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This dissertation examines the dynamics of customer acquisition and retention 

within the context of higher education with students being recognized as customers. 

Given the substantial reliance of higher education institutions on tuition fees for 

operating revenue, student recruitment and retention emerge as pivotal aspects of 

enrollment management. Furthermore, retention and timely graduation are used to 

measure institutional reputation and accountability. This study pursues three main 

objectives: understanding applicant deposit decisions during the admission process, 

predicting matriculated students' dropout risks, and exploring the impact of student 

loan debt on timely graduation. 

The first segment analyzes the determinants of deposit decisions of out-of-state 

students admitted to the University of Delaware across three academic years. Utilizing 

three Bayesian hierarchical piecewise exponential models, we deduce that factors like 

gender and recruitment events exhibit time-varying effects, while others like financial 

aid remain stable within an academic year but vary across years. The baseline desire to 

deposit intensifies as deadlines near, though this trajectory shifts annually. Insights 

derived inform the Admissions Office's marketing and recruitment tactics. 

The second segment introduces a hybrid model, merging a structural neural 

network with a piecewise exponential model, to predict college attrition. 

Benchmarking against two alternative models, the hybrid model demonstrates superior 

or comparable predictive prowess for the University of Delaware across three springs. 

Categorizing predictors into academic, economic, and socio-demographic facets 

ABSTRACT 
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reveals academic indicators as key discriminants between students who drop out and 

those retained, especially from freshman to junior years. Emphasis on academic 

assessments in intervention strategies is thus recommended. 

The third segment evaluates the impact of student loan debt on six-year 

graduation rates by department, over a span of five years. Leveraging five Bayesian 

hierarchical models, the findings illustrate a pronounced department-wise loan debt 

effect on first-year students, which attenuates as they advance academically. Tailored 

financial aid policies, considering academic departments, are posited to amplify the 

efficient utilization of institutional financial resources. For universities mulling over 

department-specific financial aid policies, initiation with randomized trials for first-

year students is advised. 

In summary, this dissertation introduces innovative strategies for strategic 

enrollment management, encompassing admission, retention, and graduation 

considerations. Particular attention is given to the dynamic nature of applicant deposit 

decisions, the development of predictive models for student attrition, and the 

department-specific effects of student loan debt on graduation rates. 
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INTRODUCTION 

Customer acquisition and retention are critical components of customer 

relationship management (CRM), prevalent across various industries including hotel 

management, banking, insurance, healthcare, higher education, and agriculture 

(Furman et al., 2021; Milovic, 2012). Effective customer acquisition strategies aid in 

crafting marketing campaigns that recognize, attract, and recruit new customers early 

on. Conversely, robust customer retention strategies nurture both short-term and long-

term relationships with existing clientele, augmenting their loyalty and satisfaction. 

Additionally, analyzing customer retention provides insights into dissatisfied 

customers, enabling businesses to discern unmet needs and enhance customer 

experiences. 

Within the higher education sector, the concept of CRM has garnered attention 

over the years, with students increasingly recognized as valuable customers 

(Mashenene et al., 2019; Ogunnaike et al., 2014; Tapp et al., 2004). As an institutional 

researcher in a higher education institution, I focus this study of customer acquisition 

and retention on the higher education landscape. In this context, customer acquisition 

and retention take on the roles of student recruitment and retention, well-established 

concepts in the domain of student enrollment management (SEM) (Nair et al., 2007; 

Virgiyanti et al., 2010). This dissertation comprises three pivotal subjects within SEM: 

understanding applicants’ deposit decisions, predicting enrolled students’ dropout risk, 

and discerning the influence of loan debt on graduation. Each subsequent chapter is 

Chapter 1  
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dedicated to one of these topics, ensuring that the examination of these multifaceted 

issues is thorough and comprehensive. 

Chapter 2 of this dissertation responds to the pressing need within higher 

education institutions, particularly in their Admissions Offices, to gain a deeper 

understanding of deposit decisions made by applicants. Factors affecting these 

decisions, such as the offering of financial aid, demographic characteristics, and 

admission events, are examined through the lens of Bayesian hierarchical piecewise 

exponential models. These models are tailored to capture the longitudinal decision-

making process of students between February and May, divided into eight distinct 

time periods. They facilitate the estimation of both the baseline desire to make 

deposits and the time-varying effects of various influencing factors. The introduction 

of a Bayesian hierarchical framework is a strategic move to strike the right balance 

between underfitting and overfitting, particularly concerning the time-varying effects. 

This investigation primarily focuses on the effects of various factors on out-of-state 

students’ deposit decisions who applied to the University of Delaware and were 

admitted for the Fall semesters of 2020, 2021, and 2022. 

Chapter 3 seeks to contribute to the design of intervention programs aimed at 

addressing the issue of college student attrition. Our approach involves modeling 

students’ academic journeys using piecewise exponential models, incorporating 

academic, economic, and socio-demographic factors. To achieve a balance between 

predictivity and interpretability, we introduce structural neural networks to model the 

hazard function within the piecewise exponential models. This hybrid model serves 

not only to predict students at high risk of dropout but also to shed light on whether 

this risk primarily emanates from academic, economic, or socio-demographic factors. 
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Comparative analyses with other models, including piecewise exponential models and 

a hybrid model combining a fully-connected neural network with piecewise 

exponential models, demonstrate the superiority or comparability of the hybrid 

structural neural network model in predicting dropout among University of Delaware 

students in the Spring semesters of 2020, 2021, and 2022. Moreover, our findings 

consistently highlight the paramount role of academic factors in discerning dropout 

risks, regardless of the stage of students’ academic journeys. 

In Chapter 4, our attention shifts to exploring the impact of student loan debt 

on graduation, with the aim of informing potential modifications to financial aid 

policies to enhance six-year graduation rates. Of particular interest is the examination 

of whether the effects of loan debt remain consistent across students majoring in 

different departments. We employ Bayesian hierarchical logit models to estimate 

department-level effects, considering that some departments have relatively small 

enrollments. The introduction of a Bayesian hierarchical structure mitigates overfitting 

concerns, with college-level effects serving as higher-level factors. Drawing from data 

spanning student cohorts from Fall 2009 to Fall 2011 at the University of Delaware, 

we uncover variations in the effects of loan debt among departments, particularly 

among first-year students. Importantly, we note that these differences tend to diminish 

as students progress through their academic careers. We posit that universities should 

contemplate the exploration of department-specific financial aid policies, with 

randomized trials among first-year students as an auspicious starting point. 

In summary, this dissertation delves into the intricate landscape of strategic 

enrollment management, spanning the domains of admission, retention, and 

graduation. Chapter by chapter, we probe into the dynamics of applicants’ deposit 
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decisions, the prediction of students’ dropout risks, and the influence of loan debt on 

graduation rates, offering insights and recommendations that have the potential to 

shape more effective practices within the realm of higher education. 
  



 5 

WHEN THEY WILL PAY: UNDERSTAND DEPOSIT DECISIONS IN 
COLLEGE ADMISSION 

2.1 Introduction 

Recruitment of new students is a major challenge for many higher education 

institutions, as they must balance revenue goals, academic standards, and diversity 

goals (Adams-Johnson et al. 2019; Maldonado, Armelini, and Guevara 2017). The 

recruitment process includes several steps, such as answering inquiries from 

prospective students, reviewing applications, making admission decisions, 

encouraging deposit payments, and assisting with matriculation (Litten et al. 1983). 

Although matriculation is the ultimate goal, deposit payments are a critical focus for 

the Admissions Office, as they are a strong indicator of a student’s likelihood to 

enroll. Other offices/departments in an institution also have a vested interest in deposit 

situation. For example, the Budget Office would like to use deposits paid to estimate 

the tuition revenue from new students. If the deposits paid differs greatly from the 

admission targets, the Budget Office must update budgetary models. Similarly, the 

Department of Residence Life and Housing needs to work on the potential shortage of 

residence hall space in the spring, if too many deposits are paid. As a result, the 

Admissions Office tracks deposits usually by week in the spring and desires to 

understand admitted students’ decision to pay deposits, not only whether they will 

pay, but also when they will pay, so they can adjust marketing and recruitment 

strategies promptly (DesJardins 2002; Goenner and Pauls 2006). 

Chapter 2  
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Previous studies have greatly contributed to our understanding of student 

enrollment decisions and have informed the development of marketing and 

recruitment strategies. DesJardins (2002) utilized predictive models to segment 

admitted students and recommended focusing on those with enrollment probabilities 

close to 0.5. Maldonado et al. (2017) developed nested logit models to predict the 

enrollment probabilities of admitted students, allowing decision makers to allocate 

resources for admission activities. Goenner and Pauls (2006) used predictive models 

to determine the enrollment probabilities of prospective students, helping the 

University of North Dakota allocate recruitment efforts by geographic area. Braunstein 

et al. (1999) studied the impact of financial factors on the enrollment decisions of 

admitted students and provided insight into how various types of financial aid affected 

students from different socio-economic backgrounds. Johnson (2019) investigated the 

factors that influenced the enrollment decisions of out-of-state students, identifying 

multiple potential destinations and providing insights into why students accepted or 

declined an offer of admission. 

Our study focuses on understanding the factors affecting when admitted 

students will pay their deposits, as opposed to simply whether they will enroll by 

using the cross-sectional methods used in previous studies. To accomplish this, we 

utilize event history analysis, which is a commonly used tool for modeling students’ 

journey from enrollment to graduation (Chen and Hossler 2017; Gross, Torres, and 

Zerquera 2013; Zhan, Xiang, and Elliott III 2018). However, we use piecewise 

exponential models for the event history analysis instead of proportional hazard 

models for two reasons. First, we desire to estimate students’ baseline deposit 

behavior regardless of students’ characteristics. Second, we assume that it is possible 
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that the factors related to deposit decisions have time-varying effects. Additionally, we 

employ a Bayesian hierarchical framework to balance overfitting and underfitting of 

the time-varying effects (McElreath 2020). The study uses three years of admission 

data from 2020 to 2022 provided by the Admissions Office at the University of 

Delaware (UD). The input variables for the Bayesian hierarchical piecewise 

exponential models were gathered through a review of previous studies (Paulsen 1990) 

and suggestions from the Admissions Office. These variables can be grouped into 

economic factors (e.g. offered financial aid), sociological factors (e.g. gender), and 

psychological factors (e.g. delay in reviewing admission decisions). 

This chapter aims to address the following two research questions in order to 

understand the factors that impact admitted students’ deposit decisions and support the 

Admissions Office’s recruitment efforts:  

1. Do the factors influencing deposit decisions exhibit varying effects over the 

course of a year?  

2. Do effects change from one year to the next? 

2.2 Theoretical Background and Practical Application 

2.2.1 Admission Funnel 

From the perspective of the institution, the admission process consists of six 

stages: prospects, inquirers, applicants, admitted students, depositors, and matriculants 

(Litten et al. 1983). In the prospect stage, the Admissions Office identifies potential 

students who may be interested in attending the institution. During the inquiry stage, 

the Admissions Office communicates with students who have expressed interest and 

works to increase their interest in the institution and encourage them to apply. In the 
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application stage, the Admissions Office processes and reviews completed 

applications and notifies students of any missing information. In the admit stage, the 

Admissions Office decides to offer admission, waitlist, or reject applications. During 

the deposit stage, the Admissions Office interacts with admitted students through 

campus tours and other admission events, and the Student Financial Services (SFS) 

office provides financial aid packages in an effort to encourage students to accept the 

offer of admission. In the enrollment stage, the Admissions Office works with other 

offices to support new student orientation, course registration, and on-campus 

residency. There are several key rates to monitor in the admission process, including 

conversion rate (the proportion of applicants from inquiries), selection rate (the 

proportion of admitted students from applicants), yield rate (the proportion of 

depositors from admitted students), and melt rate (the proportion of matriculants from 

depositors). At the University of Delaware (UD), with the melt rate typically close to 

100%, the deposit stage or yield rate largely determines the number of new students 

enrolling each fall. 

2.2.2 College Choice 

From a student’s perspective, the college choice process consists of three 

stages: college aspiration formation, search and application, and selection and 

attendance (Hossler and Gallagher 1987; Paulsen 1990). In the formation stage, 

students determine whether to pursue higher education, with factors such as family 

background (Stage and Hossler 1989; Carpenter and Fleishman 1987), teacher and 

counselor encouragement (Portes and Wilson 1976; Conklin and Dailey 1981), and 

academic aptitude and achievement (Tuttle 1981; Davies and Kandel 1981) 

influencing their decision. During the search and application stage, students compile a 
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list of colleges to apply to, typically starting in junior year of high school and 

completing applications in senior year (Gilmour Jr et al. 1981). In addition to input 

from parents, counselors, and peers, colleges also reach out to prospective students 

through publications such as guidebooks and campus events (Goenner and Pauls 

2006). In the final stage, selection and attendance, students make the decision of 

which college to attend, based on their demographic background, socio-economic 

status, academic preparation, and institution characteristics such as cost, financial aid, 

academic programs, academic reputation, and location (DesJardins 2002; Goenner and 

Pauls 2006). 

Many studies have used cross-sectional methods to examine students’ 

enrollment decisions in the selection and attendance stage. DesJardins (2002) 

employed a logistic regression model to predict the enrollment probabilities of 

students admitted to a public institution in the Midwest in 1999 and 2001. Variables 

included students’ demographic and socio-economic background, high school 

characteristics, application timing, and personal intention. The students were divided 

into deciles based on their predicted enrollment probabilities, and the study suggested 

that it was more efficient to target the “fence-sitting” or middle groups rather in terms 

of yield likelihood than those with very high enrollment probabilities. Goenner and 

Pauls (2006) used logistic regression models with Bayesian model average techniques 

to predict the enrollment probabilities of 15,827 inquirers interested in attending the 

University of North Dakota in 2003 and to allocate recruitment efforts by geographic 

areas. They investigated the effects of inquiry contact methods, geographic factors, 

geodemographic factors, academic factors, and some interaction terms. The study 

suggested that recruitment efforts should be concentrated in geographic areas with 
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high enrollment probabilities. Johnson (2019) examined the enrollment decisions of 

42,950 out-of-state students admitted to a public research university from 2012 to 

2016. He utilized mixed multinomial models and National Student Clearinghouse data 

to identify the students’ destinations among five options: the study institution, another 

out-of-state public institution, an in-state public institution, a private institution, or a 2-

year college. Factors included demographic characteristics, high school information, 

family background, financial aid offered, and admitted academic discipline. The study 

found that higher family incomes, being a family member of an alumnus, graduating 

from a feeder high school, being offered higher merit scholarships, or borrowing more 

loans increased students’ likelihood of attending the institution. A surprising finding 

was that Pell-eligible students’ enrollment decisions were not affected by grants in 

financial aid packages. Maldonado et al. (2017) used nested logit models to predict the 

enrollment decisions of 25,325 prospective students to four bachelor’s programs in a 

small private Chilean university. The three possible outcomes were applied, admitted 

but not enrolled, and admitted and enrolled. The hierarchical models were deemed 

necessary because the latter two outcomes were more similar and should be grouped 

together. Factors included marketing efforts from the institution, students’ socio-

economic background, and stated preferences. The study found that on-campus 

activities and talks at secondary schools were more effective in encouraging 

enrollment than career fairs, male students were more likely to attend engineering and 

law programs, and students’ online activities and stated preferences indicated their 

interests in attending the institution or individual programs. Braunstein et al. (1999) 

used logistic regression to model the enrollment decisions of 7,104 students admitted 

to Iona College in three academic years. The variables were grouped into three 
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categories: demographic and social background, academic achievement and 

preparation, and financial aid. The study found that the demographic and social 

background did not affect students’ enrollment decisions, but financial aid had a 

positive effect. The enrollment probability increased by 1.1% to 2.5% for every 

additional $1,000 offered, with loans having more influence than grants and work 

study having the least influence. 

2.2.3 Conceptual Framework 

Our conceptual framework for the deposit stage is rooted in the theory of 

college choice (Chapman 1979; Hossler, Braxton, and Coopersmith 1989) and prior 

studies on students’ enrollment decisions. Students’ decisions to accept admission 

offers are influenced by economic, sociological, and psychological factors (Paulsen 

1990). According to the theory of human capital (Becker 2009), students evaluate the 

cost-benefit ratio of attending an institution based on economic factors. Sociological 

factors, such as sociological background (Johnson 2019) and status attainment 

(Hossler, Schmit, and Vesper 1999), also play a role in students’ choice of institution. 

Psychological factors, including the institutional environment and climate, impact 

students’ perceptions of student-institution fit (Paulsen 1990). Our hypothesis is that 

these factors not only influence whether students choose to pay deposits but also when 

they choose to pay. Admitted students are more likely to pay deposits sooner if they 

perceive the institution as a good investment, a source of status attainment, and/or a 

good fit for them. 

With guidance from the theory of college choice and prior research, we 

categorize variables into three groups. The economic factors include offered financial 

aid and socio-economic status, i.e., Pell eligibility and expected family contribution 
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(EFC). Financial aid can impact students’ enrollment decisions by reducing the cost of 

attendance, so we hypothesize that students are more likely to make a deposit when 

more financial aid is offered. We use the total financial aid offered instead of breaking 

it down by aid type, such as grant and scholarship, loan, and work study (Braunstein, 

McGrath, and Pescatrice 1999), because SFS suggests that the amounts of different aid 

types are correlated with each other. For example, the amount of federal loans depends 

on the grants and scholarships already offered. 

The sociological factors include students’ demographic characteristics, i.e., 

home distance from the university, gender, and racial ethnicity. These factors reflect 

the influence of parents, peers, counselors, and teachers on students’ enrollment 

decisions (Johnson 2019). We hypothesize that these factors will have varying effects 

on students’ deposit decisions. 

Finally, psychological factors reflect students’ desire to attend the institution 

(Paulsen 1990), and include admission to the Honors program, match between applied 

and admitted majors, attendance at recruitment events, and prompt review of 

admission decisions (Maldonado, Armelini, and Guevara 2017). Students who have a 

strong interest in the institution are more likely to pay deposits earlier, and we 

hypothesize that these interests are stronger when students are admitted to the Honors 

program, willing to be admitted to a different major, attend recruitment events, and 

promptly review their admission decisions. 

2.3 Data and Variables 

This study uses admission data of 60,285 admitted out-of-state students who 

intended to matriculate as first-time first-year students at the University of Delaware 

(Carnegie classification: R1), a public research university with an undergraduate 
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population of around 18,000 students, during the Fall semesters of 2020, 2021, and 

2022. The information was obtained from the Admissions Office and UD’s enterprise 

data warehouse. To track the students’ deposit decisions, the study period is defined 

from February 1 to the deposit deadline of May 1. February 1 is chosen as the starting 

point because the Admissions Office had made most admission decisions by then. The 

study period is further divided into eight intervals, February, March 1 to March 15, 

March 16 to March 31, April 1 to April 7, April 8 to April 14, April 15 to April 21, 

April 22 to April 28, and April 29 to May 1. The dataset is constructed as a student-

period file with one row per student and period. Table 2.1 shows the number of 

observations and deposits by period each year. The number of observations increases 

from period 1 to either period 3 or period 4, reflecting the admission of students who 

were admitted after February. However, the number of observations decreases 

thereafter because students who paid deposits are no longer tracked. The number of 

deposits increases in April, especially after April 21, indicating the deadline effect on 

students’ deposit decisions. 

Table 2.1: Number of Observations and Deposits by Period Each Year 
 

2020 2021 2022 
Period N Deposit N Deposit N Deposit 
1 - February 16,076 238 18,010 159 18,328 208 
2 - March 1 to March 15 16,702 191 18,703 136 19,152 197 
3 - March 16 to March 31 16,972 308 19,584 294 19,700 315 
4 - April 1 to April 7 16,824 263 19,525 293 20,034 264 
5 - April 8 to April 14 16,597 299 19,302 371 19,785 386 
6 - April 15 to April 21 16,345 338 18,841 462 19,401 390 
7 - April 22 to April 28 16,322 473 18,257 646 18,583 853 
8 - April 29 to May 1 15,945 395 17,806 452 18,052 551 
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Table 2.2 describes the dependent and independent variables in the models. 

The dependent variable is whether a student paid a deposit by May 1. Of the 60,285 

admitted students, 8,482 or 14.1% of made a deposit. The independent variables 

include the economic factors, sociological factors, and psychological factors. Three 

variables are continuous, Financial Aid, EFC, and Home Distance, with only Financial 

Aid having varying values by period. The rest of the variables are binary. On average, 

financial aid covers 28.6% of the Cost of Attendance (COA), and EFC covers 118.1% 

of COA. Of the 60,285 admitted students, 6,256 or 10.4% were eligible for Pell grants, 

21,732 or 36.0% were male, 2,280 or 3.8% were African American, 3,457 or 5.7% 

were Asian, 5,072 or 8.4% were Hispanic, 44,164 or 73.3% were White, 1,813 or 

3.0% were multi-ethnic, 17,478 or 29.0% attended early events for prospects, 6,998 or 

11.6% were admitted to the Honors program, 2,913 or 4.8% were admitted to a 

different major than the one applied for, 3,443 or 5.7% visited campus, 3,127 or 5.2% 

attended the Decision Day event, and 24,449 or 40.6% did not review the admission 

decisions within two days. 

Table 2.2: Description of the Dependent and Independent Variables 

Variables Description N Mean/Pct S.D. 
Dependent Variable 

   

  Deposited 1 if deposited, 0 otherwise 8,482 14.1% 
 

Economic 
factors 

    

  Financial 
Aid 

Total offered financial aid over COA 
 

0.286 0.162 

  EFC Expected family contribution over 
COA 

 
1.181 1.602 

  Pell 1 if Pell eligible, 0 otherwise 6,256 10.4% 
 

Sociological 
factors 
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  Home 
Distance 

Home distance from UD 
 

177.6 340.9 

  Male 1 if male, 0 if female 21,732 36.0% 
 

  African 
American 

1 if African American, 0 otherwise 2,280 3.8% 
 

  Asian 1 if Asian American, 0 otherwise 3,457 5.7% 
 

  Latino 1 if Latino/Hispanic/Chicano, 0 
otherwise 

5,072 8.4% 
 

  White 1 if Caucasian, 0 otherwise 44,164 73.3% 
 

  Multi-Ethic 1 if multi-ethnicity, 0 otherwise 1,813 3.0% 
 

Psychological factors 
   

  Early Event 1 if attending early events for 
prospects 

17,478 29.0% 
 

  Honor 1 if admitted in the honors program, 0 
otherwise 

6,998 11.6% 
 

  Major 
Change 

1 if admitted major is different from 
applied major 

2,913 4.8% 
 

  Campus 
Tour 

1 if attending campus tour, 0 
otherwise 

3,443 5.7% 
 

  Decision 
Day 

1 if attending Decision Day event, 0 
otherwise 

3,127 5.2% 
 

  Delay 
Review 

1 if not reviewing admission decision 
within 2 days 

24,449 40.6% 
 

 

2.4 Statistical Model 

We develop Bayesian hierarchical piecewise exponential models to analyze 

students’ deposit decisions. These models, which are a type of discrete event history 

analysis, have a constant hazard function within each discrete time interval (Austin, 

2017; DesJardins et al., 1994; Friedman, 1982). In this study, an event occurs if a 

student pays deposit between February 1 and May 1. Otherwise, the admitted student 

is “censored” on May 1 or “survives” from the desire to pay deposit. Equation (2.1) 

defines the logarithm of the hazard function ℎ𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] to be the sum of baseline 

hazard ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] and a linear combination of student attributes, where 𝑥𝑥𝑖𝑖𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] 



 16 

represents the value of variable j for student i in a period, and 𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] represents 

the effect of the variable j in the period. The cumulative hazard, calculated as the 

product of the hazard function and the period length (𝐿𝐿[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]), is used to derive the 

logarithm of the survival function (𝑆𝑆𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]) in Equation (2.2), where 𝐿𝐿[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] is 

the number of days of each period. Then finally, Equation (2.3) calculates the 

probability of a student paying a deposit in a period (𝜃𝜃𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]) as one minus the 

survival function. In this model, the hazard function reflects the driving force behind a 

student’s deposit decision, while the cumulative hazard represents the accumulated 

force over time. If a variable has a positive effect on the deposit decision, a higher 

value of that variable will increase the driving force and, as a result, increase the 

probability of the student paying a deposit, as described by the three equations. 

