ECOLOGICAL STUDIES ON BENTHIC AND PLANKTONIC ASSEMBLAGES IN LOWER DELAWARE BAY

Les Watling and Don Maurer, Editors

With contributions by Dan Bottom, Peter Kinner, Rose Lambert, Wayne Leathem, Ann Pembroke, Les Watling, and Chris Wethe

CMS-RANN-3-76

This work is the result of research sponsored by the National Science Foundation, Research Applied to National Needs, under Grant No. GI-41896 and Grant No. ENV-76-01193.

ECOLOGICAL STUDIES ON BENTHIC AND PLANKTONIC

 \checkmark

ASSEMBLAGES IN LOWER DELAWARE BAY

Les Watling and Don Maurer, Editors

With contributions by

Dan Bottom Peter Kinner Rose Lambert Wayne Leathem Ann Pembroke Les Watling Chris Wethe

CMS-RANN-3-76

A Report to the National Science Foundation Research Applied to National Needs Program

October 1976

College of Marine Studies University of Delaware Lewes, Delaware 19958 and Newark, Delaware 19711 This research project was part of a program designed to delineate the effects on Delaware Bay of crude oil transfer and upstream refineries. Managed by the University of Delaware's College of Marine Studies, the 15-month program (1 March '74 - 31 May '75) was conducted under a \$300,800 grant from the National Science Foundation's Research Applied to National Needs (RANN) Program, incorporating socio-economic assessments, engineering and oceanographic studies, as well as biological/ecological research. The research was conducted by the College of Marine Studies, the Departments of Civil Engineering, Biology and Geology, and the College of Business and Economics. Further information is available from the Program Manager, Dr. Robert Biggs, Assistant Dean, College of Marine Studies, University of Delaware, Newark, Delaware 19711, (302) 738-2842.

Already published under this program to date are: CMS-RANN-1-75: <u>Sea Surface Drift Currents</u>, by Jin Wu; CMS-RANN-2-75: <u>Sport Fishing in Western Delaware Bay</u>: <u>Assessment of Critical Areas</u>, by Ronal W. Smith; CMS-RANN-3-75: <u>Saturated Hydrocarbon Material in Sedi-</u> ments of the Delaware Estuary as Determined by Gas Chromatographic Analyses, by John F. Wehmiller and Margaret Lethen; and CMS-RANN-1-76: <u>Computer Modeling of Oil</u> <u>Drift and Spreading in Delaware Bay</u>, by Hsiang Wang, John R. Campbell, and John D. Ditmars. Additional reports are in press.

PREFACE

The impact of human activities in the Delaware Bay region has increased dramatically over the past 20 years. These activities are often incompatible and compete for available resources. They range from oil lightering, power plant siting, and sanitation disposal on one hand to fishing and recreation on the other hand.

Confronted by these large scale and complex problems, the College of Marine Studies planned a baseline study in 1970 and in 1971 certain subprojects of the study were submitted to the National Science Foundation Research Applied to National Needs (NSF/RANN) program. During the summers of 1972 and 1973 a study of the benthic invertebrate assemblages of Delaware Bay was funded by NSF/RANN. After this survey it was decided that the oil lightering area in lower Delaware Bay should receive special attention and an intensive biological survey of this area in 1974 and 1975 was conducted with Don Maurer as the principal investigator. The present report contains the results of these two studies.

2-163932

ABSTRACT

This study was undertaken to obtain baseline ecological data in Delaware Bay. During the summers of 1972 and 1973 the first bay-wide quantitative survey of benthic organisms was conducted. The survey consisted of 207 samples distributed over 26 transects from the bay mouth to Woodland Beach, Delaware. Based on the results of the bay-wide survey reported herein, it was decided to conduct an intensive study in the oil lightering area in lower Delaware Bay (1974-1975). The intensive study included quantitative monthly investigations of phytoplankton and zooplankton together with quarterly investigations of the benthos. Two 12hour plankton studies were also conducted. In addition to the quantitative benthic studies, there were extensive samples with dredge hauls. Data from dredge hauls and grabs were compared to determine whether a useful method of community analysis could be developed based on dredge data alone. It was concluded that such a method was feasible but that it required additional refinement. Some of the survey data were never reported for Delaware Bay prior to this study.

Marine

91. . 8 . R4 E 25

Page	Line	
585		Doridella for Doradella
		Xanthid sp. not underlined
586		Doridella for Doradella
500		Xanthid sp. not underlined
590		Thid sp. not underlined
595		Xanthid sp. not underlined
602	·	Doridella for Doradella
603		Xanthid sp. not underlined
605		Doridella for Doradella
610		Nemertea sp. not underlined
612		2007 = Hydractinia echinata
.		8018 = <u>Electra monostachys</u>
614		Nassarius trivittatus for <u>Nassarius</u> obsoletus
616		Nemertea sp. not underlined
618		IDIO Seclenies for Wanlesselenies
620		Nemertea sp. not underlined
622		Scoloplos for Haploscoloplos
624		Ibid
,		Nemertea sp. not underlined
62 6		8023 = Schizoporella errata
		8002 = Alcyonidium polyoum
		7037 = Ampelisca verrilli
6 0 7		8012 = <u>Membranipora</u> tenuis
627		8015 = Conopeum truitti
		1003 = M1CrOciona profilera
		8008 = Bowerbankia gracilis
		8009 = Triticella elongata
		8018 = Electra monostachys
		1004 = Halichondria bowerbanki
628		Scoloplos for Haploscoloplos

ERRATA

Page	Line	
xi	5	mid- <u>June</u> for mid-July Pyramimonas sp. A for Pyramimonas sp.
XII	20	Tyrain monas sp. <u>A</u> for <u>Tyrain monas</u> opt
XV	23	<u>722/m²</u> for 200/m ²
xvi	2	19/2 and $19/3$
6	8	March for April
12	5	$\frac{27.5 \ \mu g}{1.5 \ \mu g}$
13	1	calinity (a/a) for calinity
14	16	than for that
66	15	December for Decmeber
66	10 ·	Delete and Anril
73		Add Fager, F.W., 1972, Diversity: A Sampling Study.
, 0		Amer. Nat. 106: 239-310.
		McCarthy, J.J., W.R. Taylor, and M.E. Loftus, 1974.
		Significance of nanoplankton in the Chesapeake Bay
		estuary and problems associated with the measurement
		of nanoplankton productivity. Mar. Biol. 24: 7-16.
		Delete <u>Marshall, 1967</u>
74		<u>Pomeroy, L., H.H. Haskin and R.A. Ragotzkie, 1956</u> for
•		Pomeroy, 1956.
100	4 0	Delete Patten, et al., 1963 and Pratt, 1959
106	4 & E	Delete listed in Table II 1
100	Э	Add months to dates on Figure II.2 non Figure II.1
TNG		March 19 for March 18. station legends same as Figure 11-2
123	9	Wilson (1932) for Wilson (1922)
126	29	February 20, 1975 and April 14 for February 20, 1974
		and April 17
127	2	April 14 for April 17
127	21	Figure III-6 for Tables III-5 and III-6
127	23	April 14 for April 17
129	18-	Deevey, <u>1956;</u> for Deevey, 1948;
130	19-	
100	20	Deevey, 1956; for Deevey, 1948;
132	0 21	Jacobs, for Jacob Sago and Horman, for Horman and Sago
135	21	Conover P.J. 1956 not 1958
136	•	Add Heinle, $D = 1966$ Production of a calanoid
		copepod. Acartia tonsa in the Patuxent River Estuary
		Ches. Sci. 7: $59-74$.
137		Delete Odum, 1971
137		Add Wilson, C.B., 1932. Copepods of the Woods Hole
		Region, Massachusetts. U.S. Nat. Mus. Bull. 158: 1-635.
148		Figure III-10, Add (<u>Station 2</u>).
1	• -	Figure III-11, Add (Station 2).
166	4	through for and

Page	Line						
173	28 ⁻ 29	<u>1959</u> for 1958 Ferguson-Wood f	1959 for 1958 Ferguson-Wood for Wood and Ferguson				
177	7	would be for wo	would be for would not be				
179		Delete Conover,	Delete Conover, 1956				
180	7	Should be Cupp,	Should be Cupp, E.E.				
183	0	Delete Riley an	d Bumpus, I	946			
226	8 25	72.2 for 20 and	19/3 for $19/072.2 for 20 and 722 for 200$				
230	25 2ñ	$\frac{72.2}{14}$ for ten	$\frac{72.2}{14}$ for ten				
240	20	Scoloplos for H	Scoloplos for Haploscoloplos				
		$\overline{\text{Assemblage } G} (3)$	Assemblage G (3 stations) for Assemblage F (3 stations)				
243	17	Stephenson, et	al., 1972				
() (7	21	101d Add Stophonson	и ит и	lilliana and u	C D Cool: 3077		
247		Add Stephenson,	W., W.I. W	son's Origina	S.D. LOOK, $19/2$.		
		Communities. E	co. Mon. 42	2: 387-415.			
250		Add (Verrill, 1	892) to Mic	rura leidyi			
251		Add (Verrill, 1	873) to <u>Cir</u>	riformia sp.	cf. <u>C. grandis</u>		
		? Chaetozone sp	? Chaetozone sp. for ? Chaetozone				
0.5.0		Scoloplos for H	lap loscolop l	OS			
253		Add Pathbun 10	1000000000000000000000000000000000000	anassa sn. cf.	C atlantica		
200		Add Nathbull, 13		anassa sp. ci	. <u>c. attantica</u>		
			Column 5	Column 6	Column 7		
258	A-2	Insert	23-4	1040	4		
			for none				
	C-1	Insert	4-7	1160	7		
	C D	r r v	16-4	1490	10		
	C-3 D-4	Add	11-0	37790 for	4		
	D-4			37990			
259	last						
0.00	line	722 for 200					
260	7	Scoloplos for H	<u>Scoloplos</u> for <u>Haploscoloplos</u>				
298	6	August $19/5$ for 95 46% for 96	August $19/5$ for August $19/4$				
299	18	$\frac{332400}{400}$ 101 9010	$\frac{95.46\%}{August}$ 1974 for August 1975				
310	10	Insert Phylum F	Insert Phylum Platyhelminthes immediately before				
		Flatworm A					
311		Scoloplos for I	laploscolop	los			
313	Doridella for Dorodella						
314	314 Insert Order Thoracia immediately before Balanus						
- • •	Add Kathoun, 1926 to Califandssa Sp. Cl. C. atlantica Xapthid sp. not underlined						
·· 318		Xanthid sp. no	ot underline	ed			
319 Ibid							
J28 Ibid					0 Fabruary		
221	Last 4 entries and totals for Station 10, February				U, February ,		
		1975 and May 19	9/5 repeated	a.			

Page	Line	
340		Xanthid sp. not underlined
341		Ibid
345		Dendrogram showing relationship of May sediment samples.
		Delete from quarterly stations.
349		Read 102 103 32 33 for 102 33
362	24	Stephenson, et al., 1974
364	4	(McCloskey, <u>1970</u>) for (1971)
368	8	5, 18, 19 , 13, and 17 for 5, 18, 13, and 17
371	27	2, 9, and 4 for $2, 3, and 4$
381	29	McCloskey's $(19/0)$ for $(19/1)$
385	17	Watling, et al., 1974 for 1973
386		Add Folk, R.L., 1968. Petrology of Sedimentary Rocks.
2 07		Add Mauror D. P. Biggs W Leather P. Kinner W
201		Treasure M Otley I Watling and V Klemas, 1974.
		Effect of Spoil Disposal on Benthic Communities near
		the Mouth of Delaware Bay. Report to Delaware River
		and Bay Authority, University of Delaware, 200 pp.
388		Stephenson, W., W.T. Williams, and S.D. Cook, 1974.
		The benthic fauna of soft bottoms: Southern Moreton
		Bay. Mem. Qd. Mus. 17: 73-123.
		<u>Add</u> Watling, L., W. Leathem, P. Kinner, C. Wethe,
		and D. Maurer, 1974. Evaluation of sludge dumping
	•	off Delaware Bay. Mar. Poll. Bull. 5:39-42.
390	å	Pages out of Sequence
301		Callianassa atlantica Pathbun 1026 for Callianassa
, ,		atlantica (Smith, 1874)
419	3	$\frac{401410104}{5403}$ for 5408
437	-	Xanthidae not underlined
438		Ibid
467		(Allen, 1965) cited on page 244 of report
471		(Folk, 1968) cited on page 244 of report
540	20	Ensis for Solen
550	22	Arthropods for anthropods
552		Doridella for Dorodella
551		Scolopios for Haploscolopios
555		Ibid
556		Ibid
	•	Xanthid sp. not underlined
557		Xanthid sp. not underlined
562		Scoloplos for Haploscoloplos
		Doridella for Dorodella
563		Scoloplos for Haploscoloplos
564		Ibid
565		Ibid
566		Ibid to the second s
209 577		
5// 500		Xanthid sp. not underlined
200		Aanthia sp. not underlined

TABLE OF CONTENTS

		'age
	Preface	iii
	Abstract	iv
	Introduction	vi
• •	Acknowledgments	ix
	Summary and Conclusions	X
I.	Hydrography	
	bv Les Watling	1
ΪĪ.	Phytoplankton	
	by Dan Bottom, les Watling, Ann Pembroke	63
τττ	Zoonlankton	
	by Pase Lambert Ann Dembroke	121
TV	Haton Column Sunthacic	121
ΤΑ.	by Ann Dombroko	161
N/	Dy Ann Pendroke	101
V•.	belaware Bay Benthic Invertebrate Assemblages	000
	by Les Watling, Don Maurer, Chris Wethe	229
۷1.	Seasonal Changes of Benthic Assemblages in the	
	Lightering Area	
	by Wayne Leathem, Chris Wethe, Les Watling	293
VII.	Methodological Studies	
	by Peter Kinner, Les Watling	359
	Appendix I	443
	Appendix II	467
	Appendix Tables	475

INTRODUCTION

This research was undertaken to obtain biological baseline data at the oil lightering site in lower Delaware Bay off Big Stone Beach, Delaware. Specific objectives included: 1) monthly determination of phytoplankton populations, 2) monthly determination of zooplankton populations, 3) seasonal determination of benthic populations. A subproject of the benthic studies was concerned with developing a pollution ecology tool to assess benthic community composition based on qualitative dredge data. Other aspects of the biota were not included because they have been adequately identified (finfish), they were relatively unimportant (attached algae), and they were beyond the resources of this study (microbiology).

Research on finfish in the lower bay has been primarily conducted by State agencies and Dr. Frank Daiber of the University of Delaware and his students over a period of almost 20 years. A comprehensive account of monthly and seasonal distribution of finfish in the lower bay including the lightering site was available prior to the start of the present research.

In general, attached algae are not abundant or widely distributed in Delaware Bay. This is not the case in smaller bays in New Jersey and Delaware. Regardless, the most complete coverage of algae for the area was described by Dr. Jacques Zaneveld, Old Dominion University. Research on the taxonomy and ecology of edaphic diatoms in surrounding marshes has been conducted by several workers. Exclusive of some preliminary taxonomic work in the late twenties and unpublished lists of species, there has been little research on phytoplankton in Delaware Bay and nothing on primary production.

Data on zooplankton are slightly more abundant than data on phytoplankton. Exclusive of the upper estuary, there has only been one bay-wide zooplankton study and a detailed oyster larvae study off Cape May shore conducted by Dr. H. Haskin, Rutgers

vi

University and his students. Several other studies primarily performed in the ocean off Delaware, did extend into Delaware Bay.

Benthic organisms have been the subject of considerable local interest for many years. Rutgers University Oyster Laboratory has conducted research on shellfish and associated benthos since the turn of the century and the University of Delaware since 1950. Although there have been many ecological studies dealing with various taxa, few studies are available on faunal assemblages. Recent work by Rutgers and Delaware has changed this direction.

Report Format

The report begins with a section containing a summary and conclusion for each chapter. This section is followed by seven chapters: I) Hydrography, II) Phytoplankton, III) Zooplankton, IV) Water Column Synthesis, V) Delaware Bay Benthic Invertebrate Assemblages, VI) Seasonal Changes of Benthic Invertebrate Assemblages in the Lightering Area, VII) Methodological Benthic Invertebrate Studies. Each chapter is complete in that it includes the purpose of the particular investigation, literature review, results with figures and tables, discussion and synthesis, and references cited. Chapter V deserves additional explanation. This chapter deals with benthic invertebrate assemblages throughout Delaware Bay. The bay-wide survey provides a valuable background to compare with the intensive survey conducted at the lightering area.

In turn, the seven chapters are followed by Appendix I which contains the documentation of a computer program for cluster analysis. Cluster analysis was used extensively throughout the study. Although our use of cluster analysis is not unique, the program was included to make it easy for others to use it as an analytical tool. Finally Appendix II with tables and figures was presented. Although each chapter can be read independently of

vii

Appendix II, it contains all the data obtained in the study. We consider this important because it permits other workers to check our results and provides a permanent record of data which normally cannot be accommodated in journals. Since many of these studies were conducted for the first time here, the raw data are valuable for comparison with other areas and in years to come, regardless of our analysis and interpretation.

ACKNOWLEDGMENTS

A study of this magnitude must, of necessity, utilize the services and aid of many persons. We are especially grateful to the following for their particular contributions: Mr. Jeff Tinsman, field sampling; Capt. Tom White, ship operations; Ms. Debby Burbage and Ms. Susan Wilkens, sample processing and data synthesis; Ms. Sheryl Bottom, Ms. Peggy Brittingham, Ms. Barbara Barrentine, and Ms. Marie Bunker, chemical analysis; Ms. Margaret Huntzinger, Ms. Sandra Irving, and Ms. Marlene Justice, sediment analyses; Ms. Liz Gontarz, Mr. Henry Lind, and Mr. John Gorton, computer programming and data processing; Dr. Kent Mountford; Benedict Estuarine Laboratory, phytoplankton studies; Ms. Jan Sick, Ms. Lorraine Turner, and Ms. Lois Butler, illustrations; Ms. April Morris, manuscript typing and retyping. We would also like to extend our appreciation to the many persons who spent long hours picking organisms from the sediment in our samples.

This report has benefited from the constructive criticism of the following individuals, each of whom read one or more chapters: Dr. Kent Mountford, Benedict Estuarine Laboratory of the Philadelphia Academy of Natural Sciences; Dr. David Flemer, U.S. Fish and Wildlife Service, Washington, D.C.; Dr. Shirley Van Valkenburg, University of Maryland; Dr. Jack Pearce, National Marine Fisheries Service, Sandy Hook Laboratory; Dr. Donald Boesch, Virginia Institute of Marine Science. The authors and editors of this report, however, take full responsibility for its contents.

We also extend our appreciation to Dr. Richard Kolf, the initial NSF/RANN Program Monitor, for his aid in setting up this project, and to Dr. Robert Biggs who supported our efforts and facilitated our work at every level.

iх

SUMMARY AND CONCLUSIONS

Chapter I: Hydrography

1. Seasonal changes in physical data were typical for an estuary from this region.

2. Surface temperature ranged from 3.5° C in February to 26.0°C in early August. Bottom temperatures were slightly lower (-1.0 to 2.0°C) than surface except for December and July.

3. Based on bottom water samples Delaware Bay can be divided into three salinity zones: a) upper polyhaline zone (25-30 o/oo), located in the deeper portions of the lower central bay, b) lower polyhaline zone (18-25 o/oo), extending up the lower part of the bay to a line connecting Egg Island Point to Leipsic River, c) mesohaline zone (5-18 o/oo), extending along the shallow areas in the Maurice River Cove and in the upper reaches of the bay. Salinity values at the lightering area were always in the polyhaline zone (18-30 o/oo).

4. Dissolved oxygen values were lower in the summer (3.9 ml/l) than in the winter (8.4 ml/l) and the water was only fully saturated from late winter to early spring.

5. Silicate concentrations ranged from near zero after the spring diatom bloom to a September peak of $32 \mu g$ -at/l. At the deepest station, surface waters contained higher silicate concentrations than the bottom waters, whereas silicate concentrations in surface and bottom waters of shallow stations were generally the same.

6. Ortho-phosphate concentration generally followed the same pattern as silicate as it ranged from near zero to 1.6 μg -at/l in September.

7. Ammonia concentration ranged from near zero to highs of 9.8 μ g-at/l in July, 5.5 μ g-at/l in September, and 7.4 μ g-at/l in February.

8. Nitrate and nitrite concentration ranged from near zero to peaks of 17.5 μ g-at/l in mid-July, 14.1 μ g-at/l in September, and 27.5 μ g-at/l in January. The deepest station showed some vertical stratification with lower concentrations in the bottom water.

9. Concentration of chlorophyll a, b, and c were high in August, October, and March. Chlorophyll a peak values were between 25 and 30 mg/m^3 .

10. During the February 12-hour cruise, temperature and salinity increased with the incoming tide while dissolved oxygen concentration, concentrations of silicate, nitrate and nitrite, ammonia and ortho-phosphate decreased. The association between pigment values and tide varied depending on the type of chlorophyll.

11. During the April 12 cruise there was very little change in temperature, salinity, and dissolved oxygen with tidal effects. In contrast, concentrations of silicate, nitrate and nitrite, and ortho-phosphate declined as the tide ebbed. Changes in ammonia and pigment were not tide-related.

12. Based on nitrate and phosphate concentrations, lower Delaware Bay was not considered polluted when compared to nearby estuaries.

xi

Chapter II: Phytoplankton

1. A total of 126 phytoplankton species were obtained in both net and whole water samples.

- 2. The following results applied to the whole water samples:
 - a. The flora was composed primarily of small flagellates during the summer and early fall.
 - b. Diatoms dominated from October through May.
 - c. Highest species richness occurred in June (0.71), late August (0.56), and December (0.66).
 - d. Evenness values decreased from the summer through November, increased sharply in December, remained moderately high even through the spring, and increased to high values in May.
 - e. A shift in dominant species was observed. June dominants were gradually replaced through October, after which there was an entirely new suite of dominants. Another replacement occurred again in early spring.
 - f. Cycles of abundance for the most dominant species showed; 1) <u>Calycomonas ovalis</u>, late summer months; 2) <u>Pyramimonas</u> sp., spring-early summer; 3) <u>Cryptomonas acuta</u>, warm months; 4) <u>Chrysochromulina</u> sp., summer; 5) <u>Skeletonema costatum</u>, late winter and early spring; 6) <u>Katodinium rotundatum</u>, midsummer.
 - g. Recurrent species groups based on cluster analysis reflected the seasonal change in species composition.

3. The following results applied to the net phytoplankton samples:

- a. The diatom, <u>Nitzschia seriata</u>, dominated the winter samples whereas another diatom, <u>Guinardia</u> flaccida, dominated the spring samples.
- b. In general, tidal stage had little influence on the composition of the dominant species.

Chapter III: Zooplankton

1. Seventy-one species, including 18 copepods and 15 decapod larvae were identified from the zooplankton samples.

2. Maximum zooplankton abundances occurred in the spring and summer at most stations. In general, higher numbers were found in bottom samples.

3. Copepods were the largest component of the population throughout most of the year and the meroplankton comprised a significant percent of the population during the summer.

 Based on cluster analysis five time-related assemblages emerged: 1) June--Podon sp., <u>A. tonsa</u>, <u>P. coronatus</u>, <u>C. hamatus</u>;
 July-August--<u>A. tonsa</u>, <u>P. coronatus</u>, <u>N. texana</u> (zoea), <u>P. sayana</u> (zoea), copepodites; 3) September-November--<u>Oikopleura</u> sp., <u>Paracalanus</u> spp., veliger larvae, polychaete larvae; 4) December--<u>A. tonsa</u>, veliger, <u>Acartia</u> copepodite; 5) January-May--<u>C. hamatus</u>, <u>Centropages</u> copepodites, T. longicornis, <u>P. minutus</u>.

5. During the 12-hour cruises there were higher numbers in the bottom waters in the day with vertical migration towards the surface at 1500. Zooplankton began their descent at about 1900.

6. The general pattern of zooplankton numbers and species occurrences did not differ appreciably from patterns found by earlier investigators.

7. The seasonal species replacement sequence in Delaware Bay was different from that of estuaries to the north.

Chapter IV: Water Column Synthesis

1. The highest net production occurred at the end of May $(167.8 \text{ mgm C/m}^3/6 \text{ hr})$. Surface assimilation numbers also peaked in late May (6.5 mg C/hr/mg Chl a). Delaware Bay was similar in production levels to parts of Chesapeake Bay.

2. The winter-spring <u>Skeletonema</u> bloom was associated with the lowest silicate concentrations. There was a negative association between diatoms and silicates.

3. Diatoms were negatively associated with ammonia.

4. Micro-flagellates were negatively associated with nitrate and nitrite.

5. Total whole water phytoplankton numbers were negatively associated with ortho-phosphate.

6. Herbivores were the dominant feeding group among zooplankton.

7. Based on cross-correlation time series analysis, herbivore numbers had a positive correlation with abundance of whole water phytoplankton after a lag of four to six weeks.

8. Based on feeding rates, carbon requirements, and cell carbon content, it was determined that the phytoplankton populations in Delaware Bay were more than sufficient to support the local zooplankton populations. 9. Since no one species of phytoplankton or zooplankton maintained dominance for a long period of time except in the spring (<u>Skeletonema-Thalassiosira</u>), the planktonic food web in Delaware Bay may be more complex than in estuaries to the north.

Chapter V: Delaware Bay Benthic Invertebrate Assemblages

1. A total of 207 samples were collected during the summers of 1972 and 1973.

2. Based on mean particle size and sorting coefficient sediments were classified into twelve major groups.

3. Coarse sand deposits were mainly found at the mouth of the bay with fine silt and clay in the upper bay, at river mouths and in protected areas near Delaware and Jersey shores.

4. A total of 109 and 125 species were collected in 1972 and 1973 respectively.

5. With the exception of the serpulid reef, few stations had more than 15 species.

6. One-third of the samples consisted of more than 75% deposit-feeding individuals. These samples were primarily located on the Delaware side of the bay.

7. The most widespread species were: <u>Tellina agilis</u>, <u>Heteromastus filiformis</u>, <u>Glycera dibranchiata</u>, <u>Nephtys picta</u>, <u>Mulinia lateralis</u>, <u>Protohaustorius wigleyi</u>, <u>Gemma gemma</u>, and <u>Nucula proxima</u>.

8. The average density $(200/m^2)$ of benthic invertebrates in Delaware Bay was several orders of magnitude lower than other estuaries along the Atlantic Coast of the United States.

9. Based on cluster analysis, five and four assemblages emerged from the 1972 and 1972 samples respectively. The assemblages were not similar over the two years.

Chapter VI:

Seasonal Changes of

Benthic Invertebrate Assemblages in the Lightering Area

1. A total of 180 species of benthic invertebrates was collected.

2. Deposit-feeding organisms dominated all stations except 8 and 9 which were characterized by two suspension feeders (<u>Mytilus</u> edulis and Hydroides dianthus).

3. Suspension feeders comprised a greater percent of the fauna than did the carnivores or omnivores.

4. Dominant species were: <u>Tellina agilis</u>, <u>Nucula proxima</u>, <u>Parahaustorius longimerus</u>, <u>Spio setosa</u>, <u>Mediomastus ambiseta</u>, <u>Mytilus edulis</u>, and <u>Hydroides dianthus</u>.

5. Species dominance was evaluated using McNaughton's dominance index. Stations were dominated by haustoriid amphipods, various combinations of <u>T. agilis</u>, <u>N. proxima</u>, <u>S. setosa</u>, <u>M.</u> lateralis, and M. edulis, and H. dianthus.

6. Evenness diversity values were highest among the depositfeeders and carnivores, and lower among the suspension feeders and omnivores.

7. At most stations there was a seasonal (usually a cold months--warm months) replacement of the dominant species.

Based on cluster analysis, the following stations had
 similar faunal assemblages: 1 and 6; 2 and 3; 5, 7, and 10; 8 and
 9; and 4.

9. Specific animal-sediment associations were observed, but these were somewhat masked by other variables. <u>Mytilus edulis</u>, <u>H. dianthus</u>, <u>N. proxima</u>, and <u>T. agilis</u> were associated with hard substrata (pebbles, shell, calcareous tubes), silt-clay (20-75%), fine sand with silt-clay (10-30%), respectively.

10. Petersen type communities were not recognized in the lightering area.

11. Seasonal fluctuations observed in these stations indicated that long-term monitoring of the structure of selected assemblages would provide more useful data in assessing the stress of manrelated activities than one-time surveys.

Chapter VII: Methodological Benthic Studies

 A total of 146 and 158 species were collected from four stations (sand, muddy sand, polymodal sand, calcareous serpulid reef) with a Petersen grab and dredge haul, respectively.

2. At all stations the dredge sampled a larger number of species than did the grab.

3. Dominant grab species in the sand were <u>T. agilis</u>, <u>G.</u> <u>capitata</u>, <u>S. fragilis</u>, and <u>A. verrilli</u>, and dominant dredge species were <u>T. agilis</u>, <u>N. americana</u>, <u>A. oculatus</u>, and <u>E. directus</u>.

4. Dominant grab species in the muddy sand were <u>N. proxima</u>, <u>T. agilis</u>, and <u>E. directus</u>, and dominant dredge species included the above three together with <u>C. septemspinosa</u> and <u>N. americana</u>. 5. Dominant grab species in the polymodal sand were <u>M.</u> <u>edulis</u>, <u>M. ambiseta</u>, and <u>L. alba</u>, and dominant dredge species were <u>A. polyoum</u>, <u>S. errata</u>, <u>E. monostachys</u>, <u>M. tenuis</u>, <u>C. tenuissimum</u>, <u>N. americana</u>, and <u>C. septemspinosa</u>.

6. Dominant grab species in the serpulid reef intermixed with muddy sand were <u>A. oculatus</u>, <u>M. ambiseta</u>, <u>N. proxima</u>, <u>H. filiformis</u>, <u>S. benedicti</u>, and <u>U. serrata</u>, and dominant dredge species were <u>H. dianthus</u>, <u>U. serrata</u>, and <u>C. simile</u>.

7. The number of dominant species in the dredge samples was at least equal, but usually exceeded that of the grabs.

8. Station 9 was the only site where there was a significant difference in the order of importance of species between grab and dredge samples. Thus at this station the dredge presented a view of the community structure considerably different from that obtained from the grab.

9. To obtain 90% of the species in a particular substratum between 13 and 16 grab or dredge samples were needed.

10. All dominant species occurred in the first two grab or dredge samples.

11. The accuracy of the community structure estimate given by the dredge samples was related to the substratum composition.

12. Based on cluster analysis of grab and dredge samples, the fauna of the sand and muddy sand substrata showed less patchiness than the fauna of the polymodal sand and serpulid reef substrata.

13. Based on the rating scale devised for this study, the dredge data offered a reasonable estimate of differing community structure from different substrata. Improvements in the rating scale are expected to refine the accuracy of these estimates.

I. HYDROGRAPHY

Les Watling

INTRODUCTION

The general physical oceanographic features of Delaware Bay were described by Polis and Kupferman (1973) and Maurer and Wang (1973). Their reports considered wind and tide induced currents, and past salinity and temperature measurements. In contrast, chemical oceanographic data for Delaware Bay were virtually nonexistent (Kester and Courant, 1973); however, some nutrient data were given in Szekielda (1973). The following account is summarized from these reports.

Climate

Precipitation averages 45 inches/year (1.14 m/yr) and is maximum in summer. Winds are predominantly from the west-northwest during the winter months (November-March). In April the wind gradually shifts to westerly onshore and south-southeasterly offshore, progressing to south-southwesterly in summer. Wind patterns are unstable in the fall. On an annual basis, wind speeds are less than 15 mph (6.7 m/s) 65% of the time and exceed 32 mph (14.3 m/s) only 1% of the time. In general summer winds are calmer and more variable whereas winter winds are stronger and steadier.

1

Tides and Circulation

The mean annual tidal range at the mouth of Delaware Bay varies from 4.1 feet (1.2 m) at Cape Henlopen to 4.7 feet (1.4 m) at Cape May Point. The waters of Delaware Bay circulate as a large rotary current, generally flowing southward along the Delaware shore and northward along the New Jersey shore. The northerly flow component is reinforced by the flood tide while the southerly current is reinforced by the ebb tide. As a consequence, a greater proportion of Delaware River water flows out of Delaware Bay along the Delaware shore. Tidal currents at the Delaware Bay mouth average a maximum of 1.8 knots (0.9 m/s) during both flood and ebb tide conditions. The values decrease slightly in the open central portion of the bay and increase to an average maximum of 2.5 knots (1.3 m/s) where the bay narrows near Woodland Beach. Within the bay tidal currents generally run parallel to its long axis. There is a net transport of water out of the bay on the Cape Henlopen side and a net transport into the bay in the deep channels and, at the surface, to the Cape May side. Salter (in Polis and Kupferman, 1973) suggests that this is explained by Coriolis forces.

Salinity

Delaware Bay is generally polyhaline (18-30 o/oo) from its mouth up to the vicinity of the Leipsic River and mesohaline from the Leipsic River to around Woodland Beach and also in the Maurice River Cove. Cronin, et al. (1962) demonstrated that the bay was strongly stratified only in the winter and spring as the river flow increased. In fact, Polis and Kupferman (1973) noted that yearly changes in river flow can drastically alter the salinity structure of the lower bay.

Temperature

In the fall and winter the bay shows little or no vertical temperature stratification whereas in the spring and summer bottom waters are generally cooler than surface waters, especially in the deeper regions. Temperatures generally range from 1°C in winter to 25-30°C in summer.

Dissolved Oxygen

The mesohaline and polyhaline zones of Delaware Bay are generally fully saturated with dissolved oxygen. Absolute values of dissolved oxygen vary as would be expected with temperature and salinity.

Nutrients and Pigments

There is, at the present time, no general picture of nutrient distributions in Delaware Bay. With regard to pigments, Szekielda (1973) presented a map of bay-wide chlorophyll distribution. High concentrations of chlorophyll were transported with the outflowing river water along the Delaware side of the bay.

METHODS

In the present study hydrographic data were obtained from two sources: monthly or bi-monthly plankton cruises in the vicinity of the anchorage area, and samples collected during the benthic cruises. Three plankton stations (Fig. I-1) were occupied 17 times from May 1, 1974 to May 28, 1975 always at high slack tide. In addition, two 12-hour cruises were conducted at plankton Station 2 on February 20, 1975 and April 14, 1975. Hydrographic data were also obtained from ten benthic stations in the anchorage region on a quarterly basis (May, August, and November 1974 and February and May 1975) and from 105 bay-wide stations in 1972 and an additional 102 stations in 1973.

3

Both surface and bottom water samples were taken at all of the above stations with the exception of the bay-wide series where only bottom water was sampled.

Temperatures were measured with standard reversing thermometers. Salinities were measured in the laboratory with a Beckman Model 6320N laboratory salinometer. Samples for nutrient analysis were stored frozen in plastic containers to await analysis. All samples for pigment analysis were filtered immediately on the ship using Whatman GF/C glass fiber filters. The filters were then frozen and stored in a dessicator until analyzed. Concentrations of dissolved oxygen, silicate, nitrate and nitrite, ortho-phosphate, ammonia, chlorophylls a, b, and c, phaeopigments, and carotenoids were analyzed following procedures described in Strickland and Parsons (1968). Pigment analyses followed the acetone extraction technique and extinction coefficients were measured on a D.U. spectrophotometer. Concentrations were estimated using the SCOR/UNESCO formulae.

RESULTS AND DISCUSSION

Values of temperature, salinity, silicate, ortho- PO_4 , NH_3 , $NO_3 + NO_2$, dissolved oxygen, and chlorophylls a, b, and c obtained at plankton Stations 1, 2, and 3 are given in Tables I-1 to I-10. Tables I-11 and I-12 contain similar data for the 12-hour cruises conducted at plankton Station 2 on February 20 and April 14, 1975. In addition, temperature, salinity, and dissolved oxygen values from the benthic cruises in the anchorage area are given in Appendix Tables AI-1 to AI-3. Cyclic and/or distributional changes in each of these hydrographic measures are detailed below.

A. Yearly Summary

Temperature

The annual pattern of surface temperature (Fig. I-2) was typical of a northeastern American estuary. Lowest and highest temperatures were recorded in February $(3.5^{\circ}C)$ and early August $(26.0^{\circ}C)$, respectively. Except during the months of December and January, temperatures on the bottom were slightly lower than at the surface (Table I-1).

Salinity

Since the plankton cruises were conducted at high slack tide, salinity values were always in the polyhaline range, and rarely was there any strong vertical stratification at any of the three stations (Table I-2). Bottom salinities throughout the bay provided a broader picture of the estuarine zonation as established by the Venice system (reviewed in Carriker, 1967). Figures I-3 and I-4 show the distribution of the mesohaline, lower polyhaline, upper polyhaline, and oceanic zones sampled during the 1972 and 1973 benthic transect studies. Of special interest was the distribution of mesohaline water along the shallow New Jersey side of Delaware Bay and the extension of upper polyhaline water along the deep channels and into the upper reaches of the Delaware portion of the bay. This suggested that bottom morphology may be as important as the Coriolis force in determining the water mass distributions in Delaware Bay. An account of the temperature and salinity distribution along the Cape May shore has been provided by Hidu and Haskin (1971).

Dissolved Oxygen

In general, all three stations showed the same yearly pattern of dissolved oxygen values being lower in the summer than in the

5

winter. Only during the late winter to early spring period was the water consistently fully saturated (Table I-3); otherwise full saturation occurred only after the strong diatom bloom of mid-October.

Silicate

Silicate values showed several peaks, the highest $(31.6 \ \mu g-at/1)$ occurring in September (Fig. I-5). Decreases in silicate were observed during and after blooms of diatoms in August, October, and April. At Station 1, silicate concentrations were higher in surface water than bottom water over most of the year (Table I-4). Concentrations of silicate were generally the same in the surface and bottom waters of the shallower Stations 2 and 3.

Ortho-phosphate

As for silicate, ortho-phosphate values showed several peaks, the highest (1.64 μ g-at/l) occurring in September (Fig. I-6). Orthophosphate concentrations declined during phytoplankton blooms but increased immediately following the termination of the bloom. All of the detectable ortho-phosphate was removed from the water during the spring <u>Skeletonema</u> - <u>Thalassiosira</u> bloom. There were few differences between surface and bottom water or among stations (Table I-5).

Ammonia

Highest concentrations of ammonia were observed in July (9.8 μ gat/l), September (5.5 μ g-at/l), and February (7.4 μ g-at/l) with quite low concentrations present during the remaining sampling periods (Fig. I-7). Ammonia values changed rapidly during the summer and fall months but varied more gradually during the winter and after the spring bloom. Values were slightly higher in bottom water than in surface water, especially at Station 1, whose values

.6

were also slightly higher than those at Stations 2 and 3 (Table I-6).

Nitrate and Nitrite

Highest concentrations of nitrate and nitrite were observed in May at Stations 1 and 2 (22.0 and 19.1 μ g-at/1) and January at Stations 1 (27.0 μ g-at/1) and 3 (27.0 μ g-at/1) whose values greatly exceeded those for any other time of the year (Fig. I-8, Table I-7). There was a sharp decrease in nitrate and nitrite concentrations in the June 20 sample which was not observed in the concentrations of any of the other nutrients. Station 1 exhibited some vertical stratification with the lower concentrations occurring in the bottom waters.

Chlorophylls

Surface concentrations of total chlorophyll a, chlorophyll b, and chlorophyll c at the three plankton stations are illustrated in Figures I-9, I-10, and I-11. In addition, both surface and bottom values of these pigment concentrations are given in Tables I-8, I-9, and I-10. Peak concentrations of chlorophyll a were measured on August 21 (24.1 mg/m³), October 30 (28.1 mg/m³), and March 18 (32.3 mg/m³). Values at Station 1 were generally lower than at Stations 2 and 3. A generally similar pattern was seen for chlorophylls b and c.

> B. Twelve-hour Cruises of February 20, 1975 at Plankton Station 2

The amount of change in the values of temperature, salinity, dissolved oxygen, nitrate and nitrite, ammonia, ortho-phosphate, chlorophylls a, b, and c, carotenoids, and phaeopigments, during a 12-hour period on February 20, 1975 are presented in Table I-11 and Figures I-12 to I-22. Temperature (Fig. I-12) and salinity (Fig. I-13) values increased with the incoming tide while the dissolved oxygen concentration (Fig. I-14) decreased. Concentrations of silicate (Fig. I-15), nitrate and nitrite (Fig. I-16), ammonia (Fig. I-17), and ortho-phosphate (Fig. I-18) also tended to decrease with increasing salinity. No consistent tide-associated vertical stratification was observed for any of these nutrients. Total chloro-phyll a concentration (determined by the phaeo-pigment method) showed distinct peaks at 1100 (4.04 mg/m^3) and 1800 (5.19 mg/m^3) hours near the periods of slack tides (Fig. I-19 and I-20). Chlorophyll b (Fig. I-21) showed little tide-related change while concentrations of chlorophyll c increased strongly with the incoming tide (Table I-11).

C. Twelve-hour Cruise of April 14, 1975 at Plankton Station 2

Measures and concentrations of the physical, chemical, nutrient, and pigment factors discussed under the 12-hour cruise of February 20 are given for this cruise in Table I-12 and Figures I-22 to I-32. In comparison to the cruise of February 20, very little change in temperature (Figure I-22), salinity (Fig. I-23), and dissolved oxygen (Fig. I-24) values were observed during this 12-hour period. In contrast, concentrations of the nutrients, silicate (Fig. I-25), nitrate and nitrite (Fig. I-26), and ortho-phosphate (Fig. I-28) declined as the tide ebbed. The changes in ammonia (Fig. I-27) and pigment concentrations (Figs. I-29 to I-32) do not appear to be tide-related.

D. Comparisons with Regional Estuaries

Nutrient values obtained for Delaware Bay were compared with those of three nearby estuarine systems: Long Island Sound (Riley and Conover, 1956; Kester and Courant, 1973), Raritan Bay (Jeffries, 1962), and Chesapeake Bay (Kester and Courant, 1973). Of the three systems, only Long Island Sound was similar to the region of Delaware Bay examined here in having dissolved oxygen levels undersaturated during the summer months. Inorganic phosphate levels in Long Island Sound were approximately 2.5 μ g-at/l from October

8

to March and then decreased to very low values in May and June. In Raritan Bay, which Jeffries (1962) suggested was a strongly polluted estuary, inorganic phosphate values were near 6 μ g-at/l in October and then decreased to levels between 2 and 3 μ g-at/l from April through the summer. A similar cycle for Chesapeake Bay was not well defined but the values were always below 1.0 μ g-at/l. Values for lower Delaware Bay were closest to those of Chesapeake Bay.

Nitrate levels in Long Island Sound ranged from <1 to 5 μ g-at/1 during the period March through August, but then increased to 12 to 20 μ g-at/1 from September to February. Again values in Raritan Bay were somewhat higher, ranging from 15 to 37 μ g-at/1 in the winter and spring, and 1 to 15 μ g-at/1 in the summer. Concentrations near 20 μ g-at/1 were recorded in Chesapeake Bay during the spring but decreased to less than 5 μ g-at/1 in the summer and fall. Highest concentrations of nitrate plus nitrite in lower Delaware Bay occurred during the winter months with occasional high values in the spring.

Much has been written about the relationship of nitrogen and phosphorus in coastal systems and the use of nitrogen-phosphorus (atoms) ratios as indicators of eutrophic conditions (Jeffries, 1962; Ryther and Dunstan, 1971; Banse, 1974). This ratio was approximately 8:1 throughout the year in Long Island Sound, varied from 35:1 to 1.3:1 in Raritan Bay (highest in March and April, lowest in July and August), and ranged between 90:1 (spring) to 2.5:1 (fall) in Cheapeake Bay. In lower Delaware Bay this ratio averaged 200:1 in May and June and approximately 20:1 throughout the summer and winter months. Of the four estuarine systems considered, only Long Island Sound did not have a strong input of river water nor is it surrounded by large salt marshes. Long Island Sound was also the only system where the nitrate and phosphate cycles were in near perfect correspondence. In the other estuaries, including Delaware Bay, the nitrate values varied randomly in relation to phosphate thus suggesting that

9

the major river and/or the marshes and tidal creeks (Aurand and Daiber, 1973) may be responsible for the wide range of nitratephosphate ratios in these systems.

.

Ketchum (1967) noted earlier experiments had demonstrated that available nitrogen was probably the nutrient limiting algal growth and that high concentrations of inorganic phosphorus in the water reflected the excess of that element above the requirements of the phytoplankton. Thus the phosphorus concentration could be used as a pollution index. On this basis, Long Island Sound, Chesapeake Bay, and lower Delaware Bay did not show excess nutrient pollution as did Raritan Bay.

REFERENCES

- Aurand, D., and F.C. Daiber, 1973. Nitrate and nitrite in the surface waters of two Delaware salt marshes. Ches. Sci. 14: 105-111.
- Banse, K., 1974. The nitrogen-phosphorus ratio in the photic zone of the sea and the elemental composition of the plankton. Deep-Sea Res. 21: 767-771.
- Carriker, M.R., 1967. Ecology of benthic invertebrates: a perspective. pp. 442-487, <u>In</u> G.H. Lauff (Ed.). Estuaries. Amer. Assoc. Adv. Science Publ. 83, Washington, D.C.
- Cronin, L.E., J.C. Daiber, and E.M. Hulburt, 1962. Quantitative seasonal aspects of zooplankton in the Delaware River estuary. Ches. Sci. 3 (2): 63-93.
- Hidu, H., and H.H. Haskin, 1971. Setting of the American oyster related to environmental factors and larval behavior. Proc. Natl. Shellfish. Assoc. 61: 35-50.
- Jeffries, H.P., 1962. Environmental characteristics of Raritan Bay, a polluted estuary. Limnol. Oceanogr. 7: 21-31.
- Kester, D.R., and R.A. Courant, 1973. Chemical Oceanography, <u>In</u> S.B. Saila (Ed.), Coastal and Offshore Environmental Inventory, Cape Hatteras to Nantucket Shoals. Marine Publ. Ser. No. 2, Univ. Rhode Island, Kingston, Rhode Island.
- Ketchum, B.H., 1967. Phytoplankton nutrients in estuaries. pp. 329-335. <u>In</u> G.H. Lauff (Ed.), Estuaries. Amer. Assoc. Adv. Sci. Publ. 83, Washington, D.C.
- Maurer, D., and H. Wang, 1973. Environmental vulnerability of the Delaware Bay area to supertanker accommodation. Report to the Council on Environmental Quality.

- Polis, D.F., and S.L. Kupferman, 1973. Physical Oceanography, <u>In</u>
 D.F. Polis (Ed.), Delaware Bay Report Series. University of Delaware, Newark, Delaware.
- Riley, G.A., and S.A. Conover, 1956. Oceanography of Long Island Sound. III. Chemical Oceanography. Bull. Bingham Oceanogr. Coll. 15: 47-61.
- Ryther, J.H., and W.M. Dunstan, 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science <u>171</u>: 1008-1013.
- Strickland, J.D.H., and T.R. Parsons, 1968. A practical handbook
 of seawater analysis. Fish. Res. Bd. Canada, Bull. <u>167</u>:
 1-311.
- Szekielda, K.H., 1973. Chemical Oceanography, <u>In</u> D.F. Polis (Ed.), Delaware Bay Report Series. University of Delaware, Newark, Delaware.

Table I-1

Environmentai	reature. <u>remper</u>	acure			
		Station	I Stat	ion II	Station III
Cruise No.	Date	Т* М	BT	В	Т В
1 2 3 4 5 6 7 8 9 10 11 12 13 14	May 1, 1974 May 9, 1974 May 22, 1974 June 13, 1974 June 20, 1974 July 19, 1974 Aug. 1, 1974 Aug. 21, 1974 Aug. 21, 1974 Oct. 15, 1974 Oct. 30, 1974 Nov. 14, 1974 Dec. 13, 1974 Jan. 16, 1975	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$13.9 \\ 13.4 \\ 15.8 \\ 21.4 \\ 21.6 \\ 23.1 \\ 25.2 \\ 23.9 \\ 22.4 \\ 17.2 \\ 14.1 \\ 13.1 \\ 6.0 \\ 4.7 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
- 15 16	(1800) March 18, 1975	5.2 5.1	- 3.6 4.9 5.5	3.6 5.4	- - - 5.8 -
* 17	April 14, 1975 (0900)		- 6.3	6.2	
18 19	May 9,1975 May 28,1975	13.0 - 18.4 17.7	11.013.417.618.5	11.3 18.6	13.3 13.4 17.6 17.2

* 12 hrs. at Station II only

For this and following tables, T = surface, M = middle depth, and B = bottom.

ω

T-mar at

-
Environmental Feature: Salinity

		Station I		I	Statio	n II	Statior	n III
Cruise No.	Date	Т	M	В	Т	В	T .	В
1 2 3 4 5 6 7 8 9 10 11 12 13 14	May 1, 1974 May 9, 1974 May 22, 1974 June 13, 1974 June 20, 1974 July 19, 1974 Aug. 1, 1974 Aug. 21, 1974 Aug. 21, 1974 Oct. 15, 1974 Oct. 30, 1974 Nov. 14, 1974 Dec. 13, 1974 Jan. 16, 1975	23.4 28.8 25.2 21.8 26.9 28.4 28.5 28.5 28.5 28.2 27.7 28.1 29.7 28.6	25.7 27.4 28.3 27.1 28.3 29.4 29.8 29.0 29.0 29.0 29.0 28.9 28.9 28.9 29.8 28.8	27.7 28.5 28.3 28.7 29.6 30.2 29.0 29.1 28.9 29.4 30.0 28.9	23.7 27.0 26.3 22.3 27.1 28.5 28.3 29.3 28.6 28.4 27.9 29.7 28.9	23.9 26.9 26.3 22.4 27.4 28.7 29.0 29.3 28.6 28.4 27.9 29.7 28.9	25.4 27.4 26.0 24.8 27.2 28.2 28.0 29.4 28.7 28.4 26.7 29.7 28.7	25.4 26.4 25.0 27.2 28.5 29.0 29.4 28.6 28.4 27.7 29.7 29.7 28.7
* 15 16 * 17	Feb. 20, 1975 (1800) March 18, 1975 April 14, 1975 (0900)	_ 25.9 _	27.1	29.2	23.3 25.8 26.7	27.3 25.7 27.0	24.7	25.4
18 19	May 9, 1975 May 28, 1975	24.3 24.3	29.1 27.4	29.2 29.3	24.7 24.0	28.9 26 . 2	25.3 26.3	25.5 26.9

* 12 hrs. at Station II only

----4-

Environmental Feature: <u>Dissolved</u> Oxygen (m1/1)

								Station I				Station II					Station III			
Cri	ise	No.	Da	te		Т	%	М	%	B	%	Т	%	В	%	T	%	В	0/	
	1		May	٦,	1974	6.46	103	6.29	97	6.17	88	6.78	108	6.79	108	7.26	117	7.27	117	
	2		May	9,	1974	6.68	108	6.28	99	6.28	99	6.97	110	6.94	110	7.20	114	6.45	102	
	3		May	22,	1974	6.07	102	5.78	97	5.75	97	6.06	103	5.98	101	6.62	121	8.22	152	
	4		June	13,	1974	4.16	75	2.93	53	2.57	46	4.17	77	3.88	71	6.03	112	5.66	-	
	5		June	20,	1974	5.29	99	4.84	91	4.80	91	5.52	105	5.19	98	5.44	104	5.43	103	
	6		July	19,	1974	4.67	92	4.35	85	4.76	93	4.75	94	4.40	87	4.67	93	4.75	95	
)	7.		Aug.	1,	1974	4.64	95	-		3.97	80	4.63	95	4.43	90	4.96	103	5.07	104	
	8		Aug.	21,	1974	4.84	97	4.74	95	4.80	96	4.96	100	4.90	99	4.64	94	4.75	96	
	9		Sept.	17,	1974	4.59	89	4.55	88	4.55	88	4.49	87	4.47	. 87	4.52	88	4.49	88	
	10		Oct.	15,	1974	6.21	107	5.88	103	5.88	103	5.99	105	5.99	105	5.92	103	5.82	102	
	11		Oct.	30,	1974	4.53	74	5.88	97	4.70	78	5.57	91	6.50	107	6.72	109	8.82	143	
	12		Nov.	14,	1974	5.71	94	5.72	94	5.66	93	5.77	95	5.77	.95	5.71	94	5.75	94	
	13		Dec.	13,	1974	6.99	98	6.94	97	6.91	97	7.06	97	7.13	98	7.13	98	7.15	99	
	14		Jan.	16,	1975	-		uich	NO		-	·	-	-	-	-	<u> </u>	· -	-	
*	15		Feb.	20,	1975															
			(1800)			-		-	-		-	8.48	105	7.85	100			-	—	
	16		March	18,	1975	8.18	108	7.91	105	7.57	102	8.40	112	9.05	120	9.03	121	8.20	-	
*	17		April	14,	1975		•				· •									
			(0900)					-			-	8.40	114	8.30	113			- .		
	18		May	9,	1975	6.19	96	6.44	102	6.44	100	7.08	111	6.62	103	7.35	117	7.20	114	
÷ .	19		May	28,	1975	5.76	100	5.52	97	5.68	101	5.68	100	5.31	94	5.71	101	5.38	96	

* 12 hrs. at Station II only% refers to percent of full saturation

Environmental Feature: <u>Silicate (ug-at/1)</u>

· · · ·	· · · · ·				Station II		Station III		
Cruise No.	Date	T.	М	В	Т	В	Т	В	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	May 1, 1974 May 9, 1974 May 22, 1974 June 13, 1974 June 20, 1974 July 19, 1974 Aug. 1, 1974 Aug. 21, 1974 Aug. 21, 1974 Sept. 17, 1974 Oct. 15, 1974 Oct. 30, 1974 Nov. 14, 1974 Dec. 13, 1974 Jan. 16, 1975	$\begin{array}{c} 1.74\\ 3.54\\ 6.50\\ 5.44\\ 10.2\\ 16.6\\ 13.2\\ 29.2\\ 4.8\\ 4.5\\ 11.2\\ 7.5\\ 11.0\end{array}$	1.79 10.8 6.77 4.78 9.8 13.0 11.5 27.7 4.3 4.5 11.0 7.4 12.0	2.20 4.46 6.67 3.13 7.75 11.1 10.9 27.7 4.8 5.9 8.85 7.0 10.5	1.79 3.58 3.00 3.13 12.2 16.8 9.8 30.0 6.3 3.6 9.7 9.4 10.2	1.79 3.00 2.92 4.10 12.3 18.0 9.6 29.3 6.5 3.7 8.9 9.1 8.7	1.26 2.75 3.15 3.31 16.3 20.2 10.7 31.6 7.1 3.6 10.0 10.4 16.6	1.21 3.92 2.95 4.13 14.6 22.0 10.4 28.3 6.5 3.3 10.7 10.2 12.5	
16 * 17	(1800) March 18, 1975 April 14, 1975 (0900) May 9, 1975	2.6	0.8	1.4 0.4	13.7 0.7 1.40 0.9	9.0 1.4 1.05 1.0	0.3	0.2	

* 12 hrs. at Station II only

Environmental Feature: $ortho-PO_4(ug-at/1)$

		Station I	Station II	Station III
Cruise No.	Date	T M B	T B	ТВ
1 2 3 4 5 6 7 8 9 10 11 12 13 14	May 1, 1974 May 9, 1974 May 22, 1974 June 13, 1974 June 20, 1974 July 19, 1974 Aug. 1, 1974 Aug. 21, 1974 Aug. 21, 1974 Oct. 15, 1974 Oct. 30, 1974 Nov. 14, 1974 Dec. 13, 1974 Jan. 16, 1975	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0.06 & 0.05 \\ 0.02 & 0.04 \\ 0.11 & 0.09 \\ 0.06 & 0.08 \\ 0.20 & 0.21 \\ 0.78 & 0.81 \\ 1.00 & 1.20 \\ 0.66 & 0.70 \\ 1.52 & 1.52 \\ 0.49 & 0.54 \\ 0.26 & 0.27 \\ 0.92 & 0.93 \\ 0.63 & 0.63 \\ 0.58 & 0.48 \end{array}$	$\begin{array}{cccccc} 0.05 & 0.05 \\ 0.05 & 0.04 \\ 0.08 & 0.17 \\ 0.04 & 0.07 \\ 0.18 & 0.22 \\ 0.81 & 0.82 \\ 1.18 & 1.33 \\ 0.87 & 0.86 \\ 1.60 & 1.61 \\ 0.47 & 0.48 \\ 0.29 & 0.26 \\ 0.93 & 0.91 \\ 0.58 & 0.58 \\ 0.58 & 0.53 \end{array}$
* 15 16 * 17 18	Feb. 20, 1975 (1800) March 18, 1975 April 14, 1975 (0900) May 9, 1975 May 28 1975	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0.36 & 0.46 \\ \simeq 0 & \simeq 0 \\ 0.06 & 0.05 \\ 0.02 & 0.06 \\ 0.18 & 0.17 \end{array}$	$\approx 0 \approx 0$ 0.03 0.03 0.20 0.16

* 12 hrs. at Station II only

17

. e

Environmental Feature: <u>NH₃-N(ug-at/1</u>)

			Station	I	Stati	on II	Station III		
Cruise No.	Date	Т	М	В	. T	В	Т	В	
1	May 1, 1974	1.5	2.0	1.9	1.4	1.4	1.1	1.0	
2	May 22 1974	15	1.0	1.5	1 2	1 0	1.0	1.6	
4	June 13, 1974	1.5	3.0	3.8	1.5	1.6	1.4	2.4	
5	June 20, 1974	1.8	2.6	4.0	1.4	3.9	1.7	1.5	
6	July 19, 1974	6.7	7.7	6.8	6.1	9.8	7.6	8.5	
7	Aug. 1, 1974	2.8	3.5	3.1	1.7	2.9	2.5	3.4	
8	Aug. 21, 1974	1.6	1.9	1.9	0.7	0.8	1.6	1.6	
9	Sept. 17, 1974	4.9	5.0	5.1	5.5	5.2	5.0	5.2	
10	Oct. 15, 1974	1.0	1.1	1.1	1.5	0.9	0.6	1.8	
11	Oct. 30, 1974	1.4	1.8	3.2	1.1	0.9	1.2	0.8	
12	Nov. 14, 19/4	2.3	2.2	2.1	2.1	2.2	2.2	2.5	
13	Dec. 13, 1974	2.8	2.0	2.0	2.8	2.0	2.7	2.7	
14	Jan. 15, 19/5	3.8	3.2	2.0	3.1	4.0	4.0	3.1	
n 15	(1000)				7 /	15			
16	(1000) March 18 1975	≃ 0	≃_0	~	/.+ ≃ ∩	≃ ∩	≃ ∩	່≃ົ∩	
* 17	April 11 1075	Ų,	U	U	, V	Ŭ	Ŭ		
17	(1900)			ан салана —	0.7	0.6	. · · ·		
18	May 9, 1975	≃ 0	° ∩	≃ 0	~ 0	≃ 0	≃ 0	≃ 0	
19	May 28, 1975	1.9	1.8	0.8	2.7	1.1	1.3	1.9	
	~ •	1. A.							

* 12 hrs. at Station II only

Environmental Feature: $NO_2 + NO_2(ug-at/1)$ Station I Station II Station III Cruise No. Date T М Т Т B В В 1, 1974 22.0 19.1 18.8 8.0 8.9 May 14.7 10.2 9, 1974 22, 1974 4.5 3.1 0.5 5.1 0.4 2.8 2 May 0.4 3 11.6 2.5 2.6 May 4.0 4.5 0.6 5.3 June 13, 1974 17.5 4.0 1.2 12.7 12.6 3.8 4.4 5 20, 1974 1.2 0.5 0.7 0.2 0.2 0.2 0.2 June 19, 1974 2.8 2.5 6 July 4.0 2.1 1.7 2.4 2.6 7 1, 1974 5.0 4.5 3.4 9.2 5.5 5:0 5.4 Aug. Aug. 21, 1974 12.7 10.5 10.1 8.2 8.0 8.1 9.1 8 Sept. 17, 1974 14.1 12.1 9 10.4 9.9 11.6 11.2 11.0 11.8 10 Oct. 15, 1974 9.2 6.0 5.6 8.4 7.6 11.7 4.8 2.3 4.4 11 Oct. 30, 1974 3.5 2.4 2.8 2.8 14, 1974 4.1 12 Nov. 4.9 5.9 3.8 0.1 0.1 7.3 13 Dec. 13, 1974 16.4 16.5 14 1 13.1 12.7 13.8 13.4 14 15 16, 1975 27.0 19.1 18.3 25.2 27.5 17.9 Jan. 24.2 * Feb. 20, 1975 (1800)18.2 13.4 9.7 9.7 11.5 7.7 16 March 18, 1975 4.4 9.4 7.8 * 17 April 14, 1975 (0900)10.8 9.1 --3.6 0.1 9, 1975 0.4 1.9 0.4 1.6 0.8 18 May 19 28, 1975 7.3 1.7 0.3 × 2.5 8.6 1.6 2.9 May

* 12 hrs. at Station II only

	•		•
Environmental	Feature:	Chlorophyll a	(mq/m^3)

		, ^{, , , , ,} , , , , , , , , , , , , , ,	Static	on I	Station	n II	Station III		
Cruise	No.	Date	T M	В	T	В	Т	В	
1 2 3 4 5 6 7 8 9 10 11 12		May 1, 1974 May 9, 1974 May 22, 1974 June 13, 1974 June 20, 1974 July 19, 1974 Aug. 1, 1974 Aug. 21, 1974 Aug. 21, 1974 Sept. 17, 1974 Oct. 15, 1974 Oct. 30, 1974 Nov. 14, 1974	5.2 4.0 4.8 5.3 7.8 3.6 10.7 6.8 3.5 3.4 9.5 8.6 2.9 3.8 9.8 10.8 6.0 1.9 1.2 1.2	- 3.3 2.8 3.6 3.6 4.2 5 4.2 5 10.7 1.7 2.1.2	- 11.9 7.1 9.8 15.4 10.7 24.1 5.0 13.2 13.0 2.5	- 12.0 6.2 12.4 11.7 6.8 22.9 7.1 12.6 12.7 2.5	- 14.8 7.6 8.9 15.5 11.8 18.0 3.8 12.8 28.1 2.1	- 10.1 7.1 12.0 12.3 9.8 19.3 4.1 12.5 15.5 2.4	
13 14 * 15 * 16 * 17		Dec. 13, 1974 Jan. 16, 1975 Feb. 20, 1975 (1800) March 18, 1975 April 14, 1975 (0900)	3.4 4.1 10.5 11.4	6.4 - 12.6 -	6.5 - 5.5 16.7 8.4	6.3 - 22.2 6.7	6.7 - 18.8	5.9 - 32.3	
18 19		May 9,1975 May 28,1975	3.6 8.2 5.3 5.8	2 6.8 3 8.4	7.1 4.3	8.2 9.7	7.3 8.3	12.7 8.8	

* 12 hrs. at Station II only

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Environmental	Feature: <u>Chlorop</u>	<u>ohyll b (m</u>	g/m ³)					
Cruise No.DateTMBTBTBTB1May1, 19742May9, 19741.00.70.62.01.92.61.84June13, 19741.40.90.51.91.41.51.55June20, 19741.40.90.81.71.62.01.66July19, 19741.40.90.81.71.62.01.67Aug.1, 19740.40.70.61.71.42.31.48Aug.21, 19741.21.41.52.72.12.12.19Sept.17, 19740.30.60.70.71.10.60.510Oct.15, 19740.71.00.91.00.90.90.911Oct.30, 19740.50.10.40.80.92.41.112Nov.14, 19740.10.20.20.60.40.40.413Dec.13, 19740.40.40.90.80.72.42.05.9*16March 18, 19750.80.50.80.72.42.05.95.9*17April 14, 197518M			S	tation I		Statio	n II	Statio	n III
1 May 1, 1974 - <td< th=""><th>Cruise No.</th><th>Date</th><th>. T</th><th>Μ</th><th>В</th><th>Т</th><th>В</th><th>Т</th><th>В</th></td<>	Cruise No.	Date	. T	Μ	В	Т	В	Т	В
19 May 28, 19/5 0.7 0.5 0.5 0.6 0.7 0.9 0.5	$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ *\\ 15\\ 16\\ *\\ 17\\ 18\\ 19\\ \end{array} $	May 1, 1974 May 9, 1974 May 22, 1974 June 13, 1974 June 20, 1974 July 19, 1974 Aug. 1, 1974 Aug. 21, 1974 Aug. 21, 1974 Oct. 15, 1974 Oct. 30, 1974 Oct. 30, 1974 Oct. 30, 1974 Dec. 13, 1974 Jan. 16, 1975 Feb. 20, 1975 (1800) March 18, 1975 April 14, 1975 (0900) May 9, 1975 May 28, 1975	1.0 1.4 1.1 1.4 0.4 1.2 0.3 0.7 0.5 0.1 0.4 - 0.8 - 0.2 0.7	0.7 0.9 0.8 0.9 0.7 1.4 0.6 1.0 0.1 0.2 0.4 - 0.5	0.6 0.5 0.9 0.8 0.6 1.5 0.7 0.9 0.4 0.2 0.9 0.4 0.2 0.9	2.0 1.9 1.5 1.7 1.7 2.7 0.7 1.0 0.8 0.6 0.8 0.6 0.8 0.4 0.7 0.5 0.6 0.6	1.9 1.4 2.0 1.6 1.4 2.1 1.1 0.9 0.9 0.4 0.9 0.4 0.9 	2.6 1.5 1.3 2.0 2.3 2.1 0.6 0.9 2.4 0.4 0.8 - 2.0	1.8 1.5 1.6 1.6 1.4 2.1 0.5 0.9 1.1 0.4 0.7 5.9 0.9 0.5

Table I-9 nvironmental Feature: Chlorophyll b (mg/m³)

* 12 hrs. at Station II only

2]

. Ac

Environmental	Feature: <u>Chloroph</u>	<u>y]] c</u>	(mg/m ³)					
•			Station	Ι	Stati	on II	Stati	on III
Cruise No.	Date	Т	М	В	Т	В	Т	В
1 2 3 4 5 6 7 8 9 10 11 12 13 14 * 15	May 1, 1974 May 9, 1974 May 22, 1974 June 13, 1974 June 20, 1974 July 19, 1974 Aug. 1, 1974 Aug. 21, 1974 Aug. 21, 1974 Oct. 15, 1974 Oct. 30, 1974 Nov. 14, 1974 Dec. 13, 1974 Jan. 16, 1975 Feb. 20, 1975 (1800)	- 1.8 1.6 1.8 4.7 0.8 3.7 1.4 4.4 2.0 0.1 0.5 -	- 0.9 0.8 4.1 1.3 4.2 1.2 4.3 0.6 0.2 0.7	- 0.7 0.6 0.7 4.2 1.5 4.0 1.6 4.9 1.2 0.6 1.6	4.5 2.1 3.8 6.3 3.2 10.0 1.7 5.4 6.0 0.9 1.6	- 4.5 0.8 3.6 4.4 3.0 8.3 2.4 5.6 4.6 0.6 1.2	- 6.4 1.6 2.4 6.0 4.7 7.5 2.4 5.3 12.1 0.6 1.4	- 3.5 1.4 2.9 4.9 3.0 9.4 1.5 5.1 6.5 0.7 0.9
16 * 17 18 19	March 18, 1975 April 14, 1975 (0900) May 9, 1975 May 28, 1975	4.3 - 1.1	2.7 - 1.3 1.2	3.1 - 1.5 1.8	2.1 1.8 1.4 0.4	5.2 4.0 1.0 2.5	3.7 _ 1.2 2.1	10.1 1.8 1.6

* 12 hrs. at Station II only

Table I-11.

Summarization of hydrographic data obtained during 12-hour cruise of February 20, 1975

Time	Temperature	Sali	inity	Di	ssolve (ml	d Oxygen /1)	Sili	cate	NO ₃ a	nd NO ₂	N	H ₃	orth	o-P0 ₄
	Om * 4m *	Om	4m		Om	4m	Om	4m	Om	4m	Om	4m	Om	4m
0700		22.1	24.2		8.20	8.18	15.1	12.7	16.8	15.7	10.0	7.59	0.55	0.46
0800	3.0 3.4	21.5	23.1		8.32	8.18	11.9	14.2	12.8	16.4	7.70	8.57	0.46	0.46
0900		21.2	22.1		8.40	8.30	17.8	15.8	19.1	17.8	11.1	9.79	0.54	0.52
1000	3.2 3.2	21.7	22.0		8.29	8.55	17.0	15.5	18.8	16.2	10.7	8.60	0.60	0.53
1100	3.1 3.3	21.8	22.2		8.30	8.30	15.9	16.2	18.1	18.1	9.73	10.66	0.53	0.50
1200	3.3 3.2	21.9	22.1		8.88	8.34	18.5	17.4	21.0	20.5	10.4	10.3	0.57	0.54
1300	3.4 3.3	21.9	22.2		8.37	8.40	15.0	15.9	16.3	17.7	8.60	9.20	0.46	0.53
1400	3.6 3.3	22.2	23.8		8.40	8.42	14.7	13.2	16.3	14.7	8.72	6.23	0.58	0.37
1500	3.7 3.6	21.9	24.1		8.40	8.47	16.4	8.5	17.5	10.8	8.89	4.08	0.66	0.42
1600	3.7 3.6	23.0	24.3		8.47	8.37	11.8	10.6	14.1	13.7	6.79	4.92	0.36	0.36
1700	3.7 3.6	23.4	24.3		8.54	8.38	9.37	12.9	11.7	17.6	5.57	6.49	0.37	0.38
→1800	3.6 3.6	23.3	27.3		8.48	7.85	13.7	8.96	18.2	13.4	7.38	4.45	0.36	0.46
1900	3.6 3.6	22.4	26.9		8.44	7.88	13.3	9.05	15.4	12.8	8.09	4.57	0.44	0.42

*Om = surface depth 4m = bottom depth

labre	1-11 (0	iont.)												
Time	Chloro	phyll a	Chloro	phyll b	Chloro	ophyll c	Car	ot.	Chl. a	/ _{Carot} .	Chl. a	/ _{Phaeo} .	Phae	0,
	Om	4m	Om	4m	Om	4m	Om	4m	Om	4m	Om	4m	Om	4m
0700	3.606	5.192	0.173	0.389	0.158	0.544	1.166	1.399	3.092	3.708	3.204	0.320	1.121	7.817
0800	3.444	2.144	0.162	0.035	0.533	-0.009	0.861	0.509	3.999	4.212	1.089	0.256	3.678	2.960
0900	1.791	2.249	0.066	0.126	0.103	-1.269	0.308	0.573	5.808	3.921	0.064	0.512	2.768	2.576
1000	2.656	3.115	0.299	0.502	-0.595	0.017	0.631	0.571	4.204	5.451	0.384	0.833	3.703	3.812
1100	4.685	-	0.369	-	0.193		1.632		2.869		4.037	-	1.480	. -
1200	2.578	2.532	0.268	0.212	-0.389	-0.682	0.494	0.586	5.218	4.317	0.256	-1.794	3.723	6.927
1300	2.832	4.682	0.390	0.349	-0.179	1.198	0.632	1.680	4.475	2.786	0.448	3.844	3.844	1.614
1400	3.105	4.955	0.077	0.340	0.233	0.509	0.689	1.181	4.506	4.194	0.448	0.512	4.120	6.895
1500	2.361	5.596	0.240	0.380	0.532	0.498	0.531	1.118	4.444	5.001	0.576	-0.320	2.755	9.451
1600	3.466	5.776	0.203	0.465	0.485	0.299	1.340	1.000	2.585	5.771	1.217	0.833	2.992	7.933
1700	4.079	5.248	0.243	0.370	0.617	0.517	0.893	1.433	4.568	3.661	0.897	1.089	4.889	6.728
→1800	5.537	6.933	0.353	0.397	1.921	1.100	1.907	2.306	2.903	3.006	5.190	2.242	1.147	6.952
1900	2,263	7,711	0.206	0.959	-0.478	0.084	0.446	2.118	5.072	3.640	0.576	2.947	2.704	7.721

Τon+ 1 1 -

Summarization of hydrographic data obtained during 12-hour cruise of April 14, 1975

Time Temperatur		eratur	e Sali	Salinity		Dissolved Oxygen (m1/1)		Sili	cate	NO_3 and NO_2		NH ₃		ortho-PO ₄	
	Om	4m	Om	4m	Om	4m	· ·	Om	4m	Om	4m	Om	4m	Om	4m
0800	6.2	6.4	26.3	26.7	7.99	7.76		8.80	1.49	10.8	10.6	0.32	0.80	0.04	0.04
→090 0	6.3	6.2	26.7	27.0	7.76	7.71		1.40	1.05	10.8	9.05	0.74	0.64	0.06	0.05
10 00	6.6	6.5	26.5	26.7	8.23	8.18		0.482	0.789	10.5	10.5	0.11	0.11	0.04	0.02
1100	6.8	6.6	26.6	26.7	8.18	8.11		0.702	1.32	8.93	9.05	0.32	0.21	0.04	0.04
1200	6.6	6.6	26.6	26.7	8,40	8.20		0.526	0.526	7.96	8.70	0.11	0.58	0.02	0.24
1300	7.6	6.6	26.4	26.7	8.39	8.13		0.526	0.526	8.60	8.54	0.00	0.64	0.01	0.02
1400	6.5	-	26.7	26.8	8.31	8.14		0.096	0.385	7.00	8.06	0.23	0.23	0.02	0.02
1500	7.3	6.7	25.9	26.3	8.60	8.41		0.289	0.385	6.78	0.91	0.63	0.80	0.006	0.012
1600	6.9	6.7	26.5	26.6	8.30	8.21		0.481	0.577	6.41	6.97	0.23	0.23	0.012	0.012
1700	7.0	6.7	26.1	26.3	8.60	8.21		0.192	0.289	6.13	5.00	0.23	0.34	0.000	0.006
1800	6.9	6.7	26.2	26.2	8.35	8.26		0.770	0.289	1.59	0.76	0.23	0.34	0.012	0.012
1900	6.9	6.9	26.0	26.1	8.77	8.51		0.192	0.192	7.05	6.73	-	0.11	0.036	0.006

Time	Chlorophyll a		Chlorophyll b		Chlorophyll c		Carot.		Chl. a/ _{Carot} .		Chl. a/ _{Phaeo} .	Phaeo.	
	Om	4m	Om	4m	Om	4m	Om	4m	Om	4m	Om 4m	Om	4m
0800 -0900 1000 1100 1200 1300 1400	14.578 8.419 14.345 13.695 8.654 6.329 21.479	19.347 6.739 18.231 20.005 14.534 14.996 21.390	1.386 0.532 1.198 1.080 0.812 2.868 2.013	2.111 2.070 1.767 1.599 1.056 1.440 1.922	3.186 1.870 5.234 3.709 2.588 9.488 5.859	5.879 4.008 5.493 8.508 2.860 4.192 4.268	3.410 2.766 5.868 4.679 2.911 0.035 7.109	5.314 1.906 7.412 7.937 4.954 5.655 6.262	4.274 3.043 2.444 2.926 2.972 176.151 3.021	3.640 3.534 2.459 2.520 2.933 2.651 3.415	4.741 10.765 3.460 -4.357 12.751 13.905 8.650 16.660 4.165 3.204 1.666 4.293 13.713 7.048	15.859 8.291 4.402 9.035 7.542 8.464 14.257	16.109 11.444 8.971 6.798 18.147 17.852 23.869
1600 1600 1700 1800 1900	11.751 15.651 16.246 14.518 7.933	22.725 20.156 18.559 13.029 10.629	0.750 1.195 1.662 1.599 0.820	1.706 1.863 1.462 1.248 0.787	2.196 2.171 7.044 5.163 1.634	4.931 5.104 5.489 4.193 0.282	3.166 4.648 5.898 4.558 2.363	6.370 6.079 5.851 3.610 3.474	3.710 3.366 2.754 3.184 3.355	3.567 3.315 3.171 3.608 3.059	4.421 13.520 3.716 11.598 14.289 11.534 8.586 6.023 3.139 0.512	12.328 18.839 5.062 9.663 8.074	14.937 14.392 12.213 11.656 16.128

i de tra

. Nat

Table I-12 (cont.)

FIGURE CAPTIONS FOR CHAPTER I

- Figure I- 1: Map of Delaware Bay showing location of hydrographic and plankton stations.
- Figure I- 2: Seasonal surface temperature values at hydrographic stations.
- Figure I- 3: Distribution of bottom salinity values at transect 1-13 stations sampled in the summer of 1972.
- Figure I- 4: Distribution of bottom salinity values at transect 14-26 sampled in the summer of 1973.
- Figure I- 5: Seasonal cycle of silicate concentrations in surface samples at hydrographic stations.
- Figure I- 6: Seasonal cycle of ortho-phosphate concentrations in surface samples at hydrographic stations.
- Figure I- 7: Seasonal cycle of ammonia concentrations in surface samples at hydrographic stations.
 - Figure I- 8: Seasonal cycle of nitrate plus nitrite concentrations in surface samples at hydrographic stations.
 - Figure I- 9: Seasonal cycle of total chlorophyll a concentrations in surface samples at hydrographic stations.
 - Figure I-10: Seasonal cycle of chlorophyll b concentrations in surface samples at hydrographic stations.

Figure I-ll: Seasonal cycle of chlorophyll c concentrations in surface samples at hydrographic stations.

- Figure I-12: Temperature values during 12-hour cruise of February 20, 1975.
- Figure I-13: Salinity values during 12-hour cruise of February 20, 1975.
- Figure I-14: Dissolved oxygen values during 12-hour cruise of February 20, 1975.

- Figure I-15: Silicate concentrations during 12-hour cruise of February 20, 1975.
- Figure I-16: Nitrate and nitrite concentrations during 12-hour cruise of February 20, 1975.
- Figure I-17: Ammonia concentrations during 12-hour cruise of February 20, 1975.
- Figure I-18: Ortho-phosphate concentrations during 12-hour cruise of February 20, 1975.
- Figure I-19: Total chlorophyll a concentrations during 12-hour cruise of February 20, 1975.
- Figure I-20: Active chlorophyll a concentrations during 12-hour cruise of February 20, 1975.
- Figure I-21: Chlorophyll b concentrations during 12-hour cruise of February 20, 1975.
- Figure I-22: Temperature values during 12-hour cruise of April 14, 1975.
- Figure I-23: Salinity values during 12-hour cruise of April 14, 1975.

- Figure I-24: Dissolved oxygen values during 12-hour cruise of April 14, 1975.
- Figure I-25: Silicate concentrations during 12-hour cruise of April 14, 1975.

Figure I-26: Nitrate and nitrite concentrations during 12-hour cruise of April 14, 1975.

Figure I-27: Ammonia concentrations during 12-hour cruise of April 14, 1975.

Figure I-28: Ortho-phosphate concentrations during 12-hour cruise of April 14, 1975.

Figure I-29: Total chlorophyll a concentrations during 12-hour cruise of April 14, 1975.

Figure I-30: Active chlorophyll a concentrations during l2-hour cruise of April 14, 1975.

Figure I-31: Chlorophyll b concentrations during 12-hour cruise of April 14, 1975.

Figure I-32: Chlorophyll c concentrations during 12-hour cruise of April 14, 1975.

-29

Figure I-1

Figure I-6

зS

Figure I-7

Figure I-11

 \mathcal{A}_{k}

TIME (hours)

Figure I-14

43

、純白

.

€¢.

TIME (hours)

-38

Figure I-21

 $\mathcal{I}_{G}^{n,n}$

. A

Figure I-23

53

TIME (hours)

Figure I-24

Figure I-25

Figure I-26

Figure I-27

Figure I-28

Figure I-29

Figure I-31

II. PHYTOPLANKTON

Dan Bottom Les Watling Ann Pembroke

INTRODUCTION

The coastal region between Cape Cod and Cape Hatteras is composed of a large number of estuaries consisting of coastal salt ponds or large bays. Many of these estuaries are presently receiving the direct environmental effects of domestic and/or industrial pollutants. For many, there are varying amounts of information regarding the population dynamics and energetics of the primary producer components of the system. Unfortunately, no information of this type is available for Delaware Bay phytoplankton.

Studies on the taxonomy and ecology of phytoplankton in Delaware Bay began with the research on dinoflagellates by Martin (1928, 1929), who identified 41 species. He noted that in late summer <u>Amphidinium fusiforme</u> and <u>Gymnodinium</u> spp occasionally produced characteristic red tide blooms. Martin (1928) also felt that summer dinoflagellate populations produced more potential food for larger marine animals that did diatoms. More recent studies in Delaware Bay have largely been concerned with the diatoms and blue-green algae

of the marshes (Obeng-Asamoa, 1968; Sullivan, 1971; Somers, 1973). Near the freshwater end of the bay Raytheon (1975) conducted a 12month study of the net phytoplankton from the Chesapeake and Delaware Canal while two seasonal studies were conducted in coastal waters immediately south of Delaware Bay (Mulford and Norcross, 1971; DuPont, et al., 1972). In the latter region large populations of diatoms were found to dominate the early spring bloom while dinoflagellates dominated the late spring-summer period. Diatoms were again dominant during the winter. In coastal waters north of Delaware Bay Currie (1975) found diatoms to be most abundant in September (826,000 cells/1) with a secondary peak in February (248,000 cells/1) while peaks in dinoflagellate abundance occurred in June and late August (240,000 and 384,000 cells/1, respectively).

Most of the phytoplankton studies conducted in the Cape Cod to Cape Hatteras region have been concerned, until relatively recently, with what is termed the "net phytoplankton" (Smayda, 1973). These are algal cells, such as the diatoms and many dinoflagellates that are strained from the water with a fine mesh net. In the last few years, however, it has become evident that as much as 80% of the total primary production occurring in marine and estuarine waters is generated by those organisms not retained by a fine mesh net (McCarthy, et al., 1974). These are referred to as nannoplankton and are enumerated from small volumes of water collected with water bottle samplers. Net phytoplankton studies are considered to be qualitative while whole water counts are quantitative.

METHODS

Whole water phytoplankton samples were obtained from the three hydrographic and plankton stations (see Fig. I-1, previous chapter) on a once- or twice-monthly basis during the period June 13, 1974 to May 28, 1975. On ten of these cruises, qualitative phytoplankton samples were also taken by towing a #20 net for approximately five minutes. All samples were taken at the surface. Three whole water samples of 25 ml each were obtained from a Niskin water bottle sampler and preserved with Lugol's solution. The remainder of the water sample was then used for nutrient and pigment analysis.

The preserved whole water samples were stored upright in the dark until they could be counted. For counting, the upper 15-20 ml of the sample was carefully removed with a Pasteur pipette. The remaining 5-10 ml was thoroughly stirred by pumping it 10-20 times through a wide bore syringe. When the sample was sufficiently dispersed, it was transferred to a 10 ml counting chamber where it was allowed to settle at least 12 hours before being counted. All cell counts were obtained using a Wild inverted microscope at 600x magnification. At least 25 fields were utilized; beyond that, counting continued until 500 cells or 50 fields had been enumerated. Cells below 3 μ m size were not identified. The fields examined were located by applying random numbers to the microscope stage graduations as coordinates.

Cell counts were converted to cells/ml through the use of the following relationships:

The chamber area = 451 mm^2 ; the field area = 0.052 mm^2 at 600x; and the sample volume = 25 ml; thus,

cells/ml = $\frac{451 \text{ mm}^2}{(0.052 \text{ mm}^2/\text{field}) (No. \text{ fields}) (25 \text{ ml})}$ (cell count).

RESULTS AND DISCUSSION

A total of 126 phytoplankton species were identified from both the net and whole water samples. These were distributed among the major plant groups as follows: Chlorophyta, 10 species; Chrysophyceae, 7; Xanthophyceae, 1; Diatomophyceae (= Bacillariophyceae), 62; Cryptophyceae, 4; Dinophyceae, 35; Euglenophyta, 2; Cyanophyceae, 1; and flagellates of unknown affinity, 4. A complete list of the species

identified is given in Table II-1 and their cell counts in Appendix Table AII-1. The classification scheme used follows Bourrelly (1968, 1970, 1972) for the higher taxa, and Butcher (1964) and Parke and Dixon (1968) for the diatoms and dinoflagellates.

1. Whole Water Samples

×.

The seasonal distribution of phytoplankton species from the whole water samples by major taxa is given in Figure II-1 and Table II-2. The flora was composed primarily of small flagellates during the summer and early fall. In October, the diatoms became dominant and, except during November, remained strongly dominant until May. Of the phytoflagellates, the Cryptophyceae were always present and dominanted the flora when the diatom numbers were reduced.

Seasonal changes in total cells/ml, number of species, and evenness diversity values are given in Table II-3 and Figures II-2 and II-3. The highest species richness occurred in June (38 and 28 species), late August (26), and Decmeber (23 and 24) at Stations 1 and 2, and in June (26), early August (23), and early October (23) at Station 3. Peak values of total cells/ml occurred in the samples taken at Station 3 (10,007) on October 30, 1974, and at Stations 2 (16,350) and 3 (20,681) in March and April of 1975 (Fig. II-2). Lowest numbers of cells/ml occurred in September (1,490) and November (728) 1974 and in May (2,980) 1975. In each case these low densities followed numbers representing bloom conditions.

Diversity was measured using the scaled standard deviation measure of Fager (1972). This is an evenness measure and is highest when the individuals are distributed most evenly over the species in the sample. In the whole water phytoplankton samples, evenness was high in June (0.716) and decreased steadily until November (Table II-3). In December (0.665), evenness was again high (Fig. II-3). During the spring diatom bloom, the evenness values declined slightly, then rose as the bloom abated. It is interesting to note here that, even though

the species composition of the June 1974 and May 1975 samples was considerably different, the cycle of evenness values returned in May 1975 to what it was in June 1974.

The abundances (cells/ml) of the dominant species at Stations 1, 2, and 3 are given in Tables II-4 through II-6. The species included for each station were among the five most abundant species in at least one sample taken at that station during the year. Particularly evident was the shift in dominant species as the seasons' progressed. Those species which were dominant in June 1974 (i.e., <u>C. acuta</u>, <u>Chrysochromulina</u> sp., <u>C. ovalis</u>) were gradually replaced through October (<u>L. danicus</u>, Cryptomonad B, <u>N. seriata</u>), after which there was an entirely new suite of dominants present. This replacement occurred again, especially at Stations 2 and 3, during the early spring of 1975. Only one (<u>C. acuta</u>) of the five most abundant species of June 1974 was among the top five species in May 1975.

Cycles of abundance for the most dominant species over the year are given in Figures II-4 to II-9. These curves showed varying peaks of abundance suggesting again a series of dominance shifts. <u>Calycomonas ovalis</u> (Fig. II-4) was most abundant at Stations 1 and 3 during the late summer months. An abundance peak in spring-early summer with very low winter numbers was exhibited by <u>Pyramimonas</u> sp. A (Fig. II-5). <u>Cryptomonas acuta</u> (Fig. II-6) was nearly always present, but was most abundant during the warmer months. The remaining dominant phytoflagellate, <u>Chrysochromulina</u> sp., was also most abundant in the summer and rarely present during the winter (Fig. II-7). <u>Skeletonema</u> <u>costatum</u> (Fig. II-8) was occasionally present in small numbers during the summer months, but was present in exceedingly high numbers during the late winter-early spring. The one dinoflagellate which appeared in any substantial numbers was <u>Katodinium rotundatum</u> (Fig. II-9) which was most abundant in mid-summer.

To assess the extent to which the samples were similar, cluster analysis techniques were used. This analysis can be used to provide

two types of groupings: a) samples can be grouped according to their species-abundance composition; and b) species can be grouped according to the stations at which they occurred. The first type is referred to as site-groups, the latter as species-groups. Since our plankton stations were occupied over successive time periods, our "site-groups" are also "time-groups." Computational techniques used in this analysis are documented in Appendix I.

The dendrogram of similarities for the whole water samples is given in Figure II-10. The clusters were formed using the Czekanowski coefficient and group-average sorting. Two patterns emerged. First, the three samples taken during any one cruise almost always clustered together, thus indicating that the species composition at all stations is changing continuously between sampling periods. Second, the large, widely separated clusters linked sampling cruises into three contiguous time groups: a) summer, consisting of samples taken from June through September; b) fall, October and November; c) winter-spring, December 1974 through May 1975. This latter group corroborated our earlier ideas on the lack of similarity between the June 1974 and May 1975 samples.

Recurrent species groups were also determined by cluster analysis. The resulting dendrogram is illustrated in Figure II-11 and the groups are listed in Table II-7. Eight species-groups were found using the Czekanowski coefficient and group-average clustering strategy. Groups I, III, V, and VI contained species that appeared in reasonably high numbers during a particular season. In contrast, species in groups II, IV, and VII occurred in low numbers over a short time span. Group VIII species were present at low levels in nearly all samples.

2. Net Phytoplankton

Thirty-nine species of phytoplankton were found in the net survey--seven species of dinoflagellates, 14 centric diatoms, seven pennate diatoms, and 11 unidentified species. Their occurrence is shown in Appendix Table AII-2; the values given are proportions of total cells counted. Those species which comprised $\geq 5\%$ of any sample are listed in Table II-8. The dominant species included 14 diatoms and three dinoflagellates. Usually the dominants were similar between stations during any particular cruise.

Two diatoms, <u>Nitzschia seriata</u> and <u>Guinardia flaccida</u>, were the most frequently important members of the plankton. Figures II-12 and II-13 illustrate their occurrences. The fall-winter dominance of <u>Nitzschia seriata</u> shifted to a bloom of <u>Guinardia flaccida</u> in the spring (February 20 to March 18).

During the 12-hour cruise of February 20, there were nine species which were abundant. <u>Guinardia flaccida</u> was the only species whose population numbers correlated with the tidal cycle (Fig. II-14). Peaks in the population occurred 1-2 hours after both high and low tides suggesting that this species may occur in distinct patches. <u>Guinardia flaccida</u> was again dominant on April 14 during a second 12-hour cruise. During this period, however, population size was totally unrelated to the tidal cycle (Fig. II-14).

Jaccard coefficients and Canberra metric coefficients were calculated to determine the similarity of species composition and abundance, respectively, between sampling cruises and stations within cruises (Table II-9 to II-14). A value <0.600 was considered to indicate significant difference for either coefficient. On this basis, Stations II and III were similar with regard to species composition during five of the ten regular cruises while Stations I and II and I and III were similar only twice (Table II-10). There were only two periods of high similarity of species composition when stations were compared between cruises--i.e., October 15 and 30, 1974 at Station II and October 30 and November 14, 1974 at Station III (Table II-9).

Species composition showed little variation during the 12hour cruise of February 20 with values ≥ 0.600 about 2/3 of the time

(Table II-11). This can be attributed to the fact that there were nine dominant species present at that time. On the other hand, the 12-hour cruise of April 14 exhibited relatively little similarity between samples since there was only one dominant and several rare species.

Å

Jaccard coefficients can be misleading, since the relative abundances of the species are not considered. Relative abundances can be taken into account by applying the Canberra metric coefficient to the species proportions. In Table II-13 the stations were compared for each cruise. Every value was greater than the 0.600 level which indicated that the dominant species for each cruise were usually the same at all stations.

High Canberra metric coefficients were commonly obtained (except for a few cases) when different cruises were compared at each station (Table II-12). At Station I, the cruise of December 13 was dissimilar to the cruises of May 22, 1974, March 18, May 9, and May 28, 1975, which reflected the change of dominance from <u>Nitzschia seriata</u> to <u>Guinardia flaccida</u>. This pattern was not repeated at Stations II and III.

During the 12-hour cruises, Canberra metric coefficients were always high (Table II-14). Those of February 20 were lower than during April 14 due to the overwhelming dominance of one species during the latter cruise. The high values during each of the cruises indicated that tidal stage had little influence on the composition of the dominant species.

3. Habitat Comparisons

The whole water samples in the present study were dominated by dinoflagellates during the summer and early fall with diatoms generally dominant from October through May. The net phytoplankton showed a fall-winter dominance of N. seriata and an early spring

bloom of <u>G. flaccida</u> with the addition of dinoflagellates (e.g., <u>Ceratium tripos</u>) in May. Whole water samples in the Chesapeake and Delaware Canal contained low total numbers in January (c. 6,000 cells/ml which increased gradually to a maximum of 60,000 cells/ml in July; Raytheon, 1975). In this latter study, <u>Achnanthes lanceolata</u>, <u>Melosira granulata</u>, and <u>Fragilaria</u> spp. were dominant in winter to early spring with <u>Chlorella</u> spp., <u>Scenedesmus</u> spp., <u>Calycomonas</u> <u>ovalis</u> and <u>Cyclotella</u> spp. dominant in the summer to early fall.

