshold1=max(sumt(sumt(:,1)==maxrow,2))

end
T1=Threshold1;
T1=num2str(T1);
set(handles.T1Box, 'String', T1);
end

%%%

if strcmp(MethodName, 'Johannsen and Bille')
 A = uigetfile({'*.jpg;*.tif;*.bmp;*.png;*.gif','All Image

Files'},'Please Select An Image');
 I=imread(A);
 set(handles.Name, 'String', A);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);

168	
	

 end
 end
 end

% Automatic Threshold using Johannsen and Bille Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

size(pi1,1);
c=size(pi1,1);

 sumt = zeros(c,1);
 Pn=zeros(c,1);
 Pt=zeros(c,1);
 Pi=zeros(c,1);
 Pr=zeros(c,1);
 Sn=zeros(c,1);
 Sn_bar=zeros(c,1);

for t=1:c
 n=t+1;

 Pn(t)=sum(pi1(1:n));
 Pt(t)=sum(pi1(1:n-1));

 Sn(t)=(log(Pn(t)))-

(1/Pn(t)).*(((pi1(n)).*log(pi1(n)))+(Pt(t).*log(Pt(t))));
 Sn(t)=real(Sn(t));

 Pi(t)=sum(pi1(n:c));
 Pr(t)=sum(pi1(n+1:c));

 Sn_bar(t)=(log(Pi(t)))-

(1/Pi(t)).*(((pi1(n)).*log(pi1(n)))+(Pr(t).*log(Pr(t))));
 Sn_bar(t)=real(Sn_bar(t));

 sumt=Sn+Sn_bar;
 pi1_final=pi1(15:end,:);

169	
	

 sumt=sumt(15:end);
 sumt(:,2)=pi1_final(:,2);
 minrow=min(sumt(:,1));
 Threshold1=min(sumt(sumt(:,1)==minrow,2));

end
T1=Threshold1;
T1=num2str(T1);
set(handles.T1Box, 'String', T1);
end

%%%

 if strcmp(MethodName, 'Kittler and Illingworth')
 A = uigetfile({'*.jpg;*.tif;*.bmp;*.png;*.gif','All Image

Files'},'Please Select An Image');
 I=imread(A);
 set(handles.Name, 'String', A);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Kittler and Illingworth Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

170	
	

size(pi1,1);
c=size(pi1,1);

 P1=zeros(c,1);
 P2=zeros(c,1);
 u1=zeros(c,1);
 u2=zeros(c,1);
 s1=zeros(c,1);
 s1_d=zeros(c,1);
 s1_final=zeros(c,1);
 s2_final=zeros(c-2,1);
 J=zeros(c-2,1);

 for i=1:c
 g=1:i;
 g1=i+1:c-1;
 P1(i)=sum(pi1(1:i));
 P2(i)=sum(pi1(i+1:c-1));
 u1(i)=sum(pi1(1:i).*g)/P1(i);
 u2(i)=sum(pi1(i+1:c-1).*g1)/P2(i);
 u2=u2(isfinite(u2));
 u2=u2(u2~=0);
 u2_final=u2';
 s1(i)=0;

 for ii=1:i
 s1(i)=((ii-u1(i))^2*pi1(ii));
 s1_n=cumsum(s1);
 s1_d(i)=P1(ii);
 s1_dd=s1_d;
 s1_final=s1_n./s1_dd;

 end

 G3=([2:c-1]);
 G4=G3';
 A=u2_final(:,1);

 end

 B=pi1([2:c-1]);
 Pi1_adj=B';
 s2_n=Pi1_adj.*(G4-A).^2;

 for i = 1:c
 for ii = i:c-2
 s2_final(ii)=sum(s2_n(i+1:c-2))/P2(ii);

 end

 end

171	
	

 s1_final=sqrt(s1_final);
 s2_final=sqrt(s2_final);

 P1=P1([1:c-2]);
 P2=P2([1:c-2]);
 s1_final=s1_final([1:c-2]);
J=1+2.*((P1.*log(s1_final))+(P2.*log(s2_final)))-

2.*((P1.*log(P1))+(P2.*log(P2)));
J=J(~isinf(J));

minrow=max(J);
Threshold1=max(find(J>=minrow));

T1=Threshold1;
T1=num2str(T1);
set(handles.T1Box, 'String', T1);
 end

 function T1Box_Callback(hObject, eventdata, handles)
% hObject handle to T1Box (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of T1Box as text
% str2double(get(hObject,'String')) returns contents of

T1Box as a double

% --- Executes during object creation, after setting all

properties.
function T1Box_CreateFcn(hObject, eventdata, handles)
% hObject handle to T1Box (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function Name_Callback(hObject, eventdata, handles)
% hObject handle to Name (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Name as text
% str2double(get(hObject,'String')) returns contents of

Name as a double

172	
	

% --- Executes during object creation, after setting all
properties.

function Name_CreateFcn(hObject, eventdata, handles)
% hObject handle to Name (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes during object creation, after setting all

properties.
function Excel_CreateFcn(hObject, eventdata, handles)
% hObject handle to Excel (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% --- Executes on button press in Excel.
function Excel_Callback(hObject, eventdata, handles)
str1='Segmentation Method';
O='Otsu';
P= 'Pun';
KSW= 'Kapur, Sahoo, and Wong';
J = 'Johannsen and Bille';
K='Kittler and Illingworth';
str2='Void Ratio';
str3='Average Threshold Value for all Images';

d = uigetdir('*.png');
cd(d);
q=dir('*.png');
b = numel(q);

k = warndlg('Exporting of data can take a couple of minutes

depending on the number of images being analyzed. Please do not click
anything until data exporting is completed.','Warning');

waitfor(k);

%%% OTSU

number_Of_Air_T=0;
number_Of_Solid_T=0;

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);

173	
	

 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Otsu's Method

e=uint8(c);
p=imhist(e);
mean=0;

for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end
 sumt(i,1)=sumgi+sumli;
end

Threshold1=find(sumt==max(sumt));
Threshold1a(ka,1)=find(sumt==max(sumt));

% Portion of Code that Calculates the Porosity and Void Ratio of

174	
	

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

end

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);
Threshold1a=round(Threshold1a);
AT1=Threshold1a;
AT1=num2str(AT1);
str4 = AT1;
void_ratio = number_Of_Air_T/number_Of_Solid_T;

v=void_ratio;
v=num2str(v);
str9=v;

AH=cell(10,1);
AH{1,1}='Otsu segmentation method complete.';
AH{2,1}='Four methods remain...';
set(handles.listbox3, 'String', AH);
drawnow()

%%% PUN

number_Of_Air_T=0;
number_Of_Solid_T=0;

 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);

175	
	

 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
end

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);

for i=1:256
 pi(i)=p(i)/n;
end

for i=1:256
 Sumpi=sum(pi(1:i));
 if Sumpi>=0.5
 m=i;
 break
 end
end
 numerator = pi(1:m).*log(pi(1:m));
 numerator = nansum(numerator);
 for i=1:256
 denominator = pi(1:i).*log(pi(1:i));
 end
 denominator = nansum(denominator);
 alpha = numerator/denominator;
 if alpha <=0.5
 correctedalpha = 1-alpha;
 else
 correctedalpha = alpha;
 end
 for i=1:256
 Summationpi=sum(pi(1:i));
 if Summationpi>=correctedalpha
 Threshold = i;
 break
 end
 end

 Threshold1=Threshold;
 Threshold1a(ka,1) = Threshold;

176	
	

% Portion of Code that Calculates the Porosity and Void Ratio of
the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

end

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);
Threshold1a=round(Threshold1a);
AT1=Threshold1a;
AT1=num2str(AT1);
str5=AT1;
void_ratio = number_Of_Air_T/number_Of_Solid_T;
v=void_ratio;
v=num2str(v);
str10=v;

AH{3,1}='Pun segmentation method complete.';
AH{4,1}='Three methods remain...';
set(handles.listbox3,'String',AH);
drawnow()

%%% KAPUR, SAHOO, AND WONG

number_Of_Air_T=0;
number_Of_Solid_T=0;

for ka = 1:b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];

177	
	

 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Kapur, Sahoo, and Wong Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

pi1= pi1(pi1(:,1)>0.0001,:);
size(pi1,1);
c=size(pi1,1);

sumt = zeros(c,1);
Ht= zeros(c,1);
Pt=zeros(c,1);
Ha=zeros(c,1);
Hb=zeros(c,1);

for t = 1:c
 Hi= -sum(pi1(1:c).*log(pi1(1:c)));
 for i = 1:c
 Pt(i)=0;
 Ht(t)=0;
 Pt(i) = sum(pi1(1:i))+Pt(i);
 Ht(t) = -sum(pi1(1:t).*log(pi1(1:t)))+Ht(t);
 Ha(i) = log(Pt(i))+(Ht(i)/Pt(i));
 Hb(i) = log(1-Pt(i))+((Hi-Ht(i))/(1-Pt(i)));
 Hb(i)=real(Hb(i));

178	
	

 end

 sumt=Ha+Hb;

 sumt(:,2)=pi1(:,2);
 maxrow=max(sumt(:,1));

 Threshold1a=max(sumt(sumt(:,1)==maxrow,2));
 Threshold1(ka,1)=max(sumt(sumt(:,1)==maxrow,2));
end

end

Threshold1=sum(Threshold1(1:b));
Threshold1=Threshold1/(b);
Threshold1=round(Threshold1);
AT1=Threshold1;
AT1=num2str(AT1);

str6=AT1;

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1a
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

void_ratio = number_Of_Air_T/number_Of_Solid_T;

v=void_ratio
v=num2str(v);
str11=v;
AH{5,1}='Kapur, Sahoo, and Wong segmentation method complete.';
AH{6,1}='Two methods remain...';
set(handles.listbox3,'String',AH);

179	
	

drawnow()

% Automatic Threshold using Johannsen and Bille Method

number_Of_Air_T=0;
number_Of_Solid_T=0;

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Johannsen and Bille Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

size(pi1,1);
c=size(pi1,1);

sumt = zeros(c,1);
Pn=zeros(c,1);
Pt=zeros(c,1);
Pi=zeros(c,1);

180	
	

Pr=zeros(c,1);
Sn=zeros(c,1);
Sn_bar=zeros(c,1);

for t=1:c
 n=t+1;

 Pn(t)=sum(pi1(1:n));
 Pt(t)=sum(pi1(1:n-1));

 Sn(t)=(log(Pn(t)))-

(1/Pn(t)).*(((pi1(n)).*log(pi1(n)))+(Pt(t).*log(Pt(t))));
 Sn(t)=real(Sn(t));

 Pi(t)=sum(pi1(n:c));
 Pr(t)=sum(pi1(n+1:c));

 Sn_bar(t)=(log(Pi(t)))-

(1/Pi(t)).*(((pi1(n)).*log(pi1(n)))+(Pr(t).*log(Pr(t))));
 Sn_bar(t)=real(Sn_bar(t));

 sumt=Sn+Sn_bar;
 pi1_final=pi1(15:end,:);
 sumt=sumt(15:end);
 sumt(:,2)=pi1_final(:,2);
 minrow=min(sumt(:,1));
 Threshold1a(ka,1)=min(sumt(sumt(:,1)==minrow,2));
 Threshold1=min(sumt(sumt(:,1)==minrow,2));
 end

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

181	
	

end

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);
Threshold1a=round(Threshold1a);
AT1=Threshold1a;
AT1=num2str(AT1);
str7=AT1;

void_ratio = number_Of_Air_T/number_Of_Solid_T;
v=void_ratio;
v=num2str(v);
str12=v;

AH{7,1}='Johannsen and Bille segmentation method complete.';
AH{8,1}='One method remains...';
set(handles.listbox3,'String',AH);
drawnow()

% Automatic Threshold using Kittler and Illingworth Method

number_Of_Air_T=0;
number_Of_Solid_T=0;

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);

for i=1:256
 pi(i)=p(i)/n;
end
pi(1:256,2)=linspace(1,256,256);

182	
	

N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

size(pi1,1);
c=size(pi1,1);

P1=zeros(c,1);
P2=zeros(c,1);
u1=zeros(c,1);
u2=zeros(c,1);
s1=zeros(c,1);
s1_d=zeros(c,1);
s1_final=zeros(c,1);
s2_final=zeros(c-2,1);
J=zeros(c-2,1);

for i=1:c
 g=1:i;
 g1=i+1:c-1;
 P1(i)=sum(pi1(1:i));
 P2(i)=sum(pi1(i+1:c-1));
 u1(i)=sum(pi1(1:i).*g)/P1(i);
 u2(i)=sum(pi1(i+1:c-1).*g1)/P2(i);
 u2=u2(isfinite(u2));
 u2=u2(u2~=0);
 u2_final=u2';
 s1(i)=0;

 for ii=1:i
 s1(i)=((ii-u1(i))^2*pi1(ii));
 s1_n=cumsum(s1);
 s1_d(i)=P1(ii);
 s1_dd=s1_d;
 s1_final=s1_n./s1_dd;
 end

 G3=([2:c-1]);
 G4=G3';
 A=u2_final(:,1);

 end

 B=pi1([2:c-1]);
 Pi1_adj=B';
 s2_n=Pi1_adj.*(G4-A).^2;

 for i = 1:c
 for ii = i:c-2

183	
	

 s2_final(ii)=sum(s2_n(i+1:c-2))/P2(ii);
 end
 end

 s1_final=sqrt(s1_final);
 s2_final=sqrt(s2_final);
 P1=P1([1:c-2]);
 P2=P2([1:c-2]);
 s1_final=s1_final([1:c-2]);
 J=1+2.*((P1.*log(s1_final))+(P2.*log(s2_final)))-

2.*((P1.*log(P1))+(P2.*log(P2)));
 J=J(~isinf(J));

 minrow=max(J);
 Threshold1=max(find(J>=minrow));
 Threshold1a(ka,1)=max(find(J>=minrow));

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

end

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);
Threshold1a=round(Threshold1a);
AT1=Threshold1a;
AT1=num2str(AT1);
str8=AT1;

void_ratio = number_Of_Air_T/number_Of_Solid_T;

v=void_ratio;

184	
	

v=num2str(v);
str13=v;

AH{9,1}='Kittler and Illingworth segmentation method complete.';
AH{10,1}='All methods complete.';
set(handles.listbox3,'String',AH);
drawnow()

f =figure;
set(f,'visible','off');
r = cell(5,3);
t=uitable(r);

ColumnName = {'Segmentation Method','Void Ratio','Average

Threshold'};
d= {O,str9,str4;P,str10,str5;KSW,str11,str6;'Johannsen and

Bille',str12,str7;K,str13,str8};
t.Data = d;
t.Position = [20 200 400 150];

A=[ColumnName ; d];
filename='SegmentationData.xlsx';
xlswrite(filename,A);

msg = msgbox('Data is succesfully saved as

SegmentationData.xlsx');
waitfor(msg);

% --- Executes on selection change in listbox3.
function listbox3_Callback(hObject, eventdata, handles)
% hObject handle to listbox3 (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns

listbox3 contents as cell array
% contents{get(hObject,'Value')} returns selected item from

listbox3

% --- Executes during object creation, after setting all

properties.
function listbox3_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox3 (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: listbox controls usually have a white background on

Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

185	
	

 set(hObject,'BackgroundColor','white');
end

function file_menu_Callback(hObject, eventdata, handles)
% hObject handle to file_menu (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% --

function menu_file_open_Callback(hObject, eventdata, handles)
d = uigetdir('*.png');
cd(d);
q=dir('*.png');
n = numel(q);

n=num2str(n);
set(handles.numImages, 'String', n);

[filename, filepath] = uigetfile('*.*', 'Please Select First

Cropped Image from Folder that Appears');
image = imread([filepath filename]);

%scan the filename and parse the data int a cell string array, C
C = textscan(filename, '%s %d %s', 'delimiter', '.');

%bring axes into focus anf show image
axes(handles.axes1);
imshow(image, []); %[] = [Imin Imax]

axes(handles.axes4);
imshow(image, []);

%store relevant data in the axes
setappdata(handles.axes1, 'fileName', filename);
setappdata(handles.axes1, 'filePath', filepath);
setappdata(handles.axes1, 'image', image);
setappdata(handles.axes1, 'ptNum', C{1});
setappdata(handles.axes1, 'sliceNum', C{2});
setappdata(handles.axes1, 'imageType', C{3});
guidata(hObject,handles);

%update slider
updateSlider(handles);

axes(handles.axes2);
sizeofmatrix = size(image,1);
[Row,Col,r]=MaskPortion(image);
c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;
for i=1:sizeofmatrix

186	
	

 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=image(i,j);
 c1(i,j)=image(i,j);
 end
 end
end

histogram(c);

set(handles.CurrentName, 'String', filename);

function Close_file_Callback(hObject, eventdata, handles)
% hObject handle to Close_file (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

close(gcf);

% --

function Save_file_Callback(hObject, eventdata, handles)

%%% OTSU

number_Of_Void_T=0;
number_Of_Solid_T=0;

AA = uigetdir('','Please Select the Folder Containing the Cropped

Images');
cd (AA);
BB = mkdir('Otsu Segmented Images');
CC = strcat(AA,'\Otsu Segmented Images')
cd (AA);
x = '*.png';
b=dir(x);
b=length(b);

for ka = 1: b

 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;

187	
	

 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

e=uint8(c);
p=imhist(e);
mean=0;

for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end
 sumt(i,1)=sumgi+sumli;
end

Threshold1=find(sumt==max(sumt));

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;

188	
	

 end

 end
 end
end

number_Of_Void_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Void_T=number_Of_Void_T+number_Of_Void_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

QQ = 'Otsu Segmented Image_1.0';

cd (CC);
imwrite(c2,[QQ,num2str(ka),'.png']);
cd (AA);
end

%%% PUN

number_Of_Void_T=0;
number_Of_Solid_T=0;

mkdir('Pun Segmented Images');
cd (AA);
BB = mkdir('Pun Segmented Images');
CC = strcat(AA,'\Pun Segmented Images')
cd (AA);
x = '*.png';
b=dir(x);
b=length(b);

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Pun's Method

189	
	

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);

for i=1:256
 pi(i)=p(i)/n;
end

for i=1:256
 Sumpi=sum(pi(1:i));
 if Sumpi>=0.5
 m=i;
 break
 end
end

 numerator = pi(1:m).*log(pi(1:m));
 numerator = nansum(numerator);

 for i=1:256
 denominator = pi(1:i).*log(pi(1:i));
 end

 denominator = nansum(denominator);

 alpha = numerator/denominator;

 if alpha <=0.5
 correctedalpha = 1-alpha;
 else
 correctedalpha = alpha;
 end

 for i=1:256
 Summationpi=sum(pi(1:i));
 if Summationpi>=correctedalpha
 Threshold = i;
 break
 end
 end

 Threshold1 = Threshold;

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix

190	
	

 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Void_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Void_T=number_Of_Void_T+number_Of_Void_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

QT = 'Pun Segmented Image_1.0';

cd (CC);
imwrite(c2,[QT,num2str(ka),'.png']);
cd (AA);
end

%%% KAPUR, SAHOO, AND WONG

number_Of_Void_T=0;
number_Of_Solid_T=0;

cd (AA);
BB = mkdir('Kapur, Sahoo, and Wong Segmented Images');
CC = strcat(AA,'\Kapur, Sahoo, and Wong Segmented Images')
cd (AA);
x = '*.png';
b=dir(x);
b=length(b);

 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);

191	
	

 end
 end
 end

% Automatic Threshold using Kapur, Sahoo, and Wong Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

pi1= pi1(pi1(:,1)>0.0001,:);

size(pi1,1);
c=size(pi1,1);

sumt = zeros(c,1);
Ht= zeros(c,1);
Pt=zeros(c,1);
Ha=zeros(c,1);
Hb=zeros(c,1);

for t = 1:c
 Hi= -sum(pi1(1:c).*log(pi1(1:c)));
 for i = 1:c
 Pt(i)=0;
 Ht(t)=0;
 Pt(i) = sum(pi1(1:i))+Pt(i);
 Ht(t) = -sum(pi1(1:t).*log(pi1(1:t)))+Ht(t);
 Ha(i) = log(Pt(i))+(Ht(i)/Pt(i));
 Hb(i) = log(1-Pt(i))+((Hi-Ht(i))/(1-Pt(i)));
 Hb(i)=real(Hb(i));
 end

 sumt=Ha+Hb;
 sumt(:,2)=pi1(:,2);
 maxrow=max(sumt(:,1));
 Threshold1=max(sumt(sumt(:,1)==maxrow,2));
end

% Portion of Code that Calculates the Porosity and Void Ratio of

192	
	

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Void_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Void_T=number_Of_Void_T+number_Of_Void_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

QA = 'Kapur, Sahoo, and Wong Segmented Image_1.0';
cd (CC);

imwrite(c2,[QA,num2str(ka),'.png']);
cd (AA);

 end

%%% JOHANNSEN AND BILLE

number_Of_Void_T=0;
number_Of_Solid_T=0;

cd (AA);
BB = mkdir('Johannsen and Bille Segmented Images');
CC = strcat(AA,'\Johannsen and Bille Segmented Images')
cd (AA);
x = '*.png';
b=dir(x);
b=length(b);

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;

193	
	

 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Johannsen and Bille Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

pi1= pi1(pi1(:,1)>0.0001,:);

size(pi1,1);
c=size(pi1,1);

 sumt = zeros(c,1);
 Pn=zeros(c,1);
 Pt=zeros(c,1);
 Pi=zeros(c,1);
 Pr=zeros(c,1);
 Sn=zeros(c,1);
 Sn_bar=zeros(c,1);

for t=1:c
 n=t+1;

 Pn(t)=sum(pi1(1:n));
 Pt(t)=sum(pi1(1:n-1));

 Sn(t)=(log(Pn(t)))-

(1/Pn(t)).*(((pi1(n)).*log(pi1(n)))+(Pt(t).*log(Pt(t))));
 Sn(t)=real(Sn(t));

194	
	

 Pi(t)=sum(pi1(n:c));
 Pr(t)=sum(pi1(n+1:c));

 Sn_bar(t)=(log(Pi(t)))-

(1/Pi(t)).*(((pi1(n)).*log(pi1(n)))+(Pr(t).*log(Pr(t))));
 Sn_bar(t)=real(Sn_bar(t));

 sumt=Sn+Sn_bar;
 sumt(:,2)=pi1(:,2);
 minrow=min(sumt(:,1));
 Threshold1=min(sumt(sumt(:,1)==minrow,2));

end

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Void_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Void_T=number_Of_Void_T+number_Of_Void_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

QY = 'Johannsen and Bille Segmented Image_1.0';
cd (CC);

imwrite(c2,[QY,num2str(ka),'.png']);
 cd (AA);

end

%%% KITTLER AND ILLINGWORTH

number_Of_Void_T=0;
number_Of_Solid_T=0;

cd (AA);
BB = mkdir('Kittler and Illingworth Segmented Images');

195	
	

CC = strcat(AA,'\Kittler and Illingworth Segmented Images')
cd (AA);
x = '*.png';
b=dir(x);
b=length(b);

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Kittler and Illingworth Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

size(pi1,1);
c=size(pi1,1);

 P1=zeros(c,1);
 P2=zeros(c,1);
 u1=zeros(c,1);
 u2=zeros(c,1);
 s1=zeros(c,1);

196	
	

 s1_d=zeros(c,1);
 s1_final=zeros(c,1);
 s2_final=zeros(c-2,1);
 J=zeros(c-2,1);

 for i=1:c
 g=1:i;
 g1=i+1:c-1;
 P1(i)=sum(pi1(1:i));
 P2(i)=sum(pi1(i+1:c-1));
 u1(i)=sum(pi1(1:i).*g)/P1(i);
 u2(i)=sum(pi1(i+1:c-1).*g1)/P2(i);
 u2=u2(isfinite(u2));
 u2=u2(u2~=0);
 u2_final=u2';
 s1(i)=0;

 for ii=1:i
 s1(i)=((ii-u1(i))^2*pi1(ii));
 s1_n=cumsum(s1);
 s1_d(i)=P1(ii);
 s1_dd=s1_d;
 s1_final=s1_n./s1_dd;

 end
 G3=([2:c-1]);
 G4=G3';
 A=u2_final(:,1);
 end

 B=pi1([2:c-1]);
 Pi1_adj=B';
 s2_n=Pi1_adj.*(G4-A).^2;

 for i = 1:c
 for ii = i:c-2
 s2_final(ii)=sum(s2_n(i+1:c-2))/P2(ii);
 end
 end

 s1_final=sqrt(s1_final);
 s2_final=sqrt(s2_final);

 P1=P1([1:c-2]);
 P2=P2([1:c-2]);
 s1_final=s1_final([1:c-2]);
 J=1+2.*((P1.*log(s1_final))+(P2.*log(s2_final)))-

2.*((P1.*log(P1))+(P2.*log(P2)));
 J=J(~isinf(J));

 minrow=max(J);
 Threshold1=max(find(J>=minrow));

% Portion of Code that Calculates the Porosity and Void Ratio of

197	
	

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Void_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Void_T=number_Of_Void_T+number_Of_Void_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

QP = 'Kittler and Illingworth Segmented Image_1.0';

cd (CC);

imwrite(c2,[QP,num2str(ka),'.png']);
 cd (AA);

end
 h=msgbox('All Segmented Images Successfully Saved!');

function NewProject_open_Callback(hObject, eventdata, handles)
OrigDlgH = ancestor(hObject, 'figure');
delete(OrigDlgH);
TwoPhaseImageSegmentation;

function Tools_Callback(hObject, eventdata, handles)
% hObject handle to Tools (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% --

function CB_open_Callback(hObject, eventdata, handles)
axes(handles.axes4);
imcontrast(gcf);

% --

function Export_Data_Callback(hObject, eventdata, handles)

198	
	

str1='Segmentation Method';
O='Otsu';
P= 'Pun';
KSW= 'Kapur, Sahoo, and Wong';
J = 'Johannsen and Bille';
K='Kittler and Illingworth';

str2='Void Ratio';
str3='Average Threshold Value for all Images';

d = uigetdir('*.png');
cd(d);
q=dir('*.png');
b = numel(q);
k = warndlg('Exporting of data can take a couple of minutes

depending on the number of images being analyzed. Please do not click
anything until data exporting is completed.','Warning');

waitfor(k);

%%% OTSU

number_Of_Air_T=0;
number_Of_Solid_T=0;

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Otsu's Method

e=uint8(c);
p=imhist(e);
mean=0;
for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);

199	
	

for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end

 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));
Threshold1a(ka,1)=find(sumt==max(sumt));

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

end

200	
	

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);
Threshold1a=round(Threshold1a);
AT1=Threshold1a;
AT1=num2str(AT1);
str4 = AT1;
void_ratio = number_Of_Air_T/number_Of_Solid_T;

v=void_ratio;
v=num2str(v);
str9=v;

AH=cell(10,1);
AH{1,1}='Otsu segmentation method complete.';
AH{2,1}='Four methods remain...';
set(handles.listbox3, 'String', AH);
drawnow()

%%% PUN

number_Of_Air_T=0;
number_Of_Solid_T=0;

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);

c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;

for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
end

% Pun

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);

for i=1:256

201	
	

 pi(i)=p(i)/n;
end

for i=1:256
 Sumpi=sum(pi(1:i));
 if Sumpi>=0.5
 m=i;
 break
 end
end

 numerator = pi(1:m).*log(pi(1:m));
 numerator = nansum(numerator);

 for i=1:256
 denominator = pi(1:i).*log(pi(1:i));
 end

 denominator = nansum(denominator);

 alpha = numerator/denominator;

 if alpha <=0.5
 correctedalpha = 1-alpha;
 else
 correctedalpha = alpha;
 end

 for i=1:256
 Summationpi=sum(pi(1:i));
 if Summationpi>=correctedalpha
 Threshold = i;
 break
 end
 end

 Threshold1=Threshold;
 Threshold1a(ka,1) = Threshold;

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

202	
	

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

end

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);
Threshold1a=round(Threshold1a);
AT1=Threshold1a;
AT1=num2str(AT1);

str5=AT1;

void_ratio = number_Of_Air_T/number_Of_Solid_T;

v=void_ratio;
v=num2str(v);
str10=v;

AH{3,1}='Pun segmentation method complete.';
AH{4,1}='Three methods remain...';
set(handles.listbox3,'String',AH);
drawnow()

%%% KAPUR, SAHOO, AND WONG

number_Of_Air_T=0;
number_Of_Solid_T=0;

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end

203	
	

 end
end

% Automatic Threshold using Kapur, Sahoo, and Wong Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

pi1= pi1(pi1(:,1)>0.0001,:);
size(pi1,1);
c=size(pi1,1);

sumt = zeros(c,1);
Ht= zeros(c,1);
Pt=zeros(c,1);
Ha=zeros(c,1);
Hb=zeros(c,1);

for t = 1:c
 Hi= -sum(pi1(1:c).*log(pi1(1:c)));
 for i = 1:c
 Pt(i)=0;
 Ht(t)=0;
 Pt(i) = sum(pi1(1:i))+Pt(i);
 Ht(t) = -sum(pi1(1:t).*log(pi1(1:t)))+Ht(t);
 Ha(i) = log(Pt(i))+(Ht(i)/Pt(i));
 Hb(i) = log(1-Pt(i))+((Hi-Ht(i))/(1-Pt(i)));
 Hb(i)=real(Hb(i));
 end

 sumt=Ha+Hb;

 sumt(:,2)=pi1(:,2);
 maxrow=max(sumt(:,1));

 Threshold1a=max(sumt(sumt(:,1)==maxrow,2));
 Threshold1(ka,1)=max(sumt(sumt(:,1)==maxrow,2));
end

204	
	

end

Threshold1=sum(Threshold1(1:b));
Threshold1=Threshold1/(b);
Threshold1=round(Threshold1);
AT1=Threshold1;
AT1=num2str(AT1);

