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ABSTRACT

Because resources for today’s software are used primarily for maintenance and

evolution, researchers are striving to make software engineers more efficient through

automation. Programmers now use integrated development environments (IDEs), de-

buggers, and tools for code search, testing, and program understanding to reduce the

tedious, error-prone tasks. A key component of these tools is analyzing source code and

gathering information for software developers. Most analyses treat a method as a set of

individual statements or a bag of words. Those analyses do not leverage information at

levels of abstraction between the individual statement and the whole method. However,

a method normally contains multiple high-level steps to achieve a certain function or

execute an algorithm. The steps are expressed by a sequence of statements instead of

a single statement. In this dissertation, I have explored the feasibility of automatically

identifying these high level actions towards improving software maintenance tools and

program understanding.

Specifically, methods can often be viewed as a sequence of blocks that correspond

to high level actions. We define an action unit as a code block that consists of a sequence

of consecutive statements that logically implement a high level action. Rather than

lower level actions represented by individual statements, action units represent a higher

level action, for example, “initializing a collection” or “setting up a GUI component”.

Action units are intermediary steps of an algorithm or sub-actions of a bigger and more

general action. In this dissertation, I (1) introduce the notion of action units and define

the kinds of action units, (2) develop techniques to automatically identify actions for

loop-based action units, (3) automatically generate natural language descriptions for

object-related action units, and (4) automatically insert blank lines into methods based

on action units to improve source code readability.

xi



Chapter 1

INTRODUCTION

Reports indicate that as much as 60-90% of software engineering resources are

spent on maintenance [27]. Software maintenance is the process of modifying a software

system or component after delivery to correct faults, improve performance or other

attributes, or adapt to a changed environment [58]. Software maintenance involves the

integrated use of source code and other software artifacts [3]. A large portion of the

effort is spent in reading source code [24, 33, 38, 48, 49, 74, 91, 94] to gain the necessary

understanding needed to make any modifications.

To reduce the effort of program comprehension and software maintenance, many

automated and semi-automated analyses and associated tools have been developed to

support the tedious and error-prone tasks [107, 113]. Many of these tools support the

software maintenance process by analyzing source code and gathering information for

software developers. Most analyses treat methods as a set of individual statements

or a single unit. For instance, most existing concern location tools treat a method

as a “bag of words” [61], i.e., a method is viewed as one document containing a set

of words during information retrieval. Some source code summary generators process

methods as a set of individual statements and then select a subset of statements for

which to generate a summary [102]. Others use methods as a “bag of words” and

select a subset of words for the summary [37]. The current analyses do not leverage

information at levels of abstraction between the individual statement and the whole

method. Programming language design restricts the way we write code in such a way

that more than one statement is often needed to implement a given step of an algorithm

that a given method is implementing. The step is too small to write as a single method,

but also takes more than one statement. One indicator that these higher level steps
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are important is that humans often delineate them by blank lines between the blocks

or document them as internal comments above the blocks. In this dissertation, I

explore the feasibility of automatically identifying the high level steps, or actions, of

a given method and how to use the high-level action information towards improving

programming understanding. Specifically, methods can often be viewed as a sequence

of blocks that correspond to high level actions. We define an action unit as a code

block that consists of a sequence of consecutive statements that logically implement a

high level action. Rather than lower level actions represented by individual statements,

action units represent higher level actions, for example, “initializing a collection” or

“setting up a GUI component”. These high level actions are intermediary steps of an

algorithm or subactions of a bigger and more general action.

Utilizing high level action information can benefit existing software maintenance

tools. For instance, automatic comment generators [102, 105] for method summaries

frequently fall short for long methods because they generate comments based on in-

dividually selected statements. The generated summary either contains too much de-

tailed information or is too brief to describe the method accurately. However, key

steps are often implemented by a sequence of statements instead of a single statement.

With the identification of high level action information, intermediary steps could be

captured and composed for the summary. This may lead to summaries with higher

accuracy and in a more concise form.

Another example is concern location tools. Current concern location tools that

use a “bag of words” approach focus on the individual words in the code. However,

a sequence of statements might implement an “update” or “check” for some variable,

but there may be no such words in the code. In this situation, relying only on words in

source code would not locate the code related to an “update” query word. Integrating

high level action information could help concern location tools find such features by

including the high-level action descriptions with the code.

In addition, analyses of high level actions could potentially enable creation of
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new tools for software maintenance. Internal comments are frequently used by devel-

opers, and when they are written, they often represent a block of code, or a high-level

action [40]. Internal comments describe sub-actions or steps represented by the block.

Unfortunately, developers rarely write internal comments [105]. By using the approach

of action unit identification and natural language processing (NLP) techniques, internal

comments can be generated in useful locations to describe actions of intermediary steps.

Intuitively, human-inserted comment locations can be used to guide the identification

of candidate insertion points for automatically generated internal comments.

Lastly, developers frequently use blank lines to separate different logical sections

to make the code more readable. If action units can be identified automatically, blank

lines can be automatically inserted.

The main contributions of this dissertation include (1) introducing the notion of

action units and defining the kinds of action units, (2) developing techniques to identify

actions for loop-based action units, (3) generating natural language descriptions for

object-related action units, and (4) inserting blank lines into methods based on action

units to improve source code readability. Our techniques are developed for Java, since

Java is reported as the most popular programming language [45].

Chapter 2 introduces the related work of text analysis for software maintenance

tools. Chapter 3 presents the notion of action units, their kinds and similar notions.

Chapter 4 describes an automatic approach to identify loop-based action units and

label their high level actions with a verb phrase. Chapter 5 describes an approach

to generate natural language descriptions for object-related action units. Chapter 6

shows the usefulness of action units by applying the notion to insert blank lines for

improving code readability. Chapter 7 presents a study of reader perspectives of action

units. Chapter 8 summarizes this thesis and outlines directions for future work.
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Chapter 2

TEXT ANALYSIS FOR SOFTWARE MAINTENANCE TOOLS

Despite decades of developing software engineering techniques, as much as 60-

90% of software life cycle resources are still used for software maintenance [27]. Build-

ing effective software tools is important to reduce these high maintenance costs. In-

formation retrieval (IR) techniques have been adopted to search source code and re-

construct documentation traceability in source code [39, 43, 65, 84, 89, 117, 132].

In recent years, researchers have integrated natural language processing (NLP) tech-

niques to analyze the natural language clues in program literals, identifiers, and com-

ments [22, 26, 41, 42, 54, 60, 97]. In both cases, text analysis is leveraged to increase

the effectiveness of many software tools. This chapter presents the related work in

text analysis for software maintenance tools. Information retrieval on source code is

discussed first, followed by natural language processing on source code and format-

ting for program understanding. Finally, the shortcomings and remaining issues are

summarized.

2.1 Information Retrieval on Source Code

As software systems continue to grow and evolve, locating code for software

maintenance tasks becomes increasingly difficult. To modify an application, devel-

opers must identify the high-level idea, or concept, to be changed and then locate,

comprehend, and modify the concept’s concern in the code [64]. There are mainly

two types of searches that are used to locate concerns: lexical-based and information

retrieval-based.

Programmers commonly use lexical searches to locate concepts in code using

regular expression queries. The problem with lexical search tools like grep [34] is that
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regular expression queries are often fragile, causing low recall. Many natural language

features cause regular expression queries to exhibit low recall, including morphology

changes, synonyms, line breaks, and reordered terms [97]. For example, a user’s search

for the concept “take” will fail if he/she uses a regular expression search for “take”

and the concern is implemented using a different morphological form of the word, such

as “took”. Expert developers often solve this problem by searching for more general

terms, which leads to large result sets with low precision and no ranking of relevance

within the large result sets [97].

IR technology uses the frequency of words in documents to determine similarity

between documents and queries. Because IR calculates a similarity score, the results

of a query according to relevance are ranked. In addition, IR also gracefully handles

multiple word queries [97]. IR does not, therefore, suffer from all the difficulties of

regular expression queries. IR’s search queries are not fragile and it does not return

unranked result sets. Researchers have successfully applied IR to locate concepts [39,

43, 65, 83, 84, 89, 115, 132] and reconstruct documentation traceability links in source

code [8, 63, 68, 77]. Recently proposed approaches to bug localization and feature

location also integrate the positional proximity of words in the source code files and

the bug reports to determine the relevance of a file to a query [98].

However, IR-based concern location tools treat source code as a “bag of words”

and focus on the individual words in the code [43]. The effectiveness of IR still depends

on the individual words of the query or its synonyms also appearing in the document.

In a typical Java method, a sequence of statements might implement a concept or

concern that is not expressed in the words that the developer uses to query. In this

situation, relying only on individual words in source code would not locate the code

related to the query word.

Researchers have developed techniques to reformulate queries and use word rela-

tions to improve the queries [31]. Recent techniques take advantage of phrasal concepts,

which are concepts expressed as groups of words such as noun phrases (NP) and verb

phrases (VP). Phrasal concepts improve search accuracy [44] and suggest alternate
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query words [97]. Although these techniques reduce the requirements of exact word

matching, concern location techniques still largely rely on individual query words.

Action unit could provide a new perspective to view the source code. Instead

of viewing a method as a set of individual statements, a method is viewed as a set of

high level actions. Our hypothesis is that integrating this new higher level information

would provide additional representative words in the document and more succinct

abstractions for existing concern location tools.

2.2 Natural Language Processing on Source Code

As discussed in Section 2.1, IR-based techniques have been applied to locate

concepts and reconstruct documentation traceability in source code. However, IR-

based methods do not consider crucial information regarding relationships between

terms that NLP analysis can provide. It has been demonstrated that many tools

that help program understanding for software maintenance and evolution rely on, or

can benefit from, analyzing the natural language embedded in identifier names and

comments using NLP techniques [2, 11, 97, 105, 129, 130, 131].

Automated analysis of program identifiers begins with splitting the identifier

into its constituent words and expanding abbreviations to tokenize the name. Unlike

natural languages, where space and punctuation are used to delineate words, identifiers

cannot contain spaces. One common way to split identifiers is to follow programming

language naming conventions. For example, Java programmers often use camel case,

where words are delineated by uppercase letters or non-alphabetic characters. How-

ever, programmers also create identifiers by concatenating sequences of words together

with no discernible delineation, which poses challenges to automatic identifier splitting.

Several approaches have been developed to automatically split the identifiers into their

constituent words and expand the abbreviations [22, 26, 42, 54, 60].

Many text-based tools for software engineering use part-of-speech (POS) tag-

gers, which identify the POS of a word and tag the word as a noun, verb, preposition,
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etc. and then chunk (or parse) the tagged words into grammatical phrases to help dis-

tinguish the semantics of the component words. Automated POS tagging and parsing

in software is complicated by several programmer behaviors and the way that POS

taggers typically work. POS taggers for English documents are built using machine

learning techniques that depend on the likelihood of a tag given a single word and

the tags of its surrounding context data; these taggers are trained on typical natural

language text such as the Wall Street Journal or newswire training data [114]. These

taggers work well on newswire and similar artifacts; however, their accuracy on source

code reduces as the input moves farther away from the highly structured sentences

found in traditional newswire articles. To improve the POS taggers for software ar-

tifacts, several techniques take program identifiers as input and generate sentences or

phrases to input to a classic POS tagger for English text. Abebe and Tonella [2] applied

natural language parsing to sentences generated from the terms in a program element.

Depending on the program element being named (class, method, or attribute) and the

role (noun/verb) played by the first term in the identifier, different templates are used

to wrap the words of the identifier to form sentences, which are input to a parser to

construct parse trees. Binkley et al. [11] presented a POS tagger for field names. They

followed the approach of using templates like Abebe and Tonella. Although they use

fewer templates (List, Sentence, Noun and Verb) than Abebe and Tonella, they pro-

duce sentences with each template, which are then input to a POS tagger developed for

the general English domain. Unlike the Abebe and Tonella system, they do not output

a unique tag for each word, but rather produce four different tags for each template.

Falleri et al. [29] simply use the TreeTagger [96] which is trained on English text to

perform the POS tagging. This closely relates to the sentence template used by [2]

except the use of a different language parser. Gupta et al. [35] presented a POS tagger

and syntactic chunker for source code names that takes into account programmers’

naming conventions to understand the regular, systematic ways a program element is

named. This POS tagger is able to handle the common as well as the less common

naming conventions equally well and not limited to method names.
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Because the software writer and reader who is searching the code are often differ-

ent, the effectiveness of search tools is often improved by adding related words to textual

artifact representations [46]. Synonyms are particularly useful to overcome the mis-

match in query to document vocabularies, as well as other word relations that indicate

semantic similarity. Sridhara et al. [104] investigated whether six publicly available,

well known semantic similarity techniques that perform well on English text [15, 67, 82]

are directly applicable to the software domain. Their study indicated that all six En-

glish text-based approaches perform poorly when applied to the software domain. Their

qualitative study also suggested that one promising way to customize semantic similar-

ity techniques for software is to augment WordNet with relations specific to software,

as some pairs were identified due to WordNet being augmented with some very com-

mon software word relations, such as (remove, clear). Yang and Tan [126] developed

an approach to automatically identify semantically related words by leveraging the

context of words in comments and code. The approach is based on the key insight

that if two words or phrases are used in the same context in comment sentences or

identifier names, then they likely have syntactic and semantic relevance. Howard et

al. [46] presented an approach to automatically mine word pairs that are semantically

similar in the software domain, with the goal of automatically augmenting WordNet

for use in software engineering tools. The key insight of their approach is to map the

main action verb from the leading comment of each method to the main action verb

of its method signature. This work is complementary to Yang and Tan [126].

Many software related words are not in the source code itself, but instead are

in the various associated textual artifacts, such as forum posts, bug reports, commit

logs, etc. Therefore, Tian et al. [112] developed an automatic approach that builds a

software specific WordNet like database by leveraging the textual contents of posts in

Stack Overflow. They measure the similarity of words by computing the similarities of

the weighted co-occurrences of these words in the textual corpus. In addition to the

work of mining semantically-similar Words, Wang et al. [125] infer semantically related

tags from FreeCode. Falleri et al. [29] showed how to extract a network of identifiers
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connected by is-more-general-than or is-a-part-of relationships from source code.

Some researchers have developed automatic techniques to capture co-occurring

word pairs [59, 62], but co-occurrences do not capture any information about the

nature of the relationship between words beyond that the words occur together in the

same context. However, others have leveraged the POS tagging to analyze identifiers

and build models of the usage of words in identifiers. Shepherd et al. showed that

representing method identifiers as verb and direct object pairs can improve search

by focusing on the actions and what they action upon [97]. Hill [41] extended this

approach to the Software Word Usage Model (SWUM) in which a set of identifier

grammar rules for Java identifiers were developed. SWUM has been used for several

software tools [41, 43, 70, 103, 105].

One significant use of SWUM was for comment generation. Sridhara et al.

developed a technique to automatically generate summary comments for Java methods

based on structural and linguistic clues captured by SWUM [102]. The premise behind

the technique is that a method’s key actions that would be content for a summary

can be represented by selecting important single statements to represent key actions

of the method and used as a basis for a natural language description of the method’s

functionality. They developed heuristics to choose individual isolated statements and

generate a natural language phrase for a sequence of these selected statements to serve

as the method’s summary comment. The major drawback of this approach is that

individual statements often do not represent the main action of the method. To begin

to address this problem, they developed a technique to generate natural language

descriptions for high level actions [105]. They manually identified a set of key patterns

of code sequences and developed a template-based approach to recognize the occurrence

of these patterns in code and then generate a phrase description of the main action

based on knowing the high level action that those patterns implement. This work on

high level action identification and description motivated this dissertation work. Study

of the template-based approach indicated that it identifies high level actions for a small

fraction of code [120]. The goal of this dissertation is to develop a scalable approach
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that can identify any action units without manually defining the templates.

Complementary to this work, the same authors also presented a technique to

generate comments for parameters and integrated those descriptions with method sum-

maries [106]. Moreno et al. developed an approach that generates summaries for Java

classes [72].

Wong et al. mined question and answer sites for automatic comment gener-

ation [123]. They first extracted code-description mappings from the question title

and text, and then used code clone detection to find source code snippets that are

almost identical to the code of the code-description mappings. Their technique does

not leverage the higher level abstraction of source code, which leads to only generating

comments for a small number of code fragments.

There has also been research into extracting topic words or verb phrases from

source code [43, 68, 77] to identify code fragments that are related to a given action or

topic. Other research clusters program elements that share similar phrases [53]. These

approaches rely solely on the linguistic information to determine the topic of the code

segment, which we found is not adequate for describing many action units where the

action is not expressed as a word within the source code explicitly.

2.3 Formatting for Program Understanding

The readability of a program is related to its maintainability, and is thus a

key factor in overall software quality. Readability is so significant that Elshoff and

Marcotty proposed adding a development phase in which the program is made more

readable, because many commercial programs were much more difficult to read than

necessary [25].

Readability metrics help to identify potential areas for improvement to code

readability. Through human ratings of readability, Buse et al. [17] developed and

automated the measurement for a metric for judging source code snippet readability

based on local features that can be extracted automatically from programs. More

recently, Daryl et al. [86] formulated a simpler lightweight model of software readability
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based on size and code entropy, which improved upon Buse’s approach. Daryl et al.

observed that indentation correlated to block structure has a modest beneficial effect

on readability. Other earlier works measured program characteristics with different

definitions of readability [3, 12].

In addition to the code’s size and complexity, the readability of source code

can be affected by the identifier names, comments, and overall appearance [19]. This

observation led to the invention of prettyprinters [50], which automatically reformat a

source code to improve the appearance or fit a specific coding style. It is capable of

pretty-printing just a part of a program, corresponding to an editor view. The running

time of the pretty-printer is independent of the full length of the program, and only

the size of the editor’s view matters. The algorithm gives the same result as if the en-

tire program was pretty-printed, avoiding reformatting artifacts as the user scrolls the

editor view. Bagge and Hasu [9] developed a pipeline approach to format source code.

Their approach has a pipeline of connected components to format code, where the var-

ious concerns of producing pretty code are separated into different processors; one for

inserting horizontal space, one for breaking lines, and one for adding colors. As sepa-

rate tools or within IDEs, these prettyprinters perform textual transformations such as

placing certain kinds of statements on separate lines, indenting and left-justifying cer-

tain lines, inserting blank lines before specific syntactic units such as certain keywords,

or removing extra blank space. These transformations are purely textual, not semantic,

and typically use the keywords and maybe the syntax to identify and perform trans-

formations. While code readability involves the syntactic appearance of code, poor

readability is perceived as a barrier to program understanding, which focuses on the

semantics [86].

Organizations employ coding standards to maintain uniformity across code writ-

ten by different developers, with the goal of easing program understanding for new-

comers to a code [47, 55, 108, 109, 134]. Some guidelines [36, 108, 134] have clearly

specified the number of blank lines that should be used to separate methods in a class

and class fields. They suggest that blank lines should be used to separate different
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logical sections within methods. However, a logical section is left ill-defined as it is

difficult to define precisely. Identifying the high level actions or steps in a method and

separating the logical sections by blank lines is complementary to these efforts.