Net phytoplankton samples in coastal waters south of Delaware Bay indicated the presence of a spring-summer dinoflagellate regime and a winter diatom regime (DuPont, et al., 1972). Ceratium tripos was the primary dinoflagellate and N. seriata, G. flaccida, Thalassiosira sp. and R. alata were dominant among the diatoms. In another net phytoplankton study off Chesapeake Bay species of Ceratium and G. flaccida were important in spring and summer while Chaetoceros, Rhizosolenia, and Skeletonema were most abundant during fall (Mulford and Norcross, 1971). Although there were some similarities with seasonal distributions in the Chesapeake and Delaware Canal, patterns in lower Delaware Bay were more similar to those of the coastal waters. Moreover, even though S. costatum was collected in great numbers at one station during one sampling period (Fig. II-8), this species did not show the type of dominance so characteristic of northeastern United States estuarine and coastal waters (Smayda, 1973; Currie, 1975).

Comparison of the whole water phytoplankton assemblage composition with nutrient levels and zooplankton numbers are given in Chapter IV.

REFERENCES

- Bourrelly, P., 1968. Les Algues D'eau Douce. II. Les Algues jaunes et brunes. Editions N. Boubee et Cie, Paris, 438 pp.
- Bourrelly, P., 1970. Les Algues D'eau Douce. III. Les Algues bleues et rouges. Editions N. Boubee et Cie, Paris, 512 pp.

- Bourrelly, P., 1972. Les Algues D'eau Douce. I. Les Algues Vertes. Editions N. Boubee et Cie, Paris, 572 pp.
- Butcher, R.W., 1959. An introductory account of the smaller algae of British coastal waters. I. Introduction and chlorophyceae. Fisheries Invest. Ser. IV., 74 pp.
- Butcher, R.W., 1964. An introductory account of the smaller algae of British coastal waters. V. Bacillariophyceae. Fisheries Invest., Ser. IV, 317 pp.
- Butcher, R.W., 1967. An introductory account of the smaller algae of British coastal waters. IV. Cryptophyceae. Fisheries Invest., Ser. IV, 54 pp.
- Carpenter, E.J., 1971. Annual phytoplankton cycle of the Cape Fear River Estuary, N.C. Ches. Sci. 12 (2): 95-104.
- Conover, S.A.M., 1956. Oceanography of Long Island Sound, 1952-1954. IV. Phytoplankton. Bull. Bingham Oceanog. Coll. <u>15</u>: 62-112.

- Currie, J.H., 1975. Protoplankton. <u>In</u> Ecological studies in the bays and other waterways near Little Egg Inlet and in the ocean in the vicinity of the proposed site for the Atlantic Generating Station, New Jersey. Ichthyological Associates, Inc., Middletown, Delaware.
- DuPont deNemours, E.I., College of Marine Studies, and Hydroscience, Inc., 1972. Waste dispersion characteristics in an oceanic environment. Draft of a report to the water quality program, Environmental Protection Agency, 393 pp.
- Griffith, Ruth, 1961. Phytoplankton of Chesapeake Bay. An illustrated guide to the genera. Ches. Biol. Lab. Contrib. No. 172, Solomons, Md.
- Marshall, H.G., 1967. Plankton in James River Estuary, Virginia.
 I. Phytoplankton in Willoughby Bay and Hampton Roads.
 Ches. Sci. 8 (2): 90-107.
- Martin, G.W., 1928. Dinoflagellates from marine and brackish waters of New Jersey. Iowa Univ. Stud. Nat. Hist. 12: 1-32.
- Martin, G.W., 1929. Three new dinoflagellates from New Jersey. Bot. Gazette 87: 556-558.
- Mulford, R.A. and J.J. Norcross, 1971. Species composition and abundance of net phytoplankton in Virginia coastal waters, 1963-1964. Ches. Sci. 12 (3): 142-155.
- Obeng-Asamoa, E.K., 1968. Diatom flora associated with salt marsh pools that support the breeding of the salt-marsh mosquito, <u>Aedes sollicitans</u> (Walker) in the State of Delaware. M.S. Thesis, Univ. Delaware, 80 pp.
- Parke, M. and P.S. Dixon, 1968. Check-list of British marine algaesecond revision. J. mar. biol. Ass. U.K. 48: 783-832.

- Patten, B.C., R. Mulford, and J.E. Warinner, 1963. An annual phytoplankton cycle in the lower Chesapeake Bay. Ches. Sci. <u>4</u> (1): 1-20.
- Pomeroy, et al., 1956. Observations in dinoflagellate blooms. Limnol. Oceanogr. <u>1</u>: 54-60.

- Pratt, D.M., 1959. The phytoplankton of Narragansett Bay. Limnol. Oceanogr. <u>4</u> (4): 425-440.
- Raytheon Company, 1975. Delmarva Ecological Survey. Annual Interpretative Report, January through December 1974. Planktonic and Benthic Organisms.
- Somers, G.F., 1973. Role of algae in nutrient cycles in tidal marshes. Proposal to Sea Grant Program of N.O.A.A., Volume II. University of Delaware.
- Sullivan, M.J., 1971. Distribution and ecology of edaphic diatoms in the Canary Creek salt marsh. M.S. Thesis, Univ. Delaware, 95 pp.
- Smayda, T.J., 1973. A survey of phytoplankton dynamics in the coastal waters from Cape Hatteras to Nantucket. <u>In</u> Saila, S.B. (Ed.), Coastal and Offshore Environmental Inventory, Cape Hatteras to Nantucket Shoals. Univ. Rhode Island, Mar. Publ. Ser. No. 2.

Table II-1

List of phytoplankton species obtained in lower Delaware Bay

Division Chlorophyta Class Chlorophyceae Order Volvocales Family Pyramimonaceae Pyramimonas sp. A Pyramimonas sp. B Family Tetraselmiaceae Tetraselmis sp. A Family Chlamydomonadaceae Chlamydomonas sp. A Brachiomonas submarina Bohlin 1897 Order Chlorococcales Family Oocystaceae Ankistrodesmus sp. Kirchneriella sp. Family Scenedesmaceae Scenedesmus sp. Family Unknown Chlorococcales sp. A **Class Prasinophyceae** Order Unknown Prasinophyte sp. A Division Chromophyta Class Chrysophyceae Subclass Heterochrysophysidae Order Chromulinales Family Chrysococcaceae Calycomonas ovalis Wulff 1919 Family Pedinellaceae Pseudopedinella pyriforme Carter 1937 Order Ochromonadales Family Ochromonadaceae Ochromonas sp. Family Synuraceae Catenochrysis (=Chrysodidymus) gracilis (Prowse 1962) Ebria tripartita (Schumann) Lemmermann 1899 Subclass Isochrysophycidaceae Order Prymnesiales Family Prymnesiaceae Chrysochromulina sp. Family Coccolithaceae Coccolithaceae sp.

Class Xanthophyceae Order Heterochloridales. Family Heterochloridaceae Olisthodiscus sp. Class Diatomophyceae (= Bacillariophyceae) Subclass Centrophycidae Order Coscinodiscales Family Coscinodiscaceae Paralia sulcata Cleve 1873 Coscinodiscus lineatus Ehrenberg 1838 Coscinodiscus radiatus Ehrenberg 1839 Coscinodiscus sp. Thalassiosira nordenskioldii Cleve 1873 Thalassiosira ? gravida Cleve 1896 Thalassiosira sp. A Skeletonema costatum (Greville) Clark 1878 Planktoniella sol (Wallich) Schutt 1893 Cyclotella sp. Family Actinodiscaceae Actinoptychus undulatus (Bailey) Ralfs 1861 Order Rhizosoleniales Family Rhizosoleniaceae Rhizosolenia alata Brightwell 1858 Rhizosolenia delicatula Cleve 1900 Rhizosolenia fragilissima Bergon 1903 Rhizosolenia stolterfothii Peragallo 1888 Rhizosolenia setigera Brightwell 1858 Rhizosolenia styliformis Brightwell 1858 Family Leptocylindraceae Leptocylindrus danicus Cleve 1889 Leptocylindrus minimus Schroderella delicatula Pavillard 1913 Guinardia flaccida (Castr.) H. Peragallo 1892 Detonula confervacea (Cleve) Gran 1900 Order Biddulphiales Family Biddulphiaceae Biddulphia granulata Roper 1859 Biddulphia regia Biddulphia favus (Ehrenberg) V. Heurck 1883 Biddulphia sp. Biddulphia rhombus (Ehrenberg) W. Smith 1856

Table II-1 (cont.)

Family Biddulphiaceae (cont.) Cerataulina bergonii Peragallo 1892 Lithodesmium undulatum Ehrenberg 1840 Streptotheca thamensis Shrubsole 1890 Ditylum brightwelli (West) Grunow 1880-1885 Family Chaetoceraceae Chaetoceros decipiens Cleve 1873 Chaetoceros simplex Chaetoceros sp. A Chaetoceros sp. Order Fragilariales Family Fragilariaceae Fragilaria oceanica Cleve 1873 Raphoneis amphiceros Ehrenberg Asterionella japonica Cleve 1882 Synedra sp. Thalassionema nitzschioides Grunow 1880-1885 Grammatophora marina (Lyngbye) Kutzing 1819 Plagiogramma vanheurckii Grunow 1880-1885 Thalassiothrix frauenfeldii Grunow 1880 Order Achnanthales Family Achnanthaceae Cocconeis sp. Order Naviculales Suborder Naviculineae Family Naviculaceae Navicula sp. A Navicula sp. B Navicula sp. C Navicula sp. D Navicula sp. E Navicula membranacea Cleve 1897 Navicula septentrionalis (Grunow) Cleve 1896 Navicula sp. Diatom 1-E Diploneis sp. Gyrosigma spenceri (Quekett) Cleve 1894 Pleurosigma sp. Family Cymbellaceae ? Phaeodactylum tricornutum Amphora sp.

Construction of the second s

Table II-1 (cont.)

Family Bacillariaceae <u>Cylindrotheca</u> (= <u>Nitzschia</u>) <u>closterium</u> (Ehrenberg) <u>Nitzschia seriata</u> Cleve 1883 Suborder Surirellineae Family Surirellaceae <u>Surirella</u> sp. Order Unknown Pennatae sp. Division Pyrrhophyta Class Cryptophyceae Order Cryptomonadales Family Cryptomonadacea

Cryptomonas acuta Butcher 1967

Chroomonas sp.

Family Unknown

Cryptomonad B

Cryptomonad C

Class Dinophyceae

Order Prorocentrales

Prorocentrum minimum Schiller 1933 Prorocentrum scutellum Schroeder 1901 Prorocentrum micans Ehrenberg 1833 Exuviaella compressa Ostenfeld 1899 Exuviaella baltica Lohmann 1908 Exuviaella apora Schiller 1918 Exuviaella sp.

Order Peridiniales

Family Gymnodiniaceae

Ty dymnod mildeede
Gymnodinium ? roseostigma Campbell 1973
Gymnodinium ? aurantium Campbell 1973
Gymnodinium ? simplex (Lohmann) Kofoid and
Swezy 1921
Gymnodinium ? arcticum Wulff 1916
Gymnodinium ? punctatum Pouchet 1887
<u>Gymnodinium</u> sp. A
<u>Gymnodinium</u> sp. B
<u>Gymnodinium</u> sp.
<u>Katodinium</u> rotundatum (Lohmann) Conrad
1927
<u>Gyrodinium</u> ? <u>carteretensis</u> Campbell 1973
<u>Gyrodinium</u> spirale (Bergh) Kofoid and
Sweży 1921
<u>Gyrodinium</u> ? <u>metum</u> Hulburt 1957
Gyrodinium ? grossestriatum Campbell 1973

Family Peridiniales (cont.) Gyrodinium sp. A Gyrodinium sp. Family Noctilucaceae Noctiluca scintillans Macartney 1836 Family Glenodiniaceae Glenodinium danicum Paulsen 1907 Glenodinium rotundum (Lebour) Schiller 1937 Family Peridiniaceae Peridinium trochoideum (Stein) Lemmerman 1910 Peridinium depressum Bailey 1855 Family Gonyaulacaceae Gonyaulax spinifera (Claparede and Lachmann) Diesing 1865 Family Ceratiaceae Ceratium tripos (O.F. Muller) Nitzsch 1817 Ceratium furca (Ehrenberg) Claparede and Lachmann 1858-1861 Ceratium fusus (Ehrenberg) Dujardin 1841 Ceratium macroceros (Ehrenberg) Cleve 1900 Family Warnowiaceae Warnowia (= Pouchetia) sp. Order Dinophysiales Family Dinophysiaceae Dinophysis (= Phalacroma) sp. Order Unknown Dinoflagellate A

Division Euglenophyta Class Euglenophyceae Order Euglenales Family Eutreptiaceae <u>Eutreptia</u> sp.

Family Euglenaceae Euglena sp. A

Division Procaryota Class Cyanophyceae

Cyanophyceae sp. A

÷.

Table II-1 (cont.)

Incertae sedis

unidentified flagellate <5µ PZ-10 flagellate silicoflagellate Flagellate D

Table II-2

Composition of flora by class, all samples combined for each sampling date

	6/13/74	6/20/74	7/19/74	8/ 1/74	8/21/74	9/17/74	10/15/74	10/30/74	11/14/74
Diatomophyceae (# Species) (# Ind.) (Prop.)	22 5235 .262	20 5668 .428	12 554 .034	11 1354 .149	22 6832 .552	15 1224 .228	20 8255 .870	8 15,927 .807	15 279 .114
	12/13/74	1/16/75	2/20/75	3/18/75	4/14/75	5/ 9/75	5/28/75		an a
	18 2307 .651	17 5477 .800	12 4203 .867	19 39,436 .932	11 7247 .834	15 2054 .215	13 3825 .218		
	6/13/74	6/20/74	7/19/74	8/ 1/74	8/21/74	9/17/74	10/15/74	10/30/74	11/14/74
Dinophyceae (# Species) (# Ind.) (Prop.)	12 892 .045	8 470 .035	4 5887 .366	7 397 .044	4 220 .018	7 98 .018	4 37 .004	7 103 .005	4 56 .023
	12/13/74	1/16/75	2/20/75	3/18/75	4/14/75	5/ 9/75	5/28/75		
	5 195 .055	1 42 .006	2 60 .012	3 192 .004	3 56 .006	6 397 .041	4 748 .043		
	6/13/74	6/20/74	7/19/74	8/ 1/74	8/21/74	9/17/74	10/15/74	10/30/74	11/14/74
Cryptophyceae (# Species) (# Ind.) (Prop.)	2 4557 .228	2 3054 .230	2 6073 .378	2 3764 .414	1 2023 .164	2 2157 .403	1 465 .048	2 3048 .154	2 1851 .785

Table II- 2 (cont.)

				Sa	ample Dates	5			· · · · · · · · · · · · · · · · · · ·
	12/13/74	1/16/75	2/20/75	3/18/75	4/14/75	5/ 9/75	5/28/75		
Cryptophyceae (cont.)	2 701 .198	3 500 .073	1 426 .088	1 856 .020	4 487 .056	3 4913 .513	3 8381 .478		
	6/13/74	6/20/74	7/19/74	8/ 1/74	8/21/74	9/17/74	10/15/74	10/30/74	11/14/74
Chlorophyta (# Species) (# Ind.) (Prop.)	6 4912 .246	3 1911 .144	3 1595 .099	3 780 .086	4 182 .015	2 312 .058	1 7 .001		1 14 .006
	12/13/74	1/16/75	2/20/75	3/18/75	4/14/75	5/ 9/75	5/28/75		
	2 97 .027	1 7 .001	1 30 .006	2 25 .002	1 14 .002	3 977 .102	6 1262 .072		
	6/13/74	6/20/74	7/19/74	8/ 1/74	8/21/74	9/17/74	10/15/74	10/30/74	11/14/74
Chrysophyceae (# Species) (# Ind.) (Prop.)	5 4227 .212	4 2139 .159	3 1889 .117	3 2628 .289	3 2834 .229	2 1477 .276	2 146 .015	1 103 .005	4 63 .026
	12/13/74	1/16/75	2/20/75	3/18/75	4/14/75	5/ 9/75	5/28/75	an a	
	5 119 .034	2 42 .006	2 99 .020	1 14 .001		2 21 .002	3 130 .007		

Table II-2 (cont.)

		6/13/74	6/20/74	7/19/74	Sar 8/ 1/74	nple Dates 8/21/74	9/17/74	10/15/75	10/30/74	11/14/74
Euglenophytae (# Species) (# Ind.) (Prop.)			1 8 .001	1 56 .003	1 179 .020	1 266 .021	1 90 . 017			
		12/13/74	1/16/75	2/30/75	3/18/75	4/14/75	5/ 9/75	5/28/75		
	 	1 14 .004	1 7 .001					2 60 .003		
		6/13/74	6/20/74	7/19/74	8/ 1/74	8/21/74	9/17/74	10/15/75	10/30/74	11/14/74
Xanthophyceae (# Species) (# Ind.) (Prop.)	•	-		1 28 .002		• • • • • • • • • • • • • • • • • • •		-	· · · · · · · · · · · · · · · · · · ·	- - -
an a	х	12/13/74	1/16/75	2/30/75	3/18/75	4/14/75	5/ 9/75	5/28/75		
			-	- - -	- 		- -	-		
		6/13/74	6/20/74	7/19/74	8/ 1/74	8/21/74	9/17/74	10/15/75	10/30/74	11/14/74
Cyanophyceae (# Species) (# Ind.) (Prop.)			-	-		- - -		- - -		- - -

Table II-2 (cont.)

		· .		S	ample Date	S			
	12/13/74	1/16/75	2/30/75	3/18/75	4/14/75	5/ 9/75	5/28/75		
Cyanophyceae (cont.)		1 748 .109	 	1 1662 .039	1 486 .056	1 1213 .127	1 1514 .086		
	6/13/74	6/20/74	7/19/74	8/ 1/74	8/21/74	9/17/74	10/15/74	10/30/74	11/14/74
Unknown flagella (# Species) (# Ind.) (Prop.)	tes 1 162 .008		ی بر می بر می بر می	- - -			1 582 .061	1 563 .029	1 180 .074
	12/13/74	1/16/75	2/30/75	3/18/75	4/14/75	5/ 9/75	5/28/75		
	1 111 .031	1 21 .003	1 30 .006	1 116 .003	1 403 .046		1 1627 .093		

					1.									
				Station I					tion II		Station III			
Cruise No.	Da	te	No.	Species	Total cells/ml	SDN	No.	Species	Total cells/ml	SDN	No.	Species	Total cells/ml	SDN
4 5 6	June June July	13 20 19		38 26 15	8570 3551 7731	.644 .663 .520		28 26 15	7468 5426 5142	.716 .572 .618		32 26 19	3945 4476 3209	.665 .492 .583
7 8 9	Aug. Aug. Sept.	1 21 17	•	19 26 14	4249 3830 1915	.437 .534 .661		- 26 19	3631 1490	- .561 .477		23 21 19	4789 4897 1947	.543 .565 .516
10 11 12	Oct. Oct. Nov.	15 30 14		17 10 13	3112 4414 852	.255 .325 .098		19 12 13	2744 5326 859	.372 .168 .201		23 13 12	3631 10007 728	.361 .189 .299
13 14 15	Dec. Jan. Feb.	13 16 20		23	1310	.649 .463		24 22 19	1317 2980 4847	.627		22	2564	.665
16 17 18 19	March April May May	18 14 9 28	,	19 - 15 21	5267 - 3119 5560	.480		15 21 24 22	16350 8689 2980 5945	.187 .439 .564 593		19 - 19 26	20681 - 3472 6040	.182
• •								··						

Table II-3

Number of species, total cells/ml, and evenness of nannoplankton at each station by sampling period
Abundance (cells/ml) of the dominant species at Station I

(each species was among the top five in at least one sample)

	Sample Dates									
Species	6/13/74	6/20/74	7/19/74	8/ 1/74	8/21/74	9/17/74	10/15/74	10/30/74		
Cryptomonas acuta	2306	722	1929 ²	2300	722 ³	472	139 ²	929 ²		
Prasinophyte A	17132	4402	180	2702		- 1		- A		
Calycomonas ovalis	1037^{3}_{1}	695 ⁴	208	826 ²	1274	3052	21	83 ⁴		
Phaeodactylum tricornutum	792 ⁴	46	- A	- 1	-	319 ⁵	— ,	· -		
Pyramimonas sp. A	454 ⁵	74,	500 ⁴	1434	28	180 ⁰	Тс	-		
Rhizosolenia fragilissima	56	681 s	-	26	-	-	972	· · ·		
Unidentified flagellate	162	199 ⁵	- 1	·	-	-	1113			
Katodinium rotundatum	-	⁻	3345	133	85	- 2	- -	14		
Chroomonas sp.	-	65	9445	56 ₅	_	3614		 * *		
Chrysochromulina sp.	398	176	305 ⁵	143 ⁵	21,	56	-	-		
Skeletonema costatum	-	28	-	-	1083	- ¹	69			
Asterionella japonica	190		-	5	142 ⁴	-	·21,	- 1		
Leptocylindrus danicus	-	5	-	-	855	· – .	2280	2959'		
Cyclotella sp.	431	120	42	-		14	1044			
Flagellate PZ-10	-	-		-	-	, – , ,	· 🗕	263 ₅		
Cryptomonad B	· · · · ·	-	. .	-	e 🚣 🗠 S	-		76		
Thalassiosira sp. A	-	-	-	-	-	-	· · · ·			
Nitzschia seriata	· •	<i>.</i> 9 .	· —	· · · · ·	- 78	··· –	49	55		
Cyanophyceae sp. A	· · · ·	- 1	-	-	-	, ¹ - .		-		
Leptocylindrus minimus		-	-		-	-	.	_ '.		
Flagellate D	4. s	_		· · · ·	-		· 🗕	-		

Table II-4 (cont.)

87

			. · · · ·	Sample	e Dates			
Species	.11/14/74	12/13/74	1/16/75	2/20/75	3/18/75	4/14/75	5/ 9/75	5/28/75
<u>Cryptomonas</u> acuta	700 ¹	215 ²	1114	· · · ·	1474		1665	740 ²
Prasinophyte A	·	· · · ·	- · ·					
Calycomonas ovalis	7	-	7 .					23
Phaeodactylum tricornutum	-	, - .	-484				~ ~	12
Pyramimonas sp. A	7 '	7		•			256 [°]	474
Rhizosolenia fragilissima		7	·					
Unidentified flagellate			-		3468			
Katodinium rotundatum		28	21		11		139	46,
Chroomonas sp.	6.00 0				·		1344'	1653
Chrysochromulina sp.	7	14,	· · · · · · · · · · · · · · · · · · ·		- 1	•	-956-M	23
Skeletonema costatum	, teas	236	665 ¹		2268 ¹		mini	69
Asterionella japonica		21	21		84 ⁵		21	-
Leptocylindrus danicus	7	-	-		11			· •••
Cyclotella sp.	7.						*14	243
Flagellate PZ-10	422	55 ⁵	 	· · · · · · · · · · · · · · · · · · ·	74			
Cryptomonad B	35 ³		.		-0			~ ^
Thalassiosira sp. A		104^{3}_{4}	215 ²		1229 ²		42	670 ³
Nitzschia seriata	ice th	764	7.				~0	,
Cvanophyceae sp. A			208 ³		1176 ³	2	624^{2}	509 ⁵
Leptocylindrus minimus							2494	
Flagellate D		-	21		694			6704

* = rank of species within sample

Abundance (cells/ml) of the dominant species at Station II

		Sample Dates								
Species	6/13/74	6/20/74	7/19/74	8/ 1/74	8/21/74	9/17/74	10/15/74	10/30/74		
Cryptomonas acuta	1491]*	7353	6734	1	5683	638	1323	530^{2}		
Prasinonhyte A	12362	8182	_070		14	-				
Chrysochromulina sp.	8943	2915	286		14.	42	7	_		
Calvcomonas ovalis	806-	7074	734 ³		1804	416^{2}	55	20		
Phaeodactylum tricornutum	6115	21-		· · ·	-	125^{3}				
Rhizosolenia fragilissima	116	2024	· · ·		14		765	-		
Katodinium rotundatum		90	1693		21	. 7.				
Chroomonas sp.	125	-	10512							
Pyramimonas sp. A	352	236	3675		35-	14	- n	(em)		
Skeletonema costatum	51				1095	· • ••••	1184	-		
Asterionella japonica	-	7	_		$1060_{\rm F}^2$		49	. · ·		
Euglena sp. A	real-				166 ⁵	14,	-	-		
Thalassionema nitzschioides	. –		31		97	55	- 1			
Leptocylindrus danicus		a	-		14	49 ⁵	1691	4386		
Unidentified flagellate		-	_	• .	· • *	· · · ·	187	· - _		
Cryptomonad B		***	-			·		153		
Flagellate PZ-10	-						· · · · -	133 ⁴		
Nitzschia seriata	14	21			21	_	76	405		
Fragilaria oceanica	â	-			-			د. معرف بر معرف		
Thalassiosira sp. A		-			· · · · · · · · · · · · · · · · · · ·	· • •	- · · ·	· · -		
Cyanophyceae sp. A	-		-		-	-	-			
Flagellate D						-	· · · · ·	·		
Leptocylindrus minimus		-	-			-	_			
Guinardia flaccida	-	.			-		· •			

Table II-5 (cont.)

	•			Sample	e Dates			
Species	11/14/74	12/13/74	1/16/75	2/20/75	3/18/75	4/14/75	5/ 9/75	5/28/75
<u>Cryptomonas</u> acuta	631 ¹	180 ³	139 ⁴	426 ³	278 ⁴	167	118	598 ³
Prasinophyte A	licegia					. 	-	
Chrysochromulina sp.	7.	7568	turi .	-		· •••	14	48
Calycomonas ovalis	21	7	14	30	14		via	
Phaeodactylum tricornutum	1.000	, un ,	·	-				36
Rhizosolenia fragilissima	· · · ·	7			·		-	
Katodinium rotundatum		42	7	50	97	14-	49,	120,
Chroomonas sp.	-		· · · ·			264 ⁵	1213	1926
Pyramimonas sp. A	7	62 ⁵	7,	30,		14,	3534	167
Skeletonema costatum		388	1733	2250 ¹	13269 ¹	3984 ¹	21	132
Asterionella japonica		7	35	99 ⁵	194	14	7	12
Euglena sp. A	467 4 .	7	. 7.	çûn:				-
Thalassionema nitzschioides	***	14	-	1. 				· • ••*•
Leptocylindrus danicus		5	7	skre	-			-
Unidentified flagellate		aput			34-0			
Cryptomonad B	· · · · · · · · · · · · · · · · · · ·	-	14	~		6470	. ·	404
Flagellate PZ-10	55 ³	35,		30	28	-		
Nitzschia seriata	° 0	1254	55 ⁰	*** <i>л</i>			Dijeri	
Fragilaria oceanica	83 ²	35,	140	109^{4}_{2}	4303	-		24
Thalassiosira sp. A		201^2	5542	16154	1513	29012	83,	5864
Cvanophyceae sp. A			2703	Naca	250 ⁵	486	2154	742^{2}_{r}
Flagellate D	-					403 ⁴	~ ^	574 ⁵
Leptocylindrus minimus		-				-	270^{3}_{r}	
Guinardia flaccida		55	000	10	97	139	173 ⁵	36

* = rank of species within sample

Ta	b1	е	II	-6	

Abundance (cells/ml) of the dominant species at Station III

				Sample	Dates		•	
Species	6/13/74	6/20/74	7/19/74	8/ 1/74	8/21/74	9/17/74	10/15/74	10/30/74
Asterionella japonica	9772	- 5	-1	-2	6142	~ 7	42,	- 2
Cryptomonas acuta	6162	178	416 ⁴	1398	733	686	1944	8884
Calycomonas ovalis	532 ₄	76	104_{5}^{3}	1591	1318 ⁴	6442	49	-
Chrysochromulina sp.	431	161	1045	48	20	7,	14	
Phaeodactylum tricornutum	366	25,	21	-1		1665		·· <u> </u>
Rhizosolenia fragilissima	69	1802	7,	174 ⁴	10	-	55	
Chroomonas sp.	· –	13542	1060	10	· · · · ·			-
<u>Pyramimonas</u> sp. A	93	330	5132	96 ₅	40	21	7	-
<u>Katodinium</u> rotundatum	-	195 ⁻⁷	728 ⁴	1543	30	879	· · · ·	-
<u>Cerataulina bergonii</u>	9	34	-	790	T		62,	ew2.
<u>Skeletonema</u> costatum	79	17			1566 ¹	-	215	
<u>Paralia</u> <u>sulcata</u>	-	17	21		995	49,	28	
<u>Cyclotella</u> sp.	273	· 🕳		10		1045	83	-
Prasinophyte A	199	· •	Jama	106	30	975	-1	-1
Leptocylindrus danicus		-				21	2259	8078'
Unidentified flagellate		-	· · · · ·	·	itine .	-	2845	- ₁
Nitzschia seriata	9	-	-		30		1117	1807
Cryptomonad B		· · · ·	tion .	-		· •	-	4725
Flagellate PZ-10	-		-	· -		-	-	1675
Cryptomonad C	-	-			· •	-	_	
<u>Thalassiosira</u> sp. A	· ·	· · · ·		· · · · · · · · · · · · · · · · · · ·	-	<u> -</u>	-	· –
Cyanophyceae sp. A		· · · ·		<u>-</u>		- ⁻	_	 *
<u>Fragilaria oceanica</u>	. '	-		· •	-	- , ,	-	-
Guinardia flaccida	•		·			<u> </u>	-	
Flagellate D			· · · · · ·		 ,	· · · · · · · · · · · · · · · · · · ·	-	•

Table II-6 (cont.)

9

				Sample	Dates			
Species	11/14/74	12/13/74	1/16/75	2/20/75	3/18/75	4/14/75	5/ 9/75	5/28/75
<u>Asterionella japonica</u>	-1	7,	69 ₄	1 - 11	1394		145	-3
Cryptomonas acuta	171'	243'	180		431	•••• ·	180~	598
<u>Calycomonas</u> ovalis	-	7		-	875			
Chrysochromulina sp.		-	-			-		24
Phaeodactylum tricornutum	14		-	-028		· · · · · ·	-	24
<u>Rhizosolenia</u> fragilissima	1 	14		· •			14 ₁	- ₁
Chroomonas sp.		. 	-		-	6 2 5	1719	1926 '
<u>Pyramimonas</u> sp. A		145	14		14	·	222	490
Katodinium rotundatum	21	907	14		56	· • •	97	60
Cerataulina bergonii	 '	~ ?	- 1		14		139	72
Skeletonema costatum		215	1234	-	16795'		· · · ·	167
Paralia sulcata	7	35			56	а. • ман		96
Cyclotella sp.		, may	7	, Kabur	<u>میں</u>	-	· · · · · · · · · · · · · · · · · · ·	
Prasionophyte A				سيون	-	-		
Leptocylindrus danicus	-	7			14	aca.	Deni	
Unidentified flagellate	-	-2	8000	. 	. 			. East
Nitzschia seriata		229 ²	21		-			ction .
Cryptomonad B	-2		- .			-		
Flagellate PZ-10	835	21	-	· ••••	14	. –		
Cryptomonad C	49	14,	352	£5 4			69	275 ₁
<u>Thalassiosira</u> sp. A	14	146	603 ⁴		2040 ²	10.40	492	5867
Cyanophyceae sp. A	-	-	2705		2363	, 2-	374	742 ²
Fragilaria oceanica	. eka	-	76	·	527		-1	
Guinardia flaccida		42	-	-	125	2009	2087	48 _c
Flagellate D					-	-		574

* = rank of species within sample

Primary producers recurrent species groups

I. Summer Dominants:

Cryptomonas acuta Calycomonas ovalis Chrysochromulina sp. Pyramimonas sp. A Katodinium rotundatum Chroomonas sp. <u>Cerataulina bergonii</u> <u>Prasinophyte</u> A <u>Rhizosolenia fragilissima</u> <u>Phaeodactylum tricornutum</u> <u>Cyclotella sp.</u>

II. Summer Subdominants:

Pseudopedinella pyriforme Tetraselmis sp. A Prorocentrum minimum <u>Gymnodinium</u> sp. A <u>Navicula</u> sp. C

III. Fall Dominants:

<u>Navicula</u> sp. D <u>Gyrodinium spirale</u> Navicula septentrionalis

IV. Fall Subdominants:

<u>Ochromonas</u> sp. Fragilaria oceanica

V. Winter-Early Spring Dominants:

Thalassiosira sp. A Cyanophyceae sp. A Guinardia flaccida

VI. Spring Dominants:

<u>Gyrodinium</u> sp. A Flagellate D

VII. Spring Subdominants:

<u>Rhizosolenia</u> <u>setigera</u> <u>Rhizosolenia</u> <u>delicatula</u> <u>Chaetoceros</u> sp. <u>Ceratium</u> <u>tripos</u> Ankistrodesmus sp. Prorocentrum scutellum coccolith sp.

Leptocylindrus minimus

VIII. Year-Round Subdominants:

<u>Coscinodiscus</u> sp. <u>Synedra</u> sp. Paralia sulcata <u>Euglena</u> sp. A <u>Navicula</u> sp. B Navicula sp.

Leptocylindrus danicus

<u>Asterionella japonica</u> Skeletonema costatum

Flagellate PZ-10

Cryptomonad C

<u>Cryptomonad</u> B Nitzschia seriata

Net phytoplankton species whose abundance was greater than 5% of a sample

5/9/74 Station 1:	Proportion	10/15/74 Station 1:	Proportion
<u>Ceratium tripos</u> <u>Thalassiosira</u> spp. <u>Asterionella japonica</u> <u>Rhizosolenia setigera</u> <u>Chaetoceros</u> sp. D	.327 .316 .167 .094 .063	<u>Rhizosolenia delicatula</u> <u>Nitzschia seriata</u> <u>Chaetoceros</u> sp. B Station 2:	.491 .383 .099
Station 2:		<u>Nitzschia seriata</u> <u>Chaetoceros</u> sp. B	.726 .104
Asterionella japonica Rhizosolenia setigera Ceratium tripos Thalassiosira spp. Biddulphia granulata	.341 .249 .211 .111 .051	<u>Coscinodiscus</u> spp. Station 3: Nitzschia seriata	.069 .420
Station 3:		Rhizosolenia delicatula Chaetoceros sp. B	.356 .154
Asterionella japonica Rhizosolenia setigera Thalassiosira spp. Ceratium tripos	.482 .207 .126 .104	10/30/74 Station 1: <u>Nitzschia seriata</u>	.540
sp. H 5/22/74	.057	Noctiluca sp. Station 2:	.430
Ceratium tripos	.937	<u>Noctiluca</u> sp. Nitzschia seriata	.497 .482
Station 2:		Station 3:	
<u>Asterionella japonica</u> Ceratium <u>tripos</u>	.595 .311	<u>Rhizosolenia delicatula</u> <u>Nitzschia seriata</u>	.761 .223
Station 3:		11/14/74 Station 2:	
<u>Asterionella japonica</u> <u>Ceratium tripos</u> <u>Nitzschia seriata</u> <u>Biddulphia granulata</u>	.563 .259 .096 .071	<u>Noctiluca</u> sp. <u>Guinardia</u> <u>flaccida</u> Station 3:	.843 .073
		Noctiluca sp.	.912

93

§.

Table II-8 (cont.)	
12/13/74 Station 1:	Proportion
<u>Nitzschia seriata</u> Guinardia flaccida	.858 .123
Station 2:	
<u>Nitzschia seriata</u> <u>Guinardia</u> flaccida	.740 .212
Station 3:	
<u>Nitzschia seriata</u> Guinardia flaccida	.822 .146
1/16/75 Station 1:	
<u>Nitzschia seriata</u> <u>Thalassiothrix frauenfeldi</u> <u>Asterionella japonica</u> <u>Thalassionema</u> nitzschioide	.591 <u>i</u> .124 .116 s.108
Station 2:	
<u>Skeletonema costatum</u> <u>Thalassiothrix frauenfeldi</u> <u>Thalassionema nitzschioide</u> <u>Nitzschia seriata</u>	.496 .229 .093 .088
Station 3:	
<u>Nitzschia seriata</u> Thalassiothrix frauenfeldi Thalassionema nitzschioide Biddulphia granulata	.483 <u>i</u> .204 <u>s</u> .137 .069

2/20/75 Station 20700:	Proportion ·
Asterionella japonica	.378
Guinardia flaccida	.268
Nitzschia seriata	.110
sp. E	.069
Thalassionema nitzschioide	s059
0800:	
<u>Nitzschia seriata</u>	.339
<u>Asterionella japonica</u>	.281
<u>Thalassiothrix frauenfeldi</u>	<u>i</u> .085
<u>Thalassionema</u> <u>nitzschioide</u>	<u>s</u> .071
<u>Ceratium fusus</u>	.063
0900:	
<u>Nitzschia seriata</u>	.443
<u>Asterionella japonica</u>	.177
<u>Thalassionema nitzschioide</u>	<u>s</u> .079
<u>Thalassiothrix frauenfeldi</u>	i059
1000:	
<u>Asterionella japonica</u>	.394
<u>Rhizosolenia delicatula</u>	.186
Nitzschia seriata	.176
1100:	
<u>Nitzschia seriata</u>	.372
<u>Asterionella japonica</u>	.202
<u>Thalassiosira</u> spp.	.095
<u>Ceratium fusus</u>	.059
1200:	
Asterionella japonica	.300
Guinardia flaccida	.263
Nitzschia seriata	.154
Thalassiosira spp.	.072
Rhizosolenia delicatula	.061

74	9	4	
----	---	---	--

Table II-8 (cont.)

2/20/75 (cont.) Station 21300:	Proportion	1800:	Proportion
<u>Guinardia flaccida Asterionella japonica Nitzschia seriata Thalassiosira spp. Rhizosolenia delicatula</u>	.305 .261 .147 .101 .055	Asterionella japonica Nitzschia seriata Biddulphia granulata Thalassiosira spp. Thalassionema nitzschioide Ceratium fusus	.283 .227 .131 .067 <u>s</u> .067 .051
1400:		<u>Thalassiothrix</u> frauenfeldi	<u>i</u> .051
<u>Nitzschia seriata</u> <u>Asterionella japonica</u> <u>Thalassiothrix frauenfeldi</u> Thalassiosira spp.	.325 .244 <u>i</u> .108 .101	1900: <u>Asterionella japonica</u> Thalassiothrix frauenfeldi	.323 i .155
Thalassionema nitzschioide sp. H	s.098 .088	Nitzschia seriata Guinardia flaccida Thalassionema nitzschioide Biddulphia grapulata	.141 .115 s068
Nitzschia seriata	.243	<u>Thalassiosira</u> spp.	.052
Asterionella japonica Thalassionema nitzschioide Thalassiothrix frauenfeldi	.222 <u>s</u> .134 <u>i</u> .086	3/18/75 Station 1:	
<u>Ihalassiosira</u> spp. 1600:	.061	<u>Guinardia flaccida</u> <u>Thalassiosira spp.</u> <u>Nitzschia seriata</u> <u>Asterionella japonica</u>	.433 .221 .120 .114
<u>Thalassiothrix frauenfeldi</u> <u>Nitzschia seriata</u> Biddulphia granulata	<u>i</u> .521 .144 .113	Station 2:	• 1 1 7
sp. D 1700:	.082	<u>Guinardia flaccida</u> <u>Skeletonema costatum</u> <u>Thalassiosira</u> spp. Nitzschia seriata	.383 .347 .160 .051
Asterionella japonica Thalassiothrix frauenfeldi Nitzschia seriata	.337 <u>i</u> .128 124	Station 3:	
<u>Guinardia flaccida</u> <u>Thalassiosira</u> spp.	.112 .095	<u>Skeletonema costatum</u> <u>Guinardia flaccida</u> <u>Thalassiosira</u> spp.	.557 .192 .184

<u>9</u>5

Table II-8 (cont.)			
4/14/75 Station 20800:	Proportion	5/9/75 Station 1:	Proportion
Guinardia flaccida	.839	<u>Guinardia</u> <u>flaccida</u>	.984
	. 125	Station 2:	
0900:		Guinardia flaccida	.915
<u>Guinardia</u> <u>flaccida</u>	.876	Station 3:	
1000:		Cuivendie fleeside	045
<u>Guinardia</u> <u>flaccida</u>	.932	Guinardia Tlaccida	.945
1100:		5/28/75 Station 1:	
<u>Guinardia</u> <u>flaccida</u>	.881	<u>Ceratium</u> tripos	.559
1200:		sp. M Ceratium fusus	.263
Guinardia flaccida	883	Guinardia flaccida	.055
sp. E	.065	Station 2:	
1300:		<u>Ceratium</u> tripos	.299
Guinardia flaccida	.957	<u>Ceratium fusus</u> Rhizosolenia alata	.134 .116
1400.		sp. M Guinardia flaccida	.113
	001	Biddulphia granulata	.079
Thalassiosira spp.	.081	Station 3:	
1500:		Ceratium tripos	.263
Guinandia flaccida	021	Biddulphia granulata	.161
	. 501	Rhizosolenia setigera	.087
1600:		sp. M Rhizosolenia alata	.069
<u>Guinardia</u> <u>flaccida</u>	.954	Guinardia flaccida	.056
1700:			
<u>Guinardia</u> <u>flaccida</u>	.977		
1800:			
Guinardia flaccida	942	n an an an Arrange an A Arrange an Arrange an Ar	
1000.	V of Ehm		
1900:			
Guinardia flaccida	.957		

Y

Similarity of species composition between cruises--Jaccard Coefficient

Station 1

5/9/74 5/22/74 10/15/74 10/30/74 12/13/74 1/16/75 3/18/75 5/9/75 5/28/75

5/22/74	.400							
10/15/74	0.00	.154						
10/30/74	.083	. 300	.167					
12/13/74	.083	.300	.273	.500			and the second sec	
1/16/75	.158	.222	.278	.167	.235		· · · · · · · · · · · · · · · · · · ·	
3/18/75	.357	.267	.176	.200	. 385	.227		
5/ 9/75	.333	.091	0.00	.100	.222	.111	.417	· · ·
5/28/75	.333	.538	.105	.267	.267	.333	.389	.200

Station 2

5/9/74 5/22/74 10/15/74 10/30/74 11/14/74 12/13/74 1/16/75 2/20/75 3/18/75 4/14/75 5/9/75

5/22/74	.385		· .								
10/15/74	.222	.222									
10/30/74	.250	.154	.357								
11/14/74	.267	.118	.353	.600							
12/13/74	.385	.200	.467	.364	.462						
1/16/75	.357	.357	.353	.231	.250	.462					
2/20/75	.444	. 300	.500	.211	.286	.529	.500				
3/18/75	.267	.118	.278	.231	.250	.462	.333	.421			
4/14/75	.308	.063	.015	.167	. 286	.417	.286	.250	.500		
5/ 9/75	.313	.313	.316	.200	.375	.500	.375	.450	.294	.429	
5/28/75	.438	.533	.286	.333	.333	.438	.333	.476	.556	.375	.400

Table II-9 (cont.)

Station 3

5/9/74 5/22/74 10/15/74 10/30/74 11/14/74 12/13/74 1/16/75 3/18/75 5/9/75

5/22/74	.385							· · · ·	
10/15/74	.059	.231							
10/30/74	0.00	.083	.182						
11/14/74	.133	.154	.154	.333					
12/13/74	.200	.231	.333	.300	.667				
1/16/75	.294	.538	.333	.133	.267	.429			
3/18/75	.143	.077	.167	.100	.182	.273	.200		
5/ 9/75	.545	.364	.071	.091	.400	.364	.267	.182	
5/28/75	.412	.375	.158	.188	.400	.467	.368	.538	.400

Similarity of species composition between stations

Jaccard Coefficient

		Stations	
Date	1 & 2	2 & 3	1 & 3
5/ 9/74	.545	.667	.462
5/22/74	.417	.700	.600
10/15/74	.313	.399	.455
10/30/74	.714	.100	.375
11/14/74	· · · · · · · · · · · · · · · · · · ·	.545	-
12/13/74	.667	.700	.750
1/16/75	.471	.692	.499
3/18/75	.467	.455	.286
5/ 9/75	.308	.429	.300
5/28/75	.421	.750	.588

Similarity of species composition over twelve hour cruises--Jaccard Coefficient

February 20, 1975

	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800
0800	.588											
0900	.667	./06	501		:.							
1100	.499	-524 600	.591	652								
1200	.476	.579	.650	.636	.800							
1300	.591	.545	.681	.739	.739	.727						
1400	.522	.545	.762	.667	.818	.727	.826				• •	*
1500	.571	.524	.750	.652	.810	.714	.739	.818	210			
1600	-500 545	.438 571	.444	625	.381	.350	.409	.348 783	.318	364	1997 - 1997 -	
1800	.632	.667	.737	.800	.714	.700	.727	.727	.636	.421	.682	
1900	.550	.667	.737	.714	.714	.700	.652	.652	.636	.350	.682	.889
•					April 14	4, 1975						
•	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	
0900	.454						•					
1000	.416	.700										
1100	.285	.500	.727	057								•
1200	.307	.307	.454	.35/	222	·			· ·			
1400	.250	.200	454	. 545	333	556						
1500	.416	.333	.285	.357	.285	.454	.600					
1600	.363	.667	.600	.545	.333	.400	.750	.454				
1700	.181	.444	.400	.500	.167	.333	.500	.400	.714		n an	
1800	.250	.363	.454	.416	.454	.556	.556	.600	.400	.333	667	
1900	.231	. 333	.410	. 305	.30/	.500	.500	. 545	.303	.300	.00/	

Species abundance Similarity between cruises

Canberra Metric Coefficient

Station 1

5/9/74 5/22/74 10/15/74 10/30/74 12/13/74 1/16/75 3/18/75 5/9/75

5/22/74	.775	•						
10/15/74	.620	.706						
10/30/74	.715	.789	.756		A second second second			
12/13/74	.719	.821	.767	.909	•	· .		
1/16/75	.557	.624	.638	.621	.641			
3/18/75	.712	.651	.611	.601	.747	.557		
5/ 9/75	.742	.721	.705	.750	.808	.563	.758	
5/28/75	.648	.790	.568	.670	.707	.516	.623	.615
				· ·				

Station 2

5/9/74 5/22/74 10/15/74 10/30/74 11/14/74 12/13/74 1/16/75 2/30/75 3/18/75 4/14/75 5/9/75

5/22/74	.775										
10/15/74	.617	.613				· ·					
10/30/74	.744	.703	.731								
11/14/74	.696	.667	.645	.832							
12/13/74	.721	.678	.746	.800	.728	•					
1/16/75	.708	.724	.650	.715	.632	.700					
2/20/75	.653	.573	.616	.586	.553	.632	.675				
3/18/75	.686	.629	.610	.714	.650	.687	.705	.619			
4/14/75	.727	.641	.639	.761	.727	.713	.726	.607	.780		
5/ 9/75	.645	.673	.596	.675	.699	.759	.654	.596	.663	.749	
5/28/75	.699	.616	.540	.633	.661	.653	.626	.582	.615	.665	.594

Table II-12 (cont.)

Station 3

5/9/74 5/22/74 10/15/74 10/30/74 11/14/74 12/13/74 1/16/75 3/18/75 5/9/75

5/22/74	.841								
10/15/74	.554	.704						· · · · ·	
10/30/74	.621	.754	.755						
11/14/74	.677	.743	.700	.788		· · · · · ·			
12/13/74	.660	.759	.764	.770	.843	. ·			
1/16/75	.618	.771	.657	.667	.661	.733			
3/18/75	.668	.753	.709	.746	.767	.775	.676		
5/ 9/75	.791	.831	.648	.731	.778	.791	.689	.748	
5/28/75	.633	.695	.577	.614	.698	.695	.584	.626	.664
									•

Similarity of species abundance between stations

Canberra Metric Coefficient

Date	1 & 2	Stations 2 & 3	1 & 3
5/ 9/74	,785	.863	.747
5/22/74	.770	.848	.878
10/15/74	.628	.671	.783
10/30/74	.864	.657	.701
11/14/74		.807	
12/13/74	.761	.795	.832
1/16/75	.605	.808	.651
3/18/75	.714	.807	.686
5/ 9/75	.716	.764	.830
5/28/75	.722	.820	.694

Species abundance Similarity over twelve hour cruises

Canberra Metric Coefficient

February 20, 1975

	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800
0800 0900 1000 1200 1300 1400 1500 1600 1700 1800 1900	.691 .686 .639 .627 .630 .683 .621 .643 .705 .649 .657 .666	.840 .650 .728 .715 .600 .674 .686 .728 .670 .785 .520	.557 .670 .611 .527 .637 .661 .605 .629 .639 .645	.655 .730 .706 .659 .671 .615 .641 .734 .711	.769 .679 .779 .770 .607 .730 .720 .711	.694 .701 .720 .599 .610 .532 .451	.709 .667 .562 .657 .674 .657	.787 .556 .696 .654 .672	.572 .704 .696 .687	.574 .668 .630	.696 .754	. 823
				Apr	il 14,	1975	•			· · ·		
	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	
0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900	.802 .776 .713 .734 .744 .767 .797 .806 .762 .750 .723	.851 .767 .695 .709 .772 .712 .858 .792 .733 .710	.872 .749 .783 .791 .665 .822 .795 .795 .736	.701 .785 .763 .704 .800 .815 .753 .735	.745 .739 .672 .732 .690 .775 .701	.817 .741 .762 .779 .795 .782	.783 .827 .832 .795 .796	.742 .741 .763 .762	.897 .738 .703	.745 .751	.817	

FIGURE CAPTIONS FOR CHAPTER II

- Figure II- 1: Cumulative proportions of whole water phytoplankton samples contributed by various classes.
- Figure II- 2: Seasonal changes of total cells/ml from whole water phytoplankton samples.
- Figure II- 3: Seasonal changes of evenness diversity values for whole water phytoplankton species. Evenness is measured by scaled standard deviation (SDN) of Fager (1972).
- Figure II- 4: Seasonal change in abundance of <u>Calycomonas</u> ovalis at plankton stations in lower Delaware Bay.
- Figure II- 5: Seasonal change in abundance of <u>Pyramimonas</u> sp. A at plankton stations in lower Delaware Bay.
- Figure II- 6: Seasonal change in abundance of <u>Cryptomonas acuta</u> at plankton stations in lower Delaware Bay.
- Figure II- 7: Seasonal change in abundance of <u>Chrysochromulina</u> sp. at plankton stations in lower Delaware Bay.
- Figure II- 8: Seasonal change in abundance of <u>Skeletonema costatum</u>. at plankton stations in lower Delaware Bay.
- Figure II- 9: Seasonal change in abundance of <u>Katodinium</u> rotundatum at plankton stations in lower Delaware Bay.
- Figure II-10: Classification dendrogram illustrating similarity of whole water phytoplankton samples.

- Figure II-11: Classification dendrogram illustrating similarity of nannoplankton species according to the samples in which they occurred. Numbers along abcissa are the last three digits of species code numbers listed in Table II-1.
- Figure II-12: Seasonal change in relative abundance of <u>Nitzschia</u> seriata from net phytoplankton samples.
- Figure II-13: Seasonal change in relative abundance of <u>Guinardia</u> <u>flaccida</u> from net phytoplankton samples.
- Figure II-14: Changes in relative abundance of <u>Guinardia flaccida</u> in net phytoplankton samples taken during twelvehour cruises of February 20 and April 14, 1975.

107

Standard Street Standard Street Sta

Figure II-8

CZEKVNOM2KI COEŁŁICIENI

Nannoplankton species groups

1

CZEKANOWSKI COEFFICIENT

Figure II-12

611

.

III. ZOOPLANKTON

Rose Lambert Ann Pembroke

INTRODUCTION

In a review of zooplankton research along the American Atlantic coast, Jeffries and Johnson (1973) stated that the zooplankton from Cape Cod to Cape Hatteras has been studied more or less continuously, in one way or another, since the turn of the century. Because of differences in sampling and in methods for quantifying data, comparisons and syntheses of various authors' research presented a formidable task.

In the Delaware Bay area, several zooplankton studies have been conducted, the more recent of which were in conjunction with environmental problems. These include samples taken in and near the Chesapeake and Delaware Canal (Ferrante, 1971; Raytheon, 1975), along the length of the lower Bay (Cronin, et al., 1962), in the bay mouth region (Deevey, 1960) and in the adjacent coastal waters (Van Engel and Tan, 1965; DuPont, et al., 1972; Sandine and Swiecicki, 1975). Deevey (1960), using six years of samples gathered from 1929-1935, qualitatively analyzed the fauna of the surface waters in the bay and near coastal waters. A fairly coarse mesh [No. 0 (0.515 mm average aperture) or No. 2 (0.342 mm average aperture)] was used which limited collection of smaller copepods and larvae unless net clogging occurred.
Cronin, et al. (1962) quantitatively examined the zooplankton within the bay over a two-year period with a No. 2 net. The entire length of the bay and river, from Philadelphia to Cape Henlopen, was sampled during eight quarterly cruises. They characterized the different zooplankton fauna of different salinity regions. In the region of the present study (which lies in the polyhaline zone), they determined that the principal zooplankton species were: <u>Centropages typicus</u>, <u>C. hamatus</u>, <u>Labidocera aestiva</u>, <u>Temora longicornis</u>, <u>Penilia avirostris</u>, <u>Paracalanus parvus</u>, and <u>Evadne normanni</u>.

Zooplankton were collected as part of the baseline studies for the lightering area. These data were also used to examine interactions of the nutrients, phytoplankton, and zooplankton at three stations in this restricted area over one seasonal cycle. This chapter will examine the seasonal cycle of zooplankton species for these three geographically close stations and determine whether any qualitative or quantitative differences occur among them. One station can be considered a deep water station (20 m) while two stations were in relatively shallow water (4 m).

METHODS

The zooplankton stations were the same as those for hydrography and phytoplankton (see earlier chapters). Zooplankton samples were taken with a 30 cm diameter Clarke-Bumpus semi-quantitative plankton sampler fitted with a No. 6 (0.241 mm) plankton net. Two tows were taken at each of the three stations. Sampling was done at the surface and at the bottom; bottom depth was approximately 4 m at Stations 2 and 3 and 20 m at Station 1. Duration of tows was approximately 15 minutes. The plankton samples were preserved in a 1:10 dilution of 40% buffered formalin for later analysis.

To quantify the zooplankton, the total volume of the sample, plankton plus fluid, was recorded. In most cases additional 40% buffered formalin solution was added to adjust the volume of the sample to an even number. This additional volume added was also recorded. Before taking aliquots, any large organisms such as medusae were removed, and this was noted. In the manner suggested by Frolander (1968) 1 ml aliquots of the plankton sample were taken until a total of 300 individuals or greater had been counted. Prior to removing the aliquots with a Stempel pipette, the samples were vigorously shaken to disperse the organisms.

Most copepods were identified to species using Wilson (1922) and various sheets of the Fisches du Identification published by the Conseil International pour L'Exploration de la Mer. Copepodites were identified to genus in some cases or simply referred to as copepodites. Certain copepods, for example, <u>Corycaeus</u> and <u>Paracalanus</u>, were identified only to genus because of the difficulty in distinguishing among the species. No attempt was made to identify medusae since they were generally badly distorted by the nets and formalin. With respect to the meroplankton, attempts were made to identify to species all crab larvae. Some of the veligers were also identified.

RESULTS

A list of the species found over all samples is given in Table III-1. Eighteen species of copepods and 15 species of decapod larvae were identified from various samples.

Seasonal changes in the total number of individuals/m³ for each station are shown in Figures III-1 to III-3. Except for Station 1bottom, there was a minimal number of individuals on August 21, 1974. In general, seasonal maxima for each station and depth did not coincide. However, during the period October 15 to December 13, 1974, there were continual problems with the Clarke-Bumpus meter so it is likely that population densities were overestimated during this time. The highest zooplankton densities were at Station 1-bottom $(30,395/m^3 \text{ on October 30, 1974})$. If this value is ignored, the next highest concentration was found at Station 1-top on June 20, 1974 $(21,092/m^3)$. Of the 15 collections, Station 1-bottom had the greatest number of individuals seven times. Table III-2 gives the total value of zooplankton individuals per m³. Values ranged from 58/m³ to $30,395/m^3$. The numbers of individuals for all species in all samples are given in Appendix Table AIII-1.

Each station showed two peaks during the year. These common peaks occurred on October 30, 1974 $(12,547-30,395/m^3)$ and on May 9, 1975 $(10,681-14,035/m^3)$. In addition, Station 1 had a major population peak on July 19, 1974 $(20,511/m^3)$ and Station 3 showed a fairly large peak on August 1, 1974 $(9,432/m^3)$. In general, larger concentrations of individuals were found in the bottom waters; this was particularly true for Stations 1 and 3. Notable, however, was the fact in the spring at Stations 2 and 3, the surface samples showed maximum densities at least a month and a half earlier than the respective bottom samples.

The dominant species (the three with the highest numbers of individuals) for each cruise are listed in Table III-3. If the dominant species are compared with the major peaks of abundance for each station, different species were responsible for the maxima at each station. Dominants for the maxima were as follows:

June 20	Station 1-top	Acartia tonsa, Podon sp.,
		<u>Neopanope texana</u> (zoea)
July 19	Station 1-bottom	A. tonsa, Pseudodiaptomu; coronatus
March 19	Station 2-top	<u>Pseudocalanus minutus</u> , copepodites
May 9	Station 2-bottom	<u>Temora longicornis, P. minutus</u>
March 14	Station 3-top	<u>P. minutus</u> , copepodites
May 19	Station 3-bottom	<u>T. longicornis, Centropages hamatus</u>

Differences in occurrence of dominant species can be explained by the fact that the major peak for Station 1 occurred in the summer at a water temperature of approximately 20°C while the population peaks for Stations 2 and 3 occurred in the spring at a water temperature of approximately 5°C. What this does not explain was why the major peaks in population occurred at such different times between the deep water and shallow water stations. One possibility is that sampling in 1974 was begun too late to catch the large <u>Acartia</u> bloom recorded at Station 1. Also not clear was why the surface waters at Stations 2 and 3 had maximum biomass numbers comprising different copepod species at different times than their respective bottom samples.

Table III-4 contains the percent composition of each sample represented by meroplankton, holoplankton, and copepods for each cruise. Only on three occasions did the meroplankton component exceed the holoplankton, and these occurred at the shallow water stations. Generally, meroplankton comprised a larger percentage of the bottom samples than surface samples and the shallow water samples than did the surface samples. The shallow water stations tended to have a larger proportion of meroplankton than did the deep water stations. The large proportion of meroplankton which occurred on July 19, 1974 was mainly due to zoeae of the crab, Neopanope texana, at Station 2 and to Uca zoeae at Station 3 which illustrates the kind of variability that occurred in the meroplankton over a short distance. Veligers of Mytilus edulis were responsible for the large proportion of meroplankton at most stations on January 16. The fairly high percentage of meroplankton reported for May 28, 1975 at the shallow water stations was due to an abundance of fish eggs, Balanus sp. nauplii, and cyprids. Copepods were the largest component of the population throughout most of the year, except when vast numbers of Oikopleura sp. occurred on October 15, 1974. Then the copepods were consistently less than 50% of the sample.

The seasonal cycle of some of the dominant organisms at each station and depth are presented in Figures III-4 to III-9. In some cases where an organism occurred only once as a dominant, its seasonal cycle was not illustrated. For such cases as <u>Oikopleura</u> sp. and fish eggs, where the seasonal cycle was similar at all stations, these results were figured once. For graphical convenience, numbers of individuals were converted to proportion of the total sample. However, this distorts the importance of some species, particularly <u>A. tonsa</u> in late summer, when almost no plankton was found in the water.

At all stations and depths the copepod, <u>Acartia tonsa</u>, dominated most of the summer samples. There was some residual population of <u>A</u>. <u>tonsa</u> at some of the stations year-round, but in very low numbers. During the summer months <u>A</u>. <u>tonsa</u> was occasionally replaced as the dominant species by <u>Pseudodiaptomus coronatus</u> in some of the bottom samples. This replacement occurred on August 1, 1974 for Stations 1 and 2, and on July 19, 1974 at Station 3-bottom. <u>Pseudodiaptomus</u> was found only in significant numbers in the bottom samples, and they were found only in the summer and autumn months.

Larvae of bottom invertebrates comprised a significant percent of the population during the summer months. Crab zoeae were particularly abundant in the early summer samples. Cyphonautes larvae (ectoprocts) appeared in early August and disappeared from the samples at the end of October. Veligers identified as <u>Mytilus edulis</u> significantly contributed to the zooplankton population during December and January. Polychaete larvae could generally be found in low numbers during any time of the year.

In the spring of 1975, <u>A. tonsa</u> was replaced by the copepods, <u>Centropages hamatus</u>, <u>Temora longicornis</u>, and <u>Pseudocalanus minutus</u>. Also, in these same spring samples, but not figured in the graphs, a high percentage of unidentified copepodites was found.

Changes in zooplankton numbers/m³ during the 12-hour cruises of February 20, 1974 and April 17, 1975 are illustrated in Figures III-10 and III-11. On February 20, 1975 the zooplankton numbers increased in the surface waters and decreased in the bottom waters from the preceding cruise. The peak in zooplankton actually occurred on May 9, 1975, but during the April 17 cruise zooplankton numbers had increased over the first 12-hour cruise by a factor of about three.

Both cruises displayed a similar pattern of higher numbers of individuals in the bottom waters during the day, with migration to surface waters occurring in the afternoon and evening. The significant point here was that during both cruises diurnal vertical migration towards the surface began about 1500 with the zooplankton beginning to leave the surface again about 1900. This large increase in individuals may have been augmented by the tidal regime. This could be true for the first 12-hour cruise where increasing salinity was noted about 1500, but on the second cruise weather conditions prevented the normal tide-related changes. With fairly brisk northeasterly winds blowing, high salinity waters remained in the bay the whole day. As a result, on this second cruise the day was probably spent sampling the same water mass. In the absence of any sizable surface tidal movement, the migration of individuals to the surface occurred at about the same time as previously. This identical migration pattern was again significant because the dominant copepods were different during each cruise (Tables III-5 and III-6). On February 20, 1975, Pseudocalanus minutus, Acartia tonsa, and Temora longicornis were most abundant. On April 17, 1975, the dominant copepods were Centropages hamatus, T. longicornis, and Centropages sp. copepodites.

Cluster analysis techniques were used to assess the presence of recurrent "time-groups" in the zooplankton data. The methods for this analysis are detailed in Appendix I. The dendrogram is given in Figure III-12. Five time-related assemblages were discerned and are listed below with their characteristic species:

Time-Group

June

July-August

September-November

December

January-May

Characteristic Species

<u>Podon</u> sp. <u>Acartia tonsa</u> <u>Pseudodiaptomus coronatus</u> <u>Centropages hamatus</u>

Acartia tonsa <u>Pseudodiaptomus coronatus</u> <u>Neopanope texana</u> (zoea) <u>Pinnixa sayana</u> (zoea) copepodites

<u>Oikopleura</u> sp. <u>Paracalanus</u> spp. veliger larva polychaete larva

<u>Acartia tonsa</u> veliger Acartia copepodite

<u>Centropages hamatus</u> <u>Centropages</u> copepodites <u>Temora longicornis</u> <u>Pseudocalanus minutus</u>

Based on the cluster dendrogram, the stations occupied during any one cruise were more similar amongst themselves than they were to samples taken during other cruises. Often, top and bottom samples at one station were not paired together. This was usually the result of widely differing numbers of individuals in these samples.

DISCUSSION

In the Chesapeake and Delaware Canal, Raytheon (1975) reported that zooplankton abundances increased from January $(33,833/m^3)$ through May (190,105/m³) and then declined over the following months. In the coastal waters off the mouth of Delaware Bay highest zooplankton numbers were reported in the spring and early summer by DuPont, et al. (1972), in the winter and fall by Van Engel and Tan (1965), and in the spring and fall by Sandine and Swiecicki (1975).

Deevey (1960) found that the greatest numbers of zooplankton occurred in Delaware Bay during the winter-spring period. Cronin, et al. (1962) found that spring and summer numbers exceeded their fall and winter numbers. In this study every station showed consistently high numbers in the winter-spring, and relatively low numbers in August. Another peak may have occurred in the autumn. Plus, there is an indication from Station 1 that spring-summer peak may also occur. Thus, it may be that the bay can annually sustain three major peaks in zooplankton biomass (winter-spring, summer, and fall). This fact would make Delaware Bay distinct from the more northern estuaries where bimodal peaks in biomass occur (Deevey, 1948; Sage and Herman, 1972; Martin, 1965). However, it was not certain whether the October 1974 peak was real or due to mechanical failure.

Deevey (1960), using four years' data did not find a consistent cyclical, annual rhythm in biomass numbers such as had been found in the more northern areas. Her findings and our results suggest that any pattern of rhythmicity which occurs in the latter half of the year is due almost entirely to <u>A. tonsa</u> and secondarily to the meroplankton.

<u>A. tonsa</u> was the dominant species from June until October. Its maximum density occurred at Station 1 $(17,272/m^3)$ on June 20, 1974 (water temperature 21°C). Its numbers were drastically reduced in January (water temperature 4.5°C) and at the end of the study in May,

<u>A. tonsa</u> had not reappeared in very large numbers (water temperature 18°C). A similar pattern was noted for <u>A. tonsa</u> in Great Bay, New Jersey (Sandine and Swiecicki, 1975). In this study, <u>A. tonsa</u> occurred as the dominant organism of two major peaks; one occurred in early summer and one in late fall. During the summer <u>A. tonsa</u> generally comprised 50% of the sample. Major biological activities in the water column occurring during the summer-fall period must have been greatly affected by the production of <u>A. tonsa</u>.

The winter-spring peak in zooplankton had a relatively high proportion of <u>Centropages hamatus</u> and <u>Temora longicornis</u>. Also <u>Pseudocalanus minutus</u> was relatively abundant at some stations. These species were also strong winter-spring dominants in the nearby coastal waters in previous years (Van Engel and Tan, 1965; DuPont, et al., 1972). In contrast, even though the summer samples had more species, one species (<u>A. tonsa</u>) comprised the bulk of the samples.

Jeffries (1967) noted the significance of congeneric species replacement in which case the summer-fall species was replaced by a winter-spring species of the same genus. Most authors (Deevey, 1948; Conover, 1956; Jeffries, 1962) noted this replacement with respect to <u>A. tonsa and A. clausi</u>. Deevey (1960) found <u>A. clausi</u> to occur fairly regularly in Delaware Bay, but seldom in as large numbers as <u>A. tonsa</u>. In the present study, <u>A. clausi</u> was first found in low numbers in December 1974 and occurred at its highest density $(529/m^3)$ in April; at no time did this boreal-temperate species approximate the biomass of A. tonsa.

Bowman (1961) pointed out a geographical trend for the <u>A</u>. <u>tonsa</u> - <u>A</u>. <u>clausi</u> replacement. The farther south the area, the less important <u>A</u>. <u>clausi</u> becomes both in numbers and seasonal range. Jeffries' (1967) observation of congeneric species replacement is valid in a narrow latitudinal range where optimal conditions for each species occur during some part of the year. Jeffries (1967) also suggested congeneric species replacement for <u>Oithona similis</u> - the summer form - and <u>O. brevicornis</u> - the winter form. This was not observed during this study or in the shallow bays of New Jersey (Sandine and Swiecicki, 1975). <u>O.</u> <u>similis</u> was found nearly year-round while <u>O. brevicornis</u> was found only during December to May. Probably due to warmer winter temperatures, the summer form was able to maintain a small population year-round while the winter form was only evident during the shortened winter season. This was additional evidence to suggest that Delaware Bay should not be classed with the more northern estuaries.

The species composition indicated that an incomplete annual cycle was sampled. Sampling began when the warm species, <u>A. tonsa</u>, dominated, and sampling ended when the cold water species, <u>C. hamatus</u>, <u>T. longicornis</u>, and <u>P. minutus</u> dominated. When the data from the first sample were examined, the presence of the same cold water species, probably a declining winter population, was noted. It was the cold water species that dominated the population after the annual winter-spring diatom bloom. Depending on the interpretation of the assemblages obtained from cluster analysis, it is questionable whether <u>C. hamatus</u>, more of a cold-water organism, should be included in the June assemblage.

There was an important difference in distribution of a major species between Cronin, et al. (1962) and our results. Our study area occurred in the polyhaline zone (18-30 o/oo), but, Cronin, et al. (1962) did not list <u>A. tonsa</u> as one of the principal species of this area although it was by far the dominant species in our samples. This difference may be due in part to the fact that a different species composition may exist in the more offshore polyhaline bay waters examined by these authors. On the other hand, the major species may change from year to year.

Salinity data from the two 12-hour cruises demonstrated that the study area was usually always within the polyhaline zone. The

fact that none of the estuarine copepod species were found at ebb tide indicated that movement downbay by the estuarine species to this area did not occur. With the occurrence of the more coastal species, particularly <u>C. typicus</u>, it was suggested that the study site was more influenced by the coastal ocean waters than by the river waters (Jacob, 1968). However, the low numbers or absence of most coastal water copepods such as <u>Labidocera</u> and <u>Tortanus</u> suggested that the study area may be in that zone of the estuary where the plankton population can generally, by their reproductive capabilities, maintain themselves (Barlow, 1955).

In examining the annual species succession in Delaware Bay, nearly the same patterns were observed 35 years ago (Deevey, 1960). The dominance of <u>A. tonsa</u> in the summer, with contributions by the warm water cladoceran, <u>Penilia avirostris</u>, and invertebrate larvae was recorded by Deevey (1960). Also, she found the warm water copepod, <u>Corycaeus</u> sp., and Cronin, et al. (1962) found the other warm water species noted in this study, <u>Euterpina acutifrons</u>. Both these copepods contributed significant biomass in November. Deevey (1960) and Cronin, et al. (1962) also noted high numbers of <u>Oikopleura</u> sp. in the fall. In the present study, they dominated the mid-October sample. All studies agree reasonably well on the significant contribution of the cold water species, <u>C. hamatus</u>, <u>P. minutus</u>, and <u>T.</u> longicornis, during the winter-spring period.

Differences were noted in the abundance of the copepods, <u>Para-</u> <u>calanus</u> sp. and <u>P. crassirostris</u>, during the fall. Deevey (1960) and Cronin, et al. (1962) both suggested that <u>Paracalanus</u> spp. were relatively rare in the bay and that they were more prevalent in the coastal waters. But in the present study, <u>Paracalanus</u> sp. was found at all stations in the fall. It was one of the dominant organisms at the end of October. This difference among the studies can probably be explained by the use of a smaller mesh size here, thereby increasing the likelihood of catching Paracalanus. Deevey also did not record large numbers of veligers in the water in the winter. These were identified in this study as larvae of <u>Mytilus edulis</u>. Densities as high as $3600/m^3$ were recorded with the larger numbers of veligers found in the bottom samples. It is likely that what was observed here was not an annual occurrence.

Little variation occurred between species composition and depth. Though there were higher densities and species richness in the bottom samples, the dominant species were similar to those at the surface. One notable exception was the marked vertical distribution of <u>Pseudo-diaptomus coronatus</u>, which was found consistently in the bottom samples. Jacobs (1961) has suggested that <u>P. coronatus</u> is not a truly planktonic copepod since it readily clings to the substrate, thus suggesting a reason for its disparate vertical distribution. Also, there was some indication in the same bottom samples that <u>P. coronatus</u> can replace the dominant <u>A. tonsa</u>.

In considering what differences occurred among the stations, the same water mass was probably being sampled at each station. Station 1-bottom consistently had higher numbers of individuals than any other station. This greater abundance of individuals in bottom samples has been previously documented (Cronin, et al., 1962; Herman and Sage, 1972). Using cluster analysis stations generally clustered together within each cruise, showing that they were highly similar. The few exceptions generally occurred when Station 1 was dissimilar to Station 2 and Station 3, or the top samples were dissimilar to the bottom. But this dissimilarity was only noted in two of the 15 cruises. The clusters also illustrated the seasonal trend of high species diversity in the summer and fall, consecutive cruises displaying less similarity than during the winter.

In terms of total numbers of zooplankton individuals throughout the year. Station 1-bottom was the most productive station. It had the highest mean value of 9311 individuals/ m^3 . The mean value for all stations was $4649/m^3$. Delaware Bay had lower zooplankton numbers than the Sandy Hook area where Sage and Herman (1972) found a mean value of $8502/m^3$, which would compare only with the mean for Station 1-bottom. Herman, Mihursky, and McErlean (1968) obtained much lower mean values in the Patuxent Estuary $(4325/m^3)$. Sage and Herman (1972) used a smaller mesh net and Herman, et al. (1968) a larger mesh net than that used in the present area. The Patuxent Estuary is also a lower salinity area. Jeffries (1964) found biomasses in Raritan Bay higher than here, but he used a smaller mesh net and collected the whole length of the bay. Zooplankton densities averaging 44,000 individuals/ m^3 were reported for Little Eqg Harbor and Brigantine Bays, New Jersey by Sandine and Swiecicki (1975) who used a No. 20 net. Heinle's (1966) study on copepod production showed that any direct comparisons of data require similar sampling techniques. Using a No. 20 net on the Patuxent Estuary, he found densities of copepods, consisting primarily of developmental stages, exceeding $100,000/m^3$. It would appear that the densities obtained in this study most nearly approach those found by Burrell (1972) in the York River, Va. estuary.

REFERENCES

- Barlow, J.P., 1955. Physical and biological processes determining the distribution of zooplankton in a tidal estuary. Biol. Bull. <u>109</u> (2): 211-225.
- Bowman, T.E., 1961. The copepod genus <u>Acartia</u> in Chesapeake Bay. Ches. Sci. <u>2</u> (3-4): 206-207.
- Burrell, V.G., 1972. Distribution and abundances of calanoid copepods in the York River estuary, Virginia, 1968 and 1969. Ph.D. thesis, College of William and Mary, 263 pp.
- Conover, R.J., 1958. Oceanography of Long Island Sound, 1952-1954. VI. Biology of <u>Acartia clausi</u> and <u>A. tonsa</u>. Bull. Bingh. Ocean. Coll. 15: 156-233.
- Cronin, L.E., J.C. Daiber, and E.M. Hulburt, 1962. Quantitative seasonal aspects of zooplankton in the Delaware River estuary. Ches. Sci. 3 (2): 63-93.
- Deevey, G.B., 1956. Oceanography of Long Island Sound. Pt. U. Zooplankton Bull. Bingh. Ocean. Coll. 15: 113-155.
- Deevey, G.B., 1960. The zooplankton of the surface waters of the Delaware Bay region. Bull. Bingh. Ocean. Coll. <u>17</u> (2): 5-53.
- DuPont deNemours, E.I., College of Marine Studies, and Hydroscience, Inc., 1972. Waste dispersion characteristics in an oceanic environment. Draft of a Rept. to Water Quality Program, Environmental Protection Agency, 393 pp.

- Ferrante, J.G., 1971. A quantitative study of the zooplankton in the Delaware River in the vicinity of Artificial Island: In: An Ecological Study of the Delaware River in the Vicinity of Artificial Island. Ichthyological Associates, Progress Rept., January-December 1970.
- Frolander, H.F., 1968. Statistical variation in zooplankton numbers
 from subsampling with a Stempel pipette. J. Water Pollut.
 Control Fed. 40: R82-R88.

. 🖎

- Herman, S.S., J.A. Mihursky, and A.J. McErlean, 1968. Zooplankton and environmental characteristics of the Patuxent River estuary 1963-1965. Ches. Sci. 9 (2): 67-82.
- Jacobs, J., 1961. Laboratory cultivation of the marine copepod, <u>Pseudodiaptomus coronatus</u>. Limnol. Oceanogr. 6: 443-446.
- Jacobs, J., 1968. Animal behavior and water movement as co-determinants of plankton distribution in a tidal system. Sarsia <u>34</u>: 355-370.
- Jeffries, H.P., 1962. Succession of two <u>Acartia</u> species in estuaries. Limnol. Oceanogr. <u>7</u>: 354-364.
- Jeffries, H.P., 1964. Comparative studies on estuarine zooplankton. Limnol. Oceanogr. <u>9</u>: 348-358.
- Jeffries, H.P., 1967. Saturation of estuarine zooplankton by congeneric associates. <u>In</u>: G. Lauff, ed. Estuaries AAAS, Washington, D.C., pp. 500-508.
- Jeffries, H.P., and W.C. Johnson, 1973. Distribution and abundance of zooplankton. <u>In</u>: S.B. Saila, ed. Coastal and offshore environmental inventory, Cape Hatteras to Nantucket Shoals. U.R.I. Marine Publ. Series No. 2. 92 pp.

- Martin, J.H., 1965. Phytoplankton-zooplankton relationships in Narragansett Bay. Limnol. Oceanogr. 10 (2): 185-191.
- Odum, E.P., 1971. Fundamentals of Ecology. Saunders, Philadelphia. 574 pp.
- Raytheon, 1975. Delmarva Ecological Survey, Annual Interpretive Report, 1974. Planktonic and benthic organisms. Oceanographic and Environmental Services, Portsmouth, Rhode Island.
- Sage, L.E., and S.S. Herman, 1972. Zooplankton of the Sandy Hook Bay area, N.J. Ches. Sci. <u>13</u> (1): 29-39.
- Sandine, P.H., and D.P. Swiecicki, 1975. Zooplankton. <u>In</u>: Ecological Studies in the Bays and other Waterways near Little Egg Inlet and in the Ocean in the Vicinity of the Proposed Site for the Atlantic Generating Station, New Jersey. Ichthyological Associates, Inc.
- Van Engel, W.A., and E.C. Tan, 1965. Investigations of inner continental shelf waters off lower Chesapeake Bay. Part VI. Copepods. Ches. Sci. 6: 182-189.

Table III-1

List of species obtained in zooplankton samples

Phylum Protozoa

*01009 01010 Order Foraminiferida Foraminifera sp. Globergerina sp.

Phylum Cnidaria

09012

<u>.</u>

medusa Ceriantharian larva

Phylum Ctenophora 02037

Phylum Ectoprocta 08026

Cyphonautes larvae

Ctenophora sp.

Phylum Annelida Class Polychaeta 04200

polychaete larvae

Phylum Mollusca Class Pelecypoda 05107 05108 Class Gastropoda 05109

veliger Mytilus edulis Linnaeus 1785 (veliger)

Limacina inflata unidentified pteropod

Phylum Arthropoda Class Crustacea Subclass Branchiopoda Order Cladocera 06014 Penilia avirostris Dana 1849 06015 Podon sp. 06016 Evadne sp. Subclass Copepoda 06017 Acartia clausi Giesbrecht 1892 Acartia tonsa Giesbrecht 1892 06018 Acartia (copepodite) 06019 Calanus finmarchicus 06020 06021 Centropages hamatus (Lilljeborg 1853) <u>Centropages</u> <u>typicus</u> Kroyer 1849 <u>Centropages</u> (copepodite) 06022 06023 06024 Corycaeus sp. 06025 Eucalanus attenuatus 06026 Eurytemora affinis (Poppe 1880) Euterpina acutifrons (Dana 1848) 06027

Table III-1 (cont.)

Zooplankton Species List

Subclass Copepoda (cont.)

06028	Labidocera aestiva Wheeler 1889	
06047	Labidocera (copepodite)	
06029	Microcalanus sp.	
06030	Oithona brevicornis Giesbrecht 1891	
06031	Oithona similis Claus 1866	
06032	Oithona spinirostris Claus 1863	
06033	Paracalanus sp.	the second
06034	Pseudocalanus minutus (Krover 1840)	
06035	Pseudocalanus (copepodite)	
06036	Pseudodiaptomus coronatus Williams 1906	
06037	Temora longicornis (Muller 1792)	
06038	Temora (copepodite)	
06039	Tortanus discaudatus (Thompson and Scott	1897)
06040	harpacticoid copepod	
06041	copepod nauplii	
06042	unidentified copepodite	
06043	unidentified copepod	
06044	copened species A	
	Subclass Malacostraca	
	Order Mysidacea	
07142	Mysidacea sp.	
	Order Cumacea	
07176	Mancocuma altera Zimmer 1943	·
	Order Amphipoda	
07179	Corophium sp.	
07180	Gammarus sp.	
07181	Hyperia sp.	
07182	unidentified amphipod	
	Order Decapoda	
	larvae	
	Suborder Natantia	
07183	Palaemonetes sp. (zoea)	
07184	Crangon septemspinosa (Sav 1918) (zoea)	, é
	Suborder Reptantia	
07185	Callianassa sp. (zoea)	
07186	Pagurus longicarpus Sav 1817 (zoea)	
07187	Emerita talpoida (Sav 1818) (zoea)	
07188	Ovalipes ocellatus (Herbst 1799) (zoea)	· .
07189	Hexapanopeus angustifrons (Benedict and	
	Rathbun 1891)	(zoea)
07190	Neopanope texana sayi (Smith 1869) (zoea))
		1 A 1

Table III-1 (cont.)

Zooplankton Species List

Subo	rder Reptantia (cont.)
07191	Panopeus herbstii H. Milne-Edwards 1843 (zoea)
07192	Pinnixa sayana Stimpson 1860 (zoea)
07193	Pinnotheres maculatus Say 1818 (zoea)
07194	Uca sp. (zoea)
07195	Upogebia affinis (Say 1818) (zoea)
07196	unidentified crab zoeae and/or megalops
07197	Cancer irroratus (zoea)
07198	Labinia sp. (zoea)
07199	Reptantia larvae
07200	Nantantia larvae
Subclass Cirri	pedia
06045	Balanus sp. nauplius
06046	Balanus sp. cyprid
Phylum Chaetognatha	
08027	<u>Sagitta</u> sp.
Phylum Chordata	
10006	<u>Oikopleura</u> sp.
10007	Fish eggs
10008	Fish larvae

*Identification numbers assigned for computer analyses.

Table III-2

Total numbers per m³ of zooplankton individuals

Date	Stat	ion I	Stat	ion II	Stati	on III
	Тор	Bottom	Тор	Bottom	Тор	Bottom
June 20, 1974	21,092	14,755	1,197	3,475	2,953	7,363
July 19, 1974	279	20,511	807	2,824	2,031	2,954
Aug. 1, 1974	1,046	1,971	3,946	805	5,680	9,432
Aug. 21, 1974	121	1,806	59	259	58	
Sept. 17, 1974	669	4,806	160	1,541	1,128	2,403
Oct. 15, 1974 *	1,745	1,795	1,049	2,616	2,859	5,475
Oct. 30, 1974 *	8,977	30,395	12,547	2,804	4,674	8,259
Nov. 14, 1974	3,325	3,935	2,643	1,780	1,723	1,493
Dec. 13, 1974 *	6,148	7,336	7,545	3,304	7,061	5,444
Jan. 16, 1975	1,303	1,009	1,052	1,644	957	1,046
Feb. 20, 1975						
(16t)	· -	-	1,908	505	-	
March 18, 1975	4,145	6,571	5,234	4,375	13,436	4,561
April 14, 1975	• • • • • •			• •		
(8t)	-		3,451	3,686	-	-
May 9,1975	2,223	14,035	3,146	10,681	5,919	14,587
May 28, 1975	4,565	12,120	391	651	695	1,623
Mean No./m ³	4,279	9,311	3,009	2,730	3,781	5,386

* Values suspect due to Clarke-Bumpus meter malfunction

Table III-3

The three dominant species for each cruise and station

Date	Stat	ion I	Stati	on II	Stati	on III
	Тор	Bottom	Тор	Bottom	Тор	Bottom
6/20/74	<u>Podon</u> sp. Acartia tonsa	<u>Acartia tonsa</u> <u>Pseudodiaptomus</u> coronatus	<u>Acartia tonsa</u> Fish eggs	<u>Acartia tonsa</u> <u>Podon</u> sp.	<u>Acartia tonsa</u> <u>Podon</u> sp.	<u>Acartia tonsa</u> <u>Pseudocalanus</u> minutus
	<u>Neopanope</u> <u>texana</u> (L.*)	Centropages hamatus	<u>Podon</u> sp.	Pseudodiaptomus coronatus	Centropages hamatus	Pseudodiaptomus coronatus
7/19/74	<u>Acartia</u> <u>tonsa</u>	<u>Acartia tonsa</u>	Neopanope texana (L.)	<u>Acartia</u> tonsa	<u>Uca</u> sp. (L.)	Pseudodiaptomus coronatus
	Fish eggs	Pseudodiaptomus coronatus	Acartia tonsa	Pseudodiaptomus coronatus	<u>Acartia</u> tonsa	Acartia tonsa
	Pseudodiaptomus coronatus	Labidocera aestiva	<u>Uca</u> sp. (L.)	Pinnixa sayana (L.)	Pseudodiaptomus coronatus	Pinnixa sayana (L.)
8/ 1/74	<u>Acartia</u> tonsa	Pseudodiaptomus coronatus	<u>Acartia tonsa</u>	Pseudodiaptomus coronatus	<u>Acartia</u> tonsa	<u>Acartia tonsa</u>
	copepodites	<u>Acartia</u> tonsa	Fish eggs	Fish eggs	Fish eggs	Pseudodiaptomus coronatus
	Fish eggs	medusa	Centropages copepodites	<u>Limacina</u> inflata	<u>Neopanope</u> <u>texana</u> (L.)	Pinnixa sayana (L.)
8/21/74	<u>Acartia tonsa</u>	<u>Acartia tonsa</u>	<u>Acartia tonsa</u>	<u>Acartia tonsa</u>	Acartia tonsa + Neopanope texana (L.)	
	Limacina inflata	mysid	Limacina inflata	Limacina inflata	Limacina inflata	
	copepodites	Pseudodiaptomus coronatus	Neopanope texana (L.)	medusa	Pinnixa sayana	

Table III-3 (cont.)

Date	Stat Top	ion I Bottom	Stati Top	on II Bottom	Stati Top	on III Bottom
9/17/74	<u>Acartia tonsa</u> Oikopleura sp.	Acartia tonsa Pseudodiaptomus	<u>Oikopleura</u> sp. Acartia tonsa	Acartia tonsa Pseudodiaptomus	<u>Acartia tonsa</u> <u>Oikopleura</u> sp.	<u>Acartia tonsa</u> cyphonaute (L.)
· · · · · · · · · · · · · · · · · · ·	<u>Oithona</u> sp.	Paracalanus sp.	<u>Oithona</u> sp.	<u>Acartia</u> copepodite	<u>Penilia</u> avirostris	<u>Oikopleura</u> sp.
10/15/74	<u>Oikopleura</u> sp. <u>Paracalanus</u> sp.	<u>Oikopleura</u> sp. medusa	<u>Oikopleura</u> sp. veliger (L.)	<u>Oikopleura</u> sp. <u>Pseudocalanus</u> minutus	<u>Oikopleura</u> sp. echinoderm (L.)	<u>Oikopleura</u> sp. <u>Acartia tonsa</u>
	Penilia avirostris	veliger (L.)	<u>Paracalanus</u> sp.	Paracalanus sp.	veliger (L.)	<u>Pseudocalanus</u> minutus
10/30/74	<u>Paracalanus</u> sp.	Pseudocalanus minutus	<u>Acartia tonsa</u>	<u>Acartia tonsa</u>	<u>Acartia</u> tonsa	<u>Acartia</u> tonsa
	Paracalanus	Paracalanus sp.	polychaete (L.)	<u>Paracalanus</u> sp.	polychaete (L.)	polychaete (L.)
· · · · · · · · · · · · · · · · · · ·	veliger (L.)	<u>Acartia tonsa</u>	<u>Paracalanus</u> <u>crassirostris</u>	polychaete (L.)	<u>Paracalanus</u> sp.	<u>Paracalanus</u> sp.
11/14/74	Paracalanus sp. Euterpina acutifrons	<u>Paracalanus</u> sp. <u>Corycaeus</u> sp.	<u>Acartia</u> tonsa veliger (L.)	<u>Acartia tonsa</u> veliger (L.)	veliger Acartia tonsa	veliger <u>Acartia tonsa</u>
	<u>Corycaeus</u> sp.	veliger (L.)	Euterpina acutifrons	<u>Paracalanus</u> sp.	Euterpina acutifrons	<u>Paracalanus</u> sp.
12/13/74	<u>Acartia</u> <u>tonsa</u> Oithona <u>similis</u>	Acartia tonsa veliger (L.)	<u>Acartia tonsa</u> veliger (L.)	<u>Acartia tonsa</u> Foraminifera	Acartia tonsa Acartia copendite	<u>Acartia</u> tonsa veliger (L.)
	<u>Acartia</u> copepodite	<u>Acartia</u> copepodite	Acartia copepodite	veliger (L.)	veliger (L.)	<u>Acartia</u> copepodite

143

.

Table III-3 (cont.)

Date	Sta	tion I	Stati	ion II	Stati	on III
	Тор	Bottom	Тор	Bottom	Тор	Bottom
1/16/75	<u>Centropages</u> copepodite	<u>Acartia tonsa</u>	veliger (L.)	veliger (L.)	<u>Acartia tonsa</u>	veliger (L.)
	<u>Centropages</u>	<u>Centropages</u>	Centropages	<u>Centropages</u>	<u>Centropages</u>	<u>Acartia tonsa</u>
	<u>Centropages</u> hamatus	veliger (L.)	<u>Centropages</u> copepodite	<u>Acartia tonsa</u>	Centropages copepodite	Centropages copepodite
2/20/75		-	Temora	Temora		ана 1917 — Прилански страна 1917 — Прилански страна
		-	Centropages	Centropages	-	
	- -	ана (1997) 1977 —	Centropages	Centropages		-
			copepodite	copepodite		
3/18/75	Pseudocalanus minutus	Temora	Pseudocalanus minutus	Pseudocalanus minutus	Pseudocalanus	<u>Paracalanus</u> sp.
	<u>Centropages</u> hamatus	Pseudocalanus minutus	copepodites	copepodites	copepodites	copepodites
	copepodites	copepodites	<u>Oithona</u> brevicornis	<u>Paracalanus</u> sp.	<u>Paracalanus</u> sp.	<u>Acartia tonsa</u>
4/14/75	•	n an	Centropages	<u>Centropages</u>		•
		ی اور	hamatus Temora	hamatus Temora		_ · · _
		n en	longicornis	longicornis		
			<u>Acartia clausi</u>	Centropages	-	
				cohehorire		

Table III-3 (cont.)