𝑙𝑙𝑃𝑃𝑙𝑙(ℎ𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]) = ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] + �𝛽𝛽𝑖𝑖
𝑖𝑖

[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]𝑥𝑥𝑖𝑖𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]               (2.1) 

𝑙𝑙𝑃𝑃𝑙𝑙(𝑆𝑆𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]) = −ℎ𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]𝐿𝐿[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]                                                 (2.2) 

𝜃𝜃𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] = 1 − 𝑆𝑆𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]                                                                (2.3) 

We introduce the Bayesian hierarchical framework to estimate the unknown 

coefficients ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] and 𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] in Equation (2.1). Bayesian analysis models 

our initial uncertainty, or prior distribution, using probability distributions (McElreath, 

2020). For the baseline hazard ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃], we model the initial uncertainty using 

normal distributions as shown in Equation (2.4). The ℎ𝑀𝑀𝑀𝑀𝑀𝑀[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] is the maximum 

likelihood estimates (MLE) for ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]. We choose 𝜎𝜎0 to be 0.1 to make it a 

strong prior distribution. The prior distributions will be updated to posterior 

distributions using the observed data, and the data must show strong evidence for the 

posterior distributions to deviate from the prior distributions. The hierarchical 
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structure is setup for estimating 𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]. At the higher level, the variables have 

time-independent effects 𝜇𝜇𝑖𝑖, i.e., the average effects over all periods. We assume 𝜇𝜇𝑖𝑖 

are normally distributed with means being 0 as shown in Equation (2.5). This serves to 

reduce overfitting for the higher-level effects, because the observed data need to show 

enough support for non-zero parameter estimates. At the lower level, the variables 

have time-varying effects 𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]. We assume 𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] are normally 

distributed with means being 𝜇𝜇𝑖𝑖 as shown in Equation (2.6). This also reduces 

overfitting, because the observed data need to show enough support for 𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] to 

deviate from 𝜇𝜇𝑖𝑖. The standard deviations 𝜎𝜎ℎ and 𝜎𝜎 control the uncertainty of these 

assumptions, and we model their uncertainty using exponential prior distributions with 

a rate parameter of 0.5 (𝜆𝜆 = 𝜆𝜆ℎ = 0.5 in Equations (2.7) and (2.8)). In summary, if the 

observed data support it, the posterior distributions of the higher-level effects will 

deviate from the zero-mean prior distributions, and the posterior distributions of the 

lower-level effects will deviate from the prior distributions centered at the higher-level 

effects, leading to variables with time-varying effects on deposit decisions. 

ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] ∼ Normal(ℎ𝑀𝑀𝑀𝑀𝑀𝑀[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃],𝜎𝜎0)                                (2.4) 

𝜇𝜇𝑖𝑖 ∼ Normal(0,𝜎𝜎ℎ)                                                         (2.5) 

𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] ∼ Normal�𝜇𝜇𝑖𝑖 ,𝜎𝜎�                                                         (2.6) 

𝜎𝜎ℎ ∼ Exponential(𝜆𝜆)                                                       (2.7) 

𝜎𝜎 ∼ Exponential(𝜆𝜆ℎ)                                                     (2.8) 

2.4.1 Constructing the Likelihood Function 

Suppose a student 𝑃𝑃 was observed in a period, the contribution to the likelihood 

function 𝐿𝐿𝑖𝑖 depends on whether the student paid deposit in the period, 
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𝐿𝐿𝑖𝑖 = �𝑆𝑆𝑖𝑖
(No deposit)

𝑆𝑆𝑖𝑖ℎ𝑖𝑖 (Paid deposit)                                               (2.9) 

We can write the two cases in one equation. Let 𝑦𝑦𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] be the dependent 

variable, with 1 indicating a student paid deposit and 0 indicating the student did not 

pay. The likelihood function can be written as 

𝐿𝐿𝑖𝑖 = ℎ𝑖𝑖
𝑦𝑦𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]𝑆𝑆𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]                                         (2.10) 

And the log-likelihood is 

𝑙𝑙𝑃𝑃𝑙𝑙𝐿𝐿𝑖𝑖 = 𝑦𝑦𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]𝑙𝑙𝑃𝑃𝑙𝑙(ℎ𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]) + 𝑙𝑙𝑃𝑃𝑙𝑙(𝑆𝑆𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃])          

According to Equations (2.2) and (2.1), it can be written as 

𝑙𝑙𝑃𝑃𝑙𝑙𝐿𝐿𝑖𝑖 = 𝑦𝑦𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]𝑙𝑙𝑃𝑃𝑙𝑙(ℎ𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]) − ℎ𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]𝐿𝐿[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]                              

= 𝑦𝑦𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]�ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] + �𝛽𝛽𝑖𝑖
𝑖𝑖

[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]𝑥𝑥𝑖𝑖𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]�                     

−𝑃𝑃𝑥𝑥𝑒𝑒�ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 [𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]𝑥𝑥𝑖𝑖𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]�𝐿𝐿[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]   (2.11)  

Our dependent variable is imbalanced, because the out-of-state students’ yield 

rate is below 15%. To address this challenge, we add a hyperparameter 𝑤𝑤 to the log-

likelihood to make the observations with deposit weight more than the others, so the 

log-likelihood becomes 

𝑙𝑙𝑃𝑃𝑙𝑙𝐿𝐿𝑖𝑖 = 𝑤𝑤 ∗ 𝑦𝑦𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]�ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 [𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]𝑥𝑥𝑖𝑖𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]� −
                 𝑃𝑃𝑥𝑥𝑒𝑒�ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 [𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]𝑥𝑥𝑖𝑖𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]�𝐿𝐿[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]                (2.12) 

This log-likelihood function defined above is used to estimate the 

ℎ𝑀𝑀𝑀𝑀𝑀𝑀[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] in equation (2.4) and to construct the posterior distribution below. 
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2.4.2 Constructing the Posterior Distribution 

The posterior distribution is proportional to the product of likelihood function 

and prior distribution, i.e., 

𝑒𝑒�𝑦𝑦𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]|ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃],𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃], 𝑥𝑥𝑖𝑖𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]�                                 

∝ 𝐿𝐿𝑖𝑖 ∗ 𝑒𝑒(ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]) ∗ 𝑒𝑒�𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]�                    (2.13) 

From Equation (2.4), we have 
𝑒𝑒(ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]) = 𝑒𝑒(ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]|ℎ𝑀𝑀𝑀𝑀𝑀𝑀[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃],𝜎𝜎0)                                            

                             = 𝑒𝑒𝑃𝑃𝑝𝑝�Normal(ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]|ℎ𝑀𝑀𝑀𝑀𝑀𝑀[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃],𝜎𝜎0)�      (2.14) 

Where 𝑒𝑒𝑃𝑃𝑝𝑝represents the probability density function of a distribution. 

In a Bayesian hierarchical model, the prior distributions of the parameters 

depend on their own prior distributions, i.e., the distributions of the higher-level 

parameters. From Equation (2.5) to Equation (2.8), we have 

𝑒𝑒�𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]� = 𝑒𝑒�𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]|𝜇𝜇𝑖𝑖 ,𝜎𝜎�                                                                          

                             = 𝑒𝑒𝑃𝑃𝑝𝑝 �Normal�𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]|𝜇𝜇𝑖𝑖 ,𝜎𝜎�� ∗ 𝑒𝑒�𝜇𝜇𝑖𝑖� ∗ 𝑒𝑒(𝜎𝜎)      (2.15) 

𝑒𝑒�𝜇𝜇𝑖𝑖� = 𝑒𝑒𝑃𝑃𝑝𝑝 �Normal�𝜇𝜇𝑖𝑖|0,𝜎𝜎ℎ�� ∗ 𝑒𝑒(𝜎𝜎ℎ)                                    (2.16) 

𝑒𝑒(𝜎𝜎) = 𝑒𝑒𝑃𝑃𝑝𝑝�Exponential(𝜎𝜎|𝜆𝜆)�                                                    (2.17) 

𝑒𝑒(𝜎𝜎ℎ) = 𝑒𝑒𝑃𝑃𝑝𝑝�Exponential(𝜎𝜎ℎ|𝜆𝜆ℎ)�                                                (2.18) 

Input Equations from (2.15) to (2.18) into Equation (2.13) and take the 

logarithm of 𝑒𝑒�𝑦𝑦𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]|ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃],𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃], 𝑥𝑥𝑖𝑖𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]�, we have 

𝑙𝑙𝑃𝑃𝑙𝑙 �𝑒𝑒�𝑦𝑦𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]|ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃],𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃], 𝑥𝑥𝑖𝑖𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]��                          

     ∝ 𝑤𝑤 ∗ 𝑦𝑦𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]�ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] + �𝛽𝛽𝑖𝑖
𝑖𝑖

[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]𝑥𝑥𝑖𝑖𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]�       
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−𝑃𝑃𝑥𝑥𝑒𝑒�ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 [𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]𝑥𝑥𝑖𝑖𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]�𝐿𝐿𝑡𝑡                          

    +𝑙𝑙𝑃𝑃𝑙𝑙𝑒𝑒𝑃𝑃𝑝𝑝�Normal(ℎ0[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]|ℎ𝑀𝑀𝑀𝑀𝑀𝑀[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃],𝜎𝜎0)�                         

    +𝑙𝑙𝑃𝑃𝑙𝑙𝑒𝑒𝑃𝑃𝑝𝑝 �Normal�𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]|𝜇𝜇𝑖𝑖 ,𝜎𝜎��                                                

    +𝑙𝑙𝑃𝑃𝑙𝑙𝑒𝑒𝑃𝑃𝑝𝑝 �Normal�𝜇𝜇𝑖𝑖|0,𝜎𝜎ℎ��                                                                 

    +𝑙𝑙𝑃𝑃𝑙𝑙𝑒𝑒𝑃𝑃𝑝𝑝�Exponential(𝜎𝜎|𝜆𝜆)�                                                                  

    +𝑙𝑙𝑃𝑃𝑙𝑙𝑒𝑒𝑃𝑃𝑝𝑝�Exponential(𝜎𝜎|𝜆𝜆ℎ)�                                                 (2.19) 

2.4.3 Parameter Estimation 

The MLE results from the piecewise exponential models without the Bayesian 

hierarchical structure are obtained using the Ipopt solver in the JuMP package 

(v1.10.0) (Lubin et al., 2023) in Julia (v1.7.2). The MLE results are not only used for 

ℎ𝑀𝑀𝑀𝑀𝑀𝑀[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] in Equation (2.4), but also used as the starting values in the training of 

the Bayesian hierarchical piecewise expoential models. We run three Markov chains 

to estimate the posterior distributions for the Bayesian hierarchical piecewise 

expoential models using the DynamicHMC package, each consisting of 1,000 samples 

after a series of warm-up steps to find an appropriate step size for the “No-U-Turn 

Sampler” (NUTS) (Betancourt, 2017; Hoffman et al., 2014). The gradients of the log 

densities for NUTS are obtained from automatic differentiation using the Zygote 

package (v0.6.60), and the kinetic energy is the default Gaussian with identity matrix. 

Appendix A contains Julia code for the construction and training of the Bayesian 

hierarchical piecewise exponential models. 
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2.5 Results and Discussion 

We derive the point estimates and credible intervals from the posterior 

distributions. The results are interpreted based on the credible intervals of estimated 

coefficients and the corresponding hazard functions. If all credible intervals span 

across zero, the variable is considered not important in the deposit decision. A variable 

is defined to have a time-varying effect if the credible intervals do not overlap in at 

least two periods. Otherwise, the variable is defined to have a time-independent effect. 

The effect of a variable is measured by the hazard ratio, which is the exponential of 

the product of the variable change and its estimated coefficient, holding other 

variables and their coefficients constant according to Equation (2.1). The hazard ratio 

for the baseline hazard is the exponential of the difference between the estimated 

hazards in two periods. For binary variables, the ratio is the exponential of the 

estimated coefficient in the period, with a positive relationship between the ratio and 

the estimated coefficient. A variable has a positive effect on the deposit decision if the 

hazard ratio is larger than 1 or the estimated coefficient is larger than 0, and vice 

versa. 

2.5.1 Fall 2020 

Table 2.3 shows the lower bounds of 95% credible intervals, the means, and 

the upper bounds of 95% credible intervals of parameter estimates for students who 

were admitted for Fall 2020, including the baseline hazard and the variables. The 

baseline hazard differs among periods. For example, the 95% credible interval (-8.22, 

-7.88) in first period does not overlap with interval (-5.98, -5.65) in the last period. 

The baseline hazard shows a fluctuating increasing trend from period 1 to period 8. 

The largest increase is between period 6 and period 7, which implies that students 
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experience deadline pressure in the fourth week of April. The hazard ratio is 9.30 

between the first and the last periods, indicating a much higher probability of deposit 

payment in the last period than in the first period. 

Table 2.3: Parameter Estimates for 2020, 2.5% percentile, mean and 97.5% percentile 

Variable Period 
1 

Period 
2 

Period 
3 

Period 
4 

Period 
5 

Period 
6 

Period 
7 

Period 
8 

Baseline -8.22,     
-8.05,     
-7.88 

-8.55,      
-8.37,     
-8.19 

-7.68,      
-7.51,     
-7.34 

-7.45,       
-7.27,     
-7.1 

-7.09,     
-6.91,     
-6.74 

-7.31,      
-7.14,      
-6.97 

-6.14,                 
-5.98,                 
-5.83 

-5.98,                
-5.82,                
-5.65 

Financial 
Aid 

-0.9,                  
-0.47,                  
-0.09 

-0.7,                   
-0.23, 
0.21 

-0.54,                
-0.13, 
0.28 

-0.3, 
0.07, 
0.46 

-0.48,                
-0.07, 
0.37 

-0.3, 
0.12, 
0.54 

-0.59,            
-0.21, 
0.16 

-0.38, 
0.02, 
0.41 

Pell -0.27, 
0.09, 
0.41 

-0.17, 
0.19, 
0.52 

-0.02, 
0.24, 
0.51 

-0.17, 
0.15, 
0.44 

-0.11, 
0.19, 
0.47 

-0.12, 
0.16, 
0.45 

-0.04, 
0.19, 
0.43 

0.29, 
0.55,   
0.8 

EFC -0.23,            
-0.13,                
-0.04 

-0.12,                
-0.03, 
0.06 

-0.06, 
0.0,  
0.06 

-0.13,               
-0.05, 
0.03 

-0.18,            
-0.09,              
-0.01 

-0.13,               
-0.05, 
0.01 

-0.18,              
-0.11,              
-0.04 

-0.14,                
-0.06, 
0.01 

Home 
Distance 

-0.26,             
-0.06, 
0.12 

-0.6,              
-0.29,              
-0.02 

-0.22,                
-0.06, 
0.08 

-0.12, 
0.02, 
0.15 

-0.37,             
-0.17,              
-0.0 

-0.19,               
-0.04, 
0.09 

-0.21,             
-0.08, 
0.03 

-0.23,              
-0.09, 
0.04 

Gender -0.56,             
-0.34,               
-0.11 

-0.3,               
-0.07, 
0.15 

-0.52,             
-0.31,               
-0.11 

-0.42,            
-0.2, 
0.01 

-0.26,             
-0.06, 
0.13 

-0.0,        
0.2,        
0.38 

-0.12, 
0.03, 
0.18 

0.23, 
0.41, 
0.59 

Asian -0.65,            
-0.21, 
0.17 

-0.6,               
-0.14, 
0.31 

-0.6,                
-0.17, 
0.2 

-0.42,                 
-0.0,            
0.4 

-0.58,                
-0.17, 
0.21 

-0.52,              
-0.1, 
0.31 

-0.59,                
-0.22, 
0.12 

-0.44,               
-0.08, 
0.28 

African 
America
n 

-0.47,                
-0.02, 
0.4 

-0.48,                
-0.01, 
0.44 

-0.46,                 
-0.06, 
0.36 

-0.26, 
0.17, 
0.61 

-0.32, 
0.09, 
0.49 

-0.24, 
0.2,               
0.6 

-0.37, 
0.01, 
0.35 

-0.14, 
0.26, 
0.61 

Hispanic -0.22, 
0.13, 
0.47 

0.02, 
0.37, 
0.75 

-0.08, 
0.22, 
0.53 

-0.0, 
0.35,                
0.7 

-0.21, 
0.14, 
0.49 

-0.0, 
0.31, 
0.62 

-0.17, 
0.12, 
0.42 

0.02, 
0.32, 
0.62 

White -0.2, 
0.07, 
0.32 

0.23, 
0.48, 
0.76 

-0.09, 
0.14, 
0.38 

0.1, 
0.35, 
0.61 

0.25, 
0.48, 
0.71 

0.15, 
0.38, 
0.59 

-0.19, 
0.01, 
0.21 

0.1, 
0.31, 
0.53 

Multi- -0.48, - -0.44, -0.32, -0.16, -0.41, - -0.29, -0.14, -0.02, 
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Ethic 0.02,                   
0.4 

0.02, 
0.46 

0.09, 
0.45 

0.27, 
0.68 

0.01, 
0.41 

0.12, 
0.52 

0.2,       
0.57 

0.39, 
0.78 

Early 
Event 

0.74, 
0.96, 
1.17 

0.72, 
0.95, 
1.18 

0.52, 
0.71, 
0.91 

0.61, 
0.82, 
1.03 

0.39, 
0.59, 
0.79 

0.7, 
0.88, 
1.07 

0.36, 
0.52, 
0.68 

0.12, 
0.31, 
0.51 

Honor 
Program 

-0.34,              
-0.06, 
0.18 

-0.36,                
-0.05, 
0.24 

-0.1, 
0.15, 
0.38 

0.07, 
0.33, 
0.57 

-0.21, 
0.07, 
0.34 

-0.21, 
0.03, 
0.27 

0.0, 
0.21,        
0.4 

-0.1, 
0.14, 
0.37 

Change 
Major 

0.75, 
1.05, 
1.33 

0.66, 
0.98, 
1.33 

0.82, 
1.08, 
1.37 

0.75, 
1.05, 
1.35 

0.79, 
1.08, 
1.36 

0.92, 
1.16, 
1.41 

0.82, 
1.08, 
1.32 

0.83, 
1.12, 
1.41 

Campus 
Tour 

1.59, 
1.9,              
2.2 

1.36, 
1.69, 
2.01 

1.5, 
1.72, 
1.94 

1.61, 
1.84, 
2.05 

1.46, 
1.69,           
1.9 

1.55, 
1.75, 
1.96 

1.52, 
1.71, 
1.89 

1.48, 
1.68, 
1.88 

Decision 
Day 
Event 

1.56, 
1.78,            
2.0 

1.59, 
1.84, 
2.09 

1.39, 
1.6,       
1.82 

1.17, 
1.41, 
1.68 

1.21, 
1.45,  
1.7 

1.44, 
1.67,  
1.9 

1.11, 
1.33, 
1.55 

1.07, 
1.34, 
1.58 

Delay 
Review 

-0.62,            
-0.38,               
-0.16 

-0.49, -
0.25, 
0.01 

-0.51,              
-0.29,              
-0.09 

-0.29,              
-0.08, 
0.13 

-0.37,             
-0.14, 
0.07 

-0.3,                
-0.11, 
0.09 

-0.17,               
-0.0, 
0.15 

-0.09, 
0.08, 
0.24 

Five of the sixteen variables have time-varying effects, and they are Gender, 

White, Early Event, Decision Day, and Delay Review. The 95% credible intervals of 

Gender do not overlap between the first (-0.58, -0.04) period and the last period (-0.01, 

0.32), indicating the effects are different in the two periods. The parameter estimates 

of Gender show an increasing trend, indicating the female students tend to pay deposit 

earlier than the male students. For example, the hazard ratio is 0.73 in the first period, 

indicating female students are more likely to pay deposits in the period. However, the 

hazard ratio changes to 1.16, indicating male students are more likely to pay in the last 

period. This finding would be neglected, if we assume variables to have time-

independent effects. The point estimate for Gender would be close to 0 at -0.0079, 

indicating gender plays little role for deposit decisions. The parameter estimates of 

Delay Review also show an increasing trend. Students tend not to pay deposits in early 

periods, if they postpone to review admission decisions for at least two days, but the 
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delay does not matter in later periods. In contrast, the parameter estimates are positive 

but with a declining trend for early events and decision day event, indicating that the 

encouragement from attending the events fades over time. The parameter estimates of 

White fluctuate among periods. White students are more likely to pay deposits in some 

periods but not in the other periods. 

Eight variables have time-independent effects on deposit decisions, and they 

are Financial Aid, Pell, EFC, Home Distance, Hispanic, Honors Program, Major 

Change, and Campus Tour, because all corresponding 95% credible intervals overlap 

with each other. Financial aid does not matter except in the first period. It is not 

surprising in 2020, because students’ decisions are more affected by Covid-19 than 

financial burdens. In contrast, Pell eligibility does not matter until the last period. The 

hazard ratio is 1.45 in the last period, indicating Pell eligible students are more likely 

to pay deposits than non-Pell eligible students. This makes sense to the Admissions 

Office, because Pell eligible students would like to delay any financial expense until 

they cannot. This also suggests to them that the recruitment effort for Pell students 

may not appear effective until the last period. Other variables have important effects in 

more than one period. The parameter estimates of EFC and Home Distance are 

negative in some periods, indicating students with lower income and those closer to 

UD are more likely to pay deposits. On the other hand, the parameter estimates of 

Hispanic and Honor Program are positive in some periods, indicating Hispanic 

students and students who are admitted to the Honors program are more likely to pay 

deposits. Lastly, the parameter estimates of Major Change and Campus Tour are 

positive in all periods, indicating students are consistently more likely to pay deposits 
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if they are willing to be admitted a major different than an applied major, or they 

attend campus tours. 

Three variables do not have important effect on deposit decisions in any 

period, and they are Asian, African American, and Multi-Ethnic. The credible 

intervals of the parameter estimates span across zero in all periods, indicating the three 

factors do not matter when making deposit decisions. 

2.5.2 Fall 2021 

Table 2.4 shows the lower bounds of 95% credible intervals, the means, and 

the upper bounds of 95% credible intervals of parameter estimates for students who 

were admitted for Fall 2021, including the baseline hazard and the variables. Similar 

to 2020, the baseline hazard varies across periods, with non-overlapping 95% credible 

intervals. For instance, the first period has an interval of (-8.39, -8.04), while the last 

period has an interval of (-6.10, -5.78). The baseline hazard exhibits an increasing 

trend, indicating an increasing likelihood of deposit payments over time. The hazard 

ratio is 9.68 between the first and the last periods, indicating students are much more 

likely to pay deposits in the last period than the first period. 