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1a
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

str6=AT1;

void_ratio = number_Of_Air_T/number_Of_Solid_T;

v=void_ratio
v=num2str(v);
str11=v;
AH{5,1}='Kapur, Sahoo, and Wong segmentation method complete.';
AH{6,1}='Two methods remain...';
set(handles.listbox3,'String',AH);
drawnow()

%%% JOHANNSEN AND BILLE

number_Of_Air_T=0;
number_Of_Solid_T=0;

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);

205	
	

 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Johannsen and Bille Method

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);
for i=1:256
 pi(i)=p(i)/n;
end

pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

size(pi1,1);
c=size(pi1,1);

sumt = zeros(c,1);
Pn=zeros(c,1);
Pt=zeros(c,1);
Pi=zeros(c,1);
Pr=zeros(c,1);
Sn=zeros(c,1);
Sn_bar=zeros(c,1);

for t=1:c
 n=t+1;

 Pn(t)=sum(pi1(1:n));
 Pt(t)=sum(pi1(1:n-1));

 Sn(t)=(log(Pn(t)))-

206	
	

(1/Pn(t)).*(((pi1(n)).*log(pi1(n)))+(Pt(t).*log(Pt(t))));
 Sn(t)=real(Sn(t));

 Pi(t)=sum(pi1(n:c));
 Pr(t)=sum(pi1(n+1:c));

 Sn_bar(t)=(log(Pi(t)))-

(1/Pi(t)).*(((pi1(n)).*log(pi1(n)))+(Pr(t).*log(Pr(t))));
 Sn_bar(t)=real(Sn_bar(t));

 sumt=Sn+Sn_bar;
 pi1_final=pi1(15:end,:);
 sumt=sumt(15:end);
 sumt(:,2)=pi1_final(:,2);
 minrow=min(sumt(:,1));
 Threshold1a(ka,1)=min(sumt(sumt(:,1)==minrow,2));
 Threshold1=min(sumt(sumt(:,1)==minrow,2));
 end

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

end

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);
Threshold1a=round(Threshold1a);
AT1=Threshold1a;
AT1=num2str(AT1);
str7=AT1;

void_ratio = number_Of_Air_T/number_Of_Solid_T;

207	
	

v=void_ratio;
v=num2str(v);
str12=v;

AH{7,1}='Johannsen and Bille segmentation method complete.';
AH{8,1}='One method remains...';
set(handles.listbox3,'String',AH);
drawnow()

% Automatic Threshold using Kittler and Illingworth Method

number_Of_Air_T=0;
number_Of_Solid_T=0;

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

e=uint8(c);
p=imhist(e);
n=sum(p);
pi=zeros(256,1);

for i=1:256
 pi(i)=p(i)/n;
end
pi(1:256,2)=linspace(1,256,256);
N=0;
for q=1:256
 if pi(q,1)~=0
 N=N+1;
 pi1(N,1)=pi(q,1);
 pi1(N,2)=pi(q,2);
 end
end

size(pi1,1);

208	
	

c=size(pi1,1);
P1=zeros(c,1);
P2=zeros(c,1);
u1=zeros(c,1);
u2=zeros(c,1);
s1=zeros(c,1);
s1_d=zeros(c,1);
s1_final=zeros(c,1);
s2_final=zeros(c-2,1);
J=zeros(c-2,1);

for i=1:c
 g=1:i;
 g1=i+1:c-1;
 P1(i)=sum(pi1(1:i));
 P2(i)=sum(pi1(i+1:c-1));
 u1(i)=sum(pi1(1:i).*g)/P1(i);
 u2(i)=sum(pi1(i+1:c-1).*g1)/P2(i);
 u2=u2(isfinite(u2));
 u2=u2(u2~=0);
 u2_final=u2';
 s1(i)=0;

 for ii=1:i
 s1(i)=((ii-u1(i))^2*pi1(ii));
 s1_n=cumsum(s1);
 s1_d(i)=P1(ii);
 s1_dd=s1_d;
 s1_final=s1_n./s1_dd;
 end
 G3=([2:c-1]);
 G4=G3';
 A=u2_final(:,1);
 end

 B=pi1([2:c-1]);
 Pi1_adj=B';
 s2_n=Pi1_adj.*(G4-A).^2;

 for i = 1:c
 for ii = i:c-2
 s2_final(ii)=sum(s2_n(i+1:c-2))/P2(ii);
 end
 end

s1_final=sqrt(s1_final);
s2_final=sqrt(s2_final);

P1=P1([1:c-2]);
P2=P2([1:c-2]);
s1_final=s1_final([1:c-2]);
J=1+2.*((P1.*log(s1_final))+(P2.*log(s2_final)))-

2.*((P1.*log(P1))+(P2.*log(P2)));
J=J(~isinf(J));

209	
	

minrow=max(J);
Threshold1=max(find(J>=minrow));
Threshold1a(ka,1)=max(find(J>=minrow));

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)<Threshold1
 c2(i,j)=20;
 else
 c2(i,j)=100;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;
Threshold1a;
end

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);
Threshold1a=round(Threshold1a);
AT1=Threshold1a;
AT1=num2str(AT1);
str8=AT1;

void_ratio = number_Of_Air_T/number_Of_Solid_T;

v=void_ratio;
v=num2str(v);
str13=v;

AH{9,1}='Kittler and Illingworth segmentation method complete.';
AH{10,1}='All methods complete.';
set(handles.listbox3,'String',AH);
drawnow()

f =figure;
set(f,'visible','off');
r = cell(5,3);
t=uitable(r);

210	
	

ColumnName = {'Segmentation Method','Void Ratio','Average

Threshold'};
d= {O,str9,str4;P,str10,str5;KSW,str11,str6;'Johannsen and

Bille',str12,str7;K,str13,str8};
t.Data = d;
t.Position = [20 200 400 150];

A=[ColumnName ; d];
filename='SegmentationData.xlsx';
xlswrite(filename,A);

msg = msgbox('Data is succesfully saved as

SegmentationData.xlsx');
waitfor(msg);

function Help_Tag_Callback(hObject, eventdata, handles)
% hObject handle to Help_Tag (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% --

function User_guide_Callback(hObject, eventdata, handles)
% hObject handle to User_guide (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)
h = msgbox({'For proper program usage, the following steps must be

used in the displayed order:';'';'Step 1: Click "Rename Images." This
button renames all of the images in the folder of interest. Make sure
that the original images are saved to a folder.';'';'Step 2: Click
"Crop All Images." This button crops the renamed images and saves the
cropped images to a folder of choice. In order to apply cropping,
please double click within the drawn ellipse.';'';'Step 3: Click "Load
Image." This button loads the first cropped image and its corresponding
histogram. If necessary, the contrast and brightness of the image can
be adjusted as well. The slider allows for the viewing of all of the
remaining cropped images.';'';'Step 4: After choosing a segmentation
method, click "Run." This button allows for the selection of all of the
cropped images. The void ratio (e) and average threshold value for all
the cropped images are displayed. The segmentation of the first cropped
image is shown and the slider allows for the viewing of the remaining
cropped images with the chosen segmentation method applied.';'';'Note:
The "Export Data to Excel" button saves the void ratio (e) and average
threshold value for all images, per segmentation technique, to an Excel
file.' },'Program Instructions');

function About_Us_Callback(hObject, eventdata, handles)
% hObject handle to About_Us (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

211	
	

h = msgbox({'University of Delaware';'Geotechnical
Engineering';'Civil and Environmental Engineering';'301 DuPont
Hall';'Newark, DE 19716';'USA'});

% --- Executes on selection change in Methods.
function Methods_Callback(hObject, eventdata, handles)
% hObject handle to Methods (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns Methods

contents as cell array
% contents{get(hObject,'Value')} returns selected item from

Methods

% --- Executes during object creation, after setting all

properties.
function Methods_CreateFcn(hObject, eventdata, handles)
% hObject handle to Methods (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: popupmenu controls usually have a white background on

Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes during object creation, after setting all

properties.
function axes1_CreateFcn(hObject, eventdata, handles)
title('Load Image','FontSize',11.5);
set(gca,'Xtick',[],'Ytick',[]);

function axes2_CreateFcn(hObject, eventdata, handles)
title('Image Histogram','FontSize',11.5);
set(gca,'Xtick',[],'Ytick',[]);
xlabel('Grayscale Pixel Intensity','FontSize',10);
ylabel('Grayscale Pixel Frequency','FontSize',10);

% --- Executes during object creation, after setting all

properties.
function axes3_CreateFcn(hObject, eventdata, handles)
title('Segmented Image','FontSize',11.5);
set(gca,'Xtick',[],'Ytick',[]);

% --- Executes during object creation, after setting all

properties.
function axes4_CreateFcn(hObject, eventdata, handles)

212	
	

title('Image Brightness','FontSize',11.5);
set(gca,'Xtick',[],'Ytick',[]);

% --- Executes when figure1 is resized.
function figure1_SizeChangedFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

213	
	

Appendix C

THREE-PHASE IMAGE SEGMENTATION GUI CODE

function varargout = ThreePhaseImageSegmentation(varargin)

gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn',

@ThreePhaseImageSegmentation_OpeningFcn, ...
 'gui_OutputFcn',

@ThreePhaseImageSegmentation_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

% --- Executes just before ThreePhaseImageSegmentation GUI is made

visible.
function ThreePhaseImageSegmentation_OpeningFcn(hObject,

eventdata, handles, varargin)

set(gcf, 'units', 'normalized', 'position', [.5 .5 .45 .6])
set(handles.axes1,'DataAspectRatio',[2 3 3]);
set(handles.axes4,'DataAspectRatio',[2 3 3]);
set(handles.axes2,'DataAspectRatio',[2 3 3]);
set(handles.axes3,'DataAspectRatio',[2 3 3]);

% Choose default command line output for

ThreePhaseImageSegmentation
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% --- Outputs from this function are returned to the command line.
function varargout =

214	
	

ThreePhaseImageSegmentation_OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --

--

function LoadImages_Callback(hObject, eventdata, handles)
d = uigetdir('*.png');
cd(d);
q=dir('*.png');
n = numel(q);

n=num2str(n);
set(handles.numImages, 'String', n);

[filename, filepath] = uigetfile('*.*', 'Please Select First

Cropped Image from Folder that Appears');
image = imread([filepath filename]);

%scan the filename and parse the data int a cell string array, C
C = textscan(filename, '%s %d %s', 'delimiter', '.');

%bring axes into focus anf show image
axes(handles.axes1);
imshow(image, []); %[] = [Imin Imax]

axes(handles.axes4);
imshow(image, []);

%store relevant data in the axes
setappdata(handles.axes1, 'fileName', filename);
setappdata(handles.axes1, 'filePath', filepath);
setappdata(handles.axes1, 'image', image);
setappdata(handles.axes1, 'ptNum', C{1});
setappdata(handles.axes1, 'sliceNum', C{2});
setappdata(handles.axes1, 'imageType', C{3});
guidata(hObject,handles);

%update slider
updateSlider(handles);

axes(handles.axes2);
sizeofmatrix = size(image,1);
[Row,Col,r]=MaskPortion(image);
c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;

215	
	

for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=image(i,j);
 c1(i,j)=image(i,j);
 end
 end
end

histogram(c);

set(handles.CurrentName, 'String', filename);
% --- Executes on button press in RenameImages.
function RenameImages_Callback(hObject, eventdata, handles)
a = uigetdir;

AA =dir(fullfile(a, '*.bmp'));
fileNames = { AA.name };
for iFile = 1 : numel(AA)
 newName = fullfile(a, sprintf('1.%02d.bmp', iFile));
 movefile(fullfile(a, fileNames{ iFile }), newName);
end

AA =dir(fullfile(a, '*.tif'));
fileNames = { AA.name };
for iFile = 1 : numel(AA)
 newName = fullfile(a, sprintf('1.%02d.bmp', iFile));
 movefile(fullfile(a, fileNames{ iFile }), newName);
end

AA =dir(fullfile(a, '*.jpg'));
fileNames = { AA.name };
for iFile = 1 : numel(AA)
 newName = fullfile(a, sprintf('1.%02d.bmp', iFile));
 movefile(fullfile(a, fileNames{ iFile }), newName);
end

AA =dir(fullfile(a, '*.png'));
fileNames = { AA.name };
for iFile = 1 : numel(AA)
 newName = fullfile(a, sprintf('1.%02d.bmp', iFile));
 movefile(fullfile(a, fileNames{ iFile }), newName);
end

AA =dir(fullfile(a, '*.gif'));
fileNames = { AA.name };
for iFile = 1 : numel(AA)
 newName = fullfile(a, sprintf('1.%02d.bmp', iFile));
 movefile(fullfile(a, fileNames{ iFile }), newName);
end

% --- Executes on button press in CropButton.

216	
	

function CropButton_Callback(hObject, eventdata, handles)
axes(handles.axes1);

AA = uigetdir('','Please Select the Folder to Save the Cropped

Images to');
cd (AA);

[FileName,PathName] =

uigetfile({'*.jpg;*.tif;*.bmp;*.png;*.gif','All Image Files'},'Please
Select First Renamed Image');

imagefiles1 = dir([PathName '*.jpg']);
imagefiles2 = dir([PathName '*.tif']);
imagefiles3 = dir([PathName '*.bmp']);
imagefiles4 = dir([PathName '*.png']);
imagefiles5 = dir([PathName '*.gif']);
imagefiles = [imagefiles1; imagefiles2; imagefiles3; imagefiles4;

imagefiles5];
nfiles = length(imagefiles); % Number of files found

image = imread([PathName FileName]);

%%% Following lines to change image matrix into a square sized

matrix

image=im2uint8(image);
SIZI=size(image);
if numel(SIZI)>2
 if SIZI(1,3)>=3
 image=image(:,:,1:3);
 image=rgb2gray(image);
 end
end

% Reducing the image matrix into a square sized matrix
 if SIZI(1,1)~=SIZI(1,2)
 SIZim=size(image);
 Divs=round((max(size(image))-min(size(image)))/2);
 if SIZim(1,1)== max(size(image))
 image=image(Divs+1:SIZim(1,1)-Divs+1,:);
 else
 image=image(:,Divs+1:SIZim(1,2)-Divs+1);
 end
 end

% Done

imshow(image) %needed to use imellipse
user_defined_ellipse = imellipse(gca, []); % creates user defined

ellipse object.

