
SEQUENTIAL CODELET MODEL

A SUPERCODELET PROGRAM EXECUTION MODEL AND

ARCHITECTURE

by

Jose M Monsalve Diaz

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and
Computer Engineering

Winter 2021

© 2021 Jose M Monsalve Diaz
All Rights Reserved

SEQUENTIAL CODELET MODEL

A SUPERCODELET PROGRAM EXECUTION MODEL AND

ARCHITECTURE

by

Jose M Monsalve Diaz

Approved:
Jamie D. Phillips, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Levi T. Thompson, Ph.D.
Dean of the College of Engineering

Approved:
Louis F. Rossi, Ph.D.
Vice Provost for Graduate and Professional Education and
Dean of the Graduate College

Approved:
Guang R. Gao, Professor Emeritus
Professor in charge of dissertation on behalf of the Advisory Committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Rudolf Eigenmann, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Xiaomin Li, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Sunita Chandrasekaran, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Kalyan Kumaran, Ph.D.
Member of dissertation committee

ACKNOWLEDGEMENTS

This work is the result of several years at the CAPSL research group, under

the supervision of Professor Guang R. Gao. I joined CAPSL in 2013 as an intern, and

I never imagined I would stay for this long. Yet, I enjoy every single moment of my

Graduate School. Professor Gao has been an inspiration. His work and ambitions,

as well as his many hours of insightful conversations were crucial for the creation of

this thesis. I also would like to acknowledge the patience and help from other senior

CAPSL students through my PhD. In particular, Elkin Garćıa, Aaron Landwehr, Kelly

Livingston, Joshua Suetterlein, Jaime Arteaga, Pouya Fotouhi, and Sid Raskar. As

well as former postdoc Stephane Zuckerman, who I admire deeply, and who has been

essential to the CAPSL group even to this day. Additionally, all the new students that

I have been collaborating in the past three years. Ryan Kabrick, who brought two

amazing students with him, Dawson Fox and Matthew Matusek; and Diego Roa, my

old friend who also helped me craft the Matrix Multiplication example presented in

this work.

I would also like to acknowledge Professor Sunita Chandrasekaran, one of the

best professors I have met. The professionalism and dedication to her students are an

inspiration. It is an honor having work with her for the past few years. Her personal

and academic advise help me dealt with many difficult moments.

The University of Delaware, and in particular, the Electrical and Computer

Engineering Department has supported me in many different ways. While it is difficult

to mention everyone by name, I feel obliged to recognize Professor Kenneth Barner,

Cynthia McLaughlin, and Gwen Looby, who bore all my crazy administrative questions

and ideas. Bryan Youse, and Andrew Roosen, two excellent bosses during my ECE

staff days. Amber Spivey, and Wendy Scott, who were always nice, greet me with

v

a smile and help me out whenever I needed it. Additionally, I must acknowledge all

my other professors in the department, specially Xiaoming Li, Chengmo Yang, Rudolf

Eigenmann, and Andy Novicin. I have learned a great deal from each of you. Likewise,

other offices in the University such as the Office of International Students and the

Office of Graduate and Professional Education. In particular, Dr. Mary Martin who

supported me and helped me graduate twice.

The past couple of years at Argonne National Laboratory have also played

an important role in this thesis. I would like to acknowledge Kevin Harm’s active

participation in this project. He listened to me, and always asked the right questions.

Dr. Kalyan Kumaran who also provided valuable input and supervision.

Finally, and most importantly, I must acknowledge my Family. My parents and

my brother who have always given everything for my education and my future. They

will always be an inspiration of hard work, dedication and love. Also, my wife, Luisa,

who has brought me joy and support for many years, and specially in the past year

when working on this thesis. Thanks for being there in every up and down.

I gratefully acknowledge the computing resources provided and operated by the

Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory. Ad-

ditionally, this research used resources of the Argonne Leadership Computing Facility,

which is a DOE Office of Science User Facility supported under Contract DE-AC02-

06CH11357. This work is also supported by the National Science Foundation, under

award SHF-1763654, as well as other CAPSL grants.

vi

TABLE OF CONTENTS

LIST OF TABLES . xii
LIST OF FIGURES . xiii
LIST OF LISTINGS . xviii
ABSTRACT . xx

Chapter

1 INTRODUCTION . 1

1.1 The problem with trending parallelism 4

1.1.1 The evolution . 5

1.2 The problem . 10
1.3 Synopsis . 14

2 BACKGROUND . 16

2.1 Foundation . 16

2.1.1 The Universal Turing Machine 16
2.1.2 Von Neumann Architecture 27
2.1.3 Multithreading Computation and Multi Core systems 30
2.1.4 Dataflow Computation . 34
2.1.5 Hybrid Von Neumann/Dataflow architecture 37

2.1.5.1 Instruction Level Parallelism 38
2.1.5.2 Tasking . 42

2.1.6 Instruction Set Architectures and Program Execution Models 44

2.2 The Codelet Model of Computation 47

vii

3 OBJECTIVES AND PROBLEM FORMULATION 52

3.1 Objectives . 52
3.2 Problem Formulation . 53

4 THE SEQUENTIAL CODELET MODEL 55

4.1 Motivation example . 56
4.2 Hierarchical Turing Machine . 59
4.3 Hierarchical Von Neumann Architecture 62
4.4 The Sequential Codelet Model . 65

4.4.1 The SCM Abstract Machine 65
4.4.2 The SCM Program Execution Model 67

4.4.2.1 Tasking model . 67
4.4.2.2 Synchronization Model 69
4.4.2.3 Memory Model . 70

4.4.3 Programming model . 71

4.5 Codelet Level Parallelism: Parallelism and performance 72

4.5.1 Codelet Level Parallelism . 72
4.5.2 Heterogeneity and distributed systems in the Hierarchical

Abstract Machine . 74
4.5.3 Compiler techniques . 75

5 THE SUPERCODELET ARCHITECTURE 77

5.1 The Architecture organization . 77

5.1.1 Scheduling units . 79
5.1.2 Computation Units . 79
5.1.3 Memory Units . 80
5.1.4 Register File . 81

5.2 Programming model . 81

5.2.1 SuperCodelet ISA . 82
5.2.2 Codelet Definition . 83

viii

5.2.3 An example program . 85

6 SCMULATE. AN EMULATION RUNTIME FOR THE
SEQUENTIAL CODELET MODEL 88

6.1 SCMUlate software design . 89

6.1.1 The role of OpenMP . 89
6.1.2 Folder infrastructure . 91
6.1.3 The SCM Machine emulation 93

6.1.3.1 Instructions and Instruction Memory 93
6.1.3.2 Fetch, decode and execute 95
6.1.3.3 The L1 register file on Cache based systems 97
6.1.3.4 Codelet Level Parallelism 99

6.1.3.4.1 Sequential execution mode: 99
6.1.3.4.2 Superscalar execution mode: 100
6.1.3.4.3 Out of Order (OoO) execution mode: . . 101

6.1.4 Configuration and common structures 103
6.1.5 The Codelet Class . 104

6.2 Programming API and the assembly Codelet program 106

6.2.1 Codelets definition . 106
6.2.2 Example of a print Codelet 108
6.2.3 The assembly Codelet Program ISA 110
6.2.4 Running the emulator . 111

6.3 Runtime and Codelet Level Parallelism 113
6.4 Profiling execution code . 115

7 EVALUATION . 119

7.1 Evaluation methodology . 119
7.2 Testbed . 120

ix

7.3 Sequential Codelet Abstract Machine mapping 122

7.3.1 Register File: . 123

7.4 Example 1: Vector Addition . 123

7.4.1 Vector Addition results . 130

7.4.1.1 Manually applying optimization techniques: Loop
Unrolling and Register Scheduling 132

7.4.1.2 Sequential execution 132
7.4.1.3 Superscalar execution 134
7.4.1.4 Out of order execution 136
7.4.1.5 Comparison between execution modes 137

7.4.2 Analysing the Vector Addition example 141

7.4.2.1 Evaluation drawbacks 142
7.4.2.2 Important results . 144

7.5 Example 2: Dense Matrix Multiplication 146

7.5.1 Three different implementations 151
7.5.2 A GPU implementation of Matrix Multiplication 154
7.5.3 Matrix Multiplication CPU Results 155

7.5.3.1 Execution Time . 156
7.5.3.2 Scalability . 158
7.5.3.3 Instruction size . 160

7.5.4 Matrix Multiplication GPU Results 160

7.5.4.1 Execution time . 161
7.5.4.2 Scalability . 162
7.5.4.3 Instruction size . 162

7.5.5 Comparison and analysis . 164

7.6 Defining the appropriate size of Codelets 167

7.6.1 Empirical observations from Matrix Multiplication 169
7.6.2 Designing L1 with TS . 169
7.6.3 Application and Codelet Size 170

x

8 RELATED WORK . 172

8.1 Dataflow systems . 173
8.2 Out of Order Execution and other ILP techniques 175
8.3 Other parallel architectures . 176
8.4 Von-Neuman/Dataflow hybrid systems 178
8.5 Software approaches and other efforts 179

9 FUTURE WORK . 181

10 CONCLUSIONS . 184

BIBLIOGRAPHY . 187

Appendix

A COMPLETE MATRIX MULTIPLICATION CODE 198

xi

LIST OF TABLES

5.1 tab:instSuperCodelet . 83

6.1 List of SCMUlate supported instructions 110

7.1 Baseline execution time for the 3 most important instructions in
Vector Addition, as seen in different execution modes when running
with 1CU . 142

xii

LIST OF FIGURES

1.1 Conceptual view of computer system infrastructure nowadays . . . 5

2.1 Turing Machine. There are four different states S1 through S4.The
tape shows the two different type of Squares: E and S 18

2.2 Example of an m-configuration table of the Turing Machine . . . 19

2.3 Example of the m-configuration table of a copy Turing Machine . 20

2.4 Using skeleton Tables for representing copy0 and copy1
m-configurations into a single table 23

2.5 Using skeleton Tables for representing the copy m-configuration

table allowing different following states. 23

2.6 Using skeleton Tables to re-write example 2.3. 24

2.7 Standard forms of states in the Turing Machine 25

2.8 Von Neuman Machine Architecture 28

2.9 Role of the Operating System in concurrency: Each process is a
virtual Von Neumann machine. The OS maps each process memory
to physical memory through the use of virtual memory. The OS
Scheduler concurrently maps the SW Threads to HW threads
through context switching. 32

2.10 Diagram of a multithreaded Von Neumann machine. 33

2.11 Example of non well-behaved graphs (“sick” graphs). Issues
highlighted in orange. 37

2.12 Pipeline of an Out of Order architecture with Superscalar and
Register renaming. 42

xiii

2.13 Conceptual view of computer system infrastructure 45

2.14 Codelet Abstract Machine Depiction. Hierarchical organization of the
system and its memory. 49

4.1 A 3 levels Hierarchical Turing Machine. An state of level N is
expressed as an state machine of level N-1 and evaluated by level N-1.
Each level has an infinite memory tape used for the computation
performed at that level. Symbols depicted in tapes are just to
account for any possible symbol that is known to the machine. . . . 60

4.2 Structure of the Hierarchical Von Neumann Architecture. A
Sequential Codelet Model Abstract machine 62

4.3 A 3 level abstract machine of the Sequential Codelet Model that
implements the Hierarchical Von Neuman Model. 65

4.4 The Memory size to Frequency ratio of the SCM 66

4.5 Heterogeneous Sequential Codelet Model abstract machine 75

4.6 Extending the hierarchy beyond L2. 76

5.1 Diagram of the SuperCodelet architecture 78

6.1 SCMUlate UML Classes Diagram 90

6.2 Register file emulation mechanism on SCMUlate 98

6.3 Example of the content in the subscribers map with respect to the
instructions in the instructions buffer 102

6.4 Time diagram of the execution of a Codelet using a superscalar
approach with 2 Compute Units. See the executing Assembly Codelet
Program on the bottom right . 114

6.5 Interactive trace visualization example 118

7.1 Architecture block diagram of the Intel Core i7-8700K containing the
Intel Gen9 integrated GPU . 120

7.2 Architecture block diagram of the Intel Core i7-8700K containing the
Intel Gen9 integrated GPU . 122

xiv

7.3 Structure of memory and computation for Vector Addition using
SCM running on SCMUlate. 1) L2 memory contains the original 3
vectors (A,B,C) in a single flat memory allocation. 2) load and store
operations of L1 fetch part of the whole array, according to the L1
register sizes (e.g. 2048x64 bytes) (A’, B’ and C’). 3) L1 Codelets use
these registers to perform computation. They are evaluated at L0. 4)
Each register in L1 belongs to L1 memory space. Then L0
computation access these registers through memory operations. Each
read/write access as much as L0 register size (A”, B” and C”). 5)
Actual computation performed at L0 124

7.4 Vector Addition execution trace for the sequential mode on the
SCMUlate emulator. 3 loop iterations on 1 CU 133

7.5 Vector Addition execution trace for the Superscalar Codelet Level
Parallelism mode on the SCMUlate emulator. 3 Loop iterations on 4
CUs. 134

7.6 Vector Addition unrolled 4 times. Execution trace for the Superscalar
Codelet Level Parallelism mode on the SCMUlate emulator. Zooming
on at least 4 loop iterations. 136

7.7 Vector Addition execution trace for the Out of Order Codelet Level
Parallelism mode on the SCMUlate emulator. Zooming in to the
initial loops. 137

7.8 Execution time comparison for different execution modes. Superscalar
and Out of order used 5 CUs . 138

7.9 Vector Addition execution time for different number of CUs. The size
of the vector is the same in all the cases. Lower is better 139

7.10 Speed up progress with the number of CUs as compared against the
execution with 1 thread within each mode of operation. 140

7.11 Slow down in comparison to a simple baseline using OpenMP. The
higher the better. 141

7.12 Average execution time of the three most important instructions in
the execution of Vector Add in comparison to the number of CUs and
the implementation approach. Lower is better 143

xv

7.13 Tiling strategy for matrix multiplication. 1) Matrices are divided into
tiles of 128x128. 2) A special memory Codelet performs a load
operation on tiles A, B and C. Since tiles are usually non-contiguous,
a distance is send as part of the operands. 3) the matrix
multiplication Codelet is applied. 4) the Rnum 2048R registers contain
the 128x128 tile. 5) Regular matrix multiplication can be applied, it
is possible to use highly optimized BLAS libraries. 147

7.14 Execution time vs number of CUs for the näıve version of Matrix
Multiplication. Logarithmic scale in the vertical axis. 156

7.15 Execution time vs number of CUs for the optimized version of Matrix
Multiplication. Logarithmic scale in the vertical axis. 157

7.16 Execution time vs number of CUs for the Intel MKL version of
Matrix Multiplication. Logarithmic scale in the vertical axis. 157

7.17 Strong scaling for the näıve version of Matrix Multiplication. 158

7.18 Strong scaling for the user optimized version of Matrix Multiplication. 159

7.19 Strong scaling for the Intel MKL version of Matrix Multiplication. . 159

7.20 Codelet Performance degradation for Matrix Multiplication.
M=N=K=10 tiles . 161

7.21 Execution time vs number of CUs for the GPU version of the Matrix
Multiplication Codelet. Logarithmic scale in the vertical axis. . . . 162

7.22 Strong Scaling for the GPU version of the Matrix Multiplication
Codelet. Logarithmic scale in the vertical axis. 163

7.23 Strong Scaling for the GPU version of the Matrix Multiplication
Codelet. Logarithmic scale in the vertical axis. 163

7.24 Big O for Matrix Multiplication as observed from L1. O(N3) for the
implemented MM. 164

7.25 5 CUs and M=N=K=20. Bars: Codelet execution time (left axis).
Line: Program Execution Time (right axis). 165

7.26 M=N=K=40. Scalability comparison for different implementations 167

xvi

7.27 Understanding Sequential bottleneck. Ts Time to schedule an
instruction into a CU. Tc Compute time. Tmin minimum compute
time to avoid Twaste sub-utilization 168

A.1 Guide image for Matrix Multiplication Implementation in SCM.
Registers and their corresponding meaning. 198

xvii

LIST OF LISTINGS

2.1 Example code for Superscalar ILP . 39

2.2 Example code for Register Renaming ILP 40

4.1 Motivation Example . 58

5.1 Main Codelet definition at level L1 86

5.2 Sum Codelet definition at level L0 . 87

5.3 Sub Codelet definition at level L0 . 87

6.1 The Print Codelet implementation 109

6.2 Example of using the Print Codelet. 110

6.3 Use example of the SCMUlate runtime 112

6.4 JSON file structure of the tracing mechanism of SCMUlate 117

7.1 Main Codelet for the Vector Addition program 126

7.2 L0 Codelet VecAdd 2048L implementation 128

7.3 SCMUlate program for Vector Addition. Runtime creation and Main

Codelet creation. 129

7.4 Loop unrolling of size 4 for Vector addition. : A 131

7.5 Matrix Multiplication 1 tile: C . 148

7.6 Definition and implementation of the LoadSqTile 2048L Codelet . . . 150

7.7 No optimized version of matMult 2048L 152

7.8 User optimized version of matMult 2048L 153

xviii

7.9 Intel MKL version of matMult 2048L 153

7.10 Definition of the GPU Codelet matMulGPU 2048L using Intel’s MKL
support for gen9 GPU and OpenMP 5.1 features 155

A.1 L2 Memory structure for Matrix Multiplication on SCM 199

A.2 Matrix Multiplication NxM tiles: C = C + A*B. Constant declaration. 200

A.3 Matrix Multiplication NxM tiles: C = C + A*B. Loop j and k 201

A.4 Matrix Multiplication NxM tiles: C = C + A*B. Loop i 202

A.5 Matrix Multiplication NxM tiles: C = C + A*B. Iteration variable
increments loop i . 203

A.6 Matrix Multiplication NxM tiles: C = C + A*B. Iteration variable
increments loop k . 204

A.7 Matrix Multiplication NxM tiles: C = C + A*B. Iteration variable
increment loop j . 205

xix

ABSTRACT

In sequential computers, the Instruction Set Architecture provides a clear divi-

sion between software and hardware. Separation of software and hardware through a

well defined contract enabled decades long of seamless evolution of computer systems.

The end of Dennard’s scaling and slow down of Moore’s law has forced architects to

abandon purely sequential architectures in favor of parallel/distributed and hetero-

geneous systems. The new era represents a new spring of computer architectures.

However, the ISA contract has been broken. It is mandatory to reconcile the abstrac-

tion between hardware and software in order to recover performance, portability, and

programmability.

Sequential architectures take advantage of Instruction level parallelism to over-

lap the execution of instructions. These techniques use dataflow to implicitly perform

side-effect free parallel execution of code. On the other hand, parallel programming

often requires explicit reasoning of workload distribution, communication, memory

synchronization and worker management. This thesis proposes the Sequential Codelet

Model, a program execution model for parallel, heterogeneous and distributed execu-

tion of programs. It defines a machine abstraction (namely hierarchical Von Neumann

machine), that recognizes the natural hierarchical structure of computer systems. Pro-

gramming of the machine uses a hierarchical imperative programming model reassem-

bling an Instruction Set Architecture at each level. A Codelet is the name given to an

“instruction” of a level, as expressed in terms of instructions of the level below. By

means of Instruction Level Parallelism inspired techniques, parallel/distributed execu-

tion of programs is achieved. The final system leverages the vast progress made for

sequential computers. Finally, We present a the Super Codelet Architecture, a possible

realization of the Sequential Codelet Model.

xx

Chapter 1

INTRODUCTION

Computer systems are highly complex machines composed of a large number

of parts interacting with each other. Throughout history, hardware and software have

constantly evolved aiming to push the limits of what computers can do. Computer

architects have competed to define high performance computing organizations with

faster processing capabilities. On the other hand, software developers have design

a large infrastructures that eases programming and utilization of computer systems.

In general, computers are expected to deliver increased performance in every new

generation, and software is expected to be easy to understand, create and extend while

utilizing most of the available resources. Finally, rapid evolution requires re-usability

across generations of systems, enabling a seamless evolution. These three aspects:

Performance, Portability, and Programmability (or just 3P) have continuously driven

computer innovation. For years, sequential computing provided a system abstraction

and execution model that fostered these three properties. However, the arrival of

parallelism has proven difficult to maintain them.

Following the advice of Hennessy’s and Patterson’s Turing Award lecture [1],

we shall revisit some of the history of computer architecture. There are three major

creations that lead to the sequential computing success. First, the Turing Machine in-

troduced by Allan Turing in 1936 [2] which provided the necessary mathematical model.

Second, the definition of the Von Neumann architecture in 1945 [3] that narrowed down

the components of the computer system and their interaction into a specific system

organization. And third, the introduction of a standardized Instruction Set Architec-

ture as a single interface between hardware and software in the 1960’s [4] by Frederick

Brooks and its IBM/360 design team.

1

The standardization of the Instruction Set Architecture (ISAs) worked as a long

lasting contract between hardware and software. As long as this contract was respected,

each part could independently evolve its capabilities. On one hand, hardware designers

focused on improving processor’s frequency of operation and scaling down feature size

of transistors. Higher frequencies and more transistors meant increased throughput

and complexity. Software developers, on the other hand, were relieved of the need

to constantly adapt their programs to new systems. As long as both hardware and

software used the same ISA and respected the architecture’s execution model provided

by the hardware (i.e. Turing Machine and Von Neumann model), they could evolve

programming models and compilers continuously.

ISA is almost a synonym of the system’s architecture. There are multiple pos-

sible implementations of the same ISA, each with different characteristics. However,

given an architecture, it is possible to execute the same program in every implementa-

tion that follows exactly the same ISA (i.e. Portability). Some of the most advanced

implementations that are available today parallelize and re-arrange the execution of in-

structions without interfering with the running software or its correct result. A parallel

execution of instructions is achieved through dataflow inspired techniques in a process

that is completely transparent to the user. For a subset of the instructions in the pro-

gram stream, dependencies are discovered and maintained at runtime, allowing for the

order of execution of instructions to be changed. Furthermore, as long as instructions

are committed in the order they are described (i.e. program state changes are per-

formed in-order), the user is not aware (and does not need to be aware) of the runtime

execution order. It is still possible to increase performance for a given implementation

of an ISA. An avid programmer may change their code to exploit these execution mech-

anisms, but even so, the developer is not required to think of the potential hazards of

the parallel execution.

The end of Dennard’s scaling [5] and slowing of Moore’s law during the past 2

decades [1] has limited the ability to improve sequential architectures through the same

mechanisms used by the industry for over 30 years. Consequently, computer architects

2

were forced to adopt parallelism, at first, by means of increasing the number of cores

present in the same system (i.e. multicore architectures). Most recently, architects

have shifted towards heterogeneous systems composed of multiple units each specialized

in different computational patterns or application specific operations. Although this

seems like an reasonable step, maintaining the Von Neumann abstraction over multiple

cores has presented difficulties and challenges, specially when aiming to maintain the

aforementioned 3P properties. We will discuss this further in the next subsection. The

new architectures have revived interest in parallel computer architectures that already

existed in the 70s and 80s, albeit its lack of success in the past. Nowadays, it is an

accepted fact that computer systems must be parallel, heterogeneous and distributed

machines.

Unlike sequential computing, trending parallel processing lacks of a broadly ac-

ceptable common abstraction that allows a division between software and hardware

(similar to an ISA). Hardware evolution is usually slower than software due to its com-

plexity. In order to utilize the newly introduced parallel hardware (i.e. multicore and

heterogeneous systems) software (and developers) have been burdened with the task

of creating this abstraction. Three big changes arrived to software. First, the con-

cept of thread was introduced in the operating system. Second, programming models

and languages were leveraged to explicitly express parallelism. Third, runtime systems

were introduced to emulate machine abstractions and organizations. Nowadays, par-

allel programmers are responsible of workers creation, workers synchronization, and

memory management across workers.

This thesis aims to provide a system and program organization for highly paral-

lel, heterogeneous and distributed systems. This work intends to leverage the sequential

computation abstractions (i.e. Turing Machine, Von Neumann model and Instruction

set architectures) and extend it beyond the core unit. It defines a model of compu-

tation for parallel program execution that spans across the whole computer system

infrastructure. The aspiration is to take advantage of the original sequential abstrac-

tion to exploit parallelism through ILP techniques, but for the execution of tasks that

3

define more complex mathematical operations.

1.1 The problem with trending parallelism

The problem of parallelism, in general, is one of creation, communication and co-

ordination of workers, tasks and resources. In addition, there are three requirements for

general purpose parallel computing: 1) The program execution must use the available

resources efficiently (i.e. high performance), 2) performance must be carried through

multiple system generations and system architectures (i.e. performance portability),

and 3) it is easy for a programmer to describe such program, reducing time-to-solution

(i.e. programmability). Current trending parallelism relies on two major architectures:

Shared memory multi-core systems and accelerator-based systems (e.g. GPGPUs) that

use a SPMD execution model. Furthermore, there are currently two trending communi-

cation mechanisms across workers: 1) Message Passing (e.g. MPI) and Shared memory.

I focus here on these four elements.

The problem with trending parallelism, in particular, is twofold. First, the

lack of a common abstraction, namely Program Execution Model (PXM) as previously

defined [6][7][8]. Second, current abstractions aim to maintain a Von Neumann view

of the system. A PXM describes the execution of a program in a parallel system as a

whole, and it should serve as a common view for hardware designers, system software

developers, and programmers. A PXM allows for a single strategy to be used in order

to represent and execute programs in the system. Such abstraction is similar to the

role that the Universal Turing Machine, the Von Neumann model and the Instruction

Set Architecture had in sequential system. All of which allowed an smooth evolution of

hardware and software in sequential computer systems. The following paragraphs aim

to understand the evolution of parallelism in the recent years and explain why these

two problems are critical for the evolution of computer systems.

4

1.1.1 The evolution

Parallelism is not a new idea in computer architectures. It dates back to the early

times of computer architectures, but contrary to the early years of parallel computing,

mainstream parallel systems are now easily available. Modern parallelism arrived to

an already existing infrastructure (as seen in figure 1.1) that relies on general purpose

computation and urges backwards compatibility. With the decay of Dennard’s Scal-

ing and slow down of Moore’s law, architects needed a solution to continue growing

computational power of systems. Single core performance advancements hindered, and

systems started featuring multiple cores (or independent threads in the case of SMT)

side by side in a single die. This approach was simple for hardware development and

allowed to keep backwards compatibility with existing software infrastructure. Fur-

thermore, it was easy for the operating system to trade concurrency for parallelism

when applications were running independently.

MACHINE ARCHITECTURE

U S E R S / P R O G R A M M E R S

SOFTWARE PROGRAMMING SOFTWARE EXECUTION

RUNTIMES
AND OS
TOOLS

TOOLS &
SDKs

HARDWARE PROGRAMMING API (ISA)

H A R D W A R E

COMPILERS

LOADERS
PACKAGES,
LIBRARIES,
UTILITIES

HIGH LEVEL PROGRAMMING
LANGUAGES (C, C++, OMP) DYNAMIC

LIBRARIES

PROGRAMMING PARADIGMS (e.g. Imperative, OOP, Declarative…)

RUNTIME SYSTEM

HARDWARE RT

Figure 1.1: Conceptual view of computer system infrastructure nowadays

Multicore architectures are the simplest form of parallelism. They comprehend

a number of computational units (namely CPUs or hardware threads) that are indepen-

dently programmable workers. That is, the inner operation of a single worker does not

inherently affect the operations of another worker. To coordinate execution of parallel

programs in multicore systems additional communication mechanisms are necessary.

5

Given the already existing influence of Von-Neumann architectures, memory is the

preferred method of communication in multi-core systems. Cores use reads and writes

to memory to share information and influence program execution of other workers.

Consequently, the order of memory operations have an impact on the communication

across cores, and therefore on the overall execution of programs. The most common

multicore abstraction is composed of multiple homogeneous cores all connected to a

monolithic memory. Although memory is often seen as a single unit, memory orga-

nizations are not monolithic. Due to performance benefits, memory is divided into

different physical locations, allowing a single memory address to be potentially located

in different physical locations. The most common example is cache hierarchies.

A more recent system design trend are accelerators (or co-processors) featur-

ing specialized hardware that optimize execution of specific sections of the program

for a sub set of applications. Accelerators have proven that a heterogeneous system

could provide great benefits towards computational performance. Perhaps the two

most common type of accelerators right now are GPGPUs, and brain-inspired neuro-

morphic accelerators such as Google’s Tensor Processing Unit [9] or IBM’s TrueNorth

project [10]. The latter have shown interesting results for brain-inspired applications.

Accelerators are architectures that are created to exploit performance given certain

characteristics such as optimizing application specific operations, or enabling data par-

allelism in hardware. When a program fits the execution model of the accelerator, its

performance is improved.

Systems featuring GPGPUs have been successful when it comes to data paral-

lelism and are the current trend in the fastest supercomputers of the world according to

the Top500 list [11]. These systems heavily borrow from vector machines [12] and use

Single Program Multiple Data (SPMD) and Single Instruction Multiple Data (SIMD)

execution models. In these models all the threads receive the same stream of instruc-

tions, but a unique identifier of the thread allows for accessing and processing different

data in each thread. GPGPUs contain hundreds or even thousands of simplified cores

that are relatively simpler and slower than the CPU counterparts. Cores are also

6

grouped into set of cores that usually share memory and other resources. Multiple

groups of cores are placed into the same device, and it is possible to use multiple de-

vices. The structure of GPGPUs is a hierarchical and programs usually adapt to this

hierarchy in order to utilize the whole system.

Accelerators often feature non-traditional ISAs, therefore, they rely on com-

modity hardware, usually referred to as the host, to start and coordinate the execution

of the program. Under this model, certain segments of computation are offloaded to

the accelerator, while the creation and coordination of program is left to the host.

Parallelism in software has evolved with parallelism in hardware. Prior to the

arrival of mainstream parallel systems, operating systems (OS) already supported con-

currency of different processes. The use of virtual memory and time-slicing scheduling

techniques allows independent programs to share system resources transparent to the

user. Communication between processes requires the intervention of the OS. Addition-

ally, due to the isolation of processes, messages must make use of intermediate storage

such as reserved kernel address space or I/O. Processes are software representation of

the von Neumann machine, while the OS guarantees its mapping to the underlying

hardware. In multi-core systems it is easy for an operating system to trade concur-

rency for parallelism. The independent behavior of processes maps to that of CPU

cores in multicore systems. Adaptation between single-core and multi-core OS run-

times featured a parallel scheduler with restrictions on shared resources coordinated

by the single kernel. In the absence of synchronization between instruction streams of

different processes and their respective memory spaces, the OS is the only mediator

for the communication between processes and resource sharing, reducing potential side

effects to specific interactions that obey a strict sequential order.

Message passing interfaces (MPI) was created to enable explicit communication

across processes, reducing the intervention of the operating system. Thanks to process

isolation, MPI can easily spawn across different compute nodes by using already ex-

isting networks to distribute messages. Since memory is independent for each process,

MPI requires interaction between the program’s user space and the operating system’s

7

kernel space for communication. Furthermore, when spawning across nodes, this com-

munication also involves different drivers and hardware. All these makes cooperation

between processes expensive, resulting in a penalty to performance [13, 14], that must

be accounted for when parallelizing software.

Multi-threading programming allows creation of multiple threads on the same

process, sharing the same resources such as memory address space. Multi-threading

removes the shield across processes placed by virtual memory, while at the same time

reducing the operating system’s role and interaction during program execution, poten-

tially reducing overhead and providing more performance. The number of threads in

a process do not have to map the number of physical cores in the system. Instead

the operating system can concurrently execute threads with the means previously de-

scribed. However, it has been shown that over-subscription of threads that compete

for the same resources hampers performance [15], and concurrent execution of threads

may leave to potential deadlocks, if not handled correctly.

Multi-threading still relies on a Von Neumann view of the system with a mono-

lithic perspective of memory. CPU core’s performance heavily relies on the use of

cache-like memories (among other pre-fetching mechanisms) that reduce latency of

memory access. Caches are transparent to the user and are not part of the software

thread abstraction, but a given unique memory address in the thread’s memory space

may map to different physical locations in hardware. Shared memory systems on

multi-core architectures introduce a problem: Out of all potential memory locations,

and their respective values, what is (are) the correct value (values) a worker can ob-

serve at a certain moment of time? Memory models are used to determine the set of

admitted values in the presence of multiple workers (observers and producers) [16].

Multi-treading requires programmers to reason about all potential side effects

that could occur in memory during the execution. Order of events is critical for synchro-

nization of workers. Relaxed memory models with large set of correct values increase

potential side effects. Therefore, most of the commodity multi-core systems available

nowadays have been design to respect the sequential consistency memory model [17].

8

Cache coherence protocols are built around the memory hierarchy to maintain the il-

lusion of an ordered sequence of memory operations that allows a single value to be

observed by every worker at a given time. Additionally, different flavors of atomic mem-

ory operations are often provided by these systems to allow for a more strict definition

of the order of memory operations.

With the arrival of commodity parallel systems, it was still necessary to adapt

previously existing high level programming models and programming languages to

be able to support parallelism. Software threads are managed by an OS libraries

and kernel functions (e.g. POSIX Threads). An application can request and manage

thread resources through different calls exposed as a system library. Software and

hardware threads are flexible and allow to be building blocks of more complex models.

Furthermore, they enable backward compatibility with an already existing software

infrastructure. Therefore, high level programming languages would only require a

library or module that connects the OS API with the particular semantics of the

programming language.

Consequently, mainstream programming models have been extended with se-

mantics to express parallelism. Extensions have been proposed to define creation,

communication and coordination of workers, tasks and resources. Currently there is

no widely acceptable parallel programming model, and in order to take advantage of the

parallel resources there is a myriad of frameworks that implement different program-

ming models for parallelism. Multi-threading, for example, provides full flexibility, but

the burden lays completely on the programmer [18]. Another example is the Fork-join

models. The program starts sequentially and, at a certain point in computation a num-

ber of workers are spawned. Once they have finished executing they join into a single

barrier and sequential execution resumes. Workers may have local private memory and

there may be global shared memory. Depending on the implementation, communica-

tion is allowed across workers, but it must be coordinated by the programmer. Yet

another example of a programming model is tasking. This model is heavily inspired by

dataflow models of computation. tasks are segments of code that are executed when

9

their dependencies are satisfied and the necessary resources are available. There are

data dependencies defined as a producer-consumer relationship, and control dependen-

cies, defined as the order in which tasks need to be executed. Tasking usually defines

a graph of dependencies either at runtime or statically at compile time.

Accelerators have also been considered. Accelerators often come with low level

languages that extend from already existing languages (e.g. Cuda, HIP, or SYCL).

Additionally, other programming languages and frameworks (e.g. OpenMP, and Ope-

nACC) have been extended to account for heterogeneity, allowing the user to express

computation targeting the given architecture. Finally, there are libraries which pro-

vide application specific operataions which ultimately use the accelerator as part of its

implementation (e.g. TPU Tensorflow, cuCNN, and Intel’s MKL).

1.2 The problem

Sequential computing built up upon two models: The Turing Machine and the

Von Neumann architecture. These models allowed a common view of the system the

between hardware and software development, provided a solid ground for the evolu-

tion of computer systems. However, the introduction of parallelism has shaken these

abstractions.

Multicore architectures enable backwards compatibility by using already exist-

ing ISAs in each core. However, these system struggle to maintain the 3P proper-

ties. Programmability suffers from two angles. First, independent worker creation

and synchronization is tedious. Second, as memory operations affect the result of the

computation, it is often necessary to enforce an order in memory operations to eas-

ily understand program behavior. Consequently, multicore systems use mechanisms

to guarantee this order operations (e.g. cache coherency protocols) which ultimately

degrade performance as the number of cores increases. Performance is also heavily

dependent on other system’s elements which are often left outside of the multi-core ab-

straction (e.g. cache organization, memory bandwidth, interconnect architecture, and

memory access times). The lack of accountability for these concepts in the software

10

abstractions ultimately degrade portability when these elements change from system

to system.

Some accelerators have proven to improve performance by reducing the over-

head, increasing the number of workers and allowing different execution models to be

used. In addition to performance, programmability also improves with accelerators as

they ease worker creation and coordination. However, the host-accelerator machine

abstraction centers its execution into the accelerator and usually leaves behind other

compute capabilities such as the host. This problem is exacerbated by the distance be-

tween host and device, leaving the host as a simple scheduler of computation. Finally,

there host-accelerator machine abstraction has not been formalized to allow portability

across generation of systems.

Regardless of the programming model, there needs to be a mapping in between

the abstract machine of the hardware, and the abstract machine of the programming

model. With the lack of a common abstraction at the hardware level, parallel pro-

gramming models have been tasked to come up with abstractions on how to organize

computation to take advantage of parallelism. Due to the aforementioned evolution of

hardware and parallelism, most of the programming models rely on runtimes that are

software implemented and linked against the OS libraries that provide thread creation

and management. These implementations use hardware threads, software threads and

processes as building blocks. More often than not, these mappings assume their run-

times are the only running element in the system, and if placed next to other runtimes

they tend to compete for resources. Moreover, attempting to mix these models in

the same program tend to have similar complication (e.g. MPI+X). Therefore, cur-

rent parallel programming models tend to break programming generality as defined by

Dennis in [7]. Coming up with a common abstraction which can be implemented in

hardware is crucial to solve most of these issues that come from the excessive freedom

given through current parallel systems.

Parallelism is hampered by its increased difficulty in programming. As previ-

ously mentioned, programmers are required to think of the interaction between workers

11

through the use of shared memory or message passing. Message passing is tampered

by its overhead and limitations to express complex programs that are also portable. In

shared memory there is no implicit synchronization or coordination between threads,

or hardware computational units. The programmer must build and use mechanisms

(e.g. mutex primitives, critical regions and atomic operations) for synchronization of

workers, coordination of tasks and assignment of workloads. An excellent explanation

of this issue is presented by Edward Lee’s paper ”The problem with threads” [19].

These issues become more complex and prominent as the number of cores and nodes

increases.

In hardware, scalability is hurt by the need to maintain the von-Neumann rep-

resentation and the underlying sequential memory model needed to ease programma-

bility. Aiming to relax the memory model becomes prohibitively expensive for the

programmer as it would increase side effects during execution of programs. This could

overwhelm the most avid developer, which would have to account for it on top of the

requiring thread creation, synchronization and workload assignment. Multi-core sys-

tems with relaxed memory models and with non-coherent memory hierarchies have

failed to succeed so far.

GPGPUs are a good example of how hardware implemented parallel abstractions

can considerably reduce the overhead introduced by operating systems and the different

runtimes. Moreover, it shows the need for heterogeneity and parallelism in order to

progress computation. It also reduces the developer’s burden when it comes to workers

and tasks creation and orchestration as well as resource management that is usually

present in multi-threading programming. However, and despite considerable advances

in their architectural designs, GPGPUs still struggle with unstructured parallelism as

well as for applications that cannot easily exploit data parallelism. Not only that, but

the offloading paradigm that sees the CPU and GPU as two distinct units that are far

from each other has reduced the participation of CPU cores as important elements for

low latency computation. It is still desirable to recognize the strength in heterogeneity

as a collection of elements with different compute capabilities. An abstraction for

12

general computation should consider these aspects.

Operating System processes and threads abstraction enforce a Von Neumann

view of the system even in the presence of accelerators. Likewise, programming models

have historically evolved from sequential computation, but they may not be suitable

for parallel abstractions [20]. It is often desired to have a unified shared memory to

maintain the Von Neumann abstraction in a software infrastructure built for sequen-

tial computers. However, parallel programming has already asked software developers

to completely re-structure their software to account for heterogeneity and parallelism.

For example, while it is possible to use complex classes and data structure abstractions

in the GPU, they are often not encouraged in favor of performance. Moreover, these

devices have created deep memory hierarchies with different memory regions that are

only shared with a subset of the system. These different memory regions also require

extra modifications to the code, as well as the program execution strategies that are

not trivial. If the system is to remain under the original Von Neumann abstraction,

the monolithic view of memory, together with the oversimplification of the system’s ar-

chitecture (e.g. interconnection networks, memory hierarchy and non uniform memory

accesses) would make it impossible for performance, portability and programmability

to be recovered.

Bottom line, as the contract provided by common ISAs broke with the intro-

duction of parallelism in computer systems, there is a constant struggle to adapt the

already existing software ecosystem into the available hardware resources. Both hard-

ware and software have aimed to find a new contract to replace the old one. Software

and its ability to adapt fast, has come up with many solutions, but they still rely on

heavy software implemented runtimes and a constant push for a Von Neumann view of

the system. These runtimes enforce different models that collide, and have not proven

to provide the three desired features: Programmability, performance, and portabil-

ity. As the trend into accelerators rises, they provide valuable opportunities, but they

also hardened the creation of the desired program execution model and its abstract

machine. This work aims to provide a feasible solution to some of these problems.

13

1.3 Synopsis

The rest of this thesis is organized as follows. Chapter 2 contains background

information.It discusses the basics that influenced previous models of computation as

well as the Sequential Codelet Model. Some of the topics include the Turing machine,

Von Neumann architecture, dataflow computation, and concepts of parallel computing

based on these three. It also introduces the original Codelet Model as the predecessor

of the Sequential Codelet Model. Next, Chapter 3 summarizes the objectives of this

thesis, as well as provides the problem formulation.

Having introduced the topics and intention of this work, this book proceeds

to describe in depth the main contributions of this Thesis. Chapter 4 describes the

Sequential Codelet Model of Computation. It starts by introducing the Hierarchical

Turing Machine as the underlying mathematical model that inspires the creation of the

Sequential Codelet Model. Then it discusses the Hierarchical Von Neumann abstract

machine, and the execution model based on it. Parallelism is described as an arti-

fact of the execution of the program, but not inherently part of the original execution

mode. An architecture is defined using the Sequential Codelet Model in Chapter 5.