2.4 Shortcomings and Remaining Issues

Information at the level between the individual statement and the whole method

is not leveraged by current source code analyses. One possible reason is that the

information is not easily available beyond any internal comments describing the code

blocks implementing them. Instead, current source code analyses driving software

maintenance tools today treat methods as either a single unit or a set of individual

statements or words. Our hypothesis is that the abstraction at the level between

individual statements and methods could potentially provide a new perspective for

software analyses. For example, with potentially more appropriate words associated

with action units, concern location tools would have more descriptive words to use;

method summary generators could integrate the high level steps to create a summary

in a more descriptive and succinct manner; and segmenting the code to a sequence of

high level steps could greatly improve source code readability.
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Chapter 3

THE NOTION OF ACTION UNITS

This chapter presents the notion of action units. Motivating examples are shown

first followed by the definition of action units and the major types. At the end of this

chapter, similar notions are compared with action units.

3.1 Motivating Examples

The Java method in Listing 3.2 illustrates how code blocks can represent high

level actions. The method is extracted from an open source project - comet [21]. The

developer has partitioned the method by blank lines and internal comments. The main

action is building a menu, which basically contains 3 steps. The first step creates and

sets up a queue menu item. The second step creates and sets up a stop menu item.

The last step builds the menu. These three steps are implemented as sequences of

statements, each requiring more than one statement to implement the action. The

first block (Lines 3-12) initializes a MenuItem object and then uses it as a parameter

and invokes methods to set up the object. Similarly, the second block (Lines 15-24)

also initializes and sets up another MenuItem. The third block (Lines 26-27) creates

another MenuItem and builds the menu. Neither the method name, buildMenu, nor

any individual statement capture the essence of the three high level steps.

13



1 public void buildMenu(Menu menu) {
2
3 // Queue
4 final MenuItem itemQueue = new MenuItem(menu , SWT.PUSH);
5 Messages.setLanguageText(itemQueue , "MyTorrentsView.menu.

queue ");
6 Utils.setMenuItemImage(itemQueue , "start ");
7 itemQueue.addListener(SWT.Selection , new Listener () {
8 public void handleEvent(Event e) {
9 ManagerUtils.queue(download , splash);

10 }
11 });
12 itemQueue.setEnabled(ManagerUtils.isStartable(download));
13
14
15 // Stop
16 final MenuItem itemStop = new MenuItem(menu , SWT.PUSH);
17 Messages.setLanguageText(itemStop , "MyTorrentsView.menu.

stop");
18 Utils.setMenuItemImage(itemStop , "stop");
19 itemStop.addListener(SWT.Selection , new Listener () {
20 public void handleEvent(Event e) {
21 ManagerUtils.stop(download , splash);
22 }
23 });
24 itemStop.setEnabled(ManagerUtils.isStopable(download));
25
26 new MenuItem(menu , SWT.SEPARATOR);
27 super.buildMenu(menu);
28}

Listing 3.1: Motivating Example 1

Consider another example in Listing 3.2 which is from the open source project

of orbisgis [79]. The method is partitioned by blank lines and internal comments.

As the method name indicates, this method refreshes xml, which contains 3 steps.

The first step creates a source and adds the source to sources. The second step

adds dependencies and the last step adds dependencies to other sources. These

three steps are implemented as sequences of statements, each requiring more than one

statement to implement the action.
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1 private void refreshXml () throws DriverException {
2 Source source = new Source ();
3 source.setName(name);
4 source.setDefinition(def.getDefinition ());
5 sources.getSource ().add(source);
6
7 // Add this dependencies
8 List <String > depNames = def.getSourceDependencies ();
9 List <String > referencedSources = source.getReferencedSource

();
10 referencedSources.addAll(depNames);
11
12 // Add dependencies to other sources
13 List <Source > srcList = sources.getSource ();
14 for (Source src : srcList) {
15 if (depNames.contains(src.getName ())) {
16 src.getReferencingSource ().add(name);
17 }
18 }
19}

Listing 3.2: Motivating Example 2

As shown in the two examples above, a method is designed to implement a major

action such as “build menu” and “refresh xml”, which are indicated by their method

names. To achieve the major action of the method, the statements inside the method

implement several high level steps or sub-actions of the major action. Those steps or

sub-actions are implemented by sequences of statements. Each sequence implements

a higher level action than any individual statement and they together achieve the

method’s major action.

3.2 Defining High-level Action Units

We define an action unit as a code block that consists of a sequence of consec-

utive statements that logically implement an algorithmic step within a method body.

A method body normally consists of a sequence of statements and the major action

of the method consists of several steps. Therefore, the sub-sequences of statements

correspond to these steps.

Consider the code fragment in Listing 3.3. The code block checks if the projects

collection contains a project whose identifier is equal to the given projectKey. This code

block contains a declaration of a boolean variable and a loop iterating over a collection.

Inside the loop, there are conditional statements, variable assignment statements and
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a break statement. None of those individual statements can represent the high level

action. Instead, they together implement the high level action.

Listing 3.3: Action unit as loop.

1 boolean found=false;
2 for (Project project : projects) {
3 if (project.getIdentifier ().equals(projectKey)) {
4 found=true;
5 break;
6 }
7 }

In a more vivid analogy, the action unit to a method is like a paragraph to an

essay. In an essay, a paragraph is a series of sentences that are organized and coherent,

and are all related to a single topic. Almost every piece of writing that is longer than a

few sentences is organized into paragraphs. This is because paragraphs show a reader

where the subdivisions of an essay begin and end, and thus help the reader see the

organization of the essay and grasp its main points.

Similar to an essay, a method contains a series of lines. Developers write code

line by line and organize the related lines together to implement a small step or a

sub-action of the method. The key idea behind action units is action units are the

steps or sub-actions of the method. An action unit is to a method what a paragraph

is to an essay.

3.3 Types of Action Units

We performed a preliminary study in which we analyzed a large number of Java

methods and learned where developers think each step or sub-action is. The clues we

used include the blank lines and the internal comments left by the developers. Blank

lines and internal comments naturally reflect how developers partition a method into

smaller sub-actions of the method. This section describes the major kinds of action

units based on the study.
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3.3.1 Object-related

We define object-related action units as action units that consist of only non-

structured consecutive statements associated with each other by an object(s). Non-

structured statements are variable declarations/assignments or method invocation state-

ments. For example, the code fragment in Listing 3.4 is an object-related action unit.

The five statements are associated with each other through the object mainFunc and

implement a high level action add the main function to the file.

Listing 3.4: Action unit as a sequence.

1 // Add the main function to the file
2 CFunction mainFunc = CFunction.factory.create ("main", "int", null)

;
3 mainFunc.appendCode(className + " obj;");
4 mainFunc.appendCode ("cout << obj.print () << \"\\n\";");
5 mainFunc.appendCode (" return 0;");
6 file.add(mainFunc);

In general, an object-related action unit contains 3 parts as shown in Figure 3.1.

Part (1) is a declaration of or an assignment to an object reference o. Part (2) is one

or more statements where each statement is a method call invoked on the object o.

Part (3) is a statement that uses the object o. Specifically, use means o appears on

the right-hand side of “=” if there is a declaration/assignment. If there is no declara-

tion/assignment, then o appears as an argument of a method call and the method call

is not invoked on o.

Type o = ...; OR o=... 
o.method_1(); 
... 
o.method_n(); 
...o...; 

(1)

(2)

(3)

Figure 3.1: General format of object-related action units.

Each of the three parts of the action unit is optional. For example, Listing 3.5

and 3.6 are two examples of object-related action units. Listing 3.5 does not contain
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Part(3), and Listing 3.6 does not contain Part (1) and (3).

Listing 3.5: Object-related action unit without Part (3).

1 Iterator [] classes = new Iterator [4];
2 classes [0] = sNode.eIterator (" class");
3 classes [1] = sNode.eIterator (" subclass ");
4 classes [2] = sNode.eIterator (" joined ");
5 classes [3] = sNode.eIterator (" union");

Listing 3.6: Object-related action unit without Part (1) and (3).

1 bs.setBrowseIndex(bi);
2 bs.setOrder(SortOption.DESCENDING);
3 bs.setResultsPerPage(Integer.parseInt(count));
4 bs.setBrowseContainer(dso);

3.3.2 Loop

In programming, a loop contains a sequence of instructions that is continually

repeated until a certain condition is reached. Typically, the repeated action is a process,

such as getting an item of data and changing it, and then some condition is checked

such as whether a counter has reached a prescribed number. We refer the immediately

preceding lines that initialize or define a variable that is used in the condition controlling

the loop as preamble. The loop statement with its preamble together implement a high

level action and we call those action units loop action units.

Consider the for loop in Listing 3.7. The high level action of this code fragment

is deleting all the bad files that exist in the bad file array. The loop iterates over the

array, uses each element to create a file and deletes the file if the file exists. The

preamble badFiles and the loop together implement the high level action.
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Listing 3.7: Action unit as a loop - file example.

1 String [] badFiles ={ CaptureActivity.OSD_FILENAME + ".gz.download",
CaptureActivity.OSD_FILENAME + ".gz",CaptureActivity.
OSD_FILENAME };

2 for (String filename : badFiles) {
3 File file=new File(tessdataDir ,filename);
4 if (file.exists ()) {
5 file.delete ();
6 }
7 }

Consider another example in Listing 3.8. This while loop is a common imple-

mentation of a binary search. The loop finds the position of a target value within a

sorted collection. It compares the target value to the middle element of the array; if

they are unequal, the half in which the target cannot lie is eliminated and the search

continues on the remaining half until the loop breaks. The statements of the loop

together implement a binary search. Similarly, the loop in Listing 3.9 implements a

bubble sort.

Listing 3.8: Action unit as a loop - search example

1 while(i<j){
2 int mid = (i+j)/2;
3 if(list.get(mid) < num){
4 i=mid+1;
5 }else{
6 j=mid;
7 }
8 }

Listing 3.9: Action unit as a loop - sort example

1 // sort : best first in resulting list
2 for (int i=0; i < (numPhrases - 1); i++) {
3 for (int j=i + 1; j < numPhrases; j++) {
4 if (scores[i] < scores[j]) {
5 float x=scores[i];
6 scores[i]= scores[j];
7 scores[j]=x;
8 }
9 }

10 }
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3.3.3 Conditional

Conditional statements perform different computations, or actions, depending

on whether a programmer-specified boolean condition evaluates to true or false. A

sequence of statements composing a conditional statement often together implement

a higher level action. In Listing 3.10, width is given a value initially and then based

on comparison with a minimum frame width its value is updated accordingly. The

statements composing the whole conditional body together set the value for width.

Similarly, height’s value is set in the next conditional statement. Therefore, we de-

fine conditional action unit as condition statements with the immediately preceding

lines that initialize or define a variable that is used in the condition controlling the

conditional statement. We call those immediately preceding lines as preamble.

Listing 3.10: Action unit as a conditional.

1 int width = screenResolution.x * 3/5;
2 if (width < MIN_FRAME_WIDTH) {
3 width = MIN_FRAME_WIDTH;
4 } else if (width > MAX_FRAME_WIDTH) {
5 width = MAX_FRAME_WIDTH;
6 }
7
8 int height = screenResolution.y * 1/5;
9 if (height < MIN_FRAME_HEIGHT) {

10 height = MIN_FRAME_HEIGHT;
11 } else if (height > MAX_FRAME_HEIGHT) {
12 height = MAX_FRAME_HEIGHT;
13 }

3.3.4 Exception Handling

In Java, an exception (or exceptional event) is a problem that arises during

the execution of a program. When an exception occurs, the normal flow of the pro-

gram is disrupted and the program terminates abnormally, which is not recommended,

therefore exceptions need to be handled by the program. An exception can occur for

many different reasons such as invalid data, non-exist files, and network disconnection.

To handle the code that may cause an exception, Java introduces the try, catch and

finally mechanisms. The try block contains a sequence of statements that implement
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a high-level action involved with a potential exception, and the catch and finally

blocks catch and process the potential exception, respectively. We call the try, catch

and finally block exception handling action units.

Consider the code in Listing 3.11. The first line initializes file which is used

in the try block. The try block then reads all bytes from the file, followed by the

catch block. The code fragments together (Line 1-8) implement the higher level action

“read all bytes from the given file” with the potential exceptions handled.

Listing 3.11: Action unit as exception handling.

1 File f = new File(filename);
2 try {
3 byte[] bytes = Files.readAllBytes(f.toPath ());
4 } catch (FileNotFoundException e) {
5 e.printStackTrace ();
6 } catch (IOException e) {
7 e.printStackTrace ();
8 }

3.4 Summary

In summary, there are two major categories of action units. One type is object-

related and the other type is related to structured statements. We refer to the set of

structured statements {Switch, While, If, For, Try, Do} as SWIFT statements. An

extended-SWIFT action unit (E-SWIFT) includes a SWIFT nest extended with the

preamble statements.

In addition to these AUs, there are other types of sequences of code that are

like action units in that they serve a particular purpose. One such example would

be a sequence of statements, often found in the beginning of methods, whose primary

purpose is to declare and/or initialize variables. A somewhat similar situation arises

with statements found at the end of methods which release resources (such as close a

database connection or clear up a collection) after the main task of the method has

been completed. In addition we can consider single statements found in methods that

stand by themselves. That is, they appear not to be connected to the action unit
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immediately before and after them. Yet, since they will be performing an action, we

could consider them as individual action units. Several return statements appear to

be of this kind. We do not focus on these types of code sequences, as the detection of

the actions they perform, while crucial, does not appear to be very interesting.

3.5 Syntactically-similar Statement Sequences

In addition to object-related and E-SWIFT action units, we also found that

statements with similar syntax are frequently grouped by blank lines. We name such

sequences Syntactically-Similar segments (SynS). One example is that a method often

starts with a set of declarations or initializations of some variables. Those variables

are used in the following main logic of the method that performs the key action of

the method. When necessary, those declarations or initialization can also be placed

in the middle of the method code. These declarations or initializations are a pre-step

of other steps in the method, and they prepare the variables required in the later

steps or sub-actions. Listing 3.12 shows a method starting with a sequence of decla-

ration statements. dataLength and pageLength form the preamble for this method.

Similarly, there are a lot of method calls grouped together without having an object

associated with each other. The SynS sequences not fall into our definition of action

unit, Chapter 6 considers SynS segments when dealing with blank lines.
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Listing 3.12: Method with a preamble.

1 public void decode(byte[] header , ByteBuffer buffer) throws
IOException{

2 int dataLength;
3 int pageLength;
4
5 this.parametersSavable = (( header [0] >>> 7) & 0x01) == 1;
6 this.subPageFormat = (( header [0] >>> 6) & 0x01) == 1;
7 this.pageCode = (byte) (header [0] & 0x3F);
8
9 if (this.subPageFormat){

10 this.subPageCode = header [1];
11 pageLength = ((int) header [2] << 8) | header [3];
12 dataLength = pageLength - 2;
13 }else{
14 this.subPageCode = 0;
15 pageLength = header [1];
16 dataLength = pageLength - 2;
17 }
18
19 DataInputStream dataIn = new DataInputStream(new

ByteBufferInputStream(buffer));
20 decodeModeParameters(dataLength , dataIn);
21}

3.6 Comparison to Similar Notions

While action units have not been previously defined, previous reseaerchers have

defined similar notions in software engineering.

There is early work on “beacons” [13, 23], where a beacon can be a well-known

coding pattern (e.g., 3 lines for swapping array elements), meaningful identifiers, pro-

gram structure, or comment statements, that signal some specific functionality to help

the code reader. Beacons represent names given to a visually recognizable pattern,

such as swap. There is no precise definition and there are no techniques presented to

automatically recognize them.

Sridhara et al. [105] developed a technique to automatically identify groupings of

statements that collectively implement high level actions and then synthesize a succinct

natural language description to express each high-level abstraction. A high-level action

is defined to be a high-level abstract algorithmic step of a method. Their approach

finds blocks that correspond to a manually predefined set of templates that represent
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high-level actions. Their goal was to identify these high level actions to improve their

method summary generator. Our notion of action units extends the idea of high-level

action and addresses a wider range of high-level actions.

An action unit is essentially a code fragment. Yoshida et al. [128] proposed a

cohesion metric approach to dividing source code into functional segments in the form of

code fragments to improve maintainability. The code fragments that have a cohesion

metric above a certain threshold are detected and presented as functionalities. The

code fragments identified as functionalities are not necessarily consecutive sequences

of statements and do not represent high level actions of the method. For example, all

code fragments that are related to “reading protein data” in a method are recognized

as one functionality.

Allamanis and Sutton presented an approach to mine code idioms from source

code [7]. A code idiom is a code fragment that recurs in many projects. They present a

wide range of evidence that the resulting idioms are semantically meaningful, demon-

strating that they do indeed recur across software projects and that they occur more

frequently in illustrative code examples collected from a Q&A site. In contrast to code

idioms, action units are more specific to a local method and they do not necessarily

occur in many projects.

Some compiler-based tools work at the basic block level for simplified, faster

analysis [4]. Gil and Maman [32] presented a catalog of 27 micro patterns. Micro

patterns are similar to design patterns, but lower level abstractions. Micro patterns

classify the class-level abstraction into eight categories, including idioms for a particular

and intentionally restricted use of inheritance, immutability, wrapping and data man-

agement classes. Batarseh [10] proposed an approach to identify Java nano patterns,

which are sets of reusable method invocations that are frequently used in Java software

development. The nano patterns do not represent high level actions within a method.

A nano pattern is recognized based on predefined object nature (e.g., database or file)

and method functionality (e.g., insert or update). Another related notion to action

units is a feature or concern, which is associated with the user-visible functionality of
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the system [85]. Features are bigger than action units and typically scattered across

methods.

Margulieux et al. have shown that subgoal labeled worked examples improve

problem solving performance in programming [66]. Subgoals are the building blocks

of procedural problem solving. Each subgoal contains one or more steps. Subgoal

labels are believed to be effective for learning because they visually group the steps of

worked examples into subgoals and meaningfully label those groups. To promote deeper

processing of worked examples, worked examples are formatted to encourage subgoal

learning by emphasizing the subgoals of problem solving procedures to highlight the

structural components of the problem solving process [20]. Action units emphasize the

algorithmic steps of methods and can potentially be used to label the different parts

of a method as subgoal labels.

In summary, several researchers have studied or invented ways to capture the

parts of a method into features, functionalities, micro-patterns. Action units are unique

in that the goal is to automatically identify the algorithmic steps of a method where

each step is some consecutive sequence of statements.
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Chapter 4

LOOP ACTION UNITS

This chapter presents our technique to automatically identify and describe ac-

tion units implemented by loops [120]. We identified a set of features that together

can determine the action of a loop and developed an action identification model by

learning from a large corpus of open source projects. Our system takes loop source

code as input, extracts its features and identifies the high-level action using the action

identification model.

4.1 Problem and Motivation

To identify high-level actions from method code, Sridhara et al. developed a

template-based technique by manually examining code [105]. While their technique

identifies code fragments that implement high-level algorithmic steps, the technique is

limited in the kinds of action units that it will identify, mostly based on a manually

established set of templates for known multi-statement actions such as a loop construct

for compute max. Their evaluation study indicated that only 24% of switch blocks, 40%

of if-else blocks, and 15% of iterator loops implemented one of the templates.