Date	Stat	ion I	Stat	ion II	Stat	ion III
	Тор	Bottom	Тор	Bottom	Тор	Bottom
5/ 9/75	Temora longicornis Centropages hamatus Oithona brevicornis	<u>Temora</u> <u>longicornis</u> <u>Centropages</u> <u>hamatus</u> <u>Pseudocalanus</u> <u>minutus</u>	<u>Centropages</u> <u>hamatus</u> <u>Temora</u> <u>longicornis</u> copepodite	<u>Temora</u> <u>longicornis</u> <u>Pseudocalanus</u> <u>minutus</u> <u>Centropages</u> <u>hamatus</u>	<u>Temora</u> <u>longicornis</u> <u>Centropages</u> <u>hamatus</u> <u>Centropages</u> copepodite	<u>Temora</u> <u>longicornis</u> <u>Centropages</u> <u>hamatus</u> <u>Centropages</u> copepodite
5/28/75	Centropages <u>hamatus</u> Centropages copepodite Centropages typicus	<u>Centropages</u> <u>hamatus</u> <u>Centropages</u> <u>typicus</u> Balanus sp. (nauplii)	Fish eggs <u>Centropages</u> <u>hamatus</u> <u>Centropages</u> copepodite	Balanus sp. (cyprid) <u>Centropages</u> copepodite Fish eggs	<u>Centropages</u> copepodite <u>Centropages</u> <u>hamatus</u> Fish eggs	<u>Centropages</u> copepodite <u>Oithona similis</u> <u>Balanus</u> sp. (nauplii)

--55 ★ (L.) = larvae

Table III-4

Holoplankton/meroplankton ratios and percent composition of copepods (including medusa as meroplankton)

Station 1

Station 2

Date	Hol./Mer. Top	%	copepods Top	Hol./Mer. Bottom	%	copepods Bottom		Hol./Mer. Top	%	copepods Top	· · ·	Hol./Mer. Bottom	%	copepods Bottom
6/20/74	72.9/27.02		47.88	97.7 / 2.3		94.49		71.1/28.8		54.8		92.3/ 7.6		71.30
7/19/74	79.9/20.0		79.9	99.6 / 0.4		99.2		39.0/61.0		37.9		95.9/ 4.1		95.7
8/ 1/74	88.8/11.2		88.5	93.6/ 6.4		91.1		92.3/ 7.7		92.3		69.6/30.4		60.7
8/21/74	90.9/ 9.1		71.0	91.4/ 8.6		89.7		76.2/23.8		49.1		71.4/28.6		57.1
9/17/74	98.5/ 1.5		70.2	88.6/ 11.4		82.1		95.0/ 5.0		28.1		92.1/ 7.9		79.4
10/15/74	91.5/ 8.5		36.1	61.1/ 38.9		11.1		86.6/13.4		23.7		87.2/12.8		31.6
10/30/74	89.8/10.2		81.3	84.2/ 15.8		82.3		92.5/ 7.5		92.3		84.0/16.0		78.2
11/14/74	87.7/22.3		83.1	84.1/ 15.9		79.2		85.0/15.0		83.7		83.9/16.1		81.1
12/13/74	84.1/15.9		83.9	66.6/ 23.4		66.3		88.4/11.6		88.4		70.2/29.8		70.2
1/16/75	94.0/ 6.0		94.0	78.0/ 22.0		77.7		60.2/39.8		60.2		50.4/49.6		50.4
2/20/75	-		-											
(16t)								99.5/ 0.5		99.5		91.8/ 8.2		91.8
3/18/75	99.5/ 0.5		98.8	98.0/ 2.0		93.9		98.2/ 1.8		97.8		92.9/ 7.1		89.0
4/14/75	-			-										
(8t)							. *	97.7/ 2.3		97.1		93.8/ 6.2		91.6
5/ 9/75	98.6/ 1.4		98.6	99.6/ 0.4		99.0		99.6/ 0.4		99.6		98.9/ 1.1		98.0
5/28/75	90.9/ 9.1		89.7	84.1/ 15.9		83.1		67.7/22.3		58.5		51.6/48.4		43.9
								and the second						

- = Missing data points

Table III-4 (cont.)

Station 3

Date	Hol./Mer.	% copepods	Hol./Mer.	% copepods
	Top	Top	Bottom	Bottom
6/20/74 7/19/74 8/ 1/74 8/21/74	96.8/ 3.2 27.6/72.4 94.2/ 5.8	89.1 27.0 94.2	98.0/ 2.0 97.2/ 2.8 91.3/ 8.7	95.96 96.3 89.9
9/17/74	99.7/ 0.3	79.5	82.2/17.8	73.3
10/15/74	80.8/19.2	29.2	86.8/13.2	57.6
10/30/74	90.3/ 9.7	86.9	79.1/20.9	78.4
11/14/74	76.7/23.3	67.9	68.5/31.5	66.6
1/16/75 2/20/75 (16t)	91.77 8.3 89.9/10.1	89.9 -	91.1/ 8.9 58.5/41.5 -	90.5 58.5 -
3/18/75 4/14/75 (_8t)	99.0/ 1.0	98.8	99.0/ 1.0	98.8
5/ 9/75	99.6/ 0.4	99.0	97.5/ 2.5	97.3
5/28/75	74.1/25.9	73.5	78.5/21.5	

FIGURE CAPTIONS FOR CHAPTER III

- Figure III- 1: Seasonal changes in total zooplankton numbers at Station 1.
- Figure III- 2: Seasonal changes in total zooplankton numbers at Station 2.

- Figure III- 3: Seasonal changes in total zooplankton numbers at Station 3.
- Figure III- 4: Seasonal changes in relative abundances of dominant zooplankton species Station 1-surface.
- Figure III- 5: Seasonal changes in relative abundances of dominant zooplankton species at Station 1-bottom.
- Figure III- 6: Seasonal changes in relative abundances of dominant zooplankton species at Station 2-surface.
- Figure III- 7: Seasonal changes in relative abundances of dominant zooplankton species at Station 2-bottom.
- Figure III- 8: Seasonal changes in relative abundances of dominant zooplankton species at Station 3-surface.
- Figure III- 9: Seasonal changes in relative abundances of dominant zooplankton species at Station 3-bottom.
- Figure III-10: Changes in total zooplankton numbers during 12-hour cruise of February 20, 1975.
- Figure III-11: Changes in total zooplankton numbers during 12-hour cruise of April 14, 1975.
- Figure III-12: Classification dendrogram illustrating similarity of zooplankton samples.

Figure III-1

.

Figure III-3

151

e s

Figure III-4

See.

Figure III-5

 $\mathcal{M}^{(n)}$

14

Figure III-6

Figure III-7

. Site

Figure III-8

Figure III-9

 $\mathcal{X}_{i}^{(i)}$

Figure III-10

Figure III-12

IV. WATER COLUMN SYNTHESIS

Ann Pembroke

INTRODUCTION

The primary producer-herbivore relationship is an aspect of plankton studies which is receiving considerable attention in the recent literature. For example, Poulet (1973), Hargrave and Geen (1970), Petipa, et al. (1970), Parsons, et al. (1969), and Anraku (1964) examined zooplankton food requirements with natural phytoplankton populations. The influence of zooplankton and phytoplankton on the marine nitrogen and phosphorous cycles was reviewed by Corner and Davis (1971). In all of these studies, there was at least the implication that the interactions were more complex than the scope of their texts would permit. Martin (1965, 1968, 1970) was able to present a much more complete picture for Narragansett Bay by considering the interactions between two components of the phytoplanktonzooplankton relationship: grazing on phytoplankton by herbivorous zooplankters and excretion of ammonia and phosphates by zooplankton.

The intent of this chapter was to synthesize the phytoplankton, zooplankton, and nutrient data collected in Delaware Bay to develop a preliminary view of the base of this estuary's food web. Although zooplankton activity (feeding rate and excretion) was not examined, values for feeding rates obtained in the literature were used to quantify observations made on population data (Anraku, 1964).

PRIMARY PRODUCTION STUDIES METHODS

Primary production studies were undertaken at Station 2 during four cruises (Feb. 20, April 14, May 9, and May 28, 1974). Net production was determined by the amount of C^{14} taken up during a six-hour incubation period.

Water samples were taken with Nisken bottles from 1, 3, and 5 m. Zooplankton was not removed. Two clear bottles and one dark bottle (125 ml) were filled, injected with C^{14} and suspended at the above depths from 0900-1500 hours. Secchi depths were noted at the start of each experiment.

Upon recovery, samples were Millipore filtered and put in a 50:50 solution of toluene and triton-X100 with 6 gm PPO. They were counted on the wide window C^{14} isoset channel of a Beckman LS-100 scintillation counter.

Production was determined using the following equation:

Production (mg C/liter) = $\frac{([CPM_S - CPM_B]/E) (1.05) (\Sigma CO_2)}{2.22 \times 10^6 \text{ DPM}} \times 10^3$

where CPM _S	= counts per minute for sample
CPMB	= counts per minute for blank = 37
E	= efficiency = .94
1.05	= discrimination factor for uptake of C^{14} relative
	to C ¹² by phytoplankton
ΣCO ₂	= total inorganic carbon in sample = 18.7 mg/1
	(based on sample from May 9)
2.22×10^{6}	DPM
	= activity of isotope added to the sample.

These values were then converted to mg $C/m^3/hr$. The counts (CPM_s) for each of the two light bottles at any depth were averaged

to determine one production value. It has been suggested that dark bottle values not be subtracted from light bottles because of poorly understood differences in the metabolism of C^{14} in the light and dark (Morris, et al., 1971). The light bottle value was assumed to represent net production.

The assimilation number was calculated for each group of samples.

A.N. =
$$\frac{mg/m^3}{mg/m^3}$$
 productivity
mg/m³ chlorophyll a

The values for chlorophyll a are tabulated in the Hydrography section of this report. The 1 and 5 m assimilation numbers were computed with the top and bottom chlorophyll a values as reported, the 3 m A.N. was calculated using the average of the top and bottom values.

RESULTS AND DISCUSSION

The net primary production values (light bottle values) and the assimilation numbers for all the samples are listed in Table IV-1.

The lowest primary production occurred in February (2.75 to $8.77 \text{ mg C/m}^3/\text{hr}$) prior to the major <u>Skeletonema</u> - <u>Thalassiosira</u> peak. Surface production was high for the next three experiments (April and May) with the maximum value obtained at the end of May. Only during the April cruise were the 1 m and 3 m production values similar, suggesting a vertical homogeneity of the phytoplankton biomass to 3 m.

The surface assimilation numbers increased between February (1.595) and April (2.925), decreased slightly between April and May (2.505), and increased sharply from early to late May (6.503). The mid- and deep samples showed an increase in A.N. between February and April, but steadily decreased thereafter. The assimilation numbers

were similar for all depths during the April experiment (2.447, 2.838, 2.925), indicating again that the vertical distribution of biomass was fairly homogeneous. This was not the case for any of the other cruises. In all instances, the assimilation number (and production) decreased with depth--probably a function of the shallow extinction of light.

Flemer (1970) found that the assimilation numbers in the northern half of the Chesapeake Bay averaged about 3.3 mg C hr⁻¹ mg Chla⁻¹ from May to November. In the Patuxent River, Flemer and Olmon (1971) computed the A.N. to be 23 g C day⁻¹ (g Chla)⁻¹ (or 1.917 g C hr⁻¹ (g Chla)⁻¹ assuming a 12 hour day) in late June. Stross and Stottlemyer's (1965) values were somewhat higher: 2.35 g C hr⁻¹ (g Chla)⁻¹ in January, 3.44 in March, and 4.65 in June. Our data compare favorably with Flemer's (1970, averaging the May samples) and with Stoss and Stottlemyer's (1965). It appears, then, that the Delaware Bay was similar in production levels to parts of the Chesapeake Bay. This is pursued further in the next section.

NANNOPLANKTON-NUTRIENT RELATIONS METHODS

The methods for this section were covered in the chapters on hydrography (Chapter I) and phytoplankton (Chapter II).

RESULTS AND DISCUSSION

Since nannoplankton were identified only from the surface samples, their numbers were compared only with surface nutrients. These data are summarized in Table IV-2 and the seasonal trends illustrated in Figures IV-1 to IV-12.

Silicates

Figures IV-4 to IV-6 illustrate the seasonal cycles of diatoms and silicates at each station. The basic pattern was one that would be expected--the silicate concentration decreased as diatom numbers increased. The lowest level of silicates at all stations was associated with the winter-spring <u>Skeletonema</u> bloom. Minimal diatom populations in the summer to early autumn were associated with the increase of silicates to maximal levels.

The relationship of silicate concentration to the phytoplankton populations (numbers transformed to \log_{10}) was investigated with the product moment correlation coefficient (Table IV-3). At Stations 1 and 2 the diatoms showed a significant (0.1 and 0.05 levels, respectively) negative correlation with silicates. Neither dinoflagellates nor μ -flagellates showed any relationship to silicates. At Station 2 total phytoplankton was negatively correlated (0.05 level) with silicates, and at Station 3 the influence of silicate was suggested even though the relationship was not significant.

Nitrogen Nutrients

Ammonia

The μ -flagellates apparently did not utilize ammonia as their principal nitrogen source. At each of the stations (Figures IV-7 to IV-9) ammonia concentrations and μ -flagellate numbers followed similar cycles--the levels of each rising and falling coincidentally. Correlations between the two were extremely low (Table IV-3) indicating the lack of any relationship, although the rate of supply and uptake may not be evident from field data that show only changes of standing crop and nutrient concentration over several weeks at a time.

The dinoflagellates occurred in low numbers during most of the year and did not show any significant association with ammonia

concentrations (Figures IV-10 to IV-12). The correlation coefficients, although low, were always positive (Table IV-3).

The diatom numbers showed a strong relationship with ammonia concentration, especially at Stations 1 and 2. During November and January both showed small, but steady increases. Despite higher phytoplankton requirements, increased ammonia levels might be attributed to zooplankton excretion which in turn may have been a response to the October <u>Leptocylindrus</u> bloom. In addition, both diatom numbers and ammonia concentration increased in May after the decline of Skeletonema.

The spring bloom reduced ammonia levels to near zero at all three stations in March. At Station 2 in April ammonia reached concentrations of 0.07 μ g-at/l but was again depleted by early May. Increased numbers of zooplankton did not replenish this nutrient in quantities sufficient to prolong the phytoplankton bloom. Since both carnivores and herbivores were increasing, the relative grazing pressure was reduced, and consequently, it is likely that depletion of nutrients rather than grazing was responsible in halting the bloom. The correlation of diatoms with ammonia showed a significant negative relationship at Stations 1 and 2 (Table IV-3). At Station 3 the relationship was also negative, but not significant.

Nitrate and Nitrite

. X

There was no significant association between total phytoplankton abundance and nitrate plus nitrite concentration (Table IV-3). Ammonia is generally considered the preferred form of nitrogen for phytoplankton nutrition so that the nitrates and nitrites could be expected to be utilized only when the former nutrient is depleted (Corner and Davis, 1971). According to the data, however, a major component of the phytoplankton, the μ -flagellates, did not show a significant relationship to ammonia concentrations. It can be seen (Figures IV-7, IV-8, IV-9) that the $NO_3 + NO_2$ cycle was inversely related to the μ -flagellate cycle during most of the year. The increase in $NO_3 + NO_2$ and μ -flagellates seen in May 1975 can probably be attributed to bacterial decomposition of zooplankton and phytoplankton which occurred during the spring diatom blooms. The coincident reduction in June 1974 thus probably marked the end of the 1974 spring bloom.

The correlation coefficients between μ -flagellates and nitrate plus nitrite were always negative and significant at Stations 1 and 3 (Table IV-3). Although dinoflagellate levels were generally insignificant, at Station 3 they showed a negative correlation with NO₃ + NO₂ concentrations. This trend was similar to the situation that McAllister, et al. (1961) found in large-scale cultures of natural, coastal phytoplankton populations where dinoflagellates were able to increase only after the nitrates were depleted. This was probably due more to inter-class competition than nitrate requirements. Station 3 had the lowest dinoflagellate levels, especially during the peak in July, and was the only station where this class had a low population early in June. Nitrates and nitrites probably played a very small role in diatom population changes since the correlation coefficients were not significant at any of the stations.

It is difficult to assess the dependence of the Delaware Bay phytoplankton on ammonia in relation to nitrates since the nitrate and nitrite levels were not determined separately. Dugdale and Goering (1967) reported that in natural phytoplankton populations NH_4^+ and NO_3^- were taken up simultaneously, the former more rapidly until nitrates achieved relatively high levels. In monospecific cultures of various algae, only ammonia was utilized until it was reduced to about 1 µg-at-N/ ℓ at which point both NO_3^- and NH_4^+ were taken up (Strickland, et al., 1969). This situation occurred at all three stations during or after both the Leptocylindrus (October) and Skeletonema-Thalassiosira (March-early May) blooms. There was

usually a corresponding decrease in the nitrate-nitrite levels during these periods. According to McAllister, et al. (1961), however, the growth of <u>Skeletonema</u> (in natural populations) was dependent on nitrate and ceases when this nutrient was depleted. Perhaps, then, the decrease in $NO_3^- + NO_2^-$ concentration following the Delaware Bay blooms represented the utilization of nitrites.

Eppley, et al. (1969) reported half saturation constants for ammonia uptake for <u>Skeletonema</u> <u>costatum</u> and <u>Leptocylindrus</u> <u>danicus</u> of $3.6 \stackrel{+}{-} 0.8$, $0.8 \stackrel{+}{-} 0.7$, $0.8 \stackrel{+}{-} 0.5$, and $3.4 \stackrel{+}{-} 1.4$, $3.6 \stackrel{+}{-} 0.8$, $0.5 \stackrel{+}{-}$ 0.4, respectively. If the higher values were correct, then these species probably absorbed ammonia at the half-maximum rate most of the time. If the lower values were more accurate, maximal uptake rates could have been reached. In terms of achieving bloom proportions, however, the uptake rate was not as significant as it might appear. Generally, the half saturation constant for uptake was larger than the growth constant (representing cellular level, Eppley and Thomas, 1969). In other words, cell division can occur at far less than maximal uptake rates. This has been demonstrated in <u>Phaeodactylum tricornutum</u> (Ketchum, 1939), <u>Asterionella japonica</u>, and <u>Chaetoceros gracile</u> (Eppley and Thomas, 1969).

Ortho-Phosphates

There was a general inverse relationship between ortho-phosphates and the total phytoplankton population. Significant negative correlation coefficients were obtained at Stations 2 and 3 (Table IV-3). Ortho-phosphates are the major source of phosphorus in the marine environment, so this relationship would be expected.

Dinoflagellate abundances were too low to reflect a relationship with phosphate values. This nutrient reached a peak level at the time of maximum dinoflagellate numbers in July. Surprisingly, the μ -flagellates showed no significant correlation to ortho-phosphate concentrations. The phosphate concentrations fluctuated more widely and frequently than did the μ -flagellate densities even during the summer and early fall when the latter reached their peak populations. Either these phytoplankton species required extremely low levels of phosphorus or they were able to utilize other sources of this nutrient [e.g. organic phosphate esters which have been found to be utilizable by Chu (1946) and Harvey (1953)].

Diatoms, however, showed a definite relationship with orthophosphates. Correlation coefficients were significantly negative. Although greatly depleted during the <u>Leptocylindrus</u> bloom in October, this nutrient was quickly regenerated. Depletion during the spring <u>Skeletonema</u> bloom was more severe, and regeneration was not as complete by the end of the survey. Depletion of this nutrient and of ammonia presumably contributed to the ending of the vernal flowering. It is, however, difficult to determine when PO_4^{3-} became limiting to population growth. Phytoplankton cells tended to accumulate phosphate as long as it was available regardless of their immediate needs (Goldberg, et al., 1951; Kuenzler and Ketchum, 1962) and continued to divide even after the nutrient has disappeared from the environment (Corner and Davis, 1971).

NANNOPLANKTON-HERBIVORE RELATIONS METHODS

Feeding types were assigned to zooplankton based on the following studies: Anraku and Omori (1963), Gauld (1966), Jorgenson (1966), Martin (1965), Neunes and Pongolini (1965), Parsons and LeBrasseur (1970), Parsons and Takahashi (1973), Petipa, et al. (1970), and Timonin (1971). For the purposes of this report, animals were considered to be preferential herbivores if: (a) there was no specific information available, (b) there was a discrepancy between authors, or (c) the species was omnivorous. This may have overestimated the number of herbivores, but since the numbers of known herbivores were also high the general proportions were probably realistic.

RESULTS AND DISCUSSION

The feeding classification for the zooplankton species considered in this study is given in Table IV-4. The three most abundant herbivores and phytoplankters for each station are ranked in Tables IV-5 and IV-6, respectively. Table IV-7 lists the values of the herbivore and phytoplankton populations for all samples. Seasonal cycles of each at Stations 1 to 3 are illustrated in Figures IV-13 to IV-15, respectively.

The proportions of herbivores among the zooplankton are listed in Table IV-8. In only seven cases (Aug. 21, Station III; Jan. 16, Stations I and II; April 14, Station II; May 9, Station III; and May 28, Stations I, II, and III) did herbivores represent less than 60% of the zooplankton. The last four dates noted occurred during the period of minimal <u>Acartia tonsa</u> and maximal <u>Centropages hamatus</u> populations. <u>Centropages</u> copepodites were abundant at the end of October and from December to the end of the survey. An increase in herbivores may have been supported by the <u>Leptocylindrus danicus</u> bloom in October and was also coincident with the reproduction of the carnivorous <u>Centropages</u>. Hence, the decline of the herbivore population in the spring may not have been due entirely to the decline of the vernal bloom, but was in part a result of the prior autumnal bloom.

<u>Acartia tonsa</u> was overwhelmingly the most abundant copepod which occurred at each of the stations from June 1974 through January or February 1975 (Table IV-5). At Stations 2 and 3 it appeared among the top three herbivores in May 1974. None of the other important herbivores were dominant as long as <u>A. tonsa</u>. However, all three stations showed a similar pattern of succession. Important peaks included the large number of bivalve veligers in November and again in January and the dominance of copepodites of <u>Pseudocalanus minutus</u> and <u>Temora longicornis</u> during the spring bloom. The latter two species occurred less abundantly year-round than did <u>A. tonsa</u> and possibly used the Skeletonema bloom to repopulate.

The μ -flagellate, <u>Cryptomonas acuta</u>, was always present (Table IV-6). All stations experienced a small <u>Skeletonema</u> burst in late August, a bloom of <u>Leptocylindrus</u> danicus during October and the late winter-spring <u>Skeletonema</u> bloom (codominated by <u>Thalassiosira</u> sp. A) from December through March or April. Dominant species were generally the same although absolute succession varied.

In general, the herbivores at Station 1 exhibited the "typical" lag period of abundance relative to the phytoplankton population (Figure IV-13). There was a phytoplankton peak in July, represented mainly by the dinoflagellate, <u>Katodinium rotundatum</u>, which was not followed by a zooplankton peak. Possibly then, <u>Katodinium</u> was not a suitable food source for the dominant herbivore, <u>Acartia tonsa</u>. Since <u>A. tonsa</u> reproduced year-round, the large population on June 13, 1974 may represent the results of a period of high reproductive activity in the spring followed by a natural population decline in the absence of suitable food.

The relationship of herbivore and phytoplankton abundance patterns were examined using the correlation coefficient in a crosscorrelation time series analysis (Table IV-9). Only the values for a maximum of a three-cruise lag are given as longer lag periods gave meaningless results. All computations used log₁₀ transformed abundances.

There were no significant correlations at Station 1. However, the highest positive correlation occurred with no lag for the μ flagellates and the total phytoplankton and with a one-cruise lag for the diatoms suggesting that diatoms may be a more important food source than μ -flagellates. The absence of significant correlation coefficients may also demonstrate the need for more frequent periodic sampling.

At Station 2 (Fig. IV-14) there was no direct correlation between herbivores and phytoplankton from June 13-September 17, 1974.

Despite high phytoplankton numbers (June-August), zooplankton was low during this period. The increase of the zooplankton population between August 21 and September 17 may have been due to the dominance of <u>Skeletonema</u> and <u>Asterionella</u> on the former date. Further zooplankton increases were associated, as at Stations 1 and 2, with the <u>Leptocylindrus</u> bloom in October. The low zooplankton numbers on November 14 may have been due to patchiness since the values for the dominant <u>Acartia tonsa</u> were similar to each other during the cruises directly preceding and following it.

The dominance of <u>Skeletonema</u> in December (bloom proportions from February through April) may have been instrumental in supporting the veliger outburst in January. This bloom also supported fairly large populations of <u>Pseudocalanus minutus</u> and <u>Temora longicornis</u> (successively) until May 9. At this point, <u>Skeletonema</u> virtually disappeared from the phytoplankton community and was replaced by <u>Chroomonas</u> sp. The latter did not support large zooplankton populations at any of the stations.

During the spring bloom on April 15, herbivore numbers were low, although total zooplankton was of the same order as the previous cruise. The carnivorous copepod, <u>Centropages hamatus</u>, was the dominant zooplankton species. Perhaps predation of <u>C. hamatus</u> on <u>Pseudocalanus</u> allowed <u>Temora</u> to become the dominant herbivore.

None of the correlation coefficients between herbivores and phytoplankton were significant at Station 2. The highest correlation was a negative value when μ -flagellates and herbivores were compared with a two-cruise lag. Even with no lag, however, this correlation was negative, suggesting that the herbivores found here were not depending strongly on μ -flagellates as a food source. The positive correlation found between diatoms and herbivores (largest with a two-cruise lag) suggested that diatoms were the preferred food types.

Between September 1974 and early May 1975 the total phytoplankton and total zooplankton patterns were essentially similar at Stations 2 and 3. Succession during this period may be attributed to the same factors as at Station 2.

During the summer of 1974, however, the total numbers/m³ at Station 3 resembled neither those at Station 1 nor at Station 2. Both phytoplankton and zooplankton numbers were low. The phytoplankton remained fairly stable, but the herbivore population fluctuated rapidly. The low herbivore numbers reported for July may have been artificial (patchiness or net clogging) since the <u>Acartia</u> <u>tonsa</u> population was quite large during both the preceding and following cruises yet was very low in July and there was no large copepodite population to account for the "recruitment" of the species.

There were no significant correlations between herbivores and μ -flagellates at Station 3. There were two large positive correlations between herbivores and diatoms--with no lag and with a two-cruise lag. Thus, the herbivores appeared to be able to respond quickly to changes in diatom numbers, but reached their maximum population densities two cruises after that of the diatoms. Unlike Stations 1 and 2, this also occurred between the herbivores and the total phytoplankton.

An attempt was made to determine the amount of carbon available and the amount which was needed for consumption by herbivores from June 1974 through May 1975. Based on the carbon to cell volume (c/v) relationship established by Mullin, et al. (1966):

$\log_{10} c/v = -0.24 \log_{10} v -0.29$

the carbon content of each of the three most abundant phytoplankton species was determined (Table IV-10). Cell dimensions were taken from the following literature: Butcher (1958, 1964, 1967), Cupp (1943), Lebour (1925), and Wood and Ferguson (1968). Anraku (1964) studied the feeding rates of <u>Acartia tonsa</u> and <u>Pseudocalanus minutus</u> (two of the most abundant herbivores found in this survey) on the diatom, <u>Thalassiosira fluviatilis</u> (the genus but not the species found in this study), at various temperatures. His results (cells per copepod per day) were converted to carbon copepod⁻¹ day⁻¹ and then multiplied by the populations of <u>A. tonsa and P. minutus</u> to estimate the carbon required $m^{-3} day^{-1}$ (Table IV-11). The requirements of these two species were separated in this table because they were rarely abundant at the same time.

In Table IV-12, carbon requirements and <u>A. tonsa</u> and <u>P. minutus</u> populations were expressed as proportions of the standing crop of carbon and total herbivore population, respectively. These two zooplankters comprised 50% of the herbivores for the following samples:

Da	tes
----	-----

X

	Stations		
1	2	•	3
6/20/74	6/20/74		6/20/74
7/19/74	7/19/74		8/ 1/74
8/21/74	8/ 1/74		9/17/74*
9/17/74*	8/21/74		12/13/74
12/13/74	10/30/74		3/18/75
	12/13/74		
	2/20/75		

and the state of the second second

At other times, the influence on the standing crop of other herbivores (whose nutritional demands are unknown) must be considered to be much greater than that of A. tonsa and P. minutus.

Samples (*) corresponded to times when >30% of the living carbon was consumed. This occurred only twice when these species comprised >50% of the herbivores (twice more, Stations 2 and 3, 11/14/74, when they comprised 48 and 24%, respectively. It was likely that during these periods of high carbon requirements, the omnivores which were considered here as herbivores (<u>A. tonsa</u>, <u>Oithona</u> spp., and <u>Temora longicornis</u>) have switched to a carnivorous diet. For the most part, however, the carbon requirements of the <u>A. tonsa</u> and <u>P. minutus</u> populations were quite low, even when these species comprised >80% of the herbivores.

The discussion thus far has been limited to standing crop. Coincidentally, the phytoplankton population reproduces as it is being utilized. The spring assimilation numbers cited in Stross and Stottlemyer (1965) can be used to estimate monthly net production.

If one assumes that the phytoplankton species and environmental parameters at the Patuxent River mouth were similar to our study area, one can postulate that the assimilation numbers maintained their similarity throughout the year (Table IV-13). If copepods ingested particles for a total of 12 hours of each day, a maximum carbon requirement of <u>A. tonsa and P. minutus</u> per hour could be tabulated. Only twice (on Oct. 30 and Dec. 13, when <u>A. tonsa and P. minutus</u> represented 70 and 80%, respectively, of the herbivores at Station 2) was the food requirement more than 3% of the hourly production (Table IV-13).

The food requirements of some of the dominant herbivores in this study in terms of percentage of body weight, and the dates of their dominance are listed in Table IV-14. <u>Acartia</u> and <u>Pseudocalanus</u> had the highest requirements of any of the plankters listed (except, perhaps, <u>Oikopleura</u> which was more massive than the copepods). This indicated that the use of these two species to estimate the food requirements of the herbivores as a whole was reasonable.

Based on the literature, the phytoplankton community in this area was probably sufficiently productive to support the locally dominant herbivores. Poulet (1973) found that <u>Pseudocalanus minutus</u> can feed selectively on size particles (algal cell), ranging from 4-100 μ , which will most efficiently provide its nutritional requirements.

<u>P. minutus, Temora longicornis, Oithona similis, and Acartia tonsa</u> will all feed on μ -flagellates (Hargrave and Geen, 1970) which comprised a large percentage of the total phytoplankton in this area. <u>A. tonsa</u> (Curl and McLeod, 1961), <u>P. minutus</u>, and <u>Oithona</u> sp. (Parsons, et al., 1969) preferred, however, to graze on diatoms when available. Finally, the phytoplankton density was usually found to be greater than the level at which grazing has been found to cease (50-190 μ g C/ ℓ or (50-190) x 10⁹ pg C/m³; Parsons, et al., 1969). Since there was no significant correlation between herbivore and nannoplankton numbers, the low estimated consumption of primary production and the phytoplankton community must have been adequate to support the dominant herbivores. It could also be concluded that zooplankton grazing had little effect on the phytoplankton population during this study.

Comparisons with other studies are difficult. Martin (1970) performed feeding experiments throughout the year and found that grazing pressure was quite high during the spring and summer in Narragansett Bay. However, the phytoplankton and zooplankton communities in that area were each essentially dominated by one species, <u>Skeletonema costatum</u> and <u>Acartia tonsa</u>. The situation in Delaware Bay was not as simple since no one species of phytoplankton was able to maintain dominance for a long period of time, except in the spring <u>Skeletonema-Thalassiosira</u> bloom. This pattern of continuous dominance replacement was also observed in the zooplankton. As a consequence, the planktonic food web in Delaware Bay may be more complex than in the estuaries to the north, and as well, may be less influenced by periodic perturbations.

ZOOPLANKTON-NUTRIENT RELATIONS METHODS

The methods for this section were covered in the chapters on hydrography (Chapter I) and zooplankton (Chapter III).

RESULTS AND DISCUSSION

Since most members of the zooplankton community undergo vertical migration, the values for total zooplankton and nutrients were averaged over all depths sampled. These data are given in Table IV-15 and illustrated in Figures IV-16 to IV-18. Table IV-16 lists the correlation coefficients calculated for these relationships.

Ammonia

Zooplankton species can excrete high levels of ammonia. Thus, it was expected that large zooplankton populations would not be accompanied by high ammonia concentrations. This, however, was not the case during this study. At Station 3 there was a significant negative correlation between zooplankton numbers and ammonia levels. Considering the observations on the ammonia-phytoplankton and the herbivore-phytoplankton relationships, the phytoplankton cells could have been utilizing ammonia as it was produced by zooplankton. At Station 3, the herbivore and phytoplankton peaks coincided so that there was an accumulation of ammonia only when both populations were low. The situation was similar at Station 2, but was less pronounced. Martin (1968) observed a similar situation in Narragansett Bay, as did Butler, et al. (1970) in the Clyde Sea area.

Nitrate and Nitrite

Zooplankton influence nitrate-nitrite levels after their death and bacterial decomposition. Petipa, et al. (1970) found that dead zooplankters were decomposed after about two to four days. An inverse relationship between the animals and these nutrients might be anticipated. Graphically, this appeared to be the case at all three stations (Figures IV-16 to IV-18). Although the correlation coefficients were negative for each station, there was a significant correlation (0.05 level) only at Station 1. The zooplankton maintained a fairly stable population between three major peaks at Station 1 whereas at the other two stations the populations constantly fluctuated. Nitrate and nitrite followed basically the same pattern at all three stations--increased in August to a peak in September and then declined until the end of October, increased again until mid-January and declined from then on. These peaks corresponded with low zooplankton numbers at Station 1 and with fluctuating populations at Stations 2 and 3.

Ortho-Phosphates

In addition to ammonia, zooplankton can excrete substantial amounts of phosphates. Thus, if the zooplankton were a major contributor of phosphates, the peak zooplankton number should coincide with high phosphate concentrations. However, this was not the case during this study. At all three stations there was an inverse relationship (significant correlation only at Station 1). This was due to the fact that the herbivore populations did not (or, appeared not to) lag behind the phytoplankton fluctuations but tended to coincide with the major blooms. This allowed for nutrient build-up only at low zooplankton levels.

Values for nutrient excretion by copepods have been reported in terms of percentage of body weight (e.g. Martin, 1968; Hargrave and Geen, 1968). Dry weights of the zooplankton in this study were not recorded, however, so no estimates of excretion can be made. Corner, et al. (1965) found the excretion rate of <u>Acartia clausi</u> to be quite high and attributed this to its small size and high metabolic activity. This can probably be extended to <u>A. tonsa</u> as well.

REFERENCES

- Anraku, M., 1964. Influence of the Cape Cod Canal on the hydrography and on the copepods in Buzzards Bay and Cape Cod Bay, Massachusetts. II. Respiration and feeding. Limnol. Oceanogr. 9: 195-206.
- Anraku, M., and M. Omori, 1963. Preliminary survey of the relationship between the feeding habit and the structure of the mouthparts of marine copepods. Limnol. Oceanogr. 8: 116-126.
- Butcher, R.W., 1959. An introductory account of the smaller algae of British coastal waters. I. Introduction and Chlorophyceae. Fisheries Invest. Ser. IV., 74 pp.
- Butcher, R.W., 1964. An introductory account of the smaller algae of British coastal waters. V. Bacillariophyceae. Fisheries Invest., Ser. IV, 317 pp.
- Butcher, R.W., 1967. An introductory account of the smaller algae of British coastal waters. IV. Cryptophyceae. Fisheries Invest. Ser. IV., 54 pp.
- Butler, E.I., E.D.S. Corner, and S.M. Marshall, 1970. On the nutrition and metabolism of zooplankton. VII. Seasonal survey of nitrogen and phosphorus excretion by <u>Calanus</u> in the Clyde Seaarea. J. Mar. Biol. Assoc. U.K. 50: 525-560.
- Chu, S.P., 1946. The utilization of organic phosphorus by phytoplankton. J. Mar. Biol. Assoc. U.K. 26: 285-295.
- Conover, R.J., 1956. Oceanography of Long Island Sound, 1952-1954. VI. Biology of <u>Acartia clausi</u> and <u>A. tonsa</u>. Bull. Bingham Oceanogr. Coll. <u>15</u>: 156-233.

- Corner, E.D.S., C.B. Cowey, and S.M. Marshall, 1965. On the nutrition and metabolism of zooplankton. III. Nitrogen excretion by Calanus. J. Mar. Biol. Assoc. U.K. 48: 429-442.
- Corner, E.D.S., and A.G. Davis, 1971. Plankton as a factor in the nitrogen and phosphorus cycles in the sea. Adv. Mar. Biol. 9: 102-204.

×

- Cupp, E.D., 1943. Marine plankton diatoms of the west coast of North America. University of California Press, Berkeley, 237 pp.
- Dugdale, R.C., and J.J. Goering, 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196-206.
- Eppley, R.W., J.N. Rogers, and J.J. McCarthy, 1969. Half saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14: 912-920.
- Eppley, R.W., and W.H. Thomas, 1969. Comparison of half saturation constants for growth and nitrate uptake of marine phytoplankton. J. Phycol. 5: 375-379.
- Ferguson-Wood, E.J., 1968. Dinoflagellates of the Caribbean Sea and adjacent areas. Univ. Miami Press, Coral Gables, Fla., 142 pp.

Flemer, D.A., 1970. Primary production in the Chesapeake Bay. Ches. Sci. 11: 117-129.

Flemer, D.A., and J. Olmon, 1971. Daylight incubator estimates of primary production in the mouth of the Patuxent River, Maryland. Ches. Sci. 12: 105-110.

- Gauld, D.T., 1966. The swimming and feeding of planktonic copepods. <u>In:</u> Some Contemporary Studies in Marine Biology, H. Barnes, Ed., pp. 313-334.
- Goldberg, E.D., T.J. Walker, and A. Whisenand, 1951. Phosphate utilization by diatoms. Biol. Bull. 101: 274-284.
- Hargrave, B.T., and G.H. Geen, 1968. Phosphorus excretion by zooplankton. Limnol. Oceanogr. 13: 332-342.
- Hargrave, B.T., and G.H. Geen, 1970. Effects of copepod grazing on two natural phytoplankton populations. J. Can. Fish. Res. Bd. <u>27</u>: 1395-1403.
- Harvey, H.W., 1953. Notes on the absorption of organic phosphorus compounds by <u>Nitzschia closterium</u> in the dark. J. Mar. Biol. Assoc. U.K. 31: 475-476.
- Jorgenson, C.B., 1966. Biology of Suspension Feeding. Pergamon Press, London.
- Ketchum, B.H., 1939. The absorption of phosphate and nitrate by illuminated cultures of <u>Nitzschia closterium</u>. Am. J. Bot. 26: 399-407.
- Kuenzler, E.J., and P.H. Ketchum, 1962. Rate of phosphorus uptake by Phaeodactylum tricornutum. Biol. Bull. 123: 134-145.
- Lebour, M.V., 1925. The dinoflagellates of northern seas. Mar. Biol. Assoc. U.K., Plymouth, 250 pp.
- Martin, J.H., 1965. Phytoplankton-zooplankton relationships in Narragansett Bay. Limnol. Oceanogr. 10: 185-191.

- Martin, J.H., 1968. Phytoplankton-zooplankton relationships in Narragansett Bay. III. Seasonal changes in zooplankton excretion rates in relation to phytoplankton abundance. Limnol. Oceanogr. 13: 63-71.
- Martin, J.H., 1970. Phytoplankton-zooplankton relationships in Narragansett Bay. IV. The seasonal importance of grazing. Limnol. Oceanogr. <u>15</u>: 413-418.

×

- McAllister, C.D., T.R. Parsons, and J.D.H. Strickland, 1961. Measurements of primary production in coastal seawater using a large volume plastic sphere. Limnol. Oceanogr. 6: 237-258.
- Morris, I., C.M. Yentsch, and C.S. Yentsch, 1971. Relationship between light CO₂ fixation and dark CO₂ fixation by marine algae. Limnol. Oceanogr. 16: 854-858.
- Mullin, M.M., P.R. Sloan, and R.W. Eppley, 1966. Relationship between carbon content, cell-volume and area in phytoplankton. Limnol. Oceanogr. 11: 307-311.
- Neunes, H.W., and G.F. Pongolini, 1965. Breeding a pelagic copepod, <u>Euterpina acutifrons</u> (Dana) in the laboratory. Nature <u>208</u>: 571-573.
- Parsons, T.R., and R.J. LeBrasseur, 1970. The availability of food to different trophic levels in the marine food chain. <u>In</u>: Marine Food Chains, J.H. Steele, Ed. Oliver and Boyd, Edinburgh, pp. 325-343.
- Parsons, T.R., R.J. LeBrasseur, J.D. Fulton, and O.D. Kennedy, 1969. Production studies in the Strait of Georgia. II. Secondary production under the Fraser River plume, February to May, 1967 J. exp. Mar. Biol. Ecol. 3: 39-50.

- Parsons, T.R., and M. Takahashi, 1973. Plankton feeding and production. In: Biological Oceanographic Processes. Pergamon Press, 186 pp.
- Petipa, T.S., E.V. Pavlova, and G.N. Mironov, 1970. The food web structure, utilization, and transport of energy by trophic levels in the planktonic communities. In: Marine Food Chains, J.H. Steele (Ed.), Oliver and Boyd, Edinburgh, pp. 142-167.
- Poulet, S.A., 1970. Grazing of <u>Pseudocalanus minutus</u> on naturally occurring particulate matter. Limnol. Oceanogr. <u>18</u>: 564-573.
- Riley, G.A., and D.F. Bumpus, 1946. Phytoplankton-zooplankton relationships on Georges Bank. J. Mar. Res. 6: 33-47.
- Strickland, J.D.H., O. Holm-Hansen, R.W. Eppley, and R.J. Linn, 1969. The use of a deep tank in plankton ecology. I. Studies of the growth and composition of phytoplankton crops at low nutrient levels. Limnol. Oceanogr. <u>14</u>: 23-34.
- Stross, R.G., and J.R. Stottlemyer, 1965. Primary production in the Patuxent River. Ches. Sci. 6: 125-140.

Timonin, A.G., 1971. The structure of plankton communities of the Indian Ocean. Mar. Biol. <u>9</u>: 281-289.

Net production values and assimilation numbers at Station 2

Cruise	Depth (m)	Secchi Depth (m)	Net Production (mg C/m ³ /hr)	Assimilation Number mg C/hr/mg Chl a
2/20/75	1 3 5	2.5	8.77 3.85 2.75	1.595 0.62 0.398
4/14/75	1 3 5	1.78	24.58 21.43 16.40	2.925 2.838 2.447
5/ 9/75	1 3 5	2.17	17.79 12.72 7.90	2.505 1.663 0.963
5/28/75	1 3 5	1.72	27.96 6.97 2.99	6.503 0.995 0.308

Surface nannoplankton and nutrient values

Station 1		Nannoplankton (cells/ml)		Nutrients (ug-at/1)		
				NO3+	Ortho-	
Date (Cruise No.)	$\mu-flagellates$	diatoms dinoflagellates	Total Si	NH ₃ NO ₂	P04	
13 June 1974 (4) 20 June 1974 (5) 19 July 1974 (6) 1 Aug. 1974 (7) 21 Aug. 1974 (8) 17 Sept. 1974 (9) 15 Oct. 1974 (10) 30 Oct. 1974 (12) 13 Dec. 1974 (13) 16 Jan. 1975 (14) 20 Feb. 1975 (15) 18 March 1975 (17) 9 May 1975 (17)	6644 2585 4233 3957 2087 1453 271 1351 763 389 139 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.07\\ 0.16\\ 0.72\\ 1.10\\ 1.11\\ 1.64\\ 0.49\\ 0.23\\ 0.98\\ 0.70\\ 0.56\\ -\\ 0.01\\ -\\ 0.04 \end{array}$	

Table IV-2 (cont.)

Station 2

· · · · · · · · · · · · · · · · · · ·									N03+.	Ortho-
Date (Cruis	e No.)		µ-flagellates	s diatoms	dinoflagell	ates Total	Si	NH ₃	NO2	PO4
13 June 197	74 (4))	5286	1732	491	7509	3.00	1.5	12.7	0.06
20 June 197	74 (5))	2894	2468	160	5522	3.13	1.4	0.2	0.20
19 July 197	(6)) – Le 194	3162	214	1765	5141	12.2	6.1	2.8	0.78
1 Aug. 197	74 (7))	-	-	-	· · · ••	16.8	1.7	9.2	1.00
21 Aug. 197	74 (8))	998	2572	63	3633	9.8	0.7	8.2	0.66
17 Sept. 197	74 (9))	1124	341	28	1493	30.0	5.5	12.1	1.52
15 Oct. 197	74 (10))	381	2363	•	2745	6.3	1.5	8.4	0.49
30 Oct. 197	′4 (11))	836	4446	40	5322	3.6	1.1	2.3	0.26
14 Nov. 197	/4 (12))	729	111	21	861	9.7	2.1	0.1	0.92
13 Dec. 197	'4 (13))	326	930	63	1319	9.4	2.8	13.1	0.63
16 Jan. 197	/5 (14)).	223	2482	7	2712	10.2	3.1	18.3	0.58
20 Feb. 197	'5 (15)		585	4203	60	4848	13.7	7.4	18.2	0.36
18 March 197	75 (16)). Ali se	320	15684	97	16011	0.7	≃ 0°	9.4	≃ 0°
14 April 197	′5 (17)) e de la composition	904	7247	56	8207	1.40	0.7	10.8	0.06
9 May 197	'5 (18))	1809	853	105	2767	0.9	~ 0	1.9	0.02
28 May 197	5 (19)) - Charles Alexandre	3728	1650	323	5701	2.2	2.7	8.6	0.18

(cells/ml)

Nannoplankton

1

Nutrients (ug-at/1)

<u>1</u>86

Table IV-2 (cont.)

Station 3 Nannoplankton Nutrients (cells/ml) (ug-at/1)N03+ Ortho- $^{\rm NH}_{\rm 3}$ NO₂ µ-flagellates diatoms dinoflagellates POA Total Si Date (Cruise No.) 13 June 1974 (4) 1968 1926 62 3956 3.15 1.4 3.8 0.04 20 June 1974 5) 2132 2078 254 4464 3.31 0.2 1.7 0.18 19 July 1974 16.3 6) 2246 201 763 3210 7.6 2.5 0.81 1974 3394 223 20.2 2.5 1 Aug. 7.) 1176 4793 5.0 1.18 21 Aug. 1974 (8) 2270 2647 30 4947 10.7 1.6 8.1 0.87 17 Sept. 1974 9) 1469 452 28 1949 31.6 5.0 11.2 1.60 15 Oct. 1974 548 3071 14 3633 7.1 0.6 11.7 0.47 (10)30 Oct. 1974 (11)1527 8419 42 9988 3.6 1.2 4.4 0.29. 14 Nov. 1974 (12)617 91 21 729 10.0 2.2 0.93 4.1 327 13 Dec. 1974 (13)800 104 1231 10.4 2.7 0.58 13.8 16 Jan. 1975 229 (14)2052 14 2295 16.6 4.0 27.5 0.58 20 Feb. 1975 (15)-------------18 March 1975 (16)459 19904 84 20447 0.3 ≃ 0 9.7 **≃** 0 14 April 1975 (17)--------_ ----0.6 2315 646 129 3090 ≃ 0 1.6 0.03 1975 9 May (18)3595 1041 263 4899 2.0 1.3 2.9 28 May 1975 (19) 0.20

			Station 1		
	Si	NH ₃	NO ₃ + NO ₂	Ortho- PO ₄	Degrees of Freedom
u-flagellates diatoms dinoflagellates Total Phytoplankton	.188(*) 468(*) .038 244	.167 546 .275 049	482 ^(*) 251 244 334	.018, 562 .012 366	12 12 12 12
			Station 2		
µ-flagellates diatoms dinoflagellates Total Phytoplankton	144* 511 172* 550	.031* 776 .139 237	416 .355 228 .070 Station 3	171* 680 270* 717	13 13 13 13
μ-flagellates diatoms dinoflagellates Total Phytoplankton	040 436 153 428	.010 257 .245 391	780 [*] .197 _* 602 [*] 190	.039* 509 091(*) 472	12 12 12 12 12
<pre>* significant a (*) significant a</pre>	at 0.05 level at 0.10 level				

Correlation of phytoplankton numbers and nutrient concentrations

Feeding type classification for zooplankton species

Medusa	С *
Ctenophore	С
Cyphonaute larvae	H
Polychaete larvae	H
Veliger	Н
Mytilus edulis larvae	H
Limacina inflata	H
Unidentified pteropod	Н
Penilia avirostris	H
Podon sp.	H
Evadne sp.	Н
Acartia clausi	Н
Acartia tonsa	0 (H)
Acartia copepodites	0
Centropages hamatus	C
Centropages typicus	C
Centropages copepodites	C C
Corycaeus sp.	С
Eucalanus attenuatus	H
Eurytemora affinis	?
Euterpina acutifrons	Н
Labidocera aestiva	C
<u>Oithona brevicornis</u>	C-H
<u>Oithona similis</u>	C-H
<u>Oithona</u> <u>spinirostris</u>	C-H
<u>Paracalanus</u> sp.	Н
Paracalanus crassirostri	s H
Pseudocalanus minutus	H
Pseudocalanus copepodit	es H
<u>Pseudodiaptomus</u> coronatu	IS ?
<u>lemora longicornis</u>	0
<u>lemora</u> copepodites	?
lortanus discaudatus	C .
Harpacticoid copepod	2
Copepod naupili	H
Mysid	bottom feeder
Mancocuma altera	bottom feeder
Amphipods	bottom teeder
Decapod Tarvae	C
Balanus sp. naupiii	H
Balanus sp. cyprids	H
Sagitta sp.	C
Ulkopleura sp.	H

* C = Carnivore; H = Herbivore; O = Omnivore

Rank of three most dominant herbivorous zooplankton species by sampling date at each station

				1974								19	75		
Station I	6/20) 7/19	9 8/1	8/21	8/17	10/15	10/30	11/14	12/13	1/16	2/20	3/18	4/14 5	/9 !	5/28
Acartia tonsa Rodon sp	1	1	1	1	1	3			1	1					
Pseudodiaptomus	2								an ann An Anna Anna An						
<u>coronatus</u> Oikopleura sp.	3	2	2	- 3	2	1							• . 		
copepodites			3	0		1						3			
Limacina inflata Paracalanus sp.				2		2	2	1						3	
Pseudocalanus minutus							1	^		3	•	2		2	
Euterpina acutifrons							3	3 2							
Mytilus edulis veligers			•						2	2					
Temora longicornis									3			1		1	2
<u>Balanus</u> nauplii Acartia clausi							· · · ·				•		· .		1
									. ¹	•					Ū
Station II							ан • • тр		• • • •		*		* *	•	
Acartia tonsa Podon sn]	1	.]	° 1	1]	1	1	2	2				2
<u>Pseudodiaptomus</u>	<u>د</u>	· ·	_												f
<u>coronatus</u> Limacina inflata	3	. 2	2.3	2	2				•						
Oikopleura sp.			-		3	1				· ·					
Acartia copepodites					· ·				3	3					3
Veligers Mytilus edulis veligers						len en sek	sa mana ka mandara a	2	2 ·	1	Sala alahasa	an a	ent size bankeren deta	Asia ta Nava a	alati a sati

Table IV-5 (cont.)		•		1974					en e			19	75		
	6/20	7/19	8/1	8/21	8/17	10/15	10/30	11/14	12/13	1/16	2/20	3/18	4/14	5/9	5/28
Station II (cont.)	•									Ť					
<u>Pseudocalanus minutus</u> <u>Paracalanus</u> sp. Polychaete larvae Paracalanus				3		2 3	2	3		• • •]	1 3	2	2 3	
<u>crassirostris</u> <u>Temora longicornis</u> copepodites <u>Balanus</u> sp. cyprids		.3					3				3	2	1 3	1	к. 1
Station III				1 		• * • • •		· · · ·	•						
Acartia tonsa Podon sp. Pseudocalanus minutus Pseudodiantomus	1 2 3	2	1	(1)	1	2	1	2	1	1		. 1			3
<u>coronatus</u> Limacina inflata		1	2 3	(2)	3				•						
Oikopleura sp. Paracalanus sp. Polychaete larvae Bivalve veligers			•		2	1 3	3 2	3				3		3	
<u>Acartia</u> copepodites <u>Mytilus</u> edulis veliger <u>Acartia</u> clausi						, :			2 3	2 3					
copepodites <u>Temora longicornis</u> <u>Oithona brevicornis</u> Oithona similis												2		1 2	ľ
Balanus sp. cyprids														•	2

* 12-hr. cruises, values averaged over all samples; ** deep sample missing

Davids a C. Harr	•					Table	IV-6				7.			
Rank of thre	e mos 6/13	6/20	ninan 7/19	t ph 8/1	ytop1; 8/21	anktor 1974 9/17	10/15	es at 10/30	each 11/14	station 12/13	by sampling 1/16 2/20	period 1975 D 3/18 4/14	5/9	5/28
Station I														
Cryptomonas acuta Prasinophyte A Calycomonas ovalis Rhizosolenia fragilissima	1 2 3	1 2 3	2	1 3 2	3	1	2	2	1	2				2
Katodinium rotundatum Chroomonas sp. Skeletonema costatum Phaeodactylum tricornutum			1 3		2	2				• 1.4 • 1 • 1 • 1	1	1	1	1
Leptocylindrus danicus Unidentified flagellate Flagellate PZ-10 Navicula sp. B	•					· · · · · · · · · · · · · · · · · · ·	1 3	1 3	2 3					
<u>Thalassiosira</u> sp. A <u>Cyanophyceae</u> sp. A <u>Pyramimonas</u> sp. A Flagellate D			•						•	3	2 3	2 3	2 3	3
Station II									•					
<u>Cryptomonas acuta</u> Prasinophyte A <u>Chrysochromulina</u> sp. <u>Rhizosolenia</u> fragilissima	1 2 3	3 2 1			3	1	3	2		3	3			3

Table IV-6 (cont.)

1975

6/13 6/20 7/19 8/1 8/21 9/17 10/15 10/30 11/14 12/13 1/16 2/20 3/18 4/14 5/9 5/28

Station II (cont.) Katodinium rotundatum Chroomonas sp. 2 Calvcomonas ovalis 3 2 Skeletonema costatum Asterionella japonica 2 Phaeodactylum tricornutum 3 Leptocylindrus danicus Unidentified flagellate 2 3 Cryptomonad B Fragilaria oceanica 2 3 3 Flagellate PZ-10 Thalassiosira sp. A 2 2 2 2 2 2 3 3 Cyanophyceae sp. A Pyramimonas sp. A 2 3 Leptocylindrus minimus Station III Asterionella japonica Cryptomonas acuta 2 1 2 3 2 3 2 ł Calycomonas ovalis 2 3 Rhizosolenia fragilissima 1 Chroomonas sp. 2 1 3 3 Pyramimonas sp. A 2. Katodinium rotundatum Cerataulina bergonii 3 Skeletonema costatum 3 3 1 Phaeodactylum 3 tricornutum
Table IV-6 (cont.)

1974

1 2

1

3

1975

2

3

2

2

6/13 6/20 7/19 8/1 8/21 9/17 10/15 10/30 11/14 12/13 1/16 2/20 3/18 4/14 5/9 5/28

2 3

2

2 3

Station III (cont.)

Leptocylindrus danicus Unidentified flagellate Cryptomonad B Flagellate PZ-10 Cryptomonad C Nitzschia seriata Thalassiosira sp. A Cyanophyceae sp. A Fragilaria oceanica

Total herbivore and nannoplankton population numbers

(herbivores-average of surface and deep samples; nannoplankton-surface values only)

Dat	.e		Sta	tion I	Sta	ation II		Stat	ion III
			HJ	N ²	Н	N		H	Ν
13 Jur	ne 1974	(4)	_	16,450		7,339		· _	3,937
20 Jur	ne 1974	(5)	16,921	3,521	1,952	2 5,325		4,538	4,430
19 Jul	y 1974	(6)	10,316	7,731	1,513	3 5,121		1,538	3,210
1 Auc	1. 1974	(7)	1,389	4,249	2,110) <u> </u>		6,995	4,793
21 Aug	1. 1974	(8)	886	3,792	11:	5 3,577		· •	4,897
17 Sep	ot. 1974	(9)	2,533	1,916	794	4 1,483		1,538	1,949
15 Oct	. 1974	(10)	1,428	3,085	1,635	5 2,745		3,763	3,626
30 Oct	. 1974	(11)	17,948	4,414	7,119	9 5,322		5,921	9,966
14 Nov	. 1974	(12)	3,388	854	2,049	9 853		1,528	729
13 Dec	. 1974	(13)	6,033	994	4,942	2 1,319		5,969	1,231
16 Jar	n. 1975	(14)	463	1,311	858	3 2,961	- 1	636	2,565
20 Feb	. 1975	(15)	-	_	1,590	4,828		·	-
18 Mar	rch 1975	(16)	4,177	5,256	4,184	4 16,323		8,234	20,669
14 Apr	·il 1975	(17)			1,639	9 8,679		_	
9 May	/ 1975	(18)	6,407	3,119	5,158	3 2,947		5,644	3,432
28 May	/ 1975	(19)	2,778	5,550	244	5,944		405	6,041

¹herbivores: no. organisms/m³; ²nannoplankton: cells/ml

The proportion of herbivores in the zooplankton samples. Values were averaged over all depths sampled.

Cruise	Station I	Station II	Station III
20 June	.949	.746	.819
19 July	.893	.675	.879
1 Aug.	.911	.812	.929
21 Aug.	.928	.738	.517
17 Sept.	.953	.953	.898
15 Oct.	.815	.901	.896
30 Oct.	.860	.944	.915
14 Aug.	.934	.930	.952
13 Dec.	. 941	.883	.955
16 Jan.	.431	.631	.632
20 Feb.	••• •••	.801	· · · ·
18 Mar.	.767	.867	.886
14 Apr.	Log HEY	.462	
9 May	.771	.667	.561
28 May	. 256	. 439	.280

y

		. 510		
	µ-flagellates			
	Station 1 df	Station 2	df Station 3	df
e g	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	227 269 451 409	13 .095 12 036 11 207 10 094	10 8 8 7
	Diatoms			· · · ·
ا م ا	0 .121 11 1 .487 9 2 .453 9 3 -	.145 .171 .377 045	13 .488 12 405 11 .571* 10 227	10 8 8 7
	Total phytoplankton			
lag	0 .271 11 1 .085 9 2 .015 9 3 -	.019 .164 044	12 12 12 217 11 .512 556	10 8 8 7

Time series correlation coefficients of herbivore-phytoplankton abundances $(\log_{10} \text{ transformed})$

* significant at 0.10 confidence level

Cell size, shape, and carbon content of the three most abundant nannoplankton species for each cruise and station

	Dimensions	Shape	Volume	C/V*	Carbon Content per cell
	(diam. x length; μ)		(µ ³)	(pg/µ ³)	(picogramo)
Cryptomonas acuta	4 - 6 x 12 - 15	С	267	.103	28
Chroomonas sp.	3 - 4 x 4 - 8	C	.58	.1935	5
Cryptomonad B	4 - 6 x 12 - 15	Č v	267	.1342	36
Cryptomonad C	3 - 4 x 10 - 14	С	116	.1639	19
Prasinophyte A	3 - 4	S	22	.2442	5
Pyramimonas sp. A	4 - 6 x 5 - 7	C	119	.1629	19
Calycomonas ovalis	$3.5 - 4 \times 4.5 - 5$	Ċ	48	.2025	10
Chrysochromulina sp.	5 - 6	S	87	.1756	15
Katodinium rotundatum	12 - 15	S	1,288	.09196	118
Thalassiosira sp. A	18 - 27	S	5,964	.06375	380
Skeletonema costatum	3 - 20	S	796	.1032	82
Leptocylindrus danicus	7 – 10 x 14 –100	С	3,253	.07362	239
Leptocylindrus minimus	5 - 6 x 40 - 50	С	1,075	.09605	103
Rhizosolenia fragilissima	12 - 20 x 42 - 67	C	11,022	.05495	606
Cerataulina bergonii	11 - 36 x 10 - 36	С	10,253	.05590	573
Fragilaria oceanica	1 - 2 x 8 - 40	C	683	.1071	73
Asterionella japonica	8 - 12 x 30 -150	С	7,110	.06102	434
Navicula sp. B	6 - 8 x 7 - 15	. C	406	.01213	5
Nitzschia seriata	6.5 - 7 x 95 -115	С	3,779	.07098	268
? Phaeodactylum tricornutum	3 - 4 x 8	С	77	.01808]
unidentified flagellate	5	S	144	.1555	12
PZ-10 flagellate	5	S	65	.1883	12
Flagellate D	5	S	65	.1883	12
Cyanophyceae sp. A	6 - 7	S	65	.1883	22
					•

C = cylindrical; S = spherical * from $\log_{10} C/V = -.24 \log_{10} V$ -.29 (Mullin, et al., 1966).

Living carbon contributed by the three most abundant nannoplankton species during each cruise and carbon requirements of <u>Acartia tonsa</u> and/or <u>Pseudocalanus minutus</u>*

	<u> </u>			Station 1 Required	Carbon		Station 2 Required	l Carbon
	Cruis	e	Available Carbon	<u>A. tonsa</u>	P. minutus	Available Carbon	<u>A.</u> tonsa	P. minutus
13	June	1974	741.70x10 ⁸			613.38x10 ⁸		-
20	June	1974	4398.52x10 ⁸	1.532x10 ⁸	7.059 x10 ⁸	12512.14x10 ⁸	123.1 x10 ⁸	1.065 x10 ⁸
19	July	1974	4534.42x10 ⁸	910.9 x10 ⁸	N	2123.69x10 ⁸	122.4 x10 ⁸	N
1	Aug.	1974	740.10x10 ⁸	66.19 x10 ⁸	Ν	-	178.2 x10 ⁸	N
21	Aug.	1974	1245.62x10 ⁸	83.58 x10 ⁸	N	5657.34x10 ⁸	8.869x10 ⁸	N
17	Sept.	1974	153.40x10 ⁸	143.8 x10 ⁸	.5327x10 ⁸	221.49x10 ⁸	28.89 x10 ⁸	.2188x10 ⁸
15	Oct.	1974	5501.44x10 ⁸	29.53 x10 ⁸	1.931 x10 ⁸	4114.89x10 ⁸	14.61 x10 ⁸	9.220 x10 ⁸
30	Oct.	1974	7363.69x10 ⁸	30.87 x10 ⁸	86.79 x10 ⁸	10686.02x10 ⁸	734.0 x10 ⁸	4.698 x10 ⁸
14	Nov.	1974	202.79x10 ⁸	33.70 x10 ⁸	9.220 x10 ⁸	243.87x10 ⁸	133.6 x10 ⁸	6.289 x10 ⁸
13	Dec.	1974	648.92x10 ⁸	94.83 x10 ⁸	N	1132.36x10 ⁸	120.2 x10 ⁸	N
16	Jan.	1975	408.06x10 ⁸	3.196x10 ⁸	4.696 x10 ⁸	35885.66x10 ⁸	5.454x10 ⁸	.7732×10 ⁸
20	Feb.	1975			· · · · -	8101.28x10 ⁸	6.269x10 ⁸	21.28 x10 ⁸
18	March	1975	6788.68x10 ⁸	2.366x10 ⁸	57.37 x10 ⁸	16943.88x10 ⁸	2.089x10 ⁸	132.2 x10 ⁸
14	April	1975		-		14397.60x10 ⁸	N	20.21 x10 ⁸
9	May	1975	217.28x10 ⁸	N	21.18 x10 ⁸	405.82×10 ⁸	N	26.3 ×10 ⁸
28	May	1975	370.25x10 ⁸	Ν	Ν	4288.53x10 ⁸	Ν	N

(picograms C/m³/day)

Table IV-11 (cont.)

				Station 3	
				Required	Carbon
	Cruise		Available Carbon	<u>A.</u> tonsa	<u>P. minutus</u>
13	June	1974	4465.86x10 ⁸	-	-
20	June	1974	11004.32x10 ⁸	337.8 x10 ⁸	4.310 x10 ⁸
19	July	1974	1009.51x10 ⁸	53.02 x10 ⁸	N
1	Aug.	1974	5077.24x10 ⁸	660.7 x10 ⁸	N
21	Aug.	1974	1621.16x10 ⁸	1.116x10 ⁸	Ν
17	Sept.	1974	258.14x10 ⁸	100.9 x10 ⁸	.1703x10 ⁸
15	Oct.	1974	6665.04x10 ⁸	64.50 x10 ⁸	23.30 x10 ⁸
30	Oct.	1974	19724.98x10 ⁸	349.7 x10 ⁸	9.988 x10 ⁸
14	Nov.	1974	151.15x10 ⁸	44.66 x10 ⁸	4.896 x10 ⁸
13	Dec.	1974	858.06x10 ⁸	140.9 x10 ⁸	N
16	Jan.	1975	3362.68x10 ⁸	7.667x10 ⁸	2.229 x10 ⁸
20	Feb.	1975	-		- -
18	March	1975	21576.60x10 ⁸	17.18 x10 ⁸	275.2 x10 ⁸
14	April	1975			•••
9	May	1975	210.41x10 ⁸	N	7.580x10 ⁸
28	May	1975	426.98x10 ⁸	N	N a s

. 1

N = negligible population * based on Anraku (1964)

			Station 1			Station 2	
		Carbon Required	Proportion of Total	Proportion of Herbivore	Carbon Required	Proportion of Total	Proportion of Herbivore
Cru	ise	pgm/m ³ x10 ⁸	Carbon	Population	pgm/m ³ x10 ⁸	Carbon	Population
June	20, 1974	8.591	.001	.910	124.2	.009	.644
July	19, 1974	910.9	.200	.871	122.4	.057	.797
Aug.	1, 1974	66.19	.089	.470	178.2	-	.833
Auq.	21, 1974	83.58	.067	.930	8.869	.001	.765
Sept.	17, 1974	144.3	.940	.538	29.11	.131	.370
Oct.	15, 1974	31.46	.005	.087	23.86	.005	.138
Oct.	30, 1974	117.7	.016	.315	738.7	.069	.718
Nov.	14, 1974	42.92	.211	.104	139.9	.573	.480
Dec.	13, 1974	94.83	.146	.511	120.2	.106	.791
Jan.	16, 1975	7.892	.005	.395	6.227	.000	.222
Feb.	20, 1975	• • • • • • • • • • • • • • • • • • •	1 km	_	27.55	.003	.742
March	18, 1975	59.74	.008	.267	134.3	.007	.458
April	14, 1975	-	100	÷	20.21	.001	.393
May	9, 1975	21.18	.097	.136	26.30	.064	.210
May	28, 1975	N	Ν	.108	N	N	.061

Carbon required by Acartia tonsa and Pseudocalanus minutus

Table IV-12 (cont.)

Station 3

1

	Carbon Required	Proportion of Total	Proportion of Herbivore
Cruise	pgm/m ³ x10 ⁸	Carbon	Population
June 20, 1974 July 19, 1974 Aug. 1, 1974 Aug. 21, 1974 Sept. 17, 1974 Oct. 15, 1974 Oct. 30, 1974 Oct. 30, 1974 Nov. 14, 1974 Dec. 13, 1974 Jan. 16, 1975 Feb. 20; 1975 March 18, 1975 April 14, 1975 May 9, 1975	342.1 53.02 660.7 1.116 101.1 87.80 359.7 49.56 140.9 9.896 - 292.4 - 7.580	.031 .052 .130 .000 .391 .013 .018 .327 .164 .002 - .013 - .017	.773 .340 .931 .366 .651 .208 .465 .240 .768 .451 - .535 - .058 .101
riay 20, 1970	13	4¥	• 101

N = negligible

Net production, based on assimilation numbers calculated for the mouth of the Patuxent River (Stross and Stottlemyer, 1965) (Station II)

Month	Assimilation Number (mg C hr ⁻¹ mg Chl a ⁻¹)	Chl a Net (mg m ⁻³) (mg	Production Carbon C $hr^{-1} m^{-3}$)	Required by <u>A. tonsa</u> an (mg C hr ⁻¹ m ⁻³)	nd <u>P. minutus</u> ²
Jan.	2.35		-	.0519	
Feb. March April May	(1.595) ¹ 2.335 (2.925) 4.37, (4.50)	5.5 16.7 8.4 7.77	(8.77) 38.99 (24.58) 33.95, (22.88)	.230 ³ 1.119 .168 .219	
June	4.105	8.45	34.69	1.035 ³	
July	3.77	15.4	58.06	1.02 ³	•
Aug. Sept.	5.21 2.725	17.4 5.0	90.65 13.63	1.485 ³ 0739 ³ .243	
Oct. Nov.	2.89	13.1 2.5	37.86	.199 - 6.156 ³ 1.166	
Dec.	1.755	6.5	11.41	1.002^{3}	

values in parentheses are strictly from this study

² value from Table IV-12 divided by 12

 3 months when A. tonsa and P. minutus comprise >50% of herbivores

Daily phytoplankton requirements of dominant herbivores (based on Petipa, et al., 1970)

Species

ġ.

Percentage of Body Weight Required

Months of Dominance

Acartia		100-140%		June
Pseudocalanus	×	198%		June
Paracalanus		45%		Oct.
Oithona		140%		Jan.
copepodites		100-140%		July
0ikop1eura		60- 70%		July
mollusk larvae	•	2- 30%		Oct.
polychaete larvae		2- 30%	2 · · ·	Aug

June-Feb. June, Oct., Jan.-May Oct.-Nov., March, May Jan., May July-Aug., Feb.-April July, Oct. Oct.-Jan. Aug., Oct.

•			Zooplankton (no./m ³)		Nutrients (ug-at/l)	
	н. 1917 - А.			• • •	NO ₃ +	Ortho-
Station	1			NH ₃	NO ₂	-P04
Date (Cr	ruise	No.)				
20 June 19 July 1 Aug. 21 Aug. 17 Sept. 15 Oct. 30 Oct. 14 Nov. 13 Dec. 16 Jan.	1974 1974 1974 1974 1974 1974 1974 1974	<pre>(5) (6) (7) (8) (9) (10) (11) (12) (13) (14)</pre>	17924 10394 1512 967 2785 1771 19689 3632 6759 1206	2.8 7.1 3.1 1.8 5.0 1.1 2.1 2.2 2.7 3.0	.8 2.6 4.3 11.1 11.5 6.9 3.6 4.9 15.7 23.4	.27 .70 1.06 1.06 1.54 .50 .37 .98 .69 .52
18 March 14 April 9 May 28 May	1975 1975 1975 1975 1975	(15) (16) (17) (18) (19)	5308 8129 8343	 	7.9 - 1.4 3.1	- - .07 .18

Zooplankton numbers and nutrient concentrations averaged over all depths

	Zooplankton (no./m ³)		Nutrients (ug-at/l)	
Station 2		NHa	NO ₃ +	Ortho -PO,
Date (Cruise No.)		3	α το Ζ το πολογιστικό το το το το το το πολογιστικό το	4
20 June 1974 (5) 19 July 1974 (6) 1 Aug. 1974 (7) 21 Aug. 1974 (8) 17 Sept. 1974 (9) 15 Oct. 1974 (10) 30 Oct. 1974 (10) 30 Oct. 1974 (12) 13 Dec. 1974 (12) 13 Dec. 1974 (13) 16 Jan. 1975 (14) 20 Feb. 1975 (15) 18 March 1975 (16) 14 April 1975 (17) 9 May 1975 (19)	2339 1817 2377 160 850 1829 7677 2211 5426 1348 1879 4799 3569 6914 521	2.7 8.0 2.3 0.8 5.4 1.2 1.0 2.2 2.7 2.9 6.0 .01 0.7 .01 1.9	0.2 2.6 7.4 8.1 11.9 8.0 2.6 0.1 12.9 21.8 10.8 8.6 9.9 1.2 5.1	.21 .80 1.10 .68 1.52 .52 .27 .93 .63 .53 .41 .01 .06 .04 .18

Table IV-15 (cont.)

Table IV-15 (cont.)				
	Zooplankton (no./m ³)		Nutrients (ug-at/1)	
			N03+	Ortho
Station 3		NH ₃	NO2	-P02
Date (Cruise No.)				
20 June 1974 (5) 19 July 1974 (6) 1 Aug. 1974 (7) 21 Aug. 1974 (8) 17 Sept. 1974 (9) 15 Oct. 1974 (10) 30 Oct. 1974 (11) 14 Nov. 1974 (12) 13 Dec. 1974 (13) 16 Jan. 1975 (14) 20 Feb. 1975 (15) 18 March 1975 (16)	5162 1616 7556 1768 4167 6468 1608 6251 1002 - 8999	1.6 8.1 3.0 1.6 5.1 1.2 1.0 2.4 2.7 3.6 -	0.2 2.6 5.2 8.6 11.1 11.8 3.6 5.7 13.6 22.7 9.7	.20 .82 1.26 .87 1.61 .48 .28 .92 .58 .56 - .01
14 April 1975 (17) 9 May 1975 (18)	10418	.01	1.2	.03
28 May 1975 (19)	1159	1.6	2.7	.18

Zooplankton and nutrients (Zooplankton numbers to log e)

	NH ₃	N0 ₃ + N0 ₂	Ortho -PO ₄	Degrees of Freedom
Station 1				
Zooplankton	.051	584*	490 ^(*)	11
Station 2				
Zooplankton	192	207	368	13
Station 3				
Zooplankton	580*	302	353	10
* significant (*) significant	at 0.05] at 0.10]	evel evel		

FIGURE CAPTIONS FOR CHAPTER IV

Figure IV- 1:	Changes in whole water phytoplankton numbers versus nutrient concentrations at Station 1.
Figure IV- 2:	Changes in whole water phytoplankton numbers versus nutrient concentrations at Station 2.
Figure IV- 3:	Changes in whole water phytoplankton numbers versus nutrient concentrations at Station 3.
Figure IV- 4:	Changes in diatom numbers versus nutrient concentrations at Station 1.
Figure IV- 5:	Changes in diatom numbers versus nutrient concentrations at Station 2.
Figure IV- 6:	Changes in diatom numbers versus nutrient concentrations at Station 3.
Figure IV- 7:	Changes in micro-flagellate numbers versus nutrient concentrations at Station 1.
Figure IV- 8:	Changes in micro-flagellate numbers versus nutrient concentrations at Station 2.
Figure IV- 9:	Changes in micro-flagellate numbers versus nutrient concentrations at Station 3.
Figure IV-10:	Changes in dinoflagellate numbers versus nutrient concentrations at Station 1.
Figure IV-11:	Changes in dinoflagellate numbers versus nutrient concentrations at Station 2.

- Figure IV-12: Changes in dinoflagellate numbers versus nutrient concentrations at Station 3.
- Figure IV-13: Changes in total nannoplankton versus herbivore numbers at Station 1.
- Figure IV-14: Changes in total nannoplankton versus herbivore numbers at Station 2.
- Figure IV-15: Changes in total nannoplankton versus herbivore numbers at Station 3.
- Figure IV-16: Changes in total zooplankton numbers versus nutrient concentrations at Station 1.
- Figure IV-17: Changes in total zooplankton numbers versus nutrient concentrations at Station 2.
- Figure IV-18: Changes in total zooplankton numbers versus nutrient concentrations at Station 3.

Figure IV-8

Figure IV-14

SAMPLING DATE

Figure IV-17

.

V. DELAWARE BAY BENTHIC INVERTEBRATE ASSEMBLAGES

Les Watling Don Maurer Chris Wethe

INTRODUCTION

While benthic community studies have been conducted in many of the estuaries along the northeastern coast of North America (Sanders, 1956, 1958, 1960; Dean and Haskin, 1964; Phelps, 1964; Rhoads and Young, 1970; O'Connor, 1972; Boesch, 1973; McGrath, 1975), the benthos of Delaware Bay has generally been overlooked. Prior to the turn of the century, marine invertebrates were collected here by J. Leidy and A.E. Verrill. Also, oyster populations and their associated fauna received and continues to receive attention from the Oyster Laboratory of Rutgers University. Faunal studies in the area began with a qualitative examination of species distributions in the Cape May region (Richards, 1929) but were not conducted in a quantitative manner until the survey of Amos (unpublished) in the 1950's. The first published account of benthic assemblages in Delaware Bay was a paper on the associated oyster fauna (Maurer and Watling, 1973). A series of papers dealing with the distribution and ecology of specific taxa were also completed: Amphipoda (Watling and Maurer, 1972a); Hydroids (Watling and Maurer, 1972b); Pelecypoda (Maurer, et al., 1974); Isopoda (Watling, et al., 1974b); and Gastropoda (Leathem and

÷.
Maurer, 1975). In addition a few quantitative benthic studies were conducted in restricted areas near the Delaware Bay mouth (Kinner, et al., 1974; Watling, et al., 1974a).

Methods of quantifying benthic data have evolved from describing distributions of numbers per m² to utilizing classification and ordination techniques devised for numerical taxonomic (Sneath and Sokal, 1973) or vegetation analysis problems (Williams, et al., 1973; Orloci, 1975). Along the east coast of North America, classification and ordination techniques have been used in Chesapeake Bay (Boesch, 1973), Hadley Harbor, Massachusetts (Parker, 1975), and along the coast of Prince Edward Island, Canada (Hughes and Thomas, 1971a, 1971b).

The purpose of the present study was to determine the composition and distribution of the benthic invertebrate assemblages in Delaware Bay and to investigate the relationships of these assemblages to environmental factors such as sediment and salinity.

METHODS

Sample Procurement and Processing

Transects 1 through 13, ranging from Cape Henlopen-Cape May to off Stow Creek (Figure V-1) were sampled during July and August 1972. Transects 14 through 26, ranging over the same area, were sampled in June and July 1973, giving a total of 207 samples taken over the two years. Each station was sampled once with a 0.1 m² Petersen grab. Two aliquots of sediment were taken from each grab for sediment-size analysis. The remaining material was washed over a 1.0 mm mesh sieve with the residue being preserved in 10% buffered formalin. Bottom salinity and dissolved oxygen samples, along with water and sediment temperatures, were taken at every station. In the laboratory, benthic samples were sorted, identified to species, and their numbers determined. Sediment particle sizes were determined by dry sieving and pipette analysis.

Data Reduction

All species counts were stored on IBM cards for computer analyses. Assemblage distribution and composition were determined by site-group and species-group cluster analysis using both Czekanowski and Canberra metric similarity coefficients and group-average sorting strategy (See Sneath and Sokal, 1973; Clifford and Stephenson, 1975). The details of these techniques and the computer programs used are given in Appendix I.

Sediment Analysis

Sediment grain size analysis was performed according to the procedures outlined by Folk (1968). Sediment samples were wet sieved to separate the coarser material (sand) from the finer material (siltclay). The sand was dried, disaggregated, and sieved. For most samples a $1/2\phi$ interval set was used. For well-sorted sand a $1/4\phi$ interval was employed to better define the mode. The silt-clay was collected in a one-liter cylinder and the muddy water made up to exactly 1000 ml. After effectively dispersing the suspension using sodium hexametaphosphate, a pipette analysis was run. Pipette withdrawals were made so as to obtain $1/2\phi$ size intervals in the silt range and 1ϕ intervals in the clay range.

RESULTS AND DISCUSSION

Sediment Facies Distribution

Grain Size Measures

Four statistical measures were used to characterize the grain size distribution curves obtained from the grain size analysis

(Folk, 1968). The graphic mean (M_{τ}) was used to define average grain size. The graphic mean is based on the 16th, 50th, and 84th percentiles of the cumulative distribution curve. The uniformity or sorting of the sample was determined by the inclusive graphic standard deviation (σ_i) . This measure includes 90% of the grain size distribution in determining sorting. The inclusive graphic skewness (Sk_1) was used to measure asymmetry of the grain size distribution curves. Again, this measure includes 90% of the distribution curve for its computation. The graphic kurtosis (K_q) was employed as a measure of the peakedness of the curve. The measure indicates the degree of departure of the size distribution curve from a normal probability curve as defined by the Gaussian formula. For a normally distributed curve the value of K_{σ} is 1.00. With values greater than 1.00, the central portion of the grain size curve is better sorted than the tails. If the tails are better sorted than the center, the curve is platykurtic and $K_{\rm q}$ is less than 1.00. Very platykurtic curves are quite often bimodal.

Sediment Classification

 \cdot

To characterize the sediment distribution in Delaware Bay, a classification system incorporating both mean grain size and sorting was devised. This classification emphasized differences in sorting (between shoals and channels) and mean grain size. Five letter codes, A through E, represented coarse to fine mean grain size while five number codes, 1 through 5, represented well-sorted to very poorly-sorted uniformity. The size and sorting ranges represented by the various codes are listed in Table V-1. Only those codes which match sediments found within the bay are shown. Sediment classification groups are presented in Figure V-2.

The division between sediment types B and C were chosen as close to 0.2 mm diameter as possible. This particle diameter divides sediment that is carried and laid down chiefly as bed load from that sediment transported and deposited mainly from suspension (Allen, 1965). The division between sediment types C and D is the sandsilt break. The sorting classification divisions correspond to the classification scale described by Folk (1968). The characteristics of these sediment groupings are described in detail in Appendix II.

Geological Setting

Our understanding of the local geological framework suggests that it is a low-lying sandy coastline undergoing a relatively rapid marine transgression (Kraft, 1971). The principal features of the bathymetry of Delaware Bay are as summarized from Oostdam (1971): 1) an extensive series of shoals in the bay mouth off Cape May; 2) a series of shoals in the lower bay that run parallel to the axis of the estuary; 3) finger-like flood channels extending along and between the shoals; and 4) the main river channel which runs up the axis of the bay into the lower salinity regions. The geological evolution of these features have been elucidated by Weil (1976).

Bay-Wide Sediment Distribution

When sediment distribution patterns for Delaware Bay (Fig. V-2 to V-5) were examined, certain general trends emerged. Coarse sand (A) deposits were predominantly found at the mouth of the bay and in areas of eroded headlands within the bay. These sediments were transported and deposited as bed load. Medium to fine sand (B), together with bed load material but finer and more easily transportable, was carried further up the main channels of the bay by the flood tide currents. This sand formed both channel bottom and shoal deposits in the lower bay. Fine silt and clay (E) was carried into the bay in suspension from the Delaware River. While mainly found in the upper bay and along the Delaware Bay shore, this sediment also occurred at river mouths along the New Jersey shore and at the heads of some deep channels within the bay. Closely associated with the E class material was the coarse silt material (D) found in the

quiet waters around the perimeter of the bay as well as along some quiet channel bottoms. The percentage silt-clay distribution (Figure V-5) revealed a continuous band of high silt-clay contents from the upper bay down to at least the Murderkill River. South of the Murderkill there were scattered large patches of sediment ranging from 20 to 70% silt-clay. The other high silt-clay area occurred between Egg Island Point and Cape May Point in the quiet, shallow basin along the New Jersey shore. Both areas corresponded closely to the D and E class sediment areas. The very fine sand (C) deposits, material capable of being carried and redeposited chiefly from suspension, made up large portions of the central bay sediments.

Sediment sorting distribution (Figure V-4) also revealed some trends. Sediment in the poorly sorted channels was sorted by the tidal currents as it was transported up onto the shoals (Weil, 1976). The majority of shoals were well sorted while channel bottoms were poorly sorted. The high silt-clay sediments were also evident as very poorly sorted material around the perimeter of the bay.

Distribution of Organisms

A total of 109 and 125 species were obtained from the 1972 stations (transects 1-13) and 1973 stations (transects 14-26), respectively. These species and their feeding classification are given in Table V-2. The distribution of the species found among the invertebrate phyla was as follows:

Phylum	•		% Total Species	
		1972	1973	
Cnidaria Rhynchocoela Annelida Mollusca Arthropoda Ectoprocta		3.6 2.8 36.7 18.3 31.2 7.3	0.8 1.6 39.7 21.4 29.4 6.4	

The species abundances for all stations are listed in Appendix Table AV-1.

There were no significant changes in percent of total species among phyla from one year to the next. The number of species and number of individuals per station was transformed to $\log_e (n + 1)$ and compared to salinity, depth, dissolved oxygen, bottom temperature, water content of sediment, percent clay, percent silt, median grain size, and percent volatiles using the product-moment correlation coefficient (Table V-3). Based on these analyses there was a significant positive association between the number of species and salinity and median sediment size, and significant inverse associations with bottom temperature, percent clay, and percent volatiles in 1972 and 1973, and with water content and percent silt in 1972.

The fact that the number of marine species was positively associated with increasing salinity has been reported from estuaries throughout the world (Carriker, 1967). A similar pattern was observed earlier in Delaware Bay for the epifaunal associates of the oyster (Maurer and Watling, 1973). Based on that work the Woodland Beach area marked the transition zone between mesohaline and oligohaline waters. At that time it was pointed out that any faunal boundaries in Delaware Bay would have to be reevaluated pending studies on the infauna since it had been shown elsewhere that infaunal marine species occur further up the estuary than marine epifaunal species (Sanders, et al., 1965; Carriker, 1967). In the present study, the number of infaunal species markedly declined between the Simon's River and Stow Creek, N.J., which is opposite Woodland Beach, Delaware (this includes transects 12, 13, and 23 to 26; Figure V-6). This region probably occupies a critical position in the hydrography of the Delaware estuary with regard to salinity distribution and the response of the biota to salinity.

Observations concerning the association between benthic invertebrates and temperature and various sediment measures have also been made many times (Allen, 1963; Kinne, 1964; Gray, 1964). Temperature

is a major factor controlling directly or indirectly all aspects of the biology of an organism. Since the area is relatively small in area and bay-wide data were only available for the summer, the influence of temperature on species distribution is unclear. As a result, we have tended to place greater emphasis on sediment measures, which are to some degree controlled by local hydrographic conditions. At various times the distribution, composition, and abundance of benthic invertebrates have been correlated with percent clay, percent silt and clay, percent volatiles, median sediment size, and percent water content (Bader, 1954; Sanders, 1956, 1958; Harrison and Wass, 1965; Maurer, 1969). Based on the literature it seems that finer sediment fractions play an important role influencing the ecology of benthic invertebrates. More specifically, encrusted particles and organic-mineral aggregates probably represent significant food resources for the benthos (Johnson, 1974). If Johnson's methods could be formalized and made more feasible, they could provide more valid information about animal-sediment relationships than standard methods of describing sediments.

X

There were significant positive correlations between number of individuals/ m^2 and salinity and median grain size, and significant negative correlations of infaunal densities with percent clay, percent silt, water content, and percent volatiles in 1972. These patterns, with the exception of the salinity relationship, were not detected in 1973 (Table V-3).

The average number of individuals per sample from both sets of transects was 20, or 200 individuals/m². Especially noticeable was that at only ten stations of the 207 sampled were there more than 1,000 individuals/m² (Table V-4). As can be seen in Table V-5, the density of benthic organisms in Delaware Bay was one or two orders of magnitude lower than that recorded for any other estuary north of Cape Hatteras, including areas, such as Moriches Bay, which are heavily polluted. While our investigations were not designed to provide an explanation for this situation, some visual observations of the Delaware Bay environment provide possible clues. For example, there was a notable, virtually complete lack of attached benthic, macroscopic algae or vascular plants in Delaware Bay. This, in turn, was most likely related to the highly turbid conditions which exist in the bay (see Chapter IV for secchi depths). The absence of macroscopic benthic algae thus deprives the benthic community of a major source of organic material which would be utilized by deposit feeders (Levinton, 1972; Johnson, 1974).

The number of species and number of individuals obtained in each sample are shown in Figures V-6 and V-7. The highest number of species was obtained in the serpulid reef at Station 16-3. Samples with more than ten species occurred in isolated areas in the lower bay where the substratum consisted of fine to coarse sands. Highest densities of individuals also occurred in isolated samples, generally along the lateral regions of the lower bay. Most of the samples represented concentrations of one or two species. For example, 80% of the individuals at Stations 15-8, 18-1, and 18-10 belonged to the bivalve, <u>Gemma gemma</u>. In contrast, at Station 16-3, several species occurred in very high numbers.

The benthic assemblages in Delaware Bay consisted chiefly of deposit-feeders. The percent of the fauna at each station classified as deposit feeders is given in Figure V-8. Of the 207 samples, 75 had more than 75% deposit-feeding individuals while 118 samples possessed at least 50%. The majority of those samples with more than 75% deposit-feeding individuals were located along the Delaware side of Delaware Bay (Figure V-8). If Figure V-8 is compared to Figure V-5, this distribution is only partly explained by the siltclay content of the sediment. There were several samples with high proportions of deposit-feeders located in areas with less than 20% silt-clay. The reverse situation was also true.

Of the 15 species occurring most frequently in the 1972 samples, only ten were as widespread in 1973 (Table V-6). During both years the bivalve, Tellina agilis, occurred in over half the samples. The two species with the greatest change in occurrence were both bivalves. <u>Ensis directus</u> decreased from 34% in 1972 to 3% in 1973, and <u>Gemma</u> gemma increased from 6% to 25% over the same period.

The distribution of the most widespread species are given in Figures V-9 to V-16. The details of these distributions and their relationships to the sediment facies are outlined below for each species.

<u>Tellina agilis</u> (Figure V-9): This bivalve occurred throughout the lower bay, but its highest concentrations were in the areas where the channels extended into the shoal regions. While <u>T. agilis</u> showed no correlation with sediment descriptors, it was generally not found in sediments whose mean grain size was in the silt or clay range. This trend was noted earlier in a restricted area near the bay mouth (Kinner, et al., 1974).

<u>Heteromastus filiformis</u> (Figure V-10): This polychaete was found most frequently in sediments high in silt-clay sized particles. Thus its distribution excludes most of the lower central portion of the bay.

<u>Glycera</u> <u>dibranchiata</u> (Figure V-11): Although this polychaete was found in low numbers over much of the bay, it occurred in highest numbers in the clean fine sands along the New Jersey portion of the lower central bay.

<u>Nephtys picta</u> (Figure V-12): This polychaete was the only species with a strong depth-dependent distribution. Six of the ten stations with more than one individual and all stations with three or more individuals occurred at depths greater than 20 m. All these stations were characterized by sediments in the medium to coarse sand range.

<u>Mulinia lateralis</u> (Figure V-13): This bivalve is an opportunist which undergoes strongly localized population explosions. During our study it was widely distributed over Delaware Bay, with the highest numbers being found in the fine muddy sands of the upper bay. This region is also characterized by mesohaline bottom waters (see Hydrog-raphy chapter).

<u>Protohaustorius wigleyi</u> (Figure V-14): This burrowing amphipod was primarily found in the fine to medium, well to moderately sorted clean sands of the shoals. This animal-sediment association was noted earlier near the bay mouth (Kinner, et al., 1974).

<u>Gemma gemma</u> (Figure V-15): A small bivalve with short siphons, the highest numbers of <u>G. gemma</u> were found in the moderate to high silt-clay habitats of the upper bay and along the margins of the lower bay. These regions were also characterized by mesohaline to lower polyhaline bottom waters.

<u>Nucula proxima</u> (Figure V-16): This deposit-feeding bivalve was found in highest numbers and with greatest frequency along the Delaware side of the lower bay. Most of the stations with high <u>N. proxima</u> densities were located in substrata characterized by fine sands with varying amounts of silt and clay. This species has been considered as characterizing high silt-clay (>50%) facies (Kinner, et al., 1974), but has also been found at very high densities in fine to medium sands (Watling, et al., 1974a).

Distribution of Assemblages

Although we are of the opinion that each species is distributed along a continuum independent of many, if not most, other species, it is possible to define assemblages of species whose distributions overlap to a greater or lesser degree. Cluster analysis techniques can be used to compute the similarity of samples, and groups of samples, with each other, thus producing hierarchic groupings of samples that are similar amongst themselves. The output of such computations is a dendrogram, the significance of whose branching pattern can only be determined by the ecologist (Clifford and Stephenson, 1975). These techniques were used to determine what assemblages existed when the samples were taken in 1972 and 1973.

The dendrograms produced for station groupings in 1972 and 1973 are given in Figures V-17 and V-24, respectively. These dendrograms utilized the Canberra metric similarity measure and the group-average sorting strategy. All species occurring in more than 3% of the samples were included in the analyses. Thus 37 species were considered for the 1972 samples and 53 species for the 1973 samples.

The dendrogram for the 1972 samples appeared to contain nine distinct clusters which were arbitrarily lettered A through I. After the species occurrences and sediment characteristics were reviewed for these groups, they were combined to produce the following assemblages: A, consisting of groups A-E; F; G; H; and I. These assemblages are distributed as in Figure V-18 and their sediment characteristics graphed in Figures V-19 to V-23. The species characterizing these assemblages, the percent of their abundance, and their percent occurrence at stations within the group are outlined below:

	% Abundance	% Occurrence
Species	in Group	in Group
Assemblage A (54 stations):		
<u>Tellina agilis</u> <u>Nephtys picta</u> <u>Nassarius trivittatus</u> <u>Cancer irroratus</u> <u>Trichophoxus epistomus</u> <u>Haploscoloplos fragilis</u> <u>Glycera capitata</u> <u>Ensis directus</u>	80 98 90 90 100 100 60 34	91 30 13 11 17 7 33 48
Assemblage F (10 stations):		
Ampelisca abdita Nucula proxima Streblospio benedicti	76 48 39	40 30 30
Assemblage F (3 stations):		
Scolecolepides viridis	75	100

	% Abundance	% Occurrence
Species	in Group	in Group
Assemblage H (11 stations):		
Ensis directus Glycera capitata Nereis succinea Capitella capitata	69 38 51 51	45 100 18 18
Assemblage I (10 stations):		
Heteromastus <u>filiformis</u> <u>Melita nitida</u> Mulinia lateralis	66 74 86	100 60 40

Assemblage A occurs throughout the central portion of the lower bay and was characterized by fine to coarse, primarily clean sands that were moderately to poorly sorted (Figure V-19). The bottom waters throughout this region were in both the upper polyhaline and lower polyhaline salinity levels. The sediments at Assemblage F stations were predominantly fine sands to silts and clays and were extremely poorly sorted. The three stations of Assemblage G consisted of two quite different sediment classifications (Figure V-21) and possibly represented an artificial assemblage. Assemblages H and I showed quite similar, strongly heterogeneous sediment patterns. These assemblages appeared to be sufficiently distinct to be considered separately but were contiguous geographically (Figure V-18). The bottom waters in the region of these assemblages were generally mesohaline in nature.