This architecture is a possible realization of the Sequential Codelet Model in a real

hardware system. To evaluate our approach, Chapter 6 describes the creation of an

emulator that allows execution of SCM programs into commodity hardware architec-

tures. This emulator is named SCMUlate (pronounced S.C. Emulate). This Chapter

not only describes the structure of the SCMUlate, but also applies the hardware/soft-

ware co-design principles in its design and implementation. Additionally, this chapter

describes how a developer and user can simulate the Sequential Codelet Model with

SCMUlate. Based on SCMUlate, Chapter 7 shows evaluation results and analysis on

two different benchmarks: Vector Addition and Matrix Multiplication. These bench-

marks are well known kernels that are particularly important for High Performance

Computing computation, both in data sciences and scientific code. They have been

selected thanks to the experience gather when contributing and working with ECP

14

SOLLVE applications (an important project for the future of HPC and Exascale com-

puting) during the development of the OpenMP offloading Verification and Validation

testsuite [21][22]. “Even when standardization and initial implementations of OpenMP

features are complete, the SOLLVE project’s efforts continue. With an ever-growing

OpenMP validation and verification test suite, SOLLVE monitors how well compil-

ers and runtime systems support OpenMP across pre-exascale and exascale test bed

systems. This provides guidance to the implementers and facilities and ensures the

portability of OpenMP with regard to compilers and systems” – as recently reported

in [23].

Finally, this thesis presents some related work in Chapter 8, it discusses future

work in Chapter 9, and provides conclusions in Chapter 10.

15

Chapter 2

BACKGROUND

In the quest of creating a program execution model, it is necessary to have

a holistic view of computer systems from all different layers. Computer systems are

a myriad of components and layers that interact with each other. The background

needed for each of these layers can comprehend several books and requires extensive

knowledge. However, in this chapter I have selected some of the elements that I have

found most important for this work.

As the title suggests, this section is divided in two parts. First the Founda-

tion Section 2.1 that contains fundamental concepts of models of computation. We

introduce the Turing Machine, Universal Turing Machine, Von Neumann architecture,

dataflow models of comptutaion and others. Second, Section 2.2 summarizes the origi-

nal Codelet Model, its components and elements. This model is the predecessor of the

Sequential Codelet Model. These two sections aim to cover all the different areas that

one way or another inspired this work.

2.1 Foundation

Following are some of the most important and influential concepts for this work.

2.1.1 The Universal Turing Machine

The most important model of computer systems is the Universal Turing Ma-

chine. This mathematical model is the foundation of most computer systems that are

used nowadays. Alan Turing (1912 - 1954) was an English mathematician (among other

expertise) that is recognized as the founder of theoretical computer science and artifi-

cial intelligence. Turing originally described his machine in [2]. This paper’s objective

16

was not to define the machine, but the machine was an utensil to demonstrate that

the Entscheidungsproblem had no solution. While this conclusion was also reached

by Alonso Church [24, 25], Turing’s work had a different approach that involved the

definition of a theoretical computing machine which was unique of its own.

At a high level, Turing Paper has four major contributions: 1) The definition of

the Turing Machine, 2) The definition of computable numbers, 3) the definition of the

Universal Turing Machine, and 4) the demonstration that the Entscheidungsproblem

has no solution by using the other three contributions. This work mainly focuses on

the Turing Machine and the Universal Turing Machine. For a more comprehensive

understanding of the whole paper, it is worth visiting [26].

Turing Machine

The Turing Machine is inspired by the process a person calculating a real number

with a pen and a piece of paper. When a human is calculating a number, he or she

knows the set of steps or rules that need to be applied according to the values that are

read from the piece of paper. Then, the person will move along the paper, read the

values from the paper and write new values to the paper. The Turing Machine is an

automatic process that does not require external intervention. It is used to calculate

real numbers by only following a set of steps. The Turing parts from three elements

that are parallel to the resources used in the human process described above: 1) A

tape that stores information in the form of symbols (Paper). 2) A head that reads and

writes into the tape (Pen), and 3) a set of rules (ordered steps), that determine the

position in the tape as well as what to write into the tape according to what is read

from the tape (The algorithm in the mind of the person). These rules are referred to

as configuration states or m-configurations of the machine, and a given machine can

only have a finite number of states. Therefore these rules reassemble a Finite State

Machine. Figure 2.1 shows the different components of the Turing Machine.

The process is simple: The tape is easily represented as a one dimensional

infinite tape divided into squares and capable of storing symbols. The head is located

17

Infinite tape memory

3ℌ5Ω 2ℌ9℥
E S E S E S E S

……

S1 S2

S3 S4 R/W HEAD

Current State

S2

Figure 2.1: Turing Machine. There are four different states S1 through S4.The tape
shows the two different type of Squares: E and S

in a given position of the tape. A symbol (or the lack of) is read from the current

position and based on the current m-configuration a set of operations are performed

in order. These operations are a combination of: Moving the head Left or Right,

Print a new value in the current position or Erase the value from the current position.

After the operations are performed, the machine goes to a different m-configuration

state. Notice that initially, there is no limit on the number of operations that can be

performed for a given state. While this is true for the Turing Machine, this changes in

the Universal Turing Machine, as will be explained later in this section.

The Symbols written in the machine are of any kind. However, due to the in-

terest in numbers, there are two kind of symbols. Numeric symbols that represent the

value being computed, and non-numeric symbols that are used to mark properties of

the computation. The latter do not aim to represent values, but to mark additional in-

formation at given positions of the tape (e.g. positions that have been already visited).

Therefore, the tape will contain one type of squares called Figures or F-Squares that

store numeric values containing the number being calculated; and it contains another

type of squares called Erasable or E-Squares that contain the non-numeric symbols

18

m-config symbol s-operations next m-config

b


None

0
1

P0
R,R, P1
R,R, P0

b
b
b

Figure 2.2: Example of an m-configuration table of the Turing Machine

that represent marking information of the F-Squares. In Turing words, these squares

are “notes to assist the memory”. The location of E-Squares and F-Squares is not

important, as long as it is possible to pair one to another. Turing decided to alternate

one another (e.g. E F E F ...) assigning an S-Square the E-Square to the left. The need

for more E-Squares to mark F-Squares can be solved by introduction more symbols

to represent different information. Figure 2.1 shows the two different Squares in green

and red as well as with a subscript E and S.

To represent the Finite State Machine, Turing used the concept of m-configuration

tables. These contain 4 columns. The first column contained the name of the m-configuration.

The second column contained the symbol read by the tape and which would determine

what operations to perform. The third one containing the operations to perform. Four

different operations are used here: PX for Printing the symbol X, R/L for moving

the head one Square to the right or left respectively, and E for erasing the content of

the Square. Figure 2.2 contains an example of an m-configuration table that would

print “0 1 0 1 0 1 0 1 0 ...” in the tape. If we consider that this number represents the

decimals of a binary number written as 0b0.01010101... it is equivalent to the number

1/3 in decimal.

Example of implementing copy on a Turing Machine

Let us consider the Turing Machine with the m-configuration tables of Figure

2.3. This machine will copy a sequence of symbols from the beginning of the sequence

to the blank spaces at the end of the sequence. We will call it copy. It uses binary

numeric symbols 0 and 1 since binary numbers are easier to use than decimal numbers

19

m-config symbol s-operations next m-config

begin

{
Not @

@
L
R

begin
copy

copy


BLANK

0
1
β

Px,R
R,R
R,R
E

copy
copy0
copy1

following

copy0

{
0 or 1

BLANK
R,R
P0, L

copy0
removex

copy1

{
0 or 1

BLANK
R,R
P1, L

copy1
removex

removex

{
Not x

x
L,L

E,R,R
removex
copy

Figure 2.3: Example of the m-configuration table of a copy Turing Machine

(see [26] for an example of a Turing Machine using decimal symbols). It also uses

three non-numeric symbols: @, β, and x. The purpose of the @symbol is to represent

the beginning of the sequence in the tape, and it was originally used by Turing in his

paper. The β symbol represents the end of the sequence to be copied, as well as the

beginning of the resulting sequence. The x symbol is used to mark the current numeric

symbol being copied.

Let us assume that the current total configuration of the machine contains the

initial sequence as well as the β symbol at the end of the sequence as such:

@ @ 0 1 1 0 β

This grid represents a segment of the infinite tape. The head location is rep-

resented by the thick lines surrounding a square. Let us start execution at the begin

20

state. This state will take the head to the first left-most blank square after the @, and

it will call the copy state. The first execution of the copy state will find a BLANK

square, therefore printing an x and moving right. After this we end up with this tape

configuration:

@ @ x 0 1 1 0 β

The copy state is executed again, but this time the read symbol is different. We

have already marked the symbol to be copied with an x, allowing us to keep track of

which symbol we are currently copying. Following we start performing the copy of the

0 that is currently under the head. Notice that I use the state copy0 which allows us

to have some sort of memory of the symbol we are currently copying. Finishing this

state we are two blocks further right from the symbol we are copying, resulting in the

following machine configuration, and our next state is copy0.

@ @ x 0 1 1 0 β

The copy0 m-configuration is now being executed. This state will first find

the left most numeric F-square that do not have a symbol in it. To do this, the state

will continuously call itself while the value is not BLANK. Then, when the empty

square is found, the head will print the value 0 in it followed by moving the head one

position to the left and changing to the next state removex. Before changing states,

and after several iterations of the copy0 configuration we end up with the following

tape:

@ @ x 0 1 1 0 β 0

We now move to the removex m-configuration. Notice that our head is cur-

rently located in an E-Square. We first need to find the x to be removed by iterating

over the E-Squares to the left (i.e. L,L) until we find the x symbol again. This is

achieved by constantly calling the removex state until the value under the head is an

21

x. At this point we can remove the current x and move two blocks to the right (i.e.

E,R,R). We have finished copying a whole symbol, and we are ready to start the next

copying process.

@ @ 0 1 1 0 β 0

Next, we have the copy state again. The value under the tape is a BLANK

once more, therefore printing an x symbol, marking the second digit of our sequence.

We will start a new cycle. The configuration of the tape right before the new cycle is

as follows.

@ @ 0 x 1 1 0 β 0

After going over the whole sequence and having copied all the digits, we are

back again to the copy configuration. However, this time we will not find a BLANK,

instead we read a β symbol. As a result we now have concluded the copy process, and

we are ready to move on to the next state, namely following in the m-configuration

table. To do this, we first make sure to remove the β symbol. This is the final snapshot

of the machine right before moving to the following state. The head is currently where

the β symbol used to be.

@ @ 0 1 1 0 0 1 1 0

This concludes the execution of the copy operation on a Turing Machine.

Skeleton m-configuration Tables

When representing m-configuration tables, one will easily encounter repeat-

ing patterns of m-configurations that contain similar operations (instructions), but

different symbols or following m-configuration. Turing defined in his paper the

concept of “Skeleton Table” that is somehow similar (but not completely equiva-

lent) to a subroutine in current programming languages. The idea is to represent

22

an m-configuration that has parameters that work as variables in the configura-

tion table. The parameters will be either numeric and non-numeric symbols, or other

m-configurations that.

Going back to the example in Figure 2.3 we notice that the copy0 and copy1

m-configurations are both exactly the same, but they differ in the the symbol it is

printed as well as the following state to be called. By using skeleton tables it is

possible to re-write this m-configuration table as seen in Figure 2.4.

m-config symbol s-operations next m-config

copyS(S)

{
0 or 1

BLANK
R,R
PS, L

copyS(S)
removex

Figure 2.4: Using skeleton Tables for representing copy0 and copy1
m-configurations into a single table

m-config symbol s-operations next m-config

copy(following)


BLANK

0
1
β

Px,R
R,R
R,R
E

copy
copy0
copy1

following

Figure 2.5: Using skeleton Tables for representing the copy m-configuration table
allowing different following states.

The S can be seen as a numeric symbol that is a parameter of the newly created

copyS table. The PS instructions will actually print the value that was sent to the

copyS configuration. Likewise, copyS is recursively called with the same symbol until

the BLANKspace is found.

23

Furthermore, if imagine multiple uses of the copy m-configuration, where the

following state corresponds to different continuation states. Then, without using

Skeleton tables we would have to duplicate the copy state over and over, using

multiple names, and only changing the state that replaces the following placeholder.

Instead it is better to have a single version of the copy configuration, that receives

as part of the parameters the continuation state as in Figure 2.5.

By putting together the two elements in Figures 2.4 and 2.5, we can re-write

the m-configuration table of example 2.3 as seen in Figure 2.6.

m-config symbol s-operations next m-config

copy(following)


BLANK

0
1
β

Px,R
R,R
R,R
E

copy(following)
copyS(0, following)
copyS(1, following)

following

copyS(S, following)

{
0 or 1

BLANK
R,R
PS, L

copyS(S, following)
removex(following)

removex(following)

{
Not x

x
L,L

E,R,R
removex(following)
copy(following)

Figure 2.6: Using skeleton Tables to re-write example 2.3.

It is necessary to pass along the following state to be able to connect the

inner calls of the copy configuration with the original copy configuration. On the other

hand, even though it looks like an infinite recursion, it is important to understand that

skeleton tables are not meant to be resolved at “runtime” by the Turing Machine.

Instead they are meant to be for easier readability of the whole Finite State Machine.

As a consequence, all the different states (m-configurations) that exist as a result of

unrolling skeleton tables must be known. Furthermore, the amount of states must

still remain finite.

24

The Universal Turing Machine

Currently it is known the importance of binary numbers. At the end of the day,

computer programs are just long strings of ones and zeros that encode instructions in

the system. This means that every program is a (fairly large) number. Such realization

is also a result of Turing’s work.

The examples presented so far do not limit the number of operations that are

performed in each m-configuration. The Turing Machine was originally limited to a

print or delete operation, followed by moving the head of the right or left or not at all.

But even Turing himself realized how long m-configuration tables would be if you

limit just to these operations. However, going back to the original restrictions, Turing

could demonstrate that it is possible to build a machine that is able to execute other

machines that are represented as numbers written in part of the tape. However, before

it is possible to do this, you must be able to encode these machines into such numbers.

Similar to Instruction Set Architectures, where bits are used to encode operations,

Turing created a set of “instructions” built as standardized m-configurations.

m-config Symbol s-operations next m-config

qi Sj PSk, L qm (N1)
qi Sj PSk, R qm (N2)
qi Sj PSk qm (N3)

Figure 2.7: Standard forms of states in the Turing Machine

Figure 2.7 shows the three different forms that any state could use in standard-

ized form. The symbols Sj, Sk can be any of the form 0, 1, BLANK, or any other

predetermined non-numeric symbol. The use of BLANK will replace the Erase op-

eration used in previous examples. Finally, a single instruction can be concatenated

together into a single string. For example it is possible to write N1 as q1SjPSkLqm;.

If each part of this string is encoded as a number (or collection of numbers), then it is

possible to write any machine as a number encoding the operation.

25

Programs of the Universal Turing Machine are therefore encoded in numeric

representations of the standard form (i.e. N1, N2 or N3). Following, it is possible

to write a second machine that interprets this standard form in order to execute the

different states. A details explanation of this process is available in [26].

Computable numbers

As shown before, a Turing Machine has the potential to output different num-

bers. Each number represented by the sequence that results from the execution of the

machine. Turing limited his study to the machines (and therefore set of m-configurations)

that do not stall during execution, resulting in machines that yield to valid numbers

(e.g. 0b0.010101000...). It is possible to observe that a given valid machine will output

a numeric value that is the representation of a real value. Furthermore, the set of

possible states to be used in a Turing Machine must be finite. The set of resources

that are needed for the machine to work in order to output the number is also finite.

It is possible to show that all possible Turing Machines that could be built based on

these restrictions are enumerable. Each machine will output a single number. The set

of all numbers that can be a result of all possible Turing Machine are then defined

as the computable numbers. Since the possible Turing Machines can be enumerable

(see Turing’s paper for details), the computable numbers is a countable set. The set of

computable numbers does not contain all the real numbers, but it is a subset of the real

numbers. Furthermore, this set is larger than the set of rational numbers, including

some irrational numbers such as π and e. However, most of the irrational numbers are

non-computable numbers.

This finding is of great importance and lead to the creation of the theory of

computable numbers. However, the deep mathematical theory behind these numbers

is outside the scope of this work.

26

2.1.2 Von Neumann Architecture

Von Neumann and Turing met each other in at least two opportunities [26].

One when Von Neumann visited Cambridge in 1935, and the second time when Turing

visited Princeton from 1936 through 1938. Their interests in the field of mathematical

logic and computation matched, and it is certain that Von Neumann was aware of

Turing’s work at the moment of working on this architectural model. The so-called

Von Neumann architecture was initially described in a draft of the design of the EDVAC

system in 1945 written by John Von Neumann. Although Von Neumann is the sole

author of this draft, the document intended to be a design summary of the EDVAC

project which involved more people. The manuscript was never officially finished. Von

Neumann sent a handwritten draft to Herman Goldstine, and he distributed a typed

version among the different members of the EDVAC team. However, due to the large

interest it attracted, the document quickly spread across different countries before the

final version was concluded.

Other than the architecture itself, the document talks about design trade-offs

that were made in favor of a more general purpose computer. Among them there

are the use of binary numbers, the selection of vacuum tubes over mechanical means,

and the description of the basic mathematical operations needed for general purpose

computing as well as the target different applications the system could perform. While

these decisions were not original to his time, they were an important part of the design

and to this day they are an essential part of computer systems.

First, binary numbers are used because they allow for simpler implementation

of arithmetical circuits with higher switching speeds. Although using binary numbers

requires larger execution times (in comparison to other numerical systems), it ushers

simpler circuits capable of achieving faster execution times. Consequently, components

used for building the system must be able to operate at high frequencies as well.

1 Second, instead of supporting complex arithmetic operations that require larger

1 At the time of the EDVAC system, mechanical switches were available and widely
used, but they were too slow. The newly available vacuum tubes had faster response

27

Figure 2.8: Von Neuman Machine Architecture

circuits, systems often expose only simple operations (e.g. add, sub, and mul). It is

still possible to implement complex operations by means of simple arithmetic (or at

least fair numerical approximations). After all, Turing’s paper had already proven this

with the set of computable numbers.

The Von Neumann Machine describes an organization of a system that imple-

ments the Universal Turing Machine. As can be seen in Figure 2.8, the Von Neumann

machine is comprised of three major parts: A Central Processing Unit (CPU), a mem-

ory storage, and an input/output interfaces to the external world. Memory represents

the tape of the Universal Turing Machine, and CPU represents the head. Program

instructions are usually stored as part of memory in what is known as stored-program

computer, which pre-dates the EDVAC system, and assimilates the Universal Turing

Machine. Memory also stores program data. On the other hand, the CPU has two

parts: 1) the Control Unit, which decides what instruction to execute next (e.g. re-

solving branches) and schedule it, And 2) the Arithmetic Logic Unit (ALU), which

contains all the circuits that perform arithmetic operations. Therefore, the Control

Unit schedule the instructions for execution in the ALU.

With the exception of loading the initial tape configuration, and reading the

times making them ideal. Later on, tubes were replaced with silicon transistors with
higher frequencies, smaller sizes and better power performance.

28

result from the tape, the Universal Turing Machine is a closed system with no interac-

tion with the outer world. Differently, the Von Neumann system I/O interfaces have

an important role for the interaction with users and other peripheral systems outside of

the machine even during the execution of the program. The I/O allows the system to

communicate with the exterior world in different ways: like in the UTM, I/O interfaces

allows the system to provide input configurations (programs and data), and obtain out-

put results. But in current systems based on Von Neumann, I/O also has an important

role throughout the execution of the program. For example fetching information from

the outside world (e.g. internet), as well as communicating with many other hardware

systems and peripherals that change the execution of the program. It is important to

coordinate how I/O signals interface (or avoid interfering) with the current program

execution, specially for the sake of deterministic behaviors.

The Von Neumann architecture benefits from sequential execution of program

instructions. The program counter determines the current executing instruction. Some

instructions, referred to as control flow instructions, explicitly determines the next

instruction to be executed at a different location of the program by modifying the

program counter. For other instruction types, the program always follows the next

instruction in the stream increasing the program counter by one. For the original model,

an instruction should not start before the previous instruction finishes. Thanks to this

set of rules, there is no need to explicitly determine continuation instructions in the

encoding, nor to have a matching mechanism between instructions. Producer-consumer

data dependencies between instructions are respected by the order of execution.

An important observation is that memory is monolithic in the Von Neumann

architecture. However, architects are required to create a hierarchical memory struc-

tures to support larger size and limit memory access latency. At the first level, next to

the CPU and inside of the core’s architecture, a register file contains several memory

locations with a static naming convention. Each register is assigned a name and a

predefined length and role (e.g. general purpose or configuration registers). Register

are close enough to the ALU, therefore, register access time from the ALU is low in

29

comparison with the ALU’s operation latency. Nevertheless, register file size is limited

by the die area and other architecture design tread-offs. Two or more levels, each with

a larger memory capacity, can be built outside of the core. The most common memory

architecture features a large and slow main memory (i.e. DRAM) directly connected

to the CPU, and a hierarchy of memory caches in between that exploit temporal and

spatial locality of memory accesses. Outside memory is often organized in fixed size

chunks known as ”words” that are independently distinguished by some addressing

mode. Although there are many different possibilities, flat memory spaces are often

used to respect the original concept of a monolithic memory space in the Von Neumann

architecture.

The aforementioned memory structure is a key aspect to achieve high perfor-

mance in Von Neumann based systems. As explained by Turing himself [27]:

(...) I believe that the provision of proper storage is the key to the problem
of the digital computer, and certainly if they are to be persuaded to show
any sort of genuine intelligence much larger capacities than are yet available
must be provided. In my opinion this problem of making a large memory
available at reasonably short notice is much more important than that of
doing operations such as multiplication at high speed. (...)

However, most of the properties that are essential for the Von Neumann archi-

tecture, present difficulties when used in parallel systems. The following section will

aim to cover parallel designs that are based on Von Neumann.

2.1.3 Multithreading Computation and Multi Core systems

In a nutshell a thread is a sequence of instructions that can be scheduled into

hardware. Threads are often described as their current execution point also known as

the Program Counter (or just PC). From the perspective of the Von Neumann machine,

a thread corresponds to the sequence of instructions in memory that conform the

executing program as well as the current program counter (i.e. the current instruction)

inside the Control Unit.

In a computer, the Operating System (OS) allows multiple programs to concur-

rently use the same hardware. In order to achieve this, the OS uses multiple processes,

30

each containing software implemented threads. A process can be seen as an indepen-

dent virtual Von Neumann machine, therefore each process has a CPU (i.e. a software

thread), and a memory that is private. The OS uses virtual memory [28][29][30] to

allow for each process to completely own memory, further encapsulating the idea of a

virtual Von Neumann machine. Additionally, I/O is solely managed by the OS and its

drivers, allowing each process to communicate with the hardware resources indepen-

dently without requiring much coordination with other processes. The OS implements

an scheduler that grants processes access to the CPU (and other hardware resources)

at different times. When a process is scheduled, the software thread of the process is

“connected” to the hardware thread of the CPU processor, and thus progressing the

execution of that program. Figure 2.9 depicts this organization, and also shows an

execution trace of the concurrent use of the CPU by all the the processes: P1, P2,

and P3. Notice the similarities between the process structure and the Von Neumann

machine.

Multithreading is the ability to have multiple threads running at the same time.

From the perspective of the OS, software multithreading allows a process to create and

manage multiple threads. From the perspective of the CPU, hardware multithreading

allows the hardware to have multiple threads sharing the same memory and resources.

Hardware multithreading is achieved either by having multiple independent CPUs (i.e.

multi-core systems) connected through some network, or by allowing a single core to

have multiple control units (i.e. Simultaneous Multi Threading or SMT) while sharing

the ALU and core other resources. Note that it is not necessary to have hardware

multithreading to support software multithreading. However, it is necessary to have

OS support for software multithreading to allow a process to request multiple threads.

Moreover, it is possible to request more software threads than hardware threads. This

is usually referred to as oversubscription of threads.

POSIX Threads (or just PThreads), the most common implementation of soft-

ware threads, is a language independent standard that defines software threads. The

standard determines the different components of a thread (e.g. Memory segments,

31

Figure 2.9: Role of the Operating System in concurrency: Each process is a virtual Von
Neumann machine. The OS maps each process memory to physical memory through
the use of virtual memory. The OS Scheduler concurrently maps the SW Threads to
HW threads through context switching.

stack pointer, and program counter to mention some) as well as the API for creation

and interaction with threads (e.g. pthread create() and pthread exit()). Software

multithreading usually allows threads to have local private memory associate to each

threads. Communication between local memory and shared process memory requires

explicit memory copies.

Multithreading modifies the original Von Neumann architecture. Figure 2.10

depicts the most common multithreaded Von Neumann architecture. The most impor-

tant aspect are the multiple CPUs located side by side around memory. Von Neumann

based multithreaded systems consider memory to be a shared resource. Other systems

will also include private local memory associated to each CPU. It is possible to think

of the register file as an special case of private memory.

The flat memory address space used in sequential computers creates a monolithic

memory view. However, real systems have a distributed memory system composed of

32

Figure 2.10: Diagram of a multithreaded Von Neumann machine.

cache, registers files and multiple external memory. Consequently, for a single memory

reference (i.e. address) in the flat address space, it is possible to have data replication

and multiple versions in different physical memory locations. In the case of cache, for

example, data replication is essential for performance.

In multithreading systems based on Von Neumann, memory consistency models

[31] provide rules that determines the behavior of multiple memory accesses (reads and

writes) for a given memory reference (address). This is, for a single address that could

map to multiple physical locations, the set of values that are admitted to co-exist as

valid in the different locations is determined by the consistency model. For example,

the value of a variable X may be stored in the register file of core 1 and the register

file of core 2. A memory consistency model may determine this as valid behavior, or

it may restrict that only a single element is valid.

Sequential consistency [17] is perhaps the most important consistency model of

all. It determines that at any point in time there is only a single valid value per memory

reference. Furthermore, it enforces the idea of a monolithic memory with a single port

that can only process one transaction at a time. Thus, changes to memory occur in

a sequential order. Cache coherency is a mechanism that maintains the sequential

consistency when using caches. There are many cache coherency protocols [32][33].

33

There are two major issues with multithreading (von Neumann based) paral-

lelism, as presented by Arvid et al in [34]:

• Memory references often require long idle times in the control flow of instructions,
resulting in loss of overall performance.

• required synchronization between workers results in necessary context switching
between threads, which are expensive and could potentially hurt performance
considerably.

In addition to performance issues, multithreading parallelism requires the pro-

grammer to think of all possible side effects that may rise from parallel execution of

threads, as described by Edward Lee in ”The problems with threads” [19]. The lack

of explicit synchronization between instructions executed in different CPUs means the

user must explicitly define synchronization operations. In order to do this, a program-

mer must think of all possible interleave of instructions in the different threads, and

how they change the memory state of the program simultaneously. The difficulty of this

process increases as the number of threads increases. Furthermore, if system does not

enforce sequential consistency, programming becomes a prohibitively complex process.

Therefore, programmability in multithreading is a major issue.

2.1.4 Dataflow Computation

The dataflow model of computation was originally defined by Karp and Miller in

1966 [35]. The first version of a dataflow architecture was described by Jack Dennis in

1974 [36] and its corresponding programming language [37]. Following these principles,

the 1970’s and 1980’s brought many computer architectures using these principles

[38][39][40][41][42][43].

The dataflow computation model describes a program in terms of a directed

graph. Each node of the graph is an operation (e.g. +, -, and *) also known as an

actor. Operations are described in terms of its mathematical function as well as the

number of inputs, the size of their inputs, the number of outputs and the size of their

outputs. Inputs and outputs of a node are connections of the graph, and they represent

34

data that travels from node to node as it gets transformed by the operations. Arcs

are the equivalent to memory, and they carry tokens from one actor to the next one.

Thanks to the lack of a single locus of control, and the explicit synchronization defined

by the arcs of the graph, dataflow representations have the potential of fully exposing

parallelism in programs.

In comparison with Von Neumann architectures. dataflow models of computa-

tion do not consider a program counter or a unique execution point in the program.

Instead, actors (nodes in the graph) have a state that determines its execution. The

state of the actor is only dependent on its inputs and firing rules. An actor is inactive

or disabled if its input tokens are not available according to its firing rules. Once

the firing conditions are met, the actor becomes enabled and it is ready for execu-

tion. Upon scheduling for execution, the actor is considered fired, all input tokens

are consumed, and new output tokens are produced for the downstream actors.

Another important difference with the Von Neumann architecture is the lack of a

globally accessible centralized memory. In the original dataflow model of computation,

actors are only aware of its internal state and the input tokens. Therefore, memory

locations for tokens are an essential part of the design of dataflow systems.

Dataflow Tokens Memory

In dataflow programs, connection between actors require a physical memory

location to store tokens. Therefore, a mechanism to match new tokens to instructions

(actors) is required. Some architectures encode token’s memory in the instruction itself,

while others have a separate memory with a token matching mechanism.

On the other hand, re-entrant dataflow code is a dataflow graph that may exe-

cute multiple times. Examples of re-entrant code are loops, and programs with multiple

activations. Depending on how the computation is mapped into the physical hardware,

special care needs to be placed in order to avoid deadlocks, or overwrite already existing

tokens. These mechanisms may include changes in the token description.

35

The first dataflow architectural model proposed by Dennis uses a static ap-

proach. Each arc is a static memory location assigned to each connection between two

actors and which could only store a single token. Therefore, firing rules of the actors

are modified. The output arc in a static dataflow model needs to be empty at the

moment of firing, so an output token can be generated. One solution to this problem

is using FIFO queues to represent arcs. As long as there is enough space in the queue,

and the graph is well-behaved, it is possible to solve some of the aforementioned issues.

Later dataflow architectures used a more dynamic approach. An arc is allowed

to have multiple activations, as long as each activation has a different identifier, or is

stored in a different memory location (executing environment). Coloring tokens is a

common approach where a color is assigned to each activation of the graph. Firing

rules are modified so tokens of the same color must be available in the inputs of the

actors in order for it to be fired. An special actor is specified to create new colors before

a new activation starts. In comparison to FIFO queues, color tokens allow exploiting

more parallelism in the application, as the execution does not have to satisfy a given

order between activations.

Well formed dataflow graphs

Determinism, determinacy and repeatibility are important aspects of program

execution [44]. Although not every program needs to be determinate, parallel comput-

ing and parallel programming often brings new challenges to program repeatibility and

correctness. In Von Neumann systems, the shared state of memory and the lack of an

explicit synchronization of workers easily allows for unexpected behavior in program

executions. On the other hand, dataflow computation has an explicit synchronization

scheme. However, not every graph forming a dataflow program yields to well behaved

dataflow programs.

A well behaved dataflow graph guarantees that in every execution results are

always the same. Although evaluation of the nodes in a dataflow graph may be in

different order, when considering the graph as a whole and the computation it performs,

36

Figure 2.11: Example of non well-behaved graphs (“sick” graphs). Issues highlighted
in orange.

well behaved dataflow graphs always yields to the same outcome. A well behaved

dataflow graph is determinate [45][46][47][48].

Creation of dataflow graphs also depends on the definition of the firing rules and

properties of the actors. Some models have opted to use non-deterministic switch and

merge operands that, under re-entry operations, may result in non-determinate graphs.

Furthermore, the structure of the graph is also important to create well-behave dataflow

schemes. Some examples of “sick” dataflow graphs are presented in figure 2.11. The

major issue is highlighted in orange. Deadlock and hang-up happens when actors will

never resolve its dependencies, as is the case for the actors X. A conflict occurs in

undeterministic merge causes a conflict between tokens of actors B and C. Finally,

Unclean graphs will have dangling tokens in arcs. In the example, depending on the

evaluation of the switch, either A or B will have a dangling token after execution.

2.1.5 Hybrid Von Neumann/Dataflow architecture

Dataflow and Von Neumann are two distinctive models of computation. They

can be seen as two extremes of a continuous spectrum of possible models of computa-

tion. On one end, Von Neumann is driven by Control Flow operations and is inherently

sequential. On the other end dataflow relies on the explicit synchronization in each

operation and it is heavily parallel. In between the two there exists a whole variety of

hybrid models that combine properties of both worlds.

37

Several surveys have been created in Dataflow/Von Neumann hybrids [49] [50][51][52].

There are multiple approaches to combine dataflow and Von Neumann. I describe three

major approaches that are the most critical to this work.

2.1.5.1 Instruction Level Parallelism

To this day, Von Neumann based sequential systems have dominated the market.

The use of Instruction Level Parallelism techniques, together with Moore’s law [53] and

Dennard’s scaling [54], are major reasons for a successful and long reign of sequential

architectures.

Instruction level parallelism (ILP) allows for a sequential program to implicitly

exploit parallelism, without user intervention or required modification to the code.

Neither the Von Neumann abstraction of the system, nor the semantics of the code is

altered.

ILP relies on dataflow properties of program execution. Like in dataflow archi-

tectures, ILP uses data dependencies between instructions to allow for overlapping of

independent instructions amid hardware availability. In Von Neumann data dependen-

cies are maintained through memory references. When two instructions use the same

memory in any of its operands, they are dependent. For architectures that rely on

registers, dependencies can be easily discovered by following the register names and

external memory references.

There are three type of data dependencies, but only one that is unavoidable. For

a pair of instructions I1 and I2, where I1 is evaluated before I2 in the program stream,

there is a data dependency if both instructions use the same memory reference. Output

dependencies (i.e. Write after write or just WAW) occur when both I1 and I2 write

results to the same memory location (e.g. register). Anti-dependencies (i.e. Write after

read or just WAR) occur when I1 reads from a memory location (e.g. register) that

then I2 writes to. Finally, true-dependencies (i.e. Read after write or just RAW) occur

when I1 writes to a memory location (e.g. register) that then I2 reads from. In this

case, instruction I1 is producing a value for I2, therefore, it is not possible to remove

38

this dependency. In addition to data dependencies, control dependencies arise for two

instructions I1 and I2 require the same hardware to perform its operation, regardless

of the operands. For example Two multiply instructions in the presence of a single

multiply in the ALU.

To achieve ILP, the hardware system access a window of instructions around

the program counter at runtime. Specialized circuitry is used to discover dependencies

within those instructions. Important care needs to be placed when communicating with

memory. Regardless of the order in which instructions are executed in the hardware,

outside communication must remain in the original order in which the program is

described.

There are several techniques, but here I focus on three: Superscalar architec-

tures, register renaiming and out of order execution. These techniques are not mutually

exclusive, and are often used together.

Superscalar

Superscalar architectures focus on eliminating control dependencies, while being

aware of data dependencies but not resolving them. The basic idea behind superscalar

architectures is to increase the number of arithmetic logic units within the core [4][55]

to allow for multiple instructions to be issued with the same operational unit. The

order in which instructions are fetched and issued is respected, if a dependency cannot

be satisfied, the pipeline is stalled.

1 MUL R1 , R1 , R1

2 MUL R2 , R2 , R2

3 MUL R3 , R3 , R3

4 MUL R3 , R1 , R2

5 MUL R4 , R3 , R1

Listing 2.1: Example code for Superscalar ILP

39

As an example, Listing 2.1 shows an instruction stream that can exploit ILP

in superscalar architectures. Multiplication operations of lines 1, 2 and 3 are not data

independent to each other, but the are control dependent by using the same ALU

operation MUL. A superscalar architecture allows all three instructions to be issued

for execution at the same time in different ALU units. On the other hand, instruction

4 is dependent on instructions 1, 2 and 3. Therefore, a superscalar system will stall

execution until the first three instructions are committed. Likewise, instruction 5 will

need to wait for instruction 4.

Register Renaming

Register renaming aims to suppress anti- and output dependencies. Register

renaming is often used with memory locations in the register file, therefore its name.

In a nutshell, register renaming uses a second register file hidden to the programmer.

When an anti- or output dependencies are encountered, the register renaming mecha-

nism swaps the conflicting operand’s register name for a free register in the hidden file.

The mechanism stores the mapping between the original register name and the assigned

register name, allowing future true dependencies to be assigned the right register name.

1 MUL R1 , R2 , R2

2 ADD R2 , R3 , R3

3 SUB R1 , R4 , R4

4 MUL R5 , R1 , R2

5 DIV R6 , R7 , R8

Listing 2.2: Example code for Register Renaming ILP

Code in Listing 2.2 shows an example code that can exploit register renaming.

Instruction in line 2 has an anti-dependency with line 1. Likewise, line 3 has an output

dependency with line 1. Under register renaming, all three instructions 1-3 are able

to execute at the same time. Register R2 of line 2 will be rename R′2, and register

R1 of line 3 will be renamed R′1. When the instruction in line 4 is issued, the register

40

renaming mechanism will replace the references R1 and R2 for R′1 and R′2 respectively,

resulting in the equivalent line MUL R5, R′1, R′2. Register renaming will stall the

execution on line 4 until instructions 2 and 3 have committed their results. Therefore,

register renaming will not allow execution of instruction in line 5 until 4 has finished,

despite having no dependencies whatsoever with any of the other instructions.

Runtime register renaming is equivalent to eliminating anti and output depen-

dencies during code generation. There are many different implementations of register

renaming. For example Tag-indexed register file [56], reorder buffer, and reservation

stations [57] to mention some.

Out of order

Out of order (OoO) execution aims to avoid stalls in the execution pipeline

while exploiting instruction parallelism. Out of order execution heavily relies on reg-

ister renaming and superscalar architectures. However, contrary to the other two

methods, instructions are not necessarily scheduled in order. Consequently, the execu-

tion pipeline is not stalled if an instruction is not ready for execution. Two important

examples are the scoreboard algorithm, as used in the CDC6600 [55], and Tomasulo’s

algorithm [57].

OoO engines use a window of instructions around the program counter for which

the execution follows a dataflow model as previously described. In contrast with the

original dataflow model of execution, OoO only enforces dataflow execution within the

window of instructions, while the overall program still relies on the Von Neumann model

abstraction. Within the window, instructions are scheduled as their dependencies are

satisfied, while techniques similar to register renaming and superscalar increase the

available parallelism. OoO relies on two actions to retain the Von Neumann abstraction

at the program level while using dataflow: first, data dependencies between instructions

are discovered and respected throughout the execution. And second, any instruction

that communicates with the outer world of the CPU (including memory) is committed

in the order they appear on the original instruction stream.

41

Figure 2.12: Pipeline of an Out of Order architecture with Superscalar and Register
renaming.

Referring to the example in Listing 2.2, an OoO execution engine will allow

instructions 1, 2, 3 and 5 to execute in parallel, while instruction 4 waits for 1, 2, and

3. A system that uses all three ILP techniques can be seen in figure 2.12.

2.1.5.2 Tasking

ILP aims to maintain the Von Neumann abstraction and use dataflow techniques

throughout the execution of the instruction stream inside the core. On the other

hand, tasking brings a reversed approach. Let us define tasking as the representation

of programs with an structure similar to dataflow model of computation. That is,

programs are represented as directed graphs. Nodes of the programs are operations

and arcs between programs are data and control dependencies. Contrary to nodes

of a dataflow architecture, tasking nodes (i.e. tasks) represent coarser grain sets of

operations with multiple low level instructions per task. Tasking may be implemented

in software (e.g. [58][59][60][61]) or hardware (e.g. [62][63][64][65]).

There are different possible ways to mix the Von Neumann and dataflow models

in the form of tasks. More often than not, tasking models use a Von Neumann execution

42

model inside of the task description. This is, tasks are a set of instructions that

execute sequentially. Under this model, tasks are scheduled by some runtime across

the different cores of a multiprocessors. Instructions inside the task are issued in

sequence by a program counter. A dependency mechanism in the runtime handles the

communication across tasks. A memory model describes how memory is seen inside

and across tasks. In order to map the dataflow execution to a Von Neumann machine,

the tokens that communicate tasks need to be stored in the shared memory system of

the multithreaded systems 2.1.3. A memory model must be described that determines

what memory locations may be access inside tasks and across tasks, as well as who has

access to those elements, and how shared accesses are coordinated.

Other approaches use Von Neumann description of groups of instructions that

are executed in a dataflow style. Therefore, a dataflow graph represented inside a

procedure. A program uses procedures in an stream of instructions that is evaluated

sequentially. The execution of each procedure occurs by means of dataflow models.

Regardless of the mapping between Von Nuumann and dataflow, memory mod-

els are a critical aspect of the design of hybrid approaches. Some models stick to the

shared memory Von Neumann model inside and across tasks. The user is in charge

of guaranteeing that under parallel execution of tasks, memory references that are ac-

cessed do not overlap across tasks with no dependencies. For example, if A, and B are

two tasks that do not have any dependencies and may be executed in parallel. User

must guarantee that all memory references inside A and B do not overlap. Otherwise,

data races may occur. Some programming models distinguish data that is private to

the task, from data that is shared among tasks. Tasks are often described as functions

(or procedures). Therefore, private data for a task is often the stack of the executing

function. A challenge that comes from the use of procedures is that the Von Neumann

based programming models commonly distinguish between stack and heap memory

across the different threads. Hybrid models using shared memory often struggle with

memory management, requiring to delimit context for which tasks exist [58]. An ex-

ample of this issue is when a new task B is created out of task A, and task B references

43

private memory from task A that is stored in the stack of the executing thread. When

task A cease execution before task B, locations referenced by task B will likely not be

valid anymore.

Other models use specialized hardware or software implemented schemes to

provide synchronization mechanisms between producers and consumers at the memory

access level. Futures [66] and split-phase transactions [67][68][69] allows for reads and

writes of memory to occur in any order, and it uses the write operation to signal the

consumer. Under these models, memory is consider to be write once only, or a full

empty bit mechanism is needed to allow re-writing to memory.