MASK = double(user_defined_ellipse.createMask());

addNewPositionCallback(user_defined_ellipse,@(p)

217	
	

title(mat2str(p,3)));

fcn =

makeConstrainToRectFcn('imellipse',get(gca,'XLim'),get(gca,'YLim'));

accepted_pos=wait(user_defined_ellipse);% You need to click twice

to continue.
MASK = double(user_defined_ellipse.createMask());

for i=1:nfiles

 currentfilename = imagefiles(i).name;
 currentimage = imread([PathName currentfilename]);
 currentimage=im2uint8(currentimage);
 SIZI=size(currentimage);

 if numel(SIZI)>2
 if SIZI(1,3)>=3
 currentimage=currentimage(:,:,1:3);
 currentimage=rgb2gray(currentimage);
 end
 end

 if SIZI(1,1)~=SIZI(1,2)
 SIZim=size(currentimage);
 Divs=round((max(size(currentimage))-

min(size(currentimage)))/2);
 if SIZim(1,1)== max(size(currentimage))
 currentimage=currentimage(Divs+1:SIZim(1,1)-Divs+1,:);
 else
 currentimage=currentimage(:,Divs+1:SIZim(1,2)-Divs+1);
 end
 end

 new_image_name = [PathName 'CroppedImage_' currentfilename];
 [pathstr,name,ext] = fileparts(new_image_name);
 new_image_name=fullfile(name);
 new_image_name = [new_image_name '.png']; % making the image

.png so it can be transparent
 imwrite(currentimage, new_image_name,'png','Alpha',MASK);

end

msg = msgbox('Congratulations! All images have been cropped!');
waitfor(msg);

% --- Executes on selection change in Methods.
function Methods_Callback(hObject, eventdata, handles)
% hObject handle to Methods (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns Methods

218	
	

contents as cell array
% contents{get(hObject,'Value')} returns selected item from

Methods

% --- Executes during object creation, after setting all

properties.
function Methods_CreateFcn(hObject, eventdata, handles)
% hObject handle to Methods (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: popupmenu controls usually have a white background on

Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in k1Parameter.
function k1Parameter_Callback(hObject, eventdata, handles)
prompt = {'Enter k1 parameter value:'};
dlg_title = 'Input';
num_lines = 1;
defaultans = {'0.3'};
answer = inputdlg(prompt,dlg_title,num_lines,defaultans);

k1=get(handles.k1Parameter,'String');
set(handles.k1Parameter,'String',answer);
k1=char(answer);
handles.k1 = k1;
guidata(hObject,handles);

% --- Executes on button press in k2Parameter.
function k2Parameter_Callback(hObject, eventdata, handles)
prompt = {'Enter k2 parameter value:'};
dlg_title = 'Input';
num_lines = 1;
defaultans = {'1.4'};
answer = inputdlg(prompt,dlg_title,num_lines,defaultans);

k2=get(handles.k2Parameter,'String');
set(handles.k2Parameter,'String',answer);
k2=char(answer);
handles.k2 = k2;
guidata(hObject,handles);

% --- Executes on button press in Run.
function Run_Callback(hObject, eventdata, handles)
contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};

219	
	

getappdata(handles.axes1,'fileName');

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

 contents = get(handles.Methods,'String');
 MethodName = contents{get(handles.Methods,'Value')};
 getappdata(handles.axes1,'fileName');

%%% OTSU

if strcmp(MethodName, 'Otsu ')

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 d = uigetdir('','Please Select the Folder Containing the

Cropped Images');
 cd(d);
 q=dir('*.png')
 b = numel(q);

 I=imread('CroppedImage_1.01.png');
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;

 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

e=uint8(c);
p=imhist(e);

mean=0;
for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end

220	
	

 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));

% Following lines of code are used to determine Threshold 2

pmax = p(Threshold1,1);
p2 = p(1:Threshold1);

mean=0;
for i=1:Threshold1
 mean=mean+(i*p2(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:Threshold1
 meanli=0;
 for j=1:Threshold1-1
 meanli=meanli+(j*p2(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:Threshold1
 meangi=meangi+(j*p2(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:Threshold1-1
 sumli=sumli+p2(ii,1)*((meanli-mean)^2);
 end
 for ii=i:Threshold1
 sumgi=sumgi+p2(ii,1)*((meangi-mean)^2);
 end
 sumt(i,1)=sumgi+sumli;

end

221	
	

Threshold2=find(sumt==max(sumt));

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end

 end
 end
end

axes(handles.axes3);
imshow(c2,[]);

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
sizeofmatrix = size(I,1);

c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
end

% Automatic Threshold using Otsu's Method

e=uint8(c);
p=imhist(e);

mean=0;
for i=1:256
 mean=mean+(i*p(i,1));
end

222	
	

mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end

 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end
Threshold1=find(sumt==max(sumt));

% Following lines of code are used to determine Threshold 2

pmax = p(Threshold1,1);
p2 = p(1:Threshold1);

mean=0;
for i=1:Threshold1
 mean=mean+(i*p2(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:Threshold1
 meanli=0;
 for j=1:Threshold1-1
 meanli=meanli+(j*p2(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:Threshold1
 meangi=meangi+(j*p2(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:Threshold1-1
 sumli=sumli+p2(ii,1)*((meanli-mean)^2);

223	
	

 end

 for ii=i:Threshold1
 sumgi=sumgi+p2(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold2=find(sumt==max(sumt));

%%
c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));
number_Of_Water_Pixels=sum(sum(c2==60));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;
number_Of_Water_T=number_Of_Water_T+number_Of_Water_Pixels;

end
void_ratio =

(number_Of_Air_T+number_Of_Water_T)/number_Of_Solid_T;
void_ratio=round(void_ratio,2);

%%

v=void_ratio;
v=num2str(v);

set(handles.VoidText, 'String', v);
 end

224	
	

%%% ITERATIVE OTSU

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

if strcmp(MethodName, 'Iterative Otsu')

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 d = uigetdir('','Please Select the Folder Containing the

Cropped Images');
 cd(d);
 q=dir('*.png');
 b = numel(q);

 I=imread('CroppedImage_1.01.png');
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;

 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

e=uint8(c);
p=imhist(e);
mean=0;
for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end

225	
	

 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end

 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));

[counts,N]=imhist(e);
counts1=counts(1:Threshold1);
mu1=cumsum(counts1); % To get the total summation of intensity

values
N1 = (0:Threshold1-1)';
mean=(sum(N1.*counts1))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts2=counts(Threshold1+1:end);
mu2=cumsum(counts2); % To get the total summation of intensity

values
N2 = (Threshold1:255)';
mean=(sum(N2.*counts2))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Threshold2 = (IntensityRegion1+IntensityRegion2)/2;
Threshold2=round(Threshold2);

% Iterative Process to Find the Ideal Value for Threshold2

[counts,N]=imhist(e);
counts3=counts(1:Threshold2);
mu1=cumsum(counts3); % To get the total summation of intensity

values
N1 = (0:Threshold2-1)';
mean=(sum(N1.*counts3))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts4=counts(Threshold2+1:end);
mu2=cumsum(counts4); % To get the total summation of intensity

values
N2 = (Threshold2:255)';
mean=(sum(N2.*counts4))/mu2(end);
mean=round(mean);

226	
	

IntensityRegion2=mean;

Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
Thresholdnew=round(Thresholdnew);

% Check if Thresholdnew is an Acceptable Choice for Threshold2

loopCounter=1;
while Thresholdnew-5 < Threshold2 && Thresholdnew+5 < Threshold2

 Threshold2=Thresholdnew;

[counts,N]=imhist(e);
counts5=counts(1:Threshold2);
mu1=cumsum(counts5); % To get the total summation of intensity

values
N1 = (0:Threshold2-1)';
mean=(sum(N1.*counts5))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts6=counts(Threshold2+1:end);
mu2=cumsum(counts6); % To get the total summation of intensity

values
N2 = (Threshold2:255)';
mean=(sum(N2.*counts6))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
Thresholdnew=round(Thresholdnew);

if loopCounter>=10
 break;
end

loopCounter=loopCounter+1;

end

Threshold2=Thresholdnew;

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;

227	
	

 end

 end
 end
end
axes(handles.axes3);
imshow(c2,[]);

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);

 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;

 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

e=uint8(c);
p=imhist(e);
mean=0;
for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end

228	
	

 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));

[counts,N]=imhist(e);
counts1=counts(1:Threshold1);
mu1=cumsum(counts1); % To get the total summation of intensity

values
N1 = (0:Threshold1-1)';
mean=(sum(N1.*counts1))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts2=counts(Threshold1+1:end);
mu2=cumsum(counts2); % To get the total summation of intensity

values
N2 = (Threshold1:255)';
mean=(sum(N2.*counts2))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Threshold2 = (IntensityRegion1+IntensityRegion2)/2;
Threshold2=round(Threshold2);

% Iterative Process to Find the Ideal Value for Threshold2

[counts,N]=imhist(e);
counts3=counts(1:Threshold2);
mu1=cumsum(counts3); % To get the total summation of intensity

values
N1 = (0:Threshold2-1)';
mean=(sum(N1.*counts3))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts4=counts(Threshold2+1:end);
mu2=cumsum(counts4); % To get the total summation of intensity

values
N2 = (Threshold2:255)';
mean=(sum(N2.*counts4))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
Thresholdnew=round(Thresholdnew);

% Check if Thresholdnew is an Acceptable Choice for Threshold2

229	
	

loopCounter=1;

while Thresholdnew-5 < Threshold2 && Thresholdnew+5 < Threshold2

 Threshold2=Thresholdnew;
 [counts,N]=imhist(e);
 counts5=counts(1:Threshold2);
 mu1=cumsum(counts5); % To get the total summation of

intensity values
 N1 = (0:Threshold2-1)';
 mean=(sum(N1.*counts5))/mu1(end);
 mean=round(mean);
 IntensityRegion1=mean;

 counts6=counts(Threshold2+1:end);
 mu2=cumsum(counts6); % To get the total summation of

intensity values
 N2 = (Threshold2:255)';
 mean=(sum(N2.*counts6))/mu2(end);
 mean=round(mean);

 IntensityRegion2=mean;

 Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
 Thresholdnew=round(Thresholdnew);

 if loopCounter>=10
 break;
 end

 loopCounter=loopCounter+1;

end

Threshold2=Thresholdnew;

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end

 end
 end
end

230	
	

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));
number_Of_Water_Pixels=sum(sum(c2==60));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;
number_Of_Water_T=number_Of_Water_T+number_Of_Water_Pixels;

end

void_ratio =

(number_Of_Air_T+number_Of_Water_T)/number_Of_Solid_T;
void_ratio=round(void_ratio,2);

v=void_ratio;
v=num2str(v);

set(handles.VoidText, 'String', v);
end

%%% REFINED STATISTICAL-BASED

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

if strcmp(MethodName, 'Refined Statistical-Based')
 k = warndlg('Make sure to choose values for free/fitting

parameters k1 and k2!','Warning');
 waitfor(k);
 k1= handles.k1;
 k1=str2double(k1);
 k2= handles.k2;
 k2=str2double(k2);

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));

 d = uigetdir('','Please Select the Folder Containing the

Cropped Images');
 cd(d);
 q=dir('*.png');
 b = numel(q);

 I=imread('CroppedImage_1.01.png');
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;

231	
	

 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

 e=uint8(c);

% Automatic Threshold using Refined Statistical-based Method

[counts,N]=imhist(e);
mu=cumsum(counts); % To get the total summation of intensity

values
mean=(sum(N.*counts))/mu(end);
mean=round(mean);
variance=sum((counts-mean).^2)/(mu-1);
variance=sum(variance);
standarddeviation=sqrt(variance);
standarddeviation=round(standarddeviation);

T1=mean-(k1*standarddeviation);
T2=mean+(k2*standarddeviation);

Threshold1=abs(T1+T2)/2;
Threshold1=round(Threshold1);

Threshold2=abs(T1-T2)/2;
Threshold2=round(Threshold2);

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end

 end
 end
end

axes(handles.axes3);
imshow(c2,[]);

for ka = 1: b

232	
	

 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);

 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

 e=uint8(c);

% Automatic Threshold using Refined Statistical-based method

[counts,N]=imhist(e);
mu=cumsum(counts); % To get the total summation of intensity

values
mean=(sum(N.*counts))/mu(end);
mean=round(mean);
variance=sum((counts-mean).^2)/(mu-1);
variance=sum(variance);
standarddeviation=sqrt(variance);
standarddeviation=round(standarddeviation);

T1=mean-(k1*standarddeviation);
T2=mean+(k2*standarddeviation);

Threshold1=abs(T1+T2)/2;
Threshold1=round(Threshold1);

Threshold2=abs(T1-T2)/2;
Threshold2=round(Threshold2);

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else

233	
	

 c2(i,j) = 60;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));
number_Of_Water_Pixels=sum(sum(c2==60));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;
number_Of_Water_T=number_Of_Water_T+number_Of_Water_Pixels;

end

void_ratio =

(number_Of_Air_T+number_Of_Water_T)/number_Of_Solid_T;
void_ratio=round(void_ratio,2);

v=void_ratio;
v=num2str(v);

set(handles.VoidText, 'String', v);
end

%%% OTSU

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};

getappdata(handles.axes1,'fileName');

if strcmp(MethodName, 'Otsu ')
 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);

234	
	

 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Otsu's Method

e=uint8(c);
p=imhist(e);

mean=0;
for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);

for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));

% Following lines of code are used to determine Threshold 2

pmax = p(Threshold1,1);
p2 = p(1:Threshold1);
mean=0;

for i=1:Threshold1
 mean=mean+(i*p2(i,1));
end

mean=mean/256;

235	
	

sumt=zeros(256,1);

for i=1:Threshold1
 meanli=0;
 for j=1:Threshold1-1
 meanli=meanli+(j*p2(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:Threshold1
 meangi=meangi+(j*p2(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:Threshold1-1
 sumli=sumli+p2(ii,1)*((meanli-mean)^2);
 end
 for ii=i:Threshold1
 sumgi=sumgi+p2(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold2=find(sumt==max(sumt));

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));
number_Of_Water_Pixels=sum(sum(c2==60));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;
number_Of_Water_T=number_Of_Water_T+number_Of_Water_Pixels;

236	
	

degree_of_saturation =
(number_Of_Water_T/(number_Of_Air_T+number_Of_Water_T))*100;

 end

p=degree_of_saturation;
p=round(p,2);
p=num2str(p);
set(handles.SatText, 'String', p);
end

%%% ITERATIVE OTSU

if strcmp(MethodName, 'Iterative Otsu')

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;

 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

e=uint8(c);
p=imhist(e);
mean=0;
for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end

237	
	

 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end
 sumt(i,1)=sumgi+sumli;
end

Threshold1=find(sumt==max(sumt));

[counts,N]=imhist(e);
counts1=counts(1:Threshold1);
mu1=cumsum(counts1); % To get the total summation of intensity

values
N1 = (0:Threshold1-1)';
mean=(sum(N1.*counts1))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts2=counts(Threshold1+1:end);
mu2=cumsum(counts2); % To get the total summation of intensity

values
N2 = (Threshold1:255)';
mean=(sum(N2.*counts2))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Threshold2 = (IntensityRegion1+IntensityRegion2)/2;
Threshold2=round(Threshold2);

% Iterative Process to Find the Ideal Value for Threshold2

[counts,N]=imhist(e);
counts3=counts(1:Threshold2);
mu1=cumsum(counts3); % To get the total summation of intensity

values
N1 = (0:Threshold2-1)';
mean=(sum(N1.*counts3))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts4=counts(Threshold2+1:end);
mu2=cumsum(counts4); % To get the total summation of intensity

values
N2 = (Threshold2:255)';
mean=(sum(N2.*counts4))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;

238	
	

Thresholdnew=round(Thresholdnew);