Table 2.4: Parameter Estimates for 2021, 2.5% percentile, mean and 97.5% percentile 

Variable Period 
1 

Period 
2 

Period 
3 

Period 
4 

Period 
5 

Period 
6 

Period 
7 

Period 
8 

Baseline -8.39,               
-8.21,              
-8.04 

-7.72,              
-7.55,               
-7.38 

-7.69,             
-7.51,            
-7.34 

-6.9,              
-6.74,                
-6.57 

-6.6,               
-6.43,                 
-6.26 

-6.74,             
-6.59,                 
-6.42 

-6.64,              
-6.49,               
-6.33 

-6.1,            
-5.94,                    
-5.78 

Financial 
Aid 

0.54, 
1.03, 
1.52 

0.64, 
1.13, 
1.62 

0.71, 
1.12, 
1.53 

0.85, 
1.26, 
1.68 

0.82, 
1.24, 
1.63 

1.08, 
1.49, 
1.88 

1.34, 
1.7, 
2.08 

1.12, 
1.5,             
1.9 

Pell -0.64,              -0.78,                -0.42,             -0.71,              -0.49,               -0.58,           -0.33,              -0.06, 
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-0.25, 
0.12 

-0.4,              
-0.03 

-0.11, 
0.21 

-0.37,               
-0.06 

-0.17, 
0.12 

-0.32,               
-0.04 

-0.09, 
0.15 

0.19, 
0.44 

EFC -0.15,              
-0.05, 
0.04 

-0.33,              
-0.18,             
-0.04 

-0.04, 
0.03, 
0.09 

-0.11,            
-0.03, 
0.05 

-0.12,              
-0.04, 
0.03 

-0.15,              
-0.07,             
-0.0 

-0.05,               
-0.0, 
0.04 

-0.13,             
-0.05, 
0.01 

Home 
Distance 

-0.3,             
-0.09, 
0.07 

-0.41,               
-0.17, 
0.03 

-0.31,              
-0.13, 
0.0 

-0.07, 
0.04, 
0.13 

-0.27,              
-0.12, 
0.01 

-0.38,            
-0.22,             
-0.08 

-0.26,            
-0.15,             
-0.04 

-0.21,               
-0.09, 
0.02 

Gender -0.47,           
-0.21, 
0.03 

-0.53,               
-0.25, 
0.02 

-0.45,              
-0.25,             
-0.05 

-0.39,              
-0.18, 
0.04 

-0.4,             
-0.2,                 
0.0 

-0.25,              
-0.08, 
0.11 

0.09, 
0.23, 
0.37 

0.15, 
0.32, 
0.49 

Asian -0.86,             
-0.39, 
0.04 

-0.96,           
-0.49,                
-0.06 

-0.99,            
-0.56,              
-0.13 

-0.85,               
-0.41,                
-0.02 

-0.87,              
-0.46,                
-0.06 

-0.68,              
-0.29, 
0.07 

-0.61,            
-0.27, 
0.06 

-0.77,                 
-0.38, 
0.01 

African 
America
n 

-0.85,              
-0.35, 
0.11 

-0.68,                
-0.24, 
0.19 

-0.64,                
-0.23, 
0.15 

-0.61,                
-0.2, 
0.25 

-0.92,             
-0.48,                
-0.06 

-0.76,              
-0.37,              
-0.02 

-0.39,              
-0.05, 
0.28 

-0.5,              
-0.12, 
0.25 

Hispanic -0.42,                 
-0.03, 
0.34 

-0.32, 
0.04, 
0.39 

-0.32,                 
-0.0, 
0.31 

-0.23, 
0.09, 
0.41 

-0.22, 
0.08, 
0.36 

0.02, 
0.29, 
0.58 

0.03, 
0.28, 
0.54 

-0.1, 
0.18, 
0.46 

White -0.3,                 
-0.03, 
0.22 

-0.41,                 
-0.16, 
0.1 

-0.21, 
0.02, 
0.25 

-0.17, 
0.03, 
0.26 

-0.23,                
-0.01, 
0.2 

-0.19, 
0.02, 
0.21 

-0.1, 
0.07, 
0.26 

-0.03, 
0.18, 
0.41 

Multi-
Ethic 

-0.54,                 
-0.11, 
0.33 

-0.62,              
-0.15, 
0.26 

-0.37, 
0.04, 
0.42 

-0.53,                 
-0.13, 
0.29 

-0.3, 
0.11, 
0.47 

-0.28, 
0.13, 
0.49 

-0.61,                
-0.22, 
0.15 

-0.36, 
0.02,               
0.4 

Early 
Event 

0.09, 
0.34, 
0.57 

0.07, 
0.33, 
0.61 

0.11, 
0.3,  
0.51 

0.3, 
0.51, 
0.74 

0.03, 
0.23, 
0.42 

-0.06, 
0.13, 
0.33 

-0.14, 
0.03, 
0.18 

-0.38,                
-0.2,                  
-0.01 

Honor 
Program 

-0.85,              
-0.5,                   
-0.15 

-0.9,                  
-0.51,                 
-0.18 

-0.71,                
-0.42,                  
-0.13 

-0.61,              
-0.32,                 
-0.06 

-0.56,               
-0.3,                 
-0.05 

-0.36,               
-0.12, 
0.1 

-0.33,                
-0.12, 
0.08 

-0.33,               
-0.07, 
0.16 

Change 
Major 

0.63, 
0.96, 
1.28 

0.24, 
0.58, 
0.91 

0.39, 
0.66, 
0.93 

0.45, 
0.71, 
0.98 

0.51, 
0.76, 
0.99 

0.55, 
0.76, 
0.98 

0.38, 
0.61, 
0.82 

0.57, 
0.82, 
1.04 

Campus 
Tour 

1.25, 
1.6,   
1.96 

1.31, 
1.62, 
1.95 

1.2, 
1.46,  
1.7 

1.3, 
1.52, 
1.76 

1.19, 
1.4,     
1.6 

1.2, 
1.41, 
1.59 

1.24, 
1.42, 
1.59 

1.51, 
1.7,    
1.91 

Decision 
Day 
Event 

1.03, 
1.36, 
1.66 

0.74, 
1.09, 
1.43 

0.91, 
1.2,            
1.5 

0.59, 
0.93, 
1.23 

0.72, 
0.99, 
1.26 

1.25, 
1.45, 
1.66 

1.37, 
1.55, 
1.72 

1.09, 
1.31, 
1.52 

Delay -0.66,            -0.77,            -0.3,               -0.41,             -0.29,                -0.11, -0.08, -0.06, 
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Review -0.39,               
-0.13 

-0.46,                
-0.2 

-0.12, 
0.07 

-0.21, 
0.0 

-0.1, 
0.09 

0.06, 
0.24 

0.06,    
0.2 

0.1,  
0.26 

Five variables exhibit time-varying effects on deposit decisions: Home 

Distance, Gender, Early Event, Decision Day, and Delay Review. Four of these 

variables, Home Distance, Gender, Early Event, and Delay Review, show similar 

patterns with the previous year. Specifically, students who live closer to UD are more 

likely to pay deposits, female students tend to pay earlier than males, the impact of 

attending early events wanes over time, and students who delay reviewing their 

admissions decision tend not to pay deposits in the first two periods. However, the 

variable Decision Day exhibits a new pattern: while attending Decision Day events 

remains a positive factor for deposit decisions, its effect does not show a decreasing 

trend. The hazard ratio decreases from 3.90 in period 1 to 2.53 in period 4, before 

increasing to 4.71 in period 7. This is due to UD hosting another Decision Day event 

in April, which causes the effect to fade after February and then increase in April. 

Most of other variables have time-independent effects, except for White and 

Multi-Ethnic, and they are Financial Aid, Pell, EFC, Asian, African American, 

Hispanic, Honors Program, Major Change, and Campus Tour. Unlike the previous 

year, students are incentivized by financial aid in all periods, which suggests that 

financial burden had been a more pressing concern than COVID-19. For instance, in 

period 7, a 10% increase in financial aid, or about $5.3K with a cost of attendance of 

$53,422 in 2021, results in a hazard ratio of 1.19. Assuming a student has a 15% 

chance of paying the deposit, their likelihood increases to 17.5% with the additional 

10% financial aid, assuming other factors remain constant. Honors Program also 

exhibits a different pattern, with parameter estimates turning negative in most periods, 

indicating that students are less likely to pay deposits if admitted to the Honors 
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Program. This change could be due to the change of admission policies, according to 

the Admissions Office. Furthermore, Asian and African American have become 

important factors in 2021, and students belonging to these racial-ethnic groups are less 

likely to pay deposits in some periods. EFC, Hispanic, Change Major, and Campus 

Tour continue to have similar effects as in the previous year, i.e., students are more 

likely to pay deposits if they come from lower-income families, are Hispanic students, 

have been admitted to a major different from their applied major, or have attended 

campus tours. 

2.5.3 Fall 2022 

Table 2.5 shows the lower bounds of 95% credible intervals, the means, and 

the upper bounds of 95% credible intervals of parameter estimates for students who 

were admitted for Fall 2022, including the baseline hazard and the variables. The 

baseline hazard still shows an increasing trend, and students are mostly likely to pay 

deposit in the last period. The hazard ratio between the first and the last periods is 

74.44, which is much higher than the previous two years. This is mostly due to the 

much lower baseline hazard in the first period, i.e., ℎ0[1] is -9.79 in 2022 vs -8.21 and 

-8.05 in 2021 and 2020, respectively. 

Table 2.5: Parameter Estimates for 2022, 2.5% percentile, mean and 97.5% percentile 

Variable Period 
1 

Period 
2 

Period 
3 

Period 
4 

Period 
5 

Period 
6 

Period 
7 

Period 
8 

Baseline -9.98,               
-9.79,              
-9.61 

-8.42,            
-8.24,             
-8.07 

-7.77,             
-7.58,              
-7.41 

-6.76,              
-6.59,              
-6.4 

-7.49,            
-7.3,                 
-7.13 

-7.55,            
-7.39,                
-7.21 

-6.49,            
-6.33,              
-6.16 

-5.65,             
-5.48,               
-5.32 

Financial 
Aid 

0.23, 
0.73, 
1.25 

-0.22, 
0.29, 
0.77 

-0.04, 
0.41, 
0.89 

-0.27, 
0.2,            
0.63 

0.02,               
0.5,           
0.96 

0.26,   
0.7,            
1.13 

0.24, 
0.62, 
0.99 

-0.03, 
0.41, 
0.85 
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Pell -0.06, 
0.32, 
0.65 

-0.26, 
0.09, 
0.44 

-0.38,              
-0.06, 
0.25 

-0.34, 
0.01, 
0.32 

-0.02, 
0.29, 
0.57 

-0.16, 
0.15, 
0.44 

-0.08, 
0.14, 
0.36 

0.15, 
0.37, 
0.58 

EFC -0.04, 
0.03, 
0.09 

-0.09,            
-0.0, 
0.07 

-0.1,            
-0.03, 
0.05 

-0.07,                
0.0,           
0.06 

-0.09,             
-0.02, 
0.04 

-0.08,               
-0.02, 
0.05 

-0.1,              
-0.04, 
0.01 

-0.25,                 
-0.17,                 
-0.09 

Home 
Distance 

-0.55,              
-0.26,              
-0.02 

-0.63,             
-0.35,              
-0.1 

-0.3,             
-0.12, 
0.03 

-0.19,               
-0.04, 
0.09 

-0.42,              
-0.23,                  
-0.04 

-0.29,                
-0.13, 
0.01 

-0.11,             
-0.02, 
0.06 

-0.22,               
-0.09, 
0.03 

Gender -0.58,             
-0.31,              
-0.04 

-0.48,              
-0.22, 
0.01 

-0.32,             
-0.1,              
0.1 

-0.33,                
-0.11, 
0.11 

-0.27,              
-0.08, 
0.1 

-0.14, 
0.06, 
0.24 

-0.15,              
-0.03, 
0.09 

-0.01, 
0.15, 
0.32 

Asian -0.63,            
-0.09, 
0.4 

-0.47,               
-0.0, 
0.49 

-0.53,            
-0.11, 
0.31 

-0.56,               
-0.16, 
0.23 

-0.3, 
0.14, 
0.58 

-0.07, 
0.31, 
0.68 

-0.57,            
-0.24, 
0.1 

-0.52,               
-0.13, 
0.24 

African 
America
n 

-0.38, 
0.17,             
0.7 

-0.57,             
-0.06, 
0.44 

-0.68,            
-0.22, 
0.23 

-0.68,               
-0.21, 
0.27 

-0.58,              
-0.1, 
0.34 

-0.31, 
0.12, 
0.56 

-0.23, 
0.09, 
0.42 

-0.49,                
-0.11, 
0.24 

Hispanic 0.06, 
0.48, 
0.89 

-0.14, 
0.26, 
0.65 

-0.24, 
0.1,              
0.45 

-0.21, 
0.13, 
0.48 

-0.05, 
0.28, 
0.62 

0.07, 
0.41, 
0.74 

-0.13, 
0.12, 
0.35 

-0.1, 
0.19, 
0.47 

White 0.67, 
0.95, 
1.25 

0.09, 
0.34, 
0.62 

-0.12, 
0.13, 
0.37 

-0.38,            
-0.15, 
0.1 

0.24, 
0.46, 
0.72 

0.14, 
0.36,              
0.6 

-0.17, 
0.03, 
0.24 

-0.23,              
-0.01, 
0.2 

Multi-
Ethic 

-0.57,               
-0.01, 
0.55 

-0.86,          
-0.26, 
0.28 

-0.67,           
-0.15, 
0.32 

-0.92,            
-0.37, 
0.18 

-0.64,              
-0.1, 
0.44 

-0.34, 
0.17, 
0.64 

-0.51,          
-0.08, 
0.31 

-0.51,              
-0.07, 
0.39 

Early 
Event 

0.86, 
1.11, 
1.37 

0.55, 
0.78, 
1.03 

0.59, 
0.79, 
0.98 

0.62, 
0.84, 
1.07 

0.38, 
0.58, 
0.75 

0.53, 
0.72, 
0.91 

0.28, 
0.43, 
0.59 

0.03, 
0.21, 
0.38 

Honor 
Program 

-0.77,          
-0.45,           
-0.14 

-0.74,              
-0.4,             
-0.09 

-0.52,              
-0.25, 
0.03 

-0.31,               
-0.02, 
0.27 

-0.36,                 
-0.11, 
0.13 

-0.31,            
-0.04, 
0.21 

-0.27,                 
-0.1, 
0.09 

-0.36,             
-0.13, 
0.1 

Change 
Major 

0.97, 
1.28,             
1.6 

0.56, 
0.91, 
1.25 

0.8,    
1.07, 
1.36 

0.57,  
0.9,                 
1.2 

0.57, 
0.85, 
1.12 

0.64, 
0.92, 
1.18 

0.55, 
0.74, 
0.92 

0.86,      
1.1,            
1.35 

Campus 
Tour 

1.42, 
1.71,             
2.0 

1.49, 
1.75, 
2.03 

1.27, 
1.53, 
1.78 

1.14, 
1.39, 
1.67 

1.35, 
1.55, 
1.76 

1.65, 
1.84, 
2.05 

1.51, 
1.65, 
1.79 

1.54, 
1.72, 
1.89 

Decision 
Day 
Event 

1.63, 
1.89, 
2.14 

1.47, 
1.75, 
2.03 

1.34,           
1.6,    
1.84 

1.19,  
1.5,                
1.78 

2.19, 
2.39, 
2.59 

1.73, 
1.94, 
2.14 

2.24, 
2.37,          
2.5 

1.99, 
2.15, 
2.32 



 30 

Delay 
Review 

-0.45,            
-0.17, 
0.07 

-0.35,               
-0.1, 
0.13 

-0.36,            
-0.17, 
0.02 

-0.54,             
-0.31,            
-0.09 

-0.42,           
-0.22,                 
-0.03 

-0.13, 
0.07, 
0.26 

0.1,    
0.22, 
0.35 

0.12, 
0.27, 
0.42 

Seven variables exhibit time-varying effects: EFC, Gender, White, Early 

Events, Change Major, Decision Day, and Delay Review. The patterns for EFC, 

Gender, Early Events, and Decision Day remain consistent with the previous year. 

That is to say, female students tend to pay deposits earlier than male students, the 

encouragement from attend early events fades over time, and students are encouraged 

to pay deposits from individual Decision Day events. EFC and Change Major become 

variables with time-varying effects, but their general patterns do not change much 

from the previous years. Lower-income students are more likely to pay deposits in the 

last period, and students are more likely to pay deposits when admitted majors differ 

from their applied majors. Similar to 2020, White students are more likely to pay 

deposits in some periods and exhibit similar behavior to non-White students in other 

periods. 

Six variables have time-independent effects: Financial Aid, Pell, Home 

Distance, Hispanic, Honors Program, and Campus Tour. Financial Aid remains as a 

positive factor, although only in half of the periods, and with smaller hazard ratios 

than in 2021. For example, the hazard ratio decreases from 1.19 in 2021 to 1.06 in 

2022 for period 7. With the same assumption with 2021, an additional 10% in 

financial aid would increase the chance of paying the deposit from 15% to 15.9%. 

Pell-eligible students exhibit a similar behavior to that of 2020, with a higher 

likelihood of paying deposits in the last period. The other variables have similar 

patterns to the previous year. That is, students are more likely to pay if they live closer 

to UD, are Hispanic, and attend campus tours, but being admitted to the Honors 

program does not encourage early deposit payment. 
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Three variables do not have important impact on deposit decisions, and they 

are Asian, African American, and Multi-Ethnic. The list is the same with 2020. 

2.5.4 Comparison Among the Three Years 

To compare the results among the three years, we focused on the baseline 

hazard and one variable from each of the three factor groups: Financial Aid from 

economic factors, Gender from sociological factors, and Decision Day from 

psychological factors. The parameter estimate distributions for each variable are 

shown in Figure 2.1 as boxplots. The baseline hazard for all three years shows an 

increasing trend, with students being less likely to pay deposits in the early periods 

and more likely in the latter periods. This is within expectation, because students 

would like to compare institutions’ admission offers but do not want to miss the 

deposit deadline. However, the growth path of the baseline hazard differs among the 

years. In 2020, the hazard slowly increases in the first six periods, jumps in period 7, 

and the difference between period 7 and period 8 is not large. In 2021, the hazard 

slowly increases in the first three periods, jumps in period 4, and remains relatively 

stable until the jump in the last period. In 2022, the hazard is much lower in the first 

period, catches up and fluctuates in the following several periods, and jumps to the 

strongest in the last period. The uncertainty of the baseline hazard makes it difficult 

for the Admissions Office to decide how many students to admit after February. For 

example, the first six periods suggest that the yield will be low in 2022, so more 

students need to be admitted to hit admission targets, but the last two periods, 

especially the last period, do not support the decision. 
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Figure 2.1: Boxplots of the distributions of the parameter estimates of baseline force, 
Financial Aid, Gender, and Decision Day among the three years. 

Financial aid has had a varying impact on deposit decisions over the past three 

years. In 2020, the boxplots locate close to zeros, indicating financial aid does not 

affect students’ deposit decisions after February. Financial aid is supposed to reduce 

students’ cost of attendance, but financial burden was not what students paid attention 

to due to Covid-19. However, as the pandemic-related concerns decreased in 2021, the 

boxplots move up above zero, indicating that financial aid became a positive factor in 

encouraging students to accept admission offers. Institutional grants and scholarships 

are the primary source of financial aid offered, and it is encouraging for the 

admissions office to see that students value and respond positively to the institution’s 

financial support. For 2022, the boxplots barely overlap with those in 2021 except the 
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first period, and they move closer to zero, indicating students have weaker response to 

financial aid in 2022 than 2021. This presents a challenge to the SFS team responsible 

for packaging students’ financial aid. If the budget for institutional aid remains the 

same, but its impact on deposit decisions is not stable year over year, how can the 

team work more effectively with the admissions office to optimize the distribution of 

grants and scholarships to increase yield? We observe that the effect of financial aid 

has been relatively stable within a year, so one possible solution is to monitor the 

effect of financial aid on deposit decisions early, and adjust the financial aid policies 

promptly, or adjust the expectation of the financial aid to increase deposits. 

Unlike financial aid, gender has consistent effects across the three years in 

terms of the general pattern, but the effects vary by period within each year. Female 

students tend to pay deposits earlier than male students, as shown by the rising 

boxplots over periods in all three years. In the first few periods, the boxplots are 

mostly below zero, indicating that male students are less likely to pay deposits early 

on. The boxplots then gradually rise and are mostly above zero in the last periods, 

suggesting that male students are more likely to pay deposits towards the end of the 

deposit period. That is to say, the deadline effect plays a more important role to male 

students than females, or female students are more eager to accept UD’s admission 

offers. We suspect this is due to the larger population of female students at UD, e.g., 

59% of undergraduate students pursing bachelor’s degrees are female at UD in Fall 

2021. For comparison, it is 47% and 49% in Penn State University and University of 

Maryland in Fall 2021, respectively. According to the College Choice theory, students 

prefer an institution with matching sociological pattern, so female students are more 

likely consider UD as a good fit and thus are more willing to pay deposits early. In a 
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conversation with an admissions professional that works with the data, he was very 

interested in this finding, but it would be overlooked if we assume that factors do not 

have time-varying effects. Models that make this assumption estimate the average 

effect across periods and would suggest that gender has no impact on deposit 

decisions, as the average parameter estimates would be close to zero, as seen in the 

boxplots. 

The Admissions Office’s Decision Day event has been effective in 

encouraging admitted students to pay their deposits, as indicated by the boxplots 

consistently being above zero in all periods across the three years. Moreover, the 

boxplots reflect stimulation from individual events from Februarys and Aprils. The 

boxplots also reveal the impact of individual events held in February and April. In 

2020, due to Covid-19, only one Decision Day event was held in February and those 

in April were canceled. The boxplots suggest that the effect of the event diminishes 

over time, indicating that while the event may initially increase students’ desire to pay 

their deposits, the effect decreases if they do not do so shortly after the event. In 2021, 

UD has multiple Decision Day events in February and April. The boxplots indicate 

that the effect fades after February but increase again in April. In 2021, multiple 

Decision Day events were held in both February and April, and the boxplots show a 

decrease in effect after February followed by an increase after the April event. This 

trend is more pronounced in 2022, where there is a large jump in effect after the April 

event following a decrease between February and April. 

Other variables are briefly discussed here. In 2020 and 2022, Pell eligibility 

does not affect the deposit decisions until the last period when Pell eligible students 

are more likely to pay deposits, but this does not apply to 2021. EFC does not matter 
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in most periods in the three years, but the negative parameter estimates in a few 

periods indicate that students in higher income families are less likely to pay deposits. 

Home distance had a negative effect on deposit decisions in all three years, indicating 

that students living closer to UD were more likely to pay deposits. In terms of racial 

ethnicity, Hispanic students are more likely to pay deposits in at least two periods each 

year, Multi-Ethnic students do not show preference in all three years, Asian and 

African American students are less likely to pay deposits in some periods in 2021 but 

they do not show preference in 2020 and 2022, and White students are more likely to 

pay deposits in half of the periods in 2020 and 2022 but they do not show preference 

in 2021. Students who attended early events are more likely to pay deposits in all three 

years, but the effect tend to be stronger in 2020 and 2022 than 2021. Students who are 

admitted to the Honors program are more likely to pay deposits in some periods in 

2020, but it becomes a negative factor in 2021 and 2022. Students with admitted 

majors different than applied majors are more likely to pay deposits in all three years. 

Campus tours encourage students to pay deposits in all three years. Lastly, students 

who delay to review admission decisions are less likely to pay deposits in the early 

periods, but this effect fades over time, particularly in 2022. 

2.6 Conclusion 

This chapter provides valuable insights for an institution to better understand 

admitted students’ deposit decisions and adjust their recruitment strategies 

accordingly, facilitating a better budgetary and student life process. While this study is 

limited to one institution for out-of-state students who intended to matriculate between 

Fall 2020 and Fall 2022, the findings shed light on the time-varying effects of various 

factors on students’ deposit decisions, which can be useful for other institutions in 
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similar contexts. The results from the Bayesian hierarchical piecewise exponential 

models validate our hypothesis that students behave or respond to recruitment efforts 

differently in different periods during the admission season. For example, female 

students are more likely to pay deposits in early periods than male students, while in 

later periods male students become more likely to pay. This finding would be 

neglected if we assume time-independent effects in the event history analysis. 

Moreover, Pell eligible students are most likely to pay deposits in the last period, 

because they would like to delay any financial expense as much as possible. The 

Admissions Office could potentially help these students pay earlier by designing 

policies such as partially waiving their deposits. Regarding campus events, the 

findings show that students do respond to early events for prospects and Decision Day 

events for admitted students. These events act as impulse forces that encourage 

students to pay deposits, and their effects decrease over time. Therefore, the 

encouragement from early events fades over time, since they all happen before the 

first period, and the strongest effects of Decision Day events are observed in the 

periods when the events occur. These findings confirm the Admissions Office’s efforts 

to help students recognize UD as an excellent institution for their undergraduate study. 

It’s important to note that students’ behaviors can change over the course of 

the three-year study period, influenced by factors such as macro environment and 

admission policies. For example, financial aid changes from an irrelevant factor to 

positive factor from 2020 to 2021 and 2022, likely due to the change of students’ 

concern over Covid-19. Another surprising finding was that being admitted to the 

Honors program changed from an encouragement to a discouragement factor from 

2020 to 2021 and 2022. This was likely due to a policy change in the admissions 
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process, and the Admissions Office may want to review and potentially improve the 

policy. The role of students’ racial ethnicities in their deposit decisions also varied 

across the years. For instance, Asian and African American students did not show a 

clear preference for paying deposits in 2020 and 2022, but tended not to pay in certain 

periods in 2021. In contrast, White students were more likely to pay deposits in 2020 

and 2022, but showed no clear preference in 2021. However, Hispanic students were 

consistently more likely to pay deposits in all three years. 

On the other hand, some consistent patterns exist among the three years. 

