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Resonances and Near field heat transfer of finite structures
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We describe a formulation for near field heat transfer for a finite size system so that the heat
conductance can be expressed as sums of contributions from the resonances of the combined structure
of the ”receiver” and the ”source”. Our work opens the door to investigate near field heat transfer
between finite systems and in particular metamaterials whose resonances have been well studied.
We illustrated our results with an analytically tractable example of energy transfer between two
split ring resonantors separated by a distance d on top of each other. When the cuts of the two
rings are opposite each other, the heat conductance is smaller than when the cuts of the two rings
are on top of each other . This result can only come from a finite system calculation.

When two objects are very close together, the heat
transfer rate between them can be higher than that ex-
pected from black body radiation[1]. The theoretical
study of this phenomenon , the near field heat trans-
fer (NFHT), has so far been restricted to infinite systems
along the lines suggested by Rytov[2, 3]. The only study
of finite systems that we are aware of is that of spheres
and cylinders[4–6]. The spherical and cylindrical surfaces
are special cases, however. For ordinary finite systems,
the electric current perpendicular to and at the bound-
ary is zero. The spherical and cylindrical surfaces dif-
fer topologically from the usual finite systems and have
no boundary. In this paper we described a formulation
for near field heat transfer for finite size systems. This
uses an approach[7, 9–12] we recently developed to solve
Maxwell’s equation and applied to study resonances of
fluctuations[13]. Instead of only studying the electromag-
netic fields[2] we also focused on the charge densities and
currents created by the fluctuating electric fields. We find
that the heat conductance can be expressed as sums of
contributions from the resonances of the combined struc-
ture of the ”receiver” and the ”source”. Our work opens
the door to investigating near field heat transfer between
finite size systems and in particular metamaterials whose
resonances have been well studied. We illustrated our re-
sults with an analytically tractable example of energy
transfer between two narrow wire split ring resonantors
separated by a distance d on top of each other. When
the cuts of the two rings are opposite each other, the
heat conductance is smaller than that when the cuts of
the two rings are on top of each other . We now describe
our results in detail.

Due to the quantum zero point motion and thermal ef-
fects there is a fluctuating electromagnetic field, ηα(r, ω)
in an object α, so that their mean square averages is
given by

< η∗α(r, ω) · ηβ(r′ω′) >= e2δα,βδ(ω − ω′)δ(r− r′) (1)

∗ chui@udel.edu

for a constant e2 given by[3]:

e2 = ϵ′′ coth(ℏω/kT )2ℏ/|ϵ|2; (2)

ϵ′′ is the imaginary part of the dielectric constant. Micro-
scopically this fluctuating electric field can come from the
fluctuation of the motion of the lattice atomic cores. e2

exhibit different frequency dependence for different ma-
terial at different temperatures. For dielectrics, ϵ′′ is a
constant at low angular frequencies ω. For metals with
conductivity σ, ϵ′′ = σ/ω.
To address the heat transfer we calculate the work done

by the fluctuating field of the source on the fluctuatiing
current and charge densities j and n in the ”receiver”
with our recently developed formulation[7, 9–12] of solv-
ing Maxwell’s equations. The physical quantities are ex-
pressed not on a mesh but in terms of a complete or-
thonormal set of basis functions Xj,α(r) labelled by the
index j in object α. We take the external driving field as
the fluctuating field:

Eext(ω) = η.

The noise electric field can be expanded in the basis as
Eext(r) =

∑
Eext

X,j,αXj,α(r). The current density can be
similarly expanded. The root mean squared of the ex-
pansion coefficient is given by

< Eext
Y jαE

ext
Xiβ >= e2 < Xj |Yi >= e2αδj,iδX,Y δα,β . (3)

By Ohm’s law, in terms of the resistivity ρ and the cur-
rent density j, ρj = Etot where the total local electric
field is a sum of the external field Eext, the electric field
due to the currents at other places Eem and fields Es lo-
calized at the boundary[7, 9–11, 17]. Maxwell’s equations
in integral form can be written as Eem = −Z0j where the
impedance matrix Z0 = iωµ0(L − ω−2/C) + 1/σ comes
from the electron electron interaction. The inductance
L and the capacitance C are just representations of the
Green’s function