% Check if Thresholdnew is an Acceptable Choice for Threshold2

loopCounter=1;

while Thresholdnew-5 < Threshold2 && Thresholdnew+5 < Threshold2
 Threshold2=Thresholdnew;
 [counts,N]=imhist(e);
 counts5=counts(1:Threshold2);
 mu1=cumsum(counts5); % To get the total summation of

intensity values
 N1 = (0:Threshold2-1)';
 mean=(sum(N1.*counts5))/mu1(end);
 mean=round(mean);
 IntensityRegion1=mean;
 counts6=counts(Threshold2+1:end);
 mu2=cumsum(counts6); % To get the total summation of

intensity values
 N2 = (Threshold2:255)';
 mean=(sum(N2.*counts6))/mu2(end);
 mean=round(mean);
 IntensityRegion2=mean;

 Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
 Thresholdnew=round(Thresholdnew);

 if loopCounter>=10
 break;
 end

 loopCounter=loopCounter+1;
end

Threshold2=Thresholdnew;

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end

 end
 end
end

239	
	

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));
number_Of_Water_Pixels=sum(sum(c2==60));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;
number_Of_Water_T=number_Of_Water_T+number_Of_Water_Pixels;

degree_of_saturation =

(number_Of_Water_T/(number_Of_Air_T+number_Of_Water_T))*100;

 end

p=degree_of_saturation;
p=round(p,2);
p=num2str(p);
set(handles.SatText, 'String', p);
end

%%% REFINED STATISTICAL-BASED

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

if strcmp(MethodName, 'Refined Statistical-Based')
 k1= handles.k1;
 k1=str2double(k1);
 k2= handles.k2;
 k2=str2double(k2);

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));

 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

240	
	

 e=uint8(c);

% Automatic Threshold using Refined Statistical-Based Method

[counts,N]=imhist(e);
mu=cumsum(counts); % To get the total summation of intensity

values
mean=(sum(N.*counts))/mu(end);
mean=round(mean);
variance=sum((counts-mean).^2)/(mu-1);
variance=sum(variance);
standarddeviation=sqrt(variance);
standarddeviation=round(standarddeviation);

T1=mean-(k1*standarddeviation);
T2=mean+(k2*standarddeviation);

Threshold1=abs(T1+T2)/2;
Threshold1=round(Threshold1);

Threshold2=abs(T1-T2)/2;
Threshold2=round(Threshold2);

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);

for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end
 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));
number_Of_Water_Pixels=sum(sum(c2==60));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;
number_Of_Water_T=number_Of_Water_T+number_Of_Water_Pixels;

 end

degree_of_saturation =

(number_Of_Water_T/(number_Of_Air_T+number_Of_Water_T))*100;

241	
	

p=degree_of_saturation;
p=round(p,2);
p=num2str(p);
set(handles.SatText, 'String', p);
end

%%% OTSU

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};
getappdata(handles.axes1,'fileName');

if strcmp(MethodName, 'Otsu ')
 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;

 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

 e=uint8(c);
 p=imhist(e);
 mean=0;

 for i=1:256
 mean=mean+(i*p(i,1));
 end

 mean=mean/256;
 sumt=zeros(256,1);

 for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));

242	
	

 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end

 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;
 end

Threshold1(ka,1)=find(sumt==max(sumt));

 end

Threshold1=sum(Threshold1(1:b));
Threshold1=Threshold1/b;
Threshold1=round(Threshold1);
AT1=Threshold1;
AT1=num2str(AT1);
set(handles.AT1Box, 'String', AT1);
end

%%% OTSU

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};
getappdata(handles.axes1,'fileName');

if strcmp(MethodName, 'Otsu ')
 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix

243	
	

 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

e=uint8(c);
p=imhist(e);

mean=0;

for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;
end

Threshold1=find(sumt==max(sumt));

% Following lines of code are used to determine Threshold 2

pmax = p(Threshold1,1);
p2 = p(1:Threshold1);
mean=0;

for i=1:Threshold1
 mean=mean+(i*p2(i,1));
end

244	
	

mean=mean/256;
sumt=zeros(256,1);

for i=1:Threshold1
 meanli=0;
 for j=1:Threshold1-1
 meanli=meanli+(j*p2(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:Threshold1
 meangi=meangi+(j*p2(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:Threshold1-1
 sumli=sumli+p2(ii,1)*((meanli-mean)^2);
 end
 for ii=i:Threshold1
 sumgi=sumgi+p2(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold2(ka,1)=find(sumt==max(sumt));

end

Threshold2=sum(Threshold2(1:b));
Threshold2=Threshold2/b;
Threshold2=round(Threshold2);
AT2=Threshold2;
AT2=num2str(AT2);
set(handles.AT2Box, 'String', AT2);
end

%%% ITERATIVE OTSU

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

if strcmp(MethodName, 'Iterative Otsu')

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];

245	
	

 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;

 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

e=uint8(c);
p=imhist(e);
mean=0;

for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end
 sumt(i,1)=sumgi+sumli;

end

Threshold1(ka,1)=find(sumt==max(sumt));

 end

Threshold1=sum(Threshold1(1:b));
Threshold1=Threshold1/b;
Threshold1=round(Threshold1);

246	
	

AT1=Threshold1;
AT1=num2str(AT1);
set(handles.AT1Box, 'String', AT1);

end

%%% ITERATIVE OTSU

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

if strcmp(MethodName, 'Iterative Otsu')

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));

 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

e=uint8(c);
p=imhist(e);
mean=0;
for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end

247	
	

 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));

[counts,N]=imhist(e);
counts1=counts(1:Threshold1);
mu1=cumsum(counts1); % To get the total summation of intensity

values
N1 = (0:Threshold1-1)';
mean=(sum(N1.*counts1))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts2=counts(Threshold1+1:end);
mu2=cumsum(counts2); % To get the total summation of intensity

values
N2 = (Threshold1:255)';
mean=(sum(N2.*counts2))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Threshold2(ka,1) = (IntensityRegion1+IntensityRegion2)/2;
Threshold2(ka,1)=round(Threshold2(ka,1));

% Iterative Process to Find the Ideal Value for Threshold2

[counts,N]=imhist(e);
counts3=counts(1:Threshold2(ka,1));
mu1=cumsum(counts3); % To get the total summation of intensity

values
N1 = (0:Threshold2(ka,1)-1)';
mean=(sum(N1.*counts3))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts4=counts(Threshold2(ka,1)+1:end);
mu2=cumsum(counts4); % To get the total summation of intensity

values
N2 = (Threshold2(ka,1):255)';
mean=(sum(N2.*counts4))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

248	
	

Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
Thresholdnew=round(Thresholdnew);

% Check if Thresholdnew is an Acceptable Choice for Threshold2

loopCounter=1;

while Thresholdnew-5 < Threshold2(ka,1) && Thresholdnew+5 <

Threshold2(ka,1)
 Threshold2(ka,1)=Thresholdnew;
 [counts,N]=imhist(e);
 counts5=counts(1:Threshold2(ka,1));
 mu1=cumsum(counts5); % To get the total summation of

intensity values
 N1 = (0:Threshold2(ka,1)-1)';
 mean=(sum(N1.*counts5))/mu1(end);
 mean=round(mean);
 IntensityRegion1=mean;

 counts6=counts(Threshold2(ka,1)+1:end);
 mu2=cumsum(counts6); % To get the total summation of

intensity values
 N2 = (Threshold2(ka,1):255)';
 mean=(sum(N2.*counts6))/mu2(end);
 mean=round(mean);
 IntensityRegion2=mean;

 Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
 Thresholdnew=round(Thresholdnew);

 if loopCounter>=10
 break;
 end

 loopCounter=loopCounter+1;

end

Threshold2(ka,1)=Thresholdnew;

 end

Threshold2=sum(Threshold2(1:b));
Threshold2=Threshold2/b;
Threshold2=round(Threshold2);
AT2=Threshold2;
AT2=num2str(AT2);
set(handles.AT2Box, 'String', AT2);

end

%%% REFINED STATISTICAL-BASED

249	
	

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

if strcmp(MethodName, 'Refined Statistical-Based')
k1= handles.k1;
k1=str2double(k1);
k2= handles.k2;
k2=str2double(k2);
set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

 e=uint8(c);
 [counts,N]=imhist(e);
 mu=cumsum(counts); % To get the total summation of intensity

values
 mean=(sum(N.*counts))/mu(end);
 mean=round(mean);
 variance=sum((counts-mean).^2)/(mu-1);
 variance=sum(variance);
 standarddeviation=sqrt(variance);
 standarddeviation=round(standarddeviation);

 T1=mean-(k1*standarddeviation);
 T2=mean+(k2*standarddeviation);

 Threshold1(ka,1)=abs(T1+T2)/2;

end

Threshold1=sum(Threshold1(1:b));
Threshold1=Threshold1/b;
Threshold1=round(Threshold1);
AT1=Threshold1;

250	
	

AT1=num2str(AT1);
set(handles.AT1Box, 'String', AT1);
end

%%% REFINED STATISTICAL-BASED

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

if strcmp(MethodName, 'Refined Statistical-Based')
 k1= handles.k1;
 k1=str2double(k1);
 k2= handles.k2;
 k2=str2double(k2);

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));

 for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

 e=uint8(c);
 [counts,N]=imhist(e);
 mu=cumsum(counts); % To get the total summation of

intensity values
 mean=(sum(N.*counts))/mu(end);
 mean=round(mean);
 variance=sum((counts-mean).^2)/(mu-1);
 variance=sum(variance);
 standarddeviation=sqrt(variance);
 standarddeviation=round(standarddeviation);

 T1=mean-(k1*standarddeviation);
 T2=mean+(k2*standarddeviation);
 Threshold1=abs(T1+T2)/2;
 Threshold2(ka,1)=abs(T1-T2)/2;
 end

251	
	

Threshold2=sum(Threshold2(1:b));
Threshold2=Threshold2/b;
Threshold2=round(Threshold2);
AT2=Threshold2;
AT2=num2str(AT2);
set(handles.AT2Box, 'String', AT2);
end

% --- Executes on slider movement.
function imageSlider_Callback(hObject, eventdata, handles)
% hObject handle to imageSlider (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine

range of slider

imageSlider_value = get(hObject,'Value');

%get the current max value from the slider
numImages = get(handles.imageSlider, 'Max');

%calculate the image number to display
imageNum = floor(imageSlider_value)...
 + (sign(imageSlider_value)...
 * (abs(imageSlider_value) - floor(imageSlider_value)

)...
 * numImages);

%create a string from the number which always has 2 digits
str = sprintf('%02.0f',imageNum);

%retrieve filename data from app data
ptNum = getappdata(handles.axes1, 'ptNum');
imageType = getappdata(handles.axes1, 'imageType');
filepath = getappdata(handles.axes1, 'filePath');

%create the filename as a cell string
filename = strcat(ptNum, '.', str, '.', imageType);

%create full path to the image
imageStr = [filepath, filename{1}];

%read in image data
image = imread(imageStr);

%bring current axes in focus and show image
axes(handles.axes1);
imshow(image, []); %[] = [Imin Imax]

axes(handles.axes4);

252	
	

imshow(image,[]);

%store image data and slice number in axes
setappdata(handles.axes1, 'image', image);
setappdata(handles.axes1, 'sliceNum', imageSlider_value);

axes(handles.axes2);
sizeofmatrix = size(image,1);
[Row,Col,r]=MaskPortion(image);
c=[];
c1=zeros(sizeofmatrix,sizeofmatrix);
c1=uint8(c1);
e=0;
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=image(i,j);
 c1(i,j)=image(i,j);
 end
 end
end
histogram(c);

set(handles.CurrentName, 'String', filename)
contents = get(handles.Methods,'String');
 MethodName = contents{get(handles.Methods,'Value')};

 if strcmp(MethodName, 'Otsu ')
 axes(handles.axes3);
 sizeofmatrix = size(image,1);
 [Row,Col,r]=MaskPortion(image);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=image(i,j);
 c1(i,j)=image(i,j);
 end
 end
 end

 e=uint8(c);
 p=imhist(e);
 mean=0;

for i=1:256
 mean=mean+(i*p(i,1));

253	
	

end

mean=mean/256;
sumt=zeros(256,1);

for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end
 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));

% Following lines of code are used to determine Threshold 2

pmax = p(Threshold1,1);
p2 = p(1:Threshold1);
mean=0;

for i=1:Threshold1
 mean=mean+(i*p2(i,1));
end

mean=mean/256;
sumt=zeros(256,1);

for i=1:Threshold1
 meanli=0;
 for j=1:Threshold1-1
 meanli=meanli+(j*p2(j,1));
 end

 meanli=meanli/256;
 meangi=0;

 for j=i:Threshold1
 meangi=meangi+(j*p2(j,1));

254	
	

 end

 meangi=meangi/256;
 sumli=0;
 sumgi=0;

 for ii=1:Threshold1-1
 sumli=sumli+p2(ii,1)*((meanli-mean)^2);
 end
 for ii=i:Threshold1
 sumgi=sumgi+p2(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold2=find(sumt==max(sumt));

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end

 end
 end
end

imshow(c2,[]);
 end

if strcmp(MethodName, 'Iterative Otsu')
 axes(handles.axes3);
 sizeofmatrix = size(image,1);
 [Row,Col,r]=MaskPortion(image);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=image(i,j);

255	
	

 c1(i,j)=image(i,j);
 end
 end
 end

e=uint8(c);
p=imhist(e);
mean=0;

for i=1:256
 mean=mean+(i*p(i,1));
end

mean=mean/256;
sumt=zeros(256,1);

for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end

 meanli=meanli/256;
 meangi=0;

 for j=i:256
 meangi=meangi+(j*p(j,1));
 end

 meangi=meangi/256;
 sumli=0;
 sumgi=0;

 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));

[counts,N]=imhist(e);
counts1=counts(1:Threshold1);
mu1=cumsum(counts1); % To get the total summation of intensity

values
N1 = (0:Threshold1-1)';
mean=(sum(N1.*counts1))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

256	
	

counts2=counts(Threshold1+1:end);
mu2=cumsum(counts2); % To get the total summation of intensity

values
N2 = (Threshold1:255)';
mean=(sum(N2.*counts2))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Threshold2 = (IntensityRegion1+IntensityRegion2)/2;
Threshold2 = round(Threshold2);

% Iterative Process to Find the Ideal Value for Threshold2

[counts,N]=imhist(e);
counts3=counts(1:Threshold2);
mu1=cumsum(counts3); % To get the total summation of intensity

values
N1 = (0:Threshold2-1)';
mean=(sum(N1.*counts3))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts4=counts(Threshold2+1:end);
mu2=cumsum(counts4); % To get the total summation of intensity

values
N2 = (Threshold2:255)';
mean=(sum(N2.*counts4))/mu2(end);
mean=round(mean);
IntensityRegion2 = mean;

Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
Thresholdnew = round(Thresholdnew);

% Check if Thresholdnew is an Acceptable Choice for Threshold2

loopCounter=1;

while Thresholdnew-5 < Threshold2 && Thresholdnew+5 < Threshold2
 Threshold2=Thresholdnew;
 [counts,N]=imhist(e);
 counts5=counts(1:Threshold2);
 mu1=cumsum(counts5); % To get the total summation of

intensity values
 N1 = (0:Threshold2-1)';
 mean=(sum(N1.*counts5))/mu1(end);
 mean=round(mean);
 IntensityRegion1=mean;

 counts6=counts(Threshold2+1:end);
 mu2=cumsum(counts6); % To get the total summation of

intensity values
 N2 = (Threshold2:255)';