Yet another technique groups together multiple tasks into execution frames (e.g.

threaded procedures [38], or object memory in object oriented programming [63]). The

grouping of instructions allows for exploitation of locality. To organize communication

between context, it is required to guarantee allocation of resources. In the context

of parallel execution of context, a common approach is to use asynchronous threaded

procedures called from within other frameworks. They rely on a cactus-like stack

memory structure [70]. When a new frame is spawned, a new stack is created. Since

multiple frames can be spawned in parallel, multiple stacks will reside at the same

logical level, forming the cactus structure. To synchronize between frames, split-phase

like transactions can be used as futures to continue computation in the spawning frame.

2.1.6 Instruction Set Architectures and Program Execution Models

One additional key element that was introduced with the evolution of general

purpose computation is the Instruction Set Architecture (ISA). The ISA not only de-

scribes the operations supported by a machine’s computational unit, but also provides

a well defined description and overview of the operation of a machine that implements

such ISA. These operations are defined in terms of behavior and language interface

regardless of how they are implemented. An ISA also describes other elements of the

machine such as registers available to the user and their purpose (i.e. general or spe-

cific purpose). From the hardware perspective, the Instruction Set Architecture (ISA)

44

formalizes the software-hardware interface. The ISA is a contract between the user of

the hardware, and the hardware implementer.

The introduction of ISAs was imperative for the evolution of computer sys-

tems. It resulted in two disjointed (and yet related) evolution processes. First, on the

hardware side, architecture developers were able to continuously improve their designs

without requiring a whole re-structuring of the executing programs. An example of

this is Intel’s Tick Tock model [71]. Second, on the software side, a rapid evolution

of software infrastructure and algorithms. Software has continuously grown to define

multiple programming models, programming languages and programming paradigms

that built upon each other into different layers of complexity. Therefore, software has

isolated the programmer (i.e. user) from the actual low level execution model and ISA

of the hardware. Growth of software technology has also been accompanied by the

evolution of compiler technology, libraries and runtime systems that has allowed users

to focus on modular application development.

MACHINE ARCHITECTURE

U S E R S / P R O G R A M M E R S

SOFTWARE PROGRAMMING SOFTWARE EXECUTION

RUNTIMES
AND OS
TOOLS

TOOLS &
SDKs

HARDWARE PROGRAMMING API (ISA)

H A R D W A R E

COMPILERS

LOADERS
PACKAGES,
LIBRARIES,
UTILITIES

HIGH LEVEL PROGRAMMING
LANGUAGES (C, C++, OMP) DYNAMIC

LIBRARIES

PROGRAMMING PARADIGMS (e.g. Imperative, OOP, Declarative…)

RUNTIME SYSTEM

HARDWARE RT

Figure 2.13: Conceptual view of computer system infrastructure

To illustrate this evolution figure 2.13 shows a conceptual view of what current

computer systems are in terms of the models and the different interacting parts. At

the top level we have the users and programmers, and at the bottom we have the exe-

cuting hardware. Hardware usually implements a runtime system, usually transparent

45

to the user, that glues together the conceptual view of the hardware programming API

and ISA with the physical parts of the machine. In the middle of users and hardware,

we have the software infrastructure. An advanced and complex interaction of mov-

ing parts between the programming realm and the execution realm, glued together by

many levels of abstractions and models. On the programming side, high level program-

ming languages allows the user to define programs based on programming paradigms

exposed by the semantic of the programming language. Furthermore, a collection of

libraries, packages, tools and compilers allows translating these programs into lower

level abstractions that can be interpreted by the hardware and given to system for

execution. Software execution is aided by software implemented runtime systems, op-

erating system features, loaders and dynamic libraries that in many cases allows the

implementation of the different programming paradigms or language execution models.

A brief example is the C runtime library that is linked with the user program, or the

OS APIs that allows the connection between virtual memory and physical memory.

Computer system infrastructure is so entangled, that innovation is limited by the in-

ertia of all the moving parts. As Hennessy and Patterson pointed out in their Turing

award lecture [1].

As seen repeatedly, although the marketplace is an imperfect judge of technological
issues, given the close ties between architecture and commercial computers, it
eventually determines the success of architecture innovations that often require
significant engineering investment.

On the other hand, Parallel computing does not count with a widely accepted

contract akin the ISA. There exists a large number of execution and programming

models that expose parallelism in both hardware and software. However, each model

presents a different system abstraction. Even within the same programming model, its

evolutionary process across versions leads to a modification of the abstract machine

in ways that are not trivial for the programmer. A clear example is the evolution

of OpenMP throughout the inclusion of different parallel models across versions (e.g.

fork-join, tasking and offloading models).

46

The Program Execution Model (PXM) is an abstraction that shares similarities

with the concept of Instruction Set Architectures. Unlike ISAs that only account for a

single core processor, Program Execution Models accounts for the computation system

as a whole. A program execution model is defined around a machine abstraction that

describes the organization and interconnection of components. The PXM defines the

behavior of the system under program execution, as well as the required language to

allow a user to program the machine. A PXM is a formal definition of the Application

(or even better Architecture) Programming Interface API of the computer system.

A PXM often describes three elements: a) an activity model which defines the

work to be performed (similar to ALU operations and ISA arithmetic instructions);

b) the memory model which specifies the addressing model of memory as well as the

results of memory operations and the corresponding memory state transition; and c)

a synchronization model that deals with interactions between activities. If system

architects and programmers are able to reach an agreement on a program execution

model, it would be possible to achieve a seamless evolution of parallel machines. One

goal of this work is to be able to provide a well defined program execution model for

parallel machines.

2.2 The Codelet Model of Computation

A more thorough description of the Codelet Model can be found in [72][59].

Following is a summary of some of the most important and influential elements of the

Codelet model for this work.

The Codelet Model is a Program Execution Model that uses a Von Neumann/-

dataflow hybrid approach to describe parallel programs. A Program is represented by

several direct acyclic graphs (DAG). Each node of the DAG is a task (called Codelet)

and the edges are data or control dependencies between tasks. Codelet DAGs are

grouped together into asynchronous procedures called Threaded Procedures (or just

TP for short). Starting from an initial TP, Codelets can invoke new procedures cre-

ating an storage structure similar to a cactus stack memory model [70]. Due to the

47

asynchronous nature of TPs, continuation Codelets are used to manage signals across

TPs similar to a split-phase transaction.

The Codelet Abstract Machine (CAM) describes the organization of the sys-

tem as viewed from the perspective of the Codelet program. Starting at the bottom,

there are two different type of units: Compute Units (CU) and Synchronization (or

scheduling) units (SU). Multiple computational units (e.g. cores) and one synchro-

nization unit are grouped to form a clusters. Multiple interconnected clusters form

a node, and multiple interconnected nodes for computation system. Memory can be

hierarchical and distributed as well. It is mapped to the system as follows. Each core

may have its own local memory to serve as stack for execution of Codelets. A cluster

may contain memory that is shared by multiple cores. Additionally, shared memory at

the node level may allow multiple clusters to share information. Synchronization Units

(SU) are specialized programmable hardware designed to make resource management

and scheduling decisions within the cluster. Compute Units (CU) are general purpose

hardware cores in charge of executing the code that describe a Codelet. Inside a clus-

ter, there may be different kinds of CUs, allowing for heterogeneous computation. A

Threaded Procedure may only map to a single Cluster. Figure 2.14 shows a depiction

of the Codelet Abstract Machine.

Firing rules determines the order of execution of a Codelet program, as well

as the need for synchronization. As is the case for dataflow inspired models, Codelets

have three different states that depend on data dependencies, control dependencies and

availability of hardware resources. A Codelet is in waiting state if one or more depen-

dencies have not been satisfied. Once all dependencies are satisfied, the Codelet moves

to ready state and it is waiting to be executed. As CUs become available, Codelets are

scheduled, moving to fire state. An important distinction with pure dataflow models

is that Codelets are also event-driven. Some Codelets have dependencies on certain

events in the system. Events allow for long latency operations to occur without stalling

compute resources. Events may come from an external source (I/O events) or when

operations within the system cannot guarantee a bounded latency (e.g. far memory

48

Figure 2.14: Codelet Abstract Machine Depiction. Hierarchical organization of the
system and its memory.

49

accesses and results from other threaded procedures).

Codelets are also atomically scheduled and non-preemptive. A Codelet is ex-

ecuted until completion and cannot be stopped. Non-preemption allows saving re-

sources on context switching. To enable non-preemptive execution, any resource that

a Codelet needs at runtime must be guaranteed to be at a bounded access latency from

the scheduling CU at the moment of Codelet execution.

The Codelet Model aims to solve some of the issues of dataflow based architec-

tures [73]. In particular, traditional dataflow systems have a flat memory abstraction

that does not necessarily map to the hierarchical structures of memories in current

systems. Second, local scheduling policies of dataflow operations may result in non-

optimal scheduling of tasks. As shown in the Codelet Abstract Machine, the Codelet

Model considers a memory hierarchy on the system. Furthermore, limitations imposed

to the mapping of Threaded procedures into a single cluster allows to exploit locality.

Likewise, the multiple compute units that conform the cluster are in close distance

reducing the communication cost. At the system level, the distribution of Synchro-

nization units enables the creation of different local and global scheduling policies. As

a result, implementations of the Codelet Model [74] has already used work stealing and

other scheduling techniques.

However, there are some problems that have not been explored in the original

Codelet Model. First, while scheduling is distributed, it lacks of a hierarchical view of

the system. What happens beyond the cluster?. At the system, node and cluster levels,

there are no scheduling artifacts that allows for better workload managing and better

resource utilization. Second, Threaded Procedures are forced to remain at the cluster

level. The size of threaded procedures is limited to the size of a cluster’s memory,

unless upper levels of memory are utilized. However, coordination and locality of

memory beyond the cluster is not trivial. The question remains: how to appropriately

manage Codelet size, Threaded Procedure size, and the mapping of larger memory

into the system’s memory hierarchy?. Third, Imperative programming models based

on sequential execution of code are easy to understand for a programmer. However,

50

description and debugging of graphs is still a difficult task. The original Codelet

model depends on creation of well-behaved dataflow graphs [44], thus complicating

system programmability. This work aims to solve some of these issues by extending

the Codelet Model of Program Execution.

51

Chapter 3

OBJECTIVES AND PROBLEM FORMULATION

This thesis starts by defining the Hierarchical Turing Machine and the Hier-

archical Von Neumann architecture [75]. Based on these two models, this work then

defines the Sequential Codelet program execution model and the SuperCodelet com-

puter system architecture. The Sequential Codelet Model is hierarchically defined. At

each level, programs are written with sequential semantics, similar to assembly code.

Unlike current ISA assembly, the supported operations of this program are tasks, called

Codelets, and can be user defined. At a certain level of the machine a program de-

scribes Codelets as supported operations of that level. Codelets of one level are defined

in terms of the Codelets and instructions of the level below. Parallelism is achieved

through techniques similar to the optimizations used by Instruction Level Parallelism

(e.g. Superscalar architectures, Out-of-Order execution engines, and Register renaming

techniques). Memory is hierarchically organized and structure to map to the memory

hierarchy in real systems.

3.1 Objectives

The overall objective of this thesis is to define a program execution model that

comprehends the computation system as a whole, allowing for programs to execute

in parallel while considering programmability, performance and portability for future

improvements of the system. In particular the objectives of this thesis are the following:

• Definition of the mathematical model that works as ground base for computation
across large systems. It shall be called the Hierarchical Turing Machine.

• Definition of an abstract machine that is based on the mathematical model and
which describes the organization of a system and the interaction of the different
components. It shall be called the Hierarchical Von Neumann Model.

52

• Definition of a program execution model of a system that is organized in the
structure defined by the abstract machine. It shall be called the Sequential
Codelet Model.

• Definition of a possible architecture that implements the Program Execution
Model. It shall be called the SuperCodelet Architecture.

• Create an evaluation methodology that allows to assess the benefits of the Sequen-
tial Codelet Model through the implementation of the Super Codelet Machine by
the use of current commodity parallel/distributed hardware and its extensions.

In a nutshell the major contribution of this work is the creation of the Sequential

Codelet Model that, by means of a hierarchical structure of the system, it describes

programs sequentially while allowing lowering parallel/distributed execution of work.

3.2 Problem Formulation

This thesis aims to give an answer to the important question:

A general purpose parallel/distributed computation model should have de-
sirable properties of performance efficiency, portability and programmabil-
ity. Is it possible to define such models, and their corresponding
abstract machines, on commodity hardware and extensions?

In order to give answer to this important question, we ought to first find a solution to

the following problems:

• Problem 1: Following the path of Turing and Von Neumann, What are the
models that enable the aforementioned properties across a parallel/distributed
and hierarchical system?. This question is developed in Chapter 4 Section 4.2
through the Hierarchical Turing Machine and the Hierarchical Von Neumann
model.

• Problem 2: Based on the foundation of problem 1, what is the program ex-
ecution model and abstract machine that enable the aforementioned properties
across the parallel/distributed and heterogeneous system?. Chapter 4 Section 4.4
describes the Sequential Codelet Model.

• Problem 3: How to describe an implementable architecture that uses the Se-
quential Codelet Model?. I call this the Super Codelet Architecture, and it is
described in Chapter 5.

53

• Problem 5: What is an appropriate strategy to evaluate the Sequential Codelet
Model and determine system design parameters in commodity hardware and
extensions? Chapter 6 shows the design and implementation of the SCMUlate
system. Chapter 7 show early evaluation results of the SCMUlate system.

54

Chapter 4

THE SEQUENTIAL CODELET MODEL

The Sequential Codelet Model (SCM) is a Program Execution Model that heav-

ily borrows from the success of sequential computation. The SCM is not yet-another-

attempt to parallelize already existing sequential code. Instead, the SCM defines a

program execution model (as described in section 2.1.6) that uses sequential seman-

tics, and it leaves parallelization as an execution optimization. On the other hand, cur-

rent auto-parallelization techniques of sequential code aims to bridge a Von Neumann

based sequential programming model and a parallel model of computation. Attempts

to auto-parallelize sequential code into multithreaded versions often fail to be general

purpose enough due to the difficulty of understanding side effects of the interaction

between threads, memory access patterns and problem dimensions in the context of a

complex system architecture. The Sequential Codelet Model starts by providing a well

defined abstract machine and execution model that are different to the Von Neumann

machine. That is, the SCM is based on the Hierarchical Turing Machine and the Hi-

erarchical Von Neumann architecture, and it is still required to write programs for the

proposed abstraction. Parallelism occurs transparently to the programmer by means

of techniques based on principles of dataflow similar to those used in Instruction Level

Parallelism. Contrary to a single core ISA, the SCM uses a hierarchical abstraction

that covers the whole computer system. Contrary to other out of order execution of

tasks, the hierarchical organization of memory allows to break away from the original

Von Neumann abstraction, allowing for a more appropriate mapping of this model and

current parallel/distributed and heterogeneous systems.

55

Perhaps the most valuable aspects of the Sequential Codelet Model are: 1) it

presents a hierarchical organization of Turing Complete machines that enables compu-

tation at any level of the machine. 2) Instructions are defined sequentially in an imper-

ative style programming model. The SCM machine may use ILP-inspired techniques to

achieve program parallelization, therefore removing the burden of the programmer to

think in parallel. 3) the memory organization of the abstract machine presented in the

sequential Codelet Model recognizes the hierarchical nature of memory organization

(e.g. registers, L1 cache, L2 cache, LN cache, DRAM, storage devices, network file

systems, cloud storage, and so on). And 4) the Sequential Codelet Model allows for a

weaker memory model to be implemented system-wide, yet within each level it relies

on sequential consistency models at each level [17]. The Sequential Codelet Model con-

siders the system as a whole, allowing to span beyond the single core into multi-core,

multi-sockets, multi-node and cloud computing systems.

The Sequential Codelet Model, is an extension of the Codelet Model defined

by Sutterlein et al. and the CAPSL research group in [59] and [72]. We envision a

realization of the SCM model as a hardware/software co-design strategy that includes

machine organization, machine programming interface, compilation technology, and

definition of appropriate higher level programming abstractions and programming lan-

guages. This chapter starts with a motivation example that inspires the Sequential

Codelet Model. Following by the definitions of the Hierarchical Turing Machine and

the Hierarchical Von Neumann Model. Based on these models, the Sequential Codelet

Model is introduced. Finally, a hardware realization of the sequential Codelet Model,

called the Super Codelet model, is presented.

4.1 Motivation example

Operations supported by a computer are described through the Instruction Set

Architecture and its extensions. Among the different supported instructions on a par-

ticular ISA, arithmetic and logic instructions provide the building blocks to represent

56

more complex mathematical functions in a program. However, for a given architec-

ture that targets a particular domain the set of supported arithmetic operations is

part of the architect’s tradeoffs on how to use the die area. While general purpose

CPUs usually support basic arithmetic operations (e.g. ADD, SUB, DIV, and MUL),

other architectures targeting domain specific applications (e.g. DSP-like systems), are

equipped with extra instructions that compute more advanced math operations (e.g.

trigonometric operations, advanced FMAs, or FFT operations).

ALU operations often follow these characteristics:

• The latency of that given operation is bound to a number of cycles. This value
is known and does not change considerably. A good operation design would
guarantee that this latency is as low as possible for the given technology, and
within the same order of other operations.

• The latency to access to the operands stored in registers is bounded to a certain
value and negligible. The operation’s execution time would be driven by the
execution time of the ALU, and not by the access time to registers.

• The execution of the operation has no side effects other than the output operands,
and depends only on its input operands.

Property 1 allows a compiler to optimize the scheduling of instructions, main-

taining the pipeline busy. Instructions within an ALU are often in the same order

of magnitude in terms of number of cycles, allowing the system to use other parts of

the pipeline, while instructions finish. Furthermore, property 2 allows property 1 to

hold. When an operation is scheduled in the ALU, all the operands that are needed

for its execution are already available in the register file. The ALU does not waste

time waiting for data to arrive from memory or waiting for other resources. Finally

property 3 ensures a deterministic behavior of the instruction execution, and it does

not limit the creation of more complex programs to be described by means of these

ALU operations.

Let us imagine that, as long as we guarantee the aforementioned properties, we

could write our own ALU operations at runtime by using a special assembly code that

changes the behavior of the ALU. We also assume that we have a register file large

57

enough to maintain our operands. For this example, we wrote an special instruction

in the ALU that counts the number of matches of a 4-byte integer value within an

array of 100 4-byte integers. The 100 element array is stored in a single register of size

400 bytes (i.e. SourceReg, while the result is stored in a single register of size 4 bytes

ResultReg. The following signature of our new ALU operation is as follows:

COUNT SourceReg, ResultReg, #value

By using this new instruction, it is possible to write the sequential program in

listing 4.1 that counts the number of occurrences of the value 55 in an array (named

Arr) of size 300 stored at location 0x50 in a 4-byte addressable memory. RL are large

registers storing the array, and RS are small registers storing the result.

1 LD RL1, 0x50

2 COUNT RL1, RS1, 55

3

4 LD RL1, 0xB4

5 COUNT RL1, RS2, 55

6

7 LD RL1, 0x104

8 COUNT RL1, RS3, 55

9

10 ;;Add the three results together

11 ADD RS1, RS1, RS2 #Rs1 += Rs2

12 ADD RS1, RS1, RS3 #Rs1 += Rs3

Listing 4.1: Motivation Example

If the processor that executes this instruction uses multiple ILP optimizations

(e.g. register renaming, Out of Order execution and superscalar), the execution of these

instructions are likely to occur in parallel thanks to the lack of dependencies across the

different instructions Therefore, as long as the operations associated to a particular

58

application are available in the ALU to be executed, and we respect the aforemen-

tioned observations, it should be possible to parallelize a sequential code by using ILP

optimizations that have already been studied for several decades. Furthermore, the

ability to modify the ALU allows a programmer to have functional instructions that

help solving more complex problems. If we had the chance to modify our ALU at

runtime, it could be possible to optimize certain operations critical to our application.

However, die are is a limited resource, and register files usually have a limited

size, how could we create a system that allows us to modify the ALU while also pro-

viding us with larger registers. The important takeaway of this example is that, if

we had the possibility of modifying the ALU operations, we might be able to create

sequential programs that execute in parallel thanks to Out of Order execution tech-

niques available in current architectures. The Sequential Codelet Model aims to define

an architecture that allows the ALU to be programmed into more complex operations,

while Instruction Level Parallelism is used to obtain a parallel execution of code.

4.2 Hierarchical Turing Machine

The Hierarchical Turing Machine (HTM) is a mathematical model that works

as a foundation of the Sequential Codelet Model. The Hierarchical Turing Machine

was first introduced in [75]. Due to the generality of the HTM model, it could lead

to different organizations of a machine. Ones possible organization is described in this

thesis. We focus our attention into the Sequential Codelet Model which resembles a

hierarchical Von Neumann Architecture. The Hierarchical Turing Machine is a varia-

tion of a multi-tape Turing machine, therefore it does not extend the computational

numbers set defined by the Turing Machine.

Alan Turing first described the Universal Turing Machine in his paper in 1936

[2]. The Turing Machine has three major components: 1) An infinite storage tape

divided into sections containing symbols; 2) a reading head that slides along the tape

accessing a single section at a time; and 3) a state machine (i.e. m-configuration)

that corresponds to the program executed by the machine. Each state performs certain

59

State
evaluation

unit

S1 S2

S3 S4

Le
ve

l N
 In

fin
ite

 ta
pe

 m
em

or
y

S3

Current
state LN-1

State

Level N-1 Infinite tape memory

LEVEL N LEVEL N-1

State
evaluation

unit

Level N-2 Infinite tape memory

LEVEL N-2

K1

Current
state LN-2

K1 K2

K3Ω
ℌ
℥
Ω ℌ℥Ωℌ℥ Ω℥℥Ωℌ

R
EA

D
IN

G
 H

EA
D

R
EA

D
IN

G
 H

EA
D

…

…

Current
state LN

Figure 4.1: A 3 levels Hierarchical Turing Machine. An state of level N is expressed
as an state machine of level N-1 and evaluated by level N-1. Each level has an infinite
memory tape used for the computation performed at that level. Symbols depicted in

tapes are just to account for any possible symbol that is known to the machine.

operations before transitioning to the next state. Transition is defined based on the

symbol read in the current section of the tape. A state’s operation is determined by

a combination of three possible actions: Move right or left across the tape, print into

the current tape section, or erase the current tape section. Based on these operations,

Turing created the Universal Turing Machine, which is capable of executing any Turing

machine based on a description language encoded in the tape.

In the Turing Machine, the head contains the state machine and it has no

storage of its own. The operations are only guided by the values that are read from

the current tape square, and the current state. However, there are many operations

that require to keep temporary results or marks during computation. The distinction

between the F-Squares and E-Squares (See section 2.1) represents an example of what

forms temporary values or marks, and what forms the final number computed by the

machine. Therefore, in order to maintain partial results the machine uses part of the

tape to work as a scratchpad for computation. Since the tape is infinite, this is not

necessarily a problem. The location of the scratchpad memory and the result memory

in the tape can be changed according to different Turing machines.

60

Another aspect anticipated by Alan Turing was the definition of parametric

instruction tables that unwrap into regular instruction tables. He called them “skeleton

tables”. Turing showed that it is possible to describe a state in terms of other states

and basic operations, as long as at some point the recursion of definition resolved to a

single finite state machine.

Using the aforementioned observations, and following a similar strategy to that

used by Turing to describe the Universal Turing Machine, it is possible to modify

the structure of the original Turing Machine into a hierarchical organization without

loosing generality. The Hierarchical Turing Machine (HTM) can be seen as multiple

Turing machines stacked one on top of the other. Similarly to the original Turing

Machine, each level contains three basic elements: A tape, a head and a state machine.

However, states in the Turing machine can also be described as superstates, similar to

the “skeleton tables”, which are defined by a state machine. For a Superstate of level

N , the Turing Machine of level N − 1 is used. The final state machine is a hierarchical

state machine [76] that maps to the hierarchical organization of the HTM.

The structure of the HTM is depicted in Figure 4.1. Level N is represented

partially, while the two levels of the hierarchy (N − 1 and N − 2) are completely

depicted. As can be seen, level N ’s current state is evaluated by using level N − 1.

That is, the state machine of level N is a combination of states and superstates. States

are evaluated in level N , and superstates are mapped to level N − 1. The evaluation

unit (i.e. the level below N−1) is therefore used to evaluate some of the states of Level

N . Likewise, N − 1’s superstates are evaluated by use of N − 2 as an evaluation unit.

This hierarchical pattern occurs multiple times, until a bottom level N0 is reached. N0

is a level for which no state is expressed in terms of the lower state N0 − 1, therefore,

it corresponds to the lower level and it reassembles a standard Turing Machine.

Not every state that is described for an inner levels must be a superstate eval-

uated by the level below. That is, for a state machine expressed for an inner level N

(different to N0), there may be states that do not require a lower level N − 1 to be

evaluated. Instead, these states are expressed in terms of the regular operations of the

61

original Turing Machine: Move right/left, print a symbol or erase a symbol. On the

other hand, states of a level N state machine that do map to level N − 1 are described

similarly to “skeleton tables”, as originally defined by Alan Turing. “Skeleton tables”

allow for grouping of state descriptions assimilating a routine or procedure. It is pos-

sible to create a recursive “Skeleton table” or use other tables to describe an “skeleton

table”. Nevertheless, it is not allowed to have a description of a state that results

into an infinite recursion. The resulting state machine after flattening the Hierarchical

State Machine must be a valid finite state machine.

4.3 Hierarchical Von Neumann Architecture

CPU

MEMORY

Control Unit

Extended ALU

CPU

MEMORY

Control Unit

Extended ALU

…

I/O I/O

Figure 4.2: Structure of the Hierarchical Von Neumann Architecture. A Sequential
Codelet Model Abstract machine

The original Von Neumann system organization contains four basic elements:

a central processing unit, an operations unit, a memory unit, and the I/O. Inside the

CPU there are at least two elements: The control unit and the Arithmetic Logic Unit.

62

Furthermore, memory contains instructions and data. Based on the Hierarchical Tur-

ing Machine, we define the Hierarchical Von Neumann Model. The difference between

the original Von Neumann Model and the hierarchical Von Neumann Model relies in

the arithmetic logic unit. In the former model, the ALU contains a set of predefined

arithmetic operations, while in the latter the ALU is extended to contain a whole

programmable Von Neumann machine (i.e. a Turing complete ALU). Hence the sim-

ilarities between the hierarchical Turing Machine and the Hierachical Von Neumann

Model.

Figure 4.2 shows a simplified diagram of the Hierarchical Von Neumann model

structure. The machine reassembles multiple conventional Von Neumann machines

stack on top of each other. However, similarly to the HTM, a level N of the machine

may use the level below N−1 to execute some of the instructions. For a given level N ,

all the supported instructions are seen as single units of operation, atomically scheduled

and with a well defined behavior. Some instructions of this level N are expressed as

a sequentially described program of level below N − 1. Likewise, from the perspective

of level N − 1, all its instructions are seen as atomically scheduled units of operations,

some of which may be expressed in terms of level N − 2. So forth until a level N = 0

is reached. This last level corresponds to a regular Von Neumann machine where all

operations map to a regular ALU that is not programmable.

In the Hierarchical Von Neumann model, the ALU is extended by including

a whole programmable Von Neumann system. However, this does not mean that it

loses its ability to perform basic arithmetic operations. Similarly to the states of the

different levels of the HTM (see section 4.2), some operations of a the inner levels

N ! = 0 the hierarchical Von Neuman model will still be executed by an ALU-like

system at that particular level. The benefits are twofold, it allows to resolve simple

arithmetic operations needed by the control flow operations, but it also enables compute

capabilities at higher levels of the hierarchy (e.g. on-memory compute)

Additionally, the hierarchical organization of this abstract machine also results

into a memory hierarchy. Memory for a level N corresponds to a subset of the memory

63

in level N +1. The evaluation of an instruction of level N +1 described as instructions

of level N , uses part of the memory of level N+1. This area of memory is used to store

the input and output operands as well as any internal state needed for the execution

of that instruction (e.g. stack). Memory of level N is then a subset of memory of

the whole level N + 1. As a result of this hierarchical organization, memory may be

mapped to the hierarchical memory of real hardware systems. By means of well defined

operations at each level, it is possible to use different memory consistency models across

the levels, as we will see in the definition of the SuperCodelet architecture in Chapter

5.

On the other hand, important attention needs to be placed in the I/O. While the

diagram of Figure 4.2 does not restrict the location of I/O at a given level, system and

operation designers have to be careful as it will have a critical effect on the deterministic

behavior of the system, as well as the instructions of a given level. A safe mode of

operation is that I/O can only impact the level at which the computation is initiated,

or that I/O corresponds to the stimuli that initiates the computation. Ideas outside of

this safe mode of operation need to be explored further, and are outside of the current

scope of this work. For now we assume I/O is only present at the upper most level of

the hierarchy, that is, the level where computation starts.

Finally, the Hierarchical Von Neumann model is not the only system that can

be envisioned with the Hierarchical Turing Machine. Furthermore, a hierarchical Von

Neuman machine can use a combination of other architectural models that could be

used in this hierarchical fashion. This is particularly useful for the support of heteroge-

neous computation, where application-specific architectures become the ALU of a given

level. An example of this would be to use FPGAs or Neuromorphic chips [10][9][77]

as the ALU of a level of the hierarchy. A Codelet at this level would be expressed in

terms of the RTL instructions that maps into the given architecture.

64

4.4 The Sequential Codelet Model

Based on the Hierarchical Turing Machine, it is possible to create new orga-

nizations of the computer system. In the following section we present the Sequential

Codelet Program Execution Model and its corresponding abstract machine.

4.4.1 The SCM Abstract Machine

L2 Register File
L1 memory

Codelet
Execution Unit

L1

Write
Back
SYNC

Memory
Access
Interface

Scheduling Unit

FETCH DECODE

Inst Mem

L1 Register File
L0 memory

Codelet
Execution Unit
L0 (e.g. x86, ARM)

Write
Back
SYNC

Memory
Access
Interface

Scheduling Unit

FETCH DECODE

Inst Mem

To higher level mem

L0 Register File

ALU + FP

Write
Back
SYNC

Memory
Access
Interface

Scheduling Unit

FETCH DECODE

Inst Mem

L0

To higher levels

L1

L2

Figure 4.3: A 3 level abstract machine of the Sequential Codelet Model that
implements the Hierarchical Von Neuman Model.

Figure 4.3 shows a more complex abstract machine that implements the Hier-

archical Von Neumann architecture. Each level is organized as a 5 stages pipeline:

Fetch, Decode, Execute, Memory and Write Back. At the bottom, level 0 (marked L0)

65

corresponds to any single core architecture that is commonly found today (e.g. a core

implementing any of the commodity architectures: RISC-V, ARM, x86, or POWER

PC). The L0 ISA is extended to include a commit instruction that works as a return

signal for the level above. Other than the commit instruction, a program expressed for

L0 has no difference to a program written in assembly level on current architectures.

As can be seen in the Figure, on top of L0 there is level 1 (marked L1 in the

figure). The execution stage (Extended ALU) of the L1 pipeline corresponds to the

whole L0. Likewise, the execution state of L2 corresponds to L1. This organization

continues to other levels above. At each level N , the execution state corresponds to

the level below N − 1. Each level may also be accompanied by an ALU, not depicted

here for the sake of simplicity.

In addition to the 5 stages, a level has an instruction memory where operations

(Codelets) are stored, and a register file that contains memory for operands. The

Memory Access unit issues memory operations to the register file of the level above

(see doted arrow line in Figure 4.3). Therefore, the label of the L1 register file is also

L0 memory, and L2 register file is L1 memory. In the original abstraction, a level can

only see the memory in the level above.

Smaller memory
Less complex operations
Faster frequency
Shorter cycle times

Larger memory
More complex operations
Slower frequency
Longer cycle timesMemory to frequency ratio

inverted pyramid

Figure 4.4: The Memory size to Frequency ratio of the SCM

An important observation is that the higher the level of the hierarchy, the larger

66

the memory capacity is with respect to the execution units of the level below. Fur-

thermore, as we move up the hierarchy, the complexity of the operation is expected

to increases and the operation’s latency in the execution stage also increases. This

can be summarized as the inverted pyramid of Figure 4.4, and it will be important

when deciding the size of the operations, and where to execute them. Additionally,

the approach described here uses memory that is inclusive. Values that are needed in

the lower levels from the upper levels have to be copied in the levels in between. In a

more advanced architecture it should be possible to describe memory and commit op-

erations that jump across levels bypassing memory accesses across levels, and breaking

this inclusion rule. A possible trade-off for energy for complex memory hierarchies was

explored by Livingston et. al. [78] and it could be extended to this approach, however

this is outside of the scope of this work.

4.4.2 The SCM Program Execution Model

An execution model contains three properties. Tasking model, memory model

and synchronization model.

4.4.2.1 Tasking model

In Figure ?? we observe three different levels. L0 has a commodity ISA, as

previously described. However, the operations supported by the L1 instructions (i.e.

the L1 ISA) are not limited to simple arithmetic operations. Instead, L1 has more

complex, user implemented functions as part of its instruction set. These instructions

are referred to as Codelets. An instruction Codelet is atomically scheduled in L1, and

it is represented by a stream of instructions evaluated in L0 and which implements

the L1 function. This stream of instructions finishes with a commit instruction that

informs L1 when the Codelet has finish execution.

In the Sequential Codelet Model a task or instruction is represented as a Codelet.

The term Codelet is taken from the definition proposed in the original Codelet Model

of program execution [59] as explain in Section 2.2. In the Sequential Codelet Model,

67

Codelet is the name given to an instruction that is used in a level N (where N ! = 0) and

executes at a level N−1. Codelets share similar properties to ALU operations available

in current ISAs. Codelets are atomically scheduled and executed non-preemptively.

Execution of Codelets is side-effect free, and there is no internal state stored across

multiple execution of the same Codelet, hence, a Codelet output only depends on its

inputs.

A Codelet maps to a particular level of the hierarchy, and its operation is de-

scribed as a sequence of instructions (Codelets or native ISA instructions) of the level

below, guided by a set of control flow operations (i.e. a similar structure to assembly

code). Inputs and Outputs of the Codelet are assigned to memory locations (i.e. reg-

isters) of that particular level in the hierarchy (as described in section 4.3). A Codelet

program assigned to the level N uses sequential semantics. Codelets are issued in the

order they appear in the program. A Codelet corresponds, for example to the COUNT

instruction described in the motivation example at the beginning of this chapter.

Referring again to Figure 4.3, L1 Codelet operands are stored in the L1 register

file. This L1 register file corresponds to L0 Memory. Hence, Arithmetic and control

operations of the L1 Codelet are described in terms of L0’s ISA. Memory instruction

inside the Codelet will access data from L1’s registers. This limits the latency of

memory operations to the distance between L0 and L1, allowing to have a bounded

execution time for Codelet memory accesses. The total size of the register file as well

as the size of each register is expected to be higher in L1 than in L0. Therefore, for

a single register in L1, multiple load and store operations may be needed to access its

data. It is still possible to have registers of different sizes in L1, including registers of

common sizes (e.g. 8, 16, 32, and 64 bits registers).

We refer to the L1 Codelet COUNT R1, R2, val described in the motivation

example. This Codelet sets register R1 to the number of times the value val is present

in R2. R1 is an integer an it may be stored in a 32 bit register, while R2 corresponds

to an array of 100 integers and it will use a 3200 bit register (each of size 32 bits).

The value val is an immediate value. Both R1 and R2 are registers in L1. The

68

implementation of COUNT is assembly code in L0. Since L0 registers are smaller than

3200 bits, there will be multiple load operations for each of the integer values of R2.

Each load operation will be a 32 bit register in L0, requiring 100 loads in order to

compute the whole COUNT operation.

The relationship between L2 and L1 is similar to the one of L1 and L0. Instruc-

tion Codelets that are used in L2, are described as stream of instructions and Codelets

in L1. Additionally, L2’s register file memory space has a larger capacity than L1’s

register file. Therefore, registers available in L2’s register can be larger than those of

L1, resulting in multiple L1’s memory accesses to cover a whole single register of L2’s

register file. Operands of the instruction Codelet in L2 use registers in L2, memory

instructions of L1 map directly to L2. Consequently, the hierarchical instruction spans

over multiple levels, even beyond L2.

To summarize the execution of a Codelet in the L2 offloads to L1, and Codelets

of the L1 instruction set offloads to L0. Load and store operations of L0 will fall into

L1’s register file, and those of L1 fall into L2’s register file. Since the registers of L1

can be larger, multiple load and store operations of L0 would be required to access

the whole operands of the operation in L1. Consequently, L1’s register file acts as L0’s

memory. It is expected that L1’s register file is physically close to L0 (e.g. L1’s memory

could be located where level 2 or 3 of cache is located in current architectures), hence

memory latency of memory operations in L0 should be bounded to this short distance

between L1’s memory and L0’s registers.

4.4.2.2 Synchronization Model

Codelets are synchronize by means of data dependencies expressed as registers

used in its operands. A Codelet is described with a number of operands. Each operand

can be a constant value (immediate value), or a register value. Additionally, each

operand has a direction that could be either READ, WRITE, or READWRITE.

The implementation of the Sequential Codelet Model must guarantee that real

dependencies (i.e. READ after WRITE) are always satisfied during the execution of

69

the Codelet program. Synchronization is determined by the relative position of two

Codelets in the program stream. Two Codelets A and B have a real dependency if 1)

Codelet A comes before Codelet B in the instruction stream, 2) Codelet A has an reg-

ister operand R with a direction WRITE or READWRITE, and 3) Codelet B has an operand

that uses the same register R with a direction READ or READWRITE. Synchronization

occurs when the order between A and B is guaranteed in a given implementation of

the Sequential Program Execution Model.

4.4.2.3 Memory Model

Memory is hierarchically organized. However, level N can only interact with

level N + 1 through Load/Store operations, and Level N − 1 by means of operations

that affect the register file. This restriction allows for a memory consistency model to

be define for the interaction within a single level with respect to the level above. It is

not necessary to maintain consistency across other parts of the system, reducing the

need for a monolithic view of memory.

For two Codelets within the same level, memory operations must be seen in

the order the Codelets appear in the instruction stream. This applies to both the

register file of the given level, and the memory of the level above. In general memory

instructions must be ”committed” in order in which the program is described. There is

a lot of freedom in how these are guaranteed, including the use of Gao Sarkar Location

Consistency Model [79]. For now, we focus on enforcing sequential consistency across

two levels of the machine. In the case of the register file, the order of memory operations

is guaranteed by the synchronization model. While for memory operations, the Memory

stage in the pipeline must guarantee that instructions are committed to the level above

as they appear in the instruction stream.

On the other hand, support for data structures is an important aspect of pro-

gramming models. For the aforementioned imperative representation of code, memory

locations in registers are seen as memory locations with a given size. However, the

hierarchical structure of memory used in the SCM allows for arguments of a Codelet to

70

be interpreted in the form of any data structure. For example, the execution of a level

N Codelet COD EXAMPLE with parameters COD EXAMPLEP1, P2, P3 uses

three registers, one for each parameter. From the perspective of N registers represent

memory locations in the register file, with no given interpretation. However, at level

N − 1, each operand P of the COD EXAMPLE is seen a regular memory in the

sense of the Von Neumann abstraction. Therefore, Level for N − 1 the interpretation

of the values inside of the registers P may be organized in the form of different data

structures. Further research on higher level programming models would be needed to

design the appropriate strategies to span data structures at the whole system level, as

well as any operation to transform data structures.

4.4.3 Programming model

As a result of the structure of the Sequential Codelet Model, code is indepen-

dently written for each level. There exist a basic instruction set that applies to all

the levels. This basic instruction set contains some simple arithmetic operations (e.g.

ADD and SUB) and some control flow operations (e.g. Jump, and branching). These

instructions are used to determine the control flow of the Codelet program at the given

level. A Codelet program ultimately represents a dataflow graph where arcs are repre-

sented in terms of data dependencies between instructions. The basic instruction set

allows the definition of such dataflow graph at runtime.

To write a program for a given level N , code is written by use of a set of Codelets

and instructions in the basic instruction set. Codelets of level N are defined in terms

of the level below N − 1. The description of a Codelet in level N − 1 also uses the

basic instruction set architecture, and Codelets of level N − 2. At level 0, a program

will described in terms of currently available ISAs (e.g. RISC-V, ARM or x86).

Thanks to the influence of sequential execution models, we expect to be able to

extend already existing sequential programming languages to adapt to the hierarchical

behavior of the system. It is important to mention that it is possible to fix the signature

of a Codelet at a given level, while work on different possible implementations for

71

that same instruction, with different objectives (e.g. performance, energy or other

optimization goals). Such property improves software composability [7][80], allowing

also for the creation of libraries that describe Codelets of a given level.

4.5 Codelet Level Parallelism: Parallelism and performance

This section describes different possible ways to achieve parallelism through

the SCM. We call these approaches Codelet Level Parallelism (CLP) due to their

similarities with Instruction Level Parallelism (ILP). In this section I first discuss the

use of ILP optimizations used at each of the levels of the hierarchical abstract machine

to achieve CLP. Second, we describe how it is possible to use other architectures to

build a heterogeneous system to improve performance of the execution of code. Finally,

we briefly touch on how compiler optimizations for code generation could be used.

4.5.1 Codelet Level Parallelism

Choosing the five stages pipeline to represent the Hierarchical Von Neumann

Model in figure 4.3 was not an arbitrary decision. This machine model allow us to

easily introduce the use of ILP optimizations at each level of the hierarchy to achieve

implicit parallel execution of code.

