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ABSTRACT 

This dissertation is intended to advance research in building evacuation modeling 

through the introduction of detailed social groups, collective behavior, and improvements 

in information visualization. The model built as a part of this dissertation makes 

significant original contributions to both input and output of building evacuation models.  

Regarding inputs, this work prototypes new ways to catalog social groups, 

leadership, and the concept of supra force – a combination of high density, contraflows of 

crowds, and environment. The central difference between this model and previous efforts 

is the role of group affiliations. The effort resulting from this dissertation, SocEvac, 

creates a three-layer decision tree for most agents, who have to balance individual and 

group responsibilities while attempting to avoid supra force. This interaction of 

individually optimal exit paths and social responsibilities creates significantly more 

contraflow situations as agents attempt to locate and evacuate with their loved ones. 

These contraflows impede efficient evacuation, helping to explain scenarios such as the 

Station nightclub evacuation; where there were significantly more fatalities then would 

have been expected based on population and number of exits. 

On the output side, this work creates new methods to examine simulation models 

in real-time, and suggests new methods of measurement to determine what makes an 

accurate model. The real-time visualization methods allow for researchers to quickly 

understand what is happening while a model is running. These visualizations allow for 

users of a simulation to control what features they want to highlight in a model in real-

time. The new methods of output measurement center around tracking agents as 
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individuals, cataloging outcomes of agents each modeling a real-world counterpart 

complete with demographics and relationships. By transitioning away from aggregate 

population tracking and focusing on individuals, it is now possible to compare models to 

an entire evacuation narrative instead of only attempting to recreate end results. 

These improved inputs and outputs result in the most descriptive model to date of 

population movements during the Station nightclub fire in 2003. More than ten years 

after the fire, I believe the SocEvac model can finally begin to explain the complex 

events that led to the high fatalities and unconventional exit paths of the evacuation. 

While this dissertation focuses on one scenario, the underlying program can be 

used to model almost any building evacuation. This platform is designed to inspire other 

model builders to consider adding group social behaviors to models. 
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PREFACE 

 As a researcher interested in merging separate areas of work in social science 

evacuation research and building evacuation modeling, the interdisciplinary disaster 

science and management program at the University of Delaware was the perfect outlet for 

this undertaking. Although this is a dissertation that explains the development of a model, 

it is really a commentary about the state of building evacuation modeling. While many 

fields have made huge advances in building evacuation modeling and human behavior 

analysis, these fields rarely overlap.  

While the situation regarding evacuation models and social behavior looks more 

promising today than it did when this project began, there is still an almost complete 

separation between those that study human interaction and behavior and those that model 

evacuations or egress. The model outlined in this dissertation is meant to serve as a 

prototype to inspire other modeling efforts incorporating behavioral advances in social 

science. This model is intended to be the beginning on an enhanced modeling effort, not 

the end of implementation of behavior in modeling. My hope is that model builders will 

consider this and other efforts to redefine what “social behavior” means in evacuation 

models. 



 1 

Chapter 1 

STATEMENT OF PROBLEM:  IMPROVING EVACUATION MODELING BY 

INCORPORATING SOCIAL RELATIONSHIP BEHAVIOR 

 This dissertation is an attempt to bridge the gap between social science evacuation 

research and building evacuation modeling. Computational modeling of evacuation 

involves creating every element of virtual worlds.  Many models are built from scratch, 

giving modelers complete control over the environments they create.  This freedom 

allows evacuation model builders to create complex environments with detailed building 

layouts, hazards, weather, and seemingly countless other parameters.  However, despite 

an ability to be masters of their virtual domains, evacuation model builders rarely account 

for detailed human behavior and interaction.  This is a significant oversight in a field that 

prides itself on attention to detail.  Despite extensive social scientific research about 

human social behavior, most evacuation models do not incorporate even rudimentary 

social elements.  Most models designed to replicate mass evacuations (where many 

people find themselves evacuating with friends or loved ones) completely disregard these 

social bonds.  

I believe that model builders and social scientists working together can improve 

multiple disciplines, including disaster management, by building models that account for 

established social science theories. Merging established social science theory with widely 

accepted simulation coding methods has the potential to create more meaningful and 
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interpretable results from models, as well as to contribute to the growing field of hazard 

modeling.  

1.1 Applying Theory to Modeling 

This dissertation is an attempt to build upon a previous body of work related to 

modeling building evacuations by incorporating some elements of social science theory.  

In 2009, the Disaster Research Center (DRC) developed a conceptual map of what a 

properly specified model should look like.  This model included ecology, hazards, 

heterogeneous individual profiles of victims, group social relationships, and the effects of 

crowd densities in confined spaces.  

Current building evacuation models did not focus on social relationships, and did 

not even include the ability to account for them. The first-generation model developed in 

this collaboration was a true interdisciplinary project, combining research from the 

multiple areas of expertise.  The results of the model suggest that the initial assumptions 

could be used to create more accurate building evacuation models.   

After the first-generation model was completed, it was clear that a better, second-

generation model was needed. The model would be generalizable, and be accessible and 

understandable to users from multiple disciplines. These changes and many others were 

combined to create a second-generation building evacuation model accounting for social 

behavior, the objective of this dissertation. 

The development of these models and the analysis of observed patterns can be 

judged as an original contribution to disaster science and management. The results of the 
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models accounting for social behavior raise some interesting questions, such as the 

importance of distance and clearance times in building evacuation models versus what 

really happens when a group of people attempts to evacuate a building. While this 

research is intended to complement and influence current building evacuation models 

instead of replace them, it will show the importance of social science concepts as tools to 

improve evacuation models.  

In a way, this dissertation is an answer to the challenge posed in Manuel Torres’s 

dissertation, where he suggests that conventional model design falls short of returning 

results that make sense when looking at victims of the Station nightclub fire as a network 

of related individuals instead of a homogenous population (Torres 2010).  

1.1.1 The Current State of Building Evacuation Modeling 

In certain areas of both science and practice, it is important to examine real-life 

situations in simulated environments.  There are occasions where injury, disease, 

emotional or physical harm, or other negative impacts that generally cannot be explored 

in a live research setting due to cost, legal implications, or professional ethics guiding 

human or animal research, are nevertheless of substantive significance for human safety.  

People interested in these occurrences in natural settings generally can only look at them 

after the fact, which completely prevents the ability to ask “what if...” questions that can 

be addressed through experimentation in many other fields.  Researchers and 

practitioners are unable to run experiments in these other settings, so they rely on 

computer simulations to validate results or attempt to predict future behaviors (Banks et 
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al. 2004). Because much of disaster science focuses on extreme scenarios, modeling and 

simulation will be an increasingly important part of the field, offering a bridge between 

theory and practice.  

The topics covered in disaster science frequently cannot be tested in real-world 

experiments.  It is not possible to evacuate a city just to study the results, or intentionally 

infect members of an experimental group to measure an increase in fatality rate.  Topics 

that cannot be studied experimentally in the real world often involve important issues that 

need to be addressed, making simulation experiments necessary.  But if the results of 

simulation are going to be used to create or alter policy pertaining to major societal 

issues, the simulation models’ validity becomes very important. Simulating humans is 

very difficult, and sacrifices to the quality and robustness of models are made to allow 

quick human simulation (Pidd 2010).  Unfortunately, what is included in a model can be 

even more harmful than what is left out.  For example, despite decades-long research 

about the rarity of “panic” in evacuation scenarios, the concept is still included as the 

main engine in some models of evacuation (Abdelhak, Daude, and Olivier 2009, 

Barnshaw, Letukas, and Quarantelli 2008). Panic and antisocial behavior are two of E.L. 

Quarantelli’s top six “disaster myths” (Quarantelli 2008), yet individual behavior and 

panic scenarios are often found in building evacuation models, where it is posited, against 

the results of research in collective behavior, that in leader/follower situations agents do 

not actually care about each other. 

At this time, building evacuation modeling is dominated by the disciplines of civil 

engineering and computer science.  While these disciplines develop state-of-the-art build 
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evacuation models, they do not leave a great deal of room for social scientists to make 

contributions.  Many evacuation models concentrate on optimization of exit strategies, 

which is good in theory, but relying too much on optimization often prevents multiple 

solutions from being considered. Too often in modeling, the “best” solution is the only 

one considered at the expense of all others. At one point during my dissertation writing, 

the editor of a journal asked me to review a paper that introduced a building evacuation 

algorithm that concluded that multiple exit signs should be removed from buildings, 

leaving only one clearly signed evacuation path from any building point. While the 

author certainly did not mean to do harm to building occupants, there are very obvious 

flaws in only considering the “best” choice in high-stakes events like building 

evacuations. Very often the theoretical solution that is the best option is not the best 

practical solution. 

This work creates models that offer multiple possibilities, multiple solutions, and 

multiple outcomes for even simple scenarios. In a sense, it replicates a small percentage 

of the chaos that exists in the real world. This requires reassessing or abandoning many of 

the assumptions that are currently in “state-of-the-art” evacuation modeling. Models 

cannot rely solely on which exit is closest or which time is fastest to have avatars choose 

building exits. While these are widely accepted conventions, they do not make it possible 

to create models that replicate real-world results where evacuees delay exit, take 

“inefficient” paths, or worry about things other than their own safety and speedy 

evacuation, such as spouses or children. Nevertheless, adding some of these social factors 

will likely make it possible to better replicate real-world evacuation results.  
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Researchers create models in an attempt to understand previous occurrences, 

predict future performance, and answer “what if...” questions.  Usually, when a disaster 

occurs there are multitudes of failures, and there is always a desire to know whether 

things would have worked out for the better if there had been situational differences.  

Most of the time, disaster models are ultimately concerned with the safety of people, so 

computer simulations attempt to approximate physical environments and human 

outcomes.  As mentioned by other researchers exploring the Station scenario, 

conventional modeling platforms are better at prediction than replication, because 

attempts to make the models as efficient as possible makes them bad at highlighting the 

inefficiencies in real-world evacuations that almost always occur (Spearpoint 2012). The 

model in this dissertation was designed to account for inefficiency, making it 

fundamentally different from many commercial efforts. 

 In some instances, models of disaster scenarios suffer from correlation versus 

causation issues; models only track results, not what happens during the simulations. In 

overly rigid models, inputs predetermine the results. For example, a trend in evacuation 

models is to use previous models as benchmarks of accuracy instead of real-world results, 

which is not an ideal method for correct simulations (Aguirre et al. 2011a).  Ideally, 

model builders should create models of past events based on detailed data about the 

event, which offer much more precise standards for judging outcomes than the output of 

previous models.  Nevertheless, other problems are created that demand attention; too 

much detailed input data predetermine results, so that models cease to simulate and 

simply confirm input bias. Relying on past simulations instead of actual events can lead 
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to amplifications of inaccuracies between model iterations, and relying on the wrong real-

world data can lead to models that predispose the outcome. 

There has been a growing recognition amongst computer modelers and end users 

of the need to incorporate social behavior to improve model accuracy (Cherif and Djedi 

2005, Helbing, Johansson, and Al-Abideen 2007, Moussaid et al. 2010, Galea 2004). 

Historically, most of the building evacuation modeling platforms developed by the civil 

engineering and computer science disciplines focus on one of two calculation methods 

for exit paths for agents: closest distance and most efficient (or fastest) clearance. These 

two methods have served model builders well for decades, but there are significant 

shortcomings with both methods. 

Closest exit models, a category containing a variety of flow models, create 

conditions that make it difficult to gain useful knowledge about human environments. If 

all agents in a model simply select the exit that is closest to them, a model becomes a 

simple set of physics equations, dictating how many agents can pass through a choke 

point such as a door per second. When all agents are taking the closest path out of an 

environment, it is impossible to have contraflows (Ehibara, Ohtsuki, and Iwaki 1992, 

Fang et al. 2010). 

Efficient clearance calculations are an improvement, but still leave much to be 

desired when attempting to model human behavior. One prominent example of a fastest 

clearance model uses the A* algorithm, first developed in the 1960s, which calculates the 

most efficient path for each exit in a building evacuation model (Hart, Nilsson, and 

Raphael 1968). Fastest clearance calculations technically can allow for contraflows, 
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although these situations very rarely occur. Some platforms create hybrids of these two 

exit designs (Tissera, Printista, and Luque 2012). 

More recently, model builders attempt other types of evacuation models, such as 

efforts based off of interview data about how people evacuate (Li, Tang, and Simpson 

2004), or cellular automata (Pelechano and Malkawi 2008). Often, new platforms claim 

to model social behavior, but a more thorough analysis finds that there is little or no 

diversion from closest exit or fastest clearance calculations (Fang et al. 2010, Tissera, 

Printista, and Luque 2012). If social behavior is accounted for, oftentimes models rely on 

concepts not supported in literature, such as widespread panic (Ren, Yang, and Jin 2009), 

groups that move as one unit (Johnson and Feinberg 1997), and competitive social 

behavior (Pan et al. 2007). To date these efforts are rarely contextualized within greater 

social science theory, and there is acknowledgement that further efforts are required to 

represent human social behavior, although until now this is done within disciplines 

instead of between them (Kuligowski and Gwynne 2010, Pelechano and Malkawi 2008).  

This analysis was conducted using all available documentation, but it should be noted 

that some of the described platforms may possess more or less functionality than depicted 

if not specified in available literature (Kukla et al. 2001, Tsai et al. 2011, Mott 

MacDonald 2012, Spearpoint 2012, Gwynne et al. 2000, Manocha and Lin 2012, Pan et 

al. 2006, ARA 2012, Kuligowski and Peacock 2005, Kuligowski and Gwynne 2010, 

Haron et al. 2012). Below is a brief analysis of a selection of these platforms, chosen 

based on the capabilities they possess. 
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Evacuation Simulation with Children, Authorities, Parents, Emotions, and Social 

Comparison (ESCAPES) was created by the TEAMCORE lab at the University of 

Southern California. ESCAPES is structured in a four level action set: different agent 

types, emotional interactions, informational interactions, and behavioral interactions 

(Tsai et al 2011). This model incorporates basic social behavior as well as decision 

theory, however this is a strictly disciplinary effort involving a team made up of only 

computer scientists. There are a number of differences in the modeling approach used by 

the ESCAPES team and the approach our team is proposing, including the quantification 

of group dynamics and leadership, as well as the importance of changing environments 

(hazards and agents) in simulations. The social behaviors and interdependencies between 

individuals, groups, and a community during crisis situations are extremely complex 

problems.  ESCAPES, despite its capabilities, still has limitations related to group 

understanding and interactions.   

buildingEXODUS is an ABM created by the Fire Safety Engineering Group at the 

University of Greenwich (Gwynne et al. 2000, 2006). buildingEXODUS is a 

commercially available evacuation simulation model that is widely utilized in the United 

Kingdom. It consists of six sub models that interact with one another during an 

evacuation simulation: Occupant, Movement, Behavior, Toxicity, Hazard and Geometry 

sub models. Building space is modeled as a two dimensional spatial grid made of up of 

nodes and arcs along which agents travel between adjacent nodes. The motion of agents 

and their physical interaction with one another is therefore not as natural as in 

MASSEgress. The model takes into account various characteristics pertaining to each 
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agent, including physical, psychological and positional values. buildingEXODUS also 

takes into account fire/agent interaction using computational fluid dynamic models that 

track the various elements of fire hazard. As with the other platforms, buildingEXODUS 

does not take into account the effects on evacuation of extreme crowd densities, and its 

treatment of group effects is limited (Gwynne et al. 2006).  

MASSEgress is an ABM developed by Pan et al. (2006) for modeling emergency 

evacuation. Each agent in a MASSEgress simulation observes the surrounding 

environment and makes independent decisions based on these observations. Agents 

employ instinct rules, past experiences, social rules and rational inference to choose a 

behavior type (Pan, 2006). This complexity allows agents to independently choose an 

escape route at the micro level. It results in complex behavior like cooperative queuing 

and competitive herding near exits. MASSEgress does not model extreme crowding when 

agent responses occur in high-density situations. In addition, while it does account for 

some limited group effects, such as negotiation within a group to determine priority at an 

exit point, MASSEgress does not explicitly account for group effects that reflect the 

varying strengths of social ties among agents.  

Researchers in the Department of Computer Science at the University of North 

Carolina Chapel Hill (UNC) created an NSF-funded project, “Interactive Large-Scale 

Crowd Simulation” (Manocha and Lin 2012). This is a platform that allows for the 

simulation of tens of thousands of agents in and out of buildings. This platform allows for 

heterogeneous crowds as well as agents, and simulates emergent and group behaviors. 

While this is another platform attempting to simulate large-scale gatherings of people, it 
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does not appear to account for our definition of social behavior, the importance of 

relationships and unique knowledge. The social behaviors and interdependencies between 

individuals, groups, and a community during crisis situations are an extremely complex 

problem. The UNC development team acknowledges the need to consider crowd 

validation and analysis (Lin et al 2010).   

Building evacuation models implementing social behavior are not limited to 

academic efforts. Applied Research Associates (ARA) offers a software platform called 

E-Sim (Event Simulator) to model building evacuations. This platform is capable of 

modeling large-scale buildings. E-Sim includes heterogeneous agents with “Agent 

behavior based on optimal choice or distribution of statistical human behavior” (ARA 

2012).  While ARA is a company with a great deal of experience in environmental 

simulation, it does not highlight the importance of social behavior in evacuations.  

This dissertation will present a modeling format and analysis suite developed with 

these platforms in mind, using validity specifications created from sufficient event data, 

rather than from benchmarking older models or inserting probabilities. The data that are 

used are limited to known quantities at the inception of a hazard, not information only 

known after the fact (such as which exit an individual used. 

 Despite these more recent social behavior efforts, much of hazard modeling 

focuses on physics.  In contrast, this work focuses on modeling behavior in evacuations 

using social characteristics, which as of now is an underserved aspect of modeling.  

Hazard modeling is a mature field, with a variety of platforms devoted to damage 

modeling, hazard spread, and hazard likelihood, among others (Cardona et al. 2008, Park, 



 12 

Ang, and Wen 1985, Pinelli et al. 2004, Stirling, McVerry, and Berryman 2002). 

Government entities like the National Institute of Standards and Technology employ 

model builders to create complex and thorough hazard models, including a model of the 

fire spread in the Station (Grosshandler et al. 2005). Engineers and architects frequently 

require extremely accurate building design systems, and there are numerous physics 

engines that can replicate buildings.  For building dimensions, computer aided design 

(CAD) systems provide a standardized way to design computer representation of 

buildings that are accurate to scale (CADDPrimer 2011).  Nevertheless, because the focus 

of this dissertation is on avatar behavior, and because the Station did not collapse during 

the evacuation period, there is no physics engine to predict structural changes in the 

sample building in these models.  Since changes in the building pale in comparison to the 

changes produced by the smoke and fire (the hazards at the Station), the model will use a 

simple CAD system that inputs the dimensions of the building only. 

 This dissertation presents a computer platform accounting for individual behavior, 

social relationships or group behavior, the spread and effects of hazards, and the specific 

characteristics of the space the evacuees had to negotiate as they exited the building.  It is 

a platform designed to allow researchers to isolate the effects of different types of human 

behavior.  It does not attempt to replicate the findings in evacuation modeling literature 

that suggests that door size is the most important exit attribute, but instead pursues the 

idea that social relationships and small groups (identified by real-life evacuees) are key 

factors in evacuation decisions (Ha and Lykotrafitis 2012, Wang et al. 2011). Thus, the 
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models presented are examples of interdisciplinary science using behavioral traits from 

the social sciences to guide creation of computer code.   

A strong understanding of computer science is required to build simulations, a 

solid understanding of social science is helpful to create systems that accurately display 

human behavior.  This dissertation attempts to create evacuation models that account for 

hazards, environmental factors, individual traits, group interaction, and the forces of 

crowds.   

However, it quickly became obvious that creating behavior models is hardly 

limited to the knowledge obtained in a single discipline.  For now, understanding of 

programming concepts is obviously required, but that could change in the future with 

increasingly friendly programming environments (Sengupta 2011), including the effort 

resulting from this dissertation. In order to increase the accessibility of building 

evacuation models, the model in this dissertation can be created and commanded by users 

that do not know how to code at a high level. 

For academics interested in building evacuation models, there are many 

commercial software packages designed to assist with quick model creation, but they are 

often limited by their intent or design (Castiglione 2010).  For instance, a commercial 

model of fire propagation usually would not include the possibility for other hazards to 

occur at the same time.  Many commercial software packages, such as the Vissim 

platform, require users to purchase components piecemeal, so model builders are limited 

by the options their firms purchase (PTV 2012).  In many cases, both the programs 

themselves and their output are considered proprietary, so it is difficult to be able to peer-
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review the modeling components that are used to make policy.  This dissertation 

hypothesizes that group behavior elements, commonly referenced in interviews with 

survivors of disasters, are an important part of any successful evacuation model, and 

provides a software framework for others to use these code elements (Aguirre, El-Tawil, 

et al. 2011, Quarantelli 1960, Weller and Quarantelli 1973).  

1.2 Incorporating Social Science in Models of Evacuation 

 A few model builders have already attempted to incorporate social behavior 

elements or at least identified the need to do so (Gwynne, Galea, and Lawrence 2006, Pan 

et al. 2006).   Despite the inclusion of some social behavior, these models rely on 

questionable notions such as crowd panic (Helbing, Farkas, and Vicsek 2000).  In 

contrast, my intention is to create a class of models that include social behavioral 

elements using accepted social science theories that account for social relationships and 

density in crowds. Following earlier research, an extensive review of modeling platforms 

by Aguirre et al. 2011a found that true social behavior and relationship concepts (such as 

caring about other people, represented in the model as avatars) are not used in agent-

based models of evacuation (Kuligowski and Peacock 2005, Santos and Aguirre 2004).  

While model builders cannot implement all desired traits, it is not beneficial to default to 

an approach that does not consider behavioral elements, because these results will be 

inaccurate (Pan 2010).  As illustrated below, adding even simple group dynamics make 

navigation through rendered physical environments significantly more difficult. 
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1.2.1 Issues With Group Behavior in Physical Environments 

 Before any coding begins, there are conceptual issues to address regarding 

modeling of groups navigating physical environments. Some of my original conceptual 

drawings are presented in Figures 1 to 5 to highlight potential issues addressed in the 

models. 

 Most of the work after basic coding involved creation of rules for group 

interaction, and modification of these rules after observing the behavior of avatars.  This 

section highlights some of the problems model builders must address when accounting 

for group interactions. 

 

Figure 1.1: Two Agent Exit Selection 

 Figure 1.1 is a basic diagram of a conflict in exit options between two agents that 

are in a group.  Agents in a group would prefer to exit together (the orange line), but their 

individual optimal exit paths are different (the red lines).  Two agents acting in concert is 
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one of the simplest group behavior scenarios, yet this example already shows some of the 

inherent difficulties and judgments required to have group behavior in a simulated 

physical environment (Fang et al. 2010).  If the group members prioritized meeting each 

other over exiting, their paths would be similar to the purple lines.  In my current model, 

the group leader would choose an exit independent of the other agents, and the followers 

would then attempt the same route trying to move with their group. 

 

Figure 1.2: Exit Angle Calculation 

 Figure 1.2 shows a pair of agents and their minimum angle calculations to their 

individually optimal exits.  Regardless of the behavior that is used, each avatar is 

programmed to make these calculations since lateral or angular movement is required 

before each avatar can use forward movement to exit.  The purple dashed lines represent 

minimum angles to exits for each avatar.  The red dashed line represents a bisection of 
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the angle between the directions that the two agents are facing, essentially the fastest way 

that both agents can move together in the same direction.  My hypothesis of how a 

distributed group would calculate an exit point would be to examine that bisected angle 

and its angular and linear distance from each exit, and then rank each choice.  The 

rightmost exit would clearly be ideal, since less angular movement would be required, 

and the exit does not appear to be any farther than the exit on the left.  However, if the 

leftmost agent is the “leader” in my current model, the group would take the exit on the 

left side.  