A similar analysis was performed on the samples taken in 1973. In this case four assemblages were produced from the initial 11 groups considered (Figure V-24): assemblage 1, from groups 1 through 4, assemblage 5, from groups 5, 6, and 7; assemblage 8, from groups 8 and 9, and assemblage 10, from groups 10 and 11. The distribution of these assemblages is shown in Figure V-25, and their sediment characteristics in Figures V-26 through V-27. The species characterizing these assemblages, their abundance, and percent occurrence at stations within the assemblage are outlined below:

Species	% Abundance	% Occurrence at Stations in Group
Assemblage 1 (44 stations):		
Tellina agilis Glycera dibranchiata Heteromastus filiformis Protohaustorius wigleyi Glycera capitata Nepthys picta Assemblage 5 (14 stations):	50 75 72 90 69 60	95 34 32 25 23 30
Tellina agilis Nucula proxima Paraphoxus spinosus Aricidea cerruti Glycera americana Cancer irroratus Pagurus longicarpusAssemblage 8 (19 stations):	50 59 88 99 86 81 56	93 43 36 29 29 29 29 29 29
Melita nitida Polydora ligni Neopanope texana sayi Nereis succinea Corophium simile Paracaprella tenuis Parapleustes aestuarius Crepidula plana Eurypanopeus depressus Sabellaria vulgaris	100 92 97 93 100 100 100 100 96 95	42 53 32 21 21 21 21 21 21 21 21 21
Assemblage 10 (15 stations):		na dheanna dheann. Tha an taon an tao
<u>Mulinia lateralis</u> Mya arenaria	77 99	13 20

Assemblage 1 extended over much of the same area covered by Assemblage A a year earlier. The sediment characteristics were also largely similar, with the exception of a few stations located in poorly sorted silts and clays (Figure V-26). Assemblage 5 occurred in two large patches along the Delaware side of the lower bay and in two smaller patches along the New Jersey shore. The sediments at these stations were generally fine to medium, moderately sorted sands (Figure V-27). The only distinctly epifaunal assemblage found was Assemblage 8. It was found at several isolated localities throughout all portions of the bay and was characterized by a heterogeneous grouping of sediments (Figure V-28). A similar sediment distribution (Figure V-29) was seen for the more depauperate infaunal Assemblage 10. This assemblage was located almost exclusively in the region of mesohaline bottom waters.

There has been much discussion about the uses of cluster analyses, their output and their interpretation (Clifford and Stephenson, 1975; Farris, 1976). In our analysis of the Delaware Bay fauna, we have used cluster analysis only as a tool to aid in handling the massive amount of data generated by surveys of this kind. The analysis and interpretation of the dendrogram was considered to be the responsibility of the investigator.

As yet, there are no statistically acceptable tests which can be used to determine whether a site-group or species-group, as defined by hierarchial classificatory techniques, should be accepted or rejected (Stephenson, et al., 1974). As a consequence, we established our sitegroups using arbitrary criteria of conformity between site-groups and species occurrences. This resolved some of the problems associated with assemblage definition, but still left the matter of scale to be Stephenson, et al. (1974) suggested that the size of sitedealt with. groups would vary among different environments, with topographical micropatterns being of a finer scale in the tropics than in temperature latitudes. This leads one to question the purpose of using classificatory techniques: are they to be used to resolve small-scale patterns or to define assemblages of co-occurring species that may be interacting to form functional units. Since it is unlikely, in our opinion, that the results of these two purposes are necessarily equivalent, one's choice between them must govern not only the interpretation of the dendrogram produced, but also the initial sampling design. In this study our purpose was to define functional assemblages of cooccurring species. However, we feel that in view of the unusually low densities in Delaware Bay, it was not possible to separate the heterogeneity of small-scale topographical patterns from the distribution of functional assemblages.

REFERENCES

- Allen, J.A., 1963. Ecology and functional morphology of molluscs. Oceanogr. Mar. Biol. Ann. Rev. 1: 253-288.
- Allen, J.R.L., 1965. A review of the origin and characteristics of recent alluvial sediments. Sedimentol. 5: 89-191.

- Bader, R.G., 1954. The role of organic matter in determining the distribution of pelecypods in marine sediments. J. Mar. Res. <u>13</u>: 32-47.
- Boesch, D.F., 1973. Classification and community structure of macrobenthos in the Hampton Roads area, Virginia. Mar. Biol. <u>21</u>: 226-244.
- Carriker, M.R., 1967. Ecology of estuarine invertebrates: a perspective, pp. 442-487. In: Estuaries (G.H. Lauff, Ed.). A.A.A.S. Publication 83, Washington, D.C.
- Clifford, H.T., and W. Stephenson, 1975. An Introduction to Numerical Classification. Academic Press, N.Y., 229 pp.
- Dean, D., and H.H. Haskin, 1964. Benthic repopulation of the Raritan River estuary following pollution abatement. Limnol. Oceanogr. 9: 551-563.

Farris, J.S., 1976. Book review. Syst. Zool. 25: 92-95.

- Folk, R.L., 1968. Petrology of Sedimentary Rocks. Hemphill's, Austin, Texas, 170 pp.
- Gray, J.S., 1974. Animal-sediment relationships. Oceanogr. Mar. Biol. Ann. Rev. 12: 223-261.

- Harrison, W., and M.L. Wass, 1965. Frequencies of infaunal invertebrates related to water content of Chesapeake Bay sediments. Southeast. Geol. 6: 177-187.
- Hughes, R.N., and M.L.H. Thomas, 1971a. The classification and ordination of shallow-water benthic samples from Prince Edward Island, Canada. J. exp. mar. Biol. Ecol. 7: 1-39.
- Hughes, R.N., and M.L.H. Thomas, 1971b. Classification and ordination of benthic samples from Bedeque Bay, an estuary in Prince Edward Island, Canada. Mar. Biol. 10: 227-235.
- Johnson, R.G., 1974. Particulate matter at the sediment-water interface in coastal environments. J. Mar. Res. 32: 313-330.
- Kinne, O., 1964. The effects of temperature and salinity in marine and brackish water animals. II. Salinity and temperature-salinity relations. Oceanogr. Mar. Biol. Ann. Rev. <u>2</u>: 281-339.
- Kinner, P., D. Maurer, and W. Leathem, 1974. Benthic invertebrates in Delaware Bay: animal-sediment associations of the dominant species. Int. Rev. ges. Hydrobiol. 59: 685-701.
- Kraft, J.C., 1971. Sedimentary facies patterns and geologic history of a Holocene marine transgression. Geol. Soc. Amer. Bull. <u>82</u>: 2131-2158.
- Leathem, W., and D. Maurer, 1975. The distribution and ecology of common marine and estuarine gastropods in the Delaware Bay area. Nautilus 89: 73-79.

Levinton, J., 1972. Stability and trophic structure in depositfeeding and suspension-feeding communities. Amer. Nat. <u>106</u>: 472-486. Maurer, D., 1969. Pelecypod-sediment associations in Tomales Bay, California. Veliger 11: 243-249.

- Maurer, D., and L. Watling, 1973. Studies on the oyster community in Delaware: the effects of the estuarine environment on the associated fauna. Int. Rev. ges. Hydrobiol. <u>58</u>: 161-201.
- Maurer, D., L. Watling, and G. Aprill, 1974. The distribution and ecology of common marine and estuarine pelecypods in the Delaware Bay area. Nautilus 88: 38-45.
- McGrath, R.A., 1974. Benthic macrofaunal census of Raritan Bay--preliminary results. Proc. 3rd. Symp. Hudson River Ecol., Bear Mt., N.Y., Hudson R. Environ. Soc., 36 pp.
- O'Connor, J.S., 1972. The macrofauna of Moriches Bay, New York. Biol. Bull. 142: 84-102.
- Oostdam, B.L., 1971. Suspended sediment transport in Delaware Bay. Ph.D. Dissertation, Univ. of Delaware, 303 pp.
- Orloci, L., 1975. Multivariate analysis in vegetation research. Dr. W. Junk, Publishers, The Hague, Netherlands, 276 pp.
- Orth, R.J., 1973. Benthic infauna of eelgrass, <u>Zostera marina</u>, beds. Ches. Sci. 14: 258-269.
- Parker, R.H., 1975. The study of benthic communities, a model and a review. Elsevier Publishing Co., Amsterdam, 279 pp.
- Phelps, D.K., 1964. Functional relationships of benthos in a coastal lagoon. Ph.D. Thesis, University of Rhode Island, 146 pp.
- Rhoads, D.C., and D.K. Young, 1970. The influence of depositfeeding organisms on sediment stability and community trophic structure. J. Mar. Res. 28: 150-178.

- Richards, H.G., 1929. A faunistic survey of the marine invertebrates of New Jersey, with especial reference to the Cape May region.M.S. Thesis, University of Pennsylvania, 108 pp.
- Rowe, G.T., P.T. Polloni, and J.I. Rowe, 1972. Benthic community parameters in the lower Mystic River. Int. Rev. ges. Hydrobiol. 57: 573-584.
- Sanders, H.L., 1956. Oceanography of Long Island Sound, 1952-1954.X. Biology of marine bottom communities. Bull. BinghamOceanogr. Coll. 15: 345-414.
- Sanders, H.L., 1958. Benthic studies in Buzzards Bay. I. Animalsediment relationships. Limnol. Oceanogr. <u>3</u>: 245-258.
- Sanders, H.L., 1960. Benthic studies in Buzzards Bay. III. The structure of the soft-bottom community. Limnol. Oceanogr. 5: 138-153.
- Sanders, H., P.C. Mangelsdorf, Jr., and G.R. Hampson, 1965. Salinity
 and faunal distribution in the Pocasset River, Massachusetts.
 Limnol. Oceanogr. 10 (Suppl.): R216-R229.
- Sneath, P.H.A., and R.R. Sokal, 1973. Numerical taxonomy, the principles and practice of numerical classification. W.H. Freeman & Co., San Francisco, 573 pp.
- Steimle, F.W., and R.B. Stone, 1973. Abundance and distribution of inshore benthic fauna off southwestern Long Island, N.Y. NOAA Tech. Rept. NMFS SSRF-673, 50 pp.
- Watling, L., and D. Maurer, 1972a. Marine shallow water amphipods of the Delaware Bay area, U.S.A. Crustaceana, Suppl. 3: 251-266.

÷.

Watling, L., and D. Maurer, 1972b. Shallow water hydroids of the Delaware Bay region. J. nat. Hist. 6: 643-649.

- Watling, L., W. Leathem, P. Kinner, C. Wethe, and D. Maurer, 1974a. Evaluation of sludge dumping off Delaware Bay. Mar. Poll. Bull. 5: 39-42.
- Watling, L., J. Lindsay, R. Smith, and D. Maurer, 1974b. The distribution of Isopoda in the Delaware Bay region. Int. Rev. ges. Hydrobiol. <u>59</u>: 343-351.

- Weil, C., 1976. Dynamics of sedimentary facies in Delaware Bay. Ph.D. Thesis, University of Delaware, 300 pp.
- Williams, W.T., G.N. Lance, L.J. Webb, and J.G. Tracey, 1973. Studies in the numerical analysis of complex rain-forest communities. J. Ecol. 61: 47-70.
- Young, D.K., and D.C. Rhoads, 1971. Animal-sediment relations in Cape Cod Bay, Massachusetts. I. A transect study. Mar. Biol. 11: 242-254.

Sediment classification scheme used for Delaware Bay sediments

Inclusive graphic standard deviation σ_i (sorting)

		0.5	οφ I	•υφ	2.0φ	3.0φ
•.		Well Sorted	Moderately to Moderately Well Sorted	Poorly Sorted	Very Poorly Sorted	Very to Extremely Poorly Sorted
	Coarse Sand		A2	A3	A4	
1. 5 ₀						
•	Medium to Fine Sand	B1	B2	B3	B4	
2.5¢						
	Very Fine Sand	C1	C2	С3	C4	
4.0φ						
	Coarse Silt			D3	D4	D5
6.0φ						
	Fine Silt and Clav				F4	F5

graphic mean (m_z)

List of species obtained from transect samples in Delaware Bay during 1972 and 1973

		Feeding Type	Transe 1-13 1	cts 4-26
Phylum Cnidaria				
Class Hydrozoa				
Order Hydroida				
Family Hydractiniida	ae		· · ·	
Hydractinia echina	ata (Fleming 1828)	SF		X
Family Campanulariic	lae			
<u>Hartlaubella</u> gelat	tinosa (Pallas 1766)	SF	X	
Family Sertulariidae	5			
<u>Sertularia</u> argente	ea Linne 1758	SF	X	
Family Plumulariidae		C.C.		
Class Anthonon tenel	<u>11a</u> (verriii 1874)	21	X	
Ordon Actinania				
Family Diadumonidao				
Diadumene leucoler	va (Verrill 1866)	SF	Y	
Dradamene reacorer	14 (1211111 1866)	51		
Phylum Rhynchocoela				
Class Anopla				
Order Heteronemertini				
Family Lineidae				
<u>Cerebratulus</u> lacte	<u>eus</u> (Leidy 1851)	С	X	Х
<u>Micrura leidyi</u>		C	X . •	
Class Unknown		· · · · ·		
<u>Nemertea</u> sp.		C	X	Х
Phylip Appalida	***			
Figure Annellud				
Asabellides oculat	tus (Webster 1879)	DF	V	v
Melinna sp. cf. M	maculata		X	^
Asabellides sp. cf.	F. A. oculatus	DF	x	
? Asabellides		DF	~	х
Ampharetidae sp.		DF		x
Family Arabellidae				
Arabella iricolor	(Montagu 1804)	0		X
Driloneris longa k	Nebster 1879	0	X	X
Driloneris magna V	Webster and Benedict 1887	0		X
Family Capitellidae	/			
<u>Capitella</u> capitata	a (Fabricius 1780)	DF	x x x	X
Heteromastus filii	Formis (Claparede 1864)	DF	X	X

	Feeding	Transec	ts
	iyhe	1-13 14	20
Family Cirratulidae			
Caulleriella sp. 2	DF	a ta ang ang ang ang ang ang ang ang ang an	x
Tharvy sp. 2	DF	X	X
Cirriformia sp. cf. C. grandis	DF	× ×	^
? Chaetozone	DF	· · ·	v
Family Funicidae			^
Marphysa sanguinea (Montagu 1815)	DF		v
Family Glyceridae			^
Glycera americana Leidy 1855	C	v	v
Glycera capitata Dersted 1843	C C	~	× v
Glycera dibranchiata Ehlers 1868	C	v ·	v
Glycera robusta Falers 1868	C C		^
Family Conjudidae	U .	^	•
Glycinde solitaria (Webster 1880)	C.	v	v V
Family Hesionidae	U .	^	^
Microphthalmus aberrans (Webster and Benedi	ct		
1887)	r c		v
Family Lumbrineridae	, v		A
Lumbringris acuta (Vorrill 1875)	DE	V	
Lumbringris topuis (Verrill 1873)		X	v
Lumprinoris cp. cf. L. topuis (Vonnill	DI	X	X
Lumbrineris sp. cr. L. Lenuis (Verrin	ne ,		
Family Magolonidao	יוט	X	
Magolona sp 1	nr.	v	
Magelona sp. 7		X	
Magelona sp. 2		V	X
Family Maldanidan	DF	X 4	
Clumonalla en ef C tonquata (Laidy 1955)	DE	~	
Eamily Nephtwidee	DE	X	
Norther hugens Ebland 1969	· • •		ана ана Мала С
Nephtys Ducera Enters 1000	0		X
Equily Nonoidao	U	X	X
Raming Merciude	. .		
nereis (nearches) succinea rrey and Leuckar	ι		
Family Opholiidan	U	X	X
Opholia bicornic Savigny 1919	DE		v
Travisia campos Vernill 1972			X
Family Ophinidan	DE	- 	x
Haploccolonics coutus (Vernill 1972)	NE		N
Haploscolopios dutus (Verriii 10/3)			X
Haploscolopius iraginis (Vernin 1073)		X	X
Approscoropius robuscus (Verrini 1073)		X	X
Scolonlos en		X	
Sculupius Sp.	UI.	X	
raminy rarauniude	חב		v 2
Aricidea sp.			X
Aricided Certuil Laudier 1907			X
raradoneis (raraoinides) iyra Southern 1914		Х	· · ·

	Feeding Type	Transects 1-13 14-26
Family Doctinaviidao		• • • • • •
Pectinaria gouldii Verrill 1873	DF	×
Family Phyllodocidae		~
Eteone heteropoda Hartman 1951	0	x x
Eteone lactea Claparede 1868	Õ	x
Eteone longa (Fabricius 1780)	0	X
Eumida sanguinea (Oersted 1843)	Ō	X
Paranaitis kosteriensis (Malmgren 1867)	С	X
Phyllodoce arenae Webster 1880	С	X
Family Polynoidae		
Harmothoe sp. cf. H. extenuata (Grube 1840) C	X
Harmothoe (Lagisca) extenuata (Grube 1840)	C	X X
<u>Lepidonotus squamatus</u> (Linnaeus 1756)	C	Х
Lepidonotus sublevis Verrill 1873	C	X X
Family Sabellaridae		
<u>Sabellaria vulgaris</u> Verrill 1873	SF	X X
Family Sabellidae	65	
<u>Potamilla</u> <u>reniformis</u> (Leuchart 1849)	SF	X
Family Serpulidae	C.F.	
Hydroides diantnus (verriii 1873)	55	X
Family Sigalionidae	C	
<u>Strenelais</u> (<u>denticulatum</u>)		X
<u>Sigalion</u> Sp.		X
Polydona ligni Webston 1970	DE	vv
Polydona right webster 1879 Polydona socialis (Schmanda 1861)		
Polydora vebstori Hartman 1943		
Scolecolepides viridis (Verrill 1873)		N N N
Scolelenis squamata (0 E Muller 1806)	DF	
Spionhanes bombyy (Clanarede 1870)	DF	X X
Streblospio benedicti Webster 1879	DF	X X
Family Syllidae		
Exogone verugera (Claparede 1868)	0	X
Parapionosyllis longicirrata Webster and		
Benedict 1884) 0	X
Proceraea cornuta (Agassiz 1863)	0	X
Family Terebellidae		
Polycirrus eximius (Leidy 1855)	DF	X
Class Oligochaeta		
Oligochaeta	DF	X
		$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}$
Phylum Mollusca	and the second	
Class Gastropoda		
Urder Mesogastropoda		
Family Epitoniidae	<u>^</u>	· · · · · ·
Epitonium rupicola (Kurtz 1860)	L L	X
ramily calyptraeidae	сг	- · · · · · · · · · · · · · · · · · · ·
Chenidula conveya Cau 1922		X
Chonidula nlana Say 1822	JF CE	X X
	55	Х

	Feeding Type	Transects 1-13 14-26
Family Naticacea		
Lunatia heros (Say 1822)	C	X
Order Neogastropoda		
Family Melongenidae	· · · · · · · · · · · · · · · · · · ·	
<u>Busycon carica</u> (Gmelin 1791)	С	X
Family Nassariidae		
Nassarius trivittatus (Say 1822)	C	X X
<u>Ilyanassa obsoletus</u> (Say 1822)	Ç	X X
Family Marginellidae	^	
Marginella roscida Redfield 1860	L L	X
Family Dynamidallidae		
Savolla fusca (C.B. Adams 1820)	octonava-	
Jayerra rusca (C.B. Adams 1833)	sitic	v
	31010	^
Order Nudibranchia		
Family Corambella		
Dorodella obscura Verrill 1870	C,	хх
Class Bivalvia		
Order Protobranchia		
Family Nuculidae		
Nucula proxima Say 1822	DF	ХХ
Yoldia limatula Say 1831	DF	X X
Urder Filibranchia		
Andana ovalia (Pruguiono 1790)	сE	~
Family Mytilidae	SF	Χ
Geukensia demissa (Dillwyn 1817)	SE	v
Mytilus edulis Linne 1758	SF	X
Family Ostreidae		
Crassostrea virginica (Gmelin 1791)	SF	хх
Order Eulamellibranchia		
Family Carditidae		
Cyclocardia borealis (Conrad 1831)	SF	X
Family Leptonidae		
<u>Mysella planulata</u> (Stimpson 1857)	SF	Х
Family Veneridae	~ -	
Mercenaria mercenaria (Linne 1758)	SF	X X
Germa germa (lotten 1834)	SF	X X
Family lellinidae	DE	
Manama balthiga (Linno 1759)	Dr הב	
Family Solonidao	Di	~ ~
Ensis directus Conrad 1843	SF	x x
Family Mactridae		
Spisula solidissima (Dillwvn 1817)	SF	x x
Mulinia lateralis (Sav 1822)	SF	X X
Family Myacidae		•
Mva arenaria Linne 1758	SF	X X

	Feeding Type	Trans 1-13	ects 14-26
Family Corbulidae			· .
<u>Corbula contracta</u> Say 1822	SF	• • • • X	X
Family Lyonsiidae	сг		
Lyonsta hyalina Lonrad 1831	۶F	X	Х
Family Pandoridae	۲ ۲		v
Pandura guululana Dall 1000	JF		
Phylum Arthropoda			
Class Merostomata			
Limulus polyphemus (Linne 1758)	C		x
Class Pychogonida			
Family Pallenidae	• •		
Tanystylum orbiculare Wilson 1878	DF	X	X
Class Crustacea			
Subclass Cirripedia			
Order Thoracica			
Family Balanidae			
Balanus (Balanus) improvisus Darwin 1854	SF		X
Balanus (Semibalanus) balanoides (Linne)	SF		X
Subclass Malacostraca			
Order Mysidacea			
Family Mysidae			
Neomysis americana (S.I. Smith 1873)	SF	X	х
Order Cumacea			
Family Diastylidae	05		
Uxyurostylis smithi Calman 1912	DF		X
Urder Isopoda			
Family Anthuridae	0	••	
Lyathura polita (Stimpson 1855)	0	X	X
Custhurs hurbanaki Enankonhong 1065	0	•	X
Eamily Idetoidae	0		X
Chiridotes nigrescens Wigley 1961	NE		· ·
Edotea triloba (Sav 1818)	DF		× ·
Order Amphipoda	DI		~
Family Ampeliscidae		• · · ·	
Ampelisca abdita Mills 1964	DF	X	X
Ampelisca verrilli Mills 1967	DF	X	X
Family Ampithoidae			
Ampithoidae sp.	DF	X	
Family Aoridae		·	
Lembos smithi (Holmes 1905)	DF		х
Family Bateidae			
Batea catharinensis Fr. Muller 1865	DF	X	
Family Corophiidae			
Corophium insidiosum Crawford 1937	DF	х	х
Corophium lacustre Vanhoffen 1911	DF	X	
Corophium tuberculatum Shoemaker 1934	DF	X	X
Erichthonius brasiliensis Dana 1853	DF	X	X

	Feeding Type	Transe 1-13	ects 14-26
Family Corophiidae (cont)			
Unciola irrorata Sav 1818	DF	Y .	•
Unciola serrata Shoemaker 1945	DF	× ×	¥
Unciola dissimilis Shoemaker 1945	DF	X	· •
Corophium simile Shoemaker 1934	DF	x	Y
Family Gammaridae	Di	· · · · · · · · · · · · · · · · · · ·	^
Gammarus mucronatus Sav 1818	DF	×	Y
Flasmonus laevis (Smith 1871)	DF	~	Y
Melita nitida Smith 1873	DF	X	X
Family Haustoriidae	5.	~	
Parahaustorius attenuatus Rousfield 1965	DF	×	
Parahaustorius longimerus Boustield 1965	DF	X	
Protobaustorius wiglevi Bousfield 1965	DF	x x	x
Protohaustorius deichmannae Rousfield 1965	DF	X	~
Acanthohaustorius millsi Bousfield 1965	DF	· X	x
Acanthohaustorius intermedius Bousfield 1965		X	N Y
Family Lysianassidae			~
lysianonsis alba Holmes 1905	DF	×	
Family Phoyocephalidae			
Paranhovus sninosus Holmes 1903	DE		v
Trichophovus epistomus (Shoemaker 1938)	DE	×	^
Family Ploustidao	DI	~	
Daranloustos actuarius Watling and Mauror			
1073	DF	v	Y
Family Stonothoidan	וט		· · ·
Daramotopolla cupris (Holmes 1905)	DF		v
Family Caprollidae	01		^
Panacapholla tonuis Mayor 1003	S.E.	v	v
Onden Decaneda	51	· · · · · · · · · · · · · · · · · · ·	n n
Family Changonidae			
Changon contomoninosa (Sav. 1818)	DF	V	v
Eamily Callianassidae		^	
Callianassa en ef Catlantica	DF	· · · · · ·	
Family Paguridan	D1		
Pagurus longicarnus Sav 1817	DE	Y.	Y
Family Cancridae		~	~
Cancon innoratus Say 1817	C	v .	Y
Eamily Vanthidao	. .	· • •	. ^
Yanthid sp	C ·	· · ·	
Furypanonous donrossus (Smith 1860)	C C	× ×	x
Noonanone texana savi (Smith 1860)	C C	× ·	x
Dhithmanananous harrisi (Sould 18/1)	r c	^	N N
Family Dispothonidao	U		^
Dippothonoc maculatus Say 1919	commonsal		· •
Pinnius causas Stimpson 1960	nE	. . .	
PINNIXA SAYANA SUMPSON 1800	וט	Ň	^

	Feeding Type	Transects 1-13 14-26
Phylum Ectoprocta		
Class Gymnolaemata	· · · · · ·	
Order Ctenostomata		
Family Alcyonidiidae		
Alcyonidium polyoum (Hassall 1841)	SF	х х
Alcyonidium verrilli Osburn 1912	SF	X
Family Nolellidae		
Anguinella palmata Van Beneden 1844	SF	X
Family Flustrellidae		
Flustrellidra hispida (Fabricius 1780)	SF	X
Family Vesiculariidae		
Bowerbankia gracilis Leidy 1855	SF	X
Family Triticellidae	· · · · ·	and the second
Triticella elongata (Osburn 1912)	SF	X
Order Cheilostomata		
Family Membraniporidae		
Membranipora tenuis Desor 1848	SF	X X
Membranipora tuberculata (Bosc 1802)	SF	X
Conopeum tenuissimum (Canu 1908)	SF	X X
Family Electridae		
<u>Electra hastingsae</u> Marcus 1938	SF	XXX
Family Schizoporellidae		
<u>Schizoporella errata</u> (Watess 1878)	SF	X
Family Microporellidae		
<u>Microporella ciliata</u> (Pallas 1766)	SF	X
		· · · · · ·
Phylum Echinodermata		
Class Echinoidea		
Order Diadematoida		
Family Echinarachnidae		
Echinarachnius parma (Lamark 1816)	SF	X

Correlation between Number of Species and Number of Individuals in Relation to Environmental Factors

		Nu	mber of	Species				•	
		1972		•	1973			Combined	
	R	F	N	R	F	. N	R	F	N
Salinity	0.43*	22.7	102	0.44*	23.4	96	0.37*	32.3	198
Depth	0.06	0.43	105	0.09	0.98	99	0.11	2.5	204
Dissolved Oxygen	0.06	0.37	101	-0.07	0.59	99	-	-	·
Bottom Temperature	-0.24*	6.2	103	-0.22*	4.8	96	-0.27	15.4	199
% H ₂ O in Sediment	-0.53*	41.8	104	-	-	· · · ·	-	-	
% Clav	-0.48*	31.4	104	-0.21*	4.5	100	-0.33	25.4	204
% Silt	-0.36*	15.8	104	-0.14	2.1	96	-0.26	14.4	200
50% mm	0.34*	13.5	104	0.04	0.17	96	0.12	3.3	. 200
% Volatiles	-0.55*	45.1	104	-0.20*	4.1	96	-0.35	28.6	200

		Number of Individuals		1973			Combined	ď	
	R	F	N	R	F	N	R	F	N
Salinity	0.35*	14.5	103	0.25*	6.49	97	0.25	14.1	200
Depth	0.11	0.01	105	-0.07	0.52	101	-0.06	0.73	206
Dissolved Oxygen	0.06	0.46	101	0.1	1.16	99	(<u> </u>	· · ·	
Bottom Temperature	-0.07	0.64	104	-0.06	0.44	100	-0.20	8.55	204
% H ₂ O in Sediment	-0.43*	24.1	104	-		-	-	-	
% Clay	-0.37*	17.0	104	-0.16	2.7	96	-0.22	10.8	200
% Silt	-0.27*	8.38	104	-0.02	0.05	96	-0.13	3.7	200
50% mm	0.23*	5.79	104	-0.04	0.21	96	0.07	1.1	200
% Volatiles	-0.43*	23.9	104	-0.15	2.4	96	-0.23	11.3	200

*Significant at = 0.5; R = Product-Moment Correlation Coefficient; F = F Factor; N = Number of Observations.

Density of benthic organisms in relation to sediment classification

.

Sediment Classification	No. Stations	Average No. Individuals per m ²	Average No. Species	Stations Omitted	No. Individuals per m ²	No. Species
A-2	13	180	4	None		-
A-3	15	250	8	None		
B-1	8	160	5	18- 1 20- 7	9350 4640	9 10
B-2	14	360	6	7- 7 21- 6	6330 2340	6 10
B-3	17	250	6	None	-	_
B-4	5	140	6	None		-
C-1	31	180	5	None		-
C-2	17	180	4	15- 8	6500	18
C-3	25	240	5	24- 4	6330	5
D-4	16	260	5	16- 3 18-10	30440 37990	31 5
D-5	1	60	3	16-11	1290	13
E-5	20	100	3	12- 1	3550	2

Average density of organisms at various locations along the east coast of North America

	Average No. Individuals	
Location	per m ²	Source
Pocasset River, Massachusetts	67,000	Sanders, et al., 1965
Charlestown Pond, Rhode Island	30,000	Phelps, 1964
Long Island Sound	16,000	Sanders, 1956
Buzzards Bay, Massachusetts Station R	9,000	Sanders, 1960
Buzzards Bay, Massachusetts All Stations	4,000	Sanders, 1958
Mystic River, Connecticut	3,000	Rowe, et al., 1972
Moriches Bay, New York	1,300	0'Connor, 1972
Cape Cod Bay, Massachusetts	15,000	Young and Rhoads, 1971
Shallow Shelf off Long Island, New York	700	Steimle and Stone, 1973
Chesapeake Bay, eel grass beds, Virginia	14,000	Orth, 1973
Delaware Bay	200	This Study

Most frequently occurring species in transect samples

1972

Percent		Percent
Occurrence	Species	0ccurrence
62	Tolling agilic	57
02	Heterand agrilis	57
34	Heteromastus TIII-	
29	formis	28
	Gemma gemma	25
24.	Glycera dibranchiata	24
18	Mulinia lateralis	21
16	Nucula proxima	21
16	Nephtys picta	16
14	Protohaustorius wigley	<u>yi</u> 14
12	Glycera capitata	14
12	Nemertea sp.	13
9	Mytilus edulis	12
9	Polydora ligni	12
9	Nassarius trivittatus	10
9	Melita nitida	9
8	Haploscoloplos fragil	<u>is</u> 9
	Percent Occurrence 62 34 29 24 18 16 16 16 16 14 12 12 9 9 9 9 9 9 9 9 9 8	PercentSpecies0ccurrenceSpecies62Tellina agilis34Heteromastus fili-29formisGemma gemma24.Glycera dibranchiata18Mulinia lateralis16Nucula proxima16Nephtys picta14Protohaustorius wigle;12Glycera capitata12Nemertea sp.9Mytilus edulis9Polydora ligni9Melita nitida8Haploscoloplos fragil

FIGURE CAPTIONS FOR CHAPTER V

Figure V- 1:	Map of Delaware Bay showing transect sampling stations.
Figure V- 2:	Sediment classification groups in Delaware Bay.
Figure V- 3:	Mean grain size (M _z) of Delaware Bay sediment samples.
Figure V- 4:	Sorting coefficient of Delaware Bay sediment samples.
Figure V- 5:	Percent silt and clay in Delaware Bay sediment samples.
Figure V- 6:	Total number of species in Delaware Bay transect samples.
Figure V- 7:	Total number of individuals in Delaware Bay transect samples.
Figure V- 8:	Percent deposit-feeders in Delaware Bay transect samples.
Figure V- 9:	Distribution of <u>Tellina agilis</u> in Delaware Bay. 5070 is the computer code number for this species.
Figure V-10:	Distribution of <u>Heteromastus filiformis</u> in Delaware Bay.
Figure V-11:	Distribution of <u>Glycera</u> <u>dibranchiata</u> in Delaware Bay.
Figure V-12:	Distribution of <u>Nephtys</u> <u>picta</u> in Delaware Bay.
Figure V-13:	Distribution of <u>Mulinia lateralis</u> in Delaware Bay.
Figure V-14:	Distribution of <u>Protohaustorius wigleyi</u> in Delaware Bay.

Figure V-15:	Distribution of <u>Gemma gemma</u> in Delaware Bay.
Figure V-16:	Distribution of <u>Nucula proxima</u> in Delaware Bay.
Figure V-17:	Classification dendrogram of samples from transects 1-13, taken in 1972.
Figure V-18:	Distribution of Delaware Bay benthic faunal assemblages defined by samples taken in 1972.
Figure V-19:	Sediment characteristics of samples in benthic faunal assemblage A.
Figure V-20:	Sediment characteristics of samples in benthic faunal assemblage F.
Figure V-21:	Sediment characteristics of samples in benthic faunal assemblage G.
Figure V-22:	Sediment characteristics of samples in benthic faunal assemblage H.
Figure V-23:	Sediment characteristics of samples in benthic faunal assemblage I.
Figure V-24:	Classification dendrogram of samples from transects 14-26, taken in 1973.
Figure V-25:	Distribution of Delaware Bay benthic faunal assemblages defined by samples taken in 1973.
Figure V-26:	Sediment characteristics of samples in benthic faunal assemblage 1.
Figure V-27:	Sediment characteristics of samples in benthic faunal assemblage 5.

×.

- Figure V-28: Sediment characteristics of samples in benthic faunal assemblage 8.
- Figure V-29: Sediment characteristics of samples in benthic faunal assemblage 10.

Figure V-1

CANBERRA METRIC

Figure V-17

Trans 1 – 13

Figure V-19

Figure V-20

Figure V-23

Figure V-24

Trans 14 - 26

CANBERRA METRIC

Figure V-26

Figure V-27

Figure V-28

VI. SEASONAL CHANGES OF BENTHIC INVERTEBRATE ASSEMBLAGES IN THE LIGHTERING AREA

> Wayne Leathem Chris Wethe Les Watling

INTRODUCTION

Animal-sediment associations and their seasonal variations are important aspects of marine ecology and are especially important in relation to activities such as coastal engineering projects which require extensive dredging and spoil disposal. A thorough knowledge of these associations is necessary prior to any evaluation of the effects of such projects, which have the potential to dramatically change the nature of the sediments and significantly alter the fauna (Maurer and Wang, 1973; Maurer, et al., 1974a; Cronin, et al., 1970; Saila, et al., 1972).

The response of invertebrates to sediment and the interaction between animal and sediment has been the subject of many studies (Johnson, 1970; Sanders, 1960; Young and Rhoads, 1971; Kinner, et al., 1974). Rhoads and Young (1970), Rhoads (1973), Sanders (1958), and Bloom, et al. (1972) discussed the distribution of feeding types and their association with sediment size and stability. The stability in species composition of a community over time has been examined by Lie and Evans (1973), Boesch (1973), and Watling (1975).

The purpose of this study was to provide a baseline that could be used to assess the future biological effects of a proposed oil terminal to be located in the Delaware Bay anchorage area off Big Stone Beach, Delaware and of oil lightering from that area. A thirteen-month study (May 8, 1974 - May 6, 1975) was conducted to obtain seasonal data on the benthic macroinvertebrates. Research was undertaken to: (1) identify benthic invertebrates from four different substrata in and around the anchorage area, (2) determine whether there were any recurring dominant groups of species or any patterns associated with trophic groups at different stations, and (3) to accurately define the species composition, distribution, and abundance throughout the seasons.

X

METHODS

During 1974-1975 an intensive sampling program was implemented in and around the Delaware Bay oil tanker lightering area $(39^{\circ}58'N)$ latitude and 75°13'W longitude). A preliminary survey was conducted to determine the nature of the sediments in the area. Four different substrata were identified over which ten stations were established (Figure VI-1): sandy shoal (Stations 1, 4, 6); muddy sands (5, 7, 10); a mixed coarse and fine silty sand (2, 3); and a calcareous serpulid reef (8, 9). Each station was sampled five times on a quarterly basis (May, August, and November 1974, February and May 1975) with three replicates being taken each time with a 0.1 m² Petersen grab. Two aliquots of sediment were taken from each grab for grain-size analysis. The remaining material was washed through a 1.0 mm mesh sieve and the residue was preserved in 10% buffered formalin. Salinity, dissolved oxygen, water, and sediment temperatures were taken at every station.

In the laboratory, benthic samples were sorted, identified to species, and counted. Sediments were dry sieved and pipette analysis was used to determine the silt and clay fractions.

RESULTS AND DISCUSSION

Sediment Analysis

The sediments found at the ten quarterly sampling stations followed a pattern similar to the bay-wide samples (Chapter V). Well sorted sand was associated with shoals, coarse skewed, poorly sorted sands were located within tidal channels, and very poorly sorted muddy sands occurred in quiet deep water areas. The sediment classification system used for the bay-wide stations was employed for the quarterly samples also. The procedures for grain size analysis were the same as described in the previous chapter. An outline of major sediment parameters is given in Appendix Table AVI-1.

The shoal sediment at Station 1 was a well sorted medium to fine sand. Variation in skewness occurred among samples within quarters and between quarters. While skewness was variable, mean grain size and sorting were extremely consistent. Over the first four quarterly samplings, M_z varied only from 1.93ϕ to 2.29ϕ while sorting ranged between 0.29ϕ and 0.37ϕ . These sediments were all in the B-l classification range.

Stations 2 and 3 exhibited some variation in sediment type ranging among classifications A-3, A-4, and B-3. A composite description would yield a poorly sorted gravelly medium sand. With minor exceptions they were coarse and strongly coarse skewed samples.

The sediments at Station 4 were generally well sorted very fine sands and normally had positive (fine) skewness values. One February and one May sample contained 20% silt-clay (high for this station) and each were therefore poorly sorted (classified as C-3) and strongly fine skewed.

ŝ.

Stations 5, 7, 8, and 9 were grouped since they possessed similar sediment classification. These sediments were poorly to very poorly

sorted very fine muddy sands. These samples may be classified as C-3, D-3, or D-4 and were strongly fine skewed. Average values for Stations 5 through 9 of the mean grain size (M_z) ranged from 3.99 to 4.14, the sorting (σ_i) increased from 1.42 to 1.86 and the percentage of silt-clay in the samples increased from 34% to 43%.

The sediment at Station 6 was a well sorted medium to fine sand that was strongly fine skewed (B-1). Mean grain size (M_z) varied from 2.05 ϕ to 2.37 ϕ and sorting (σ_i) was within the range 0.32 ϕ to 0.44 ϕ .

Station 10 was similar to Stations 5, 7, 8, and 9. It, however, had a higher silt-clay content and was therefore a very poorly sorted fine sandy mud. All samples were strongly fine skewed. Sample classifications ranged among C-3, D-3, and D-4. Except for its higher silt-clay content, Station 10, with average mean grain size and sorting values of 4.17 and 1.64, respectively, would have received the same classification as Stations 5, 7, 8, and 9.

Composition of Fauna by Feeding Type

A total of 180 species of benthic invertebrates were collected. A complete list of species with feeding type is included in Table VI-1.

The percent composition of the fauna by feeding type for all quarterly samples combined (Table VI-2) revealed that deposit-feeders dominated all stations except 3, 8, and 9. These latter stations were characterized by two suspension feeders, either <u>Mytilus edulis</u>, <u>Hydroides dianthus</u>, or both. Station 5 had the largest percentage (97.40%) of deposit feeders. This was due almost exclusively to the large numbers of <u>Nucula proxima</u> found at this station (Table VI-3).

The suspension feeders, except at Station 4, comprised a greater percent of the fauna, in all samples combined, than did the carnivores or omnivores. Generally the carnivores and omnivores were about equal in percent composition. The carnivores ranged from 0.12% at

Station 5 to 13.42% at Station 4. The omnivores ranged from 0.0% at Station 5 to 4.14% at Station 9.

Table VI-4 contains the percent composition of the fauna by feeding type in each sample and a total percent composition per station per quarter. Station 1 was dominated by deposit feeders with the greatest percentage (97.7%) occurring in February. May 1974 and August 1975 were the only quarters during which Station 1 contained suspension feeders. The 22.2% in the November sample, 1-3, represented the highest percentage of omnivores at any one station for all quarters, while the 11.8% for the quarter of May 1975 was the highest quarterly proportion of omnivores.

The deposit feeders remained dominant at Station 2. This was due primarily to the abundance of <u>Tellina agilis</u> and <u>Spio setosa</u>. The carnivore, <u>Glycera dibranchiata</u>, accounted for 44% of the fauna in sample 2-3 in February; otherwise the percentage of carnivores remained low.

An increase in abundance of <u>Mytilus edulis</u> during the August quarter resulted in the unusual dominance of suspension feeders at Station 3; during the other quarters the fauna was dominated by the deposit-feeding <u>Spio setosa</u> and <u>Tellina agilis</u>. Station 4 was also a deposit feeder dominated assemblage. However, in August and February the station recorded unusually high percentages of carnivores due to increases in the abundance of the polychaete, <u>Glycera</u> spp.

Station 5 was dominated in all quarters by the deposit-feeding bivalves, <u>Nucula proxima</u> and <u>Tellina agilis</u>, with <u>N. proxima</u> having the greatest abundance in all but the May 1974 quarter.

Stations 6, 7, and 10 were all dominated by deposit feeders with the most equal distribution between suspension and deposit feeders occurring at Station 10 during May 1974. Station 6 during the February guarter consisted of 100% deposit feeders. The individuals at the serpulid assemblage Stations 8 and 9 were generally evenly distributed among the deposit and suspension feeders. The dominance by the suspension feeders was a result of the abundance of <u>Mytilus edulis</u> and <u>Hydroides dianthus</u>, while the Corophiidae spp. maintained the dominance of the deposit feeders. The May 1974 sample 9-2 consisted of 96.65% suspension feeders which was their largest percentage in any one sample for all quarters. The 90.07% for the quarter was also the largest quarterly total for a suspension feeder.

Evenness Diversity

Samples combined within a quarter possessing 25 or more individuals of a designated feeding type were evaluated in terms of Fager's (1972) scaled standard deviation evenness measure values (Table VI-5). Values of this index (SDN) near 1.00 indicate a lack of dominance and thus an even distribution of individuals among the species in the feeding type. Values near zero indicate a skewed distribution and thus strong dominance (Fager, 1972). Our experience has indicated that a minimum of 25 individuals within a feeding type is necessary to make the SDN values statistically reliable.

SDN values computed for all feeding types in the same quarter showed that the deposit feeders generally were the group with the most even composition. The carnivores, in turn, had higher evenness values than the suspension feeders, while the omnivores tended to be the most skewed group. In many samples (28) the deposit feeders were the only group to have enough individuals for computation. Generally when this occurred the SDN values had a tendency to be skewed, suggesting a dominance in this feeding category by one or two species.

Dominance Index

In addition to examining which feeding types dominated the various stations during each quarter, species dominance was evaluated using McNaughton's (1967) dominance index (Table VI-6). The changes in the dominance structure at each of the ten stations are summarized below:

Station 1

The haustoriid amphipod, <u>Parahaustorius longimerus</u>, was the dominant species throughout the year with several species present as minor subdominants. The dominance index averaged, 0.83, indicating that the assemblage at this station was dominated by one species.

Station 2

The spionid polychaete, <u>Spio setosa</u>, was the dominant species during the warm months, whereas the bivalve, <u>Tellina agilis</u>, was dominant in November and February. Occasionally, the polychaetes, <u>Spiophanes bombyx</u> and <u>Mediomastus ambiseta</u>, were significant as subdominant species. During May and August 1974, the assemblage was characterized by pairs of species which occurred as codominants in the samples. With the winter decrease in numbers of <u>Spio</u> <u>setosa</u>, the samples were strongly dominated by <u>Tellina agilis</u> or <u>Glycera dibranchiata</u>. In May 1975, the assemblage was recolonized with high numbers of Spio setosa and Mytilus edulis.

Station 3

The structure of the community here was similar to that at Station 2, except that at this station the <u>Mytilus edulis</u> assemblage completely replaced the <u>Spio setosa</u> - <u>Tellina agilis</u> assemblage in August 1975. Otherwise <u>T. agilis</u> was again dominant by February and <u>S. setosa</u> strongly recolonized the area during the following spring.

癜

Station 4

This station showed a continuous replacement of dominant species beginning with <u>Protohaustorius wigleyi</u> in May 1974, shifting to <u>Tellina agilis</u> in August, then to a combination of <u>T. agilis</u>

and <u>Trichophoxus epistomus</u> over the winter. In the spring, the area was strongly dominated by <u>Nucula proxima</u>. The greatest dominance shown by any one species (>0.80) was that of <u>Protohaustorius</u> wigleyi.

Station 5

×.

This station showed a strongly skewed dominance distribution (Dominance Index >0.90) during the months when <u>Nucula proxima</u> was prevalent (August and November 1974 and May 1975). <u>Tellina agilis</u> occurred as a dominant in May 1974 and persisted as a subdominant during the periods of high N. proxima abundance.

Station 6

As Station 5 was a predominantly bivalve assemblage, this station was characterized by haustoriid amphipods. Except in the February 1975 samples, no one species was strongly dominant over the others. Also noticeable was the gradual replacement, from May to November 1974, of <u>Acanthohaustorius millsi</u> with <u>Parahaustorius</u> longimerus, and the latter with Protohaustorius wigleyi.

Station 7

This station, like several already considered, showed a replacement of dominant species from month to month over the whole sampling period. Noticeable also, was the lack of clear-cut dominance of any one species in the three samples taken in May 1974. In general, this assemblage was dominated by bivalves and polychaetes, with only one crustacean (<u>Ampelisca verrilli</u>) contributing significantly.

Stations 8 and 9

These two stations were positioned to sample an existing reef of calcareous serpulid tubes. This assemblage is probably

not continuous as the variability in dominant species in the May 1974 samples would suggest. From August to February, the increase in the proportion of living <u>Hydroides dianthus</u> individuals obtained probably reflected recent recolonization and active construction of the reef. The following May, the entire region was over-run with recently set <u>Mytilus edulis</u>, causing a shift in the dominance structure of the assemblage.

Station 10

This station had a variable dominance structure, but was essentially a <u>Nucula proxima</u> - <u>Mulinia lateralis</u> assemblage from May to November 1974. With the increase in numbers of <u>Ampelisca</u> <u>verrilli</u> in February 1975, this assemblage shifted to one dominated by A. verrilli and N. proxima.

Cluster Analysis

Cluster analysis techniques using a group average sorting strategy with the Czekanowski similarity coefficient were used to find those stations which had the most similar groups of species (Figures VI-2 to VI-6). Species with less than 10% occurrence were eliminated from consideration in order to minimize the possibility of misclassifying samples.

The station groups for each quarter are summarized in Table VI-7. Five station groups which consistently appeared were Stations 1 and 6, 2 and 3, 5, 7 and 10, 8 and 9, with Station 4 clustering separately. Station 9 clusters with 5 and 10 in May 1974 due to the dominance of <u>Asabellides oculatus</u> and <u>Mytilus</u> edulis and the low numbers of <u>Nucula proxima</u> at Stations 5 and 10 during this quarter. The dominance of <u>Nucula proxima</u> is also the controlling factor for the clustering of Station 7 with Stations 5 and 10 in August.
Cluster techniques employing the Czekanowski similarity coefficient were also used to determine which species groupings were present during each quarter (Figures VI-7 to VI-11). These groups are summarized in Table VI-8. There were five major species groupings. Group A predominantly consisted of haustoriid amphipods found at Stations 1 and 6. Group B was composed primarily of deposit-feeding bivalves and polychaetes (Nucula proxima, Tellina agilis, Yoldia limatula, Asabellides oculatus, and Scoloplos robustus) found at Stations 5 and 10 with a few from Station 7. The majority of species in Group D were from Stations 8 and 9. These species included Hydroides dianthus and Mytilus edulis as dominants with many associates among the serpulid tubes and byssal threads (xanthid crabs, Unciola serrata, Corophium simile, Harmothoe extenuata, Nereis succinea, and Marphysa sanguinea). These three groups were found consistently during all five quarters. Group E consisted primarily of species from Stations 2, 3, and 4 and was not found in May 1974. This group contained species (Glycera spp. and Nephtys picta) whose sediment tolerances include the stations in Group B, but they were not dominant at those stations. The Group E stations were characterized by coarser sands than those in Group B. Group C was the only group which appeared in only one guarter. It was found at Stations 2 and 3 in May 1974 and consisted primarily of the polychaete family Spionidae. Stations 2 and 3 species were represented quite frequently in all except Group A.

Animal-Sediment Relations

Studies involving benthic invertebrates have revealed that certain assemblages recur and that species within these assemblages exhibit sediment preferences (Thorson, 1957). The combination of grain size and the distribution of the silt-clay content was an important factor influencing animal-sediment associations in this study.

Examination of Appendix Table AVI-1 shows that Stations 4, 5, and 8 were similar in grain size $(M_{Z}\phi)$ values and clustered together according to their structural measures (Figure VI-12). The silt-clay differences at Stations 4 and 5 were 2% and 20%, respectively, suggesting that the difference in species composition at these stations was not due to grain-size alone but was influenced by the silt-clay fraction. This is further supported by the tendency for Stations 5, 7, and 10 to cluster together based on species composition (Table VI-7).

The data from this study supported that of McNulty, et al. (1962) and Bloom, et al. (1972) in that the deposit feeders predominated in sediments containing a wide range of silt and clay (0.5 to 70.8%). Excluding the conditions at Stations 3, 8, and 9 where <u>Mytilus</u> and <u>Hydroides</u> trapped fine particles, the suspension feeders were dominant in sediments having an average median grain size of 0.055 mm. This is finer than the optimum median grain size of 0.18 mm reported by Sanders (1958), 0.174 mm by Bloom, et al. (1972), or that (0.4 mm) of McNulty, et al. (1962).

The relatively high abundance of carnivores at Station 4 and their small proportion at Stations 1 and 6 suggested that the difference in these shoal assemblages may be due to the smaller median grain size (0.088 mm) and the greater percentage of silt-clay (12%) at Station 4 than occurs at Stations 1 and 6, which have a median grain size of 0.25 mm and a silt-clay fraction of 1%.

The occurrences of the dominant species, <u>M. edulis</u>, <u>N. proxima</u>, and <u>H. dianthus</u>, may be explained on the basis of their sediment preferences. <u>M. edulis</u> was abundant at Stations 3, 8, and 9 due to the availability of hard substrata (pebbles, shell, calcareous tubes), which provided a place for byssal thread attachment. The deposit-feeding <u>N. proxima</u> appeared at Stations 5, 7, and 10 which were characterized by a combination of fine sand and high silt-clay content. The initial setting preference of <u>H. dianthus</u> at Stations 8 and 9 is not clearly understood because no coring was done in this study. The reef, however, evidently maintains itself above the accumulating silt level by continually constructing new tubes upon the older structures.

The species associated with these dominants, with the possible exception of the <u>N. proxima</u> assemblage, cannot be entirely explained on the basis of sediment associations. Their occurrence may be more dependent on the niches and biological interactions provided by the dominant organisms.

As reported for the region near the mouth of Delaware Bay (Kinner, et al., 1974), <u>T. agilis</u> was again the most widespread species. Except for the shoal Stations 1 and 6, <u>T. agilis</u> was the only organism to occur in at least 50% of the samples at all stations. Our data also agrees with Mills' (1964, 1967a, b) that sediment particle size was important for tube-building ampeliscids and that sediments with 10-30% silt-clay were ideal for this activity.

Benthic Communities and Assemblages

Mills' (1969) defined a community as "a group of organisms occurring in a particular environment, presumably interacting with each other and the environment, and separable by means of ecological survey from other groups." Johnson (1970), Bloom, et al. (1972), and Boesch (1973) supported Mills' view. Bloom, et al. (1972) stated that the lack of a consistent multi-species dominance pattern combined with overwhelming dominance by one species tends to invalidate the use of the Petersen community concept. Boesch (1973) did not assign Petersen community types to assemblages in Chesapeake Bay. Based on our data in and around the Delaware Bay lightering area, Petersen community types were not evident. Moreover, a number of our dominant species have been found elsewhere in various habitats: Nucula proxima (Sanders, 1958; Driscoll and Brandon, 1973; Young, 1971; Watling, et al., 1974; Kinner, et al., 1974); Mytilus edulis (Steimle and Stone, 1973; Hughes and Thomas, 1971; Maurer, et al., 1974b); Haustoriidae species (Howard and Dorjes, 1972); Ampelisca species (Thorson, 1957; Sanders, 1958; Boesch, 1973); and Tellina species (Trevallion, 1971; Maurer, 1967; Kinner, et al., 1974; 0'Connor, 1972).

For Delaware Bay as a whole the situation differs somewhat. There are large oyster beds which are known to be inhabited by a relatively constant group of species (Maurer and Watling, 1973), many of which have also been found in the serpulid assemblage. Although these beds contain pockets of mud and muddy shell with mixtures of infaunal and epifaunal species, the major constituents of these associations are epifaunal species which have siblings or congeners in estuaries throughout temperate latitudes (Hedgpeth, 1957; Carriker, 1967).

Our cluster analysis studies from Chapter V indicated the presence of one group of species (characterized by <u>Tellina agilis</u>, <u>Nephtys picta</u>, and <u>Glycera capitata</u>) which inhabited the same widespread region of the bay for two years. On a finer scale, however, as the sediment composition changed at selected stations, different groups of species emerged. Other factors, such as the success of <u>Mytilus edulis</u> larvae in the plankton during January to March, caused substantial changes in the composition of the soft bottom assemblages at certain stations. It is not unlikely that these changes observed at the lightering area also occurred throughout the bay.

Because of their structural composition and geological continuity it is easier to identify the oyster community as a separate entity than it is to delimit boundaries in the soft bottoms where the physical changes are very subtle. As a result, the oyster beds and reef assemblages more easily qualify as a Petersen-type community than do soft bottom areas. Thus it appears that the bay is composed of a mosaic of species groups, which range on one hand from a welldefined, epifaunal oyster and reef community to, on the other hand, widely distributed species groups (assemblages) whose dominant species in any one microhabitat change seasonally and/or annually. It is our opinion that the combination of these assemblages, viewed over a longer time period and on an estuary-wide scale, represents a community which corresponds to the Mills' (1969) concept and which may satisfy the criteria of the Petersen-Thorson concept.

REFERENCES

- Bloom, S.O., J.L. Simon, and V.D. Hunter, 1972. Animal-sediment relations and community analysis of a Florida estuary. Mar. Biol. <u>13</u>: 43-56.
- Boesch, D.F., 1973. Classification and community structure of macrobenthos in the Hampton Roads area, Virginia. Mar. Biol. <u>21</u>: 226-244.

- Carriker, M.R., 1967. Ecology of estuarine benthic invertebrates: a perspective. pp. 442-487, <u>In</u>: G.H. Lauff (Ed.), Estuaries. A.A.A.S. Publ. 83, Washington, D.C.
- Cronin, L.E., R.B. Biggs, D.A. Flemer, H.T. Pfitzenmeyer, F. Goodwyn, W.L. Dovel, D.E. Ritchie, 1970. Gross physical and biological effects of overboard spoil disposal in upper Chesapeake Bay. Nat. Res. Inst. Spec. Rept. 3, Univ. of Maryland, 66 pp.
- Driscoll, E.G., and D.E. Brandon, 1973. Mollusc-sediment relationship in northwestern Buzzards Bay, Massachusetts, U.S.A. Malacologia 12: 13-46.
- Fager, E.W., 1972. Diversity: A sampling study. Amer. Nat. <u>106</u>: 239-310.
- Hedgpeth, J.W. (Ed.), 1957. Treatise on marine ecology and paleoecology. Vol. I. Ecology. Geol. Soc. Amer. Mem. 67, 1296 pp.
- Howard, D.J., and J. Dorjes, 1972. Animal-sediment relationships in two beach-related tidal flats; Sapelo Island, Georgia. J. Sed. Petrology <u>42</u>: 608-623.
- Hughes, R.N., and M.L.H. Thomas, 1971. Classification and ordination of benthic samples from Bedeque Bay, an estuary in Prince Edward Island, Canada. Mar. Biol. 10: 227-235.

Johnson, R.G., 1970. Animal-sediment relations in shallow water benthic communities. Mar. Geol. 11: 93-104.

- Kinner, P., D. Maurer, W. Leathem, 1974. Benthic invertebrates in Delaware Bay: Animal-sediment associations of the dominant species. Int. Rev. ges. Hydrobiol. 59 (5): 685-701.
- Lie, U., and R.A. Evans, 1973. Long-term variability in the structure of subtidal benthic communities in Puget Sound, Washington, U.S.A. Mar. Biol. 21: 122-126.
- Maurer, D., 1967. Mode of feeding and diet, and synthesis of studies on marine pelecypods from Tomales Bay, California. Veliger <u>10</u>: 72-76.
- Maurer, D., and H. Wang, 1973. Environmental vulnerability of the Delaware Bay area to supertanker accommodation. Rept. to Council on Environmental Quality. 4 volumes.
- Maurer, D., and L. Watling, 1973. Studies on the oyster community in Delaware: the effects of the estuarine environment on the associated fauna. Int. Rev. ges. Hydrobiol. <u>58</u>: 161-201.
- Maurer, D., R. Biggs, W. Leathem, P. Kinner, W. Treasure, M. Otley, L. Watling, and V. Klemas, 1974a. Effect of spoil disposal on benthic communities near the mouth of Delaware Bay. Rept. Del. River Bay Auth., University of Delaware, 200 pp.
 - Maurer, D., J. Tinsman, W. Leathem, and P. Kinner, 1974b. Baseline study of Sussex County, Delaware ocean outfalls. Rept. to Sussex County, University of Delaware, pp. 141.

McNaughton, S.J., 1967. Relationships among functional properties of California grasslands. Nature 216: 168-169. McNulty, J.K., R.C. Work, and H.B. Moore, 1962. Some relationships between the infauna of the level bottom and the sediment in south Florida. Bull. Mar. Sci. Gulf Carib. 12: 322-332.

- Mills, E.L., 1964. <u>Ampelisca abdita</u>, a new amphipod crustacean from eastern North America. Can. J. Zool. <u>42</u>: 559-575.
- Mills, E.L., 1967a. A re-examination of some species of <u>Ampelisca</u> (Crustacea: Amphipoda) from the east coast of North America. Can. J. Zool. 45: 635-652.

×.

- Mills, E.L., 1967b. The biology of an ampeliscid amphipod sibling species pair. J. Fish. Res. Bd. Can. 24: 305-355.
- Mills, E.L., 1969. The community concept in marine zoology, with comments on continua and instability in some marine communities: a review. J. Fish. Res. Bd. Canada 26: 1415-1428.
- O'Connor, J.S., 1972. The benthic macrofauna of Moriches Bay, New York. Biol. Bull. 142: 84-102.
- Rhoads, D.C., 1973. The influence of deposit-feeding benthos on water turbidity and nutrient recycling. Amer. Jour. Sci. <u>273</u>: 1-22.
- Rhoads, D.C., and D.K. Young, 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. J. Mar. Res. 28: 150-178.
- Saila, S.B., S.D. Pratt, and T.T. Polgar, 1972. Dredge spoil disposal in Rhode Island Sound. Mar. Tech. Rept. No. 2, Univ. Rhode Island, 48 pp.
- Sanders, H., 1958. Benthic studies in Buzzards Bay. I. Animalsediment relationships. Limnol. Oceanogr. 3: 245-258.

- Sanders, H., 1960. Benthic studies in Buzzards Bay. III. The structure of the soft-bottom community. Limnol. Oceanogr. 5: 138-153.
- Steimle, F.W., and R.B. Stone, 1973. Abundance and distribution of inshore benthic fauna off southeastern Long Island, N.Y. NOAA Tech. Rept. NMFS-SSRF-673: 1-50.
- Thorson, G., 1957. Bottom communities (sublittoral or shallow shelf).
 pp. 461-534. In: Treatise on Marine Ecology and Paleoecology
 (Ed. J.W. Hedgpeth). Geol. Soc. Amer. Mem. 67.
- Trevallion, A., 1971. Studies on <u>Tellina tenuis</u> Da Costa. III. Aspects on general biology and energy flow. J. exp. mar. Biol. Ecol. 7: 95-122.
- Watling, L., 1975. Analysis of structural variations in a shallow estuarine deposit-feeding community. J. exp. mar. Biol. Ecol. 19: 275-313.
- Watling, L., W. Leathem, P. Kinner, C. Wethe, and D. Maurer, 1974. An evaluation of sewage sludge dumping on the benthos off Delaware Bay. Mar. Poll. Bull. 5: 39-42.
- Young, D.K., 1971. Effect of infauna on the sediment and seston of a subtidal environment. Vie Milieu Third Europ. Mar. Biol. Symp. Suppl. 22: 557-571.
- Young, D.K., and D.C. Rhoads, 1971. Animal sediment relations in Cape Cod Bay, Massachusetts. I. A transect study. Mar. Biol. 11: 242-254.

Table VI-1

Total species list from quarterly samples

Feeding Type*

Phylum Porifera	
Class Demospongiae	
Order Poecilosclerina	
1003 <u>Microciona prolifera</u> (Ellis and Solander 1786)	SF
1008 <u>Halichondria</u> sp. cf. <u>H. bowerbanki</u> Burton 1930	SF
Order Hadromerina	- 1
1006 Cliona celata Grant 1826	SF
Phylum Cnidaria Class Hydrozoa Order Hydroida 2002 <u>Tubularia crocea</u> 2007 <u>Hydractinia echinata</u> (Fleming 1828) 2023 <u>Campanularia sp.</u> 2021 <u>Sertularia argentea</u> Linne 1758 Class Anthozoa Order Madreporaria 2034 <u>Astrangia danae</u> Agassiz 1847	SF SF SF SF
Phylum Rhynchocoela	
Order Heteronemertini	^
Class Enopla	ι L
Order Bdellonemertini	
3014 Nemertea sp.	С
3016 Flatworm A	Č
Phylum Annelida	
Family Ampharetidae	05
4001 Ampharete acutitrons Grube 1860 4002 Asabellides oculatus (Webster 1879)	DF
4006 Driloneris longa Webster 1879	0
4007 Driloneris magna Webster and Benedict 1887	Ŏ
4009 Capitella capitata (Fabricius 1780)	DF
4010 Heteromastus filiformis (Claparede 1864)	DF
4011 Mediomastus ambiseta (Hartman 1947)	DF

	Family Cirratulidae	
4015	Caulleriella sp. 2	DF
4140	Cirratulidae sp.	DF
4018	Tharyx sp. 2	DF
4178	Chaetozone sp.	DF
4172	Chaetozone sp. 1	DF
	Family Dorvilleidae	
4021	Schistomeringos rudolphi (delle Chiaje	
	1828)	DF
4153	Schistomeringos caecus (Webster and	
	Benedict 1884)	DF
	Family Eunicidae	
4023	<u>Marphysa sanguinea</u> (Montagu 1815)	DF
	Family Flabelligeridae	· · · ·
4024	<u>Pherusa affinis</u> (Leidy 1855)	DF
	Family Glyceridae	
4025	<u>Glycera americana</u> Leidy 1855	÷ C
4026	Glycera capitata Uersted 1843	U C
4027	<u>Glycera</u> <u>dibranchiata</u> Ehlers 1868	ι C
1000	Family Goniadidae	· · ·
4028	<u>Glycinde solitaria</u> (Webster 1880)	. C
4029	Goniadella gracilis (Verrill 1873)	- C
1000	Family Hestonidae	·
4030	Fodarke obscura verriii 1873	. U
1022	rdinity Lumprineridae	DE
4035	Euliprineris acuta (Verriii 1075)	
1010	Failing Playeron ude	DE
4040	Family Maldanidao	וס
1015	Clymonolla torquata (Leidy 1855)	DF
4183	Maldanidae sp 1	DF
100	Family Nephtvidae	51
4051	Nephtys bucera Fhlers 1868	0
4052	Nephtys incisa Malmaren 1865	. Õ
4053	Nephtys picta Ehlers 1868	Ó
1000	Family Nereidae	
4055	Nereis (Neanthes) succinea Frey and Leucka	rt
	1847	0
	Family Onuphidae	
4057	Diopatra cuprea (Bosc 1802)	DF
	Family Orbiniidae	
4063	Haploscoloplos acutus (Verrill 1873)	DF
4064	Haploscoloplos fragilis (Verrill 1873)	DF
4065	<u>Haploscoloplos</u> <u>robustus</u> (Verrill 1873)	DF
4142	Scoloplos sp.	DF
•	Family Paraonidae	
4141	<u>Aricidea</u> sp.	DF
4071	Aricidea cerruti Laubier 1967	UF

	Family Pectinariidae	
4076	Pectinaria gouldii Verrill 1873	DF
	Family Phyllodocidae	
4077	Eteone heteropoda Hartman 1951	0
4079	Eteone longa (Fabricius 1780)	0
4080	Eumida sanguinea (Oersted 1843)	0
4083	Paranaitis speciosa (Webster 1880)	C
4084	Phyllodoce arenae Webster 1880	Ĵ.
4085	Phyllodoce maculata (Linnaeus 1767)	C
	Family Polynoidae	·
4152	Harmothoe (Lagisca) extenuata (Grube 1840)	C
4090	Lepidametria commensalis Webster 1879	C
4091	Lepidonotus squamatus (Linnaeus 1756	C
4092	Lepidonotus sublevis Verrill 1873	C
1052	Family Sabellaridae	
4093	Sabellaria vulgaris Verrill 1873	SF
1050	Family Serpulidae	
4101	Hydroides dianthus (Verrill 1873)	SF
1101	Family Sigalionidae	
4104	Sthenelais limicola (Ehlers 1864)	C
4105	Sthenelais boa (Johnston 1833)	C
	Family Spionidae	
4106	Dispio uncinata Hartman 1951	DF
4107	Paraprionospio pinnata (Ehlers 1901)	DF
4108	Polydora caulleryi Mesnil 1879	DF
4109	Polydora concharum Verrill 1880	DF
4110	Polydora ligni Webster 1879	DF
4111	Polydora socialis (Schmarda 1861)	DF
4117	Spio setosa Verrill 1873	DF
4118	Spiophanes bombyx (Claparede 1870)	DF
4119	Streblospio benedicti Webster 1879	DF
	Family Syllidae	
4125	Proceraea cornuta (Agassiz, 1863)	0
4131	Syllis gracilis Grube 1840	0
	Family Terebellidae	
4134	Amphitrite ornata (Leidy 1855)	DF
4137	Polycirrus eximius (Leidy, 1855)	DF
Class Olig	ochaeta	
4400	Oligochaeta A	DF
4401	Oligochaeta B	DF
· · · · · · · · · · · · · · · · · · ·		
Phylum Sipuncul	ida	
4700	Sipunculida sp.	DF

Phylum Mol	lusca		
	Gastron	nda	
01455	Order Mes	sogastropoda	
5099	or dur met	Hydrohia totteni Morrison 1954	ſ
5012		Crepidula fornicata (Linne 1758)	SE
5013		Crenidula convexa Say 1822	SF
5014		Crepidula plana Say 1822	
5015	e e to	Polinicos duplicatus (Say 1822)	
	Order Ner	rorninces dupricatus (Say, 1022)	ι. Γ
5022	or der met	Anachis avara (Sav 1822)	C .
5023		Mitrolla Junata (Say 1826)	
5027		Nascanius trivittatus (Say 1822)	. C
5029		Marginella rescida Podfield 1860	C C
0020	Order Tor	tibranchia	U
5098	of definited	Actoocina canaliculata (Say 1822)	C C
5031		Acteon punctostriatus (C B Adams 1840)	C C
5032	· · · · ·	Haminoon colitaria (Say 1922)	C C
5040		Turbonillo internunto (Totton 1925)	
		Turboninia milerrupia (Totten 1055)	
UIASS	Ordor Nuc	libranchia	
5044	order nuc	Dorodolla obscura Vornill 1870	C
5110		Cuthona concinna (Aldon and Hancock 1843)	C
5111		Doto coronata (Gmelin 1701)	с С
Class	Bivalvia		U I
01033	Order Pro	* Atohranchia	
5047	Quality interview	Nucula proxima Sav 1822	DE
5048		Voldia limatula Sav 1831	DF
	Order Fi	libranchia	υ,
5050	oraci i i	Anadara ovalis (Bruguiere 1789)	SE
5053		Mytilus edulis Linne 1758	SE
5055		Anomia simplex Orbigny 1842	SF
	Order Ful	lamellibranchia	
5066	Under Lu	Mercenaria mercenaria (Linne 1758)	SF
5069		Petricola pholadiformis (Lamarck 1818)	SF
5070		Tellina agilis Stimpson 1857	DF
5076		Donax variabilis Sav 1822	SF
5079		Siliqua costata Sav 1822	SF
5080		Ensis directus Conrad 1843	SF
5081		Spisula solidissima (Dillwyn 1817)	SF
5082		Mulinia lateralis (Sav 1822)	SF
5091		Ivonsia hvalina Conrad 1831	SF
5093	. *	Pandora gouldiana Dall 1886	SF
1.5 5 1.			- •

	Phylum Art	hropoda		
	Class	Pycnogon	ida	
	6003		Tanystylum orbiculare Wilson 1878	DF
	Class	Crustacea	a di seconda di second	
	6009		<u>Balanus (Balanus) improvisus Darwin 1854</u>	SF
		Order Mys [.]	idacea	
		Fami	ly Mysidae	
	7002		Neomysis americana (S.I. Smith 1873)	SF
	7145		Heteromysis formosa S.I. Smith 1873	SF
	Order	Cumacea		
		Fami	ly Bodotriidae	
	7175		Leptocuma minor Calman 1912	DF
	7176		Mancocuma altera Zimmer 1943	DF
		Fami	ly Diastylidae	
	7009		Oxyurostylis smithi Calman 1912	DF
		Order Iso	boda	
		Fami	ly Idoteidae	4
	7026		Chiridotea tuftsi (Stimpson 1883)	DF
	7028		Edotea triloba (Say 1818)	DF
		Order Ampl	nipoda	
		Fami	ly Ampeliscidae	
•.	7035		Ampelisca abdita Mills 1964	DF
	7036		Ampelisca vadorum Mills 1963	DF
	7037		Ampelisca verrilli Mills 1967	DF
		Fami	ly Aoridae	
	7042		Lembos smithi (Holmes 1905)	DF
	7043		Microdeutopus gryllotalpa Costa 1853	DF
		Fami	ly Bateidae	
	7047		Batea catharinensis Fr. Muller 1865	DF
		Fami	ly Corophiidae	
	7051		Corophium insidiosum Crawford 1937	DF
	7053	· · · · ·	Corophium tuberculatum Shoemaker 1934	DF
	7054		Erichthonius brasiliensis Dana 1853	DF
	7055		Unciola irrorata Say 1818	DF
	7056	•	Unciola serrata Shoemaker 1945	DF
	7057		Unciola dissimilis Shoemaker 1945	DF
	7058		Corophium simile Shoemaker 1934	DF
	7059		Siphonoecetes smithianus Rathbun 1905	DF
		Fami	ly Gammaridae	
	7068		Elasmopus laevis (Smith 1871)	DF
	7070		Melita nitida Smith 1873	DF
		Fami	ly Haustoriidae	
	7072		Parahaustorius attenuatus Bousfield 1965	DF
	7073		Parahaustorius holmesi Bousfield 1965	DF
	7074		Parahaustorius longimerus Bousfield 1965	DF

7075	Protohaustorius wigleyi Bousfield 1965	DF
7070	Acanthonaustorius minist Boustiela 1965	
7176	Bathyporeia parkeri Bousfield 19/3	DF
/1/4	Bathyporeia quoddyensis Shoemaker 1949	DF
/1/3	Acanthonaustorius shoemakeri Bousfield	DF
	Family Lysianassidae	
7086	Lysianopsis alba Holmes 1905	DF
	Family Oedicerotidae	
7091	<u>Synchelidium americanum</u> Bousfield 1973	DF
	Family Phoxocephalidae	
7092	Paraphoxus spinosus Holmes 1903	DF
7093	Trichophoxus epistomus (Shoemaker 1938)	DF
7094	Phoxocephalus holbolli (Kroyer 1842)	DF
	Family Pleustidae	
7095	Parapleustes aestuarius Watling and Maurer	•
	1973	DF
7100	Orchestia grillus Bosc 1802	DF
	Family Caprellidae	
7105	Caprella equilibra Sav 1818	SF
7106	Paracanrella tenuis Mayer 1903	SF
1100	Order Decapoda	51
	Family Crangonidae	• • • • • • • •
7111	(rangon sentemeninosa (Sav 1818)	DE
/ 1 9 1	Family Callianassidae	וט
7112	lloogobie affinic (Say 1818)	n F
71/19	Callianacca cn of C atlantica	
/140	Carrianassa sp. Cr. C. atrantica	DF
7115	Paulity raguridae	nr.
/115	Pagurus Tongicarpus Say Tol7	UF
71/0	Family Porcellandae	
/149	Euceramus praeiongus Stimpson 1860	Ur
7101	Family Cancridae	~ ~ ·
/121	Lancer Irroratus Say 1817	ل ل
	Family Xanthidae	0
/146	<u>Xanthid</u> sp.	L Q
/124	Neopanope texana sayi (Smith 1869)	C
7125	Panopeus herbsti H. Milne-Edwards 1834	С
7127	Hexapanopeus angustifrons (Benedict and	
	Rathbun 1891)	, C
	Family Pinnotheridae	
7144	Pinnotheres maculatus Say 1818	Commensal
7129	Pinnixa retinens Rathbun 1818	DF
7130	Pinnixa sayana Stimpson 1860	DF
7147	Pinnixa sp.	DF
7132	<u>Sesarma</u> <u>reticulatum</u> (Say 1817)	C

	Phylum Ectoprocta	
	Class Gymnolaemata	
	Order Ctenostomata	
	8002 Alcyonidium polyoum (Hassall 1841)	SF
	2002 Triticalla alongata (Achurn 1012)	SE
	Oudon Chailactomata	JI
	0010 Membraninana tonuis Decon 1949	CE
	8012 Membranipora Lenuis Desor 1848	SL CL
	8013 <u>Membranipora tuderculata</u> (Bosc 1802)	. SF
	8014 <u>Conopeum tenuissimum</u> (Canu 1908)	51
	8015 <u>Conopeum truitti</u> Usburn 1944	55
	8018 <u>Electra monostachys</u> Marcus 1938	SF
	8022 Cryptosula pallasiana (Moll 1803)	SF
	8023 <u>Schizoporella errata</u> (Watess 1878)	SF
	Phylum Echinodermata	
	Class Asteroidea	
	Order Forcipulata	
	9008 Starfish (juv.)	?
	Class Ophiuroidea	
	Order Ophiurida	
	9003 Amphioplus abditus (Verrill)	DF
•	Class Echinoidea	
	Order Dendrochirota	
	9007 Thyone briareus (LeSueur 1824)	DF
	and Management and a second seco	

- * SF = Suspension Feeder DF = Deposit Feeder C = Carnivore 0 = Omnivore

Table VI-2

Percent composition of fauna by feeding type from all quarterly samples combined

Station	Deposit Feeders (%)	Suspension Feeders (%)	Carnivores (%)	Omnivores (%)
]	86.90	8.23	1.22	3,65
2	73.17	23.17	2.61	1.05
3	46.84	45.39	5.33	2.44
4	58.00	2.62	13.42	1.54
5	97.40	0.55	0.12	0.00
6	90.47	5.68	0.45	3.40
7	76.18	16.81	2.97	4.04
8	26.64	65.24	4.66	3.44
. 9	33.48	55.79	6.59	4.14
10	80.58	14.90	4.17	0.35

Table VI-3

Relative abundance and frequency of occurrence of dominant species at each station

Station	Species	Percent of Fauna	Percent Occurrence	No. of Individuals
1	Parahaustorius longimerus	65.8	100.0	216
2	<u>Spio setosa</u>	53.18	60.0	1,462
	Tellina agilis	8.80	100.0	242
3	<u>Mytilus edulis</u>	43.79	53.3	879
	<u>Spio setosa</u>	26.65	66.7	535
	<u>Tellina agilis</u>	7.62	87.6	153
	<u>Unciola serrata</u>	1.14	60.0	23
	<u>Nephtys picta</u>	0.99	53.3	20
4	Protohaustorius wigleyi	22.83	26.7	148
	Tellina agilis	20.21	93.3	131
	Nucula proxima	18.36	40.0	119
	Glycera capitata	4.78	66.7	31
5	Nucula proxima	95.45	93.3	21,393
	Tellina agilis	1.73	93.3	389
	Ensis directus	0.45	60.0	101
6	<u>Parahaustorius longimerus</u>	38.18	73.3	168
	<u>Acanthohaustorius millsi</u>	23.63	80.0	104
	<u>Protohaustorius wigleyi</u>	18.86	73.3	83
7	<u>Nucula proxima</u>	22.76	46.7	107
	<u>Ampelisca verrilli</u>	18.93	73.3	89
	<u>Mulinia lateralis</u>	14.46	60.0	68
	<u>Tellina agilis</u>	12.97	66.7	61
	<u>Nephtys incisa</u>	3.19	60.0	15
8	Mytilus edulis Unciola serrata Hydroides dianthus Corophium simile Sabellaria vulgaris Eumida sanguinea Xanthid sp. Nucula proxima Lembos smithi Polycirrus eximius Polydora ligni Asabellides oculatus	51.15 10.40 9.57 5.87 3.13 2.95 2.62 1.77 1.28 1.14 1.13 1.12	60.0 100.0 93.3 100.0 93.3 66.7 100.0 86.7 86.7 86.7 80.0 60.0 93.3	13,904 2,827 2,601 1,596 852 804 714 483 348 310 309 305

Station	Species	Percent of Fauna	Percent Occurrence	No. of Individuals
8	Mediomastus ambiseta Crepidula plana Lepidonotus squamatus Nereis succinea Marphysa sanguinea Heteromastus filiformis Polydora socialis Neopanope texana sayi Mercenaria mercenaria Glycinde solitaria Melita nitida Tellina agilis Ampelisca abdita Podarke obscura	$1.05 \\ 0.61 \\ 0.45 \\ 0.40 \\ 0.40 \\ 0.38 \\ 0.34 \\ 0.31 \\ 0.23 \\ 0.15 \\ 0.10 \\ 0.08 \\ 0.07$	66.7 53.3 86.7 93.3 86.7 80.0 60.0 86.7 80.0 60.0 60.0 66.7 86.7 53.3 53.3	288 166 125 109 109 111 104 95 86 65 41 29 24 21
9	Mytilus edulis Hydroides dianthus Unciola serrata Corophium simile Mediomastus ambiseta Nucula proxima Xanthid sp. Eumida sanguinea Sabellaria vulgaris Polycirrus eximius Heteromastus filiformis Asabellides oculatus Nereis succinea Lembos smithi Glycinde solitaria Mercenaria mercenaria Marphysa sanguinea Lepidonotus squamatus Harmothoe extenuata Oxyurostylis smithi Tellina agilis	$\begin{array}{c} 29.27\\ 22.93\\ 8.41\\ 5.68\\ 3.47\\ 3.26\\ 2.99\\ 2.82\\ 2.53\\ 2.37\\ 2.15\\ 1.70\\ 1.15\\ 0.97\\ 0.84\\ 0.68\\ 0.56\\ 0.37\\ 0.30\\ 0.30\\ 0.23\\ \end{array}$	66.7 80.0 73.3 66.7 80.0 93.3 80.0 66.7 73.3 80.0 93.3 93.3 93.3 66.7 53.3 93.3 73.3 73.3 53.3 60.0 53.3 66.7	3,322 2,603 955 645 394 370 340 321 288 269 245 194 131 111 96 78 64 42 35 35 27
10	Nucula proxima Ampelisca verrilli Mulinia lateralis Tellina agilis Yoldia limatula	51.84 8.93 6.67 6.19 1.78	100.0 86.7 73.3 86.7 66.7	435 75 56 52 15

Table VI-4

Percent composition of fauna by feeding type for each sample

Quarter	Feeding Type	Sta 1-1 1	tion -2 1-3	Total for Quarter	Station 2-1 2-2 2-3	Total for Quarter	Station 3-1 3-2 3-3	Total foi Quarter
May 1974	DF* SF* C* 0*	71.4 60 14.3 40 0.0 0 14.3 0	.0 100.0 .0 0.0 .0 0.0 .0 0.0	74.0 21.7 0.0 4.3	84.62 96.77 97.8 5.13 3.23 0.0 10.25 0.00 2.1 0.00 0.00 0.0	3 93.10 0 2.59 7 4.31 0 0.00	81.25 78.79 81.83 6.25 9.09 9.00 12.50 12.12 4.54 0.00 0.00 4.54	80.59 7.77 10.67 0.97
August 1974	DF SF C O	80.0 85 18.2 15 0.0 0 1.8 0	.0 90.0 .0 4.0 .0 4.0 .0 2.0	84.9 12.7 1.2 1.2	91.00 72.42 68.1 3.00 20.69 13.6 4.00 6.89 18.1 2.00 0.00 0.0	8 85.72 4 6.23 8 6.59 0 1.46	10.60 37.05 10.32 83.90 44.68 79.69 4.59 12.90 9.06 0.91 5.37 0.93	13.61 77.79 7.19 1.41
Nov. 1974	DF SF C O	100.0 95 0.0 0 0.0 4 0.0 0	.2 77.8 .0 0.0 .8 0.0 .0 22.2	91.0 0.0 1.3 7.7	95.16 93.34 93.1 3.23 5.00 2.7 1.61 1.66 4.1 0.00 0.00 0.0	6 93.85 4 3.59 0 2.56 0 0.00	82.89 64.00 42.43 0.00 0.00 21.21 14.70 20.00 15.15 2.94 16.00 21.21	68.26 5.56 15.87 10.31
Feb. 1975	DF SF C O	100.0 93 0.0 0 0.0 0 0.0 6	$\begin{array}{ccc} .7 & 100.0 \\ .0 & 0.0 \\ .0 & 0.0 \\ .3 & 0.0 \end{array}$	97.7 0.0 0.0 2.3	91.66 92.30 55.5 0.00 0.00 0.0 8.33 7.69 44.4 0.00 0.00 0.0	5 84.79 0 0.00 4 15.21 0 0.00	82.04 79.05 86.36 0.00 2.33 0.00 12.82 0.00 9.09 5.12 18.60 4.54	82.55 0.79 7.14 9.52
May 1975	DF SF C O	100.0 85 0.0 0 0.0 0 0.0 14	.7 66.6 0 0.0 .0 16.7 .3 16.7	82.3 0.0 5.9 11.8	83.87 50.37 83.1 13.23 45.19 15.9 2.01 2.58 0.4 0.89 1.86 0.4	8 68.51 8 28.58 2 1.74 2 1.17	29.72 66.68 38.10 23.03 32.36 50.00 0.29 0.24 2.38 1.16 0.72 9.52	68.60 29.27 0.75 1.38

Quarter	Feeding Type	Station 4-1 4-2 4-3	Total for Station Quarter 5-1 5-2 5-3	Total for Quarter	Station 6-1 6-2 6-3	Total for Quarter
May 1974	DF SF C O	83.33 94.95 98.22 8.33 4.04 0.00 0.00 0.00 0.00 8.33 1.01 1.78	95.22100.0056.5344.782.990.0042.0354.480.000.001.440.741.790.000.000.00	53.79 9 45.33 0.88 0.00	8.44100.0092.730.000.007.270.000.000.001.560.000.00	96.10 3.12 0.00 0.78
August 1974	DF SF C O	53.32 63.80 68.90 6.67 10.34 0.00 33.33 25.86 28.88 6.66 0.00 2.22	62.7299.5599.9898.865.930.450.020.1429.660.000.000.001.690.000.000.00	98.89 8 0.11 0.00 0.00	4.6281.8284.637.6915.1511.530.000.000.007.693.033.84	84.10 11.36 0.00 4.54
Nov. 1974	DF SF C O	93.87 81.17 52.15 1.53 0.00 0.00 5.34 17.39 21.73 1.52 1.44 4.34	70.83100.0099.6299.310.900.000.040.0010.760.000.340.691.790.000.000.00	99.67 8 0.02 0.31 0.00 1	9.2978.5883.340.000.000.000.007.148.330.7114.288.33	85.19 0.00 3.70 11.11
Feb. 1975	DF SF C O	64.27 42.86 53.33 14.29 0.00 0.00 21.42 50.00 46.66 0.00 7.14 0.00	53.5075.0087.5080.014.650.0012.5028.5739.5325.000.0014.282.320.000.007.14	68.43 10 13.16 15.78 2.63	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 100.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array} $
May 1975	DF SF C O	95.00 88.24 65.00 0.00 0.00 5.00 5.00 11.76 30.00 0.00 0.00 0.00	87.6399.9898.2699.771.030.020.870.2311.340.000.870.000.000.000.000.00	99.90 9 0.07 0.03 0.00	5.00100.00100.005.000.000.000.000.000.000.000.000.00	97.73 2.27 0.00 0.00

321

.

Quarter	Feeding Type	Station 7-1 7-2 7-3	Total for Quarter	Station 8-1 8-2 8-3	Total for Quarter	Station 9-1 9-2 9-3	Total for Quarter
May 1974	DF SF C O	100.00 66.67 77.78 0.00 16.67 11.11 0.00 16.66 11.11 0.00 0.00 0.00	86.67 6.67 6.66 0.00	46.13 67.99 45.45 42.78 14.19 32.02 10.25 14.52 9.16 0.84 3.30 3.43	49.08 39.01 10.59 1.32	12.25 4.16 67.65 83.86 95.46 20.59 1.48 0.28 11.76 2.41 0.00 0.00	8.23 90.07 0.91 0.79
August 1974	DF SF C O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62.37 33.33 0.00 4.30	61.42 74.65 47.36 18.56 10.91 34.90 19.78 13.56 6.87 0.24 0.88 2.71	62.20 22.27 14.37 1.16	36.04 45.77 54.00 49.28 40.27 43.31 9.55 12.63 6.23 5.13 1.33 4.20	42.63 44.92 8.36 4.09
Nov. 1974	DF SF C O	68.44 83.45 90.00 10.52 4.16 0.00 5.26 4.16 0.00 15.78 8.33 10.00	79.25 5.66 3.77 11.32	41.43 48.54 43.03 42.57 38.07 41.73 12.21 9.05 7.91 3.79 4.34 7.33	45.84 39.86 9.36 4.94	51.36 57.48 65.94 31.98 32.83 12.22 11.71 8.95 12.22 4.95 0.74 9.62	55.81 27.10 11.49 5.60
Feb. 1975	DF SF C O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92.06 2.27 3.40 2.27	51.86 42.09 62.86 45.69 50.74 19.81 4.95 3.46 5.87 1.02 3.71 11.46	49.59 41.30 4.64 4.47	61.00 70.39 82.42 20.95 13.33 9.25 9.34 7.40 8.33 8.71 8.88 0.00	65.33 18.64 8.21 7.82
May 1975	DF SF C O	84.10 77.50 93.55 11.36 5.00 3.23 4.54 12.50 0.00 0.00 5.00 3.22	84.36 6.96 6.08 2.60	2.49 9.35 18.97 95.23 84.17 73.24 1.34 1.35 1.47 0.94 5.13 6.32	8.27 87.39 0.84 3.50	13.91 17.22 29.68 77.41 73.84 60.83 4.07 6.03 5.34 4.61 2.91 4.15	16.24 74.94 4.60 4.22

Table VI-4	(cont.)
------------	---------

Quarter	Feeding Type	Station 10-1 10-2 10-3	Total fo Quarter
May 1974	DF SF C O	73.32 62.17 16.67 16.92 31.08 83.33 10.76 6.75 0.00 0.00 0.00 0.00	55.26 38.12 6.62 0.00
August 1974	DF SF C O	78.74 75.00 90.70 17.02 25.00 6.98 2.12 0.00 1.16 2.12 0.00 1.16	77.68 20.30 1.01 1.01
Nov. 1974	DF SF C O	93.11 91.87 91.56 1.15 5.81 1.41 5.74 2.32 5.63 0.00 0.00 1.40	92.23 2.87 4.50 0.40
Feb. 1975	DF SF C O	84.00 73.92 92.86 4.00 8.70 3.57 8.00 8.69 3.57 4.00 8.69 0.00	84.23 5.26 6.57 3.94
May 1975	DF SF C O	87.14 90.33 80.00 12.86 9.67 7.50 0.00 0.00 2.50 0.00 0.00 10.00	86.01 10.46 0.70 2.83

* DF = Deposit Feeder; SF = Suspension Feeder; C = Carnivore; O = Omnivore.

Table VI-5

Quarterly scaled evenness diversity values by feeding type for each station

Station	Feeding	Туре	М	ay 1	974	Au	igust	t 1974	Nov	embe	er 1974	Feb	ruar	y 1975	Ma	ıy 19	975
			SDN*	Sp*	I*	SDN	Sp	Ι	SDN	Sp	I	SDN	Sp	Ι	SDN	Sp	I
1	DF		-		-	.165	8	140	.402	10	71	.000	5	44	-		· •••
2	DF SF C 0		. 554 - -	19	109 - - -	.490 - - -	21	233 - -	.249 - -	9 - - -	183 - -	-			.071 .026 .500 .071	17 4 7 3	1448 609 37 25
3	DF SF C		.604 - -	11 - -	83 - -	.479 .019 .396	22 5 10	111 662 61	.727 - -	19 	86 - -	.012	6 - -	104 - -	.076 .005 -	12 6 -	546 233
4	DF C		.055	6	159	.453 .692	11 4	73 35	.535	8 -	193	-	-		.381]] -	85 -
5	DF SF		.611 .193	10 4	121 102	.015	4 -	10562 -	.011	2	5610 -	.614	10	26 -	.041	8	5551 -
6	DF		. 556	4	123	.341	7	148	.545	6	46	.000	3	38	.559	6	41
7	DF SF		. 688	12	26 -	.193	7 2	116 62	.178	10 -	42	. 393	6 -	79 -	.457	13 -	97 -
8	DF SF C 0		.553 .202 .407 .149	26 7 9 5	1440 1145 311 39	.532 .232 .359	27 7 10 -	1066 379 246	.539 .395 .541 .279	29 6 15 4	1235 170 382 145	.328 .299 .255 .010	27 7 10 2	2262 1884 210 204	.524 .018 .532 .112	33 6 14 4	1514 13086 223 527

Table VI-5 (cont.)