Starting with superscalar architectures, it is possible to organize a multi-core

system as a collection of execution units at any level. By means of dataflow techniques

studied in chapter 2, it is possible to execute multiple Codelets at once, as long as data

dependencies are respected. At each level, there exists a register file that is shared

among the different execution units, while the latency of communication between these

execution unit remains bounded to a common value (e.g. memory access time of L3

cache memory for a multicore architecture). Finding the right number of execution

units at each level requires extensive research, but it assimilates to the tradeoffs of

single core architectures design. Several specifications could influence this decision:

register file size, memory latency, energy and silicon area are just a few examples.

72

Extending the number of execution units in each level is what allows the Sequen-

tial Codelet Model to account for parallelism. Let us imagine a Level L1 composed of

multiple RISC-V cores into a single chip, followed by a level L2 with multiple sockets,

a level L3 with multiple nodes, and a level L4 with multiple clusters.

In addition to SuperScalar techniques, it is possible to use register renaming to

eliminate false dependencies that could potentially limit the parallelism found at a cer-

tain level. By using a hidden register file, it should be possible to increase parallelism.

As an example, code in listing 4.1 could benefit from register renaming techniques. By

renaming registers RL1, multiple versions of the COUNT Codelet may execute in par-

allel. The direction of a given operand in the Codelet (i.e. READ, WRITE or READWRITE)

is an important property in the Codelet to enable register renaming.

Finally, the most important technique to be used is an Out of Order (OoO)

execution, that allows out of order issuing of instructions within a window at each

level. This ILP technique uses dataflow concepts, by detecting data dependencies at

runtime for a window of instructions. Dataflow is a major component of the Original

Codelet Model, therefore, using OoO execution engines would allow implementing this

property. Through the use of reservation tables, and by adapting commonly known

algorithms for OoO execution (e.g. Scoreboarding [55] and Tomasulo’s [57] algorithm),

it should be possible to achieve higher levels of parallelism during execution of programs

at each of the levels.

Likewise, further parallelism could be obtained through the use of forwarding

techniques of values between execution units at any level, as well as adaptations of

speculative execution engines. Moreover, using streaming techniques such as the ones

described by Raskar et. al. [81] could also benefit performance. In general, it is

necessary to study the different techniques to be able to find the proper trade-offs

between them, and understand their impact during execution of a program.

Finally, there is Codelet Level Parallelism that could bridge current fork-join

models of computation to the Sequential Codelet Model. Current instruction set archi-

tectures feature SIMD extensions that allows to apply a single instruction to a register

73

that holds multiple data values. Such extensions use special architectural features that

increase the throughput of instructions per cycle the system can perform. A Single

Codelet Multiple Data (SCMD) analogy is possible. A Codelet in SCMD mode is

applied to multiple data elements at the same time.

A difference between SIMD and SCMD, is that SCMD could potentially map to

multiple levels of the hierarchy. When extended to multiple levels, an SCMD execution

model assimilates to hierarchical parallelism available in current GPGPUs. These

systems feature a group of threads referred to as warp (usually 32 or 63 threads).

Multiple warps compose a block, and multiple blocks compose a grid. An indexing

scheme allows for each thread to have an independent identification value that can be

used to offset data access in the execution. For an SCMD mode a similar mechanism

needs to be put in place. Exploration of SCMD execution models will be left as future

work of this thesis.

4.5.2 Heterogeneity and distributed systems in the Hierarchical Abstract

Machine

Recent interest in heterogeneous systems have shown the importance of heavily

parallel architectures that exploit different execution models (e.g. GPUs and SPMD

execution). Additionally, there are many architectures that could be used for specific

applications yielding to improved performance. For example, recent introduction of

Tensor Core units in GPUs [82], as well as google TPUs [9] for AI related applications.

These architectures could be part of the abstract machine as well. By using them as

an execution unit of any of the levels, it could be possible to create specific Codelets

that map to these architectures. For example applications could use GPU’s Streaming

Multiprocessors as an execution unit that takes over Codelets that are SPMD friendly.

Equally, a neuromorphic execution unit could be used to execute AI related Codelets,

or an FPGA implementation of a given Codelet could be offloaded to an re-configurable

FPGA to improve performance of the application. Figure 4.5 shows a multilevel het-

erogeneous SCM abstract machine.

74

Figure 4.5: Heterogeneous Sequential Codelet Model abstract machine

Furthermore, the hierarchy could be extended through multiple levels. This is

depicted in figure 4.6. While nodes in orange represent CPU cores with a behavior

similar to the one described so far, green nodes represent the aforementioned hetero-

geneous architecture. It would be beneficial to have a highly heterogeneous system in

a single chip. The hierarchy could be extended through multiple nodes of a cluster, or

even connect multiple clusters together to for a single computation system.

In general, it is expected that the higher in the hierarchy a level is, the larger

the available memory, but also the larger the memory latency. However, latency of

operations in a higher level would also be larger. The different trade-offs need to be

studied to be able to balance out these elements: memory size, memory latency and

latency of operations. In the same way, bringing cores from the bottom level of the

hierarchy to higher levels (i.e. in-memory processing) is also a feasible solution that

could influence given trade-offs.

4.5.3 Compiler techniques

Perhaps another advantage of the Sequential Codelet Model is that there are

already many compiler optimizations that could potentially improve the scheduling of

75

L0

L1

L2

L3

L4 Cloud

Cluster 0 Cluster 1 Cluster N

Node 0 Node 1 Node N

Socket 0 Socket 1 Socket N

CPU Cores
GPU SMP

FPGA
Specialized Arch

…

…

…

…

Figure 4.6: Extending the hierarchy beyond L2.

instructions at runtime for a particular level. A program written for any level could be

independently analyzed for compiler optimizations that would treat Codelets as ISA

operations to further exploit hardware optimization and increase ILP-based optimiza-

tion opportunities. It might be that additional information about the Codelets would

need to be provided or discovered. As an example, Codelets could be merged together

given a particular context, similar to how compilers change independent multiplication

and addition operations into a single fused multiply-add operation (FMA). While com-

piler techniques would have to be further studied, we recognize the potential benefits

that applying compiler optimizations could bring to the performance of the executing

code, for a given realization of this machine.

76

Chapter 5

THE SUPERCODELET ARCHITECTURE

Having laid down all the theoretical background in Chapter 4, I now proceed

to present the SuperCodelet architecture. This architecture uses all the elements pre-

sented in the SCM, and it allows a construction of a parallel system. In terms of

system organization, I use Tomasulo’s original architecture [57] as basis, and I extend

it for the upper levels of the hierarchical abstract machine of Figure 4.3. In particular

I focus on level 1 (L1) of this architecture, and I use both CPU and GPU cores as the

execution unit. My intention is to show how to achieve parallelism on heterogeneous

systems using the SuperCodelet architecture, demonstrating that my intention is not to

go against the progress made up until now in heterogeneous architectures, but instead

build upon it.

The key element for parallel execution is to guarantee in-order fetch and commit

in the presence of out of order execution. Between instructions that do not communi-

cate to the outer world (all but memory instructions), it is important to maintain the

order of true dependencies (i.e. Read after write), while anti and output dependencies

can be eliminated through Tomasulo’s algorithm and register renaming techniques.

For instructions that communicate with the outer world, the order in which these in-

structions are performed must be maintained. Having a unique memory controller

guarantees sequential consistency, while there may be some re-ordering opportunities

on certain operations (e.g. read after read).

5.1 The Architecture organization

Figure 5.1 shows the diagram of the SuperCodelet architecture for a 3 level

system organization. Level 2 is partially shown in light gray background surrounding

77

Instruction
memoryInstruction fetch

Instruction decode

Register renaming and register
allocation table

Program visible
Register File

Hidden Register
File

Memory Ordering
Buffer

CPU
Scheduling

CPU
Core

CPU
Core

Memory
controller

Control flow
instruction unit

ALU

L2 Register File
or reservation

tables
(L1 Memory)

…

Result bus

Mem Reservation
Table

PC1

GPU
Scheduling

GPU
Core

GPU
Core

…

FPGA
Scheduling

CPU Reservation
Table

GPU Reservation
Table

FPGA Reservation
Table

Reorder buffer and
scheduler

…

L1 Scheduling

Reservation Table

FPGA

L2

L1

L0

Commit

Figure 5.1: Diagram of the SuperCodelet architecture

78

the whole figure and label L2 on the top right. L2 only pictures the reservation table,

L1 Scheduling logic and the L2 register file (i.e. L1 memory). Following, Level 0, in

dark gray background near the bottom of the figure, is composed of several commod-

ity architectures seen as black boxes. Finally Level L1, in mid-range gray, is shown

completely, with three different L1 compute units displayed in the figure (2 of which

are smaller on the top right of the L1 block). Let us focus our attention in Level 1.

5.1.1 Scheduling units

The Scheduling unit is in charge of fetching instructions and decoding them for

the given computational unit of the level below. Our pipeline starts in the red block

named “Instruction fetch” which takes the current program counter of level 1, and

reads the next L1 instruction. This instruction is given to the “instruction decode” that

determines the instruction’s destination and its operands in the register file. Following,

instructions are analyzed for potential “register renaming” opportunities, and these

registers are allocated for the given instruction. As is the case in original Out of Order

execution engines, some sort of look up tables are needed to maintain the information of

which translation corresponds to what original register. This is the “register allocation

table”. Next in the pipeline there is a “reorder buffer and scheduler. The purpose of this

stage is to seek hazard free execution opportunities within a window of instructions.

As the instructions are ready to execute, they are assigned to different “reservation

tables. An instruction may be ready even if a missing value has not been produced yet,

but it will be produced by another core. Once an instruction is determined to be ready

it is allocated into one of the “reservation tables”, depending on which computation

unit in L0 the Codelet maps to (i.e. GPU, CPU or FPGA).

5.1.2 Computation Units

There are four reservation tables in the diagram 1, one for each of the type

of execution units available: CPU, GPU, FPGA and memory. For each reservation

1 this is not necessarily a hard limit, other architectures can be envisioned

79

table there exists a scheduling logic that checks if the operation has all the required

operands available to start execution. If so, one of the computational units for that

particular reservation table is selected (i.e. GPU-like cores, CPU-like cores or Memory

operations). In the diagram of Figure 5.1, I use four types of computation units: CPU-

like cores that use commodity architectures (e.g. RISC-V, MIPS or ARM). GPU-

like cores that are similar to those used inside the recent GPGPUs and which have

architectures based on vector machines such as those used by the Cray-1 computer

[12]. A regular ALU unit used for basic arithmetic operations that are still needed

for loops, offsets and address calculations, including other control flow operations.

Finally, an FPGA computational unit that could be in the form of bit-streams, allowing

reconfiguration of the FPGA bit-streams to occur at runtime.

5.1.3 Memory Units

Memory operations require their own infrastructure. Communication with the

upper level L2 needs to be in the program order in which they are defined. However,

there is still some opportunity for re-ordering instructions. Under certain circumstances

that do not affect the output of the result, two memory operations may be executed in

an order different to the original program order. These circumstances are determined

by the region of memory location that is being accessed by the memory instruction, and

the operation to be performed (i.e. read or write). The memory ordering buffer can

attempt to take care of these situations. Depending on the memory model implemented

at the given level, the restrictions across memory operations may be strictly enforced

or relaxed.

As we progress in the hierarchy, more complex memory operations may be re-

quired. While it is not possible to envision all possible memory access patters, it is

still possible to create 1D, 2D and 3D memory instructions, similar to what other ISAs

have done [83]. Furthermore, an application may decide to create a special Codelet

that performs memory operations. An special interface for this Codelet requires the

80

calculation of memory addresses that are access by this Codelet in order to calculate

potential hazards in memory accesses across different instructions.

If the same diagram is used to describe L2 and beyond, memory operations will

result in reads to the Reservation Table, and writes will be sent through the result bus

and stored in the subscriptions of the given result.

5.1.4 Register File

There are two “register files”. One that is accessible by the user, that corre-

sponds to all the different general purpose registers the user can use in the description

of the program. A second register file is used for register renaming opportunities.

This register file is hidden from the user, and it is accessible only by the architectural

runtime.

The size of the register file, as well as the size of the registers in the register

file is still a subject of research. I have explored some options based on the current

size of L3 caches in commodity architectures. This will be explored further in the

evaluation section 7. What is known for sure is that some of the register must be of

small sizes such as the ones used nowadays. These registers are needed to store loop

variables, memory addresses and offsets. Otherwise, a lot of space would be wasted in

large registers.

5.2 Programming model

In this section I will discuss the low level software interface designed for users to

program the system. As previously mentioned, a program written for the SuperCodelet

model maps to the hierarchical organization of the machine. I leverage the work pre-

viously presented in [75]. Therefore, the program is written in levels. For each level of

the program, the user must define the collection of Codelets that can be executed at

that particular level, but which will be used as part of the instruction streams in the

level above. This is, if a Codelet is to be used in the code for L2, then that Codelet

needs to be defined in level L1 using instructions of level L0.

81

There is a subset of operations that is called SuperCodelet ISA. These operations

can be used in any level and will be specified in this section. Therefore, a Codelet for

a certain level uses any of the supported basic SuperCodelet ISA operations, plus

the Codelets of the level below. Native arithmetic operations may also be supported

as extension to the SuperCodelet ISA. An example are the Codelets of L1 which are

described in terms of L0, and which will use the ISA of the particular CPU architecture

of L0 (See section 5.1.2).

There is a top level Codelet that I referred to as the Main Codelet. Its job is to

work as entry point of the program. For now, for the sake of simplicity let us restrict

that only the Main Codelet can manage I/O operations.

5.2.1 SuperCodelet ISA

Codelets are defined as sequential programs similar to assembly code. In order

to describe the control flow of instructions inside a Codelet, I provide the basic set

of instructions that conform the bare minimum for the description of Codelets across

all levels. I call this basic set the SuperCodelet ISA and it is summarized in table

5.1. In the table, the reader can observe two type of operands: Registers (Reg), and

Immediate values (Imm). The first one corresponds to a register name, while the

second one is an immediate value. Let us limit the immediate values to a number

of bits, in order to limit the size of the instruction encoding in memory. I assume a

size of 32 bits for now, but the answer to what is the appropriate size to be use may

require extra research. There are four families of operations: Arithmetic operations,

control flow operations, memory operations, and Codelet control operations. The first

three families are self explanatory. The Codelet control operations coordinate the

communication across levels. These instructions allow instantiating Codelets from one

level to the level below, and returning values after execution of the Codelet to let

the upper level continue execution. This is, these operations allows communication

between the levels. The COD <name> operation spawns a new Codelet for execution on

82

the level below. The COMMIT operation informs the upper level that the Codelet has

finished execution, and that the results are ready to be used.

Family Instruction Op1 Op2 Op3 Op4 Operation

ADD/SUB Reg Reg Reg/Imm - Op1 = Op2 +/- Op3

MULT Reg Reg Reg/Imm - Op1 = Op2 * Op3
Arithmetic

SHFL/SHFR Reg Reg/Imm - - Op1 <<Op2 (or >>)

JMPLBL label - - - Goto label

JMPPC Reg/Imm - - - PC = PC + Op1

BREQ Reg Reg Reg/Imm - PC += (Op1 == Op2)? Op3 : 1

BGT/BGET Reg Reg Reg/Imm - PC += (Op1 >or >= Op2)? Op3 : 1Control

BLT/BLET Reg Reg Reg/Imm - PC += (Op1 <or <= Op2)? Op3 : 1

LDIMM Reg Imm - - Op1 = Op2

LDADR Reg Reg/Imm - - Op1 = [Op2]

LDOFF Reg Reg/Imm Reg/Imm - Op1 = [Op2 + Op3]

STADR Reg Reg/Imm - - [Op2] = Op1Memory

STOFF Reg Reg/Imm Reg/Imm - [Op2 + Op3] = Op1

COMMIT - - - - Finish Codelet execution.

Codelet Control
COD <name> Reg/Imm Reg/Imm Reg/Imm Reg/Imm Call codelet <name>with params

Table 5.1: tab:instSuperCodelet

I do not expect the current state of the SuperCodelet ISA design to be final. It

is possible to extend some of the work done by ISA definitions of other architectures

(e.g. RISC-V) to provide that basic set of instructions, but also allow for upper level

computation through the means of a regular ALU. For now the SuperCodelet ISA

works as a proof of concept.

Another important aspect to mention is that at Level L0, legacy hardware ar-

chitectures is used. Therefore the Codelets written for the lowest level use the native

ISAs supported by the respective architectures.

5.2.2 Codelet Definition

Codelets are user defined. Therefore, some flexibility is needed in terms of the

number of operands, the type of operands (Reg or Imm), and the direction of these

operands (Read or write). The number of parameters in a Codelet, as well as the

length of encoding the Codelet instruction is equivalent to the distinction between

CISC and RISC architectures. It is possible to consider a RISC-like architecture, but

83

for simplicity of the programming model I focus on a CISC-like design. Following, the

direction of an operand is important to be able to discover dependencies during out of

order execution. It needs to be somehow encoded in the definition of the Codelet and

accessible to the runtime.

For now, I propose the following semantics to be used in conjunction with the

SuperCodelet ISA defined in section 5.2.1.

def<L> codname (type opname : dir , type opname : dir , . . .) :

; ; Code le t Body

COMMIT;

enddef

There must be an assembler or compiler that translate these into actual exe-

cutable code. The keyword def marks the definition of a Codelet, while enddef marks

the end of a Codelet. To determine the level for which the Codelet is written, an

integer is used inside of the delimiter <L> (e.g. def<1> for L1). At some point during

the Codelet execution there must be a COMMIT instruction to finish the execution of the

Codelet. Otherwise, there is an implicit COMMIT at the end of the Codelet definition.

The number of operands is determined by the number of elements inside the

parenthesis. An operand has a type that is either a register or immediate value. When

type is register, a size needs to be determined. For registers, the keyword reg<size>

is reserved, where <size> is the size of the register in bytes that the given operand

uses. For immediate values, the keyword Imm<type> is used. Immediate values are of

type signed, unsigned, float, or double. And they are at most 32 bits long.

The direction of an operand is a 2 bit mask, the LSB bit for Read, and MSB

bit for Write. For example a direction of 0b11 determines an operand that is Read and

Write, while 0b01 is a read only operand.

84

5.2.3 An example program

I present a really simple program written for an architecture featuring 2 levels.

First, I provide a pseudo-code of the intended equivalent of execution, but no trans-

lation strategy is provided. Furthermore, I do not intend this example to be an ideal

use case of this architecture. This is for the sake of syntax demonstration.

1 void mainCod(int &a, int &b, int &c){

2 if (a > b)

3 c = a + b; // L0 Codelet Sum

4 else

5 c = a - b; // L0 Codelet Sub

6 }

Observe that the code written in C has no concept of levels. I have added

comments to guide the reader in the translation process.

The above pseudocode can be described as follows in the SuperCodelet Pro-

gramming Model. Listing 5.1 corresponds to the definition of the main Codelet of

level L1. Notice that the operand names a, b, and c are seen as addresses inside of

the Codelet definition, and therefore are used as arguments of the memory operations.

This is because for L2 (who will be calling the Codelet), the operands are registers,

but for L1 (who will be executing the Codelet) the operands are memory locations.

In the case of immediate values, the value is propagated inside the Codelet at compile

time. Registers used inside of this definition correspond to registers of level L1. The

convention for register naming inside the definition of a Codelet is R<size> regNum.

85

1 def <1> main(reg <8> a:01, reg <8> b:01,

2 reg <8> c:10):

3 ;; a, b and c, are the address in L2

4 ;; of these arguments.

5 LDADR R8b_1 , a;

6 LDADR R8b_2 , b;

7 BRLET R8b_1 , R8b_2 , R8b_3;

8 COD sum R8b_1 , R8b_2 , R8b_3;

9 JMPPC 2;

10 COD sub R8b_1 , R8b_2 , R8b_3;

11 STADR R8b_3 , c;

12 COMMIT;

13 enddef

Listing 5.1: Main Codelet definition at level L1

Following with the example, I show the definitions of the sum and sub in List-

ings 5.2 and 5.3 respectively. These two Codelets are created for Level L0. The most

important aspect of these two listings is that the code is written in RISC-V assem-

bly code in addition to Codelet Control operation COMMIT. Again, a, b, and c are

addresses of L1. In fact registers a4 and a5 are both 4 bytes. If we were to use the

whole 8 bytes, we would have to perform 2 lw operation. This behavior is expected

and encouraged.

86

1 def <0> sum(reg <8> a:01, reg <8> b:01,

2 reg <8> c:10):

3 ;; Using RISC -V architecture

4 ;; a, b, and c are the address in L1

5 ;; of these arguments

6 lw a4 , -0(a)

7 lw a5 , -0(b)

8 addw a5, a4 , a5

9 sw a5 , -0(c)

10 COMMIT;

11 enddef;

Listing 5.2: Sum Codelet definition at level L0

1 def <0> sub(reg <4> a:01, reg <4> b:01,

2 reg <4> c:10):

3 ;; Using RISC -V architecture

4 ;; a, b, and c are the address in L1

5 ;; of these arguments

6 lw a4 , -0(a)

7 lw a5 , -0(b)

8 subw a5, a4 , a5

9 sw a5 , -0(c)

10 COMMIT;

11 enddef;

Listing 5.3: Sub Codelet definition at level L0

In order to create an evaluation strategy of this architecture, it is necessary to

define simulation and emulation of the hardware and runtime. Following chapters will

provide an initial evaluation of the runtime.

87

Chapter 6

SCMULATE. AN EMULATION RUNTIME FOR THE SEQUENTIAL
CODELET MODEL

The definition of the Sequential Codelet Model and its application in the Super-

Codelet architecture (As explain in Chapters 4 and 5 respectively), are meant as basis

for the design of computer systems. These concepts allow to design a Hardware/Soft-

ware co-design strategy that may be applied to general purpose compute architectures

as well as high performance parallel systems. However, success of hardware/software

co-design heavily relies on both simulation and emulation of the desired system.

Emulation imitates the behavior of a system while not necessarily performing

the same steps. On the other hand, simulation aims to replicate the behavior of the

system as faithful as possible. Emulation provides us with early results expected from

the construction of the system. Due to the complexity of computer systems, it is often

necessary to mix and match both emulation and simulation approaches.

To this end, I have created a runtime, namely SCMUlate (pronounced S.C.Emulate),

that emulates the behavior of the Sequential Codelet Model with an organization simi-

lar to the one presented in the SuperCodelet architecture. The objective of this runtime

is twofold: First, perform an early evaluation of the SCM design when implemented

with already existing architectures. Through the use of micro benchmarks, the runtime

provides an assessment of the expected performance of sequential Codelet programs

on commodity hardware architectures. Furthermore, it evaluates the expected perfor-

mance gains in programs optimized through Codelet Level Parallelism techniques, as

seen in section 4.5. Second, create an strategy for exploring the large search space

of the system design that implements the Sequential Codelet Model. There exist an

88

extensive set of design parameters such as: 1) appropriate register dimensions for dif-

ferent levels of the architecture, 2) efficient Codelet sizing in terms of memory and

compute complexity, 3) relationship between compute capacity, memory sizes, and

memory bandwidth, and 4) other parameters that are required in the construction of

an actual system.

This Chapter summarizes the implementation of the SCMUlate emulation plat-

form. It introduces the software infrastructure that consist of an interpreter, a pro-

gramming API for Codelets, and a runtime. It shows the strategy for creating Codelets,

as well as use them in a program. Furthermore, it shows different Codelet Level Par-

allelism techniques that are implemented. SCMUlate is Open Source and publicly

available at [84].

6.1 SCMUlate software design

The SCMUlate system is a parallel software written in C++ that uses an Object

Oriented Programming approach to emulate the different parts of the SCM model.

SCMUlate is meant to run on commodity multicore hardware. SCMUlate creates a

class for each of the elements of the SCM system. Figure 6.1 shows a simplified UML

diagram of all the classes that are used by SCMUlate. The project is maintained in

GitHub and uses a CMakeFile build system for easy compilation and deployment.

6.1.1 The role of OpenMP

SCMUlate uses OpenMP for the implementation of the runtime, but not for

the description of parallelism. The use of OpenMP is dispensable, and it could be

replaced by a lower level PThreads implementation. Specifically, OpenMP is limited

to an initial runtime thread creation, synchronization of runtime signals, runtime be-

gin/end barriers, and, in the case of GPU Codelets, to take advantage of GPU code

generation in the compiler. An OpenMP parallel region is spawned after creation of

the runtime. Each thread is assign a different role (i.e.. SU, CU, or memory) depend-

ing on the OpenMP thread ID. A configuration file statically determines the mapping

89

common

SCMUlate

operand

system_config

Codelet
API User

Codelets

Modules

scm_machine

- isAlive: bool
- fileName: string

+ scm_machine(file, memory, mode)
+ run(): void

<<Interface>>
ilp_controller

- mode: ILP_MODE

+ ilp_controller(mode)
+ checkMarrkInstructionToSched(inst)
+ instructionFinished(inst)

instruction_mem

- memory: vector<decoded_inst>
- labels: map<string, int>
- void loader(file)

+ instruction_mem(file)
+ fetch(address): inst

register_file

- register_file_space: char[SIZE]

+ getRegisterSize(regName): int
+ gerRegister(regName): char *
+ dumpRegFile(): void

<<Interface>>
codelet

- params: void *
- op_inout: uint_16t
- my_executor: cu_executor

+ codelet(numParams, params, opIO)
+ virtual implementation():void

codelet_factory

+ registerCreator(name, codeletConst)
+ createCodelet(name, params): codelet*

system
Codelets

fetch_decode

- PC: int
- suNumber: int

instructions_description

decoded_instruction

control_store

- executors: vector<execution_slot>

- state: executorState

execution_slot

- state: executorState

ilp_sequential ilp_superscalar

timer_counters

- globalTime:

- counters: map<string, vector>

- countType: map<string, type>

CUMEM_event SU_eventSYS_event

<<enumeration>>
counterType

SYS_TIMER

SU_TIMER

CUMEM_TIMER

<<enumeration>>
executorState

EMPTY

BUSY

DONE

cu_executor

- cuNumber: int

memory_interface

COD_...

COD_...

COD_...

COD_print

1...*

instType

Figure 6.1: SCMUlate UML Classes Diagram

90

between roles and threads. Additionally, after runtime initialization, it is necessary

to synchronize the elements before starting the SCM computation. Likewise, once the

SCM program has completed, it is necessary to synchronize the threads for runtime

finalization and proper garbage collection. For these two moments an OpenMP barrier

is used. Finally, atomic operations on control variables of the runtime (e.g. full empty

bits) are achieved by using OpenMP atomic directives.

It is crucial to understand that I am not relying on OpenMP to perform parallel

computation, but instead to manage and create the runtime of the SCMUlate emulator.

Thus, once SCMUlate starts executing parallel execution of compute code is driven only

by the emulation of the SCM execution model.

6.1.2 Folder infrastructure

The project is organized in a src/include/test folder infrastructure, for source

code, header files and tests respectively. The Source code is divided in subfolders for

the different parts of the program.

A common folder contains header files with system configuration variables (e.g.

size of queues, and number of operands) and thread configuration variables (i.e. CU

and SU thread mapping). Additionally, this folder contains the semantic description

of the SCM basic ISA (as described in section 6.2.3) in the form of regular expressions

for the different ISA instructions, as well as the format used for the instruction after it

has been decoded by the interpreter. Finally, this folder contains helper functions for

Info/Error/Warning messages formatting, and string manipulation tools.

Following, there is a modules folder that contain different files, one for each part

of the SCM machine. An SCM module maps one to one to a physical block of the SCM

machine, working as building block of the overall system. Each module is represented

as one or more classes in C++. Currently, the following modules have been created:

• Fetch/Decode: SU logic, control flow and basic arithmetic instruction evalua-
tion.

91

• Executor and Memory Interface: CU logic and memory interface logic. It
contains the runtime function that checks for available work and executes it.
Currently, the CU acts as both Memory and Compute units.

• Control Store: Similar to the reservation tables described in the SuperCodelet
architecture. This module contains the execution slots (or queues) that connect
the SU with the CU. Allowing the SU to schedule work.

• instruction memory: Storage for the program instructions, as well as entry
point for the interpretation of the SCM assembly program.

• Register File and Registers Configuration: Containing the data structure
that represents the register file with the different register sizes. It also allows for
dumping the register file, as well as definition of the available register sizes.

• Instruction buffer: Buffer for the window of instructions that are currently
inside the pipeline.

• ILP controller: different implementations of Instruction Level Parallelism tech-
niques. It modifies the ability of the system to discover dependencies and elimi-
nate false dependencies. Currently there are three modes of execution: Sequen-
tial, Superscalar, and Out of Order.

• Timers and Counters: Representation of hardware counters, it is in charge of
profiling as well as real hardware counters interface.

Following the folder infrastructure, there is a Codelet model folder that con-

tains the API for the description and definition of Codelets. This is the programming

API for defining Codelets of level L1 in terms of code of level L0. We take advantage of

C++ compiler code translation for generating the Codelets in L0. Additionally, there

is a folder for system Codelets that contains pre-defined Codelets that can be used

in any application. Currently, the only System Codelet that exists is cod print which

prints the content of a register.

The last folder that composes the source code of the emulator is the machines

folder. It contains the top level class of the SCM Machine emulation. This class works

as entry point for the whole emulator as well as a container for all the different modules

that compose the machine.

Finally, there is an apps folder in the top level of the project that contains the

different microbenchmarks used.

92

6.1.3 The SCM Machine emulation

There are three different roles a thread can be assigned in SCMUlate: Scheduler

(SU), Compute (CU), and Memory (MEM) (as described in sections 5.1.1, 5.1.2, and

5.1.3 respectively). Threads that are assigned the compute unit role evaluate (fire)

Codelets by calling its implementation function. Threads that are assigned the memory

role are in charged of the interaction with memory of the level above. This is, they

perform load and store operations. Emulation of the memory hierarchy and memory

operations are explain later on in this document together with the construction of the

register file. Finally, A single thread is assigned the Scheduler role. This thread helps

emulating the Sequential pipeline of the SCM machine. That is: fetch, decode, and

scheduling of units, basic ALU operations, and Codelet Level Parallelism book keeping.

This thread is not considered to be part of the computation of the program, instead it

emulates the behavior of the SCM machine pipeline.

The Sequential Codelet Abstract Machine (see 4.3) associates a single SU to

multiple CUs in each level. The current implementation only supports emulation of a

single L1 level. Hence, there is only a single SU that manages all other CUs. Future

implementations may include multiple L1 components and emulation of other levels of

the SCM hierarchy, therefore, requiring multiple SUs.

There is a class for each element of the SCM model. Following I discuss all the

different classes, as described in Figure 6.1 that compose the machine emulation.

6.1.3.1 Instructions and Instruction Memory

Instructions are encoded in a format that assimilates binary encoding of com-

modity ISAs. An interpreter takes the assembly-like program in string format, and

translate them to a list of objects of class decoded instructions t. The output of

the interpreter is an STL vector of instructions representing the instruction memory,

where the offset in the vector corresponds to the instruction address, as fetch by a

program counter of level L1.

93

A decoded instruction has an instruction type (e.g. Control Instruction, Memory

instruction, and Codelet), an opcode, a list of operands, a bit mask that contains

the direction of all the operands (read, write or readwrite), and other instruction

type specific information. The decoded instruction also contains the strings for the

instruction and operands for debugging information.

There are five type of instructions defined by the enumerator class instType: 1)

a CONTROL instruction type that refers to an operation that directly modifies the pro-

gram counter (PC) through jumps or conditional jumps. 2) A BASIC ARITH instruction

type corresponding to basic arithmetic operations (e.g. ADD, SUB, and MULT). 3)

The EXECUTE instruction type which corresponds to Codelets. 4) A MEMORY instruction

type that denotes a memory load/store operation. And, 5) the COMMIT instruction type

which marks the end of the execution of a Codelet.

All but the EXECUTE instructions are determined by the SuperCodelet Codelet

Set Architecture explained in section 5.2.1. On the other hand, EXECUTE instructions

are user defined and require creation of Codelet object as will be explained later in

this chapter. Codelets are created and stored in the decoded instruction t class.

Memory operations require careful handling due to their ability to communicate with

the upper level memory and the need to keep memory operation’s order. When an in-

struction is of type MEMORY, the decoded instruction t also stores range of memory

addresses that it uses. These ranges allows the runtime to discover memory dependen-

cies and allows to maintain their order. Memory ranges are a pair of memory sets, one

for read operations and one for write operations.

Operands are encoded in its own class as well. There needs to be a differentiation

between immediate values, labels and register names in an operand. Also, each operand

has a direction that will be used during data dependency analysis. The operand t

class stores operand information. This class contains an operand type (i.e. REGISTER,

IMMEDIATE or LABEL), an operand value is stored in an union. There are also boolean

flags that indicate if the instruction reads and/or writes the register in the operand. A

full/empty bit is also included and it indicates if the value is available at runtime or not

94

(for certain Codelet Level Parallel execution modes as explain later in this chapter).

A union value has been used since it allows to store either an immediate value,

the PC for the location of a label, or the address of a register within the register

file. Registers are represented as pointers to the location of the specific register. The

register file module provides the necessary methods to translate a register name

into its corresponding pointer. The address is determined by the register size and

number. I remind the reader that these registers refer to registers of the level L1 of

the architecture and not the architecture registers of Level L0 registers (see 4 chapter

for more information).

There is support for using labels in the L1 assembly code to name specific loca-

tions in the instruction memory and jump to them through control flow instructions.

When a label is encountered during interpretation of the assembly code, the location

is stored in a map that associates an label string to a memory location. Then, during

operand decoding, the immediate value of the operand t is set to the program location

of the specific label.

6.1.3.2 Fetch, decode and execute

The fetch decode class is in charge of scheduling instructions according to

the current value of the program counter, and the instruction’s state. This module

uses the instruction buffer module to represent the window of instructions that are

currently inside of the SCM execution pipeline. This buffer has an STL Deque container

that stores (decoded instruction t, instruction state) pairs. The fetch decode

uses the fetch() method in the instruction memory to obtain the instruction in the

current program counter (PC) and insert a copy of the decoded instruction t into

the instruction buffer. The fetch decode also contains an ILP controller that

manages the execution mode of the architecture. The ILP controller is in charge of

data dependency management and bookkeeping of the different execution modes (e.g.

sequential, superscalar or Out of Order).

95

An instruction inside the instruction buffer can be in one out of six states.

The instruction state represents the current status of the instruction in the pipeline.

However, the use and interpretation of each state depends on the execution mode of

the Codelet Level Parallelism, as we will discuss in section 6.1.3.4. The 6 available

states are: WAITING, READY, EXECUTING, EXECUTION DONE, DECOMMISSION, and STALL.

The decode process uses the instruction’s type to determine the unit in which

the instruction should be scheduled. If the instruction is of type CONTROL, BASIC ARITH,

or COMMIT, the fetch decode class will execute it. CONTROL instructions will directly

modify the value of the PC. BASIC ARITH corresponds to basic Arithmetic Logic Unit

operations (ADD, SUB, and MULT). And the COMMIT instruction will finish the exe-

cution of the current Codelet. Given that SCMUlate currently only evaluates one unit

of level L1, this instruction will finish the execution of the whole program.

The EXECUTE and MEMORY instruction types need to be assigned into a Com-

pute Unit (CU), represented by the cu executor class. The communication between

fetch decode and the cu executor occurs through the control store class. The

control store class uses execution slots. These slots are queues that represent the

reservation tables of the SuperCodelet architecture. These queues contain pointers to

the pairs stored in the instruction buffer. Each CU has its own execution slot

and the CU thread constantly iterates over it waiting for work to be assigned.

The structure of the Codelet class, and how new Codelets are defined will

be explained later in this section. When the cu executor receives an instruction of

type EXECUTE, it evaluates the Codelet by calling its implementation() method. The

Codelet object and its arguments are first created during interpretation of the user’s

Codelet assembly program, and stored in the decoded instruction t class. When

the decoded instruction t is copied, the Codelet is also copied.

The cu executor uses the memory interface to execute instructions of MEMORY

type. There are some instructions as part of the basic Codelet ISA that allow loading

and storing registers from and to the upper level memory. There are also some special

kind of Memory Codelets that also require a memory region that shows what regions

96

the Codelet accesses. The user is in charge of providing the function to calculate the

required regions.

6.1.3.3 The L1 register file on Cache based systems

The memory hierarchy of the Sequential Codelet Model is a key property that

distinguishes it from other models. However, when emulating SCM in commodity

hardware that are based on Von Neumann architectures, the control over the memory

hierarchy is limited. In particular, systems that rely on cache memory, does not allow

for fine grain control of memory allocation in the on-chip memory. To that end, the

following mapping approach is proposed.

Cache is a mechanism that sits between the core and main memory, and it

aims to reduce memory access time. For each location in main memory, there is a set

of possible locations in cache that temporarily store the values of the main memory

location. Cache takes advantage of temporary locality and spacial locality. The former

happens when consecutive memory accesses to the same location occur. The latter is

achieved by fetching a larger memory region every time a location is accessed, therefore,

fetching more values around the original memory location. The term cache line is used

to refer to the size of memory accessed by the cache memory. The cache line is bigger

than the main memory access word, and it is usually equal to 64 bytes.

Cache is arranged in a hierarchical organization. Level 1 and level 2 caches are

usually private to the each core. On the other hand, level 3 cache is usually shared

across the different cores of the chip. Often, the higher the cache level, the larger the

memory space. In order to emulate the register file there are two assumptions:

1. For a consecutive memory region allocated in physical memory. If the size of
that consecutive memory regions is the same as the size of cache. Then, every
memory location in this region will be assigned a different location of that cache
if accessed consecutively. Therefore, allowing indirect control of cache allocation.
And,

2. the overhead of the runtime is low enough to not cause cache thrashing. There-
fore, allowing consecutive memory access in time to always land in cache.

97

Multicore chip

M
ai

n
m

em
or

y

SU CU CU CUCU MEM

Register access

Instruction Schedule

L3
 C

ac
he

R3 R4 R6R5R2R1

Register File

cached region

L2 memory
Memory accessMemory copy

R6

Cached

Figure 6.2: Register file emulation mechanism on SCMUlate

While these two assumptions are not necessarily always true, we expect that they hold

for the most part of the execution.

Therefore, the register file in the L1 abstraction of the SCM is emulated by

allocating a memory region as large as level 3 cache. Level 3 cache is used since the

register file is shared among all the cores, allowing Codelet-to-Codelet communication

through the last level of cache. Figure 6.2 shows the whole emulation process. The

register file region is allocated consecutively, but divided into multiple registers of

different sizes. In the figure, all Rx blocks in L3 are registers. We use multiples of

the cache line size for alignment. For example, in the registers shown in the figure,

length of R1 and R2 may be 1 cache line long, R3 and R4 100 cache lines long, and

R5 and R6 1000 cache lines long. When a memory instruction is issued, a memory

copy from a region in main memory (that represents a location of L2 memory in the

SCM abstraction) is copied to the location of R6 in main memory. Due to caching,

the location will also be fetched into level 3 cache. Therefore, access from the different

CUs to this region of memory will (allegedly) have a shorter access time.

The register file class is in charge of allocating a memory region as large as

98

level 3 cache. The datatype is char since this type is usually 1 byte long. However, reg-

isters of different sizes need to be accessed independently. Therefore, a union in C++

is used to overlap the allocated memory region and the different registers. Further-

more, methods to obtain a translation between strings in the assembly Codelet code,

the actual locations in memory and the size in bytes is created. Finally, a debugging

method is used to dump the content of the whole register file.

6.1.3.4 Codelet Level Parallelism

So far I have described the different components of the SCM machine. However,

in order to achieve parallelism, it is necessary to create the out of order mechanisms.

The ilp controller class contains the logic for bookkeeping the dependencies between

instructions. There are currently three implementations in place: 1) a sequential ver-

sion that does not exploit any parallelism whatsoever. 2) A superscalar version that,

if there are enough CUs available and there are no dependencies between instructions,

they are scheduled in parallel. And 3) an out of order execution that performs reg-

ister renaming, eliminating false and anti dependencies during the code execution. A

fourth version is being developed that aims to optimize memory operations to reduce

the number of copies needed for executing loads and stores.

For ilp superscalar and ilp ooo (out of order) it is necessary to keep track

of memory locations. A memory queue controller class serves as memory controller

to determine if an instruction can be executed or not. This class emulates the logic

in the memory stage of the SCM machine (see the SuperCodelet description), which

discovers dependencies between memory operations. This class stores the memory

ranges currently under execution, and it provides a method to determine if a given

range overlaps any of the other instructions that are currently in the pipeline.

6.1.3.4.1 Sequential execution mode:

The ilp sequential is the simplest version of the ILP controller. The con-

troller has a full/empty bit that determines if there is an instruction on the execution

99

state. Under this mode of operation an instruction is fetch and place in the WAITING

instruction state. If there are no instructions in the execution stage, as deter-

mined by the full/empty bit, the instruction set as READY, otherwise the instruction

is set as STALL. Ready instructions are then assigned to the appropriate execution

unit (SU or CU) and placed in the EXECUTING state, once the execution is finished,

the instruction state is changed to EXECUTION DONE. At this point the full/empty bit

of the ilp sequential controller is set to empty, and the instruction is marked for

DECOMMISSION. The instruction buffer is in charge of removing the instructions

that are marked for decommissioning.

6.1.3.4.2 Superscalar execution mode:

The ilp superscalar controller uses register names and operand directions

to determine if two instructions do not depend on each other. Read after read de-

pendencies (RAR) and completely independent instructions are allowed to execute in

parallel. When a anti-, output- or true-dependency is encountered, the pipeline is

stalled. Under this mode of operation, the instructions start in the WAITING state. The

ilp superscalar controller has a set of busy registers that stores the register name

and direction. This set is used to determine if an instruction can be scheduled or not. If

there are no dependencies, the instruction state is set to READY and the fetch decode

unit assigns it to the corresponding unit (SU or CU). If the instruction is of type

MEMORY or it is a memory Codelet, then the memory controller is used to determine if

there are any memory dependencies. If the instruction has a data dependency in reg-

isters or memory, the instruction is set to the STALL state, and the pipeline is stalled.