257	
	

 mean=(sum(N2.*counts6))/mu2(end);
 mean=round(mean);
 IntensityRegion2=mean;

 Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
 Thresholdnew=round(Thresholdnew);

 if loopCounter>=10
 break;
 end

loopCounter=loopCounter+1;

end

Threshold2=Thresholdnew;

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end

 end
 end
end
imshow(c2,[]);
 end

%%% REFINED STATISTICAL-BASED

if strcmp(MethodName, 'Refined Statistical-Based')
 k1= handles.k1;
 k1=str2double(k1);
 k2= handles.k2;
 k2=str2double(k2);
 axes(handles.axes3);
 sizeofmatrix = size(image,1);
 [Row,Col,r]=MaskPortion(image);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;

258	
	

 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=image(i,j);
 c1(i,j)=image(i,j);
 end
 end
 end

 e=uint8(c);

% Automatic Threshold using Refined Statistical-Based Method

[counts,N]=imhist(e);
mu=cumsum(counts); % To get the total summation of intensity

values
mean=(sum(N.*counts))/mu(end);
mean=round(mean);
variance=sum((counts-mean).^2)/(mu-1);
variance=sum(variance);
standarddeviation=sqrt(variance);
standarddeviation=round(standarddeviation);

T1=mean-(k1*standarddeviation);
T2=mean+(k2*standarddeviation);

Threshold1=abs(T1+T2)/2;
Threshold1=round(Threshold1);

Threshold2=abs(T1-T2)/2;
Threshold2=round(Threshold2);

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end

 end
 end
end

259	
	

imshow(c2,[]);

end

function CurrentName_Callback(hObject, eventdata, handles)
% hObject handle to CurrentName (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of CurrentName as

text
% str2double(get(hObject,'String')) returns contents of

CurrentName as a double
set(handles.CurrentName, 'String', [pathName filename])

% --- Executes during object creation, after setting all

properties.
function CurrentName_CreateFcn(hObject, eventdata, handles)
% hObject handle to CurrentName (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function numImages_Callback(hObject, eventdata, handles)
% hObject handle to numImages (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of numImages as

text
% str2double(get(hObject,'String')) returns contents of

numImages as a double

updateSlider(handles);

function updateSlider(handles)
% This function updates the slider to have the correct min, max,

value, and
% step size

%get the current slice number which were stored in the figure axes
sliceNum = getappdata(handles.axes1,'sliceNum');

if(isempty(sliceNum))%may be empty if the figure has not been

260	
	

initialized
 sliceNum = 1; %set it to a default
end

%get the number written in the text box which is the maximum

number of
%images to be viewed
NumImageslice = str2double(get(handles.numImages,'String'));

%there are only NumImageslice - 1 images total, because we start

at 1
step = 1/(NumImageslice - 1);

%set values for the slider bar
set(handles.imageSlider, 'Max', NumImageslice);
set(handles.imageSlider, 'Min', 1);
set(handles.imageSlider, 'SliderStep', [step step]);

%set current value to the slice we are viewing
set(handles.imageSlider, 'Value', sliceNum);

% --- Executes during object creation, after setting all

properties.
function numImages_CreateFcn(hObject, eventdata, handles)
% hObject handle to numImages (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in ContBright.
function ContBright_Callback(hObject, eventdata, handles)
axes(handles.axes4);
imcontrast(gcf);

function VoidText_Callback(hObject, eventdata, handles)
% hObject handle to VoidText (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of VoidText as

text
% str2double(get(hObject,'String')) returns contents of

VoidText as a double

% --- Executes during object creation, after setting all

261	
	

properties.
function VoidText_CreateFcn(hObject, eventdata, handles)
% hObject handle to VoidText (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function SatText_Callback(hObject, eventdata, handles)
% hObject handle to SatText (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of SatText as text
% str2double(get(hObject,'String')) returns contents of

SatText as a double

% --- Executes during object creation, after setting all

properties.
function SatText_CreateFcn(hObject, eventdata, handles)
% hObject handle to SatText (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function AT1Box_Callback(hObject, eventdata, handles)
% hObject handle to AT1Box (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of AT1Box as text
% str2double(get(hObject,'String')) returns contents of

AT1Box as a double

% --- Executes during object creation, after setting all

properties.
function AT1Box_CreateFcn(hObject, eventdata, handles)

262	
	

% hObject handle to AT1Box (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function AT2Box_Callback(hObject, eventdata, handles)
% hObject handle to AT2Box (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of AT2Box as text
% str2double(get(hObject,'String')) returns contents of

AT2Box as a double

% --- Executes during object creation, after setting all

properties.
function AT2Box_CreateFcn(hObject, eventdata, handles)
% hObject handle to AT2Box (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on selection change in Type.
function Type_Callback(hObject, eventdata, handles)
% hObject handle to Type (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns Type

contents as cell array
% contents{get(hObject,'Value')} returns selected item from

Type

% --- Executes during object creation, after setting all

properties.
function Type_CreateFcn(hObject, eventdata, handles)

263	
	

% hObject handle to Type (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: popupmenu controls usually have a white background on

Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in SingleThreshold.
function SingleThreshold_Callback(hObject, eventdata, handles)
contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};
getappdata(handles.axes1,'fileName');

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};
contents2 = get(handles.Type,'String');
TypeName = contents2{get(handles.Type,'Value')};
getappdata(handles.axes1,'fileName');

%%% OTSU

if strcmp(MethodName, 'Otsu ') && strcmp(TypeName, 'Threshold

One')

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 A = uigetfile({'*.jpg;*.tif;*.bmp;*.png;*.gif','All Image

Files'},'Please Select A Cropped Image from Folder that Appears');
 I=imread(A);
 set(handles.Name2, 'String', A);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end

264	
	

 end
 end

 e=uint8(c);
 p=imhist(e);
 mean=0;

 for i=1:256
 mean=mean+(i*p(i,1));
 end

 mean=mean/256;
 sumt=zeros(256,1);

 for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;
 end

 Threshold1=find(sumt==max(sumt));
 T1=Threshold1;
 T1=num2str(T1);
 set(handles.TBox, 'String', T1);

end

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};
contents2 = get(handles.Type,'String');
TypeName = contents2{get(handles.Type,'Value')};
getappdata(handles.axes1,'fileName');

265	
	

%%% ITERATIVE OTSU

if strcmp(MethodName, 'Iterative Otsu') && strcmp(TypeName,

'Threshold One')

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 A = uigetfile({'*.jpg;*.tif;*.bmp;*.png;*.gif','All Image

Files'},'Please Select A Cropped Image from Folder that Appears');
 I=imread(A);
 set(handles.Name2, 'String', A);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);

 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

 e=uint8(c);
 p=imhist(e);
 mean=0;

 for i=1:256
 mean=mean+(i*p(i,1));
 end

 mean=mean/256;
 sumt=zeros(256,1);
 for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end

266	
	

 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;
 end

 Threshold1=find(sumt==max(sumt));
 T1=Threshold1;
 T1=num2str(T1);
 set(handles.TBox, 'String', T1);
end

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};
contents2 = get(handles.Type,'String');
TypeName = contents2{get(handles.Type,'Value')};
getappdata(handles.axes1,'fileName');

%%% REFINED STATISTICAL-BASED

if strcmp(MethodName, 'Refined Statistical-Based') &&

strcmp(TypeName, 'Threshold One')
 k = warndlg('Make sure to choose values for free/fitting

parameters k1 and k2!','Warning');
 waitfor(k);
 k1= handles.k1;
 k1=str2double(k1);
 k2= handles.k2;
 k2=str2double(k2);

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 A = uigetfile({'*.jpg;*.tif;*.bmp;*.png;*.gif','All Image

Files'},'Please Select A Cropped Image from Folder that Appears');
 I=imread(A);
 set(handles.Name2, 'String', A);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);

 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);

267	
	

 c1(i,j)=I(i,j);
 end
 end
 end

 e = uint8(c);

% Automatic Threshold using Refined Statistical-Based Method

[counts,N]=imhist(e);
mu=cumsum(counts); % To get the total summation of intensity

values
mean=(sum(N.*counts))/mu(end);
mean=round(mean);
variance=sum((counts-mean).^2)/(mu-1);
variance=sum(variance);
standarddeviation=sqrt(variance);
standarddeviation=round(standarddeviation);

T1=mean-(k1*standarddeviation);
T2=mean+(k2*standarddeviation);

Threshold1=abs(T1+T2)/2;
Threshold1=round(Threshold1);
T1=Threshold1;
T1=num2str(T1);
set(handles.TBox, 'String', T1);
end

contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};
getappdata(handles.axes1,'fileName');

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};
contents2 = get(handles.Type,'String');
TypeName = contents2{get(handles.Type,'Value')};
getappdata(handles.axes1,'fileName');

%%% OTSU

if strcmp(MethodName, 'Otsu ') && strcmp(TypeName, 'Threshold

Two')

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 A = uigetfile({'*.jpg;*.tif;*.bmp;*.png;*.gif','All Image

Files'},'Please Select A Cropped Image from Folder that Appears');
 I=imread(A);
 set(handles.Name2, 'String', A);
 [Row,Col,r]=MaskPortion(I);

268	
	

 sizeofmatrix = size(I,1);

 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

 e=uint8(c);
 p=imhist(e);
 mean=0;

 for i=1:256
 mean=mean+(i*p(i,1));
 end

 mean=mean/256;
 sumt=zeros(256,1);

 for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end
 sumt(i,1)=sumgi+sumli;
 end

 Threshold1=find(sumt==max(sumt));

% Following lines of code are used to determine Threshold 2

269	
	

pmax = p(Threshold1,1);
p2 = p(1:Threshold1);
mean=0;

for i=1:Threshold1
 mean=mean+(i*p2(i,1));
end

mean=mean/256;
sumt=zeros(256,1);

for i=1:Threshold1
 meanli=0;
 for j=1:Threshold1-1
 meanli=meanli+(j*p2(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:Threshold1
 meangi=meangi+(j*p2(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:Threshold1-1
 sumli=sumli+p2(ii,1)*((meanli-mean)^2);
 end
 for ii=i:Threshold1
 sumgi=sumgi+p2(ii,1)*((meangi-mean)^2);
 end
 sumt(i,1)=sumgi+sumli;
end

Threshold2=find(sumt==max(sumt));
T2=Threshold2;
T2=num2str(T2);
set(handles.TBox, 'String', T2);
end

contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};
getappdata(handles.axes1,'fileName');

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};
contents2 = get(handles.Type,'String');
TypeName = contents2{get(handles.Type,'Value')};
getappdata(handles.axes1,'fileName');

%%% ITERATIVE OTSU

270	
	

if strcmp(MethodName, 'Iterative Otsu') && strcmp(TypeName,

'Threshold Two')

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 A = uigetfile({'*.jpg;*.tif;*.bmp;*.png;*.gif','All Image

Files'},'Please Select A Cropped Image from Folder that Appears');
 I=imread(A);
 set(handles.Name2, 'String', A);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);

 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

 e=uint8(c);
 p=imhist(e);
 mean=0;

 for i=1:256
 mean=mean+(i*p(i,1));
 end

 mean=mean/256;
 sumt=zeros(256,1);

 for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end

271	
	

 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));

[counts,N]=imhist(e);
counts1=counts(1:Threshold1);
mu1=cumsum(counts1); % To get the total summation of intensity

values
N1 = (0:Threshold1-1)';
mean=(sum(N1.*counts1))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts2=counts(Threshold1+1:end);
mu2=cumsum(counts2); % To get the total summation of intensity

values
N2 = (Threshold1:255)';
mean=(sum(N2.*counts2))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Threshold2 = (IntensityRegion1+IntensityRegion2)/2;
Threshold2=round(Threshold2);

% Iterative Process to Find the Ideal Value for Threshold2

[counts,N]=imhist(e);
counts3=counts(1:Threshold2);
mu1=cumsum(counts3); % To get the total summation of intensity

values
N1 = (0:Threshold2-1)';
mean=(sum(N1.*counts3))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts4=counts(Threshold2+1:end);
mu2=cumsum(counts4); % To get the total summation of intensity

values
N2 = (Threshold2:255)';
mean=(sum(N2.*counts4))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
Thresholdnew=round(Thresholdnew);

% Check if Thresholdnew is an Acceptable Choice for Threshold2

272	
	

loopCounter=1;

while Thresholdnew-5 < Threshold2 && Thresholdnew+5 < Threshold2
 Threshold2=Thresholdnew;
 [counts,N]=imhist(e);
 counts5=counts(1:Threshold2);
 mu1=cumsum(counts5); % To get the total summation of

intensity values
 N1 = (0:Threshold2-1)';
 mean=(sum(N1.*counts5))/mu1(end);
 mean=round(mean);
 IntensityRegion1=mean;

 counts6=counts(Threshold2+1:end);
 mu2=cumsum(counts6); % To get the total summation of

intensity values
 N2 = (Threshold2:255)';
 mean=(sum(N2.*counts6))/mu2(end);
 mean=round(mean);
 IntensityRegion2=mean;

 Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
 Thresholdnew=round(Thresholdnew);

 if loopCounter>=10
 break;
 end

 loopCounter=loopCounter+1;

end

Threshold2=Thresholdnew;
T2=Threshold2;
T2=num2str(T2);
set(handles.TBox, 'String', T2);
end

contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};
getappdata(handles.axes1,'fileName');

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

contents = get(handles.Methods,'String');
MethodName = contents{get(handles.Methods,'Value')};
contents2 = get(handles.Type,'String');
TypeName = contents2{get(handles.Type,'Value')};
getappdata(handles.axes1,'fileName');

%%% REFINED STATISTICAL-BASED

273	
	

if strcmp(MethodName, 'Refined Statistical-Based') &&

strcmp(TypeName, 'Threshold Two')
 k = warndlg('Make sure to choose values for free/fitting

parameters k1 and k2!','Warning');
 waitfor(k);
 k1= handles.k1;
 k1=str2double(k1);
 k2= handles.k2;
 k2=str2double(k2);

set(handles.imageSlider,'Value',get(handles.imageSlider,'Min'));
 A = uigetfile({'*.jpg;*.tif;*.bmp;*.png;*.gif','All Image

Files'},'Please Select A Cropped Image from Folder that Appears');
 I=imread(A);
 set(handles.Name2, 'String', A);

 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

 e = uint8(c);

% Automatic Threshold using Refined Statistical-Based Method

[counts,N]=imhist(e);
mu=cumsum(counts); % To get the total summation of intensity

values
mean=(sum(N.*counts))/mu(end);
mean=round(mean);
variance=sum((counts-mean).^2)/(mu-1);
variance=sum(variance);
standarddeviation=sqrt(variance);
standarddeviation=round(standarddeviation);

T1=mean-(k1*standarddeviation);
T2=mean+(k2*standarddeviation);

Threshold1=abs(T1+T2)/2;
Threshold1=round(Threshold1);