 

Figure 1.3: Line of Sight 
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 Figure 1.3 illustrates a situation where agents moving in a group would have to 

intuitively understand that other agents in their group cannot see the exit.  At this time, 

followers may abandon a group leader if they are unable to see them for a defined period.  

 

Figure 1.4: Overcoming Obstruction 

 Figure 1.4 illustrates a scenario that comes up often, when one or more members 

of a group have a desired exit path blocked by an obstruction (usually other avatars, 

especially inactive ones represented here by crossed circles).  Eventually, it would be 

desirable to have groups where agents ahead of the obstruction would have the option to 
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wait or to attempt to remove the obstruction in addition to the option to keep moving 

without relying on a time or distance equation.  Weightings for each behavior choice 

would vary based on the type of group (intimate, social, etc) and the environmental 

conditions.   

 

Figure 1.5: Inconsistent Goals 

 Figure 1.5 illustrates a group moving around a barrier, where there are exits on 

either side.  This presents an occasion where there is clearly an inconsistent goal between 

group behavior models and individual models based on efficiency for the agents that 

would have to move around the barrier to exit with the group.  While previous research 

has shown how these groups should move, motivations for doing so have not been widely 

explored in models (Silveira, Prestes, and Nedel 2008). 
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1.3 Limitations and Necessary Improvements of Simulation 

         Despite future computing developments, there will be things that simulation can 

never accomplish.  It may be possible to add basic behavioral elements, but attempting to 

simulate free will creates obstacles that cannot be mitigated by creating more rules.  The 

human experience is one of infinite possibilities, making exact models impossible to 

create (Rucker 2004).  Furthermore, there are infinite numbers of low probability events 

that may be appropriate in models, but it is not likely that accounting for them is a good 

use of a model builder's time.  There are always going to be marginal issues that will 

have to be included or excluded at the discretion of model builders. The infinite 

possibilities of any real world scenario in a way free model builders.  There is often a 

discussion of positive versus negative modeling, and criticisms frequently focus on 

elements that are left out of a model (Aguirre, El-Tawil, et al. 2011, Murphy and Salchow 

2007).  However, with infinite possibilities, whether a model is positive or negative 

becomes largely irrelevant.  Any positive model leaves out an infinite number of 

possibilities, and any negative model takes away an infinite number.  Since it would take 

an unending amount of time to produce an infinite system, any model of the real world is 

by definition a compromise, so we can stop striving for perfect accuracy.  There are 

always going to be things that are left out, so model builders should instead focus on 

what elements are put into a model and why.  This discussion necessitates an 

interdisciplinary approach to model building, which is a requirement for complicated 

simulations of human behavior. 
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1.3.1 Communicating Data and Methods 

Unfortunately, most evacuation models are proprietary, meaning that the code 

used to create model output is not available for peer-review.  The issue of access to 

model data and methods compounds the misunderstandings between programmers and 

model viewers.  Many models are considered black boxes by publishers and users, and 

the peer-reviewed publishing format is not an ideal medium to discuss large amounts of 

computer code.  This makes it difficult to understand exactly what types of reasoning are 

used in models, and readers are forced to accept what model creators claim at face value.  

Many models are enormously complicated, and it is not possible to explain methods or 

parameters in full detail.  Additionally, many model packages are expensive or very 

difficult to learn, and while an interdisciplinary approach might produce better models it 

is often impossible for most people to contribute to the actual model creation.  It is also 

often difficult to identify the reasoning for avatar behavior.  If there are hundreds of 

things affecting an avatar's “decision”, it is often not a single parameter, but a basket of 

parameters that work together to achieve the desired objective.  Platform specialization is 

also a problem.  Most models only examine a few factors in detail, and continually 

adding more factors become prohibitive due to issues of programming, cost, and 

computational power. 

 However, there are some oversights in specification of human models that are not 

dismissible as being too difficult to implement.  Humans are inherently social creatures, 

and yet many modeling standards treat human proxies in a manner similar to inanimate 

objects (Pimenta et al. 2008, Zheng, Zhong, and Liu 2009).  This approach produces 
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results through inaccurate reasoning, and additionally excludes entire fields such as 

sociology, economics, and psychology that are largely devoted to exploring human 

behavior.  These fields have much to contribute to human simulation, and overlooking 

their theories almost guarantees models that are not as good as they could be.  

Incorporating social science in future simulations will allow models to be based on more 

accurate assumptions.  In order to encourage adoption of social behavior models, it is 

vital that model builders discuss methods, data, and types of analysis. This dissertation, 

which provides high levels of detail about the input and output data of the model used to 

analyze the Station, is an example of a more open discussion about model results 

intended to facilitate easier replication. 

1.4 Modeling Scenario:  The Station Nightclub 

This dissertation is intended to push science forward, but it is inappropriate to 

attempt to do so without acknowledging the sensitivity of data about deadly hazards. 

While most of this effort revolves around analyzing numbers and iterative improvements, 

this model exists to attempt to explain a real-world scenario, complete with deaths, 

injuries, and lasting emotional pain. During the last year of research for this dissertation, 

John Barylick, an attorney involved in the settlements after the Station fire released a 

book titled, Killer Show, putting the fire and its aftermath in a human context (Barylick 

2012).  

In the scenario of The Station, there are 465 avatars at the model’s inception, 

when a fire hazard develops in a building during a concert and avatars have four minutes 
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to escape the building alive.  About 400 of the avatars were in the building as members of 

various social groups, making the social component in this scenario very important.  The 

Station nightclub was hosting a band, and a majority of the participants in the scenario 

were in the building as patrons.  This created an environment with a high incidence of 

intimate social group members.  Social groups in The Station scenario ranged from 

spouses, dating partners, friends, and coworkers.  Due to overcrowding of the building 

(according to occupancy limits), there was also high human density in the confined 

spaces of the building.   

 The hazard in The Station nightclub scenario was a fire started by coordinated 

pyrotechnics that were set off in close proximity to dry acoustic foam.  This created a 

fast-burning fire with multiple points of ignition.  Due to confined space, ample fuel, and 

multiple starting points, the fire quickly spread to most of the interior wall of the stage 

area and thick smoke filled the stage room in under a minute, creating a difficult 

environment for evacuation (Grosshandler et al. 2005, Webber, Wright, and Cook 2001).  

High-density situations such as the evacuation of The Station result in unique evacuation 

environments, oftentimes making it impossible for agents to remain on their desired paths 

(Schadschneider et al. 2008). 

After the fire at The Station, Disaster Research Center (DRC) researchers 

obtained detailed demographic and interview data of the victims and survivors of the fire 

(Aguirre, Torres, et al. 2011, Torres 2010).  These data consisted of individuals’ 

demographic information, their familiarity with The Station, their location at the start of 

the fire, paths used for exit from the fire, observations about social relationships, and 
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individual outcomes.  After analyzing these data, it was clear that social relationships 

played an important role in this evacuation.   

 One unique aspect of the scenario of The Station was widespread group member 

dispersal within the building at the time of the fire ignition.  The fire began early in the 

evening, and many social groups had members in opposite ends of the building because 

the main bar was located far away from the stage.  At the moment of the ignition of the 

hazard, many of the most intimate social groups had all of their members located near 

one of the various exits, but far away from other members of their respective groups.  

While most evacuation models would discount group membership and have patrons 

quickly leave the closest exit, the data collected by Aguirre et al (2011) showed that this 

was not what occurred.  Instead of exiting immediately, many group members attempted 

to find other members of their social group.  

Previous models of The Station nightclub fire focused on either the physics of the 

fire itself (Grosshandler et al. 2005), homogenous individual evacuation (Pan 2010), or 

network models (Spearpoint 2012).  These models are well thought out and executed, and 

each does a good job at its stated purpose.  However, these models do not include 

complex social group dynamics, crowd density issues, leadership dynamics, real-time 

visualization ability, or detailed analyses of individual behaviors and outcomes. 
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1.5 Dissertation Goals 

 

This dissertation provides a modeling platform designed from an 

interdisciplinary perspective to be used by social scientists, economists, and computer 

scientists working together to improve social science and economic experimentation 

through simulation.  There are five deliverables discussed in the dissertation:  

1. Detailed results and analysis of the model of The Station with individual 

and group social behaviors and crowd density effects;  

2. A conceptual map for creation of a generalized platform to use the code 

developed for the Station scenario for other evacuation scenarios;  

3. A discussion of validation methods used and created to verify model 

accuracy;  

4. A discussion of the improved model visualization methods created for the 

models; 

5. A discussion of changes necessary to data sets in order to use and share 

location and relationship data in a way that preserves subject privacy to current academic 

standards for future applications and generalized models. 

1.5.1 Detailed Results Comparison of Model Generations 

The primary objective of the dissertation will be the collection and 

comparison of three layers of model results from the second-generation model developed 

with social-science principles in place.  The three layers compared will be level 1: overall 

survival and death, level 2: frequency of exits used and overall death, and level 3: 
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individual tracking and motivation of each avatar.  The levels 2 and 3 make the standards 

of accuracy suggested in this dissertation possible. Instead of benchmarking to previous 

models or nearest exit guidelines, the model results are compared to the detailed real 

world results. 

1.5.2 Generalized Platform for Group Behavior and Crowd Models 

The dissertation returns an example generalized platform that the disaster 

research community can use to create models that include social behavior elements and 

crowd density as primary factors, enabling the testing of social science and economic 

theories.  This generalized platform, developed with the lessons learned from the creation 

of models of the evacuation of The Station nightclub allows the academic community to 

validate and improve aspects of the model code.  Additionally, this platform includes all 

levels of data tracking developed in the model, allowing for unprecedented levels of 

model data analysis for future scenarios. 

 This model addresses some of the unique challenges related to modeling 

large and multistory buildings (Fang et al. 2012, Galea, Sharp, and Lawrence 2008, Xu 

and Song 2009).  To accomplish this the platform integrates some software conventions 

from CAD and GIS programs to improve the number of experienced users (de Silva and 

Eglese 2000).   

1.5.3 Improved Validation Methods 

Validation methods developed to determine accuracy of models when 

measuring avatars as individuals are made available to the community for analysis and 
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criticism.  The class of models developed for the dissertation includes novel methods of 

model data collection, suggested for all future models. New methods of validation are 

required because traditional methods of simple survival counts do not give theorists the 

information needed to determine why models generated specific output.  There is a 

significant literature devoted to model validation and simulation accuracy, but avatars are 

rarely analyzed as unique beings (Balci 1997, Kleijnen 1995, Mihram 1972, Olsson and 

Regan 2001, Sagun, Bouchlaghem, and Anumba 2011, Sargent 2008, Shih, Lin, and 

Yang 2000, Youngblood and Pace 1995).  Because this class of model tracks individual 

agent paths, goals, motivations, and decisions, a number of theories are testable with the 

model.  The availability of this information requires new validation methods to determine 

what constitutes a good fit. 

1.5.4 Improved Visualization Methods 

As a part of this dissertation, model visualization methods developed to 

better communicate model functioning are made available to the community for analysis 

and criticism.  These visualization methods allow those without a background in statistics 

to construct simulations and watch models in a visual manner to test theories and 

examine why a model is functioning in a specific way.  Because users can control all 

aspects of model playback and information output, it is possible to analyze models 

without ever leaving the projection screen.  Additionally, avatar visualization within the 

model is a topic of interest in the dissertation, since thick smoke was a factor at The 

Station. 
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1.5.5 Improved Data Collection and Analysis Methods for Future Study 

This dissertation is possible because of the use of detailed network data, tied 

to places and times. The model validation process has shown that current standards of 

data anonymization techniques are lacking if relationship data and demographic data are 

available.  This dissertation discusses in the conclusion and appendices enhanced 

anonymization methods necessary to use location and relationship data in a way that truly 

preserves user identity while maintaining the ability to apply my model to a larger set of 

instances. 

 

1.6 Dissertation Outline 

These five goals are discussed in six dissertation chapters covering model 

development, model optimization, model results, and future work. Chapters 2 discusses 

the development of the first-generation modeling attempt. Chapter 3 discusses the 

differences between the first and second model, why these changes are significant, and 

the ultimate purpose of the second-generation model. This chapter includes changes to 

data collection from the model and changes in model visualization designed to make the 

model useable by the general population. Chapter 4 covers the development of the 

second-generation model, used for the rest of the dissertation. Chapter 5 discusses the 

results of The Station simulation in detail, including industry-standard output validation 

methods and methods of my own design built to question the importance of clearance 

time in conventional models. Chapter 6 discusses limitations in the research, ideas for the 
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future, and guidelines for data collection making it possible to model multiple future 

events in incredible levels of detail.  

These six chapters combine to form an original contribution to modeling 

research by incorporating social science theories about social interaction, from the unique 

point of disaster science and management. While there are no claims that this model is 

accurate for any scenario besides the Station, it is designed to allow any necessary future 

modifications, and released knowing that improvements will be required over the years. It 

is my hope that this research contributes to the increased adoption of social behavior 

modeling in building evacuation research. 
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Chapter 2 

PRELIMINARY MODEL:  FIRST-GENERATION SOCIAL BEHAVIOR 

MODEL DEVELOPMENT 

This chapter describes the design and development of the first-generation 

model of the evacuation of the Station using social and crowd behavior elements, and 

discusses the preliminary results of the study, which inspired the rest of this dissertation.  

This chapter includes a discussion of four main modeling tasks: individual behavior 

development, heterogeneous avatars and environment, group behavior, and the behavior 

of collectivities.  A discussion of the results of this first-generation model concludes this 

chapter. 

2.1 Individual behavior model – Task 1 

The modeling objective initially had a few relatively specialized requirements.  

An accurate floor plan of a building was required, so any platform would have to allow 

for specialized simulations of physical environments in at least two dimensions.  The 

model required simulation of one or more hazards, meaning that several types of agent 

classes and interactions were going to be required.  Finally, complex levels of interaction 

would be required among the agents because the model replicated humans.  The incident 

modeled had hundreds of people who were together in a relatively small area and 

duration for a short time period, a situation that would create a huge number of 

interaction variables when considering individual, group, and mass behaviors. 
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There are a number of entry-level packages of agent-based modeling platforms 

like NetLogo, but they sacrifice depth in favor of accessibility (Wilensky 2011).  While 

NetLogo and similar packages offer a friendly and accessible platform to begin agent-

based modeling, there are no tools available to extensively modify their environments 

and create heterogeneous agent behavior.  Since the model in this work would not require 

constant end-user input, a more complex system would be a better fit. 

The next layer of modeling platforms included more complicated systems like 

SWARM in Objective C and Java, and Repast Simphony in Java (Argonne 2011, Swarm 

2011).  Repast appeared to be a promising platform, and was the basis for the first 

prototype.  While programs like Repast Simphony create powerful agent-based models, 

components to simulate and test social science theory are not included in the platform at 

this time. One promising program, buildingEXODUS, is often used for building 

evacuation research, but the program is proprietary (Gwynne et al. 2001, Owen, Galea, 

and Lawrence 1996).  

After evaluating commercial options, the DRC chose to use EgressSIM for the 

first-generation model.  This platform was chosen because collaborators Dr. Sherif El-

Tawil and Mr. Vladamir Federov previously used it to create a model of a building 

evacuation that had a 2D environment, effective parallel processing ability, a graphic 

output, and the ability to create heterogeneous agents, something that would have taken a 

long time to duplicate correctly.  
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2.1.1 Model Specification 

After testing various modifications to the EgressSIM platform, the DRC created 

an accurate blueprint of The Station at the time of evacuation using a floor map of the 

building published by NIST, security footage, and interview accounts (Grosshandler et al. 

2005, Aguirre, Torres, et al. 2011).  This involved mapping a set of exterior and interior 

walls, doors, exits, windows, and interior obstructions.  This map was then converted into 

a two dimensional environment in EgressSIM.  Then we used participant data and 

determined the location of all employees and patrons at The Station at the beginning of 

the incident, to build profiles for them in the program (Torres 2010).  EgressSIM 

currently requires agents emulating people to have line of sight to at least one exit.  

Luckily, this is similar to code requirements for exit signs, so checkpoints exist in the 

model at similar locations.  With these steps completed, the result was a primitive model 

of The Station using the EgressSIM platform. 

 As received, the EgressSIM model had one human agent behavior profile, single 

choices of sequential exits for each agent, no hazards, and virtually no crowding.  The 

model came with 100 identical human agents in a large building.  While the initial model 

displayed a relatively simple physical environment, the design was both easy to 

understand and efficient, making it an ideal platform for modification and expansion. 

 Since the model involved evacuation from hazards, additional environmental 

classes were added to EgressSIM.  Windows, which are a hybrid of walls and exits, allow 

human agents to move through them under duress, but treat them as barriers in a non-

emergency environment.  Fire and smoke, which damage human agents, each affect 
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agents uniquely.  Fire should damage agents, and this effect should decrease with 

distance.  Smoke should affect an entire area more consistently.   

 The avatars or agents have to compensate for multiple exit paths, changing 

physical environments, crowding and other limitations caused by other agents, and their 

own behavioral changes.  The most significant obstacles to exit in the model are other 

agents, an enormous change from the initial environment.  Recreating the events at The 

Station is much more complicated than an orderly building evacuation.  The nightclub 

was overcrowded, and exits were not intuitive or easy enough to reach (Grosshandler et 

al. 2005).  The fast spread of the hazard created a very dangerous environment that 

changed very quickly, making primary exit routes impractical or impossible to use in a 

matter of seconds.  Having hundreds of human agents negotiating this environment is a 

difficult task, but by refining behaviors, more realistic simulation became possible. 

 To be historically accurate, the model should have a finite run time of less than 

five minutes where human agents could survive without evacuating, a fundamental 

change from the initial EgressSIM architecture.  Because the environment quickly 

became too hostile for survival for all persons, the model has a finite run time of four 

minutes.  The initial EgressSIM model did not stop until all agents had evacuated the 

environment, but this is not a good indicator of success in environments where life is at 

risk because of a hazard.   

 The static environment in EgressSIM was modified to allow for physical 

environmental changes based on time or other measures of deterioration.  For instance, 

interview analysis showed that various exits became unavailable during the evacuation, 
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and the model replicates these environmental changes (Aguirre, Torres, et al. 2011).  

These changes force agents to reevaluate their exit paths, even if the exits that became 

impassable were not their current targets.  Adding more complexity, the ultimate focus of 

the model is group behavior, which adds additional layers of agent interaction and 

complexity.  Researchers previously identified groups and their degrees of intimacy, and 

the model uses formulas that determine how likely and for how long members of these 

groups are to evacuate together or search for each other.  Similarly, there are conditions 

in the program where group members may revert to individual behavior, creating a very 

complex dynamic for other group members.   

2.1.2 Model Creation 

Model development began with the creation and modification of a number of 

EgressSIM items. 

Walls:  A wall is an impenetrable barrier.  An avatar cannot see beyond a wall, and 

cannot move through it or occupy the same space that is occupied by a wall (for instance, 

a torso or shoulder cannot be in the same space at any time).  If this behavior is not 

contradicting a goal, an agent will move along a wall as opposed to another path.  A wall 

is a member of the Wall superclass. 

Windows:  A window is a barrier that is penetrable if necessary.  In our model 

windows do not open, they have to be broken.  Avatars see windows as barriers much 
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like walls, except in situations where they are gravely threatened, at which point they will 

see them as exit or destination options.  A window is a member of the Exit superclass. 

Checkpoints:  A checkpoint is a sign visible to agents, such as the “exit” signs that are 

required to be visible from most locations in commercial buildings.  An agent can see it, 

and can choose to move towards it as a goal or not.  However, any avatar that reaches a 

checkpoint will then adopt another goal.  A checkpoint is a member of the Exit 

superclass. 

Doors:  A door is similar to a checkpoint, but it represents a physical item.  A door 

has protrusions on each side, giving similar viewing dimensions to real doors.  The 

protrusions also make sure that walls or other obstacles do not occupy the same space.  A 

door is a member of the Exit superclass. 

Destinations:  A destination is a barrier that when crossed, removes an avatar from 

active status in a simulation.  These are proxies of exit doors, and assume that any avatar 

that crosses them is now safe from hazards in the model.  A destination is a member of 

the Exit superclass. 

Fire:  Fire is an element that damages an avatar based on the distance between the fire 

and the avatar.  Avatars are damaged by fire at a rate that depends on the square of 

distance (for example, being one foot from a fire is four times as dangerous and being 

two feet from it).  Fire is enormously damaging at close distances, but this threat quickly 

diminishes with distance.  As long as the behavior does not conflict with a higher goal, an 
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avatar will move away from fire.  Like a wall, a fire is visually and physically 

impenetrable in our model.  A fire is a member of the Fire superclass. 

Smoke:  Smoke is an element that damages an avatar largely independent of avatar 

location.  This trait may change in the future for modeling very large or multistory 

buildings, but in a smaller integrated environment, it is adequate.  Because damage is 

indiscriminate, an avatar does not alter any exit goals because of smoke.  Smoke is a 

member of the Smoke superclass. 

2.2 Creating a Heterogeneous Model – Task 2 

 Models that assume that all participants are homogenous are essentially flow 

models, measuring human evacuations in a similar way to which sand flows through an 

hourglass without including motivations (Bonabeau 2002).  In task 2 of the model, the 

focus is the heterogeneous traits of individual avatars.  Instead of relying only on fixed 

parameters such as the closest exit or individual programmed parameters, the model 

accounts for individual demographics, preferences, and environmental changes caused by 

other avatars.  The model is dynamic and the environment changes based on the position, 

action, and intention of each avatar.   

The individual layer begins like other simulations, with basic physical traits, such 

as physical size, forward and lateral speeds, and energy values.  From there, the model 

adds heterogeneous traits of age, gender, familiarity with The Station, and willingness to 

crowd or overtake other agents.  These factors create a population of unique avatars.  
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Specifically missing from the model are data that would bias the model to particular 

results, such as the ability to survive.   

 This model only uses avatar input data known before the hazard took place.  This 

prevents the creation of overly deterministic models by using data from the actual results 

(such as survival percentage or exits used) to influence the model during a simulation.  

Including these values would create a model where the results are heavily biased.  Data 

from actual results are not part of avatar profiles.   The only use of these data are to 

compare the model results to the historical event. 

Based on demographic traits that were identified by the DRC, different profiles 

for human agents based on age, gender, location, familiarity with The Station, and group 

traits such as size of groups and group type were developed (Aguirre, Torres, et al. 2011).  

The simplest elements are those that are external to the model.  Individual base behavior 

calculations come from familiarity with the Station, age, and gender.  Familiarity with the 

Station would imply that avatars would know the layout of the building, including 

obstacles, dead-ends, and exits.  Age and gender affect many behavior variables in the 

model. 

 The next type of variable can change based on the environment affecting each 

agent.  Forward speed is a current value and has a maximum value for each avatar.  These 

are the values in meters per second of how quickly an avatar can move from one location 

to another in the environment; a maximum running speed in an uncertain indoor 

environment.  Lateral speed is the current and maximum speed that an avatar can turn.  



 38 

This is the value in degrees per second of how quickly an avatar can change direction in 

an uncertain indoor environment. 

 “Following distance” measures each avatar’s willingness to enter the personal space 

of other avatars in the environment.  This is the minimum amount of space that an avatar 

will voluntarily leave between themselves and the avatar in front of them (if applicable).  

Unless density forces avatars closer than their preferences, avatars will not crowd each 

other beyond their individual preferred following distances. 

 Avatars that are unfamiliar with the building are more likely to follow interior walls 

to an exit if an exit path is not abundantly clear to them.  If an avatar is unsure of where 

to go, they may walk until they discover a barrier and then follow it until they come to a 

point where they have to make a choice about which path to take.  Avatars that are more 

familiar with the environment may be more willing to take paths that are more direct to 

goals.  If an avatar attempts to get to a goal that is not in line of sight, it would be much 

more willing to take the shortest direct path. 