After an instruction has finished execution, its state is set to EXECUTION DONE. the

FinishInstruction() method in the ILP controller is called to remove the busy reg-

isters and memory ranges (if any). Once the ILP is updated the instruction is marked

for decommission.

100

6.1.3.4.3 Out of Order (OoO) execution mode:

The ilp ooo controller is the most complex controller of all three. There are

6 different containers storing information regarding busy registers, renamed registers,

already processed instructions and dependency management for when an instruction

is finished. A register state determines the current operation being applied to that

register. A register state can be NONE, READ, WRITE or READWRITE. When an instruction

is fetch the current state of the register is compared to each of the operands of type

register in the instruction, and their direction, to determine dependencies or make

decisions about register renaming. Additionally, the ilp ooo has a hidden register file

of its own used for renaming.

The first container is the used map. This map stores the current state of a

register inside of the execution pipeline. It associates a register name to a state. If

a register is used by any operation in the pipeline, then this container will include

the register and the operation being applied. This container is used to determine the

relationship between the incoming instruction, and the instructions that are already

present in the instructions buffer. Depending on the direction of the instruction,

and its state value on the used map, an instruction may be marked as ready, left

waiting, or stall the pipeline. Likewise a register may be renamed to remove output

dependencies across instructions.

Two more containers, registerRenaming and renamedInUse, associate already

renamed registers. The former is a map that associates the original register name to

the newly renamed register name. This is used to re-associate any other read reference

to this register in future instructions. The latter is a set that stores all the already

used registers in the hidden register file, to avoid re-utilizing a renamed register.

Another container is the reservationTable. This is a set of pointers to pairs

in the instruction buffer previously described. This set stores all the instructions

that have already been processed and which should skip the dependency analysis. It

is important to run the dependency analysis only once when the instruction is fetch.

101

B

D
C

A

Instructions BufferSubscribers map

INST WRITE (R2048L_1), READ (R64b_2)

INST READ (R2048L_1)

INST READ (R1L_3), READ (R2048L_1)

INST READ (R2048L_1) WRITE (R1L_3)

Read Instruction buffer as:
ANY INST DIR_OP1 (REG_OP1), DIR_OP2 (REG_OP2)

Keys:
Registers

Values:
List of reference to

instruction and
operand number

R2048L_1 R64b_2 R1L_3

B, 1
C, 2
D, 1

A, 2 C, 1
D, 2

Inst Buff Reference , OP_NUM

Figure 6.3: Example of the content in the subscribers map with respect to the
instructions in the instructions buffer

The remaining two containers are meant to emulate the bus in the Toma-

sulo’s algorithm that inspired this design. It connects the production of an operand

value from an instruction to the respective consumer operand in another instruction.

We define a new type of pair ((instruction decoded t*, operand number)) called

instruction operand ref t which associates an operand number to an instruction in

the instructions buffer.

A container called subscribers is a map that keeps a reference to all the

instruction operand ref t that reads a given register. An example of the rela-

tionship between the instructions buffer and the subscribers map is depicted

in figure 6.3. The key of this map is the register name, and the value is a vec-

tor of instruction operand ref t, each containing a reference to a location in the

instructions buffer and the corresponding operand number. This container allows

a write operation that has finished to enable all the consumers. Furthermore, it allows

us to remove a register from the used container when there are no other instructions

referencing this register.

In the example of Figure 6.3, once Instruction A has finished, the ILP controller

will enable the operand 1 of instruction B and D, and the operand 2 of instruction

C. Furthermore, the register R64b 2 will have no more references once instruction A

has finished, therefore, it may be removed from the used container. Register R1L 3

102

are currently used in instructions C and D. Since there is no instruction writing to

this register, these two instructions will be ready to execute. Once A finishes, all three

instructions A-D will be marked as ready.

A second map called broadcasters have a similar functionality, but it serves

a special case when instruction operands feature a READWRITE direction. When an

operand is READWRITE, the content of the register will be modified. If a register has

subscribers, then it is necessary to rename the operand and copy the original values

of the register into the newly renamed register. However, if an operand used state

is WRITE, the value is not yet available, and the instruction may not proceed. When

this happens, a broadcaster subscription is issued instead of a regular subscription.

When the write finishes, the value of the register will be copied to the renamed register

of the READWRITE operand.

For example, let us change operand 1 of instruction D of figure 6.3 for a

READWRITE direction. When instruction A finishes, all three instructions B-D will

require the resulting value. However, if D executes in parallel with B and C, D may

change the value of register R2048L 1 before B and C read its content. To avoid

this, instruction D’s operand 1 is renamed to another register (say) R2048L ren 1.

When A finishes execution, the resulting value of R2048L 1 is “broadcasted” (copy) to

R2048L ren 1, allowing all three instructions B-D to be executed in parallel.

All three ilp controller implementations use two methods:

checkMarkInstructionToSched() and instructionFinished(). The former is

executed every time a new instruction is fetch, the later is executed every time an

instruction has finished.

6.1.4 Configuration and common structures

There exist a set of configuration file that contain parameters to define the differ-

ent components of the SCM emulation. Most of the parameters are defined through C

Macros. Starting with register file, configuration parameters include register sizes, total

register file size, register names and helper functions Second, thread role assignment for

103

the different OpenMP threads, as well as the number of CUs are determined in another

file. Third, the ILP mode of the executing machine (i.e. sequential vs superscalar) is

determined through an enumeration variable that is defined in the configuration files.

Additionally, the size of the reservation table used by the ILP superscalar class, the

maximum number of operands supported by the instructions in the ISA, the size of

the instructions buffer and execution slots are all configurable as well.

In addition to configuration parameters. There are a set of string manipulation

helper classes that are used through the interpretation of the assembly. Besides, defi-

nition of the different supported instructions in the assembly Codelet program requires

the use of regular expressions that determine the structure of each instruction, as well

as labels and comments in the assembly file. An extensive set of assembler operations

are also defined in the common files.

Finally, we have created different helper macros to include debugging infor-

mation for the runtime. This information has different levels of verbosity and they

distinguish between errors, warnings and information messages. These tools are an

adaptation of previously defined macros used in a different software project for the

creation of OpenMP Validation and Verification tests [21]. Debugging information and

level of verbosity can controlled by means of a defined macro that is accessible through

CMake.

6.1.5 The Codelet Class

Thanks to the use of inheritance in object oriented programming, it is possible

to create an interface class that works as a recipe for other classes. Interfaces also

allows to create inherited Codelet classes with user defined behaviors. Therefore, the

use of an interface seems natural for the creation of user defined Codelets. However,

there is still a challenge to overcome. C++ does not support dynamic type checking.

Therefore, information about the class name is usually lost at runtime. On the other

hand, the creation of an interpreter for the assembly Codelet code requires runtime

matching of class constructors. A factory method pattern is used to solve this issue.

104

First, the SCMUlate runtime needs to be aware of the name of the of the user

defined Codelets in order to connect it during runtime when interpreting the SCM

assembly. C++ does not support dynamic type creation at runtime by default. The

RTTI is limited to type information, but for the construction of objects from strings,

it is necessary to use a factory method pattern that allows runtime creation of any

Codelet.

First, a registration process occurs at the beginning of the SCMUlate runtime.

Compilers often support attributes that let the user annotate code and modify the

behavior of the compiler, linker or runtime. The attribute ((constructor)) is

an attribute supported by most compiler vendors. It allows for a function to be called

before the beginning of a program. Special care needs to be placed when it comes

to construction of data structures that have dependencies. This is due to the lack of

a guaranteed order of evaluation of the different functions that use the constructor

attribute.

Our approach is to create an static class named codeletFactory. This class

contains a map between a string and a Codelet constructor. Additionally, a registration

method called registerCreator() is added to this class to allow for Codelet construc-

tors to be added to the map. Additionally, an static method is included as part of the

definition of user Codelet classes. This method, called codeletRegistrer(), is marked

with the attribute ((constructor)), therefore it is executed at the beginning of

the program. A second static method, called codeletCreator() is used to encapsu-

late the Codelet constructor to overcome some limitations. Yet another static method

namely registerCodelet() directly adds the coodeletCreator() method to the

codeletFactory. Finally, the codeletRegisterer() calls the registerCodelet().

This complicated process is required to remove the burden to the programmer

to have to register each Codelets at the beginning of the program.

A memory Codelet is a Codelet that access memory directly. A memory Codelet

must be marked as such at runtime, so the ilp controller can properly identify the

memory dependencies. A memory Codelet has an additional initialization process

105

that calculates the memory regions that are read or write during the execution of the

Codelet. These regions need to be exposed and calculated to the SCMUlate runtime

before starting the execution of the Codelet, to guarantee that no dependencies are

violated.

Finally, to support parameters of different type (i.e. register and immediate

values), there is a codelet params class that stores a list of Codelet parameters. Each

parameter is a unsigned char * which can be interpreted as a register, or as an

immediate value of up to the size of a pointer in the given architecture (usually 64

bits). In addition, a parameter has a read/write direction and a flag indicating if it

corresponds to a memory address or not. A missing memory address parameter must

stall the execution of the pipeline, guaranteeing that ranges can be calculated.

The user casts an operand to the appropriate type by using the templated

method getParamAs<T>(int paramNum). The user must know what the operand type

is, and appropriately handle its. When there are multiple parameters, this pointer is

cast to an array of unsigned char pointers. In the following section we explain how

to use macros to create Codelets as well as the different instructions to be included in

the assembly Codelet program.

6.2 Programming API and the assembly Codelet program

So far we have described the design and organization of the SCMUlate software.

This section describes the application programming interface (API) that allows for a

user to define new Codelets, and create assembly Codelet programs.

6.2.1 Codelets definition

Codelets are first defined in C++ an then used in the assembly Codelet pro-

gram. C++ allows for compiler code generation and optimizations for the L0 Codelets.

Therefore, programmer is not required to write code in L0 assembly (e.g. x86 ISA).

Section 6.1.5 explains the behavior of the Codelet class and its interaction with the

runtime. As mentioned in this section, in order to define Codelets, it is necessary to

106

create a new class that inherits from the interface class Codelet (see Figure 6.1). How-

ever, in addition to inheritance from this class, the new class needs to include some

static methods to allow registering the class into the runtime.

To ease creation of Codelet types we provide several C Macros: a first

macro, DEFINE CODELET(name, numParams, OP IO), is used for declaring a new Com-

pute Codelet class, together with the appropriate static methods. a second macro,

DEFINE MEMORY CODELET(name, numParams, OP IO, OP ADDR), is used for declaring

a new Memory Codelet class, which will be marked as such, and will contain the meth-

ods to calculate the memory ranges. A third macro, MEMRAGE CODELET(name, code)

allows the user to specify the function that calculates the memory ranges. Finally,

a fourth macro, with signature IMPLEMENT CODELET(name,body), is used for imple-

menting the Codelet’s instruction by providing the body of the implementation()

method.

The name parameter in these macros is used to compose the name of the Codelet

class (e.g. myCod results in the name cod myCod class). Next, the numParams describes

how many arguments the Codelet takes. The OP IO parameters contains a bit mask

that describes the read and write actions over each Codelet operand. The OP ADDR is

another bit mask that uses a single bit per operand to determine if an given operand

is an address or not.

The bitmask that determines the OP IO separate read from write for considering

the readwrite direction of an operand. Starting from the LSB, and alternating the read

and write bits, every two bits represent an operand. For example, the value 0b101101

represents a read operation on the first operand (01), a read and write operation on

the second operand (11), and a write operation on the third operand (10). The bits

00 are reserved for immediate values or unused operands. Bitmasks are defined as a

class called scm::OP IO with a collection of static constexpr std::uint fast16 t

values, one for each operator read or write.

The bitmask that determines the OP ADDR contains a single bit per operand.

Starting from the LSB, each bit is associated to a different operand. For example the

107

value 0b000011 says that operands 1 and 2 are used to calculate the address range

of a memory Codelet. Bitmasks are defined as a class called scm::OP ADDRESS with

a collection of static constexpr std::uint fast16 t values that allows marking

operands as addresses.

6.2.2 Example of a print Codelet

There is a list of predefined Codelets that I refer to as system Codelets. The print

Codelet is an example of them, and it dumps the value of the register that is passed to

it. For easy implementation, we have asked the user to specify the length of register

as part of the parameters, in an immediate value. However, future implementations

should be able to obtain this value from the register name description.

Listing 6.1 shows the definition of the print Codelet. Line 1 uses the

DEFINE CODELET macro. The name of the class created under the hood is cod print,

however the user will use the print name to refer to the Codelet during the assembly

Codelet program. This Codelet receives two parameters: 1) the register to be printed,

and 2) the length of the register as an immediate value. The register in the first

parameter is read only. Therefore, the OP IO is set to scm::OP IO::OP1 RD. Following,

there are lines 3 through 17 contain the implementation code. The IMPLEMENT CODELET

macro on line 3 indicates the implementation applies to the print Codelet.

108

1 DEFINE_CODELET(print , 2, scm:: OP_IO:: OP1_RD);

2

3 IMPLEMENT_CODELET(print ,

4 // Obtaining the parameters

5 unsigned char *reg = this ->getParams ().getParamValueAs <

unsigned char *>(0);

6 uint64_t len_in_bytes = this ->getParams ().getParamValueAs <

uint64_t >(1);

7

8 std::cout << " = 0x";

9 for (uint64_t i = 0; i < len_in_bytes; i++)

10 std::cout << std:: setfill(’0’)

11 << std::setw (2)

12 << std::hex

13 << static_cast <unsigned short >(reg[i] & 255)

14 << (i%2 != 0? " ":"");

15 std::cout << std::endl;

16);

Listing 6.1: The Print Codelet implementation

Continuing with the implementation of the print Codelet, line 5-6 is used to

obtain the parameters. The memory location that points to the given register is ob-

tained in Line 5, and Line 6 obtains the immediate value that contains the size, in

bytes, of the register to be printed. Finally, lines 9 through 16 prints the actual value

of the register.

Use of the print Codelet is shown in the sample assembly Codelet program in

listing 6.2. This code is written for the L1 level of the SCM machine being emulated.

As can be seen there are also other instructions that form the assembly Codelet

program ISA. Next section will describe these instructions.

109

Group Instruction OP1 OP2 OP3 Description

JMPLBL LABEL - - PC = LABEL;

JMPPC IMM - - PC += IMM;

BREQ REG REG IMM/LBL (OP1 == OP2) ? PC = (LBL? LBL : PC + IMM) : PC += 1;

BGT REG REG IMM/LBL (OP1 >OP2) ? PC = (LBL? LBL : PC + IMM) : PC += 1;

BGET REG REG IMM/LBL (OP1 >= OP2) ? PC = (LBL? LBL : PC + IMM) : PC += 1;

BLT REG REG IMM/LBL (OP1 <OP2) ? PC = (LBL? LBL : PC + IMM) : PC += 1;
CONTROL

BLET REG REG IMM/LBL (OP1 <= OP2) ? PC = (LBL? LBL : PC + IMM) : PC += 1;

ADD REG REG/IMM REG/IMM OP1 = OP2 + OP3;

SUB REG REG/IMM REG/IMM OP1 = OP2 - OP3;

MULT REG REG/IMM REG/IMM OP1 = OP2 * OP3;

SHFL REG REG/IMM - OP1 <<OP2;ARITHMETIC

SHFR REG REG/IMM - OP1 >>OP2;

LDIMM REG IMM - OP1 = OP2;

LDADR REG REG/IMM - OP1 = [OP2];

LDOFF REG REG/IMM REG/IMM OP1 = [OP2 + OP3];

STADR REG REG/IMM - [OP2] = OP1;MEMORY

STOFF REG REG/IMM REG/IMM [OP2 + OP3] = OP1;

COD <name> REG/IMM REG/IMM REG/IMM CALL name(OP1, OP2, OP3);

CODELET
COMMIT - - - Finish Codelet Execution;

Table 6.1: List of SCMUlate supported instructions

1 LDIMM R64B_1 , 1; // Load immediate value 1 to R64B_1

2 LDIMM R64B_2 , 2;// Load immediate value 2 to R64B_1

3 ADD R64B_3 , R64B_1 , R64B_2; // R64B_3 = R64B_1 + R64B_2

4 COD print R64B_3 , 8; // prints = 0x0000 0000 0000 0003

5 COMMIT;

Listing 6.2: Example of using the Print Codelet.

6.2.3 The assembly Codelet Program ISA

Inside the SCMUlate, there is an assembly-like interpreter that translates a

text file with the L1 instructions, into executable binary code organized as a decoded

instruction type. There are a set of instructions that are currently supported, sum-

marized in table 6.1. These instructions are similar to the instruction table presented

earlier in Section 5.2.1.

Notice that some instructions support both immediate values and register

110

operands. For memory instructions we use square braces in the description to rep-

resent a memory access to the address that resolve inside. Immediate loads allow for

direct assignment of register values.

It is worth noticing the similarities between commodity ISAs and the SCM ISAs

presented in this work. This is intentional as the idea of SCMUlate is to emulate the

SuperCodelet Model. Progress made in the design of other ISAs can be applied to

the hierarchical design of the SCM ISA. For example, the SCMUlate ISA could be

implemented by extending the RISC-V ISA. However, these instructions represent the

bare minimum set for a proof of concept. Furthermore, these instructions emphasize

the availability of a Turing complete system at each level of the hierarchy of the SCM

model, a powerful characteristic. A consequence of this property is the ability to

support in-memory compute, where certain instructions of the upper levels of the SCM

operate over memory values without having to move them down the hierarchy.

6.2.4 Running the emulator

In order to use SCMUlate there are other elements that need to be provided.

1) a file containing the description of the L1 program to be executed. 2) the ILP

execution mode (i.e. sequential or superscalar as of right now). and 3) a memory

region to be used as L2 memory. The current status of the SCMUlate software focuses

on the emulation of a single L1 machine. However, L1 memory operations map to an

L2 memory. There needs to be an address translation between the values used in the

L1 program, and the actual memory allocated in L2 (i.e. memory allocated in the

system).

To ease deployment of the emulator, the user is required to provide the memory

region that represents L2. Therefore, before calling the SCMUlate runtime, it is

necessary to allocate some memory, as well as manually handle allocation of data

within this memory. Future versions of the runtime should also include memory

management capabilities. Listing 6.3 shows an example use of the SCMUlate for

matrix multiplication. The assembly Codelet program is not shown in order to

111

emphasize the creation and use of the runtime.

1 int main () {

2 unsigned char* memory = new unsigned char[SIZEOFMEM];

3 double *A = reinterpret_cast <double*>(memory);

4 double *B = reinterpret_cast <double *>(& memory[B_offset]);

5 double *C = reinterpret_cast <double *>(& memory[C_offset]);

6 // Initialize A, B, and C

7

8 scm:: scm_machine * myMachine;

9 myMachine =

10 new scm:: scm_machine("matMul128x1280.scm",

11 memory ,

12 scm:: SEQUENTIAL);

13 if (myMachine ->run() != scm:: SCM_RUN_SUCCESS) {

14 SCMULATE_ERROR (0, "THERE WAS AN ERROR WHEN RUNNING

THE SCM MACHINE");

15 return 1;

16 }

17 // Obtain C results

18 delete [] memory;

19 delete myMachine;

20 return 0;

21 }

Listing 6.3: Use example of the SCMUlate runtime

In the example, line 2 is the allocation of memory that represents a single

register of L2 that is an operator of the main Codelet. I remind the reader that there

is an upper level Codelet called the main Codelet. In the emulation we are building,

the L1 assembly program that the user provides represent the main Codelet. That

112

Codelet has some arguments, which are stored in the memory allocated by the user of

the library. Lines 3 through 5 are part of the manual memory management process

needed to refer to the L2 memory elements. In particular, we assign the addresses for

A, B, and C matrices that are then used within the L1 program. Such translation is

needed because the values of memory addresses assigned by the OS that is running the

emulation are not known to the programmer at the moment of writing the L1 assembly

Codelet program. Instead, the user will write offsets relative to the argument sent to

the main Codelet (i.e. the memory allocated in line 1 and then sent to the runtime).

As previously mentioned, there needs to be a better solution for memory managing in

general.

Following, line 9 and 10 create the scm machine. The assembly Codelet program

is written in matMul128x1280.scm, a text file that uses the syntax described in Section

6.2.3. Additionally, we send the memory allocated, and which contains matrices A,

B, and C. Also, it is necessary to specify the operation mode of the machine (i.e.

sequential or superscalar currently). Continuing with the program description, lines

13 calls the runtime, followed by confirmation of a successful execution. Lines 18 and

19 are just to avoid memory leakage and clean up the runtime.

6.3 Runtime and Codelet Level Parallelism

So far we have focused on the different components as well as the API. As

expected, parallelism is an optimization of the runtime, and not an essential part of it.

In this section we focus on parallel execution. In particular, we analyze the timeline

diagram of figure 6.4.

The program that is being executed does not correspond to any particular com-

putation, but a synthetic code for the sake of demonstration. The ADDV Codelet adds

two vectors element by element, each of size 16 bytes. Memory is byte addressable.

All registers described with the letter R are 16 bytes long. Both the memory controller

and the L2 memory have multiple channels. Memory controller has a mechanism to

detect potential hazards between reads and writes.

113

waiting ... R6 dependency

waiting ...
R5 dependency

Instruction
Memory SU

LD R1, 0

Schedule

MEMORY
CONTROLLER L2 Memory

Main Codelet

CU0 CU1

LD R2, 10

fetch

fetch

LD R3, 100
fetch Schedule

Read 0

Read 10

LD R4, 110
fetch Schedule

Schedule
Read 100

Read 110
COD ADDV R5, R1, R3

fetch

waiting ... R3 dependency
Schedule

COD ADDV R6, R2, R4
fetch

Schedule
ST R5, 200

fetch

Schedule
Write 200ST R6, 210

fetch

Schedule
Write 210COD ADDV R7, R5, R5

fetch

Schedule
ST R7, 300

fetch

waiting ...
R7 dependency

COMMIT
fetch Schedule

Write 200

waiting ... R7 dependency

Done signal

ADDV

ADDVADDV

ADDV

LD R1, 0
LD R2, 10
LD R3, 100
LD R4, 110
COD ADDV R5, R1, R3
COD ADDV R6, R2, R4
ST R5, 200
ST R6, 210
COD ADDV R7, R5, R6
ST R7, 300
COMMIT

Figure 6.4: Time diagram of the execution of a Codelet using a superscalar approach
with 2 Compute Units. See the executing Assembly Codelet Program on the bottom
right

114

Starting from left, the first column represents the instruction memory. Next,

there is the SU in the second column. The SU fetch instructions from the Instruction

Memory, and decodes them. If the instruction is ready for execution, it schedules

them to the appropriate unit. In green blocks we show the decoding and scheduling

time. If an instruction is of type MEMORY, it is scheduled to the memory controller.

If an instruction is of type EXECUTE, it represents a Codelets, thus it is scheduled to

a CUs. The diagram shows two CUs, but a system may be consistent of more. The

Memory controller communicates with L2 Memory. It also handles potential hazards

when comunicating with memory. In the SU column, the red blocks represents stalls in

the pipeline. We have extended some times to stress the stalling, but they would not

necessarily represent the reality of a system. The light red block extending multiple

columns contain the reason for the stall and the unit that the SU is waiting on before

continuing execution.

This process is currently emulated in SCMUlate. The runtime is capable of

discovering potential hazard free instructions that can be scheduled in parallel. It also

stalls when a dependency may not be satisfied. As in the example case, registers are

manually renamed to avoid anti- and output-dependencies. In the future Chapter 7 we

show some real examples and their execution traces.

6.4 Profiling execution code

As previously mentioned, the SCMUlate framework include some tracing mech-

anism along with the runtime. This mechanism allows to obtain traces of the different

elements that compose the SCM machine. It is also designed with hardware counters

in mind.

In order to obtain the tracing data after execution, SCMUlate dumps the tracing

information into a JSON formatted file. Following, an offline python script allows for

visualization of data and better analysis. The current solution may not be ideal for

large runs due to the large size of the dump JSON file, and the limitations of the

115

python visualization. But for the time being, it provided a fast deployment of a tracing

mechanism for the purpose of development. Other solutions are being studied.

Tracing is achieved by using high precision timers. At the beginning of the

runtime, and right after initialization, a global clock is initialized. There is a vector

for each element in the SCMUlate (i.e. SU, CU, and runtime). At a given point in the

runtime, a new event is added to the vector containing an identifier of the event, and

the current clock time. When dumping the events into the JSON file, the numbers are

translated to other base time.

Currently, there is support for three type of timers: 1) A system timer for

runtime events. 2) an SU timer for SU related events, and 3) a CUMEM timer for

cu and memory interface related events. When multiple CUs exist, then there are

multiple CUMEM timers. For system events we currently support two: beginning

and end of runtime. For SU events we store: beginning and end of the SU unit,

fetch an instruction, schedule (i.e. dispatch) an instruction, execute a control or basic

arithmetic instruction, and enter in idle mode (e.g. stalling). Similarly, the CUMEM

has the beginning and end events, an event when a Codelet starts executing, an event

when a memory instruction starts executing, and an even when it goes into idle mode

(e.g. waiting for work).

The final JSON file has a structure similar to the example in Listing 6.4. We are

only showing a few examples of events and timers. The first timer (line 2) shows the

system timer. Line 11 is the beginning of the SU timer. Finally, Lines 19 and 30 are

the beginning of different CU and Memory timers. Inside the counter type indicates

the different three types. Finally, the list of events containing an event type and a

value as previously described.

116

1 {

2 "SCM_MACHINE": {

3 "counter type": "0",

4 "events": [

5 {

6 "type": "0",

7 "value": 0.000000

8 }, ...

9]

10 },

11 "SU_0": {

12 "counter type": "1",

13 "events": [

14 {

15 "type": "0",

16 "value": 0.001469

17 }, ...

18 },

19 "CUMEM_1": {

20 "counter type": "3",

21 "events": [

22 {

23 "type": "0",

24 "value": 0.001466

25 }, ...

26]

27 },

28 "CUMEM_2": {

29 "counter type": "3",

30 "events": [

31 {

32 "type": "0",

33 "value": 0.001477

34 }, ...

35]

36 }, ...

37 }

Listing 6.4: JSON file structure of the tracing mechanism of SCMUlate

After obtaining the JSON file, it is processed by a python script that uses the

Plotly library [85] to create an interactive trace. The output of the visualization tool

is shown in Figure 6.5. As seen in the figure, it is possible to see the trace of the

117

Figure 6.5: Interactive trace visualization example

different timers. Furthermore, it allows to visualize additional information of each of

the elements shown in the trace. As we improve the tool and tracing capabilities, other

information such as hardware counters are expected to be displayed in this plot.

118

Chapter 7

EVALUATION

Having explained the implementation of the SCMUlate framework in Chapter

6, this work evaluates the Sequential Codelet Model as well as the SuperCodelet ar-

chitecture. A commodity Intel chip with two different architectures is used: the Intel

gen9 GPU and the Intel x86 CPUs. This chapter describes evaluation results of the

SCMUlate emulator.

7.1 Evaluation methodology

The SCMUlate emulator has two main purposes. First, to demonstrate that

it is possible to achieve parallel execution of code through the use of the Sequential

Codelet Model in heterogeneous systems. Second, to obtain early metrics of a system

that implements the SCM, as well as understand the programming challenges and

strategies when using the SCM model. The SCMUlate emulator is intended to run

on commodity hardware, but it is also meant to faithfully mimic the behavior of the

different parts of the system. The ideal outcome of the SCMUlate emulator is not to be

faster than already existing parallel frameworks such as OpenMP or highly optimized

libraries. Instead, it is meant to demonstrate the feasibility of the SCM machine as

well as explore design parameters of the SuperCodelet architecture.
The proposed methodology intend to answer the following questions:

• Is it possible to separate program semantics from execution mechanisms by using
a well define program execution model? Consequently, Is it possible to separate
software and hardware evolution through a well established interface, similar to
the Instruction Set Architecture?

• Can sequentially describe code be parallelize by using dataflow inspired execution
engines? If so, what are the potential improvements?

119

CPU CORE3
SMT2

CPU CORE4
SMT2

CPU CORE5
SMT2

CPU CORE0
SMT2

CPU CORE
SMT2

CPU CORE2
SMT2

LLC Cache memory (On-chip) 12 MB

Gen 9.5 GPU
UHD Graphics 630

L3 GPU Cache

Slice 24 EU
subslice

8 EU
subslice

8 EU

subslice
8 EU

Figure 7.1: Architecture block diagram of the Intel Core i7-8700K containing the Intel
Gen9 integrated GPU

• Is it possible to build an SCM machine around a heterogeneous system, allowing
to utilize the same execution model for both GPU, CPU and potentially other
architectures?

• What are the major challenges when translating already existing code into SCM
semantics? How could we face these challenges?

Two different microbenchmarks are used for evaluation purposes: Vector addi-

tion, Matrix and multiplication.

7.2 Testbed

The ideal experimental test-bed is a system that contain CPUs and pro-

grammables GPUs in the same chip. This restriction is important to explore hetero-

geneous execution with CPU cores and GPU cores under the same program execution

model. By having the two units in the same chip, the communication latency between

the two architectures is determined by the on-chip memory (e.g. L3 cache). This

should resulting in lower communication latency between CPU and GPU. The alterna-

tive would be using discrete GPUs. However, to communicate a CPU and a GPU core

one must go through an external interconnect. Such approach would worsen the over-

head of the emulation of the SCM memory hierarchy for the L1 level currently being

emulated. Discrete GPUs on different dies could be used in L2 system emulations.

120

There exist several commercially available processors that contain CPU cores

and GPU cores in the same die. Intel architectures often feature an integrated GPU

that is fully programmable. Most recent generation of processors feature the Gen9

GPU architecture [83] coupled with CPU cores featuring Simultaneous MultiThreading

technology (SMT). The L3 memory is shared between CPUs and the GPU cores.

Therefore, L3 Cache can be seen as the Level 1 (i.e. SCM L1) register file when

emulating the SuperCodelet architecture, connecting both GPU and CPUs under the

same level.

This work uses an Intel Core i7-8700k processor. Figure 7.1 shows a simplified

architecture diagram. There are 6 CPU cores, each with HyperThreading technology

(i.e. SMT with 2 threads), for a total of 12 hardware threads. Each thread has a

base frequency of 3.7 GHz with potential overcloking through Turbo Boost technol-

ogy. Additionally, the Intel Core i7-8700k contains an Intel UHD Graphics 630 Gen

9.5 architecture integrated GPU. This GPU comes with 1 Slice containing 3 sub-slices,

each with 8 execution units (EU), for a total of 24 EU. An slice is the equivalent

of a GPU Core (e.g. Streaming Multiprocessor in NVIDIA GPUs, or an SIMD-Core

or Data-parallel processor for the AMD GCN architecture). Each execution unit has

a pool of threads with an independent register file and state. During a clock cycle,

the EU schedules 4 threads simultaneously regardless of the kernel. The scheduled

threads vary from cycle to cycle, selecting 4 different threads on each cycle. Finally,

each thread uses SIMD-4 (32 bits) instructions that are assigned to one of two FPU

(Floating point ALUs) capable of executing 1 addition and 1 multiplication simulta-

neously. Therefore, each EU can execute up to sixteen 32 bit instructions per cycle

(2FPUxSIMD4x(1add+ 1multiply)).

The Intel i7-8700k processor is hosted in a Dell Model Precision 3630 desktop

tower. The motherboard contains a single socket configuration. Additionally, it is

equipped with 32 GB of DRAM distributed in two 16 GB DDR4 DIMMs, each running

at 2666 MHz.

121

SU CU

2 x CU 2 x CU 2 x CU

2 x CU 2 x CU

LLC Cache memory (On-chip) 12 MB

Gen 9.5 GPU
UHD Graphics 630

L3 GPU Cache

Slice 24 EU

CU CU

CU

Figure 7.2: Architecture block diagram of the Intel Core i7-8700K containing the Intel
Gen9 integrated GPU

7.3 Sequential Codelet Abstract Machine mapping

The first step of the runtime is to map the running system resources to the

Sequential Codelet Abstract Machine by creating and pinning a software thread per

hardware thread in the system, and assigning it a role, as described in Chapter 6.

One single hardware thread is assigned as the Scheduling Unit. This thread does

not participate in computation of Codelets or memory operations, but it is in charge

of fetching L1 level instructions, as well as executing Control flow and arithmetic

instructions (As seen in table 6.1). The rest of the threads are assigned Computation

and Memory Unit roles simultaneously.

Figure 7.2 shows a modified version of the Intel’s Core i7 diagram presented

before. In this figure a single hardware thread is used as SU, while the rest are CUs.

The emulation strategy in SCMUlate provides major limitations that jeopar-

dize the performance of the runtime and the application. First, the SU is mapped to

a full hardware thread that is not used for computation of Codelets. This results in

a sub-utilization of hardware resources. Second, the emulation of memory operations

require extra data movements that are costly. Furthermore, Memory units emulation

uses a whole hardware thread when executing memory instructions. Thus, wasting

compute resources. Finally, commodity hardware architectures feature ILP optimiza-

tions that rely on the original von Neumann abstractions which are critical to achieve

122

top performance in these systems. Architecture optimizations such as data prefetching

and branch prediction are affected by the runtime, and reduce the overall efficiency

of the application. Consequently, making a one-to-one comparison with other parallel

programming models that rely on the original Von Neumann abstraction is challenging.

7.3.1 Register File:

On the Intel(R) Core(TM) i7-8700K system, there is a LLC cache of 12MB. The

cache line size is 64 bytes long, and it is used as unit of measure for defining the register

sizes. Therefore, the emulation of the register file through the LLC, as described in

Chapter 6, distributes the memory as follows: 160 registers of 64bits, 140 registers of

1 LINE, 100 registers of 8 LINE, 100 registers of 16 LINE, 60 registers of 256 LINE,

60 registers of 512 LINE, 60 registers of 1024 LINE, and 40 registers of 2048 LINE.

Where LINE corresponds to the size of the cache line. This arrangement results in a

total register file size of 11.72 MB, corresponding to almost all the LLC Cache. These

values have been selected in an almost completely aleatory manner. They reflect the

need to use different register sizes, while providing an starting point for exploring what

the appropriate register size is for the upper levels of the SCM architecture.

7.4 Example 1: Vector Addition

Vector addition is implemented as a gateway test for initial evaluation and

explanation of SCMUlate. Vector addition is an embarrassingly parallel problem that

allows for a simple implementation that illustrates the intentions of this work. The

operation A[] = B[] + C[] is perform. A, B and C are vectors of type double, each of

size 4000 ∗ 2048 ∗ 64bytes = 524.2MB for a total of 65536000 elements per vector.

Figure 7.3 represent the overall memory and compute structure at different levels

of the SCM machine in the context of the vector addition program. Numbers in yellow

are used to match the description in the rest of this section. There are three levels

shown in this picture, L0 through L2. Recalling the explanation of Chapter 6, the

reader should remember that the SCMUlate framework: 1) requires a level L2 memory

123

A B C

L2 Memory0 bytes 524288000
bytes

1048576000
bytes

A'
2048 x 64

bytes

B'
2048 x 64

bytes

C'
2048 x 64

bytes

Main

vecAdd
2048L

C'

Store
Offset

R2048L_1
R2048L_2

R2048L_3

$B offset$A offset

$C offset
R64B_3

R64B_1 R64B_2R64B_5 R64B_5

R64B_5

A' B'

Load
Offset

Load
Offset

L1 Memory

A''
double
8 bytes

B''
double
8 bytes

C''
double
8 bytes

VecAdd_2048L

R2048L_1 R2048L_2 R2048L_3

1

2

3

4

5

A''

B''

C''

 double *A = cast<double*>(reg2);

 double *B = cast<double*>(reg3);

 double *C = cast<double*>(reg1);

for (int i = 0; i < N; i++)
 C[i] = A[i] + B[i];

A' B' C'

Figure 7.3: Structure of memory and computation for Vector Addition using SCM
running on SCMUlate. 1) L2 memory contains the original 3 vectors (A,B,C) in a
single flat memory allocation. 2) load and store operations of L1 fetch part of the
whole array, according to the L1 register sizes (e.g. 2048x64 bytes) (A’, B’ and C’). 3)
L1 Codelets use these registers to perform computation. They are evaluated at L0. 4)
Each register in L1 belongs to L1 memory space. Then L0 computation access these
registers through memory operations. Each read/write access as much as L0 register
size (A”, B” and C”). 5) Actual computation performed at L0

.

124

region that contains the vectors A, B and C; 2) emulates the execution of a single

Main Codelet of level L2, described in L1 assembly and interpreted by the runtime;

and 3) allows to define L1 Codelets as L0 assembly code for execution in commodity

hardware.

Next to the yellow circle with the number 1 there is L2 Memory, allocated in

DRAM at the beginning of the SCMUlate framework. L2 memory contains the whole

program memory. Right under L2 memory, a circle represents the Main Codelet of the

Vector Addition SCM program. The connection between the Main Codelet and the L2

Memory implies that this Codelet uses the L2 memory as its operand. Within level 1,

memory addresses are calculated as offsets to the beginning of the L2 memory region,

resolving the translation between the program memory (as managed by the operating

system running the runtime) and L2 memory. For this example, L2 memory stores the

vectors to be added, A and B, as well as the resulting vector C. To the right of L2

memory, there is L1 memory (i.e. L1 register file seen as memory from L0).

The code shown in Listing 7.1 contains the L1 assembly Codelet program that

defines the Main Codelet. This code is interpreted and executed by the SCMUlate

runtime, as explained in Chapter 6. Lines 1 through 3 represent the offset locations

for each vector inside the L2 memory. Registers R64B 1, R64B 2, and R64B 3 contain

the location of A, B, and C respectively. Figure 7.3 shows these locations with arrows

pointing to L2 memory. Lines 4 through 6 define registers R64B 4, R64B 5, R64B 6

containing the iteration variable, the offset variable, and the total number of iterations

respectively. This program fixes the number of iterations to 4000, defined by the size

of vectors A, B and C. Following, lines 8 through 16 contain the iteration body. Line

9 corresponds to the control operation of the loop, jumping out of it to line 17 (i.e.

PC + 8) when register R64B 4 (iteration variable) is equal to the registerR63B 6 (limit)

that contains the total number of iterations (i.e. 4000). Line 14 increases the iteration

variable, and Line 15 increases the offset that points to the chunk to be processed in

the next iteration.

125

1 LDIMM R64B_1 , 0; //Vect A Base Addr

2 LDIMM R64B_2 , 524288000; // B Base Addr

3 LDIMM R64B_3 , 1048576000; // C Base Addr

4 LDIMM R64B_4 , 0; // iteration variable

5 LDIMM R64B_5 , 0; // offset

6 LDIMM R64B_6 , 4000; // num of iterations

7

8 loop:

9 BREQ R64B_4 , R64B_6 , 8;

10 LDOFF R2048L_1 , R64B_1 , R64B_5;

11 LDOFF R2048L_2 , R64B_2 , R64B_5;

12 COD vecAdd_2048L R2048L_3 , R2048L_1 , R2048L_2;

13 STOFF R2048L_3 , R64B_3 , R64B_5;

14 ADD R64B_4 , R64B_4 , 1;

15 ADD R64B_5 , R64B_5 , 131072;

16 JMPLBL loop;

17 COMMIT;

Listing 7.1: Main Codelet for the Vector Addition program

The main computation of this program happens in lines 10 through 13. In each

iteration, a chunk of A and B are loaded into the L1 register file, then the Codelet

VecAdd 2048L is executed, and the result is also placed in an L1 register. Following, the

value is stored back from the result register into L2 memory. This process is depicted

in figure 7.3 inside the Main Codelet. Load and store operations receive an address, an

offset and a register. The red dotted arrow next to the yellow circle with the number

2 shows the chunk of the vector A and its correspondence to the register (labeled A’).

The load operation of A copies the values from a chunk of A in L2 memory into the

register in L1 that contains A’. These registers are of size R2048L x, equivalent to

2048 × 64 = 131072 bytes. This is also the value that is used to increment the offset

variable in Line 15. Notice that the Codelet, depicted next to the yellow circle with

126

the number 3, operates directly from and to the registers (i.e. the L1 register file).

Also, notice that the representation inside the Main Codelet is a dataflow graph, while

in the SCM program is a sequential description of this graph.

The description of Codelet vecAdd 2048L is defined in the assembly ISA lan-

guage of the low level commodity hardware architecture (i.e. x86 in our testbed).

Fortunately, current compilers are able to translate C++ program to low level ISA.

Hence it is possible to use the approach described in Section 6.2 to defile L1 Codelets

in L0 assembly. The yellow circle with the number 5 in Figure 7.3 shows the same de-

scription in the context of the whole SCM infrastructure. The blue circle on the right

labeled VecAdd 2048 corresponds to a zoom in into the VecAdd 2048 Codelet used in

the Main Codelet on the left.

Listing 7.2 shows the definition and implementation of the vecAdd 2048L

Codelet in C++. Line 1 contains the definition of the Codelet with the

DEFINE CODELET() macro. This Codelet has 3 operands. Operand 1 corresponds to

result vector C, and it is a write operand (i.e. OP IO::OP1 WR). Operands 2 and 3

correspond to A and B respectively, and they are read operands (i.e. OP IO::OP2 RD

| OP IO::OP3 RD). The implementation of the Codelet starts in line 3 by using the

macro IMPLEMENT CODELET(). Lines 6 through 10 cast the operand registers into ar-

rays of type double. This is needed since, for the SCMUlate Runtime uses generic types

unsigned char * for registers, while for the user these registers represent data in the

format that makes sense to the application (i.e. double * in this case). Inside of the

Codelet, A, B and C are vectors as large as registers R2048L x. Therefore, each Codelet

operates over 131072/8 = 16384 elements where 8 is the size of a double. Finally, lines

12 and 13 is the actual computation that adds the different vector elements, iterating

over each element of the vectors A, B and C. numElements is a constant value equal

to 16384.