Students are more likely to pay deposits in the later periods, because they want to wait 

for the best admission offers but do not want to miss the deposit deadline. Students are 

more likely to pay deposits if they show interests to UD, including being willing to be 

admitted to majors different than the applied majors, and attending campus events 

such as campus tours and events for prospects and admitted students. Students are less 

likely to pay deposits, if being from higher income families, living further away from 

UD, or delaying to review the admission decisions. Although students’ socio-

economic and demographic backgrounds cannot be changed, we suggest the 

Admissions Office to survey students who show interests to UD and better target 

future prospects with similar characteristics. 
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STRUCTURAL NEURAL NETWORKS MEET PIECEWISE EXPONENTIAL 
MODELS FOR INTERPRETABLE COLLEGE DROPOUT PREDICTION 

3.1 Introduction 

College dropout continues to be a significant concern for higher education 

institutions (Albreiki et al., 2021; Aulck et al., 2016; Cannistra et al., 2022). Data from 

the National Center for Education Statistics (NCES) reveals that approximately 40% 

of first-time, full-time degree-seeking undergraduate students at 4-year degree-

granting institutions fail to obtain a bachelor’s degree within six years at the same 

institution. Alarmingly, around 20% of these students drop out within their first year 

(NCES, 2022). The consequences of dropout are substantial, leading to wasted 

resources for students, institutions, and society as a whole. Students who discontinue 

their college education not only waste their time but also the tuition and fees they have 

paid and the loans they have borrowed, and tended to have lower income and an 

increased risk of living in poverty (Bouchrika et al., 2023). Concurrently, institutions 

suffer losses in terms of resources dedicated to these students, as well as potential 

tuition revenue and future alumni donations. On average, institutions lose 

approximately $10 million in tuition revenue annually due to attrition (Raisman et al., 

2013). Furthermore, both federal and state governments waste their appropriations to 

institutions and grants to students, with an estimated expenditure of $9 billion between 

2003 and 2008 on students who withdrew within their first year (Schneider & Yin, 

2010). 

Chapter 3 
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Two main approaches have been developed to address the issue of college 

dropout: theory-driven and data-driven approaches (Cannistra et al., 2022). The 

theory-driven approach focuses on constructing conceptual models to comprehend the 

underlying reasons for dropout. It considers students’ decisions to discontinue their 

education as an interplay of various factors, including family background, 

demographic characteristics, academic performance, social integration, organizational 

determinants, personal satisfaction, and institutional commitment (Bean & Metzner, 

1980; Spady, 1970; Tinto, 1975). By developing these conceptual models and 

analyzing observed data, specialized recommendations can be derived to mitigate 

attrition (Bean & Metzner, 1980). In contrast, the data-driven approach emphasizes 

dropout prediction. Statistical and machine learning models are utilized to forecast 

students’ academic performance and/or identify those who are at risk of dropping out 

(Aulck et al., 2016; Baker & Yacef, 2009; Heredia et al., 2020; Sultana & Azad, 

2017). However, this approach often involves a trade-off between interpretability and 

predictability. Simpler methods like regression models tend to offer better 

interpretability but poorer predictive performance, whereas more complex techniques 

such as neural network models often provide superior predictive accuracy at the cost 

of reduced interpretability. 

Our study aims to integrate the strengths of both approaches, as educational 

institutions require both explanatory insights and predictive capabilities to develop 

effective intervention plans for reducing attrition (Wagner et al., 2023). To model 

college students’ dropout risks, we employ a piecewise exponential model (Ameri & 

Beigi, 2016; Friedman, 1982). This model is well-suited for analyzing longitudinal 

processes in students’ academic careers, which involve time-varying factors and 
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effects associated with dropout risks. While this classic survival analysis model offers 

interpretability, it may not provide optimal predictive performance. To enhance 

predictability, we introduce a neural network model into the piecewise survival 

analysis to capture the hazard, which transitions from a linear combination of variables 

in traditional survival analysis to a nonlinear function of the variables. However, fully-

connected neural network models pose challenges to interpretability due to their black-

box nature. To address this dilemma, we employ a structural neural network (Fan et 

al., 2022; Ranzato et al., 2006; Zhang et al., 2016), where we impose a structure 

inspired by theoretical frameworks of student attrition onto the neural networks. 

Specifically, we categorize variables into three groups: academic, economic, and 

socio-demographic. Variables within each category interact with each other, forming 

hidden layers that generate a final neuron representing the category. In total, three 

final neurons are generated. These final neurons are then linearly combined to predict 

the hazard, which is subsequently converted into dropout probabilities. Consequently, 

our model not only provides a list of students with a high risk of dropout to a student 

advising team but also identifies whether students are more likely to dropout due to 

academic performance (Stinebrickner & Stinebrickner, 2014), financial burden (Cai & 

Fleischhacker, 2022), or social integration (Stage, 1989). 

The primary objective of this chapter is to address three key research questions 

that will contribute to the design of an effective intervention plan for attrition 

reduction:  

1. Does the utilization of a structural neural network enhance predictive 

performance compared to traditional survival analysis models that employ linear 

hazards?  
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2. Which category of variables impacts students’ dropout risks?  

3. Do the effects of these variables change as students progress through their 

academic careers? 

3.2  Literature Review and Conceptual Framework 

Extensive academic research has been conducted on college student dropout, 

employing both theory-driven and data-driven approaches. The theory-driven 

approach aims to establish a theoretical foundation and develop conceptual models to 

comprehend students’ dropout decisions. Tinto (1975) formulated a theoretical model 

based on Durkheim’s suicide theory (Durkheim, 1897) and a cost-benefit analysis, 

which sought to explain dropout decisions through the interaction between individuals 

and institutions. The model suggested that factors such as family background, 

individual characteristics, and pre-college schooling influence individuals’ integration 

within the academic and social systems of colleges, subsequently impacting their 

commitment to educational goals and institutional commitment. Lower levels of 

commitment were found to be associated with higher dropout probabilities. Bean 

(1980) developed a causal model inspired by turnover models in work organizations, 

positing that the interaction between students’ background characteristics and 

organizational factors affects their satisfaction, institutional commitment, and 

ultimately dropout probabilities. The model was empirically tested using multiple 

regression and path analysis, utilizing questionnaires returned by 1,195 new freshmen. 

Gender-specific recommendations were provided to reduce attrition. Similarly, Spady 

(1970) developed a sociological model of the college dropout process, drawing from 

Durkheim’s suicide theory (Durkheim, 1897). Spady argued that family background 

influences students’ academic potential and normative congruence, subsequently 
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impacting their grade performance, intellectual development, and friendship support. 

The interaction of these factors influences social integration, ultimately leading to 

dropout decisions. These conceptual models have provided theoretical guidance for 

subsequent empirical studies. 

The data-driven approach, as an alternative, emphasizes prediction, specifically 

the identification of students at high risk of dropout for targeted intervention and 

remedial programs (Quadri, 2010). Various statistical and machine learning methods 

have been employed in this approach. Almarabeh (2017) compared five classification 

methods, including Naïve Bayes, Bayesian network, decision tree with ID3, decision 

tree with C4.5, and multilayer perceptron neural network, to predict the dropout risks 

of 225 students using 10 predictors. The Bayesian network model exhibited the best 

performance across various error measures, such as accuracy, true positive rate, false 

positive rate, and F-score. Similarly, Sandoval-Palis et al. (2020) compared logistic 

regression and neural network models to predict the dropout risks of 2,097 students in 

an engineering university in Ecuador, using four predictors, regime, leveling course 

type, application grade, and vulnerability index, where regime, leveling course type, 

and application grade were academic factors, and vulnerability index was derived 

from 25 socio-economic variables. The neural network models outperformed logistic 

regression models in terms of accuracy and AUC score. However, despite their high 

predictive power, neural network models are challenging to interpret due to their 

black-box nature.  

Regression and decision tree models are preferred when the predictive 

performance is satisfactory, as their interpretability can aid institutions in establishing 

effective intervention policies. Wagner et al. (2023) compared three explainable 
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methods and two ensemble methods to predict degree dropout in a middle-sized 

German university. The explainable methods are decision trees, k-nearest neighbors 

and logistic regression, and the ensemble methods are AdaBoost and Random Forests. 

Among these, logistic regression was found to exhibit the best overall predictive 

performance. Nevertheless, the study also highlighted that these models did not 

equally excel in predicting student subpopulations, particularly concerning gender and 

specific study programs. Quadri and Kalyankar (2010) proposed a hybrid method for 

dropout prediction in an Indian institution, combining decision trees to identify 

relevant predictors, such as parents’ income and previous semester’s grades, with 

logistic regression for predicting students’ dropout risks. Aulck et al. (2016) utilized 

regularized logistic regression, random forests, and K-nearest neighbors to predict the 

attrition of 32,538 students from the University of Washington, finding that 

regularized logistic regression performed the best. Strong predictors included GPA in 

math, English, chemistry, and psychology classes. Heredia-Jimenez et al. (2020) 

employed Random Forest to predict at-risk students across 65 undergraduate programs 

in a public engineering-oriented university in Ecuador. They obtained reliable 

predictions by excluding socio-demographics and pre-college entry information, 

relying solely on academic information as predictors. Ameri et al. (2016) compared 

the performance of multiple methods, such as logistic regression, adaptive boosting, 

decision tree, Cox regression, and time-dependent Cox regression, in predicting 

dropout at Wayne State University. Time-dependent Cox regression was identified as 

the best method due to its ability to incorporate time-varying predictors, demonstrate 

superior predictive performance, and predict the timing of dropout events. 
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Our conceptual framework draws inspiration from Tinto’s theoretical model 

(Tinto, 1975) and aims to capture the longitudinal process of dropout risk 

accumulation. We posit that students’ dropout risks are determined by their goal 

commitment and institutional commitment, which are influenced by the interplay of 

academic integration, economic integration, and social integration. Academic 

integration is shaped by factors such as college cumulative GPA, the number of 

classes with a grade below D, the number of credits registered, and engagement in 

multiple majors. Pre-college schooling indicators, such as high school GPA and the 

number of Advanced Placement (AP) credits, also contribute to academic integration. 

Economic integration is influenced by variables including expected family 

contribution (EFC), outstanding balance, and the amount of financial aid received in 

the form of grants, scholarships, and loans. Social integration encompasses factors 

such as eligibility for Pell Grants and being a first-generation college student, as well 

as demographic characteristics including gender and racial ethnicity. Importantly, the 

dropout risk of a student evolves each semester, reflecting the changing dynamics of 

the three integrations. These changes stem from time-varying factors like academic 

performance and financial aid, the evolving processes that generate the integrations, 

and the dynamic interactions among them. 

3.3 Statistical Models 

Our statistical model is designed to integrate the theory-driven and data-driven 

approaches, resulting in an “information-driven” framework (Cannistra et al., 2022). 

The model combines a structural neural network and a piecewise exponential model to 

predict dropout probabilities. The piecewise exponential model predicts the dropout 

probability using a hazard function generated by the structural neural network. The 
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hazard function is a linear combination of three integrations, each of which represents 

a separate group of variables related to academic, economic, and social factors. For 

instance, the academic integration is derived solely from academic variables. 

3.3.1 Piecewise Exponential Model 

We begin with a piecewise exponential model (PEM), a type of discrete event 

history analysis. An event occurs if a student drops out from the institution they are 

currently enrolled in by the end of the third year. Otherwise, the student is considered 

to be “censored” or “survived”. For a student i in a semester j, Equation (3.1) defines 

the logarithm of the hazard function 𝑙𝑙𝑃𝑃𝑙𝑙(ℎ𝑖𝑖[𝑗𝑗]) to be the sum of baseline hazard ℎ0[𝑗𝑗] 

and a linear combination of the student attributes 𝑋𝑋0𝑖𝑖[𝑗𝑗], where 𝛽𝛽0[𝑗𝑗] represent the 

coefficients to be estimated for corresponding input variables. The cumulative hazard, 

calculated as the product of the hazard function and the semester length (𝐿𝐿[𝑗𝑗]), is used 

to derive the logarithm of the survival function (𝑆𝑆𝑖𝑖[𝑗𝑗]) in Equation (3.2), where 𝐿𝐿[𝑗𝑗] = 

1 for all semesters. Finally, the student’s dropout probability in the semester (𝜃𝜃𝑖𝑖[𝑗𝑗]) is 

calculated as one minus the survival function, as shown in Equation (3.3). While this 

model allows us to estimate the influence of each input variable on the hazard function 

and, subsequently, the dropout probability, it is important to note that it assumes a log-

linear relationship between the hazard function and the input variables. To account for 

potential nonlinear relationships between these variables, we will introduce 

nonlinearity in our subsequent model. Appendix B contains a graphic illustration of 

this PEM model. 

𝑙𝑙𝑃𝑃𝑙𝑙(ℎ𝑖𝑖[𝑗𝑗]) = ℎ0[𝑗𝑗] + 𝛽𝛽0[𝑗𝑗]𝑋𝑋0𝑖𝑖[𝑗𝑗]                                        (3.1) 

𝑙𝑙𝑃𝑃𝑙𝑙(𝑆𝑆𝑖𝑖[𝑗𝑗]) = −ℎ𝑖𝑖[𝑗𝑗]𝐿𝐿[𝑗𝑗]                                                        (3.2) 

𝜃𝜃𝑖𝑖[𝑗𝑗] = 1 − 𝑆𝑆𝑖𝑖[𝑗𝑗]                                                                     (3.3) 
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3.3.2 Piecewise Exponential Model with Fully-Connected Neural Network 

We introduce neural network (NN) to derive the hazard function in a piecewise 

exponential model. The hazard function is generated from a hidden layer of neurons in 

this PEM-NN model as shown in Equation (3.5), and the hidden neurons are generated 

from the input variables as shown in Equation (3.4). The survival function and dropout 

probability can be calculated in the same way from Equations (3.2) and (3.3). Notably, 

the inclusion of the neural network introduces nonlinearity into the model, driven by 

the sigmoid activation function (σ) employed in Equation (3.4). The prediction 

performance could be improved PEM-NN compared to PEM, because the neural 

network structure could capture more complex relationships between 𝑋𝑋0𝑖𝑖[𝑗𝑗] and ℎ𝑖𝑖[𝑗𝑗]. 

However, it’s essential to acknowledge that the PEM-NN model comes with a trade-

off. For instance, when identifying a group of students at high risk of dropout, 

discerning the specific reasons behind this elevated risk becomes intricate. 

Consequently, devising precise and strategic intervention plans based on the model's 

output becomes a challenging endeavor. Therefore, we need a model to balance 

interpretation and prediction. For further insights into the PEM-NN model's 

architecture and visualization, please refer to Addendum B, which provides a 

graphical representation of this model. 

𝑋𝑋1𝑖𝑖[𝑗𝑗] = 𝜎𝜎(𝛼𝛼0[𝑗𝑗] + 𝛽𝛽1[𝑗𝑗]𝑋𝑋0𝑖𝑖[𝑗𝑗])                                    (3.4) 

𝑙𝑙𝑃𝑃𝑙𝑙(ℎ𝑖𝑖[𝑗𝑗]) = ℎ0[𝑗𝑗] + 𝛽𝛽2𝑋𝑋1𝑖𝑖                                                     (3.5) 

3.3.3 Piecewise Exponential Model with Structural Neural Network 

We design a structural neural network (SNN) to balance interpretation and 

prediction. In this PEM-SNN model, the input variables 𝑋𝑋0𝑖𝑖[𝑗𝑗] are grouped into three 

categories, 𝑋𝑋0𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗] representing academic activities and performance, 𝑋𝑋0𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗] 
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related to financial aid and financial burden, and 𝑋𝑋0𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗] representing family 

background and demographic characteristics. From the input layer, a hidden layer 

𝑋𝑋1𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗] is generated from 𝑋𝑋0𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗] using Equation (3.6), and an academic neuron 

𝑋𝑋2𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗] is then generated from the hidden layer using Equation (3.7). Similar 

transformations occur for an economic neuron, 𝑋𝑋2𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗], and a social neuron, 

𝑋𝑋2𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗], as shown in Equations (3.8) to (3.11). The final three neurons for each 

integration form the second hidden layer, and the hazard function is the output of the 

neural network. Equation (3.12) defines the logarithm of the hazard function ℎ𝑖𝑖[𝑗𝑗] as 

the sum of the baseline hazard ℎ0[𝑗𝑗] and a linear combination of the three neurons. 

The academic integration is represented by 𝛽𝛽2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]𝑋𝑋2𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗], the economic 

integration by 𝛽𝛽2𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗], and the social integration by 𝛽𝛽2𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗]. 

𝑋𝑋1𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗] = 𝜎𝜎�𝛼𝛼0𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗] + 𝛽𝛽0𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]𝑋𝑋0𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]�                             (3.6) 

𝑋𝑋2𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗] = 𝜎𝜎�𝛼𝛼1𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗] + 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]𝑋𝑋1𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]�                             (3.7) 

𝑋𝑋1𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗] = 𝜎𝜎(𝛼𝛼0𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗] + 𝛽𝛽0𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗]𝑋𝑋0𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗])                              (3.8) 

𝑋𝑋2𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗] = 𝜎𝜎(𝛼𝛼1𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗] + 𝛽𝛽1𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗]𝑋𝑋1𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗])                              (3.9) 

𝑋𝑋1𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗] = 𝜎𝜎�𝛼𝛼0𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗] + 𝛽𝛽0𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗]𝑋𝑋0𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗]�                              (3.10) 

𝑋𝑋2𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗] = 𝜎𝜎�𝛼𝛼1𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗] + 𝛽𝛽1𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗]𝑋𝑋1𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗]�                              (3.11) 

𝑙𝑙𝑃𝑃𝑙𝑙(ℎ𝑖𝑖[𝑗𝑗]) = ℎ0[𝑗𝑗] + 𝛽𝛽2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]𝑋𝑋2𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]                                                   

+𝛽𝛽2𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗] + 𝛽𝛽2𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗]              (3.12) 

Figure 3.1 illustrates the structure of the hybrid model. The input layer consists 

of three blocks of variables, which will be described in detail in the Data and Variable 

section. The academic input block comprises thirteen variables, the economic input 

block includes six variables, and the social input block contains nine variables. Each 
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input block generates an individual block of neurons in the first hidden layer. The 

second hidden layer consists of three neurons in total, with each neuron representing 

one integration: academic, economic, and social. These neurons serve as the 

intermediate representation of the input variables before generating the hazard 

function. 

The output layer represents the hazard function, which, in turn, generates the 

survival function and dropout probability using Equations (3.2) and (3.3). It’s 

important to note that the input variables for different integrations do not interact with 

each other until the process of generating the hazard function. By enforcing this 

structured design, we ensure that the interactions among input variables are captured at 

the appropriate stage. If we were to remove this designed structure and allow all input 

variables to interact with each other from the beginning, the structural neural network 

would resemble the more traditional fully connected neural network. Conversely, if we 

were to remove the two hidden layers and directly generate the hazard function as a 

linear combination of all input variables, this hybrid model would reduce to the 

simpler piecewise exponential model. 

We implement this sparsely connected neural network structure using the Flux 

package (v0.13.14) (Innes et al., 2018) in Julia, and the code is attached in Appendix 

C. In a nutshell, the whole network structure is a “chain” in Flux, which is “joined” by 

six sub-chains, each for one semester. In a chain for a semester, three individual chains 

are used to transform the three groups of input variables into three neurons, and the 

three neurons generate the hazard function neuron. 
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Figure 3.1: A diagram of a hybrid model of a structural neural network and a piecewise 
exponential model 

3.3.4 Piecewise Exponential Model with Structural Neural Network with 
Interaction Component 

We further introduce an interaction neuron between the academic neuron and 

the economic neuron, because we are interested whether the interaction would play an 

important role for dropout risk. The process to generate the academic, economic and 

social neurons are the same with the previous model, and an interaction term 

𝛽𝛽2[𝑗𝑗]𝑋𝑋2𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗] is added to generate the logarithm of the hazard function 

𝑙𝑙𝑃𝑃𝑙𝑙(ℎ𝑖𝑖[𝑗𝑗]) as shown in Equation (3.13). Addendum B contains a graphic illustration 

of this model called PEM-SNN-2. 
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𝑙𝑙𝑃𝑃𝑙𝑙(ℎ𝑖𝑖[𝑗𝑗]) = ℎ0[𝑗𝑗] + 𝛽𝛽2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]𝑋𝑋2𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗] + 𝛽𝛽2𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗]                    

+𝛽𝛽2𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗] + 𝛽𝛽2[𝑗𝑗]𝑋𝑋2𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗]            (3.13) 

3.3.5 Constructing the Loss Function 

Suppose a student 𝑃𝑃 was enrolled in a semester 𝑗𝑗 with input variables 𝑋𝑋0𝑖𝑖[𝑗𝑗], 

the loss function in a piecewise exponential model depends on whether the student 

dropped out by the end of the semester, 

𝐿𝐿𝑖𝑖[𝑗𝑗] = �−𝑆𝑆𝑖𝑖
[𝑗𝑗] (Retained)

−𝑆𝑆𝑖𝑖[𝑗𝑗]ℎ𝑖𝑖[𝑗𝑗] (Dropout)                                            (3.14) 

We can write the two cases in one equation. Let 𝑦𝑦𝑖𝑖 be the dependent variable, 

with 1 indicating a student droped out and 0 indicating the student remained enrolled 

in the next semester. The loss function can be written as 

𝐿𝐿𝑖𝑖[𝑗𝑗] = −ℎ𝑖𝑖
𝑦𝑦𝑖𝑖[𝑗𝑗]𝑆𝑆𝑖𝑖[𝑗𝑗]                                                                   (3.15) 

Therefore, the logarithm of the loss function is 

𝑙𝑙𝑃𝑃𝑙𝑙𝐿𝐿𝑖𝑖[𝑗𝑗] = −𝑦𝑦𝑖𝑖[𝑗𝑗]𝑙𝑙𝑃𝑃𝑙𝑙(ℎ𝑖𝑖[𝑗𝑗]) − 𝑙𝑙𝑃𝑃𝑙𝑙(𝑆𝑆𝑖𝑖[𝑗𝑗])                                                

According to Equations (2.2) and (2.1), it can be written as 

         𝑙𝑙𝑃𝑃𝑙𝑙𝐿𝐿𝑖𝑖[𝑗𝑗] = −𝑦𝑦𝑖𝑖[𝑗𝑗]𝑙𝑙𝑃𝑃𝑙𝑙(ℎ𝑖𝑖[𝑗𝑗]) + ℎ𝑖𝑖[𝑗𝑗]𝐿𝐿[𝑗𝑗]                                                                         

      = −𝑦𝑦𝑖𝑖[𝑗𝑗](ℎ0[𝑗𝑗] + 𝛽𝛽[𝑗𝑗]𝑋𝑋0𝑖𝑖[𝑗𝑗]) + 𝑃𝑃𝑥𝑥𝑒𝑒(ℎ0[𝑗𝑗] + 𝛽𝛽[𝑗𝑗]𝑋𝑋0𝑖𝑖[𝑗𝑗])𝐿𝐿[𝑗𝑗]      (3.16) 

Where 𝐿𝐿[𝑗𝑗] = 1 for all semesters, regardless of some semesters may last slightly longer 

than the others. Our dependent variable is imbalanced, because less than 4% of 

students would drop out in a semester for those who spent their time for at most three 

years at UD. To address this challenge, we add a hyperparameter w to the loss fuction 

to make the dropout observations weight more than the others, so the logarithm of loss 

function becomes 
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𝑙𝑙𝑃𝑃𝑙𝑙𝐿𝐿𝑖𝑖[𝑗𝑗] = −𝑤𝑤 ∗ 𝑦𝑦𝑖𝑖[𝑗𝑗](ℎ0[𝑗𝑗] + 𝛽𝛽[𝑗𝑗]𝑋𝑋0𝑖𝑖[𝑗𝑗]) + 𝑃𝑃𝑥𝑥𝑒𝑒(ℎ0[𝑗𝑗] + 𝛽𝛽[𝑗𝑗]𝑋𝑋0𝑖𝑖[𝑗𝑗])𝐿𝐿[𝑗𝑗]   (3.17) 

For the PEM-NN models, using Equations (3.4) and (3.5) to derive ℎ𝑖𝑖[𝑗𝑗], the loss 

function becomes 

 𝑙𝑙𝑃𝑃𝑙𝑙𝐿𝐿𝑖𝑖[𝑗𝑗] = −𝑤𝑤 ∗ 𝑦𝑦𝑖𝑖[𝑗𝑗]𝑙𝑙𝑃𝑃𝑙𝑙(ℎ𝑖𝑖[𝑗𝑗]) + ℎ𝑖𝑖[𝑗𝑗]𝐿𝐿[𝑗𝑗]                                                                    

= −𝑤𝑤 ∗ 𝑦𝑦𝑖𝑖[𝑗𝑗]�ℎ0[𝑗𝑗] + 𝛽𝛽2𝑋𝑋1𝑖𝑖� + 𝑃𝑃𝑥𝑥𝑒𝑒�ℎ0[𝑗𝑗] + 𝛽𝛽2𝑋𝑋1𝑖𝑖�𝐿𝐿[𝑗𝑗]                              

= −𝑤𝑤 ∗ 𝑦𝑦𝑖𝑖[𝑗𝑗]�ℎ0[𝑗𝑗] + 𝛽𝛽2𝜎𝜎(𝛼𝛼0[𝑗𝑗] + 𝛽𝛽1[𝑗𝑗]𝑋𝑋0𝑖𝑖[𝑗𝑗])�                                            

+𝑃𝑃𝑥𝑥𝑒𝑒�ℎ0[𝑗𝑗] + 𝛽𝛽2𝜎𝜎(𝛼𝛼0[𝑗𝑗] + 𝛽𝛽1[𝑗𝑗]𝑋𝑋0𝑖𝑖[𝑗𝑗])�                                        (3.18) 

For the PEM-SNN models, using Equation (3.12), the loss function becomes 

𝑙𝑙𝑃𝑃𝑙𝑙𝐿𝐿𝑖𝑖[𝑗𝑗] = −𝑤𝑤 ∗ 𝑦𝑦𝑖𝑖[𝑗𝑗]𝑙𝑙𝑃𝑃𝑙𝑙(ℎ𝑖𝑖[𝑗𝑗]) + ℎ𝑖𝑖[𝑗𝑗]𝐿𝐿[𝑗𝑗]                                                                    

= −𝑤𝑤 ∗ 𝑦𝑦𝑖𝑖[𝑗𝑗](ℎ0[𝑗𝑗] + 𝛽𝛽2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]𝑋𝑋2𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]                                                            

+𝛽𝛽2𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗] + 𝛽𝛽2𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗])                                                         

+exp (ℎ0[𝑗𝑗] + 𝛽𝛽2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]𝑋𝑋2𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]                                                                    

+𝛽𝛽2𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗] + 𝛽𝛽2𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗])𝐿𝐿[𝑗𝑗]                                    (3.19)  

Where 𝑋𝑋2𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗], 𝑋𝑋2𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗] and 𝑋𝑋2𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗] are derived from Equations (3.6) to (3.11). 