 The willingness for avatars to modify their choices is very important to the model.  

If changing circumstances do not make avatars reconsider their options, then there would 

not be variation in the model other than randomness.  However, in our model, location, 

time, hazards, other avatars, groups, and the density of the gathering impact avatar 

choices, and as such, avatars have to be willing to change their goals.  In this model, all 

of these parameters are changing for each avatar over time, and their base value 

influences their willingness to change. 
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 There is a base value of each avatar's willingness to overtake another avatar.  An 

avatar with a high willingness to overtake would have no problem diverting their path to 

go around something in their way.  An avatar with a low willingness to overtake would 

be more willing to wait behind others in the way of their goal instead of choosing another 

path.  Again, other factors in the model may override this base value. 

2.2.1 Hazard Components 

 The model of The Station centers on a hazard, a fire that occurred in a confined 

space necessitating an evacuation.  The first consideration was whether to create a hard-

coded hazard profile, or run a simulation of a fire during each simulation.  Because the 

NIST technical reports on this fire and how it spread in the building were available, a 

hard-coded fire model was selected (Grosshandler et al. 2005).  However, the framework 

exists in a way that allows for changes of that component to the simulation for later 

experiments with different fires or different environments. 

 Originally, the hazard had two components:  fire and smoke.  Fire affected 

individuals at an inverse square of distance, and smoke affected everyone in the 

environment identically.  This was an oversimplification based on a review of fire science 

models (Cheng and Hadjisophocleous 2011, Miltiadis 2010).  Specifically, a detailed 

report about autopsy and survival data from a medical examiner at The Station implied 

that the existence or lack of a number of gasses in the environment caused death (Gill et 

al. 2010). 
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 The hazard portion of the model focuses on the following factors:  fire, decreased 

visibility due to smoke, temperature, oxygen percentage, and carbon monoxide 

percentage for each avatar.  Again, because of the layout of The Station and the 

propagation of the hazard are known, many of these factors are hard-coded to remain the 

same in simulation runs, since at this time the model is not concerned with the hazard 

itself but with the human behavior in reaction to it.  Every hazard factor with the 

exception of visibility from smoke has a point reduction value in each location and time 

(for example, -1/second).  Visibility impacts avatars by eliminating some movement 

choices and communication types (Isobe, Helbing, and Nagatani 2004).  Each avatar has 

a resistance value that these points are subtracted from, calculated from a combination of 

demographic factors.  Based on the data gathered about The Station, and the reports from 

the incident, we know generally where participants were at the start of the fire, how they 

exited or perished, and what their main cause of injury or death would have been based 

on their probable locations (Aguirre, Torres, et al. 2011).  The desire is  

 

to produce results that are accurate at any point in the simulation, not just at the end 

(measuring the correct number exited or deceased).   

2.2.2 Single Agent Behaviors 

 Next, there are several behaviors of a single agent in the environment.  In the 

environment, a single avatar that is alone can use the following rules: 



 41 

Behavior Type:  The behavior type is a set of attributes that an avatar possesses 

individually.   

Energy Level:  The energy level is the initial allocation of “health” for an avatar.  

Fire and smoke damage deplete the energy level. 

Initial Location:  The initial location is where the agent is located on the (X,Y) 

plane when the model begins a simulation run, corresponding with the beginning of the 

fire.  This location must be visible to at least one member of the Exit superclass, and must 

not overlap with a member of the Wall or Fire superclasses. 

Lateral Movement:  Lateral movement is the avatar's ability to turn, dictated by 

Behavior Type and barriers.  The axis for lateral movement is the center of the torso, 

which does not change location. 

Forward Movement:  Forward movement is the avatar's ability to perform the 

equivalent of a step, dictated by Behavior Type and barriers.  Forward movement 

changes the location of the avatar's center. 

Target Point:  The target point is the location that an avatar attempts to move 

toward to accomplish a goal.   

2.2.3 Moving in the Environment 

 A single avatar initializes in an environment and evaluates available potential 

Target Points (which all possess a potential value, for instance a destination has a higher 

potential than a checkpoint).  The Target Point potentials are descending, the lower a 
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value is, the better.  When a point is selected based on availability and distance (with the 

lowest potential value), the avatar will attempt to move toward it, using lateral movement 

and forward movement, avoiding fire, trending towards walls if applicable, and 

reevaluating their movement at every step. 

 Goals may change before an agent reaches a Target Point, but they mandatorily 

change afterwards.  If an avatar reaches a Target Point and the avatar is still active in the 

simulation, they will reevaluate and find a new Target Point with a lower potential value 

than the point reached previously.  If one is not available, the agent will return to the 

previous point and reevaluate.  These calculations occur 20 times a second.   

2.2.4 Adding Avatars 

 Adding even a second avatar creates a great deal of complexity, and these issues 

become a greater concern as density of avatars increases.  Based on each avatar's 

behavior model, there are traits that account for comfortable space between avatars, 

willingness to bypass other avatars, willingness to change goals, speed, and willingness 

to bump into other avatars.  Many of these traits are only active on occasions where 

avatars are crowded in with others.   

 A unique aspect of our model is the ability for individual behavior models to 

change based on environment.  As hazards become more pronounced, or current 

parameters are not working, avatars should be willing to change their behavior to include 

traits that would not exist in a normal situation.   
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 Crowding and density are important to the simulation, and it is important that the 

behavior profiles are accurate at every level.  Goal and movement calculations become 

much more complicated when many of the barriers are fluid (other agents).  Through no 

fault of the individual avatar, it is possible to select goals that are nearly impossible to 

obtain because of the goals of other agents.  If an avatar decides that due to their profile, 

environment, and other agents, they want to move in an opposite direction of the 

collectivity, they very likely affect not only their own goal, but the goals of several other 

agents.   

 It is difficult to predict the behavior of a group of individuals, so goals are much 

more likely to change upon recalculation when exit opportunities are blocked or might be 

blocked by other agents.   

2.3 Incorporating Group Behavior – Task 3 

The next layer of the model is the group or social layer and resulting social 

relationships.  There are multiple examples of evacuation models incorporating basic 

social behavior, but their focus is not on relationships (Gwynne, Galea, and Lawrence 

2006, Pan et al. 2006).  Studies that account for different social relationships in 

evacuations do not extend to model development (Johnson, Feinberg, and Johnston 

1994).  This study accounts for multiple different types of social relationships.  Social 

links between the avatars were determined for the Station model.  The resulting dataset 

contained links between avatars, and the type of linking relationship.  There are five types 

of relationships: co-workers, friends, dating partners, spouses/family members, and 



 44 

multiple relationships (avatars that have more than one relationship type with other group 

members).  The different types of relationships have unique features in the model.  For 

example, co-workers are much more likely to revert to individual behavior than spouses 

or family members.   

2.3.1 Leadership 

Following previous ABM works, the model puts group members into two main 

categories, leaders and followers (Pelechano and Badler 2006).  Group leaders are at a 

given moment in charge of their groups, meaning the leader has determined which exit 

path the group will take.  All other members of the group are followers, and either heed 

the instructions of the leader or remove themselves from the social group.   

The group member most likely to be a group leader is in charge of the group 

unless they exit the building, die, split from the group, are overtaken by another group 

member, or the group dissolves.  If the group does not dissolve but the leader becomes 

inactive, the other group members compare leadership values and the avatar with the 

highest remaining value will take over leadership of the group. 

In the current model, the group selects a leader, and the leader exhibits their 

individual behavior.  The followers in the group then follow the leader if in line of sight, 

or the leader's target point, if other group members are in line of sight.  If a follower loses 

line of sight of all group members, they will revert to individual behavior after a stated 

amount of time.   If a leader chooses to revert to individual behavior, or leaves the group 

through external factors (death, reaching a destination) then a new leader will be selected 
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by the group and assume responsibility for selecting target points.  If all members of a 

group but one are inactive in the group, the remaining member will automatically return 

to individual behavior. 

 The group leader is chosen by an equation that gives preference to “middle” 

 age (in the Station environment this age is in the high 30s), male gender, familiarity with 

the scenario, smaller distance from other group members, smaller distance from exit 

points, and lack of injury.  These demographic characteristics were selected based on the 

specifics of the Station scenario and will almost certainly change when programming for 

other environments. Leadership is a dynamic factor based in part on the changes brought 

about by other avatars not in the group and the developing fire and smoke hazards.  

Based on several changing events, the group leader may also change.  However once a 

leader is chosen there is a premium added to the leader's leadership value.  This premium 

means that a situation will need to change significantly in order for a group leader to 

change.  Without a leader premium, group leadership could potentially change every 

timestep, resulting in groups that did not move. 

 Some of these variables are static and do not change during a simulation. Age, 

gender, and familiarity with the building are all static values that do not change based on 

what is occurring in the simulation.  In the model the male gender, older age, and more 

environmental familiarity all increase the probability of an avatar being a group leader.  

Male and older avatars have a greater probability of becoming leaders because of social 

science and psychology research showing that males and older group members often take 
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leadership roles in emergencies (Kent and Moss 1994, Tueretgen, Unsal, and Erdem 

2008).  Increased familiarity with the Station building raises the probability of leadership 

because group members familiar with an environment will be more comfortable in an 

emergency situation and will have a greater understanding of evacuation options 

(Mawson 2005).    

Once a leader is chosen and the leader premium is added, it is unlikely that 

leadership will change unless a leader leaves the environment, is unable to move freely, 

becomes inactive, or the situation in the environment changes drastically.  For instance, if 

an exit that the leader was leading the group to were to become inaccessible, it would be 

more likely that group leadership would change, since the leader would now likely be the 

furthest from another exit.  The leader premium is important because without it, the 

leader values might change too frequently.  A leader premium prevents leadership change 

while an exit plan is in effect while still allowing for leadership changes that should occur 

due to the changing environmental circumstances.   

2.3.2 Group Behavior Specification 

Evaluating group behavior of agents creates an additional level of complexity.  

After adding social behaviors, the issues and interactions raised with multiple agents 

become even more complicated.  There is an entire additional set of modeling 

complexities that are raised when attempting to coordinate groups of avatars in a physical 

environment (Aguirre, Torres, and Gill 2009).  Rules of timing, space, and movement are 

layered upon communication protocols and translators required for group networking.  
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Group size and group intimacy both contribute to the importance of groups to each 

avatar. 

 Currently, the model uses two group behavior layers, essentially outlined as a 

follower layer and a leader layer.  The eventual goal is to create groups with possibilities 

for decentralized leadership formats (such as group decisions and negotiations), but for 

now, there is a dynamic leadership component. 

Of the 465 avatars the DRC modeled for the Station scenario, only 48 were alone. 

The other 417 avatars (90% of the total) are members of social groups. These groups 

break down as follows: There are 68 groups of two (136 avatars), 25 groups of three (75 

avatars), 19 groups of 4 (76 avatars), 9 groups of 5 (45 avatars), and 85 avatars in groups 

of six or more. 44 avatars are defined as “alone” (no group association), 54 avatars 

defined as co-workers, 193 as friends, 57 as dating partners, 40 as spouses or family, and 

77 as “multiple” (for instance friends and partners). 

 The first group layer consists of social structure.  There are different parameters 

for intimate groups and social groups.  If an avatar is a member of a group, these traits 

will override or complement their individual behavior models.  Instead, they share goals 

and movement with their group, or at least attempt to do so.  However, if it is impossible 

to follow the group goals, or there is an imminent danger detected, an avatar in a group 

maintains the ability to revert to individual behavior. 

 The social structure layer highlights the social relationships between avatars and 

resulting behavior changes compared to individual motives.  In the model, there are five 
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different types of group relationships; co-workers, casual friends, dating partners, spouses 

and family members, and those with multiple relationship types. 

 The co-worker group type is the loosest group association in the model.  Co-

worker relationships are often well-defined but also very casual (DeVito 2003).  In the 

model, the definition of a co-worker is someone that an avatar knows, but would not 

choose to associate with outside of work.  Because of this definition, most of the co-

worker relationships in the model are employees of the building.  Because of the formal 

and forced aspects of co-worker relationships, the co-worker bonds in the model are not 

strong.  This means that agents with co-worker bonds will be less likely to avoid 

individually optimal exits to instead search for co-workers, and are less likely to follow 

other co-workers on paths that do not appear to be individually optimal.  The loose co-

worker bonds are likely to disintegrate early on in the presence of a hazard.   

 Casual friends are another loose group association.  In the model, casual 

friendship or friendship is defined as a relationship that is maintained in free time or 

because of a common activity (DeVito 2003).  Many of the avatars in The Station 

scenario meet this definition, because there were several groups of casual friends 

attending the nightclub.  Casual friends are more likely to search for each other or stay 

together than co-workers, although they will not abandon clearly optimal exit choices to 

do so.  When the environment begins to deteriorate, these group members are likely to 

revert to individual behavior. 
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 Dating partners are unmarried couples with a more cohesive group association.  

Dating partners are for the most part in intimate groups of two, which makes it much 

more obvious if an avatar's partner is missing (DeVito 2003).  Dating partners are more 

likely than other casual forms of relationships to search for their counterpart and to 

follow a group leader even if the behavior is not individually optimal.  Even if dating 

partners are far away from each other and in clear view of individually optimal exits, they 

are likely to search for each other despite devotion to self.  The environmental situation 

has to deteriorate significantly in order for dating partners to abandon their group, but for 

the most part dating partners will revert to individual behavior if they are significantly 

injured. 

 Spouses and family members are the strongest group bonds in the model (DeVito 

2003).  Spouses and family members are almost certain to take time to look for their 

group members, and are very reluctant to abandon them in all but the most hazardous 

situations.  Spouses and family members make up very cohesive groups where leadership 

values are strong, groups are likely to converge and then stay together, and group 

members are unlikely to leave the group unless not doing so will be fatal.  Members of 

these groups are extremely unlikely to evacuate a hazard situation without their other 

group members. 

 Avatars with multiple group-level relationships are likely to adopt the strongest 

relationship of another avatar in the group.  If a group member is a co-worker and a 

friend to other group members, the group member will act as a friend.  If the group 
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member is a friend and a family member to other group members, the avatar will act as a 

family member.  This assumes that if the group is together, the member creating each 

avatar's strongest bond will be a part of the group.   

 The interactions between avatars and their group members, other agents, and their 

environment create a complex and fluid simulation environment, where there are tens of 

thousands of calculations per second.  When decentralized groups are used, these 

interactions will grow, and avoiding or managing conflicting commands will become 

more of an issue.   

2.4 Incorporating Crowd and Reactive Behavior – Task 4 

 The final layer of the model is the density layer or supra force.  The supra 

force layer depends on the environment and density of other avatars in a specific setting.  

In very dense situations, avatars have reduced or eliminated ability to move freely; 

avatars may find themselves surrounded and unable to move in a direction different from 

those surrounding them.  It is important to note that supra force behavior is different from 

panic behavior, since group incidence of panic behavior was not apparent in the 

evacuation of the Station (for a panic example see Helbing, Farkas, and Vicsek 2000, 

non-panic example see Gill et al. 2010).  Supra force is an interaction between a 

collectivity of people and an environment. It is an ecological pattern that is in constant 

change as the collectivity moves over time. It is also an example of emergent collective 

behavior that is observed even if unplanned in the results of the simulation model. Supra 

force is modeled more similarly to crowds watching out for each other even if they 

cannot move where they choose (Drury, Cocking, and Reicher 2009).  If the conditions of 
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supra force are present for an avatar, individual and social behavior elements will be 

overridden, and the avatar will move in the direction of the movement of the avatars 

surrounding it and its group.  In effect, the supra force condition temporarily supercedes 

the avatar’s desired goals. 

2.4.1 Supra Force 

The Station scenario is a situation with a high human density in a closed building 

environment.  The scenario involved a building that was significantly over municipal 

occupancy limits at the time of the hazard (Grosshandler et al. 2005).  The Station only 

had four exit doors, and there were 465 people in the building at the time of the hazard, 

resulting in a high number of evacuees for each available exit.  This scenario results in 

significant crowding at the paths to the exit doors.   

 The model proposes that in situations with high human density combined with 

otherwise inflexible environments, avatars surrounded by multiple other avatars or 

immovable obstacles in all directions will no longer possess free will to move, and may 

actually be moved or crushed based on the force of the moving collectivity of the avatars 

when a precipitating event occurs. Supra force is a condition that can occur during 

situations with a combination of high density, diverse population movement (often 

contraflows), and unique environments. It is important to mention that density alone does 

not create supra force. Building upon previous efforts this model regards collective 

crowds as discrete, emerging features of emergency evacuation situations resulting from 

high densities of avatars in a conducive environment (Low 2000, Silveira, Prestes, and 

Nedel 2008).  In the model, this phenomenon is called supra force to emphasize the 
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emergent features of these collective patterns.  Avatars that are not able to move in any 

direction, even if they push avatars next to them experience supra-crowd force, and their 

behavior model reverts to a passive state.  If avatars surrounding the agents subject to 

supra-crowd force move in a consistent direction, the surrounded avatars may not be able 

to move in any other direction (Bohannon 2005).  The surrounded avatars will then wait 

until they are able to move to resume their goal.  In the group setting, if a group leader is 

a victim of supra force, a new leader is selected.   

 In the model, there are specific requirements for experiencing supra-crowd force.  

The first requirement is that an avatar is surrounded on all sides by an immovable 

environmental barrier or other avatars.  The second is that two or more avatars are present 

in all directions and surround any avatar not limited by an environmental barrier.  The 

assumption is that an avatar only blocked by one layer of other avatars will be able to 

push them out of their current position.  The third requirement is that surrounding 

conditions should last for five or more timesteps (or a quarter of a second).  This prevents 

avatars from surrendering their will based on fleeting circumstances.   

 Once an avatar experiences supra force, they remain in the behavior mode until a 

second after the situation changes (the lagged time accounts for a reorientation).  After 

the situation that caused the supra force recedes, the agent reverts to their previous 

behavior mode, although they are almost certainly less likely to transition back into a 

group leadership role.  Avatars may experience supra force repeatedly, as often as the 
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required conditions exist.  Avatars that avoid situations with high human density are very 

unlikely to encounter supra force.   

2.5 First-generation Model Results 

Preliminary model results are very promising.  Aguirre et al. 2011 discusses some 

of these findings, but an expansion of these results is warranted here.  These four layers 

work together to create a dynamic model where the environment, individual traits, group 

traits, and density all affect evacuation choices.  Put together, these different 

considerations result in a model that is much more lifelike than a simple closest-exit 

algorithm.  In this model, avatars consider their group members, various hazards, 

population densities, and improvised exits when choosing the optimal path of exit.  

Optimal choices for each agent change constantly based on the specific conditions in the 

model, allowing avatars to make more informed choices based off of new information.   

This multiple-layer model is unique because of the simultaneous addition of 

heterogeneous individual traits, group-level traits, and supra-crowd force.  With these 

conditions included, the model produces results that are significantly different from 

versions that only include individual behavior.  These traits are important for model 

builders to consider and include in future models, because human beings do not operate 

in social vacuums.  Model builders should embrace social science research about social 

behavior and create models that use avatars with traits resembling the studied 

populations.   
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More detailed results from the first-generation model below are available from 

Aguirre et al 2011a on page 426. 

Table 2.1: First-Generation Model Results 

  

Exit 

First 

Generation 

Model Actual 

Bar Exit 113 78 

Kitchen 

Exit 7 17 

Main Exit 126 128 

Stage Exit 24 24 

Bar 

Window 56 71 

Greenhouse 

Window 2 34 

Deceased 137 100 

Total 466 452 

 

 

 These first-generation results suggest that adding group and crowd behavior traits 

may create more accurate and realistic evacuation models, at least for the Station 

scenario, and generally support the idea that social science concepts should be included in 

evacuation models.  In addition to showing the potential of this class of models, these 

results inspired me to look deeper into the reasoning used for these models, and 

encouraged me to build a second-generation social and crowd behavior model. 
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Chapter 3 

LESSONS LEARNED FROM THE FIRST-GENERATION MODEL: HOW TO 

MAKE A GENERALIZED SECOND-GENERATION PLATFORM 

While detailed results analysis of the Station scenario are discussed in 

chapter 5, it makes sense now to discuss some of the coding and theoretical problems 

discovered in the first-generation platform and addressed in the second-generation model. 

The largest difference between the two generations of the models is that the second-

generation platform is that it can be used to simulate any floor plan and is designed to be 

used by researchers that are not as comfortable with computer code. The similarities and 

differences of these models are important to discuss in detail because they highlight 

exactly how the models work and why features were added or removed for the final 

versions of the program. 

3.1 Building Environment 

In both versions of the model, an identical environment was used to map the 

Station. Blueprints, obtained from a National Fire Protection Association (NFPA) study, 

were imported into the model environments (Duval 2006). Measurements in the model 

are in meters, and are identical or as close as possible to the actual building.  Because the 

models render a floor as a two-dimensional environment, there is no raised platform by 

the dance floor. The raised platform is rendered as a part of the dance floor, and the 

partial walls that were generally considered not passable are rendered as walls. In the 

future, a three dimensional rendering of the building environment might offer more 

accurate results, but that is outside of the scope of these first social behavior modeling 

efforts. 
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As outlined in the NFPA study, the Station is a one-story building with a 

number of different rooms and six potential exit categories: main exit, bar exit, kitchen 

exit, stage exit, bar windows, and greenhouse windows. These six exit categories are all 

rendered in the model environment, and their sizes closely match the available 

information about the Station.  There are 8 possible outcomes for all agents: remaining 

active but in the building (almost impossible in the environment), inactive in the building, 

and out of the building via one of the six exits (Torres 2010). 

The environment is an important part of the development of the model. In the 

Station, there were a number of specific environmental issues that made the occasion 

lethal. These included exits without signage, exits blocked by staff, egress paths that were 

too narrow for multiple people to navigate, dry acoustic foam, a lack of sprinklers, and 

loss of visibility. These attributes, combined with the high crowd density and the 

distribution of the crowd created a situation that very quickly became difficult to 

navigate. These attributes, along with the specific makeup of the crowd created a lethal 

situation in an environment where traditional evacuation modeling would not predict it. 

As outlined in previous DRC research, there are six main ecologies in the 

Station (Aguirre, Torres, et al. 2011). These main ecologies are bathroom area, kitchen 

area, bar area, stage area, sunroom area, and main entrance. The distribution of the 

population is an important trait in the model, and it was important to confirm that all 

avatars were correctly located in their ecologies and actual location at the start of the fire. 

The population distribution was important because of the group relationships. Since many 

avatars attempted to locate their social groups instead of simply taking the closest of 

fastest exit, correct positioning is necessary in the model. In order to correctly position 

each avatar, interview and news media data was used to position avatars, and for the 
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avatars that could not correctly be positioned based on prior research, approximations 

were made based off reports from other survivors or group members (about three dozen 

profiles).  

3.2 Avatar Traits 

Avatars in the model have a number of physical attributes based on the 

characteristics of victims. These attributes include age, gender, type of social group, 

membership in social groups, previous visits to the Station, and location at the start of the 

fire. Importantly, no data that could only have been known at the end of the fire (such as 

exit used, survival, intended exit, and group member well-being) is included in the 

model. This data is specifically left out of the model because it would bias the results. 

Because the intention of this dissertation is to show that social science theory-based 

models can contribute to more accurate modeling, it is vitally important to bias the results 

in any way. 