In Figure 7.3 the yellow circle with number 4 shows the relationship between

the register used inside the Main Codelet, and the L1 register file. The bold arrows

connecting the L1 Memory to the VecAdd 2048L Codelet represent the registers being

127

used as operands of the Codelet. Notice that a single element inside of the for loop

in the Codelet corresponds to a chunk of the L1 register file. This demonstrates the

hierarchical memory organization of the SCM model.

1 DEFINE_CODELET(vecAdd_2048L , 3, scm:: OP_IO:: OP1_WR | scm::

OP_IO:: OP2_RD | scm:: OP_IO :: OP3_RD);

2

3 IMPLEMENT_CODELET(vecAdd_2048L ,

4 // Obtaining the parameters

5 // Getting register 1

6 double *A = this ->getParams ().getParamAs <double *>(1);

7 // Getting register 2

8 double *B = this ->getParams ().getParamAs <double *>(2);

9 // Getting register 3

10 double *C = this ->getParams ().getParamAs <double *>(3);

11

12 for (uint64_t i = 0; i < numElements; i++)

13 C[i] = A[i] + B[i];

14);

Listing 7.2: L0 Codelet VecAdd 2048L implementation

In general, Figure 7.3 uses yellow circles with numbers 2 and 4 to follow this

hierarchical organization. L1 registers are considerably smaller than arrays A, B and

C. Therefore, a single load operation of L1 covers an small segment of the whole vector.

These segments are referred to as A’, B’ and C’ respectively in the Figure. The loop in

the L1 program in Listing 7.1 allows for moving the chunk along each vector. Likewise,

the vecAdd 2048L Codelet uses these chunks as operands in the form of registers of

the L1 register file. This L1 register file is seen as memory from the perspective of

L0. A single register in L0 can only hold a few elements of the vectors A’, B’ and C’.

For example in the testbed architecture, x86 registers will hold a single element of the

vector (assuming no SIMD extensions). In the Figure A”, B” and C” represent these

128

elements, while the loop inside the Codelet vecAdd 2048L allows to operate over the

whole sub array A’, B’ and C’.

1 #define REPS 4000

2 #define REG2048L 64*2048

3 // Size of each vector 64*2048*4000/8 = 65536000 elements

4 #define SIZE_VECT ((REG2048L*REPS)/sizeof(double))

5

6 struct __attribute__ ((packed)) packed_l2_mem {

7 double A[SIZE_VECT];

8 double B[SIZE_VECT];

9 double C[SIZE_VECT];

10 };

11

12 int main () {

13 packed_l2_mem * memory = new packed_l2_mem;

14 // Initialize A, B, and C ...

15 scm:: scm_machine * myMachine;

16 scm:: scm_machine myMachine("vectorAdd.scm",

17 (l2_memory_t) memory ,

18 ILP_MODE);

19 myMachine ->run();

20 // Verification and cleaning ...

21 return 0;

22 }

Listing 7.3: SCMUlate program for Vector Addition. Runtime creation and Main

Codelet creation.

Finally, in order to show the whole picture of the SCMUlate framework, it is

necessary to illustrate the structure of the main C++ program that instantiates the

runtime and creates the Main Codelet. Listing 7.3 shows a simplified version of the

129

main() function in C++ for the Vector Addition program. In this listing, Lines 1

through 4 define three macros created to ease understanding of the program: REPS,

REG2048L and SIZE VECT. REPS corresponds to the number of iterations performed

inside of the Main Codelet, as seen in listing 7.1 and its explanation. REG2048L cor-

responds to the size of registers in L1. SIZE VECT determines the overall number of

elements of A, B, and C. Following, Lines 6 through 10 define a struct that packs A,

B and C into a consecutive memory region. The attribute ((packed)) is used to

make sure there is no padding between vectors. L2 memory is then instantiated inside

of the main() function in line 13. After initialization of A, B, and C (hidden in the

Listing), the SCMUlate runtime is created in line 16. The runtime constructor receives

3 parameters: 1) the .scm file that contains the assembly code of the Main Codelet, 2)

a pointer to L2 memory, and 3) the Codelet Level Parallelism mode (i.e. SEQUEN-

TIAL, SUPERSCALAR, OOO as described in section 6.1.3.4). During construction of

the runtime, the .scm file is interpreted and loaded into the instruction memory of the

SCM machine. Finally, line 19 calls the runtime for execution, storing the result into

the C vector stored in L2 memory. The result is check and the code clean (hidden in

the listing), and the SCMUlate program finishes.

7.4.1 Vector Addition results

The Vector addition problem is executed using the different Codelet Level Par-

allelism mode supported by the SCMUlate framework, as described in 6.1.3.4. Fur-

thermore, scalability with the number of Computational Units is studied. An OpenMP

implementation with Vector Addition is used to compare the results and estimate the

SCMUlate overhead. Furthermore, we manually apply the Loop Unrolling and Register

Scheduling compiler optimization techniques to demonstrate that it is possible to take

advantage of already existing Compiler techniques when used with the SCM Program

Execution Model.

130

1 LDIMM R64B 1 , 0 ; // Loading base address A
2 LDIMM R64B 2 , 524288000 ; // Loading base address B
3 LDIMM R64B 3 , 1048576000 ; // Loading base address C
4
5 LDIMM R64B 4 , 0 ; // For i t e r a t i o n v a r i a b l e
6 LDIMM R64B 5 , 0 ; // For o f f s e t 1
7 LDIMM R64B 6 , 131072 ; // For o f f s e t 2
8 LDIMM R64B 7 , 262144 ; // For o f f s e t 3
9 LDIMM R64B 8 , 393216 ; // For o f f s e t 4

10 LDIMM R64B 9 , 4000 ; // For number o f i t e r a t i o n s
11
12 loop :
13 BREQ R64B 4 , R64B 9 , 23 ;
14 LDOFF R2048L 1 , R64B 1 , R64B 5 ;
15 LDOFF R2048L 2 , R64B 2 , R64B 5 ;
16 LDOFF R2048L 4 , R64B 1 , R64B 6 ;
17 LDOFF R2048L 5 , R64B 2 , R64B 6 ;
18 LDOFF R2048L 7 , R64B 1 , R64B 7 ;
19 LDOFF R2048L 8 , R64B 2 , R64B 7 ;
20 LDOFF R2048L 10 , R64B 1 , R64B 8 ;
21 LDOFF R2048L 11 , R64B 2 , R64B 8 ;
22 COD vecAdd 2048L R2048L 3 , R2048L 1 , R2048L 2 ;
23 COD vecAdd 2048L R2048L 6 , R2048L 4 , R2048L 5 ;
24 COD vecAdd 2048L R2048L 9 , R2048L 7 , R2048L 8 ;
25 COD vecAdd 2048L R2048L 12 , R2048L 10 , R2048L 11 ;
26 STOFF R2048L 3 , R64B 3 , R64B 5 ;
27 STOFF R2048L 6 , R64B 3 , R64B 6 ;
28 STOFF R2048L 9 , R64B 3 , R64B 7 ;
29 STOFF R2048L 12 , R64B 3 , R64B 8 ;
30 ADD R64B 4 , R64B 4 , 4 ;
31 ADD R64B 5 , R64B 5 , 524288 ;
32 ADD R64B 6 , R64B 6 , 524288 ;
33 ADD R64B 7 , R64B 7 , 524288 ;
34 ADD R64B 8 , R64B 8 , 524288 ;
35 JMPLBL loop ;
36
37 COMMIT;

Listing 7.4: Loop unrolling of size 4 for Vector addition. : A

131

7.4.1.1 Manually applying optimization techniques: Loop Unrolling and

Register Scheduling

Depending on the Codelet Level Parallelism used to implement the Sequential

Codelet Model, it may or may not be possible to remove anti- and output dependencies.

This is the case, for example, of the Superscalar implementation explained in section

6.1.3.4. On the other hand, the properties defined for Codelets in conjunction with the

hierarchical organization of memory in the SCM model, provides a bounded execution

time for Codelet instructions. This property is critical for SCM as it allows for the static

analysis of code usually found in compiler techniques used in sequential execution of

programs. Therefore, it is possible to imagine an SCM compiler that takes as input code

similar to the one found in Listing 7.1, together with information for each Codelet (e.g.

execution time, memory requirements, computational complexity, or other metadata),

and apply already existing optimizations to improve the execution of code.

To demonstrate this principle, two well known compiler techniques are applied

to the SCM assembly code of Vector Addition: 1) Loop Unrolling and 2) register

renaming. Listing 7.4 shows the result of applying unroll 4 operation on the code of

Listing 7.1 and register scheduling. Ultimately, this code removes false dependencies

that existed in the original Code. As a result, a simplified implementation of the SCM

machine that does not feature a full out of order engine (e.g. just superscalar) could

still parallelize this code.

7.4.1.2 Sequential execution

The ILP MODE::SEQUENTIAL execution mode uses a single Compute Unit (CU)

and it does not attempt to exploit Codelet Level Parallelism. Figure 7.4 shows a

segment of the trace when executing vector addition running on SCMUlate using Se-

quential mode. The horizontal axis represents time, while each of the bars represent

a different unit in the SCM machine. For Sequential, 1 bar represents the SU and

another bar the CU. The total execution time of the SCM program is shown on the

title, as well as the time the execution starts and end.

132

Figure 7.4: Vector Addition execution trace for the sequential mode on the
SCMUlate emulator. 3 loop iterations on 1 CU

The bottom bar labeled SU 0 corresponds to the trace of the Scheduler Unit.

The blue segments represent the scheduler processing time. The SU also executes basic

arithmetic operations and control flow instructions, included in the blue bars. On the

top right label, the percentage of time the SU was used for scheduling can be seen

inside the brackets. For this particular program and execution mode the SU 0 use is

only 4.64% of the total execution time. The rest of the time, this unit was idle waiting

for work. This behavior is expected and it supports the idea that an Scheduler Unit

does not have to be a really optimized core, but it could be a simplified architecture

or circuit logic. The CUMEM 1 bar shows the compute unit which executes Codelets (in

purple) and memory instructions (in green). The utilization for this core is 83.06% (as

presented in the label on the top right).The remaining 16.94 % of the time, the CU

was waiting for work from the SU, as well as synchronizing with the SU.

The zoomed-in segment presented in Figure 7.4 focuses on the beginning of

the execution of the program. To understand this trace, it is possible to compare it to

Listing 7.1. The CU executes memory instructions and Codelets one at a time as shown

in the trace. At the beginning of the program, several LDIMM instructions are issued.

133

These are seen as thin bars at the beginning of the CUMEM 1 bar. Following there is

a loop. First, two LDOFF instructions are issued, followed by a Codelet vecAdd 2048L

and a STOFF operation. This loop is seen as a repetitive patter of 2 green bars, followed

by a purple bar, followed by another larger green bar. This trace shows 3 iterations of

the program.

Figure 7.4 also shows a break down of the CU memory vs compute execution

time in the annotation on the bottom right. Excluding the time the CU was idle, 88.7%

of the real execution time was spend in memory operations, while 11.26% of the time

was spend in compute operations.

7.4.1.3 Superscalar execution

Figure 7.5: Vector Addition execution trace for the Superscalar Codelet Level
Parallelism mode on the SCMUlate emulator. 3 Loop iterations on 4 CUs.

Figure 7.5 shows the execution trace for the ILP MODE::SUPERSCALAR parallel

execution of the same program. This mode enables Codelet Level Parallelism in 4 dif-

ferent cores. In this execution mode, the bottom bar represents the SU 0, as explained

in the sequential execution. The top 4 bars represent each of the CUs. Green represent

memory operations and purple Codelet operations. We observe an slight increase in

134

the overall SU utilization, raising to 6.20% of the execution time. The total aggregated

execution time in Sequential is 13.6 ms, while in the SuperScalar version is 17.39 ms.

Although the overall execution time of the machine is lower than the sequential

execution, the speed up is only 4.8%. The trace shows how this execution lacks of

parallelism. When analyzing the dependencies of Listing 7.1 it is possible to observe a

write after read dependencies between iterations on registers R2048L 1 and R2048L 2.

Superscalar execution mode cannot resolve these dependencies, resulting in a stalls

after every iteration. The utilization of each thread lowers considerably to about 25%,

since CUs are most of the time waiting for work.

To overcome this limitation, the unrolling technique presented in Section 7.4.1.1

is applied. Figure 7.6 shows the execution trace for the 4-times unrolled version of

vector addition of Listing 7.4. First, we observe a considerable improvement in the

execution time of 241.2% with respect to the sequential execution. Second, the utiliza-

tion of each unit goes up to about 60%, in comparison to 25% without unrolling. The

relative SU utilization is also increased to 14.91 %. However, the total accumulated SU

time is 18.18 ms, close to previous results. 6 CUs are used to highlight the gap between

iterations caused by remaining dependencies, as seen in the trace between t=0.95ms

and t=1 ms mainly affecting CUs 3 an 4.

Unrolling has removed some write after read dependencies and structural haz-

ards presented in the original code. However, the unrolled version still contains de-

pendencies between iterations. The number of instructions that can be scheduled is

determined by the number of independent instructions between dependencies. As the

number of CUs is increased, there will be a point where not enough instructions are

available for execution, resulting in subutilization of resources. To allow for more par-

allelism, it is necessary to unroll even more loop iterations. Later in this chapter we

show results for unroll 8.

On the other hand, it is possible to see that the ratio between compute and

memory operations per CU changes slightly in comparison to the sequential version.

The superscalar execution with loop unrolling shows an average 90% of the time spend

135

in memory, and 10% in computation. As will be seen later in this chapter, unrolled

execution has a considerable increase in the execution time of memory instructions,

justifying the increased participation in the overall computation.

Figure 7.6: Vector Addition unrolled 4 times. Execution trace for the Superscalar
Codelet Level Parallelism mode on the SCMUlate emulator. Zooming on at least 4

loop iterations.

7.4.1.4 Out of order execution

Out of order execution is the most advanced Codelet Level Parallelism architec-

ture implemented in SCMUlate. This mode is capable of discovering and eliminating

all output and anti dependencies within a window of instructions. Figure 7.7 shows the

execution trace of the ILP MODE::OOO (Out of Order) execution. A continuous over-

lapping of instructions is observable across all the different compute units. The total

execution time is reduced to 88.15 ms, a speed up of 318.25% in comparison to the

Sequential execution mode, and 138.30 % in comparison to the Superscalar execution

mode.

SU utilization also increases considerably to 54.85%, an expected trend due to

the additional analysis and resource management needed for dependency discovery.

136

The total accumulated Scheduling time is up to 48.35 ms. The overall utilization of

the CUs is increased to about 68% in average while the memory to compute ration is

back to about 88% for memory.

Figure 7.7: Vector Addition execution trace for the Out of Order Codelet Level
Parallelism mode on the SCMUlate emulator. Zooming in to the initial loops.

7.4.1.5 Comparison between execution modes

It is clear that the SCM model yields to improvements in execution time. Figure

7.8 shows a summary of an experiment that runs the Vector Addition Code in all

three modes. Out of Order execution and Superscalar execution modes use 5 CUs,

while sequential uses a single CU. the orange bar represents the execution time after

applying compilation techniques. although it is not the same code, it demonstrates

the importance of the Program Execution Model that enables the use of traditional

compiler techniques.

To better understand the scalability of the Sequential Codelet Model and the

different Codelet Level Parallelism techniques, it is necessary to study the effect of the

number of CUs in the execution. The use of vector addition is not arbitrary. This simple

problem allows exposing the limits of the emulation approach or running system thanks

137

294.17 280.54

121.92
88.15

0

50

100

150

200

250

300

350

Sequential Superscalar Superscalar Unroll4 Out of Order

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Compiler technique

Figure 7.8: Execution time comparison for different execution modes. Superscalar and
Out of order used 5 CUs

to its ability to saturate the system with extensive parallelism. Additionally, results of

the SCMUlate runtime are compared against a simple OpenMP implementation. This

baseline provides a comparison with state of the art execution models.

First, the execution time for the different program versions and available Codelet

Level Parallelism techniques are obtained. Figure 7.9 shows the execution time of the

OpenMP baseline, the Out of Order execution and the Superscalar version with no

unrolling, and 2 and 8 times unrolling. As expected, Superscalar no unrolling is the

slowest execution with little scalability, followed by unroll 4, unroll 8, Out of Order

and OpenMP.

Following we compare scalability within each execution mode. This means,

comparing the speed up between the sequential version of each execution mode and the

execution with different number of CUs. Figure 7.10 shows the speed up progression as

the number of threads grows. The Superscalar no unrolling version does not achieve any

noticeable speed up, given its inability to exploit parallelism. Out of order execution

achieves the greatest speed up in comparison to its sequential version. This may be due

138

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Number of CUs

OpenMP Parallel SCMULate OoO SCMULate SS No Unroll
SCMULate SS Unroll 4 SCMULate SS Unroll 8

Figure 7.9: Vector Addition execution time for different number of CUs. The size of
the vector is the same in all the cases. Lower is better

to the high overhead that the OoO engine has to pay to discover parallelism, making

the sequential version slower than the parallel versions. The reader must be careful

in comparing these figures as they all have different comparison baselines. But this

figure gives a quantitative analysis on the ability to achieve better performance as the

number of CUs increase within a given design.

The next figure is the comparison of the different approaches vs the OpenMP

execution. OpenMP is used as an ideal execution time. It should still be possible to

obtain better performance than the OpenMP version used in this comparison. How-

ever, as it has been previously mentioned, the intention is not to achieve the best

performance, but to have a quantitative analysis of both SCMUlate and the SCM

model, while having a comparison point with traditional execution models created for

Von Neumann based architectures. Figure 7.11 shows how the Out of Order execution

mode achieves up to 80 % of the execution time of OpenMP. Considering the over-

head of the runtime, this result speaks well of the ability of the SCM model to achieve

parallel execution of Code.

139

0.0

1.0

2.0

3.0

4.0

5.0

1 2 3 4 5 6 7 8 9 10 11

Sp
ee

d
up

 (t
im

es
)

Number of CUs

OpenMP Parallel SCMULate OoO SCMULate SS No Unroll
SCMULate SS Unroll 4 SCMULate SS Unroll 8

Figure 7.10: Speed up progress with the number of CUs as compared against the
execution with 1 thread within each mode of operation.

Finally, a Codelet is expected to have a bounded execution time regardless of

the workload of the system. If a Codelet has a bounded execution time, it is possible

for a Compiler to optimize an SCM code based on static assumptions. The average

execution time of the three major instructions across the different execution modes has

been analyzed. These are LDOFF, STOFF, and the vecAdd 2048L Codelet.

Figure 7.12 Shows the slow down between the execution time of the instructions

in sequential mode, and its degradation as the number of CUs increases and the execu-

tion mode is modified. This figure shows two trends. In comparison to the stand alone

execution for 1 CU, instructions VecAdd 2048L and the STOFF have a performance

degradation of up to 1.8 times when a heavy workload is present in the system. For

LDOFF the trend is different for Superscalar execution and the out of order execution.

The Superscalar execution shows a significant degradation in the execution time of

Load instructions of up to 4.3 times. For Out of order execution the degradation is as

bad as 1.4 across the different instructions.

The differences in the LDOFF can be explained by the increased number of

140

0.0
0.2
0.4
0.6
0.8
1.0
1.2

1 2 3 4 5 6 7 8 9 10 11

Sl
ow

 D
ow

n
(t

im
es

)

Number of CUs

OpenMP Parallel SCMULate OoO SCMULate SS No Unroll
SCMULate SS Unroll 4 SCMULate SS Unroll 8

Figure 7.11: Slow down in comparison to a simple baseline using OpenMP. The
higher the better.

consecutive loads in the unrolled versions. These consecutive loads create a bottleneck

in the memory and increases the overall traffic of the memory interconnect. Modifying

the order of load operations, interleaving some compute operations could solve these

issues. Such changes can be applied by using compiler techniques similar to modulo

scheduling [86]

7.4.2 Analysing the Vector Addition example

The Vector addition is a simple code, yet it shows the benefits and drawbacks of

both the SCM model and the SCMUlate emulator. Furthermore, it provides guidelines

on how to appropriately map the SuperCodelet architecture to a real architecture.

First, it is worth clarifying that under a Von Neumann architecture, there will be better

approaches to improve the overall performance of vector addition. Furthermore, Intel

architectures are usually equipped with countless of features to improve performance of

both sequential and parallel workloads. Elements such as data prefetching, speculative

execution and improved cache coherency protocols are some of the features that one way

141

Execution Mode Instruction Average Execution Time

Out of Order
LDOFF 5.71 us
STOFF 2.11 us
vecAdd 2048L 4.68 us

Superscalar
LDOFF 4.42 us
STOFF 1.97 us
vecAdd 2048L 3.6 us

Superscalar U4
LDOFF 4.7 us
STOFF 1.96 us
vecAdd 2048L 3.6 us

Superscalar U8
LDOFF 5.2 us
STOFF 2.02 us
vecAdd 2048L 4.28 us

Table 7.1: Baseline execution time for the 3 most important instructions in Vector
Addition, as seen in different execution modes when running with 1CU

or another affect the ability of SCMUlate to deliver the best results. Some drawbacks

and important results are identified.

7.4.2.1 Evaluation drawbacks

The first difficulty that the SCMUlate runtime has is the overhead of the em-

ulation of the L1 register file. Since the register file is actually a separate memory

region that resides in DRAM, load and store operations from and to the register file

result in additional data movements that considerably increase the overhead of this

part of the system. These movements would not exist in a whole realization of the

SCM model. This overhead results in the reduced performance as observe in the re-

sults that compared SCMUlate with other traditional computational models such as

OpenMP. Furthermore, it is observable with the workload distribution between Com-

pute Codelets and Memory instructions. All the different execution modes that were

tested used more than 88 % of the executed time for memory operations. Further-

more, as can be seen in table ??, store memory operations in average took longer than

the compute operation vecAdd 2048L and the Load operations. The store operation

was, in average, 2.5 times slower than the Load operation, and 1.2 times slower than

142

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11

LDOFF STOFF vecAdd_2048L

SCMUlate OoO SCMUlate SS SCMUlate SS Unrolled 4 SCMUlate SS Unrolled 8

Figure 7.12: Average execution time of the three most important instructions in the
execution of Vector Add in comparison to the number of CUs and the

implementation approach. Lower is better

the compute operations. Although Vector addition is a memory intensive operation,

featuring 2 Loads and 1 store per 1 addition, data prefetching and cache mechanisms

in current architectures usually offset the cost of memory by guaranteeing data to be

close to to the core when the Load operation occurs. On the other hand, our emulation

of L1 register file increases the number of memory transfers and traffic in the network.

It is possible to overcome some of these drawbacks. For emulation purposes,

memory bypassing transfers in the form of register renaming are currently being ex-

plored. The intuition is that for a load operation, it should be possible to move the

reference for the register in DRAM, instead of performing a data movement (similar to

a register renaming in L1). Second, for a hardware implementation, the CU should not

be in charge of executing memory instructions. Instead, a special DMA engine should

issue these operations. If done correctly, and without the burden of the cache mecha-

nisms (e.g. scratchpad memory or more predictable cache protocols), the CU should

be free to perform other computations while data is being moved. Under these consid-

erations the cost of memory access should be considerably reduced. Finally, there will

be other applications that are compute intensive, which would take advantage of data

143

in the L1 Register file multiple times.

A second difficulty in the use of Vector addition is that vector addition is an

embarrassingly parallel problem. This problem is usually best resolved in SIMD or

SPMD execution modes. For the Sequential Codelet Model, a possible solution to this

issue is to extend the SCMUlate runtime and ISA with instructions that are similar

to SIMD extensions. Therefore, allowing Codelets to map to multiple CU units at the

same time, and registers to be used by different CUs concurrently. An extension for

SCM can be done to match SPMD execution models, but this is currently outside the

scope of the project.

7.4.2.2 Important results

Despite the aforementioned drawbacks, there are important and positive ob-

servations that can be drawn from these experiments. First, the early evaluation in

SCMUlate shows that it is possible to observe performance benefits from Codelet Level

Parallelism through the extension of ILP-inspired optimizations that heavily borrow

from dataflow models of computation. Results show implicit parallel execution of code

with up to 3.8x improvements in comparison to the sequential execution of the same

code in SCMUlate.

Furthermore, the SCMUlate shows that it is possible to separate memory from

compute operations. Allowing the compute operations to achieve high performance

and utilization of the compute resources. Efficiency can be improved by allowing the

user to program the behavior of memory operations. One of the principles that the

Sequential Codelet Model borrowed from the original Codelet Model is that Codelets

must be atomically scheduled and non preemptive. This is when it is possible to

guarantee that all the required resources for the execution of a Codelet are available

before the Codelet can start executing. The control flow organization, together with

the separation of Compute and Memory in the Sequential Codelet Model makes it

possible for Codelets to take full advantage of the CPU resources.

144

The average execution time of the vecAdd 2048L is as good as 3.6 us. Consid-

ering that during this time the CPU must perform 16384 additions, the peak flops for

the execution of this Codelet is 4.5 GFLOPS. The implementation of the Codelet also

benefits from SIMD instructions, as its code is simple enough for the compiler to ex-

ploit SIMD extensions in the x86 architecture. In general, Codelets have the potential

to provide extra optimization opportunities for Codelets, as they limit the code and

leverage its properties.

Another important finding from this experiment is the noticeable low execution

time of SU operations. Although for Out of Order execution the utilization is relatively

high. Many of the operations performed in the SU emulate elements that would be

implemented in real circuitry featuring logic gates. The emulation results are encour-

aging and demonstrate that the SU can be a simplified architecture that can easily fit

in the die area.

However, when comparing this scheduling execution time to the execution time

of Codelet and Memory instructions, and the scalability results, it is possible to con-

clude that the size of Codelets (i.e. size of emulated registers) for the current archi-

tecture is too small. The asymptotic behavior in Figure 7.10 can be explained by the

inability to maintain the CUs occupied for a longer time. The SU takes a given time

to schedule an instruction into a CU. In order to maintain all CUs busy, the time

to schedule instructions for all units must be much smaller than the time a CU is

busy. If instructions are too small, the scheduling bottleneck drives computation and

scalability. This will be further supported in the Matrix Multiplication example.

Finally, these experiments have also shown how it is possible to use traditional

compiler techniques to improve performance in the execution of SCM programs. The

similarities between the SCM assembly code, and traditional assembly code, in addi-

tion to the properties for execution of SCM instructions enable static analysis that

could potentially benefit the overall execution of the program. We observe also an

opportunity for scheduling techniques, that would, for example, reduce the divergence

of execution of memory instructions as observed in figure 7.12.

145

7.5 Example 2: Dense Matrix Multiplication

Dense Matrix multiplication is one of the most widely used kernels in scientific

computation and data sciences. This kernel has been studied thoroughly and it is well

known to most readers. Furthermore, this kernel can benefit from the SCM execution

model. Tiling is a well known pattern used for exploiting parallelism [87]. In matrix

multiplication, tiling provides an structure that can be easily mapped to the hierarchical

structure of the Sequential Codelet Model.

The underlying strategy adopted by this work is a tiled Matrix Multiplication.

A Codelet of level L1 is created which performs a single matrix multiplication over

two L1 registers, storing the result in another L1 register. This Codelet is called

MatMult 2048L. The matrix multiplication performed inside this Codelet is fixed in size,

and it is used as a tile of larger matrices. For the experiments presented in this work,

square matrices that are multiple of the tile size were used to avoid dealing with corner

cases that will not necessarily provide valuable information at the moment. Figure

7.13 shows an overall diagram that describes the Matrix Multiplication algorithm.

The operation to be performed is C = C + A ∗B.

The MatMult 2048L uses registers of size 2048L (i.e. 2048×64 = 131072 bytes).

These registers can fit a square tile of dimension
√

2048∗64
8

= 128. When copying data

between memory and registers, depending on the overall matrix size, the elements

in memory may not be contiguously allocated. Consequently, an special 2D mem-

ory access operation is required. Two memory Codelets are defined for loading and

storing tiles form and to memory. These Codelets are named LoadSqTile 2048L and

StoreSqTile 2048L respectively. As depicted in Figure 7.13, each load tile Codelet

has an operand called dist (for distance). Distance corresponds to the padding be-

tween two consecutive rows (assuming row major storage for the matrices). Once tiles

A, B and C have been loaded, the MatMult 2048L Codelet is ready to execute. Notice

that the tile C is shown in both the input of the Codelet and the output. The C tile

is an example of a READWRITE operand since it reads from C and writes to C.

Inside of the implementation of the Codelet matMul 2048L a simple 128x128

146

L2 Memory

A tile
128x128

Main

MatMul
2048L

C tile

Store
tile

R2048L_1
R2048L_2

R2048L_3

$B dist$A dist

$C dist
R64B_3

R64B_1 R64B_2R64B_5 R64B_5

R64B_5

A tile B tile

Load
Tile

Load
Tile

L1 Memory

matMul_2048L

R2048L_1 R2048L_2 R2048L_3

1

2

3

4

A tile

B tile

C tile

 double *A = cast<double*>(reg2);

 double *B = cast<double*>(reg3);

 double *C = cast<double*>(reg1);

Efficient BLAS library for

matrix multiplication

A tile B tile C tile

A B C

 B tile
128x128

 C tile
128x128

5

$C dist
R64B_2 R64B_5

Load
Tile

C tile

Figure 7.13: Tiling strategy for matrix multiplication. 1) Matrices are divided into
tiles of 128x128. 2) A special memory Codelet performs a load operation on tiles A,

B and C. Since tiles are usually non-contiguous, a distance is send as part of the
operands. 3) the matrix multiplication Codelet is applied. 4) the Rnum 2048R

registers contain the 128x128 tile. 5) Regular matrix multiplication can be applied, it
is possible to use highly optimized BLAS libraries.

matrix multiplication operation is performed. It is possible to use an optimized version

of this Codelet by referring to any of the available BLAS libraries. This work uses

three implementations: No optimized Matrix Multiplication, user optimized Matrix

Multiplication, and Matrix Multiplication with Intel’s MKL library. We use these

versions to study Codelet optimizations and its effect on the program execution time

with respect to scalability of the architecture.

147

1 LDIMM R64B_1 , 0; // Loading base address A

2 LDIMM R64B_2 , 131072; // Loading base address B

3 LDIMM R64B_3 , 262144; // Loading base address C

4

5 // Single tile code

6 COD LoadSqTile_2048L R2048L_1 , R64B_1 , 128; //Load A tile

7 COD LoadSqTile_2048L R2048L_2 , R64B_2 , 128; //Load B tile

8 COD LoadSqTile_2048L R2048L_3 , R64B_3 , 128; //Load C tile

9 COD MatMult_2048L R2048L_3 , R2048L_1 , R2048L_2;

10 COD StoreSqTile_2048L R2048L_3 , R64B_3 , 128; //Store C tile

11

12 COMMIT;

Listing 7.5: Matrix Multiplication 1 tile: C

Listing 7.5 shows the matrix multiplication L1 SCM code for a single tile of A,

B and C. The first three lines load the offsets in memory where matrices A, B and C

are stored. This example hardcodes these values, but it is possible to load values from

memory, as can be seen in the full matrix multiplication example in Appendix A. Lines

6 through 10 correspond to the process of multiplying a single Tile of A and B and

add it into C. This is equivalent to the Main Codelet depicted in Figure 7.13. Notice

that all operations are Codelets. Lines 6, 7, 8 and 10 are Memory Codelets. Line 9 is

the matrix multiplication for this single tile.

The Memory Codelet LoadSqTile 2048L loads a tile, in 2D, into the register.

Likewise the Codelet StoreSqTile 2048L stores a tile, in 2D, back into memory. In

these two Memory Codelets, the first argument corresponds to the L1 register that

holds the tile. The second argument contains the address where the tile begins in

L2 memory. And, the third argument corresponds to the padding between rows of

the same tile in memory. The padding is the distance that needs to be jumped in

a 1D memory space, in order to arrive to the next row. In this particular case, the

padding is for Level 2 memory. Once the tile is loaded into Level 1, all the elements

148

are consecutive. If A, B and C are as big as a single tile, and this tile has a side of 128

elements, the distance between rows is 128 elements. Memory Codelets are powerful

tools for memory transformation across levels, including gather/scatter operations.

Listing 7.6 shows the implementation for LoadSqTile 2048L. In SCMUlate

there are three macros used to implement Memory Codelets: DEFINE MEMORY CODELET,

MEMRAGE CODELET, and IMPLEMENT CODELET.

The DEFINE MEMORY CODELET macro let the developer define a new memory

Codelet and specify its properties. Line 1 in the Listing shows the name of the Codelet

and the number of operands. Line 2 describes the direction of each operand (Read,

write or readwrite). Line 3 mark certain operands as address operands. When an

Operand represents a memory address of L2 or it is needed to calculate an address, it

must be handled carefully. If an address operand is not ready when an instruction

is fetch, it would not be possible to determine memory dependencies. Allowing other

memory instructions to be processed could possibly result in incorrect memory order

of operations. In SCMUlate there is a stall in the pipeline when an address operand is

not available. Once the operand is available the stall is resolved, and the instruction

analysis continues as normal.

The macro MEMRAGE CODELET allows the user to specify the memory ranges (in

L2) that the Codelet is intend to access during its execution. The memory Codelet

class features a container that stores read/write memory ranges to be accessed. No

memory operation is performed in this function, instead, the container is filled with

the corresponding memory locations. Line 15 uses the method addReadMemRange()

that adds a new read range, specifying memory location and size. During execution

of SCMUlate, the SU scheduling mechanism uses the container to determine memory

dependencies, allowing a correct in-order memory access during out of order executions.

In general, when accessing memory, the superCodelet architecture must be cautious

not to change the total order of memory operations as described in the sequential

program.

149

1 DEFINEMEMORYCODELET(LoadSqTile 2048L , 3 ,

2 scm : : OP IO : :OP1WR | scm : : OP IO : : OP2 RD | scm : : OP IO : : OP3 RD,

3 scm : :OP ADDRESS : : OP2 IS ADDRESS | scm : :OP ADDRESS : : OP3 IS ADDRESS) ;

4

5 MEMRANGECODELET(LoadSqTile 2048L ,

6 unsigned char ∗ reg2 =

7 getParams () . getParamAs (2) ; // Get t ing r e g i s t e r 2

8 unsigned char ∗ reg3 =

9 getParams () . getParamAs (3) ; // Get t ing r e g i s t e r 3

10 u in t 64 t address = r e i n t e r p r e t c a s t<u int64 t >(reg2) ;

11 u in t 64 t l d i s t a n c e = r e i n t e r p r e t c a s t<u int64 t >(reg3) ;

12 l d i s t a n c e ∗= s izeof (double) ;

13

14 for (u i n t 64 t i = 0 ; i < TILE DIM ; i++)

15 addReadMemRange(address+l d i s t a n c e ∗ i , TILE DIM∗ s izeof (double)) ;

16) ;

17

18 IMPLEMENTCODELET(LoadSqTile 2048L ,

19 unsigned char ∗ reg1 =

20 th i s−>getParams () . getParamAs (1) ; // Get t ing r e g i s t e r 1

21 double ∗destReg = r e i n t e r p r e t c a s t<double∗>(reg1) ;

22 int i = 0 ;

23 for (auto i t = memoryRanges−>reads . begin () ;

24 i t != memoryRanges−>reads . end () ;

25 i t++) {

26 // Address L2 memory to a p o i n t e r o f the runtime

27 double ∗ addre s sS ta r t =

28 r e i n t e r p r e t c a s t<double ∗> (getAddress (i t−>memoryAddress)) ;

29 std : : memcpy(destReg+TILE DIM∗ i++, addres sStar t , i t−>s i z e) ;

30 }

31) ;

Listing 7.6: Definition and implementation of the LoadSqTile 2048L Codelet

The third macro, IMPLEMENT CODELET, represents the actual behavior of the

150

Codelet. Therefore, memory copy are for performed in this stage. This macro is

the same in both Memory and Compute Codelets, since it represents the functional

description of the Codelet. In the case of Listing 7.6, the ranges calculated in the

macro MEMRAGE CODELET are used to access memory. The for loop in Line 23 uses

the attribute memoryRanges of the Codelet Class which contains the memory ranges

calculated in the aforementioned macro. The line 28 uses the getAddress method

that transforms an L2 address into an OS accessible address, leaving the SCMUlate

world, and allowing programmers to think of L2 regardless of the SCMUlate memory

locations at runtime.

The strategy for memory Codelets used by SCMUlate, as it was described in

previous paragraphs, is merely an implementation decision, and it could be change

in favor of appropriate hardware (i.e. a unique memory controller with a queue that

respects the order of memory operations) when implementing the SuperCodelet archi-

tecture. The definition and implementation of StoreSqTile 2048L are omitted given

its similarities to LoadSqTile 2048L. The only difference is in the direction of the

operands, and the direction of the memory ranges. SCMUlate, as well as this example,

is open source and publicly available on GitHub [84].

7.5.1 Three different implementations

Three different implementations of the MatMult 2048L Codelet were explored.

Each implementation has a different performance profile. Having multiple implemen-

tations enables an analysis of how the size of a Codelet affects the SCM program

execution model. The term Codelet size is briefly defined in this context as the time

it takes to execute. This is an incomplete definition. A Complete one should consider

memory requirements and computational complexity. However, this short definition

will be used moving forward.

Listing 7.7 presents the definition of the MatMult 2048L Codelet. The

DEFINE CODELET() macro is used to describe the compute Codelet and its proper-

ties. Line 1 shows the Codelet name and determines that it uses 3 operands. Line 2

151

describes the direction of the first operand. This operand corresponds to the C tile,

therefore it has a readwrite direction. Line 3 contains the direction of the second

operand (read tile of A), and Line 4 the direction of the third operand (read tile of B).

Listing 7.7 also shows the first implementation version: No-optimized Matrix

Multiplication. The macro IMPLEMENT CODELET() contains the näıve Matrix Multipli-

cation implementation in lines 12 through 16. No further details are necessary.

1 DEFINE_CODELET(MatMult_2048L , 3,

2 scm:: OP_IO:: OP1_WR | scm:: OP_IO:: OP1_RD |

3 scm:: OP_IO:: OP2_RD |

4 scm:: OP_IO:: OP3_RD);

5

6 IMPLEMENT_CODELET(MatMult_2048L ,

7 // Obtaining the operands

8 double *A = this ->getParams ().getParamValueAs <double *>(2);

9 double *B = this ->getParams ().getParamValueAs <double *>(3);

10 double *C = this ->getParams ().getParamValueAs <double *>(1);

11

12 for (int i=0; i<TILE_DIM; i=i+1)

13 for (int j=0; j<TILE_DIM; j=j+1)

14 for (int k=0; k<TILE_DIM; k=k+1)

15 C[i*TILE_DIM + j] +=

16 ((A[i*TILE_DIM + k])*(B[k*TILE_DIM + j]));

17);

Listing 7.7: No optimized version of matMult 2048L

Following, Listing 7.8 contains the second implementation version: user opti-

mized Matrix Multiplication. The DEFINE CODELET macro has no changes, therefore

it is not shown in this Listing. Inside the IMPLEMENT CODELET() macro there is only

a single change in comparison to Listing 7.7. Line 8 and 9 have been swapped. This

change allows a modern compiler to easily vectorize this code using SIMD extensions.

152

As will be shown later in the results, the execution time of this version is considerably

smaller than the näıve implementation.

1 IMPLEMENT_CODELET(MatMult_2048L ,

2 // Obtaining the operands

3 double *A = this ->getParams ().getParamValueAs <double *>(2);

4 double *B = this ->getParams ().getParamValueAs <double *>(3);

5 double *C = this ->getParams ().getParamValueAs <double *>(1);

6

7 for (int i=0; i<TILE_DIM; i=i+1)

8 for (int k=0; k<TILE_DIM; k=k+1)

9 for (int j=0; j<TILE_DIM; j=j+1)

10 C[i*TILE_DIM + j] +=

11 ((A[i*TILE_DIM + k])*(B[k*TILE_DIM + j]));

12);

Listing 7.8: User optimized version of matMult 2048L

1 IMPLEMENT_CODELET(MatMult_2048L ,

2 // Obtaining the operands

3 double *A = this ->getParams ().getParamValueAs <double *>(2);

4 double *B = this ->getParams ().getParamValueAs <double *>(3);

5 double *C = this ->getParams ().getParamValueAs <double *>(1);

6

7 cblas_dgemm(CblasRowMajor , CblasNoTrans , CblasNoTrans ,

8 TILE_DIM , TILE_DIM , TILE_DIM , 1, A,

9 TILE_DIM , B, TILE_DIM , 1, C, TILE_DIM);

10);

Listing 7.9: Intel MKL version of matMult 2048L

Finally, Listing 7.9 uses Intel’s Math Kernels Library (MKL) to highly optimize

the execution of Matrix Multiplication. This version can also be seen as the most a

153

developer could optimize this Codelet, given the advanced optimizations used by the

MKL library.

7.5.2 A GPU implementation of Matrix Multiplication

Recent development on compilers for High Performance Computing has resulted

in an easy translation of code for acceleration devices. In particular, OpenMP offload-

ing features, introduced in version 4.0, allows compilers to easily target sections of

code to accelerators. Likewise, OpenMP 5.0 introduced code annotations that enable

unified shared memory between accelerator and host. The Intel OneAPI Framework

features a new compiler [88] capable of offloading to Intel GPUs, including the Gen 9.5

architecture in the testbed used by this work. Therefore, it is possible to write code

that offloads directly into the GPU.