Station	Feedin	д Туре	M	lay 1	974	Au	igust	: 1974		Nov	embe	r 1974	Fet	oruar	y 1975	Ma	iy 19	975
			SDN	Sp	I	SDN	Sp	I		SDN	Sp	I	SDN	Sp	I	SDN	Sp	I
9	DF		.634	21	134	.643	21	1927		.665	24	602	.671	21	668	.674	25	538
	SF		.319	5	1469	.168	10	1987		.279	7	290	.457	6	193	.103	7	2392
	C		<u> </u>		-	.422	8	328		.635	17	123	.431	12	93	.565	11	147
	0		-	•••	-	.514	3	181	•	128	3	60	.295	3	81	.240	4	135
10	DF		.649	16	100	.179	7	163		.096	5	225	.438	7	64	.395	6	121
	SF		.811	3	69	.104	4	30			-	-			-		-	

*SDN = Fager's (1972) scaled standard deviation
Sp = Number of species
I = Number of individuals

Table VI-6

Proportions of the two most abundant species and dominance index for each sample

Station 1 Species	May 1974 1-1 1-2 1-3 Proportion	August 1974 1-1 1-2 1-3 Proportion	November 1974 1-1 1-2 1-3 Proportion
Parahaustorius longimerus Several Species*	.571 .400 1.00	.655 .750 .660	.933 .333
Mulinia lateralis Elasmopus laevis Others (Arthropoda) Nucula proxima Magelona sp. 2 Nephtys picta		.164 .150 .120	.033 .476 .259 .222
Dominance Index	.714 .500 1.00	.819 .900 .780	.966 .809 .481
	February 1975 1-1 1-2 1-3 Proportion	May 1975 1-1 1-2 1-3 Proportion	Dominance Frequency**
<u>Parahaustorius</u> <u>longimerus</u> Others Mulinia lateralis	.944 .750 1.00 .063	.500 .429 .667 .167	11
Elasmopus laevis Others (Arthropoda) Nucula proxima Magelona sp. 2 Nephtys picta	.055	.500 .429	3
Dominance Index	.999 .813 1.00	1.00 .858 .834	

Station 2 Species	May 1974 2-1 2-2 2-3 Proportion	August 1974 2-1 2-2 2-3 Proportion	November 1974 2-1 2-2 2-3 Proportion
<u>Spiophanes bombyx</u> <u>Tellina agilis</u> <u>Spio setosa</u> <u>Mediomastus ambiseta</u> Several Species <u>Nephtys picta</u> <u>Nucula proxima</u> <u>Glycera dibranchiata</u>	.256 .239 .231 .258 .283 .452	.172 .423 .227 .264 .159 .138	.850 .524 .699 .030 .238 .110
<u>Mytilus</u> <u>edulis</u> Dominance Index	.487 .710 .522	.687 .310 .386	.880 .762 .809
	February 1975 2-1 2-2 2-3 Proportion	May 1975 2-1 2-2 2-3 Proportion	Dominance Frequency
<u>Spiophanes bombyx</u> <u>Tellina agilis</u> <u>Spio setosa</u> <u>Mediomastus ambiseta</u> Several Species <u>Nephtys picta</u> <u>Nucula proxima</u> <u>Glycera dibranchiata</u> <u>Mytilus edulis</u>	.125 .625 .384 .111 .230 .444	.774 .458 .771 <u>.123 .440 .156</u>	1 7 6 1
Dominance Index	.750 .614 .555	.897 .898 .927	

Station 3 Species	May 1974 3-1 3-2 3-3 Proportion	August 1974 3-1 3-2 3-3 Proportion	November 1974 3-1 3-2 3-3 Proportion
<u>Spio setosa</u> <u>Tellina agilis</u> Several Species <u>Mytilus edulis</u> <u>Mediomastus ambiseta</u> <u>Lysianopsis alba</u> <u>Polydora socialis</u> <u>Sabellaria vulgaris</u>	.417 .273 .167 .364 .152 .136	.821 .391 .804 .078 .109	.120 .152 .191 .206 .160 .212
Nephtys picta Glycera dibranchiata Xanthid sp.		.032	· · · · · · · · · · · · · · · · · · ·
Dominance Index	.584 .425 .500	.899 .500 .836	.397 .280 .364
	February 1975 3-1 3-2 3-3 Proportion	May 1975 3-1 3-2 3-3 Proportion	Dominance Frequency
<u>Spio setosa</u> <u>Tellina agilis</u>	.795 .767 .739	.700 .609 .167	4 4
<u>Mytilus edulis</u> Mediomastus ambiseta		.227 .313 .476	4
Lysianopsis alba Polydora socialis Sabellaria vulgaris Glycera capitata Nephtys picta Glycera dibranchiata Xanthid sp.	. 163 . 065		
Dominance Index	.872 .930 .804	.927 .922 .643	

Station 4	4-1 P	May 1974 4-2 roportior	4-3 1	Au 4-1 Pr	ugust 1 4-2 roporti	974 4-3 on	Nov 4-1 Pr	vember 4-2 roporti	1974 4-3 on
Protohaustorius wigleyi Several Species Tellina agilis Glycera dibranchiata Nucula proxima Glycera capitata Trichophoxus epistomus Scoloplos robustus Acteocina canaliculata	.833 .083	.869 .040	.911 .036	.400 .200	.241 .172	.386 .227	.427 .336	.203 .493	.364 .182
Dominance Index	.916 Fel 4-1 Pi	.909 bruary 19 4-2 roportion	.947 975 4-3	.600 4-1 Pr	.413 May 197 4-2 roporti	.613 5 4-3 on	.763 Domina Freque	.696 ance ancy	.546
Protohaustorius wigleyi Several Species Tellina agilis Glycera dibranchiata Nucula proxima Glycera capitata Trichophoxus epistomus Scoloplos robustus Acteocina canaliculata	.143	.142	.400 .200	.113 .597	.118 .647	.273 .182	6 1 2 3	3	
Dominance Index	.643	.357	.600	.710	.765	.455			

Station 5	May 1974		Au	ugust 19	974	November 1974		
Species	5-1 5-2 Proportion	5-3	5-1 Pr	5-2 roportio	5-3 on	5-1 Pr	5-2 roporti	5-3 on
<u>Tellina agilis</u> Canitella capitata	.500 .188	.142	.011	.008	.015	.003	.005	.011
Ensis directus Nucula proxima Ampelisca verrilli	.333	.455	. 986	. 991	. 983	. 996	.991	.982
Dominance Index	.954 .521	.597	. 997	.999	.998	.999	.996	.993
	February 19	75	Ň	lay 197	5			
	5-1 5-2 Proportion	5-3	5-1 Pr	5-2 roportio	5-3 on	Domina Freque	ince ency	
<u>Tellina agilis</u>	.250		.022	.126	.117	2	2	
Ensis directus Nucula proxima Ampelisca verrilli	.188 .250	.214 .143	.977	.800	.864	3 9 1	}	
Dominance Index	.438 .625	.357	. 999	.926	.981	• •		

Station 6 Species	6-1 Pi	May 1974 6-2 roportio	6-3 n	A 6-1 P	ugust 1 6-2 roporti	974 6-3 on	Nov 6-1 Pr	ember 6-2 oportic	1974 6-3 on
Acanthohaustorius millsi Parahaustorius longimerus Acanthohaustorius shoemake	.469 .375 eri	.445 .445	.436 .364	.590 .128	.667	.240 .510		.286	.250
Protohaustorius wigleyi Several Species		· ·					.464	.214	.500
Dominance Index	.844	.890	.800	.718	.819	.750	.607	.500	.750
	Fel 6-1 Pi	bruary 1 6-2 roportio	975 6-3 n	6-1 Pi	May 197 6-2 roportic	5 6-3 on	Domina Freque	nce ncy	
Acanthohaustorius millsi Parahaustorius longimerus Acanthohaustorius shoemake	eri	•	. *	.300 .350	.571	.294	4 5)	
Protohaustorius wigleyi Several Species	1.00	.846	1.00		.429	.588	6	j	
Dominance Index	1.00	.923	1.00	.650	1.00	.882			

33]

Table VI-0 (conc.)			9
Station 7	May 1974 7-1 7-2 7-3	August 1974 7-1 7-2 7-3	November 1974 7-1 7-2 7-3
species	Proportion	Proporcion	Proportion
Asabellides oculatus Acanthohaustorius millsi Glycera capitata Several Species Tellina agilis	.267 .200 .286 .143 .222		
Nucula proxima Mulinia lateralis	.333	.466 .464 .559 .345 .406 .220	268 625 600
Ampelisca Verriii Others (polychaetes) Pectinaria gouldii Ampolisca abdita			.308 .025 .800 .156 .083 .200
<u>Yoldia limatula</u> <u>Spio setosa</u>			1997 1997 1997 1997 1997 1997 1997 1997
Dominance Index	.467 .429 .555	.811 .870 .779	.524 .708 .800
	February 1975 7-1 7-2 7-3 Proportion	May 1975 7-1 7-2 7-3 Proportion	Dominance Frequency
Asabellides <u>oculatus</u> Acanthohaustorius <u>millsi</u> Glycera <u>capitata</u> Soveral Species			1 1 1 1
Tellina agilis Scoloplos robustus	400 100	.273 .425 .594	3 1 4
Mulinia lateralis Ampelisca verrilli	.400 .581 .640		5

Table VI-6 (cont.)		•				
Station 7 (cont.)	February 7-1 7-2 Proporti	1975 7-3 on	ן 7-1 Pi	May 197 7-2 roporti	5 7-3 on	Dominance Frequency
Others (polychaetes) <u>Pectinaria gouldii</u> <u>Ampelisca abdita</u> <u>Yoldia limatula</u> <u>Spio setosa</u>	.279		.182	.150	<u>.156</u>	
Dominance Index	.800 .860	.800	.455	.575	.750	

Station 8 Species	May 197 8-1 8-2 Proporti	4 8-3 on	Au 8-1 Pr	ugust 19 8-2 roportic	974 8-3 on		Nov 8-1 Pr	vember 8-2 roporti	1974 8-3 on
<u>Mytilus</u> edulis <u>Corophium simile</u> <u>Unciola serrata</u> <u>Crepidula plana</u>	.371 .216 .140 .156	.121	.220		.235	•	134	.154	.118
Hydroides dianthus Asabellides oculatus		• 2 1 1	.265	.088 .522	.303	•	333	.273	
Sabellaria vulgaris Eumida sanguinea Nucula proxima									. 332
Dominance Index	.587 .296	.432	.485	.610	.538	. (667	.427	.450
and the second	T = b · · · · · · ·	1075							
	8-1 8-2 Proportic	8-3 on	8-1 Pr	8-2 oportic	, 8-3 on	Do Fi	omina reque	ince ency	•
Mytilus edulis	February 8-1 8-2 Proportic	8-3 on	8-1 Pr .935	8-2 oportic .837	8-3 on .709	Do Fi	omina reque 4	ince ency	
<u>Mytilus edulis</u> <u>Corophium simile</u> <u>Unciola serrata</u> <u>Crepidula plana</u>	Pebruary 8-1 8-2 Proportio .319 .265	8-3 on .418	8-1 Pr .935	ey 1975 8-2 roportic .837	, 8-3 on .709	Do Fi	omina reque 4 2 1	ince ency	
Mytilus edulis Corophium simile Unciola serrata Crepidula plana Hydroides dianthus Asabellides oculatus	.319 .265 .324 .361	8-3 on .418 .140	8-1 Pr .935 .012	ey 1973 8-2 oportic .837	, 8-3 on .709	Do F 1	omina reque 4 2 1 6 1	ince ency	
<u>Mytilus edulis</u> <u>Corophium simile</u> <u>Unciola serrata</u> <u>Crepidula plana</u> <u>Hydroides dianthus</u> <u>Asabellides oculatus</u> <u>Sabellaria vulgaris</u> <u>Eumida sanguinea</u> <u>Nucula proxima</u>	.319 .265 .324 .361	8-3 on .418 .140	8-1 Pr .935 .012	.048	8-3 on .709 .086	Do Fi	omina reque 4 2 1 6 1 1 1	ince ency	

Station 9 Species	May 1974 9-1 9-2 Proportion	August 197 9-3 9-1 9-2 Proportion	4 November 1974 9-3 9-1 9-2 9-3 Proportion
Hydroides dianthus Polydora ligni Mytilus edulis Asabellides oculatus Nucula proxima Unciola serrata Corophium simile Mediomastus ambiseta Others (polychaetes)	.816 .061 .953 .015	.412 .348 294 265 .103 .097	.369 .308 .207 .244 .155 .169 .148 .115
Dominance Index	.877 .968 .	.515 .445	.524 .477 .451 .263
	February 1975 9-1 9-2 Proportion	May 1975 9-3 9-1 9-2 Proportion	9-3 Dominance Frequency
Hydroides dianthus		050 001	
Doludour lines		.053 .081	5
Polydora ligni Mytilus edulis		.053 .081	5 .591 4
Polydora ligni Mytilus edulis Asabellides oculatus Nucula proxima Unciola serrata Corophium simile	.281 . .156 .111	.053 .081 .703 .653 343	5 .591 4 .068 3 1
Polydora ligni Mytilus edulis Asabellides oculatus Nucula proxima Unciola serrata Corophium simile Mediomastus ambiseta Others (polychaetes)	.281 . .156 .111 .145	.053 .081 .703 .653 343	5 .591 4 .068 3 1

Station 10 Species	May 1974 10-1 10-2 10-3 Proportion	August 1974 10-1 10-2 10-3 Proportion	November 1974 10-1 10-2 10-3 Proportion
Asabellides oculatus Others (Arthropods) Others (Molluscs) Mytilus edulis Mulinia lateralis Nucula proxima Tellina agilis Acteocina punctulata Several Species Ampelisca verrilli Ampelisca abdita Nephtys incisa	.185 .189 .108 .149 .667 .143	.149 .212 .681 .560 .744 .093	.058 .851 .860 .789 .057
Dominance Index	.293 .338 .810	.830 .772 .837	.908 .918 .845
	February 1975 10-1 10-2 10-3 Proportion	May 1975 10-1 10-2 10-3 Proportion	Dominance Frequency
Asabellides oculatus			2
Others (Molluscs) <u>Mytilus edulis</u> <u>Mulinia lateralis</u>			1
Nucula proxima Tellina agilis	.174 .357	.386 .655 .750	9
Acceocina punctulata Others Ampelisca verrilli Ampelisca abdita Nephtys incisa	.080 .600 .304 .464	.172	3
Dominance Index	.680 .478 .821	.700 .827 .850	

W.S.

Table VI-6 (cont.)								
Station 10 (cont.)	Fet 10-1 Pr	oruary 1 10-2 coportic	975 10-3 m	Ma 10-1 Pr	y 1975 10-2 oportic	10-3 on	Doi Fr	minance equency
Several Species <u>Ampelisca verrilli</u> <u>Ampelisca abdita</u> <u>Nephtys incisa</u>	.080 .600	.304	.464	.314	.172	.100		3
Dominance Index	.680	.478	.821	.700	.827	.850		

* Several Species - more than one species having the same proportion value.

**Dominance Frequency - Number of times proportion was highest out of all samples.
Table VI-7

Summation of cluster classification of station vs. species

Quarter				Station G	roupings		
May 1974	1 & 6	2 & 3		10 & 5	& 9	8	7 4
August 1974	1 & 6	2 & 3		10 & 5	& 7	8 & 9	4
November 1974	1 & 6	2	3	10 & 5		8 & 9	7 4
February 1975		6 2 & 3		10 & 5	& 7	8 & 9	4
May 1975	1 & 6	2 & 3		5 & 10		8 & 9	7 & 2

Table VI-8

Summation of cluster classification of species groups

Group	May 1974	Stations	August 1974	Stations	November 1974	Stations
A	Parahaustorius longimerus Protohaustorius wigleyi Nephtys bucera	6,1 4 4,6	<u>Parahaustorius</u> <u>longimerus</u> Nephtys bucera	1,6 6,1	Parahaustorius longimerus Protohaustorius wigleyi Nephtys bucera	1 6 6, 4
	<u>Acanthohaustorius millsi</u> Bathyporeia parkeri	6 6	Acanthohaustorius millsi Ampelisca abdita	6 1,8		
В	<u>Nucula proxima</u> Tellina agilis Mulinia lateralis	8, 5,10 5, 3, 9 9,10, 5	Nucula proxima Tellina agilis Mulinia lateralis	5,10, 7 5, 4, 8 7, 1	<u>Nucula proxima Tellina agilis</u> Mulinia lateralis	5,10, 8 2, 5 10, 2
	Ampelisca verrilli Asabellides oculatus Yoldia limatula	5,10 10, 5, 9 9,10, 5 5,10	Ampelisca verrilli Yoldia limatula	5 8, 7,10 10, 7	<u>Ampelisca verrilli</u>	7
	<u>Scolopios</u> <u>robustus</u>	10, 7	<u>Scoloplos fragilis</u> Nephtys incisa	10 7	Acteocina canaliculata	10,4
С	Streblospio benedicti Glycera dibranchiata Spio setosa Spiophanes bombyx	8, 9 2, 3, 9 3, 2, 8 2, 3, 4	NO SPECIES GROUP		NO SPECIES GROUP	· · · · · · · · · · · · · · · · · · ·
D	Marphysa sanguinea Nereis succinea Polydora socialis Polycirrus eximius Unciola serrata	8 8,9 8 8 8	Marphysa sanguinea Nereis succinea Polycirrus eximius Unciola serrata	9,8 9,8 9,8	Marphysa sanguinea Nereis succinea Polydora socialis Polycirrus eximius Unciola serrata	8, 9 8 9, 8 9, 8 8, 9
	Corophium simile	8 8	Corophium simile	3, 8, 9 9, 8	<u>Corophium simile</u>	8,9

Table	VI-8 (cont.)				·
Group	February 1975	Stations	May 1975	Station	S
A cont.	<u>Parahaustorius longimerus</u> Protohaustorius wigleyi	1 6	Parahaustorius longimerus Protohaustorius wigleyi Acanthohaustorius millsi	6,1,7 6 6	
B cont.	Mulinia lateralis	7, 5,10	<u>Nucula proxima</u> Tellina agilis	5, 8, 9 5, 7, 2	
	Ampelisca verrilli	7,10	Ensis directus Ampelisca verrilli Yoldia limatula Nephtys incisa	8, 9, 2 10, 7 7,10 10, 7	
340	Grycera americana	5, 9,10	<u>Spio setosa</u> <u>Mytilus edulis</u> <u>Ampelisca abdita</u>	2, 3 8, 9, 2 10, 5	
C cont.	NO SPECIES GROUP		NO SPECIES GROUP		
D cont.	Marphysa sanguinea Nereis succinea Polycirrus eximius Unciola serrata Corophium simile Polydora ligni	8, 9 9, 8 8, 9 8, 9 8, 9 8, 9	Marphysa sanguinea Nereis succinea Polydora socialis Polycirrus eximius Unciola serrata Harmothoe extenuata Corophium simile	9, 8 8, 9 8, 9 8, 9 8, 9 8, 9 8, 2, 9 8, 9	
	Xanthid sp. Hydroides dianthus Heteromastus filiformis Sabellaria vulgaris Oxyurostylis smithi Glycinde solitaria	8 8,9 9 8,9 8,9 9	Xanthid sp. Hydroides dianthus Heteromastus filiformis Sabellaria vulgaris Oxyurostylis smithi Glycinde solitaria	8,9 9,8 9,8 8,9 8,9,3 8,9,3	

Table VI-8 (cont.)

Group	May 1974	Stations	August 1974	Stations	November 1974	Stations
D	Polydora ligni	8,9			Polydora ligni	8,9
cont.	Xanthid sp.	8	Xanthid sp.	9,8	Xanthid sp.	8,9
	Hydroides dianthus	9,8	Hydroides dianthus	9,8	Hydroides dianthus	9,8
	Heteromastus filiformis	8,9	Heteromastus filiformis	9	Heteromastus filiformis	8
	Mytilus edulis	8,10, 9	Mytilus edulis	3, 8, 9		
	Sabellaria vulgaris	8	and the second		Sabellaria vulgaris	8
	Oxyurostylis smithi	8, 9, 2				· · · · · · · · · ·
	Capitella capitata	8, 5, 9				
	Glycinde solitaria	10, 9	Glycinde solitaria	9,4	Glycinde solitaria	8,9
			Asabellides oculatus	8,9	Asabellides oculatus	8, 9
			Streblospio benedicti	9, 2		•
			Lembos smithi	8,9	Lembos smithi	8,9
		1. A. 1. A. 1.	Neopanope texana sayi	9,8	and a second	
L)		4 - 4 - A	Erichthonius brasiliensis	9,8		
			Melita nitida	9,8	Melita nitida	8,9
			Lepidonotus sublevis	9,8		
			Oligochaeta sp.	9,8	Oligochaeta sp.	9,8
			Eumida sanguinea	9,8	Eumida sanguinea	9,8
			Mediomastus ambiseta	9, 2, 8	Mediomastus ambiseta	8,9
			Lepidonotus squamatus	9, 8, 3	Lepidonotus squamatus	8,9
			Mercenaria mercenaria	9,8	Mercenaria mercenaria	8,9
			Elasmopus laevis	9, 1	Elasmopus laevis	8,9
			Glycera americana	9,3,2	Glycera americana	9, 2, 8
			Spio setosa	2		
			Aricidea cerruti	2,3		
			Scoloplos robustus	4, 7, 3		
			Nemertea sp.	4,2		
					Phyllodoce arenae	8,9
				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Podarke obscura	9,8
					Crepidula plana	8,9
					Pectinaria gouldii	9, 8, 7
				and the second s	Pagurus longicarpus	9,8,3
					Sthenelais boa	8,9

341

Table VI-8 (cont.)

Group	February 1975	Stations	May 1975	Stations
D cont.	<u>Asabellides</u> <u>oculatus</u> Lembos smithi	9,8 8.9	Asabellides oculatus Streblospio benedicti	8, 9 9
	<u>Eumida sanguinea</u> <u>Mediomastus ambiseta</u> <u>Lepidonotus squamatus</u> <u>Mercenaria mercenaria</u> <u>Phyllodoce arenae</u>	8, 9 9, 8 8, 9 9, 8 9, 8	<u>Neopanope texana sayi</u> <u>Eumida sanguinea</u> <u>Mediomastus ambiseta</u> <u>Lepidonotus squamatus</u> <u>Mercenaria mercenaria</u> <u>Nemertea</u> sp.	8, 9 8, 9, 2 8, 9 8, 9 9, 8 9, 2, 8
342	<u>Crepidula plana</u> <u>Nucula proxima</u> <u>Ampelisca abdita</u> Edotea triloba	8, 9 9, 8 7, 8 9, 8	<u>Podarke obscura</u> <u>Crepidula plana</u> <u>Sthenelais boa</u>	8, 9 8, 2, 3 8, 9
E cont.	<u>Glycera</u> <u>capitata</u> <u>Glycera</u> <u>dibranchiata</u> <u>Nephtys</u> <u>picta</u> <u>Tellina</u> <u>agilis</u> <u>Acteocina</u> <u>canaliculata</u>	4, 3 4, 3, 2 3, 2,10 3, 2, 4 4, 5, 8	Cirratulidae sp. <u>Glycera</u> <u>americana</u> <u>Glycera</u> <u>capitata</u> <u>Glycera</u> <u>dibranchiata</u> <u>Nephtys</u> <u>picta</u> <u>Capitella</u> <u>capitata</u>	8, 9 2, 5, 8 4, 7, 3 4, 2, 7 8, 6, 7 3, 2, 7
			Spiophanes bombyx	4, 2, 3

Table VI-8 (cont.)

						and the second
Group	May 1974	Stations	August 1974	Stations	November 1974	Stations
E	No Species Group		<u>Glycera</u> <u>americana</u>	9, 2, 3		•
			Aricidea cerruti	2, 3	Seclaria nahustus	1 2 2
			Nemertea sp.	4, 7, 2 4, 2	Nemertea sp.	4, 3, 2 4, 9, 3
					<u>Pinnixa</u> sp.	4,8 8,4,3
					Trichophoxus epistomus Glycera dibranchiata	4 9,3
					Nephtys picta	2 1 3

FIGURE CAPTIONS FOR CHAPTER VI

Figure VI-1: Map showing location of quarterly sampling stations near anchorage area in Delaware Bay.

Figure VI-2: Dendrogram showing relationships of samples taken in May 1974. Czekanowski similarity coefficient and group-average sorting strategy was used.

- Figure VI- 3: Dendrogram showing relationships of samples taken in August 1974.
- Figure VI- 4: Dendrogram showing relationships of samples taken in November 1974.
- Figure VI- 5: Dendrogram showing relationships of samples taken in February 1975.
- Figure VI- 6: Dendrogram showing relationships of samples taken in May 1975.
- Figure VI- 7: Dendrogram showing species relationships in May 1974 samples. Species names associated with code numbers can be found in Table VI-1.
- Figure VI- 8: Dendrogram showing species relationships in August 1974 samples. Species names associated with code numbers can be found in Table VI-1.
- Figure VI- 9: Dendrogram showing species relationships in November 1974 samples. Species names associated with code numbers can be found in Table VI-1.
- Figure VI-10: Dendrogram showing species relationships in February 1975 samples. Species names associated with code numbers can be found in Table VI-1.

Figure VI-11: Dendrogram showing species relationships in May 1975 samples. Species names associated with code numbers can be found in Table VI-1.

Figure VI-12: Dendrogram showing relationship of sediment samples from quarterly stations.

Figure VI-1

May 1974 Quarterly

347

Figure VI-2

1957 -1957 -

Figure VI-3

November 1974 Quarterly

349

Figure VI-4

CZEKANOWSKI COEFFICIENT

Figure VI-5

May 1975 Quarterly

CZEKANOWSKI COEFFICIENT

351

Figure VI-6

1

CZEKVNOMSKI COEŁEICIENI.

Figure VI-7

Figure VI-8

CZEK¥NOMZKI GOEŁEIGIENT

CZEKVNOMSKI COELLICIENL

354

製業

CZEKVNOMSKI COEŁEICIENL

Figure VI-11

1

CZEKANOWSKI COEFFICIENT

Figure VI-12

VII. METHODOLOGICAL BENTHIC STUDIES

Peter Kinner Les Watling

INTRODUCTION

This research was undertaken to determine whether, using scales of relative abundance, it was possible to accurately assess the structure of benthic assemblages using dredge samples. Benthic surveys using dredges are relatively common, but analyses of the data were restricted to the use of presence-absence coefficients. In some cases no analyses were attempted because of the prevalent view in ecology that strictly quantitative data were required before valid conclusions could be drawn. We believe some excellent benthic research has not been fully exploited due to this dogma.

Because of increased human activities in coastal regions there has been a steadily increasing interest in marine ecology and, as well, with the passage of the National Environmental Policy Act, management agencies are requiring baseline and monitoring assessments of potentially impacted environments (Council on Environmental Quality, 1974). Benthic invertebrates have been consistently used in these studies because they are generally abundant, widespread, relatively easy to collect and identify, and generally cannot move over great enough distances to avoid adverse conditions (Filice, 1959; Wass, 1967).

As with other branches of ecology, studies of the marine benthos began with what were essentially descriptive accounts (Petersen, 1918; Stickney, 1959; Hanks, 1964) progressed from relatively simple (Sanders, 1958, 1960; Wieser, 1960) to more sophisticated analyses (Fenchel, 1969; Lie and Kelley, 1970; Johnson, 1970; Hughes and Thomas, 1971; Fager, 1972) and is presently becoming increasingly theoretical (Sanders, 1968; Rhoads and Young, 1970).

However, it must be noted that quantitative studies of this type require significant expenditures of time and money. It is also clear that environmental changes occur so rapidly management agencies must respond almost instantly to establish pollution standards or to develop monitoring guidelines. In general, quantitative samples require a large processing time (sorting, identifying, counting, weighing) which may range from 6 to 20 man-hours per sample (Barnard and Jones, 1960; Maurer and Watling, unpublished). It is this investment which has made quantitative samples so valuable in defining and testing ecological principles in the marine benthic environment. However, time constraints often force management agencies to make decisions prior to the completion of a quantitative study or the agency must delay its decisions until such studies are complete, which often causes the cost of a project to be increased substantially.

There seems to be a need, therefore, to develop methods of examining benthic assemblages which are able to accurately detect changes in their structure and which are relatively rapid and inexpensive. Some approaches to the problem have already been made (Cowell, 1971; Moore, 1971, 1974). Field (1970) and Stephensen, et al. (1970) used dredge samples in their studies of the application of numerical classification techniques to the analysis of species distribution patterns. Field's (1970) work was of particular importance in that it utilized relative abundance values on a scale similar to that used on this project. Moore (1974) obtained a similar picture of the kelp fauna using presence, absence, and quantitative methods. Greg-Smith (1971) has discussed the use of qualitative data in terrestrial plant ecology and now feels the bulk of interpretable information lies in qualitative differences. To examine the possible use of qualitative data and its sensitivity to community change, an evaluation of four different substrata (sand, muddy-sand, polymodal sediment, and a calcareous serpulid assemblage) was undertaken using both quantitative and qualitative methods. A comparison of these samples and the cost of each of the two efforts will hopefully provide a background for agencies to judge whether qualitative efforts may be a rapid, economical method of obtaining valid data on benthic community structure. It is our hypothesis that information from dredge samples can provide an alternative to management agencies without sacrificing significant information about benthic community structure.

METHODS

After a preliminary survey of the bottom in the study area, four stations were established: 1) a sandy shoal sediment (Station 4), 2) a muddy sand (Station 5), 3) a polymodal sediment (Station 3), 4) a calcareous serpulid (Station 9) (Figure VII-1). Each of these stations was sampled with three different dredges during the period July 15-26, 1974. The three dredges that were used were a sled dredge with a flat blade (Figure VII-2), a modified oyster dredge with 6.25 cm long teeth (Figure VII-3), and a modified Menzies dredge with a 5 cm wide blade mounted at a 45° angle (Figure VII-4). Each of the dredges was equipped with a 1 mm Nitex cloth bag to prevent material from being washed through. This was covered on the outside with a 5 cm stretch mesh fishing net and chafing material to prevent damage to the bag. The mouth of the dredges were 1 m in width and 20 cm in height. Three bars were placed upright in the mouth of each dredge to prevent Limulus polyphemus and other large animals or debris from clogging the opening.

Twenty dredge hauls were taken with each of the dredges at each of the four stations. A dredging time of thirty seconds was always sufficient to fill the Nitex bag. The contents of the dredge were placed into a container and one gallon of material randomly taken as a sample. At Station 4 (sandy shoal) and Station

5 (muddy sand), the one-gallon sample was sieved over a 1 mm screen and the residue preserved in 10% buffered formalin. The polymodal sediment (Station 3) and serpulid assemblage (Station 9) samples were not sieved because of the coarseness of the material, but were preserved in 10% buffered formalin.

In the laboratory, the dredge samples were washed over a series of sieves (2 mm, 1 mm, 0.5 mm, 0.25 mm). For the purposes of this study the material on the two finer sieves was not included in any further analyses. The remaining material was placed in plexi-glass trays and examined with a M-5 Wild dissecting microscope. All species were identified and a running tally of their abundances was kept. The abundance of each species was recorded as a relative abundance index value (RAIV). The initial RAIV scale used was: rare (value of 1), 1-3 individuals; present (3), 4-10 individuals; common ($\frac{5}{2}$), 11-49 individuals; abundant ($\frac{7}{2}$) >50 individuals. The importance of using a RAIV scale such as this is that no more than 50 individuals of any species need to be counted. Colonial forms were given a value on the basis of the number of colonies present (as for most bryozoans), or as an estimate of solid substratum colonized (for example, with hydroids), following the methods of Boudouresque (1971).

Later it became apparent that our initial scale was unresponsive to situations where there were several species, all of whose abundances were greater than 50 individuals, and some with hundreds or thousands of individuals. Following the suggestion of Stephenson, et al. (1974), who used a cube-root transformation for their data, we decided upon a scale which was based on intervals of n^3 . However, rather than assigning an arbitrary value to this scale, we used as our RAIV the mid-points of each interval. Thus, the scale was (1^3) 1 individual, value of <u>1</u>; (2^3) 2-8 individuals, <u>5</u>; (3^3) 9-27 individuals, <u>18</u>; (4^3) 28-64 individuals, <u>46</u>; (5^3) 65-125 individuals, <u>95</u>; (6^3) 126-216 individuals, <u>171</u>; (7^3) >217 individuals, <u>280</u>. Using this scale, a maximum of 217 individuals had to be enumerated. Ten of the samples from Stations 2, 4, and 5 have been recounted to compare this scale with the initial one. The results of this analysis will be reported elsewhere. It should be noted here also that all dredge samples were counted in the sequence in which they were taken. Since we were interested in estimating the structure of an assemblage, it was our intent to determine the number of samples required to make this estimate. This is essentially a species-area curve problem, the statistical analysis of which is still developing, especially among plant ecologists.

On August 6, 1974 following the completion of the dredge sampling, 20 replicate grab samples were taken on each of the four bottom types using a 0.1 m^2 Petersen grab. The samples were washed over a 1 mm sieve and the residue was preserved in 10% buffered formalin. A sediment sample was taken from each grab. In the laboratory the samples were sorted, and the organisms identified to species and counted. The sediment samples were dry sieved and the silt-clay fraction was determined by pipette analysis (Folk, 1968).

RESULTS

A total of 146 species were collected at the four stations with the Petersen grab (Table VII-1). Nine phyla were represented. The largest group was the polychaetes with 58 species, arthropods were next with 43 species, and the molluscs were third with 22 species. From the dredge hauls 111 species were recorded from the same nine phyla that were present in the grab samples (Tables VII-1, VII-2). Forty-seven additional species were also identified from the dredge samples. The most notable additional increases in species were in the phyla Cnidaria, Ectoprocta, and Echinodermata which are normally epifaunal groups. The polychaetes and arthropods were once again the two largest groups represented. There were also larger numbers of molluscan species (31) in the dredge hauls than in the grab samples.

The analysis of the comparability of dredge and grab samples in each of the four substrata attempted to answer two questions: 1) What were the dominant species collected by the different sampling devices? 2) What was the community structure and how many grab or dredge samples were required to characterize that structure?

X

The dominant species were defined by a Biological Index Value of 0.5 (McCloskey, 1971). This index ranks species within a sample and sums the ranks across all the replicates, giving weight to occurrences over many samples, and lessening the effect of extreme dominance in a few samples. Rare species were considered to be those that had two occurrences or less and the label 'secondary species' was given to any species not in either of the other two categories.

The answer to the second question was evaluated by: 1) examining in which replicates species first occurred, 2) finding out how the abundance of dominant species varied throughout the 20 grab and dredge hauls, 3) examining the community to ascertain where the structure no longer changed with the addition of species in the succeeding replicate samples, 4) evaluating the patchiness of the communities by computer classification of the samples.

Station 4

The sediment had a size distribution that was very repeatable for all 20 replicate grabs. The composite histogram (Figure VII-5) indicated that the sediment at this station was a well-sorted, very find muddy sand (Folk, 1968). The majority of the material in these samples can be suspended and transported in the water column. Since Station 4 was near the crest of Old Bare Shoal, winnowing by wave action probably reduced the amount of mud found in these samples.

A total of 36 species was collected with the Petersen grab at Station 4. Three of the species were bryozoans, <u>Electra monostachys</u>, <u>Triticella elongata</u>, and <u>Alcyonidium polyoum</u>, and were not included in the quantitative analysis of the samples. The 20 grab samples collected a total of 651 individuals with a mean of 32.6 individuals and 10.7 species per sample (0.1 m²) (Table VII-3). Eight species had biological index values greater than 0.50 and thus were classified as dominant species. The most important of these was the bivalve, <u>Tellina agilis</u>, with an index value of 0.98. Over the 20 grab samples <u>T. agilis</u> averaged 10.7 individuals/0.1 m². <u>Glycera</u> <u>capitata</u> (index value of 0.87) was the second-most important species and averaged 4.1 individuals/0.1 m². <u>Scoloplos fragilis</u> (0.77), <u>Ampelisca verrilli</u> (0.78), <u>Glycera dibranchiata</u> (0.68), <u>Spiophanes</u> <u>bombyx</u> (0.60), <u>Mulinia lateralis</u> (0.55), and <u>Nemertea</u> sp. (0.51) were the other dominant species.

The cumulative number of species found in the 20 grab samples at Station 4 is given in Figure VII-6. Previously unrecorded species were accumulated up to the eighteenth grab samples. Fourteen grabs were taken before 90% of the species were obtained although 51% of the species were present in the first five grabs. The eight dominant species were all collected in the first two samples, seven in sample 1 and one in sample 2. The secondary species were added one at a time in grabs two through seven. The rare species were responsible for the slow accumulation of species after grab 7. At grab seven 66.7% of the total species had been collected, but only 42.1% of the rare species. The cumulative average number of individuals obtained as the replicate grabs are combined is also given in Figure VII-6. The average number of individuals, and thus the estimate of total numbers per m^2 , stabilized after nine grabs had been taken.

Trends in the cumulative average number of individuals of the four major species at Station 4 (Tellina agilis, Glycera capitata, <u>Scoloplos fragilis</u>, and <u>Ampelisca verrilli</u>) were examined (Figure VII-7). <u>Tellina agilis</u> showed a continual increase up to replicate 15 (11.2 individuals/0.1 m²) where the average density leveled off between 10.4 and 10.9 individuals per 0.1 m² for the last five replicate grabs. <u>Glycera capitata</u> showed only a small variation in the average number of individuals (5.0-3.9/0.1 m²) throughout the entire complement of replicate samples. From replicates 10 to 20 the variation in density was even smaller (4.2-3.9/0.1 m²). The other polychaete species, <u>S. fragilis</u>, increased from replicate grab 1 to 7 (5.1/0.1 m²) and then gradually the average number of

individuals decreased over the remaining samples to 3.4/0.1 m². <u>Ampelisca verrilli</u> did not change substantially over all the replicate samples.

 X_{i}^{μ}

In order to establish how many grabs were required to accurately estimate the structure of the assemblage, the cumulative proportions of the dominant species were graphed against the replicate samples (Figure VII-8). At grab 1 the dominants, T. agilis, G. capitata, S. fragilis, and A. verrilli represented 77.8% of the total fauna. By grab 7 this proportion had decreased to 65.5% of the fauna which was only 2.0% higher than the proportion recorded in grab 20. The total variation between grab 7 and grab 20 was 2.5%. The individual dominants showed the same trends over the 20 replicates. Tellina agilis decreased from grab 1 (44.4%) to grab 9 (27.3%) and then increased very gradually to 32.7%. Glycera capitata decreased from 22.2% (grab 1) to 11.8% (grab 13) before increasing slightly to 12.4% (grab 20). Scoloplos fragilis achieved its maximum proportion to 17.7% (grab 6) and then decreased over the remaining grabs to 10.3%. Ampelisca verrilli varied somewhat initially, then stabilized between 6.0-6.4% before increasing over the last five replicates to 8.1%. The other 29 species of invertebrates accounted for 36.5% of the fauna at the end of 20 replicate samples.

Fifty-three species (17 more than the grabs) were collected in the 20 replicated dredge hauls at Station 4. The dredge hauls had a mean of 16.0 species and a mean relative abundance value for each sample of 36.8. Eight of the species were classified as dominant species, 19 secondary, and 26 rare. The most important species was again <u>Tellina agilis</u> with a biological index value of 0.96 (Table VII-3). The second-most important species collected by the dredge was <u>Neomysis americana</u> (0.92) which was considered a rare species in the grab samples. <u>Neomysis americana</u> is a vagile organism and probably avoided the grab. Two other species, the polychaetes <u>Asabellides oculatus</u> (0.84) and the bivalve <u>Ensis directus</u> (0.61), which also were not dominants in the grab samples. The remaining four species, <u>Mulinia lateralis</u> (0.88), <u>Ampelisca verrilli</u> (0.83), <u>Glycera capitata</u> (0.71), and <u>Scoloplos fragilis</u> (0.62) occurred in the dredge hauls in a dominance order different from that of the grab samples (Table VII-3).

Figure VII-9 shows the addition of species by replicate dredge haul. Sixty-six percent of all the species are present by the seventh dredge haul and 90% by dredge number 13. Additional species were obtained until dredge number 17. The eight dominant species were taken in the first two hauls which were similar to the grabs. The 19 secondary species occurred in dredge hauls 1 to 9 while the last of the 26 rare species was obtained in dredge 17. A comparison of the average number of species per replicate for both the grabs and dredges indicates that the dredge always sampled a greater number of species (Figure VII-10).

The cumulative proportions (obtained from relative abundance value scores) of the dominant species were also examined over the 20 dredge hauls. The proportion of the total sample consisting of dominant species at dredge 2 was only 0.2% less than the value of 60.4% recorded in replicate haul 20 (Figure VII-11). The estimate at dredge replicate two was more accurate and occurred earlier than the estimate made at grab replicate 7. The proportions of four of the dominant species decreased over the dredge replicates (<u>A. oculatus</u>, <u>G. capitata</u>, <u>M. lateralis</u>, <u>A. verrilli</u>) while <u>N. americana</u> increased and <u>T. agilis</u> remained virtually the same.

A classification program was employed to ascertain how similar were the replicate grabs and dredge hauls. The clustering strategy used group average sorting and the similarity measure was Czekanowski's coefficient (See Appendix I). All of the grabs clustered together at a similarity value of 0.419 (Figure VII-12). None of the initial clusters were formed between succeeding grab samples. The classification program was then used to compute the similarity between species over all samples. Two species, <u>Spio setosa</u> and <u>Heteromastus filiformis</u>, clustered at 1.00 indicating that they occurred with nearly

equal abundance in the same samples; however, the similarity level was 0.02 before all the species became one group. The eight dominant species did not cluster into one group until the 0.55 similarity level. The addition of new rare species until replicate 18 tended to extend the species clusters to very low similarity values.

The dendrogram for the Station 4 dredge hauls suggested four groupings (Figure VII-13): replicates 1, 6, 3, 20, 11, 4, 12, and 16; replicates 2, 10, 15, and 14; replicates 5, 18, 13, and 17; and replicates 7, 8, and 9. The latter was the only instance where three successive samples clustered together; however, the similarity value of the grouping (0.55) was not particularly high. All the dredge replicates became one group at a level (0.50) somewhat higher than for the grabs. The tendency toward patchiness was still present.

 \mathbf{N}_{i}^{0}

Station 5

The sediment at Station 5 which was located in 9 m of water on the edge of Old Bare Shoal was a poorly sorted, muddy, very fine sand. These sediments appeared similar to Station 4, but on closer examination there were several significant differences in the skewness, sorting, and modality demonstrated by the grain size distribution (Figure VII-14). The grain size distribution was strongly fine skewed. While both Stations 4 and 5 had pronounced single modes in the very fine sand range, closer inspection revealed that Station 5 actually had two modes. Although similar, one was between +3.0 ϕ and +3.25 ϕ and the other was between +3.5 ϕ and +3.75 ϕ .

Forty species were collected with the grab at Station 5. There were four colonial species, <u>Membranipora tenuis</u>, <u>Electra monostachys</u>, <u>Alcyonidium polyoum</u>, and <u>Alcyonidium sp.</u>, which were not included in the numerical analyses. The 20 grabs produced 74,019 individuals for a mean of 3,701 per sample (0.1 m²). Each sample contained an average of 6.9 species. Only three species, <u>Nucula proxima</u>, <u>Tellina agilis</u>, and <u>Ensis directus</u>, were classified as dominants (Table VII-4). Ten species were secondary and 26 rare. <u>Nucula proxima</u> had a

biological index value of 1.0 (the maximum possible value). This species totally dominated the fauna and had densities up to 14,233/ 0.1 m^2 in the samples examined. The average number of <u>N. proxima</u> collected in each grab was 3649.1 individuals/0.1 m². <u>Tellina</u> agilis was the second-most dominant species with an index of 0.97, and <u>E. directus</u>, a third bivalve, had an index of 0.83.

Species appeared in samples up to grab 19 although several grabs did not contain previously unrecorded species (Figure VII-15). All dominant species were present in the initial grab. The seven secondary species all occurred by grab 5 while the 26 rare species occurred intermittently from the first to the nineteenth grab (Figure VII-15). Fifty percent of the species were recorded by the fifth grab and 88.9% by the fourteenth sample.

The cumulative average number of individuals by replicate sample is also given in Figure VII-15. The highest cumulative mean value of 4,038 was recorded at grab 17 which had an unusually large number of individuals of <u>N. proxima</u>. The graph shows an increase of approximately 3,000 individuals per sample from grab 5 to grab 17. To obtain an estimate for Station 5 within 75% of the maximum density required 16 grab samples.

The cumulative average abundance of the three dominant species over the 20 grab samples is given in Figure VII-16. The trend for <u>N. proxima</u> almost paralleled that for the cumulative average total number of individuals for each sample (Figure VII-15). There was a consistent increase in the mean density value for <u>N. proxima</u> from sample 5 to 17. <u>Nucula proxima</u> occupied 94% of the total fauna in grab 1 and 98.5% after 20 replicates. <u>Tellina agilis</u> averaged from 37 to 47 individuals per grab over the 20 replicate samples. The average number of individuals of <u>T. agilis</u> was 42.2/ 0.1 m². <u>Ensis directus</u> varied by only one individual/0.1 m² sample in 20 replicates and over the last 19 samples the change was less than 0.75. The mean value for 20 samples was 2.9/0.1 m².

The dredge samples at Station 5 collected 43 species with an average of 11.7 species per dredge haul. The average relative abundance value for each species in the dredge samples was 33.6. Eight species were dominants, ten were secondary, and 25 rare. <u>Nucula proxima</u> was the dominant organism with an index value of 1.0. <u>Tellina agilis</u> had a value of 0.90, and <u>Ensis directus</u> was 0.73, both lower values than for the grab samples. Five other species were classified as dominants in the dredge hauls but were not significant in the grabs. <u>Crangon septemspinosa</u> (0.88) and <u>Neomysis americana</u> (0.79) are both vagile arthropods that may easily be missed by the grab. <u>Nephtys incisa</u> (0.67) was the only important species of polychaete in the grab or dredge hauls. It was never present in excessively high numbers (RAIV of 3 or less), but was present in 15 of the 20 samples. The remaining two dominants were the bivalves, <u>Mulinia</u> lateralis (0.56) and Yoldia limatula (0.55).

All eight dominant species occurred in the first dredge replicate (Figure VII-17). The ten secondary species first appeared in replicates 1 through 4 and the rare species in various replicates. Ninety percent of the species were present in the first seven grabs. Only rare species were recorded in the last 16 grabs.

The cumulative average numbers of species in the grabs and dredges showed a gradual decrease in both sampling devices from replicates 5 to 20 (Figure VII-18). The graphs for replicates 15-20 were almost parallel with the dredges having approximately 5 species more than the grabs.

The proportions of the dominant species in each of the replicates were computed by taking the RAIV number as a percentage of the total RAIV for the sample. The cumulative proportion for the dominants after 20 replicate dredge hauls was 72.7% (Figure VII-19). The proportions were fairly stable after dredge 8 with the exceptions of <u>N. proxima and T. agilis</u> which increased together approximately 5% over the remaining 13 replicates. The dominant species exhibited the following RAIV proportions: <u>N. proxima</u> 20.5%, <u>T. agilis</u> 13.1%, <u>C. septemspinosa</u> 11.2%, <u>N. americana</u> 10.0%, <u>E. directus</u> 5.6%, <u>N. incisa</u> 4.0%, <u>M. lateralis</u> 4.5%, and <u>Y. limatula</u> 3.7%. The remainder of the fauna accounted for 27.3% of the total relative abundance values.

Cluster analyses of the grab replicates at Station 5 indicated that all of the samples became one group at a similarity level of 0.621 (Figure VII-20). Three distinct groupings were present with two samples (17 and 19) not being a part of any other group. The first group, which contained replicates 4 and 5, had reduced numbers of N. proxima (437 and 445/0.1 m^2 , respectively), and had Nephtys picta, Glycera americana, Oxyurostylis smithi, Mulinia lateralis, and the three dominant species in common. A second grouping, replicates 1, 3, and 9 had 926, 991, and 1,689 N. proxima respectively. The third and largest group had three very high level clusters between replicates 6 and 11 (0.94), 18 and 20 (0.94), and 7 and 8 (0.93). In general, the clusters were very dependent on the numbers of the dominant N. proxima for the formation of the groups. This was strongly evident in the analysis for species groups. Nucula proxima and T. agilis were in their own cluster and were not linked with any other species until their linkage with the Ensis group (at 0.09) which had formed at 0.40 and consisted of Yoldia limatula, Nephtys picta, Nemertea sp., and Mulinia lateralis.

The dredge haul dendrogram (Figure VII-21) indicated the highest similarity between two replicates was found with dredge samples 15 and 16 (0.851). Three small groupings of stations were identified: group 1--replicates 8, 13, 6, 17, and 4; group 2--replicates 3, 11, 10, 15, 16, and 20; group 3--replicates 2, 3, and 4. The groupings contain similar RAIV values for the top two dominants. The Groups 1-3 were divided more on the basis of number of species present in the replicates. Group 1 replicates all had 10-13 species; Group 2 replicates had the lowest number of species, 6-10; and Group 3 had the highest number of species, 16-21. The Groups 3 clusters were generally lower in similarity than the other groups, which may be a function of higher numbers of rare species in the replicate samples.

Station 3

X

The sediment at Station 3 had a complex size distribution (Figure VII-22). There are three major particle size modes which contribute to the confusion of values. The primary mode between 2.5ϕ and 3.0ϕ dominated the samples. This sand mode matched the mode found in the samples from Lower Middle and Brown Shoals in Delaware Bay. The second mode was in the gravel size range between -3.0ϕ and -3.5ϕ . Its presence is responsible for the negative (coarse) skewness of most of the samples. The third mode, in the silt range, occurred between 5.0ϕ and 5.5ϕ . The grain size represented by this mode was probably indicative of the predominant size of the suspended material.

Eighty-six species were collected in the 20 replicate grab samples at Station 3. Nine species were colonial (Appendix Table AVII-1). The average number of species per grab was 25.0; the total number of individuals was 6,660, and the average 333.0 per sample (Table VII-5). Twelve species were dominant, 33 secondary, and 31 rare. This station was the first at which the number of rare species did not exceed the numbers of secondary species in the grab samples.

<u>Mytilus edulis</u> was the dominant species with an index of 0.95 and an average density of 245.5/0.1 m². <u>Mediomastus ambiseta</u> was the next most dominant species (0.90) with an average of 13.5 individuals/0.1 m² and <u>Lysianopsis alba</u> was third (0.85) with 10.9 individuals/0.1 m².

Previously unrecorded species were added over 19 grab samples with 50.0% of the species being accumulated by grab 3 and 91.0% by grab 15 (Figure VII-23). The 12 dominant species occurred in the first two grab samples while it required 14 samples to account for all secondary species. It should be noted that there was a larger number of both dominant and secondary species at this station than at either of the previous strictly infaunal stations. The combination of sediment and the epifaunal nature of the blue mussel (Mytilus edulis) provided many additional niches for a greater number of species and individuals.

The cumulative average of the number of individuals per grab is given in Figure VII-23. There was a tremendous increase from replicate 1 (32 individuals/sample) to replicate 3 (428 individuals/sample). The average value for the whole 20 replicates was 333.0 which was only 71.2% of the highest value and 77.8% of the first peak at replicate 3. The 12 dominant species contributed 93.4% and <u>Mytilus edulis</u> 73.8% of the individuals over the 20 replicates.

The abundances of the five most dominant species were cumulatively averaged over the 20 replicate samples (Figure VII-24). <u>Mytilus edulis</u> was not found in replicate 1 but by replicate 3 the species had an average of 353.7 individuals/grab. Another peak occurred at grab 11 when 706 individuals were added. From grab 11 to grab 20 there was a decrease to the final mean value of 245.6/0.1 m². All of the other four species varied considerably less over the last nine samples with three of the species, <u>L. alba</u>, <u>H. extenuata</u>, and Xanthidae sp., changing by less than one individual.

The cumulative proportion of the five most dominant species showed a large increase from the first (25.0% of the fauna) to the second replicate (84.9%) primarily because of the addition of <u>M. edulis</u> (Figure VII-25). By replicate 3 the top five dominants achieved their highest proportion, 92.2%. The dominance structure varied only 6.4% from grabs 2 through 20.

The dredge hauls at Station 3 collected 89 species with an average of 33.0 species per haul. The average total RAIV for the 20 hauls was 83.9. A total of 19 species were classified as dominants (Table VII-5), 38 were secondary, and 32 were rare. Only 6 of the 19 dominants from the dredge hauls were similar to those in the grabs. Five colonial species, <u>Alcyonidium polyoum</u>, <u>Schizoporella errata</u>, <u>Electra</u> <u>monostachys</u>, <u>Membranipora tenuis</u>, and <u>Conopeum tenuissimum</u> were dominant dredge species, but could not be quantified using normal

1
abundance methods. <u>Neomysis americana</u> and <u>Crangon septemspinosa</u>, both vagile forms, also were not dominant in the grab samples.

All 89 species were not recorded until the 19th dredge haul (Figure VII-26). Fifty-five percent of the species were identified by dredge 2 and 91% by dredge 15. The 19 dominant species were present in hauls 1 and 2. Most (94.7%) secondary species were obtained by dredge 7, but the remaining 2 species were not found until replicates 13 and 14.

×.

A comparison of the average number of species per sample over the 20 replicates indicated that the grabs again did not sample as many species as did the dredge hauls (Figure VII-27). As can be seen from the list of dominants (Table VII-5), colonial species are a significant part of the fauna at Station 3 and account for much of this difference.

The cumulative proportions of the six most dominant species from the dredge samples presented a considerably different picture of the community from that obtained with the grabs. The dominance of <u>M. edulis</u> was reduced by the relative abundance system and the other five species had correspondingly larger proportions. The initial dredge haul was a good estimate of the proportions after accumulating 20 dredge hauls. The dominant species proportions did not change significantly since <u>M. edulis</u> increased only slightly more than 1% over the 20 dredges and <u>M. ambiseta</u> and <u>P. eximius</u> decreased slightly.

Cluster analysis of the grabs at Station 3 showed three fairly distinct groupings (Figure VII-28). The first group contained 14 of the 20 replicates, each of which consisted of the dominants and high numbers of <u>M. edulis</u>. Three additional samples, 13, 15, and 16, became part of the group at a lower similarity level. Replicate 16 possessed no <u>M. ambiseta</u> or <u>A. oculatus</u> and replicate 15 had only 15 <u>M. edulis</u> with no <u>N. succinea</u>.

Three small groups were evident in the dredge cluster dendrogram (Figure VII-29). Samples 13, 20, 3, and 9 made up Group 1. Group 2 contained replicates 4, 5, 6, 7, 8, and Group 3 replicates 15, 16, 14, 17, and 11. The similarity value of the entire cluster was substantially higher than the grab replicates for this station.

Station 9

This station was located in an area containing large numbers of calcareous tubes constructed by the polychaete, <u>Hydroides dianthus</u>. The assemblage was not a continuous structure, but rather separate clumps spread over an approximately 1 km^2 area. The sediment regime discussed below was found around, under, and in between the calcareous worm tubes. Numerous other animals, i.e. <u>M. edulis</u>, <u>P. ligni</u>, live attached to the surface of these tubes. Due to preservation problems only 19 grabs were processed from this station.

The sediment at Station 9 was a very poorly sorted, very fine muddy sand. There were traces of coarse sand in some of the samples which came from a stratum underlying the serpulids. While it was difficult to determine the effects that the animals living in the assemblage have on altering the sediment size distribution, it was important to note that medium and coarse sands were generally absent from the samples.

Eighty-six species (12 colonial, see Appendix Table AVII-11) were collected by the Petersen grab in the serpulid assemblage. The 20 replicate grabs collected 9,608 individuals, a mean of 480.4 individuals per sample. An average of 33 species were found in each grab. Twenty-two species were classified as dominant, 33 as secondary, and 31 as rare (Table VII-6).

<u>Asabellides oculatus</u>, a deposit-feeding polychaete, had the highest biological index value (0.94) and also the highest average number of individuals (24.7). The following two dominants, <u>Medio-</u> <u>mastus ambiseta</u> (0.93) and <u>Nucula proxima</u> (0.91), were also infaunal species. Of the five next most dominant species, two more, <u>Hetero-mastus filiformis</u> (0.88) and <u>Streblospio benedicti</u> (0.85), were infaunal, while three others, <u>Unciola serrata</u> (0.90), Xanthidae sp. (0.85), <u>Corophium simile</u> (0.81), lived on, between, or in the <u>Hydroides</u> tube structure. Ten of the remaining 14 dominant species were basically epifaunal, while four were infaunal.

All the dominant species were recorded in the first three grabs (Figure VII-30), 18 were in grab 1, 3 in grab 2, and 1 in grab 3. The 33 secondary species were recorded by grab 8 and the rare species by grab 18. The initial three grabs accounted for 60.5% of the total species and 12 grabs accounted for 90.7%. As in all the preceding substrates, the rare species required a large number of grabs before they were all accumulated.

X

The change in average number of individuals per grab as replicates are accumulated is given in Figure VII-30. The first grab contained 465 individuals, 96.8% of the cumulative average at replicate 20, but only 82.7% of the mean value (562/0.1 m²) at grab 14. The mean value at grab 8 (491/0.1 m²) was 87.3% and at grab 11 (501/ 0.1 m^2) 89.1% of the maximum. Both of these average values exceeded the final average value at grab 20 of 480/0.1 m².

The change in average number of individuals over the 20 replicates for the six most dominant species is given in Figure VII-31. Three of the species, Xanthidae sp., <u>M. ambiseta</u>, and <u>C. simile</u>, increased in average abundance over the first 16 replicates before declining through grabs 17-19. The average number of <u>Asabellides</u> <u>oculatus</u> stabilized by grab 7 and then decreased slightly over the remaining samples. <u>Hydroides dianthus</u> numbers varied considerably with a high peak at grab 1 of 171 individuals/0.1 m² followed by a sharp decline to grab 10 (44 individuals/0.1 m²). This change, followed by another small increase in numbers through grab 14 suggests that the distribution of this species is very heterogeneous. The variation in numbers of individuals of <u>Unciola serrata</u> was erratic through the first 11 grabs and exhibited a gradual decline from

grabs 16 to 19. Unciola serrata and Corophium simile found in the vacated tubes of <u>Hydroides</u>, increased their abundances in the grabs where <u>H. dianthus</u> decreased. The infaunal polychaete, <u>M. ambiseta</u>, which lived in the substrate surrounding the <u>Hydroides</u> tubes, had its greatest numbers of individuals where <u>H. dianthus</u> was absent or markedly reduced. This was a further indication of the patchiness of the tubes.

The species which comprised the largest proportion of the fauna over the 20 grabs was <u>U. serrata</u> (15.5%), while <u>H. dianthus</u> comprised 12.1% and <u>C. simile</u> 10.6% (Figure VII-32). The six dominants comprised an average of 73.2% of the fauna in the first two grabs, but only 62.9% after 20 samples. The variation between grab 3 and grab 19 was only 4.1%, indicating grab 3 may be a good estimate of the community structure. Most of the changes were probably due to heterogeneity in the distribution of these species.

Of the ninety-one species collected with the dredge at Station 9, 27 were dominants, 39 were rare, and 25 were secondary. The average number of species per haul was 34.7 and the average RAIV for each sample was a very high 125.7 (Table VII-6). The high RAIV was a function primarily of the large number of dominant species and secondarily of the high species richness. Station 3 had a similar average number of species per haul (Table VII-5), but the average RAIV for each sample was 41 points lower.

Thirteen of the 27 species classified as dominant in the dredge hauls were also dominant in the grab samples. Four dominant species from the dredge hauls (<u>Cliona celata</u>, <u>Microciona prolifera</u>, <u>Conopeum</u> <u>tenuissimum</u>, <u>Alcyonidium polyoum</u>) were not considered in the grab analysis because they were colonial. A number of other species, <u>Polydora ligni</u>, Oligochaete B, <u>Odostomia dianthophila</u>, were very small and may have been overlooked during the grab sorting process. There was also in the dredge samples an increased number of epifaunal species in the role of dominants with some of the infaunal species,

÷.

notably <u>Nucula proxima</u>, <u>Mercenaria mercenaria</u>, <u>Petricola pholadi-</u> <u>formis</u>, and <u>Glycinde solitaria</u>, being absent. The first two dominants on the grab list, <u>Asabellides oculatus</u> and <u>Mediomastus ambiseta</u>, were 23 and 14 respectively on the dredge list.

Initial species occurrences were recorded in all dredge samples except 14 (Figure VII-33). Fifty-three percent of the species were present in the first two dredge samples, but 16 hauls were required to obtain 90% of the total species. The 27 dominant species were recorded in hauls 1 and 2 while the secondary species were obtained in dredges 1-5, 7, 8, and 15.

. .

The average number of species per sample for both the grabs and dredge hauls indicated for the first time that the grabs exceeded the dredge hauls in species per replicate. The dredge samples initially exceeded the grabs, but there was an increase in species per grab sample from replicate 4 to 9 (Figure VII-34). This rise is coincident with the increased abundances of the infaunal species in the grabs and the decrease in numbers in <u>H. dianthus</u> (Figure VII-31). The final average number of species per sample was 33.3 for the 19 grabs and 34.7 for the 20 dredge hauls.

The proportions of the six most dominant species varied by less than 2% over the 20 dredge samples. <u>Hydroides dianthus</u> comprised 5.6% of the fauna after 20 samples as did <u>U. serrata</u> and <u>C. simile</u>. <u>M. edulis</u> made up 5.45% of the fauna; <u>N. succinea</u>, 5.0%; <u>E. sanguinea</u>, 5.3%; and <u>S. vulgaris</u>, 5.3%. The total percentage of the fauna occupied by the dominant species was therefore rather stable.

Cluster analysis of the replicate grabs for Station 9 produced one large and one small group of samples (Figure VII-35). The large group can be subdivided utilizing the distribution of some of the dominant species. Replicates 14, 15, 9, 10, 12, 6, and 13 formed a subgroup which was basically epifaunal in nature. Replicates 8, 17, 16, and 18 had reduced numbers of one or more of the major dominants along with high numbers of <u>N. proxima</u> or <u>M. ambiseta</u> and S. benedicti.

This group also was less epifaunal. A small group was formed by replicates 11, 19, and 5 which all lacked or had less than five <u>H.</u> <u>dianthus</u> individuals. Replicate 20 had no epifaunal dominants and had the lowest species richness.

The species cluster helped to substantiate the patchiness observed in the rest of the analysis of Station 9. Three small groups were formed, two epifaunal and one infaunal. The infaunal grouping was composed initially of N. proxima, A. oculatus, and later P. eximius, S. benedicti, M. ambiseta, G. solitaria, and H. filiformis (at a similarity level of 0.79). The first epifaunal group was small, containing only H. dianthus, U. serrata, C. simile, and Xanthidae sp. The first epifaunal group joined the infaunal group at 0.741 similarity. The second epifaunal group consisted of M. edulis, M. sanguinea, S. vulgaris, N. succinea, N. texana sayi, and E. sanguinea joined the other subgroups at 0.67. At that point 19 of the 22 dominant species were present. Only T. agilis, M. mercenaria, and P. pholadiformis were absent. They were added at a similarity value of 0.47. There were three groups which had separate ecological requirements. These groups were probably detected because the grab simultaneously sampled both epifaunal and infaunal groups.

The dendrograms produced for the dredge haul replicates (Figure VII-36) were far more compact, with the lowest similarity being 0.69. The differences in the groupings were more dependent on small variations among the epifaunal species than with epifaunal-infaunal differences. It was pointed out earlier that the most abundant infaunal dominant was fourteenth on the dominance list for the dredge hauls. The dredge hauls have apparently reduced the patchiness of distributions and emphasized the epifaunal organism. Part of the response must also be a function of the scale used. Since the scale varies only from 1 to 7, any differences are not going to be very great.

Cost Analysis

One proposed result of this study was to determine whether the total cost for handling dredge samples was any lower than for grab samples. Cost estimates depend on many variables, such as boat time (which itself is dependent on number of samples, distance between sampling stations, and depth of water, weather conditions) and salary scales. Consequently, we decided to focus on the number of hours involved. Since the 20 grab or dredge samples per station were taken in close proximity, the hours of boat time for obtaining either type of sample did not differ substantially. Major differences were noted in the laboratory, however.

Altogether 256 man-hours were spent sorting and 288 man-hours identifying (a total of 544 man-hours) the 80 grab samples, an average of almost 7 man-hours/sample. In processing the dredge samples, there were three advantages: the taxa were, by this time, quite familiar; the sorting and identifying was done simultaneously by the same person; and not all individuals had to be counted. Thus, only 218 man-hours were spent on the 80 dredge samples, an average of 2.7 man-hours/ sample. In using our new scale, which requires counting more individuals, the average time increased to 4.5 man-hours/sample. It must be pointed out here, too, that because of the relatively depauperate condition of Delaware Bay's benthic fauna, the actual number of hours are probably low. However, we submit that the proportion of time spent processing dredge versus grab samples will remain the same regardless of faunal densities. Because of this substantial difference in process time between grab and dredge samples and the degree of information obtained from dredge samples, with refinement this method may have promise as an economical and valid tool to apply to benthic pollution problems.

DISCUSSION

Moore (1974) stated that there appears to be no reason why repetitive qualitative surveys over a period of time cannot be used to satisfactorily survey a given area. The data analyses would provide information on assemblage shifts and local variability, and would not be subject to quantitative fluctuations. In order to substantiate Moore's claim, one must be able to find, using qualitative and quantitative methods, a high correspondence between the numbers and types of species collected, the proportions of the dominant species, and estimates of the overall community structure.

At all of the sampling stations (Station 3, polymodal; Station 4, sandy shoal; Station 5, muddy; Station 9, calcareous) a greater number of species was collected with the dredge than with the grab (Tables VII-3, 4, 5, 6). However, the additional species collected by the dredge were 5 or less except at Station 4 where the difference was 17. The average number of species per sample was also always greater in dredge samples with the difference being less than 9 species and the largest difference occurring at Station 3.

For each set of replicates at a station the number of dominant species was always at least equal or greater in the dredge samples. At Station 5 there were three dominant species from the grabs and eight from the dredges. Similarly 12 and 22 dominants were found in the grab samples from Station 3 and Station 9, respectively, while 19 and 27 dominants, respectively, were collected from the dredge hauls. At Station 4 the same number of dominant species were present in each replicate set, but there were replacement and reordering differences. The increased number of dominants can be attributed in part to the area sampled with the dredge relative to the grab and also to the use of McCloskey's index to define the dominant species. McCloskey's (1971) Biological Index substantially increases the relative importance of a species which occurs in low numbers over many samples. When the dredge was pulled over a given time period, any number of species patches of varying size could have

been crossed. The greater the number of species patches the higher would be a given biological index value for a rare or secondary species. Since the maximum value of 1.0 cannot be exceeded, the effect was to push more species into higher classifications (dominants and secondaries).

Another reason for the increase in the number of species was the inclusion of colonial species in the dredge sample evaluations. One of the advantages of the RAIV method was that it provides a way to evaluate the relative contribution of colonial groups to the structure of the community. These groups were routinely evaluated in terms of biomass; however, other spatial estimates were difficult to incorporate into quantitative analysis.

×.

A very important aspect of comparing grab samples and dredge samples was the reordering of species and the establishment of formerly rare species high within the dominance structure. The samples at Station 9 showed significant reordering of species. In the grab samples, three species, all infaunal deposit feeders, Asabellides oculatus, Mediomastus ambiseta, and Nucula proxima, were the most dominant species with Heteromastus filiformis, Streblospio benedicti, and Glycinde solitaria also important. The dredge hauls ranked only epifaunal forms as the 12 most dominant species with M. ambiseta being fourteenth and A. oculatus twenty-third. A smaller, but less significant, reordering occurred in Station 4 with Glycera capitata and Scoloplos fragilis being placed lower and Mulinia lateralis higher. This reordering of species can alter the investigator's concept of the community to the point of emphasizing different trophic groups and suggesting competition for a different suite of resources.

There was a similar pattern of the previously unrecorded occurrence of species as the 20 replicate grab and dredge samples were accumulated. Between 13 and 16 samples were required to obtain 90% of the total species present at all stations except Station 5 where only 7 dredge hauls were needed. All the dominant species occurred in the first two grab and dredge samples except at Station 9 where three dredge hauls were required to obtain all 27 dominants. Lie (1968) found in Puget Sound that 75 to 80% of the total species collected in ten samples were present in five samples. He further indicated that the additional species occurring in the last sample comprised about 3% of the total species found in the ten samples. Our results were similar with only rare species appearing after replicate 10 in both dredge and grab samples. All five secondary species recorded after replicate 10 were in substrata with abundant epifaunal microhabitats. Our data also were similar to those of Lie (1968) in having the dominant species all present in the initial three samples.

An examination of the dominant species proportions indicated that each substratum needed to be treated individually. The samples from the sandy shoal sediments at Station 4 indicated that the dredge gave a much earlier (replicate 2) and more accurate estimation of the distribution of individuals among the species observed at replicate 20 than did the grab samples (replicate 7). Of the species common to both sampling devices, the proportions of the dominant species in the dredge samples were smaller than in quantitative samples. In the other sediments there was an even greater exaggeration of this problem. The grab and dredge samples at Station 5 and Station 3 where overwhelmingly dominant species were present (N. proxima, Station 5, and M. edulis, Station 3) were the least compatible and of no value for comparisons. The scaling process (RAIV) used for the dredge samples had reduced the domination by one species considerably and presented the other dominant species as relative codominants. As noted in the Introduction, we have devised a new scale which should be more responsive to larger differences at the "abundant" end of the range. The results of analyses performed with the new scale will be reported elsewhere.

The use of cluster analysis of samples and species to evaluate patchiness and species groupings indicated that grab samples sampled small groups of species associated with particular substratum

characteristics. The grab samples of Station 9 best exemplified this phenomenon with three species groups, two epifaunal and one infaunal, forming separately and then combining at a similarity of 0.67. At that point 19 of the 22 dominant species were present. The dominant species at Station 4 clustered at 0.55 from two groups (Group I--Nemertea sp., Mulinia lateralis; Group 2--Glycera capitata, G. dibranchiata, T. agilis, and Ampelisca verrilli). The smaller groups of species such as Heteromastus filiformis and Spio setosa which clustered at high similarity levels (1.0) were rare species and joined the cluster formed by the dominant species at low similarity values. In the muddy sand the two major species, N. proxima and T. agilis, formed a species group that was separate from the other species. Ensis directus, the other dominant, was the nucleus for a group containing many of the rare and secondary species. Not until level 0.09 similarity did these groups cluster together.

The clusters formed from the dredge samples joined at higher similarity levels in all cases, an indication that the dredge reduced the patchiness and/or that the closeness of the scale values did not allow major patches to be discerned. The dredge replicate sample groups were generally more dependent on differences in species proportions as opposed to the presence or absence of important species.

Moore (1974) stated that three factors contribute to efficiency of the qualitative approach: 1) faunal homogeneity, 2) the number of species, and 3) resources (time, manpower, and money) saved. Our work immediately points to the amount of time and manpower saved using qualitative methods. In a short-term effort such as this approximately 300 man-hours were saved using the dredge and relative abundance methods. This saving could be increased markedly once the RAIV scale is adjusted so that the faunal probabilities are more accurately represented, and thus fewer dredge samples would be required. Moore (1974) believed that a species complement \geq 30

would provide enough information for a good analysis without sacrificing content since the relative information gained from quantitative data probably varies inversely with the species richness. Moore also found that qualitative data will detect differences in homogeneous faunal groups, but we have demonstrated that its applicability in heterogeneous situations may also be appropriate depending on the degree of resolution required.

Our results have shown that at "coarse" levels of community analysis, dredge data will give an adequate picture of an assemblage regardless of substratum. These assemblages were distinct enough that comparison of the fauna would allow a reasonable differentiation. The work done by Field (1970) using a scale similar to ours indicated that approximations of earlier work in False Bay, South Africa, could be achieved by means of a dredge and relative abundance data. The question that arises then is how much data is lost dealing with community structure when dredge data is used. Some pollution studies (Maurer, et al., 1974; Watling, et al., 1973) indicate that shifts in community structure and changes in dominance can be quite small. It is our impression that more rigorous statistical methods are needed to establish the point at which the level of information no longer changes with the addition of more samples. Further evaluation of new methods of scaling is also necessary in order to better fit the dredge data to the probability curves for the quantitative samples. Refinement of these methods will add clarity to the evaluation of community structure and shifts that may be occurring in that structure.

- Barnard, J.L., and G. Jones, 1960. Techniques in a large-scale survey of marine benthic biology. <u>In</u>: Waste Disposal in the Marine Environment (Ed. C.A. Pearson), Pergamon, N.Y., pp. 413-447.
- Boudouresque, C.F., 1971. Methodes d'etude qualitative et quantitative du benthos (en particulier du phytobenthos). Tethys <u>3</u>: 79-104.

 $\mathcal{X}_{\mathcal{S}}$

- Council on Environmental Quality, 1974. Environmental Quality. U.S. Govt. Printing Office, 600 pp.
- Cowell, E.B. (Ed.), 1971. The ecological effects of oil pollution on littoral communities: proceedings of a symposium. Institute of Petroleum, London, 250 pp.
- Fager, E.W., 1972. Diversity: a sampling study. Amer. Nat. <u>106</u>: 293-310.
- Fenchel, T., 1969. The ecology of marine microbenthos. IV. Ophelia $\underline{6}$: 1-182.
- Field, J.G., 1970. The use of numerical methods to determine benthic distribution patterns from dredgings in False Bay. Trans. R. Soc. S. Africa 39 (2): 183-200.
- Filice, F.P., 1959. The effects of wastes on the distribution of bottom invertebrates in the San Francisco Bay estuary. Wasmann J. Biol. 17: 1-17.
- Greg-Smith, P., 1971. Analysis of vegetation data: the users viewpoint. <u>In</u>: Statistical Ecology, Vol. 3, edited by G.P. Patil, E.C. Pielou, and W.E. Waters, Pennsylvania State University Press. Pennsylvania, U.S.A. pp. 139-146.

- Hanks, R.W., 1964. A benthic community in the Sheepscot River estuary, Maine. Fish. Bull. 63: 343-353.
- Hughes, R.N., and M.L.H. Thomas, 1971. The classification and ordination of shallow-water benthic samples from Prince Edward Island, Canada. J. exp. mar. Biol. Ecol. 7: 1-39.
- Johnson, R.G., 1970. Variations in diversity within benthic marine communities. Amer. Nat. 104: 285-300.
- Lie, U., 1968. A quantitative study of benthic infauna in Puget Sound, Washington, U.S.A. in 1963-64. Fisker idir Skr Ser Havunders <u>14</u>: 229-556.
- Lie, U., and J.C. Kelley, 1970. Benthic infauna communities off the coast of Washington and in Puget Sound: identification and distribution of the communities. J. Fish. Res. Bd. Canada 27: 621-651.
- McCloskey, L.R., 1970. The dynamics of the community associated with a scleractian coral. Int. Rev. ges. Hydrobiol. 55: 13-81.

Moore, P.G., 1971. Ecological survey strategy. Mar. Pollut. Bull. 2: 37-39.

- Moore, P.G., 1974. The kelp fauna of northeast Britain. III. Qualitative and quantitative ordinations, and the utility of a multivariate approach. J. exp. mar. Biol. Ecol. 16: 257-300.
- Petersen, C.G.J., 1918. The sea bottom and its production of fish food. A survey of the work done in connection with the valuation of the Danish waters from 1883-1917. Rept. Danish Biol. Sta. 25: 1-62.

- Rhoads, D.C., and D.K. Young, 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. J. Mar. Res. 28: 150-178.
- Sanders, H.L., 1958. Benthic studies in Buzzards Bay. I. Animalsediment relationships. Limnol. Oceanogr. 3: 245-258.
- Sanders, H.L., 1960. Benthic studies in Buzzards Bay. III. The structure of the soft-bottom community. Limnol. Oceanogr. 5: 138-153.
- Sanders, H.L., 1968. Marine benthic diversity: a comparative study. Amer. Nat. 102: 243-282.
- Stephenson, W., W.T. Williams, and G.N. Lance, 1970. The macrobenthos of Moreton Bay. Ecol. Monogr. 40: 459-494.
- Stickney, A.P., 1959. Ecology of the Sheepscot River estuary. U.S. Fish. Wildl. Serv., Spec. Sci. Rept.--Fisheries No. 309: 1-21.
- Wass, M.W., 1967. Biological and physiological basis of indicator organisms and communities. II. Indicators of pollution. <u>In</u>: Pollution and Marine Ecology, edited by T.A. Olson and F.J. Burgess, John Wiley & Sons, New York, pp. 271-283.
- Wieser, W., 1960. Benthic studies in Buzzards Bay. II. The meiofauna. Limnol. Oceanogr. <u>5</u>: 121-137.

Species list for the replicated grabs and dredge hauls

	Grabs	Dredges
Phylum Porifera		
Class Demospongiae		
Order Poecilosclerina		
Microciona prolifera (Ellis and Solander 1786)	X	X
Urder Halichondrina		
HallChondria Dowerbanki Burton, 1930		
Cliona celata Grant 1826	x	v
Porifera sp.	X	^
Phylum Cnidaria		
Class Hydrozoa		
Urder Hydrolda		
Hudractinia ochinata (Eloming 1828)	v	X
Podocorvne carnea Sars 1846	X	× X
Class Anthozoa		^
Order Gorgonacea		
<u>Metridium senile</u> (Linne 1758)		X
Phylum Platyneimintnes		
Flatworm A		
		· · · · ·
Phylum Rhynchocoela	· .	
Class Anopla		
Order Heteronemertini		
Zygeupolia rubens (Coe 1895)	X	X
Lerebratulus lacteus (Leidy 1851)	X	X
Nemercea sp.	X	X
Phvlum Annelida	•	
Family Ampharetidae		
Ampharete acutifrons Grube 1860	X	х
Asabellides oculatus (Webster 1879)	X	X
Family Arabellidae		
Uriloneris longa Webster 18/9	Х	X
ramity Lapitelliude Capitella capitata (Fabricius 1780)	v	
Heteromastus filiformis (Clanarede 1864)	X	X
Mediomastus ambiseta (Hartman 1947)	X	X

	Grabs	breages
Family Cirratulidae	•	
Caulleriella en 2		v
Chaetozone setosa Malmaren 1867	×	· ^
Cirratulidae sp	×	
Tharvy sn. 2	X	x
Tharyx sp. 1	^	X
Chaetozone sp. 1	x	X
Chaetozone sp. 2	X	x
Chaetozone sp. 3	x	X
Chaetozone sp. 4	X	
Family Dorvilleidae	••	
Schistomeringos rudolphi (delle Chiaje 1828)	x	x
Schistomeringos caecus (Webster and Benedict 18	384) x	
Family Eunicidae		
Marphysa sanguinea (Montagu 1815)	х	X
Family Flabelligeridae		
Pherusa affinis (Leidy 1855)	X	X
Family Glyceridae		
Glycera americana Leidy 1855	x	X
Glycera capitata Oersted 1843	X	X
Glycera dibranchiata Ehlers 1868	X	X
Family Goniadidae		
Glycinde solitaria (Webster 1880)	X	×
Family Hesionidae		
Podarke obscura Verrill 1873	X	х
Family Maldanidae		
<u>Clymenella</u> spp.	X	*
Family Nephtyidae		
<u>Nephtys incisa</u> Malmgren 1865	X	X
<u>Nephtys picta</u> Ehlers 1868	X	
Family Nereidae		
Nereis arenaceodonta Moore 1903	X	
<u>Nereis (Neanthes) succinea</u> Frey and Leuckart 18	347 x	х
Family Opheliidae		
Iravisia carnea Verrill 18/3	X	· ·
Family Urbiniidae		
Urbinia ornatus (Verrill 1873)	X X	
Scolopios acutus (Verrill 18/3)	X	
Scoloplos fragilis (Verrill 18/3)	Х	X
Scolopios robustus (Verrill 18/3)	X	х
<u>Scolopios</u> sp.		х
ramily Paraonidae		
Aricidea sp.		X
Aricidea cerruti Laubier 1967	X	X

Table VII-I (cont.)

			Grabs	Dredges
	Family Pectinariidae		•	
	Pectinaria gouldii Verrill 1873		X	x
	Family Phyllodocidae			~
	Eteone heteropoda Hartman 1951		x	X
	Eteone longa (Fabricius 1780)		х	
	Eumida sanguinea (Oersted 1843)		x	×
	Paranaitis <u>speciosa</u> (Webster 1880)		X	
	Phyllodoce arenae Webster 1880		X	X
	Phyllodoce maculata (Linnaeus 1767)		х	X
	Family Polynoidae			
	<u>Harmothoe</u> (<u>Lagisca</u>) <u>extenuata</u> (Grub	e 1840)	X	X
	Lepidametria commensalis Webster 18	79		X
	Lepidonotus squamatus (Linnaeus 175	6) **	х	X
	Lepidonotus sublevis Verrill 1873		X	X
	Lepidonotus (juv.)			X
	Family Sabellaridae			
	Sabellaria vulgaris Verrill 18/3		X	X
	Family Serpulidae			
÷	Hydroides dianthus (Verrill 18/3)		X	X
	Family Sigarionidae		•	
	Schenelais Finitoria (Enters 1854)		X	•
	Esmily Spionidan		X	X
	Paraprionospio pinnata (Eblanc 1001	γ		
	Polydona concharum Vornill 1880	/	v	X
	Polydora ligni Webster 1879		×	X
	Polydora socialis (Schmarda 1861)			X
	Scolelenis squamata (0 F Muller 18	06)	×	X
	Spio setosa Verrill 1873	007	X	v v
	Spionhanes hombyx (Clanarede 1870)	•	X	X.
	Streblospio benedicti Webster 1879		x	X
	Family Syllidae		<u> </u>	
	Parapionosvilis longicirrata (Webst	er and		
	Bened	ict 1884)		x
	Pionosvllis sp.	,	X	
	Proceraea cornuta (Agassiz 1863)		X	х
	Syllis gracilis Grube 1840		X	Х
	Family Terebellidae			٠
	Amphitrite ornata (Leidy 1855)		х	
	Polycirrus eximius (Leidy 1855)		x 1	X
Class	01igochaeta			
	Oligochaeta A		X	X
	Oligochaeta B	*	X	X

. X

	Grabs	Dredges
Phylum Mollusca		
Class Gastropoda		
Order Mesogastropoda		
Triphora nigrocincta (C.B. Adams 1839)	X	
Hydrobia totteni Morrison 1954		x
Crepidula fornicata (Linne 1758)	х	X
Crepidula convexa Say 1822	Х	X
Crepidula plana Say 1822	X	Х
Order Neogastropoda		• · ·
Urosalpinx cinerea (Say 1822)		x
Anachis avara (Say 1822)	х	X
Mitrella lunata (Say 1826)	Х	X
Busycon carica (Gmelin 1791)		а х с
<u>Busycon canaliculatum</u> (Linne 1758)	X	X
<u>Nassarius trivittatus</u> (Say 1822)	X	X
<u>Ilyanassa obsoletus</u> (Say 1822)		· X
<u>Marginella</u> roscida Redfield 1860	X	X
Order Tectibranchia		an di serie de la composition de la com La composition de la c
<u>Acteocina canaliculata</u> (Say 1822)		X
<u>Sayella fusca</u> (C.B. Adams 1839)		Х
<u>Turbonilla interrupta</u> (Totten 1835)	X	X
Odostomia dianthophila Wells and Wells 1961	Х	X
Class Polyplacophora		
Order Neoloricata		
<u>Chaetopleura apiculata</u> (Say 1830)		Х
Order Nudibranchia		
Nudibranchia sp.		X
Class Bivalvia		
Urder ProtoDranchia		
Nucula proxima Say 1822	X	X
Yoldia limatula Say 1831	X	X
Urder Filibranchia		
Mutilus odulis Linno 1759	•••	X
Mytitus edutis Linne 1/58	X	X
Orden Eulemallibuenchia	X	. .
Mucolla planulata (Stimpcon 1957)		
Monoopania monoopania (Lippo 1759)		X
Detnicela neologiformic (Lomonek 1919)	X	X
Tolling agilic Stimpson 1957	X	X
Silious costata Say 1922	X	X
Ensis directus Conrad 18/3	, V	X X
Spicula colidiccina (Dillwyn 1817)	X	
Mulinia latoralis (Say 1822)	v	
Corbula contracta Say 1822		
Ivonsia hvalina Conrad 1831	×	X

Table VII-1 (cont.)