The static avatar attributes described above are unchanging in the model. At 

the start of the simulation, groups remain the same, avatar features remain the same, and 

importantly, the models are not learning models, meaning that avatars do not get better at 

navigating the environment over different model runs. Because the intention of these 

models is to validate the premise that social science theory can contribute to more 

accurate modeling, a learning model is not the correct tool for the task. In the future, 

learning models may help create better social science theory tools, but as a first effort, it 

is important to create models where decision-making ability does not change between 

runs.  
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One of the most important avatar variables is forward speed. Forward speed 

determines how quickly avatars can get out of the building. Generally, the forward 

walking speed of adults (the population in the Station) is between 0.75 and 1.5 meters per 

second (Al-Obaidi et al. 2003, Fruin 1987, Oberg, Karsznia, and Oberg 1993). 

Obviously, running speed is significantly higher than walking speed, but inside of 

buildings where it is not possible to move very far in a straight line, walking speed is a 

better approximation of maximum possible speed (Predtechenskii and Milinskii 1978, 

Riley, Della Croce, and Kerrigan 2001). In the model, there are values for maximum 

speed under duress (higher than normal walking speed) and normal walking speed. 

Normal walking speed varies with age and gender (Oberg, Karsznia, and Oberg 1993). 

Another important speed value is lateral speed, or turning speed. Lateral 

speed is a value, measured in degrees per second, that dictates how quickly avatars can 

change direction. Each avatar has an orientation, or a direction their body is facing at any 

given point. Lateral changes measure the difference in degrees between two orientations. 

Orientation and forward speed together create a movement profile for an avatar. While it 

is possible to easily move 360 degrees in under a second, it is not easy to do so under 

control, or while moving forward (Riley, Della Croce, and Kerrigan 2001). As a result, 

maximum later speed values are reduced if an avatar is in forward motion. Forward speed 

and lateral speed are identical in the two versions of the models. Because these are static 

maximum values and are generally well-established in the literature, there is no reason to 

change them further. 

In addition to speed values, each avatar has values for how willing they are to 

overtake other avatars, and how willing they are to crowd other avatars. Unlike the speed 

values, these values can change significantly based on environment. Avatars that are hurt 
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are more willing to overtake or crowd others, while avatars in environments with low 

levels of stress default to more relaxed values. In the United States, where the Station 

incident took place, people generally prefer large amounts of personal space, and very 

high density situations are avoided unless people are under duress (Beaulieu 2004, 

Sommer 1959) . When adapting these models for other cultures, it will be important to 

make changes for different cultural understandings of density.  

The two versions of the models have slightly different versions of behavior 

values for avatars. In the first version of the model, there were 11 behavior values from 

passive to aggressive, which influenced the previously discussed values for avatars. Age, 

gender, and other attributes contribute to the behavior model in the first version of the 

model. In the second version of the model, the reduced number of behavior models are 

modified based on the condition of each avatar. As avatars become more desperate to 

leave a hazardous environment, their behavior models adjust to more aggressive settings. 

3.3 Group Dynamics 

Group dynamics are the most important aspect of these social models, 

because these dimensions are what make the models significantly different from current 

evacuation models. Most current models use shortest-distance or shortest-time engines to 

determine which exits to attempt to use. The models in this dissertation take social 

relationships into account, which frequently cause avatars to make choices that would be 

impossible in shortest-time or shortest-distance calculations.  

In the first version of the model, group type and willingness to leave the 

social group was a static calculation assigned to each avatar. In the second version of the 

model, group type is still a static value, but the willingness to leave a group is calculated 
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based off the specific situation of each avatar. This is a major difference between the two 

versions of the model, and it makes avatars under great amounts of stress more willing to 

leave their groups.  

3.3.1 Leadership 

In both versions of the model, group leadership is an important attribute. In 

both models, there is one leader at a time per group, and the rest of the group members 

are followers, meaning they are influenced by the goal of the group leader if they are a 

part of the group. 

In the first version of the model, leaders were hard-coded based on study of 

the survivor interview data. While this was an intensive process, it does not scale to other 

situations besides the Station. 

For the second version of the model, it was important to create a dynamic 

leadership equation, where leadership is an attribute defined by conditions in the model. 

Despite a large body of literature on leadership, there is a surprising lack of literature or 

study about the quantitative qualities that define leaders. The leadership equation 

developed for the second version of this model is an admittedly imperfect first attempt to 

quantify leadership selection in an evacuation environment. 

 The first leadership equation has a combination of static and dynamic 

elements, including prior visits to the station (familiarity), gender, age, energy, distance 

to an exit, distance to other group members, and a past leadership premium. Familiarity, 

gender, and age are static values that do not change over the model run. Energy, or the 

lack of injury in the model, is a positive variable. A group member with a high energy 

value is more likely to be selected a group leader. A closer distance to an exit or closer 
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distance to other group members also makes an avatar more likely to have a high 

leadership score. The past leadership premium is designed to make leadership relatively 

stable. This value adds to the leadership score or all avatars that were leaders in the last 

turn, requiring other avatars to become significantly more desirable leaders before 

leadership changes. Without this value, leadership might change twenty times per second 

(the number of turns in the model) making group membership extremely inefficient and 

not lifelike. 

3.4 Supra Force 

Supra force, or the inability to move freely based on specific high-density 

situations with contraflows and environmental limitations, is another attribute that makes 

these social science theory based models significantly different from other evacuation 

models available today. In very high-density situations, it often becomes impossible to 

move, and because of this emergence, individual and group level motivations may be 

superseded by this force.  

In the first version of the model, supra force calculations were based on an 

avatar being surrounded by an environmental barrier or at least one avatar on all sides. 

This presented an environment where a surrounded avatar would not be able to move 

without moving another avatar.  

In the second version of the model, where avatars can additively push each 

other, supra force conditions occur when an avatar is surrounded on all sides by an 

environmental barrier or two or more avatars. This distinction was made because if there 

is only one other individual between an avatar and a goal they could be pushed, but two 

or more avatars blocking the path makes it difficult for a lone avatar to push others out of 



 62 

the way. This change creates a more realistic scenario for supra force because it 

eliminates the border cases in the first version of the model were avatars are identified as 

surrounded even though they are able to push away one layer of avatars rather easily.  

When an avatar is subjected to supra force in the model, their individual or 

group goals are temporarily abandoned and they move in the direction of the surrounding 

gathering if it is moving in one direction, or they do not move at all if the gathering is 

moving in opposing directions. In both conditions, the avatar is not moving by following 

their own goals or the goals of their group.  

In the future, supra force is likely to be another important area in model 

development for high-density situations. In high-density situations, individual desires are 

often overruled by the reality that it is not possible to move in one or more desired 

directions. It is important to try and quantify this condition. The supra force conditions 

are easy to calculate and not computationally intensive, but they play an important part in 

creating the accurate results desired from the social science theory-based models. 

3.5 Model Output 

While the original intention of the first-generation model was only to test if 

social-science theory based models could return accurate results, it quickly became clear 

that the benchmarks used by most modelers were inadequate to decide if a model was 

accurate or not. The entire premise of the first-generation was to see if social behavior 

theory could explain why agents take exits that might not be closest or fastest, and in 

order to do that, individual agents needed to be tracked as unique individuals.  

Most building evacuation models only track how many agents escape a 

hazard situation and how many survive. As mentioned in the first chapter, this is 
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considered “level 1” model tracking in this dissertation. The only thing that level 1 results 

can track is overall lethality, and these overall exit numbers offer no help to explain why 

exits were used, what paths were taken, where there were delays, or any other issues. 

The level 2 results (generally the most detailed results that other models use) 

track specific exit paths, but fall short of actually considering agents as individuals. Level 

2 results allow modelers to analyze which exits were used, and then compare number of 

agents in an area versus the number of agents that used an exit. This is a rudimentary way 

to calculate how popular exits are, but these results still do not track specific agent paths.  

Level 3, or tracking agents as individuals, allowed us to answer the question, 

“can a social science theory based model offer accurate results?” Level 3 tracks agents as 

specific individuals, making it possible to compare the actual exit used by an avatar 

compared to the exit used by the historical person each avatar simulates.  

The first version of the model outputs enough data to calculate results for 

levels 1-3. These three levels of data are already detailed enough that was not possible to 

compare all three levels to other models. Comparing the results to the actual situation, the 

numbers for all three levels were promising. However, while analyzing the data shown in 

the results section, it became clear that in order to truly address some of the hypotheses in 

this dissertation, even more data were required.  

In an attempt to address all of these hypotheses, the output files were 

significantly modified for the second version of the model, and the new platform allows 

for researchers to analyze their future results using this greater level of data collection. 

The second-generation model outputs six files for every model run. Essentially, these 

files output level 1-3 data for the end of the simulation, and a second set of three files that 
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output these three levels of data periodically during each simulation at intervals specified 

by the model builder. 

The first generation model collected overall survival data for Level One, and 

exit data for levels two and three. The second-generation data sets collect enough static 

data to confirm that agents are correctly identified, and all of the dynamic data created in 

the model that is not tracked by measuring the end results. This includes location, goal 

location, orientation, movement, energy, leadership status, group status, and exit used. 

This wealth of data makes it possible to analyze where agents intend to move, why they 

are moving there, where they have been, who they are following, whether they are facing 

their goals, and other information that makes the detailed analysis in chapter five 

possible. While this level of data collection goes beyond the original stated goals, it is 

necessary to address the fundamental research questions of this dissertation. This level of 

data collection should be considered for all models of building evacuations in crisis 

contexts. 

3.6 Usability 

Some of the most important changes in the model relate to usability. The 

biggest difference between the two model versions is that the second-generation model is 

built on a general framework, meaning that the engine used to create the results can be 

modified for different situations. Making it possible to recreate similar models will 

motivate other researchers to consider social science theory based modeling, and 

encourage others to become modelers for the first time. 
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3.6.1 User Friendly Code 

The first-generation model was not user friendly, requiring users to know 

how to code. Thus, the second-generation model includes a number of features designed 

to make it possible for people that do not know how to code to create and analyze 

models. While this was not a direct objective of the dissertation, it was important to 

attempt to do. While the second-generation model still needs some work to be made into 

an executable file, the model framework at this time can be used with a mouse and 

keyboard, without users needing to know how to code. While there is still a way to go to 

make it more user friendly, it is currently one of the more user friendly models available, 

while still allowing for a high degree of customization. 

The second-generation model was designed to look and function like the 

first-generation model, but created a system where a model could be built even if the 

model builder does not know how to code. The following subsection provides an example 

of building a model in graphical user interface (GUI) environment, and describes why 

this is an important feature. 
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Figure 3.1: GUI Wall Construction 

All aspects of the model can be coded, and this is the preferred input method, 

there is also a GUI available to build model features. Figure 3.1 above shows a wall being 

constructed using mouse and keyboard input on a GUI. 

 

Figure 3.2: Environment Element Selection and Floor Construction 



 67 

 

Figure 3.2 shows the process of creating a new building floor in the second-

generation model. Using the “Edit” menu, a model builder can select which attribute to 

construct, which will result in a popup window. The user can then select values with a 

keyboard, or input certain values by clicking on the floorplan with a mouse. This process 

allows model users to quickly build or modify models once they are created. 

 

Figure 3.3: Agent Construction 

Figure 3.3 above shows the GUI process of creating a new agent in the 

second-generation model. All of the static values (age, gender, group, prior visit) can be 

selected at the time of creating the agent, and the user can click the point in the 

environment where they would like the agent to initialize. This process makes it fast and 

simple to add agents to the modeling environment. 
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Figure 3.4: Group Builder 

Figure 3.4 above displays the GUI windows related to group management, 

where model users can choose what groups the agents belong to, and how the groups are 

categorized. These group features are based on the design of the groups in the Station, but 

it is possible to add other group types in the future. Importantly, the group members can 

be managed without accessing the profiles of the individual avatars, which would be 

difficult to do in large simulations.  

3.6.2 User Friendly Output 

In order to increase user friendliness, the output of the second-generation 

model was changed to independent named comma separated values (.csv) files. The first 

generation model output data in text. While this was adequate to analyze the model, the 

second-generation model format makes it easy for users to look at results, and also makes 
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it easy to run the model many times without intervention to gather output data. The 

second-generation model makes it possible to run hundreds or thousands of simulations 

and collect all the data afterwards. Over the course of my dissertation, this became a very 

important feature making it possible to increase batch size for comparisons. 

The six files output in each run of the second-generation model are output as 

.csv files with a clear name and a timestamp at the beginning of each file name. These 

files are then saved in the output file of the model directory. The files thankfully have 

very different sizes, making it possible to sort the files by size, isolate each file type, and 

then use some simple terminal commands to merge the files into one file. Unfortunately, 

it is not possible to decrease the file sizes much more than has already occurred, meaning 

that 1,000 or 10,000 run batches still create files that can be several gigabytes in size, 

making them difficult to analyze on consumer systems. This is a problem that it is not 

possible to address without sacrificing data quality. Thankfully, the model framework is 

small in size, making it possible to run the model on avareage consumer systems in 2012. 

 

Figure 3.5: Agent Output 

Figure 3.5 displays an example of the largest of six files output from every 

simulation run. This file presents detailed data for all of the individual avatars at different 

time points specified by the user. The columns visible in this sample output include time, 

agent, group number, floor (of building), cause of death, energy level, location, location 

of goal, leadership status, and supra force status. These files are accessible after the 

simulation has finished running, and the files are directly comparable across simulations, 
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making it possible to compare large batches of files. Real-time visualization of simulation 

runs is discussed below. 

3.6.3 Visualization 

There are two ultimate purposes of the current visualization system: to allow 

users that are not comfortable with statistical output to verify the results of the model, and 

to allow researchers to confirm in real time that the model is functioning as intended. The 

selectable visual variables make it possible to confirm that group members are looking 

for each other or navigating the environment together. The supra force visualization 

makes it very easy to confirm that avatars that should be completely surrounded are 

flagged appropriately, and that avatars that can freely move are not incorrectly flagged as 

experiencing supra force.  

These visualization tools are valuable when calibrating the model. A properly 

implemented visualization system makes it possible to identify problems much more 

quickly. This is a significant time saving feature that should be incorporated in more 

models  

 

Figure 3.6: View Toggle 
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 The view toggle shown above in figure 3.6 allows model users to select which 

attribute is used to display the color of each avatar in the model. Here, users can select 

from energy level, group number, leadership status, behavior type, oxygen available, 

gender, and can also choose to highlight one individual group. 

 

Figure 3.7: Real-Time Data 

 Figure 3.7 shows the real-time data that can be displayed in the second-generation 

model. This data is available for the simulation as a whole, or can be displayed for an 

individual avatar by clicking on that avatar during a simulation. The real-time data that is 

generated during a simulation by clicking on an avatar. 

3.7 Summary 

The first-generation model, originally intended to satisfy requirements for a 

social science theory based model, ultimately created more questions than answers, and 

the desire to address those questions led to the development and the specifics of the 

second-generation model. These differences led to the creation of two very different 

platforms designed to answer some of the same questions about the place of social 

science theory in modeling. Because these models are somewhat different in their own 
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right, the similarities and differences between the two versions can be used to measure 

the effects of variable changes in each model. 

The first-generation model stands on its own supporting the idea that social 

science theory has a place in building evacuation modeling, but the second-generation 

model is ultimately a better effort, and thankfully the engine for environment creation can 

be distributed in an attempt to inspire other model users to consider social science ideas 

in their modeling. 
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Chapter 4 

SECOND-GENERATION SOCIAL BEHAVIOR MODEL 

             While the results from the first-generation model were promising, and show 

that adding group and crowd behavior elements may lead to a more accurate evacuation 

model of The Station, the platform raised questions about the appropriate amount of 

model variability, data validation methods, data privacy methods, display elements, and 

decision-making complexity. 

Not content to settle for a single version of the modeling platform, the second-

generation model improvements described here are an effort to expand upon the initial 

requirements for an agent-based model of evacuation of the Station nightclub accounting 

for social behavior and crowd density.  This second-generation model addresses some 

issues with decision-making frameworks for avatars, shortcomings in visual display 

elements to make models accessible to all users, how results are created, stored, 

measured, and interpreted, and restructures some of the original hypotheses related to 

evacuation models.  

4.1 Incorporating Economic Theory to Create Better Group 

Models 

After development of the first-generation model and improved measuring and 

tracking metrics, analyses indicated new unresolved issues.  The first attempt at creating 

model to account for social behavior was a probability-based system of agent evacuation.  
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While this system was fine for a conventional model, yielding overall results similar to 

the historical case study, results for individual agents were often extrapolations of the 

probabilities used. A rules-based system ran into similar problems.  Results using flexible 

rules were not satisfactory at the individual level. With stringent rules, the results were 

similar to those of the probability-based system.  Again, all of these results were accurate 

when total number of evacuees was measured yet they fell apart when tracking agents as 

unique individuals.  However, by comparing model results for each agent and the exits 

and social pairing of real-life counterparts it is possible to validate models with more 

confidence.   

In order to create a model with results that make sense on an individual level in a 

changing environment, developments in the economic field of game theory provide 

important insights.  In some cases, strategies developed for games of incomplete 

information are an ideal fit.  The strategies for games of incomplete information allow 

agents to prioritize decisions on individual and group levels, which are extremely 

important in this case (Bacharach 2006).  This means that agents can act and interact in 

generalized ways because their instructions are not specific to any one situation.  

There are several elements of economic theory that should prominent roles in 

future evacuation models.  The first is the concept of the difference between absolute and 

relative utility (Ball and Chernova 2008).  In many rule-based simulation systems, 

absolute utility is the only measurement regarded as important.  The highest absolute 

utility for an individual is the “rational” choice.  However, in social environments, higher 

relative utility may be preferred since it makes an actor better off relative to peers. In 
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group social situations, relative utility is important enough that rule and probability 

systems based only on absolute utility are not adequate. The best result for the group may 

not be the best choice for the individual, and there are conflicts in individual choice.  

Research shows that situations involving family members and close friends can discount 

the value of individually optimal choices (Davis 2011).  Models that do not account for 

group benefits cannot result in accurate portrayal of social evacuation scenarios. At the 

most detailed level of data analysis, the DRC used origin analysis and egress path 

analysis for individuals, and then compared individual ideals to group motivations and 

actual exit paths, a method supported in previous literature on evacuations from fires 

(Notarianni 2000). Game theory offers modelers a framework to examine evolving 

situations where participants may have asymmetric and incomplete information, 

conditions present in almost any building evacuation scenario (Jehiel and Koessler 2008).  

Economic theory allows multiple agents to account for the decision of others in changing 

environments, something that is extremely difficult to accomplish with probability or 

rule-based systems that only focus on individual behavior.  This model makes absolute 

and relative individual and group utility matrices available to agents in situations where 

they would have information about other agents (such as groups working together in 

leader and follower relationships).   

Developments in the understanding of bounded rationality play an important role 

in the proposed modeling platform. Models relying on probability or rule-based systems 

rely on agent “rationality”, however in any dynamic environment perfect information is 

not available to all participants (Simon 1955).  By applying modifications to the 
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definition of “rational” choice, models can use economic theory to give avatars a smaller 

and improved decision set to make choices based on information available in the past or 

in real time (Nielsen 2009).  Bounded rationality allows the model to function without 

any future event information available to avatars.  Probability and rule-based systems 

often benchmark to actual event results, which considerably reduces the usefulness of 

models as predictive tools (Aguirre, El-Tawil, et al. 2011).  This is a failure of probability 

and rule-based models; the incorporation of game theory should result in a significant 

improvement of model results. The class of models in this dissertation avoids the use of 

benchmarking, which means that model results are no longer only a function of actual 

event numbers of previous model output.  By only using information available to agents 

in the timeline of the simulation models can be predictive (McCauley Bush et al. 2009). 

Programming an understanding that a sub-optimal decision for an individual may 

be better than an argument resulting in delayed action allows for more efficient group 

movement.  For groups that are unlikely to disband, calculating benefits from being 

agreeable may lead to groups that are more efficient.  Agents in a group can compare 

likely results of individual behavior for all members of their group and likely group 

results.  For many tight social groups, a better group result may be more desirable than 

the best individual result, a significant departure from conventional building evacuation 

modeling. 

Refusing to use information only knowable after the fact (such as what happened 

to a specific avatar in real life) limits the benefits of some developments of game theory 

to the model.  For instance, many components of backwards induction reasoning cannot 
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be included because evacuations are single occurrence events (Binmore 2007).  It is also 

not possible to incorporate many forms of learning strategies because they rely on 

repeated games and player experience in an environment.  While these and perhaps other 

limitations exist, they do not prevent economic theory from offering significant 

improvement in evacuation model development.  Instead, by using results from the 

model, it is possible to analyze agent decision-making after the fact.  Previous efforts 

solved many of the coding issues related to agent group communication, but they do not 

extend these developments to “emotion”, or caring about other agents or avatars (Brogan 

and Hodgins 1997). Economic frameworks allow asymmetric information to exist in the 

model, meaning that some avatars may be better informed than others at any given time. 

4.2 Improving Visual Display of Evacuation Models 

Creating models with multiple levels of social relationships and information 

sharing requires improvements in model visualization.  In order to create models with 

interdisciplinary utility it is vital to create a system where practitioners from multiple 

disciplines can understand what is occurring in the model.  This means that a graphics-

based real-time output had to be developed side-by-side data cataloging methods. The 

second-generation model has new visualization capabilities. In real time, it is difficult to 

convey large amounts of constantly changing information (Pham et al. 2010). While it is 

easy to catalog these data in data sets for viewing and analysis later, it is also useful to 

create a system where information is conveyed as events occur in the simulation. For 

those who are not comfortable with statistics, effective model visualization is an 
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important tool to gain understanding of how the model is working and what needs to 

change to improve it. As models with ever-greater levels of complexity were developed it 

became clear that improved visualization tools were needed (Bonato and Nowakowski 

2011).  

The variable of color is used as the primary means of real-time visualization, 

since many geographic strategy games allow users to select color to isolate and display 

information about objects (Silva, Santos, and Madeira 2011).  The model has a system 

where model users can toggle between different visual display modes that change the 

colors of each agent based on the attribute examined.  Basing color selection on ideal 

hues and visual impact (Cooper and Kamei 2002, Drevermann and Travis 1998), this 

system allows users to control the displayed attributes, such as groups and gender, and to 

convey the information in a meaningful way. The model also logs data for later use and 

detailed analysis. The toggle system is based on the premise that focusing on one aspect 

of a dynamic environment allows a user to more clearly interpret diverse results (dos 

Santos and Brodlie 2004). 

Based on a meta-analysis of human factors studies, a well-designed visualization 

system increases understanding of a system (Chen and Yu 2000). The hope is that 

removing the usual barriers between disciplines such as sociology and computer science 

will result in a system where everyone is accountable and everyone has a stake in a 

successful model.   

While analysis often focuses on data collected after the model runs are complete, 

real-time visualization is valuable for accuracy checking, communication of concepts, 
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and model presentation.  Since this model is designed to track multiple types of social 

relationships, simultaneous visualization of all avatar attributes would be complex. 

Additionally, visualization systems make it possible to visually measure the incidence of 

trends such as supra force over single model runs, or even averaged groups of simulations 

(Lee and Shen 2009). There are numerous agent attributes that are valuable to visualize to 

aid discussion about the importance of social science theory in human simulation, so the 

toggle system is an ideal way to communicate a large amount of information without 

overwhelming model users.   

 Previous modeling efforts and commercial packages attempt to account for 

visualization in various ways.  Some toggle between two and three-dimensional 

environments and viewpoints in an attempt to give viewers intimate vantage points while 

still allowing for a full-field view.  Some provide “flyovers” where the reference position 

is constantly changing.  Some attempt to use different visual indicators, such as size, 

color, and pattern to communicate multiple attribute values.  Many models use a 

combination of visualization methods, and the results can be very complicated to watch. 

 These models simply have too much information to convey in a real-time visual 

manner.  World strategy gaming provided an answer to the unique visualization problem.  