Listing 7.10 shows the implementation of the Matrix Multiplication Codelet us-

ing OpenMP 5.1 offloading features to target the Intel integrated GPU. The Pragma()

form is used because IMPLEMENT CODELET() is a C macro, therefore the commonly used

#pragma is not permitted here. Notice that, in comparison to the other three versions

previously introduced, the only change of this code is the annotation that enables

GPU offloading. Furthermore, OneAPI allows to use the MKL version of cblas dgemm

for the GPU by using OpenMP’s 5.1 feature, target variant dispatch. For more

information about this please refer to the OpenMP 5.1 specification document.

There are two important considerations. First, the reader must understand

the purpose of using OpenMP as to be able to easily target the GPU. When using

heterogeneous computation in the SCM model, the CU will possibly have a different

execution model to SCM. Therefore, the use of OpenMP is limited to translation of

code to target the GPU and its execution model. This does not undermine nor it

contradicts the principles of the SCM model. Second, both the OpenAPI compiler and

the use of heterogeneous computation in this code are in early development stages, as

will be observed in the results presented later on in this Chapter.

154

1 IMPLEMENT_CODELET(MatMultGPU_2048L ,

2 double *A = this ->getParams ().getParamValueAs <double *>(2);

3 double *B = this ->getParams ().getParamValueAs <double *>(3);

4 double *C = this ->getParams ().getParamValueAs <double *>(1);

5 _Pragma("omp target data

6 map(to:A[: TILE_DIM*TILE_DIM],B[: TILE_DIM*TILE_DIM])

7 map(tofrom:C[: TILE_DIM*TILE_DIM])")

8 {

9 _Pragma("omp target variant dispatch

10 use_device_ptr(A, B, C)")

11 {

12 cblas_dgemm(CblasRowMajor , CblasNoTrans ,

13 CblasNoTrans , TILE_DIM , TILE_DIM , TILE_DIM ,

14 1, A, TILE_DIM , B, TILE_DIM , 1, C, TILE_DIM);

15 }

16 }

17);

Listing 7.10: Definition of the GPU Codelet matMulGPU 2048L using Intel’s MKL

support for gen9 GPU and OpenMP 5.1 features

7.5.3 Matrix Multiplication CPU Results

To properly evaluate Matrix Multiplication it is necessary to use different Matrix

dimensions. These experiments focus on square matrix multiplication. Four different

dimensions, multiple of the tile size, are used: 10, 20, 30 and 40. A single tile is

128x128 elements. Therefore, the 10x10 tile experiment, for example, computes matrix

multiplication for 1280x1280 elements in each matrix. Additionally, strong scaling is

studied. Finally, experiments lead to an exploration on how Codelet size and Scheduling

time relate to each other, providing the first hints towards answering the question:

What is the appropriate Codelet Size in the SCM Model?. All experiments use Out

of Order execution mode only. For CPU results, the three aforementioned versions for

155

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11

Ex
ec

ut
io

n
tim

e
(s

)

Number of CUs

10 20 30 40

Figure 7.14: Execution time vs number of CUs for the näıve version of Matrix
Multiplication. Logarithmic scale in the vertical axis.

CPU are used: No-optimization, user optimized and Intel MKL. Results will be shown

first, and their analysis will be left to Section 7.5.5.

7.5.3.1 Execution Time

Let us begin with the execution time. As expected, the execution time depends

on the number of Compute Units (CUs). The lower the execution time, the better the

application performance is. Likewise, as we increase the number of CUs, it is expected

that the execution time decreases. Ideally, as more compute capabilities area added,

less execution time should be observed.

Figure 7.14 shows the execution time as a factor of the number of CUs for the

näıve Matrix Multiplication implementation of the MatMult 2048L Codelet. Figure

7.15 shows the same metric for the user optimized matrix multiplication, and Figure

7.16 for the Intel MKL matrix multiplication version.

156

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11

Ex
ec

ut
io

n
tim

e
(s

)

Number of CUs

10 20 30 40

Figure 7.15: Execution time vs number of CUs for the optimized version of Matrix
Multiplication. Logarithmic scale in the vertical axis.

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11

Ex
ec

ut
io

n
tim

e
(s

)

Number of CUs

10 20 30 40

Figure 7.16: Execution time vs number of CUs for the Intel MKL version of Matrix
Multiplication. Logarithmic scale in the vertical axis.

157

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11

Sp
ee

d
up

 (t
im

es
)

Nuber of CUs

10 20 30 40

Figure 7.17: Strong scaling for the näıve version of Matrix Multiplication.

7.5.3.2 Scalability

Strong scaling is used to understand the effect that increasing the number of

CUs has in the execution time. Scalability is calculated with respect to the sequential

execution (CU=1) in eac problem size and optimization version. The following results

are intended to answer two questions: 1) can the SCM model scale? and 2) how the

size of Codelets tampers scalability?. The second question is important for designing a

hardware implemented SuperCodelet architecture. The expected behavior is that for

each CU added, the scalability factor is increased by 1, forming the straight line x = y.

Each experiment has a different baseline, therefore, the reader must be careful

when comparing results. The overall behavior is what is being compared, with the

intention to evaluate the machine and not the kernel itself. Additionally, these exper-

iments aim to understand if the size of the problem has implications with respect to

the scalability.

Figure 7.17 shows strong scaling results for the original Matrix Multiplication,

with no optimizations applied. Figure 7.18 shows the same metrics for the User Op-

timized version. And, finally, 7.19 for the version that uses Intel MKL for the CPU

158

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11

Sp
ee

d
up

 (t
im

es
)

Number of CUs

10 20 30 40

Figure 7.18: Strong scaling for the user optimized version of Matrix Multiplication.

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10 11

Sp
ee

d
up

 (t
im

es
)

Number of CUs

10 20 30 40

Figure 7.19: Strong scaling for the Intel MKL version of Matrix Multiplication.

159

inside of the MatMult 2048L Codelet. Vertical axis corresponds to the speed up, in

times, with respect to CU = 1, horizontal axis corresponds to the number of CUs.

7.5.3.3 Instruction size

Another important aspect to understand the time and scalability results

is the execution time for the three most important instructions of this kernel:

StoreSqTile 2048L, LoadSqTile 2048L, MatMult 2048L. To this end, the SCMUlate

tracing tool outputs statistics on instruction execution.

These results aim to answer the question: What is the effect on the number of

CUs in the execution of a Codelet? Ideally, as described in the theoretical background,

no changes to the execution time should occur. The larger the slow down, the more

performance degradation exists with respect to the sequential execution time. The

sequential execution time is used as baseline since this execution mode is expected to

have the less noise from the rest of the system and runtime.

Figure 7.20 shows the instruction degradation as the number of CUs increases.

The value for 1 CU is hidden since it is the baseline (i.e. slowdown = 1). Furthermore,

only matrix size M = N = K = 10 is shown. No considerable changes were observe in

the degradation with respect to the size of the matrix.

7.5.4 Matrix Multiplication GPU Results

For evaluating the behavior of the SCMUlate system in the presence of GPUs,

the same experiments were executed but for the MatMult 2048L GPU Codelet. Like-

wise, different dimensions, as a factor of the tile size, are shown. These experiments aim

to act as proof of concept of a heterogeneous SuperCodelet architecture, as described

in Chapter 5.

As previously mentioned, these experiments use the Intel Gen 9.5 architecture.

In particular, the Intel HD Graphics 630, containing 24 Intel GPU Execution Units [83].

Support for GPU offloading in these GPUs is limited and actively under development,

160

1

1.5

2

2.5

3

3.5

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

LoadSqTile_2048L MatMult_2048L StoreSqTile_2048L

Sl
ow

 D
ow

n
(t

im
es

)

Number of CUs / Instruction

NOOPT - 10 OPT - 10 OPTMKL - 10

Figure 7.20: Codelet Performance degradation for Matrix Multiplication.
M=N=K=10 tiles

during the time of writing this thesis, therefore, software and tools used to create these

graphs are mostly in beta versions.

7.5.4.1 Execution time

Figure 7.21 shows the execution time of the Matrix Multiplication microbench-

mark when running on the GPU. The lower the execution time, the better the perfor-

mance of the application.

The number of CUs represent the number of CPU threads actively pushing work

into the GPU. SCMUlate runtime has not been leveraged to be GPU-aware. Instead,

a GPU Codelet is used which contains a call to the GPU Kernel. The execution of the

GPU Codelet stalls the CPU core that manages the instantiation of the GPU Kernel.

This approach results in considerable reduction of system utilization, since CPUs cores

are just waiting for the GPU. A combined CPU+GPU execution is currently being

explored.

161

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10 11

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of CUs

10 20 30 40

Figure 7.21: Execution time vs number of CUs for the GPU version of the Matrix
Multiplication Codelet. Logarithmic scale in the vertical axis.

7.5.4.2 Scalability

Figure 7.22 shows the strong scaling results for the GPU version of the Matrix

Multiplication Codelet.

As mentioned in the execution time results, for GPU execution, a CU represents

a CPU thread pushing work into the GPU. A more appropriate mapping between

GPU Execution Units and the SCMUlate is still required to better map the Sequential

Codelet Abstract Machine to the test base architecture. Consequently, the strong

scaling results must be carefully considered.

7.5.4.3 Instruction size

Finally, the instruction performance degradation is studied for the GPU exe-

cution mode. Figure 7.23 shows the slow down in the execution of compute Codelets

as the number of Computational Elements is increased. More details will be analyzed

and discussed in the following section.

162

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11

Sp
ee

d
up

 (t
im

es
)

Number of CUs

10 20 30 40

Figure 7.22: Strong Scaling for the GPU version of the Matrix Multiplication
Codelet. Logarithmic scale in the vertical axis.

1

1.5

2

2.5

3

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

LoadSqTileGPU_2048L MatMultGPU_2048L StoreSqTileGPU_2048L

Sl
ow

 D
ow

n
(t

im
es

)

Number of CUs / Instruction

OPTMKL - 10

Figure 7.23: Strong Scaling for the GPU version of the Matrix Multiplication
Codelet. Logarithmic scale in the vertical axis.

163

0

10

20

30

40

50

60

70

10x10 20x20 30x30 40x40

Ex
ec

ut
io

n
tim

e
Ch

an
ge

 (v
s

10
x1

0)

Matrix Dimension

CPU No Opt
CPU User Optimized
CPU Intel MKL
GPU
Baseline

Figure 7.24: Big O for Matrix Multiplication as observed from L1. O(N3) for the
implemented MM.

7.5.5 Comparison and analysis

Having lay down all the results obtained from the SCMUlate emulator for the

Matrix Multiplication implementation, this section presents some important obser-

vations and conclusions that can be drawn from them. Some additional graphs are

presented to summarize or emphasize the findings.

First, the execution time results are studied. The operational complexity for the

commonly used square matrix multiplication algorithm is O(n3). The complete SCM

code for Level L1 that implements Matrix Multiplication is presented in Appendix A.

Regardless of algorithm used inside the the Matrix Multiplication Codelet (i.e. no-

optimization, user optimized, and Intel MKL), the execution time for a Codelet is

static, and known at compile time. Therefore, at level L1 it is possible to study Big

O operational complexity in terms of the number of tiles. Based on the algorithm

presented in Appendix A it is possible to observe the same O(N3) complexity. Where

N, is expressed in terms of number of tiles.

Figure 7.24 studies the change in execution time as the size of N is increased.

The experiment for N = 10 is used as comparison point for all the other execution

164

0

0.5

1
1.5

2

2.5

3

3.5

4

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

OOO No Opt OOO Opt OOO MKL

Pr
og

ra
m

 E
xe

cu
tio

n
Ti

m
e

(s
)

Co
de

le
t E

xe
cu

tio
n

Ti
m

e
(m

s)

Codelet Execution Time (ms) Program Execution Time

Figure 7.25: 5 CUs and M=N=K=20. Bars: Codelet execution time (left axis). Line:
Program Execution Time (right axis).

times. The red dots correspond to ideal O(N3) for N = 1, 2, 3, 4, considering the

baseline 10 × 10 is N = 1. Despite of the execution mode or architecture (CPU or

GPU), the observed operational complexity in terms of the size of the problem is the

expected value. The ability to interpret an algorithm in the upper levels of the SCM

machine is paramount for performance analysis and algorithm design in future large

scale computer systems. The isolation of levels in the SCM also provides a framework

for using already existing compiling techniques.

Additionally, the different versions to implement the MatMult 2048L Codelet

yields to different execution time. Between versions, it is only the execution of a

Codelet that changes. Therefore, it is expected that the trend in reduction in the

overall program execution time is proportional to the execution time of the Codelet.

Figure 7.25 overlays the Codelet execution time with the overall program execution

time. The left axis is used for the Codelet execution time, and the right axis is used

for the program execution time. They are 3 orders of magnitude apart.

The ratio between Codelet execution time and program execution time between

165

Out of Order No optimized and user optimized is about the same as the ratio between

program execution time between the same two experiments. For Codelet execution

time OOO NoOptcod
OOO Optcod

= 4.57, and for program execution time OOO NoOptprog
OOO Optprog

= 4.10. How-

ever, this is not the same for the MKL version, in comparison to the optimized ver-

sion. For Codelet execution time OOO Optcod
OOO MKLcod

= 4.87, and for program execution time

OOO Optprog
OOO MKLprog

= 1.49.

As expected, the reduction in the execution time is due to the improvement in

the Codelet size. However, there seems to be another bottleneck that is limiting the

ability for the program to continue scaling in the same proportion. To that end, let

us analyze both the scalability of the program and trend in the instruction execution

time.

Figures 7.17, 7.18, and 7.19 show an interesting trend. There is no change in

the scalability behavior between different matrix sizes. Figure 7.26 focuses only on

size M = N = K = 40 for the three different implementations. Starting with the no

optimized Codelet, an almost perfect strong scaling occurs between 1 and 5 CUs. Once

the 6th CU is introduced, the trend is reduced, but it is still increasing. For the user

optimized version, strong scaling has a similar trend. However, after the 5th CU, the

execution time worsen, and the program stops scaling. Such trend is even worse for

the MKL Version.

When comparing this plot to the evolution of the Codelet execution time pre-

sented in Figure 7.20 it can be concluded that some of the performance degradation is

due to the degradation of the execution time of the Codelets. Furthermore, the break

after the 5th CU can be attributed in part to the testbed architecture. As can be seen

in Figure 7.2, a single core of the Intel i7 8700K contains two hardware threads in SMT

configuration. Furthermore, after the 5th CU all the system cores has been used by

some part of the architecture. 5 Cores are used by the CUs, and the SU is occupy-

ing the 6th core. Therefore, as the number of CUs is increased beyond the number

of physical cores, resource sharing inside of the Intel architecture occurs, resulting in

further degradation. Such behavior is worst in the UserOpt version in comparison to

166

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11

Sp
ee

d
up

 (t
im

es
)

Number of CUs

NoOpt - 40
UserOpt - 40
MKL - 40

Figure 7.26: M=N=K=40. Scalability comparison for different implementations

the non optimized version, since the Codelet is using SIMD execution mode. SIMD

hardware is often shared across SMT threads, after the 5th CU, each core would suf-

fer from higher contention. Finally, memory bandwidth is also a consequence of the

performance and scalability degradation. Without controlling the number of CUs that

simultaneously access memory, the bandwidth to L3 is saturated. This is also the

reason why the degradation for Memory Codelets seems to be worst than that of the

compute Codelets.

Despite all these factors, the lack of scalability in the MKL version cannot be

fully associated to them. Although some performance degradation occurs, the major

problem with MKL comes from the sequential bottleneck. As the Codelet execution

becomes smaller, the ability of the SU to schedule enough work across CUs is tampered.

This can be explained by Amdahl’s law.

7.6 Defining the appropriate size of Codelets

Figure 7.27 shows a diagram that allows to create a mathematical foundation

of the number of CUs and the size of a Codelet. Let us assume that the SU will take

167

Ts

Ts

Ts

Ts

Ts

TC

TC

TC

TC

CU1

CU2

CU3

CU4

CUN

 TMIN

Ts

 TWASTE

Time

Figure 7.27: Understanding Sequential bottleneck. Ts Time to schedule an
instruction into a CU. Tc Compute time. Tmin minimum compute time to avoid Twaste

sub-utilization

a constant time TS to schedule an instruction (Codelet) into a CU. For simplicity,

the scheduler uses a round robin mechanism, although any other scheduler with static

scheduling time would result in the same analysis. The Codelet has a compute time TC .

Notice that as the number of CUs increases, the time it takes for the scheduler to finish

assigning work to all the units grow, proportional to the number of CUs. Assuming

no synchronization cost (i.e. the Codelet starts execution as soon as it is assigned to

a CU), and no extra overhead in the system, the time between one allocation and the

next one, for the same CU is equal to Ts×NCU where NCU is the number of CUs in the

systems. This time is referred to as TMIN , and it will be the shortest time for all CUs

to be busy all the time. If TC is shorter than TMIN , there will be a waste in execution

equal to TWASTE in the figure.

This analysis is overly optimistic. It assumes that that, at any time, instructions

will be available for the SU to schedule (e.g. no dependencies between instruction

stream). If a program does not provide enough parallelism within the window of

instructions that concerns the Out of Order execution engine, there will not be enough

instructions to be scheduled. However, this is a application specific issue that cannot

168

be solved in the architecture side. It is always possible to increase the window that the

OoO engine is aware.

Another drawback of this analysis is that it ignores there will be some minor

instructions (e.g. basic arithmetic and control flow instructions), allocated to some

ALU that will take certain execution time. Even if the TS for these instructions is

negligible (i.e. TSALU
<< TS, programs often include several of these instructions

between Codelet instructions. Such problem can be mitigated if TC is considerably

increased beyond TMIN . However, if the size of a single Codelet is too large, any

dependent instruction after the Codelet will have a long waiting time in the OoO

queue.

7.6.1 Empirical observations from Matrix Multiplication

Empirically, we observe that the execution time of the Codelet for the No-

optimized Matrix Multiplication Codelet is 1.2ms. Using the trace, it was observed

that the distance between consecutive instructions scheduled was between 20us and

30us, influenced by some other instructions on the program. For 11 CUs, is between

TMIN = 220us and TMIN = 330us. In Matrix Multiplication it seems possible that a

single order of magnitude would provide enough time to allow for more parallelism.

For the User Optimized Matrix Multiplication, the Codelet execution time TC =

349us, For 6 CUs, TMIN = [120us, 180us]. This means that the ratio between TMIN

and TC is between 2 and 3 times. Given the additional noise in the system, this is the

point where not enough parallelism is achievable.

Finally, for the MKL Codelet version, the compute time is about TC = 50us.

With a TS = 20us, It is not possible to scale beyond 2 CUs. Figure 7.26 and 7.19 show

how these results are confirmed by the observations in SCMUlate.

7.6.2 Designing L1 with TS

In order to allow for more CUs in a single Level L0 while maintaining scalability,

there are two strategies that could be used. For a given Codelet size TS it is possible

169

to improve TS so that TS <
TC

NCU
.

A particular case for this strategy is using SIMD-like execution modes in L1.

Such change would lead to modifying the definition of TMIN to not be dependent of the

number of CUs. For example, the concept of warp in a modern GPU requires a single

scheduling time for all the different hardware threads that form the warp. However,

not every application would necessarily benefit from SIMD-like execution models.

A second strategy would be to increase the size of the Codelet. The size of a

Codelet is determined by the time and memory complexity of the underlying algorithm

in the Codelet implementation. For a given compute capabilities for L0 cores (i.e.

FLOPS), and memory bandwidth between L0 and L1, it is possible to determine what

would be the size for registers and problem within the Codelet that would yield to

the desired compute time. Such information could be used to also specify the size of

registers.

Designing L1 will be a combination of using the equations presented in 7.6 and

applying knowledge of the different limits in the technology to utilize. The compute

capabilities in L0, as measured in FLOPS, and the bandwidth between L1 and L0 could

be use to calculate TC . Two different extremes are observed. The execution time for

a memory Codelet that uses no operations in L0 is bounded by the bandwidth. And

a Compute Codelet that access no memory in registers is bounded by FLOPS. Given

the desired NCU , and TC it is possible to calculate the target TS. Or given a TS limit,

it is possible to calculate the number of NCU .

If more CUs are desired, it is always possible to continue the design on L2,

using multiple L1s as compute units of L2. The analysis would be similar to the one

described in this section.

7.6.3 Application and Codelet Size

When porting an application to the SCM, it may be the case the TC cannot

be achieved due to limited memory or compute complexity. In such cases, the reader

is reminded that each level of SCM is a Turing complete machine. It is not always

170

necessary to map Codelets to the levels below. It is possible to use the Compute

Capabilities of the levels above to execute parts of the program. Any of the in-memory

compute or on-network compute strategies that exists can be used as extensions of the

SCM model.

171

Chapter 8

RELATED WORK

Computer architecture is the art of defining the structures of different compo-

nents and the abstractions that rule the behavior and interaction of those components.

The search space of parameters that define the architectures is large. However, the

objective is to create a system that is capable of solving problems of different natures,

that is, a general purpose computer. There has been several attempts to create general

purpose parallel architectures. In this section we focus on some architectures that have

influenced this work the most, and that compare to the proposed approach.

Computation is about data transformation according to mathematical opera-

tions. Data is stored in some form of numerical value that encodes information. For

example, while numbers are usually encoded in a base 2 numeral system (i.e. binary

numbers), other data use numeric representations with a predefined format definition.

For example colors are usually represented as a triplet of numbers (e.g. RGB). Comput-

ers rely on the interaction of three different set of components: computational elements

that perform mathematical operations, memory elements that store data, and I/O in-

terfaces that allows the system to interact with the outer world. These components

are linked together through interconnection networks. At a high level programming a

computer consist of assigning work to the different components of the machine through

the use of pre-determined instructions. This work usually results in performing a com-

plex operation through the transformation of data in memory by using the available

hardware operations.

On the software side, programming models define abstract machines and ex-

ecution models as well. These models must be map to the execution model of the

underlying hardware. Runtime systems bridge the abstraction of the execution model

172

of the programming language to the execution model on the underlying architecture.

A compiler bridge the programming language syntax and its semantics to the runtime

systems and underlying hardware ISA.

Two major groups of computational models exist. They represent two ends of

a spectrum: Dataflow machines and Von Neumann Machines. In the middle there are

hybrid architectures that take advantage, one way or another, of elements of the two

larger groups. These models may be implemented purely in software, hardware or as

a combination of hardware software co-design strategies.

8.1 Dataflow systems

Karp and Miller first described the concept of dataflow computational models

in 1966 [35]. Programs defined in Dataflow are described as a directed graph where

each node represents an operation. The arcs connecting the nodes represent data and

control flow dependencies between operations. In 1974, Jack Dennis defined the first

Dataflow architecture [36] and its corresponding programming language [37].

An important note is that dataflow is a model of computation. Therefore, it

can influence the design of abstract machines of software and hardware. In this sec-

tion we refer to hardware architectures for which the instructions are expressed as a

dataflow diagram and which have no concept of program counter or sequential pro-

gram execution order whatsoever. Dataflow architectures are characterized for having

many computational elements interconnected together. Some dataflow systems use a

centralized token memory, while others use a point to point communication between

processing elements.

After Dennis’ first data flow machine [36], many more dataflow systems were

defined. We describe some of the most influential systems. Dennis revisited his original

design in 1980 [89] and proposed another architecture with an emphasis in the inter-

connection network system. It revisited how to maintain communication cost as low

as possible while the number of cores increased. Dennis recognize that dataflow based

173

interconnections tend to grow in complexity faster than traditional multiprocessing

switching interconnections, but its grow can be maintained almost linear.

Some dataflow machines depend on circular pipelines. These are composed of

processing elements, a token storage and a matching mechanism to assign tokens to

instructions. The processing elements execute instructions and send the results back

into the pipeline. Results are obtained by the token match mechanism and stored in

the token memory. Finally an scheduling mechanism selects the next ready instruction

and assign it to the processing elements. An example of a circular pipeline was used in

James Rambaugh’s multicore architecture [38] in 1977. Rambaugh’s system consisted

of multiple cores connected to an scheduler logic and an structure memory. An static

dataflow approach was used within each processor and executed through a circular

pipeline as described above. An execution frame enclosed an static dataflow graph and

mapped into a single processing element. This enclosing execution frame resembles

procedures that map into a single core. Inter-procedural creation and return values

happens through the use of a special APPLY operation. This operation creates new

procedures that map to other computational elements. If computational elements are

starved by the number of procedures, the context was swapped into a special external

memory.

Another important architecture was the MIT Tagged Token Dataflow Architec-

ture (MTTD) by Arvind et al defined in the late 80’s [39]. This architecture used a

technique of coloring dataflow tokens to allow for dynamic re-utilization of dataflow

programs. Contrary to the static versions, dynamic dataflow allowed the same graph

to be executed multiple times, while differentiating executions through a tagging mech-

anism. New operations allowed to create new colors, as well as to change the colors

of tokens back to the caller’s color. The MIT TTDA also used the Id programming

language to express dataflow graphs. The Monsoon project [90] by Papadopoulos and

Culler evolved from the MIT TTDA and introduced the Explicit Token Storage (ETS)

architecture. The ETS creates a frame for each independent execution of the dataflow

graph. While this frame is not novel by itself, the Monsoon machine shows a potential

174

implementation that also uses Arvind’s I-structures [68] for storing tokens and data

structures.

In addition to these architectures, many others were proposed: LAU (1976) [43],

DDM1 Micro (1976) [41], Data Driven Processor Array (DDPA, 1983), [91], Distributed

Data Driven Processor (DDDP, 1983) [92], Manchester Dataflow Computer (1985) [93],

PIM-D 1986 [94], HDFM (1985) [42], and more recently the Intel CSA patent in 2016

[95].

8.2 Out of Order Execution and other ILP techniques

While architectures that use Out of Order execution are not dataflow architec-

tures in the strict sense, these engines are inspired by dataflow mechanisms. OoO uses

a dependency analysis within a window of instructions to exploit parallelism. Several

dataflow analysis that occurs during OoO execution rely on important work done in

dataflow architectures. Out of Order execution takes advantage of the locality pro-

vided by the user that writes the code sequentially, as well as the potential compiler

optimizations that could increase the parallelism.

Among the first out of order execution systems ever created, there is the Score-

board mechanism used in the CDC6600 [55] (1964). Following, the Tomasulo’s algo-

rithm [57] removed potential stalls on Read After Write (RAW) conflicts in the pipeline.

The IBM 360 Model 91 [4] implemented the Tomasulo’s algorithm (1966). Out of order

and ILP based optimizations for sequential execution of code based on dataflow tech-

niques was later explored in the High Performance Silicon (HPS, 1985) system [96],

and HPSm, a minimal simulated version of HPS (1986) [97] micro-architecture designs.

Finally, interruptions in the context of Out of Order executions were defined in 1988

[98]. Out of order are still used in many single core architectures design (Intel Core

processors, IBM POWER7, and others), and they were fundamental for the success of

many commercially available processors in the 90’s (IBM Power 1, MIPS R10000, Intel

Pentium Pro, AMD K5, and others).

175

Among other innovations in sequential computers that increased instruction

level parallelism [99] there is the concept of pipelinining [100] introduced in 1959.

Pipeline breaks down the single cycle machines, into independently stages of instruc-

tion execution. Furthermore, superscalar architectures [55] firstly introduced in 1966

CDC6600, are essential for ILP. These systems feature multiple execution ALU and

floating point arithmetic units. Moreover, speculative execution [101] and branch pre-

diction [102] mechanisms allow to make progress in the execution of code, considerably

increasing the performance of computer architectures. Despite their success these tech-

niques have been recently been re-consider as they have been shown to create security

risks such as the Spectre [103] and Meltdown [104] attacks.

Very Large Instruction World enables the grouping of several operations in the

same instruction [105]. These techniques aim to also increase the instructions per cycle.

They can benefit from compiler optimizations that are able to find set of instructions

to combine.

In this work we recognize the importance of these ILP optimizations and we

encourage a combination between the SuperCodelet architecture and these other ar-

chitectures. To this end, the Hierarchical Turing Machine should be the one element

that is able to join them under the same umbrella.

8.3 Other parallel architectures

Other parallel architectures have also been proposed. One example are the sys-

tolic arrays by Kung and Leiserson in 1978 [106]. Additionally, the vector processors

described in the 60’s and 70’s and popularized by the Cray-1 machine [12] in 1978.

Vector inspired processors where also later successfully used in the Connection Ma-

chines CM-1 and CM-2, among others [107] in 1988. Vector systems heavily influenced

SIMD-based architectures widely used in GPGPU accelerators.

Several multicore and multithreading approaches have also been proposed. Si-

multaneous Multithreading (SMT) [108] extends the register file and program counter

176

of an architecture, taking advantage of multithreaded programmers and the multi pro-

cess capabilities of Operating Systems. The First implementation of the SMT dates

back to the IBM Advanced Computer Systems project: the ACS 360 in 1968 [109]. The

Two Instructions Counter approach gave the impression of two different CPUs, while

allowed sharing resources through instruction coloring. Currently, it is common to find

SMT-2 and SMT-4 approaches in systems such as Intel architectures, IBM POWER

PC architectures, and AMD systems.

Another architecture that is worth mentioning is the Traleika Glacier architec-

ture by Intel developed during the x-Stack project [110]. An important lesson learned

by this architecture is the use of control loops to manage energy goals through fre-

quency domains and DVFS techniques. The Master Thesis by Aaron Landwehr [111]

explored different self aware techniques that used software annotations to communicate

with the runtime to make better decisions towards energy savings. This is another line

of work that is important in the context of this project.

Similarly, Andrew Chien proposed the 10x10 architecture [112] that relies on

a new highly heterogeneous paradigm that instead of using heavy architectures to

execute most of the workload, it distributes the execution across several highly optimize

computational units with different capabilities. Currently, we have seen an increased

interest in neuromorphic chips. These often use Dataflow approaches to execute neural

networks (NN). Similar to dataflow computation, NN are represented as a graph of

neurons, each with a given functionality (e.g. Convolution, ReLU, Sigmoid functions

and others). Neuromorphic chips often map these neurons to dataflow inspired chips

with application specific circuitry for Artificial Intelligence (AI) and Machine Learning

(ML). Some examples are Google TPUs [9], IBM TrueNorth [113], and the Tianjic

Chip [114].

It would be necessary to create a really extensive survey to cover all the different

innovations in the field of parallel computer architectures. However, many of the

elements that have already been explored would be able to fit the description of the

sequential Codelet Model, either by acting as application specific ALU, or by redefining

177

an implementation at any of the hierarchical Von Neumann architectures.

8.4 Von-Neuman/Dataflow hybrid systems

As previously mentioned, dataflow-inspired architectures and the Von Neumann-

inspired architectures are two opposite sides of an spectrum of possible architectures.

At one end, Von Neumann offers shared memory abstractions where operations can

be mapped to any location. At the other end, dataflow uses completely independent

memory arcs that connect operations with a limited mapping of memory location to

instruction operands. In the middle, there has been several attempts to have hybrid

models. Thorough surveys on these approaches can be found in [49] [115], [116], and

[117].

The closest relatives to the work proposed in this thesis are the original Codelet

Model (as explained in Chapter 2) and its predecessor project, the EARTH-MANNA

architecture [62]. EARTH-MANNA project was a fully functional testbed for the

EARTH model. The EARTH model aimed to demonstrate that in multithreading ar-

chitectures running on multicore systems, it is possible to support fine grain parallelism

with tolerable synchronization and communication overheads. The abstract machine

of the EARTH model also relied on an SU unit for resource management and allocation

of tasks (the equivalent of Codelets).

The Monsoon project also proposed multithreaded version for parallelism [118]

(MT Monsoon in 1991). A program is divided in threads, each executed and described

sequentially. The system is composed of multiple cores, each capable of executing

several threads at the same time. The ISA is extended with two new instruction that

allowed fork/join capabilities. On a fork, a new thread was created with an allocated

memory frame associated to it. A continuation memory space was used to synchronize

data coming back to the join operation. The split-phase transaction was used to

synchronize the continuation points.

The Epsilon architecture (1989) [119][120] relies on pure dataflow execution of

instructions. However, by grouping together multiple instructions into sequentially

178

executed groups, it is possible to control and reduce the overhead of synchronization.

That is, it allows to control the granularity of the instructions. For a grain size of 1 (i.e.

one operation per group), the execution is a purely dataflow execution. The larger the

grain size the more the execution resembles a Von Numann sequential model. Memory

is organized in frames of execution that form a tree, while split-phase transactions

enable synchronization of producer and consumer of data. Other architectures such

as the EM-4, the EM-X (1995) [121], and the RWC-1 (1994) [122] extended these

principles and included pre-fetching mechanisms and token pre-matching.

Other approaches that aim to combine Von Neumann execution and dataflow

are closer in nature to the proposal presented in this thesis. Task SuperScalar [123][124]

for example uses out of order execution techniques for scheduling of tasks while depen-

dencies determine the order in which tasks are executed. Hardware mechanisms have

been proposed in [125] for the implementation of task superscalar. While several of

the ideas of this thesis and the SuperCodelet architecture overlap with the Task Su-

perScalar model, the major difference relies on the view of the system as a hierarchy of

Von Neumann machines. At each level we have created a Turing Complete system that

does not see the memory space as a contiguous and monolithic element. The concept

of the Hierarchical Turing Machine and Hierarchical Von Neuman Architecture are the

key differentiating factors of this work.

8.5 Software approaches and other efforts

There has been several programming models for parallelism. Tasking is a parallel

programming paradigm that inherits ideas of dataflow models of computation. It uses

a graph of operations connected through data and control dependencies. Contrary to

dataflow architectures, tasks are described as a large collection of instructions that

form a coarser grain scheduling unit. The execution of the code that describes the

operations performed by a task is often sequential. Most recently, tasking terminology

has also been used in the context of parallel GPGPUs system execution.

179

Across the most popular tasking mechanisms there is OpenMP Tasking [58],

Legion [60], OCR [61], Habanero [126], Argobots [127], and many others. Tasking and

dataflow inspired execution has also influenced the design of other important runtimes

such as Tensorflow for ML and AI.

On the software world it is important to mention the HiHAT effort [128]

which aims to unify the tasking interfaces between hardware and software in order to

achieve coordination between the different execution models and programming models.

NVIDIA has also included CUDA graphs which allow users to define control depen-

dencies as a graph prior to the execution of the computation. These dependencies can

be spawned across host and device, and they rely on hardware runtime to execute [64].

The main difference of the introduced approach is that it does not aim to provide

yet another programming model, but instead it tries to re-define the hardware/software

interface, by defining an execution model, and its programming interface. The model

presented in this work is envisioned through hardware/software co-design, while it also

tries to take advantage of performance, productivity (programmability) and portability.

This approach parts from the model of computation to the architecture, while it is

not intended as a language for the creation of tasks and its corresponding software

implemented runtime.

180

Chapter 9

FUTURE WORK

In order to satisfy the fast evolution of computer systems moving forward, it is

necessary to guarantee Performance, Portability and Productivity. This work proposes

one solution for a Program Execution Model that aims to nurture these elements.

The main objective of the Sequential Codelet Model is to serve as a general model of

computation. A unified strategy for the design of computer system infrastructure. The

Sequential Codelet Model, as a program execution model, should serve as base for the

design of Compilers, languages, systems, operating systems and more.

This work leaves many open questions and avenues to move forward. First,

What are the appropriate strategies for translating already existing code into the Se-

quential Codelet Model? By find better and more complicated benchmarks a more

valuable analysis of these strategies should be possible. It is necessary to learn from

user’s experience what are the translation strategies that allows for a programmer to

efficiently use the SCM abstraction. Such benchmarks should allow to take advantage

of re-utilization of registers of the upper levels, instead of limit to a single Codelet op-

erations. Furthermore, the use of heterogeneous computation between CPU, GPU and

other architectures is really important. While this work demonstrates that it is possible

to run the Sequential Codelet Model in GPUs, the results are far from competitive. I

believe that heterogeneous is a key aspect of future computer systems. Other ideas to

combine the Sequential Codelet Model with highly heterogeneous abstract machines

such as the 10x10 architecture [112] are avenues to explore moving forward.

Second, How to leverage already existing programming models to adapt the

hierarchical organization of the SCM abstraction? The definition of a higher level pro-

gramming language or abstraction should be possible thanks to the extensive evolution

181

of programming languages. We envision an initial extension that uses a directive based

approach to be able to define Codelets at the different levels.

Furthermore, hardware emulation is also a critical path for the development

of systems base on the Sequential Codelet Model. A Hardware/Software co-design

strategy has been recently proposed through the DEMAC system [129][130][131]. This

open source project aims to create a platform for the definition of a unified architecture

of the computer systems. An FPGA based implementation on a system that uses

scratchpad-like memory systems would could serve also as an initial realization of the

SuperCodelet architecture, while being able to obtain metrics on system utilization,

performance, overhead and others. These avenues are currently being explored. This

work leaves the necessary building blocks for a hardware implementation.

When exploring hardware architectures that implement the SCM. It is possible

to explore energy awareness mechanisms that dynamically determines the organization

of the machine. Annotation of Codelet and Codelet specialization for different opti-

mization objectives could provide a way to adapt the execution of the program to user

defined optimization metrics (e.g. energy, performance or reliability). These ideas have

already been explored in the context of the Codelet Model [111], however, they need to

be extended to consider the hierarchical organization of the Sequential Codelet Model.

Extensions to the Codelet Model needs to be realized for exploring Single Pro-

gram Multiple Data abstractions, event driven and interruption based execution of

Codelets, Atomic operations across execution units of the same level, and, in general,

how to adapt current concepts of parallelism into the Sequential Codelet Model.

Additionally, further exploring the upper levels of the hierarchy is also necessary.

The use of the SCM model into distributed computation will allow for a description

of programs that execute on large HPC infrastructures. Furthermore, the use of the

SCM model may allow for better concurrent use on HPC ecosystems. Currently, batch

schedulers require total allocation of the hardware resources. By using strategies similar

to those used in Operating systems, it may be possible to have multiple SCM programs

running concurrently under the same environment, without interference on one another.

182

As we go higher in the abstraction, we also must ask what is the role of the Internet

in the Sequential Codelet Model? The Internet has allowed cloud computing and

computational services to be more available. The use of APIs allows for a programmer

to offload computation to servers by performing application specific operations. What

would happen if an API is created for cloud computing with semantics similar to those

used in the SCM machine?

After almost a century, Turing’s computation model has demonstrated to have a

tremendous influence in computer systems and the possible applications these machines

can solve. Moving forward in the next 100 years of computers it is still an open problem:

will the Turing Machine, or any of its proposed extensions (including the Hierarchical

Turing Machine), be able to meet the challenges of future computation?. A recent

example of such challenges have been discussed in private communications within DoE.

It is currently believed that reaching over 50000x times speed ups is critical for many

scientific and data intensive applications. Is there room for these requirements for

Turing based computers? Or is it necessary to find other abstractions?

183

Chapter 10

CONCLUSIONS

This thesis introduces several concepts towards the definition of a unified model

of computation for general purpose, parallel, distributed and heterogeneous computa-

tion. First, this thesis defines the Hierarchical Turing Machine. A Multi-tape Turing

Machine and model of computation that re-structures the original Turing Machine to

consider hierarchical organization of data and computation. Following it creates the hi-

erarchical Von Neumann architecture based on the Hierarchical Turing Machine. This

machine model is then used to create the Sequential Codelet Model abstract machine,

and the Sequential Codelet Program Execution Model (SCM). Based on the Sequential

Codelet Model, this thesis creates the SuperCodelet architecture. By using principles of

dataflow and design strategies similar to those used in Out of Order execution engines,

an architecture for distributed/parallel and heterogeneous computation is defined.

The Sequential Codelet Model is a program execution model that explains how

a program interacts with a parallel, distributed and heterogeneous architecture that

implements an abstract machine organization. The Sequential Codelet Model envisions

the machine as a hierarchical composition of Von Neumann systems. This hierarchy

maps to the natural organization of memory in computer systems. At the bottom,

commodity architectures are used as execution engines of a 5 stages pipeline built

around the concept of a Core. The Core can be any currently existing architecture.

The 5 stages pipeline forms the first level of the hierarchy. Level two is formed by

using Level 1 as the execution stage. As we progress in the hierarchy, the level below

becomes the execution engine of the 5 stages pipeline in the level above. The hierarchy

spans from the concept of core, as currently used in the literature, to the aggregation

of cores in sockets (level 1), aggregation of sockets into nodes (level 2), aggregation of

184

nodes into clusters (level 3), and so on. In the Sequential Codelet Model parallelism is

achieved by means similar to those used in Instruction Level Parallelism for sequential

architectures.

An SCM program is also hierarchically organized to map to the hierarchical

abstract machine organization. A level of the program maps to a level of the machine.

A program is a sequential description of operations, similar to current assembly code.

The operands in the program correspond to memory locations (akin registers) at the

level in which the program is executed. Different to assembly code, instructions can be

user defined, determined by a program that runs in the level below. Instructions are

referred to Codelets. A Codelet belongs to a level as an instruction of that level, but

it is implemented as a program of the level below.

In order to understand the behavior of the SuperCodelet architecture and the

Sequential Codelet Model, this thesis creates an emulator, namely SCMUlate. This

program is composed of an interpreter and a runtime. The interpreter reads SCM

programs and translate them into the runtime API. The runtime executes on commod-

ity x86 CPU and Gen9 GPU hardware and it uses different configurations (different

machine implementations). Two microbenchmarks: Matrix Multiplication and Vec-

tor addition have been used in SCMUlate. These benchmarks have been selected as

important kernels for HPC and the characteristics of future computational workloads,

as learned throughout years of experience interacting with application teams from the

ECP project. These benchmarks provide an early evaluation and justification for the

Sequential Codelet Model.