For the PEM-SNN-2 models, using Equation (3.13), the loss function becomes 

𝑙𝑙𝑃𝑃𝑙𝑙𝐿𝐿𝑖𝑖[𝑗𝑗] = −𝑤𝑤 ∗ 𝑦𝑦𝑖𝑖[𝑗𝑗]𝑙𝑙𝑃𝑃𝑙𝑙(ℎ𝑖𝑖[𝑗𝑗]) + ℎ𝑖𝑖[𝑗𝑗]𝐿𝐿[𝑗𝑗]                                                                 

= −𝑤𝑤 ∗ 𝑦𝑦𝑖𝑖[𝑗𝑗](ℎ0[𝑗𝑗] + 𝛽𝛽2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]𝑋𝑋2𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]                                                         

+𝛽𝛽2𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗] + 𝛽𝛽2𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗])                                                      

+exp (ℎ0[𝑗𝑗] + 𝛽𝛽2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]𝑋𝑋2𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗] + 𝛽𝛽2𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗]                            

+𝛽𝛽2𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗] + 𝛽𝛽2[𝑗𝑗]𝑋𝑋2𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗]𝑋𝑋2𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗]𝐿𝐿[𝑗𝑗]                         (3.20) 

Where 𝑋𝑋2𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑗𝑗], 𝑋𝑋2𝑖𝑖𝑀𝑀𝐴𝐴𝐸𝐸𝐸𝐸[𝑗𝑗] and 𝑋𝑋2𝑖𝑖𝑆𝑆𝐸𝐸𝐴𝐴𝑆𝑆[𝑗𝑗] are derived from Equations (3.6) to (3.11). 
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3.3.6 Model Fitting 

To predict the dropout students in a semester, all available data before the 

semester are used as a training dataset, and the data of the semester are used as a test 

dataset. The PEM model is trained by the Ipopt solver in the JuMP package (v1.10.0) 

(Lubin et al., 2023). In the training stage, ten-fold validation and F-score are used to 

set the values of hyperparameters for the hyperparameter 𝑤𝑤 in the loss function and a 

threshold probability. The hyperparameter 𝑤𝑤 is set as 1.5 to put more weight on the 

loss from the dropout observations. After training, hazard function, survival function 

and dropout probability are calculated using parameter estimates Equations (3.1) to 

(3.3). The threshold probability is set as 0.15 to determine whether a student would 

dropout, i.e., a student would drop out if the predicted dropout probability is larger 

than 0.15; otherwise, the student is predicted to remain enrolled in the next semester. 

The hybrid models with neural networks are trained with the Flux package 

(v0.13.14) (Innes et al., 2018) using Adam optimization algorithm with a learning rate 

of 0.01, and the exponential decay rates for the first-momentums and second-

momentums are 0.9 and 0.999. In addition to the hyperparameter 𝑤𝑤 in the loss 

function and a threshold probability, the number of neurons is set as 13 using ten-fold 

validation in the training for the models with fully-connected neural networks. The 

same number of neurons, i.e., 13, is used for each individual group of neurons derived 

from their respective variable groups. To ensure the robustness and reliability of the 

models, 100 runs are conducted to calculate statistical metrics such as precision, recall, 

and F-score. 
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3.4 Data and Variables 

This study utilizes enrollment and financial aid data from the University of 

Delaware (UD), a public research university with an undergraduate population of 

approximately 18,000 students. The dataset includes information from 40,440 

undergraduate students who enrolled as first-time full-time students in the fall 

semesters between 2012 and 2021. The raw data tables were obtained from UD’s 

enterprise data warehouse, and a final dataset for analysis was constructed as a 

student-semester file, with one row per student and semester. 

Students were tracked until the end of their third year or until dropout 

occurred. Only fall and spring semesters were considered for tracking purposes, and 

dropout was defined as not being enrolled in the subsequent semester without having 

graduated. Table 3.1 provides an overview of the headcount flow for the ten cohorts 

across different semesters. The smallest cohort, Fall 2020, consisted of 3,711 first-time 

full-time students, while the largest cohort, Fall 2017, comprised 4,258 students. The 

headcount of each cohort gradually decreased over the semesters due to dropout. 

Blank cells in the table indicate that the corresponding cohort had not reached that 

particular semester. 

Table 3.1: Cohort headcount flow by semester 

Cohort\Semester 
Sequence 

1st 2nd 3rd 4th 5th 6th 

Fall 2012 3,806  3,677  3,490  3,398  3,308  3,284  
Fall 2013 3,794  3,660  3,438  3,340  3,244  3,197  
Fall 2014 4,168  4,035  3,835  3,735  3,642  3,569  
Fall 2015 4,092  3,944  3,725  3,644  3,538  3,497  
Fall 2016 3,943  3,807  3,576  3,479  3,385  3,297  
Fall 2017 4,285  4,116  3,827  3,708  3,582  3,481  
Fall 2018 4,242  4,091  3,849  3,732  3,658  3,609  
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Fall 2019 4,136  3,934  3,705  3,621  3,554  3,484  
Fall 2020 3,711  3,573  3,389  3,267  3,171  3,117  
Fall 2021 4,263  4,079  3,852  3,775  

  

Table 3.2 presents the headcounts for each semester between Fall 2012 and 

Spring 2022, organized by cohort. Each semester featured up to three cohorts: 

freshman, sophomore, and junior. Senior cohorts were excluded from the analysis as 

they had already completed their third year or exceeded the sixth semester. The initial 

semesters do not have three cohorts due to the absence of data before the Fall 2012 

cohort. To predict at-risk students in a given semester, the training dataset included all 

available data up until that semester, while the data specific to the semester served as 

the test dataset. Initially, the focus was on predicting at-risk students among the 

10,830 students enrolled in Spring 2022, using all data preceding Spring 2022 for 

training. The process was then repeated for Spring 2021 and Spring 2020 to predict at-

risk students in those semesters. 

Table 3.2: Headcounts between Fall 2012 and Spring 2023 by cohort 

Semester \ Cohort Freshman 
Cohort  

Sophomore 
Cohort  

Junior 
Cohort 

Total 

Fall 2012 3,806  
  

3,806  
Spring 2013 3,677  

  
3,677  

Fall 2013 3,794  3,490  
 

7,284  
Spring 2014 3,660  3,398  

 
7,058  

Fall 2014 4,168  3,438  3,308  10,914  
Spring 2015 4,035  3,340  3,284  10,659  
Fall 2015 4,092  3,835  3,244  11,171  
Spring 2016 3,944  3,735  3,197  10,876  
Fall 2016 3,943  3,725  3,642  11,310  
Spring 2017 3,807  3,644  3,569  11,020  
Fall 2017 4,285  3,576  3,538  11,399  
Spring 2018 4,116  3,479  3,497  11,092  
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Fall 2018 4,242  3,827  3,385  11,454  
Spring 2019 4,091  3,708  3,297  11,096  
Fall 2019 4,136  3,849  3,582  11,567  
Spring 2020 3,934  3,732  3,481  11,147  
Fall 2020 3,711  3,705  3,658  11,074  
Spring 2021 3,573  3,621  3,609  10,803  
Fall 2021 4,263  3,389  3,554  11,206  
Spring 2022 4,079  3,267  3,484  10,830  

Table 3.3 provides a description of the dependent and independent variables, 

along with their means (and standard deviations for numeric variables) for each 

semester. The dependent variable indicates whether a student is enrolled in the next 

semester, with a value of 1 representing dropout and 0 representing enrollment. The 

average dropout rate increased from the first semester (0.033) to the second semester 

(0.047) and then gradually decreased in the subsequent four semesters: 0.025, 0.023, 

0.013, and 0.01 from the third to the sixth semester, respectively. 

There are thirteen academic variables, consisting of four binary variables and 

nine numeric variables. In the first fall semester, all students were full-time students, 

and the majority remained full-time throughout their academic journey. During the 

first semester, 16.9% of students were in the University Study program, which allowed 

them to explore and choose majors later. As students progressed to their sophomore 

and junior years, the percentage of students in the University Study program gradually 

decreased to 0.9% by the sixth semester. In the first semester, no students had a double 

major, but the percentage of students with a double major increased to 14.4% by the 

sixth semester. 

Due to the data collection process on the census day of each semester (two 

weeks after the semester starts), students’ academic standing status was not available 

in the first semester. There were 6.4% of students in probation status in the 2nd 
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semester, and the proportion gradually decreased to 1.3%. Similarly, these variables 

are not available in the 1st semester, College GPA, DFW Count, Listener Count, 

Academic Standing, and Total Credit were not recorded for the first semester. In 

addition, the Total Credit, Total Minor Credit, Total Transfer Credit, and Total AP 

Credit variables were standardized by the typical 120 credits required for graduation, 

and the Registered Credit variable was standardized based on the typical total of 15 

credits taken in one semester. For example, total credit rate being 0.25 means that a 

student has 30 (0.25x120) credits in total as of the census day of a semester, and 

registered credit rate being 0.8 means that a student registered 12 ((0.8x15)) credits in 

a semester. 

From the second semester to the sixth semester, the average cumulative GPA 

increased from 3.103 to 3.229, the average DFW class count decreased from 0.371 to 

0.249, the average Listener class count decreased from 0.062 to 0.034, and the average 

total credit rate increased from 0.18 to 0.716. From the first semester to the sixth 

semester, the average registered credit rate decreased from 1.02 to 0.991, the average 

total minor credit rate increased from 0.001 to 0.048, the average total transfer credit 

rate increased from 0.017 to 0.026, and the average total AP credit rate increased from 

0.034 to 0.04. The average high school GPA varied slightly between 3.758 and 3.766 

due to changes in the student population each semester. 

All economic variables are numeric and standardized by the cost of attendance 

(COA). For instance, a grant/scholarship rate of 0.2 indicates that 20% of the COA is 

covered by grants and scholarships. Among the six semesters, the average EFC rate 

varied between 0.819 and 1.005, the average grant/scholarship rate varied between 

0.165 and 0.228, the average PLUS parent loan rate varied between 0.036 and 0.053, 
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the average student loan rate varied between 0.128 and 0.147, the average work-study 

aid rate varied between 0.003 and 0.006, and the balance varied between -0.012 and -

0.016. The balance for the first semester is not available as of the census day. 

All social variables, except for Age, are binary variables. From the first 

semester to the sixth semester, the average age increased from 18.023 to 20.442. The 

proportion of Pell Grant recipients decreased from 15.1% to 12.6%, the proportion of 

first-generation college students decreased from 12.8% to 11.8%, the proportion of 

male students varied between 40.0% and 40.5%, the proportion of Delawarean 

students increased from 31.7% to 32.7%, the proportion of African American students 

decreased from 5.2% to 4.6%, the proportion of Asian students varied between 5.1% 

and 5.3%, the proportion of Hispanic students decreased from 9% to 8.2%, and the 

proportion of White students increased from 72.8% to 74.4%. 

Table 3.3: Description and mean (standard deviation) of input and output variables by 
semester; standard deviation is only calculated for numeric variables. 
 

Description 1st   2nd 3rd 4th 5th 6th 
Output 
Variable 

       

Dropout Whether a student not 
enrolled next semester 

0.033 0.047 0.025 0.023 0.013 0.01 

Academic 
Variable 

       

Full-time 
status 

Whether a full-time 
student 

1 0.995 0.994 0.993 0.992 0.988 

University 
Study 

Whether in University 
Study (US) program 

0.169 0.15 0.099 0.052 0.019 0.009 

Double 
major 

Whether a student has 
double major 

0 0.036 0.081 0.116 0.136 0.144 

College 
GPA 

Cumulative college 
GPA 

N/A 3.103 
(0.692) 

3.143 
(0.586) 

3.18 
(0.535) 

3.197 
(0.509) 

3.229 
(0.488) 

DFW count Count of classes with 
final grade being D 
(D+, D, D-), F or W 
(withdraw) in last 

N/A 0.371 
(0.849) 

0.311 
(0.758) 

0.326 
(0.775) 

0.265 
(0.709) 

0.249 
(0.696) 
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semester 
Listener 
count 

Count of audit 
(Listener) classes in 
last semester 

N/A 0.062 
(0.25) 

0.059 
(0.255) 

0.045 
(0.239) 

0.042 
(0.22) 

0.034 
(0.204) 

Academic 
standing 

Whether a student is in 
probation status 

N/A 0.064 0.039 0.028 0.017 0.013 

Total credit Number of total credits 
over 120 

N/A 0.18 
(0.083) 

0.308 
(0.092) 

0.447 
(0.103) 

0.574 
(0.113) 

0.716 
(0.121) 

Registered 
credit 

Number of credits 
taken in the current 
semester over 15 

1.02 
(0.077) 

1.014 
(0.103) 

1.014 
(0.107) 

1.003 
(0.114) 

1.009 
(0.123) 

0.991 
(0.139) 

Total minor 
credit 

Number of credits 
earned from 
winter/summer terms 
over 120 

0.001 
(0.005) 

0.008 
(0.016) 

0.013 
(0.022) 

0.026 
(0.032) 

0.032 
(0.037) 

0.048 
(0.045) 

Total 
transfer 
credit 

Number of total 
transfer credits over 
120 

0.017 
(0.045) 

0.017 
(0.045) 

0.017 
(0.044) 

0.022 
(0.047) 

0.022 
(0.046) 

0.026 
(0.049) 

Total AP 
credit 

Number of total AP 
credits over 120 

0.034 
(0.06) 

0.035 
(0.061) 

0.037 
(0.062) 

0.038 
(0.063) 

0.039 
(0.064) 

0.04 
(0.064) 

HS GPA High school GPA 3.759 
(1.265) 

3.766 
(1.285) 

3.758 
(1.373) 

3.763 
(1.389) 

3.755 
(1.467) 

3.755 
(1.382) 

Economic 
Variable 

       

EFC Expected family 
contribution (EFC) 
over cost of attendance 
(COA) 

0.997 
(1.488) 

1.005 
(1.487) 

0.849 
(1.137) 

0.855 
(1.147) 

0.819 
(1.052) 

0.824 
(1.065) 

Grant Total grant/scholarship 
obtained over COA 

0.22 
(0.211) 

0.228 
(0.217) 

0.185 
(0.199) 

0.194 
(0.206) 

0.165 
(0.19) 

0.175 
(0.198) 

PLUS loan Loan borrowed by 
parent over COA 

0.047 
(0.165) 

0.053 
(0.174) 

0.04 
(0.155) 

0.049 
(0.17) 

0.036 
(0.145) 

0.045 
(0.161) 

Student 
loan 

Loan borrowed by 
student over COA 

0.128 
(0.182) 

0.135 
(0.198) 

0.129 
(0.183) 

0.142 
(0.206) 

0.131 
(0.181) 

0.147 
(0.205) 

Work study Financial aid in work 
study over COA 

0.006 
(0.016) 

0.005 
(0.015) 

0.003 
(0.013) 

0.003 
(0.013) 

0.003 
(0.012) 

0.003 
(0.013) 

Balance Outstanding balance 
over COA 

N/A -0.013 
(0.054) 

-0.012 
(0.051) 

-0.014 
(0.055) 

-0.011 
(0.049) 

-0.016 
(0.059) 

Social 
Variable 

       

Pell Whether a student 
received federal Pell 
grant 

0.151 0.147 0.134 0.132 0.126 0.126 

First 
Generation 

Whether a first-
generation college 
student 

0.128 0.124 0.121 0.119 0.119 0.118 

Male Whether a male 
student 

0.405 0.404 0.403 0.4 0.404 0.402 

Residency Whether a Delawarean 
student 

0.317 0.317 0.324 0.323 0.327 0.327 
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Age Age in the current 
semester 

18.023 
(0.554) 

18.449 
(0.651) 

19.021 
(0.516) 

19.446 
(0.572) 

20.018 
(0.518) 

20.442 
(0.571) 

African 
American 

Whether an African 
American student 

0.052 0.051 0.049 0.048 0.047 0.046 

Asian Whether an Asian 
student 

0.052 0.052 0.051 0.051 0.052 0.053 

Hispanic Whether a Hispanic 
student 

0.09 0.089 0.086 0.085 0.082 0.082 

White Whether a White 
student 

0.728 0.73 0.735 0.739 0.743 0.744 

3.5 Results and Discussion 

We conducted a comparison of four models for predicting dropout students in 

Spring 2020, Spring 2021, and Spring 2022. The models compared were the piecewise 

exponential model with a linear hazard function (PEM-Linear), the piecewise 

exponential model with a fully-connected neural network for the hazard function 

(PEM-NN), the piecewise exponential model with a structural neural network for the 

hazard function (PEM-SNN), and the piecewise exponential model with a structural 

neural network with interaction for the hazard function (PEM-SNN-2), where the 

interaction occurs between the academic and economic integrations. For each spring 

semester, the PEM-Linear model was executed once using the JuMP package 

(v1.10.0) (Lubin et al. 2023), while the other models were run 100 times using the 

Flux package (v0.13.14) (Innes et al. 2018). This distinction was necessary because a 

global optimization could only be found for the PEM-Linear model. 

Table 3.4 presents a comparison of the four models in terms of their average 

precision, recall, and F-score, along with their standard deviations. The model with the 

highest average F-score is highlighted in bold for each spring semester. A student is 

predicted to have a high dropout risk if their predicted dropout probability is greater 

than 0.15. Precision indicates the proportion of students who actually dropped out and 

are predicted to have a high risk out of all students predicted to have a high risk. A 
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higher precision implies a higher proportion of interventions can be directed towards 

students who truly require help, thus making any intervention program more efficient. 

Recall reflects the proportion of students who actually dropped out and are predicted 

to have a high risk out of all students who actually dropped out. Higher recall indicates 

that a larger proportion of dropout students would be covered by the interventions, 

making the intervention program more effective. The F-score is the harmonic mean of 

precision and recall, measuring both the efficiency and efficacy of the intervention 

program. 

Our discussion on model performance focuses on their F-scores, with PEM-

Linear serving as the baseline performance among the four models. We use either the 

z-test or Kolmogorov-Smirnov (KS) test in the HypothesisTests package (v0.10.11) to 

determine whether the F-scores of two models are similar or not. For Spring 2020, 

PEM-NN shows similar F-scores (average = 0.172) to PEM-Linear (0.173), while 

PEM-SNN and PEM-SNN-2 demonstrate higher F-scores with averages of 0.179 and 

0.176, respectively. In Spring 2021, PEM-NN exhibits higher F-scores (average = 

0.214) compared to PEM-Linear (0.209), while PEM-SNN and PEM-SNN-2 achieve 

even higher F-scores with averages of 0.229 and 0.232, respectively. In Spring 2022, 

PEM-NN, PEM-SNN, and PEM-SNN-2 demonstrate similar F-scores to PEM-Linear 

(0.251), with averages of 0.251, 0.250, and 0.249, respectively. Therefore, PEM-SNN 

and PEM-SNN-2 exhibit similar or higher predictive performance than the other two 

models. As PEM-SNN and PEM-SNN-2 exhibit similar performance, but PEM-SNN 

is easier to interpret than PEM-SNN-2, we select PEM-SNN as the best model and 

focus on its interpretation in the following section. 
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Table 3.4: Performance comparison of four models in five semesters in terms of 
average (and standard deviation) of precision, recall and F-score 

 
Spring 2020 Spring 2021 Spring 2022 

PEM-Linear Precision 0.143 0.303 0.227 
Recall 0.221 0.160 0.280 
F-Score 0.173 0.209 0.251 

PEM-NN Precision 0.132 (0.011) 0.244 (0.025) 0.221 (0.01) 
Recall 0.246 (0.024) 0.193 (0.018) 0.29 (0.011) 
F-Score 0.172 (0.015) 0.214 (0.013) 0.251 (0.006) 

PEM-SNN Precision 0.137 (0.007) 0.224 (0.013) 0.213 (0.011) 
Recall 0.258 (0.017) 0.236 (0.026) 0.304 (0.022) 
F-Score 0.179 (0.009) 0.229 (0.014) 0.250 (0.011) 

PEM-SNN-2 Precision 0.135 (0.007) 0.228 (0.015) 0.212 (0.011) 
Recall 0.253 (0.015) 0.238 (0.025) 0.303 (0.022) 
F-Score 0.176 (0.008) 0.232 (0.014) 0.249 (0.012) 

We begin the interpretation of PEM-SNN for predicting dropout students in 

Spring 2020 using a model with an F-score close to the average from the 100 runs. In 

Spring 2020, there are three cohorts: the Fall 2019 cohort in their second semester, the 

Fall 2018 cohort in their fourth semester, and the Fall 2017 cohort in their sixth 

semester. Figure 3.2 presents histograms of the predicted logarithm of hazard (log(h)) 

and the three integrations, where log(h) is the sum of the intercept (not shown in the 

figure) and the three integrations as per Equation (3.7).  

The first row of Figure 3.2 displays the distributions of log(h) for retained and 

dropout students. Log(h) is positively related to the dropout probability, i.e., the higher 

the log(h) is, the higher the dropout probability is, and vice versa. Among retained 

students, the distribution for the Fall 2019 cohort exhibits a relatively symmetric bell 

shape centered around -3, the distribution for the Fall 2018 cohort is more 

concentrated around -4.8 with a long right tail, and the distribution for the Fall 2017 

cohort is mostly concentrated near -5.3. According to Equations (3.2) and (3.3), a 
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smaller log(h) corresponds to a lower dropout probability. Therefore, for retained 

students, their dropout probabilities gradually decrease as they progress in their 

academic careers, and it becomes increasingly certain that they will not dropout. The 

distributions of log(h) for dropout students differ from those of retained students. The 

distribution for the Fall 2019 cohort becomes flatter and shifts towards larger log(h) 

values, while the distributions for the Fall 2018 and Fall 2017 cohorts are even flatter 

and spread between -6 and 0. This pattern aligns with the expectation that dropout 

students would have higher log(h) values and thus higher predicted dropout 

probabilities. 

The subsequent rows of the figure display histograms of the three integrations. 