Phylum Arthropoda Class Merostomata Limulus polyphemus (Linne 1758) x Class Crustacea Subclass Ostracoda Parasterope pollex x Order Thoracica Balanus (Balanus) improvisus Darwin 1854 x Order Stomatopoda Squilla empusa Say 1818 x Order Mysidacea Mysid sp. x Neomysis americana (S.I. Smith 1873) x Reomysis americana (S.I. Smith 1873) x Neomysis formosa S.I. Smith 1873 x x Order Cumacea Oxyurostylis smithi Calman 1912 x x Order Isopoda Cyathura polita (Stimpson 1855) x Cyathura polita (Stimpson 1855) x Cyathura burbancki Frankenberg 1965 x x Edotea triloba (Say 1818) x Order Ampelisca macrocephala Liljeborg 1852 x Ampelisca macrocephala Liljeborg 1852 x Ampelisca inthi (Holmes 1905) x Microdeutopus gryllotalpa Costa 1853 x Microdeutopus gryllotalpa Costa 1853 x Corophium therusilitensis Dana 1853 x Corophium therusilitensis Dana 1853 x Microdeutopus gryllotalpa Costa 1853 x Corophium therusilitensis Dana 1853 x x Corophium therusilitensis Dana 1853 x x Corophium therusilitensis Dana 1853 x x Corophium tuberculatum Shoemaker 1934 x x Corophium tuberculatus Bosemaker 1934 x x Corophium bonelli x x x Melita nitida Smith 1873 x x x Melita nitida Smith 1873 x x x Neohaustorius biaticulatus Bousfield 1965 x x Syncheliddum americuanus Bousfield 1973 x x x		Grabs	Dredges
Class MerostomataLimulus polyphemus(Linne 1758)xClass CrustaceaSubclass OstracodaParasterope pollexxOrder ThoracicaBalanusImprovisusDarwin 1854xOrder StomatopodaSquilla empusaSay 1818xOrder MysidaceaMysid sp.xxMeomysis americana(S.I. Smith 1873)xxBowmaniella dissimilis(Coifman 1937)xxHeteromysis formosaS.I. Smith 1873xxOrder GunaceaOxyurostylis smithiCalman 1912xxOrder IsopodaSay 1818xxxOrder IsopodaCyathura polita (Stimpson 1855)xxxCyathura polita (Stimpson 1855)xxxxOrder IsopodaSay 1818xxxxOrder IsopodaSay 1818xxxxCatast werrilli Mills 1964xxxxAmpelisca macrocephala Liljeborg 1852xxxxAmpelisca abdita Mills 1965xxxxAmpelisca abdita Si Fr. Muller 1865xxxxAmpelisca abdita Si Fr. Muller 1865xxxCorophium acherusicum Costa 1857xxxCorophium acherusicum Costa 1853xxxCorophium sinile Somaker 1934xxxCorophium sinile Shoemaker 1934xxxCorophium bonellix	Phylum Arthropoda		
Limulus polyphemus (Linne 1758)xClass CrustaceaSubclass OstracodaParasterope pollexxOrder ThoracicaBalanus (Balanus) improvisus Darwin 1854xOrder StomatopodaSquilla empusa Say 1818xOrder MysidaceaMysid sp.xMeomysis americana (S.I. Smith 1873)xBommaniella dissimilis (Coffman 1937)xHeteromysis formosa S.I. Smith 1873xOrder CumaceaOxyurostylis smithiCather CumaceaxOxyurostylis smithiCalman 1912Cyathura polita (Stimpson 1855)xCyathura burbancki Frankenberg 1965xEdotea triloba (Say 1818)xAmpelisca macrocephala Liljeborg 1852xAmpelisca abdita Mills 1964xAmpelisca verrilliMiller 1865XCorophium acherusicum Costa 1853XMicrodeutopus gryllotalpa Costa 1853XMicrodeutopus gryllotalpa Sota 1853XXCorophium acherusicum Costa 1853XXCorophium simile Shoemaker 1934XXCorophium simile Shoemaker 1934XCorophium simile Shoemaker 1934XMelohaus Say 1818	Class Merostomata		
Class Crustacea Subclass Ostracoda Parasterope pollex Order Thoracica Balanus (Balanus) improvisus Darwin 1854 Corder Stomatopoda Squilla empusa Say 1818 Order Mysidacea Mysid sp. Neomysis americana (S.I. Smith 1873) Reomysis americana (S.I. Smith 1873) Memorysis formosa S.I. Smith 1873 Corder Cumacea Oxyurostylis smithi Calman 1912 Order Isopoda Cyathura polita (Stimpson 1855) Cyathura polita (Stimpson 1855) Cyathura pulita (Stimpson 1855) Cyathura pulita (Stimpson 1855) Cyathura pulita (Stimpson 1855) Cyathura pulita (Stimpson 1855) Cyathura burbancki Frankenberg 1965 X Edotea triloba (Say 1818) Creater Amphipoda Ampelisca macrocephala Liljeborg 1852 Ampelisca verrilli Mills 1964 Ampelisca verrilli Mills 1965 X Microdeutopus gryllotalpa Costa 1853 Corophium acherusicum Costa 1853 Corophium acherusicum Costa 1853 X Unciola irronata Say 1818 V Unciola iserrata Shoemaker 1934 X Corophium simile Shoemaker 1934 X Corophium simile Shoemaker 1945 X Microdeutopus Gryl1818 X Corophium simile Shoemaker 1945 X Microla irronata Say 1818 Lenbos suithi (Hollas 1905) X Microla irronata Say 1818 Linciola irronata Say 1818 Munciola serrata Shoemaker 1945 X Microphium bonelli Samarus mucronatus Say 1818 Linciola Smithi 1873 X Neohaustorius biarticulatus Bousfield 1965 X Neohaustorius biarticulatus Bousfield 1965 X Synchelididium americanum Bousfield 1973 X X	limulus polyphemus (Linne 1758)	×	
Subclass OstracodaxParasterope pollexxOrder ThoracicaBalanus (Balanus) improvisus Darwin 1854xOrder StomatopodaSquilla empusa Say 1818xOrder MysidaceaxMysid sp.xNeomysis americana (S.I. Smith 1873)xBowmaniella dissimilis (Coifman 1937)xHeteromysis formosa S.I. Smith 1873xOrder CumaceaxOxyurostylis smithi Calman 1912xCyathura polita (Stimpson 1855)xCyathura burbancki Frankenberg 1965xZyathura burbancki Frankenberg 1965xEdotea triloba (Say 1818)xOrder AmphipodaxAmpelisca abdita Mills 1964xAmpelisca abdita Mills 1965xAmpelisca abdita Mills 1965xXampithoidae sp.xLembos smithi (Holmes 1905)xKirordeutopus gryllotalpa Costa 1853xBatea catharinensis Fr. Muller 1865xCorophium acherusicum Costa 1857xCorophium simile Shoemaker 1934xCorophium simile Shoemaker 1934xCorophium simile Shoemaker 1934xKXGammarus Buronatus Say 1818xCorophium simile Shoemaker 1934xXXCorophium simile Shoemaker 1934xXXCorophium simile Shoemaker 1934xXXMelita nitida Smith 1873xXXCorophium simile Shoemaker 1934X	Class Crustacea	~	
Parasterope pollexxOrder ThoracicaBalanus (Balanus) improvisus Darwin 1854xDrder StomatopodaSquilla empusa Say 1818xOrder MysidaceaxMysid sp.xMempysis americana (S.I. Smith 1873)xBowmaniella dissimilis (Coifman 1937)xHeteromysis formosa S.I. Smith 1873xOrder CumaceaxOrder IsopodaxCyathura polita (Stimpson 1855)xCyathura polita (Stimpson 1855)xCyathura burbancki Frankenberg 1965xEdotea triloba (Say 1818)xOrder AmphipodaxAmpelisca macrocephala Liljeborg 1852xAmpelisca addita Mills 1967xAmpelisca addita Mills 1965xKerapus tubularis Say 1818xCorophium acherusicum Costa 1857xCorophium acherusicum Costa 1857xCorophium acherusicum Costa 1857xCorophium simile Shoemaker 1934xXKerichthonius Say 1818Corophium acherusicum Costa 1857xCorophium simile Shoemaker 1934xXCorophium simile Shoemaker 1934XXCorophium simile Shoemaker 1934xXKerichthonius Say 1818XXCorophium simile Shoemaker 1934xXXCorophium simile Shoemaker 1934xXXMelita nitida Smith 1873xXXKorophium simile Shoemaker 1934XX <td>Subclass Ostracoda</td> <td>· · · ·</td> <td></td>	Subclass Ostracoda	· · · ·	
Order ThoracicaImprovisus Darwin 1854Balanus (Balanus) improvisus Darwin 1854xOrder StomatopodaxSquilla empusa Say 1818xOrder MysidaceaxMysid sp.xNeomysis americana (S.I. Smith 1873)xBowmaniella dissimilis (Coifman 1937)xHeteronysis formosaS.I. Smith 1873Order CumaceaxOxyurostylis smithiCalman 1912Cyathura polita (Stimpson 1855)xCyathura burbancki Frankenberg 1965xZyathura burbancki Frankenberg 1965xZorder AmphipodaxAmpelisca macrocephala Liljeborg 1852xAmpelisca abdita Mills 1964xAmpelisca abdita Mills 1965xXXMicrodeutopus gryllotalpa Costa 1853xBata catharinensis Fr. Muller 1865xCorophium atherusicum Costa 1857xCorophium tuberculatum Shoemaker 1934xXCorophium simile Shoemaker 1934XXCorophium simile Shoemaker 1934xXXCorophium simile Shoemaker 1934xXXMelita nitida Smith 1873XXXCorophium simile Shoemaker 1934X <t< td=""><td>Parasterope pollex</td><td>X</td><td></td></t<>	Parasterope pollex	X	
Balanus(Balanus)improvisusDarwin 1854xOrder StomatopodaSquilla empusaSay 1818xSquilla empusaSay 1818xOrder MysidaceaMysid sp.xMeomysisamericana(S.I. Smith 1873)xBoumanielladissimilis(Coifman 1937)xBoumanielladissimilis(Coifman 1937)xMeteromysisformosaS.I. Smith 1873xOrder CumaceaOxyurostylissmithiCalman 1912xOrder IsopodaStimpson 1855)xxCyathura burbancki Frankenberg 1965xxEdicteatriloba(Say 1818)xOrder AmphipodaAmpeliscamacrocephalaAmpelisca additaMills1967xAmpelisca additaMills1967xAmpelisca verriliMills1967xAmpelisca additaNiller1865xCorophiumadpensitum Costa1857xCorophiumtubularisSay 1818xCorophiumtuberculatumShoemaker 1934xCorophiumtuberculatumSay 1818xUnciolaserrataShoemaker 1934xCorophiumsay 1818xxCorophiumsay 1818xxCorophiumsay 1818xxCorophiumsay 1818xxCorophiumsay 1818xxCorophiumsay 1818x <t< td=""><td>Order Thoracica</td><td></td><td></td></t<>	Order Thoracica		
Order StomatopodaxSquilla empusa Say 1818xOrder MysidaceaxMysid sp.xNeomysis americana (S.I. Smith 1873)xBowmaniella dissimilis (Coifman 1937)xHeteromysis formosa S.I. Smith 1873xOrder CumaceaxOxyurostylis smithi Calman 1912xCyathura polita (Stimpson 1855)xCyathura burbancki Frankenberg 1965xKedotea triloba (Say 1818)xErichsonella filiformis (Say 1818)xOrder AmphipodaxAmpelisca amacrocephala Liljeborg 1852Ampelisca addita Mills 1964xAmpelisca addita Mills 1967xAmpelisca addita Mills 1964xCorophium acherusicum Costa 1853xCorophium acherusicum Costa 1857xCorophium simile Say 1818xUnciola serrata Shoemaker 1934xXXCorophium simile Say 1818xUnciola serrata Shoemaker 1934xXXCorophium simile Say 1818xUnciola serrata Shoemaker 1934xXXCorophium simile Say 1818xXXCorophium bonellixXXMelita nitida Smith 1873xXXMicrodeutopus granta Say 1818XXXXXXXXXXXXXXXXX <t< td=""><td>Balanus (Balanus) improvisus Darwin 1854</td><td></td><td>v</td></t<>	Balanus (Balanus) improvisus Darwin 1854		v
Squilla empusa Say 1818xOrder MysidaceaMysid sp.Meomysis americana (S.I. Smith 1873)xBowmaniella dissimilis (Coifman 1937)xHeteromysis formosa S.I. Smith 1873xOrder CumaceaXOxyurostylis smithi Calman 1912xVatura polita (Stimpson 1855)xCyathura polita (Stimpson 1855)xCyathura polita (Stimpson 1855)xCyathura polita (Say 1818)xErrichsonella filiformis (Say 1818)xOrder AmphipodaxAmpelisca macrocephala Liljeborg 1852xAmpelisca abdita Mills 1964xAmpelisca verrilli Mills 1967xXKerouspit (Holmes 1905)Microdeutopus gryllotalpa Costa 1853xCorophium tuberculatum Shoemaker 1934xCorophium tuberculatum Shoemaker 1934xCorophium simile Shoemaker 1934xXCorophium simile Shoemaker 1934XXMicrodeus mucronatus Say 1818xKorophium bonellixXXMelita nitida Smith 1871)xXXMelita nitida Smith 1871)xXXKorophium bonelliXXKorophium bonelliXXXXXXXXXXXXXXXXXX <tr< td=""><td>Order Stomatopoda</td><td></td><td></td></tr<>	Order Stomatopoda		
Order MysidaceaxMysid sp.xNeomysis americana (S.I. Smith 1873)xBowmaniella dissimilis (Coifman 1937)xHeteromysis formosa S.I. Smith 1873xOrder CumaceaxOxyurostylis smithiCalman 1912Order IsopodaxCyathura polita (Stimpson 1855)xCyathura burbancki Frankenberg 1965xErichsonella filiformis (Say 1818)xErichsonella filiformis (Say 1818)xAmpelisca macrocephala Liljeborg 1852Ampelisca abdita Mills 1964xAmpelisca abdita Mills 1967xAmpelisca verrilli Mills 1967xAmpelisca verrilli Say 1818xCorophium acherusicum Costa 1853xCorophium acherusicum Costa 1853xUnciola serata Shoemaker 1934xCorophium simile Shoemaker 1934xCorophium simile Shoemaker 1934xCorophium simile Shoemaker 1934xKorophium simile Shoemaker 1934 <td>Squilla empusa Sav 1818</td> <td>X</td> <td></td>	Squilla empusa Sav 1818	X	
Mysid sp.xNeomysis americana (S.I. Smith 1873)xBowmaniella dissimilis (Coifman 1937)xBowmaniella dissimilis (Coifman 1937)xHeteromysis formosa S.I. Smith 1873xOrder CumaceaxOxyurostylis smithiCalman 1912Vathura polita (Stimpson 1855)xCyathura polita (Stimpson 1855)xCyathura burbancki Frankenberg 1965xKatore AmphipodaxAmpelisca macrocephala Liljeborg 1852xAmpelisca macrocephala Liljeborg 1852xAmpelisca verrilli Mills 1967xXXMicrodeutopus gryllotalpa Costa 1853xBatea catharinensis Fr. Muller 1865xCorophium acherusicum Costa 1853xVinciola irrorata Say 1818xCorophium tuberculatum Shoemaker 1934xXXGammarus Mucronatus Say 1818xCorophium sinile Shoemaker 1934xXXMamarus Mucronatus Say 1818xCorophium sinile Shoemaker 1934xXXMelita nitida Smith 1873xXXMelita Intida Smith 1873xXXMelita Intida Smith 1873xXXXXMicola incoreatus Say 1818XXXXXXXXXXXXXXXXXXX </td <td>Order Mysidacea</td> <td></td> <td></td>	Order Mysidacea		
Neomysisamericana (S.I. Smith 1873)xxBowmanielladissimilis(Coifman 1937)xHateromysisformosaS.I. Smith 1873xNorderCuraceaxxOrder IsopodaxxCyathurapolita(Stimpson 1855)xCyathuraburbanckiFrankenberg 1965xXEdoteatriloba(Say 1818)xErichsonellafiliformis(Say 1818)xAmpeliscamacrocephalaLiljeborg 1352xAmpelisca abditaMills1967xAmpelisca abditaMills1967xAmpelisca abditaMills1967xAmpelisca abditaMills1967xAmpelisca abditaMills1967xAmpelisca abditaMills1967xAmpelisca serviniHolmes1905xAmpeliscagryllotalpaCosta1853CorophiumacherusicumCosta1853CorophiumacherusicumCosta1853Corophiumsay 1818xxUnciolairrorataSay 1818xUnciolairrorataSay 1818xCorophiumsimileShoemaker1934xCorophiumsimileShoemaker1934xMicrodeutopusSay 1818xxUnciolasimileShoemaker1934xCorophiumsimileShoemaker	Mysid sp.	×	
Bowmaniella dissimilis (Coifman 1937)Note the term of the term of the term of term o	Neomysis americana (S.I. Smith 1873)	X	Y
HeteromysisformosaS.I.Smith 1873xxOrder CumaceaOxyurostylissmithiCalman 1912xxxOrder IsopodaCyathura polita (Stimpson 1855)xxxCyathura burbanckiFrankenberg 1965xxxEdotea triloba (Say 1818)xxxErichsonella filiformis(Say 1818)xxOrder AmphipodaAmpelisca macrocephala Liljeborg 1852xxAmpelisca abdita Mills1964xxAmpelisca abdita Mills1967xxAmpelisca verrilliMiller 1865xxLembos smithi(Holmes 1905)xxMicrodeutopus gryllotalpa Costa 1853xxCorophium acherusicum Costa 1857xxCorophium tuberculatumShoemaker 1934xUnciola irrorata Say 1818xxUnciola isernata Shoemaker 1934xxElasmopus laevis (Smith 1871)xxMelita nitida Smith 1873xxMelita nitida Smith 1873xxMelita nitida Smith 1873xxMelita nitida Smith 1873xxKehaustorius biarticulatus Bousfield 1965xXXXMelita nitida Smith 1873xXXMelita nitida Smith 1873xXXMelita nitida Smith 1873xXXMelita nitida Smith 1873XX	Bowmaniella dissimilis (Coifman 1937)	X	~
Order CumaceaOrder Lindical filter contain for the second state of the second sta	Heteromysis formosa S.I. Smith 1873	X	x
OxyurostylissmithiCalman 1912xxOrder IsopodaCyathura polita (Stimpson 1855)xxCyathura burbancki Frankenberg 1965xxEdotea triloba (Say 1818)xxErichsonella filiformis (Say 1818)xxOrder AmphipodaxxAmpelisca macrocephala Liljeborg 1852xAmpelisca abdita Mills 1964xxAmpelisca verrilli Mills 1967xxAmpithoidae sp.xxLembos smithi (Holmes 1905)xxBatea catharinensis Fr. Muller 1865xCorophium acherusicum Costa 1853xCorophium acherusicum Costa 1857xCorophium acherusicum Costa 1857xCorophium simile Shoemaker 1934xXXCorophium simile Shoemaker 1934xXxGammarus mucronatus Say 1818xElasmopus Laevis (Smith 1871)xXxMelita nitida Smith 1873xXxNeohaustorius biarticulatus Bousfield 1965xXxNeohaustorius biarticulatus Bousfield 1965xXxXXXXXX <td< td=""><td>Order Cumacea</td><td></td><td></td></td<>	Order Cumacea		
Order IsopodaxxCyathura polita (Stimpson 1855)xCyathura burbancki Frankenberg 1965xEdotea triloba (Say 1818)xErichsonella filiformis (Say 1818)xAmpelisca macrocephala Liljeborg 1852Ampelisca macrocephala Liljeborg 1852Ampelisca abdita Mills 1964Ampelisca verrilli Mills 1967XAmpithoidae sp.Lembos smithi (Holmes 1905)XMicrodeutopus gryllotalpa Costa 1853XCorophium acherusicum Costa 1857Corophium tuberculatum Shoemaker 1934XUnciola irrorata Say 1818Unciola iserrata Shoemaker 1945XXCorophium simile Shoemaker 1934XXCorophium simile Shoemaker 1934XXKongus Indextoria Say 1818XKorophium bonelliXXKammarus mucronatus Say 1818XXKamarus mucronatus Say 1818XXKeohaustorius biarticulatus Bousfield 1965XXXNeohaustorius biarticulatus Bousfield 1965XXXXXXXXXXXXXXXXXXXXXXXX	Oxvurostvlis smithi Calman 1912	x	x
Cyathura polita (Stimpson 1855)Cyathura burbancki Frankenberg 1965xEdotea triloba (Say 1818)xErichsonella filiformis (Say 1818)xOrder AmphipodaxAmpelisca macrocephala Liljeborg 1852xAmpelisca abdita Mills 1964xAmpelisca abdita Mills 1964xAmpelisca werrilli Mills 1967xXXAmpithoidae sp.xLembos smithi (Holmes 1905)xXXBatea catharinensis Fr. Muller 1865xCorophium acherusicum Costa 1853xCorophium tuberculatum Shoemaker 1934xXXUnciola irrorata Say 1818xUnciola serrata Shoemaker 1934xXXGammarus mucronatus Say 1818xElasmopus laevis (Smith 1871)xXXMelita nitida Smith 1873xXXNeohaustorius biarticulatus Bousfield 1965xXXNeohaustorius biarticulatus Bousfield 1965xXXNeohaustorius biarticulatus Bousfield 1973xXX	Order Isopoda		~
CyathuraDurbanckiFrankenberg1965xxEdoteatriloba(Say 1818)xxErichsonellafiliformis(Say 1818)xxOrderAmpeliscamacrocephalaLiljeborg1852xAmpeliscaabditaMills1964xxAmpeliscaabditaMills1964xxAmpeliscaabditaMills1967xxAmpithoidaesp.xxxAmpithoidaesp.xxLembossmithi(Holmes 1905)xxMicrodeutopusgryllotalpaCosta1853xBateacatharinensisFr. Muller1865xCorophiumacherusicumCosta1857xCorophiumtuberculatumShoemaker1934xUnciolairrorataSay1818xUnciolaiserrataShoemaker1934xCorophiumbomellixxxGammarusmucronatusSay1818xElasmopuslaevis(Smith1871)xxMelitanitidaSmith1873xxNeohaustoriusbiarticulatusBousfield1965xMelitanitidaSmith1873xxNeohaustoriusbiarticulatusBousfield1965xMelitanitidaSmith1873xx <td>Cvathura polita (Stimpson 1855)</td> <td></td> <td>×</td>	Cvathura polita (Stimpson 1855)		×
Edotea triloba (Say 1818)xxErichsonella filiformis (Say 1818)xxOrder AmphipodaAmpelisca macrocephala Liljeborg 1852xAmpelisca abdita Mills 1964xxAmpelisca verrilli Mills 1967xxAmpelisca verrilli Mills 1967xxMicrodeutopus gryllotalpa Costa 1853xxCorophium acherusicum Costa 1857xxCorophium basiliensis Dana 1853xxUnciola irrorata Say 1818xxUnciola serrata Shoemaker 1934xxCorophium bonellixxGammarus mucronatus Say 1818xElasmopus laevis (Smith 1871)xxMelita nitida Smith 1873xxNeohaustorius biarticulatus Bousfield 1965xMicroprotopus raneyi Wigley 1966xLysianopsis alba Holme	Cyathura burbancki Frankenberg 1965	×	x
Erichsonella filiformis(Say 1818)xxOrder AmphipodaAmpelisca macrocephala Liljeborg 1852xAmpelisca abdita Mills 1964xxAmpelisca abdita Mills 1967xxAmpelisca verrilliMills 1967xAmpithoidae sp.xLembos smithi(Holmes 1905)xMicrodeutopus gryllotalpa Costa 1853xBatea catharinensis Fr. Muller 1865xCorophium acherusicum Costa 1857xCorophium tuberculatum Shoemaker 1934xVinciola irrorata Say 1818xUnciola serrata Shoemaker 1945xCorophium bonellixGammarus mucronatus Say 1818xElasmopus laevis (Smith 1871)xMelita nitida Smith 1873xMelita nitida Smith 1873xXXNeohaustorius biarticulatus Bousfield 1965Microprotopus raneyi Wigley 1966xXX	Edotea triloba (Sav 1818)	X	× ×
Order AmphipodaxxAmpelisca macrocephala Liljeborg 1852xAmpelisca abdita Mills 1964xAmpelisca verrilli Mills 1967xAmpithoidae sp.xLembos smithi (Holmes 1905)xMicrodeutopus gryllotalpa Costa 1853xBatea catharinensis Fr. Muller 1865xCorophium acherusicum Costa 1857xCorophium tuberculatum Shoemaker 1934xVinciola irrorata Say 1818xUnciola iserata Shoemaker 1945xXXCorophium simile Shoemaker 1934xXXCorophium simile Shoemaker 1945xXXCorophium simile Shoemaker 1934xXXCorophium bonellixXXCorophium bonellixXXMelita nitida Smith 1873xNeohaustorius biarticulatus Bousfield 1965xXXNeohaustorius biarticulatus Bousfield 1965xXXNeohaustorius alba Holmes 1905xXXX <td< td=""><td>Erichsonella filiformis (Sav 1818)</td><td>x</td><td>X ·</td></td<>	Erichsonella filiformis (Sav 1818)	x	X ·
Ampelisca appelisca abdita MillsLiljeborg 1852xAmpelisca abdita Mills1964xxAmpelisca verrilliMills1967xxAmpithoidae sp.xxxLembos smithi Microdeutopus gryllotalpa Costa1853xxBatea catharinensis Fr.Muller1865xxCorophium acherusicum costa1857xxCorophium acherusicum costa1853xxUnciola irrorata Say1818xxUnciola serrata Gammarus mucronatus Say1818xxCorophium bonelli Gammarus Mucronatus Say1818xxKCorophium simile Shoemaker1934xxKCorophium simile Shoemaker1934xxManarus mucronatus Say1818xxKKKKKMelita nitida Smith1873xxMelita nitida Smith1873xxMelita nicroprotopus raneyi Wigley1966xxLysianopsis alba Holmes1905xxKXXXXMelidium americanum Bousfield1973xX	Order Amphipoda	•	~
Ampelisca abditaabdita Mills1964xxAmpelisca verrilliMills1964xxAmpelisca verrilliMills1967xxAmpithoidaesp.xxAmpithoidaesp.xxLembos Microdeutopusgryllotalpa gryllotalpaCosta1853xBatea catharinensisFr.Muller1865xxCarapus tubularisSay1818xxCorophium acherusicum costa1857xxCorophium tuberculatum brasiliensis Dana1853xxUnciola serrata Serrata Shoemaker I934xxxUnciola serrata Gammarus mucronatus bonellixxxGammarus Mucronatus barticulatus biarticulatus Bousfield1965xxMicroprotopus raneyi Wigley Ugley Synchelidium americanum Bousfield1973xx	Ampelisca macrocephala Lilieborg 1852		X
AmpeliscaverrilliMills1967xxAmpithoidae sp.xxLembossmithi(Holmes1905)xxMicrodeutopusgryllotalpaCosta1853xBateacatharinensisFr.Muller1865xCerapustubularisSay1818xCorophiumacherusicumCosta1857xCorophiumtuberculatumShoemaker1934xErichthoniusbrasiliensisDana1853xUnciolairrorataSay1818xUnciolaserrataShoemaker1945xxCorophiumserrataShoemaker1934xxGammarusmucronatusSay1818xxElasmopuslaevis(Smith1871)xxMelitanitidaSmith1873xxMeohaustoriusbiarticulatusBousfield1965xMicroprotopusraneyiWigley1966xxLysianopsisalbaHolmes1905xxSynchelidiumamericanumBousfield1973xx	Ampelisca abdita Mills 1964	x	x
Ampithoidae sp.xLembos smithi(Holmes 1905)xxMicrodeutopus gryllotalpa Costa 1853xBatea catharinensis Fr. Muller 1865xCerapus tubularis Say 1818xCorophium acherusicum Costa 1857xCorophium tuberculatum Shoemaker 1934xErichthonius brasiliensis Dana 1853xUnciola irrorata Say 1818xUnciola serrata Shoemaker 1945xCorophium bonellixCorophium simile Shoemaker 1934xKampus laevis (Smith 1871)xMelita nitida Smith 1873xMicroprotopus raneyi Wigley 1966xLysianopsis alba Holmes 1905xSynchelidium americanum Bousfield 1973x	Ampelisca verrilli Mills 1967	X	x
Lembos smithi Microdeutopus gryllotalpa Costa 1853xxMicrodeutopus gryllotalpa Costa 1853xBatea catharinensis Cerapus tubularis Say 1818xCorophium acherusicum Costa 1857xCorophium tuberculatum bersiliensis Dana 1853xVunciola serrata Corophium simile Shoemaker 1934xVunciola serrata Corophium simile Shoemaker 1945xVunciola serrata Corophium simile Shoemaker 1934xVunciola serrata Corophium simile Shoemaker 1934xXXCorophium simile Shoemaker 1934xXXCorophium simile Shoemaker 1934xXXCorophium bonellixXXCorophium bonellixXXMelita nitida Smith 1873xXXMelita nitida Smith 1873xXXMicroprotopus raneyi Wigley 1966xXXSynchelidium americanum Bousfield 1973xXX	Ampithoidae sp.		x
Microdeutopus Batea catharinensis Cerapus tubularis Say 1818xBatea catharinensis Cerapus tubularis Say 1818xCorophium acherusicum costa 1857xCorophium tuberculatum tuberculatum shoemaker 1934xXXErichthonius tubus tubus tubus tubus tubus tubus tubus tubus tubus tubus tubus tuberculatum shoemaker 1934xXXCorophium tuberculatus tuberculatus<	Lembos smithi (Holmes 1905)	x	x
Batea catharinensis Fr. Muller 1865xCerapus tubularis Say 1818xCorophium acherusicum Costa 1857xCorophium tuberculatum Shoemaker 1934xErichthonius brasiliensis Dana 1853xUnciola irrorata Say 1818xUnciola serrata Shoemaker 1945xCorophium bonellixCorophium bonellixSay 1818xUnciola serrata Shoemaker 1934xXXCorophium simile Shoemaker 1945xXXCorophium bonellixXXGammarus mucronatus Say 1818xElasmopus laevis (Smith 1871)xMelita nitida Smith 1873xNeohaustorius biarticulatus Bousfield 1965xMicroprotopus raneyi Wigley 1966xLysianopsis alba Holmes 1905xXXSynchelidium americanum Bousfield 1973x	Microdeutopus grvllotalpa Costa 1853	x	^
Cerapus tubularis Say 1818Corophium acherusicum Costa 1857Corophium tuberculatum Shoemaker 1934XErichthonius brasiliensis Dana 1853Unciola irrorata Say 1818Unciola serrata Shoemaker 1945XCorophium simile Shoemaker 1934XCorophium bonelliGammarus mucronatus Say 1818Elasmopus laevis (Smith 1871)Melita nitida Smith 1873Neohaustorius biarticulatus Bousfield 1965Microprotopus raneyi Wigley 1966Lysianopsis alba Holmes 1905XSynchelidium americanum Bousfield 1973	Batea catharinensis Fr. Muller 1865	X	•
Corophium acherusicum Costa 1857Corophium tuberculatum Shoemaker 1934xErichthonius brasiliensis Dana 1853xUnciola irrorata Say 1818xUnciola serrata Shoemaker 1945xVnciola serrata Shoemaker 1934xCorophium simile Shoemaker 1934xCorophium bonellixGammarus mucronatus Say 1818xElasmopus laevis (Smith 1871)xMelita nitida Smith 1873xMelita nitida Smith 1873xMicroprotopus raneyi Wigley 1966xLysianopsis alba Holmes 1905xSynchelidium americanum Bousfield 1973x	Cerapus tubularis Sav 1818		x
CorophiumtuberculatumShoemaker1934xxErichthoniusbrasiliensisDana1853xxUnciolairrorataSay 1818xxUnciolaserrataShoemaker1945xxUnciolaserrataShoemaker1945xxCorophiumsimileShoemaker1934xxCorophiumsimileShoemaker1934xxCorophiumbonellixxxGammarusmucronatusSay 1818xxElasmopuslaevis(Smith 1871)xxMelitanitidaSmith 1873xxNeohaustoriusbiarticulatusBousfield1965xMicroprotopusraneyiWigley1966xLysianopsisalbaHolmes1905xxSynchelidiumamericanumBousfield1973xx	Corophium acherusicum Costa 1857		X
Erichthonius Unciola irrorata Say 1818Dana 1853xxUnciola serrata Serrata Shoemaker 1945xxUnciola serrata Serrata Shoemaker 1945xxUnciola serrata Serrata Shoemaker 1945xxUnciola serrata Serrata Shoemaker 1945xxUnciola serrata Serrata Shoemaker 1945xxUnciola serrata Serrata Shoemaker 1945xxUnciola serrata Serrata South South Hand Melita Neohaustorius Siarticulatus Holmes 1905xxMain Lysianopsis Synchelidium americanum Bousfield 1973xx	Corophium tuberculatum Shoemaker 1934	X	X
Unciola Unciola serrata Serrata Shoemaker 1945xUnciola serrata Serrata Shoemaker 1934xCorophium bonellisimile Shoemaker 1934xCorophium bonellixxCorophium bonellibonellixXXGammarus Gammarus mucronatus laevis Melita nitida Melita smith 1873xMelita nitida Melita microprotopus raneyi Migley 1966xXXLysianopsis Synchelidium americanum Bousfield 1973x	Erichthonius brasiliensis Dana 1853	X S	x
UnciolaserrataShoemaker1945xxCorophiumsimileShoemaker1934xxCorophiumbonellixxxGammarusmucronatusSay1818xElasmopuslaevis(Smith1871)xxMelitanitidaSmith1873xxNeohaustoriusbiarticulatusBousfield1965xMicroprotopusraneyiWigley1966xLysianopsisalbaHolmes1905xxSynchelidiumamericanumBousfield1973xx	Unciola irrorata Sav 1818		X
Corophium simile Shoemaker 1934xxCorophium bonellixxGammarus mucronatus Say 1818xElasmopus laevis (Smith 1871)xMelita nitida Smith 1873xNeohaustorius biarticulatus Bousfield 1965xMicroprotopus raneyi Wigley 1966xLysianopsis alba Holmes 1905xSynchelidium americanum Bousfield 1973x	Unciola serrata Shoemaker 1945	Х	X
Corophium bonellixxGammarus mucronatus Say 1818xElasmopus laevis (Smith 1871)xMelita nitida Smith 1873xNeohaustorius biarticulatus Bousfield 1965xMicroprotopus raneyi Wigley 1966xLysianopsis alba Holmes 1905xSynchelidium americanum Bousfield 1973x	Corophium simile Shoemaker 1934	X	Х
Gammarus Elasmopus laevisSay 1818xElasmopus Melita nitidaSmith 18731871)xxMelita nitida Microprotopus raneyi Lysianopsis alba Holmes 1905Bousfield 19661965xLysianopsis Synchelidium americanum Bousfield 1973xxx	Corophium bonelli	Х	X
Elasmopuslaevis(Smith 1871)xxMelitanitidaSmith 1873xxNeohaustoriusbiarticulatusBousfield1965xMicroprotopusraneyiWigley1966xLysianopsisalbaHolmes1905xxSynchelidiumamericanumBousfield1973xx	Gammarus mucronatus Sav 1818	X	
Melita nitidaSmith 1873xxNeohaustoriusbiarticulatusBousfield 1965xMicroprotopusraneyiWigley1966xLysianopsisalbaHolmes1905xxSynchelidiumamericanumBousfield1973xx	Elasmopus laevis (Smith 1871)	X	X
NeohaustoriusbiarticulatusBousfield1965xMicroprotopusraneyiWigley1966xLysianopsisalbaHolmes1905xxSynchelidiumamericanumBousfield1973xx	Melita nitida Smith 1873	X	X
Microprotopus raneyi Wigley 1966 x Lysianopsis alba Holmes 1905 x x Synchelidium americanum Bousfield 1973 x x	Neohaustorius biarticulatus Bousfield 196	5	х
Lysianopsis alba Holmes 1905 x x Synchelidium americanum Bousfield 1973 x x	Microprotopus ranevi Wiglev 1966	· .	X
Synchelidium americanum Bousfield 1973 x x	Lysianopsis alba Holmes 1905	x	X
	Synchelidium americanum Bousfield 1973	X	х
Paraphoxus spinosus Holmes 1903 x x	Paraphoxus spinosus Holmes 1903	Х	х

	Grabs	Dredges
Order Amphipoda (cont.)		
Trichophoxus epistomus (Shoemaker 1938)	X	х
Parametopella cypris (Holmes 1905)		X
Caprella equilibra Say 1818		X
Paracaprella tenuis Mayer 1903	X	
Order Decapoda		
Crangon septemspinosa (Say 1818)	X	х
Callianassa atlantica (Smith 1874)	X	X
Pagurus longicarpus Say 1817	X	X
Pagurus pollicaris Say 1817	X	Х
<u>Euceramus praelongus</u> Stimpson 1860	X	
<u>Ovalipes ocellatus</u> (Herbst 1799)		X
<u>Cancer irroratus</u> Say 1817	X	Х
<u>Xanthid</u> sp.	X	X
Neopanope texana sayi (Smith 1869)	X	X
Paneopeus herbsti H. Milne-Edwards 1834	X	Х
Hexapanopeus angustifrons (Benedict and Rathbu	n	· .
1891) Dánasthanna manulatus Cau 1810	X	
Pinnotheres maculatus Say 1818	X	
Pinnixa sayana Stimpson 1860	X	X
Pinnixa Sp. Socommo cinonoum (Pocc 1901)	X	X
Libinia ch (inv)		
Libinia dubia H. Milno-Edwards 1834		× ·
Libinia emarginata Leach 1815	Y	x
EIDTITTA Emarginata Leach 1015		~
Phylum Ectoprocta		
Class Gymnolaemata		
Order Ctenostomata		
Alcvonidium polvoum (Hassall 1841)	х	X
Alcvonidium verrilli Osborn 1912	X	X
Alcyonidium mammillatum Alder 1857		X
Alcyonidium sp.	X	
Bowerbankia gracilis Leidy 1855	X	х
Triticella elongata (Osburn 1912)	X	X
Order Cheilostomata	· •	
Membranipora tenuis Desor 1848	X	X
Membranipora tuberculata (Bosc 1802)		X
Conopeum tenuissimum (Canu 1908)	X	х
<u>Conopeum truitti</u> Osburn 1944	X	X
<u>Electra monostachys</u> (Marcus 1938)	Х	X
<u>Cryptosula pallasiana (Moll 1803)</u>		X
<u>Schizoporella errata</u> (Watess 1878)	X	X
<u>Schizoporella biaperta</u> (Michelin 1841-1842)		X
<u>Microporella ciliata</u> (Pallas 1766)		Х
Cribulina punctata (Hassall 1841)	X	

Table VII-1 (cont.)

Grabs Dredges Phylum Echinodermata Class Asteroidea Order Forcipulata <u>Asterias forbesi</u> (Desor 1848) Starfish (juv.) Х х Class Ophiuroidea Order Ophiurida Amphioplus abditus (Verrill) х Х Class Echinoidea Order Diadematoida Arbacia punctulata (Lamarck 1816) Х Order Clypeasteroida Echinarachnius parma (Lamarck 1816) X Class Holothuroidea Order Dendrochirota Thyone briareus (LeSueur 1824) Х

Species by phylum for grabs and dredge hauls

Rh	ynchocoe	ela	<u>Annelida</u> Oligochaeta/ Polychaeta	Mollusca	Arthropoda	Cnidaria	Ectoprocta	Echinodermata	Tubulari	a Porifera
Grabs	3		2/58	22	43	1	11	2	,	3
T0TAL146		• .								
Dredges (same as gra	3 bs)		2/44	19	29	·]	9	1	1	2
TOTAL111										
Additional Species			8	12	15	3*	5*	4*		

T0TAL--158

396

*denotes increases in epifaunal groups

Grab-dredge species comparisons at Station 4

Grab

Dredge

Dominant Species	Biological Index No.	Average No. Individuals	Dominant Species	Biological Index No.	Average RAIV
<u>Tellina agilis</u> <u>Glycera capitata</u> <u>Scoloplos fragilis</u> <u>Ampelisca verrilli</u> <u>Glycera dibranchiata</u> <u>Spiophanes bombyx</u> <u>Mulinia lateralis</u> <u>Nemertea sp.</u>	.98 .87 .77 .78 .68 .60 .55 .51	10.7 4.1 3.4 2.7 1.8 1.2 1.6 1.1	Tellina agilis Neomysis americana Mulinia lateralis Asabellides oculatus Ampelisca verrilli Glycera capitata Scoloplos fragilis Ensis directus	.96 .92 .88 .84 .83 .71 .62 .61	4.5 4.95 4.7 3.65 2.4 2.12 1.2 1.1
Total Species		36	Total Species		53
Colonial		3			
Number of Dominant Spe	ecies	8	Number of Dominant Spe	cies	8
Number of Rare Species		19	Number of Rare Species		26
Average No. Species/Gr	ab	10.7	Average No. Species/Dr	edge	16.0
Average No. Individual	s/Grab	32.6	Average RAIV/Dredge		36.8

Grab-dredge species comparisons at Station 5

	Grab			Dredge	
Dominant Species	Biological Index No.	Average No. Individuals	Dominant Species	Biological Index No.	Average RAIV
<u>Nucula proxima</u> Tellina agilis Ensis directus	1.0 .97 .83	3649.1 42.2 2.9	Nucula proxima Tellina agilis Crangon septemspinosa Neomysis americana Ensis directus Nephtys incisa Mulinia lateralis Yoldia limatula	1.0 .90 .88 .79 .73 .67 .56 .55	6.9 4.4 3.8 3.4 1.9 1.4 1.5 1.3
Total Species		40	Total Species		43
Colonial	•	4			
Number of Dominant Spec	cies	3	Number of Dominant Spec	cies	8
Number of Rare Species		26	Number of Rare Species		25
Average No. Species/Gra	ab	6.9	Average No. Species/Dre	edge	11.7
Average No. Individual:	s/Grab	3701.0	Average RAIV/Dredge		33.6

Grab-dredge species comparisons at Station 3

Grab

Dredge

Dominant Species	Biological Index No.	Average No. Individuals	Dominant Species	Biological Index No.	Average RAIV
Mytilus edulis	.95	245.6	Mytilus edulis	.99	7.0
Mediomastus ambiseta	.90	13.5	Mediomastus ambiseta	.94	5.0
Lysianopsis alba	.85	10.9	Nereis succinea	.93	4.3
Harmothoe extenuata	.82	11.15	Polydora ligni	.93	6.2
Xanthidae sp.	.82	11.5	Harmothoe extenuata	.93	6.3
Polycirrus eximius	.82	4.3	Polycirrus eximius	.90	3.7
Nereis succinea	.73	4.0	Electra monostachys	.86	3.7
Spio setosa	.72	2.4	Lysianopsis alba	.86	3.4
Asabellides oculatus	.70	2.4	Alcyonidium polyoum	.84	3.2
Aricidea cerruti	.62	2.7	Crepidula plana	.78	3.4
Crepidula convexa	.56	1.8	Eteone heteropoda	.77	2.1
Streblospio benèdicti	.52	0.8	Nucula proxima	.75	1.8
			Eumida sanguinea	.75	2.3
		· · · · · · · · · · · · · · · · · · ·	Xanthidae sp.	.74	2.0
			Schizoporella errata	.65	1.3
			Neomysis americana	.89	2.4
			Crangon septemspinosa	.59	1.2
			Membranipora tenuis	.58	1.6
			Conopeum tenuissimum	.50	1.6

Table VII-5 (cont.)

Gi	rab - see - se	· ·		Dredge	
Total Species		85	Total Species		89
Colonial		9			· •
Number of Dominant Species		12	Number of Dominant Species	5	19
Number of Rare Species		31	Number of Rare Species		32
Average No. Species/Grab		25.0	Average No. Species/Dredge	e Haul	33.(
Average No. Individuals/Gral	b	333.0	Average RAIV/Dredge Haul		83.9

Grab-dredge species comparisons at Station 9

Gr	a	b
----	---	---

Dred	ge
------	----

	Biological	Average No.		Biological	Average
Dominant Species	index No.	Individuals	Dominant Species	Index No.	RAIV
Asabellides oculatus	.94	24.7	Hydroides dianthus	.96	7.0
Mediomastus ambiseta	.93	44.4	Unciola serrata	.96	7.0
Nucula proxima	.91	18.7	Corophium simile	.96	7.0
Unciola serrata	.90	78.5	Mytilus edulis	.96	6.9
Heteromastus filiformis	.88	13.8	Eumida sanguinea	.95	6.7
Xanthidae sp.	.85	34.5	Sabellaria vulgaris	.95	6.7
Streblospio benedicti	.85	19.7	Nereis succinea	.93	6.3
Corophium simile	.81	51.0	Xanthidae sp.	.86	5.1
Polycirrus eximius	.80	16.5	Odostomia dianthophila	.83	5.6
Glycinde solitaria	.79	12.1	Lembos smithi	.84	4.3
Marphysa sanguinea	.77	6.3	Harmothoe extenuata	.80	4.5
Nereis succinea	.77	9.5	Polydora ligni	.81	3.8
Hydroides dianthus	.74	61.2	Paraphoxus spinosa	.77	4.6
Neopanope texana sayi	.72	6.6	Erichthonius brasiliens	is .75	3.9
Eumida sanguinea	.69	11.6	Mediomastus ambiseta	.75	3.9
Mercenaria mercenaria	.69	3.8	Elasmopus laevis	.74	3.6
Mytilus edulis	.66	10.1	Cliona celata	.70	4.4
Erichthonius brasiliensi	s .65	5.0	Lepidonotus squamatus	.67	2.6
Tellina agilis	.65	3.1	Oligochaete B	.66	3.2
Lepidonotus squamatus	.59	4.7	Streblospio benedicti	.66	1.8
Sabellaria vulgaris	.58	8.5	Conopeum tenuissimum	.63	2.6
Petricola pholadiformis	.51	1.3	Crepidula plana	.63	2.3
			Asabellides oculatus	.59	1.6
· · · · ·			Microciona prolifera	.57	2.7
			Marphysa sanguinea	.56	2.1
			Alcyonidium polyoum	.55	2.1
			Mitrella lunata	.52	0.95

Table VII-6 (cont.)

Grab			Dredge		
Total Species	•	86	Total Species	91	
Colonial		12		· · · ·	
Number of Dominant Species		22	Number of Dominant Species	27	
Number of Rare Species		31	Number of Rare Species	39	
Average No. Species/Grab		33,3	Average No. Species/Dredge Haul	34.7	
Average No. Individuals/Grab		480.4	Average RAIV/Dredge Haul	125.7	

FIGURE CAPTIONS FOR CHAPTER VII

- Figure VII- 1: Sampling stations for the dredging and grab collections in Delaware Bay. Only Stations 3, 4, 5, and 9 were sampled during this study.
- Figure VII- 2: Sled dredge with 1 m wide opening and 1 mm mesh bag for collecting the samples encased in a protective external net.
- Figure VII- 3: Hard bottom dredge with 1 m wide opening and 1 mm mesh bag for collecting samples encased in a protective external net.
- Figure VII- 4: Modified Menzies dredge with a 1 m wide opening and a 1 mm mesh bag for collecting samples encased in a protective external net.
- Figure VII- 5: Grain-size frequency distribution for the combined 20 sediment samples collected at Station 4 with the Petersen grab.
- Figure VII- 6: The cumulative average number of individuals and the cumulative number of species by category for the 20 replicate grab (0.1 m²) samples at Station 4 (sand).
- Figure VII- 7: The cumulative average number of individuals/0.1 m² for the 20 replicate grab samples of the four most dominant species collected at Station 4 (sand).
- Figure VII- 8: The cumulative percentages of the fauna for the four most dominant species collected in 20 replicate grabs at Station 4 (sand).

Figure VII- 9: The cumulative number of species by category for the 20 replicate dredge hauls at Station 4 (sand).

Figure VII-10: A comparison of the cumulative average number of species per sample for 20 replicate grabs and dredge hauls at Station 4.

Figure VII-11: The cumulative percentages of the fauna of the six most dominant species collected in 20 replicate dredge hauls at Station 4 (sand).

Figure VII-12: Classification dendrogram for grab replicate groupings at Station 4 (sand).

Figure VII-13: Classification dendrogram for dredge replicate groupings at Station 4 (sand).

- Figure VII-14: Grain-size frequency distribution for the combined 20 sediment samples collected at Station 5 with the Petersen grab.
- Figure VII-15: The cumulative average number of individuals and cumulative number of species by category for the 20 replicate grab (0.1 m²) samples at Station 5 (mud).
- Figure VII-16: The cumulative average number of individuals/0.1 m² for the 20 replicate grab samples of the three most dominant species at Station 5 (mud).
- Figure VII-17: Cumulative number of species by categories for the 20 replicate dredge samples at Station 5 (mud).
- Figure VII-18: A comparison of the cumulative number of species per sample for 20 replicate grab and dredge hauls at Station 5.

Figure VII-19: The cumulative percentages of the fauna for the eight most dominant species collected in 20 replicate dredge hauls at Station 5 (mud).

Figure VII-20: Classification dendrogram for grab replicate groupings at Station 5 (mud).

Figure VII-21: Classification dendrogram for dredge replicate groupings at Station 5 (mud).

Figure VII-22: Grain-size frequency distribution for the combined 20 sediment samples collected at Station 3 with a Petersen grab.

Figure VII-23: The cumulative average number of individuals and the cumulative number of species by category for the 20 replicate grabs (0.1 m²) at Station 3 (polymodal).

Figure VII-24: The cumulative average number of individuals/0.1 m² for the 20 replicate grab samples of the five most dominant species collected at Station 3 (polymodal).

Figure VII-25: The cumulative percentages of the fauna for the five most dominant species collected in 20 replicate grabs at Station 3 (polymodal).

Figure VII-26: The cumulative number of species by category for the 20 replicate dredge hauls at Station 3 (polymodal).

Figure VII-27: A comparison of the cumulative average number of species per sample for 20 replicate grab and dredge hauls at Station 3 (polymodal).

Figure VII-28: Classification dendrogram for grab replicate groupings at Station 3.

Figure VII-29: Classification dendrogram for dredge replicate groupings at Station 3.

Figure VII-30: The cumulative average number of individuals/0.1 m² and the cumulative number of species by category for 20 replicate grab samples at Station 9 (serpulid reef).

Figure VII-31: The cumulative average number of individuals/0.1 m² for the 20 replicate grab samples of the six most dominant species at Station 9 (serpulid reef).

Figure VII-32: The cumulative percentages of the fauna for the 8 most dominant species collected in 19 replicate grabs at Station 9 (serpulid reef).

- Figure VII-33: The cumulative number of species by category for the 20 replicate dredge hauls at Station 9 (serpulid reef).
- Figure VII-34: A comparison of the average number of species per sample for 20 replicate grab and dredge hauls at Station 9 (serpulid reef).
- Figure VII-35: Classification dendrogram for grab replicate groupings at Station 9.
- Figure VII-36: Classification dendrogram for dredge replicate groupings at Station 9.

Figure VII-1

Figure VII-2

Figure VII-3

Figure VII-4

للوزر

Figure VII-7

Figure VII-10

417

÷

Lig 1 - 15

Figure VII-15

421

25 C

Figure VII-16

Figure VII-17

Figure VII-20

Figure VII-21

2338 T. 19

Figure VII-22

Figure VII-26

Figure VII-27

*

- 18 1

Figure VII-30

Figure VII-33

Figure VII-36

APPENDIX I

HIERARCHIAL CLUSTER ANALYSIS PROGRAM

This is a hierarchial classification program designed initially for use in numerical taxonomy or ecological assemblage analysis. The body of the program was obtained from Dr. Don Boesch of the Virginia Institute of Marine Science. It was adapted for use on the Burroughs system and then further modified for our specific needs by Ms. Liz Gontarz, Mr. John Gorton, and Mr. Henry Lind. A summary of the concepts employed in this program can be found in Williams, 1971 (Ann. Rev. Ecol. Systematics 2: 303-326).

The input to the program consists of a series of station (sample, OTU, etc.) names, each followed by a listing of species (attributes, character states) codes and their respective quantities. The program generates a dendrogram of similar stations or species following the operational sequence outlined below:

1. The controlling data for the operations that follow are first read. These data are as follows:

a. On the first card:

Columns	Code	Format	Operation
1- 5	MRGLM	Ι5	This is the number of samples (sta- tions) to be considered as one group. This program is set up for MRGLM =] (Note: This value must be right justified).
6-10	ICEN	I5	This specifies the clustering strategy to be used. See later note for values. (This value must be right justified).
11-15	JPAR	15	This specifies the similarity co- efficient to be used. See later note for values. (This value must be right justified).
16-20	LTFORM	I5	This determines whether the data are to be log-transformed before being used in the similarity analyses. If O, abundances are untransformed; if 1, abundances transformed by natural logarithms. Values must be right justified.
21-25	IFLIP	15	This specifies the arrangement of the matrix. If O, rows are species and columns are stations and clustering is by stations. If 1, the matrix is turned 90 degrees and clustering is by species. This value must be right justified.

Columns	Code	Format	Operation
26-30	IDROP	15	This specifies the cut-off level, below which a species will not be allowed to contribute to the forma- tion of clusters. The cut-off level is equivalent to the percent occurrence of a species. If no value is specified, a default value of 10% is used. In this case, any species occurring at 10% or less of the stations is removed from the matrix before the initial similarity matrix is constructed. This value must be right justified.
31-40	BETA	F10.5	This value is a variable to be speci- fied only when flexible clustering is to be used. Its significance will be outlined below.
41-70 b.	ALPHA On the second	5A6 card:	This is an alphanumeric label of the user's choosing which will be printed out as typed.
Columns	Format		Use
1-4	F4.0		X-dimension of plot in inches.
5- 8	F4.0		Y-dimension of plot in inches.
11-46	7А5		Title for Y-axis of plot.
Columns	Format	Use	
----------	--------	---	
78	Il	Leave 0 or blank if plot is desired;	
		enter 1 to suppress the plot.	
79-80	12	Leave blank to use Cal-Comp plotter	
		or to suppress plotter if Column 78	
x		is a 1; enter 09 to get a Tektronix plot.	
	•		

- 2. Special Notes on Controlling Data:
 - a: If JPAR is given a negative value, all data and similarity matrices will be printed.
 - b: If IDROP is given a negative value, only the original data matrix will be printed. If a negative IDROP is used, JPAR must also be negative.
 - c: If IFLIP is given a value of 1, the data matrix will not be printed, but the similarity matrix is still printed.

3. Subroutine SIMARR is called. This subroutine reads the data and computes the similarity matrix on which all further operations are based.

a. The data are arranged on the cards as follows:

Columns	1- 5:	Station name, A format, right justified;
	6-10:	blank;
	11-15:	species code, integer formed, right justified;
•	16-20:	species abundance, integer format, right
		justified.

The remaining species codes and their abundances, using alternate sets of five columns each, are then listed across the card. If further cards are needed, the first ten columns are left blank and the rest of the card is as already indicated.

- b. The data are read and arranged into matrix form according to the value of IFLIP.
- c. The percent occurrence of each species over all stations is computed.
- d. Those species whose percent occurrence is less than or equal to the value of IDROP are then removed from the matrix and the matrix is adjusted accordingly. The species dropped and their percent occurrence are printed for future reference.
- e. The similarity matrix is then computed using the revised data matrix and the similarity coefficient specified by JPAR.

4. Subroutine SEARCH is then called. This subroutine examines the similarity matrix for maximum or minimum values, depending on the attributes of the similarity coefficient used. Only one pair of stations (or species) can be fused at one time.

5. The program now sets up a series of arrays which contain lists of the station (or species) names which have been clustered and the levels at which these clusters occurred. This is used as input to the plotting subroutine SYMDEN.

6. Subroutine REORD is called. This subroutine combines the units clustered into one individual (also referred to as a group) and creates a set of new properties for that individual (group). The basis of this operation is the clustering strategy specified by ICEN.

The algorithm used in this program uses the formula for linear combinatorial strategies developed by Lance and Williams (1967, Computer Journal <u>9</u>: 373-380). This formula has three variables, \measuredangle , B, and Y, which are specified for all clustering strategies except that called "flexible." For this last strategy, a value of B must be specified, and is usually given as -0.25 (B must be between 1.0 and -1.0).

7. If there are more than two station (species) groups left to be clustered, subroutine SEARCH is called. This loop from SEARCH to REORD to SEARCH is used until two station (species) groups remain. The program then joins these last two groups and prints their level of similarity along with the statement "ALL ONE GROUP."

8. Subroutine SYMDEN is then called. This subroutine, obtained from Dr. F. James Rohlf (State University of New York, Stony Brook), contains the instructions needed to plot the dendrogram.

9. Similarity coefficients. This program contains nine similarity coefficients, any one of which can be used in the classification routines by specifying the appropriate JPAR value. These values, their respective coefficients, and a reference source for each are given below.

1 Standard Distance Orloci, L., 1967. J. Ecol. 55:	193-206.
2 Product-Moment Cor-	
relation Any standard statistics text.	4.
3 Fager Fager, E.W., & J.A. McGowan, 1963	•
Science <u>140</u> : 453-460.	
4 Jaccard Orloci, L., 1972. Amer. Midl. Na	t.
<u>88</u> : 28-55.	
5 Sorenson Looman, J., and J.B. Campbell, 19	60.
Ecology <u>41</u> : 409-416.	
6 Webb Unknown.	

JPAR	Coefficient	Source
7	Kenda 11	Looman, J., & J.B. Campbell, 1960.
		Ecology <u>41</u> : 409-416.
8	Czekanowski	Williams, W.T., J.M. Lambert, and
		G.N. Lance, 1966. J. Ecol. <u>54</u> : 427-445.
9	Canberra Metric	Stephenson, W., W.T. Williams,
		and S.D. Cook, 1972. Ecological Monogr. <u>42</u> : 387-415.

10. Sorting Strategies. This program, as indicated previously, has the capability of joining groups by using any one of five sorting strategies, stipulated by the appropriate ICEN value. For a discussion of the properties of these strategies, the following should be consulted: Williams, W.T., 1971, Ann. Rev. Ecol. Systematics 2: 303-326; Stephenson, W., et al., 1972, Ecol. Monogr. <u>42</u>: 387-415; Sneath, P.H.A., and R.R. Sokal, 1973, Numerical Taxonomy, W.H. Freeman & Co. The ICEN values and their respective sorting strategies, are as follows:

ICEN

Strategy

0 or blank	Unweighted pair grouping (group average).
1	Weighted pair grouping (centroid).
2	Nearest neighbor (single linkage).
3	Furthest neighbor (complete linkage).
4	Median grouping.
5	Flexible (B must be specified).

11. Deck Set-up. To run this program through the Burroughs system at the University of Delaware Computing Center, the following card set-up is needed: Work-Flow Language Cards (See computer consultants).

Data Deck

[Control Card for Data (See paragraph 1). [Control Card for Plotting Routine (See paragraph 1). Data Cards (See paragraph 3).

∟ | End Job Card.

FILE: DEN/FXP:PACK == THUPSDAY OCTOBER 2, 1975

05155 bW

```
SRESET FREE
SSET AUTOPIND
FILE 8=FILE8, UNIT=REMOTE
FILE A(TTTLE=SCRATCH,MAXPECSIZE=3,BLOCKSIZE=300,AREASIZE=100,
     1 FLEXIBLE=TRUE, KIND=DISKPACK)
С
      DIMENSION COXXXX(9,5), CENXXX(6,6), Y(45), X(36),
                  SCRAT1(150), SCRAT2(150)
     1
      COMMON IDENT, ICARD, LAT, CON, IDATE, ITIME, JTEMP, ISALN, IDPTH, NTAXA,
             MAGNI, METHD, LINEC, LINUM, IPRT, ICRD, INVST, NN, NSP, JX,
     .
     2
             ANIND, AX(9),
     3
             NMTAX(200,2), INPUT(80), IUSER(30),
     4
             HEADR(30,3), IHD, OUTPU(20), IOUT
      COMMON/DAT/STATN(150), TAXNM(100), NJND(150), RA(100, 150)
      COMMON/ICIU/M(150), KOUN, ICEN
      COMMON/SIM/R(150,150)
      REAL LEVEL (152), LEV (150), LAB (150)
        REAL MIN, MAX
      DIMENSION IXX(100)
      DIMENSION ALPH(5)
      DIMENSION DIS(11175), A(150), B(150), UIST(150), D(150)
      REAL IPR(150), LIPR, L2PR
      DIMENSION MAXER(3)
       DIMENSION LISTS(150, 150), CNT(150), LACT(150)
      EQUIVALENCE (HEADR(1,1), ALPH(1))
      DATA MAXER/10,01,10,331,11,01/
      DATA IDEOF/199991/
      DATAY/
     1 ORLOCCI IS STANDARD DISTANCE
                                        ۱,
     2 PRODUCT MOMENT CORRELATION
     31FAGERIIS
     4'JACCARD!'S
     5'SOPENSENI'S
     61WERRIIS
     7'KENDALL'IS
     8 CZEKANOWSKT 'IS
     9 CANRERRA METRIC
                                        17
      K=0
      NFOUND=0
      DO 198 1=1,9
      DO 198 J=1.5
      K = K + 1
      COXXXX(T,J) = Y(K)
      CONTINUE
 198
      DATA X/
     1 UNWEIGHTED PAIR GROUP (GROUP AVE)
                                               ۲,
     21WEIGHTED PAIR(CENTROID) GROUPING
     3INFAREST NEIGHBOR GPOUPING
     41FURTHEST NEIGHAOR GROUPING
     STHEDTAN GROUPING
     A FLEXIBLE (USING BETA)
                                               11
      1=0
      DO 199 T=1,6
      DO 199 J=1.6
      1=1+1
      CENXXX(I,J)=X(L)
```

```
199 CONTINUE
  989 LINLM=45
      READ(5,1, END=990) MRGLM, ICEN, JPAR, LTEDRM, IFLIP, IDROP, BETA, ALPH
      READ(5,3333)XDTM,YDTM,IXX(1),IXX(2),TXX(3),TXX(4),IXX(5),IXX(6)
 3333 FORMAT (F4.1, F4.1, 2X, 6A6)
   1
      FORMAT(615, F10, 5, 5A6)
      DO 172 1=1.50
  172 LACT(I)=2
      IF(IDROP, EQ. 0) IDROP=10
      IF (MRGLM . GT. 200) GD TO 990
      IPAPEIARS(JPAR)
      NCOFF=1
      IF (TPAR .EQ. 1) NCOFFED
      ICARD=150
 Ĉ
C
     CALL SUBROUTINE TO PRINT AND COMPUTE DATA MATRICES
                                                             AND SIMILARITY
      CALL SIMARR(JPAR, LTFORM, R, IFLIP, IDROP)
      DO 700 JW=1,NSTA
      DO 703 JX=JW+1, NSTA
      CT=CT+1
      DIS(CT)=R(JW,JX)
  703 CONTINUE
      NP=(NSTA*(NSTA=1))/2
C SUBROUTINE CALL MIST AND DEBUG WRITE REMOVED FROM HERE 4/30
  700 CONTINUE
      IF(TDROP, LT, 0) GO TO 990
      NSTENN
  203 FORMAT(1H1)
      DO 201 IKE#1.10
  201 HRITE(6,202)
  202 FORMAT(1HO)
     IF(IFLIP.NE.0) GO TO 950
      WRITE(6,70)ALPH, NST, NSP
   70 FORMAT(23X, CLUSTERING RESULTS USING LINKAGE METHOD1/ 29X, (SOKAL
     1 AND SNEATH 1963) 1//25x, 5A6/28x, 14, 1 SAMPLES 1, 2x, 14, 1 SPECIES 1/)
      GO TO 1399
C
Ĉ
      PRINT OUTPUT HEADINGS
 950
      WRITE(6,71) ALPH
      FORMAT(23X, 1 CLUSTERING RESULTS FLIPPED1, 10X,546)
 71
 1399
       CONTINUE
      11=3
      IF (IPAR ER, 6) IT=2
IF (NCOEF ER, 0)II=1
  300 WRITE(6,302)MAXER(II)
      IF (MAXER(II) EQ. '0.0') TTMAX=0.0
      IF (MAXER(II) FQ. 10.331) TTMAX=0.33
      IF (MAXER(II) ,EO, 11.01) TTMAX=1.0
  302 FORMAT(25X) IMAX VALUE OF SIMILARITY COEFF =1,44)
  305 WRITE(6,307)(CENXXX(ICEN+1,J),J=1,6)
  307 FORMAT (25%, ICLUSTERING STRATEGY IS 1,646)
  220 WRITE(6,310)(COXXXX(IPAR,J),J=1,5)
  310 FORMAT(25%, SIMILARITY COEFFICENT IS 1,5A6)
  200 CONTINUE
      WRITE(6,100)
  100 FORMATCIH1, 15X, IND, GRPS', 24X, CLUSTERS'/ 33X, LEVEL', 6X, IGROUPS
     11, 16X, ISAMPLES INCLUDED1/)
      DO 50 1=1.NST
```

<i>.</i>	50		•		
6 /2		PALL PHODONTINE TO PEADON CIMILADITY WATER	V POD MANTI		1 W 141 (1)
۲ م		CALL SUBROUTINE TO SEARCH SIMILARITY MATRIX	LAPTTV M V	108.08 81.1 AllEcet.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
č		TN THIS VERSION, USE ONLY ONE PAIR AT A 1	TIME, TONN	RING TIFS	-
	26	CALL SEARCH(NN, NCOEF, TOP, T, J)			•
C					
C		NOW HAVE FOUND ROW AND COLUMN WITH MAXIMUM	SIMILARIT	Y VALUES,	NOW
C		CLUSTER FROM I AND J.			
	31	DO 52 IZ=1,150		· •	
	55	IPR(IZ)=0		•	
		KOUN=1			
	61	$\frac{1}{1} \frac{1}{1} \frac{1}$			
	1 70	LECHILLS SEWS 110 101 101			
	170	CANFT #1			
		Lait Awar two			
		LIPR=IDEOF			· · · ,
•		G0 T0 152			
	151	LIPR=STATN(LL)			
		SAVETET			
		I≖LI.			
	152	DO 153 LL=1, NST			
		IF (M(LL) , EQ, J)GO TO 154			
	153	CONTINUE			
		SAVE J = J			
	15/				
	1.3 **				
				· · · · · · · · · · · · · · · · · · ·	
С	11	HIS CODE CPEATES 2 ARRAYS (LAB, LEVEL)			
Ĉ	41	HICH ARE TO BE FED INTO THE DENDOGRAM			
C	P	LOTTING ROUTINE, SMYDEN, LAR IS AN ARRAY	and the second		
C	01	E STATION NAMES ARRANGED IN THE ORDER			
C	T	HAT THEY ARE TO BE PRINTED ALONG ONE AXIS			
C	01	F THE PLOT, LEVEL IS AN ARRAY OF LEVELS			
C	A '	T WHICH FACH STATION JOINS THE REST.			
		IF(NLISTS EQ,0) GD TO 120	:		
L.	81	NACTANO			
<u>.</u>	c	THE AN ACTIVE LIST THEN TEST			
Ģ	ţ.	DO 123 I THEL. NI TRIS			
		NACT1=NACT1+1			
•	142	GO TO (140,141), LACT(NACT1)		*	
	141	NACTI=HACTI+1			1997 - 1997 1997 - 1997 1997 - 1997
	·	GO TO 142		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	140	LIMIT=CNT(NACT1)	1. A.	249) -	4
		TIMIN 123 LIM2=1, LIMIN 00			
		IF (I,EP,LISTS(N4CT1,LIM2)) GO TO 124	•		
	153	CONTINUE			
C	14	D MATCH ON I	- -		
P	L.				х. — г. х.
i,	43/1	教主集中 ASTM AL AND AL	•		
	10.4				

```
159 NAC15=0
    SEE WHETHER J IS IN A LIST ALREADY
C
    FIND AN ACTIVE LIST THEN TEST
C
      DO 127 LJM=1, NLISTS
      NACT2=NACT2+1
  145 GO TO (143,144), LACT (NACT2)
  144 NACT2=NACT2+1
      GO TO 145
  143 LIMIT=CNT(NACT2)
      JIMI1'1=2WF7 LIWIL
      IF(J.ER.LISTS(NACT2.LJM2)) GO TO 128
  127 CONTINUE
Ĉ
    NO MATCH ON J
      MJ=2
  ×
      GO TO 1500
    MATCH ON J
C
  128 MJ=1
    RULES FOR CREATING LISTS
C
C
    1. IF NEITHER HAVE MATCHES SET UP NEW LIST CONTAINING BOTH MEMBERS
Ç
    2. ONE MATCHES # ADD NON#MATCHING ELEMENT TO LIST CONTAINING
C
C
       MATCHING ELEMENT
    3. BOTH MATCH = ADD CONTENTS OF LIST CONTAINING LARGER ELEMENT
C
       TO END OF LIST CONTAINING SMALLER ELEMENT
 1500 IF (MI.EQ.2. AND. MJ.EQ.2) GO TO 129
      IF (MI.EQ.1.AND.MJ.FQ.2) GO TO 130
      IF (MI, ED, 2, AND, MJ, EQ, 1) GO TO 133
      IF (MI,EQ, 1, AND, MJ,EQ, 1) GO TO 131
      GO TO 132
C
       SET UP FIRST LIST
  120 LISTS(1,1)=I
      LISTS(1,2)=J
      LEV(I)=TOP
      LEVIJIETOP
      NLISTS=1
      CNT(1)=2
      LACT(1)=1
      GO TO 150
C
    FOLLOW RULE 1
C
       FIND FIRST INACTIVE LIST
  129 CONTINUE
      NACTEI
  147 GO TO (148,146), LACT(NACT)
  14A NACTENACT+1
      IF (NACT.GT. 50) WRITE(6,175) MI, MJ, NLISTS, LACT, I, J
  175 FORMATC' MI, MJ 1, 213, 10%, 'NO. ACTIVE LISTS ', 15//
     S ' STATUS OF LISTS!/5012//! I.J ',215/Y
      GO TO 147
  146 NLISTS=NLISTS+1
      LISTS(NACT,1)= I.
      LISTS(NACT, 2) = J
      CNT(NACT)=2
      LEV( 1)=TOP
      LEV( J)=TOP
      LACT (NACT)=1
      GO TO 150
    FOLLOW RULE 2
С
  130 CNT(NACT1) = CNT(NACT1)+1
      LISTS(NACT1, CNT(NACT1))= J
```

```
454
```

```
LEV( J)=TOP
       GO TO 150
Ĉ
    FOLLOW RULE 2
  133 CNT(NACT2)=CNT(NACT2)+1
      LISTS(NACT2, CNT(NACT2))= T.
      LEV( I)=TOP
      GO TO 150
C
    FOLLOW RULE 3
  131 CONTINUE
      MMMMM=CNT(NACT1)+CNT(NACT2)
       IF (STATN( I) LT, STATN( J)) GO TO 134
      TX=NACT1
       IY=NACT2
      GO TO 158
  134 IX=NACT2
       IY=NArT1
  158 ISTPT=CNT(IX)+1
      LEV(LISTS(JY,1))=TOP
      10=1
      DO 135 LOOP=TSTRT. HMMM
      LISTS(IX, LOOP)=LISTS(IY, LO)
      LISTS(IY, LQ)=0
      10=10+1
  135 CONTINUE
      CNT(IY)=0
      CNT(TX)=MMMM
      NLISTS=NLISTS=1
      LACT(IY)=2
      GO TO 150
  132 WRITE (6, 157) I. J
  157 FORMAT(1X, COMBO OF J=1, T3, 1 AND J=1, T3, 1 FELL THRU RULES FOR C
     BREATING LISTS !!
      CALL EXIT
  150 CONTINUE
Ĉ
Ĉ
     NOW MUST SET UP IDENTITIES OF NEW INDIVIDUALS(CLUSTERS)
C
      COMPUTE NEW SIMILARTTY INDEX
      I=SAVF1
      J=SAVEJ
   55 CALL REDRO(NN, NSP, NST, BETA, I, J)
      DO 16 K=1.NST
      IF (M(K) .NE. I)GO TO 16
   22 IPR(KOUN)=STATN(K)
      KOUM=KOUN+1
   16 CONTINUE
      KOUN=1
Ç
C
      THE VAPIDUS FORMAT STATEMENTS ARE INCLUDED FOR NUMERIC OR ALPHA
C
      DUTPHT
      IE (IFLIP ,NE, 0) GO TO 960
      WRITE(6,18)KNGR, TOP, LJPR, L2PR, (IPR(L), L=1, KOUN)
   18 FORMAT(/15x, 15, 10x, F8, 4, 1x, A6, 1 AND1, A6, 4x, 10(A6, 1, 1)/(57x, 10(A6
     1,1,1)))
      GO TO 961
      WRITE(6,918) KNGR, TOP,LIPR,L2PR,(IPP(L),L=1,KOUN)
  960
 91A
     FORMAT(/15X, T5, 10X, F8, 4, 1X, 16, ' AND ', 16, 4X, 10(16, 1, 1)/(57X, 10(16
     1, 1, 1)))
     IF (NN, GE, 2) GO TO 26
 961
```

```
25 WRITE(6,27)TOP
  27 FORMAT(/19X, 111, 10X, F8.4, 19X, 1ALL ONE GROUPI)
     NACT=1
165 GO TO (162,163), LACT (NACT)
163 NACTENACT+1
     GO TO 165
165 CONTINUE
     NS=CNT(NACT)
     DO 167 1=1.NS
     JP=LISTS(NACT, I)
     LAB(I)=STATN(JP)
     LEVEL(I)=LEV(JP)
 167 CONTINUE
     GO TO 989
1880 CONTINUE
     GO TO 989
990 WRITE(6,28)
  28 FORMAT(4H1END)
     MINELEV(NST)
     MAX=LEV(1)
     CALL PLISRT ( HEAD - 9)
      WRITE(6, 98)
  98 FORMAT(1X, HAVE REACHED PLOTTING ROUTINE!)
     CALL SYMDEN (NST, LAB, LEVEL, SCRAT), SCRAT2, MIN, MAX, XDIM, YDIM, IXX
    * , TTMAX)
     CALL PLOT(0.0,=9)
     STOP
     END
     SUBROUTINE SIMARR(IPAR, JSELC, R, IFLIP, JOROP)
   THIS
         SUBROUTINE READS THE DATA AND PERFORMS HOUSEKEEPING ON IT,
      AND PRINTS IN MATRIX FORMAT.
                                     THEN IT CALCULATES SIMILATIRY INCIÓ
      CZEKANOWSKI, FAGER, JACCARD, SORENSON, WEBB, KENDALL, AND DRLOCIT
      STANDARD DISTANCE AND PRODUCT MOMENT CORRELTION.
     REAL KEDJA
     COMMON IDENT, ICARD, LAT, LON, IDATE, ITIME, ITEMP, ISALN, IDPTH, NTAXA
     COMMON MAGNI, METHD, LINEC, LINEM, IPRT, ICRD, INVST, NSTA, NSPEC, JX
     COMMON ANINO, AX(9)
     COMMON NMTAX(200,2), INPUT(80), IUSR(30)
     COMMON/DAT/STATN(150), TAXNM(100), NIND(150), ICNT(100, 150)
     DIMENSION SM(9)
     DIMENSION LIME (100), STN(150, 150), CHNG(150)
     DIMENSIONNNOC(150), IPOC(150)
     DIMENSION HDR(2)
     DIMENSION TAX(7), ABUND(7)
     DIMENSION R(ICARD, ICARD)
     DIMENSION RENUM(200)
     DIMENSION NUM(200), TAG(200), SHUFFL (200), CROSS(150, 175)
     EQUIVALENCE(SM(1),SD),(SM(2),PM),(SM(3),FA),(SM(4),JA),(SM(5),SD),
                 (SM(6), WE), (SM(7), KE), (SM(8), CZ), (SM(9), CM)
     DATA HDR/1 UN1, LOG1/
     DATA IDEOF/199991/, ISHT/0/
     DATA LIM/100/
     DATA DUM/1 1/
     ISELC=IABS(JSELC)
     05 OT 00
     ENTRY SIMIL(JSELC)
```

C C

C

Ċ

С

С

```
ISFLC=IABS(JSFLC)
      GO TO 10
      FNTPY DATARR
      ISFLC==1
   10 IPA9=0
   20 CONTINUE
      JDROP=ABS(JDROP)
      DO 1500 I=1,150
      DO 1500 J=1,150
      STN(J,J)='
 1500 CONTINUE
      NSTA=1
      NSPEC=1
C
C
      THE FOLLOWING ROUTINE READS THE DATA AND ARRANGES THE ORIGINAL
                                                                            ٨f
С
      THE NORMAL OR FLIPPED CONFIGURATION.
      READ(5,602) STA, (TAX(I), ABUND(I), I=1,7)
  602 FORMAT(C5,5X,1415)
      STARCONCAT(STA, DUM; 47, 47, 8)
      STATN(1)=STA
       SHUFFL(1)=TAX(1)
      NIND(NSTA)=NIND(NSTA)+1
      ICNT(1,1) = ABUND(1)
      NUM(1)=ARIIND(1)
      CROSS.(1,1)=1
      WRITE(6,9037) STA
 9037 FORMAT(1X, 1XXX1, A6)
      M=2
 8006 DD 8000 J=M.7
      IF (AHUND (J) ER. 0) GO TO 8009
      NIND(NSTA)=NIND(NSTA)+1
      DC 8001 1=1, NSPEC
      IF (TAX(J).NE. SHUFFL(I)) GO TO 8001
      GO TO 8050
 8001 CONTINUE
      NSPEC=NSPEC+1
      SHUFFL(NSPEC)=TAX(J)
      WRITE (6,623) NSTA, I, ABUND (J)
  623 FORMAT(1X,315)
 8050 WRITE (1) NSTA, I, ABUND(J)
      CROSS(NSTA, I)=CROSS(NSTA, I)+1
 8000 CONTINUE
 8009 READ(5,602,END=8005) STA,(TAX(I),ABUND(I),I=1,7)
      STA=CONCAT(STA, DUM, 47, 47, 8)
      Ment
      IF (STA.IS.'
                          ') GO TO 8006
      NSTA=NSTA+1
      STATN (NSTA)=STA
                                                                       ÷.
      WRITE(6,9037) STA
      GO TO 8006
C
C
    TEST EACH SPECIES TO SEE THAT IT OCCURS IN MORE THAN IDROP % OF THE
C
 8005 NRSPEC=0
       WRITE(6, 1930) IDROP
      DO ROIG IS1, NSPEC
      SUM=0.
      DD 9077 J=1, HSTA
```

```
SUM=SUM+CROSS(J,I)
 9077 CONTINUE
      PERCE(SUM/NSTA)+100.
      IF (PERC.GT.IDROP) GO TO 8007
      TAG(I)=2
      WRITE(6,8003) SHUFFL(1), PERC
 8003 FORMATCI SPECIES 1,15,1 DROPPED1,5X,F5,0,1 PERCENTI)
      GO TO 8016
С
С
    STORES NAMES, COUNTS OF SPECIES NOT DROPPED
С
 8007 TAG(I)=1
      NRSPEC=NRSPEC+1
      TAXNM(NRSPEC)=SHUFFL(1)
   RENUM (I)=NRSPEC
 8016 CONTTNUE
      NSPEC=NRSPEC
      REWIND 1
 8011 CONTINUE
      READ(1, END=300) NSTA, CRIT, KOUNT
      I=RENUM(CRIT)
      GO TO (8010,8011), TAG(CRIT)
 8010 CONTINUE
      GO TO (8014,8015), IFLIP+1
C
   IFLIP=0
 8014 ICNT(I, NSTA)=ICNT(I, NSTA)+KOUNT
      GO TO 8011
   1FL TPS1
C
 8015 ICNT(NSTA, I)=ICNT(NSTA, I)+KOUNT
      GO TO 8011
C
Ĉ
      THE FOLLOWING ROUTINE REORDERS THE SPECIES AND STAION LABES IN THE
C
      05
          A FLIP COMMAND.
      IF(IFLIP, EQ. 0) GO TO 1931
 300
      00 1950 J=1,NSPEC
      CHNG(J)=TAXNM(J)
 1950
      CONTINUE
      DO 1953 JJ=1.NSTA
      TAXNM(JJ)=STATN(JJ)
 1953
       CONTINUE
      DO 1952 J=1, NSPEC
      STATN(J)=CHNG(J)
 1952 CONTINUE
 1900 NS=NSPEC
      NTENSTA
      NSTAENS
      NSPEC=NT
        GO TO 1310
 1931
       CONTINUE
C
¢
      THE FOLLOWING ROUTINE
                               PRINTS THEE DATA AS READ FROM THE CARDS AND
C
      ED IN A MATRIX FORM
      IF (TPAR. GT. 0) GO TO 1310
      WRITE(6,1210)
      D01206 K=1, NSPEC, 10
      DO 1206 K=1, NSPEC, 10
      M=K+9
      IF (M.GT.NSPEC) M=NSPEC
                                    458
```

```
WRITE(6, 1216) (TAXNM(L), LEK, M)
 1216 FORMAT(/20X, 10110)
    . DO 1205 IS1.NSTA
      WRITE(6,1203) STATM(I),(ICNT(J,I),J=K,M)
 1203 FORMAT(/5X, A6, 9X, 10110)
 1205 CONTINUE
      WRITE(6,1210)
 1210 FORMAT(1H1)
 1206 CONTINUE
 1310 LL=0
 1930 FORMAT(//! CUTOFF LEVEL FOR OMISSION IS LESS THAN OR EQUAL TO !.
     1 15, PERCENT OCCURRANCE!)
 1301 IF(TPAR.GT.0) GO TO 1300.
      IF (IDROP.LT.O) GO TO 900
      IF (IFLIP, NE. 0) GO TO 1300
      WRITE (6,1210)
      WRITE(6,1226)
 1226 FORMAT(! THE FOLLOWING SPECIES WERE FOUND AT THE STATIONS LISTED!)
      DO 1227 N=1, NSPEC, 10
      M=N+9
      IF (M. GT. NSPEC) M=NSPEC
       WRITE(6,1217) (TAXNM(L),L=N,M)
      WRITE(6.2218)(NNOC(L),L=N,M)
 2218 FORMAT(/ NO. OF OCCURRANCES 1,10110)
      WRITF(6,1899) (IPOC(L),L=N,M)
 1899 FORMAT(' PERCENT OCCURRANCE. 1,2X,10110///)
 1217 FORMAT(20X, 10110)
      DO 1229 L=1,LL
      WRITE(6,1250) (STN(K,L),K=N,M)
      FORMAT(/20X,10A10)
 1250
 1550 CONTINUE
      WRITE(6,1210)
 1552 CONTINUE
С
      THE FOLLOWING ROUTINE SCANS THE REVISED MATRIX AND LISTS THE STATE
C
      EACH SPECIES WHICH WAS FOUND AT IT.
      LLan
      DO 1599 J=1,150
      DO 1599 L=1,150
      STN(J,L)=0
 1599 CONTINUE
      DO 1230 J=1, NSTA
      L = 0
      DO 1235 K=1, NSPEC
      IF (ICNT(K, J), EQ. 0) GO TO 1235
      L=L+1
      STN(J,L)=TAXNM(K)
      IF(L.GT.LL) LL=LL+1
 1235 CONTINUE
 1230 CONTINUE
      WRITE (6,1236)
 1236 FORMATCE 1, FITHE FOLLOWING STATIONS CONTAINED THE SPECIES LISTEDED
      DO 1237 J=1, NSTA, 10
      M=J+9
      IF (M.GT.NS.TA) M=NS.TA
      WRITE(6,1251)(STATN(K),K=J,M)
 1251 FORMAT(/20X,10A10///)
      DO 1239 L=1,LL
```

```
WRITE(6,1216) (STN(JJ,L),JJ=J,M)
 1239 CONTINUE
      WRITE(6,1210)
 1237 CONTINUE
 1300 IF(ISELC.LT.0) GO TO 900
      LINEC=LINLM
      SENSPEC
      K=NSTA=1
      DO 700 I=1,K
      IF (IPAR .GT. 0)GO TO 375
      WRITE(6
                 ,351)
  351 FORMAT(101)
      LINEC=LINEC+2
      IF (K-1 .GT. 20)LINEC=LINLM
C
С
      BELOW, COUNT CONDCCURRING SPECIES BETWEEN TWO STATIONS. CALL ITIC!
C
    ALSO COMPUTE ABUNDANCE COMPARISONS FOR CZEKANOWSI'S MEASURE.
С
    ALSO COMPUTE ABUNDANCE MEASURES FOR STANDARD DISTANCE AND PRODUCT.
C
    MOMENT CORRELATION.
  375 L=1+1
      DO 700 JEL, NSTA
      10=01
      01F=0.0
      SUMEODO
      COM=0.0
      AVEA=NIND(I)
      AVEA=AVEA/S
      AVEB=NIND(J)
      AVEB=AVEB/S
      RMSAED.0
      RMSE=0.0
      SDSUME0.0
      SSA=0.0
      $$B=0,0
      SS=0,0
      NTAXA=0
      NTAXBEO
      DD 450 N=1,NSPEC
      IF (ISELC .GT.O) GO TO 420
      X = ICNT(N, I)
      Y=ICNT(N,J)
      GO TO 430
  420 ISELC=1
      X=ALOG(FLOAT(ICNT(N,I)+1))
      Y=ALOG(FLOAT(ICNT(N,J)+1))
  430 RMSA=RMSA+X**2
      RMSB=RMSB+Y**2
      SDSUM=SDSUM+X*Y
      SA=X=AVEA
      SB=Y=AVEB
      SSA=SSA+SA**2
      $$B=$$B+$B**2
      SS=SS+SA*SB
      ABSXY=ABS(X=Y)
      XPLUSY=X+Y
      IF (XPLUSY ,GT, 0)COM=COM+ABSXY/XPLUSY
      DIF=DIF+ABSXY
      SUM=SUM+XPLUSY
```

```
JTEST=YAID.0
     ITEST=X+10.0
     IF (ITEST , NF. D) ITEST=1
     IF (JTEST .NF. 0) JTEST=1
     NTAXA=NTAXA+ITEST
     NTAYRENTAYR+ ITEST
     IC=IC+ITEST*JTEST
 450 CONTINUE
     RMS=SQRT(PMSA) + SQRT(RMSR)
     IF (NTAXA*NTAXB .NE. 0)GO TO 475
     DO 465 N=2.9.
 465 SM(N)=0.0
     SD=1.0
     GO TO 485
 475 A=MIND(NTAXA, NTAXB)
     B=MAXO(NTAXA,NTAXB)
     Carc
     PM=SS/SORT(SSA+SSR)
     SD=1.0=(SDSUM/RMS)
     CM = 1.0 - COM/(A + B - C)
     CZ=1.0-DIF/SUM
     JASC/(A+B+C)
     FA=C/SORT(A+B)+(.0/(2.0+SORT(B))
     WE=C/(A+B+C)
     S0=2.0+C/(4+B)
     IF(IFLIP.NE.0) GO TO 901
     IF (IPAR.NE.7) GO TO 901
     KE=(C \times (S = A = B + C) = (A = C) \times (B = C))/SORT(A \times (S = A) \times B \times (S = B))
     GO TO 485
      KF=1.0
901
 485 IF (IPAP ,GT, 0)GO TO 600
     IF (LINEC-LINLM) 550, 500, 500
     IF (TELTP. NE. 0) GO TO 1888
500
     WRITF16
               ,505) NSPEC, NSTA, HDR (ISELC+1)
505 FORMAT(1H1,5X, SIMILARITY MEASHRES, 14X, THERE ARE ', 14, SPECTES
    +IN 1,13,1STATIONS1,10X,A3,1.TRANSFORMED ABUNDANCE1)
     GO TO 1887
1888 WRITE(6,505) NSTA, NSPEC, HDR(ISELC+1)
              ,507)
1887 WRITE(6
507 FORMAT(1H0, 2X.
    1'STATIONS
                   NUMBER OF TAXA FAGER
                                              JACCARD SORENSON
                                                                      KENDALL
    2
          NFAA
                 CZEKANOWSKI CANBERRA STANDRD PRODUCT! / 3X.
                                                      DISTANCE
    310
                       SHARED' 62X, 'METRIC
                                                                MOMENT! /
              9
         111X, 'CORREL. 1 /)
    11
     LINEC=6
550
     IF (TELIP, NE. 0) GO TO 601
     WRITE(6 ..., 555) STATN(I), STATN(J), NTAXA, NTAXB, IC, FA, JA, SD, KE, WE, CZ.
                        CM, SO. PM
     LINEC=LINEC+1
555
     FORMAT(1H , A6, 1, 1, A6, 3X, 14, 1, 1, 13, 14, 9F10, 4)
     GO TO 1602
601
     WRITF(6,556) STATN(T), STATN(J), NTAXA, NTAXB, IC, FA, JA, SO, KE, WE, CZ,
    1 CM. SD. PM
556
     FORMAT(1H, 16, 1, 1, 16, 3X, 14, 1, 13, 14, 0F10, 4)
     LINECELINEC+1
1602
     IF (JPAR.EQ.0) GO TO 700
600 NEIABS(JPAR)
     R(I,J) = SM(N)
```

```
R(J, I) = SM(N)
      R(1,1)=1.0
  700 CONTINUE
  900 LINEC=LINLM-
      RETURN
      FND
      SUBROUTINE REORD (NN, NSP, NST, BETA, I, J)
C
     THIS ROUTINE REORDERS DATA MATRIX AND COMPUTES THE PROPERTIES OF NE
C
     INDIVIDUAL ( A CLUSTER) FORMED DURING THE LAS CYCLE
C
    ICEN CONTROLS THE COMPUTIATION OF THE VALUES FOR EACH PROPERTY.
      COMMON/ICLU/M(150), KOUN, ICEN
      COMMON/SIM/R(150,150)
      IF((6.ICEN)*ICEN LE. 0)GO TO 150
      ALPHAI:0.5
 .
      GO TO (10,20,30,40,50), ICEN
   10 BETA=0.0
      GO TO 60
   20 BETA=0.0
      GAMMA==0.5
      GO TO 65
   30 BETA=0.0
      GAMMA= 5
      GO TO 65
  40
       BETA==0.25
      GO TO 60
C
    BETA IS AN ARGUMENT FOR THE FLEXIBLE STRATEGY.
   50 IF (BETA .GT. 1.0) BETA=1.0
      ALPHAI=ALPHAI=(BETA/2.0)
   60 GAMMA=0.0
   65 ALPHAJ=ALPHAI
      GO TO 155
  150 BETA=0.0
      GAMMA=0.0
      K1=0
      K2=0
      DO 151 LU=1,NST
      IF (MCLU) "EQ. T)K1=K1+1
      IF (M(LU) .EQ. J)K2=K2+1
  151 CONTINUE
      ALPHAJ=FLOAT(K1)/FLOAT(K1+K2)
      ALPHAJ=FLOAT(K2)/FLOAT(K1+K2)
  155 CONTINUE
      BETEMP=BETA*R(I,J)
      DO 102 K=1,NN
      ASR(I,K)
      B=R(J,K)
      R(I,K)=ALPHAI*A+ALPHAJ*B+BETEMP+GAMMA*ABS(A=B)
      R(K,I) = R(I,K)
  102 CONTINUE
      NUTS=NN=1
      IF (J GT, NUTS)GO TO 108
      ISW=1
      ASSIGN 200 TO ITRAP
  175 DO 250 L=J, MUTS
      DO 250 K=1,NN
      GO TO ITRAP, (200,225)
 200
      R(K,L)=R(K,L+1)
      GO TO 250
```

```
225
      R(1,K)=R(1+1,K)
  250 CONTINUE
      IF (ISW , ME, 1)GO TO 108
      ASSIGN 225 TO ITRAP
      ISM=2
      GO TO 175
  108 DO 105 L=1, NST
      IF (M(L) .ER. J)M(L)=I
      IF (M(L) ,GT, J) M(L)=M(L)=1
  105 CONTINUE
      NNSHNe 1
      RETURN
      END
      SUBROUTINE SEARCH (N, MCOEF, TOP, II, JJ)
С
Ĉ
    THIS ROUTINE SEARCHES SIMILARITY MATRIX(S) FOR MAXIMUM OR MINIMUM
C
    VALUE, DEPENDING ON VALUE OF NOOEF. THE RESULT OF SEARCH IS TOP.
      COMMON/SIM/S(150,150)
      TOP = S(1, 2)
      11=1
      JJ=2
      IF (NCOEF FR. 0)GO TO 2
      NUT=N=1
      DO 4 J=1.NUT
      IMP=T+1
      DO 4 JEIMP, N
      IF (TOP ,GE, S(I,J))GO TO 4
      TOP = S(I, j)
      II=1
      JJEJ
    4 CONTINUE
      RETURN
    2 NUT=N=1
      DO. 7 1=1, NUT
      IMP=[+1
      DO 7 JEIMP, N
      IF (TOP LE. S(I, J))GO TO 7
      TOP = S(1, 2)
      IISI
      JJ=J
    7 CONTINUE
      RETURN.
       FND
      SUBROUTINE SYMDEN(N, LAR, LEV, XC, YC, YMTN, YMAX, XDIM, YDIM, IXX
     * , TTMAX)
C
 N
       # NUMBER OF OBJECTS
C LAB
         = LIST OF OBJECT LABELS(OF LENGTH N)
CLEV
         = = LIST OF CLUSTERING LEVELS(N=1 NUMBERS AUT LEV(N) US USED)
C **NOTE LEV IS DESTROYED BY THIS PROGRAM
C
        SCRATCH ARRAY TO HOLD X-COORDINATES
 XC
C
 YC
        = SCRATCH ARRAY TO HOLD Y.COORDINATES
  MIN
         # VALUE OF VARIABLE CIRRESPONDING TO THE LEAST SIMILARITY
C
C XDIM = THE X LENGTH OF THE PLOT
C YDIM = JHE Y LENGTH OF THE PLOT
C IXX = THE LIST TO BE PRINTED ON THE AXIS
  TTMAX= MAX VALUE OF SIMILARITY COEFE= USED IN PRINTING AXIS
C
      REAL NUM (152)
      REAL LAB(N), LEV(152), XC(N), YC(N)
```

```
DIMENSION IXX(100)
      YMIN=1000000
      YMAX==10000000
      DO 81 1=1.N
      TE (LEV(I) GT. YMAX)YMAX=LEV(T)
      IF (LEV(I) .LE.YMIN)YMIN=LEV(I)
   RI
        CONTINUE
      RMAXSYMAX
      RMINEYMIN
      WRITE(6,31)(LEV(I), I=1,N)
      WRITE(6,32)(LAB(T), T=1, N)
      FORMAT(1X, 20(A6))
   32
   31 FORMAT(1X, 20F6.4)
 75 FORMAT( | MAX=1, F4, 2, 1
                              MTN =1.F4.21
      DO 401 1=1.N
 401
      NUM(T)=T
      IF(XDIM.EG.0) XDIM=8.5
      IF (YDIN .EQ. 0) YDIN=5.0
      FACT=YDIMm.6
       CALL FACTOR (FACT)
      DX=XDIM/(FACT*(N+3))
      00 39 I=1, N=1
   39 LEV(I)=LEV(I+1)
       IEV(N)=YMTN
   41 YRANGE=YMAX ... YMIN
      YHIGH==1.
C FOR EACH OBJECT DRAW A VERTICAL LINE AND LABEL
      DO 100 IC=1.N
      C=IC*DX
      Y=LEV(IC)
       Y=(Y=YMIN)/YRANGE
       LEV(IC)=Y
C HEIGHT = CURRENT LEV OR PREVIOUS (WHICHEVER IS THE LARGEST)
      IF(Y.GT.YHIGH) YHIGH=Y
      CALL PLOT(C, YHIGH, 3)
       CALL PLOT(C.1.,2)
       CALL SYMBON (C. 1., 1/(10*FACT), AB(TC), 90.6)
       XC(IC)=C
      YC(IC)=YHIGH
      YHIGH=Y
 100
      CONTINUE
      CALL FACTOR(1)
      IF (TTMAX .EQ.1)
     *CALL AXIS((N+4)*DX*FACT=,5,0,IXX,=36,FACT,90,
     *RMIN, (RMAX#RMIN)/FACT)
      IF (TTMAX .EQ.0)
     *CALL AXIS((N+4) + DX+FACT+, 5,0, TXX, = 36, FACT, 90,
     *RMAX, #1*(RMAX=RMIN)/FACT)
      CALL FACTOR (FACT)
C DRAW THE REST OF THE DENDROGRAM
      ISTART=1
      X=0.
      LEV(N+1)=0
      XC(N+1)=0
      YC(N+1)=.1
  150 NM1=N
      DO 200 ISTART, NM1
      IC=I
```

```
IF (LEV(I), GE, LEV(I+1)) GO TO 230
200
        CONTINUE
      Y=YC(TC)
230
C DRAW HORIZONTAL LINE
      JF(X.EQ.XC(JC+1)) GO TO 240
      IF (XC(IC).E0.0) GO TO 38
      CALL PLOT(XC(IC), Y, 3)
      IF (XC(I+1), EQ.0) GO TO 38
      CALL PLOT(XC(IC+1), Y.2)
      GO TO 250
      IF (XC(IC).E0.0) GO TO 38
  S40 CALL PLOT(XC(IC), Y.S)
C DRAW VERTICAL LINE AT CENTER OF HORIZONTAL LINE
 250
     x = (xC(IC) + xC(IC+1))/2.
      XC(TC+1)=X
      IF (X,EQ, 0) GO TO 38
      CALL PLOT(X,Y,3)
      Y=LEV(IC+1)
      IF(IC-1.EQ.0) GO TO 25
       IF (TC, GT, ISTART, AND, LEV(IC=1), GT, Y)Y=LEV(IC=1)
 25 YC(IC+1)=Y
      IF (X.ED.0) GO TO 38
      CALL PLOT(X,Y,2)
      IF (Y,E0, +,1) GO TO 38
C DELETE ENTRY IC AND SLOSE UP SPACE
      ISTART=ISTART+1
      IF(IC.LT.(ISTART))GO TO 350
      DO 300 IFISTART.IC
      II=IC=I+ISTART
      LEV(II)=LEV(II+1)
      XC(JI)=XC(II+1)
      YC(II)=YC(II=1)
      CONTINUE
300
C LOOP PACK UP IF NOT DONE
 350 IF(ISTART LE. (NM1)) GO TO 150
  38 CALL PLOT((N+4) * DX+3/FACT,0,3)
       RETURN
      END
```


APPENDIX II

CHARACTERISTICS OF SEDIMENT GROUPINGS IN DELAWARE BAY

A-2: Moderately to Moderately Well-Sorted Coarse Sand

The sediments within this classification were among the coarsest found within the bay. Sands of this grain size were most likely transported as bed load material (Allen, 1965). Skewness varied from very coarse to very fine skewed, indicating areas of both erosion and deposition.

The coarse skewed stations (1-5, 1-6, and 1-9) on the shoulders of Middle and Prissy Wicks Shoals near the mouth of the bay were indicative of strong tidal current erosion. The two strongly coarse skewed stations (7-3 and 23-4) within the bay area were bimodal. The major medium sand mode was coupled with a smaller very coarse sand mode to produce a deceptive numerical skewness value. The medium sand mode in Station 7-3 was derived from the Lower Middle Shoal and mixed with the coarse sand present in the depression. Bimodal Station 23-4 off Ben Davis Point was a mixture of medium sand (similar to adjacent station 23-5) and very coarse sand similar to Station 24-5.

Station 4-4 occurred in deep water within the Big Stone Anchorage area. The strongly fine skewed sediment indicated an area of deposition (adjacent stations are also fine skewed).

The remaining stations in the classification (2-1, 9-7, 14-7, 19-6, 21-7, 21-8, and 24-5) were found in shallow waters around the perimeter of the bay. Skewness values ranged from +0.112 to -0.110 and did not indicate any significant erosions or depositional trends.

A-3: Poorly Sorted Coarse Sand

The sediments within this group were similar to A-2. In general they contain more gravel than A-2 and were not as well sorted. They were found in deeper waters where tidal currents had less effect and waves were less able to sort the sediments.

Six of the 15 stations in this group occurred at the mouth of the bay in the deep channel to the Anchorage area. The only three fine skewed stations (1-1, 2-1B, and 2-2) as well as one near symmetrical (14-4) and two strongly coarse skewed stations (14-3 and 15-3) occurred in the channel. There was no apparent pattern to the skewness values and they probably related to local erosion and deposition within the deep channel.

Two coarse skewed stations (1-8 and 14-9) were located in Bay Shore Channel. These were near the mouth of the bay and were probably subjected to erosion by tidal currents.

Three stations in the main shipping channel were subjected to various erosional forces including dredging. Stations 7-6 and 20-5, located adjacent to Miah Maull Shoal Light, and Station 10-5, adjacent to Cross Ledge Light, were all coarse skewed.