274	
	

Threshold2=abs(T1-T2)/2;
Threshold2=round(Threshold2);
T2=Threshold2;
T2=num2str(T2);
set(handles.TBox, 'String', T2);
end

function TBox_Callback(hObject, eventdata, handles)
% hObject handle to TBox (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of TBox as text
% str2double(get(hObject,'String')) returns contents of

TBox as a double

% --- Executes during object creation, after setting all

properties.
function TBox_CreateFcn(hObject, eventdata, handles)
% hObject handle to TBox (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function Name2_Callback(hObject, eventdata, handles)
% hObject handle to Name2 (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Name2 as text
% str2double(get(hObject,'String')) returns contents of

Name2 as a double

% --- Executes during object creation, after setting all

properties.
function Name2_CreateFcn(hObject, eventdata, handles)
% hObject handle to Name2 (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

275	
	

if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in Excel.
function Excel_Callback(hObject, eventdata, handles)
k = warndlg('Make sure to choose values for free/fitting

parameters k1 and k2!','Warning');
waitfor(k);
k1= handles.k1;
k1=str2double(k1);
k2= handles.k2;
k2=str2double(k2);

str1='Segmentation Method';
O='Otsu';
P= 'Iterative Otsu';
KSW= 'Refined Statistical-Based';

str2='Void Ratio';
str3='Degree of Saturation';
str3='Average Threshold One Value for all Images';
str4='Average Threshold Two Value for all Images';

d = uigetdir('*.png');
cd(d);
q=dir('*.png');
b = numel(q);

k = warndlg('Exporting of data can take a couple of minutes

depending on the number of images being analyzed. Please do not click
anything until data exporting is completed.','Warning');

waitfor(k);

%%% OTSU

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2

276	
	

 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Otsu's Method

e=uint8(c);
p=imhist(e);
mean=0;

for i=1:256
 mean=mean+(i*p(i,1));
end

mean=mean/256;
sumt=zeros(256,1);

for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end
 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));
Threshold1a(ka,1)=find(sumt==max(sumt));

% Following lines of code are used to determine Threshold 2

pmax = p(Threshold1,1);
p2 = p(1:Threshold1);
mean=0;

for i=1:Threshold1
 mean=mean+(i*p2(i,1));

277	
	

end

mean=mean/256;
sumt=zeros(256,1);

for i=1:Threshold1
 meanli=0;
 for j=1:Threshold1-1
 meanli=meanli+(j*p2(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:Threshold1
 meangi=meangi+(j*p2(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:Threshold1-1
 sumli=sumli+p2(ii,1)*((meanli-mean)^2);
 end
 for ii=i:Threshold1
 sumgi=sumgi+p2(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold2=find(sumt==max(sumt));
Threshold2a(ka,1)=find(sumt==max(sumt));

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));
number_Of_Water_Pixels=sum(sum(c2==60));

278	
	

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;
number_Of_Water_T=number_Of_Water_T+number_Of_Water_Pixels;

end

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);
Threshold1a=round(Threshold1a);
AT1=Threshold1a;
AT1=num2str(AT1);
str5=AT1;

Threshold2a=sum(Threshold2a(1:b));
Threshold2a=Threshold2a/(b);
Threshold2a=round(Threshold2a);
AT2=Threshold2a;
AT2=num2str(AT2);
str6=AT2;

void_ratio =

(number_Of_Air_T+number_Of_Water_T)/number_Of_Solid_T;
void_ratio=round(void_ratio,2);
v=void_ratio;
v=num2str(v);
str7=v;

degree_of_saturation =

(number_Of_Water_T/(number_Of_Air_T+number_Of_Water_T))*100;
p=degree_of_saturation;
p=round(p,2);
p=num2str(p);
str8=p;

AH=cell(6,1);
AH{1,1}='Otsu segmentation method complete.';
AH{2,1}='Two methods remain...';
set(handles.listbox3, 'String', AH);
drawnow();

%%% ITERATIVE OTSU

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);

279	
	

 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

 e=uint8(c);
 p=imhist(e);
 mean=0;

 for i=1:256
 mean=mean+(i*p(i,1));
 end

 mean=mean/256;
 sumt=zeros(256,1);

 for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));
Threshold1a(ka,1)=find(sumt==max(sumt));

[counts,N]=imhist(e);
counts1=counts(1:Threshold1);
mu1=cumsum(counts1); % To get the total summation of intensity

values

280	
	

N1 = (0:Threshold1-1)';
mean=(sum(N1.*counts1))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts2=counts(Threshold1+1:end);
mu2=cumsum(counts2); % To get the total summation of intensity

values
N2 = (Threshold1:255)';
mean=(sum(N2.*counts2))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Threshold2 = (IntensityRegion1+IntensityRegion2)/2;
Threshold2=round(Threshold2);

% Iterative Process to Find the Ideal Value for Threshold2

[counts,N]=imhist(e);
counts3=counts(1:Threshold2);
mu1=cumsum(counts3); % To get the total summation of intensity

values
N1 = (0:Threshold2-1)';
mean=(sum(N1.*counts3))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts4=counts(Threshold2+1:end);
mu2=cumsum(counts4); % To get the total summation of intensity

values
N2 = (Threshold2:255)';
mean=(sum(N2.*counts4))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
Thresholdnew=round(Thresholdnew);

% Check if Thresholdnew is an Acceptable Choice for Threshold2

loopCounter=1;

while Thresholdnew-5 < Threshold2 && Thresholdnew+5 < Threshold2
 Threshold2=Thresholdnew;
 [counts,N]=imhist(e);
 counts5=counts(1:Threshold2);
 mu1=cumsum(counts5); % To get the total summation of

intensity values
 N1 = (0:Threshold2-1)';
 mean=(sum(N1.*counts5))/mu1(end);
 mean=round(mean);
 IntensityRegion1=mean;

 counts6=counts(Threshold2+1:end);

281	
	

 mu2=cumsum(counts6); % To get the total summation of
intensity values

 N2 = (Threshold2:255)';
 mean=(sum(N2.*counts6))/mu2(end);
 mean=round(mean);
 IntensityRegion2=mean;

 Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
 Thresholdnew=round(Thresholdnew);

 if loopCounter>=10
 break;
 end

 loopCounter=loopCounter+1;

end

Threshold2=Thresholdnew;
Threshold2a(ka,1)=Thresholdnew;

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end

 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));
number_Of_Water_Pixels=sum(sum(c2==60));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;
number_Of_Water_T=number_Of_Water_T+number_Of_Water_Pixels;

end

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);
Threshold1a=round(Threshold1a);
AT1=Threshold1a;
AT1=num2str(AT1);

282	
	

str9=AT1;

Threshold2a=sum(Threshold2a(1:b));
Threshold2a=Threshold2a/(b);
Threshold2a=round(Threshold2a);
AT2=Threshold2a;
AT2=num2str(AT2);
str10=AT2;

void_ratio =

(number_Of_Air_T+number_Of_Water_T)/number_Of_Solid_T;
void_ratio=round(void_ratio,2);
v=void_ratio;
v=num2str(v);
str11=v;

degree_of_saturation =

(number_Of_Water_T/(number_Of_Air_T+number_Of_Water_T))*100;
p=degree_of_saturation;
p=round(p,2);
p=num2str(p);
str12=p;

AH{3,1}='Iterative Otsu segmentation method complete.';
AH{4,1}='One methods remain...';
set(handles.listbox3, 'String', AH);
drawnow()

%%% REFINED STATISTICAL-BASED

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

283	
	

 e=uint8(c);

% Automatic Threshold using Refined Statistical-Based Method

[counts,N]=imhist(e);
mu=cumsum(counts); % To get the total summation of intensity

values
mean=(sum(N.*counts))/mu(end);
mean=round(mean);
variance=sum((counts-mean).^2)/(mu-1);
variance=sum(variance);
standarddeviation=sqrt(variance);
standarddeviation=round(standarddeviation);

T1=mean-(k1*standarddeviation);
T2=mean+(k2*standarddeviation);

Threshold1=abs(T1+T2)/2;
Threshold1a(ka,1)=abs(T1+T2)/2;
Threshold1=round(Threshold1);

Threshold2=abs(T1-T2)/2;
Threshold2a(ka,1)=abs(T1-T2)/2;
Threshold2=round(Threshold2);

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end
 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));
number_Of_Water_Pixels=sum(sum(c2==60));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;
number_Of_Water_T=number_Of_Water_T+number_Of_Water_Pixels;

end

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);

284	
	

Threshold1a=round(Threshold1a);
AT1=Threshold1a;
AT1=num2str(AT1);
str13=AT1;

Threshold2a=sum(Threshold2a(1:b));
Threshold2a=Threshold2a/(b);
Threshold2a=round(Threshold2a);
AT2=Threshold2a;
AT2=num2str(AT2);
str14=AT2;

void_ratio =

(number_Of_Air_T+number_Of_Water_T)/number_Of_Solid_T;
void_ratio=round(void_ratio,2);
v=void_ratio;
v=num2str(v);
str15=v;

degree_of_saturation =

(number_Of_Water_T/(number_Of_Air_T+number_Of_Water_T))*100;
p=degree_of_saturation;
p=round(p,2);
p=num2str(p);
str16=p;

AH{5,1}='Refined Statistical-Based segmentation method complete.';
AH{6,1}='All methods complete.';
set(handles.listbox3, 'String', AH);
drawnow();

f = figure;
set(f,'visible','off');
r = cell(3,5);
t=uitable(r);

ColumnName = {'Segmentation Method','Void Ratio','Degree of

Saturation','Average Threshold One','Average Threshold Two'};
d=

{O,str7,str8,str5,str6;P,str11,str12,str9,str10;KSW,str15,str16,str13,s
tr14};

t.Data = d;
t.Position = [20 200 400 150];

A=[ColumnName ; d];
filename='SegmentationData.xlsx';
xlswrite(filename,A);

msg = msgbox('Data is succesfully saved as

SegmentationData.xlsx');
waitfor(msg);

% --- Executes on selection change in listbox3.

285	
	

function listbox3_Callback(hObject, eventdata, handles)
% hObject handle to listbox3 (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns

listbox3 contents as cell array
% contents{get(hObject,'Value')} returns selected item from

listbox3

% --- Executes during object creation, after setting all

properties.
function listbox3_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox3 (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: listbox controls usually have a white background on

Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --

function FileOpen_Callback(hObject, eventdata, handles)
% hObject handle to FileOpen (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

function New_Project_Callback(hObject, eventdata, handles)
close gcf;
ThreePhaseImageSegmentation;

% --

function CloseProgram_Callback(hObject, eventdata, handles)
% hObject handle to CloseProgram (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)
close(gcf);

% --

function Segmented_Save_Callback(hObject, eventdata, handles)
k = warndlg('Make sure to choose values for free/fitting

parameters k1 and k2!','Warning');

286	
	

waitfor(k);

%%% OTSU

number_Of_Void_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

AA = uigetdir('','Please Select the Folder Containing the Cropped

Images');
cd (AA);
BB = mkdir('Otsu Segmented Images');
CC = strcat(AA,'\Otsu Segmented Images')
cd (AA);
x = '*.png';
b=dir(x);
b=length(b);

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

 e=uint8(c);
 p=imhist(e);
 mean=0;

 for i=1:256
 mean=mean+(i*p(i,1));
end
mean=mean/256;
sumt=zeros(256,1);
for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;

287	
	

 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));

% Following lines of code are used to determine Threshold 2

pmax = p(Threshold1,1);
p2 = p(1:Threshold1);
mean=0;

for i=1:Threshold1
 mean=mean+(i*p2(i,1));
end

mean=mean/256;
sumt=zeros(256,1);

for i=1:Threshold1
 meanli=0;
 for j=1:Threshold1-1
 meanli=meanli+(j*p2(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:Threshold1
 meangi=meangi+(j*p2(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:Threshold1-1
 sumli=sumli+p2(ii,1)*((meanli-mean)^2);
 end
 for ii=i:Threshold1
 sumgi=sumgi+p2(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

288	
	

end

Threshold2=find(sumt==max(sumt));

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end
 end
 end
end

number_Of_Void_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Void_T=number_Of_Void_T+number_Of_Void_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

QQ = 'Otsu Segmented Image_1.0';
cd (CC);
imwrite(c2,[QQ,num2str(ka),'.png']);
cd (AA);

end

%%% ITERATIVE OTSU

number_Of_Void_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

cd (AA);
BB = mkdir('Iterative Otsu Segmented Images');
CC = strcat(AA,'\Iterative Otsu Segmented Images')
cd (AA);
x = '*.png';
b=dir(x);
b=length(b);

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);

289	
	

 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;

 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

 e=uint8(c);
 p=imhist(e);
 mean=0;
 for i=1:256
 mean=mean+(i*p(i,1));
 end

 mean=mean/256;
 sumt=zeros(256,1);

 for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

 end

Threshold1=find(sumt==max(sumt));

[counts,N]=imhist(e);
counts1=counts(1:Threshold1);

290	
	

mu1=cumsum(counts1); % To get the total summation of intensity
values

N1 = (0:Threshold1-1)';
mean=(sum(N1.*counts1))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts2=counts(Threshold1+1:end);
mu2=cumsum(counts2); % To get the total summation of intensity

values
N2 = (Threshold1:255)';
mean=(sum(N2.*counts2))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Threshold2 = (IntensityRegion1+IntensityRegion2)/2;
Threshold2 = round(Threshold2);

% Iterative Process to Find the Ideal Value for Threshold2

[counts,N]=imhist(e);
counts3=counts(1:Threshold2);
mu1=cumsum(counts3); % To get the total summation of intensity

values
N1 = (0:Threshold2-1)';
mean=(sum(N1.*counts3))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts4=counts(Threshold2+1:end);
mu2=cumsum(counts4); % To get the total summation of intensity

values
N2 = (Threshold2:255)';
mean=(sum(N2.*counts4))/mu2(end);
mean=round(mean);
IntensityRegion2 = mean;

Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
Thresholdnew = round(Thresholdnew);

% Check if Thresholdnew is an Acceptable Choice for Threshold2

loopCounter=1;

while Thresholdnew-5 < Threshold2 && Thresholdnew+5 < Threshold2
 Threshold2=Thresholdnew;
 [counts,N]=imhist(e);
 counts5=counts(1:Threshold2);
 mu1=cumsum(counts5); % To get the total summation of

intensity values
 N1 = (0:Threshold2-1)';
 mean=(sum(N1.*counts5))/mu1(end);
 mean=round(mean);

291	
	

 IntensityRegion1=mean;

 counts6=counts(Threshold2+1:end);
 mu2=cumsum(counts6); % To get the total summation of

intensity values
 N2 = (Threshold2:255)';
 mean=(sum(N2.*counts6))/mu2(end);
 mean=round(mean);
 IntensityRegion2=mean;

 Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
 Thresholdnew=round(Thresholdnew);

 if loopCounter>=10
 break;
 end

 loopCounter=loopCounter+1;
end

Threshold2=Thresholdnew;

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);

for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end
 end
 end
end

number_Of_Void_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Void_T=number_Of_Void_T+number_Of_Void_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

QQ = 'Iterative Otsu Segmented Image_1.0';
cd (CC);
imwrite(c2,[QQ,num2str(ka),'.png']);
cd (AA);
end