The academic integration contributes the most to distinguishing between retained and 

dropout students. Similar to log(h), the distributions of the academic integrations for 

dropout students are flatter and shift towards higher values compared to those of 

retained students. However, the distributions of the other two integrations show 

similar patterns between dropout and retained students. Additionally, the magnitudes 

of the other two integrations can be too small to make a meaningful contribution to 

log(h), including the social integration for the Fall 2018 cohort and the economic and 

social integrations for the Fall 2017 cohort. Based on these findings, if there were an 

intervention program in Spring 2020, it should focus on students’ academic 

performance and activities to reduce attrition. 
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Figure 3.2: Histograms of log(hazard), academic integration, economic integration, and social 
integration for cohort Fall 2019, cohort Fall 2018 and cohort Fall 2017 in Spring 
2020 

Figure 3.3 presents histograms of log(h) and the three integrations for cohort 

Fall 2020, cohort Fall 2019, and cohort Fall 2018 in Spring 2021. The log(h) exhibits a 

similar pattern to Spring 2020, where retained students’ log(h) values move towards 

smaller values as they progress in their academic careers, with the log(h) being highly 

concentrated for students in their sixth term. On the other hand, dropout students’ 

log(h) values are more dispersed towards higher values, indicating a higher predicted 

dropout risk. Similarly to Spring 2020, the academic integrations display a similar 

magnitude and pattern as log(h), contributing to the larger hazard among dropout 
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students compared to retained students. The economic integrations’ magnitudes 

gradually decrease as students progress academically, suggesting their diminishing 

influence on dropout risk. They do not contribute much to differentiate between 

retained and dropout students, as their distributions are similar between the two 

groups. The social integrations exhibit relatively stable magnitudes but display similar 

patterns for both retained and dropout students, indicating limited contribution to 

differentiating between the two groups. 

 

Figure 3.3: Histograms of log(hazard), academic integration, economic integration, and 
social integration for cohort Fall 2020, cohort Fall 2019 and cohort Fall 2018 in 
Spring 2021 
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Figure 3.4 displays the histograms for cohort Fall 2021, cohort Fall 2020, and 

cohort Fall 2019 in Spring 2022. Similar to the findings in Spring 2020 and Spring 

2021, the log(h) distributions of dropout students have a flatter shape compared to 

retained students, particularly for the sophomore and junior cohorts. Furthermore, the 

distribution of log(h) shifts towards higher values for the dropout students, indicating a 

higher predicted dropout probability. The distributions of academic integrations also 

exhibit distinct patterns between retained and dropout students, with the latter group 

tending to have higher academic integrations. In contrast, the economic and social 

integrations demonstrate similar distributions across both student groups. 

Consequently, our consistent findings across Spring 2020, Spring 2021, and Spring 

2022 underscore the crucial role of academic integration in differentiating between 

dropout and retained students. 
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Figure 3.4: Histograms of log(hazard), academic integration, economic integration, and 
social integration for cohort Fall 2021, Fall 2020 and Fall 2019 in Spring 2022 

3.6 Conclusion 

We have developed a hybrid model that combines a structural neural network 

and a piecewise exponential model, aiming to assist in the design of an intervention 

plan to mitigate student attrition in colleges. This hybrid model not only enables us to 

predict a list of students with a high risk of dropout but also provides potential 

explanations for the elevated risks. We apply the model to predict dropout students 

during the Spring semesters of 2020, 2021, and 2022 at the University of Delaware, 

and compare its performance with two other models. Whether incorporating an 

interaction term between academic and economic integrations or not, the hybrid model 
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consistently demonstrates similar or superior predictive performance compared to a 

piecewise exponential model with linear hazard and another hybrid model featuring a 

more traditional fully-connected neural network. 

Among the three integrations, the academic integration proves to be the most 

influential in distinguishing between dropout and retained students, as indicated by the 

results obtained from the PEM-SNN models, consistent with prior research (Aulck et 

al., 2019; Berens et al. 2019). Dropout students are expected to exhibit higher 

predicted dropout probabilities compared to their retained counterparts, with the 

dropout probabilities being determined by the logarithm of the estimated hazards. 

While the hazard distributions of retained students shift towards lower values, the 

distributions of dropout students are more dispersed and encompass the higher hazard 

range, confirming that dropout students indeed tend to have higher hazards than 

retained students. The distributions of the academic integrations follow a similar 

pattern to the hazards, displaying noticeable differences between dropout and retained 

students, while the distributions of the economic and social integrations appear similar 

between the two groups of students. This consistent finding persists across different 

stages of students’ academic careers, irrespective of whether it is the second, fourth, or 

sixth semester. Based on these findings, we recommend that intervention programs 

focus on closely examining the academic performance and activities of at-risk 

students. 
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THE EFFECT OF LOAN DEBT ON GRADUATION BY DEPARTMENT: A 
BAYESIAN HIERARCHICAL APPROACH 

4.1 Introduction 

Increasing costs for higher education leads to college students accumulating 

substantial amounts of loan debt (College Board, 2020; Hemelt et al., 2018; 

Middaugh, Graham, and Shahid, 2003). Student loans are the second largest category 

of debt that Americans take on - exceeding $1.6 trillion nationally in the fourth quarter 

of 2019 (Johnson, 2019; USAFacts, 2019). The financial burden of loan debt affects 

the students’ persistence, graduation, and lives after graduation (Herzog, 2018; 

Noopila and Williams Pichon, 2020; Patel, 2020). Even some 2020 presidential 

candidates, notably Sen. Bernie Sanders and Sen. Elizabeth Warren, proposed costly 

student loan debt forgiveness plans arguing that students struggle with basic expenses 

due to repaying student loans (Johnson, 2019; Patel, 2020). 

Unlike the U.S. government, educational institutions do not have the resources 

to fully cancel students' loan debt.  However, colleges and universities can certainly 

design financial aid policies that ensure better student outcomes. This paper will 

investigate the relationship between student loan debt and six-year graduation rate.  

Graduation rate is a standard measure of student outcome, e.g., Integrated 

Postsecondary Education Data System (IPEDS) reports six-year graduation rate for 

first-time, full-time undergraduate students seeking a bachelor's degree at four-year, 

degree-granting institutions that participate in Title IV financial aid programs. 

Chapter 4 
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Previous studies report mixed findings on the effect of loan debt on graduation. 

Loan debt has been seen as beneficial (Bowen, Chingos, and McPherson, 2009), 

detrimental (Chen and Hossler, 2017; Davidson and Holbrook, 2014; Franke, 2019; 

Jones-White et al., 2014), and non-significant (Dowd and Coury, 2006; Gross, Torres, 

and Zerquera, 2013). Given that loan debt is confounded with other factors such as 

student demographic characteristics, socioeconomic status, and academic performance 

we might expect these mixed results as different contexts and different controls will 

certainly alter findings. 

Previously considered control factors include demographic characteristics such 

as gender and age, standardized tests such as SAT/ACT scores and number of AP 

credits, academic performance such as number of courses with C or D grade, 

socioeconomic status such as adjusted gross income (AGI), and institutional type if a 

study involves multiple institutions (Gross, Torres, and Zerquera, 2013; Jones-White 

et al., 2014; Noopila and Williams Pichon, 2020). In the literature, most studies focus 

on particularly relevant subsets of potential control factors. For instance, Gross et al. 

and Zhan et al. focused on the effect of loan debt by racial and ethnic group (Gross, 

Torres, and Zerquera, 2013; Zhan, Xiang, and Elliott III, 2018). The earlier study 

found that loan debt did not directly affect Latino/a graduation. The latter study 

showed that minority students had higher levels of tolerance for loan debt when 

compared with their Caucasian counterparts. Another study focused on the effect of 

loan debt by students' economic background and institutional type (public/private) 

(Dwyer et al., 2012) and found that the graduation rates of students in private 

institutions and those from upper-income families attending public institutions were 

less affected from loan debt. 
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This study builds on the previous literature by being the first to include a 

student's department when considering student loan effects on graduation rate. Similar 

to the observation that financial aid has different effects in different racial and ethnic 

groups or socioeconomic groups (Kim, 2012), the financial burden from loan debt will 

likely vary with income prospects (Witteveen and Attewell, 2019). For example, the 

average median income is less than $21,000 for Drama/Theatre Arts and Stagecraft 

majors among public institutions, but it is more than $68,000 for Computer 

Engineering majors (U.S. Department of Education, 2019). According to the human 

capital model developed by Gary Becker (Becker, 1964), a student tends to drop out 

from school and enter the labor market when the marginal cost of education is higher 

than the expected benefit of education (Long, 2007). This is an undesirable outcome 

for the institutions because graduation rates are prominent in both government funding 

criteria and popular-press school-ranking criteria (Lin, 2020).  

As will be shown, our findings suggest that institutions should consider 

students' departments when distributing institutional financial aid resources. 

Universities can pay special attention to students in departments where graduation 

rates seem to suffer under the burden of loan debt. One response might be to offer 

more institutional scholarships to students in those departments, better aligning debt 

burden with future outcomes. Our study also suggests that departmental variation in 

induced debt burden varies with academic level (e.g. freshman, sophomore, etc.), and 

hence, financial aid policy should consider differences between first-year students and 

more advanced students in the department. 

To estimate the effect of control factors on graduation, previous studies 

typically use different variants of logit models. Dowd and Coury used a standard 
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dichotomous logit model to estimate the effects of control factors (Dowd and Coury, 

2006; Gross, Hossler, and Ziskin, 2007; Noopila and Williams Pichon, 2020). Jones-

White et al. used a multinomial logit model for their outcome variable which had three 

levels: graduate from the initial university, graduate from a transfer university, or not 

graduate (Jones-White et al., 2014). Moreover, previous studies utilized event history 

models to investigate the effect of loan debt, to include time-varying covariates such 

as cumulative loan debt (Chen and Hossler, 2017; Gross, Torres, and Zerquera, 2013). 

However, event history models typically assume proportional hazard, i.e., the effects 

are time-independent for the time-varying covariates, while this study assumes the 

effects of the time-varying covariates are also time-varying. 

Our study also contains a model within the logit-family of models. 

Specifically, we use a Bayesian hierarchical logit model to estimate loan debt effect on 

graduation by department. Since some departments have few students enrolled, we 

chose Bayesian estimation to overcome the challenges presented by small data. While 

classical regression methods of previous studies are susceptible to over-fitting due to 

small sample sizes, the Bayesian hierarchical approach uses partial pooling to 

overcome this difficulty (McElreath, 2015). The inputs of the models are students' 

information at the end of a spring semester, such as students' departments, cumulative 

loan debt, demographic characteristics, academic preparation, academic performance, 

and financial background. The output of the models is whether students graduate 

within six years. Since this study intends to propose different financial aid policies for 

enrolled students with different academic levels, separate models are built for first-

year students, second-year students, third-year students, fourth-year students and fifth-

year students, respectively. 
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In summary, this chapter investigates the following two research questions in 

order to encourage institutions to consider students’ departments in their financial aid 

policies: 

1. Does loan debt have the same effect on six-year graduation for enrolled 

students in different departments in the same semester? 

2. Does the effect of loan debt in a department change over time? 

4.2 Prior Research 

This section starts with a broad discussion of prior research on the effects of 

financial aid on student choices, and then narrows the discussion to look at the effect 

of loan debt on graduation. Two key aspects of prior research inspire this study. First, 

loan debt effect on college graduation is still inconclusive. Second, the effect of loan 

debt on college graduation can be different in different student groups. Hence, 

designing differential financial aid policies by department might prove an effective 

way to enhance students' outcomes and to deploy financial resources efficiently.   

4.2.1 Financial Aid on Student Choices 

The prior research on financial aid focused on federal and state financial aid 

policies, and the effect of those policies on sequences of student choices: whether to 

attend college, which college to attend, whether to persist, and which major to study 

(Dynarski and Scott-Clayton, 2013; St. John, 1991). After reviewing the studies from 

1970s to 2010s, St. John, Dynarski and Scott-Clayton summarized the following 

findings. First, increased financial aid, including loans, promotes the decision to attend 

college with larger effect sizes seen in middle-income student populations as 

compared to low-income student populations (Leslie and Brinkman, 1988; St John, 
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1990). Second, middle-income students prefer less expensive institutions if they need 

to finance the cost of attendance with loans (McPherson and Schapiro, 2010; van der 

Klaauw, 2002). Third, financial aid promotes persistence when studied nationally, but 

this retention-type of effect is not consistently seen in institutional research (Carroll, 

1987; Leslie and Brinkman, 1988; Moline, 1987) or for late-year retention (St. John, 

1989). Fourth, loan debt does not affect the choice of major (St. John and Noell, 

1987). Fifth, program complexity decreases the effectiveness of financial aid 

(Bettinger et al., 2012). At the end of his review, St. John calls for more research to 

help the design of both institutional financial aid policies and to refine both financing 

and enrollment management strategies. 

4.2.2 Effect of Loan Debt on graduation 

Findings of the effect of loan debt on graduation have been inconclusive. Many 

previous studies found loan debt to be a detrimental effect on college graduation. 

Focusing on first-time students in their first term, Jones-White et al. (2014) concluded 

that loan aid encouraged college students to quit entirely or transfer to another 

institution. Specifically, the relative risk of not graduating from the first-entry 

institution increased by about 7.51%, with the increase of $1,000 in loan debt. While 

also studying first-time first-year students, Gross et al. (2013) focused on the effect of 

loan debt on graduation by race/ethnicity in Indiana's public four-year institutions. 

They found a negative relationship between loan debt and graduation for African 

American or Black students. Specifically, the odds of graduation of an African 

American or Black student decreased by 0.2% with an increase of $100 in loans, 

compared to White students. In studying the effect of financial aid on graduation of 

non-traditional students, Chen and Hossler (2017) found federal unsubsidized student 
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loans had a detrimental effect on timely graduation. Specifically, the probability of 

graduating within six years decreased by 1%, with the increase of $1,000 in 

unsubsidized loan debt.     

Loan debt was also found to have an indirect effect on college graduation. 

Focusing on first-semester students in community colleges, Dowd and Coury (2006) 

observed no significant effect from subsidized loans on graduation within five years. 

When investigating loan effect along with parental income and institution type, 

Dwyer, McCloud, and Hodson (2012) found the effect of loan debt was not significant 

for students in private schools. Conversely, for African American or Black students, 

Gross et al. (2013) found that loan debt did not have a direct effect on graduation for 

Latino/a students.   

Surprisingly, a few studies report positive effects of loan debt. For example, 

Bowen et al. (2009) suggested that federal loans have a positive effect on graduation. 

However, the conjecture was based on the positive effect of loans on college 

attendance and was not supported by an empirical study. 

Some studies found the relationship between loan debt and college graduation 

was nonlinear. Dwyer et al. (2012) discovered the effect was positive if borrowing was 

less than about $10,000 but was negative if beyond $10,000 for public university 

students from modest economic backgrounds. Focusing on the difference by race and 

ethnicity, Zhan et al. (2018) confirmed the nonlinear relationship of the effect of loan 

debt on graduation. They claimed loan debt had a positive effect on graduation until 

borrowing more than $18,452, $20,990, $23,971 for White, Black, and Hispanic 

students, respectively. 
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Another branch of the literature investigates the effects of loan debt on 

graduation for different student groups. Race/ethnicity is frequently used to group 

students when investigating these effects.  The goal of these lines of inquiry is to find 

whether financial aid helps to improve equity in education. As mentioned earlier, 

although they found that loan debt did not have a direct effect on graduation for 

Latino/a students, Gross et al. (2013) found a negative relationship between loan debt 

and graduation for African American or Black students. In Zhan et al.'s (2018) study, 

they found a consistent nonlinear relationship between loan debt and graduation 

among students with different races/ethnicities but also found that minority students 

had a higher tolerance for loan debt when compared with White students. In addition 

to race/ethnicity, institutional type is another popular factor used to group students. 

Institutional type is an important factor related to graduation rate (Gross, Torres, and 

Zerquera, 2013; Hussar et al., 2020), loan debt amount (NCES, 2020), and loan default 

(Hillman, 2014). Dwyer et al. (2012) found students with low and medium income at 

public universities were negatively affected by loan debt, while loan debt did not 

affect graduation for students at private universities. Due to data availability, this 

study includes data from a single public institution and thus, does not include 

institutional type as a control variable. 

Although students’ major/department of study has been considered in the 

research related to loan debt amount (Burns and Webber, 2019; George-Jackson, 

Rincon, and Martinez, 2012; Harrast, 2004) and loan default (Gross et al., 2009; 

Hillman, 2014), no previous research studied the effect of loan debt by 

major/department on college graduation. We expect more studies will include this 

factor in the future. For example, in May 2019 and December 2019, the U.S. 
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Department of Education has published preliminary and official files on loan debt and 

income by field of study (U.S. Department of Education, 2019). The files reveal that 

the accumulated loan debt and earnings after graduation are significantly different in 

different fields of study. With the different expected income after graduation, students 

may feel different financial stress from loan debt. Students with excessive financial 

stress may choose to drop out (Fossey and Bateman, 1998). An institution could 

design a differential financial aid policy by field of study (Luna-Torres et al., 2018), 

according to the different effects of loan debt on graduation in different fields. 

However, since an institution is typically organized by department instead of field of 

study, it may be more practical to design the policy by department. 

Additionally, our study overcomes some (not all) of the generalizability 

concerns of previous studies by including multiple cohorts of students and studying 

them across multiple academic levels. Jones-White et al. (2014) expressed concern 

that their results were based on only first-term financial aid information from a single 

cohort of students. Dowd and Coury obtained the data from Beginning Postsecondary 

Students Longitudinal Study (BPS 90/94). They expressed concern that the financial 

information of students might change in subsequent years, but only the first-year 

financial information was available in BPS 90/94 (Dowd and Coury, 2006). This study 

includes five years of financial aid information from students admitted in three 

different fall semesters. In addition, we do not assume loan debt effect is the same 

over years, and the effects in different years are investigated in separate models. 

4.3 Conceptual Framework 

This study adapts the Student Adjustment Model to understand students' 

decisions regarding college graduation (Cabrera et al., 1992; Cabrera, Nora, and 
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Castaneda, 1993; Cabrera, Stampen, and Hansen, 1990; Nora and Cabrera, 1996). In 

the 1990s, Carebra et al. developed the model by merging two theoretical models of 

college persistence - Tinto’s Student Integration Model (Tinto, 1975, 1982, 1988, 

1987) and Bean’s Student Attrition Model (Bean, 1980, 1982, 1985; Bean and 

Metzner, 1985). The Student Adjustment Model was initially proposed to understand 

the persistence of college students, and it has been used in previous studies to 

understand degree completion (Gross, Torres, and Zerquera, 2013). The model 

hypothesizes that three categories of factors may contribute to higher education 

outcomes, which are individual, institutional, and environmental factors. The 

individual factors include personal background such as gender and race/ethnicity, 

precollege characteristics such as academic performance in high school, academic 

integration such as satisfaction with course curriculum, social integration such as 

personal relationship with other students. The individual factors included in this study 

are age when matriculated, total SAT score, cumulative credits passed for GPA, count 

of classes with D, F, or W grade, credits registered in a Spring semester, in-state 

residency, gender, underrepresented minority, and first-generation college student 

flag. The institutional factors include institutional fit and quality such as sense of 

belonging. The environmental factors include financial support and encouragement 

from friends and family. The environmental factors included in this study are 

cumulative loan debt, cumulative grant aid, cumulative scholarship aid, and adjusted 

gross income. While it is a comprehensive framework, the Student Adjustment Model 

assumes the effect of financial support such as loan debt is the same within the 

institution, which is not practical. To better understand the effect of loan debt on 
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graduation, this study further includes the perspective of the human capital model in 

the conceptual framework (Chen and Hossler, 2017). 

The human capital model was developed by Gary Becker (Becker, 1964) and 

has been used by many studies to understand college enrollment and outcomes 

(Charles and Luoh, 2003; Chen and Hossler, 2017; George-Jackson, Rincon, and 

Martinez, 2012; Lee, 2018; Venti and Wise, 1983; Willis and Rosen, 1979). The 

model suggests an individual will decide to enter the labor market instead of attending 

school, if the marginal cost of education is higher than the expected benefit of 

education (Long, 2007). Loan debt increases the cost of education, and thus, 

potentially lowers the probability of persistence and graduation especially when the 

loan burden is excessive (Fossey and Bateman, 1998). On the other hand, the expected 

benefit of college education is different for students in different departments. 

According to the most recent data published by the department of education, the 

median earning after graduation could be less than $21,000 in some fields of study and 

more than $68,000 in some other fields (U.S. Department of Education, 2019). 

Students may feel much less financial burden from loan debt if expecting much higher 

future income. Therefore, the effect of loan debt on graduation can be different in 

different departments, so department should be included as a factor in addition to other 

factors included in the Student Adjustment Model.  

4.4 Empirical Model 

Table 4.1 shows the list of independent variables in the empirical model. The 

model includes eight numerical variables (𝑋𝑋1,𝑋𝑋2, . . . ,𝑋𝑋8) such as cumulative loan debt 

and five categorical variables (𝑌𝑌1,𝑌𝑌2, . . . ,𝑌𝑌5) such as underrepresentative minority 
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status. More details of the independent variables are described in the data and variable 

section. 

Table 4.1: List of Independent Variables in the Model 

Variable Code Variable Description 
𝐗𝐗𝟏𝟏 Cumulative loan debt 
𝐗𝐗𝟐𝟐 Age during matriculation 
𝐗𝐗𝟑𝟑 Total SAT score 
𝐗𝐗𝟒𝟒 Cumulative credits passed for GPA 
𝐗𝐗𝟓𝟓 Count of classes with D, F, or W grade 
𝐗𝐗𝟔𝟔 Credits registered in spring 
𝐗𝐗𝟕𝟕 Total grant aid 
𝐗𝐗𝟖𝟖 Total scholarship aid 
𝐘𝐘𝟏𝟏 In-state residency 
𝐘𝐘𝟐𝟐 Gender 
𝐘𝐘𝟑𝟑 Underrepresented minority 
𝐘𝐘𝟒𝟒 First Generation College Student 
𝐘𝐘𝟓𝟓 Adjusted gross income (AGI) 

The study uses a Bayesian hierarchical logit model to estimate the effects on 

graduation for three reasons. First, a logit model is proven to be a good method to 

estimate the loan effect in previous studies (Chen and Hossler, 2017; Davidson, 2015; 

Dowd and Coury, 2006; Dwyer, McCloud, and Hodson, 2012; Herzog, 2018; 

Letkiewicz et al., 2014). In a logit model, a student is assumed to graduate with a 

probability of 𝜃𝜃. The logit of 𝜃𝜃, (𝑙𝑙𝑃𝑃𝑙𝑙 𝜃𝜃
1−𝜃𝜃

), is the logarithm of the odds of graduation, 

and the odds is the ratio of the probability of graduation over the probability of no 

graduation. The logit is assumed to be a linear combination of variables, as shown in 

the formula below. For a numerical variable 𝑋𝑋𝑖𝑖 (j = 1, 2, …, 8), the corresponding 

coefficient 𝛽𝛽𝑖𝑖 is a vector and 𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑] represents an element of the vector for 

a specific department. For example, the 𝛽𝛽 for loan debt is a vector and each element in 
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the vector represents the effect of loan debt in a department. For a categorical variable 

𝑌𝑌𝑘𝑘 (k = 1, 2, …, 5), the corresponding coefficient 𝛼𝛼𝑘𝑘 is a matrix and the value of each 

element is based on department and the value of 𝑌𝑌𝑘𝑘. For example, the 𝛼𝛼 for 

underrepresented minority is a matrix. Each element represents the effect of a specific 

underrepresented minority status in a specific department. Each row of the matrix 

represents the effects for students in a department with different underrepresented 

minority status. Each column represents the effects for students in different 

departments with the same underrepresented minority status. 

𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑑𝑑(𝜃𝜃) = 𝑙𝑙𝑃𝑃𝑙𝑙 𝜃𝜃
1−𝜃𝜃

= ∑ 𝛽𝛽𝑖𝑖8
𝑖𝑖=1 [𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑] ∗ 𝑥𝑥𝑖𝑖 + ∑ 𝛼𝛼𝑘𝑘5

𝑘𝑘=1 [𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑, 𝑦𝑦𝑘𝑘] (1) 

Second, the uncertainty of an effect can be easily estimated by a Bayesian 

model (Crisp, Doran, and Reyes, 2018). The uncertainty of an effect is often 

characterized by the point estimate (mean or median), the standard deviation, and the 

corresponding credible interval. A Bayesian model assumes that an effect follows a 

distribution, and the characteristics of uncertainty can be directly estimated from the 

fitted distribution. In addition to a point estimate and a credible interval, the 

distribution of the effect can be visualized to show its shape and spread, so the 

uncertainty is well described. For example, a density plot of the fitted distribution can 

show the uncertainty in the effect of the loan debt.  