The remaining stations (8-9, 10-7, 22-7, and 25-2) were located around the perimeter of the bay and had skewness ranges from near symmetrical to strongly coarse.

B-1: Well Sorted Medium to Fine Sand

These sediment stations were found on shoals or in shallow water. These sands are easily erodible and are transported as bed load material. Being in shallow water, they are likely to be sorted and winnowed by both tidal currents and wave action. Five stations were located along the Lower Middle and Brown Shoals down the middle of the bay (3-4, 4-5, 16-5B, 17-4, and 20-3). In addition, one station (1-7) occurred on Middle Shoal at the mouth of the bay. These were near symmetrical to fine skewed deposits. They were very susceptible to erosion and redeposition.

The remaining four stations were found in shallow near-shore waters. Among these was the one coarse skewed station (18-1) off Big Stone Beach. The other three stations (8-8, 20-7, and 23-5) had grain size distributions that are near-symmetrical.

B-2: Moderately to Moderately Well Sorted Medium to Fine Sand

Sediments in this group were in the same size range as B-1, but were not as well sorted and are found in somewhat deeper water. These sediments are easily erodible and are carried as bed load material on the shoulders of some of the shoals.

Stations 3-6 and 15-5 were fine skewed sediments deposited adjacent to Crow Shoal. Stations 4-3 and 16-4 were very fine skewed sediments deposited on the shoulder of Old Bare Shoal. The three remaining fine skewed stations (6-6, 7-7, and 19-5) were adjacent to Miah Maull Shoal. All these stations had sediments which are deposited by the tidal currents. Station 1-4 adjacent to Overfalls Shoal and Station 21-6 on the edge of Cross Ledge had near symmetrical grain size distributions. Two additional near symmetrical stations (5-5 and 17-5) occurred in the shipping channel adjacent to Brandywine Shoal. With the tidal currents occurring at these stations, the skewness values probably signified areas of active erosion and redeposition.

Station 3-5 adjacent to Brown Shoal was the only coarse skewed station associated with a shoal deposit. Its size distribution indicated that the finer shoal sands are being added to the coarser sands in the deep water adjacent to the shoal. Station 23-3 was a coarse skewed deposit in the main channel in the upper part of the bay. Stations 15-1, 20-8, and 24-1 were near symmetrical and coarse skewed sediments in shallow water near the shore.

B-3: Poorly Sorted Medium to Fine Sand

Sediments in this group were in the same size range and had similar transport characteristics as groups B-1 and B-2. The majority of these stations occurred in deep water with eight stations in the main shipping channels and five in the channel to Big Stone Anchorage. The stations in this group were near symmetrical to strongly fine skewed.

The lower bay main channel stations (2-3, 2-3B, 15-4, and 16-6) had near symmetrical size distributions while Station 4-6, in the channel adjacent to Brandywine Shoal, was fine skewed. The stations in the channel adjacent to Miah Maull Shoal were of mixed skewness with 19-4 and 21-5 being fine skewed and 8-6 near symmetrical. With the periodic dredging operations in the upper part of the channel it was difficult to ascribe any significance to the skewness values. There were no erosional or depositional trends in the lower bay channels.

The five anchorage channel stations (3-3, 5-3, 16-5A, 17-3, and 18-3) became increasingly more fine skewed moving toward the head of this channel. The three strongly fine skewed stations at the top of the channel indicated that this was a depositional area with the sediments probably being carried up the channel as bed load material.

The four remaining stations (3-1, 11-1, 11-7, and 26-4) were scattered around the perimeter of the bay.

B-4: Very Poorly Sorted Medium to Fine Sand

Only five stations were represented under this classification. While similar to B-3, they were much more poorly sorted and they contained up to 10% gravel.

Station 1-2 was a gravelly muddy medium sand (Folk, 1968) in a deep channel at the mouth of the bay. The fine skewed grain size distribution was attributed to the quantity of mud present in the sample.

Station 10-3, the coarse skewed sample in this group, was a gravelly muddy fine sand. This station appeared to have a fine sand mode derived from Joe Flogger Shoal mixed with a sand and gravel stratum. Since the station was in a channel adjacent to the shoal, the area was quiet enough to allow mud to settle out also.

Station 12-2 was a gravelly muddy medium sand. It is located in relatively deep water between the ship channel and Bombay Hook Point Shoal. Its strongly fine skewed size distribution depended on the quantity of mud that has settled out of the water column.

Station 25-5 was a gravelly muddy fine sand. It was located adjacent to a marsh shore. It was a fine skewed sediment because of its high mud content.

C-1: Well Sorted Very Fine Sand

Most sediments in this group were found on shallow water shoals. These sands were easily eroded and were fine enough to be transported as suspended material (Allen, 1965). All 31 stations had positive (fine) skewness values indicating, generally, depositional areas.

These sediments were found on Joe Flogger Shoal (Stations 9-4, 10-4, 11-2, and 21-4), the upper portion of the Lower Middle Shoal (Stations 6-3, 7-4, and 18-4), Old Bare Shoal (Stations 3-2, 4-2, and 16-2), and Cross Ledge (Stations 9-5, 9-6, 10-6, and 22-5). The largest grouping of stations occurred along the shoal on the west side of Bay Shore Channel starting from Crow Shoal at the bay mouth and ending in the area of Deadman Shoal. Stations 2-5, 4-9, 4-10, 5-8, 14-8, 15-6, 16-9, 17-8, 17-9, and 18-8 were included in this group. The C-1 station in deepest water (14-5) was located in the main channel near the mouth of the bay. The only strongly fine skewed sample (Station 8-3) was located on an unnamed shoal west of Blake Channel. The remaining stations (4-7, 5-6, 6-7, and 18-6) were located on shoals adjacent to Brandywine Shoal.

C-2: Moderately to Moderately Well Sorted Very Fine Sand

S.

While in the same size range as C-1, this group of stations was located in deeper water. Since it is not as well sorted as Cl, it contained some bed load material mixed with sediment that was transported in suspension.

Stations located on top of shoals such as Hawknest (6-1, 7-2, 8-1, and 19-2), Middle Shoal (14-6), and the southern tip of Fishing Crale Shoal (15-8) were fine or strongly fine skewed indicating depositional environments. Stations on the shoulder of the Lower Middle Shoal (5-4 and 6-4) and on the sides of shoals east of Brandywine Shoal (4-8, 5-7, 16-7, 17-6, and 18-7) had skewness values ranging from coarse skewed through strongly fine skewed. This indicated areas of active sediment erosion and redeposition. Stations 6-5 and 18-5 in the main channel next to Fourteen Foot Bank and the deep water station (1-3) at the mouth of the bay near Overfalls Shoal derived their sediments from the adjacent shoals.

C-3: Poorly Sorted Very Fine Sand

Exclusive of two bimodal samples, the sediments in this group were strongly fine skewed. These depositional environmental samples occurred in deep areas at the heads of some channels and between shoals and in relatively quiet waters around the perimeter of the bay.

The bimodal samples (Stations 19-3 and 20-4) occurred in Blake Channel adjacent to Joe Flogger Shoal. Very fine sand from the shoal is mixing with the coarse sand at the bottom of the channel to produce an apparently coarse skewed sediment.

The deep water samples occurred at the heads of channels on both sides of Hawknest Shoal (Stations 7-1, 8-2, and 21-2), at the head of Blake Channel (Stations 22-3 and 23-2), below Ben Davis Shoal (Stations 11-5 and 11-6), in the main channel adjacent to Joe Flogger Shoal (Station 11-3), and at the head of channels east of Brandywine Shoal (Stations 16-8 and 17-7). The very fine sands from the shoals adjacent to these stations are being deposited in these deep water areas.

The remaining stations in this group were located in 7 to 10 feet of water near the mouth of the Mispillion River (4-1, 5-1, 16-1, 17-1, and 18-2), the Maurice River (4-11, 5-9, 6-8, 6-9, 7-8, and 18-9), and the Cohansey River (24-4 and 25-4).

D-4: Very Poorly Sorted Sandy Coarse Silt

These quiet water deposits consisted of sediments that have been transported as suspended material. With one exception (Station 17-10) they were strongly fine skewed samples attesting to the depositional environments in which they were located. Stations were located at the heads of Bay Shore Channel (Station 16-10), Blake Channel (Stations 8-4, 8-5, and 9-2), and the channel adjacent to Old Bare Shoal (Stations 15-2 and 16-3). The remaining stations in this group were found in several locations in 5 to 10 feet of water adjacent to both shores of the bay.

D-5: Extremely Poorly Sorted Gravelly Sandy Coarse Silt

The two stations in this group were located near the shore. Station 12-5 was near the Cohansey River and Station 16-11 was north of Cape May. They were a combination of the coarser sand stations and the finer silt-clay stations on either side of their locations.

E-5: Very to Extremely Poorly Sorted Silt and Clay

These sediments were similar to Station D-4, only they contained less sand and were more poorly sorted. The majority of stations occurred in the upper bay between Bombay Hook Point and the Cohansey River with a line of stations hugging the Delaware shore down to the Murderkill River. The sediments at these stations were derived mainly from the suspended load of the Delaware River and material associated with adjacent marshes. Stations 7-5, 9-3, and 21-3 were located in sections of Blake Channel and Stations 2-6, 3-7, and 15-7 were located in Bay Shore Channel. The strongly fine skewed sediments have settled out in the quiet, deep waters of these two channels. The remaining stations were adjacent to the Maurice River mouth (Station 19-8) and the Back-Cedar, Nantuxent Creek outflow (Station 22-6) along the New Jersey shore.

APPENDIX TABLES

Table AI-1

Temperature at benthic stations obtained during quarterly cruises

	May	1974	Aug.	1974		Nov.	1974		Feb.	1975	May	1975
Stations	Т	В	T	В		Т	В		Т	В	Т	В
1	12.4	12.4	-	24.2		-	15.0			3.9	۰ س	11.2
2	13.0	12.5	24.1	24.4		14.4	14.9	· •	3.6	3.8	11.6	11.2
3	12.8	12.4	24.7	24.3		14.9	14.8		3.6	3.8	11.7	10.2
4	-	13.0				· •••	15.1		-	3.1	-	11.8
5	13.4	12.3	24.9	24.6	1 1.1 V	15.0	14.8			3.4	11.9	10.3
6		13.4	-	25.0			15.1			3.6	-	
7	13.6	12.6	25.3	24.9		15.1	14.8		3.4	3.6	12.2	11.2
8	14.0	13.2	25.3	25.0		15.6	15.1		3.6	3.6	12.8	11.9
9	13.6	12.5	25.4	24.7		15.4	15.1		3.0	2.9	12.8	12.2
10	13.8	13.2	25.2	24.6		15.4	14.9		3.3	3.2	13.0	11.9

Table AI-2

Salinity at benthic stations obtained during quarterly cruises

Stations	May 1974	Aug. 1974	Nov. 1974	Feb. 1975	May 1975
Surface					
1 2 3 4 5 6 7	28.4 26.7 26.8 25.5 25.4	29.3 29.2 28.9 28.7	28.0 28.3 28.7 27.7	27.6 27.2 29.1 25.3	25.2 25.2 24.2 22.8
8 9 10 Bottom	25.7 25.5 26.1	29.6 29.6 29.6	28.0 27.9 28.8	25.3 25.2 26.1	24.8 25.2 26.7
1 2 3 4 5 6 7 8 9 10	29.0 28.1 29.3 25.8 29.5 26.4 27.7 25.4 26.3 26.7	29.9 29.8 29.0 29.6 29.5 28.9 28.6 29.6 29.6 29.7	29.9 29.4 28.5 29.2 28.7 28.5 28.6 28.5 29.5	29.4 29.1 28.8 26.2 26.2 26.3 27.4 25.3 25.3 26.2	27.8 30.7 30.5 24.1 30.1 23.5 26.1 25.5 25.7 25.7

Table AI-3

Dissolved oxygen at benthic stations obtained during quarterly cruises

		May	1974		Aug.	1974		Nov.	1974	Feb.	1975		May	1975
Sta	tion	T	B		Т	В	•	Т	В	T, I	В		T	В
	1	7.38	8.31	4. 1		6.13	•	· · ·	6.00	• • •	10.54	•		10.13
	2	4.61	7.07		5.45	6.10		8.45	7.19		10.40		10.38	10.09
	3	7.65	6.02		6.81	6.06		7.87	7.02	10.74	10.64		10.13	9.55
	4	-	6.57		· - `	5.97		-	7.36		10.98	· •		10.18
	5	5.29	3.66		6.41	5.06		7.58	6.99	10.95	10.48		10.21	9.65
	6		7.53			3.56	•	` 	7.55	-	11.04		•••• .	10.08
	7	6.98	4.54		6.26	5.10		9.61	7.21	10.98	10.67		10.46	9.69
	8	5.79	4.62		3.14	3.67		8.40	7.61	11.17	11.12		10.87	9.96
	9.	5.94	4.51		6.52	4.06		8.37	8.16	11.20	11.20		10.92	9.96
	10	6.95	5.19		4.24	3.98		6.82	6.97	11.64	11.04	\$	10.46	10.04

Table AII-1

Whole water phytoplankton counts for cruises 4 through 19

Date: June 13, 1974

Cruise No.: <u>4</u>

Abundance (cells/ml)

Species	Station I	Station II	Station III
Cryptomonas acuta	2306	1491	616
Calvcomonas ovalis	1037	806	532
Prasinophyte A	1713	1236	199
Phaeodactvlum tricornutum	792	611	366
Chrysochromulina sp.	398	894	431
Ankistrodesmus sp.	273	171	32
Kirchneriella sp.	97	56	5
Navicula sp. B	9	9	19
Prorocentrum minimum	125	329	14
Asterionella japonica	190	431	977
Pyramimonas sp. A	454	352	93
Coscinodiscus sp.	14	14	9
unidentified flagellate	162		
silicoflagellate	60	_	· · · ·
Ochromonas sp.	.9		. 🖚
Cyclotella sp.	431	384	273
Rhizosolenia fragilissima	56	116	69
Chroomonas sp.	19	125	
Prorocentrum scutellum	5	14	_
Chlamydomonas sp. A	134	9	14
Pseudopedinella pyriforme	28	32	9
Gyrodinium sp. A	5		5
Rhizosolenia setigera	23		32
Navicula sp.	9	5	-
Exuviaella apora	5	_	
Cylindrotheca closterium	5	9	14
Chaetoceros sp.	28	69	37
Exuviaella baltica	37	-	-
Ceratium tripos	5	23	23
Gymnodinium ? roseostigma	23		- ¹
Gymnodinium ? aurantium	5	. - 1	5
Gyrodinium ? metum	79	_	
Synedra sp.	5	-	5
Thalassionema nitzschioides	5	- -	· -
coccolith	14	1 - 1 - 1 - 1	37
Gymnodinium sp. A	5	_	
Amphora sp.	5	-	. -

Table AII-1 (cont.)

Abundance (cells/ml)SpeciesStation I Station II Station IINitzschia seriata-149Skeletonema costatum-5179Tetraselmis sp. A-Dinoflagellate sp. A-0125125-14-0514-15-14-14-15-14-15-16-17-1819-19-19-19-19-19-19-19-19-19-19-19-19-19-19-19-19 <t< th=""><th>Date: June 13, 1974</th><th colspan="7">Cruise No.: <u>4</u> (cont.)</th></t<>	Date: June 13, 1974	Cruise No.: <u>4</u> (cont.)							
SpeciesStation IStation IIStation IINitzschia seriata-149Skeletonema costatum-5179Tetraselmis sp. A-74-Dinoflagellate sp. A-125-Diploneis sp5-Navicula sp. A-14-Diatom 1-E5Navicula sp. C14Pennatae sp9Cerataulina bergonii9		Abundance (cells/ml)							
Nitzschia seriata-149Skeletonema costatum-5179Tetraselmis sp. A-74-Dinoflagellate sp. A-125-Diploneis sp5-Navicula sp. A-14-Diatom 1-E5Navicula sp. C14Pennatae sp9Cerataulina bergonii9	Species	Station I	Station II Station III						
<u>Leptocylindrus minimus</u> 5	Nitzschia seriata Skeletonema costatum Tetraselmis sp. A Dinoflagellate sp. A Diploneis sp. Navicula sp. A Diatom 1-E Navicula sp. C Pennatae sp. Cerataulina bergonii Leptocylindrus minimus		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
Date: June 20, 1974

Cruise No.: 5

Species	Station I	Station II	Station III
Cryptomonas acuta	722	735	178
Rhizosolenia fragilissima	681	2024	1802
Chrysochromulina sp.	176	291	161
Calycomonas ovalis	695	707	76
Prasinophyte A	440	818	-
Cerataulina bergonii	157	118	34
Phaeodactylum tricornutum	46	21	25
Cyclotella sp.	120	62	-
Skeletonema costatum	28	— 1 — 1	17
Gymnodinium sp. B	28	14	••••
Rhizosolenia setigera	5	7	8
silicoflagellate	9	-	-
Ceratium tripos	14	- 35	25
unidentified flagellate	199	-	-
<u>Rhizosolenia</u> delicatula	14	69	76
<u>Nitzschia seriata</u>	9	21	
<u>Ebria tripartita</u>	9	7	-
Pyramimonas sp. A	74	236	330
<u>Chaetoceros</u> sp.	32	83	17
<u>Chroomonas</u> sp.	65	-	1354
Leptocylindrus danicus	5	-	•••
<u>Navicula</u> sp. B	5	.7 .	17
Thalassionema nitzschioides	5	-	. 17.
Prorocentrum minimum	5	7	17
Navicula sp. A	5	-	8
<u>Tetraselmis</u> sp. A	. 5		8
Asterionella japonica	-	7	· •
Dinoflagellate sp. A		7	-
<u>Katodinium</u> rotundatum	-	90	195
Pennatae sp.	· · -	7	17
<u>Cylindrotheca</u> <u>closterium</u>	-	14	. –
<u>Coscinodiscus</u> sp.	-	21	25
<u>Surirella</u> sp.	-	7	-
Prorocentrum scutellum	_ ·	7	
Pseudopedinella pyriforme	-		17
<u>Gymnodinium</u> sp. A		-	17
<u>Euglena</u> sp. A	-		8
Raphoneis amphiceros	. 		8
<u>Paralia sulcata</u>	—	-	17

Date: July 19, 1974

Cruise No.: 6

Species	Station	I Station	II	Station	III
Cryptomonas acuta	1929	673		416	
Chroomonas sp.	944	1051		1060	
Katodinium rotundatum	3345	1693		728	
Prasinophyte A	180	· -	• •	, - .	
Pyramimonas sp. A	500	367		513	
Pseudopedinella pyriforme	69	51		28	
Olisthodiscus sp.	28			· -	
Thalassionema nitzschioides	69	31		62	
Tetraselmis sp. A	14	-		21	
Coscinodiscus sp.	28				
Cyclotella sp.	42				
Prorocentrum minimum	14	-		`	
Chrysochromulina sp.	305	286		104	
<u>Calycomonas ovalis</u>	208	734	1997 - 19	104	
<u>Euglena</u> sp. A	56	· _		-	
<u>Coscinodiscus</u> sp.	2 . .	102		55	
<u>Paralia sulcata</u>	 .	31		21	
<u>Gymnodinium</u> sp. A	·	31		14	
Navicula sp. C	-	20		. 7	
<u>Cocconeis</u> sp.	-	20		-	
<u>Gymnodinium simplex</u>		41		21	
<u>Navicula</u> sp.	-	10		14	
<u>Navicula</u> sp. B	· _			7	
Phaeodactylum tricornutum	.	1 		21	
<u>Rhizosolenia delicatula</u>				7	
<u>Rhizosolenia fragilissima</u>	· · ·			, 7,	

Date: August 1, 1974

Cruise No.: 7

Species	Station	I	Station	II	Station	III
Cryptomonas acuta	2300		-	. •	1398	
Calycomonas ovalis	826				1591	
Chrysochromulina sp.	143				48	
Thalassionema nitzschioides	26		· - `		125	
Euglena sp. A	92		-		87	
Prasinophyte A	270		-		106	
Katodinium rotundatum	133		-		154	
<u>Pyramimonas</u> sp. A	143		· -		96	
<u>Rhizosolenia fragilissima</u>	26		- 1		174	
Prorocentrum minimum	31				29	
Asterionella japonica	5	1 A	-			
<u>Cerataulina</u> bergonii	41		- .		790	
Navicula sp. B	. 5		-		-	
<u>letraselmis</u> sp. A	117		. -		48	
<u>Chroomonas</u> sp.	56		<u> </u>		10	
<u>Gyrodinium</u> ? <u>metum</u>	10		-		- 1	
Diatom I-E	10		-		-	
Pseudopedinella pyriforme	10		-		10	
Navicula sp.	5		. –		19	
<u>Glenodinium</u> danicum			. ·		10	
Prorocentrum micans	· – .		-		10	
Leptocylindrus minimus	· _		- /		29	
Navicula sp. C	-		- i .		19	
<u>Cyclotella</u> sp.	· · · · · ·		· _		10	
Loscinodiscus sp.	· · ·		-	•	10	
Gymnodinium sp. A	-				10	•
Prorocentrum scutelium			-		10	

Date: August 21, 1975

Cruise No.: <u>8</u>

Species	Station I	Station II	Station III
Skeletonema costatum	1083	1095	1566
Cryptomonas acuta	722	568	733
Calycomonas ovalis	1274	180	1318
Nitzschia seriata	78	21	30
Cerataulina bergonii	35	14	- 1
Pyramimonas sp. A	28	35	40
Asterionella japonica	142	1060	• 614
Euglena sp. A	21	166	79
Exuviaella compressa	14		.
Pseudopedinella pyriforme	7	_	
Katodinium rotundatum	85	21	30
Thalassionema nitzschioides	5.0	97	40
Leptocylindrus danicus	85	14	-
Coscinodiscus radiatus	21	7	-
Gyrodinium ? grossestriatum	7		-
Cylindrotheca closterium	7.	97	79
Chrysochromulina sp.	21	14	20
Coscinodiscus sp.	28	76	50
Schroderella delicatula	21	- *	-
Paralia sulcata	28	21	99
Cocconeis sp.	14	14	- ²
Navicula sp.	14	14	10
<u>Brachiomonas</u> submarina	7	21	
Gymnodinium sp.	21	42	
<u>Tetraselmis</u> sp. A	7	-	marks
Streptotheca thamensis	7		20
Prasinophyte A		14	30
<u>Biddulphia</u> sp.	-	7	-
<u>Biddulphia regia</u>	-	7	
<u>Rhizosolenia fragilissima</u>		14	10
Lithodesmium undulatum	867	7	20
Navicula sp. C		7	-
Navicula sp. D	••	-	89
<u>Pleurosigma</u> sp.	-		10
Navicula sp. B		-	10

Date:	September	17.	1974

Cruise No.: 9

Species	Station	IS	Station	II	Station	III
Cryptomonas acuta	472		638		686	
Pyramimonas sp. A	180		14		21	
Calycomonas ovalis	305		416		644	- -
Coscinodiscus sp.	28		21		21	
Phaeodactylum tricornutum	319		125		166	
Chrysochromulina sp.	56		42		7	
Cyclotella sp.	14		- 7		104	
Chroomonas sp.	361					
Thalassionema nitzschioides	42		55		49	
Gymnodinium simplex	28					
silicoflagellate	14	•	-		- 1	
<u>Cylindrotheca</u> <u>closterium</u>	14					
Euglena sp. A	69		14		· · 7	
Navicula sp. C	14				· · · ·	
<u>Paralia sulcata</u>	-		14		49	• • *
<u>Leptocylindrus</u> <u>danicus</u>	· •••		49		21	
Prorocentrum scutellum	-		14		7	
<u>Navicula</u> sp. B			35		7	
<u>Katodinium</u> rotundatum	·		7			
<u>Grammatophora</u> marina	-		14		654	
Raphoneis amphiceros	-		7		60	
Navicula sp. A	-		7			
<u>Pleurosigma</u> sp.	-		7			
Prorocentrum minimum			. 7	. *		
Prasinophyte A			-		97	
Navicula sp.			-		14	
Navicula sp. D	-	*	-		21	
coccolith	-		-			
Gymnodinium sp.					14	
Gyrodinium spirale			e .		. 7	

Date: <u>October 15, 1974</u>

Cruise No.: 10

Species	Station I	Station II	Station III
Leptocylindrus danicus Chaetoceros decipiens Rhizosolenia delicatula Nitzschia seriata Asterionella japonica	2280 69 7 49 21	1691 49 14 76 49	2259 28 14 111 42
Rhizosolenia fragilissima Cvclotella sp.	21 97 104	76 76	49 55 83
Cryptomonas acuta Calycomonas ovalis	139 21	132 55	194 49
unidentified flagellate Rhizosolenia stolterfolthii Phizosolonia sotiacea	111 55 21	187 62	284 69
Skeletonema costatum Cerataulina bergonii	69 28	118 55	215 62
Gyrodinium spirale Gymnodinium ? arcticum	7 14		
Chrysochromulina sp. Navicula membranacea Paralia sulcata		/ 7 7	14 - 28
Navicula sp. A Navicula sp. D	-	, 7 7	-
Noctiluca scintillans Navicula sp. B	1	_1	21
Pyramimonas sp. A Amphora sp.	- -	-	7
Gymnodinium sp. A Thalassionema nitzschioides	- -	- -	14 7

Date: October 30	D , 1 974
------------------	-------------------------

Cruise No.: 11

Species	Station I	Station II	Station III
Leptocylindrus danicus	2959	4386	8078
Cryptomonas acuta	929	530	888
Calvcomonas ovalis	83	20	-
Flagellate PZ-10	263	133	167
Nitzschia seriata	55	40	180
Noctiluca scintillans	7	10	-
Navicula membranacea	7	10	28
Navicula sp. D	21	10	· · · · ·
Cryptomonad B	.76	153	472
Katodinium rotundatum	14	-	· · · · · · · · · · · · · · · · · · ·
Gyrodinium spirale	_	10	••••••••••••••••••••••••••••••••••••••
Gymnodinium sp. A		20	
Chaetoceros sp.			14.
Coscinodiscus sp.	-		28
Exuviaella sp.	—	-	14
Navicula sp. E	-		97
Thalassionema nitzschioides			14
Glenodinium rotundum	-		14
Gyrodinium sp.			14

Date: November 14, 1974

Cruise No.: 12

Species	Station I	Station II	Station III
Cryptomonas acuta	700	631	471
Cyclotella sp.	7		· •
Peridinium trochoideum	7	-	
Calycomonas ovalis	7	21	
Pyramimonas sp. A	7	. 7	-
Chrysochromulina sp.	7	7	-
Coscinodiscus sp.	7	<u> </u>	35
Flagellate PZ-10	42	55	83
Navicula sp. B	35	7	· - · ·
Noctiluca scintillans	7	14	-
Leptocylindrus danicus	7	-	-
Navicula sp. D	14	- · · · ·	- 1
Thalassionema nitzschioides	7	-	-
Gymnodinium ? aurantium	_	7	· · · · · · · · · · · · · · · · · · ·
Fragilaria <u>oceanica</u>		83	-
Cocconeis sp.		. 7	÷.
Coscinodiscus lineatus		7	
Ochromonas sp.	-	7	7
Pleurosigma	-	7	-
Cryptomonad C	-	-	49
Paralia sulcata	- · · · ·	-	7
Navicula membranacea		-	14
Navicula sp.	. - .	• ••	7
Thalassiosira sp. A	-	-	14
Phaeodactylum tricornutum	• ••••	-	14
Katodinium rotundatum	-	-	21
coccolith	— 12	. · -	7

Date: December 13, 1974

	Abundance (cells/ml)			
Species	Station I	Station II	Station III	
Cryptomonas acuta	215	180	243	
Nitzschia seriata	76	125	229	
Flagellate PZ-10	55	35	21	
Thalassionema nitzschioides	35	14	49	
Rhizosolenia delicatula	14	**	7	
Thalassiosira sp. A	104	201	146	
Asterionella japonica	21	7	7	
Katodinium rotundatum	28	42	90	
Euglena sp. A	· . 7	7		
Cryptomonad C	42	7	14	
Navicula sp.	7	-	-	
Ankistrodesmus sp.	14	-	, · · - · ·	
Skeletonema costatum	236	388	215	
Pyramimonas sp. A	7	62	14	
Fragilaria oceanica	42	35	-	
Ochromonas sp.	28	28	21	
Guinardia flaccida	7	55	42	
Chrysochromulina sp.	14			
Chaetoceros simplex	7		-	
Navicula sp. B	7	14	-	
Rhizosolenia fragilissima	7	7	14	
Rhizosolenia alata	14	14	14	
Chrysodidymus gracilis	· 7·	-	••••••••••••••••••••••••••••••••••••••	
Raphoneis amphiceros		7		
<u>Gyrodinium</u> ? metum	-	7		
<u>Paralia sulcata</u>	-	21	35	
<u>Coscinodiscus</u> <u>lineatus</u>	-	28	35	
<u>Calycomonas</u> ovalis	-	7	7	
Thalassiosira nordenskioldii		14	en e	
Prorocentrum minimum	-	14		
coccolith	- 1	-	7	
Leptocylindrus danicus	-	· · · · · · · · · · · · · · · · · · ·	7	
Gyrodinium spirale	-		7	
Peridinium trochoideum	– 1	- ·	7	

Cruise No.: 13

Date: January 16, 1975

Cruise No.: 14

Species	Station I Station II	Station III
Cyanophyceae sp. A <u>Skeletonema costatum</u> <u>Thalassiosira sp. A</u> <u>Cryptomonas acuta</u> <u>Nitzschia seriata</u> <u>Asterionella japonica</u>	20827066517332155541111397552135	270 1234 603 180 21 69
Katodinium rotundatum	21 7	28
Flagellate D	21 -	-
Calycomonas ovalis Chaetoceros simplex	7 14 7 -	
Chaetoceros decipiens	14	
Cerataulina bergonii	- /	 -7
Thalassiosira nordenskioldii	- 14	7 7
Navicula membranacea	- 14	-
Cryptomonad B	- 14	-
Euglena sp. A	- 7	-
Leptocylindrus danicus	- 7	-
<u>Navicula</u> sp. B	- 14	-
Cryptomonad C	- 21	35
Uchromonas sp.	- 21	5. 644
Unaetoceros sp.	- 21	· · ·
Fundilania sulcata	- /	76
Cyclotalla sp	- 14	70
cyciuceila sp.		1

Date: February 20, 1975

Cruise No.: 15

Abundance (cells/ml)

1615

Species

-_

Station I Station II Station III

Date: <u>March 18, 1975</u>

Cruise No.: 16

Species	Station I	Station II	Station III
Skeletonema costatum	2268	13269	16795
Thalassiosira sp. A	1229	1513	2040
Guinardia flaccida	74	97	125
Flagellate PZ-10	74	28	14
Cyanophyceae sp. A	1176	250	236
Cryptomonas acuta	147	278	431
Ankistrodesmus sp.	11	.	
Asterionella japonica	84	194	139
Thalassionema nitzschioides	32		14
Diploneis sp.	. 11	-	-
<u>Rhizosolenia</u> <u>delicatula</u>	63	111.	69
<u>Cerataulina bergonii</u>	11		14
Cylindrotheca closterium	11	14	-
Chaetoceros simplex	21		-
<u>Rhizosolenia</u> setigera	11		14
Raphoneis amphiceros	11	a da 🛥 di Sanga	in the set of the
<u>Actinoptychus undulatus</u>	· 11.	-	
Leptocylindrus danicus	11	-	14
Katodinium rotundatum	11	97	56
<u>Calycomonas ovalis</u>		14	-
Fragilaria oceanica		430	527
Ponchetia sp.	-	14	100
<u>Chaetoceros</u> sp.	• • • · · ·	. 14	
Thalassiosira nordenskioldii	, - '	28	97
<u>Gyrodinium</u> sp.	1000 H		14
Paralia sulcata	1	-	56
<u>Glenodinium</u> rotundum		-	14
<u>Pyramimonas</u> sp. A	-	-	14

Date: <u>April 14, 1975</u>

Cruise No.: 17

Species	Station I	Station II	Station III
Skeletonema costatum		3984	
Thalassiosira sp. A	-	2901	
Katodinium rotundatum	·	14	-
Cryptomonas acuta	_	167	-
Chroomonas sp.	-	264	-
Flagellate D		403	
Cyanophyceae sp. A		486	_
Guinardia flaccida	-	139	-
Raphoneis amphiceros	- · · · · - · · ·	14	
Pyramimonas sp. A		14	-
Asterionella japonica		14	-
Navicula septentrionalis	· · · · · · · · · · · · · · · · · · ·	111	-
Navicula sp. E	•	14	
Cryptomonad B	-	28	-
Exuviaella compressa		14	-
Amphora sp.	· . –	14	-
Cryptomonad C	-	28	
Rhizosolenia delicatula	– ,	28	-
Gyrodinium sp. A		28	-
Actinoptychus undulatus	-	14	_
Rhizosolenia setigera	-	14	and a second s

Date: May 9, 1975 Cruise No.: 18

Species	Station	I S	tation	ΪI	Station III
Cvlindrotheca closterium	14			• •	
Asterionella japonica	21		7		14
Cryptomonas acuta	166		118		180
Chroomonas sp.	1344		1213	·	1719
Pyramimonas sp. A	256		353		222
Katodinium rotundatum	139		49		97
Leptocylindrus minimus	249		270		166
Cerataulina bergonii	166		215		139
Cryptomonad C	21		83		69
Cyanophyceae sp. A	624		215		374
Thalassiosira sp. A	42	. • • •	83		49
Guinardia flaccida	49	-	173		208
Gymnodinium sp. A	7		-		
Gymnodinium ? punctatum	7		42		21
<u>Paralia</u> <u>sulcata</u>	. 14		-		
Navicula sp. B			. 7		7
Chrysochromulina sp.	_		14		
<u>Glenodinium</u> rotundum	-		7		7
<u>Rhizosolenia</u> <u>delicatula</u>	1.		28		7
Ankistrodesmus sp.	***		21		-
<u>Skeletonema</u> costatum	· · · · · · · · · · ·		21		-
Gyrodinium sp.	. ·		7		-
Navicula sp.	-		. 7		-
Rhizosolenia setigera			. 7		-
Gyrodinium spirale			1		-
<u>Ochromonas</u> sp.	· · -		/		-
Chaetoceros sp.	. –		28		42
Uniorococcales sp. A	· · · ·	,	-		125
Gontaulax spinitera					14
KNIZOSOlenia tragilissima					14

Date: <u>May 28, 1975</u>

Cruise No.: <u>19</u>

Species	Station I	Station II	Station III
Cryptomonas acuta	740	646	598
Chroomonas sp.	1653	2201	1926
Pyramimonas sp. A	474	167	490
Thalassiosira sp. A	670	1052	586
Cyanophyceae sp. A	509	263	742
Cerataulina bergonii	35	155	72
Cryptomonad C	139	203	275
Flagellate D	670	383	574
Euglena sp. A	12		12
Katodinium rotundatum	46	120	60
Gyrodinium sp. A	116	203	179
Ankistrodesmus sp.	23	24	24
Cyclotella sp.	243	191	-
Phaeodactylum tricornutum	12	36	24
<u>Guinardia</u> <u>flaccida</u>	35	36	48
Paralia <u>sulcata</u>	12		96
<u>Calycomonas</u> <u>ovalis</u>	23	-	
<u>Fragilaria oceanica</u>	46	24	-
<u>Chrysochromulina</u> sp.	23	48	24
<u>Amphora</u> sp.	12	-	-
<u>Skeletonema</u> costatum	69	132	167
<u>Chlamydomonas</u> sp. A	- · · ·	12	-
Eutreptia sp.		12	24
<u>Rhizosolenia</u> <u>delicatula</u>	. 🛥	12	12
<u>Tetraselmis</u> sp.		12	
Asterionella japonica	-	12	-
<u>Uchromonas</u> sp.	-	-	12
Navicula sp. B		-	24
Gymnodinium punctatum	-		12
<u>Scenedesmus</u> sp.	-	· · ·	24
Pyramimonas sp. B	-	-	12
Knizosolenia setigera	-	***	12
Gymnodinium simplex	- ``		12

Table AII-2

2.1

Occurrence of net phytoplankton species by station over the year

			Sta						
			1	974				1975	
Species	5/9	5/22	10/15	10/30	11/14	12/13	1/11	3/18 5/9	9 5/28
Ceratium furca			· . · ·				.011		.005
Ceratium fusus	.002*	.014					.008		.060
Ceratium macroceros		.002							.005
Ceratium tripos	.327	.937						.022	.559
Noctiluca sp.		21		.430					.003
Peridinium depressum				.017			.004		
Phalacroma sp.							.002	.002	
Biddulphia favus			and the second sec				•		•
Biddulphia granulata	.002	.007		.002		.002		.004	.016
Chaetoceros sp. A			.011						
Chaetoceros sp. B			.099				.004		
Chaetoceros sp. C							.002		
Chaetoceros sp. D	.062			· ·					
Coscinodiscus spp.		.002	.005	.004		.002	.002		.003
Ditylum brightwelli			.002				.006		
Guinardia flaccida						.123	.002	.433 .984	4 .055
Planktoniella sol									
Rhizosolenia alata				<i></i>			.002	.004	.003
Rhizosolenia delicatula			.491				•	.011	
Rhizosolenia setigera	.094							.026 .002	2.005
Rhizosolenia stolterfothii			.002						
Rhizosolenia styliformis				.007		.004		.004 .002	2
Skeletonema costatum									
Thalassiosira spp.	.316						.019	.221 .007	7
Asterionella japonica	.167	.029	1				.116	.114 .004	1.005
Gyrosigma spencerii									
Nitzschia closterium									
Nitzschia seriata		.007	.383	.540		.858	.591	.120	.011
Plagiogramma vanheurckii									

497

Table AII- 2 (cont.)

498

				Sta						
				1975						
Species	5/9	5/22	10/15	10/30	11/14	12/13	1/11	3/18	5/9	5/28
<u>Thalassionema nitzschioides</u> <u>Thalassiothrix</u> fraeunfeldii	•		.007				.108	.124	.018	· · · ·
sp. C sp. D sp. E	· .									
sp. F sp. G										
sp. H sp. I										
sp. V sp. K sp. L			· · .				a de la composición d La composición de la c La composición de la c			•
sp. M										.263

* value represents proportion of total cells counted

	•			Sta	tion II								
			1	974	•						1975		
Species	5/9	5/22	10/15	10/30	11/14	12/13		1/11			2/20		
									0700	0800	0900	1000	1100
Ceratium furca		· ·	•••	•			•	.004	.002	.018	.015	.005	.012
Ceratium macrocoros	.014	.005	20 N					.002	.007	.063	.049	.012	.059
Ceratium tripos	.211	.311							.005	.018	.010	.005	.008
Noctiluca sp.			010	.497	.843								
Phalacroma sp.		.002	.010	.002	.002				•				
Biddulphia favus	.003	0.07		207	.006			0.05		~ * *			
Biddulphia granulata Chaetoceros sp. A	.051	.037	.016	.007	.017	.006		.035	.002	.045	.049	.007	.032
Chaetoceros sp. B			.104			n an					.020		.008
Chaetoceros sp. C			.009							•	.015	.012	.032
Coscinodiscus sp.	.005		.069	.006	.023	.004		.028		.013	.010	.007	.016
Ditylum brightwelli			.018	000	070	010	*. • • •		.002	010	.015	045	.004
Planktoniella sol			.005	.000		.212		•	.208	.018	.030	.045	.012
Rhizosolenia alata			•		.006	.009		.015	÷.,	.013	.010	.010	.008
Rhizosolenia delicatula Rhizosolenia setigera	249					002			032	013	015	.186	.040
Rhizosolenia stolterfothii	، د ، ت.»					.002			.002		.010		.024
Rhizosolenia styliformis			.002		.017	.002		106	.018		.005	.007	.008
Thalassiosira spp.	.111		.007				•	•490				.010	.012
Asterionella japonica	.341	.595	.023			.019		.009	.378	.281	.177	.394	.202
Gyrosigma spencerii Nitzschia closterium								. .			· ·	002	
Nitzschia seriata	.016	.037	.726	.482	.008	.740		.088	.110	.339	.443	.176	.372
Plagiogramma vanheurckii				· . ·							•		

499

.

Table AII-2(cont.)

					Sta	tion II				44 - 1 14 - 14 14 - 14 14 - 14 14 - 14 14 - 14 14 14 14 14 14 14 14 14 14 14 14 14 1			·
			•	1	974						1975		
	Species	5/	9 5/22	10/15	10/30	11/14	12/13	1/11			2/20		
									0700	0800	0900	1000	1100
Tha] Tha]	assionema nitzsc assiothrix fraeu	<u>hioides</u> nfeldii	.010	.012 .007		· · · · · · · ·	.004	.093 .229	.059	.071	.079 .059	.025	.003 .016
sp. sp.	C D F		•						.037			040	
sp. sp.	FG						•		.005	.022		.025	· · ·
sp. sp.	H I		•			1		· .			1.		
sp. sp.	J K						· ·					• • •	
sp. sp.	L M		.002			.002							

Station II

							975						
Species				2/	20				3/18		4/	14	
	1200	1300	1400	1500	1600	1700	1800	1900		0800	0900	1000	1100
<u>Ceratium</u> <u>furca</u>	.009	.009	.003	.003		.012	.011	.009					
Ceratium macroceros	.002	.009	.015	.045		.024	.051	.028	001			.002	.004
Ceratium tripos	.011	.002	.003	.013		.002	.032	.007	.001			.002	.002
Noctiluca sp.		000	000						· · ·	-	•		
Phylochem depressum		.002	.003										
Biddulphia favus			•							002			
Biddulphia granulata	.022	.005	.020	.008	.113	.012	.131	.054	.012	.010	.030	.002	.004
Chaetoceros sp. A								.005					
Chaetoceros sp. B			.020	.027		.005							
Chaetoceros sp. C	.007	.002	.030	.035		۰.	.005	.005					
<u>Chaetoceros</u> sp. D	000	000	000		0.03	000	0.07	0.7.4					
Loscinodiscus spp.	.009	.002	.008		.031	.002	.027	.014			.016	.002	.004
Ditylum brightwelli	000	.002	.003	.011	.005	.005	010		200	000	070	000	001
Guinardia Tiaccida	.203	.305	.013	.032	.031	.112	.019	.115	.383	.839	.8/6	.932	.881
Phizocolopia alata	002	002	nna	008	015	005	005	005	003	.002	000	005	006
Rhizosolenia delicatula	.002	055	005	.000	.015	003	.005	.005	.005		.009	.005	.000
Rhizosolenia setigera	.015	.018	.023	.027	.010	031	.003	016	012	004	007	007	008
Rhizosolenia stolterfothii													
Rhizosolenia styliformis	.002	.009	.013	.005		.007	.005	.002					
Skeletonema costatum	.009								.347	.125	.023	.030	.042
Thalassiosira spp.	.072	.101	.101	.061		.095	.067	.052	.160	.015	.016	.016	
Asterionella japonica	.300	.261	.244	.222		.337	.283	.323					.012
Gyrosigma spencerii		.002											
<u>Nitzschia closterium</u>	.002	.007	.003	.005									
<u>Nitzschia</u> seriata	.154	.147	.325	.243	.144	.124	.227	.141	.051				
Plagiogramma vanheurckii						.040	·· .				.021		

Table AII-2(cont.)

			Station II										
						1	975				·		
	Species			2/2	20			i.	3/18		4/	14	
	1200	1300	1400	1500	1600	1700	1800	1900		0800	0900	1000	1100
Thalass Thalass sp. C	sionema nitzschioides siothrix fraeunfeldii.041	.018 .021	.098 .108	.134 .086	.521	.040 .128	.067 .051	.068 .155	.022		•		
sp. D sp. E sp. F		.018		•	.082 .046		.016						.036
sp. G sp. H sp. I sp. J			.088	.055		.002							•
sp. K sp. L sp. M				•						.002			

Table AII-2(cont.)

				S	tation	II				4	
					197	5					
Species				4/	14	-			5/9	5/28	
opeoreo	1000	1000	7 4 0 0	7 - 0 0		1 7 0 0	1000		0,0	0720	
	1200	1300	1400	1500	1600	1/00	1800	1900			
Ceratium furca						·					
Ceratium fusus	.002	.002					.002			.134	
<u>Ceratium</u> macroceros										.030	
<u>Ceratium</u> tripos		.005						.002	.009	.299	
<u>Noctiluca</u> sp.										.003	
<u>Peridinium</u> depressum											
<u>Phalacroma</u> sp.											
<u>Biddulphia favus</u>				.002						.003	
<u>Biddulphia</u> granulata	.002	.009	.002	.019	.009	.007	.005	.007	.011	.079	
<u>Chaetoceros</u> sp. A		• •				4 - F		.002			
<u>Chaetoceros</u> sp. B											
Chaetoceros sp. C											
<u>Chaetoceros</u> sp. D				000	0.00					~~~	
Coscinodiscus spp.			.002	.006	.009	.002	.002	.002	.002	,037	
Ditylum brightwelli		0.5.7	0.0.7	0.07				<u></u>			
<u>Guinardia flaccida</u>	.883	.957	.881	.931	.954	.9//	.942	.957	.915	.110	
Planktoniella sol				.002							
<u>Rhizosolenia alata</u>			• • •		.002	.002			.002	.116	
<u>Rhizosolenia</u> <u>delicatula</u>	010	014	01 0	000	0.05		000	010		0.01	
<u>Rhizosolenia</u> <u>setigera</u>	.013	.014	.018	.009	.005		.002	.019	.002	.021	
Rhizosolenia stolterfothii	-	000	004	000			010		000		
Rhizosolenia stylitormis		.002	.004	.006			.012	.005	.009		
<u>Skeletonema</u> costatum	010		001					1	.030	•	
Inalassiosira spp.	.010	011	.081	0.7 -	.011	000			000		
Asterionella japonica		.011	.011	.017	.007	.009			.002	.027	
Gyrosigma spencerii	000								000		
Nitzschia closterium	.002			000			007	005	.002		
Nitzschia seriata	.013			.009			.037	.005		010	
Plagiogramma Vanheurckii										.018	

						S	tation	II				•
				• •			197	5				
	Species					4/	14				5/9	5/28
			1200	1300	1400	1500	1600	1700	1800	1900		
Thalas Thalas	ssionema nitzs ssiothrix frae	<u>chioide</u> unfeldi	<u>s</u> 1.008		•		- - -				.005	.003
sp. C sp. D sp. E sp. F			.065									
sp. G sp. H sp. I sp. J sp. K												
sp. L sp. M											.002	.113
							· · ·	•	•			
			· · · · · · · · · · · · · · · · · · ·				• • • •					
						•						

Table AII-2(cont.)

				Sta	tion II	I				
			1	974				19	75	
Species	5/9	5/22	10/15	10/30	11/14	12/13	1/11	3/18	5/9	5/28
<u>Ceratium</u> <u>furca</u> <u>Ceratium</u> <u>fusus</u>	.002	.002					.009 .005		.005	.135
Ceratium inderoceros Ceratium tripos Noctiluca sp.	.104	.259	015	.012	.912		.002	•	.014	.263
Peridinium depressum Phalacroma sp. Riddulphia faunc	002	· . ·	.015							020
Biddulphia granulata Chaetoceros sp. A	.046	.071			.002	.002	.069		.009	.161
<u>Chaetoceros</u> sp. B <u>Chaetoceros</u> sp. C			.154							
<u>Chaetoceros</u> sp. D <u>Coscinodiscus</u> spp. <u>Ditvlum brightwelli</u>	.002	.002	.022		.034	.005	.007	•	.002	.028
Guinardia flaccida Planktoniella sol	.002		.002		.018	.146	.007	.192 .	.945	.056
Rhizosolenia alata Rhizosolenia delicatula	207	•	.005 .356	.761	.002	.005	.011	.002	• •	.067
Rhizosolenia stolterfothii Rhizosolenia stolterfothii	.207			.001	.029	. 002			002	.087
Skeletonema costatum Thalassiosira spp.	.126							.557 .184 .	.005	
Asterionella japonica Gyrosigma spencerii	.482	.563					.011			•
<u>Nitzschia seriata</u> Plagiogramma vanheurckii		.096	.420	.223		.822	.483	.039		.026

		Stat	ion III		
		1974		1	975
Species 5,	/9 5/22 10)/15 10/30	11/14 12/13	1/11 3/18	5/9 5/28
<u>Thalassionema nitzschioides</u> Thalassiothrix fraeunfeldii	•	005 .027 .002	.002 .016	.137 .204	.009
sp. C				•	
sp. D sp. E					
sp.F sp.G sp.H	57			.021 .025	
sp. I sp. J sp. K					
sp. L sp. M	•	002			.069

506 sp. M

Surface Net Phytoplankton				· · ·		Fet	oruary Stati	20, 19 on II	975					
Time:	•	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900
Species													•	
Ceratium tripos Ceratium fusus Biddulphia granulata Rhizosolenia setigera Asterionella japonica Nitzschia seriata Thalassionema nitzschioides Ditylum brightwelli Thalassiothrix frauenfeldii Rhizosolenia styliformis Guinardia flaccida	•	.005 .007 .002 .032 .378 .110 .059 .002 .005 .018 .268 .002	.018 .063 .045 .013 .281 .339 .071 	.010 .049 .049 .015 .177 .443 .079 .015 .059 .005 .030 .015	- .012 .007 .015 .394 .176 .025 - .015 .007 .045 .005	.008 .059 .032 .024 .202 .372 .043 .004 .016 .008 .012 .012	.011 .022 .022 .015 .300 .154 - .041 .002 .263 .009	.002 .009 .005 .018 .261 .147 .018 .002 .021 .009 .305	.003 .015 .020 .023 .244 .325 .098 .003 .108 .013 .013 .013	.013 .045 .008 .027 .222 .243 .134 .011 .086 .005 .032 .003	.113 .010 .144 .005 .521 .031	.009 .024 .012 .031 .337 .124 .040 .005 .128 .007 .112 .012	.032 .051 .131 .003 .283 .227 .067 .051 .005 .019	.007 .028 .054 .016 .323 .141 .068 - .155 .002 .115
sp. D sp. E <u>Coscinodiscus</u> spp. <u>Chaetoceros</u> sp. B <u>Chaetoceros</u> sp. C <u>Phizosolenia</u> alata		.037 .069	.013	.010 .020 .015 .010	.000 .040 .007 .012	.016 .008 .032	.009	.018 .002 .002	.008 .020 .030	.003	.082 .046 .031	.002 .005	.016 .027 .005	.005
sp. F <u>Thalassiosira</u> spp. <u>Ceratium macroceros</u> <u>Rhizosolenia delicatula</u> Nitzschia closterium			.022		.010 .010 .005 .186 .002	.095	.072	.101 .055 .007	.101	.008	-	.005 .095 .002 .007	.003	.052 .002

Table AII-3

Surface Net Phytoplankton

February 20, 1975 Station II

Time:			0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900
sp. G			-	· ·		.025	-	-		 	-		-		· · -
Skeletonema costatum			· -	-	· <u>-</u> ·		.012	.009	· _		·			-	· · ·
Peridinium depressum			-	-	-	-	·	-	.002	.003	10107	-	·		-
Chaetoceros sp. A			-		-	-	-		-				-		.005
Gyrosigma spencerii			· —	~	***	-	-	. —	.002	· -	-		-		-
sp. H		· ·	· -	-	-	-	-	· _		.088		· _		-	-
sp. I					· · •	<u> </u>		·	-	-	.005	· •	_	-	· ••
Plagiogamma vanheurcki	i		· - ·	-	. · .	-	-	-		•	·	474	.040	-	
sp. J	-			·		-	***	-		·	-		.002	-	

509

Surface Net Phytoplankton

April 14, 1975 Station II

Time:		0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900
Species	· · · · · · · · · · · · · · · · · · ·	•				4 a							
<u>Biddulphia granulata</u>		.010	.030	.002	.004	.002	.009	.002	.019	.009	.007	.005	.007
<u>Rhizosolenia</u> <u>setigera</u> Thalassiosira spp.		.004	.007	.007	.008	.013	.014	.018	.009	.005	-	.002	.019
Biddulphia favus		.002	.016	.016	-	.010			.002	- ;	-	· ••••	-
Guinardia flaccida		.839	- .876	.932	.881	.008	.957	.881	.931	.954	.977	.942	.957
Skeletonema costatum	n an	.125	.023	.030	.042	• • •	-		-	-	-		-
Coscinodiscus sp.	. *	s 0 0 km	.016	.002	.004	-		.002	.006	.009	.002	.002	.002
<u>Asterionella japonica</u> Nitzschia seriata			. tes		.012	.013	.011	.011	.017	.007	.009	.037	.005
Rhizosolenia alata		- .	.009	.005	.006	-	-	с на		.002	.002		
Plagiogamma vanheurckii		-	.021		-	.002	-		-		·	-	
sp. E			-	· •	.036	.065	-	-		-	-	-	002
Ceratium fusus		a ang	. . .	-		-	.005	-		-	-	.002	-002
Rhizosolenia styliformis		×	-	_		-	.002	.004	.006	-	- 1	.012	.005

Table AIII-1

Zooplankton abundance per ${\rm m}^3$

Date: <u>June 20, 1974</u>		Cruise	No.: <u>5</u>			
Species	Stat T	ion 1 B	Static T	on II B	Statio T	on III B
Acartia tonsa <u>Centropages hamatus</u> <u>Centropages typicus</u> <u>Oithona similis</u> <u>Paracalanus sp.</u> <u>Pseudocalanus minutus</u> <u>Temora longicornis</u> <u>Podon sp.</u> <u>Balanus sp. (cyprid)</u> <u>Fish eggs</u> <u>Veliger</u> <u>Polychaete larvae</u> <u>Copepod nauplii</u> <u>Copepodites</u> <u>Limacina inflata</u> <u>Fish larvae</u> <u>Crangon septemspinosa</u> <u>Upogebia affinis</u> <u>Uca sp.</u> <u>Centropages (copepodite)</u> <u>Labidocera aestiva</u> <u>Balanus sp. nauplii</u> <u>Pagurus longicarpus</u> <u>Neopanope texana</u> <u>Pseudodiaptomus coronatus</u> <u>Labidocera (copepodite)</u> <u>Globigerina sp.</u> <u>Eucalanus attenuatus</u> <u>Pinnixa sayana</u> <u>Ovalipes ocellatus</u>	17,272 1,084 - - - 77 310 1,582 99 111 - 22 11 - 44 310 77 - - 44 11 11 22 - - - -	$ \begin{array}{c} 12,950\\ 180\\ 18\\ -\\ 506\\ 127\\ 36\\ 18\\ 54\\ 54\\ 54\\ 54\\ 54\\ -\\ 36\\ 271\\ -\\ 36\\ -\\ 54\\ 18\\ 36\\ -\\ 36\\ 271\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	391 164 - 2 - 25 7 194 2 289 - 2 - 2 - 2 - - 2 - - - - - - - - - - - - -	2,037 103 - - 62 - 62 - 62 - 51 - - 82 62 51 - - 82 62 10 41 - - 10 10 10 - 20 154 20 - -	558 227 - 22 7 337 205 704 44 183 7 22 14 44 27 7 - - - 36 - - - 499 - - - -	6,107 213 - - 19 155 39 - 58 19 - 77 - - - - - - - - - - - - - - - - -
Total	21,092	14,755	1,197	3,475	2,953	7,363

Date: July 19, 1974

Cruise No.: 6

Species	Station T	I B	Station T	II B	Station II T B	I
Acartia tonsa <u>Pseudodiaptomus coronatus</u> <u>Labidocera (copepodite)</u> <u>Centropages typicus</u> <u>Copepod nauplii</u> Fish eggs <u>Copepodites</u> <u>Limacina inflata</u> <u>Callianassa sp.</u> <u>Neopanope texana</u> <u>Uca sp.</u> <u>Microcalanus sp.</u> <u>Centropages (copepodite)</u> <u>Eurytemora affinis</u> <u>Oithona sp. ?</u> <u>Centropages hamatus</u> <u>Pseudocalanus minutus</u> <u>Pinnixa sayana</u> <u>Pagurus longicarpus</u> <u>Crangon septemspinosa</u> <u>Penilia avirostris</u> <u>Oikopleura sp.</u> <u>Mesuda</u> <u>Eucalanus attenuatus</u> <u>Hexapanopeus angustifrons</u> <u>Libinia sp.</u>	202 17, 9 2, 7 3 2 56 	770 521 40 - - - 20 - - - - - - - - - - - - - - -	256 2 34 7 23 2 9 2 431 36 - - - - - - - - - - - - - - - - - -	2,158 532 - 7 14 14 14 7 - 7 7 7 7 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43 60 26 18 9 9 53 9
Total	279 20,	511	807 2	2,824 2	,031 2,9	54
Date: August 1, 1974	C Station T	ruise No. I B	: <u>7</u> Station T	II B	Station II	I
Acartia tonsa <u>Centropages hamatus</u> <u>Labidocera (copepodites)</u> <u>Oithona similis</u> <u>Copepod nauplii</u> Unidentified copepodites Fish eggs Oikopleura sp.	727 3 38 3 55 100 83 3	579 3 - - 12 6 6	,516 - 26 26 287 -	- 5 - 29 - 86 -	,242 7,7 16 - 62 234 -	93 77* 51

Date:	August 1, 1974 (cont	.)	Cruise	No.: 7			
		Stat	ion I	Statio	on II	Statio	n III
	Species	Т	В	Т	В	T	В
Neopano	pe texana	14	-	-	72	94	77
Panopeu	s herbstii	14	-	· · ·	72	-	-
Centrop	ages (copepodite)	-	-	78	. –	16	-
Polycha	ete larvae	.	- ·	13	-	-	26
Acartia	<u>clausi</u>	-			-	16	-
Pseudod	<u>iaptomus</u> coronatus	_	1,200	-	460	. . .	410
Limacin	<u>a inflata</u>	÷ .	48	-	72		128
Medusa		-	66	-	-	-	
Pagurus	longicarpus	- 3	6	-	14	· • •	26
Paracal	<u>anus</u> sp.	-	6	40x	-		51
Lypnona	utes larva	.	12	-	-		-
Acartia	(copepodite)	ane			/	-	102
<u>Upogen</u>		. ~	12	-			51
Eich la	assa sp.	3	-		-	-	102
FISH Id Dinniva	rvae	iden.	- 6	a 14 **	-		.51
Mysid	sayana		12	-			407
nysiu			12	. –			
Total		1,046	1,971	3,946	805	5,680	9,432
Date:	August 21, 1974		Cruise	No.: <u>8</u>			
		Stat	ion I	Stati	n II	Statio	
		T.	B	T	B	T	R*
		•	6	•		•	
Acartia	tonsa	74	1,575	27	148	22	
Centrop	ages typicus	1	_	_	_	-	
Labidoc	era (copepodite)	4		-	. –	-	
Microca	lanus sp.	1			<u>1</u>	- `.	
Paracal	anus sp.	1.	5			6e4	
Unident	ified copepodites	5			-	-	
Polycha	ete larvae	4	5	2	-	2	•
Limacin	<u>a inflata</u>	24	31	16	37	. 7	
Balanus	(nauplii)	I .	-		· -	-	
Neopano	<u>pe texana</u>	. 3		ь б	-	22	
$\frac{\text{Uca}}{\text{C}}$ sp.		1	5	-	· -	••••	
Contuon	septemspinosa (zoea)		5	~ ~	-		
Palanua	ages (copepoaltes)		·	·		-	
Dinnius	(cypria)	· •••	- E		· · · · · · · · · · · · · · · · · · ·	- E	
<u>r minixa</u>	<u>Sayalla</u>	-	C C	C		D	· .
Depuded	SIMILIS		2C 2C	-			
Cyphone	utos larva	· • • • • • • • • • • • • • • • • • • •	- 21		· · ·		
Medica	ατές ται να		. JI . K		37		
Globiae	rina sp.		21	-		-	•

Date: August 21, 1974 (cont.) Cruise No.: 8

Species	Station I T B	Station II T B	Station III T B*
<u>Upogebia affinis</u> Unidentified zoeae Mysid Ovalipes ocellatus	2 5 67 - 5	- 37 	
Total	121 1,806	59 259	58
* Not preserved			
Date: September 17, 1974	Cruise	No.: <u>9</u>	
	Station I T B	Station II T B	Station III T B
Acartia clausi Acartia tonsa Pseudodiaptomus coronatus Oithona sp. ? Paracalanus sp. Microcalanus sp. Corycaeus sp. Conycaeus sp. Centropages hamatus Centropages typicus Euterpina acutifrons Unidentified copepodites Copepod nauplii Oikopleura sp. Limacina inflata Penilia avirostris Fish eggs Polychaete larvae Emerita talpoida Ovalipes ocellatus Crangon septemspinosa (zoea) Hexapanopeus angustifrons Balanus (nauplii) Centropages (copepodites) Pseudocalanus minutus Eucalanus attenuatus Temora (copepodite) Copepod sp. A Globigerina Cyphonautes larva Medusa	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Date: September 17, 1974 (co	<u>nt.)</u>	Cruise I	No.: <u>9</u>			
Species	Stati T	on I B	Statio T	n II B	Statio T	on III B
Balanus cyprid Unidentified amphipod Echinoderm larva <u>Acartia</u> copepodite <u>Corophium</u> sp. <u>Pagurus longicarpus</u> <u>Pinnotheres maculatus</u> <u>Neopanope texana</u> <u>Pinnixa sayana</u>		15 15 - - 29 -		4 29 148 - - 7 7 4		- 24 57 19 33 14 5 5
Total	669	4,806	160	1,541	1,128	2,403
Date: <u>October 15, 1974</u>	•	Cruise	No.: <u>10</u>			
	Stati T	on I B	Statio T	n II B	Stati T	on III B
Acartia tonsa Acartia (copepodite) Centropages typicus Centropages (copepodite) Corycaeus Euterpina acutifrons Eucalanus attenuatus Paracalanus sp. Pseudocalanus minutus Temora longicornis Temora (copepodite) Penilia avirostris Cyphonautes larva Oikopleura Limacina inflata Sagitta sp. Polychaete larva Veliger bivalve? Amphipod Unidentified copepod? Unidentified copepod? Unidentified copepodites Medusa Echinoderm larva Copepod nauplius Balanus (nauplius) Globigerina Evadne sp.	96 8 29 38 67 25 4 197 54 8 46 163 21 670 122 8 34 13 4 38 8 17 29 13 17 8 4	100 - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 60\\ -26\\ 8\\ 21\\ 8\\ 21\\ 8\\ -68\\ 10\\ 5\\ 16\\ 55\\ 24\\ 550\\ 29\\ -13\\ 71\\ -24\\ 3\\ 13\\ 16\\ 18\\ 3\\ -8\end{array}$	136 -43 -43 -43 -68 26 238 247 - 9 136 -68 1,250 -60 -51 17 - - 111 51 -9 17 -	125 58 19 19 48 58 182 77 10 86 67 38 1,371 38 - 29 192 - 29 192 - 29 10 249 77 -	740 82 33 66 378 33 691 625 - 66 181 99 1,316 99 345 16 - 16 16 99 131 - 16

Date: <u>October 15, 1974 (cont.)</u> Cruise No.: <u>10</u>

	Stat	ion I	Stati	on II	Station I		
Species	Т	В	Т	В	Т	В	
Pseudodiaptomus coronatus	- ·	-			38	395	
Labidocera aestiva				9	10	-	
Balanus (cyprid)	-	-		847 .	10	16	
Natantia (larvae)	-	·			19	-	
<u>Oithona similis</u>			· · -	9	-	-	
Unidentified pteropod		-	-	9	-		
Reptantia (zoeae)		-		9	-		
Harpacticoid copepod	-	-	-	• •••		16	
Total	1,745	1,795	1,049	2,616	2,859	5,475	
Date: <u>October 30, 1974</u>		Cruise	No.: <u>11</u>				
	Stat	ion I	Stati	on II	Stati	on III	
	Т	B	T	В	Т	В	
Acception tongo	100	2 657	0 710	1 104	2 220	0 252	
Cantropagos hamatus	483	3,057	326	1,124	2,338	2,352	
Centropages typicus	204 25	1 600	120	- 3/	57	- 52	
Centronages (conendite)	625	228	515	A2	108	105	
Paracalanus en	2 500	4 400	310	221	283	1 150	
Eutornina acutifrons	511	3 142	354	10/	200	627	
Microcalanus sp	1 080	0,172	80/1	-	260	027	
Temora longicornis	1,000	1 886	418	- Q	57		
Aithona similis	170	171	710	25	1/	- 52	
Pseudocalanus minutus	597	6 571	103	19/	19	627	
Corvegeus sp	426	1 257		3/1	190	105	
Eucalanus attonuatus	420 85	11/	32	25	28	105	
Unidentified conepodites	313	229	JL .	25	2.0	52	
Acartia clausi	J1J			20	71	-	
Copened nauplii	-	114	· _ ·		28	52	
Veligers	682	3,600	32	161	14	105	
Polychaete larvae	142	457	869	279	439	1.620	
Limacina inflata	284	457		17	14	-	
Echinoderm larvae	57			-	-		
Balanus nauplii	-	171	32	-	· · · · ·	-	
Penilia avirostris	114	286	32	59	57	52	
Oikopleura sp.	369	114		85	85		
Calanus sp.	***		-		85	314	
Pinnotheres maculatus	28	2000			· _		
Temora (copepodite)		686		51	-	-	
Acartia (copepodite)		114	-	8		105	
Pseudodiaptomus coronatus	-	571	-	110	-	261	
Labidocera aestiva	citat	228	-	-	-	523	

Date: <u>October 30, 1974 (cont.)</u>		Cruise	No.: <u>11</u>					
Species	Station I T B		Station II T B		Station T B			
Medusa <u>Sagitta</u> sp. <u>Noctiluca scintillans</u>	-	171 114 -		8 - -		-		
Total	8,977	30,395	12,547	2,804	4,674	8,259		
Date: November 14, 1974	November 14, 1974 Cruise No.: 12							
	Station I Station II T B T B		on II B	Station III T B				
Acartia tonsa Acartia (copepodite) Centropages hamatus Centropages typicus Corycaeus sp. Euterpina acutifrons Eucalanus attenuatus Oithona similis Paracalanus sp. Pseudocalanus minutus Temora longicornis Temora longicornis Temora (copepodite) Eurytemora affinis Unidentified copepod Copepod species A Veliger Penilia avirostris Limacina inflata Globigerina sp. Oikopleura sp. Polychaete larvae Balanus (nauplius) Echinopleuteus larvae Centropages (copepodite) Pseudodiaptomus coronatus Unidentified copepodites Sagitta sp. Unidentified amphipod Echinoderm larvae Medusa Labidocera aestiva Noctiluca	267 57 - 172 521 534 13 114 629 102 172 13 6 76 89 350 102 19 13 32 32 6 6 - - - - - - - -	$ \begin{array}{c} 185 \\ - \\ 244 \\ 643 \\ 448 \\ 10 \\ 97 \\ 789 \\ 156 \\ 380 \\ - \\ 136 \\ 555 \\ 58 \\ 49 \\ 29 \\ 78 \\ 39 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ 10 \\ - \\ - \\ 10 \\ - \\ - \\ 10 \\ - \\ - \\ 10 \\ - \\ - \\ - \\ 10 \\ - \\ - \\ - \\ 10 \\ - \\ $	$1,026 \\ 28 \\ 7 \\ 166 \\ 194 \\ 208 \\ - \\ 42 \\ 159 \\ 132 \\ 28 \\ 14 \\ - \\ 7 \\ 83 \\ 374 \\ 7 \\ 7 \\ - \\ 14 \\ 7 \\ 7 \\ - \\ 7 \\ 35 \\ 63 \\ 21 \\ 7 \\ 7 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$766 \\ 11 \\ 49 \\ 32 \\ 49 \\ 103 \\ - 49 \\ 205 \\ 43 \\ 22 \\ 5 \\ - 5 \\ 59 \\ 281 \\ 22 \\ - \\ - 5 \\ 59 \\ 281 \\ 22 \\ - \\ - 5 \\ -$	$\begin{array}{c} 268 \\ 34 \\ -78 \\ 122 \\ 214 \\ -63 \\ 181 \\ 54 \\ 24 \\ 5 \\ -1 \\ 107 \\ 371 \\ 49 \\ 20 \\ 5 \\ 68 \\ 5 \\ 5 \\ 5 \\ 20 \\ -1 \\ 15 \\ -5 \\ 5 \\ -1 \\ -1 \end{array}$	331 28 166 110 - 249 83 - 28 - - - - - - - - - - - - -		
Total	3,325	3,935	2,643	1,780	1,723	1.493		

Date: December 13, 1974

Cruise No.: 13

Species	Station I		Station II T B		Station III	
opeeres	3		•	U		U .
Acartia tonsa	2,395	3,777	5,683	2,142	4,923	4,249
Acartia clausi	77	-	-	-	61	17
Acartia (copepodite)	510	363	311	89	1,029	231
Oithona similis	618	121	93	-	40	50
Centropages typicus	355	23			- 1	66
Centropages hamatus	15	291	155	30	· .	116
Centropages (copepodite)	155	73	124	30	20	50
Paracalanus sp.	324	121	· 🗕 ·	-	-	17
Corycaeus sp.	31	-		-	· · · ·	
Oithona brevicornis	139	-	-	 '	20	-
Unidentified copepodites	170	-	186		282	66
Unidentified copepod	108		- -	-	40	· ·
Copepod nauplii	232	-	62	-	61	17
Microcalanus sp.	31	یں۔ ایک ایک م س د	840		-	-
Polychaete larvae	510	242	31	60		50
Veliger	185	2,010	745	357	303	380
Balanus (nauplii)	62	· · · ·		·	-	17
Echinoderm larvae	108	· •••	••••	-	-	-
<u>Oikopleura</u> sp.	15		· ·		-	-
<u>Globigerina</u> sp.	108	145	— 1	30	-	17
Foraminifera spp.	-	48	62	536	282	-
Euterpina acutifrons	***	73	31	30		50
<u>Sagitta</u> sp.		24	· · · · · ·		-	17
<u>Temora longicornis</u>	· <u>-</u>	24	31	-		
Pseudodiaptomus coronatus	· •••		-	· .	-	
<u>Balanus</u> (cyprid)	-	·	- -	-	- '.	17
Harpacticoid copepod	~	••••••••••••••••••••••••••••••••••••••	31		-	17
Total	6,148	7,336	7,545	3,304	7,061	5,444
Date: January 16, 1975

Species	Station T	I B	Statior T	n II B	Station T	B III '
Acartia clausi	29	6		5	89	8
Acartia tonsa	14	194	147	208	263	236
Centropages hamatus	112	104	217	185	184	87
Centropages typicus	275	37	10	71	43	43
Centropages (copepodites)	604	174	178	275	171	152
Paracalanus sp.	36		10	5	11	
Pseudocalanus minutus	43	115	17	9	59	16
Oithona similis	94	51	24	33	16	19
Temora longicornis	7	62	17	14	14	11
Veliger	14	169	395	753	79	385
Balanus (nauplii)	7	20	10	-	3	0
Fish eggs	43		3	-	3	0
Echinoderm larvae	14	_		-	3	3
Unidentified copepodites	11	8	17	5	11	
Polychaete larvae	-	6	3		0	
Mancocuma altera	-	-	7	. .	5	· •
Balanus (cyprid)	-	-	0	19	3	8
Temora (copepodites)		6			0	. 8
Medusa	-	20	-	- <u>.</u>	-	30
Cyphonautes larva	- 	6	-	5	-	5
? Pseudocalanus (copepodite)	. -	17		_	<u> </u>	16
Acartia (copepodite)	-	8	n Mari	14		8
Copepod nauplius	-	3	-	-	· -	
Evadne sp.		3	-		_	·
Foraminifera spp.	***	~	• • • • • • • • • • • • • • • • • • •	33		
Harpacticoid copepod		-	-	5	_ `	4000
Corycaeus sp.	-	- '	- 1, 19	5	_	3
Globigerina sp.	-		·	t and	. .	3
Pseudodiaptomus coronatus	-	- .			<u>.</u>	5.
Total	1.303 1	.009	1.052	1.644	957	1.046

Date: February 20, 1975

Cruise No.: 15

Species	0700 T)	т 080 т	DO	т 1000	D
	s .	D		D	• • • • • • • •	D
Acartia clausi	3	4	8	18	18	- · ·
Acartia tonsa	2	71	30	259	75	763
Centropages hamatus	6	7	5	-	86	21
Centropages typicus	48	54	39	46	48	50
Centropages copepodite	48	56	13	42	30	110
Oithona brevicornis	4		. 2	· - · · ·	14	
Oithona similis	3	30		42	• 7	28
Paracalanus sp.	18	2	3	14	16	46
Pseudocalanus minutus	142	364	22	371	145	156
Temora longicornis	20	180	12	224	52	67
Tortanus discaudatus	- • • .	1 6	-	<u> </u>	-	, , 1
Unidentified copepodite	69	30	29	25	97	96
<u>Balanus</u> (nauplii)	4	-	3	4	2	11
<u>Balanus</u> (cyprid)		4	2		-	4
<u>Sagitta</u> sp.	- Maria	••••	-	-		
Mysid		ule m m	-	· · ·	-	· ••• ·
Veliger	<u> </u>	. 11	- 	4		7
Mancocuma altera	- 1	-			- 1944	71
Acartia copepodite		4	~	-	- 1 	14 -
<u>Pseudocalanus</u> copepodite		11		95	-	-
lemora copepodite	-	56	· ••• ·	49	🛥 11 inter-	-85
Fish eggs		13		-	-	. /
Medusa		—	~	46		35
Foraminifera sp.	• • • •			4	in a state of the	14
Cyphonaute larvae	-		***		-	
Species A (copepod)	***					
Lopepod nauplin			-		-	4
Unidentified copepod	-		-	-		
Total	367	897	168	1,254	590	1,593

З¥

Date: February 20, 1975 (cont	.)	Cruise No.	: 15	
	1100		1200	
Species	T	В	T	В
Acartia clausi Acartia tonsa Centropages hamatus Centropages typicus Centropages copepodite Oithona brevicornis Oithona similis Paracalanus sp. Pseudocalanus minutus Temora longicornis Tortanus discaudatus Unidentified copepodite Balanus (nauplii) Balanus (cyprid) Sagitta sp. Mysid Veliger Mancocuma altera Acartia copepodite Pseudocalanus copepodite Temora copepodite Fish eggs Medusa Foraminifera sp. Cyphonaute larvae Species A (copepod) Copepod nauplii Unidentified copepod	9 24 78 42 18 3 5 5 14 10 - 22 - - - - - - - - - - - - - - - - -	19 351 71 44 88 - 34 7 206 84 - 37 - - - 7 - 3 37 67 10 10 10 7 7 -	22 9 18 26 9 6 2 - 5 6 - 10 - - - - - - - - - - - - - - - - -	$ \begin{array}{c} 11\\322\\36\\45\\66\\-\\20\\9\\259\\66\\-\\20\\7\\-\\-\\4\\-\\-\\11\\7\\14\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\-\\$
Total	231	1,089	113	897

Date: February 20, 1975 (cont.) Cruise No.: 15

Speciae	, T	1300)	1	400 B	[۳	600 B
species	. 1		D	I	D	1	B
Acartia clausi		13	21	27	14	46	5
Acartia tonsa		16	496	11	345	297	76
Centropages hamatus		18	43	5	28	112	91
Centropages typicus		41	43	5	101	97	35
Centropages copepodite		34	91	4	79	104	43
Oithona brevicornis		12		2	7240	31	
Oithona similis		7	-38	< 1	31	-	23
Paracalanus sp.		8	5	<]	6	39	2
Pseudocalanus minutus		45	255	2	280	815	163
Temora longicornis		13	126	1	107	35	13
Tortanus discaudatus	-	•		< 1	-	-	
Unidentified copepodite		31	112	7	36	324	13
Balanus (nauplii)		1	5	· _	-	8	
Balanus (cyprid)	<	: 1	-	< 1	-	-	_
Sagitta sp.		•		***		-	
Mysid		•	iteen v				-
Veliger			-	•••	-		- 3
Mancocuma altera		•	-	-			2
Fish eggs		•	11	_	14	-	5
Medusa		•		-	36	and and a second s	22
Foraminifera sp.		•	1]	-	-	_	7
Species A (copepod)		a .	3		_ 1		
Cyphonaute larvae		•	3		3		2
Acartia copepodite	-	•	11	(mi)	14	et e	
Pseudocalanus copepodite	-	•	72	-	64	_	· · · · ·
Temora copepodite	-	•	400	873	28	-	
Copepod nauplii	~	•	-100		3		-
Corycaeus sp.		-	-		-		
Polychaete larvae	·			-			
Unidentified copepod	-	•	-	-	-	-	-
Total	2	240	1,346	68	1,189	1,908	505

X

Date: <u>February 20, 1975 (c</u>	<u>ont.)</u>	Cruise	No.: 15	
	17()0	180	0
Species	Т	В	T	В
Acartia clausi	18	4	44	102
Centropages hamatus	223	321	126	158
Centropages typicus	65	54	69	20
Centropages copepodite	94	116	44	86
Oithona brevicornis	18	-	38	-
Oithona similis	-	31	er. 1	36
<u>Paracalanus</u> sp.	88		107	7
<u>Pseudocalanus</u> minutus	1,220	433	1,387	362
<u>lemora</u> <u>longicornis</u>	6	71	44	115
lortanus discaudatus	0	-	-	49
Unidentified copepodite	352	36	289	
Balanus (nauplii)	6	4	13	3
Balanus (cyprid)			-	
<u>Sagitta</u> sp.	Ь	borg.		-
Mysid	-	-	ρ.	· - ·
veliger		4	-	<u>່</u> 3
Mancocuma altera	-	- 0	₩	~
Fish eggs		9		. 3
Medusa		4	, 	
Foraminitera sp.		22		10
Species A (copepod)				<u>ं</u> उ
Cypnonaute larvae	-	4		о - Б
Acartia copepodite	~	18		-
Pseudocalanus copepodite	-	40	-	-
Temora copepodite		45	-	· -
Copepod naupini	ess .	4		3
Corycaeus sp.	· · ·	U	•••••	3
Pulychaete larvae		U	-	- 3
unidentitied copepod	• •• •••••••••••••••••••••••••••••••••	-		/
Total	2,507	1,336	2,676	1,081

Date: February 20, 1975 (cont.) Cruise No.: 15

	1900)
Species	T-	В
Acartia clausi	16	4
Acartia tonsa	91	110
Centropages hamatus	80	330
Centropages typicus	80	35
Centropages copepodite	59	62
Oithona brevicornis	16	200
Oithona similis	800	4
Paracalanus sp.	69	4
Pseudocalanus minutus	794	432
Temora longicornis	150	273
Unidentified copendite	273	44
Balanus (nauplii)	5	***
Balanus (cyprid)		4
Sagitta sp.	, t. 🛥	
Mysid	5	·
Veliger		-
Mancocuma altera	5	
Acartia copepodite	-	-
Pseudocalanus copepodite	-	66
Temora copendite	UR0	22
Fish eas		33
Medusa		64
Foraminifera sn.	***	-
Cynhonaute larvae		
Species A (copend)	-	200
Copepod nauplii		uns .
Unidentified copepod	2010	1910
	· · · · ·	
Total	1.643	1.423

Date: <u>March 18, 1975</u>

	S	tation I	Stat	tion II	Stat	ion III
Species	T	В	Т	В	Т	B
Acartia tonsa	28	3 126	103	32	834	284
<u>Acartia clausi</u>	74	1 21	114	64	124	42
Centropages typicus	48:	3 -	228	149	247	84
Centropages hamatus	88:	3 589	148	288	432	147
<u>Oithona similis</u>	10:	2 211	262	- 75	556	189
Oithona brevicornis	13	569	285	256	710	241
Paracalanus sp.	11:	2 84	274	299	1,205	410
Pseudocalanus minutus	1,08	3 842	2,555	1,142	5,745	1,956
Temora longicornis	49	2,992	183	266	803	273
Unidentified copepodites	s 69	3 632	958	993	2,625	315
Sagitta sp.	23	3 253	11	43	31	11
Balanus (nauplii)	9	3 42	46	11		
Veliger		9 42	34	224		
<u>Limacina inflata</u>		21	11	128		
Fish eggs		-	11	, -		
<u>Microcalanus</u> sp.	-	<u></u>	11		-	
<u>Balanus</u> (cyprid)	-	21	-	21	93	31
<u>Crangon septemspinosa</u>	-		· · · · · ·	53	31	11
Crab zoeae		21	-		-	
<u>Labidocera</u> <u>aestiva</u>		105		-	· · ·	Anit
<u>Euterpina</u> acutifrons	-			21	·	
<u>Centropages</u> copepodite		-	-	310		536
<u>Acartia</u> copepodite	~~	~	· - · ·	-		. 31
Total	4,14	5 6,571	5,234	4,375	13,436	4,561

Date: <u>April 14, 1975</u>

· .		0800		1100		1200
	Species	Т	В	T	В	T B
Acartia	clausi	529	106	32	-	29 65
Acartia	tonsa	7	24	1997	-	13 19
Centropa	ages hamatus	987 1	,145	562	77 8	394 1,875
Centropa	ages typicus	64	0	40	- · ·	- 55
Centropa	ages copepodite	493	791	190	-	357 1,026
<u>Oithona</u>	brevicornis	43		44	 .	117 -
<u>Oithona</u>	similis	21	- 94	4		67 224
Paracala	anus sp.	14	24	16	-	50 -
Pseudoca	alanus minutus	129	118	89		42 289
Temora	longicornis	665	814	553	. 	407 1,586
Tortanus	<u>discaudatus</u>	7	24	102 8		
Unident	ified copepodite	300	24	69	en in	76 -
Sagitta	sp.	14	83		-	8 9
Copepod	nauplii	-	12	2410	6+#3	nan toot
Veligers	~ >		24	aya		waa daas
Balanus	(cyprid)	21	ata .	8	weeks -	995 - 8954
Crangon	<u>septemspinosa</u> (zoeae)	50	71		1980 -	
Fish egg	gs		83	-		- 47
Pseudodi	iaptomus coronatus	93	83	4	tres	
Polychae	ete larvae		~	- 	-	· · · · · · · · · · · · · · · · · · ·
Globerge	erina sp.	•	35	, kez	-	4008 - 1206
Medusa		-	••••		-	
Mysid	and a second	.	-	, •••	- 100	
Acartia	copepodite		83	2008	-	- 4/
Pinnixa	sayana	-	े कार्य	•		
Neopanoj	<u>pe texana sayı</u>	-	-		—	
lemora c	copepodite					
Cyphonal	ite larvae	1994 -	720	543		web East
<u>lancer</u>	Irroratus (zoeae)		***	570	68	and 508
Limacina	<u>i intiata</u>			-	194	-
Euterpin	na acutifrons		24	• • ••	200	
Eurytemo	ora sp.	5m6	12	-	1009 - 1	
roramin	itera sp.	***	12			
LaDIGOCE	era aestiva	20	αφ.	1 45	***	
Uorycael	15 SP.	-	344	ha	••••	** . ** .
награст [.]	ιτοτα	rm .	258	4.49		
Total	3	,451 3	,686]	,611	- 7	,615 5,187

Duce. ADI 11 14, 13/3 (CONC.)	Date:	April	14,	1975	(cont.)).
-------------------------------	-------	-------	-----	------	---------	----

	130	0	1/	400
Species	T	В	Т	В
Acartia clausi	6	98	29	106
Acartia tonsa	2	56	-	35
Centropages hamatus	300	1.427	565	1.833
Centropages typicus	29		21	9
Centropages copepodite	111	546	237	584
Oithona brevicornis	34	-	25	
Oithona similis	27	308	8	27
Paracalanus sp.	-	56	29	9
Pseudocalanus minutus	36	518	216	558
Temora longicornis	52	1,623	42	1,275
Tortanus discaudatus	6	- 	8	9
Unidentified copepodite	21	168	83	142
Sagitta sp.		56	29	133
Copepod nauplii	2	14	-	9
Veliger	~~ ·		17	35
<u>Balanus</u> (cyprid)	290	· · ·	8 1	9
<u>Crangon</u> <u>septemspinosa</u> (zoeae)		-	8	18
Fish eggs	2	_ ·	-	44
Pseudodiaptomus coronatus	4	-	21	
Polychaete larvae		28	5 m	18
<u>Globergerina</u> sp.	elha	-ma	-	
Medusa	400 .		-	-
Mysid		tern.	••••	-
<u>Acartia</u> copepodite	-		-	44
Pinnixa sayana	em	•••• .	-	-
<u>Neopanope texana sayi</u>		THE .		-
lemora copepodite	17 *	ен 13 а.	sian.	-
Cyphonaute larvae	-	14	628g	9
Lancer Irroratus (zoeae)		evita .	-	-
Limacina inflata				
Euterpina acutifrons	war	14	**	***
<u>Eurytemora</u> sp.	Not	62N	-	
Foraminitera sp.	4 2			35
Labiuocera aestiva	-144	== ¶ /}	**	
Unycaeus sp.		14		
narpaculcolu	673	14	-	9
Total	632	4,954	1,346	4,950

Date: <u>April 14, 1975 (cont.)</u> Cruise No.: <u>17</u>

	1500		· 1	600	170	D 0
Species	T	В	Т	В	Т	B
Acartia clausi	122	-	561	167	418	64
Acartia tonsa	-	-	28	56	17	154
Centropages hamatus	784	-	1,151	1.214	2,089	2.023
Centropages typicus	45	-	66	_	200	
Centropages copepodite	249		234	140	479	666
Oithona brevicornis	54		84		35	_
Oithona similis	23		37	98	9	77
Paracalanus sp.	27	-	28	_ ·	52	26
Pseudocalanus minutus	249	-,	374	600	200	371
Temora longicornis	140		590	1,647	1,880	3,009
Tortanus discaudatus	14	-	. 19	42	17	64
Unidentified copepodite	127	-	271	90	322	166
Sagitta sp.	36		9	42	17	
Copepod nauplii	5			-	-	-
Veliger	14	-	-	14	-	-
Balanus (cyprid)	5		. - 1	28	9	-
Crangon septemspinosa (zoeae)) 9	-	-	98	69	51
Fish eggs	5	-	-	70	- 1 - E	38
<u>Pseudodiaptomus</u> coronatus	14	-	28	14	1 - 1	77
Polychaete larvae	· -	-	· · · · ·		9	13
<u>Globergerina</u> sp.	hear	-		56	.	26
Medusa	-			14		-
Mysid	-		-	14		
<u>Acartia</u> copepodite	÷ .	-		.	-	154
<u>Pinnixa sayana</u>	-			-	-	102
<u>Neopanope texana sayi</u>		-		-	-	13
<u>Temora</u> copepodite	-		-	-		
Cyphonaute larvae	_ ' ·		· .		-	2 - 1
<u>Cancer</u> irroratus (zoeae)			ана на	-	· • • • • • • • • • • • • • • • • • • •	.
Total	1,922		3,480	4,384	5,822	7,094

×¢

Date:	April	14,	1975	(cont.)	
Pays.	1.191.1.1		1010	(00.00)	

Cruise No.: 17

	180	10	19	00
Species	Т	В	T,	В
Acartia clausi	939	174	561	131
Acartia tonsa	55	95	236	100
Centropages hamatus	2,415	876	2,274	664
Centropages typicus	207	.	266	39
Centropages copepodite	1,353	347	1,299	703
Oithona brevicornis	28	-	133	
Oithona similis	28	63	15	70
Paracalanus sp.	69	-	– .	8
Pseudocalanus minutus	594	276	960	688
Temora longicornis	2,526	2,478	1,048	487
Tortanus discaudatus	14	16	15	23
Unidentified copepodite	511	32	236	46
Sagitta sp.	69	71	74	8
Copepod nauplii	-	-	· · ·	·
Veligers		16	· · ·	-
Balanus (cyprid)	55	24		15
Crangon septemspinosa (zoea	e) 566	166		46
Fish eggs	-	63	-	8
Pseudodiaptomus coronatus	· : 🛖	8	576	— `
Polychaete larvae	-	8	44	8
Globergerina sp.	-		-	- 8
Medusa	· · - ·	-	-	i i i 📻 da
Mysid	 , '	-	-	-
Acartia copepodite	-	63	-	23
Pinnixa sayana	. 		-	-
Neopanope texana sayi	1. 1. 1. 1	-	-	, - ,
Temora copepodite	. – "	-	. – **	8
Cyphonaute larvae	· _		· · · ·	8
<u>Cancer</u> irroratus (zoeae)		-	*** * 1	8
Total	9,429	4,776	7,737	3,099

Date: <u>May 9, 1975</u>

	Stat	ion I	Stati	on II	Stati	on III
Species	T	В	T	В	Т	В
		* 				
<u>Acartia clausi</u>	5		43	93	170	349
Acartia tonsa	5	·	-	-	28	-
Centropages hamatus	242	2,272	1,174	1,633	1,435	3,638
Centropages typicus	57	222	140	-	113	604
Centropages copepodite	196	291	183	139	500	2,034
Oithona brevicornis	206	485	11	301	264	418
Oithona similis	88	222	22	104	104	93
Paracalanus sp.	36	1,302	65	996	151	430
Pseudocalanus minutus	31	1,718	86	2,085	208	418
Temora longicornis	1,187	6,566	1,163	4,413	2,559	5,207
Tortanus discaudatus	46	14	-	81	38	453
Unidentified copepodite	93	762	248	614	283	511
Crangon septemspinosa	21	-	11	81	-	314
Balanus (nauplii)	5	14	-	12	19	
Copepod nauplii	5	42	-	. .	9	12
<u>Sagitta</u> sp.	-	55	-	46	19	12
Evadne sp.	-	28	-	12	19	-
<u>Cancer</u> irroratus	e 🔸 🛶 🖓	28	· · -	12	-	12
Calanus finmarchicus	-	14	. –	12	-	-
"Arrow Worm"	-	- 1	<u>`</u>	12	-	12
<u>Limacina inflata</u>	-	- 	. – '	35	- °,	-
Euterpina acutifrons	, , /	. -			-	23
Shrimp-Species A	-	-	and and a second se	-	-	12
Total	2,223	14,035	3,146	10,681	5,919	14,587

家。

Date: <u>May 28, 1975</u>		Cruise N	No.: <u>19</u>		•	-
Species	Sta T	tion I B	Station T	II B	Station T	III B
Species <u>Centropages typicus</u> <u>Centropages copepodite</u> <u>Oithona similis</u> <u>Oithona brevicornis</u> <u>Temora longicornis</u> <u>Temora longicornis</u> <u>Acartia clausi</u> <u>Podon sp.</u> <u>Labidocera aestiva</u> <u>Balanus (nauplii)</u> <u>Balanus (cyprid)</u> <u>Crangon septemspinosa (zoeae)</u> <u>Polychaete larvae</u> <u>Copepod nauplii</u> <u>Ovalipes ocellatus</u> <u>Acartia tonsa</u> <u>Veliger</u> <u>Tortanus discaudatus</u> <u>Insect larvae</u> <u>Microcalanus sp.</u> <u>Evadne sp.</u> <u>Unidentified copepodite</u> <u>Limacina inflata</u> <u>Pagurus longicarpus</u> <u>Sagitta sp.</u> <u>Paracalanus sp.</u> <u>Crab megalops</u> <u>Crab zoeae (Portunnid)</u> <u>Acartia copepodite</u> <u>Pseudodiaptomus coronatus</u>	Sta T 2,836 350 600 6 9 31 350 87 12 56 75 31 19 6 6 6 19 6 75 31 19 6 75 31 19 6 75 31 19 6 75 31 19 6 75 31 19 6 75 31 19 6 75 31 19 6 75 31 350 87 12 56 75 31 350 87 12 56 75 31 350 87 12 56 75 31 350 87 12 56 75 31 350 87 12 56 75 31 350 87 12 56 75 31 350 87 12 56 75 31 350 87 12 56 75 31 350 87 12 56 75 31 350 87 12 56 75 31 19 6 6 75 31 19 6 75 31 19 6 75 31 19 6 75 31 19 6 75 31 19 75 31 19 6 75 31 19 6 75 31 19 75 75 31 19 75 75 31 19 75 75 31 19 75 75 31 19 75 75 75 75 75 75 75 75 75 75 75 75 75	tion I B 4,178 1,293 1,012 140 553 1,030 262 384 66 721 19 - 1,208 206 112 103 9 - 525 19 47 - 112 - 384 66 9 37 9 -	Station T 62 20 56 11 123 27 - 24 35 - - 22 - 4 2 1 1 1 1 1 1 1 - - - - - - - - - - - -	$ \begin{array}{c} \mathbf{II}\\ \mathbf{B}\\ 44\\ 165\\ 35\\ \mathbf{-6}\\ 82\\ \mathbf{-7}\\ \mathbf{-7}\\ \mathbf{-7}\\ 222\\ 1\\ 10\\ \mathbf{-26}\\ \mathbf{-7}\\ \mathbf{-3}\\ \mathbf{-7}\\ 1\\ \mathbf{-7}\\ 1\\ \end{array} $	Station T 177 41 227 6 22 136 10 - - 2 2 2 2 2 2 2 - 8 - - 2 2 2 2 - 8 - - 2 10 - - 18 20 -	IIII 44 658 250 14 61 14 17 14 17 14 17 14 17 14 7 61 3 74 7 14 7 14 7 11 14 7 14 7 14 7 14 7 14 7 14 7 14 7 14 7 17
Eucalanus attenuatus Temora copepodite	-	-		- 1	-	- 71
Total	4,565	12,120	391	651	695	1,623