G0 = eiω|r−r′|/c/(4π|r − r′|) (4)
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in the orthonormal basis[7, 9–11, 17]. These circuit pa-
rameters include the self and the mutual parameters rep-
resenting the intra-object and inter-object interactions.
We impose the boundary condition of no current flow
perpendicular to the boundary of the object with a large
boundary resistivity ρs which we take to approach in-
finity. The total resistivity ρ is a sum of this boundary
term and an intrinsic resistivity ρ01 for current flow in
the same object. Because of the boundary resistivity, the
current densities js normal to the boundary approaches
zero. We define boundary electric fields Es = jsρs as
the products of the normal components of the current
at the boundaries js and ρs. They behave like Lagrange
multipliers. Their values are determined from the con-
dition that the normal boundary currents become zero.
We thus obtain:

Zj = V. (5)

where V = Eext +Es, Z = Z0 + ρ01.
We calculate the fluctuating current j that results from

Eext as jiα =
∑

jβ Z
−1
iα,jβVjβ . The resonance of the struc-

ture is determined by the poles of the inverse impedance
and Es. This equation contains the near field heat trans-
fer information where the field in object β induces a cur-
rent in object α. The rate of transfer is determined by
the inverse mutual circuit parameters. We describe this
next.

Past work on NFHT focus on the Poynting vector from
one object to the next. Here we formulate the heat trans-
fer as the difference in the rate of work done at one object
by the noise field of the other object. The rate of work
done at an object that we called a receiver labelled by
α is P =

∫
drjα · Eα. In terms of the Fourier transform

in time, this is P (t) =
∫
drdωdω′jα(ω) · Eα(ω

′)eit(ω+ω′).
In terms of the noise (external) electric field of the other
object that we called the source labelled by β and the
impedance matrix the heat transfer from β to α is

< Pβ,α >=

∫
dω

∑
γ

Yα,γ,β,β′ < VβV
∗
β′ >, (6)

Yα,γ,β,β′ = Z−1
αβ (ω)Zα,γ(−ω)Z−1

γ,β′(−ω),

From Eq. (1), we get < V V ∗ >= P a +P b +P c , P a =<
|η|2 > δβ,β′ , P b =< η∗Es > +c.c. and P c =< |Es|2 >.

We evaluate the integral over ω in Eq. (6) by contour
integration in terms of the poles of the matrix Z−1 and
Es, which are just the resonance frequencies ωi of the
system. The exponential factor of the Green’s function
in Eq. (4) and hence the impedances provides for the
cutoff of the contributions far in the ω complex plane.
Our formulation can be applied to different meta-

materials whose resonances are well studied. Here we
illustrate our approach with the example of two thin wire
split ring resonantors on top of each other kept at differ-
ent temperatures T1 and T2. The rate of heat transfer is
P1,2 − P2,1. For illustrative purposes we assume that the

temperature is high so that the mean square fluctuation
of the noise electric field is

e2 ≈ Fξ (7)

where F = 2kT/σ, ξ(ω) = σ2/|ϵω|2, At high (low) fre-
quencies ξ ∝ 1/ω2 (ξ = 1). We first recapitulate the
properties of this split ring system[7].
We express the physical quantities of the system as

Fourier transforms of the azimuthal angle ϕ : gm =∫
dϕg(ϕ)eimϕ for any function g. Because of the cir-

cular symmetry, the impedance matrix Zm is diagonal
in m. In general, in wire structures of lower symme-
try, the circuit parameters are no longer “diagonal” and
we have to consider the “off-diagonal” elements of the
impedance matricies. Because G0(r − r′) is singular for
r=r’, the off-diagonal elements are much smaller[7]. In
our basis the capacitative impedance and hence Zm is
proportional to m2. Thus Z−1

m decreases rapidly as m is
increased. This sets the limit of the number of Fourier
modes that needs to be retained. In this paper we focus
on the thin wire limit which makes the problem analyti-
cally tractable. In that limit at low frequencies |Lm| and
1/|cm| = 1/|Cm|/m2 are independent of m and propor-
tional to ln(R/a) where R is the radius of the ring, a is
the core radius of the wire[8], ωZm ≈ iµ0L(ω