292	
	

%%% REFINED STATISTICAL-BASED

number_Of_Void_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

k1= handles.k1;
k1=str2double(k1);
k2= handles.k2;
k2=str2double(k2);

cd (AA);
BB = mkdir('Refined Statistical-Based Segmented Images');
CC = strcat(AA,'\Refined Statistical-Based Segmented Images')
cd (AA);
x = '*.png';
b=dir(x);
b=length(b);

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

e=uint8(c);

% Automatic Threshold using Refined Statistical-Based Method

[counts,N]=imhist(e);
mu=cumsum(counts); % To get the total summation of intensity

values
mean=(sum(N.*counts))/mu(end);
mean=round(mean);
variance=sum((counts-mean).^2)/(mu-1);
variance=sum(variance);
standarddeviation=sqrt(variance);
standarddeviation=round(standarddeviation);

293	
	

T1=mean-(k1*standarddeviation);
T2=mean+(k2*standarddeviation);

Threshold1=abs(T1+T2)/2;
Threshold1=round(Threshold1);

Threshold2=abs(T1-T2)/2;
Threshold2=round(Threshold2);

% Portion of Code that Calculates the Porosity and Void Ratio of

the Image

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end
 end
 end
end

number_Of_Void_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));

number_Of_Void_T=number_Of_Void_T+number_Of_Void_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;

QQ = 'Refined Statistical-Based Segmented Image_1.0';
cd (CC);
imwrite(c2,[QQ,num2str(ka),'.png']);
cd (AA);
end

h=msgbox('All Segmented Images Successfully Saved!');

% --

function Tools_Callback(hObject, eventdata, handles)
% hObject handle to Tools (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% --

function CAndB_Callback(hObject, eventdata, handles)

294	
	

axes(handles.axes4);
imcontrast(gcf);

% --

function Export_Callback(hObject, eventdata, handles)
k = warndlg('Make sure to choose values for free/fitting

parameters k1 and k2!','Warning');
waitfor(k);
k1= handles.k1;
k1=str2double(k1);
k2= handles.k2;
k2=str2double(k2);

str1='Segmentation Method';
O='Otsu';
P= 'Iterative Otsu';
KSW= 'Refined Statistical-Based';

str2='Void Ratio';
str3='Degree of Saturation';
str3='Average Threshold One Value for all Images';
str4='Average Threshold Two Value for all Images';

d = uigetdir('*.png');
cd(d);
q=dir('*.png');
b = numel(q);

k = warndlg('Exporting of data can take a couple of minutes

depending on the number of images being analyzed. Please do not click
anything until data exporting is completed.','Warning');

waitfor(k);

%%% OTSU

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;
 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;

295	
	

 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

% Automatic Threshold using Otsu's Method

e=uint8(c);
p=imhist(e);
mean=0;

for i=1:256
 mean=mean+(i*p(i,1));
end

mean=mean/256;
sumt=zeros(256,1);

for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));
Threshold1a(ka,1)=find(sumt==max(sumt));

% Following lines of code are used to determine Threshold 2

pmax = p(Threshold1,1);
p2 = p(1:Threshold1);
mean=0;

for i=1:Threshold1
 mean=mean+(i*p2(i,1));

296	
	

end

mean=mean/256;
sumt=zeros(256,1);

for i=1:Threshold1
 meanli=0;
 for j=1:Threshold1-1
 meanli=meanli+(j*p2(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:Threshold1
 meangi=meangi+(j*p2(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:Threshold1-1
 sumli=sumli+p2(ii,1)*((meanli-mean)^2);
 end
 for ii=i:Threshold1
 sumgi=sumgi+p2(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold2=find(sumt==max(sumt));
Threshold2a(ka,1)=find(sumt==max(sumt));

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);

for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end
 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));
number_Of_Water_Pixels=sum(sum(c2==60));

297	
	

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;
number_Of_Water_T=number_Of_Water_T+number_Of_Water_Pixels;

end

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);
Threshold1a=round(Threshold1a);
AT1=Threshold1a;
AT1=num2str(AT1);
str5=AT1;

Threshold2a=sum(Threshold2a(1:b));
Threshold2a=Threshold2a/(b);
Threshold2a=round(Threshold2a);
AT2=Threshold2a;
AT2=num2str(AT2);
str6=AT2;

void_ratio =

(number_Of_Air_T+number_Of_Water_T)/number_Of_Solid_T;
void_ratio=round(void_ratio,2);
v=void_ratio;
v=num2str(v);
str7=v;

degree_of_saturation =

(number_Of_Water_T/(number_Of_Air_T+number_Of_Water_T))*100;
p=degree_of_saturation;
p=round(p,2);
p=num2str(p);
str8=p;

AH=cell(6,1);
AH{1,1}='Otsu segmentation method complete.';
AH{2,1}='Two methods remain...';
set(handles.listbox3, 'String', AH);
drawnow();

%%% Iterative Otsu

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);

298	
	

 e=0;

 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

 e=uint8(c);
 p=imhist(e);
 mean=0;

 for i=1:256
 mean=mean+(i*p(i,1));
 end
 mean=mean/256;
 sumt=zeros(256,1);
 for i=1:256
 meanli=0;
 for j=1:i-1
 meanli=meanli+(j*p(j,1));
 end
 meanli=meanli/256;
 meangi=0;
 for j=i:256
 meangi=meangi+(j*p(j,1));
 end
 meangi=meangi/256;
 sumli=0;
 sumgi=0;
 for ii=1:i-1
 sumli=sumli+p(ii,1)*((meanli-mean)^2);
 end
 for ii=i:256
 sumgi=sumgi+p(ii,1)*((meangi-mean)^2);
 end

 sumt(i,1)=sumgi+sumli;

end

Threshold1=find(sumt==max(sumt));
Threshold1a(ka,1)=find(sumt==max(sumt));

[counts,N]=imhist(e);
counts1=counts(1:Threshold1);
mu1=cumsum(counts1); % To get the total summation of intensity

values
N1 = (0:Threshold1-1)';

299	
	

mean=(sum(N1.*counts1))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts2=counts(Threshold1+1:end);
mu2=cumsum(counts2); % To get the total summation of intensity

values
N2 = (Threshold1:255)';
mean=(sum(N2.*counts2))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Threshold2 = (IntensityRegion1+IntensityRegion2)/2;
Threshold2=round(Threshold2);

% Iterative Process to Find the Ideal Value for Threshold2

[counts,N]=imhist(e);
counts3=counts(1:Threshold2);
mu1=cumsum(counts3); % To get the total summation of intensity

values
N1 = (0:Threshold2-1)';
mean=(sum(N1.*counts3))/mu1(end);
mean=round(mean);
IntensityRegion1=mean;

counts4=counts(Threshold2+1:end);
mu2=cumsum(counts4); % To get the total summation of intensity

values
N2 = (Threshold2:255)';
mean=(sum(N2.*counts4))/mu2(end);
mean=round(mean);
IntensityRegion2=mean;

Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
Thresholdnew=round(Thresholdnew);

% Check if Thresholdnew is an Acceptable Choice for Threshold2

loopCounter=1;

while Thresholdnew-5 < Threshold2 && Thresholdnew+5 < Threshold2
 Threshold2=Thresholdnew;
 [counts,N]=imhist(e);
 counts5=counts(1:Threshold2);
 mu1=cumsum(counts5); % To get the total summation of

intensity values
 N1 = (0:Threshold2-1)';
 mean=(sum(N1.*counts5))/mu1(end);
 mean=round(mean);
 IntensityRegion1=mean;

 counts6=counts(Threshold2+1:end);
 mu2=cumsum(counts6); % To get the total summation of

300	
	

intensity values
 N2 = (Threshold2:255)';
 mean=(sum(N2.*counts6))/mu2(end);
 mean=round(mean);
 IntensityRegion2=mean;

 Thresholdnew = (IntensityRegion1+IntensityRegion2)/2;
 Thresholdnew=round(Thresholdnew);

 if loopCounter>=10
 break;
 end

 loopCounter=loopCounter+1;
end

Threshold2=Thresholdnew;
Threshold2a(ka,1)=Thresholdnew;

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);
for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end
 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));
number_Of_Water_Pixels=sum(sum(c2==60));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;
number_Of_Water_T=number_Of_Water_T+number_Of_Water_Pixels;

end

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);
Threshold1a=round(Threshold1a);
AT1=Threshold1a;
AT1=num2str(AT1);
str9=AT1;

Threshold2a=sum(Threshold2a(1:b));

301	
	

Threshold2a=Threshold2a/(b);
Threshold2a=round(Threshold2a);
AT2=Threshold2a;
AT2=num2str(AT2);
str10=AT2;

void_ratio =

(number_Of_Air_T+number_Of_Water_T)/number_Of_Solid_T;
void_ratio=round(void_ratio,2);
v=void_ratio;
v=num2str(v);
str11=v;

degree_of_saturation =

(number_Of_Water_T/(number_Of_Air_T+number_Of_Water_T))*100;
p=degree_of_saturation;
p=round(p,2);
p=num2str(p);
str12=p;

AH{3,1}='Iterative Otsu segmentation method complete.';
AH{4,1}='One methods remain...';
set(handles.listbox3, 'String', AH);
drawnow();

%%% REFINED STATISTICAL-BASED

number_Of_Air_T=0;
number_Of_Solid_T=0;
number_Of_Water_T=0;

for ka = 1: b
 I = sprintf('CroppedImage_1.%02d.png', ka);
 I=imread(I);
 [Row,Col,r]=MaskPortion(I);
 sizeofmatrix = size(I,1);
 c=[];
 c1=zeros(sizeofmatrix,sizeofmatrix);
 c1=uint8(c1);
 e=0;

 for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 e=e+1;
 c(e)=I(i,j);
 c1(i,j)=I(i,j);
 end
 end
 end

e=uint8(c);

302	
	

% Automatic Threshold using New 3 Phase

[counts,N]=imhist(e);
mu=cumsum(counts); % To get the total summation of intensity

values
mean=(sum(N.*counts))/mu(end);
mean=round(mean);
variance=sum((counts-mean).^2)/(mu-1);
variance=sum(variance);
standarddeviation=sqrt(variance);
standarddeviation=round(standarddeviation);

T1=mean-(k1*standarddeviation);
T2=mean+(k2*standarddeviation);

Threshold1=abs(T1+T2)/2;
Threshold1=round(Threshold1);
Threshold1a(ka,1)=abs(T1+T2)/2;

Threshold2=abs(T1-T2)/2;
Threshold2=round(Threshold2);
Threshold2a(ka,1)=abs(T1-T2)/2;

c2=zeros(sizeofmatrix,sizeofmatrix);
c2=uint8(c2);

for i=1:sizeofmatrix
 for j=1:sizeofmatrix
 d=(j - (Row))^2 + (i - (Col))^2;
 if d <= (r)^2
 if c1(i,j)>Threshold1
 c2(i,j)=100;
 elseif c1(i,j) < Threshold2
 c2(i,j)=20;
 else
 c2(i,j) = 60;
 end
 end
 end
end

number_Of_Air_Pixels=sum(sum(c2==20));
number_Of_Solid_Pixels=sum(sum(c2==100));
number_Of_Water_Pixels=sum(sum(c2==60));

number_Of_Air_T=number_Of_Air_T+number_Of_Air_Pixels;
number_Of_Solid_T=number_Of_Solid_T+number_Of_Solid_Pixels;
number_Of_Water_T=number_Of_Water_T+number_Of_Water_Pixels;

end

Threshold1a=sum(Threshold1a(1:b));
Threshold1a=Threshold1a/(b);
Threshold1a=round(Threshold1a);

303	
	

AT1=Threshold1a;
AT1=num2str(AT1);
str13=AT1;

Threshold2a=sum(Threshold2a(1:b));
Threshold2a=Threshold2a/(b);
Threshold2a=round(Threshold2a);
AT2=Threshold2a;
AT2=num2str(AT2);
str14=AT2;

void_ratio =

(number_Of_Air_T+number_Of_Water_T)/number_Of_Solid_T;
void_ratio=round(void_ratio,2);
v=void_ratio;
v=num2str(v);
str15=v;

degree_of_saturation =

(number_Of_Water_T/(number_Of_Air_T+number_Of_Water_T))*100;
p=degree_of_saturation;
p=round(p,2);
p=num2str(p);
str16=p;

AH{5,1}='Refined Statistical-Based segmentation method complete.';
AH{6,1}='All methods complete.';
set(handles.listbox3, 'String', AH);
drawnow();

f =figure;
set(f,'visible','off');
r = cell(3,5);
t=uitable(r);

ColumnName = {'Segmentation Method','Void Ratio','Degree of

Saturation','Average Threshold One','Average Threshold Two'};
d=

{O,str7,str8,str5,str6;P,str11,str12,str9,str10;KSW,str15,str16,str13,s
tr14};

t.Data = d;
t.Position = [20 200 400 150];

A=[ColumnName ; d];
filename='SegmentationData.xlsx';
xlswrite(filename,A);

msg = msgbox('Data is succesfully saved as

SegmentationData.xlsx');
waitfor(msg);

% --

304	
	

function Help_Callback(hObject, eventdata, handles)
% hObject handle to Help (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

% --

function User_Guide_Callback(hObject, eventdata, handles)
% hObject handle to User_Guide (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)
h = msgbox({'For proper program usage, the following steps must be

used in the displayed order:';'';'Step 1: Click "Rename Images." This
button renames all of the images in the folder of interest. Make sure
that the original images are saved to a folder.';'';'Step 2: Click
"Crop All Images." This button crops the renamed images and saves the
cropped images to a folder of choice. In order to apply cropping,
please double click within the drawn ellipse.';'';'Step 3: Click "Load
Image." This button loads the first cropped image and its corresponding
histogram. If necessary, the contrast and brightness of the image can
be adjusted as well. The slider allows for the viewing of all of the
remaining cropped images.';'';'Step 4: After choosing a segmentation
method, click "Run." This button allows for the selection of all of the
cropped images. The void ratio (e), degree of saturation, and the two
average threshold values for all the cropped images are displayed. The
segmentation of the first cropped image is shown and the slider allows
for the viewing of the remaining cropped images with the chosen
segmentation method applied.';'';'Note: The "Export Data to Excel"
button saves the void ratio (e), degree of saturation, and the two
average threshold values for all images, per segmentation technique, to
an Excel file.' },'Program Instructions');

% --

function About_Us_Callback(hObject, eventdata, handles)
% hObject handle to About_Us (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles structure with handles and user data (see GUIDATA)

h = msgbox({'University of Delaware';'Geotechnical

Engineering';'Civil and Environmental Engineering';'301 DuPont
Hall';'Newark, DE 19716';'USA'});

% --- Executes during object creation, after setting all

properties.
function edit5_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit5 (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

305	
	

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes during object creation, after setting all

properties.
function edit4_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit4 (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes during object creation, after setting all

properties.
function imageSlider_CreateFcn(hObject, eventdata, handles)
% hObject handle to imageSlider (see GCBO)
% eventdata reserved - to be defined in a future version of

MATLAB
% handles empty - handles not created until after all

CreateFcns called

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