In a Bayesian analysis, our initial uncertainty, known as a prior distribution, is 

modelled using the language of probability distributions.  For the unknown coefficient 

terms of Equation (4.1), we model the initial uncertainty as using normal distributions 

as shown in Equation (4.2). The prior distributions are updated to posterior 

distributions using data observed (McElreath, 2015). The posterior distributions are 

the fitted distributions of the coefficients. 
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𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑] ∼ Normal(𝜇𝜇𝑖𝑖[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑],𝜎𝜎𝑖𝑖)
𝛼𝛼𝑘𝑘[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑,𝑦𝑦𝑘𝑘] ∼ Normal(𝜇𝜇𝑘𝑘[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑, 𝑦𝑦𝑘𝑘],𝜎𝜎𝑘𝑘′)

                                 (2) 

Third and most importantly, a hierarchical model is used to address the small 

sample problem encountered because some academic departments have less than 10 

students enrolled in a semester. Without Bayesian methods, estimating the effect of a 

factor from such a small sample size often leads to over-fitting. One way to avoid 

over-fitting is to assume the effect in a department is the same with the effect in the 

department’s college where the sample size is larger. However, this strategy leads to 

under-fitting since the effects could be different among departments. In order to 

balance between over-fitting and under-fitting, a hierarchical model uses partial 

pooling to borrow information from an upper-level factor, when estimating the effect 

for a lower-level factor (McElreath, 2015). The smaller sample size the lower-level 

factor has, the larger influence the upper-level factor has in the estimation of the effect 

of the lower-level factor, and vice versa. In this case, portfolio is defined to be the 

upper-level for department. A portfolio is a group of departments. It is just the college 

of a department, except for the departments in the college of arts and sciences. The 

college of arts and sciences groups its departments into four portfolios. Similarly, the 

institution is the upper-level for portfolio. When estimating the effect of loan debt in a 

department, the influence of the effect in the corresponding portfolio is large if few 

students are enrolled in the department, and the influence is little if the department has 

many students. 

In terms of model specification, the mean of the normal distribution 

(𝜇𝜇𝑖𝑖[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑] in the above formula for 𝛽𝛽𝑖𝑖[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑]) represents the mean 

effect of a continuous variable 𝑋𝑋𝑖𝑖 in a department. It is drawn from 𝛽𝛽�𝑖𝑖 which is a 

vector and represents the effect on the portfolio level. The 𝛽𝛽�𝑖𝑖[𝑒𝑒𝑃𝑃𝑃𝑃𝑑𝑑𝑝𝑝𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃] represents 
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the effect of a portfolio and is assumed to follow a normal distribution with a mean of 

�̂�𝛽𝑖𝑖. The �̂�𝛽𝑖𝑖 represents the institutional level effect and is assumed to be normally 

distributed. The whole hierarchical structure implements the idea that the estimation of 

department level effect is influenced by the portfolio level effect, and the estimation of 

the portfolio level effect is influenced by the institutional level effect. The assumption 

for the mean effect of a categorical variable 𝑌𝑌𝑘𝑘 in a department (𝜇𝜇𝑘𝑘[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑,𝑦𝑦𝑘𝑘]) 

in the above formula for 𝛼𝛼𝑘𝑘[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑, 𝑦𝑦𝑘𝑘] is similar to that of 𝜇𝜇𝑖𝑖[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑]. 

The value of 𝜇𝜇𝑘𝑘[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑,𝑦𝑦𝑘𝑘] is based on department and the value of 𝑌𝑌𝑘𝑘. It is 

drawn from 𝛼𝛼�𝑘𝑘 which is a vector and represents the effect only based on department. 

The department level effect 𝛼𝛼�𝑘𝑘 is assumed to be influenced by the portfolio level 

effect �̂�𝛽𝑘𝑘′ , and �̂�𝛽𝑘𝑘′  is assumed to follow a normal distribution. All standard deviation 

terms in the normal distributions are assumed to follow an exponential distribution 

with a parameter 𝜆𝜆∗ and 𝜆𝜆∗ assumed to follow a gamma distribution. The constant 

values of the parameters in the gamma distribution, exponential distribution, and 

normal distributions are chosen to reflect the domain knowledge that most students 

graduated within six years, and thus the density of the probability of graduation (𝜃𝜃) 

close to 1 should be high and the density close to 0 should be low. The model 

specification for the hierarchical structure is summarized below. 
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𝜆𝜆∗ ∼ Gamma(5,1)
𝜏𝜏∗ ∼ Exponential(𝜆𝜆∗2/2)

𝑤𝑤ℎ𝑃𝑃𝑃𝑃𝑃𝑃 𝜆𝜆∗ 𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑑𝑑𝑑𝑑𝑟𝑟 𝜆𝜆, 𝜆𝜆′, 𝜆𝜆𝑝𝑝, 𝜆𝜆𝐴𝐴 , 𝜆𝜆𝑝𝑝′ , 𝜆𝜆𝐴𝐴′ ,   
𝜏𝜏∗ 𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑑𝑑𝑑𝑑𝑟𝑟 𝜏𝜏, 𝜏𝜏′,𝜎𝜎,� 𝜎𝜎,𝜎𝜎′,� 𝜎𝜎′, 𝑃𝑃𝑃𝑃𝑟𝑟𝑒𝑒𝑃𝑃𝑟𝑟𝑑𝑑𝑃𝑃𝑟𝑟𝑃𝑃𝑙𝑙𝑦𝑦  

�̂�𝛽𝑖𝑖 ∼ Normal(0.4, 𝜏𝜏)
𝛽𝛽�𝑖𝑖[𝑒𝑒𝑃𝑃𝑃𝑃𝑑𝑑𝑝𝑝𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃] ∼ Normal(�̂�𝛽𝑖𝑖 ,𝜎𝜎�)

𝜇𝜇𝑖𝑖[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑] = 𝛽𝛽�𝑖𝑖[𝑒𝑒𝑃𝑃𝑃𝑃𝑑𝑑𝑝𝑝𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃]

�̂�𝛽𝑘𝑘′ [𝑒𝑒𝑃𝑃𝑃𝑃𝑑𝑑𝑝𝑝𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃] ∼ Normal(0.4, 𝜏𝜏′)
�̂�𝛽𝑘𝑘′ [𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑] = �̂�𝛽𝑘𝑘′ [𝑒𝑒𝑃𝑃𝑃𝑃𝑑𝑑𝑝𝑝𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃]

𝛼𝛼�𝑘𝑘[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑] ∼ Normal(�̂�𝛽𝑘𝑘′ [𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑],𝜎𝜎�′)
𝜇𝜇𝑘𝑘[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑,𝑦𝑦𝑘𝑘] = 𝛼𝛼�𝑘𝑘[𝑃𝑃𝑃𝑃𝑒𝑒𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑]

                                             (3) 

 

Figure 4.1 summarizes the Bayesian hierarchical logit model. The dependent 

variable, Six-year Graduation, is a binary variable following a Bernoulli distribution 

with a parameter 𝜃𝜃, and 𝜃𝜃 is the probability of a student graduating within six years. 

The logit of 𝜃𝜃 is a linear combination of factors. The effects of the factors follow a 

hierarchical structure as described above. 

4.5 Data and Variables 

Data for this study were pulled from the enterprise data warehouse of the 

University of Delaware, a public research university (Carnegie classification: R1) with 

a population of about 18,000 undergraduate students. In fall 2009, 2010 and 2011, the 

university admitted 3,807, 3,366 and 3,906 (in total 11,079) first-time, full-time, first-

year students, respectively. At the end of the first spring, there were 10,657 students 

who were still enrolled and had not graduated. Subsequently, for students who were 

enrolled and have not graduated, there were 9,887, 9,408, 1,859, and 369 of them at 

the end of the second, the third, the fourth and the fifth spring semester, respectively. 
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The dramatic population drop at the end of the fourth spring reflects many students 

had graduated in the semester. An academic year at the University of Delaware is from 

fall to summer. Since all data are measured at the end of students’ spring semesters, as 

opposed to the end of an academic year which ends at the summer sessions, we will 

often make this explicit by including the word “Spring” in reference to each cohorts’ 

data, e.g., data collected for first-year students are referred to the first spring. 

The dependent variable in a model is whether a student graduated within six 

years since matriculation. For students who were enrolled and had not graduated at the 

end of the first spring, 9,098 or 85.4% of them eventually graduated within six years. 

For students who were enrolled and had not graduated at the end the following four 

springs, 91.5%, 95.2%, 83%, and 58% eventually graduated within six years, as shown 

in Table 4.2. 
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Figure 4.1: The Illustration of the Bayesian Hierarchical Logit Model 

Table 4.2: Summary of the Enrollment Headcounts, Six-Year Graduation Headcounts 
and Six-Year Graduation Rates for Students Who Were Still Enrolled and Had Not 
Graduated at the End of Each Spring 

 Enrollment 
headcount 

Graduated within 
6 years 

% Graduated 
within 6 years 

End of Spring 1 10,657 9,098 85.4 
End of Spring 2 9,887 9,044 91.5 
End of Spring 3 9,408 8,955 95.2 
End of Spring 4 1,859 1,543 83.0 
End of Spring 5 369 214 58.0 

Loan debt is the focal independent variable in this study. The cumulative loan 

debt of a student is computed at the end of each spring semester. Table 4.3 shows the 
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summarized information of cumulative loan debt. Students who did not borrow loans 

were excluded in the table. For students who were enrolled at the end of the first 

spring, 5,875 or 55.1% of students accumulated loan debt. The overall average loan 

debt is $7,643, and it is $7,756 and $7,620, respectively, for those who do not graduate 

within six years and those who eventually graduate within six years. The headcount of 

students with loan debt decreases slightly from the first spring to the third spring, and 

then dramatically decreases at the end of the fourth spring due to graduation. The 

percentage of students with loan debt increases slowly each year. The overall average 

of cumulative loan debt increases each year for more than $5,000 in the first four 

years. The average loan debt of students who do not graduate within six years is 

higher than the overall average in the 1st year and the 4th year, and it is higher for 

students who graduate within six years in other years. 

Table 4.3: Headcount, Percentage and Average Loan Debt of Students Who Were 
Enrolled, Had Not Graduated and Accumulated Loan Debts at the End of Each Spring 
Semester 

 Headcount Percentage Mean 
(All 
Enrolled) 

Mean (Not 
Graduated 6 
within 
years) 

Mean 
(Graduated 
within 6 
years) 

End of Spring 1 5,875 55.1 $7,643 $7,756 $7,620 
End of Spring 2 5,697 57.6 $15,849 $15,811 $15,854 
End of Spring 3 5,609 59.6 $24,502 $22,953 $24,588 
End of Spring 4 1,165 62.7 $30,632 $31,426 $30,460 
End of Spring 5 258 69.9 $32,433 $32,050 $32,731 

The loan debt effect is investigated by department. A student’s department is 

where the student was enrolled in a semester. There are 53 departments in total. Table 

4.4 shows the headcounts of students who were enrolled and had not graduated at the 
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end of each spring by department. The department names are replaced with unique 

numbers for privacy consideration, and similarly the headcounts are masked if 

enrollment is under 10. Some departments were more popular than the others. For 

instance, hundreds of students were enrolled in the department 0, while few students 

were enrolled in the department 1. 

Table 4.4: Headcounts of Students Who Were Enrolled and Had Not Graduated at the 
End of Each Spring by Department 

 End of Spring 
1 

End of Spring 2 End of Spring 3 End of Spring 4 End of Spring 5 

0 445 567 606 104 22 
1 Privacy 

Suppressed 
Privacy 

Suppressed 
Privacy 

Suppressed 
Privacy 

Suppressed 
Privacy 

Suppressed 
2 11 19 30 Privacy 

Suppressed 
Privacy 

Suppressed 
3 223 187 176 29 Privacy 

Suppressed 
4 45 35 34 6 Privacy 

Suppressed 
5 48 63 72 18 Privacy 

Suppressed 
6 132 131 118 34 Privacy 

Suppressed 
7 21 20 20 Privacy 

Suppressed 
Privacy 

Suppressed 
8 18 22 22 Privacy 

Suppressed 
Privacy 

Suppressed 
9 266 368 374 62 10 
10 281 528 541 107 16 
11 260 324 335 99 22 
12 55 97 119 35 Privacy 

Suppressed 
13 612 436 377 65 13 
14 92 97 89 18 Privacy 

Suppressed 
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15 19 15 12 Privacy 
Suppressed 

Privacy 
Suppressed 

16 312 248 215 40 Privacy 
Suppressed 

17 156 137 127 18 Privacy 
Suppressed 

18 392 375 340 66 11 
19 351 387 324 31 Privacy 

Suppressed 
20 127 123 114 42 Privacy 

Suppressed 
21 77 164 186 68 12 
22 171 142 131 35 10 
23 18 Privacy 

Suppressed 
Privacy 

Suppressed 
Privacy 

Suppressed 
Privacy 

Suppressed 
24 241 275 288 67 18 
25 72 82 78 17 Privacy 

Suppressed 
26 24 32 30 Privacy 

Suppressed 
Privacy 

Suppressed 
27 221 218 207 20 Privacy 

Suppressed 
28 149 148 135 29 Privacy 

Suppressed 
29 24 26 26 10 Privacy 

Suppressed 
30 26 32 30 Privacy 

Suppressed 
Privacy 

Suppressed 
31 187 198 201 65 16 
32 251 323 323 63 Privacy 

Suppressed 
33 223 277 296 56 16 
34 479 499 486 59 Privacy 

Suppressed 
35 123 127 133 53 12 
36 305 19 Privacy 

Suppressed 
Privacy 

Suppressed 
Privacy 

Suppressed 
37 98 133 135 Privacy 

Suppressed 
Privacy 

Suppressed 
38 181 150 137 36 Privacy 
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Suppressed 
39 390 325 297 56 12 
40 75 80 82 18 Privacy 

Suppressed 
41 140 133 126 18 Privacy 

Suppressed 
42 22 18 15 Privacy 

Suppressed 
Privacy 

Suppressed 
43 39 38 32 12 Privacy 

Suppressed 
44 24 23 25 11 Privacy 

Suppressed 
45 373 369 354 58 15 
46 547 515 463 91 13 
47 376 384 375 45 Privacy 

Suppressed 
48 21 18 19 Privacy 

Suppressed 
Privacy 

Suppressed 
49 380 408 389 48 Privacy 

Suppressed 
50 224 280 290 81 14 
51 1305 258 51 14 Privacy 

Suppressed 
52 Privacy 

Suppressed 
 

Privacy 
Suppressed 

11 Privacy 
Suppressed 

Privacy 
Suppressed 

The selection of control variables is based on prior research, domain 

knowledge of subject experts and data availability. Total SAT score serves as a proxy 

of pre-college academic preparation. The total SAT score is the highest total SAT 

score if a student took SAT several times, and it could be converted from composite 

ACT score if a student submitted ACT scores. There are 324 students without a total 

SAT score and are excluded from the study. Most of them are international students. 

In-state residency, gender, first generation college, and underrepresented 

minority serve as demographic background. They are dichotomous variables. In-state 
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residency indicates whether a student was a Delawarean resident (coded 1) and thus 

paid in-state tuition rate. Female is coded 0 and male is coded 1 for gender. First 

generation college indicates whether a student is a first-generation college student 

(coded 1) according to the highest education level of the student’s parents. The 

definition of underrepresented minority can vary among institutions, and this study 

uses the definition at the University of Delaware. Underrepresented minority flag is 

coded 1 if a student had an ethnicity of Black, Hispanic, Native American Indian, 

Hawaiian, or other Pacific Islander. 

Adjusted gross income (AGI), cumulative grant aid, and cumulative 

scholarship aid serve as students’ financial background. The AGI is the sum of the 

AGI of a student and the parents if the student is a dependent, and it is the AGI of the 

student if he/she is independent. AGI is grouped into four categories, AGI unknown 

(AGI is missing), Low AGI (AGI < 61K), Medium AGI (AGI is less than the 3rd 

quartile) and high AGI (AGI is larger than or equal to the 3rd quartile). Grant aid is 

typically need-based aid, and scholarship aid is typically merit-based aid. Like the 

cumulative loan debt, the cumulative grant aid and cumulative scholarship aid are 

computed as of the end of each spring. 

Count of classes with DFW grade (D or F grade, or withdraw), cumulative 

credits passed for GPA and credits registered in the current semester serve as college 

academic measures. A student needs to retake a class with D, F or W grade, if a class 

is a pre-requisite of another class or due to the departmental requirement, and thus the 

progress towards graduation is potentially delayed. Cumulative credits passed for GPA 

represents the overall progress towards graduation. Credits registered is the number of 

credits attempted in a spring, indicating a student’s effort/attitude toward graduation. It 
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should be noted that cumulative GPA is not included, as in the study by Jones-White 

et al. (2014). Although GPA is a strong factor on academic performance, it does not 

directly represent the progress toward graduation. The DFW count and cumulative 

credits better capture the progress. 

The summary statistics of the control variables are shown in Table 4.5, for 

students who were enrolled and had not graduated at the end of the first spring. The 

average SAT score was 1288. About one third of the students were in-state (32%). 

There were fewer male students (42%) than female. There are 13% and 11% of 

students who are first generation college students and underrepresented minority 

students, respectively. On average, a student passed 29 credits by the end of the 

spring, with only 0.33 classes with a DFW grade. One student accumulated 112 credits 

in the first year, because the student was a long-time continuing education student in 

the university and transferred all the credits after being admitted as a full-time, first-

time, first-year degree-seeking student. Students tend to register 15 credits in the 

spring. We did not know 21% students’ AGI, 14% of the students had low AGI (less 

than $61,000), 47% of them had medium AGI (between $61,000 and third quartile), 

and the rest 18% students had high AGI (above third quartile). On average the students 

were awarded $1.93K and $2.85K from grant aid and scholarship aid, respectively, 

including students who did not obtain any grant or scholarship aid. The summary 

statistics for other springs are in Appendix D. 

Table 4.5: Descriptive Statistics of Student Characteristics at the End of the First 
Spring  

 Mean SD Min Max 
Total SAT score 1,288 122 740 1,590 
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Age when matriculation 18 0.60 16 35 
In-state Residency 0.32  0 1 
Male 0.42  0 1 
First Generation College Student 0.13  0 1 
Underrepresented minority Student 0.11  0 1 
Cumulative credits passed for GPA 29 5.16 0 112 
Count of classes with DFW grade 0.33 0.77 0 7 
Credits registered in a spring 15 1.64 0 22 
AGI unknown 0.21   0 1 
Low AGI 0.14  0 1 
Medium AGI 0.47  0 1 
High AGI 0.18  0 1 
Total grant aid (in $1,000s) 1.93 3.97 0 24.24 
Total scholarship aid (in $1,000s) 2.85  5.59 0 45.8 
 

All numeric factors, namely cumulative loan debt, total SAT score, cumulative 

credits passed for GPA, count of classes with DFW grade, credits registered in a 

spring, cumulative grant aid and cumulative scholarship aid, are standardized before 

using as input of a model. Specifically, they are subtracted by mean and then divided 

by standard deviation. Standardization brings the factors to the same scale, in order to 

avoid biased estimation of the coefficients in a model (McElreath, 2015). 

4.6 Results and Discussion 

The posterior distributions of the effects were estimated in RStudio (version 

1.2.1335) using the greta package (version 0.2.5) (Golding, 2019) and TensorFlow 

Probability (0.5.0) (Abadi et al., 2016). The effects of variables are estimated using 

four Markov chains. Each chain contains a warm-up period of 3,000 steps followed by 

a sampling period of 1,000 samples. In total, 4,000 samples are drawn from posterior 

distributions.  

The results are interpreted in terms of odds ratio. In this study, odds are the 

probability of six-year graduation over the probability of not graduating within six 
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years, and the odds ratio is the ratio of two different odds. An odds ratio larger than 1 

indicates a positive effect on the six-year graduation, while an odds ratio less than 1 

indicates a detrimental effect. Given the research questions focus on the loan debt 

effect on six-year graduation, the discussion is mainly limited to the results of loan 

debt effect. The comprehensive results including odds ratios of all factors by 

department are available upon request. 

4.6.1 The First Spring 

Loan debt is a detrimental effect on six-year graduation on the institutional 

level for students who were active and had not graduated at the end of the first spring. 

Figure 4.2 shows the 90% credible intervals of the odds ratios for the factor effects on 

the institutional level, where department is not considered in the model. The effects of 

loan debt, grant aid, and merit aid are calculated with respect to each additional 

$1,000. The vertical line represents an odds ratio of 1. The odds ratio for loan debt is 

statistically less than 1 (odds ratio: median = 0.98, 5% quantile = 0.97, 95% quantile = 

0.99). If we further assume the probability of six-year graduation without loan debt is 

80%, the probability decreases to 79.7%, with the additional $1,000 loan debt and 

holding other factors constant. Based on the institutional level results, the university 

could design a universal financial aid policy to help students with loan debt, in order 

to reduce their financial burden and increase their change to graduate within six years. 

However, the following results show the financial aid policy can be more efficient if 

considering the department level effect. 
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Figure 4.2: The 90% Credible Intervals of the Odds Ratios for the Factor Effects on 
Institutional Level for the First Spring 

Loan debt has distinctively different effects among departments for students 

who were active and had not graduated at the end of the first spring. The difference is 

described using the following three figures, Figure 4.3, Figure 4.4 and Figure 4.5. 

Figure 4.3 shows the 90% credible intervals of the odds ratios for the loan debt effect 

by department, with respect to each additional $1,000 loan debt. The vertical line 

represents an odds ratio of 1. The odds ratio is statistically less than 1 for fifteen of the 

fifty-two departments, for example, department 35 (odds ratio: median = 0.93, 5% 

quantile = 0.9, 95% quantile = 0.96). Specifically, the odds ratio of six-year graduation 

tends to be 0.93 for students in the department 35 with each additional $1,000 loan 
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debt, holding other factors constant. If we further assume the probability of six-year 

graduation without loan debt is 80%, the probability decreases to 78.8%, with the 

additional $1,000 loan debt. Note that the decrease of the probability is more severe 

for the department, compared to the overall institution. On the other hand, the credible 

intervals of the odds ratios span across 1 for thirty-seven departments, for example, 

department 47, indicating the loan debt is neither a positive nor a detrimental effect for 

the students in the department. 

 

Figure 4.3 The 90% Credible Intervals of the Odds Ratios for the Loan Debt Effect by 
Department for the First Spring 
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The difference of the loan debt effects between departments can also be 

viewed by the density plots of the posterior distributions of the odds ratios. For 

example, Figure 4.4 shows the density plots of the odds ratios of department 35 and 

department 47. The two density plots barely overlap, indicating the loan debt has 

distinctively different effects in the two departments. Moreover, the density plots 

agree with the 90% credible intervals of the odds ratios. The estimated odds ratios for 

department 35 are always smaller than 1, indicating a detrimental effect for six-year 

graduation. On the other hand, although the estimated odds ratios are more likely to be 

larger than 1 for department 47, the proportion of estimated odds ratios less than 1 is 

not neglectable, and thus we cannot conclude the loan debt is a positive or detrimental 

effect on six-year graduation. 

If choosing the loan debt effect in department 35 as reference, students in 

twenty-six departments were affected differently. Figure 4.5 shows the 90% credible 

intervals of the odds ratios of the loan debt effect, compared with the department 35. 

Here an odds ratio larger than 1 indicates the loan debt effect is more positive or less 

detrimental in a department than that in the department 35. For example, the odds ratio 

tends to be 1.11 between department 47 and department 35, indicating students in the 

department 47 are less detrimentally affected by loan debt than those in the department 

35. On the other hand, the credible intervals span across 1 for twenty-five 

departments, indicating the loan debt has similar effects in the departments with that in 

the department 35. 
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Figure 4.4: The Density Plots of the Odds Ratios of Loan Debt Effect in Department 
35 And Department 47 for the First Spring 

 

Figure 4.5: The 90% Credible Intervals of the Odds Ratios of Loan Debt Effect for the 
First Spring, Using Department 35 as Reference 
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Based on the results above, the university should design a differential financial 

aid policy by department for the first-year students, along with other existing factors 

when awarding financial aid packages. The university could offer more institutional 

scholarship aid to the students in the fifteen departments where the loan debt is a 

significant detrimental effect on six-year graduation, to slow the accumulation of loan 

debt. From the students’ perspective, the differential financial aid policy more 

efficiently reduces their financial burden, and thus helps them focus more on academic 

progress and the continuation of the degree. From the institutional perspective, the 

policy helps to enhance the overall six-year graduation rate, which is a critical 

performance measurement of a four-year institution. 