2 − ω2
um

2)
where ωu = c/R. The intrinsic resistivity moves the poles
away from the real axis but otherwise it does not af-
fect much the final numerical result and thus will be ne-
glected. For a single resonantor with a cut at ϕ = 0,

Es =
∑
m

(Eext
m /Zm)/As (8)

where As = π cot(ωπ/ωu)/(iµ0Lωu). The resonances
fall into two classes, the ”odd” and ”even” resonances.
The even resonances corresponds to the poles of Zm

at angular frequencies ωem = mωu and wavelengths at
λem = 4πR/(2m) for integer m=1, 2... The odd reso-
nances corresponds to the poles of Es and the zeros of
As at angular frequencies ωom = (m+1/2)ωu and wave-
lengths at λom = 4πR/(2m + 1) for integer m= 0, 1,...
All together the resonance wavelength approaches twice
the length of the ring (circumference) divided by an in-
teger in the thin wire limit, the same as for the dipole
antenna.
For the combined system of two split rings a distance d

apart, there are self and mutual impedances, Xm andX ′
m

respectively, between the rings. As d approaches zero,
X−X ′ ∝ d2. We focus on the small d limit here. We use
parity symmetry to make the coupling matrix between
rings diagonal by considering, for any physical quantities
p, p± = p1 ± p2. The diagonal inverse impedances are
given by Z−1

± = 1/X±, X± = Xm ± X ′
m. The poles of

Z−1
± that correspond to half of the the resonance frequen-

cies, ωm,± ≈ mωu, in the small d limit.
Analogous to Eq. (8) the boundary fields are given by

Es
σ =

∑
m

fm,σE
ext
σ (m). (9)
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where σ = ±, fmσ = −S−σm/S−σ. When the cuts are on
opposite sides

Sσ,m = iµ0/[ω(Xm + σ(−1)mX ′
m)], (10)

2Ss/π
2 = cs cot(ks/2)/ks+c−s[2 cot(k−s)−cot(k−s/2)]/k−s.

(11)
ks = ωπ/ωs, 1/ω

2
s = Lscs, Ls = L + sL′, 1/cs = 1/c +

s/c′. The contributions to the power transferred comes
from the poles of fm,σ, which are the zeros ωσ,i of Sσ.
The solutions of S±(ω±,n) = 0 are

ω±,n = (n+ p)ω0±, (12)

p = 2(c+/c−)
1/2/π. In contrast to the single ring case,

there is a low lying solution at n=0. The integer n is
even (odd) for the positive (negative) parity case. From
Eq.(11) and (12), we get

∂ωS±(ω±,j) ≈ −π2c−/(2ω±,j) (13)

With these we can look at the heat transfer.
To be specific, we consider the power transfer from

ring 1 to ring 2. Now Z−1
2,1 = Z−1

1,2 = (Z−1
+ − Z−1

− )/2,

Z−1
2,2 = Z−1

1,1 = (Z−1
+ + Z−1

− )/2. From Eq. (6) the power
transmitted P a can be written as

P a
12 = F

∑
m

∫
dω(Z∗

−|Z|−2
+ −Z−1

+ −Z−1
− +Z∗

+|Z|−2
− )ξ/2.