Early evaluation through SCMUlate demonstrates that it is possible to obtain

a hardware implementations that achieve parallel execution of codes by means of the

SCM abstraction. Furthermore, that it is possible to create different system imple-

mentations capable of executing the same abstraction. Therefore, by keeping the same

program execution model Application Programming Interface (API), it is possible to

port the execution of code into different implementations, while allowing to prioritize

optimizations in different levels of the abstraction. Furthermore, results presented in

185

this work show that, the Sequential Codelet Model abstraction could lead to com-

piler optimization techniques, as well as static analysis of computational and memory

complexity of applications. all under the umbrella of the same Program Execution

Model.

An emulation runtime on commodity Intel architectures does not necessarily

reflect the intention of the Sequential Codelet Model as a model of computation. In fact,

it provides the wrongful idea that SCMUlate is yet another parallel programming model

or framework akin OpenMP, Legion, OCR or others. Instead, the Sequential Codelet

Model represents a way of thinking and mapping computation to hardware resources,

which is expected to be realized in hardware, and to be extended through software

tools. Moreover, a software approach provides additional overhead, and reduces the

capacity of compiler optimizations, that could potentially benefit the final performance

of the program. We will do a more in depth analysis of these results in the following

subsection.

Through the use of SCMULate, this thesis demonstrates that it is possible to

achieve scalable execution of code in multicore and heterogeneous architectures. The

sequential semantics considerably improves programmability. Furthermore, the static

definition of Codelets at a given level allows for already existing Compiler techniques

and algorithmic analysis tools to be used to improve the execution time of a SCM

program, at each level of the hierarchy. The analysis of the results obtained by SC-

MULate result in a mathematical formulation that works as basis for the creation of

actual hardware implementations of the SCM model.

186

BIBLIOGRAPHY

[1] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architec-
ture,” Commun. ACM, vol. 62, pp. 48–60, Jan. 2019.

[2] A. M. Turing, “On computable numbers, with an application to the Entschei-
dungsproblem,” Proceedings of the London Mathematical Society, vol. 2, no. 42,
pp. 230–265, 1936.

[3] J. v. Neumann, “First draft of a report on the EDVAC,” tech. rep., 1945.

[4] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, “Architecture of the IBM
System/360,” IBM J. Res. Dev., vol. 8, p. 87–101, Apr. 1964.

[5] M. Bohr, “A 30 year retrospective on dennard’s MOSFET scaling paper,” IEEE
Solid-State Circuits Society Newsletter, vol. 12, no. 1, pp. 11–13, 2007.

[6] P. Qu, J. Yan, Y.-H. Zhang, and G. R. Gao, “Parallel turing machine, a proposal,”
Journal of Computer Science and Technology, vol. 32, pp. 269–285, Mar 2017.

[7] J. B. Dennis, “Programming generality, parallelism and computer architecture,”
in IFIP Congress, 1968.

[8] J. B. Dennis, “A parallel program execution model supporting modular software
construction,” 1997.

[9] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gotti-
pati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H.
Yoon, “In-datacenter performance analysis of a tensor processing unit,” in Pro-
ceedings of the 44th Annual International Symposium on Computer Architecture,
ISCA ’17, (New York, NY, USA), pp. 1–12, ACM, 2017.

187

[10] A. S. Cassidy, J. Sawada, P. Merolla, J. V. Arthur, R. Alvarez-Icaza, F. Akopyan,
B. L. Jackson, and D. S. Modha, “Truenorth: A high-performance, low-power
neurosynaptic processor for multi-sensory perception, action, and cognition,”
2016.

[11] Top 500, “Top 500 list. june 2018 list highlights.” https://www.top500.org/

lists/2018/06/highlights/.

[12] R. M. Russell, “The cray-1 computer system,” Commun. ACM, vol. 21, p. 63–72,
Jan. 1978.

[13] S. Chandra, J. R. Larus, and A. Rogers, “Where is time spent in message-passing
and shared-memory programs?,” SIGOPS Oper. Syst. Rev., vol. 28, p. 61–73,
Nov. 1994.

[14] H. Shan and J. P. Singh, “A comparison of mpi, shmem and cache-coherent
shared address space programming models on a tightly-coupled multiprocessors,”
International Journal of Parallel Programming, vol. 29, no. 3, pp. 283–318, 2001.

[15] Y. Yan, J. R. Hammond, C. Liao, and A. E. Eichenberger, “A proposal to openmp
for addressing the cpu oversubscription challenge,” in OpenMP: Memory, De-
vices, and Tasks (N. Maruyama, B. R. de Supinski, and M. Wahib, eds.), (Cham),
pp. 187–202, Springer International Publishing, 2016.

[16] M. Raynal and A. Schiper, “A suite of definitions for consistency criteria in dis-
tributed shared memories,” Annales des Telecommunications/Annals of Telecom-
munications, vol. 52, no. 11-12, pp. 652–661, 1997.

[17] L. Lamport, “How to make a multiprocessor computer that correctly executes
multiprocess programs,” IEEE Trans. Comput., vol. 28, p. 690–691, Sept. 1979.

[18] S. R. Walli, “The POSIX family of standards,” StandardView, vol. 3, no. 1,
pp. 11–17, 1995.

[19] E. A. Lee, “The problem with threads,” Computer, vol. 39, pp. 33–42, May 2006.

[20] D. Chisnall, “C is not a low-level language,” Queue, vol. 16, pp. 10:18–10:30,
Apr. 2018.

[21] J. M. Monsalve Diaz, S. S. Pophale, O. R. Hernandez, D. Bernholdt, and S. Chan-
drasekaran, “OpenMP 4.5 validation and verification suite for device offload,” 8
2018.

[22] M. D. Jose M, OpenMP 4.5 validation and verification testsuite: design and
implementation for offloading features. 2020.

[23] Johannes Doerfert, “SOLLVE: OpenMP for HPC and Exascale.” https://www.

exascaleproject.org/highlight/sollve-openmp-for-hpc-and-exascale/.

188

https://www.top500.org/lists/2018/06/highlights/
https://www.top500.org/lists/2018/06/highlights/
https://www.exascaleproject.org/highlight/sollve-openmp-for-hpc-and-exascale/
https://www.exascaleproject.org/highlight/sollve-openmp-for-hpc-and-exascale/

[24] A. Church, “An unsolvable problem of elementary number theory,” American
Journal of Mathematics, vol. 58, pp. 345–363, Apr. 1936.

[25] A. Church, “A note on the entscheidungsproblem.,” J. Symb. Log., vol. 1, no. 1,
pp. 40–41, 1936.

[26] C. Petzold, The Annotated Turing: A Guided Tour Through Alan Turing’s His-
toric Paper on Computability and the Turing Machine. Wiley Publishing, 2008.

[27] B. E. Carpenter and R. W. Doran, A. M. Turing’s ACE Report of 1946 and
Other Papers. USA: Massachusetts Institute of Technology, 1986.

[28] F. J. Corbató and V. A. Vyssotsky, “Introduction and overview of the multics sys-
tem,” in Proceedings of the November 30–December 1, 1965, Fall Joint Computer
Conference, Part I, AFIPS ’65 (Fall, part I), (New York, NY, USA), p. 185–196,
Association for Computing Machinery, 1965.

[29] R. C. Daley and J. B. Dennis, “Virtual memory, processes, and sharing in mul-
tics,” Commun. ACM, vol. 11, p. 306–312, May 1968.

[30] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner, “One-level
storage system,” IRE Transactions on Electronic Computers, vol. EC-11, no. 2,
pp. 223–235, 1962.

[31] H. N. S. Aldin, H. Deldari, M. H. Moattar, and M. R. Ghods, “Consistency
models in distributed systems: A survey on definitions, disciplines, challenges
and applications,” CoRR, vol. abs/1902.03305, 2019.

[32] F. Pong and M. Dubois, “Verification techniques for cache coherence protocols,”
ACM Comput. Surv., vol. 29, p. 82–126, Mar. 1997.

[33] P. Stenstrom, “A survey of cache coherence schemes for multiprocessors,” Com-
puter, vol. 23, no. 6, pp. 12–24, 1990.

[34] Arvind and R. A. Iannucci, “Two fundamental issues in multiprocessing,” Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 295 LNCS, pp. 61–88,
1988.

[35] R. M. Karp and R. E. Miller, “Properties of a Model for Parallel Computations:
Determinacy, Termination, Queueing,” SIAM Journal on Applied Mathematics,
vol. 14, no. 6, pp. 1390–1411, 1966.

[36] J. B. Dennis and D. Misunas, “A preliminary architecture for a basic data flow
processor,” in Proceedings of the 2nd Annual Symposium on Computer Architec-
ture, Houston, TX, USA, December 1974, pp. 126–132, 1974.

189

[37] J. B. Dennis, “First version of a data flow procedure language,” in Programming
Symposium (B. Robinet, ed.), (Berlin, Heidelberg), pp. 362–376, Springer Berlin
Heidelberg, 1974.

[38] J. Rumbaugh, “A data flow multiprocessor,” IEEE Transactions on Computers,
vol. C-26, pp. 138–146, Feb 1977.

[39] Arvind and R. S. Nikhil, “Executing a program on the MIT tagged-token dataflow
architecture,” IEEE Transactions on Computers, vol. 39, pp. 300–318, March
1990.

[40] G. M. Papadopoulos and D. E. Culler, “Monsoon: An explicit token-store archi-
tecture,” SIGARCH Comput. Archit. News, vol. 18, p. 82–91, May 1990.

[41] A. L. Davis, “The architecture and system method of DDM1,” in Proceedings of
the 5th annual symposium on Computer architecture - ISCA ’78, vol. 1, (New
York, New York, USA), pp. 210–215, ACM Press, 1978.

[42] R. Vedder and D. Finn, “The Hughes Data Flow Multiprocessor,” ACM
SIGARCH Computer Architecture News, vol. 13, pp. 324–332, jun 1985.

[43] A. Plus, D. Comte, and J. C. Syre, “Lau system architecture: a parallel data-
driven processor based on single assignment,” 1976.

[44] J. B. Dennis, G. R. Gao, and V. Sarkar, “Determinacy and repeatability of
parallel program schemata,” in 2012 Data-Flow Execution Models for Extreme
Scale Computing, pp. 1–9, 2012.

[45] J. E. Rodrigues and J. E. Rodriguez Bezos, “A graph model for parallel compu-
tations,” tech. rep., USA, 1969.

[46] S. S. Patil, Closure Properties of Interconnections of Determinate Systems,
p. 107–116. New York, NY, USA: Association for Computing Machinery, 1970.

[47] R. M. Keller, “An approach to determinacy proofs,” 1978.

[48] P. J. Denning, On the Determinacy of Schemata, p. 143–147. New York, NY,
USA: Association for Computing Machinery, 1970.

[49] F. Yazdanpanah, C. Alvarez-Martinez, D. Jimenez-Gonzalez, and Y. Etsion, “Hy-
brid dataflow/von-Neumann architectures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 6, pp. 1489–1509, 2014.

[50] B. Robič, J. Šilc, and T. Ungerer, “Beyond dataflow,” Journal of Computing and
Information Technology, vol. 8, no. 2, pp. 89–101, 2000.

190

[51] J. Silc, B. Robič, and T. Ungerer, “Asynchrony in parallel computing: from
dataflow to multithreading,” in Progress in computer research, pp. 459–469,
IEEE, 1997.

[52] J. Silc, B. Robic, and T. Ungerer, “Processor Architecture: From Dataflow to
Superscalar and Beyond,” no. November 2014, p. 389, 1999.

[53] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics,
vol. 38, April 1965.

[54] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc,
“Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE
Journal of Solid-State Circuits, vol. 9, pp. 256–268, Oct 1974.

[55] J. E. Thornton, Design of a Computer—The Control Data 6600. Scott Foresman
& Co, 1970.

[56] N. Vasseghi, K. Yeager, E. Sarto, and M. Seddighnezhad, “200-mhz super-
scalar risc microprocessor,” IEEE Journal of Solid-State Circuits, vol. 31, no. 11,
pp. 1675–1686, 1996.

[57] R. M. Robert Tomasulo, “An efficient algorithm for exploiting multiple arithmetic
units,” IBM Journal of Research and Development, vol. 11, no. 1, pp. 25–33, 1967.

[58] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, and G. Zhang, “The design of OpenMP tasks,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 20, no. 3, pp. 404–418, 2009.

[59] J. Suettlerlein, S. Zuckerman, and G. R. Gao, “An implementation of the codelet
model,” in Euro-Par 2013 Parallel Processing (F. Wolf, B. Mohr, and D. an Mey,
eds.), (Berlin, Heidelberg), pp. 633–644, Springer Berlin Heidelberg, 2013.

[60] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing locality
and independence with logical regions,” in SC ’12: Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and
Analysis, pp. 1–11, 2012.

[61] T. G. Mattson, R. Cledat, V. Cavé, V. Sarkar, Z. Budimlić, S. Chatterjee, J. Fry-
man, I. Ganev, R. Knauerhase, Min Lee, B. Meister, B. Nickerson, N. Pepper-
ling, B. Seshasayee, S. Tasirlar, J. Teller, and N. Vrvilo, “The open community
runtime: A runtime system for extreme scale computing,” in 2016 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–7, 2016.

[62] H. H. Hum, O. Maquelin, K. B. Theobald, X. Tian, G. R. Gao, and L. J. Hendren,
“A study of the EARTH-MANNA multithreaded system,” International Journal
of Parallel Programming, vol. 24, no. 4, pp. 319–348, 1996.

191

[63] R. S. Nikhil, G. M. Papadopoulos, and Arvind, “T: A multithreaded massively
parallel architecture,” in [1992] Proceedings the 19th Annual International Sym-
posium on Computer Architecture, pp. 156–167, 1992.

[64] NVIDIA, “Cuda graphs.” https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html#cuda-graphs.

[65] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade,
J. Labarta, and M. Valero, “Task superscalar: An out-of-order task pipeline,”
Proceedings of the Annual International Symposium on Microarchitecture, MI-
CRO, pp. 89–100, 2010.

[66] R. H. Halstead, “Multilisp: A language for concurrent symbolic computation,”
ACM Trans. Program. Lang. Syst., vol. 7, p. 501–538, Oct. 1985.

[67] Wen-Yen Lin and Jean-Luc Gaudiot, “I-structure software cache: a split-phase
transaction runtime cache system,” in Proceedings of the 1996 Conference on
Parallel Architectures and Compilation Technique, pp. 122–126, 1996.

[68] Arvind, R. S. Nikhil, and K. K. Pingali, “I-structures: Data structures for parallel
computing,” ACM Trans. Program. Lang. Syst., vol. 11, p. 598–632, Oct. 1989.

[69] J. B. Dennis, “Fresh breeze: A multiprocessor chip architecture guided by modu-
lar programming principles,” SIGARCH Comput. Archit. News, vol. 31, p. 7–15,
Mar. 2003.

[70] I. T. A. Lee, S. Boyd-Wickizer, Z. Huang, and C. E. Leiserson, “Using mem-
ory mapping to support cactus stacks in work-stealing runtime systems,” Paral-
lel Architectures and Compilation Techniques - Conference Proceedings, PACT,
vol. 2010, pp. 411–420, 2010.

[71] Intel, “First the tick , now the tock : Intel ® microarchitecture (nehalem)
introducing a new dynamically and design-scalable microarchitecture,” 2009.

[72] G. Gao, J. Suetterlein, and S. Zuckerman, “Toward an Execution Model for
Extreme-Scale Systems - Runnemede and Beyond.” Technical Memo, April 2011.

[73] D. E. Culler, K. E. Schauser, and T. von Eicken, “Two fundamental limits on
dataflow multiprocessing,” tech. rep., USA, 1992.

[74] J. Arteaga, S. Zuckerman, and G. R. Gao, “Multigrain parallelism: Bridg-
ing coarse-grain parallel programs and fine-grain event-driven multithreading,”
in 2017 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 799–808, 2017.

192

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs

[75] J. Monsalve, K. Harms, K. Kalyan, and G. Gao, “Sequential codelet model of
program execution. a super-codelet model based on the hierarchical turing ma-
chine.,” in 2019 IEEE/ACM Third Annual Workshop on Emerging Parallel and
Distributed Runtime Systems and Middleware (IPDRM), pp. 1–8, 2019.

[76] M. Yannakakis, “Hierarchical state machines,” in Theoretical Computer Science:
Exploring New Frontiers of Theoretical Informatics (J. van Leeuwen, O. Watan-
abe, M. Hagiya, P. D. Mosses, and T. Ito, eds.), (Berlin, Heidelberg), pp. 315–330,
Springer Berlin Heidelberg, 2000.

[77] W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu, M.-F. Chang, H.-J. Yoo, H. Qian, and
H. Wu, “Neuro-inspired computing chips,” Nature Electronics, vol. 3, pp. 371–
382, 07 2020.

[78] K. Livingston, A. Landwehr, J. M. Diaz, S. Zuckerman, B. Meister, and G. R.
Gao, “Energy avoiding matrix multiply,” in Languages and Compilers for Parallel
Computing - 29th International Workshop, LCPC 2016, Rochester, NY, USA,
September 28-30, 2016, Revised Papers, pp. 55–70, 2016.

[79] G. R. Gao and V. Sarkar, “Location consistency-a new memory model and cache
consistency protocol,” IEEE Trans. Comput., vol. 49, p. 798–813, Aug. 2000.

[80] J. B. Dennis, “A parallel program execution model supporting modular software
construction,” in Proceedings. Third Working Conference on Massively Parallel
Programming Models (Cat. No.97TB100228), pp. 50–60, 1997.

[81] S. Raskar, T. Applencourt, K. Kumaran, and G. Gao, “Position paper: Ex-
tending codelet model for dataflow software pipelining using software-hardware
co-design,” in 2019 IEEE 43rd Annual Computer Software and Applications Con-
ference (COMPSAC), vol. 2, pp. 640–645, July 2019.

[82] NVIDIA, “NVIDIA Tesla V100 GPU Architecture. The world’s most
advanced data center GPU.” http://images.nvidia.com/content/

volta-architecture/pdf/volta-architecture-whitepaper.pdf, August
2017.

[83] Intel, “The compute architecture of intel processor graphics Gen9,” Aug 2015.

[84] Jose M Monsalve Diaz, “SCMUlate Emulator Source Code.” https://github.

com/josemonsalve2/SCM.

[85] P. T. Inc., “Collaborative data science,” 2015.

[86] B. R. Rau, “Iterative modulo scheduling: An algorithm for software pipelining
loops,” in Proceedings of the 27th Annual International Symposium on Microar-
chitecture, MICRO 27, (New York, NY, USA), p. 63–74, Association for Com-
puting Machinery, 1994.

193

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://github.com/josemonsalve2/SCM
https://github.com/josemonsalve2/SCM

[87] J. Xue, Loop Tiling for Parallelism. USA: Kluwer Academic Publishers, 2000.

[88] Intel Corporation., “Intel oneAPI: A Unified X-Architecture Programming
Model.” https://software.intel.com/content/www/us/en/develop/tools/

oneapi.html.

[89] Dennis, “Data flow supercomputers,” Computer, vol. 13, no. 11, pp. 48–56, 1980.

[90] G. M. Papadopoulos and D. E. Culler, “Monsoon: An explicit token-store archi-
tecture,” in Proceedings of the 17th Annual International Symposium on Com-
puter Architecture, ISCA ’90, (New York, NY, USA), p. 82–91, Association for
Computing Machinery, 1990.

[91] N. Takahashi and M. Amamiya, “A data flow processor array system,” ACM
SIGARCH Computer Architecture News, vol. 11, pp. 243–250, jun 1983.

[92] M. Kishi, H. Yasuhara, and Y. Kawamura, “DDDP-a Distributed Data Driven
Processor,” ACM SIGARCH Computer Architecture News, vol. 11, pp. 236–242,
jun 1983.

[93] J. R. Gurd, C. C. Kirkham, and I. Watson, “The Manchester prototype dataflow
computer,” Communications of the ACM, vol. 28, no. 1, pp. 34–52, 1985.

[94] N. Ito, M. Sato, E. Kuno, and K. Rokusawa, “The architecture and preliminary
evaluation results of the experimental parallel inference machine PIM-D,” ACM
SIGARCH Computer Architecture News, vol. 14, pp. 149–156, jun 1986.

[95] K. E. Fleming, K. D. Glossop, S. C. Steely, J. Tang, and A. G. Gara, “Processors,
methods, and systems with a configurable spatial accelerator,” Feb 2020.

[96] Y. N. Patt, W. mei Hwo, and M. C. Shebanow, “HPS, a New Microarchitecture:
Rationale and Introduction.,” MICRO: Annual Microprogramming Workshop,
pp. 103–108, 1985.

[97] W.-r. Hwu and Y. N. Part, “H P S m , a High Performance Restricted Data
Flow Architecture Having Minimal Functionality Computer Science Division ,
University of California , Berkeley,” pp. 297–306, 1986.

[98] J. E. Smith and A. R. Pleszkun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Transactions on Computers, vol. 37, no. 5, pp. 562–573, 1988.

[99] T. Agerwala and J. Cocke, “High performance reduced instruction set proces-
sors,” vol. 4, 1987.

[100] E. Bloch, “The engineering design of the stretch computer,” Proceedings of the
Eastern Joint Computer Conference, IRE-AIEE-ACM 1959, pp. 48–58, 1959.

194

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

[101] M. D. Smith, M. S. Lam, and M. A. Horowitz, “Boosting beyond static schedul-
ing in a superscalar processor,” Conference Proceedings - Annual Symposium on
Computer Architecture, pp. 344–354, 1990.

[102] Lee and Smith, “Branch Prediction Strategies and Branch Target Buffer Design,”
Computer, vol. 17, pp. 6–22, jan 1984.

[103] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting Speculative Execution,” Communications of the ACM, vol. 63, no. 7,
pp. 93–101, 2020.

[104] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown: Reading
kernel memory from user space,” Proceedings of the 27th USENIX Security Sym-
posium, pp. 973–990, 2018.

[105] J. A. Fisher, “Very Long Instruction Word architectures and the ELI-512,” in
Proceedings of the 10th annual international symposium on Computer architec-
ture - ISCA ’83, (New York, New York, USA), pp. 140–150, ACM Press, 1983.

[106] “Systolic arrays (for VLSI),” in Sparse Matrix Proceedings 1978, vol. 1, pp. 256–
282, Society for industrial and applied mathematics, 1979.

[107] L. Tucker and G. Robertson, “Architecture and applications of the Connection
Machine,” Computer, vol. 21, pp. 26–38, aug 1988.

[108] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous Multithreading :
Maximizing On-Chip Parallelism x x full issue slot empty issue slot horizontal
waste = 9 slots,” 1995.

[109] M. K. Smotherman, E. H. Sussenguth, and R. J. Robelen, “The IBM ACS
Project,” IEEE Annals of the History of Computing, vol. 38, no. 1, pp. 60–74,
2016.

[110] V. Cavé, R. Clédat, P. Griffin, A. More, B. Seshasayee, S. Borkar, S. Chatterjee,
D. Dunning, and J. Fryman, “Traleika glacier: A hardware-software co-designed
approach to exascale computing,” Parallel Computing, vol. 64, pp. 33 – 49, 2017.
High-End Computing for Next-Generation Scientific Discovery.

[111] A. Landwehr, “An experimental exploration of self-aware systems for exascale
architectures,” 2016.

[112] A. A. Chien, A. Snavely, and M. Gahagan, “10x10: A general-purpose archi-
tectural approach to heterogeneity and energy efficiency,” Procedia Computer
Science, vol. 4, pp. 1987 – 1996, 2011. Proceedings of the International Confer-
ence on Computational Science, ICCS 2011.

195

[113] A. S. Cassidy, J. Sawada, P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza,
F. Akopyan, B. L. Jackson, and D. S. Modha, “TrueNorth: a High-Performance,
Low-Power Neurosynaptic Processor for Multi-Sensory Perception, Action, and
Cognition,” IBM Research, vol. Almaden Re, pp. 341–344, 2016.

[114] J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang, S. Wu, G. Wang, Z. Zou, Z. Wu,
W. He, F. Chen, N. Deng, S. Wu, Y. Wang, Y. Wu, Z. Yang, C. Ma, G. Li,
W. Han, H. Li, H. Wu, R. Zhao, Y. Xie, and L. Shi, “Towards artificial general
intelligence with hybrid Tianjic chip architecture,” Nature, vol. 572, no. 7767,
pp. 106–111, 2019.

[115] B. Robič, J. Šilc, and T. Ungerer, “Beyond dataflow,” Journal of Computing and
Information Technology, vol. 8, no. 2, pp. 89–101, 2000.

[116] J. Silc, B. Robic, and T. Ungerer, “Processor Architecture: From Dataflow to
Superscalar and Beyond,” no. November 2014, p. 389, 1999.

[117] J. Silc, B. Robič, and T. Ungerer, “Asynchrony in parallel computing: from
dataflow to multithreading,” in Progress in computer research, pp. 459–469,
IEEE, 1997.

[118] G. M. Papadopoulos and K. R. Traub, “Multithreading: A revisionist view of
dataflow architectures,” Conference Proceedings - Annual Symposium on Com-
puter Architecture, pp. 342–351, 1991.

[119] V. Grafe and J. Hoch, “The Epsilon-2 multiprocessor system,” Journal of Parallel
and Distributed Computing, vol. 10, pp. 309–318, dec 1990.

[120] V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P. Holmes, “Epsilon Dataflow
Processor.,” Conference Proceedings - Annual Symposium on Computer Archi-
tecture, no. 16, pp. 36–45, 1989.

[121] Y. Kodama, H. Sakane, M. Sato, H. Yamana, S. Sakai, and Y. Yamaguchi, “EM-X
parallel computer: Architecture and basic performance,” Conference Proceedings
- Annual International Symposium on Computer Architecture, ISCA, pp. 14–23,
1995.

[122] S. Sakai, H. Matsuoka, K. Okamoto, T. Yokota, H. Hirono, Y. Kodama, and
M. Sato, “Rwc-1 massively parallel architecture,” 1994.

[123] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade,
J. Labarta, and M. Valero, “Task superscalar: An out-of-order task pipeline,”
Proceedings of the Annual International Symposium on Microarchitecture, MI-
CRO, pp. 89–100, 2010.

[124] Y. Etsion, A. Ramirez, and R. Badia, “Task superscalar: Using processors as
functional units,” HotPar, 2010.

196

[125] F. Yazdanpanah, D. Jimenez-Gonzalez, C. Alvarez-Martinez, Y. Etsion, and
R. M. Badia, “Analysis of the task superscalar architecture hardware design,”
Procedia Computer Science, vol. 18, pp. 339–348, 2013.

[126] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-Java,” p. 51, 2011.

[127] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns,
A. Castello, D. Genet, T. Herault, S. Iwasaki, P. Jindal, L. V. Kale, S. Kr-
ishnamoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir, Y. Sun, K. Taura,
and P. Beckman, “Argobots: A Lightweight Low-Level Threading and Tasking
Framework,” IEEE Transactions on Parallel and Distributed Systems, vol. 29,
no. 3, pp. 512–526, 2018.

[128] H. H. A. T. Project, “HiHAT: Hierarchical heterogeneous asynchronous
tasking project.” https://hihat-wiki.modelado.org/Hierarchical_

Heterogeneous_Asynchronous_Tasking.

[129] CAPSL Research Group, “DEMAC1 website.” https://www.capsl.udel.edu/

/demac_cluster.shtml.

[130] CAPSL Research Group, “DEMAC1 documentation.” https://www.capsl.

udel.edu//demac_cluster/documentation/.

[131] D. R. Perdomo, R. Kabrick, J. M. Diaz, S. Raskar, D. Fox, and G. Gao, “DEMAC
and CODIR: A whole stack solution for a hw/sw co-design using an mlir codelet
model dialect,” May 2020.

197

https://hihat-wiki.modelado.org/Hierarchical_Heterogeneous_Asynchronous_Tasking
https://hihat-wiki.modelado.org/Hierarchical_Heterogeneous_Asynchronous_Tasking
https://www.capsl.udel.edu//demac_cluster.shtml
https://www.capsl.udel.edu//demac_cluster.shtml
https://www.capsl.udel.edu//demac_cluster/documentation/
https://www.capsl.udel.edu//demac_cluster/documentation/

Appendix A

COMPLETE MATRIX MULTIPLICATION CODE

A

B

C

i
j

k

R2 = Iteration i
R3 = Iteration j
R4 = Iteration k
R5 = Address current Tile A
R6 = Address current Tile B
R7 = Address current Tile C
R10 = M
R11 = N
R12 = K
R13 = Beginning address A
R14 = Beginning address B
R15 = Beginning address C

R16 = Offset on i for C
and B
R17 = Offset on j for A
R18 = Offset on k for B
R19 = Offset on k for A
R20 = Offset on j for C
R21 = Offset tile A
R22 = Offset tile B
R23 = Offset tile C
R24 = Ref begin curr Row
A
R25 = Ref begin curr Col
B
R26 = Ref begin Cur Row
C

K
R12

M
R10

 R11
N

R14

R15R13

R6

R7R5

 R16

 R16 R19

 R18

 R20 R17

 R21 R23

 R22

R24

R25

R26

Figure A.1: Guide image for Matrix Multiplication Implementation in SCM. Registers
and their corresponding meaning.

198

In this appendix we show the complete version of the Matrix Multiplication

SCM implementation, as discussed in Chapter 7.5. This code is used to multiply any

matrix size multiple of the base tile 128x128.

The L2 memory structure is presented in Listing A.1, and L1 SCM Code is

presented in Listings A.2-A.7. Finally, Figure A.1 is intended to show a diagram of the

meaning of each register with respect to the matrix multiplication algorithm.

1 struct __attribute__ ((packed)) l2_memory {

2 uint64_t M;

3 uint64_t N;

4 uint64_t K;

5 // MATRIX ADDRESSES

6 uint64_t Add_a;

7 uint64_t Add_b;

8 uint64_t Add_c;

9 // OFFSETS A, B, and C in Row Major

10 uint64_t Off_cbi;

11 uint64_t Off_aj;

12 uint64_t Off_bk;

13 uint64_t Off_ak;

14 uint64_t Off_cj;

15 // OFFSETS inside tile in Row Major

16 uint64_t Off_a;

17 uint64_t Off_b;

18 uint64_t Off_c;

19 double A[numElementsA];

20 double B[numElementsB];

21 double C[numElementsC];

22 };

Listing A.1: L2 Memory structure for Matrix Multiplication on SCM

199

1 LDIMM R64B_1 , 0; // Just zero

2 // MATRIX DIMMENSIONS

3 LDOFF R64B_10 , R64B_1 , 0; // Load M in tiles

4 LDOFF R64B_11 , R64B_1 , 8; // Load N in tiles

5 LDOFF R64B_12 , R64B_1 , 16; // Load K in tiles

6 // MATRIX ADDRESSES IN MEMORY

7 LDOFF R64B_13 , R64B_1 , 24; // Load Address_a

8 LDOFF R64B_14 , R64B_1 , 32; // Load Address_b

9 LDOFF R64B_15 , R64B_1 , 40; // Load Address_c

10 // OFFSETS Tiles

11 LDOFF R64B_16 , R64B_1 , 48; // Load Off_cbj in bytes

12 LDOFF R64B_17 , R64B_1 , 56; // Load Off_aj in bytes

13 LDOFF R64B_18 , R64B_1 , 64; // Load Off_bk in bytes

14 LDOFF R64B_19 , R64B_1 , 72; // Load Off_ak in bytes

15 LDOFF R64B_20 , R64B_1 , 80; // Load Off_cj in bytes

16 // Offsets for third arg of matmul

17 LDOFF R64B_21 , R64B_1 , 88; // Load Off_a in elements

18 LDOFF R64B_22 , R64B_1 , 96; // Load Off_b in elements

19 LDOFF R64B_23 , R64B_1 , 104; // Load Off_c in elements

20 // ITERATION VARIABLES

21 LDIMM R64B_2 , 0; // For i iteration variable. Tile by tile

22 LDIMM R64B_3 , 0; // For j iteration variable. Tile by tile

23 LDIMM R64B_4 , 0; // For k iteration variable. Tile by tile

24 // Offset pointing to the first value of the tile in mem

25 LDIMM R64B_5 , 0; // For A_off_cnt iteration variable.

26 LDIMM R64B_6 , 0; // For B_off_cnt iteration variable.

27 LDIMM R64B_7 , 0; // For C_off_cnt iteration variable.

Listing A.2: Matrix Multiplication NxM tiles: C = C + A*B. Constant declaration.

200

28 ADD R64B_5 , R64B_5 , R64B_13; // Beginning of A

29 ADD R64B_6 , R64B_6 , R64B_14; // beginning of B

30

31 ADD R64B_7 , R64B_7 , R64B_15; // Beginning of C

32

33 // References to the beginning of row to restart inner

counter

34 ADD R64B_24 , R64B_24 , R64B_13; // ref Beginning row in A

35 ADD R64B_25 , R64B_25 , R64B_14; // ref Beginning row in B

36 ADD R64B_26 , R64B_26 , R64B_15; // ref Beginning row in C

37

38 // We are using j for the rows (A and C) and i for the cols (

B and C)

39

40 loop_j:

41 BREQ R64B_3 , R64B_10 , after_loop_j; // if (j == M) jump out

of loop

42 ADD R64B_3 , R64B_3 , 1; // j++

43 loop_k:

44 BREQ R64B_4 , R64B_12 , after_loop_k; // if (k == K) jump

out of loop

45 ADD R64B_4 , R64B_4 , 1; // k++

46

47 // Load the tile of A

48 COD LoadSqTile_2048L R2048L_1 , R64B_5 , R64B_21;

Listing A.3: Matrix Multiplication NxM tiles: C = C + A*B. Loop j and k

201

49 loop_i:

50 BREQ R64B_2 , R64B_11 , after_loop_i; // if (i == N) jump

out of loop

51 ADD R64B_2 , R64B_2 , 1; // i++

52

53 // Load tiles of B and C

54 COD LoadSqTile_2048L R2048L_2 , R64B_6 , R64B_22;

55 COD LoadSqTile_2048L R2048L_3 , R64B_7 , R64B_23;

56

57 // Do actual MM

58 COD MatMult_2048L R2048L_3 , R2048L_1 , R2048L_2;

59

60 // Store partial result of C

61 COD StoreSqTile_2048L R2048L_3 , R64B_7 , R64B_23;

62

63 // Move on i tile by tile over B and C

64 // Move B along i. Increase by tile size in row major

65 ADD R64B_6 , R64B_6 , R64B_16;

66 // Move C along i. Increase by tile size in row major

67 ADD R64B_7 , R64B_7 , R64B_16;

68

69 JMPLBL loop_i; // go to beginning of loop

70

71 after_loop_i:

Listing A.4: Matrix Multiplication NxM tiles: C = C + A*B. Loop i

202

72 // Advance A, tile by tile , over K.

73 // *A + Off_ak (Increase by tile size in row major)

74 ADD R64B_5 , R64B_5 , R64B_19;

75

76 // Advance B, tile by tile , over K. Reset the

77 // pointer that moves B, tile by tile , over i direction

78 // Set to beginning of B for new k

79 ADD R64B_25 , R64B_25 , R64B_18;

80 // Reset inner count for B along i

81 LDIMM R64B_6 , 0;

82 // Set count to beginning

83 ADD R64B_6 , R64B_6 , R64B_25;

84

85 // Reset the counter for C, will stay in the same j

86 LDIMM R64B_7 , 0;

87 // Set to beginning of C in same j

88 ADD R64B_7 , R64B_7 , R64B_26;

89

90 // Reset iteration counter

91 LDIMM R64B_2 , 0;

92

93 JMPLBL loop_k;

94

95 after_loop_k:

Listing A.5: Matrix Multiplication NxM tiles: C = C + A*B. Iteration variable

increments loop i

203

96 // Advance A over j a whole tile , and Reset the

97 // pointer that moves A tile by tile over k

98 // Move A along j. (increase by tile size*tile size*K in

row major)

99 ADD R64B_24 , R64B_24 , R64B_17;

100 // Reset inner count for A

101 LDIMM R64B_5 , 0;

102 // Set to beginning of A

103 ADD R64B_5 , R64B_5 , R64B_24;

104

105 // Reset B to the beginning of the B matrix , then reset

counters

106 LDIMM R64B_25 , 0;

107 // Move ref to beginning of B

108 ADD R64B_25 , R64B_25 , R64B_14;

109 // Reset inner count for B along i

110 LDIMM R64B_6 , 0;

111 // Set to beginning of matrix B

112 ADD R64B_6 , R64B_6 , R64B_25;

Listing A.6: Matrix Multiplication NxM tiles: C = C + A*B. Iteration variable

increments loop k

204

113 // Advance C over j a whole tile , and reset pointer that

moves

114 // C tile by tile over i

115 ADD R64B_26 , R64B_26 , R64B_20; // Move C along j

116 LDIMM R64B_7 , 0; // Reset inner count C

117 ADD R64B_7 , R64B_7 , R64B_26; // Set to beginning of C at j

118

119 // Reset iteration counter

120 LDIMM R64B_4 , 0;

121

122 JMPLBL loop_j;

123 after_loop_j:

124

125 COMMIT;

Listing A.7: Matrix Multiplication NxM tiles: C = C + A*B. Iteration variable

increment loop j

205

	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Abstract
	1 Introduction
	1.1 The problem with trending parallelism
	1.1.1 The evolution

	1.2 The problem
	1.3 Synopsis

	2 Background
	2.1 Foundation
	2.1.1 The Universal Turing Machine
	2.1.2 Von Neumann Architecture
	2.1.3 Multithreading Computation and Multi Core systems
	2.1.4 Dataflow Computation
	2.1.5 Hybrid Von Neumann/Dataflow architecture
	2.1.5.1 Instruction Level Parallelism
	2.1.5.2 Tasking

	2.1.6 Instruction Set Architectures and Program Execution Models

	2.2 The Codelet Model of Computation

	3 Objectives And Problem Formulation
	3.1 Objectives
	3.2 Problem Formulation

	4 The Sequential Codelet Model
	4.1 Motivation example
	4.2 Hierarchical Turing Machine
	4.3 Hierarchical Von Neumann Architecture
	4.4 The Sequential Codelet Model
	4.4.1 The SCM Abstract Machine
	4.4.2 The SCM Program Execution Model
	4.4.2.1 Tasking model
	4.4.2.2 Synchronization Model
	4.4.2.3 Memory Model

	4.4.3 Programming model

	4.5 Codelet Level Parallelism: Parallelism and performance
	4.5.1 Codelet Level Parallelism
	4.5.2 Heterogeneity and distributed systems in the Hierarchical Abstract Machine
	4.5.3 Compiler techniques

	5 The SuperCodelet Architecture
	5.1 The Architecture organization
	5.1.1 Scheduling units
	5.1.2 Computation Units
	5.1.3 Memory Units
	5.1.4 Register File

	5.2 Programming model
	5.2.1 SuperCodelet ISA
	5.2.2 Codelet Definition
	5.2.3 An example program

	6 SCMUlate. An emulation runtime for the Sequential Codelet Model
	6.1 SCMUlate software design
	6.1.1 The role of OpenMP
	6.1.2 Folder infrastructure
	6.1.3 The SCM Machine emulation
	6.1.3.1 Instructions and Instruction Memory
	6.1.3.2 Fetch, decode and execute
	6.1.3.3 The L1 register file on Cache based systems
	6.1.3.4 Codelet Level Parallelism
	6.1.3.4.1 Sequential execution mode:
	6.1.3.4.2 Superscalar execution mode:
	6.1.3.4.3 Out of Order (OoO) execution mode:

	6.1.4 Configuration and common structures
	6.1.5 The Codelet Class

	6.2 Programming API and the assembly Codelet program
	6.2.1 Codelets definition
	6.2.2 Example of a print Codelet
	6.2.3 The assembly Codelet Program ISA
	6.2.4 Running the emulator

	6.3 Runtime and Codelet Level Parallelism
	6.4 Profiling execution code

	7 Evaluation
	7.1 Evaluation methodology
	7.2 Testbed
	7.3 Sequential Codelet Abstract Machine mapping
	7.3.1 Register File:

	7.4 Example 1: Vector Addition
	7.4.1 Vector Addition results
	7.4.1.1 Manually applying optimization techniques: Loop Unrolling and Register Scheduling
	7.4.1.2 Sequential execution
	7.4.1.3 Superscalar execution
	7.4.1.4 Out of order execution
	7.4.1.5 Comparison between execution modes

	7.4.2 Analysing the Vector Addition example
	7.4.2.1 Evaluation drawbacks
	7.4.2.2 Important results

	7.5 Example 2: Dense Matrix Multiplication
	7.5.1 Three different implementations
	7.5.2 A GPU implementation of Matrix Multiplication
	7.5.3 Matrix Multiplication CPU Results
	7.5.3.1 Execution Time
	7.5.3.2 Scalability
	7.5.3.3 Instruction size

	7.5.4 Matrix Multiplication GPU Results
	7.5.4.1 Execution time
	7.5.4.2 Scalability
	7.5.4.3 Instruction size

	7.5.5 Comparison and analysis

	7.6 Defining the appropriate size of Codelets
	7.6.1 Empirical observations from Matrix Multiplication
	7.6.2 Designing L1 with TS
	7.6.3 Application and Codelet Size

	8 Related Work
	8.1 Dataflow systems
	8.2 Out of Order Execution and other ILP techniques
	8.3 Other parallel architectures
	8.4 Von-Neuman/Dataflow hybrid systems
	8.5 Software approaches and other efforts

	9 Future Work
	10 Conclusions
	Bibliography
	A Complete Matrix Multiplication Code