Our goal was to develop an approach to automatically identify high-level actions

without manually defining templates. In this chapter, we focus on identifying action

units that are implemented by loop structures. Loops are a major part of source

code, and many algorithmic steps (e.g., count, compare pairs of elements, find the

maximum) are implemented as loop structures. Loop structures lack documentation

in general. Our study of 14,317 projects revealed that internal comments on loops

occur less than 20% of the time. Automatically identifying loop action units could

alleviate this situation.
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We focus on loops that contain exactly one conditional statement; we call these

structures a loop-if structure. Although this may seem very specific, we found that 26%

of loops in a Java project are loop-if on average. From 14,317 open source projects

extracted from GitHub [6], we counted 674,800 code fragments with this structure,

indicating that each project has on average 48 loop-if structures.

The main insight behind an automated technique is as follows. A loop can be

represented by a set or sequence of feature values that are stated in terms of structural

and data flow elements and linguistic characteristics of the loop. We developed a model

called the action identification model that can associate actions with loops based on

a vector of new feature values. Given the action identification model, the action for

any loop-if in a project can be determined by the process illustrated in Figure 4.1.

The source code representation of the loop-if is analyzed to extract its representative

feature vector. The action identification model is then referenced to determine the

high-level action associated with the loop’s feature vector.

Extract Feature Vector

Loop Source Code

Identify Action

High Level Action for Loop

Action Identification Model

Figure 4.1: Action Identification Process

4.2 Characterizing Loops as Feature Vectors

In this section, we describe the features we will extract from a loop and their

potential values. We begin with terminology that we use throughout this chapter.
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4.2.1 Targeted Loops and Terminology

Our target is a Java loop that uses any one of the loop formats in Java: for,

enhanced-for, while or do-while. We require that these loops have a single if-statement

that is also the last lexical statement within the loop body. We call such a loop a loop-

if. Such restrictions enable us to focus on identification of a single action. Currently, we

also do not consider any nested loops. We collected all loops from 14,317 open source

projects [6] and obtained almost 1.3 million loops. An automatic analysis of these

loops revealed that 26% of them fit our loop-if criteria. In the rest of this chapter, we

use loop and loop-if interchangeably to describe features and the model development

process.

We analyzed a large number of loop-ifs and examined the available features that

can possibly determine the action of a loop, such as structure, data flow, and names.

We use the following terminology to describe the features that are used to determine

the loop actions.

• If condition. The if condition refers to the conditional expression in the if

statement of the loop-ifs.

• Loop exit statement. Loop exit statements transfer control to another point

in the code by exiting when control reaches the loop exit statement, such as a

break or return. Since they affect the number of iterations that are executed,

we are interested in the existence of the branching statements ”break”, ”return”,

and “throw” in characterizing loop-ifs.

• Ending statement of if block. Since the last statement inside a loop-if is an

if, the last executed statement of the loop is the last statement of either the then

or else block of the if statement. We are interested in the last statement on the

branch that is most frequently executed, thus we approximate this as the then

block unless the if condition is the null case (such as null checking, empty check-

ing, or other validity checking), in which case, we will identify the last statement
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of the else block as the ending statement of the if block. Sometimes the last ex-

ecuted statement of the loop is a branching statement (break, return or throw).

In this case, the ending statement is designated to be the statement immediately

preceding the branching statement. For the remainder of the chapter, we use

ending statement to refer to the ending statement of the if block.

• Loop control variable. The loop condition determines the maximum number

of iterations that will be executed. In while, do, and for loops, the loop control

variable is the variable defined in the loop condition. For enhanced-for loops, the

loop control variable is each element in a given collection.

• Result variable. The intent of the result variable is to capture the resulting

value of the loop’s action (if one exists). We look for the result variable in the

ending statement. If the ending statement is an assignment, the result vari-

able is the left-hand-side variable. If the ending statement is an object method

invocation, it is the object that invokes the method.

Figure 4.2 shows an example loop annotated to demonstrate the terminologies

used throughout the chapter.

for (int i=0; i < cands.size(); i++) { 
 Candidate cand=cands.get(i); 

if (cand.label.equals(gold.toString())) {  
goldCand=cand; 

   break; 
} 

}

Loop Control Variable

Result Variable

Ending Statement of If Block

If Condition

Loop Exit Statement

Figure 4.2: Example of terminology
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4.2.2 Features

We now describe the features that we extract from a loop-if structure. These

features are extracted from the ending statement or from the if condition.

4.2.2.1 Features Related to Ending Statement

Sridhara et al.[102] observed that methods often perform a set of actions to

accomplish a final action, which is the main purpose of the method. Similarly, in

our analysis, the ending statement also plays an important role toward indicating the

action of a loop. We have identified five loop features that are related to the ending

statement.

F1: Type of ending statement. The syntactic type of ending statement can

be a strong indicator of what the overall loop does. We distinguish several types of

ending statements for this purpose: assignment, increment, decrement, method invoca-

tion, or object method invocation. Further, we separately distinguish assignments that

are boolean assignments. The type of ending statement is important in the perspec-

tive of determining actions. For example, an increment ending statement is a strong

indicator of counting.

1 // Count the number of selected methods
2 int c=0;
3 for (int i=0; i < controls.length; i++) {
4 if (controls[i]. getChecked ()) {
5 c++;
6 }
7 }

F2: Method name of ending statement method call. When the ending

statement is a method invocation, the verbs comprising the method name often reflect

the loop’s actions. Two loops are not likely to do the same high-level action if one has

add method and the other has remove method at the end.

We process all loop-ifs to extract the method names in ending method calls. We

use Java method naming conventions to extract verbs by splitting with camel case and

extracting the first word. Although many verbs are found in method names of ending
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statements from our data set, Table 4.1 only shows verbs eventually used in our action

identification model.

F3: Elements in collection get updated.

Consider the following example:

1 for (VirtualDiskDescType vDiskDesc : disks) {
2 if (diskFileId.equalsIgnoreCase(vDiskDesc.getFileRef ())) {
3 vDiskDesc.setCapacity(String.valueOf(bundleFileSize));
4 }
5 }

The set method is invoked on qualified elements in the collection disks, which is the

loop control variable of the loop. Since the result variable is the loop control variable,

the method is invoked on every element that satisfies the criteria. But if the result

variable is not the loop control variable, that is not the case. So this feature has

the potential to differentiate between different actions. We set F3=1, when the result

variable is the loop control variable; otherwise, F3=0. For example, the following loop

has F3=0, because the loop control variable (paramName) is not the result variable

(res).

1 Enumeration <String > paramNames=req.getParameterNames ();
2 while (paramNames.hasMoreElements ()) {
3 String paramName =( String)paramNames.nextElement ();
4 if (! paramName.equals(SCRIPT_URL)) {
5 res.setRenderParameter(paramName ,req.getParameter(paramName));
6 }}

F4: Usage of loop control variable in ending statement. Normally,

we expect the loop control variable to appear in the ending statement, as the loop

goes through a collection and uses elements in some way. We have already considered

whether the loop control variable is the result variable or not (F3). Here we consider

whether it is directly used or some variable derived from it is used in the ending

statement. We also consider if it never appears in the ending statement.

Consider the following 2 examples. In the first loop, the loop control variable

is used in the ending statement, and the loop filters out some elements and adds the

qualified elements to another collection. In the second loop, the loop control variable

is on the def-use chain of a variable used in the ending statement.
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1 for (String button : oldList) {
2 if (newList.contains(button)) {
3 mergedList.add(button);
4 }
5 }

1 for (Order order : orderList) {
2 if (order.getPrice () > price) {
3 String name = order.getName ();
4 newList.add(name);
5 }
6 }

We set F4=0, when the loop control variable never appears in the ending state-

ment; F4=1, when the loop control variable is directly used in the ending statement;

F4=2, when the loop control variable is on a def-use chain to a use in the ending

statement.

F5: Type of loop exit statement. It is important to know whether there is

a control flow disruption (i.e., all elements in the collection are considered or not). For

example, in a find action, there has to be a disruption of the loop. In addition, the

type of disruption might be related to different actions and we want to know the type.

So values for F5 are none, break, return, return boolean, return object, and throw.

Intuitively, a return of boolean indicates the loop checks if there is any element in the

collection that satisfied the condition, while a return of an object indicates finding the

first qualified element in the collection.

The first example below shows that when the loop exit statement is a break

and the second one shows that when the loop exit statement is a throw. The throw

statement ensures that the desired condition is always satisfied; otherwise, an exception

will be thrown.

1 for (Field field : type.getDeclaredFields ()) {
2 if (field.isAnnotationPresent(LODId.class)) {
3 idField=field;
4 break;
5 }
6 }

1 for (BaseField field : tableToRemove.getFields ()) {
2 if (!( field.equals(tableToRemove.getPrimaryKey ()) || field.

getHidden ())) {
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3 throw new CantDoThatException (" Please remove all fields before
removing the table ");

4 }
5 }

4.2.2.2 Features Related to the If Condition

We consider three features that are related to the if condition. We examine

whether multiple collections are compared in the if condition, the role of result variable

in the If condition, and the type of if condition expression.

F6: Multiple collections in if condition. This feature is a boolean that

indicates whether multiple collections are compared in the if condition. We believe

loops that manipulate multiple collections are likely to accomplish very different actions

than those that manipulate only one.

Consider the following two examples:

1 // compare the MD5 hash array .
2 for (int i=0; i < 16; i++) {
3 if (correctResponse[i] != actualResponse[i]) {
4 return false;
5 }
6 }

1 // Check if the user already exists
2 for (a=0; a < userCounter; a++) {
3 if (ident[a] == tident) return false;
4 }

In the first example, each pair of elements from the two arrays are compared. In

the second example, each element is compared with a fixed value that does not change

within the loop, the action is checking if the array contains a certain value.

We set F6=1 if there are two synchronized collections in the if condition; oth-

erwise, F6=0.

F7: Result variable used in if condition. Within the if statement, the result

variable will be updated. So determining whether the result variable is part of the if

condition is equivalent to determining whether the current value of the result variable

needs updating. For example, in finding the maximum or minimum, the current value

determines whether it needs to be updated.
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Consider the following two examples.

1 for (Iterator i=m_specialPages.entrySet ().iterator (); i.hasNext (); )
{

2 Map.Entry entry=(Map.Entry)i.next();
3 Command specialCommand =( Command)entry.getValue ();
4 if (specialCommand.getJSP ().equals(jsp)) {
5 return specialCommand;
6 }}

1 float z=Float.MAX_VALUE;
2 for (int i=2; i < vertices.length; i+=3) {
3 if (vertices[i] < z) {
4 z=vertices[i];
5 }}

In the second loop, the value of the result variable z is updated each time when

the condition is satisfied, and the new value is then used in the if condition during

the next iteration of the loop. The result variable in the first loop is not used in if

condition.

We set F7=1, if the result variable appears in the if condition; Otherwise, we

set F7=0.

F8: Type of if condition. This feature indicates the type of if condition. The

if condition can be a numeric value comparison (e.g., ”<” and ”>”), or a user-defined

method that returns a boolean value. A numeric value comparison combined with the

feature that the result variable is used in the if condition is a strong indicator of finding

the maximum/minimum element in a collection. We set F8=1, when the if condition

is numeric value comparison; F8=2, when it is not.

4.2.2.3 Other Considered Features

We started with the loop control variable, result variable, if condition, and end-

ing statement, and considered their various usages as different features. Many features

turned out to be not helpful in determining high level actions. This determination is

based on the empirical method we used for developing the action identification model.

We just described those that are useful; however, many others (such as the type of loop,

whether the if statement contains any else blocks, whether the loop control variable
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appears in the if condition, and the number of statements in the if block) were omitted.

Table 4.1 details the possible values for each feature.

Table 4.1: Semantics of Feature Values

Label Feature Possible Values and Their Semantics

F1 Type of ending statement
0: none 1: assignment 2:increment 3:decrement 4:method invocation
5:object method invocation 6: boolean assignment

F2 Method name of ending statement method call 0:none 1:add 2:addX 3:put 4:setX 5:remove

F3 Elements in collection get updated 0: false 1: true

F4 Usage of loop control variable in ending statement 0: not used 1:directly used 2:used indirectly through data flow

F5 Type of loop exit statement 0:none 1:break 2:return 3:return boolean 4:return object 5:throw

F6 Multiple collections in if condition 0: false 1: true

F7 Result variable used in if condition 0: false 1: true

F8 Type of if condition 1: >/</>=/<= 2: others

4.2.3 From Loop to Feature Vector: An Example

A feature vector for a given loop-if is constructed by extracting the features

F1 through F8 from the loop’s source code representation using simple static analysis.

The feature vector for the example code fragment in Figure 4.2 is:

(F1:1, F2:0, F3:0, F4:2, F5:1, F6:0, F7:0, F8:2)

F1 indicates that the ending statement is an assignment. F2 indicates there is no

method name from an ending method call. F3 indicates that not every element in the

collection is updated. F4 indicates that the loop control variable is on the def-use chain

to a use in the ending statement. F5 indicates that the type of loop exit statement is a

break. F6 indicates that there is only one collection in if condition. F7 indicates that

the result variable is not used in the if condition. F8 indicates that the type of the if

condition is not numeric comparison.

4.3 Developing an Action Identification Model

Our goal is to identify the action of a loop from its feature vector representation.

More than one feature vector can correspond to the same action. Some of the features

may be relevant to a specific action, while others may not be relevant to the same action.

Therefore, our goal is to determine the combinations of features that are relevant to

a specific high-level action and to find the groups of vectors that perform the same

actions.
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To characterize the high-level action performed by a specific feature vector,

we could examine several loops corresponding to that loop feature vector that have

comments associated with them. If these comments describe what the loop code is

accomplishing, we can analyze the action descriptions in these comments, and associate

them with the feature vector.

Thus, our first task was to automatically find loops for each feature vector

that have descriptive comments associated with them. We call these comment-loop

associations. We found that the verbs in the comments are not sufficient to characterize

the actions. Verb phrases with the same verb can describe different actions based on

their arguments. Furthermore, verb phrases with different verbs can describe the same

action. For example, an action of ”finding” is often described by verbs ”search”,

”check”, etc. While verbs alone from these descriptive comments are not enough, our

further analysis revealed that the distribution of verbs can be a good indicator of the

action of a specific loop feature vector.

Our hypothesis is that while different verbs may be used in comments to describe

the action of loops with the same loop feature vector, the verbs associated with a loop

feature vector are related to each other and can not be any arbitrary subset (of verbs).

This hypothesis yields a new opportunity. The distribution of verbs associated with

individual loop feature vectors can be the basis of clustering loop feature vectors that

perform similar actions. Different sets of verbs associated with a pair of loop fea-

ture vectors clearly indicate that the actions performed by the pair are very different.

For example, some vectors have associated comment verbs ”check”, ”find”, ”search”,

”look”, ”try”, ”return”, ”get”, ”see”, while other vectors have verbs ”remove”, ”filter”,

”clean”, ”check”, ”clear”, ”prune”, ”delete”. Clearly, they perform different actions.

However, two loop feature vectors may just correspond to two different ways of pro-

gramming the same action, and in this case, we should expect a similar distribution of

verbs associated with them.

Thus, we cluster loop feature vectors by the distribution of verbs. Indeed, for

our data set, we found that the top 100 most frequently occurring loop feature vectors
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cluster into just 12 groups on this basis. However, it is desirable to use a phrase to

capture the action rather than using the associated set of verbs. While every step

thus far is completely automated, choosing the representative verb phrase to describe

the 12 groups was done manually using the procedure described in Section 4.3.5. To

summarize, our approach to developing the action identification model follows the

process illustrated in Figure 4.3.

Extract Verbs from Comments

Open Source Project Repository

Extract Comment-loop Associations

Action Identification Model

Select Representative Action for Each Cluster

Cluster Vectors Based on Verb Distribution

Compute Verb Distributions for Vectors

Figure 4.3: Process of developing the Action Identification Model

4.3.1 Collecting Comment-Loop Associations

We extracted our comment-loop associations from the corpus of 14,317 open

source Java projects originating from GitHub [6] . We used half of the repository

(7,158 open source projects) to develop our action identification model, so we could

use the remaining half for evaluation of the model.

To extract all available comment-loop associations from the corpus, we traverse

the abstract syntax tree of each project and collect all loop-ifs with any associated

comments. We identify the internal comments associated with loop-ifs by following the

general convention that blank lines indicate separation of blocks of code that logically
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fit together and the comment immediately preceding the block is describing that code

block[71, 118]. The end of a block could also be the end of a method or the end of a

statement block where the comment resides. Thus, we extract any loop-if that has a

preceding internal comment and ends with a blank line or end of method.

4.3.2 Extracting Verbs from Associated Comments

Previous researchers have developed classifications of comments based on the

information conveyed by the comments [28, 71, 80, 92]. Comments can be descriptive,

explanatory, evolutionary, and conditional. We are only interested in descriptive com-

ments as they describe what the code following the comment is doing, at a higher level

of abstraction than the code. We begin by filtering out all other kinds of comments

using heuristics similar to others. From our observations, descriptive comments tend

to be verb phrases, while non-descriptive comments are more likely to be sentences.

However, a descriptive comment does not necessarily start with a verb; it may start

with “for”, “now”, “if”, “the”, “first”, etc. In each case, we still need heuristics for

identifying verbs in the natural language text of the comment. For example, the com-

ments starting with the word “for” are often in the format: “for each/all . . . , verb

. . . ”. We extract the verb by selecting the first word in the second clause. Similarly,

we extract verbs for other cases. After applying the heuristics, we also check if the

‘extracted ‘verb” can be found in the verb dictionary[124]. We base the verb extraction

process on the work of Howard et al.[46].

From our repository that contains 7,158 open source Java projects, we extracted

30,089 distinct qualified comment-loop associations from which we could extract verbs.

Each comment-loop association is related to a single feature vector based on the feature

vector representing the loop in the comment-loop association.

4.3.3 Computing Verb Distributions for Feature Vectors

At this point, each feature vector has an associated set of comment-loop associ-

ations composed of the commented loop-ifs in the development set that are represented
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by that feature vector. Each comment-loop association has a comment verb, so each

feature vector has an associated set of comment verbs. For example, the set of {”check”,

”find”, ”get”, ”search”, ”look for”} and the set of {”set”, ”update”, ”make”, ”add”,

”change”, ”reset”, ”replace”} contain verbs that have strong correlation.

The top 100 most frequent feature vectors cover more than 59% of loops in the

data set. Thus, to give us good coverage, we generalize by performing the clustering on

the top 100 most frequent feature vectors. In addition, the number of loops associated

with a given feature vector starts dropping after the top 100 feature vectors, such that

clustering on the basis of verb distributions would become less reliable. Most of the

feature vectors have 5-6 verbs that occur repeatedly in the comment-loop associations

for that feature vector. In addition, the distribution of verbs associated with each

feature vector has a long tail. Thus, the verb distribution for a given feature vector

is based on the distribution of the top 10 verbs most frequently associated with that

feature vector.

We extract all verbs that are associated with the top 100 feature vectors. There

are 230 unique verbs in total, which becomes the dimension of the verb probability dis-

tribution. For each feature vector, the verbs are transferred to a normalized probability

distribution of verbs associated with that feature vector.