In many world strategy games, one or more players attempt to lead geographic areas, 

controlling resources, populations, and physical environments.  These games are similar 

to enormously complicated models where players control avatars.  Players have to control 

for physical, economic, and political changes, often in real time.  Because there is too 

much information to visually convey on a map all at once, these games incorporate a 
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toggle system, where attributes can be isolated or layered together, allowing for quick 

visual updates that are very clear.  A great example of this system is the massively 

multiplayer real-time strategy game World of WarCraft, which uses a toggle system to 

display large amounts of information on maps for players (Entertainment 2011).  Using 

successful strategy games and academic research as a guide, a two-dimensional 

visualization system focuses on one area at a time displaying results on a constant scale 

for clarity (Wann and MonWilliams 1996, Colet and Aaronson 1995). For visually 

complex future models (such as stadiums or ships), rooms may be isolated instead of 

floors to keep the information scale manageable by viewers (Guo 2009).  

 After careful analysis of the above visual methods, this model adopts a two-

dimensional overhead view that does not move because The Station environment is 

simple enough to process visually all at once (in more complex environments one floor or 

area is highlighted at a time). The visual output was developed with a task-based system 

for visual clarity, and in the future, it may be possible to incorporate eye-tracking 

technology for two-dimensional spaces to measure user focus on the dynamic parts of the 

model (Tory and Moller 2004, Pineo and Ware 2012). Users can select from a variety of 

toggles that change the color of each avatar to convey relevant information.  In order to 

provide maximum clarity and continuity, no other avatar attributes change.  This allows 

users to quickly switch between toggles and easily keep track of individual agents.  A 

pause and start function is also included, to allow users to stop the model to examine 

attributes and then continue from the paused point without interruption to the model.  The 

following paragraphs illustrate some of these options.  
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The model will have several visualization toggles.  The first is a display of Energy 

level as seen in Figure 4.1.  In the model, each avatar has an energy level that changes 

based on smoke and fire damage.  By selecting the “Energy” toggle, avatar colors are 

displayed from green (healthy) to yellow (injured) to red (seriously injured).  If avatars 

become inactive, they are displayed as a gray color.  This toggle will serve as a real-time 

indicator of the injury status of each avatar, and can assist model users in locating high 

and low risk areas and avatars.  This conventional color system will allow users to 

quickly and clearly identify avatar status. 

 

 

Figure 4.1: Energy Level 

 The next toggle is a Group Number identifier as seen in figure 4.2.  Each avatar 

will adopt an identical color to their other group members.  This toggle will show the 

number of separate social groups in the model, and allow for a quick visual indicator of 

the number of active social groups.  This indicator is not as clear as the others are but 

helps differentiate the 144 unique social groups in the model.   
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Figure 4.2: Group Number Identifier 

  Figure 4.3 displays the Leader Behavior toggle, which highlights group 

leaders in white, and all other avatars in black.  This allows a user to see which avatars 

are responsible for the exit paths of themselves or others, and which avatars are following 

the instructions of a group.  This enables a user to identify if an avatar is charting its own 

path or following one chosen by another avatar. 
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Figure 4.3: Leader Behavior 

 The Behavior Model toggle in figure 4.4 is the default toggle at the initialization 

of the model.  Each avatar is highlighted based on their behavior profile at the time.  

Avatars that are in a leadership role are displayed in green to yellow to red based on their 

level of haste in exiting the scenario.  Calmer avatars are shades of green or yellow, and 

avatars in dire situations are shades of red.  Follower avatars have a pink color.  Avatars 

that do not have free will of movement due to environmental factors and crowd density 

(supra force) are colored light blue.  This system allows a user to identify the behavior 

profile of any avatar; it highlights the avatars that are subjected to the individual, group, 

and supra-crowd force behavior models at any given time in a simulation. 
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Figure 4.4: Behavior Model 

 The Oxygen Zone toggle highlights avatars in areas of increased oxygen in blue, 

and all other avatars in gray.  This provides a very quick indicator of which avatars are in 

zones of increased survivability, explaining decreased injury and longer active periods.   
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Figure 4.5: Oxygen Zones 

  The Gender toggle highlights female avatars in pink and male avatars in 

blue.  This allows a user to see the geographic segregation by gender, particularly at the 

beginning of The Station scenario, where a higher proportion of males were in the bar 

area and a higher proportion of females were near the stage, perhaps the area of greatest 

danger in the Station scenario.  This toggle allows a user to confirm gender composition 

of the modeled gathering.  According to Henderson, gender composition is important 

because previous research indicates there is, “inhomogeneity in crowds due to sexual 

differences” when high percentages of a crowd correspond to one gender (Henderson 

1971). 
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Figure 4.6: Gender 

 

The Highlight Group toggle highlights the members of one individual group in 

white, and all other avatars in black.  Highlight Group will single out one new group each 

timestep; it changes constantly.  Here, there is a two person group highlighted attempting 

to exit via the main door. This allows a user to determine the geographic spread of group 

members, and serves as an uncluttered visual indicator to show group members 

converging over time. 
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Figure 4.7: Highlight Group 

   

 The final two buttons in the model are Pause and Start, which will stop and restart 

the simulation so users can explore the model visually at their own pace.  This allows for 

detailed inspection of the model.  The model can be paused, making it possible to identify 

specific avatars, and then users can move through the various toggles to identify all of the 

relevant features of individuals or groups.  By pausing the simulation, analysis can be 

accomplished in a manner that is not rushed, and then the model can return to running in 

real time when information is identified. 

 The second-generation model also builds upon previous research and incorporate 

a grid system for agent visualization. In the first-generation model, agents can see the 

environment unless there is an obstruction such as a wall or other avatars.  Using a grid, it 

is possible to selectively limit visibility depending on light available, smoke incidence, 

and other factors in the areas of the Station.  This will allow avatars to ignore unlikely 
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hazards and opportunities (Chu et al. 2010, Song et al. 2006, Yang et al. 2004).  

However, reduced visibility may also change agent behavior if avatars are unable to see 

their group counterparts. 

4.3 Model Accuracy: 

The individual components put together in the first-generation model work 

together to create a dynamic model where the environment, individual traits, group traits, 

and density all affect evacuation choices.  Put together, these different considerations 

result in a class of models that is much more lifelike than a simple closest-exit algorithm.  

In this model, avatars consider their group members, various hazards, population 

densities, and improvised exits when choosing the optimal path of exit.  The optimal 

choices change constantly based on the specific conditions in the model, allowing avatars 

to make choices that are more informed based on new information.  By comparing 

behaviors and dynamically approaching the environment, agents in this model are able to 

deal with uncertainty by constantly reevaluating choices. 

 This class of model should be accurate throughout simulations, not just at the end, 

and the additive process strives to create models that make sense at any time during the 

simulation. The included traits and resulting situations allow avatars to explore multiple 

possible exits, successfully remove themselves from hazard areas, and negotiate 

environments together with their social peers.  Testing for this desired level of accuracy 

is one of the social science-based original contributions of this work. 
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This multiple-layer model is unique because of the simultaneous addition of 

hazards, environment, individual traits, group-level traits, and supra-crowd force.  With 

these conditions included, the model produces results that are significantly different from 

versions that only include individual behavior.  These traits are important for model 

builders to consider and include in future models, because human beings do not operate 

in social vacuums.  

4.4 Measurement and Hypotheses: 

Because most of the patrons in The Station were members of social groups, the 

group component is paramount in a model of the evacuation.  Aguirre et al. 2005 found 

that most of the victims of the fire considered their social bonds initially more important 

than evacuation, and instead of immediately leaving the building, they searched for loved 

ones and friends, sacrificing precious seconds (Aguirre 2005).  A thorough analysis of 

The Station fire indicates that without accounting for social behavior it would not be 

possible to replicate results in an accurate manner. This model makes it possible to gauge 

how often avatars are acting in their own interest or that of their groups. 

 Most evacuation models focus only on the numbers of overall evacuees and dead 

victims.  If the goal is to understand what happened and why, this is simply an inadequate 

benchmark.  It is very easy to create a model with an appropriate survival percentage, but 

that model will not necessarily be accurate in any other way.  This dissertation offers a 

more detailed method of model measurement, and the creation of “point accurate” 

models that have the potential to conform to their scenarios at any point, not just at the 
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end of a simulation.  Instead of measuring the overall survival percentage to determine 

model validity, the model can track every specific agent individually, and benchmark 

results to detailed actual occurrences.  This results in very detailed model benchmarks 

instead of a single survival percentage statistic, and allows model users to have a much 

better insight into the inner workings of the model.  

 This type of detailed analysis allows users to have a much better idea of how 

accurate a model is, how diverse the results are, and how parameter changes influence 

model functioning and results.  This tracking results in a much more complete model 

dataset that users can analyze (and also creates new questions about validation to be 

discussed in chapters 4 and 6).  This detailed data also allows for a much more complete 

model comparison, and makes it possible to test several hypotheses that could not be 

confidently analyzed with only survival percentage tracking. 

 The deliverables of this dissertation led to four hypotheses about the differences 

between conventional evacuation models and my model in scenarios with high group 

association such as the Station. 

 One hypothesis of the group behavior model is that avatars who are members of 

social groups will take a longer time to exit, and therefore be more likely to perish in the 

simulations where a quick evacuation is necessary to survival.  In The Station scenario, a 

quick evacuation was required to exit the building without significant injury or death.  

The environment became inhospitable to human life within four and a half minutes, 

making any deviation from an exit hazardous to the health of the victims (Gill et al. 

2010).   
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 A second hypothesis is that the group behavior model can better explain the 

specific exit paths that victims used.  Evacuation models using closest exit or fastest exit 

guidelines, including prior models of The Station, do not do a good job of estimating the 

exit that victims actually used in the fire.  Because many victims initially moved towards 

other group members and often away from the nearest available exit, closest-exit models 

are inadequate.  A model accounting for these phenomena should do a better job at 

estimating the actual results of an evacuation where social behavior was an important 

factor.   

 A third hypothesis is that by using physical parameters that do not account for 

human intelligence, conventional evacuation models have results that are too 

homogenous between runs, and will show decreased accuracy during model runs.  If 

distance, density, and flow rates are the primary evacuation decision tools of agents, each 

agent is likely to take the same exit path most of the time, resulting in very regimented 

models that do not actually account for the situation that took place.  A model accounting 

for more advanced behavior should yield a wider range of results.  This hypothesis is 

tested by comparing exit path diversity for each agent with group social behavior turned 

on and off. 

 A final hypothesis is that a model accounting for social behavior elements will 

have better fitting results when tracking agents to final exits.  Agents in a model 

accounting for social behavior should be more likely to reproduce their real-world 

counterparts’ actual exit choices. Similarly, avatars that died in the simulation should 

more closely match the people that perished in the Station fire.   
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 The second-generation ABM developed for this dissertation makes it possible to 

test these hypotheses, as discussed in chapter 5. 

4.5 Model Validation 

An important part of understanding the contributions of this study is whether or 

not it is possible to gauge the effect of adding group social behavior and supra-crowd 

force. Validation ideas and the improved visualization system help model users explore 

and compare model runs in detail.  Despite the potential value of ABM simulation 

methodology for improving building safety--and more generally for developing new 

scientific knowledge--there has been a general lack of validation of ABM models of 

building evacuations as well as a tendency to adopt irrational, panic explanations of 

human behavior.  The decision rules used to guide the action of avatars in other ABM 

simulations are not grounded in tested assumptions about the social behavior of people 

and their collectivities, their decisions to evacuate, and their evacuation behaviors in 

buildings on fire. It makes many ABM simulated outcomes unreliable as well as un-

interpretable.  Model validation is a difficult task because in most cases the level of detail 

does not match the information provided about the Station (Robinson and Brooks 2010).  

While there are established methods developed to track basic models, they generally do 

not address the prospect of tracking individual agent results or motivations (Valckenaers 

et al. 2007).  There have been previous efforts to create certification systems or general 

guidelines of model validation (Youngblood and Pace 1995, Lord et al. 2005), but they 

have not been widely adopted by the modeling community.   



 93 

Thoroughly validated models should provide accurate replication of historical 

processes and show that agents respond in a realistic manner to their circumstances. It is 

perhaps one of the most difficult dimensions to implement in ABMs of building 

evacuation.  This dissertation includes a description of model validation attempts in 

chapter 5, and suggestions for the future in chapter 6.  Because other models of The 

Station do not account for individual outcomes, it would not make sense to benchmark 

my results to prior work (although this is done to show the difference social science 

theory-based modeling creates in results).  This validation includes novel methods of 

analysis used to determine accuracy of agent paths, relationships, and motivations behind 

agent actions. This allows for tests of social science theories in addition to survival 

percentages. 

4.6 Leadership 

It may also be possible to improve the study of leadership.  Leadership 

components have been included in some models, but it may be possible to complement 

previous efforts by introducing dynamic leaders (Luo et al. 2008, Pelechano et al. 2005).    

In an attempt to create a model with dynamic leadership functions, a leadership 

potential equation with values for group role, gender, age, building familiarity, proximity 

to exit, proximity to other group members, and prior leadership was created.  It 

complements the static leadership model created as a part of the “Interaction Between 

Building and Occupant Responses During Collapse” (IBORC) project, funded by the 

National Science Foundation. 
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By comparing otherwise identical versions of the model with and without social 

behavior elements, it is possible to determine how leadership and group membership 

influence model results.  Previous study showed improvement in evacuation time with 

“trained” leaders and communication among agents, but this concept needs to be coupled 

with changing leadership and social relationships that result in bonds between agents 

(Pelechano and Badler 2006).   

 Distance from other group members, distance from exit points, and injury are all 

dynamic values that change with the environment.  Each group member calculates the 

square of distance to each other group members.  The lower the sum of the squared 

values (least squares) the closer and more central each group member is to the rest of the 

group.  A lower value increases the likelihood that a group member will be a group 

leader.  Group members that are very far away from all other group members will be 

more likely to leave the group.  Distance from the closest exit point also increases the 

likelihood of group leadership, because the avatar would be close to an actionable exit.  

Injury decreases the likelihood of group leadership, because an incapacitated group 

member would make for a suboptimal group leader.   

The equation to calculate group leaders in the model is shown below in the Java 

language. A prior visit gives an agent a relatively large score premium. Smaller distances 

to other group members and smaller distances to exits are both positive leadership 

attributes. More “energy” or “health” is a positive value. Age is most desirable around 30 

based on the demographics in our Station scenario (this value would very likely change in 
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any other scenario). The final value is the premium from being a leader in the last 

timestep, to prevent constant leadership change. 

leaderScore =  

   2500* priorVisit  

   + 10000*(1/(1+Math.pow(minDistance, 1.5))) 

   + 10000*(1/(1+Math.pow(minExitDistance, 2.0))) 

   + 3*(Math.pow(status.energy,1.2)) 

   + 1000 * idData.sex 

   + 20 * (30 - Math.abs(30 - idData.age)) 

   + .1 * leaderScore * chosen; 

  return leaderScore; 

 } 

 The idea is that leadership should not necessarily be a variable defined before a 

model run, but it should also not change constantly. Usually, once someone is selected as 

a leader, things need to change significantly before another leader is chosen, something 

like the incumbent effect. 

 Once a leader is selected, other members in the group will target the group leader 

if they cannot see the leader’s exit goal, or the exit if they can see it. Willingness to break 

away from the group depends on all of the same factors as the leader calculation. For 

instance, an agent in bad shape right next to another exit will not ignore a sure thing to go 

to the other side of the building with a group.  

 These factors result in a modified leadership equation where the group leader can 

change dynamically even if the group members do not change. This is a significant 

improvement from the original model and better approximates reality. 
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 These additions to an agent-based model of building evacuation are intended to 

result in a model that has more flexibility to attempt to explain complex real-world 

evacuations. Intended to be an interdisciplinary platform, the changes recommended here 

are designed to improve both accessibility for model building and analysis ability. While 

many of these features are exclusive to the SocEvac platform, it would be easy to add 

them to other popular modeling platforms.  
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Chapter 5 

RESULTS 

The second-generation model was developed for the task of modeling the 

Station nightclub as a single event. However, it is important to analyze the results in a 

manner that can provide insight to other modeling scenarios in the future. In this chapter, 

results are discussed for the final version of the model of the Station presented in this 

dissertation. These results are then compared to the actual event numbers to determine 

accuracy, and compared to other models of the Station (including my earlier efforts) as an 

academic exercise to facilitate a discussion about what modifications might benefit other 

modeling platforms in the future.  

The results are presented in the Level One, Two, and Three formats. The 

Level One calculation only measures the total number of survivors to allow for a quick 

view of the model results. The Level Two analysis tracks overall use of every exit option, 

making it a little more useful for building and relationship analysis. Level Two is 

generally the output of most commercial modeling platforms. Level Three tracks every 

avatar as an individual, overly detailed for many model builders, but vitally important to 

determine if the social behavior functions in this dissertation are working correctly. 

This chapter goes even deeper into the model output, tracking individual 

“fates” over time. While this level of analysis is not necessary to determine whether or 

not the model objective is working, it is pertinent to examine all of the possible output 

data to try and learn as much as possible about the benefits of adding social behavior 

code to models.  
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This is a study of what is possible with building evacuation model data, and 

whether or not we should devote resources to analyzing models in more detail. The 

chapter concludes with a discussion of model validation and accuracy. At this level of 

detail, there is no longer one best answer about what makes a good model, and a 

discussion of diminishing returns is important. While adding social behavior is an 

important contribution to micro-level evacuation models, it is necessary to start a 

conversation about what constitutes a significant difference in model results.  

5.1 Final Model Datasets 

 The final model dataset used for the data analysis in the three levels consists of 

1,000 runs of the “medium damage” profile of the second-generation model of the 

Station. The medium damage profile represented the best possible guess about fire and 

smoke damage in the Station based on the available data (Gill et al. 2010). In many ways, 

this output did not return the best model results, but it represents the most accurate model 

input.  

One run of the model was corrupted, returning no results, and it was removed 

from the sample. There was one other run with a high death count that made it a clear 

outlier, however this run was included. To preserve the academic integrity of this first 

effort, this work includes all results that are the output of a complete modeling run. While 

outliers should generally be included in samples of complex modeling runs, output from 

corrupt code should be removed from samples. 

 Later in this chapter, two other 1,000 run datasets are included, “low damage” and 

“high damage” profiles. These are examples of results if the damage profile is modified, 
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included as tests to show that incremental changes in input lead to incremental changes in 

output. Over the course of my dissertation research, tens of thousands of model runs of 

the Station were used to confirm the changes in model. Unfortunately, many of these 

early efforts were not standardized, were not recorded correctly, or were not final 

versions. As a result, only final datasets are used for comparison purposes to make sure 

that every parameter that returned a given set of results is accounted for correctly. 

5.2 Level One Analysis 

Level One represents the most rudimentary calculation, the total number of 

survivors. While this does not require a long discussion, it is worth covering because 

while this number might not be the most important benchmark in detailed micro-level 

modeling, it is often the only output considered in macro-output platforms. The overall 

survival level is the simplest possible benchmark to use for a hazard evacuation model. 

For evacuation models without a fatal-level hazard, clearance time is probably the best 

Level One measurement. 

5.2.1 Purpose of Level One Data 

Level One data is represented as two numbers, surviving avatars and perished 

avatars, or one survival percentage. In this model, Level One data serves as an executive 

summary, giving someone interested in the model a quick confirmation that the model is 

running. Oftentimes, the only reported model data consists of survival percentage and 

clearance time, making Level One data sufficient for this task. Level One data also has 

the side benefit of allowing these results to be compared to other modeling platforms that 

do not track any detailed avatar information. 
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5.2.2 Detailed Results 

The Level One data is reported in the model as the number of avatars that 

perished in the Station model. In the 999 run set, an average of 131.56 avatars perished, 

with a standard deviation of 36.00. The median value was 129 deaths, and the mode value 

was 108 (which occurred 16 times out of 999). The dataset ranged from a low of 62 

deaths to a high of 266. The second lowest value was 63 deaths, and the second highest 

value was 230. The inter quartile range of the dataset was between 103 and 155 deaths. 

Although the single 266 death outcome is an outlier, it is included because it was the 

result of a correctly functioning run of the model. The skewness of the death range was 

0.454, indicating a positive or right-tailed skew of the distribution.  

5.2.3 Comparison of Model to Actual Station Event 

Compared to the actual Station event, the Level One results of the model are 

close but far from perfect. In the actual event, 100 participants perished in the fire at the 

Station. While SocEvac returns more deaths than actually occurred, the actual death 

count in the Station was within one standard deviation of the mean in 1,000 simulations. 

The data are skewed making some basic tests difficult to confidently discuss, but the 

takeaway is that the actual result is a plausible outcome of the model. 22.2% of the model 

runs returned results with less than 100 deaths, making the actual death numbers fall just 

slightly out of the inter-quartile range.  

5.2.4 Comparison of Social Behavior Model to Closest Exit Calculation 

The DRC decided to plot the closest exit for every avatar and use this as a 

basis to compare to my results, since the reason for originally creating a social behavior 

model was to offer an alternative to closest exit modeling. Using a strict closest exit 
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calculation, 50 avatars would have perished in the fire and zero in the smoke according to 

my calculations. This is because no avatars would be moving in the opposite direction of 

each other, eliminating the biggest cause of congestion in my model. A simple 

comparison of SocEvac versus a pure closest evacuation calculation shows that SocEvac 

returns too high of a death rate, although the actual results are a reasonable outcome of 

the model. Meanwhile, the simple closest exit calculation returns a death rate that is too 

low.  

A Level One analysis for a perfect model would fall somewhere in the 

middle of these two choices. While the 100 deaths for the Station scenario was 

completely plausible, it is reasonable to assume that result would have been on the higher 

side of the normal distribution of possible results. SocEvac returns a distribution where 

100 deaths for the scenario would be in the lowest quartile of results, indicating that the 

design of SocEvac may be too “deadly”. This makes intuitive sense when a user 

understands the limitations of SocEvac versus behavior of the victims in the incident. 

With the same hazards and environment, more intelligent avatars would likely be able to 

evacuate more efficiently that the avatars created in SocEvac. 

5.2.5 Comparison to Other Models of the Station Event 

There are a number of models that output Level One data for the Station 

nightclub fire scenario. These include Spearpoint’s (2012) network model, Ewer et. al.’s 

(2008) evacuation model of the Station, and Pan et. al.’s (2006) MassEGRESS platform. 

While many of these models do not include the fire hazard directly, it is still worth 

comparing output of different model designs. 
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Spearpoint’s effort, the latest in a series of pulished Station models, uses a 

networking model to create an analog of the Station nightclub (Spearpoint 2012). This 

model allows for only four exits (the doors at the Station) and assumes that those left in 

the building after 90 seconds will succumb to the fire. Spearpoint’s model shows that 283 

avatars are in the building at 90 seconds, and then subtracts 101 from these results (note 

that Fahy et. al. 2011 determined that 101 avatars used the windows as exits). This leaves 

a prediction of about 182 deaths from the fire. Assuming a fifteen second delay (proposed 

by Ewer et. al. 2008), the network model predicts 145 deaths. 

While the Spearpoint effort is impressive, and network modeling is a 

promising improvement to complex building evacuation models, there were many 

assumptions made about the Station in this model that could be added to the simulations. 

According to our data, it was possible to survive longer than 90 seconds depending on the 

location of each avatar, and the results from the windows could be modeled, not assumed. 

Some versions of the model also preordained exit choices for certain avatars, which is an 

inaccurate way to try and model complex evacuations. 

Spearpoint offers two output scenarios, based on the methodology used by 

Ewer et. a. described below. Spearpoint’s unedited model returns 180 fatalities, and a 

model with 15 second fire delay returns 145 fatalities.  

Ewer et. al. used the buildingEXODUS model and the SMARTFIRE model 

to create  model of the Station evacuation (Ewer et al. 2008). Ewer et. al. offer three 

scenarios to the Station evacuation, resulting in 0, 180, and 84 deaths. The two scenarios 

examined here account for a fire starting instantly, and a fire starting with a 15 second 

delay. These results are much different than the delay added in the Spearpoint model. It 

shows that a relatively small change in the model can lead to a large change in results, 
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which I believe is a possible indicator of over fitting in a model which will be discussed 

in the validation section. While Ewer et. al.’s effort is an excellent technical model, I 

think it would benefit greatly from the addition of complex social behavior elements. 