By contour integration with L’Hopital’s rule , the
power tranmitted becomes a sum of contributions over
all the poles in the upper half of the complex plane.
We get, in the thin wire small d limit, with c− >> c+,
L− << L+, L+/L− ≈ 2/(1− L′/L),

P a
12 = 2Fπ/[(1− |L′/L|)2]/µ0L

∑
m>0

ξ(mωu)

This contribution to the heat conductance is not a func-
tion of the location of the cut. We next turn our attention
to contributions P b, P c that involve the boundary fields.
For P b. we get from Eq. ( 6)

P b = 2
∑

m,j,s=±
h3Ss,m(ωs,j)/S

′
s(ωs,j).

h3 = ξπ[Y2,2,1,2(ωs,j) + (−1)mY2,2,1,2(ωs,j)], The power
P c can be similarly obtained.
From symmetry the heat transfer in the other direc-

tion, from 2 to 1, is of the same functional form.
When the cuts are on same side, the factor of (−1)m

in EQ. (10) is absent. S±,m/(iµ0) = Z−1
±,m,

S± = c±π
2 cot(k±)/k±. (14)

The zero’s of S̄± are thus at ωn,± = (n+1/2)ω±, similar
to the single ring case. The corresponding residues can
be obatined from the derivative

∂ωS± = −c±π
2/ω. (15)

10-4 10-3

104

105

106

107

108

109

P

d/R

 opposite side
 same side

FIG. 1. Log-Log plot of the near field conductivity as a func-
tion of the separation d for cases with the cuts on the same
side and on opposite sides. The unit is kB∆T/(ρ0ωuρu) where
ρu = Zvt. Zv is the resistance of the vacuum, 277; t, the thick-
ness.

P b1 and P c can be easily computed. To evaluate P b2 ,
we find that

S±(ω−±) = −c±π
2δ±/k±

where δ± = (j + 1/2)(ω±/ω−± − 1) = −δ−±. From Eq.
(??) we get, to lowest order in δ,

P b2 ≈ 3c2−/(c+π
3)

∑
j,m

(2j + 1)/[(j + 1/2)2 −m2]4.

We have evaluated the conductance numerically for the
example[7] with a/R = 0.025, 1 − L′/L ≈ (200d/R)2. A
log-log plot of the conductance as a function of the sepa-
ration is shown in Fig. (1). As the separation d decreases,
X approaches X ′, ω0 decreases and P increases. As is
advertized, when the cuts are on opposite sides, the con-
ductivity is smaller. The difference in conductivities of
the two cases come entirely from the boundary fields and
is absent in treatments for infinite systems..

We have examined the effect of the upper limit of sum-
mation. The results change by 5 per cent when the upper
limits are changed from 5 to 20.

In conclusion we showed that the near field heat con-
ductance for a finite size system can be completely char-
acterized by the resonances of the combined structure of
the ”receiver” and the ”source”. For the example of the
split rings, when the cuts of the two rings are opposite
each other the conductance is smaller than that when
the cuts of the two rings are on top of each other. This
difference comes from the terms P b, P c that depends on
the boundary fields and thus will be absent in treatments
in infinite systems.

When the distance d between the transmitter and the
receiver becomes big, the mutual impedance, Zm, which
is proportional to eikd/d, becomes much smaller than the
self impeadnces Zs. The inverse total impedance can be
written as a power series in Zm/Zs. More precisely

1/Z = (Zs + Zm)−1 ≈ 1/Zs − 1

Zs
Zm 1

Zs
+ ..
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The higher order terms in this power series expansion
represents reflection and multiple scattering of the sys-
tem. If one sums all the terms of the series from the
multiple sacttering, one can recover the result that is ap-
plicable in the near field limit. In this approximation
the poles are from the self impedances. Physically, the
noise electric field in the transmitter ηt excites resonant
noise currents in the transmitter jt = 1

Zs ηt. This noise
current radiates an electromagnetic field at the receiver
Er = Zmjt. The field Er in turn excites noise currents
at the receiver jr = 1

ZsEr. jr and Er does work in the
receiver. The mode of heat transfer is radiative. This

result can also be stated in terms of the Poynting vec-
tor. For a finite size system, there can be resonances
in the transmitter and the receiver, which can affect the
heat conduction rate. Zs controls the emissivity and the
absorption rate of the system.
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