4.3.4 Clustering Feature Vectors Based on Verb Distribution

To help us group together the same actions, we use hierarchical clustering anal-

ysis [93]. Hierarchical clustering does not require us to specify the number of clusters.

We use the complete linkage method for hierarchical clustering. This particular clus-

tering method defines the cluster distance between two clusters to be the maximum

distance between their individual components. At every stage of the clustering process,

the two nearest clusters are merged into a new cluster. The process is usually repeated

until the whole data set (100 loop vectors) is agglomerated into one cluster. However,

since the cluster quality drops as we create larger clusters, we chose to stop the process
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when the distance between clusters to be merged reached a threshold value of 0.5. This

resulted in 10 clusters.

Given two feature vectors, let p and q be their corresponding verb probability

distributions, respectively. Each distribution will be the assignment of each verb verbi,

from 1 to the total number m = 230 unique verbs. The Euclidean distance between

verb distributions p and q is:

d(p, q) =
√∑m

i=1(p(verbi)− q(verbi))2

Kullback-Leibler divergence and Jensen-Shannon divergence are two additional

popular methods of measuring the similarity between two probability distributions and

could be used.

4.3.5 Creating Action Identification Model

The last step is to create the action identification model based on the clusters.

This step is manual because we want to discover and verify what action each cluster

performs. This can not be automated.

Every cluster corresponds to a group of feature vectors that have some common

feature values and some values different for a few features. In our development set, we

manually analyzed up to 33 vectors per cluster. For any single cluster, we began by

examining the common feature values and expressed them as a loop-if template. If a

difference in feature value indicated a possible difference in action, we chose to divide

the cluster on the basis of that feature.

For example, the major differences between members of a particular cluster

were the value for feature F5 (type of loop exit statement), F7 (result variable used

in if condition) and F8 (type of if condition). Since the presence or absence of loop

exit is critical in the action computed by a loop (because it determines whether or

not all elements in the collection will be processed), we chose to divide the cluster

on the basis of whether or not the loop-if has a loop exit statement. Immediately,
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Table 4.2: Action Information for 100 Most Frequent Loop Feature Vectors in Devel-
opment Set

Action # of Feature Vectors # of Loops

find 33 5312

get 16 2967

determine 8 2192

add 11 940

remove 9 818

copy 2 714

count 3 512

max/min 4 500

ensure 2 395

set all 4 330

set one 2 223

compare 1 157

this resulted in two clusters that suggest the following two loop-if templates. These

templates correspond to the ”min/max” and ”find” actions in Table 4.4, respectively.

1 for (loop_control_variable for a collection) {
2 if (numeric comparison) {
3 // result variable used in if condition
4 result_variable = loop_control_variable;
5 // no loop exit statement
6 } }

1 for (loop_control_variable for a collection) {
2 if (numeric / non -numeric comparison ) {
3 result_variable = loop_control_variable;
4 break/return/return result_variable;
5 } }

The manual analysis of the 10 feature vector clusters led to splitting some clus-

ters such that there are 12 distinct actions identified from the original 10 clusters

associated with top 100 most frequent feature vectors. To give an insight into the

amount of manual analysis, Table 4.2 shows the number of top 100 most frequent

feature vectors and the total number of loops in the development set associated with

each action. For each cluster, we analyzed the template and created a verb phrase

description. Table 4.3 shows the 12 identified action stereotypes and their verb phrase

descriptions. Table 4.4 constitutes a model where each row shows an action and its

corresponding combination of feature values. Some actions appear in multiple rows
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Table 4.3: Identified actions with their verb phrase descriptions

Label Action Phrase

count count the number of elements in a collection that satisfy some condition

determine determine if an element of a collection satisfies some condition

max/min find the maximum/minimum element in a collection

find find an element that satisfies some condition (other than max/min)

copy copy elements that satisfy some condition from one collection to another

ensure ensure that all elements in the collection satisfy some condition

compare compare all pairs of corresponding elements from two collections

remove remove elements when some condition is satisfied

get get all elements that satisfy some condition

add add a property to an object

set one set properties of an object using objects in a collection that satisfy some condition

set all set a property for all objects in a collection that satisfy some condition

because the different feature value combinations could not be merged into one. For

example, if a loop has combination of value 0 for F1 and 2 or 3 for F5, or value 6 for

F1 and 0 or 1 for F5, then the model will label this loop with action determine.

4.4 Example of Automatic Action Identification

To exemplify the automatic action identification process shown in Figure 4.1,

consider the following source code:

1 for (Subunit s : subunits) {
2 if (s instanceof Department) {
3 Department subDepartment =( Department)s;
4 Department result=subDepartment.findDepartment(id);
5 if (result != null) {
6 return result;
7 } } }

With the action identification model and the given loop-if source code, the automatic

identifier first extracts the features as described in Section 4.2. The extracted feature

vector is (F1:1, F2:0, F3:0, F4:2, F5:2, F6:0, F7:0, F8:2). By mapping the feature vector

against the action identification model in Table 4.4, the identified action is ”find”.

Thus, we can identify the action as ”find an element that satisfies some condition”.
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Table 4.4: Action Identification Model

XXXXXXXXXXXAction
Feature

F1 F2 F3 F4 F5 F6 F7 F8

count 2 0

determine 0 2,3

determine 6 0,1

max/min 1 1,2 0 0 1 1

find 1 1,2 1,2,4

find 0 4

copy 5 1 0 1 0

ensure 5

compare 3 1

remove 5 5 1 1 0

get 5 1,3 0 2 0

add 5 2 0 1,2 0

set one 5 4 0 1,2

set all 5 4 1 1,2 0

4.5 Evaluation

We implemented the automatic action identifier, and designed our evaluation to

answer the two main questions:

• RQ1 - Effectiveness. How effective is the automatic action identifier?

• RQ2 - Prevalence. How prevalent are the actions we are able to identify in Java

software?

4.5.1 Effectiveness of Automatic Action Identification

Procedure. We asked 15 human evaluators to judge the output of our pro-

totype in identifying and describing high-level actions targeted by our technique. To

reduce potential bias, we told the judges that the action descriptions were identified

from different systems, and that our goal was to know which system is better.

The programming experience of this group ranges from 5 to 15 years, with a

median of 9 years; 13 of the evaluators consider themselves to be expert or advanced

programmers, and 4 evaluators have software industry experience ranging from 1 to 3

years. None of the authors participated in the evaluation.
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For evaluation, we randomly selected 5 loops for each of the 12 actions that

we are able to identify. To account for variation in human opinion, we gathered 3

separate judgments for each loop. Hence, each human evaluator evaluated 12 loops. In

total, we obtained 180 independent judgments on 60 loops, by 15 developers working

independently with 3 judges per loop.

In a web interface, we showed evaluators a code fragment and asked them to

read the code. Then, they were instructed to click a button to answer questions. This

process let the evaluator read the code first and avoid their opinion being affected by

the provided options. We asked evaluators two questions about the high-level action

of the code:

1. How much do you agree that the loop code implements this action?

2. How confident are you in your assessment?

The evaluators were asked to respond to the first question via the widely used

five-point Likert scale: 1:Strongly disagree, 2:Disagree, 3:Neither agree or disagree,

4:Agree, 5:Strongly agree. Similarly, evaluators were asked to respond to the second

question with values 1:Not very confident, 2:Somewhat confident, or 3:Very confident.

Results and Discussion. Figure 4.4a shows the number of individual devel-

opers’ responses for each point in the Likert scale for the first question. The results

strongly indicate that the code fragments that we automatically identify as high-level

actions are indeed viewed as high-level actions by developers. In 93.9% (169 out of

180) of responses, judges strongly agree or agree that the identified actions represent

the high-level actions of the loops, within which 61.9% correspond to strong agreement.

Furthermore, out of 180 responses, 176 judges are confident or very confident about

their opinions.

For each of the 60 loops given to evaluators, we also computed the average

opinions given by 3 evaluators for each loop. Figure 4.4b shows the box plot of average

opinions for the 60 loops. The average opinions per loop range from 3 to 5, with their

median being 4.33. Also 91.7% (55 of 60) of the average opinions were 4.0 or above,
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where 4.0 indicates agreement that the identified action represents the high-level action

of the loop.
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Figure 4.4: Human judgements of identified actions (1:Strongly disagree, 2:Disagree,
3:Neither agree or disagree, 4:Agree, 5:Strongly agree)

We analyzed the three loops with the average opinion below 3: Neither agree or

disagree. One interesting case is that when an if block contains many statements and

there are multiple actions expressed by the statement block, the last statement itself

is not sufficient to summarize the major action. Similarly, when there are multiple

then clauses in the if statement and each of them does a different action, the ending

statement we select from the first clause is not sufficient to represent all of them. In

another case, when the last statement is an object method invocation and the object

is a class, the method is then a static method. In such cases, the class that the static

method is invoked on is not the object that gets updated. Instead, the static method

updates the object passed into the method. We can improve our implementation to

capture this case.
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4.5.2 Prevalence of Identifiable Actions

Procedure. To determine the potential impact of automatically identifying

the high level actions of loop-ifs, we ran the action identifier on all 7,159 open source

projects that we had saved as our test data set. Cumulatively, these programs contain

9,358,179 methods, with a median of 150 and maximum of 206,175 methods per project.

We gathered data on the frequency of each high level action that was automatically

identified.

Results. In the test data set, there are 1.3 million loops, of which 337,294 are

loop-ifs. For those loop-ifs, we were able to automatically identify 195,277 high level

actions (i.e., 57.9%). The frequency distribution of each identified high level action is

shown in Figure 4.5.

Figure 4.5: Identified high level action distribution over 7,159 projects

For this large corpus of Java projects, we believe these numbers are high enough

to demonstrate that our action identification technique has wide applicability.

4.5.3 Summary of Evaluation Results

Human judgments by 15 developers strongly suggest indeed that they view our

automatically identified descriptions as accurately expressing the high level actions of
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loops. Our study of the prevalence of detected high level actions in over 7000 Java

open-source projects indicates that our algorithm for automatically identifying loop-ifs

that implement high-level actions has wide applicability.

4.5.4 Threats to Validity

Our results may not generalize to other Java programs. To mitigate this, we

used a repository that contains 14,317 projects from GitHub. We use half of the repos-

itory to develop our technique and the other half for testing. Although our extracted

features are not specific to the Java programming language, they may not generalize

to other programming languages. Our evaluation relies on human judges, which could

be subjective or biased; to mitigate this threat, each action description was judged by

three evaluators, and the evaluators were told that the output they were judging was

from two different tools that we were comparing. The reported prevalence numbers

could be slightly overestimated because we did not manually check all 195,277 high

level actions identified for accuracy; however, our accuracy results show that it should

be a good approximation.

4.6 Improving Client Tools

Another measure of this work’s contribution is the potential impact on client

tools for software maintenance. Here, we discuss refactoring, code search, internal

comment generation, and automatic code completion.

The Java API is updated and improved regularly. On March 18, 2014 Java 8

was released. One of the major features introduced is the Stream API, which supports

functional-style operations on streams of elements, such as map-reduce transformations

on collections. Our technique can help developers identify loops that can be migrated to

the new Stream API. For example, Figure 4.6 (a) shows a method that contains a loop.

Our automatic action identifier can identify that the loop implements a find action.

With the Steam API in Java 8, this action can be written in a more concise way.In

addition, our technique can help developers to identify the actions for refactoring.

47



Figure 4.6: Using our system for refactoring

The automatic action identifier has the potential to increase the effectiveness

of code search tools by providing the action phrase with the associated loop. To

illustrate, in our data set of 63,265 loops that we identified automatically as ”find”,

the word ”find” appears in the loop bodies only 1442 times (2% of the “find” loops).

Studies have shown the utility of comments for understanding software [110,

111]. However, few software projects contain many internal comments [52]. In our

data set, less than 20% of loop-ifs are commented. Considering that some of the

comments are poor or nondescriptive, the actual percentage is even less. Developers

can use the automatic action identifier to generate internal comments by customizing

the verb phrases using identifiers from the specific loops.

Major IDEs [51, 99] currently allow programmers to define code snippets and

easily reuse them. Manually defining the templates is tedious and time consuming.

When a developer wants to perform a specific action that we have identified as a

high-level action in our action identification model, we can provide the code template.

4.7 Summary and Conclusions

In this chapter, we presented a novel technique that uses loop structure, data

flow and word usage to automatically identify loop-if action units. Based on 15 expe-

rienced developers’ opinions in which 93.9% of responses indicate that they strongly
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agree or agree that the identified actions represent the high-level actions of the loops,

we conclude that characterizing loops in terms of their features learned from a large

corpus of open source code is enough to accurately identify high-level actions. The

results also show that the technique needs only a few comment-loop associations to

exist in a large corpus to support the approach.
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Chapter 5

OBJECT-RELATED ACTION UNITS

In Chapter 4, we developed a model of loop action unit stereotypes without

manually creating templates and used the model to identify actions for loops. While

our technique advances previous research [105] that identifies the high-level actions,

there are still many high-level actions remaining unaddressed. One of the most signif-

icant ones that has not been considered is object-related action units. In this chapter,

we introduce a technique to automatically identify object-related action units and syn-

thesize a succinct natural language description to express the actions performed by

these action units [121].

5.1 Problem and Motivation

In Listing 5.1, there are three action units. The first action unit (Lines 2-

7) is a loop action unit as defined in Chapter 4. The action unit determines if the

given bitstream is already in a collection. The last action unit (Lines 11-14) is the

type we focus on in this chapter. We call such action units object-related action

units. Notice in this action unit, the statements are related to each other through

an object - mappingRow. The purpose of the action unit is to add a newly created

mapping row to the database. Line 9 is also an object-related action unit by itself. We

define object-related action units as action units that consist of only non-structured

consecutive statements associated with each other by an object or multiple objects.

Non-structured statements are variable declarations/assignments or method invocation

statements. Structured statements such as loops and conditionals are generally action

units by themselves as discussed in Chapter 3.
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Listing 5.1: A method with multiple action units.

1 public void addBitstream(Bitstream b) throws SQLException ,
AuthorizeException {

2 for (int i = 0; i < bitstreams.size(); i++) {
3 Bitstream existing = (Bitstream) bitstreams.get(i);
4 if (b.getID() == existing.getID()) {
5 return;
6 }
7 }
8
9 bitstreams.add(b);

10
11 TableRow mappingRow = DatabaseManager.create(ourContext , "

bundle2bitstream ");
12 mappingRow.setColumn (" bundle_id", getID ());
13 mappingRow.setColumn (" bitstream_id", b.getID ());
14 database.add(mappingRow);
15 }

Our algorithm takes a Java method as input and outputs natural language

descriptions associated with sequences of statements identified as object-related action

units in the method. To delineate a sequence of statements that together implement

an identifiable high-level action, we leverage both programming language structural

information and natural language clues embedded in the developers’ naming of entities.

To generate natural language descriptions to express the identified high-level action, we

select a representative statement and use the natural language clues embedded in the

developers’ naming of entities. Our automatic system involves analysis of source code

only, requiring no execution information, and thus, can be applied to even incomplete

and unexecutable legacy systems. Our system can be easily integrated to an IDE

to provide up-to-date descriptions as the software developer begins working on a Java

method. The key insight of this work is to utilize today’s available large source of high-

quality, open source software projects and learn common patterns of object-related

action units.

More precisely, we address the following problem in this chapter:

Given a Java method M, automatically discover each object-related action unit that

implements a high-level action comprising the overall algorithm of M, and accurately
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express each object-related action unit as a succinct natural language description.

Consider the code fragments in Listing 5.2. This code fragment consists of 2

AUs (Line 3-7 and Line 10-13). Notice the comments above each AU. The comments

are the descriptions of the AU’s high level action. They are the types of descriptions

we want to generate. For example, the first description contains the action “add”, the

theme “number jpanel”, and the secondary argument “content panel”.

Listing 5.2: Action unit as a sequence.

1 ...
2 // add number jpanel to content panel
3 numberJPanel = new JPanel ();
4 numberJPanel.setLayout( null );
5 numberJPanel.setBounds( 16, 62, 176, 224 );
6 numberJPanel.setBorder(new BevelBorder( BevelBorder.LOWERED ) );
7 contentPanel.add( numberJPanel );
8
9 // add one button to number jpanel

10 oneJButton = new JButton ();
11 oneJButton.setText( "1" );
12 oneJButton.setBounds( 16, 16, 48, 48 );
13 numberJPanel.add( oneJButton );
14 ...

The two main challenges are identification of the object-related action unit and

then generation of the description. There exists a range of different forms of object-

related action units; however, the forms differ primarily in syntax. Finding the bound-

ary of where the action unit begins and ends is not as trivial as identifying a loop

structure. The bigger challenge is in learning how to describe the different forms of

possible object-related action units. To determine an appropriate description, we need

to analyze both the syntax and the data flow through the action unit. A good descrip-

tion should include the action, theme and other optional arguments.

5.2 State of the Art

The closest related work to action unit identification is by Sridhara et al. which

automatically detects and describes high-level actions within methods [105]. One of

the three major cases that technique handles is what they called “sequence as single

action.” The key difference between object-related action units and their “sequence
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as a single action” is that they consider a very restricted kind of sequence, that is,

sequences of consecutive method calls that are highly similar to each other, while we

broaden that scope of work to action units that are object-related. For example, lines

3-7 in Listing 5.2 might be detected as a sequence with a single action.

Other research towards identifying code fragments that are related to a given

action or topic extracts topic words or verb phrases from source code [43, 68, 77].

Related research clusters program elements that share similar phrases[53]. These ap-

proaches rely solely on the linguistic information to determine the topic of the code

segment, which we found is not adequate for many action units where the action is not

expressed as a word within the source code explicitly.

Since our system can be used to generate internal comments for the identified

high-level actions or used as a basis for method summaries, our work is related to

comment generation. Sridhara et al. developed a technique to automatically generate

summary comments for Java methods based on structural and linguistic clues [102].

The same authors also developed a technique to generate comments for parameters

and integrate with method summaries [106]. Moreno et al. developed an approach

to generate summaries for Java classes [72]. Ying and Robillard present a supervised

machine learning approach that classifies whether a line in a code fragment should be in

a summary [127]. Our work goes beyond these techniques by automatically identifying

action units within a method, at a granularity between individual words or statements

and full method unit.

Wong et al. automatically generate comments by mining question and answer

sites for code examples with related natural language text [123]. They extract code-

description mappings from the question title and text for a post containing a code

snippet, apply heuristics to refine the descriptions and use code clone detection to

find source code snippets that are almost identical to the code-description mapping

in the application to be documented. Their evaluation results showed that few clones

of code snippets in the forum could be identified in real applications, indicating that

the current approach has limited applicability. One possible cause is that it does not
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leverage an abstraction of source code such as the descriptions of object-related action

units. Our work also takes the approach of directly describing the action unit based

on the identified templates and focal statement identification.

There are also techniques for automatically summarizing and documenting dif-

ferent content or software artifacts. McBurney and McMillan presented a source code

summarization technique that generates descriptions of the context of Java methods

(i.e., the callers and callees) [69]. Rahman et al. presented a mining approach that

recommends insightful comments about the quality, deficiencies or scopes for further

improvement of the source code[88]. Panichella et al. presented an approach to mine

source code descriptions from developers’ communications [81]. Buse and Weimer

presented an automatic technique for summarizing program changes [18]. Li et al.

presented an approach to automatically document unit test cases [56]. Rastkar et

al. developed a technique to automatically summarize bug reports [90]. Oda et al.

developed [76] a statistical machine translation technique to generate pseudocode for

Python code. To suggest method and class names, Allamanis et al. [5] introduced a

neural probabilistic language model for source code that is specifically designed for the

method naming problem.