4.6.2 The Second Spring 

Similar to the effect for the first-year students, loan debt is still a detrimental 

effect on six-year graduation on the institutional level for students who remained 

enrolled and had not graduated at the end of the second spring. Figure 4.6 shows the 

90% credible intervals of the odds ratios for the factor effects on the institutional level. 

The odds ratio for loan debt is statistically less than 1 (odds ratio: median = 0.97, 5% 

quantile = 0.98, 95% quantile = 1.00). If we further assume the probability of six-year 

graduation without loan debt is 80%, the probability decreases to 79.8%, with the 

additional $1,000 loan debt and holding other factors constant. Without considering 

the department effect, it is reasonable to conclude more financial aid in terms of grant 

and scholarship should be awarded to students with loan debt, in order to reduce the 

detrimental effect of loan debt. However, the following results show this is not an 

efficient policy. 
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Figure 4.6: The 90% Credible Intervals of the Odds Ratios for the Factor Effects on 
Institutional Level for the Second Spring 

Loan debt is generally not a detrimental effect for the students who remained 

enrolled and had not graduated at the end of the second spring, according to Figure 

4.7. Figure 4.7 shows the 90% credible intervals of the odds ratios for the loan debt 

effect by department, with respect to each additional $1,000 loan debt. The odds ratio 

is statistically less than 1 for only three departments, for example, department 36 (odds 

ratio: median = 0.97, 5% quantile = 0.95, 95% quantile = 0.99). The credible intervals 

of other fifty departments span across 1, indicating the loan debt does not directly 

affect the six-year graduation. 
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Figure 4.7: The 90% Credible Intervals of the Odds Ratios of Loan Debt Effect by 
Department for the Second Spring 

Moreover, loan debt does not have distinctively different effects among 

departments for second-year students. The 90% credible intervals of the odds ratios 

overlap with each other, indicating similar loan debt effects among departments. The 

difference of the loan debt effect between department 35 and department 47 is shown 

again using density plots in Figure 4.8. Different from the first spring, the two density 

plots of odds ratios almost overlay with each other, indicating the loan debt has very 

similar effects in the two departments. However, we caution that the results may 

change if the institution applies differential financial aid policy by department for the 

first-year students. For example, the extra financial aid to the first-year students in 
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department 35 helps some students remain enrolled, who would stop pursuing a degree 

otherwise, but they would face the delayed financial burden if the extra help is 

removed in their second year. As a result, we propose the university to use a 

differential financial aid policy for the first-year students, and then use randomized 

experimental design to investigate whether similar differential policy should still be 

applied for the second-year students. 

 

Figure 4.8: The Density Plots of the Odds Ratios of Loan Debt Effect in Department 
35 and Department 47 for the Second Spring 
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4.6.3 The Third, the Fourth, and the Fifth Spring 

Different from the first and the second springs, loan debt does not show 

detrimental effect on six-year graduation anymore for students who remained enrolled 

but had not graduated at the end of the third, the fourth, and the fifth spring. The 

graphs of the 90% credible interval of odds ratio of the factors for the three springs are 

shown in Appendix E. The credible intervals for the loan debt effect span across 1, 

indicating the loan debt does not directly affect six-year graduation. 

The departmental level effects agree with the institutional level effects for the 

same group of students. The graphs of 90% credible intervals of the odds ratios of loan 

debt effect by department are in Appendix E. All departments’ 90% credible intervals 

for the loan debt effect span across 1, indicating the loan debt does not directly affect 

six-year graduation. Loan debt shows similar effects on six-year graduation among 

departments since the intervals overlap with each other. Like the argument for the 

second year’s results, if the university starts to implement differential financial aid 

policy by department for the first-year students, loan debt can still be a detrimental 

effect in later years if extra aid is not awarded in the later years. Again, the university 

needs to investigate whether extra aid to some departments’ students will just delay 

the detrimental effect of loan debt.    

4.6.4 Change of Loan Debt Effect Over Years 

For thirteen departments, loan debt changes from detrimental effect in the first 

spring to indirect effect in the second spring on six-year graduation. Figure 4.9 shows 

the change of the 90% credible intervals of the odds ratios from six of the departments 

over years. The odds ratios for the first spring are statistically less than 1 according to 
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the intervals, indicating a detrimental effect. On the other hand, the intervals span 

across 1 for the other springs, indicating an indirect effect.  

For other department, loan debt does not directly affect six-year graduation for 

all years, with three exceptions (results available upon request). The loan debt remains 

as a detrimental effect in the second spring for department 9 and department 36, and 

then becomes a non-significant effect afterwards. The loan debt changes from a non-

significant effect in the first spring to a detrimental effect in the second spring for 

department 10, and then changes back to a non-significant effect afterwards.  

Therefore, the effect of loan debt on graduation changes over years in the same 

department. In many cases it changes from a detrimental effect in the first spring to a 

non-significant effect afterwards. Similar to the earlier proposition, the university 

should focus on helping the first-year students to slow their debt accumulation, since a 

differential policy by department should utilize the financial resource efficiently. The 

university needs to investigate whether the differential is needed in the following 

years. 
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Figure 4.9: The Change of the 90% Credible Intervals of the Odds Ratios of Loan 
Debt Effect Over Years in Selected Departments 

4.7 Conclusion 

Bayesian hierarchical models are useful tools to estimate the effects of loan 

debt on the six-year graduation by department. The hierarchical structure uses partial 

pooling technique to estimate the department level effects. More specifically, the 

estimated portfolio level effects influence the estimation of the department level 

effects. The less students enrolled in a department, the more the estimated department 

level effect is influenced by the estimated portfolio level effect, and vice versa. This 

strategy was particularly critical for departments with low enrollment to avoid the 

over-fitting issue due to small sample size. 
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Loan debt affects six-year graduation differently for the first-year students in 

different departments. The loan debt is a detrimental factor in some departments, 

while it has no direct effect in the others. The university is currently using the 

universal financial aid policy for all departments. The results suggest that a differential 

policy with department as one of the factors will be more useful to help students 

graduate on time. The accumulation of loan debt can be slowed by offering more 

institutional scholarships to the first-year students. For institutions with increasing 

institutional financial aid budget over years, the proposal should lead to a faster 

increase of institutional financial aid for departments where students tend to suffer 

more from loan debt than the other departments, while it should not lead to a decrease 

in the other departments. For institutions with stable institutional financial aid budgets 

and abundant overall institutional budgets, the proposed policy suggests to increase 

the institutional financial aid budget, so the strategy proposed for the first case can be 

used. On the other hand, caution should be taken when the policy leads to a 

redistribution of a finite institutional financial aid budget, because the enrollment 

could hurt departments that do not benefit from this policy. Moreover, an institution 

should pay attention to potential equity impacts when adjusting the institutional 

financial aid policy, particularly for underserved departments or students.  

Conversely from the first-year students, the study finds that loan debt has 

similar effects on six-year graduation rates among departments for the second-year, 

the third-year, the fourth-year, and the fifth-year students. The loan debt effect 

typically becomes or remains non-significant on six-year graduation for the second-

year students and thereafter. Therefore, students who remain enrolled in the following 

years become insensitive to loan debt as long as they overcome the financial stress 
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from loan debt in the first year, under the current universal financial aid policy. The 

findings help to explain the inconclusive relationship between loan debt and on time 

graduation in previous research, since the relationship can be different between 

different student populations, even for students in the same university but at different 

academic stages. If the differential policy is implemented, students in some 

departments will receive extra scholarship to slow the accumulation of loan debt, and 

thus less financial burden helps them to remain enrolled and continue to pursue a 

degree. The university needs to investigate whether the differential policy is needed 

for the following years in case the extra aid in the first year just delays the detrimental 

effect of loan debt. Moreover, the policy may encourage increased enrollments in 

departments who benefit from it, but institutions should monitor whether the proposed 

policy affects the pattern of the major change, if the policy is only applied to the first-

year students. We hope this study will be a step to future experiments and research on 

differential financial aid policy. 
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CONCLUDING REMARKS AND FUTURE DIRECTIONS 

In this dissertation, we have delved into the realm of customer acquisition and 

retention within the higher education sector, primarily focusing on innovative 

approaches to student enrollment management. Our research has aimed to provide 

valuable insights and recommendations for the strategic refinement of student 

admission, retention, and graduation processes. 

In Chapter 2, we embarked on an exploration of students' deposit decisions as a 

dynamic and evolving process. Employing piecewise exponential models enriched 

with Bayesian hierarchical structures, our goal was to strike a balance between 

underfitting and overfitting while capturing the time-varying effects of factors 

influencing deposit decisions. Our findings shed light on whether these factors exhibit 

consistency throughout the year or undergo changes from one academic year to the 

next. Moreover, we presented actionable insights to the Admission Office at UD, 

allowing them to gain a deeper understanding of distinct behaviors exhibited by 

different student demographics, such as gender and Pell grant eligibility. We also 

examined how financial aid offerings and campus events impact deposit decisions. 

In Chapter 3, we delved into the modeling of enrolled students' academic 

journeys, acknowledging the potential for dropout stemming from academic, 

economic, or social factors. Utilizing structural neural networks within piecewise 

exponential models, we not only enhanced our predictive capabilities for dropout risks 

but also gained valuable insights into the relative importance of these factors. Our 

Chapter 5 
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findings revealed that academic reasons predominantly influence dropout rates among 

students. 

Chapter 4 focused on investigating the impact of student loan debt on the 

timely graduation of students across various academic departments. Given the 

variability in departmental sizes, we introduced a Bayesian hierarchical structure into 

our logit models to mitigate potential overfitting. Our analysis demonstrated that the 

effect of loan debt varies by department, with significant implications, especially for 

first-year students. 

As we conclude this dissertation, we recognize that the field of student 

enrollment management offers numerous avenues for further exploration. Beyond the 

scope of this work, we outline several promising directions: 

Early-Stage Analysis: Consider initiating the analysis as early as the prospect 

and inquiry stages to inform recruitment and marketing strategies, thereby shaping a 

more desirable applicant pool. 

Retention Strategies: Explore the modeling of different types of dropout 

scenarios, distinguishing between students who leave higher education entirely and 

those who transfer to other institutions. This differentiation can facilitate the 

development of tailored retention strategies. 

Alumni Engagement: Extend the analysis beyond graduation to encompass 

alumni engagement. By enhancing alumni giving rates, institutions can bolster their 

financial health. 

In closing, this dissertation serves as a stepping stone into the ever-evolving 

landscape of student enrollment management. We hope that our research contributes 
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to the ongoing enhancement of customer acquisition and retention in the higher 

education sector and inspires further investigations into this dynamic field. 
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CODE TO CONSTRUCT BAYESIAN HIERARCHICAL PIECEWISE 
EXPONENTIAL MODEL 

using Random, Distributions 
using DynamicHMC, DynamicHMC.Diagnostics 
using TransformVariables, LogDensityProblems, LogDensityProblemsAD, TransformedLog
Densities 
using Zygote 
 
# Model formulation and posterior distribution construction  
function (problem::SurvivalProblem)(θ) 
  @unpack y, X = problem   # extract the data            
  @unpack β0, β, β_high, σ_h, σ_l  = θ      # extract the parameters  
   
  μ_high = zeros(n_var); σ_0 = 0.1; λ_h = 0.5; λ_l = 0.5 
   
  Xβ = (β0[X] + β[0*n_Period .+ X] .* data_fit.FinAid_Rate.+ β[1*n_Period .+ X] .* data_fit.
Pell_Ind+ β[2*n_Period .+ X] .* data_fit.fed_efc_rate.+ β[3*n_Period .+ X] .* data_fit.home_
distance_std + β[4*n_Period .+ X] .* data_fit.Gender_Ind.+ β[5*n_Period .+ X] .* data_fit.Et
h_ASIAN_Ind + β[6*n_Period .+ X] .* data_fit.Eth_BLACK_Ind.+ β[7*n_Period .+ X] .* dat
a_fit.Eth_HISPA_Ind.+ β[8*n_Period .+ X] .* data_fit.Eth_WHITE_Ind.+ β[9*n_Period .+ X]
 .* data_fit.Eth_Multi_Ind.+ β[10*n_Period .+ X] .* data_fit.Pros_Event_Ind.+ β[11*n_Period
 .+ X] .* data_fit.Admit_Honor_Ind.+ β[12*n_Period .+ X] .* data_fit.Diff_Major_Ind 
    .+ β[13*n_Period .+ X] .* data_fit.CampusTour_Ever_Ind.+ β[14*n_Period .+ X] .* data_fi
t.DecisionDay_Ever_Ind.+ β[15*n_Period .+ X] .* data_fit.Delay_Review_Ind) 
 
  w = 1.05   
  loglike = sum(w .*y .* Xβ .- exp.(Xβ) .* data_fit.Period_length) 
  logpri_β0 = sum(logpdf(MultivariateNormal(β0_MLE, σ_0), β0)) 
  logpri_high = sum(logpdf(MultivariateNormal(μ_high, σ_h), β_high)) 
  logpri_σ_h = sum(logpdf(Exponential(λ_h), σ_h)) 
   
  μ_β = [] 
  for i in 1:n_var 
    μ_temp = β_high[i]*ones(n_Period) 
    if i == 1 
        μ_β = μ_temp 
        else μ_β = vcat(μ_β, μ_temp) 
    end 
  end 

Appendix A 
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  logpri_low = sum(logpdf(MultivariateNormal(μ_β, σ_l), β)) 
  logpri_σ_l = sum(logpdf(Exponential(λ_l), σ_l)) 
 
  loglike + logpri_β0 + logpri_high + logpri_low + logpri_σ_h + logpri_σ_l 
end 
 
# Mode fitting 
t = as((β0 = as(Array, length(β0_init)), β = as(Array, length(β_init)), β_high = as(Array, lengt
h(β_h_init)), σ_h = asℝ₊, σ_l = asℝ₊)) 
P = TransformedLogDensity(t, p); ∇P = ADgradient(:Zygote, P); 
 
q₀ = vcat(raw_MLE_para.β0, raw_MLE_para.β_FinAid, raw_MLE_para.β_Pell, raw_MLE_p
ara.β_efc, raw_MLE_para.β_home, raw_MLE_para.β_Gender, raw_MLE_para.β_ASIAN, ra
w_MLE_para.β_BLACK, raw_MLE_para.β_HISPA, raw_MLE_para.β_WHITE, raw_MLE_
para.β_Multi, raw_MLE_para.β_Pros_Event, raw_MLE_para.β_Admit_Honor, raw_MLE_pa
ra.β_Diff_Major, raw_MLE_para.β_CampusTour, raw_MLE_para.β_DecisionDay, raw_MLE
_para.β_Delay_Review, raw_MLE_high_para.β_FinAid[1], raw_MLE_high_para.β_Pell[1], r
aw_MLE_high_para.β_efc[1], raw_MLE_high_para.β_home[1], raw_MLE_high_para.β_Gen
der[1], raw_MLE_high_para.β_ASIAN[1], raw_MLE_high_para.β_BLACK[1], raw_MLE_hi
gh_para.β_HISPA[1], raw_MLE_high_para.β_WHITE[1], raw_MLE_high_para.β_Multi[1], r
aw_MLE_high_para.β_Pros_Event[1], raw_MLE_high_para.β_Admit_Honor[1], raw_MLE_
high_para.β_Diff_Major[1], raw_MLE_high_para.β_CampusTour[1], raw_MLE_high_para.β
_DecisionDay[1], raw_MLE_high_para.β_Delay_Review[1], log(1.0), log(0.2) ) 
 
results = mcmc_with_warmup(Random.GLOBAL_RNG, ∇P, 1000; initialization = (q=q₀, ) ) 
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DIAGRAMS OF PEM, PEM-NN AND PEM-SNN-2 

 

 

Figure B.1 A diagram of a Piecewise Exponential Model (PEM) 

 

            

Figure B.2 A diagram of a hybrid model of a fully-connected neural network 

and a piecewise exponential model (PEM-NN)  

Appendix B 
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Figure B.3 A diagram of a hybrid model of a structural neural network and a 

piecewise exponential model, with an interaction between academic and economic 

integrations (PEM-SNN-2) 
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CODE TO CONSTRUCT HYBRID MODELS OF PIECEWISE 
EXPONENTIAL MODELS AND STRUCTURAL NEURAL NETWORKS 

using Flux 
using ProgressMeter 
using Distributions 

 
# Model formulation 
NN_list = []; n_model = 100 
 
for model_num in 1:n_model 
 
Join(combine, paths) = Parallel(combine, paths) 
Join(combine, paths...) = Join(combine, paths) 
 
node_num_1 = 13 
 
model = Chain(Join(hcat,  
                    Chain(Join(vcat, 
                    Chain(Dense(n_Acad_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)), 
                    Chain(Dense(n_Fin_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)), 
                    Chain(Dense(n_Socio_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)) 
                ), Dense(3 => 1, exp)), 

                    Chain(Join(vcat, 
                    Chain(Dense(n_Acad_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)), 
                    Chain(Dense(n_Fin_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)), 
                    Chain(Dense(n_Socio_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)) 
                ), Dense(3 => 1, exp)), 

                    Chain(Join(vcat, 
                    Chain(Dense(n_Acad_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)), 
                    Chain(Dense(n_Fin_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)), 
                    Chain(Dense(n_Socio_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)) 
                ), Dense(3 => 1, exp)), 

                    Chain(Join(vcat, 
                    Chain(Dense(n_Acad_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)), 
                    Chain(Dense(n_Fin_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)), 
                    Chain(Dense(n_Socio_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)) 
                ), Dense(3 => 1, exp)), 

                    Chain(Join(vcat, 
                    Chain(Dense(n_Acad_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)), 
                    Chain(Dense(n_Fin_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)), 
                    Chain(Dense(n_Socio_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)) 
                ), Dense(3 => 1, exp)), 

                    Chain(Join(vcat, 
                    Chain(Dense(n_Acad_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)), 
                    Chain(Dense(n_Fin_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)), 
                    Chain(Dense(n_Socio_Var => node_num_1, sigmoid_fast; init=Flux.zeros32),Dense(node_num_1 => 1, sigmoid_fast)) 
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                ), Dense(3 => 1, exp)))) 
 
# Construct loss function 
function my_loss(result, label) 
    w_1 = 1.5 
    loss_hat = (w_1 .* label .* vec(log.(result)).- vec(result) .*1) 
    -sum(loss_hat)/n_fit             
end 
 
# Model fitting 
opt_state = Flux.setup(Flux.Adam(0.01), model) 
losses = Float32[] 
 
@showprogress for epoch in 1:10000 
    input = x_surv; label = y_flat 
 
    val, grads = Flux.withgradient(model) do m 
      result = m(input) 
      my_loss(result, label) 
    end 
 
    push!(losses, val) 
 
    # Detect loss of Inf or NaN. Print a warning, and then skip update! 
    if !isfinite(val) 
      @warn "loss is $val on $epoch epochs" epoch 
      continue 
    end 
 
    Flux.update!(opt_state, model, grads[1]) 
 
  # Stop training when some criterion is reached 
  if  (length(losses) > 2) && (abs(losses[length(losses)-1] - losses[length(losses)]) <1e-7) 
    println("stopping after $epoch epochs") 
    break 
  end 
end 
 
append!(NN_list, model) 
end 
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DESCRIPTIVE STATISTICS OF STUDENT CHARACTERISTICS FROM 
THE SECOND TO THE FIFTH SPRING SEMESTERS 

Table D.1 Descriptive Statistics of Student Characteristics at the End of the Second 
Spring 
 Mean SD Min Max 
Cumulative loan debt (in $1,000s) 9.13 12.69 0 80.38 
Total SAT score 1291 121 750 1590 
In-state Residency 0.32  0 1 
Male 0.42  0 1 
First Generation College Student 0.12  0 1 
Underrepresented minority Student 0.11  0 1 
Cumulative credits passed for GPA 60 8.42 0 143 
Count of classes with DFW grade 0.29 0.73 0 6 
Credits registered in a spring 14.89 1.89 0 22 
AGI unknown 0.20   0 1 
Low AGI 0.13  0 1 
Medium AGI 0.47  0 1 
High AGI 0.20  0 1 
Total grant aid (in $1,000s) 3.53 7.35 0 50.18 
Total scholarship aid (in $1,000s) 5.63  11.38 0 95.49 
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Table D.2 Descriptive Statistics of Student Characteristics at the End of the Third 
Spring 
 Mean SD Min Max 
Cumulative loan debt (in $1,000s) 14.61 19.56 0 123.34 
Total SAT score 1291 120 750 1590 
In-state Residency 0.32  0 1 
Male 0.41  0 1 
First Generation College Student 0.12  0 1 
Underrepresented minority Student 0.10  0 1 
Cumulative credits passed for GPA 91 11.32 12 174 
Count of classes with DFW grade 0.22 0.66 0 7 
Credits registered in a spring 14.70 2.45 0 22 
AGI unknown 0.19   0 1 
Low AGI 0.12  0 1 
Medium AGI 0.46  0 1 
High AGI 0.22  0 1 
Total grant aid (in $1,000s) 4.91 10.4 0 73.67 
Total scholarship aid (in $1,000s) 8.49  17.27 0 154.92 
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Table D.3 Descriptive Statistics of Student Characteristics at the End of the Fourth 
Spring 
 Mean SD Min Max 
Cumulative loan debt (in $1,000s) 19.20 24.21 0 155.79 
Total SAT score 1242 127 750 1590 
In-state Residency 0.52  0 1 
Male 0.57  0 1 
First Generation College Student 0.18  0 1 
Underrepresented minority Student 0.15  0 1 
Cumulative credits passed for GPA 107 17.79 20 203 
Count of classes with DFW grade 0.68 1.14 0 9 
Credits registered in a spring 13.76 3.28 0 22 
AGI unknown 0.22   0 1 
Low AGI 0.18  0 1 
Medium AGI 0.45  0 1 
High AGI 0.15  0 1 
Total grant aid (in $1,000s) 8.12 15.88 0 104.4 
Total scholarship aid (in $1,000s) 8.16  27.09 0 203.44 
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Table D.4 Descriptive Statistics of Student Characteristics at the End of the Fifth 
Spring 
 Mean SD Min Max 
Cumulative loan debt (in $1,000s) 22.68 26.02 0 170.01 
Total SAT score 1237 130 910 1580 
In-state Residency 0.62  0 1 
Male 0.62  0 1 
First Generation College Student 0.22  0 1 
Underrepresented minority Student 0.17  0 1 
Cumulative credits passed for GPA 110 24.36 38 219 
Count of classes with DFW grade 0.90 1.28 0 5 
Credits registered in a spring 11.13 5.18 0 19 
AGI unknown 0.20   0 1 
Low AGI 0.25  0 1 
Medium AGI 0.41  0 1 
High AGI 0.14  0 1 
Total grant aid (in $1,000s) 11.74 21.81 0 133.65 
Total scholarship aid (in $1,000s) 4.11  11.84 0 108.04 
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CREDIBLE INTERVALS OF THE ODDS RATIOS FOR THE FACTOR 
EFFECTS 

 
Figure E.1 The 90% Credible Intervals of the Odds Ratios for the Factor Effects on 
Institutional Level for the Third Spring 

Appendix E 



 131 

 
Figure E.2 The 90% Credible Intervals of the Odds Ratios for the Factor Effects on 
Institutional Level for the Fourth Spring 
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Figure E.3 The 90% Credible Intervals of the Odds Ratios for the Factor Effects on 
Institutional Level for the Fifth Spring 
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Figure E.4 The 90% Credible Intervals of the Odds Ratios of Loan Debt Effect by 
Department for the Third Spring 
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Figure E.5 The 90% Credible Intervals of the Odds Ratios of Loan Debt Effect by 
Department for the Fourth Spring 
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Figure E.6 The 90% Credible Intervals of the Odds Ratios of Loan Debt Effect by 
Department for the Fifth Spring 
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