Ideally, codes like those produced in SocEvac would be merged with mature fire analysis 

platforms like SMARTFIRE, though the modeling of fire propogation is outside of the 

scope of this dissertation.  

Pan et. al.’s MassEGRESS platform returns very different results, based on 

different assumptions about occupants and the building. The model returns only 89 

deaths, making it one of the least lethal simulations of the Station (Pan et al 2006).  

Three sets of preliminary results of the first-generation model developed for 

the Station scenario at the DRC are added to the comparison. As shown in the table 

below, two of the three Level One results from these early models are actually the most 

accurate using an overall survival rate analysis. 

Table 5.1 shows a Level One analysis of the Station nightclub fire for the actual 

event, a closest exit model, the Spearpoint Network Model, The Ewer group model, 

MassEGRESS, and SocEvac. All values are mean values and ranges are not included 

because they are not always reported. SocEvac estimates a mean of 132 deaths, 32% 

higher than the actual 100 deaths in the fire. While SocEvac overestimates the overall 

death count, it appears to be within the acceptable range of outputs compared to peer 

models based on a Level One analysis. 
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Table 5.1: Level One Output 

Model Deaths Error % (ABS) 

Actual Event 100  

Closest Exit 50 50% 

Spearpoint Network 182 82% 

Spearpoint Network Delay 145 45% 

Ewer 180 80% 

Ewer Delay 84 16% 

Pan MassEGRESS 89 11% 

First-Generation No Groups 108 8% 

First-Generation Weak Groups 104 4% 

First-Generation Strong Groups 137 37% 

SocEvac 132 32% 

  

5.3 Level Two Analysis 

 Level Two represents the current state-of-the-art in many models, tracking 

the number of avatars that use each exit in the model. This level presents similar results 

to other current commercial modeling efforts that track pedestrian flow levels and are 

used to make suggestions about improving building design and evacuation plans. The 

Level Two analysis makes it possible to suggest building design changes when 

examining models in a predictive capacity.   

5.3.1 Purpose of Level Two Data 

In the Station nightclub, there were seven possible outcomes for each avatar 

opposed to the two options in Level One. There were four doors and two sets of windows 

creating six exit options, while the seventh option is succumbing to the fire during the 

simulation. SocEvac combined the five windows into two groups because individual 

windows were not identified in documentation of the evacuation.  
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The purpose of Level Two data is to evaluate which exits were used in the 

model, allowing model users to gather more information than is possible from a simple 

survival rate. A Level Two analysis allows analysis of model exits, comparisons of 

starting locations and exit preferences. It allows researchers to ask more complex 

questions about how models are working and why certain results are returned.  

5.3.2 Detailed Results 

In addition to the results for the number of dead explored in the 5.2 

subsection, there were six other exit options analyzed for Level Two. This level of 

analysis looks at the aggregate exit results for the sets of windows in the greenhouse and 

bar area windows, and the bar, kitchen, main, and stage exits. Since we are now looking 

at more detailed model output, this analysis will go more in depth than the statistics 

looked at in Level One. When there is only a binary outcome, exit or not, it is not 

possible to learn as much about how a model is running. In contrast, when examining use 

of each exit, it becomes possible to see if exit relationships or preferences exist. 

This analysis begins by examining the frequency of the use of different 

doors. The first is the Bar Exit. In SocEvac, the bar exit was used by an average of 90 

avatars per simulation, with a standard deviation of 10 avatars. The minimum number 

that used the exit was 47, and the maximum was 118, with an IQR of 14 (83 to 97). There 

are four observations on the left tail that are statistical outliers. The skewness value is 

negative, indicating a longer left tail. The kurtosis value of 3.17 indicates that the tails are 

underweighted. 
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Figure 5.1: Bar Exit Distribution 

 As shown in the histogram above and supported by the descriptive statistics, 

the distribution of the use of the bar exit shows a relatively predictable distribution. The 

best distribution fit for the bar exit is the normal distribution. It appears that SocEvac 

functioned correctly when looking at the results of this exit. 

The Kitchen exit appears to be an example of SocEvac functioning 

incorrectly. On average, only two avatars used the Kitchen exit to evacuate, with a 

standard deviation of one. The full range of avatars using the exit was between 1 and 9. 
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Figure 5.2: Kitchen Exit Distribution 

The distribution of the Kitchen exit was not normal, and there is so little 

diversity of results that it is difficult to interpret much about the Kitchen exit. The best fit 

distribution for the kitchen exit is the binomial distribution, confirming that the normal 

distribution is a bad fit for this exit. In SocEvac, the Kitchen exit was only known about 

by avatars that had visited the Station before the evening of the fire, explaining the very 

limited use of the exit.  

The Main exit was used by an average of 107 avatars per simulation, with a 

standard deviation of 17 avatars. The minimum number that used the exit was 28, and the 

maximum was 156, with an IQR of 19 (98 to 117). There are numerous observations on 

both tails that are statistical outliers. The skewness value is negative, indicating a longer 

left tail. The kurtosis value of 5.42 indicates that the tails are underweighted. 
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Figure 5.3: Main Exit Distribution 

 As shown in the histogram above and supported by the descriptive 

statistics, the distribution of the use of the bar exit shows a relatively predictable 

distribution, although the distribution is tighter than a normal distribution. A normal 

distribution is still the best fit for these results. It appears that SocEvac functioned 

correctly when looking at the results of this exit. 

The Stage exit was used by an average of 36 avatars per simulation, with a 

standard deviation of 8 avatars. The minimum number that used the exit was 8, and the 

maximum was 55, with an IQR of 10 (31 to 41). There are two observations on the left 

tail that are statistical outliers. The skewness value is very slightly negative, indicating a 

longer left tail. The kurtosis value of 2.76 indicates that the tails are underweighted. 
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Figure 5.4: Stage Exit Distribution 

 As shown in the histogram above and supported by the descriptive 

statistics, the distribution of the use of the stage exit shows a relatively predictable 

distribution, although the distribution does not appear to be normal. The Poisson 

distribution is the best fit for these results. It appears that SocEvac functioned correctly 

when looking at the results of this exit. 

The windows in SocEvac operate slightly differently than the doors. In the 

SocEvac model, a door does not change over the course of a simulation, but a window is 

an unattractive option to each avatar until one avatar breaches a window, at which point 

the exit increases in attractiveness. As a result, while it is reasonable to expect normal 

distributions at each door, the same may not be said for windows. The Greenhouse 

windows were used by an average of 26 avatars per simulation, with a standard deviation 

of 11 avatars. The minimum number that used the windows was 1, and the maximum was 

56, with an IQR of 18 (17 to 35). There are no statistical outliers in the results. The 
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skewness value is very slightly positive, indicating a longer right tail. The kurtosis value 

of 2.35 indicates that the tails are underweighted. 

 

Figure 5.5: Greenhouse Window Distribution 

 As shown in the histogram above and supported by the descriptive 

statistics, the distribution of the use of the stage exit shows a somewhat predictable 

distribution, although the distribution does not appear to be normal. Interestingly, 

although the kurtosis value was positive, the histogram appears to show that the center of 

the distribution is underweighted with some overweighting on each side of the body of 

the distribution. Looking at the results of the two tails, it does not appear that these results 

are approximating a normal distribution. The log-normal distribution is the best fit for 

these results. It appears that SocEvac functioned correctly when looking at the results of 

this exit, accounting for the different functions of doors and windows. 

The Bar windows were used by an average of 73 avatars per simulation, with 

a standard deviation of 24 avatars. The minimum number that used the windows was 12, 
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and the maximum was 152, with an IQR of 34 (56 to 90). There are two statistical 

outliers on the right tail. The skewness value is very slightly positive, indicating a longer 

right tail. The kurtosis value of 2.64 indicates that the tails are underweighted. 

 

Figure 5.6: Bar Window Distribution 

 As shown in the histogram above and supported by the descriptive 

statistics, the distribution of the use of the stage exit shows a somewhat predictable 

distribution, although the distribution does not appear to be normal. Interestingly, 

although the kurtosis value was positive, the histogram again appears to show that the 

center of the distribution is underweighted with some overweighting on each side of the 

body of the distribution. Looking at the results of the two tails, it does not appear that 

these results are approximating a normal distribution, even though a normal distribution 

is the best fit for these results. It appears that SocEvac functioned correctly when looking 

at the results of this exit, accounting for the different functions of doors and windows. 
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As originally shown in section 5.2.2, the distribution of deaths was not 

normal. The results were positively skewed, with a kurtosis of 2.65, and the histogram 

does not look like it is approximating a normal distribution. The best fit for the deaths is 

the inverse Gaussian distribution, confirming the long right tail of the distribution.  

According to two-sample T-tests (99% confidence), there are positive 

correlations for the following exit choices: Greenhouse window and Bar exit, Greenhouse 

window and bar window, Main exit and Kitchen exit, Bar exit and bar window, and 

Kitchen exit and bar window. While this might not make intuitive sense since exit 

choices are in essentially in competition with each other, it is clear that the death rate is 

not normally distributed, so at least in this instance of SocEvac, not using one exit does 

not necessarily mean an avatar is going to use another one. 

There are four negative correlations (99% confidence): Greenhouse window 

and the Main exit, Greenhouse Window and death, Main Exit and death, and Bar Exit and 

death. Based on the specific model situation, and corroborated by films and other sources 

of information about this fire, there is a massive queuing at the entrance to main exit, so it 

makes sense that if more avatars are likely to use the greenhouse window, it would cause 

fewer avatars to either use the main exit or perish. The other two negative correlations are 

with door exits and death, making more sense than negative correlations between exits.  

The first half of figure 5.7 shows an example of a 3-D bivariate histogram of 

the Main exit and Death, clearly showing the negative correlation. This is in contrast with 

the second figure, which shows the uncorrelated relationship between the Main exit and 

the Stage exit.  
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Figure 5.7: Bivariate Histograms 

 

Figure 5.8: Exit Relationships 

The scatterplot array shown above in figure 5.8 shows the two-dimensional 

relationships between each pair of results, confirming that there are not strong 

correlations between many of the pairs. The Level Three analysis in the next section 

makes it possible to explore the relationships between exits in the model of the Station in 

more detail. 
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5.3.3 Comparison of Model to Actual Station Event 

The actual Station event had exit volumes that were similar to the mean 

output of SocEvac. In order of use, the six exits were unknown (13), Kitchen (17), Stage 

(24), Greenhouse window (34), Bar window (71), Bar (78), and the Main exit (128). The 

other 100 people in the building perished in the fire. Since there were 13 outcomes that 

are still unknown, it is not possible to have a “perfect” Level Two result, but it is possible 

to obtain results that are very close.  

Based on the absolute value of differences between the SocEvac means and 

the actual event numbers, SocEvac returns a total error count of 101 Level Two 

differences. A perfect score would be 13. While the absolute numbers make it possible to 

quickly see the magnitude of errors, examining the standard deviation range of each exit 

distribution yields more interesting results. In this Level Two analysis, SocEvac exit and 

death results are all within on standard deviation of the actual results of the Station 

scenario, with the exception of the Kitchen exit (17 people using the Kitchen exit would 

be an extreme outlier in SocEvac). These results indicate that the model makes sense in 

terms of the actual results of the Station. 

5.3.4 Comparison of Social Behavior Model to Closest Exit Calculation 

The closest exit results for the Level Two analysis show a very different 

pattern of exit use in the Station scenario. The closest exit calculations underestimate the 

use of the Bar exit, Bar window, Death, Greenhouse window, and Main exit. It 

overestimates the use of the Kitchen exit and the Stage exit. In percentage terms, the two 

largest errors are the underuse of the Bar exit (11.5% of actual) and the overuse of the 

Stage exit (795.8% of actual). 
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In the Level 2 analysis it is rather clear that the SocEvac results are more like 

the actual results than the closest exit results. This is unsurprising since the original 

purpose of this work was to examine why closest-exit modeling could not adequately 

explain the results of the Station nightclub fire. 

5.3.5 Comparison to Other Models of the Station Event 

This subsection compares results from SocEvac and previous DRC efforts to 

analyses of the Station by MJ Spearpoint at the Department of Civil and Natural 

Resources Engineering at the University of Canterbury in New Zealand, NIST, 

Thunderhead Engineering, the University of Greenwich, and the Engineering Informatics 

Group at Stanford University (Galea et al 2008b, Grosshandler et al. 2005, Pan et al. 

2006, Spearpoint 2012, Thunderhead Engineering 2012). These groups have all 

developed and compiled other models of the Station and published these results. There 

are many similarities between their work and the DRC analysis of the Station, as well as 

many profound differences. In cases where it was not possible to directly understand the 

methodology or results of these published models, the DRC modified the results in a 

manner that would make them more accurate. Any errors here are mine, and not those of 

the other model authors. All results are presented as mean values because ranges are not 

always included (and ranges are not possible in models with no variation). 

Although perfect comparisons are not possible for reasons that will become 

clear in this subsection, there are a number of other model platforms that have performed 

various different Level Two calculations of the Station event. Unfortunately for this 

comparison focused on the Station nightclub, many of these platforms focus on clearance 

times and not on fatality levels, so results will not be perfect fits for the actual situation. 
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However, it is still possible to examine the proportional exit usage and the theory behind 

these models.  

This section considers the actual historical results, my closest exit model, the 

three DRC first-generation models, Simulex, buildingEXODUS, MASSEgress, two 

Pathfinder models, three of the EvacuatioNZ efforts, and SocEvac. Other models have 

been used to simulate the Station scenario, however they did not output the results needed 

for a Level Two analysis, making a comparison here very difficult. 

This subsection will include a comparison of all available platforms to both 

the actual model results and the closest exit results of the Station scenario that were 

developed based on the DRC data from the Station. In order to discuss both the accuracy 

of these models relative to the real scenario and the methodology used, the next 

paragraphs will compare the results to both the real outcome and the predicted outcome 

of the closest exit model. 

Table 5.2 below shows the Level Two results output for the models of the 

Station compared in this subsection. There are major barriers to this comparison. The first 

is that there are four different numbers of agents in the different scenarios. Most of the 

other modeling programs based their numbers off of the 420 person occupancy limit of 

the Station, not the 465 agents that the DRC and Barylick found to be in attendance (of 

the other population values measured) (Spearpoint 2012, Torres 2010, Barylick 2012). 

Tubbs and Meacham estimated there were between 440 and 458 occupants in 2007, a 

range above the occupancy level but below the attendees identified by the DRC (Tubbs 

and Meacham 2007). Additionally, the results are compared to two sets of numbers, the 

452 known agent outcomes, but there are 465 total agents. This makes it almost 

impossible to return perfect modeling results, but that is not a great concern since a 



 117 

perfect result with 465 agents and seven possible outcomes for each agent would almost 

certainly be evidence of overfitting. Models with an asterisk by their name have 

interpreted results based off of model output and author instructions. 

Table 5.2: Level 2 Model Results 

     

Model Results Bar Exit 

Bar 

Window Dead 

Greenh

ouse 

Actual Event 78 71 100 34 

Closest Exit 9 49 50 22 

First-Generation No Groups 37 2 108 6 

First-Generation Weak Groups 34 10 104 6 

First-Generation Strong Groups 113 56 137 2 

Simulex* 20 0 0 0 

buildingEXODUS* 22 0 0 0 

MASS Egress* 36 0 0 0 

Pathfinder (SFPE)* 19 0 0 0 

Pathfinder (Steering)* 19 0 0 0 

Spearpoint Minimum Distance* 31 0 0 0 

Spearpoint Assigned* 20 0 0 0 

Spearpoint 90 Seconds* 22 70 145 31 

SocEvac 90 73 131 26 

     

Model Results 

Kitchen 

Exit Main Exit 

Stage 

Exit Total 

Actual Event 17 128 24 452 

Closest Exit 41 103 191 465 

First-Generation No Groups 164 119 29 465 

First-Generation Weak Groups 177 105 29 465 

First-Generation Strong Groups 7 126 24 465 

Simulex* 3 213 184 420 

buildingEXODUS* 4 214 180 420 

MASS Egress* 4 293 87 420 

Pathfinder (SFPE)* 3 207 191 420 

Pathfinder (Steering)* 3 201 197 420 

Spearpoint Minimum Distance* 42 0 347 420 

Spearpoint Assigned* 3 212 185 420 

Spearpoint 90 Seconds* 17 129 41 455 

SocEvac 2 107 36 465 
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Looking at the table, it is easy to see the large diversity in model results for 

the same scenario, even after accounting for the differences in fatalities and numbers of 

agents. Bar exit use ranges from 19 to 113, and numbers for Stage exit use range from 24 

to 347. These profound differences indicate that the different model profiles significantly 

change results in the Station scenario. In some instances, such as the different 

calculations used in the EvacuatioNZ profiles this makes sense. 

Actual event numbers and the closest exit model are detailed in previous 

subsections, and although the first-generation model results have already been discussed 

in chapter two, they are worth revisiting here. The first-generation model was almost 

certainly overfit. It was developed as a single-use model for the Station as a test bed for 

the social behavior model concept. The “no groups” and “weak groups” models returned 

very similar results, because we underestimated how strong group bonds would need to 

be before agents would choose to abandon groups in extreme situations. In the first-

generation model, there is almost no discernable difference between “no groups” and 

“weak groups” because with several operations per second, even low probability events 

(1% per timestep [one twentieth of a second]) are likely to occur in seconds. The “strong 

group” version of the model returned much better results, signaling that the work that 

resulted in this dissertation was probably worth exploring. 

Many of these results are very different from the actual results of the tragedy, 

primarily because these models focused on clearance time and not on the specific fatal 

hazard in the Station. As a result, many of these simulations have no fatalities. It is 

possible to add fatalities to these models based on active agents still in the building at 

time of certain lack of survivability, but these results are only modified in cases where the 

authors suggested how to do so (*). 
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Table 5.3: Model Differences from Actual Event 

Absolute Difference from Actual Bar Exit 

Bar 

Window Dead 

Greenh

ouse 

Closest Exit 69 22 50 12 

First-Generation No Groups 41 69 8 28 

First-Generation Weak Groups 44 61 4 28 

First-Generation Strong Groups 35 15 37 32 

Simulex* 58 71 100 34 

buildingEXODUS* 56 71 100 34 

MASS Egress* 42 71 100 34 

Pathfinder (SFPE)* 59 71 100 34 

Pathfinder (Steering)* 59 71 100 34 

Spearpoint Minimum Distance* 47 71 100 34 

Spearpoint Assigned* 58 71 100 34 

Spearpoint 90 Seconds* 56 1 45 3 

SocEvac 12 2 31 8 

     

Absolute Difference from Actual 

Kitchen 

Exit Main Exit 

Stage 

Exit Total 

Closest Exit 24 25 167 369 

First-Generation No Groups 147 9 5 307 

First-Generation Weak Groups 160 23 5 325 

First-Generation Strong Groups 10 2 0 131 

Simulex* 14 85 160 522 

buildingEXODUS* 13 86 156 516 

MASS Egress* 13 165 63 488 

Pathfinder (SFPE)* 14 79 167 524 

Pathfinder (Steering)* 14 73 173 524 

Spearpoint Minimum Distance* 25 128 323 728 

Spearpoint Assigned* 14 84 161 522 

Spearpoint 90 Seconds* 0 1 17 123 

SocEvac 15 21 12 101 
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Table 2.4: Square of Model Differences from Actual Event 

Square of Difference from 

Actual Bar Exit 

Bar 

Window Dead 

Greenh

ouse 

Closest Exit 4761 484 2500 144 

First-Generation No Groups 1681 4761 64 784 

First-Generation Weak Groups 1936 3721 16 784 

First-Generation Strong Groups 1225 225 1369 1024 

Simulex* 3364 5041 10000 1156 

buildingEXODUS* 3136 5041 10000 1156 

MASS Egress* 1764 5041 10000 1156 

Pathfinder (SFPE)* 3481 5041 10000 1156 

Pathfinder (Steering)* 3481 5041 10000 1156 

Spearpoint Minimum Distance* 2209 5041 10000 1156 

Spearpoint Assigned* 3364 5041 10000 1156 

Spearpoint 90 Seconds* 3136 1 2025 9 

SocEvac 144 4 961 64 

     

Square of Difference from 

Actual 

Kitchen 

Exit Main Exit 

Stage 

Exit Total 

Closest Exit 576 625 27889 36979 

First-Generation No Groups 21609 81 25 29005 

First-Generation Weak Groups 25600 529 25 32611 

First-Generation Strong Groups 100 4 0 3947 

Simulex* 196 7225 25600 52582 

buildingEXODUS* 169 7396 24336 51234 

MASS Egress* 169 27225 3969 49324 

Pathfinder (SFPE)* 196 6241 27889 54004 

Pathfinder (Steering)* 196 5329 29929 55132 

Spearpoint Minimum Distance* 625 16384 104329 139744 

Spearpoint Assigned* 196 7056 25921 52734 

Spearpoint 90 Seconds* 0 1 289 5461 

SocEvac 225 441 144 1983 



 121 

 

Tables 5.3 and 5.4 above show the absolute difference in number of users for 

each exit between the output of each model and the exit totals gathered by the DRC. The 

second table shows the square of those values between each avatar fate in a model and 

the actual value discovered by the DRC. Analysis of absolute value differences treat 

every error as a constant, and the sum of squares of these values makes bigger differences 

exponentially larger than smaller ones. Looking at the first of the two tables, the closest 

end exit results using this measure are SocEvac, Spearpoint’s EvacuatioNZ model (at 90 

seconds), and the first-generation strong group model attempt. In this case, the Spearpoint 

model contains an assumption about the windows. Spearpoint’s model uses an 

assumption from Fahy et. al. that 101 participants used the windows to evacuate. In this 

model comparison, 101 was subtracted from the total fatalities and assigned these avatars 

to the appropriate windows (Fahy, Proulx, and Flynn 2011). While this makes the results 

of Spearpoint’s model much more accurate, this is appropriate in this case because the 

use of other exits is somewhat proportional to the real occurrence. Unfortunately, 

SocEvac and the first-generation models are the only platforms that account for windows 

at all, which makes it difficult to make some comparisons to other modeling efforts. At 

least Spearpoint considers the possibility of window use even though his model does not 

allow for them. When looking at the sum of squares of differences, the first-generation 

strong groups model pulls ahead of the Spearpoint 90 second model, because of the 

smaller differences. Interestingly, the Simulex, buildingEXODUS, MASSEgress, 

Pathfinder, and Spearpoint assigned models all return highly similar values. This suggests 

the possibility of benchmarking one model to another. 
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Table 5.5: Model Difference from Closest Exit Results 

Absolute Difference from 

Closest Exit Bar Exit 

Bar 

Window Dead 

Greenh

ouse 

First-Generation No Groups 28 47 42 16 

First-Generation Weak Groups 25 39 46 16 

First-Generation Strong Groups 34 7 13 20 

Simulex* 11 49 50 22 

buildingEXODUS* 13 49 50 22 

MASS Egress* 27 49 50 22 

Pathfinder (SFPE)* 10 49 50 22 

Pathfinder (Steering)* 10 49 50 22 

Spearpoint Minimum Distance* 22 49 50 22 

Spearpoint Assigned* 11 49 50 22 

Spearpoint 90 Seconds* 13 21 5 9 

SocEvac 57 20 19 4 

     

Absolute Difference from 

Closest Exit 

Kitchen 

Exit Main Exit 

Stage 

Exit Total 

First-Generation No Groups 123 16 162 434 

First-Generation Weak Groups 136 2 162 426 

First-Generation Strong Groups 14 23 167 278 

Simulex* 10 60 7 209 

buildingEXODUS* 11 61 11 217 

MASS Egress* 11 140 104 403 

Pathfinder (SFPE)* 10 54 0 195 

Pathfinder (Steering)* 10 48 6 195 

Spearpoint Minimum Distance* 1 103 156 403 

Spearpoint Assigned* 10 59 6 207 

Spearpoint 90 Seconds* 24 24 150 246 

SocEvac 9 4 155 268 
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Table 5.6: Square of Model Difference from Closest Exit Results 

Square of Difference from 

Closest Exit Bar Exit 

Bar 

Window Dead 

Green

house 

First-Generation No Groups 784 2209 1764 256 

First-Generation Weak Groups 625 1521 2116 256 

First-Generation Strong 

Groups 1156 49 169 400 

Simulex* 121 2401 2500 484 

buildingEXODUS* 169 2401 2500 484 

MASS Egress* 729 2401 2500 484 

Pathfinder (SFPE)* 100 2401 2500 484 

Pathfinder (Steering)* 100 2401 2500 484 

Spearpoint Minimum Distance* 484 2401 2500 484 

Spearpoint Assigned* 121 2401 2500 484 

Spearpoint 90 Seconds* 169 441 25 81 

SocEvac 3249 400 361 16 

     

Square of Difference from 

Closest Exit 

Kitchen 

Exit Main Exit 

Stage 

Exit Total 

First-Generation No Groups 15129 256 26244 46642 

First-Generation Weak Groups 18496 4 26244 49262 

First-Generation Strong 

Groups 196 529 27889 30388 

Simulex* 100 3600 49 9255 

buildingEXODUS* 121 3721 121 9517 

MASS Egress* 121 19600 10816 36651 

Pathfinder (SFPE)* 100 2916 0 8501 

Pathfinder (Steering)* 100 2304 36 7925 

Spearpoint Minimum Distance* 1 10609 24336 40815 

Spearpoint Assigned* 100 3481 36 9123 

Spearpoint 90 Seconds* 576 576 22500 24368 

SocEvac 81 16 24025 28148 

 

Tables 5.5 and 5.6 above show the same type of analysis for the differences 

(and the square of differences) between each model and my closest exit calculations 

(Aguirre et al 2011, Spearpoint 2012, Fahy et al 2011, Grosshandler er al 2005, Galea et 
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al 2008, Chaturvedi et al 2006). This is done to check how different many of the models 

are to a traditional static exit pattern. In many ways, this is actually a more interesting 

output than the comparison between the actual results and each model. In this case, the 

Pathfinder models returned the best results. Spearpoint’s assigned exit model was close 

behind, however, Spearpoint’s minimum distance model, which one would expect to 

offer similar results to my closest exit model, was one of the worst fits to my closest exit 

calculations. This suggests that there is significant variation in inputs in addition to 

variation in outputs of the different models of the Station nightclub fire. 