There has been much research on mining code fragments across projects. Buse

and Weimer developed an approach to mine API usage examples [16]. Their approach

uses data flow to identify sequences of statements related to a certain API. Our ap-

proach also uses data flow. However, we focus on algorithmic steps or high-level actions,

not the data flow across nonconsecutive statements, while they focus on the longest

commonly used data flow chains of a target API. Allamanis and Sutton presented an

approach to mine code idioms from source code [7]. There is other related work of

mining code examples or patterns [30, 73, 75, 122, 133]. None of these works focus on

identifying object-related action units.
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Figure 5.1: Overall process of generating descriptions for object-related action units.

5.3 Overview of Approach

Figure 5.1 depicts the main steps of automatic identification and generation of

natural language descriptions for object-related action units. Given a Java method

as input, we build an abstract syntax tree (AST) and use both AST and operations

performed on related objects to identify object-related action units in the method. For

each object-related action unit, we identify the statement that represents the main

action of the action unit, which we call the action unit’s focal statement. The focal

statement provides the primary content for the natural language description of the

action unit. We identify the action and arguments that should be included in the

generated description from the focal statement, and then lexicalize the action and

arguments to create a natural language phrase.

The identification of focal statement, action and arguments, and lexicalization

are all performed through a set of rules that we developed through a data-driven study

of a large set of Java methods. The major bulk of our work is the development of

these rules. We manually analyzed a large number of statement sequences from 1000

randomly selected open source projects and developed the template of object-related

action unit. In our analysis, we used blank lines to provide us examples to learn the
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templates since Java developers conventionally use blank lines to separate methods

into logically related sections[78, 118, 119]. Therefore, blank lines are an important

source of learning how developers break up a method into multiple algorithmic steps.

While we used blank lines to learn the templates for identifying object-related action

units, our template-based approach to identification does not rely on blank lines in

the methods. The algorithm will use blank lines if they exist, but can identify object-

related action units despite the absence of blank lines. Sections 5.4 - 5.6 describe the

development of the identification rules.

5.4 Action Unit and Focal Statement Identification

In general, an action unit contains three parts as shown in Figure 5.2. Part

(1) is a declaration of or an assignment to an object reference o. Part (2) is one

or more statements where each statement is a method call invoked on the object o.

Part (3) is a statement that uses the object o. Specifically, use in this work means o

appears on the right-hand side of “=” if there is a declaration/assignment. If there is

no declaration/assignment, then o appears as an argument of a method call and the

method call is not invoked on o. Each part is optional.

Type o = ...; OR o=... 
o.method_1(); 
... 
o.method_n(); 
...o...; 

(1)

(2)

(3)

Figure 5.2: General format of object-related action units.

Our analysis of the same 1000 randomly selected open-source Java methods

resulted in three major cases for the location of the focal statement.

Case 1: Part (3) Exists. When there is a Part (3) in the action unit, Part (1) and

Part (2) prepare the object that is used in the last statement. That is, the statements

in Part (1) and (2) form a necessary step to perform the action in the last statement.
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In the example action unit shown in Listing 5.3, the first and second statements

set the time for the cal object, and the last statement gets the time. The main action

is in the last statement.

Listing 5.3: Focal statement is the last.

cal.set( 2002, 9, 14, 2, 32, 20);
cal.set( Calendar.MILLISECOND , 0);
testDate = cal.getTime ();

This will be true even if part (1) is present, such as Listing 5.4.

Listing 5.4: Focal statement is the last.

Element size = new Element ("size", PREMIS_NS);
size.setText(String.valueOf (...));
ochar.addContent(size);

Case 2: Part (3) Does not Exist. When an action unit does not have Part (3), it

may have Parts (1) and (2), or only Part (2).

When an action unit has Parts (1) and (2) and all method calls in Part (2)

set properties or add initial values for the object in Part (1), the action is determined

by the first statement. We call the methods that set properties or initialize value for

an object setup methods. If methodn is not a setup method and method1...methodn−1

are setup methods, then the action is determined by methodn. In Listing 5.5, the

first statement creates a PromReportFactory object, and the next three statements

set properties for the object. Therefore, the main action is in the first statement.

Listing 5.5: Focal statement is the first.

PromReportFactory factory = new PromReportFactory ();
factory.setStoreFactory(storeFactory);
factory.setMxmlStoreFactory(mxmlStoreFactory);
factory.setEventTransformator(transformer);

In Java, when an operation is related to a database, a network connection, or

a file writer, there normally is a statement for releasing or closing the resource at the

end. These statements perform auxiliary tasks and are not the main action of an action

unit. We call such statements auxiliary statements. If the last statement is an auxiliary
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statement, the last statement is ignored and the next to last statement becomes the

actual “last”. The method name of an auxiliary statement is often close(), flush(),

commit(), rewind(), clear() or refresh(). In Listing 5.6, the first statement creates

an OutputStreamWriter object, the second statement uses the object to write data,

and the last statement flushes the writer. The last statement is auxiliary, so the second

statement becomes the “last”. It does something other than setting up the object, so

the action is determined by the second to last statement.

Listing 5.6: Focal statement is the last.

// Write the data
final OutputStreamWriter writer = new OutputStreamWriter(

connection.getOutputStream ());
writer.write(data.toString ());
writer.flush();

When there is no Part (3) or Part (1), the code block contains only a sequence

of method invocations. The action units in this case can be written in the following

form:

o.v1t1()
o.v2t2()
...
o.vntn()

Our preliminary studies suggest that there are basically two types of such code

blocks. We consider only these two types of code blocks to be object-related action

units and we discuss how the focal statement is produced for only these two types.

In the first type of code block, each method name has a verb “v” and optionally

a noun “t”. If v1 through vn−1 are all setup verbs (such as add, set, put, append,

init, etc.) and vn is not, then the action is determined by vn. The reason is that

the first n-1 statements set up the object that is used in the last statement to perform

the main action. In the example Listing 5.7, the first two statements set properties

for “g2”, and the last statement performs the “draw” action. In this case, the focal

statement is the last statement.

Listing 5.7: Focal statement is the last.
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g2.setColor(ColorUtil.mix(bgColor , Color.black));
g2.setComposite(AlphaComposite.Src);
g2.draw(backgroundRect);

In the second type of code block, a sequence of method calls are all setup

methods or very similar to each other, and there is no focal statement of the action

unit. The reason is that they all together set up properties for an object or perform

an action with different arguments, so it is inappropriate to use a single statement

to represent the whole action unit. This case does not fit into our overall process of

the system. Describing this kind of action unit requires determining the verb and the

arguments directly. The following describes three subcases that our system handles:

1) If v1, v2, ..., vn are the same and t1, t2, ..., tn are the same, then the action is given

by the same verb and the theme is the plural form of the noun. Listing 5.9 shows such

an example. 2) If v1, v2, ..., vn are the same and t1, t2, ..., tn are different, then the

action is given by the same verb and we use the noun “properties” to represent the

theme. For example, in Listing 5.8, each of the six statements sets a property for the

object “clone”, the action verb is obviously “set” and the theme can be represented

by using the word “properties”. We select the word based on developers’ preference

in internal comments. 3) If v1, v2, ..., vn are different setup verbs, we use “set up” to

represent the action. Listing 5.10 shows such an example.

Listing 5.8: Example action unit.

1 // set properties for clone
2 clone.setPlayerId(getPlayerId ());
3 clone.setName(getName ());
4 clone.setActive(getActive ());
5 clone.setScore(getScore ());
6 clone.setBirthday(getBirthday ());
7 clone.setDescription(getDescription ());
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Listing 5.9: Example action unit

1 // check discs (they should be sorted by release date)
2 checkDisc (1, "Sally Can ’t Dance", "1974" , EMPTY_DISC_DESCRIPTION);
3 checkDisc (2, "Metal Machine Music", "1975" , EMPTY_DISC_DESCRIPTION

);
4 checkDisc (3, "Rock and Roll Heart", "1976" , "A sensitive and

revealing look into the prince of darkness .");

Listing 5.10: Example action unit

1 list.setCellRenderer(legendListRenderer);
2 list.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
3 list.addListSelectionListener(new ListSelectionListener () {
4 public void valueChanged(ListSelectionEvent evt) {
5 jList1ValueChanged(evt);
6 refresh ();
7 }
8 });

Case 3: Multiple Data Flows. Case 1 and 2 are object-related action units involving

only one object. From our analysis, we found that in many sequences, the statements

are associated with each other by multiple objects, and those sequences perform a

single high-level action. Figure 5.3 depicts the three subcases.

The first subcase is two distinct data flows appearing in a sequence. Recall each

action unit has 3 parts - Part (1), (2) and (3). As shown in Figure 5.3a, the object

o1 is used in the Part (1) of the data flow of o2. o1 is on the right-hand side of the

declaration/assignment statement, and is used to create or get the object o2. The

focal statement is on the chain of object o2. For example, in the action unit shown

in Listing 5.11, the first statement creates a file object which is used in the second

statement as an argument to create a PrinterWriter. In addition, the last statement

is auxiliary and should be ignored. Therefore, the focal statement is the second-to-last

statement.

Listing 5.11: Example of Case 3-1.

1 file = new File(secondWC , "A/B/lambda ");
2 pw = new PrintWriter(new FileOutputStream(file));
3 pw.print(value);
4 pw.close();

The second subcase occurs when the first object o1 is used to set up the object
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Type o2 = ...o1...; OR o2=...o1... 
o2.method_1(...); 
... 
o2.method_n(...); 
...o2...; 

Type o1 = ...; OR o1=... 
o1.method_1(); 
... 
o1.method_n(); 

(a) Case 3-1.

o1.method_n(); 
o2.method_1(...); 
... 
o2.method_n(...); 
...o1...o2...; 

Type o2 = ...; OR o2=... 
Type o1 = ...; OR o1=... 
o1.method_1(); 
... 

(b) Case 3-2.

Type o2 = ...; OR o2=... 
o2.method_1(...); 
... 
o2.method_n(...); 
...o1...o2...; 

Type o1 = ...; OR o1=... 
o1.method_1(); 
... 
o1.method_n(); 

(c) Case 3-3.

Figure 5.3: Templates of multiple data flows.

o2, as shown in Figure 5.3b. The focal statement is on the data flow chain of the object

o2. For example, in Listing 5.12, there are two data flows. One starts with the declara-

tion of newNumFormat and the other starts with the declaration of newNumberFormats.

The data flow starting from newNumFormat only creates and sets up an object that is

used in the data flow of newNumberFormats. Therefore, the data flow starting with

newNumberFormats contains the main action of the action unit.

Listing 5.12: Example of Case 3-2.

List <NumberFormat > newNumberFormats = new ArrayList <
NumberFormat >();

NumberFormat newNumFormat = new NumberFormat ();
newNumFormat.setPattern ("(\\d{3}) (\\d{3}) (\\d{4})");
newNumFormat.setFormat ("($1) $2 -$3");
newNumberFormats.add(newNumFormat);

In the third subcase, as shown in Figure 5.3c, the object o1 and o2 are declared

and set up in their own Part (1) and (2). Both of the objects are used in Part (3).

The focal statement is in Part (3). For example, in Listing 5.13, the first 4 statements

prepare two objects, p1 and p2, and the last statement check difference between the

two objects. The action is in the last statement.

Listing 5.13: Example of Case 3-3.

1 LineString l1 = gf.createLineString(coords2D);
2 p1 = ValueFactory.createValue(l1);
3 LineString l2 = gf.createLineString(coords3D);
4 p2 = ValueFactory.createValue(l2);
5 checkDifference(p1, p2);
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5.5 Identifying Action and Arguments

As defined, the focal statement contains the action and the arguments that

should be included in the description of the action unit. The first step of description

generation is identifying the related arguments in the focal statement. The action

and arguments identification are focused on method calls. Given a method call in the

syntactic form of receiver.verbNoun(arg), we identify action, theme, and secondary

argument from the four parts of the method call: receiver, verb, Noun, and arg.

We leverage observations from previous work of action and arguments identifica-

tion on source code [41, 102]. To enable the identification of the four parts of a method

call, identifiers must be split into component words. We use camel case splitting, which

splits words based on capital letters, underscores, and numbers (e.g., “setBookmarks”

would be split into “set bookmarks”), and aspects of more advanced splitting [26]. As

in any system that uses linguistic information, our technique will be hindered if the

naming of entities in the source code is not meaningful. We believe this requirement is

reasonable, given that developers tend to choose descriptive names for program entities

such as methods and types [57].

In the method call of the form receiver.verbNoun(arg), the action is the verb

of the method. The theme could be the noun, the arg, or the receiver. If the split

arg shares the same last word with Noun, which means the arg is a concrete instance

of Noun, then the theme is the arg and the secondardy argument is the receiver.

For example, in service.setContext(securityContext), the last word in the split

method argument names is context. That indicates that the method argument is an

instance of Noun, so the theme is securityContext. If the arg is not an instance

of Noun, then the theme is Noun and the arg becomes the secondary argument. For

example, in getResource(name), the method argument is not an instance of resource,

so resource is the theme and the name is the secondary argument. If there is no Noun

or arg in the method call, the receiver is the theme. For example, in name.trim(),

name is the theme. When there are multiple arguments in the method call, we use the
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argument that is involved with the main data flow.

If the focal statement of an action unit is a variable declaration/assignment

statement, the action comes from the right-hand side (RHS) of “=”. The RHS can be

a class instance creation expression or method call. We use the method verb as the

action, and the variable name on the left-hand side of “=” as the theme. When the

RHS of “=” is a class instance creation expression, the action is “create”.

As a full example, given the action unit in Listing 5.14 and its focal statement,

and based on the rules of identifying action and arguments, the action is “set”, the

theme is “information”, and the secondary argument is “config”.

Listing 5.14: Example code fragment.

Information info = new Information ();
info.setDescription (" network description ");
info.setType (" network ");
info.setName (" networklayer1 .0");
info.setVersion ("1.0.0");
config.setInformation(info);

5.6 Lexicalizing Action and Arguments

From the focal statement, we are able to identify the action and the arguments.

Next, we generate natural language descriptions that include the action and the argu-

ments related to it as the content. We leverage observations from previous lexicalization

work on source code [41, 102]. Given the action and arguments, we generate a verb

phrase following the template:

action theme (secondary argument).

As shown in the previous phase, the action is from the verb of the method

name for a method call. As a coding convention, method names normally start with

a verb. From a randomly sampled 100 focal statements, all statements contained an

action verb, and our approach for action verb selection works for all cases. Identifying

those verbs is straightforward. We are aware that method names do not always start

with a verb even when code is written by following coding conventions. However,
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methods that do not represent actions are highly unlikely to be the focal statement of

an object-related action unit [41]. For example, actionPerformed(ActionEvent e)

is a call back method that can not be a focal statement.

On the other hand, describing the secondary argument and their connection to

the action and theme is usually very challenging. One issue is the connection through

prepositions. We examined developers’ comments that start with one of the most fre-

quently used verbs to see which ones are used. We analyzed the 100 most commonly

used verbs. Those 100 verbs cover 93.1% of all focal statements. We developed tem-

plates for those verbs. For example, add ... to ..., set ... for ..., put ... to ..., etc. For

the rest, we use “using”. For example, for dao.save(document), we generate “save

document using dao”.

Listing 5.15: Focal statement is not enough.

TaskPropertiesDialog dialog = new TaskPropertiesDialog(
getShell ());

dialog.setResource(resource);
dialog.open();

The second challenge is using a phrase to describe the theme and the secondary

argument. From the focal statement, we identify the action and theme. However,

using words from the focal statement does not lead to a descriptive phrase for the

theme and the secondary argument. Consider the example in Listing 5.15. The theme

is “dialog” which is located in the focal statement. We could simply generate a phase

“open dialog”. However, this gives us very little information about the dialog. We need

to get more information for the argument if we want to generate a more descriptive

phrase. By conducting a preliminary study, we found that the description can benefit

from the information elsewhere in the action unit. For example, it can be the variable

declaration type, the type of class instance creation, or the string parameter of a setup

method. Based on the preliminary study, we have developed a set of rules to improve

the description for the theme and secondary argument. The remainder of this section

describes the places in the code where we extract more valuable information.
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Class Name. In object-oriented programming languages, a class is the blueprint

from which individual objects are created. The name of the class normally provides

the succinct name with whole words and avoids acronyms/abbreviations. The class

name can be from the declaration name of a declaration statement or a class instance

creation expression. For example, in the following action unit, the declaration type

StringBuilder tells us that the object b is not just a builder by abbreviation expan-

sion; it is a string builder.

Listing 5.16: Improve arguments with class names.

// create a string builder
StringBuilder b = new StringBuilder ();
b.append(proxy.getNamespace ());
b.append ("/");
b.append(proxy.getActionName ());
b.append ("!");
b.append(proxy.getMethod ());

Method Argument. When a method argument is a string literal, the string often

gives the name of the object being set up or created. If the argument of a constructor

method is a simple string, the string normally gives the name of the object being cre-

ated. For example, in JButton b = new JButton("Add");, the argument is a simple

string literal which provides the name of the button. If an object has a setName()

method and the argument of the method is a string, the string provides the name of

the object being set up. We use the string literal to decorate the theme or secondary

argument. For example, in the following action unit, the argument of the method

setName() gives the name of the label “user uid”. Therefore, we generate “add user

uid label to form panel”.
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Listing 5.17: Improve arguments with string literals.

1 //add user uid label to form panel
2 xLabel2.setBorder(javax.swing.BorderFactory.createLineBorder(new

java.awt.Color (153, 153, 153)));
3 xLabel2.setCaption ("User ID");
4 xLabel2.setCaptionWidth (105);
5 xLabel2.setDepends(new String [] {" selectedItem "});
6 xLabel2.setName ("user.uid");
7 xLabel2.setPreferredSize(new java.awt.Dimension(0, 19));
8 formPanel.add(xLabel2);

Program Structure. Program structure provides information on how an object is

created. For example, the first line in Listing 5.15 creates a new dialog, and we can

provide information about the dialog by integrating the structural information. For

“dialog”, we add “newly created” to include such information.

To generate adequate descriptions that include more valuable information, in

the first step, we add the most general information, which is from the variable name

and its type name. We expand abbreviations for variable names if necessary [42].

The single character or number resulting from camel casing splitting are ignored. For

example, in the variable name “xLabel1”, “label” is extracted and x and 1 are ignored.

In an English noun phrase, the right side of the description of a noun contains more

general information than the left side. The names from the method arguments provide

more specific information about the argument. So, in the second step, we prepend

this information. When the focal statement is different from the variable declaration

statement which has a class instance creation on its right-hand side, we add “newly

created” to all of the descriptions to include this structural information. In the case of

overlapping words, we only integrate words that have not been used.

5.7 Evaluation

We designed our evaluation to answer the three research questions:

• RQ1 - How effective is the action and arguments selection?

• RQ2 - How effective is the text generation?

• RQ3 - What are the costs in terms of execution time of the description generator?
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To evaluate the approach, we implemented the object-related action unit iden-

tification and description generator. The first two research questions are answered by

two human studies. We asked 10 developers to participate in our evaluation studies.

Their programming experience ranges from 5 to 10 years, with a median of 7 years;

6 of the evaluators consider themselves to be expert or advanced programmers, and 2

evaluators have software industry experience ranging from 1 to 3 years. None of the

authors participated in the evaluation, and none of the participants read this chapter.

We ran our system on 5,000 open source projects that we randomly selected from

a GitHub repository [116]. Cumulatively, these projects contain 6,684,407 methods,

with a median of 150 and maximum of 206,175 methods per project. We randomly

selected 100 object-related action units from all of the action units identified in the

5000 open source projects. Based on the distributions of the three major cases of

object-related action units, 39 belong to case 1, 42 belong to case 2, and 19 belong

to case 3. The 100 action units were shuffled and divided into ten groups. Those ten

groups are used in both studies described below.

The remainder of this section discusses our evaluation design and analyses of

the results.

5.7.1 RQ1: Effectiveness of Action and Arguments Selection

Evaluation Design. For the first evaluation, we obtained 200 independent annota-

tions on 100 action units, by 10 developers working independently with 2 judgements

per code fragment. We randomly assigned each of the 10 evaluators one group of code

fragments. In a web interface, we first showed evaluators a code fragment and asked

them to read the code. Then, they were instructed to answer the two questions.

• With a single phrase, summarize the high-level action that the code fragment

implements. Write your description so it is adequate to be copied from this local

context and included in the method summary description located at the top of the

method.
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• Based on your description, what would you consider as the main action of this

code fragment?

The first question is used to help our evaluators to understand the code and

write a complete phrase description. The second question is used for us to get the

main action and arguments. When an annotator only provided a verb in the second

question, we could also infer the arguments from the answer of the first question since

that answer is always a phrase. To avoid biasing evaluators, we did not tell them each

code fragment is an action unit. To account for variation in human opinion, each code

fragment was annotated by two developers. If two human opinions disagree on a code

fragment, we asked the third person to annotate that code fragment. To determine

if a third annotator was necessary, we manually examined the annotations of the two

developers. We considered the action, theme and secondary argument individually. In

89% of the cases, the two annotators agreed exactly on the action. This means we had

to give 11 action units to a third evaluator.

With respect to the theme, the two annotators used exactly the same phrase 27

times. In another 29 cases, they used the same head noun but differed in the adjectives,

for example, “texture attributes” and “attributes”. We did not consider this to be a

disagreement because from the responses to the two questions, it is clear that they

are referring to the same target in the code. Recall this evaluation is concerned with

determination of the arguments rather than their natural language description (which is

considered in the next evaluation). Similarly, we considered 20 more cases as agreement

even though theidescriptions used by the two annotators were different. The following

example typifies this case. Consider Listing 5.18, both agreed the action was “add”.

One of them described the theme as “new JMenuItem object” and the other described

it as “elements item”. Again we see that the two annotators selected the same argument

although the two phrases are very different. They were referring to the different parts

of the code to describe the target, but clearly referring to the same object. So there

were only 24 cases that we treated as a real disagreement between the two annotators.

This was resolved by giving the 24 action units to a third annotator.
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Listing 5.18: Disagreement on Argument.

elementsItem = new JMenuItem ("Edit Items");
elementsItem.addActionListener(this);
popup.add(elementsItem);

For the secondary argument, in 53 of the 100 instances, neither of the annotators

gave a secondary object. In the remaining 47 cases, our analysis revealed that they

agreed on 27 cases (19 using the same phrase and 8 using the same head words) and

disagreed on 20 cases. All of these 20 disagreements were due to the fact that one of

them specified the secondary argument and the other did not. Thus, we had 20 action

units that required annotation by a third developer. Eventually, 45 of 100 instances

included the secondary object in our final gold set.

Altogether, there were 35 action units where a third developer was asked to

resolve the differences. In 34 cases, the third response indeed allowed us to create

the gold set for the action, theme, and secondary argument. One action unit that we

did not get agreement on action is Listing 5.19. Annotators used “create”, “write”,

“output” as the action. We asked a fourth person to choose one of them and used the

one that is selected.

Listing 5.19: Disagreement on Action.

_logger.info("init " + cnt + " batches ");
_logger.info("init position =" + getPosition ());
_logger.info("init batch=" + _batch);

Results and Discussion. The accuracy of our system for determining the action is

97%. There were only 3 cases where our system did not agree with the human annotated

gold standard. In only 2 of the 100 cases, our system output for the theme did not

agree with the annotation. Finally, there were 6 cases where there were differences

between the gold set and the system output. In 3 of these cases, the system produced a

secondary argument whereas the gold standard did not include one. In the 3 remaining

cases, the gold standard included a secondary argument whereas our system did not

produce one.
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In Listing 5.20, the human majority annotation does not include the secondary

argument “session”, while our system picks up that argument. On one hand, the human

annotation indicates that the argument “session” is not necessary to be included. On

the other hand, the missing argument could be caused by the inconsistency among

human developers. Our system always extracts the secondary arguments when they

are available. Since the selection by our system is automatic, it never misses the

argument when it is available.

Listing 5.20: Disagreement on Argument.

ServerMessage SS = new ServerMessage(ServerEvents.
CurrentSnowStormPlays);

SS.writeInt (0);
SS.writeInt (0);
SS.writeInt (1);
SS.writeInt (15);
session.sendMessage(SS);

5.7.2 RQ2: Effectiveness of Text Generation

Evaluation Design. In the second evaluation, we evaluated the effectiveness of our

text generation technique. Specifically, we assessed whether the system-generated de-

scription is as good as human-written descriptions when taken out of the context as a

representative of that action unit, potentially to be used as part of a method summary.

We asked humans to compare human-written descriptions against our system-generated

descriptions without knowledge of how they were generated. To obtain human-written

descriptions, we showed each annotator a code fragment in a web interface and asked

two questions:

• If somebody told you that the main action of this code fragment is “X”, please

give us a phrase that completes the description of the code’s main action. (X is

the action verb given by our system)
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• If you were to take your description out of context (for example, to put as part

of a method summary), would you add/modify this English phrase in any way?

If yes, how?

We gathered 100 human-written descriptions by randomly assigning 10 code

fragments to each of our evaluators, for which we had generated descriptions with our

prototype. We then assigned a third person to each of 10 code fragments that they had

not viewed previously. To reduce bias on directly comparing two copies of descriptions

(one from a human and one from our system), we showed both the system-generated

description and the human-written description for each code fragment, in a random

order, to each human. In a web interface, we showed the code fragment and asked the

following question:

If the description is to be taken out of its context in the code to be part of a method

summary, what is your agreement with the statement: The description serves as an

adequate and concise abstraction of the code block’s high-level action.

The evaluators were asked to respond to the above proposition via the widely

used five-point Likert scale, (1) Strongly Disagree, (2) Disagree, (3) Unsure (Neither

agree nor disagree), (4) Agree, (5) Strongly Agree.

System-generated Descriptions Human-written Descriptions
Response Case 1 Case 2 Case 3 All Case 1 Case 2 Case 3 All
1:S Disagree 1 0 1 2 0 1 0 1
2:Disagree 0 1 0 1 1 1 0 2
3:Neutral 9 4 5 18 4 2 3 9
4:Agree 11 10 8 29 14 10 5 29
5:S Agree 18 27 5 50 20 28 11 59
Total 39 42 19 100 39 42 19 100

Table 5.1: Distribution of human judgements of descriptions.

Results and Discussion. Table 5.1 shows the number of individual developer re-

sponses along the Likert scale. In the 100 system-generated descriptions, humans
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agree or strongly agree that the description serves as an adequate and concise abstrac-

tion of the code block’s high-level action 79% of the time. In 3% of the cases, humans

disagree or strongly disagree. In contrast, in the 100 human-written descriptions, hu-

mans agree or strongly agree 88% of the time and disagree or strongly disagree 3%

of the time. Listing 5.21 shows an instance that the humans strongly disagree. For

this code fragment, our system generates “set properties.” On the 5-point Likert scale,

the average score of the 100 system-generated descriptions was 4.24, while the average

score of the 100 human-written descriptions was 4.43. Our automatic system was rated

as adequate and concise abstraction of the code block’s high-level action only slightly

lower than the rating of human-written descriptions.

Listing 5.21: Disagreed action unit 1.

1 setButton(context.getText(android.R.string.ok), this);
2 setButton2(context.getText(android.R.string.cancel), (

OnClickListener) null);
3 setIcon(R.drawable.ic_dialog_time);

Listing 5.22: Disagreed action unit 2.

1 removeLastButton = new IcyCommandButton (" Remove last", new IcyIcon
(ResourceUtil.ICON_SQUARE_DOWN));

2 removeLastButton.setActionRichTooltip(new RichTooltip (" Remove last
Z slice",

3 "Remove the last Z slice the sequence "));
4 removeLastButton.addActionListener (...);
5 addCommandButton(removeLastButton , RibbonElementPriority.MEDIUM);

Table 5.2 presents the confusion matrix for the opinions of human-written and

system-generated descriptions. The cells below the diagonal are numbers of instances

that our system’s generated descriptions are rated better than human-written descrip-

tions, the cells above the diagonal are numbers of instances that human-generated

descriptions are rated higher than system-generated descriptions, and the cells along

the diagonal are numbers of instances when the system and human-written descrip-

tions are rated equally. Out of the 100 code fragments, our system’s descriptions are
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rated better than or equally well with human-written descriptions in 63 cases. Al-

though human-written descriptions are rated better than system-generated systems in

37 cases, over half of these human-written descriptions were ranked 5 (Strongly Agree)

while the system-generated description for the same case was ranked 4 (Agree), indi-

cating that the evaluators still agree that the system-generated description serves as

an adequate and concise abstraction of the code block’s high-level action. In addition,

when we run the Wilcoxon signed-rank test to show whether there is a statistical differ-

ence between the opinions of human and system-generated descriptions, the two-tailed

P=0.12088, which means the difference between human and system is not significant.

XXXXXXXXXXXXSystem
Human

1 2 3 4 5

1 0 0 0 1 1
2 0 0 0 0 1
3 0 0 3 10 5
4 0 2 3 5 19
5 1 0 3 13 33

Table 5.2: Confusion matrix of system-generated scores and human-written scores

5.7.3 RQ3: Cost of Execution

The purpose of the third research question is to evaluate the execution cost of

using our object-related action unit description generator. Our automatic identification

and description generator for object-related action units is meant to be run offline

and depends on ASTs only. To obtain an estimate of execution time, we ran our

description generator on a desktop machine running Ubuntu 14.04.2 LTS with a 3.4GHz

Intel Core i7-2600 CPU and 16 GB memory. Java version 1.8.0 66 was used. The

description generator took 90 minutes to process 5000 randomly selected open source

Java projects. Thus, on average, each project took 1.08 seconds. We believe this time

cost is reasonable and our technique could easily be run on any individual project or a

large number of projects.
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5.7.4 Threats to Validity

Our results may not generalize to other Java programs. To mitigate this, we used

a repository that contains 6000 projects from GitHub. We use 1000 projects to develop

our technique and 5000 for testing. Although our analysis is not specific to the Java

programming language, the evaluation results may not generalize to other programming

languages. Our evaluation relies on human judges, which could be subjective or biased;

to mitigate this threat, each evaluator is assigned a randomly selected set of code

fragments, the evaluators were shown each code fragment and question in a random

order, and each code fragment was annotated by 2 different developers.

5.8 Summary and Conclusions

In this chapter, we presented a novel technique to automatically generate natural

language descriptions for object-related action units, which implement intermediary

steps of a method and commonly occur in method bodies. Our evaluation results

demonstrate that we can effectively identify the action, theme and secondary arguments

as the content for the description. Human opinions of our automatically generated

descriptions showed that they agree that the automatically generated descriptions are

an adequate and concise abstraction of the code block’s high-level action, and compared

to human-written descriptions, they are viewed within .2 on a 5-point Likert scale (4.24

versus 4.43) in adequacy and conciseness. The ability to automatically identify and

generate descriptions for object-related action units has several important applications,

including generating internal comments, improving method summaries, and identifying

potential refactored code fragments and naming for those refactored units.
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Chapter 6

EXAMPLE APPLICATION: AUTOMATIC BLANK LINE INSERTION

This chapter explores the relation between action units and blank lines, and

presents a blank line insertion tool based on recognition of action units. Our tool,

SEGMENT, takes as input a Java method, and outputs the method with blank lines

inserted in appropriate places.

6.1 Problem and Motivation

Blank lines help readability by visibly separating code segments into logically

related segments [108]. Software engineering books [14, 95] suggest using blank lines

to break up big blocks of code. Recent studies with humans judging software readabil-

ity [17] even suggest that simple blank lines may be more important than comments for

readability. We have also observed that developers use vertical spacing inconsistently.

Integrated development environments can easily indent code based on syntax, but do

not currently support automatic blank line insertion.

Blank lines are clearly not inserted into code at arbitrary locations. We hy-

pothesize that most blank lines are used to separate individual steps of a method.

Therefore, blank lines are related to action units. We use this assumption to enable

blank line insertion.

6.2 State of the Art

There are readability metrics that help to identify potential areas for improve-

ment to code readability. Through human ratings of readability, Buse et al. [17] de-

veloped and automated the measurement of a metric for judging source code snippet

readability based on local features that can be extracted automatically from programs.
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Among of the many features is indentation. More recently, Daryl et al. [86] formulated

a simpler lightweight model of software readability based on size and code entropy,

which improved upon Buse’s approach. Daryl et al. observed indentation correlated

to block structure to have a modest beneficial effect. Other earlier works measured

program characteristics with different definitions of readability [3, 12].

Organizations employ coding standards to maintain uniformity across code writ-

ten by different developers, with the goal of easing program understanding for newcom-

ers to the code [47, 55, 108, 109, 134]. Some guidelines [36, 108, 134] clearly specify

the number of blank lines that should be used to separate methods in a class and

class fields. They suggest that blank lines should be used to separate different logical

sections within methods. Automatic blank line insertion is complementary to these

efforts.

6.3 Algorithm for Automatic Blank Line Insertion
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Figure 6.1: Automatic Method Segmentation Process

Our approach to automatically inserting blank lines into code to segment a

Java method follows the process shown in Figure 6.1. The input is the method body
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statements in the form of an abstract syntax tree (AST), with their associated variable

definitions and uses. The first phase identifies action units. Because this phase is

focused on identifying action units without concern for overlap, it sometimes results

in statements at the separation points being included in two action units. The second

phase, ‘Remove action units overlap’, decides where to place each statement involved

in overlapping action units. Sometimes, the output of the first phase results in some

very large syntactically-similar segments. The third phase, ‘Refine syntactically-similar

segments’ further segments these large blocks into smaller blocks. In the final phase,

we consider merging small blocks with their neighbouring blocks.

In the remainder of this section, each subsection describes the individual phases

of our approach. The algorithm is applied first on the overall method, and then is ap-

plied recursively on the bodies of compound statements including conditionals, loops,

try, and synchronized, when the bodies consist of four or more statements. The thresh-

old is set to four based on our observations of developers’ blank line insertions.

6.3.1 Phase I: Identify Action Units

The first phase identifies action units. In addition to the two major kinds of

action units: object-related and E-SWIFT, we also group statements with similar syntax

together, which we call Syntactically-Similar segments (SynS). Recall from Chapter 3,

a SynS segment is a consecutive sequence of statements in which every statement

belongs to the same syntactic category, thus related through syntax. A statement’s

syntactic category is its class of programming language syntax, which we enumerate as

one of {init, declare, assign, method call, object method call, others}, as exemplified

in Table 6.1. Notice that SynS segments are not action units, but we identify them

in this step for blank line insertion. Furthermore, each return statement is separately

treated as a block.
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Table 6.1: Syntactic Categories with Examples

Syntactic Category Example Format

init type name = ...;
declare type name;

type name-1, name-2, ..., name-n;
assign name = ...;

name.property = ...;
method call methodcall(...);
object method call object.methodcall(...);
Others:
super method call super(. . . );
postfix expression i–;
prefix expression ++i;
infix expression a+b;
throw throw . . . ;
return return ...;

6.3.2 Phase II: Remove Action Unit Overlap

Sometimes, two consecutive action units have an overlapping statement. The

second phase focuses on making decisions on where to insert blank lines for the case

of overlapping statements. Consider Listing 6.1, where lines 1 and 2 form a SynS

block, and lines 2 and 3 form an object-related action unit. While the object-related

action unit typically has a strong relation between its statements, we want to keep

lines 1 and 2 together because they are not only both initializations (i.e., syntactically-

similar), but the words in their names indicate they are also very similar semantically.

This situation motivates a measure of different levels of similarity between consecutive

statements (statement pairs) in a SynS block.

1 ActionMap am = tlb.getActionMap ();
2 InputMap im = tlb.getInputMap ();
3 im.put(prefs.getKey (), "close");
4 am.put("close", closeAction);

Listing 6.1: Overlapping Statement between SynS and DFC Blocks
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6.3.2.1 Statement-pair Similarity

We define a statement-pair similarity level for consecutive statements of the

same syntactic category based on word usage and naming conventions. The statement-

pair similarity level is computed differently for each syntactic category due to the

available information in that kind of statement. The similarity level is defined as 1, 2,

or 3, with 3 being the most similar. Similarity level is defined as 0 if there is no added

similarity beyond syntactic category. Table 6.2 shows the similarity level table. For

example, the similarity level between a pair of object method call statements is defined

as 1 if either the object or method names are similar to each other, while it is defined

as level 2 if both object and method names are similar, respectively.

The statement-pair similarity level computation utilizes notions of id (name)

similarity and right-hand side (RHS) similarity. We now describe our ID-Similarity

function and RHS-Similarity function and then finally explain how we make decisions

on which block to include the overlapping statements, based on the similarity levels in

neighboring SynS blocks.

6.3.2.2 ID-Similarity Function

The ID-Similarity function returns true or false based on the similarity in ap-

pearance of two variable names, type names or method names given as input. It is

called to implement the statement-pair similarity table, whenever similarity between

two types, variable names, object names, or method names is needed. For the purpose

of blank-line insertion, similarity of two identifiers is defined in terms of appearance,

not based on meaning.

The first step is to split the input strings by camel case letters (i.e., capital-

ized substrings), special characters such as underscore, and numbers. We call each

of the component substrings of each identifier, words, while there may be abbrevia-

tions or non-dictionary words. There are several cases to consider in computing the

similarity of the identifiers. If both identifiers are single words, ID-Similarity returns

true. For example, ID-Similarity is true for names x and y. If the identifiers are
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multi-word with the same number of words, and there is at least one exact matching

word in the same position of the identifiers, ID-Similarity returns true. For example,

ID-Similarity is true for strTmp and strMsg. If the identifiers are multi-word with

one identifier having one more word than the other identifier and either the first or

last words match, ID-Similarity returns true. For example, ID-Similarity is true for

srcPixels and dstInPixels. ID-Similarity returns false for all other situations.