Interestingly, Simulex, building EXODUS, Pathfinder, and the Spearpoint 

assigned models all have similar degrees of error compared with the closest exit model. 

This suggests that these platforms use a similar calculation to determine optimal exit 

(such as the popular A* algorithm). 

SocEvac is not a particularly good fit in this case, which is promising. 

Returning results that more closely resemble the actual event than a closest exit 

calculation is a sign that the ideas implemented in SocEvac have a place in micro-level 

building evacuation modeling. These results suggest that many of the models of the 

Station evacuation may be slightly modified closest-exit designs, and that behaviors 

considered in the models do not overrule exit distance. 

5.3.6 Level Two Criticisms 

It is important to note that these models of the Station (including SocEvac) 

all make interpretations of the placement and number of participants that were in the 

building at the time of the fire. Based on extensive documentary research on this fire, the 

DRC estimated 465 victims, but it is worth noting that there is not complete agreement in 
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the modeling community about this number. When developing SocEvac, the DRC 

performed many simulations changing avatar numbers (and therefore density), but there 

was little connection between these learning experiments and the attempted recreation of 

a past event. Similarly, the models differ in the way they treat windows. Evacuation 

through the windows was a major source of egress in the Station scenario, but most 

simulation platforms ignored them. In the DRC’s count of Station evacuees, it was found 

that 105 occupants used one of the five windows to exit the building (Aguirre, Torres, et 

al. 2011). Ignoring a means of egress used by almost one quarter of participants is a 

major oversight. Most of the modeling platforms do not account for windows at all, and 

the Spearpoint model mentions that the method of accounting for windows is to subtract 

the actual number of window users from those still inside the building at 90 seconds (for 

the comparison above 101 evacuees were proportionally balanced between the two 

windows, without this balancing, the Level One and Two results are not nearly as close 

as the actual event numbers). In future modeling efforts, it is vital that model builders 

recreate environments that are accurate when they are attempting to recreate real-world 

events. All of the models of the Station nightclub fire have some combination of 

incorrectly placed agents, incorrect numbers of agents, incorrect exits, and no hazard 

(some of these errors are unavoidable). However, researchers need to make an effort to 

minimize these differences whenever possible, especially when “benchmarking” or 

comparing modeling platforms.  

Most of the available models focus on clearance time, which can sometimes 

be misguided when attempting to understand evacuations. In a scenario like the Station, 

where survival in the building after about four minutes was deemed impossible in any 

location of the building, it makes little sense to me to analyze clearance times beyond a 

few minutes. The Station was a disaster because of the number of fatalities it caused, not 
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because of slow clearance time (thus, a slower burning fire would not have resulted in as 

many people dying even if building clearance took the same amount of time). Many of 

these models could benefit greatly from including fatalities to give a more accurate 

picture of the results of a fire.  

In evacuation scenarios, whether others are alive or dead can significantly 

affect victim behavior, so that completely ignoring the potentially fatal elements of a 

situation like the Station seems like a major modeling oversight. In an event like the 

Station fire, where a deadly hazard was seen by most participants as the main reason for 

the evacuation, it is important to include that hazard in a model. Based on the DRC 

analysis, the main barrier to exiting the Station was other people, and how much other 

individuals impacted the ability to exit the building, whether they were alive and well, 

injured, or dead.  Not accounting for the hazard is a major oversight that makes detailed 

model results much less accurate than they could be. 

Another problem with most of the models of the Station is overfitting. 

Modeling can never become predictive if researchers model past situations by using data 

that only could have been known after the fact in these models. Avatars in an evacuation 

model should not have access to data such as the exit they used in the real scenario of the 

well being of their relatives and friends in the gathering experiencing the crisis. In a well-

fit model, what exit participants used in real life should have no bearing on avatar 

functions in an agent-based model. This is a critical issue that is overlooked to save time 

and make for better looking results. The decision to include data that only could have 

been known after the fact is one of the main roadblocks to the wider adoption of 

simulation. The eventual goal of simulation should be the ability to have models that are 

generalizable and predictive. Although we are far from that goal in social behavior 
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models (or even complex evacuation models), it will be impossible for us to ever move 

the science forward if our inputs are based on the results of past events. In essence, this is 

an analog of “cheating” in modeling. A model that functions “perfectly” for only one 

scenario with no possible variability is useless as a predictive tool. In order for us to push 

the envelope with predictive models, we need to abandon absolutist instructions that 

prevent diversity in models.  

The final problem, which is apparent after looking at the Level Two 

difference results is benchmarking. It is worrying that multiple different modeling 

platforms have seemingly identical Level Two results. In some cases, variability in 

modeling output is not even reported. For example, if a model of 400+ avatars with seven 

(or five) output possibilities does not have any variability, it is almost certain that it is 

overfit (especially with end result data discussed above) so that it it is too tightly 

benchmarked to prior model results of actual results. With such a complex scenario, 

significant variability would be expected. An incident like the Station should have 

sufficient complexity to prevent highly similar results from multiple modeling platforms. 

If all of these platforms were developed with different engines, one would expect to see 

more variability in the results. 

If variability is an issue, the 1,000 run batches used to evaluate SocEvac are a 

good start, and it is frustrating that some model builders consider a single run of a 

simulation to be indicative of finished results. As an example, looking back at the tables 

above, the “best” Level Two run of SocEvac has an absolute value error total of 49 (13 

would be a perfect replication based on our knowledge). On the opposite end, the “worst” 

run of SocEvac has an absolute value error total of 319. The minimum and maximum 

squared totals were 571 and 35259 (with the maximum making SocEvac’s average of 
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1983 look hopelessly optimistic). With ranges like this, even when extreme values are 

rare, it is irresponsible to only look at one result or at a small batch of results. Thankfully, 

some researchers such as Spearpoint report variability along with mean results, although 

unfortunately this not true of all platforms. Reporting variability of findings is a clear and 

simple way to advance simulation modeling. 

5.3.7 Level Two Conclusion 

The Level Two analysis is very telling; SocEvac offers output that is at worst 

competitive with leading academic and professional modeling efforts for the Station 

scenario. Looking at the details of the other available modeling platforms, it is surprising 

that the results are so homogenous. Although SocEvac was not the most accurate 

platform when using a Level One analysis, it blossoms when Level Two when reasoning 

becomes an important part of modeling. SocEvac’s simulation of Station nightclub fire 

based on the Level Two results is encouraging. While there is still significant room for 

future improvement, these results make sense, and they show that social behavior 

modeling has a promising future as one of several evacuation simulation modeling 

platforms.  

Comparative analysis of results would show the importance of input 

reasoning (for example accurate buildings, population counts, hazards), reasoning 

(preventing end data from influencing simulation decisions), and output (the ability to do 

a Level Two analysis, not to mention reporting variability) are all key aspects when 

modeling real-world events. Although most model builders, including myself are often 

forced to include various caveats, we should at least set up explicit modeling frameworks 

so that one day these imperfections can be eliminated.  
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5.4 Level Three Analysis 

 While a Level Two analysis is usually sufficient to learn things about a 

building, but when trying to simulate behavior, we should go farther. The Level Two 

analysis above discusses a number of problems that arise from incorrect model inputs, 

incorrect output tasks, and overfitting of models. The Level Three analysis attempts to 

push evacuation modeling forward by following the individual fates of every avatar in the 

model, allowing for detailed studies that make it possible to identify and help solve the 

problems mentioned previously. The ability to do this is not new, for other modeling 

platforms have been able to log this information for years, but the reasoning for doing 

this level of analysis in one of the main contributions of this dissertation. An individual 

level analysis, tracking the outcome for every unique avatar, makes it possible to explore 

agent relationships, agent decision making, and model accuracy on a whole new level. In 

many ways, this is a textbook academic exercise that gives researchers the ability to 

explore problems in new ways, such as evaluating the validity of models in a manner not 

previously attempted. 

 

5.4.1 Purpose of Level Three Data 

The Level Three data makes it possible to use the results of the model to 

explore every possible element of the SocEvac model. By determining individual exit 

paths, group affiliations, evacuation choices, and other specific model parameters, it is 

possible to ask new sets of questions about evacuation models.  

Level Three data tracks the model exits for every agent as individuals, 

meaning that the number of people that used an exit choice is not longer the end of model 

output. Using SocEvac and a good data set like that of the Station makes it possible to 
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compare individual outcomes. For SocEvac, this individual tracking is important because 

it allows for analysis of which agents join or leave groups, which agents make 

individually suboptimal exit choices, and how many avatars in a model experience the 

same fates as their real life countparts. This level of detail makes location-based 

questions, outcome-based questions, and spatial regressions possible.  

In SocEvac, where the main intention is to create a model that accounts for 

social behavior, Level Three data makes it possible to check not only whether social 

behavior functions are working, it also allows researchers to see how they are working. 

5.4.2 Detailed Results 

The Level Three results of SocEvac output is 464,535 lines of data, opposed 

to the 999 lines of data for Level One and Two results. Additionally, each line has 15 

columns of data, opposed to one for Level One and seven for Level Two. This creates a 

data set that can be difficult to manage for higher numbers of model runs and more 

complex models than the Station. 

The Level Three output returns the following variables: “Agent ID”, “Group 

Number”, “Energy Level”, “X Location”, “Y Location”, “X Goal”, “Y Goal”, 

“Following Behavior”, “Cause of Death” (if applicable), “Exit Used” (if applicable), 

“Orientation”, “Leader ID”, “Leadership status”, “Group status”, and “Supra Force”.  

5.4.3 Comparison of Model to Actual Station Event 

At the aggregate level, the results for Level Three are identical to the first 

two levels. However, the individual data makes it possible to compare the results of 

SocEvac to the actual Station event at a whole new level of detail. Instead of examining 
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how many avatars use each exit, we can now compare the 452 (known) exit results to the 

exit results in each model run. This gives us the total number of individual outcomes that 

the model gets “right”. At this level of analysis, in order to be correct, the model must 

correctly account for a death if the real life counterpart perished, and if the real life 

counterpart survived the model must output the correct exit among six choices.  

The histogram below in figure 5.9 shows the number of “correct” outcomes 

for each of the 999 runs of SocEvac. The model returns an average of 129 correct 

individual outcomes out of a possible 452 (28.5%). This means that on an average run, 

SocEvac returns accurate individual results for less than a third of the avatars. The IQR 

for the 999 runs is between 124 and 135, with a minimum of 103 and a maximum of 152 

(both statistical outliers). Unlike the Level One and Level Two results, based on the 999 

run sample, there is no possibility of this model returning even a result with all 452 

outcomes correct. 
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Figure 5.9: Distribution of Correct Outcomes for SocEvac 

While it is unsurprising that all 452 known individual outcomes are not 

modeled accurately, there is still a great deal that can be learned from this data. Using 

Level Three data, we can figure out if there are meaningful differences in fates and 

demographics. Out of the 465 indivduals modeled, there were 75 that SocEvac never 

simulated correctly, consisting of 13 outcomes that were not verified, and 62 that were 

known but never correct. There were 6 outcomes that were correct in all 999 runs. This 

leaves 384 avatars that returned the correct result in SocEvac at least once but not every 

time. These are important numbers to track as high degrees of universal individual 

outcomes would indicate overfitting of a model. It is not surprising that there were more 

individual outcomes that were universally incorrect than those that were correct, since 

there are six wrong choices for 452 avatars and only one correct one.  
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There is a special interest in the 384 avatars that did not have a universal 

outcome in SocEvac (meaning they had at least two different outcomes in 999 runs). 

Essentially, avatars that have the same outcome 999 times are little different from their 

counterparts in closest-exit models with no variability. The most frequent non-universal 

outcomes were low levels of correctness, where the outcome was correct at least once, 

but less than about a dozen times. This indicates that the real-world results were certainly 

possible although unlikely according to SocEvac. On average, each avatar in SocEvac has 

the correct fate 278 out of 999 times, but the median is only 125, significantly lower than 

the mean because of the high number of zero and low correctness avatars. 

Out of the 465 avatars in the scenario, there is a 100 avatar subset that should 

have perished in each model run based on the real event. Looking only at the 100 avatar 

subset representing those that perished in the actual event, over 999 runs of SocEvac this 

subset has a 41.6% correct fatality rate. While this percentage is far below 100%, it is 

well above (and significantly different from) the statistical likelihood of perishing in the 

fire (21.5%). Interestingly, it is disappointing that SocEvac returns such a low percentage 

given the fact that the program returns overall fatalities in the model were greater than in 

the actual event.  

Of the 365 avatars that survived in the actual event, SocEvac has a 24.9% 

chance of correctly outputting the exit they actually used, and a 79.3% chance of 

correctly predicting survival. For the six possibility exit outcomes, SocEvac does a good 

job of predicting actual exit, but it is easy to see that the model has a long way to go 

before high levels of individual accuracy are achieved. Correct survival percentage is a 

different story. It is an accomplishment to return a platform that correctly replicates 

survival for almost four fifths of agents representing those who survived in the actual 
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scenario. The fact that this is done without any exit assignment is a particular point of 

pride. 

Merging these two subsets together, the model returns a 41.6% fatality rate 

for the avatars representing those that perished in the actual event, and a 20.7% fatality 

rate for the avatars representing those and survived in the actual event. This is a 

statistically significant difference that shows promise for this social evacuation model. 

The odds ratio for death in the model between avatars of those that perished and avatars 

of those that survived is 2.73.  

When examining exact outcomes (correct exit or correct death), SocEvac 

returns a mean of 132 correct outcomes (max 452) over 999 model runs. However, when 

determining correct survival (correct death or survival), SocEvac vaults to an average of 

331 correct fates (max 465) over the same 999 runs. This means that 71.2% of avatars 

have the same survival outcome as their real-life counterparts. 

5.4.4 Comparison of Social Behavior Model to Closest Exit Calculation 

As with the previous levels of analysis, there is a natural desire to compare 

the results from SocEvac to the results of a closest exit calculation for the example 

scenario. In the closest exit calculation of the Station scenario, 50 of those that perished 

would have perished in the model, and 67 survivors used the closest exit. In a run with no 

fatalities, 88 of the avatars had the closest exit equal their actual exit. As such, the closest 

exit model returns either 88 (only survivors) or 117 (survivors and deaths) out of 452 

correct individual outcomes at a Level Three individual measurement. 
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When looking at the survival measurement, the closest exit model had better 

results, correctly predicting 31 of the deaths, and 341 survivors, for a total of 372 correct 

fates (80%). 

Comparing these results to SocEvac we have an interesting disagreement. 

When comparing specific individual outcomes, SocEvac is the more accurate platform, 

but when comparing survival, the closest exit model is the slightly better predictor of the 

Station scenario. While SocEvac returns better detailed individual results, and better 

macro exit numbers (as discussed in the Level Two analysis), the closest exit platform is 

still a better fit when only looking at macro level survival percentage. 

Much of this improvement in the survival numbers is due to the lower death 

count from the closest exit results. However, it does validate the closest-exit method for 

quick event reenactment on the macro scale, at least in the event of the Station. This 

again shows the importance of measurement. In a sense, the Level Three measurement of 

death or survival shows the closest exit calculation at its best, while the Level Three 

individual outcome result is highly lacking. This supports the idea that the reasoning for 

the closest exit calculations is inadequate, even if the results are sometimes good enough.  

In essence, this data shows that being close to an exit makes you more likely 

to survive, but not necessarily likely to take the closest exit. Again, this means that the 

closest exit model might get the right results for the wrong reasons; the case against using 

these calculations is also strengthened by this detailed analysis of the results.  
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5.4.5 Guideline for Future Comparison to Other Models of the Station 

Event 

While the comparison between SocEvac and the closest exit model suggests 

that the “best” model is not easy to conclude, it is unfortunate that at this point it is not 

possible to compare Level Three results for other models. At this time, replicating actual 

scenarios at a the individual level of detail is not a priority for many model builders, even 

though it can go a long way to helping explain how a model is working. For instance, if 

the closest exit model is returning better high level results but inferior detailed results, 

this should be the basis for a discussion about how to improve closest exit modeling, and 

should not serve as validation that closest exit models are superior. Ideally, other model 

builders will make Level Three data available in the future so that model users can 

determine how models are functioning in addition to the results that they output. 

The Level Two analysis in the previous subsection provides a justification for 

examining output data in more detail is appropriate, especially when modeling actual 

scenarios where detailed results are known. 

5.4.6 Level Three Conclusion 

This Level Three data suggests that the SocEvac platform has the ability to 

return highly accurate results in the Station scenario, and these results may inspire model 

builders to consider adding social behavior elements and detailed inputs into future 

evacuation models, not to mention making it possible to track individual level results.  

When looking at individual level data and specific individual outcomes, the 

social behavior model shines, returning results that show the promise in the platform, but 

in a comparison to closest-exit models, the aggregate death and survival ratios show that 
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there is a role for closest-exit modeling in simulation, even if it is only to be used as a 

baseline.  

These results are fascinating in that how you measure determines what is the 

best model. As model builders, we need to decide if we are more interested in aggregate 

or specific outcomes. Although the closest exit platform offers an improved aggregate 

survival and death number when examining individual death and survival, it does so in a 

manner that returns inferior results at all three levels of measurement. 

Ideally, the “best” modeling platform would return results are superior across 

the board, with closely fitting results for all three levels in addition to a good fit for model 

versus actual outcomes. While SocEvac is not yet accurate enough to outperform 

competitors at every level of analysis, these results show that social evacuation modeling 

should at least become part of evacuation modeling discussions, since it can be shown to 

outperform other modeling platforms including the closest exit model when examining 

individual fates (and isolated exits). 

5.5 Beyond Level Three – Detailed Intra-Model Data 

While the Level Three analysis is already farther than most researchers will 

be willing to go when testing models, SocEvac outputs levels of data that allow for 

analysis far beyond the Level Three results. It is possible for SocEvac to track all of the 

Level Three data for every avatar up to 20 times a second. This would result in 2,418,000 

rows of data for one simulation (more than the 464,535 rows from the entire 999 run 

Level Three analysis). At this level of detail over 999 runs, SocEvac could return a 

2,415,582,000 row dataset with over 20 variables in each row, creating an output file that 

would be almost unmanageable with consumer systems. Because gathering data about 
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slow moving pedestrians is not required 20 times a second. To make analysis easier, data 

was collected once every 15 seconds hoping to create more manageable files. The result 

was a large 8,361,630 row data file that allows for the examination of things like group 

identification, group adoption, group abandonment, leadership changes, and supra force. 

Because the end times of the simulations can actually be very different, this analysis will 

look at the first 11 measurements, taken at 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, and 

150 seconds in simulation time. After this point, the numbers become distorted because 

some simulations are finished. In order to create data file that can be used on common 

analysis platforms a randomly selected 100 run model sample was used for this analysis. 

5.5.1 Group Interaction and Leadership 

While group membership is one of the most important differences between 

SocEvac and other modeling platforms of the Station, examining the results from the end 

of the model only do not allow for a clear picture of the role that groups play in the 

evacuation. In order to figure out when groups are forming, we need to be able to see 

results over time. The best way to do this is to visually watch the model, because it is 

more intuitive to watch groups actually come together, but it is also possible to use the 

SocEvac output files to see what is going on in the model. 

Looking at the results in 15-second intervals over the model run, there are 

179 leaders at the inception of SocEvac, including agents that are acting individually. 

This number is a constant because at inception no avatar has left the building 

environment in the model. As leader agents exit, a new leader would be selected from the 

remaining group members, or if agents were acting alone as leaders, there would be no 

leader taking over. Because leading agents acting individually took some of the shortest 

paths to exits because they experience no “inefficient” pathfinding group behavior, agents 
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acting as individuals are more likely that group members to exit the scenario quickly and 

to survive.  

Before analyzing these results, a review of the social groups in the Station 

scenario is warranted. In the DRC analysis of the Station, there were a total of 48 

individuals that were in the building without social bonds, and 417 agents that were in 

social groups with two or more members. There were 68 groups of two, 25 groups of 

three, 19 groups of four, nine groups of five, nine groups with six to eleven members, and 

the largest social group, the employees, with 17 members. Because of the way the 

SocEvac functions work, after accounting for other factors, the larger a group is, the less 

likely it is to disband. This is because small groups are more likely to have one or more 

agents exit or perish in the model, and agents of small groups are more likely to be farther 

away from their closest group member, assuming even distributions of agents.  

After accounting for the leaders, there are 286 potential following agents that 

can select to follow their group leader or evacuate as an individual agent. Of these 286 

potential followers, 175 agents are in 2-4 avatar groups, while the remaining 111 are in 

larger groups. It is important to remember that a group is abandoned when there is only 

one member left, but that individual abandonment of larger groups does not dissolve the 

group itself unless all agents switch to exiting individually.  

 At the inception of the model, an average of 144 agents are following 

another leader. This means that 50.3% of agents that have the potential to follow another 

are choosing to do so at the start of an average model run. While this seems to be a low 

following percentage, it makes sense when reconsidering the programming of SocEvac. 