6.3.2.3 RHS-Similarity Function

The RHS-Similarity function takes two RHS’s as input and returns true or false

based on a simple similarity measure. The RHS of an assignment or initialization

statement can be any of: constant, single variable name, class instance creation, infix

expression, prefix expression, postfix expression, cast expression, method call, or object

method call.

In general, if both RHSs are the same syntactic category (e.g., both class in-

stance creations), then RHS-Similarity returns true. If both are either method calls

or object method calls, then ID-Similarity is called on RHSs. If ID-Similarity returns

true, then RHS-Similarity returns true, else false. This is illustrated below:

Input: getPrintAction(); and getCloseAction();

RHS-Similarity returns: true

Table 6.2: Statement-pair Similarity Levels in a SynS Block

Syntactic type 1 2 3
init type or type + name or type + name + RHS

RHS type + RHS
declare type - -
assign name or name + RHS

RHS
object-method call object or object + methodname

methodname
method call methodname - -
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6.3.2.4 Placement of Overlapping Statements

The placement of an overlapping statement among two consecutive action units

depends on the kind of each consecutive action unit, among SynS, object-related, and

E-SWIFT. Here, we describe the heuristics for placing the overlapping statement into

the appropriate action unit of a consecutive action unit pair.

1. (object-related, object-related) Pair. If the overlapping statement S is an init state-

ment, then S is placed as the first statement of the second object-related action unit.

Otherwise, if S is any other kind of statement, the two object-related action units are

merged into a single object-related action unit. This heuristic is based on our obser-

vation that init statements often start an object-related action unit, while non-init

statements do not. For example, in Listing 6.2, Line 3 is the overlapping statement.

Lines 1-3 form an object-related action unit and Lines 3-4 form another object-related

action unit. We determine Line 3 to be included in the second object-related action

unit because of the initialization of r. We would segment before line 3, and place the

line in the second object-related action unit as shown in Listing 6.3.

1 Tree t = new Tree();
2 t.getNodeTable ().addColumns(LABEL_SCHEMA);
3 Node r = t.addRoot ();
4 r.setString(LABEL , "0,0");

Listing 6.2: (object-related object-related) Example; Before Insertion

1 Tree t = new Tree();
2 t.getNodeTable ().addColumns(LABEL_SCHEMA);

3 Node r = t.addRoot ();
4 r.setString(LABEL , "0,0");

Listing 6.3: (object-related object-related) Example; After Insertion

2. (SynS, object-related) / (SynS, E-SWIFT) . Normally, the object-related and E-

SWIFT relations between statements is stronger than SynS relations, and the overlap-

ping statement would be placed in the object-related or E-SWIFT action unit. For

example, in Listing 6.4, Line 2 forms a SynS with Line 1 and forms an object-related

action unit with Lines 3 and 4. The blank line is placed before Line 2 as shown in
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Listing 6.5, because object-related relation is stronger than SynS.

1 Image image = ii.getImage ();
2 MediaTracker mt = new MediaTracker ();
3 mt.addImage(image , 0);
4 mt.waitForID (0);

Listing 6.4: (SynS object-related) Example; Before Insertion

1 Image image = ii.getImage ();

2 MediaTracker mt = new MediaTracker ();
3 mt.addImage(image , 0);
4 mt.waitForID (0);

Listing 6.5: (SynS object-related) Example; After Insertion

3. (object-related, SynS) Pairs. To determine the exceptional situations when the

overlapping statement should be placed with the neighboring SynS block instead of

the object-related or E-SWIFT action unit, we use the statement-pair similarity level.

We say that two consecutive statements are highly similar when the statement-pair

similarity level is 2 or 3, for those syntactic categories that have defined levels at least

2.

For statements in the method call or declare syntactic categories, we designate

level 1 similarity as highly similar. In Listing 6.6, Lines 1-3 form an object-related

action unit, but Lines 3 and 4 form a highly similar SynS block. Thus, Line 3 is placed

in the SynS block as shown in Listing 6.7.

1 icon_url = getResource ();
2 icon = new ImageIcon(icon_url);
3 o1.putValue(Action.SMALL_ICON , icon);
4 o2.putValue(Action.SHORT_DESCRIPTION , description);

Listing 6.6: (object-related SynS) Example; Before Insertion

1 icon_url = getResource ();
2 icon = new ImageIcon(icon_url);

3 o1.putValue(Action.SMALL_ICON , icon);
4 o2.putValue(Action.SHORT_DESCRIPTION , description);

Listing 6.7: (object-related SynS) Example; After Insertion

4. (object-related, E-SWIFT) Pair. E-SWIFT’s preamble statement may form an

object-related action units with its other statements. Based on our manual analysis
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of blank line usage, we consider the object-related relation to be stronger than E-

SWIFT, thus the overlapping statement is placed in the object-related action unit. In

Listing 6.8, blank line is inserted after Line 3, despite Line 3 initializes a variable that

is used in the if condition.

1 int imageWidth = image.getWidth(null);
2 int imageHeight = image.getHeight(null);
3 int imageRatio = imageWidth / imageHeight;

4 if (thumbRatio < imageRatio) {
5 thumbHeight = (thumbWidth / imageRatio);
6 } else {
7 thumbWidth = (thumbHeight * imageRatio);
8 }

Listing 6.8: (object-related E-SWIFT) Example; Line 3 Overlap

6.3.3 Phase III: Refine Syntactically-Similar Segments

In the first phase, Identify Action Units, SynS segments are separated based

only on the syntax type of each statement. The SynS segment could be very large.

This phase insert blank lines to the large SynS segments that sometimes result from

the first step.

The decision to further segment a SynS segment depends on (a) the length of

the block and (b) whether there exist consecutive subsequences with different similarity

levels. If a block only contains 2 or 3 statements, there is no need to segment the block

further. However, if the block contains more statements, it is reasonable to segment

the block. The basic idea of our approach is that if a sequence contains statements

that are all the same similarity to each other, there is no need to break the sequence.

However, readability may be improved by segmenting into groupings that have different

similarity levels.

1 in.start();
2 out.start();
3 error.start();
4 out.join();
5 error.join();

Listing 6.9: SynS Clustering Example; Before Insertion
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1 in.start();
2 out.start();
3 error.start();

4 out.join();
5 error.join();

Listing 6.10: SynS Clustering Example; After Insertion

We designed an algorithm to cluster syntactically-similar statements based on

a statement-pair similarity level. The clustering algorithm can be described as follows.

The input of the algorithm is the SynS segment which contains more than 3 statements.

The clustering algorithm performs a sequential scan through the SynS block with a

sliding window of three statements, a, b, c. At each point in the scan, the similarity

levels of each of the two pairs is computed, and the difference between the similarity

levels of the two statement pairs involved in the three statements (a, b) and (b, c) is

computed. If this difference in levels is nonzero, then we insert a blank line between the

pair with the lowest similarity level. At the end of the algorithm execution, there will

be a blank line between groupings of consecutive statements with the same similarity

level.

Consider the example shown in Listing 6.9. The algorithm will produce similar-

ity levels of {1, 0} in the second sliding window which contains Lines 2-4. Lines 2 and

3 have similarity level 1, and Lines 3 and 4 have similarity level 0. The difference is 1

which is greater than 0. Therefore, a blank line is inserted between Lines 3 and 4, as

Lines 3 and 4 have lower similarity level. Listing 6.10 shows the code after insertion.

6.3.4 Phase IV: Merge Single Lines

Sometimes because we examine statement pairs individually, we create very

small blocks of 1-3 statements, which may harm readability. This last phase focuses

on merging very small blocks.

We currently target single-line blocks, with the goal of merging them with one of

their neighboring blocks. Listing 6.11 shows an example of three statements that were

single-statement blocks after the first three phases, but can be merged into a single

block because they have similar RHSs. Our strategy is to look for similar features
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JLabel label1 = new JLabel("Search Name:");
searchNameField = new JTextField (12);
JLabel label2 = new JLabel("Search Type:");

Listing 6.11: Example Single-line Blocks Being Merged

between the single-line block and its neighboring blocks using features summarized in

Table 6.3.

6.4 Evaluation

Table 6.3: Similar Features between different kinds of statements

Syntactic Categories Example Format Condition

init & declare type name = ...; type similar
type name;

init & assign
type name = ...; RHS or
name = ...; name similar

methodcall
methodcall(parameter); method call or

& object-methodcall object.methodcall(parameter); param similar

We implemented the automatic blank line insertion algorithm described in Sec-

tion 6.3 as a prototype tool called SEGMENT, for Java methods. Our evaluation

focused on the following questions:

• How does SEGMENTcompare with developers’ insertions?

• How does SEGMENTcompare with readers’ notion of where blank lines should

be inserted?

We designed two studies to investigate these questions. The first study com-

pares SEGMENT-generated blank lines with original developers’ usage of blank lines.

Developers’ usage should reflect how developers conceptualize code as different blocks.

Their insertions inform us on how code is segmented into logical blocks from a devel-

oper’s (writer’s) perspective. However, since we randomly selected our evaluation data

set from open source projects, the data set could include methods where developers

may not have paid sufficient attention to blocks and blank line insertions. For this
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reason, we developed our second study in which blank lines are inserted by people

(newcomers to the code) reading the method code. In contrast to the first study, the

blocks are segmented from a reader’s perspective.

Both studies involve human judges. We conducted a preliminary study to better

understand the subjectivity of the blank line insertion task and how humans may differ

in their opinions of where blank lines should be used. We gave 3 methods with no blank

lines to 12 evaluators and asked them to insert blank lines at appropriate places. We

found that at least 2 out of 3 agreed on nearly every blank line location. Based on these

results, we developed our studies to have each method to be randomly assigned to 3

human judges and take the majority opinions when there was no unanimous opinion.

We engaged 15 human evaluators as our subjects, including 6 software engi-

neers, 1 faculty member, 6 graduate students, and 2 undergraduates. Evaluators have

programming experience with C++/Java ranging from 4 to 20 years, with a median of

7 years. Nine of the evaluators considered themselves as expert or advanced program-

mers. Six evaluators have software industry experience ranging from 1 to 10 years.

For the two studies, we chose different sets of 50 methods randomly from 7

projects (from 18186 methods). Table 6.4 provides information about the non-trivial-

sized, open-source projects we used from sourceforge [100]. Although we are studying

blank lines, evaluators need to read the entire method to judge blank line insertion.

Thus, to avoid making the task too tedious, we selected methods ranging in size from

10 to 40 lines, neither too short for blank line segmentation nor too long.

Table 6.4: Subject projects in study. kloc: 1000 lines of code

Project #methods kloc
GanttProject 4956 60
Jajuk 2139 44
PlanetaMessenger 1142 22
Dguitar 1211 20
DrawSWF 2747 41
JRobin 1913 30
SweetHome3D 4078 73
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The same evaluators participated in both studies. In the first study, the human

evaluators examined the output of SEGMENT and the developers’ usage of blank lines.

Thus, to reduce the potential bias that the first study may have on human opinions

in the second study, evaluators completed the second study before they started on the

first study.

6.4.1 Developer-written vs. SEGMENT-inserted

In the first study, humans were presented with two copies of the 50 methods,

one with SEGMENT-inserted blank lines and one with developer-written blank lines.

To let evaluators easily compare SEGMENT and developer-inserted blank lines, a web-

based evaluation system was developed to show each pair of method copies, left and

right on the screen with highlighting by using SyntaxHighlighter [1]. To reduce possible

bias, our web system randomly places the SEGMENT-inserted and developer-inserted

copies on the screen, and randomly orders each evaluator’s 10 methods to avoid learning

effect.

To enable detailed analysis of situations, we manually categorized the differences

between the blank line insertion into 4 types:

• Type 1: SEGMENT inserts a blank line; developer does not.

• Type 2: Developer inserts a blank line; SEGMENT does not.

• Type 3: Developer and SEGMENT insert a blank line at different locations, i.e.,

for the same group of statements, the developer inserted at some location, but

SEGMENT inserts at another nearby location. For example, in Listing 6.12, if

SEGMENT inserts between lines 2 and 3, while the developer inserts between

lines 3 and 4, then this is called a Type 3 difference.

• Type 4: Developer and SEGMENT insert a blank line at the same location.

When there was a difference between the system and developers as in types 1-3,

we asked evaluators which blank line insertion is better or whether it matters for the

readability of the code. We also asked overall which method copy with blank lines was
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1 Vector chars = new Vector ();
2 byte[] aChar = new byte [1];
3 int num = 0;
4 while( ( num = in.read( aChar )) == 1 )

Listing 6.12: Type 3 Difference

better. When a blank line was inserted by both SEGMENT and developer in the same

location (type 4), we asked if they agreed with the blank line.

The SEGMENT system inserted blank lines in the same locations as the original

developers in 128 of 247 locations analyzed (i.e., 52% of the locations were Type 4).

The human evaluators agreed with 127 of the common 128 placements, 99.2% of the

common occurrences. In all the 119 cases where SEGMENT differed in some way

from the original developer in blank line insertion (Types 1-3), the human evaluators

preferred the SEGMENT system in 91 situations, 79.1% of the time. We believe these

results are very encouraging. Overall in 128+91=219 cases out of 247(i.e. 88.7%), the

system-generated blank lines are as good as or better than those inserted by developers.

Recall these methods all had some blank lines and also do not represent cases where

developers were oblivious to vertical spacing considerations.

Next, when we asked the human evaluators to judge the blank line insertion as

a whole for entire methods, they reported 33 of 50 instances where SEGMENT was

preferred versus 10 of 50 instances where the developer’s was preferred overall, and 4 of

50 equally well between the developer and system. Thus, SEGMENT output for entire

method segmentation was at least as good or better in 70% of the methods examined.

Analysis. We analyzed 24 locations where the majority of human evaluation judged

developers’ insertions to be better than SEGMENT. We found nearly all of these cases

fall into two general cases.

Nine of twelve Type 1 cases (where SEGMENT insertion was judged to be

extraneous) occur in the preamble of a method. The human judges (as well as the

developers) expect to see lines of variable declarations and initializations kept together,

and apparently do not believe that it is necessary to insert blank lines in this part (as
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long as it is not long). However, the insertion of SEGMENT does not distinguish

between different general regions of a method. For example, SEGMENT separates the

following two statements because there is neither similarity between them nor will they

be a SynS action unit (because the first statement is init and second statement is a

declare.) If we don’t distinguish between init & declare statements and allow for such

blocks in the preamble, nearly all these cases will be handled similar to developers.

boolean bSocketOk = true;

java.io.IOException e;

We also examined six of the ten cases for the Type 2 differences (developer

has inserted blanks but SEGMENT does not). These cases were at the beginning of

the method. SEGMENT does not insert blank lines after a method’s signature; more

specifically, after ‘{’ and before the method body. However, in these six cases, because

of the number of parameters in the signature and the substantial preamble block, the

developers inserted blank lines to separate the method signature from the body (see

example below) and the evaluators agreed with this vertical spacing.

public void onRegisterNewUser( java.lang.String strNickName ,
java.lang.StringBuffer strNewUserId , java.lang.String
strPasswd ) {

userDetails.setNick( strNickName );
userDetails.setPassword( strPasswd );
session.setUser( userDetails );

Among the remaining few cases, the issue was mostly that our current imple-

mentation does not cover certain cases, although SEGMENT’s underlying approach

could have covered these cases.

6.4.2 Gold Standard vs. SEGMENT-inserted

To obtain a gold standard for blank line insertions, we gave evaluators a set of

Java methods without any blank lines and asked them to insert blank lines at appro-

priate locations. To account for variation in human opinion, we gathered 3 separate

judgments for each method. Thus, we obtained 150 independent method annotations
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totally. To control for any learning effects, each annotator’s 10 methods were shuffled

and shown in different orders. Also, the 15 evaluators were randomly put into 5 groups.

For each method, we manually compared all 3 human-inserted blank line copies

of a given method line by line. We defined the gold standard to be the locations where

at least 2 out of 3 evaluators inserted a blank line.

The results of comparing SEGMENT’s blank line insertion against this gold

standard are shown in Table 6.5. The results quite strongly suggest that SEGMENT’s

automatic insertion agrees with the gold standard, 161/179=89.9% of the gold standard

insertions are also locations where SEGMENT inserts blank lines.

Table 6.5: Automatic Blank Line Insertion Versus Gold Standard

Human Majority SEGMENT-inserted Percentage
3/3 Agree 93 92 98.2%
2/3 Agree 86 69 80.2%
Total 179 161 89.9%

SEGMENT inserted 234 blank lines in total. Thus, there are 73 blank lines

where the majority of human judges did not insert any blank line. However, in 44

among those positions, one of the human judges had inserted a blank line where SEG-

MENT did. So, there are 29 positions where SEGMENT inserted a blank line where

none of the human judges did.

We analyzed these 29 cases and again observed two major kinds of situations.

13 of these cases indicate that the merging in Phase IV is not aggressive enough. Recall

Phase IV merges any two or more neighboring single-line blocks where there is at least

some similarity between the statements. The example below has two statements that

have no similarity at all, but evaluators put them together.

flags |= 0x2005;

startTag( TAG_DEFINETEXTFIELD , fieldId , true );

The second major type of error cases is due to the fact that SEGMENT makes its

decisions to insert blank lines oblivious of location in the code. Six of the 29 locations
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were inserted blank lines after ‘}’ where it appears there is already sufficient vertical

spacing and an additional blank line was not necessary. For example below, consider

the blank line before dispose statement in the code. As noted before, SEGMENT

inserts a blank line after the try block. However, because the dispose statement is a

single-line block followed by just a ‘}’ in a line by itself and another blank line, none

of the human judges inserted a blank line above the dispose statement. We believe

that Phase IV should consider merging of such single-line blocks.

i f ( prnJob . p r in tD ia l og ( a t t r ) ) {
try {

. . .
} catch ( Exception Pr intExcept ion ) {

. . .
}

d i spo s e ( ) ;
}

setCursor ( Cursor . getPrede f inedCursor ( ) ) ;
}

6.5 Summary and Conclusion

To our knowledge, this is the first automatic system to insert blank lines into

source code towards improving code readability and locating points for internal docu-

mentation. According to programmers who judged our generated blank lines, the au-

tomatically generated blank lines are accurate, and separate different logically-related

blocks. Our first evaluation study shows that 88.7% of the time, the system-generated

blank lines are as good as original developer-written ones or even better. The second

evaluation study suggests that blank lines generated by the automated system match

the majority of human opinions of where vertical spacing should be used.
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Chapter 7

A STUDY OF SOFTWARE READERS’ INTERPRETATION OF
ACTION UNITS

In previous chapters, we presented our notion of action units and developed the

techniques to identify actions for loop-if and object-related action units, and used action

units to insert blank lines automatically into methods toward improving readability.

This chapter presents our study of software readers’ interpretation understanding of

the concept of action units.

7.1 Research Questions

We designed our study to answer the research question: how does our notion of

action units compare with software readers’ interpretation? More specifically, we inves-

tigated several smaller questions. Do readers partition the method into non-overlapping

action units or do they select action units with some statements not included and some

action units overlapping? Which action units fit into the types that we identified and

do any not fit into the defined types of action units? These questions enable us to un-

derstand the essential interpretation of action units by software readers and how they

actually annotate action units. Therefore, we learn the essential differences between

our analysis of developers’ code and the general software readers’ interpretation.

7.2 Methodology

We used developers in our study to find out what they consider to be action

units. They were told to consider action units as “an algorithmic step, typically more

than one statement in length, within a method body”. We also provided them with a

method and our identification of action units within them. Participants were then pro-

vided with multiple methods and asked to identify action units within these methods.
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To conduct this study, we randomly selected 2000 open source projects from

a repository [116] that contains 39,000 open source Java projects. Among 2,614,381

methods, we randomly selected 100 methods that each have 10-20 statements. Because

we focus on the readers’ perspectives of action units, blank lines were removed from

each of the 100 methods. We asked 10 developers to participate in this study. Their

programming experience ranges from 5 to 15 years, with a median of 9 years. Six

developers have software industry experience. We randomly assigned 10 methods to

each of the 10 developers and asked them to mark action units in these methods. The

complete survey we used is in Appendix A.

7.3 Results and Implications

The readers indicated action units by either highlighting different portions of

the method or using special marks to separate the methods. Among 100 methods,

there are 382 segments annotated by our readers. We manually examined each of

the 382 segments and map them to the different types of action units based on our

conceptualization of these types (and not just the syntactic definition used in their

identification).

The first observation is that all readers annotate action units by partitioning

the whole method with every statement part of some action unit. Thus, there is no

overlap of any action units and every statement of a method belongs to some action

unit. Table 7.1 shows the types of action units identified by the readers along with

their frequencies.

The most predominant type is object-related which occurs 144 times in the

readers’ identified action units. 96 out of the 144 object-related action units can be

identified by our technique. The remaining 48 action units in this category contain

either a short loop or a conditional statement. However, the loop or the conditional

still assign or use the object as required in the definition of object-related action unit

given in the template shown in Figure 3.1. Thus, although these examples will not be

recognized by our method because of the presence of loop or conditional, we believe they
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Table 7.1: Frequency of each type of action unit identified by readers

Action Unit Type Count

object-related 144

loop 12

conditional 65

exception-handling 2

single statement 97

syntacically-similar 51

Not an AU 11

Total 382

still fit our concept of object-related action units. Hence, in the future, our object-

related action unit templates should be extended to include structured statements

controlling them.

12 selected action units fit into our definition of loop action unit. Note that

the 12 loops do not include all loops found in the 100 methods used in the study.

As mentioned above, some of them were included inside object-related action units.

However, if we do not include these cases, all the remaining loops found in the 100

methods were selected as loop action units and our technique would be able to capture

all cases of the readers highlighting. Among the 12 loops, there are 2 loop-ifs. While

this proportion is different from the prevalence reported in Chapter 4, it can be noted

that the numbers are few in this case.

Next, 65 selected action units fit into our definition of conditional action unit. As

with loops, all other conditionals that appeared in these 100 methods were considered

to be among the object related action units or loop-ifs. Our technique would be able

to capture all cases.

As mentioned in Chapter 3.4 that there could be individual statements that

perform a single action by themselves. Readers indicated 97 such cases. There is

not clear relation between the single line and its previous or next line. Each of these

single statements performs an action by themselves.Among the 97 cases, 36 are return

statements and 34 are method calls with a leading verb in the method names. The

others are assignment, declaration or initialization statements. Our technique would
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recognize those single statements as action units when there is no relation between the

current statement and its previous or next statement. Also, as discussed in Chapter 3.5

that statements with similar syntax are frequently grouped by developers. We found

51 such cases from the 382 reader-annotated segments. These segments are sequences

of declarations or initializations of some variables.

Thus,371 out of 382 cases fit our concept of action units and there are only 11

segments that do not. Listing 7.1, 7.2 and 7.3 show three cases where the statements in

each segment do not have obvious relations with each other. Therefore, our technique

would not recognize them as action units. However, if we try to consider the function

of the code, we can see that the statements in each of the three segments perform a

resource releasing, clean-up and initialization action respectively. We did not develop

any method to identify them, but they fit into our definition of action units.

1 endDrag ();
2 mFakeDragging = false;

Listing 7.1: None Action Unit 1

1 infoTA.clear();
2 stnTable.setBeans(new ArrayList ());
3 stationMap.setStations(new ArrayList ());
4 obsTable.clear ();
5 selectedCollection = null;

Listing 7.2: None Action Unit 2

1 __equalsCalc = obj;
2 boolean _equals;
3 _equals = true &&
4 ((this.objectId ==null && other.getObjectId ()==null) ||
5 (this.objectId !=null &&
6 this.objectId.equals(other.getObjectId ()))) &&
7 ((this.extension ==null && other.getExtension ()==null)

||
8 (this.extension !=null &&
9 this.extension.equals(other.getExtension ())));

10 __equalsCalc = null;

Listing 7.3: None Action Unit 11

Listing 7.4, 7.5 and 7.6 show three cases where the statements in each segment

are related with an object on the right-hand side of the first declaration/assignment, or
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an object that is the parameter of a method call. On the other hand in our templates

for object-related action units, the object in question is either on the left-hand side of

an assignment or the object that a method is invoked on. Our motivation for defining

such a template was so that all the statements together accomplish a single high-

level action. When statements are related each other by an object in their parameter,

the sequence tends to have multiple actions in general. However, for the three cases

here, the sequences implement a single high level action and requires more advanced

technique to identify the action. In the future, we can consider them as a new type of

object-related action unit and perform a deeper analysis of such cases.

1 CheckInResponse other = (CheckInResponse) obj;
2 if (obj == null) return false;
3 if (this == obj) return true;
4 if (__equalsCalc != null) {
5 return (__equalsCalc == obj);
6}

Listing 7.4: None Action Unit 3

1 toggle.put(sp , tog);
2 if (! silent) {
3 sp.sendNotification("Exception Type Changed", ChatColor.GREEN +

tog.toString (), Material.CACTUS);
4}
5 updateExceptionPages(sp , currentPage.get(sp), sh , r);

Listing 7.5: None Action Unit 4

1 proxyClient = connection;
2 ProxyProtocolDriver driver = new ProxyProtocolDriver ();
3 driver.connection = connection;

Listing 7.6: None Action Unit 8

Listing 7.7 shows a case with three statements related to each other by the

object jpdl. In this case, jpdl is defined in the first statement and used in both the

second and the third statement. In our object-related action unit template, we only

allow the defined object to be used only in one statement. The reason is that when

multiple statements use the object, the actions of those statements could be different,

and therefore they perform more than one action.
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1 final File jpdl = new File(getJpdlFile ());
2 assertThat("Indicated input file missing.", jpdl.exists (), is(true)

);
3 if (validateJpdl) {
4 assertThat("Not a valid jPDL definition.", JbpmMigration.

validateJpdl(FileUtils.readFileToString(jpdl)), is(true));
5}

Listing 7.7: None Action Unit 5

Listings 7.8, 7.9, 7.10 and 7.11 show the other four reader-annotated units that

our approach does not recognize. Unless, there are hidden semantics based on readers’

deeper understanding of the code, we believe those four cases do not form action units,

since we believe they achieve multiple rather than single action. In Listing 7.8, the

two statements do not have any obvious clues that would be link them together. It is

unclear they should be consider as a single unit rather than been broken up further

as two action units. In Listing 7.9, Lines 2-4 are related by the object bpmn (even not

an object-related action unit by our definition). However, the first statement does not

appear have any relation with the next three statements. In Listing 7.10, Lines 1,2

and 5 are related with each other by the variables tf and duration, but Lines 3 and

4 have no relation with the other three lines. In Listing 7.11, Lines 1-3 are related

by the object fcBeans, but the last line obvious relation with the first three lines. In

Listing 7.11, Lines 1-3 fits the template for an object-related action unit like Listing 7.6,

but the last line does not seem to have any obvious relation with the first three lines.

We cannot relate the last line with the first three line with our own understanding of

the code.

1 actionCtx.setForwardConfig(forwardConfig);
2 return CONTINUE_PROCESSING;

Listing 7.8: None Action Unit 6

1 JbpmMigration.main(new String [] { jpdl.getPath (), XSLT_SHEET ,
getResultsFile () });

2 bpmn = new File(getResultsFile ());
3 assertThat("Expected output file missing.", bpmn.exists (), is(true)

);
4 assertThat("Not a valid BPMN definition.", JbpmMigration.

validateBpmn(FileUtils.readFileToString(bpmn)), is(true));

Listing 7.9: None Action Unit 7
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1 long tf = System.currentTimeMillis ();
2 duration = tf - t0;
3 Service travelService = chor.getDeployedServiceByName(TRAVEL_AGENCY

);
4 travelWSDL = travelService.getUri () + "?wsdl";
5 System.out.println(Utils.getTimeStamp () + "Choreography #" + idx +

" enacted in " + duration + " miliseconds");

Listing 7.10: None Action Unit 9

1 if (fcBeans.size() == 0)
2 JOptionPane.showMessageDialog(null , "No PointFeatureCollections 

found that could be displayed");
3 fcTable.setBeans(fcBeans);
4 infoTA.clear();

Listing 7.11: None Action Unit 10

In summary, in our study, we found that software readers’ interpretation of

action units is essentially in line with ours. The study also indicates that our current

techniques will need to be generalized for the object-related action units.
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Chapter 8

SUMMARY OF CONTRIBUTIONS AND FUTURE WORK

Nothing in the world can take the place of Persistence. Talent will not;

nothing is more common than unsuccessful men with talent. Genius will not;

unrewarded genius is almost a proverb. Education will not; the world is full

of educated derelicts. Persistence and determination alone are omnipotent. -

Calvin Coolidge (1872 - 1933)

In programming, each method typically consists of multiple high-level algorith-

mic steps, where an algorithmic step is too small to be a single method, but requires

more than one statement to implement. Information at the level of abstraction between

the individual statement and the whole method is not leveraged by current source code

analyses. This dissertation focused on exploring action units as a unit of granularity

between statement and method for effectively improving software maintenance tools.

More specifically, we introduced the notion of action units and identified the kinds of

action units based on a preliminary study. We developed techniques to automatically

identify and describe the actions for loop-if and object-related action units. The action

identification techniques developed for each type of action unit were evaluated through

studies with human judges. Based on the results from the evaluation studies, our

techniques to identify actions for loop-if and object-related action units are effective.

Human opinions of our automatically generated descriptions showed that they agree

that the automatically generated descriptions are an adequate and concise abstraction

of the code blocks high level action. We also developed and evaluated SEGMENT, a

tool that inserts blank lines into Java methods to improve code readability based on

the notion of action units. According to programmers who judged our generated blank

lines, the automatically generated blank lines are as good as original developer-written
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ones or even better, and they match the majority of human opinions of where vertical

spacing should be used. Finally, we conducted a study to explore software readers’

interpretation of action units. The study results indicate that our notion of action unit

is in line with readers’ perspective.

Overall, we have made a big step toward using the level of abstraction between

individual statements and whole methods. The remainder of this chapter summarizes

the dissertation and describes opportunities for future work.

8.1 Summary of Contributions

Chapter 1 motivated the need for source code analysis between the level of

individual statement and the whole method. Chapter 2 presented background on text

analysis for software maintenance tools and surveyed the state of the art in related

domains.

Chapter 3 presented our notion of action units. We first motivated the notion

of action units by using two examples. The examples show that each of the steps

is implemented as a sequence of statements in the method. We then presented the

definition of action units. We conducted a preliminary study in which we use blank

lines and internal comments to learn the types of action units, and described the major

types. Chapter 3 also describes the similar notions to action units.

Chapter 4 described our model of loop actions developed by mining loop char-

acteristics from a large code corpus. We leveraged the available, large source of high-

quality open source projects to mine loop characteristics and develop an action identi-

fication model. The loop characteristics are extracted based on the program structure

and naming information of the code. We used the model and feature vectors extracted

from loop code to automatically identify the high level actions implemented by loops.

We evaluated the accuracy of the loop action identification and coverage of the model

over 7159 open source programs. Based on 15 experienced developers’ opinions in

which 93.9% of responses indicate that they strongly agree or agree that the identified

actions represent the high-level actions of the loops, we conclude that characterizing
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loops in terms of their features learned from a large corpus of open source code is

enough to accurately identify high-level actions. The results also show that the tech-

nique needs only a few comment-loop associations to exist in a large corpus to support

the approach.

Chapter 5 presented our approach to automatically generate natural language

descriptions of object-related action units within methods. Based on a preliminary

study of object-related action units from the available, large source of high-quality

open source projects, we identified the statement that can represent the main action

for the object-related action units, and generated natural language descriptions for

these actions. We conducted two studies to evaluate our technique for action and

argument selection, and natural language text generation. The comparison between

action and argument selections by system and gold standard shows that our approach

identifies the action, theme, and the secondary argument highly accurately. Based on

the 10 experienced developers opinions in which 79% of responses indicate that they

agree that the system-generated description represents the high level actions of the

code fragments, we have demonstrated the feasibility of generating natural language

descriptions for object-related action units.

Chapter 6 described our technique to segment a Java method into action units

to improve code readability. Our study of Java methods with the original develop-

ers’ blank lines showed that action units are often the blank line separated segments.

Developers use blank lines to segment the different sub-action or steps of a method.

However, we also realized that some blank line segments are not action units, and a

statement can form an action unit with either its previous or next line(s). So we de-

veloped heuristics to handle the overlapping statements and the syntactically-similar

statement sequences. Our tool, SEGMENT, takes as input a Java method, and outputs

a segmented version that separates the method by vertical spacing. We reported on an

evaluation of the effectiveness of SEGMENT based on developers’ opinions. According

to programmers who judged our generated blank lines, the automatically generated
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blank lines are accurate, and separate different logically-related blocks. Our first eval-

uation study shows that 88.7% of the time, the system-generated blank lines are as

good as original developer-written ones or even better. The second evaluation study

suggests that blank lines generated by the automated system match the majority of

human opinions of where vertical spacing should be used.

Chapter 7 presented a human study in which we explored software readers’

interpretation of action units. We asked 10 experienced developers to annotate the

action units for 100 Java methods and then manually analyzed their annotations. The

results show that the types of action units that readers annotated are almost the same

as what we defined. In addition to the major types of action units we defined, we also

found 11 out of 382 segments do not fit into our definition of any type of action unit.

Those cases are mainly statements that do not have any obvious relation between each

other. We listed those cases as a future work to investigate.

8.2 Future Work

The level of abstraction between the individual statements and the whole method

provide a new level of information to use for software analysis. In addition to the work

that we have presented, our study opens up several opportunities for future work.

8.2.1 Highlighting Consecutive Similar Action Units

From our analysis of internal comments, we observed that internal comments

often highlight the differences between consecutive similar action units. Instead of

using a full verb phrase to describe an action unit, developers often highlight the

differences using a noun or noun phrase. In Listing 8.1, there are two for loops that

differ from each other in several locations. One difference is in the collection’s name

in the iteration condition. The other differences are in the type and variable names in

the statements inside of each loop. The comments highlight the difference between the

two blocks, focusing on the iteration collection.
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1 // Rules
2 for (int i = 0; i < this.eRules.size(); i++) {
3 EdRule r = this.eRules.elementAt(i);
4 r.setEditable(b);
5 }
6 // Atomic
7 for (int i = 0; i < this.eAtomics.size(); i++) {
8 EdAtomic a = this.eAtomics.elementAt(i);
9 a.setEditable(b);

10 }

Listing 8.1: Consecutive Similar For Loops

In general, we have noticed that the similar action units associated with this

type of comments are usually an if or for. The differences being highlighted typically

come from for or if conditions and statements inside of the block. From those cases,

very few times comments do actually say what exactly an action unit does. Instead,

they describe the difference in a few words. Frequently, the differences are stated by

using noun phrases, without mentioning the actions. From 4000 randomly selected

Java projects from GitHub, we found 36,815 pairs of for ’s are syntactically similar.

Out of those similar code blocks, only 5.9% are commented. Therefore, highlighting

the differences between consecutive similar action units can potentially improve internal

comments for a large number of methods.

8.2.2 Internal Comment Generation

Previous research has shown that 20% of developers’ comments are descriptive

[101]. While our technique is a step forward towards generating natural language

descriptions for source code, internal comments and our natural language descriptions

are not exactly the same. In addition to the comments that highlight differences

between similar consecutive action units, we have noticed that there are many other

kinds of internal comments that need to be addressed in order to generate internal

comments for Java methods.
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8.2.3 Method Summary Generation

To automatically generate summary comment for methods, Sridhara et. al. [103]

presented a generator called genSumm. The major idea is to select important state-

ments and translate them to natural text. Important statements that should be in-

cluded in the summary are defined as S units. This approach is based on individual

statements. However, a method often consists of multiple steps, describing individual

statements other than those steps either miss important key steps or cause redundancy.

By identifying and describing action units, method summary could be improved by us-

ing the new level of abstraction.

8.2.4 Exploration of the Applicability to Other Programming Languages

We conducted our research based on Java. Java is reported to be the most pop-

ular programming language in recent years, but its share is only 23.4% [87]. There are

many other high-level programming languages designed for various purposes, such as

C++, Python, PHP, C#, Javascript, Objective-C, R Swift, Ruby, etc. Some languages

are similar to Java, and some are not. Future work includes investigating other pro-

gramming languages and apply our action unit identification, description generation

and blank line insertion techniques to programs written in other high-level program-

ming languages.

8.2.5 API Code Examples

Using the application programming interfaces (API) of large software systems

requires developers to understand details about the interfaces that are often not ex-

plicitly defined. Programmers often learn how to use an API by studying its usage

examples. However, documentation with proper examples about the API is often in-

complete or out of date. We have observed that many API examples fit into our

definition of action units. We could use our action unit identification techniques to

identify the related action units for a given API. In addition, our technique is able to

generate natural language descriptions for action units. The identified API examples
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could be described in natural language, which can help developers better understand

the function of the examples.
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Appendix

ACTION UNIT ANNOTATION INSTRUCTIONS FOR SOFTWARE
READER STUDY

In this study, we are trying to develop the notion of an action unit. We have

provided an informal definition of what it is. Please use this definition to annotate the

action units in methods as instructed below.

We define an action unit as an algorithmic step, typically more than one state-

ment in length, within a method body.

For example, consider the following method. We consider this method to be

comprised of three high-level algorithmic steps. The first step is checking if the given

bitstream exists in bitstreams, the second step is adding bitstream to bitstreams, and

the third step is adding the newly created mapping row to database. Notice that by

itself, any subpart of any of these steps does not look like a high-level algorithmic step.

1 public void addBitstream(Bitstream b) throws SQLException ,
AuthorizeException {

2 for (int i = 0; i < bitstreams.size(); i++) {
3 Bitstream existing = (Bitstream) bitstreams.get(i);
4 if (b.getID() == existing.getID()) {
5 return;
6 }
7 }
8
9

10 bitstreams.add(b);
11
12 TableRow mappingRow = DatabaseManager.create(ourContext , "

bundle2bitstream");
13 mappingRow.setColumn("bundle_id", getID ());
14 mappingRow.setColumn("bitstream_id", b.getID ());
15 database.add(mappingRow);
16}

Listing A.1: Action Unit Study Example

123



You will be given 10 Java methods, each with blank lines removed. Please

indicate the action units in each method based on your understanding of the definition

of action unit.
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