To begin, there are many avatars that have one or more of the conditions that make it 

likely to abandon a group: close proximity to an exit, no close proximity to other group 
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members, and loose social bonds. Based on the high distribution of avatars that are far 

away from their group members and close to an exit (such as a male dating partner in the 

bar area and a female dating partner on the opposite end of the building by the stage), it is 

reasonable to assume that individual exit proximity would overrule the desire to evacuate 

with a group member in all but the tightest social bonds.  

By 15 seconds into the simulations, an average of 85 agents are following a 

group leader. This means that about 59 avatars abandon their group, have a group size of 

one, or exit the simulation in the first 15 seconds. At 30 seconds, the average number of 

followers is 54. At 45 seconds, the average number of followers is 42. By one minute into 

the simulation, the average number of followers is reduced to 33. In the next four 15-

second intervals, the average number of followers are 23, 16, 11, and 6. By 135 and 150 

seconds, the average number of followers are 2 and 0. This makes sense within the 

quickly lethal Station scenario. 

Based on these results, SocEvac is functioning exactly as intended as far as 

tracking social bonds in an extreme hazard environment. While a number of agents are 

willing to abandon their groups at the onset, many agents choose to remain in their social 

groups even after the building environment has deteriorated significantly and survival is 

called into question. These numbers coincide fairly with the distribution of group types in 

the Station. Obviously, the more agents that exit a building or perish, the smaller the 

number of active groups will be. By 150 seconds, active agents would have significant 

damage from smoke, and it makes sense that any active agents would abandon their 

group at that point in order to attempt an individually optimal exit.  
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5.5.2 Fatalities Over Time 

In the Station scenario, there are two causes of death, fire and smoke 

inhalation. As discussed previously, fire and smoke damage occur differently in the 

program. If an agent is surrounded by fire, death in the simulation is almost immediate. 

Smoke damage occurs over a longer period of time, and depends on several factors, 

including the demographics of the agent and the location of agent (there were specific 

areas in the Station, mostly near doors and windows, where studies showed that survival 

was possible for longer periods of time) (Gill et al. 2010). Analyzing average model 

fatalities over time shows the dual hazard function in the Station scenario is working as 

designed. 

 

Figure 5.10: Model Fatalities over Time 
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Figure 5.10 shows the average fatalities every 15 seconds from model 

initialization to 150 seconds of simulation time. Within the first 45 seconds, a mean of 49 

avatars succumb primarily due to the fire. This death total remains relatively constant 

until around 120 seconds when avatars begin to perish from smoke damage in large 

numbers.  

Many of the other models of the Station assume relatively linear exit and 

death numbers over time, but SocEvac in its current form has a significant difference 

between the mean time of fire deaths and the mean time of smoke deaths. SocEvac 

damage was designed based on the findings of the Rhode Island medical examiner after 

an analysis of the Station tragedy. This included the separate fire and smoke damage 

profiles (with smoke damage being a composite of multiple different gasses), and the 

concept that all areas in the building are not equal. Although the smoke is potentially fatal 

long before 120 seconds in certain areas of the Station, most of the avatars have either 

left these areas or succumbed to fire damage within the first 45 seconds. At 60 seconds 

and beyond, most of the remaining avatars are largely concentrated in the atrium area 

leading to the main exit of the bar area. These areas are in close proximity to exits and 

windows, making these areas more insulated from smoke than the remainder the 

nightclub. 

The average number of fatalities at 150 seconds is much lower than the 

average number of fatalities at the end of the 999 measured simulations. This is because 

results were cut off for the 100 model sample after some simulations stopped reporting, 

which would bias the time-series analysis. There appears to be a correlation between 

simulation time and number of agent fatalities. 
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The next step was to determine if there were differences in the incidence of 

death by demographics. In a situation like the Station where seconds matter between life 

and death, there are significant differences in time spent in the environment based on 

demographics based on a number of factors specific to the Station, such as the distributed 

location of group members, and the different balances of genders in the stage and bar 

areas. Death incidence was measured over time by familiarity with the environment, 

gender, group size, and group type. 

 

Figure 5.11: Death Rate by Familiarity 
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Figure 5.12: Death Rate by Gender 

 The next subpopulations measured were the male and female gender. 
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Figure 5.13: Death Rate by Group Size 

 

Figure 5.14: Death Rate by Group Type 
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The two figures above show fatality percentages for each subpopulation 

isolated by group size and group type. While these both confirm that individuals 

generally have lower fatality percentages than group members, this phenomenon is only 

true towards the end of simulation runs. While both of these factors generally make 

fatality in the model more likely, they are far from absolute. This is likely because of 

small sample sizes for subpopulations in the scenario, and because positioning in the 

Station does play a very important role in potential fatality percentage.  

While avatars certainly do not always take the closest exit, being near an exit 

is a trait that helps reduce potential fatality. In the future, it would be desirable to model 

this scenario and other scenarios with spatial regression to determine the relative 

importance of positioning versus demographics and group associations.  

5.5.3 Supra Crowd Force 

One of the major contributions of the models developed at the DRC to model 

to model the Station nightclub scenario is the inclusion of “supra force”, or the concept of 

environmental forces that override an agents’ ability to move as they desire. In an 

environment like the Station, where crowd density was a major impediment to 

evacuation, it makes sense that many agents would become surrounded by a barrier of 

other agents, especially when agents are no longer all taking individually optimal paths 

because they are attempting to evacuate with other group members. 
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Figure 5.15: Agents Experiencing Supra Force Over Time 
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The next logical analysis was to determine supra force incidence by 

demographic. Based on the way the program was coded, it would be expected that certain 

demographics more likely to cause contraflows would be more likely to experience supra 

force. In order to test this, the DRC measured supra force incidence by familiarity with 

the environment, gender, group size, and group type. 

 

Figure 5.16: Supra Force Rate by Familiarity 

 

Figure 5.17: Supra Force Rate by Gender 
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Figures 5.16 and 5.17 highlight supra force experience for the familiarity and 

gender subpopulations. Surprisingly, familiarity with the environment did not 

significantly reduce the likelihood of experiencing supra force. Looking at gender, 

females experience higher levels of supra force in the Station scenario. This appears to 

occur because a higher percentage of females are followers in intimate groups, and these 

avatars get stuck in large throngs of evacuees trying to find their group leaders. 

 

Figure 5.18: Supra Force Rate by Group Size 
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Figure 5.19: Supra Force Rate by Group Type 
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5.6 Alternative SocEvac Output 

The SocEvac experiment in this dissertation focused on reasoning, not 

results, but testing done to the model to ensure correct reasoning frequently resulted in 

changes to the model that provided more accurate (and in some cases highly overfit) 

results. While these results were not included in the comparison to other models, it is 

worth noting that the platform can sometimes obtain better results by loosening the rules 

about reasoning (or more nefariously, targeting a survival percentage). 

In addition to the normal or “medium” damage profile based off the best data 

about the Station, the DRC ran 1,000 run simulations the Station scenario with both a 

higher level of damage and a lower level.  

Looking at these results from a Level One vantage, the fatality levels 

decreased for the both the lower damage and higher damage models. While that was 

initially surprising, looking at the results in more detail revealed some interesting 

correlations. The lower damage model gave avatars more time to evacuate without 

perishing due to smoke damage, but the higher damage model reduced density more 

quickly, allowing more efficient evacuation (dead avatars do not block egress of others 

that same way active avatars do). Both alternate versions of the model produced more 

accurate fatality levels, averaging 94 and 110 deaths respectively. Deaths from the light 

damage profile ranged from 40 to 245 and deaths from the high damage model ranged 

from 51 to 278. The Level Two results were varied, but the Level Three results were 

almost identical in averages of correct fates to the damage profile chosen for the main 

analysis.  

For further analysis in this field when more processing time is available, it is 

my hope to use this same scenario to analyze the effect of small changes in all variables 
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in a standardized way. Non-standardized results tracking during model development were 

not included because there is no way to verify if output differences are the result of 

variable changes or other coding changes as the model developed over time. Based on the 

analysis of these three 1,000 run batches, this exercise would be a valuable addition to a 

mature modeling platform. 

5.7 Meaning of Model Results 

While adding the elements that make SocEvac unique among evacuation 

models led to clear differences in results, these results were not always “better”. SocEvac 

returns plausible results upon examination of analysis at three levels discussed in this 

dissertation, in addition to providing output data that withstands scrutiny when looking at 

evacuations over time. 

While it was a valid criticism to assume that these improvements in results 

may not have been worth the effort, now that this platform, and a few competing models, 

are available, the argument will hopefully shift from rather it is worth it to program these 

attributes to whether they should be included in more micro-level simulations. 

5.7.1 Which Level of Results are the Most Accurate? 

Based on the initial Level One analysis, SocEvac does not look like any kind 

of revolution in building evacuation modeling. After lots of extra effort, SocEvac returns 

results for the Station scenario that are no less bad than competing platforms. This is not 

a surprise since it is easy to tune models to get overall death count very accurate, and 

modifying a program to fit results was never the intention of SocEvac. Looking at results 

at this level of detail suggest that social behavior does not make anything worse, but it 

does not necessarily provide any improvements to a model of the Station fire. 
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Level Two results are where SocEvac begins to show significant differences 

from peer models of the Station scenario. These results are a combination of both extra 

effort put into accurate modeling of inputs and the benefit afforded by the social behavior 

model. While all models have a difficult time correctly mapping Level Two results, it is 

fair to make the case that SocEvac is one of the best choices based on the comparison to 

model results to the actual identified use of exits. The Level Two results prove the worth 

of social behavior modeling, and suggest that the topic merits continued exploration. 

Level Three results also indicate that social behavior modeling might be 

worth the effort. A clear majority of Station occupants did not use what the DRC 

identified as their closest exit. While SocEvac also falls far short of perfect mapping of 

model to reality, there are improvements afforded by the model when predicting specific 

fates, although these benefits are not as pronounced when only measuring survival. While 

the Level Three results make another strong case for the inclusion of social behavior, the 

reality is that this level of detail will be unavailable in most circumstances. 

Regardless of the level of analysis used, SocEvac returns results that make 

sense, and the platform has value being added to a larger set of building evacuation 

models. 

5.8 Results Conclusion 

Level Three results should be the baseline for modeling when Level Three 

data is available. However, Level Three data is only available in situations where 

significant resources are devoted to analyzing behavior after an emergency. In most 

cases, Level Three data will never be collected, and it is probably overkill to consider this 

level of detail in most models, including all predictive models. This is even truer for the 
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data that is more detailed, such as the time series data for individual behavior. While this 

highly detailed data allows for deep exploration of what is happening in a model, it may 

be more important for model development than analysis of model results. As mentioned 

in previous sections, it is possible to generate so much data from these output files that it 

becomes difficult to analyze without commercial-level computing systems, resources that 

are not available to many potential model users. 

In most cases, Level Two analysis is the best combination of potential 

accuracy and practically. Using the results from this dissertation as an example, the Level 

Two data allow a user to see a clear difference between a social behavior model and a 

closest exit model without requiring details to be known about all model participants. By 

analyzing exit choices, it is still possible to learn a great deal about how models function 

without requiring the expensive and time-consuming data gathering to track individual 

fates. The Level Two analysis in this dissertation shows the differences (and similarities) 

between various modeling platforms, suggesting that benchmarking may cause 

competing modeling platforms to return very similar results.  

 Based on the Level Two results, model builders should consider SocEvac and 

the concepts it attempts to address in future micro-level modeling efforts. Adding social 

behavior is more an issue of convincing model builders and users of value than it is of 

capability, and the results highlighted in this chapter make a strong case for addition of 

social behavior concepts to models. 
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Chapter 6 

FUTURE IMPLICATIONS AND LIMITATIONS 

While we have a surplus of models that return reasonably accurate macro 

results, models that are completely accurate at the micro-level are likely a long way off. 

SocEvac is an attempt to help with the reasoning side of the equation, even if the results 

from the model are not always superior. In order to make models better, we will 

continually need to begin by pushing boundaries with specialized models that by 

definition are not appropriate as generalized platforms. As these specialized models are 

refined and advanced, they can be incorporated into more general platforms. Having been 

through this process with the first-generation social evacuation model and then SocEvac, 

there are benefits to seeing projects through from prototype to general-development 

phases, and I hope to continue involvement in agent-based modeling of building 

evacuations beyond my graduate career.  

There will always be new advances in computing power, coding methods, 

and data collection, but we cannot benefit from these fully until we understand what 

exactly we are trying to recreate. Ideally, building evacuation models would be used to 

save lives, and in order to see this reality, we need to create platforms return correct 

survival percentages through accurate reasoning, making it possible to test the “what if” 

questions that will continue to arise. While the solution offered in this dissertation is a 

step in the right direction, and it goes a long way to addressing the challenge presented by 

previous DRC researchers to incorporate group behavior, there is still much progress 

required before we can confidently predict accurate micro-level behavior for a multitude 

of environments (Torres 2010). In a sense, this dissertation offers its own challenge; after 

showing that it is indeed possible to use social behavior and supra force equations to 
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return a micro-level model that offers some advancements on closest-exit or fastest-

clearance models, the modeling community needs to figure out how to incorporate this 

type in evacuations designed to recreate situations with social relationships. As 

mentioned in chapter 5, this is no longer a discussion about the capability, but rather one 

about understanding that these relationships are significant enough to effect results. 

6.1 How Detailed is too Detailed? 

This dissertation only scratches the surface of what is possible with models 

accounting for both social behavior and supra force in addition to individual behavior, but 

it is important to include all three of these elements in simulations, because the rules for 

allowing social behavior in evacuation models create the conditions for supra force, and 

based on this first test scenario, all three levels of possible behavior are used by a 

significant number of agents.  

There is a discussion to be had about the detail of both model input and 

output. Beginning with model inputs, while these results are promising, there is much 

more that could be done to ever more accurately model building evacuations. The most 

important decision is to decide where to stop in the name of speed, efficiency, and 

diminished returns. Based on the experience doing the work that led to this dissertation, 

including social behavior and supra force in some form are complications that are 

absolutely worth adding to micro-level simulation models. It was not possible to recreate 

the results of the Station scenario without using social behavior elements. While this 

single case is not a justification to fundamentally change evacuation models, there is a 

substantial body of literature that supports the idea of social evacuation. 
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While there is some arcane data analysis in chapter 5, the results included in 

this dissertation only scratch the surface of the types of analysis possible with Level 3 

data and detailed data about model runs over time. My ability to analyze these results 

even became limited by current storage and computer processing power. For more 

complex simulations, such as skyscrapers or stadiums, we will need to make significant 

advances in processing power both to run simulations in a timely manner, and to evaluate 

results. While we can obviously do more to analyze model results, it is possible to 

examine models in too much detail, glossing over larger and likely more important 

trends. 

Level 1 results should no longer be used to determine the validity of building 

evacuation models. While the aggregate fatality levels of models should be reported, this 

single number should not serve as a standard of whether a model works well or not. A 

more reasonable approach is to examine both Level 2 and Level 3 results, and a 

combination of these two types of output should serve as the standard for which models 

are judged. Further out, after more detailed model analysis becomes mainstream, the 

results of intra-model runs should be included to determine that model reasoning is 

correct. While this process is many years away in the mainstream of model development, 

it should be the goal that model builders work towards, because model validity is really 

not possible if researchers are unable to determine what is happening during a model in 

addition to the end results.  

While SocEvac is one of the first efforts to include social behavior in 

evacuation, there are other platforms that have surfaced that also address the concept. 

Thankfully, the landscape of model builders interested in adding social behavior to 

models looks much different in 2013 than it did in 2009. Interest in social behavior 
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modeling continues to grow as improved results come in from current models and 

customers demand more accurate simulations. 

6.2 Limitations 

While incorporating social behavior is a major step forward in these models, there 

are a number of things that current social behavior models do not and will not address. 

While SocEvac and some peer models now account for much more group behavior than 

previous efforts, there are still countless scenarios that these current platforms cannot 

hope to address. Obvious limitations are the lack of emergent behaviors and groups, and 

the inability to create positive models that account for any foreseeable hazard. Usually, 

we first have to experience a specific building hazard before we are able to model for it, 

so while models may get better at assisting emergency managers with keeping gatherings 

safe, they fall far short of predicting which hazards will occur and how they will 

influence populations. 

Specific to SocEvac, I hope to continue refining the code beyond my dissertation 

to include emergent groups, and to include much more flexibility for crowd interactions 

in addition to building ever more complex avatars. I hope to specifically add abilities for 

agents to communicate with each other and share advanced information, an ability that is 

now available in some building evacuation modeling platforms. This will allow for 

another level of realism in simulations, and the industry can move towards models that 

allow for both advanced information sharing and social group behavior.  

While SocEvac offers some valuable insight into potential improvements for a 

widely modeled scenario such as the Station, there are number of modeling specifics that 
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will be preliminary until more data sets as detailed as that of the Station become 

available. For instance, leadership equations, group abandonment percentages, group 

behavior, and the advantage of prior knowledge of an environment are all coded in 

SocEvac based primarily on the single occurrence of the Station evacuation. This is easily 

the biggest limitation of the model, although it was still worth it to include them in a 

model and test their importance.  

6.3 The Future of Social Behavior Evacuation Modeling 

While there is a great degree of diversity of focus among these model builders, it 

is promising to see a convergence towards the inclusion of more advanced individual and 

social behavior of simulated evacuees. As mentioned previously, when we began this 

project in 2009, there was not very much attention given to adding group interaction into 

models. Today, even though the obstacles to adoption in many models are still 

significant, there is widespread interest in including these features, and there are a 

number of models that now include some form of interaction. The effort described in this 

dissertation is one of these platforms. 

To facilitate this effort, I have worked with other model builders over the course 

of this dissertation, sharing some of the code from SocEvac, in order to encourage the 

inclusion of social behavior models. This will lead to improved models and to more 

situations to test the validity of the conclusions from my work with SocEvac and the 

Station. Hopefully, in another four years the SocEvac engine will be one of several 

pseudo standards for adding social group behavior to evacuation models.  
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6.3.1 Future Data Gathering and Validity Testing 

  

 One of the largest barriers to making a model with the detail of SocEvac better is 

access to data. While the DRC attempts to gather as much data as possible about disasters 

including building evacuations, for a number of reasons the Station fire was by far the 

most complete evacuation dataset available. In order to get better output, we need more 

quality inputs.  

 In 2011, Apple Corporation created a mobile phone upgrade for their iOS 

platform that accidentally backed up private mobile device data on computers synced to 

users' iPhones (Apple 2011).  These files contained troves of data about device users, and 

provided a window in future input data possibilities for programs like SocEvac. This 

mistake by Apple and AT&T allowed the civilian research community to see exactly 

what kind of data are kept by mobile carriers, and it suggests new possibilities for 

studying disaster preparation, response, and recovery.  Real-time data is promising on its 

own, giving disaster responders and researchers quick potential snapshots of 

communities, but the real power is in the data sets that measure multiple points over time.  

Using these data for a community of users, researchers would be able to see what 

percentage of a population was currently in locations in and out of the ordinary.  This 

would allow for analysis of population displacement, traffic patterns, evacuees, and 

people in danger. From an academic standpoint, these data also have the potential to 

change the nature of the disaster survey, allowing for targeted surveying and response 

verification in addition to data for modeling.     
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 Following instructions published online (Warden 2011), I accessed my personal 

iPhone location tracking files, and after a few hours of searching other files backed up 

from the phone, had a wealth of data about my whereabouts.  There were about 46,000 

data points from a ten-month period.  About 9,500 observations were from cellular radio 

locations, and about 35,500 were from Wifi locations. These data are in addition to stored 

GPS location points.  

 These values are stored in a way that makes seconds distinguishable, but 

unfortunately they are truncated to fewer time points per day.  WifiLocation data is stored 

in decimal degrees to two decimal places, which distinguishes points to about 1.11km or 

less at common United States latitudes.  CellLocation data is stored in decimal degrees to 

eight decimal places, which distinguishes points to 1.11mm or less.  Looking at these 

data and at current technology, it is not possible to obtain accuracy levels beyond about 

four to five decimal degrees.  The data are not possibly accurate to the millimeter, but the 

storage space is allocated in the files indicating hopes for technological improvements in 

the near future. 

When data are examined by time and by location they become much more 

powerful and predictive.  Looking at time and location together it was relatively easy to 

determine which times and locations had clear and consistent patterns.  In the early 

morning hours the phone was almost constantly in a residence, during weekdays and 

work hours the phone was usually in an office. Overall it became possible to confidently 

predict where the phone would be based on day and time about two thirds of the time.  

Weekday evenings and weekends were difficult to predict based on a preliminary 
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analysis, but nighttime hours and the work-week frequently returned the same locations.  

At this time it is possible to determine if my phone is “off pattern” more than half of the 

time based on past data.  By using data from a large number of users with different 

predictive times, it would be possible to determine whether an area or time had a larger 

than expected number of users off pattern possibly indicating some type of anomaly.  

This could be done without contacting the users, without looking at their location, and 

without singling out any one user.   

 At this time, these data points collected by Apple and AT&T on the device itself 

are not detailed enough to track a user by the minute, but the collection methods are 

clearly set up in ways to suggest this ability is desired in the future, and AT&T suggests 

they can do it (AT&T 2012).  While these data are invasive to track for one user, they can 

be useful in the aggregate without similar privacy violations.  In the field of disaster 

science, data like these from a multitude of users could be studied to determine things 

like who responds to evacuation warnings, where people congregate in disasters or 

potential disasters, and many other purposes including using these data after disasters as 

inputs for far more detailed social models.   
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Figure 6.1: Aggregate Location Data for Eric Best's Mobile Phone 

 

Figure 6.1 shows location data along the I-95 corridor for my phone under the 

sample observation period.  The map shows Pennsylvania, Maryland, Delaware, and New 

Jersey with the Philadelphia airport in the upper left and Annapolis, Maryland in the 

lower right.  X and Y points are location, and Z values (height) are the frequency of 

tracking for each location over a year.  

With data from multiple users, relationships would be easy to define, and privacy 

could be invaded to an even greater extent while making identity confirmations faster and 

more robust as evidenced by past research (Calabrese et al. 2011b; Zhang et al. 2011).  

Merged data sets are becoming so complete that it is even possible to examine subject 

emotion by categorizing message content in addition to behavior or location (Thelwall et 

al. 2010). As more devices come online and more websites track user data, these data sets 

will only get more comprehensive and the results more accurate and powerful.  
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This level of detail, when made available for large groups of people, will allow 

researchers to validate models in ways that have previously been unimaginable. 

Connected device data will be the future of disaster after-action reporting, and the same 

data will lay the foundation for the next generation of behavioral modeling. By 

determining who contacts each other on mobile devices coupled with saved location data, 

it will be possible to obtain accurate data inputs for models of cities or even countries 

with enough processing power. While SocEvac may a bit ahead of its time, the data will 

become available to do more frequent and larger scale studies in the near future. 

6.4 Conclusion 

This model, while still in the prototype stage, allowed testing of the hypotheses 

developed in this dissertation, and makes a strong case for the incorporation of collective 

behavior, groups, and supra force in models of building evacuation. As hypothesized, in 

general members of groups take more time to exit buildings than unaffiliated individuals. 

Also, the social behavior model leads to improved aggregate results of exit use compared 

to closest exit platforms and most other available modeling platforms of the Station.  

Social behavior modeling also does a better job of explaining the conditions that 

occurred, at least during the Station scenario, that caused so many occupants to use exits 

that were not close to their initial location. As a result of this, the SocEvac model did a 

better job of explaining individual exit paths than conventional models. Although this 

was not a profound difference, it is a step in the right direction for building evacuation 

modeling. 
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Today, the SocEvac model is ready for other scenarios, and researchers will need 

to find other data sources with as much detail as the Station evacuation. While these data 

are not available today, location data collected from networked devices will provide 

ample opportunities for event recreation. In the mean time, the SocEvac code requires 

numerous refinements, and there is much to be done to change the definition of “social 

behavior” in building evacuation modeling.  
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