Table AV-1

Sediment characteristics for transect stations

					and and a second se Second second second Second second	Water Content	Volatiles (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
Station	M _z (φ)	σ _i (φ)	Ski	К _g	50% mm	(%)		la di secuto La constante di secuto			
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.383 1.537 2.600 2.253 0.917 1.303 2.197	1.463 2.525 0.546 0.173 0.711 0.783 0.394	+0.236 +0.189 +0.167 +0.054 -0.295 -0.398 +0.093	2.390 2.283 1.768 1.239 1.792 2.049 0.969	0.380 0.360 0.166 0.208 0.510 0.380 0.222	28.6 24.7 29.1 24.2 20.0 20.4 23.4	1.12 1.06 0.76 0.48 0.12 1.98 0.14	1.0 10.2 5.4 5.6	92.3 76.2 94.6 95.5 93.7 93.7 99.0	3.4 7.5 2.8 2.5 0.9 0.7 1.0	3.3 6.1 2.6 2.0 -
1- 8 1- 9	1.273 0.927	1.435 0.826	-0.060 -0.144	1.003 1.148	0.404 0.500	18.8 21.4	0.55 0.13	7.1 1.5	89.1 97.5	3.8 1.0	-
2- 1 2- 1B 2- 2 2- 3 2- 3B 2- 4 2- 5 2- 6	1.443 1.490 1.543 1.753 1.670 3.757 3.080 5.220	0.707 1.073 1.051 1.207 1.262 1.149 0.428 3.141	-0.110 +0.136 +0.213 -0.088 -0.078 +0.426 +0.080 +0.750	1.111 1.807 0.925 1.601 1.182 2.879 1.287 1.105	0.348 0.329 0.387 0.277 0.298 0.078 0.119 0.073	24.1 20.6 18.8 27.0 23.3 36.0 28.9 71.2	0.53 0.90 0.66 0.56 0.39 1.77 0.62 3.26	0.1 0.5 0.3 6.4 1.1 - -	97.0 93.4 96.8 89.1 95.0 70.3 95.0 53.2	1.3 4.6 1.1 2.4 2.6 24.3 4.0 26.2	1.6 1.5 1.8 2.1 1.3 5.4 1.0 20.6
3- 1 3- 2 3- 3 3- 4 3- 5 3- 6 3- 7 3- 8	1.910 3.273 1.783 1.997 2.193 2.207 6.550 1.707	1.326 0.317 1.227 0.299 0.740 0.958 2.976 2.234	+0.196 +0.048 -0.060 -0.028 -0.168 +0.428 +0.536 +0.281	1.613 1.386 1.608 1.025 1.071 0.809 0.847 2.101	0.263 0.104 0.278 0.251 0.205 0.265 0.023 0.342	10.8 11.9 13.1 19.0 11.3 17.7 76.2 10.5	0.71 0.43 1.24 0.30 0.29 1.36 6.46 0.67	- 2.3 - - 4.4	92.4 97.2 92.6 99.2 96.8 94.9 19.1 82.6	4.0 2.8 2.4 0.8 3.2 3.3 51.2 7.3	3.6 2.7 - 1.8 29.7 5.7

Station	M _z (φ)	σ _i (φ)	Sk _i	Kg	50% mm	Water Content (%)	Volatiles (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	
$\begin{array}{r} 4-1\\ 4-2\\ 4-3\\ 4-4\\ 4-5\\ 4-6\\ 4-7\\ 4-8\\ 4-9\\ 4-10\\ 4-11\\ 4-12 \end{array}$	3.783 3.053 2.393 1.220 2.040 1.610 2.873 2.790 3.287 3.497 3.610 6.887	1.166 0.342 0.858 0.851 0.324 0.998 0.354 0.623 0.425 0.465 1.214 3.031	$\begin{array}{r} +0.455 \\ +0.276 \\ +0.582 \\ +0.317 \\ +0.214 \\ +0.153 \\ +0.253 \\ +0.008 \\ +0.086 \\ +0.208 \\ +0.645 \\ +0.324 \end{array}$	3.229 1.163 1.968 2.272 1.054 0.929 1.514 1.037 1.313 1.187 3.762 0.876	$\begin{array}{c} 0.076\\ 0.125\\ 0.229\\ 0.445\\ 0.125\\ 0.358\\ 0.140\\ 0.144\\ 0.103\\ 0.092\\ 0.093\\ 0.012\\ \end{array}$	38.2 27.2 26.5 18.1 26.1 22.7 30.2 30.8 31.8 29.4 8.1 117.8	$ \begin{array}{r} 1.53\\ 0.52\\ 0.98\\ 0.70\\ 0.56\\ 0.47\\ 0.74\\ 0.58\\ 0.90\\ 0.75\\ 0.86\\ 8.92 \end{array} $		71.0 96.5 92.0 94.6 99.9 96.9 96.5 95.8 92.4 86.7 79.6 16.2	23.2 3.5 5.1 5.4 0.1 1.9 1.5 3.0 6.1 11.3 13.9 49.5	5.8 - 2.9 - 0.9 2.0 1.2 1.5 2.0 6.5 34.3	
5- 1 5- 2 5- 3 5- 4 5- 5 5- 6 5- 7 5- 8 5- 9 5-10	2.743 5.847 2.493 2.500 2.137 3.157 2.747 3.267 3.953 5.090	1.365 2.676 1.213 0.923 0.589 0.416 0.686 0.465 1.546 2.580	+0.238 +0.633 +0.563 -0.173 +0.089 +0.248 +0.455 +0.275 +0.758 +0.727	1.645 1.341 2.629 0.992 1.329 1.332 1.280 1.203 3.637 1.559	0.159 0.035 0.200 0.160 0.231 0.113 0.167 0.108 0.086 0.058	30.4 93.7 29.9 24.1 31.1 32.3 30.5 29.0 44.4 74.2	0.81 4.69 1.10 0.77 0.57 0.33 1.07 0.50 1.72 4.04		86.0 21.0 90.0 94.4 97.5 93.6 91.5 91.9 74.0 48.2	9.8 60.0 5.9 5.6 2.5 4.4 4.0 4.3 17.3 36.7	4.2 19.0 4.1 - 2.0 4.5 3.8 8.7 15.1	
6- 1 6- 2 6- 3 6- 4 6- 5	4.937 3.163 2.467 2.840 2.830	2.209 0.610 0.317 0.784 0.534	+0.644 +0.282 +0.156 +0.291 +0.138	2.414 1.168 1.077 1.486 1.810	0.055 0.120 0.188 0.148 0.144	49.2 33.7 27.7 26.0 28.1	3.08 0.90 0.40 1.16 0.53	-	41.0 89.0 98.5 89.0 94.9	46.0 8.3 1.5 8.5 2.9	13.0 2.7 2.5 2.2	

Station	M _z (φ)	σ _i (φ)	Sk _i	К _g	50% mm	Water Content (%)	Volatiles (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
6- 6 6- 7 6- 8 6- 9	1.860 2.930 3.850 3.680	0.949 0.436 1.369 1.623	+0.304 +0.225 +0.555 +0.711	0.828 1.369 3.078 3.383	0.327 0.136 0.078 0.103	31.3 32.2 44.3 43.5	0.44 0.60 1.86 1.62		96.1 95.5 69.5 76.6	3.0 3.0 22.8 15.0	0.9 1.5 7.7 8.4
7- 1 7- 2 7- 3 7- 4 7- 5 7- 6 7- 7 (7- 7) 7- 8	2.780 3.843 1.357 2.817 6.447 1.457 1.700 1.653 3.280	2.183 0.873 0.862 0.439 3.020 0.990 0.841 0.764 1.215	+0.454 +0.361 -0.317 +0.121 +0.529 -0.012 +0.297 +0.277 +0.717	1.318 2.545 1.444 1.305 0.891 1.351 2.414 2.134 2.374	0.189 0.070 0.344 0.144 0.023 0.360 0.317 0.321 0.128	38.1 37.3 22.2 31.3 120.1 21.8 18.8 25.7 32.5	2.21 1.65 0.69 0.61 7.76 0.34 0.81 0.81 1.14	- 1.7 - 1.5 - -	69.0 65.4 96.7 97.2 22.8 94.8 93.8 94.9 81.7	24.5 30.1 1.6 2.8 48.9 3.7 3.5 3.1 13.3	6.5 4.5 - 28.3 2.7 2.0 5.0
8- 1 8- 2 8- 3 8- 4 8- 5 8- 6 8- 7 8- 8 8- 9	3.590 3.663 2.820 5.570 5.730 2.303 3.307 1.583 1.053	0.555 1.435 0.468 2.585 2.749 1.240 0.410 0.469 1.150	+0.211 +0.543 +0.361 +0.652 +0.745 +0.087 +0.081 -0.054 +0.065	1.280 3.001 2.186 1.076 1.167 0.856 1.499 1.100 1.856	0.086 0.089 0.148 0.044 0.047 0.210 0.103 0.329 0.470	37.6 38.3 29.2 90.5 75.2 25.0 29.2 18.8 29.3	1.07 1.61 0.50 5.14 3.83 0.75 0.68 0.25 0.75	- - - - 4.4	79.8 71.2 92.8 36.2 32.0 91.9 93.9 99.6 88.6	17.0 21.0 5.9 44.0 46.6 5.7 4.2 0.4 4.7	3.2 7.8 1.3 19.8 21.4 2.4 1.9 - 2.3
9- 1 9- 2 9- 3 9- 4	4.693 5.917 7.047 3.247	1.749 2.646 3.119 0.350	+0.638 +0.724 +0.487 +0.147	3.533 1.251 0.853 1.134	0.051 0.0395 0.0145 0.107	39.6 82.8 110.3 19.9	2.00 4.68 7.80 0.46	-	27.9 22.9 8.2 96.4	50.1 56.2 56.5 3.6	22.0 ⁻ 20.9 35.3

Table A	V-1 (con	t.)		1997 - 19					•		•
Station	M _z (φ)	σ _i (φ)	Sk _i	К _g	50% mm	Water Content (%)	Volatiles (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
9- 5 9- 6 9- 7	3.233 3.283 1.533	0.417 0.422 0.674	+0.107 +0.211 +0.090	1.088 1.308 1.104	0.108 0.105 0.355	28.6 23.1 23.7	0.63 0.40 0.25		95.2 93.1 97.5	3.6 4.6 2.5	1.2 2.3 -
10- 1 10- 2 10- 3 10- 4 10- 5 10- 6 10- 7	6.500 5.490 2.573 3.377 0.827 3.287 0.867	2.911 2.313 2.611 0.365 2.058 0.434 1.023	+0.681 +0.755 -0.206 +0.200 -0.412 +0.067 -0.270	1.590 2.186 1.717 1.230 1.337 1.280 1.253	0.0245 0.0454 0.091 0.099 0.358 0.104 0.493	99.5 64.5 31.0 32.1 17.5 31.9 23.3	6.61 3.01 1.34 0.46 0.35 0.71 0.27	- 11.2 20.0 6.8	6.7 21.0 66.1 92.7 76.4 94.2 90.7	71.9 62.6 17.2 7.0 2.6 4.3 1.5	21.4 16.4 5.5 0.3 1.0 1.5 1.0
11- 1 11- 2 11- 3 11- 4 11- 5 11- 6 11- 7	2.447 3.417 3.953 6.997 3.873 3.557 1.823	1.884 0.426 1.605 4.273 1.781 1.308 1.972	+0.492 +0.175 +0.546 +0.421 +0.338 +0.141 +0.307	1.233 1.288 3.109 1.393 3.544 3.733 1.685	0.278 0.097 0.077 0.018 0.075 0.087 0.322	28.6 31.9 38.7 99.8 47.6 39.8 32.6	1.21 0.80 1.38 5.24 1.76 1.22 1.01	- - 0.8 0.4 4.1	76.5 90.7 66.2 12.0 64.4 79.3 84.7	19.1 7.1 25.0 54.8 26.4 15.7 7.0	4.4 2.2 8.8 33.2 8.4 4.6 4.2
12- 1 12- 2 12- 3 12- 4	6.117 1.770 - 6.180	3.416 2.837 3.095	+0.444 +0.460 - +0.740	1.195 1.952 - 0.826	0.0305 0.440 - 0.041	75.4 64.8 - 92.0	4.21 2.91 - 4.37	6.2 - -	27.4 75.3 - 31.2	48.4 11.3 	24.2 7.2 - 29.7
12- 5 13- 1 13- 2 13- 3 13- 4 13- 5	4.230 5.267 7.047 6.650 4.247 6.287	3.197 3.333 3.957 2.439 3.459	+0.683 +0.380 +0.470 -0.032 +0.614 -0.100	1.100 0.991 0.862 2.386 0.661	0.045 0.015 0.0080 0.087 0.0092	74.4 107.4 103.7 60.6 119.2	4.35 3.16 6.80 7.82 3.46 9.43		42.2 10.9 24.6 68.6 32.1	37.9 55.7 36.0 19.2 36.8	19.9 33.4 39.4 12.2 31.1

Station	M _z (φ)	σ _i (φ)	Sk _i	К _g	50% mm	Volatiles (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
14- 1 14- 2	4.80	2.28	+.562	1.74	.0568 N O S A	2.89 M P L E	1 - 1	45.3	41.4	13.3
14-3	1.28	1.25	318	1.32	.360	0.57	7.3	91.4	1.3	
14-4	0.55	1.23	+.028	1.19	.720	0.45	9.3	86.4	2.3	
14- 4*	0.56	1.08	+.084	1.07	.800	0.48	6.4	91.1	2.5	-
14-5	2.94	0.38	+.178	1.33	.134	0.79	-	97.3	2.7	-
14- 6	3.13	0.86	+.525	2.71	.123	1.54		88.7	7.7	3.6
14-7	0.50	0.52	+.244	1.49	.725	0.16	-	98.1	1.9	-
14-8	2.91	0.31	+.075	0.99	.132	0.59	- '.	98.5	1.5	-
14- 8*	3.02	0.33	+.120	0.93	.137	0.41	-	98.6	1.4	-
14- 9	0.78	2.18	158	0.77	.490	0.66	21.2	76.1	2.7	— 1 1
15-1	1.90	0.57	196	1.12	.256	0.39		98.5	1.5	-
15- 2	4.71	2.03	+.686	2.71	.0568	2.90	·	43.2	42.9	13.9
15- 3	0.72	2.19	371	1.85	.390	0.49	21.4	76.0	2.6	-
15- 3*	1.37	1.64	270	2.03	.322	0.61	10.7	87.3	2.0	-
15-4	1.55	1.01	099	1.31	.321	0.78	1.3	95.8	2.9	-
15-5	1.86	0.56	+.231	1.91	.281	0.63	4.3	93.6	2.1	-
15- 6	2.87	0.34	+.269	1.06	.141	0.68		98.6	1.4	-
15-7	6.24	3.02	+.323	1.15	.0204	8.72		20.6	54.0	25.4
15-8	3.14	0.77	+.168	2.45	.118	1.13	1.2	89.6	6.1	3.1
16- 1	3.79	1.41	+.557	3.89	.0820	2.07	· · · · ·	75.6	17.6	6.8
16-2	3.35	0.41	+.138	1.26	.100	0.80	— •	93.2	5.4	1.4
16-3	4.81	2.35	+.761	2.20	.0719	3.28	• •	60.2	30.5	9.3
16-4	2.46	0.82	+.602	0.75	.234	0.71	. –	93.7	5.3	1.0
16- 5A	1.81	0.96	+.121	2.61	.300	0.68	0.6	95.8	3.6	-
16- 5B	2.22	0.36	+.020	1.27	.214	0.42		98.3	1.7	
16- 6	2.02	0.98	+.081	1.10	.249	0.83		95.2	2.7	2.1
16-7	2.75	0.54	273	1.58	.148	0.71	_	97.3	2.7	-

Station	M _z (φ)	σ _i (φ)	Sk _i	К _g	50% mm	Volatiles (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
16-8	3.80	1.90	+.273	2.80	.0841	2.17	-	70.7	21.3	8.0
16- 9	3.36	0.36	+.058	1.36	.0970	0.53		93.8	6.2	-
16-10	5.81	2.56	+.549	1.18	.0531	4.68	-	22.7	57.5	19.8
16-11	3.92	3.65	+.462	1.25	.145	2.96	1.5	61.8	20.8	15.9
17-1	3.85	1.21	+.415	3.28	.0725	1.94		65.7	28.0	6.3
17-2	3.48	0.92	+.525	2.61	.0980	1.77	, –	82.1	13.5	4.4
17- 2*	3.45	0.83	+.522	2.58	.102	1.40	mari	84.2	12.5	3.3
17-3	2.30	1.16	+.570	1.60	.257	1.07	-	90.8	5.8	3.4
17-4	2.07	0.42	+.274	0.98	.252	0.44	-	100.0		· •
17-5	1.82	0.88	+.059	1.21	.297	0.51		97.7	2.3	 .
17- 6	2.98	0.56	217	1.38	.120	0.82	·	95.5	4.5	-
17- 7	3.40	1.32	+.379	3.86	.097	1.35	· •••	84.9	9.2	5.9
17-8	3.13	0.34	+.030	0.83	.117	-		98.4	1.6	-
17-9	3.21	0.45	+.078	1.17	.109	0.53	-	94.5	5.5	
17-10	5.19	2.95	108	1.00	.0220	0.70		29.6	53.2	17.2
17-11	4.94	2.36	+.604	1.84	.058	2.75		45.7	40.5	13.8
18- 1	1.64	0.47	208	1.63	.307	0.31	- -	97.2	2.8	_ - ¹
18-2	3.82	1.41	+.526	2.14	.085	2.26	-	65.7	27.1	7.2
18- 3	2.27	1.13	+.469	2.24	.240	1.04	****	91.6	5.2	3.2
18- 4	2.76	0.32	+.082	1.21	.150	0.41	-	100.0	-	- 1
18- 5	2.97	0.54	023	1.42	.131	0.60		96.4	3.6	-
18- 6	2.98	0.50	+.208	1.26	.132	0.34	1	95.6	4.4	-
18-7	2.85	0.67	183	0.97	.131	0.79	~	96.8	3.2	— 1
18- 8	2.90	0.28	+.201	0.94	.138	0.51	-	99.8	0.2	_
18- 9	3.63	1.16	+.584	3.47	.089	1.67	-	78.5	16.0	5.5
18-10	5.39	2.82	+.767	1.02	.0665	3.67	-	54.1	25.0	20.9

Station	Μ ₇ (φ)	σ; (φ)	Sk _i	Ka	50% mm	Volatiles (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
19- 1 19- 2 19- 2* 19- 3 19- 4 19- 5 19- 6 19- 7 19- 8	4.19 3.69 3.73 3.07 1.96 2.26 1.02 6.51	1.95 0.83 0.88 1.38 1.10 0.95 0.45	+.255 +.373 +.353 228 +.217 +.362 +.097 +.210	9 1.63 2.03 2.19 1.43 0.96 0.83 1.04	.0695 .080 .078 .0975 .294 .258 .505 N 0 S A M .0118	3.33 0.89 1.43 1.53 0.60 0.42 0.16 P L E 3.07		55.0 70.1 69.7 80.8 96.0 96.4 100.0 24.9	39.6 24.9 25.6 15.9 4.0 3.6 -	5.4 5.0 4.7 3.3 - - - 33.0
20- 1 20- 2 20- 3	[*] 4.49 2.38	1.74 0.34	+.641 +.027	3.26 1.26	.057 N O S A M .291	2.59 PLE 0.83		42.7 98.8	47.5 1.2	9.8
20- 4 20- 5 20- 6	2.73 0.36	1.14 2.00	068 266	0.80 0.86	.168 .560 N O S A M	0.79 0.42 P L E	26.1	90.7 70.5	9.3 3.4	
20- 7 20- 8 20- 9	1.54 2.29	0.49 0.98	072 104	1.04 2.35.	.338 .196 N O S A M	0.18 0.82 P L E	-	100.0 94.1	4.1	1.8
21- 1 21- 2 21- 3 21- 4 21- 5 21- 6 21- 7 21- 8	6.41 4.09 5.46 3.04 1.88 1.82 1.27 1.37	2.70 1.19 3.30 0.36 1.97 0.84 0.61 0.61	+.642 +.399 +.282 +.054 +.157 +.070 +.112 +.025	1.05 2.73 1.60 1.02 1.52 1.62 1.22 1.06	.0270 .0615 .0478 .122 .323 .283 .415 .387	3.59 1.60 4.85 0.35 0.62 0.29 0.26 0.29	- 2.0 - 1.0	9.0 50.0 38.2 98.3 93.2 97.9 98.8 97.3	57.2 44.5 42.3 1.7 4.8 2.1 1.2 1.7	33.8 5.5 19.5 - - - -

Station	M _z (φ)	σ _i (φ)	Sk _i	К _g	50% mm	Volatiles (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
22- 1 22- 2	7.29	2.74	+.389 +.331	1.03 2.99	.0097	8.48 1.48		3.3	62.6 46.0	34.1 8.4
22- 3* 22- 4	2.03 3.28 2.81	1.72 0.80	300 +.253 301	3.47 0.92	.101 .125	2.30	- -	79.3 95.8	14.6	6.1
22- 5 22- 5* 22- 6	3.47 3.47 7.84	0.43 0.40 3.71	+.138 080 001	1.32 1.64 0.77	.0923 .0915 .0041	0.85 1.28 5.04	-	89.7 90.7 19.4	10.3 9.3 31.5	- 49.1
22- 7 23- 1	0.46 7.72	1.46 2.53	384 +.209	1.06 0.98	.590 .0058	0.31 9.95	17.4	81.6 3.5	1.0	- 42.2
23- 2 23- 3 23- 4	4.02 1.65 1.37	1.58 0.54 0.74	+.668 221 455	2.90 1.57 1.54	.083 .304 .329	2.06 0.46 0.43	- 0.6 0.2	69.2 98.6 98.8	22.2 0.8 1.0	8.6 - -
23- 5 24- 1	2.00 2.11	0.45	+.021 +.074	1.35 0.71	.253 .265	0.44 0.69	0.2 -	98.6 98.8	1.2	-
24- 2 24- 3 24- 4 24- 5	6.03 6.27 3.77 1.21	3.22 4.05 2.10 0.69	+.486 +.036 +.290 001	1.33 1.11 2.19 1.05	.0303 .0124 .0815 .430	4.14 4.42 1.80 0.31	- 2.6 2.2 -	25.4 20.4 62.6 99.1	41.2 43.0 25.0 0.9	33.4 34.0 10.2
25- 1			176	0.07	N O S A	MPLE	7 0	01 0	1.0	
25- 2 25- 3 25- 4 25- 5	0.96 9.03 3.18 2.38	1.34 4.04 2.25 2.64	1/6 065 +.141 +.222	0.87 1.02 2.08 2.19	.450 .0018 .108 .230	1.84 3.04 1.15 2.22	7.8 2.2 1.9 7.8	6.4 75.3 73.9	31.4 14.0 10.9	- 60.0 8.8 7.4

Station	$M_{z}^{}(\phi)$	σ _i (φ)	Sk _i	К _g	50% mm	Volatiles (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
26-1	4.93	2.48	+.617	1.35	.0645	4.06	0.5	50.2	34.8	14.5
26-2	4.25	2.19	+.673	2.82	.090	1.15	-	70.6	27.5	11.9
26-3	6.64	2.93	+.361	1.01	.0149	7.90	-	13.5	56.1	30.4
26-4	2.48	1.21	023	1.61	.157	0.93		91.8	5.1	3.1
26-5	5.68	3.35	+.372	0.86	.0341	5.93	0.3	35.1	39.9	24.7

* Replicate

Table AV-2

Water quality data for transect stations

			Dissolved	Water	Sed.			
Date	Station	Salinity	Oxygen (mg/1)	Temp.	Temp.	Eh	Depth	General Comments
1972								
7/24 7/24 7/24 7/24	1- 1 1- 2 1- 3 1- 4	31.354 31.365 30.806 30.180	5.51 5.27 5.74 6.25	20 20.5 21.5 21.5	18 17.5 18.8 22	-100 + 50 +150 +100	67' 67' 56' 45'	Medium coarse sand, shell fragments Medium coarse sand, shell fragments Fine-medium sand with trace silt Fine clean sand
7/24 7/24 7/24 7/24 7/24 7/24 7/24 7/24	1- 5 1- 6 1- 7 1- 8 1- 9 2- 1 2- 1B 2- 2	29.146 28.475 28.051 25.054 24.956 23.360 23.168 30.261	6.28 - 3.43 7.90 6.85 11.46 7.93 4.91	22 22.5 22 25 24.5 27 25.5 22.5	22.2 21.5 22.5 23.7 23.7 36.8 23 18.7	+150 + 90 +170 - 60 + 90 + 60 + 50 - 90	33' 20' 12' 38' 10' 11' 23' 76'	Clean coarse sand with pebbles Medium coarse sand with pebbles Fine clean sand Coarse sand, pebbles, shell fragments Coarse clean sand, trace shell fragments Fine to medium sand, shell fragments Medium sand, some shell fragments, clay H ₂ S, medium to coarse sand, reducing zone
7/24 7/24 7/24 7/24 7/25 7/25 7/25	2- 3 2- 3B 2- 4 2- 5 2- 6 3- 1 3- 2 3- 3	30.394 30.133 27.500 25.782 23.399 24.307 22.688 30.068	5.35 5.44 6.64 7.31 6.45 7.03 8.70 5.13	21 21.5 23.5 24.5 26.5 24.5 24.5 25 20	21 22 24 25.3 25 24.7 25.2 21	+120 - 20 - 90 +100 -100 +130 + 10 - 20	58' 30' 33' 10' 23' 18' 14' 120'	Coarse sand with shell fragments and pebbles Medium sand, shell fragments Fine silty sand with clay Fine sand, shell fragments Fine silty sand (organic), clay Medium sand trace organic, shell fragments Fine clean sand, few <u>Tellina</u> Medium coarse sand, shell fragments, <u>Solen</u>
7/25 7/25 7/25 7/25 7/25	3- 4 3- 5 3- 6 3- 7 3- 8	23.595 29.890 28.216 22.261 19.975	8.49 5.57 5.96 6.77 5.14	24.5 20.5 22.5 26 28	21.6 19.8 23.4 26 27	+250 +190 -150 -190 -230	12' 50' 50' 24' 18'	Clean fine sand, Haustorids, Anthropods Medium clean sand, shell fragments Fine sand, trace organic, shell fragments Muddy bottom Coarse sand, large shell fragments

Date	Station	Salinity	Dissolved Oxygen	Water Temp.	Sed. Temp.	Eh	Depth	General Comments
<u>1972</u>				ч, ,				
7/26 7/26 7/26 7/26 7/26 7/26 7/26 7/26	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	23.347 25.196 24.874 29.187 26.407 29.067 24.306 25.234 23.285 23.250 19.189 15.157	7.50 8.45 7.20 5.07 5.98 5.78 9.40 6.76 7.73 7.20 6.88 7.07	25 25.5 22.5 20.5 21.5 20.5 23.5 23 24 24 24 28 29.5	23.8 22 22.3 19.5 22 20 21.5 23.2 23.7 23 27.6 27.7	-200 -100 - 80 +200 +110 - 20 + 40 - 20 -110 - 30 -200 -250	12' 10' 21' 75' 20' 45' 15' 22' 15' 20' 16' 11'	Fine organic sand, small shell fragments Fine clean sand, small shell fragments Fine sand with small shell fragments Medium to coarse sand, small shell fragments Fine clean sand with shell fragments Medium sand, shell fragments Fine sand Fine sand with fine shell fragments Fine sand, <u>Tellina</u> Fine sand, <u>many shell fragments</u> Fine silty sand, clay, trace organic Organic mud, H ₂ S
7/27 7/27	5- 1 5- 2	23.331 24.360	8.06 8.35	23.5 22	23.7 21	- 90 -140	12' 23'	Fine medium sand, shell fragments Mud, H ₂ S, slight oxidized, shell fragments
7/26 7/26 7/26 7/26 7/26 7/27 7/27	5- 3 5- 4 5- 5 5- 6 5- 7 5- 8 5- 9	28.603 24.309 26.607 25.961 24.246 21.608 19.165	4.43 6.92 5.85 6.65 6.76 7.18	21 23 22 23.5 24 23 25	20 23 22.2 23 23 23 25	-180 - 20 + 90 -100 - 40 - 80 -150	68' 24' 27' 28' 27' 12' 12'	Fine to medium organic sand, shell fragments Fine, clean sand, shell fragments-Ensis Medium sand with small pebbles, clean Fine sand with shell fragments Fine to medium sand, trace organic matter Fine hard sand H ₂ S smell, oxidized layer on top, silt
7/27	5-10	17.202	5.92	25.5	25.5	-150	12'	H ₂ S smell, oxidized layer on top, mud
7/27	6- 1	23.995	6.93	22	21	- 80	29'	H ₂ S smell, silty mud, clay, shell fragments
7/27	6-2	24.240	7.41	22.5	21.5	+ 60	15'	Fine sand, small shell fragments

Date	Station	Salinity	Dissolved Oxygen	Water Temp.	Sed. Temp.	Eh	Depth	General Comments
1972								
7/27 7/27 7/27 7/27 7/27 7/27 7/27 7/27	6- 3 6- 4 6- 5 6- 6 6- 7 6- 8 6- 9	25.244 26.461 25.785 25.781 25.597 22.208 17.654	6.57 5.35 6.07 4.50 6.72 7.10 6.70	22 21.5 22 22 22 22 24 25	22 22 22 22.3 22 24 25	+130 - 30 - 20 -130 - 50 - 80 - 60	9' 45' 45' 18' 24' 19' 12'	Fine clean sand Fine, medium sand, shell fragments Fine sand, small shell fragments Fine sand, shell fragments Fine sand, dead <u>Ensis</u> Fine silty sand, <u>Tellina</u> , small shell fragments H ₂ S odor, oxidized, silty mud, shell fragments
7/28 7/28 7/28 7/28 7/28 7/28	7 - 1 7 - 2 7 - 3 7 - 4 7 - 5	24.027 26.166 27.220 25.956 25.346	6.83 5.56 5.20 6.74 6.89	23 21.5 21 21.5 22	22.5 22.2 12 22 21.5	-220 - 60 + 60 + 50 -130	32' 19' 43' 17' 53'	Fine mud, oxidized layer on top, organic Fine sand, organic Coarse, clean sand Fine, clean sand, shell fragments Smooth mud, H ₂ S odor
7/28 7/28 7/27	7- 6 7- 7 7- 8	25.194 24.671 22.063	6.74 6.70 6.95	22.5 - 24	22 23 23.7	+100 -130 -100	51' 23' 17'	Medium coarse sand with pebbles Fine to medium sand, organic Fine silty sand, organic, small shell fragments, shell fragments with clay sand
7/27 7/28 7/28 7/28 7/28 7/28	7- 9 8- 1 8- 2 8- 3 8- 4	18.614 21.971 25.743 22.648 24.032	6.66 9.23 6.17 9.75 6.74	24.5 24 22 23 22	- 23.5 21 23 22	- -120 -150 + 50 -240	13' 12' 48' 9' 17'	No sediment sample, oyster shell bottom Fine sand, organic Fine silt, shell fragments, oxidized layer Clean fine sand, small shell fragments H ₂ S, mud, bottom-reducing, top-oxidized
7/28	8- 5	24.354	6.80	22	21.4	-220	32'	H ₂ S, mud, oxidized, silt
7/28 7/28 7/28 7/28 8/ 7 8/ 7 8/ 7	8- 6 8- 7 8- 8 8- 9 9- 1 9- 2 9- 3	24.277 23.587 23.318 20.931 22.845 22.570	6.76 6.76 6.74 7.09 8.07 6.57 6.97	23.5 23.5 24 24 24.5 24.5 24.5 24	23.3 23 23 24.5 24 23 23	-100 - 50 +110 - 80 - 80 - 380 -150	48' 34' 14' 17' 15' 18' 21'	Fine and medium sand, shell fragments Fine sand, shell fragments Fine clean sand, small shell fragments Coarse sand with pebbles, shell fragments Large and small shell fragments, mud Oxidized layer, mud Oxidized layer, mud

Date	Station	Salinity	Dissolved Oxygen	Water Temp.	Sed. Temp.	Eh	Depth	General Comments
1972								
0/7	Q1	20 052	6 80	21 5	25	+ 50	1/1	Very fine sand trace organic
Q/7	9- 4	21 0/0	5 53	27.5	25	+100	48	Medium sand fine shell fragments
0/ /	9-5	10 201	7 98	21 5	25	+160	1816	Fine cand cmall shell fragments
0/ /	9-0	17 700	7 02	24.5	25	+ 70	10 0	Coarse sand shall fragments organic
0/ 7	9 - 7	10 207	6 73	2/ 8	25	-200	· · · · · ·	Ovidized layer fine mud and cand
0/ /	10-1	19.20/	0.75	24.0	25	± 200	1/1	Oxidized layer, The mud and Sand
0/ /	10-2	10.775	7 60	2/1 3	20 5	-150	221	Modium sand silt shall fragments
0/ /	10-3	17.920	7.00	24.5	24.5	-150	25	Two graphs yony fine cand
0/ /	10-5	10 175	~ <u>~</u> 02	- 25	24	- 50	171	Modium coance sand pobbles
0/ /	10-5	17.175	7 5/	25	25	- 40 - 50	4/ 101	Organic matter fine cand shall fragments plant
0/ /	10-0	16 502	7.04	20 0	20	- 00 ±120	121	Two graphs overton shall clight organic sand
0/ /	10- /	20 670	1.19	24.0	20	1/0	12	Silty cand ovidized shell fragments
8/9	11-1	20.078	- C 71	20.7	20	-140	2/1	Sincy Sand, Oxfuized, Sherr Tragments
0/ 9	11- 2	19.397	7 01	24.2	20	- 9U	24	Modium cand ovidized silt shell fragments
8/9	11-3	10.000	7.01	24.2	20 7	- 110	571	Mud thin layon cand in ovidized zone
8/9	11-4	19.022	0.59	24.1	24.1	-110	57	chall fragmonts
0/ 0	77 5		6 02	21 E	. JE	120	271	Sherr rrayments Fine cond pridized loven silt clov
8/9	11-5	- 17 050	6.92	24.0	20	-130	21	Fille Sallu, Oxfuized layer, Silt Clay
0/9	11-0	17.000	0./4	20 7	20	-100	20	Modium to cooper sand shall fragments silt
0/9	11- /	10.902	7.00	24.7	20	-110	121	Fine cand cilty clay forma domma
0/0	12-1	13,100	7.20	24.5	24	100	2/1	Ovidized 1/2" coarse sand shell
0/0	12 2	15.000	6 79	24 5	24	-100	101	Two graps midsand ovster shell fragments
	12-3	12.007	7 95	24.5	2/	- 30	151	Silt ovidize chall fragments
8/8	12- 4	13.007	7.00	24.5	24	-130	10	The grade US over the shall fragments silt
8/8	12- 5	13.008	6 02	23.5	24	- 240	161	Avidized
8/8	13-1	10.140	0.92	24.0	24.0	-200	10	Mud avidized
8/8	13- 2	11.011	0.0/	24 21 C	24	-200	22 171	Two graphs mud bottom sand top ovidized
8/8	13-3	12.030	· 0.91	24.0	24	- 50	4/	Two grads, mud boccom, sand cop, oxidized
8/8	13-4	10.98/	1.12	24.0	25	+ 00	10	very time sand, oxidized, shell trayments
8/ 8	13- 5	11.205	6.93	24.0	25.5	+100	18	n ₂ s, time sand, plant matter, sitt

Date	Station	Salinity	Dissolved Oxygen (ppm)	Water Temp.	Sed. Temp.	Eh	Depth	General Comments
1973		• •		·. · · .		•		
6/19	14- 1	26.629	11.56	18.7	· - · · ·	-160	15'	Dark mud, H ₂ S oxidized layer on top
6/19	14- 2	27.242	15.78	17.8	18	-180	22'	H ₂ S, oxidized layer on top, dark mud
7/ 2 7/ 2 7/ 2 7/ 2 7/ 2 7/ 2 7/ 2 6/19 7/ 2	14- 3 14- 4 14- 5 14- 6 14- 7 14- 8 14- 9 15- 1 15- 2	28.261 29.440 29.314 28.931 29.970 29.643 30.564 26.276 28.505	5.35 11.86 15.54 17.33 15.10 13.67 14.69 15.06	19.8 18.8 19.6 20.4 19.8 20.1 19.3 18.9 19.8	19.5 19.5 20.0 20.0 20.0 19.5 19 20.0	- 80? + 65 + 40 - 80 + 50 - 30 + 10 + 20 oxid. +110, -250	55' 125' 45' 36' 30' 17' 38' 10' 32'	one hermit crab - - Coarse-medium sand - Fine-medium wet sand Fine sand slight oxidized layer, H ₂ S
7/ 2 7/ 2 7/ 2 7/ 2 7/ 2 7/ 2	15- 3 15- 4 15- 5 15- 6 15- 7	29.099 - 28.707 28.067 28.680	14.17 16.11 15.54 17.02 2.98	19.0 19.5 20.1 21.3 21.1	19.5 21.0 20.0 21.5 21.0	+105 +140 + 60 + 20 Top-10 Bot-28	70 50 40 12 28 30	Pebbles, medium sand - Clay, shells, fine-medium sand - Thin oxidized layer, H ₂ S
7/ 2	15- 8	28.585	17.50	21.2	21.0	Top+2(22	
6/19 6/26 6/26 6/25 6/26 6/26	16- 1 16- 2 16- 3 16- 4 16- 5A 16- 5B 16- 6	25.775 23.573 23.573 24.875 28.801 26.576 27.850	15.93 15.69 23.16 15.93 16.00 25.01 17.98	19.2 23.5 21.9 20.5 17.2 19.2 18.0	19.5 22.5 - 20.0 17.5 19.0 18.5	-140 - 60 + 70 -100 - 80 -100 -145	8 12 24 20 98 30 52	Very fine sand, slight oxidized layer Young oyster cracker Fine sand Fine-medium sand, some shell Fine sand, shell fragments Fine sand, shell

Date	Station	Salinity	Dissolved Oxygen	Water Temp.	Sed. Temp.	Eh Depth	General Comments
1973							
6/26	16-7	27.114	17.06	19.0	21	Top+25 30 Bot+65	Fine sand, some silt, shell fragments
6/26	16- 8	27.261	19.22	18.9	19	Top 50	H ₂ S odor, silt and clay, fine sand, light
						-140 Bot -290	oxidized layer, shell, <u>Busycon</u> <u>canaliculatum</u>
6/26 6/26	16- 9 16-10	23.468 22.067	32.19 17.30	21.5 22	21 22	- 70 18 Top 23 -100	Very fine sand with shell fragments Mud, silt and clay, thin oxidized layer
						Bot -245	
6/26	16-11	19.854	11.01	23	22	Top 11	Silt, clay, shell
	• •					Bot -210	
6/19	17-1	23.911	14.38	20.2	20	+ 20 10	Many shells, H ₂ S
6/26 6/26	17- 2 17- 3	- 25.737	24.53 15.43	20.6 18.5	20 18.0	-170 15 Top 65 -100	Fine sand with oxidized layer on top Fine sand with silt, definite oxidized layer
	 					Bot -225	
6/26 6/26 6/26 6/26	17- 4 17- 5 17- 6 17- 7	22.393 25.039 24.524 22.404	24.62 22.20 26.47 28.34	20.6 19.8 20.3 21.4	20.5 19.5 20 21	+ 50 10 + 55 40 + 65 35 Top 27 -150	Fine sand, silt, organic matter Fine sand with silt - Silt, sand, shells, small oxidized
	t i terretari					вот -290	

Table AV-2 (cont.)

Date	Station	Salinity	Dissolved Oxygen	Water Temp.	Sed. Temp.	Eh	Depth	General Comments
1973					ана стала С		· · ·	
6/26	17 8	20 719	38 05	22 5	22 5	+ 80	15	
6/25	17- 0	-	47 88	22.9	23	- 20	10	Very fine sand with oxidized laver
6/25	17-10	17.824	32.47	23.4	22	Top -130	7	
						Bot		
						-300		
6/25	17-11	16.481	22.57	24.1	23	Тор	7	Thin oxidized layer, H ₂ S odor
	an a			•		-260		
						Bot		
6 17 0	10 1	04 104	14 00	00.0	0.0	-330	10	P 1 1 1 1 1 1 1 1 1 1
6/19	18-1	24.124	14.20	20.2	20 Ton	+ 20	10	Fine sand
0/25	18- 2	23.435	22.00	20.120	rup	_180		
	•					Bot		
						- 280		
6/25	18- 3	28.128	12.03	17.0	18	Тор	68	Fine sand, silt, shell
						+ 10		
						Bot		harpen in the side of the second
			~~~~	<u> </u>	0.1	-140	10	
6/25	18-4	22.907	30.36	20.8	21	+ 15	12	- Time could exercise band backed
0/25 6/25	18-5	25./38	24.01	19.5	20 5	- 5	42	rine sanu, organics, naru packeu
6/25	18- 0	23.575	24.00	21 0	22	- 190	20	- Fine hard nacked sand of organics
6/25	18- 8	23.717	32.13	21.3	22.5	- 45	15	Fine hard packed sand of organics
6/25	18- 9	20.164	37.11	22.9	22.5	Top	8	-
						-210		
						Bot -280		
6/25	18-10	16.481	33.47	23.9	23.5	Surf.	8	Thin oxidized layer, clay
	and the second					- 3/11		

Date	Station	Salinity	Dissolved Oxygen	Water Temp.	Sed. Temp.	Eh	Depth	General Comments
1973					· · ·		e de la	
6/19	19-1	22.331	14.34	22.5	19	-130	18	Oxidized layer, H ₂ S odor
6/22 6/25	19- 2 19- 3	19.812 22.714	15.39 12.40*	22 19.6	22 20	+ 20 Top - 10	8 45	Fine sand Fine sand and silt, lots of shell
						Bot - 40		
6/25 6/25 6/25 6/22 6/22	19- 4 19- 5 19- 6 19- 7 19- 8	23.198 20.139 19.121 19.239 15.297	13.12* 15.69* 18.72 18.04 5.53	19.7 21.6 22.6 22 23.1	19.5 20 21.5 - 22	- 40 - 50 + 25 - - 50	45 30 8 12 10	- Clean sand, oyster shells Live oysters, oyster shell Mud with thin oxidized layer, H ₂ S odor
6/22 6/22 6/22 6/22 6/22 6/25	20- 1 20- 2 20- 3 20- 4 20- 5 20- 5	21.571 20.145 21.402 24.311 22.210 17.720	11.76 13.38 9.74 10.53 5.52 15.54*	22.9 21.9 21.6 19.4 20.1 21.4	22.5 21.5 21.5 21 21 21 No	+100 - 70 + 60 -100 +120 + 40	12 30 12 42 48 42	Silty mud with oxidized layer on top Fine sand with shell fragments Fine sand with organics Fine to medium sand, shell fragments Sand with silt and pebbles (Bottle broke) Two grabs: coarse sand, pebbles, large rock
6/22	20- 6	20.396	16.20	21.2	Sed. No Sed	<b>-</b>	15	Three grabs: oyster bed, oyster shells, Mercenaria shells no sediment
6/22 6/22 6/22 6/21	20- 7 20- 8 20- 9 21- 1	21.049 16.684 W A T E 20.588	16.68 7.89 R T O O S 12.12	21.8 22.6 5 H A L 22.4	22 22 L O W 21.0	+ 60 +150 T 0 T Top + 20	12 10 A K E 10	Fine sand, <u>Gemma gemma</u> , oyster shell Mud, oyster shells S A M P L E
6/21	21- 2	20.925	15.93	22.3	22.0	Bot -120 -130	10	Two juvenile Limulus, fine sand and silt

Date	Station	Salinity	Dissolved Oxygen	Water Temp.	Sed. Temp.	Eh	Depth	General Comments
<u>1973</u>								
6/21 6/21 6/21 6/21 6/21 6/21 6/21 6/21	21- 3 21- 4 21- 5 21- 6 21- 7 21- 8 22- 1 22- 2	18.998 15.193 22.686 18.833 18.457 17.086 19.674 20.474	22.57 15.13 12.69 13.76 15.24 16.50 14.06 17.67	21.9 21.8 19.8 21.2 21.8 22.5 23.8 23.2	22 22 21 21.5 23 22 22 22 22	-180 + 40 -110 + 40 + 50 + 80 -300 Top + 10	22 8 48 26 19 12 8 12	Large shells, fine sand and silt Fine sand Fine-medium sand, pebbles Fine sand, many <u>Gemma gemma</u> Clean, clear fine sand, few shell
6/21	22- 3	18.410	16.59	21.2	22	Bot -130 -110	25	One juvenile <u>Mercenaria</u> and one large <u>Mercenaria</u>
6/21 6/21 6/21 6/21 6/20 6/20	22- 4 22- 5 22- 6 22- 7 23- 1 23- 2	21.799 16.302 18.086 - 15.687 14.857	17.33 17.50 13.33 13.94 12.45 12.36	20.4 22.2 22.0 22.4 22.9 21.5	21 22 22.5 23 22 22.5	- 25 - 50 -181 + 10 -190 Top + 9	45 22 14 12 8 22	One <u>Mercenaria</u> - Medium-coarse sand Light oxidized layer, black mud Silty mud with oxidized layer on top
6/20 6/20 6/20 6/20 6/20	23- 3 23- 4 23- 5 24- 1 24- 2	17.895 13.028 12.461 14.113 12.707	9.44 13.90 12.32 14.23 12.49	21.1 22 22.2 21.8 22.2	21.5 22 22 22 22 22.5	Bot -140 + 20 + 90 + 40 + 60 0	50 18 8 8 22	Fine to medium sand, few clay particles Fine to medium sand Fine sand, <u>Gemma gemma</u> One stone, fine stone, one large pebble Mud

Date	Station	Salinity	Dissolved Oxygen	Water Temp.	Sed. Temp.	Eh	Depth	:h General Comments	
1973									
6/20 6/20	24- 3 24- 4	15.553 13.507	10.27 13.30	21.4 22.0	22 22	+ 60 -120	50 20	Sandy layer on top of muddy clay Silty clay with sand layer on top, shell fragments	
6/20	24- 5	11.175	14.20	22.4	23	+ 60	8	Fine to medium sand, no organic matter, few shells	
6/20	25- 1	NO SA	MPLET	АКЕ	N - C	NLY	1 F	FOOT OF WATER	
6/20	25- 2	8.457	15.03	22.5	23	+ 35	. 10	Clean medium sand	
6/20	25- 3	11.566	9.70	21.9	23	-250	55	Clay, fine sand	
6/20	25-4	10.733	13.69	22.1	22	- 25	20	Fine sand, mud with excessive shell	
6/20	25- 5	8.925	<b>_</b>	22.1	23	-190	12	Mud and shell	
6/19	26-1	6.302	12.94	22.2	21	-190	10	Fine sand with oxidized layer	
6/20	26- 2	8.269	11.88	22.2	21	-150	35	Fine sand with oxidized layer, plant debris marsh grass	s,
6/20	26- 3	9.020	11.52	22.2	20.5	- 20	50	Fine sand with oxidized layer, plant debris	s
6/20	26- 4	7.846	11.67	22.1	21	- 50	20	Fine sand, silt and organic debris	
6/20	26- 5	8.544	11.98	22	. 22	+ 30	10	Fine sand with oxidized layer, oyster shel plant debris	۱,

* clear bottle

## Table AV-3

Number of individuals/0.1  $m^2$  at transect stations

					S	tations	5		•	
	Species	101	102	103	104	105	106	107	108	109
4006	Driloneris longa		1					•		
4025	<u>Glycera</u> <u>americana</u>		1						3	
4027	Glycera dibranchiata	2				0				
4028	<u>Glycinde</u> <u>solitaria</u>		~			2				
4038	Lumbrineris tenuis	<u> </u>	2			7				
4053	Nephtys picta	2				I			л	
4080	Eumida sanguinea								4	
4088	Harmothoe (Lagisca) extenuata	1				•			1	
4092				$(1,1) \in \mathbb{R}^{n+1}$	1 				· 7	
4093	Saberraria Vulgaris	1							. 1	4 - 4 
4110	Sprophanes Dombyx		2							
4143	Sthonolois (dontioulatum)		7							
4144	Signation on		1			2			•	
E017	Sigarion Sp.	16	. 1	$z \to 1 \sqrt{2}$		<u> </u>			0	
5047	Tolling agilic	10	4	5	- 47	2	2		2	
5070	Encic divoctus	4		56	41	۲.	ъ.		2	÷
5060	Ensis urrectus	•		30	10	Λ			J	
7051	Comphium incidiocum				19	. 7			٦	
7051	Unciple innonate	7							1	
7055	Unciola dissimilis								g	· 1 ·
7076	Protohaustorius deichmannae							12	ĩ	1
7086	lysianonsis alba		6	•				14	]	
7000	Crangon sentemspinosa				÷			· · ·	1	
7115	Pagurus longicarnus	1		· · · ·	· · ·					
7121	Cancer irroratus	1	1						1	an an taon an t
7124	Neonanone texana savi	•	2						•	
7130	Pinnixa savana	2	<b>-</b>							
7148	Callianassa sp. cf. C. atlantica	1	់ា							
1170				1		· · ·				

lable AV-3 (cont	5.)	)
------------------	-----	---

Table AV-3 (cont.)	· · · · ·			S	tations				
Species	201	201B	202	203	203B	204	205	206	
3008 <u>Cerebratulus lacteus</u>			-			• 1		1	
3014 <u>Nemertea</u> sp.			_	1		]			
4025 <u>Glycera</u> <u>americana</u>			1			l Ing			
4027 Grycera dibranchiala 4039 Magelona sp. 1				1					
4053 Nephtys picta				1			•		. •
4115 Scolecolepides viridis	4			i					
5027 Nassarius trivittatus					2			]	
5068 <u>Gemma gemma</u>	24			· ·					
5070 <u>Tellina agilis</u>	8	11	4	3	10	2	4	•	
5080 Ensis directus		1	2	21	27	1			
5082 <u>Mulinia lateralis</u>			2				I.	•	
7002 Neomysis americana	1		2						
7075 Protohaustorius wiglevi	j		· · ·						
7093 Trichophoxus epistomus	2								
7111 Crangon septemspinosa	н. Н	,			1				
7115 Pagurus longicarpus					2.		]		
	0.01	000		204	0.05	000			
	301	302	303	304	305	306	307	308	
4010 Heteromastus filiformis	٠							1	•
4025 Glycera americana	1								
4027 <u>Glycera dibranchiata</u>		1		· · · ·		1			
4028 <u>Glycinde solitaria</u>			-			1			
4033 Lumbrineris acuta			s s <b>l</b>	7	•				
4042 <u>Magerona</u> Sp. 4 4053 <u>Nephtys nicta</u>	1		Δ	· 1·.					
4076 Pectinaria gouldii			- 1						
4150 Lumbrineris sp. cf. L. tenuis					5				
4151 Clymenella sp. cf. C. torquate	a							6	
4152 Harmothoe sp. cf. H. extenuate	3							1	
5013 Crepidula convexa	11 C							1	

55]

.

Table	ÁV-3	(cont.)	)
		· · · · · /	,

Stations

		Species		301	302	303	304	305	306	307	308		
5027	Nassariu	<u>s trivittatus</u>			1		· ·		1		•		*****
5044	Dorodell	a obscura									. ]		•
5047	<u>Nucula</u> p	roxima					н., н., <u>.</u>		]				
5066	Mercenar	ia mercenaria									2		
5070	<u>Tellina</u>	agilis		12	3	17		13	13	]	1		•
5080	<u>Ensis di</u>	rectus	· · · · ·		_	2		5	2		· ]		
5081	<u>Spisula</u>	<u>solidissima</u>			3		•.						
5060	Cyclocar	dia borealis	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	19	_								
7002	Neomysis	americana		15	· 1						0		
7035	Ampelisc	<u>a abdita</u>		~			· ·	•			2		
7047	<u>Batea</u> <u>ca</u>	tharinensis		2	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,						· -		
/053	Corophiu	<u>m tuberculatum</u>		22							5		
7054	Erichtho	nius brasiliensi	<u>S</u>	· · ]							7		•
/056	Unciola	serrata		·	۰.						1		
/0/0	Melita n	itida		I			· _ ·				2		
/0/2	Parahaus	torius attenuatu	S		~		1						
7075	Protohau	<u>storius wigleyi</u>			3	1	-						
/0/6	Protohau	<u>storius</u> deichman	nae				- 5	л					
/093	Irichoph	oxus epistomus		7		-		4					r.
/106	Paracapr	<u>ella</u> <u>tenuis</u>		1		· 1					•		
/111	<u>Crangon</u>	septemspinosa			•			•	10		1		
/121	Lancer 1	rroratus		· •					13	1. 			
6003	Tanystyl	um orbiculare		. 4					. 1				
				401	100	100	104	IOE	100	107	100	100	410
				401	402	403	404	405	400	407	408	409	410
2014	Manaarikaa						· · ·			b			
3014	Nemertea	sp.		4	· 1		1	· · ·		. 3			
4000	Driioner	TS TONGA		4						٦			2
4027	Glycera	<u>alpranchiata</u>								1			. 1
4028	Nophtyc	SUITLATIA nicta				2		2	1		2	·.	
4033	Haplace	loplos funcilio				4		<u> </u>	··· •		ے ٦		
4004	Papaonio	(Panaonidos) Tu	202	н. 1914 г. – Ал				٦			<b>.</b>		
4075	Pardonis	(raraoniues) ly	ra .					1					

553

Stations

	Species		401	402	403	404	405	406	407	408	409	410	411
4118	<u>Spiophanes</u> bombyx		· · · ·							1.		-	
4119	Streblospio benedicti					7			•.				
5027	Nassarius trivittatus					1	1 .						
5047	Nucula proxima	•										5	
5070	Tellina agilis		4	3	19	7		30	10	7	22	8	5
5080	Ensis directus							4	78	49	1		
5081	<u>Spisula solidissima</u>	•						<u>]</u>	-	2			
5082	Mulinia lateralis			2	Λ.				5			. ·	2
7002	Ampolisca abdita			2	4	a a construction						1	
7035	Ampelisca verrilli		4	· 6									
7053	Corophium tuberculatum		ì									•	
7070	Melita nitida											]	
7075	<u>Protohaustorius wigleyi</u>			30	1		1	· .	17				
7076	Protohaustorius deichmannae							2	0				
7093	Prouvus longicarpus								۷			1	
7121	Cancer irroratus										· · ·	2	
7130	Pinnixa sayana				. 1								
								•					
			<u>501</u>	502	503	504	505	506	507	508	509	510	
3014	Nemertea sp.		1			•							
4002	Asabellides <u>oculatus</u>		]										
4010	Heteromastus filiformis		l	2				•	1		2		
4027	<u>Glycera</u> <u>dibranchiata</u>		1				I		1	3			
4020	Nephtys picta				3			1		J			
4110	Polydora ligni		1		<b>,</b>			•					
4119	Streblospio benedicti		1								2	1	
5047	Nucula proxima		3	13			•		6			4	
5056	Crassostrea virginica			•			ι»,		1				
e de la composition de la comp							a .						
Table AV-3 (cont.)

Stations

	Species	<u>501</u>	502	503	504	505	506	507	50.8	509	510
5070 5080	<u>Tellina agilis</u> <u>Ensis directus</u>	20	1	14 2	9	1 4	2 4	11 24	16 3	]	
5081 5082	<u>Spisula solidissima</u> Mulinia lateralis		. 1	e Al de Ala		3		1 er			-
5091 7002	Lyonsia hyalina Neomysis americana			4		2	5		•	1	
7035	Ampelisca addita Ampelisca verrilli Batoa catharinensis	1				·	٦				
7075	<u>Protohaustorius wigleyi</u> Trichophoxus epistomus			1	2	7				2 4 	
7111 7115	<u>Crangon septemspinosa</u> Pagurus longicarpus	1			•	•	, ] ]			s e Se se	т. Т. С
7121	<u>Cancer irroratus</u>	<b>60</b> 7	600	c 0 0	<b>CO A</b>	<b></b>	1	607	600	600	
		601	602	603	604	605	606	607	608	609	
		001	002	000			000	007	000		
3014 3015	Nemertea sp. Micrura leidvi	<u></u>	002	<u></u>		1		<u></u>			
3014 3015 4010 4027	Nemertea sp. Micrura leidyi Heteromastus filiformis Glycera dibranchiata	2	2	<u></u>		1	1 3 1	1	1		
3014 3015 4010 4027 4028 4053	Nemertea sp. Micrura leidyi Heteromastus filiformis Glycera dibranchiata Glycinde solitaria Nephtys picta	2	2	<u></u>	1	1	<u>)</u> 3 1	1 3 1	1 3		
3014 3015 4010 4027 4028 4053 4065 4066	Nemertea sp. Micrura leidyi Heteromastus filiformis Glycera dibranchiata Glycinde solitaria Nephtys picta Haploscoloplos robustus Orbinia ornatus	2	2	1	1	1	<u>1</u> 3	1 3 1	1 3 3		
3014 3015 4010 4027 4028 4053 4065 4066 4119 4154	Nemertea sp. Micrura leidyi Heteromastus filiformis Glycera dibranchiata Glycinde solitaria Nephtys picta Haploscoloplos robustus Orbinia ornatus Streblospio benedicti Protodorvillea gaspeensis	2	2	1	11	1	<u>)</u> ] 3	1 3 1	1 3 3	2	
3014 3015 4010 4027 4028 4053 4065 4066 4119 4154 5029 5047	Nemertea sp. Micrura leidyi Heteromastus filiformis Glycera dibranchiata Glycinde solitaria Nephtys picta Haploscoloplos robustus Orbinia ornatus Streblospio benedicti Protodorvillea gaspeensis Marginella roscida Nucula proxima	2 1 1 1 25	2	1	1 1	1	1 3 1	1 3 1 1	1 3 3	2	
3014 3015 4010 4027 4028 4053 4065 4066 4119 4154 5029 5047 5048 5066	Nemertea sp. <u>Micrura leidyi</u> <u>Heteromastus filiformis</u> <u>Glycera dibranchiata</u> <u>Glycinde solitaria</u> <u>Nephtys picta</u> <u>Haploscoloplos robustus</u> <u>Orbinia ornatus</u> <u>Streblospio benedicti</u> <u>Protodorvillea gaspeensis</u> <u>Marginella roscida</u> <u>Nucula proxima</u> <u>Yoldia limatula</u> <u>Mercenaria mercenaria</u>	2 1 1 1 25 1	2	1	1 1	1	<u>)</u> 1 1	1 3 1 1	1 3 3	2	

	Table /	AV-3 (cont.)				en te en g	Stations				1
		Species	601	602	603	604	605	606	607	608	609
	5080 5082 7002 7035 7037 7075 7124	Ensis directus Mulinia lateralis Neomysis americana Ampelisca abdita Ampelisca verrilli Protohaustorius wigleyi Neopanope texana sayi	1 2		5	2	1	1		1 2	2 1 13
	/150	Ampithoidae sp.		No. Angla							
			<u>701</u>	702	703	704	705	706	707	708	709
•	3014	Nemertea sp.		• •							6
	4006 4010 4027 4052	Driloneris longa Heteromastus filiformis Glycera dibranchiata	3 1	1 3				3	4	3	6
	4055	Nereis (Neanthes) succinea						I			2
	4064	Haploscoloplos fragilis		1					2	. 3	• • •
	4093 4110	Sabellaria vulgaris Polydora <u>ligni</u>							۷.		1
	4118	Spiophanes bombyx	•						1	7	
	4119	Melinna sp. cf. M. maculata							4	1	
	5027	Nassarius trivittatus	· .	]							
	5047 5070 5080	Nucula proxima Tellina agilis Ensis directus		2	2	4	2	7	620	4	
ſ	5082	Mulinia lateralis	1			·			020	5	
	7002	Neomysis americana Protobaustorius wiglevi			· · ·	1			2		
	7093	Trichophoxus epistomus				1					
	7115	Pagurus longicarpus				1			an a		
÷											

Table AV-3 (cont.)

Stations

i.

	Species	<u>801</u>	802	803	805	806	807	808	809
3014	Nemertea sp.				1				
4009	Capitella capitata	1			•	2	1		
4010	Heteromastus filiformis		3		7	-			13
4025	Glycera americana								4
4027	Glycera dibranchiata						2		2
4053	Nephtys picta							1	
4055	Nereis (Neanthes) succinea					5. 			1
4064	Haploscoloplos fragilis	1							
4077	Eteone heteropoda								1
4093	Sabellaria vulgaris					1	÷.,		2
4115	Scolecolepides viridis					•		1	
4119	Streblospio benedicti					•			4
4122	Exogone verugera				•				2
4018	Tharyx sp. 2				1				
4157	Cirratulus sp. cf. C. grandis				•			1	
4158	Asabellides sp. cf. A. oculatus								1
5027	Nassarius trivittatus								
5047	Nucula proxima				<b>]</b> [				
5048	Yoldia limatula		1.						
5066	Mercenaria mercenaria						1		1
5068	Gemma gemma	•				· ·		13	17
5070	Tellina agilis	4	2	3	1	7	2		6
5080	Ensis directus	* · ·				8	1		1
5082	<u>Mulinia lateralis</u>				2. <b>1</b>		3		2
5084	Mya arenaria								٦
7002	Neomysis americana	2							
7011	Cyathura polita	8							
7056	Unciola serrata				• •				· 1`
7058	Corophium simile			•					5
7065	Gammarus mucronatus					· · ·		•	1
7070	<u>Melita nitida</u>								5
7074	Parahaustorius longimerus							2	

Table /	AV-3 (cont.)				S	tation	S.		
. · · ·	Species	801	802	<u>803</u>	<u>805</u>	<u>806</u>	807	808	<u>809</u>
7075 7078 7093	Protohaustorius wigleyi Acanthohaustorius millsi Trichophoxus epistomus			1 1				5	• • • • • • •
		901	<u>903</u>	<u>904</u>	<u>906</u>	<u>907</u>		•	••••
4009 4010 4027 4053 4077 4110 5070 5080 7053 7058 7075 7115 7124 7146	Capitella capitata Heteromastus filiformis Glycera dibranchiata Nephtys picta Eteone heteropoda Polydora ligni Tellina agilis Ensis directus Corophium tuberculatum Corophium simile Protohaustorius wigleyi Pagurus longicarpus Neopanope texana sayi Xanthid sp.	2 1 2 18 3 2 1 1 1	8	2	1 1 1 2 1	1 1 2 1			
		<u>1001</u> .	1002	<u>1003</u>	1004	1005	1006	1007	
4010 4027 4053 4055	Heteromastus filiformis Glycera dibranchiata Nephtys picta	18	28	4	1	]	4	]	
4055 4119 5028 5070 5080	Streblospio benedicti Ilyanassa obsoletus Tellina agilis Ensis directus	•	1 2 1	. <b>1</b> 	1	8		]	• .
5082 5091	<u>Mulinia lateralis</u> Lyonsia hyalina		3		1	en an Sinta Maria An Sinta An Sinta	, , ,		

Table AV-3 (cont.)				S	tation	S	· . ·	
Species	1001	1002	1003	1004	1005	1006	1007	
<ul> <li>7052 <u>Corophium lacustre</u></li> <li>7053 <u>Corophium tuberculatum</u></li> <li>7058 <u>Corophium simile</u></li> <li>7070 Melita nitida</li> </ul>	2	1	1 12			, , ,	1	
7075Protohaustorius wigleyi7095Parapleustes aestuarius7111Crangon septemspinosa7115Pagurus longicarpus	2			5	1	]		
7121 <u>Cancer irroratus</u> 7123 <u>Eurypanopeus depressus</u>			2					
	1101	1102	1103	1104	1105	1106	1107	
3014 <u>Nemertea</u> sp. 4010 <u>Heteromastus filiformis</u> 4027 Glycera dibranchiata	7	4			5	1 6	2 1	
4055 <u>Nereis (Neanthes) succinea</u> 5010 <u>Epitonium rupicola</u> 5068 <u>Gemma gemma</u>		4	1		3		13	
5080 <u>Ensis directus</u> 5082 <u>Mulinia lateralis</u> 7002 <u>Neomysis americana</u>	2	4		1	6 45	1 102		
7123 <u>Eurypanopeus</u> depressus 7130 <u>Pinnixa sayana</u>	1		1	n An Anna An Anna An Anna An Anna An Anna An Anna An Anna An Anna Anna	•			
	1201	1202	1203	1204	1205			
<ul> <li>4010 <u>Heteromastus filiformis</u></li> <li>4027 <u>Glycera dibranchiata</u></li> <li>4055 <u>Nereis (Neanthes) succinea</u></li> </ul>			3		1 3			•

Table	AV-3 (	(cont.)	
-------	--------	---------	--

Table	AV-3 (cont.)	· ·				S	tation	S	
	Species		1201	1202	1203	1204	1205		
4115 5068	<u>Scolecolepides</u> viridis Ensis directus		354			1			
5070 5072	Tellina agilis Macoma tenta		]	1		4		•	
5082 7011	Cyathura polita			2			2		
			<u>1301</u>	<u>1303</u>					
4027 4115	<u>Glycera dibranchiata</u> <u>Scolecolepides</u> viridis		1	1	 				
			1401	1402	1403	1404	1405	1406	1407
3014 4002	Nemertea sp. Asabellides oculatus					5			
4010	Heteromastus filiformis			1		. 1	1		
4026	<u>Glycera capitata</u>								г
4028	Magelona sp. 2		•			٦			<b>i</b> .
4051	Nephtys picta				6				N. A
4071 4084	<u>Aricidea cerruti</u> <u>Phyllodoce</u> arenae				1		•		
4112 4115	<u>Polydora websteri</u> Scolecolepides viridis				2 1				
4116 4118	<u>Scolelepis squamata</u> Spiophanes bombyx		•		·	1			
4124	Parapionosyllis longicir Aricidea sp	rata				2			
4165	? Chaetozone					5		۰.	

1

ladle AV-3 (cont.)	Table	AV-3 (	(cont.	)
--------------------	-------	--------	--------	---

Table	AV-3 (cont.)				S	tation	IS			
	Species	1401	1402	1403	1404	1405	1406	1407	1408	1409
5027 5047 5053	Nassarius trivittatus Nucula proxima Mytilus edulis Mysolla planulata	13 3	5	]	1	2				]
5070 5081 5082 5087	Tellina agilis Spisula solidissima Mulinia lateralis Corbula contracta	2	3	15 1	5	3 4	1		3	18
7027 7037 7075	<u>Chiridotea nigrescens</u> <u>Ampelisca verrilli</u> Protobaustorius wiglevi		2	ľ		•	1		31	2
7078 7111 7121	Acanthohaustorius millsi Crangon septemspinosa Cancer irroratus		1	1			- 		1	••••
		1501	1502	1503	1504	1505	1506	<u>1507</u>	1508	
3014 4002 4006 4015	Nemertea sp. Asabellides oculatus Driloneris longa Caulleriella sp. 2			2 1	1				6 56	
4025 4027 4051 4053 4071	Glycera americana Glycera dibranchiata Nephtys bucera Nephtys picta Amicidoa computi			1 5 2	1 2	2 1	1	•	1	
4071 4092 4093 4110 4115	<u>Lepidonotus sublevis</u> <u>Sabellaria vulgaris</u> <u>Polydora ligni</u> <u>Scolecolepides viridis</u>			] ]					11	
4118 4119 4142	<u>Spiophanes bombyx</u> <u>Streblospio benedicti</u> <u>Scoloplos</u> sp.			7			1	•	1	
	,			· •	1					

Table	AV-3 (cont.)				S	tations	5		•
	Species	1501	1502	1503	1504	1505	1506	1507	1508
4146	Aricidea sp.		5						
4166	? Asabellides			3					
4167	Ampharetidae sp. 1				· ]				
5012	Crepidula fornicata			]					
5027	Nassarius trivittatus								-8
5037	Sayella fusca		· 1.	r i i					
5047	Nucula proxima		63	1				÷	8
5048	<u>Yoldia limatula</u>		1				100 C	. 1	
5050	<u>Anadara ovalis</u>				•		1 A		4
5053	<u>Mytilus</u> edulis		1						
5066	<u>Mercenaria</u> <u>mercenaria</u>		•	*					- 4
5068	<u>Gemma gemma</u>			]	•			1	456
5070	<u>Tellina agilis</u>	24	1	13	4	10	2	1	80
5080	<u>Ensis directus</u>			1	11 A. A.				
5081	<u>Spisula solidissima</u>				_		1	_	
5082	<u>Mulinia lateralis</u>		3	_	· 1			1	8
6001	Limulus polyphemus			$\sim 1^{-1}$				- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	· 1
7002	Neomysis americana						1.	]	
7012	Ptilanthura tenuis	. 1			_				
7075	<u>Protohaustorius wigleyi</u>				1	- 1	5		
7092	Paraphoxus spinosus	- 23		1997 - 1997 1997 - 1997					· .
7106	Paracaprella tenuis								. I.,
7111	<u>Crangon</u> <u>septemspinosa</u>		1						
/115	Pagurus Tongicarpus							•	
/121	<u>Cancer</u> <u>irroratus</u>	· · · · · ·		2		1			2
/130	<u>Pinnixa</u> sayana				· .				
/068	<u>Llasmopus laevis</u>					-			, I
9005	Echinarachnius parma					· 1			

Table AV-3 (cont.)

Stations

1. 1997 1. 1997 1. 1997	Species	1601	1602	1603	1604	1605	1605B 1606	1607	1608	1610	1611
4002 4010	<u>Asabellides oculatus</u> <u>Heteromastus filiformis</u>	6		8					2		12
4018	Marphysa sanguinea			23	1 1 1 1 2						18
4025	<u>Glycera</u> <u>americana</u> <u>Glycera</u> <u>capitata</u>			1	1		3	2		•	
4027 4053	Nephtys picta			ſ		2	1	· 1			E
4055	Travisia carnea		- - -	,3	2	•	3				<b>. 3</b>
4063	Haploscoloplos fragilis Haploscoloplos robustus		3	•	-1			1		. Δ	•
4078	Eteone lactea Fteone longa			1				,			3
4088 4091	Harmothoe (Lagisca) extenuata Lepidonotus squamatus			24 2				. ,			
4092 4093	Lepidonotus sublevis Sabellaria vulgaris			1	4						6
4101 4110	<u>Hydroides dianthus</u> Polydora ligni			193	105		· · · ]	· · ·			44
4111 4119	<u>Polydora socialis</u> Streblospio benedicti	· · · · · ·		1 6						4	5
4125 •4137	<u>Proceraea</u> cornuta Polycirrus eximius			1		•					
5014 5027	<u>Crepidula plana</u> Nassarius trivittatus			13		2	1		4		1.6
5028	Dorodella obscura			2					04	н 1	16
5047 5053	Mytilus edulis		0	5	28	9	8	2	24 ۵	Д	4
3070	IEITINU UYITIS		3		20	21	U	2	· 7	7	

Table AV-3 (cont.)				St	ation	S			:		
Species	<u>1601</u>	1602	1603	1604	1605	<u>1605B</u>	1606	1607	1608	1610	1611
5081 <u>Spisula solidissima</u> 5082 <u>Mulinia lateralis</u> 5093 <u>Bandona gouldiana</u>		1		1	4	9		1		24	
7002 <u>Neomysis</u> <u>americana</u> 7028 <u>Edotea triloba</u> 7042 Lembos smithi	3		15								
7054 <u>Erichthonius brasiliensis</u> 7056 <u>Unciola serrata</u> 7058 <u>Corophium simile</u>			195 1164 1076								
7068 <u>Elasmopus laevis</u> 7070 <u>Melita nitida</u> 7075 Protohaustorius wigleyi			14 20			10					2
7092 <u>Paraphoxus spinosus</u> 7095 <u>Parapleustes aestuarius</u> 7097 Parametopella cypris		16	2 20	• ] • • • • • • •							9
7106 Paracaprella tenuis 7111 Crangon septemspinosa 7115 Pagurus longicarpus			162	]	1		2				4
7123 <u>Eurypanopeus depressus</u> 7124 <u>Neopanope texana sayi</u> 7130 <u>Pinnixa sayana</u>			24 45	4		•					1
6003 <u>lanystylum</u> <u>orbiculare</u>	1701	1702	1703	1704	1705	1706	1707	1708	1709	1710	1711
4007 <u>Driloneris longa</u> 4010 <u>Heteromastus filiformis</u> 4026 <u>Glycera capitata</u> 4027 Glycera dibranchiata						1 1 6	1 4	1	] ] ]		
4053 <u>Nephtys picta</u> 4064 <u>Haploscoloplos fragilis</u> 4118 <u>Spiophanes bombyx</u>			2	1					] ]		

Table AV-3 (cont.)

Stations

	Species		1701	1702	1703	1704	1705	1706	1707	1708	1709	1710	1711
4146	Aricidea sp.	10			2		11		•				
5027	Ilyanassa obsoletus	12			<b>۔</b>	÷		• • •				•	5
5047 5053	<u>Nucula proxima</u> Mytilus edulis		2	1. 	. ]				4		а • •	•	
5068 5070	Gemma gemma Tellina agilis		6	3	12	. 2	G	15	18	6	7	4	
5081	<u>Spisula</u> <u>solidissima</u>		· · ·	5	12	10	10	15	10				
5082	Mulinia lateralis Neomysis americana		2	1	/								
7009 7037	Oxyurostylis smithi Ampelisca verrilli	•. •	. 1		•	•	•			1		÷	
7075	Protohaustorius wig	leyi	•		2	• •	 7					•	
7115	Pagurus longicarpus	· · · · ·				1	1						
7124	<u>Neopanope</u> texana say	<u>/1</u>					1						
			1801	1802	1803	1804	1805	1806	1807	1808	1809	1810	
3008	<u>Cerebratulus</u> lacteus	<u>s</u>	1					<u> </u>					
3014 4010	Nemertea sp. Heteromastus filifor	rmis		1			•	2	1	1	49	8	
4026 4027	<u>Glycera</u> <u>capitata</u> Glycera dibranchiata	a		•		* *		8	2		]		
4038	Lumbrineris tenuis	<del>1.</del>		1	1						•	•	
4053	Haploscoloplos fragi	ilis	ал. На селотория С	1	la de la composición de la composición En composición de la c						4		
4071 4125	Aricidea cerruti Proceraea cornuta		· · ·	1. 	1				4 * -		22	•	
5027 5028	Nassarius trivittatu Ilvanassa obsoletus	<u>15</u>	· · · ·		1		• • •		•		, · ·	4	
5047	Nucula proxima		1	1		•		1		· .	1		

	Species	<u>1801</u>	1 <u>802</u>	1803	1804	1805	1806	1 <u>807</u>	1808	1809	1810
5053 5068	Mytilus edulis Gemma gemma Tollina agilis	900	1	6			10	3		1	3760 1
5080 5082	Ensis directus Mulinia lateralis	13	2		2	4	10	1			<b>.</b>
5091 7002 7025	Lyonsia hyalina Neomysis americana	. 1.									
7035 7065 7075	Gammarus mucronatus Protohaustorius wigleyi	3		1	16	1			5		3
7079 7092	Acanthohaustorius millsi Paraphoxus spinosus	8 1		9		1					
7121	Cancer irroratus			۷.		1			•		
		1901	<u>1902</u>	1903	1 <u>904</u>	<u>1905</u>	1906	1907	1908		
3014 4010 4025	<u>Nemertea</u> sp. <u>Heteromastus filiformis</u> Glycera americana	19	5 1	1 1	2		, 				
4026 4027 4028	<u>Glycera</u> <u>capitata</u> <u>Glycera</u> <u>dibranchiata</u> <u>Glycinde</u> <u>solitaria</u>			1	2	8	- 1				
4038 4055 4059	<u>Nereis (Neanthes) succinea</u> <u>Ophelia bicornis</u>	· · · · · · · · · · · · · · · · · · ·	-	0			1	1			
4064 4065 4110	Haploscolopios tragilis Haploscolopios robustus Polydora ligni		1	2		1		27		• . •	
5025 5027	<u>Busycon carica</u> Nassarius trivittatus	1	7	1							
5047	Crassostrea virginica	10	1 °	2	ч. <u>.</u>			4			

Stations

Table AV-3 (cont.)				St	ations				
Species	1901	1902	1903	1904	1905	1906	1907	1908	
5068 <u>Gemma gemma</u> 5070 <u>Tellina agilis</u> 5082 <u>Mulinia lateralis</u> 7002 <u>Neomysis americana</u>	32 3	2 1	7 3	11	8	2		3	
7028Edotea trifoba7051Corophium insidiosum7053Corophium tuberculatum7058Corophium simile7070Melita nitida7095Parapleustes aestuarius7106Paracaprella tenuis						1	11 11 2 2 14	•	
	2001	2002	2003	2005	2006	2007	2 <u>008</u>	2009	
<ul> <li>4002 <u>Asabellides oculatus</u></li> <li>4005 <u>Arabella iricolor</u></li> <li>4010 <u>Heteromastus filiformis</u></li> <li>4025 <u>Glycera americana</u></li> <li>4026 Glycera capitata</li> </ul>	31	4 4			3	2	1		
4027Glycera dibranchiata4038Lumbrineris tenuis4053Nephtys picta4055Nereis (Neanthes) succinea	5		1	2 1	н — 2 • • •	3 1 1	2		
4064Haploscoloplosfragilis4065Haploscoloplosrobustus4071Aricideacerruti4077Eteoneheteropoda	6	4			1		]		
4079Eteone longa4082Paranaitis kosteriensis4088Harmothoe (Lagisca) extenuata4093Sabellaria vulgaris4110Polydora ligni		12		2 18	1	3	3 7 18		

.

Table AV-3 (cont.)

Stations Species Spiophanes bombyx Streblospio benedicti Polycirrus eximius Scoloplos sp. Microphthalmus aberrans Crepidula convexa Crepidula plana Nassarius trivittatus Nucula proxima Mytilus edulis Crassostrea virginica Gemma gemma Tellina agilis Lyonsia hyalina Balanus (Semibalanus) balanoides Neomysis americana Edotea triloba Corophium insidiosum Unciola serrata Corophium simile Melita nitida Protohaustorius wigleyi Paraphoxus spinosus Parapleustes aestuarius Paracaprella tenuis Pagurus longicarpus Cancer irroratus 

#### Neopanope texana sayi Pinnotheres maculatus

Table AV-3 (cont.)

Species21012102210321042105210621072Asabellidesoculatus1Drilonerissp. cf. D. magna1Heteromastusfiliformis4141Glyceracapitata12Glyceradibranchiata111Glycindesolitaria111	2108
Asabellides Driloneris sp. cf. D. magna1Heteromastus Glycera Glycera dibranchiata11111111111111111111111	
Nephtys picta1Travisia carnea1Sabellaria vulgaris1	3
Hydroides dianthus2Polydora ligni171Scolecolepides viridis17Spiophanes bombyx1	]
Polycirruseximius12Nuculaproxima12Mytilusedulis12Comma220011	6
Tellina agilis2120011Ensis directus11211220Mulinia lateralis9	U
Mya arenaria2Lyonsia hyalina2Edotea triloba14Ampelisca abdita2	9
Amperisedabdita21Corophiumtuberculatum2Corophiumsimile2Melita11	
Protohaustorius wigleyi75Paraphoxus spinosus3Crangon septemspinosa1Eurypanopeus depressus1Neopanope texapa savi3	

C1 13.

Table	AV-3 (cont.)	•				St	ations		
	Species		2201	2202	2203	2204	2205	2206	2207
3014 4002 4010	<u>Nemertea</u> sp. <u>Asabellides oculatus</u> Heteromastus filiformis			46	8	1		3	
4026 4027 4028 4053	<u>Glycera capitata</u> <u>Glycera dibranchiata</u> <u>Glycinde solitaria</u> Nephtys picta	· · · · ·		1 2	1 <b>1</b> . 1	1	5		
4064 4093 4101 4110	Haploscoloplos fragilis Sabellaria vulgaris Hydroides dianthus Polydora ligni				7 1 4			4	
5016 5028 5047	Lunatia heros Ilyanassa obsoletus Nucula proxima		1 1			1	1		
5066 5068 5070 5082	Gemma gemma Tellina agilis Mulinia lateralis		32 1 6	1 2		3 .7	1 4		2
5084 7070 7123	Mya arenaria Melita nitida Furvpanopeus depressus				1				23
7126	Rhithropanopeus harrisi	•	2301	2302	2303	2304	2305	1	
3014 4027	Nemertea sp.				1			: •	
4059 5068 5072	Ophelia bicornis Gemma gemma Macoma balthica	•	6	10		1 101	4	¢	
7011 7013	Cyathura polita Cyathura burbancki		л -	• • •	•	1			

	Species	2401	2402	2403	2404	2405
3014 4010 4053 4115	Nemertea sp. Heteromastus filiformis Nephtys picta Scolecolepides viridis	1		1	1 3	]
5068 5082 5084	<u>Gemma gemma</u> <u>Mulinia lateralis</u> <u>Mya arenaria</u>		3		229 276 124	1
		2502	2503	2504	2505	
4010 4055 4110 4115 5052 6009 7011	Heteromastus filiformis Nereis (Neanthes) succinea Polydora ligni Scolecolepides viridis Geukensia demissa Balanus (Balanus) improvisus Cyathura polita	1. 	22	1 2 2 32	1	
		2601	2602	<u>260</u> 4	2605	· ·
3014 4010 5052 5056 5072 5084 6009 7051 7123 7126	Nemertea sp. Heteromastus filiformis Geukensia demissa Crassostrea virginica Macoma balthica Mya arenaria Balanus (Balanus) improvisus Corophium insidiosum Eurypanopeus depressus Rhithropanopeus harrisi	1 12	1	2 5	1 4 1 5 1 1 3	

Stations

#### Table AVI-1

Sediment characteristics for quarterly samples

May 1974

Station	50% mm	φ50	Mz	σi	^{Sk} i	Kg	Percent Gravel	Percent Sand	Percent Silt	Percent Clay	Percent Volatiles
1-1 1-2 1-3	.233 .263 .254	2.10¢ 1.92¢ 1.98¢	2.10¢ 1.93¢ 1.99¢	0.31¢ 0.35¢ 0.33¢	+.024 +.066 006	1.10 1.14 1.11		99.0 98.9 99.2	1.0 1.1 0.8		0.61 0.61 0.50
2-1	.296	1.76¢	1.66¢	1,15φ	163	1.10	2.5	94.9	1.3	1.3	0.42
2-2	.286	1.81¢	1.63¢	1.25φ	219	1.15	3.5	93.0	2.9	1.6	0.66
2-3	.274	1.87¢	1.78¢	1.06φ	179	1.27	2.2	94.9	0.9	2.0	0.45
3-1	.305	1.71¢	1.51φ	1.49φ	342	1.87	8.8	87.8	2.7	1.7	0.55
3-2	.325	1.62¢	1.40φ	1.65φ	374	2.01	8.2	88.3	2.0	1.5	0.85
3-3*	.432	1.21¢	-0.16φ	2.71φ	537	0.93	25.8	71.4	1.7	1.1	0.08
4-1 4-2 4-3	.138 .136 .139	2.86¢ 2.87¢ 2.85¢	2.89¢ 2.95¢ 2.88¢	0.38φ 0.41φ 0.40φ	+.140 +.264 +.163	1.22 1.20 1.22		98.3 98.0 97.7	1.7 2.0 2.3		0.66 0.76 0.92
5-1	.081	3.62¢	3.75¢	$1.32_{\phi}$	+.568	3.82		73.6	18.7	7.7	1.72
5-2	.080	3.65¢	3.84¢	$1.33_{\phi}$	+.585	3.40		69.9	22.3	7.8	1.80
5-3	.080	3.64¢	3.97¢	$1.58_{\phi}$	+.668	3.13		66.7	23.4	9.9	2.93
6-1 6-2 6-3	.246 .245 .242	2.02¢ 2.02¢ 2.05¢	2.07¢ 2.05¢ 2.08¢	0.36¢ 0.32¢ 0.33¢	+.377 +.309 +.318	1.42 1.58 1.62		98.4 98.8 98.9	1.6 1.2 1.1		0.37 0.39 0.39
7-1	.072	3.79¢	4.42¢	1.99φ	+.532	2.07		56.6	32.3	11.1	1.54
7-2	.067	3.91¢	4.45¢	1.70φ	+.525	1.78		53.5	39.4	7.1	0.64
7-3	.066	3.91¢	4.66¢	2.07φ	+.611	1.95		53.0	34.2	12.8	1.48

۰.

May 1974 (cont.)

Station	50% mm	φ <b>50</b>	M _z -	σ _i ·	Sk _i	Kg	Percent Gravel	Percent Sand	Percent Silt	Percent Clay	Percent Volatiles
8-1 8-2 8-3	N 0 S .072 .067	A M P L 3.81¢ 3.91¢	. Ε 4.55φ 4.73φ	1.69¢ 2.01¢	+.708 +.728	1.80 2.30		56.9 53.7	33.3 33.4	9.8 12.9	2.12 2.20
9-1 9-2 9-3	N 0 S N 0 S .0381	AMPL AMPL 4.71¢	. Ε . Ε 5.58φ	2.26¢	+.547	0.89		29.2	51.4	19.4	3.06
10-1 10-2 10-3	.0670 .0607 .0598	3.90¢ 4.04¢ 4.06¢	4.12φ 4.89φ 4.37φ	1.31φ 1.97φ 0.97φ	+.614 +.737 +.484	3.18 2.18 0.84		56.0 48.2 48.0	35.7 38.3 48.8	8.3 13.5 3.2	2.14 2.92 2.24
* 3-3	(1) One	e 16 mm	stone a	ccounte	ed for 1	6% of	the sample.				
August 1	974		· · · ·	i e e stat					• • •		•
1-1 1-2 1-3	.231 .227 .219	2.13¢ 2.13¢ 2.19¢	2.08¢ 2.13¢ 2.17¢	0.33¢ 0.33¢ 0.37¢	125 +.034 052	1.11 1.13 1.21		99.5 99.1 98.2	0.5 0.9 1.8		0.53 0.48 0.51
2-1 2-2 2-3	.261 .580 .418	1.94¢ 0.79¢ 1.25¢	1.83¢ 0.18¢ 0.70¢	1.25¢ 2.33¢ 2.97¢	108 305 316	3.37 0.96 0.96	1.8 23.9 18.9	93.9 74.5 78.2	2.4 1.6 2.9	1.9	0.73 0.29 2.36
3-1 3-2 3-3	.565 .270 .309	0.82¢ 1.88¢ 1.71¢	0.28¢ 1.83¢ 1.00¢	2.42¢ 1.94¢ 2.97¢	236 +.146 224	0.93 2.33 1.49	23.8 4.7 20.4	72.5 84.2 71.7	3.7 6.8 4.0	4.3 3.9	0.90 1.27 1.25

August 1974 (cont.)

Station	50% mm	φ50	Mz	σi	Sk _i	Ka	Percent Gravel	Percent Sand	Percent Silt	Percent Clay	Percent Volatiles
4-1 4-2 4-3	.084 .088 .089	$3.56\phi \ 3.50\phi \ 3.46\phi$	$3.57_{\phi} \\ 3.52_{\phi} \\ 3.63_{\phi}$	$0.51_{\phi} \\ 0.43_{\phi} \\ 0.56_{\phi}$	+.132 +.091 +.238	1.51 0.99 1.09		84.8 87.5 86.3	12.0 11.2 13.7	3.2 1.3	1.09 0.69 1.01
5-1 5-2 5-3	.085 .092 .101	3.58φ 3.48φ 3.22φ	$3.61_{\phi} \\ 3.60_{\phi} \\ 3.27_{\phi}$	1.35φ 1.29φ 0.70φ	+.370 +.480 +.010	3.20 3.07 1.51		77.1 77.4 89.2	16.1 16.0 8.7	6.8 6.6 2.1	0.40 1.63 1.31
6-1 6-2 6-3	.230 .225 .221	2.11φ 2.16φ 2.17φ	2.15 _φ 2.15 _φ 2.23 _φ	$0.35_{\varphi} \ 0.43_{\varphi} \ 0.38_{\varphi}$	+.338 +.211 +.293	1.33 1.43 1.27		99.0 98.9 99.2	1.0 1.1 0.8		0.45 0.43 0.44
7-1 7-2 7-3	.066 .063 .060	3.91φ 3.97φ 4.08φ	4.07φ 4.41φ 4.63φ	1.19 _φ 1.65 _φ 1.76 _φ	+.420 +.559 +.653	1.76 2.54 2.34		57.1 51.3 47.2	38.7 40.7 42.4	4.2 8.0 10.4	1.63 3.84 2.49
8-1 8-2 8-3	.080 .082 .084	3.62φ 3.62φ 3.56φ	3.72¢ 3.94¢ 3.70¢	1.48 _φ 1.47 _φ 1.36 _φ	+.057 +.613 +.373	2.34 3.74 2.77	0.7	68.0 74.9 72.3	30.3 18.5 21.4	1.0 7.6 6.3	2.36 1.65 1.71
9-1 9-2 9-3	.083 .095 .072	$3.60\phi \\ 3.39\phi \\ 3.80\phi$	3.21φ 2.98φ 4.15φ	2.43 ₀ 2.33 ₀ 2.44 ₀	070 067 +.299	2.43 1.97 2.34	1.8	66.4 77.6 55.0	24.2 17.3 33.7	7.6 5.1 11.3	3.18 2.81 4.01
10-1 10-2 10-3	.056 .062 .061	4.15φ 4.00φ 4.00φ	4.70φ 4.31φ 4.25φ	1.65φ 1.52φ 1.32φ	+.608 +.602 +.530	2.19 2.94 2.86		42.1 49.1 49.7	46.3 40.9 41.2	11.6 10.0 9.1	2.83 2.17 2.65

November 1974

Station	50% mm	φ50	Mz	σ _i Sk _i	Kg	Percent Gravel	Percent Sand	Percent Silt	Percent Clay	Percent Volatiles
1-1 1-2 1-3	.2292 .2240 .2068	2.13φ 2.16φ 2.27φ	2.12φ 2.18φ 2.29φ	$0.32_{\phi}028$ $0.29_{\phi} + .108$ $0.33_{\phi} + .079$	1.09 1.27 1.14		99.2 99.5 99.4	0.8 0.5 0.6		0.63 0.49 0.65
2-1	.1047	3.26¢	3.26¢	$0.99_{\phi}$ +.369	3.72		89.5	5.9	4.6	1.18
2-2	.1128	3.15¢	3.19¢	$0.52_{\phi}$ +.207	1.08		92.9	5.4	1.7	0.61
2-3	.1248	3.00¢	3.04¢	$0.48_{\phi}$ +.106	1.03		95.9	2.3	1.8	0.77
3-1	.2597	1.95φ	1.83φ	1.11¢149	1.38	1.3	95.6	1.2	1.9	1.02
3-2	.3351	1.58φ	1.19φ	1.70¢348	1.06	11.9	86.7	1.4		0.74
3-3	.3424	1.55φ	1.23φ	1.74¢283	1.03	11.6	86.0	2.4		0.62
4-1 4-2 4-3	.0914 .0886 .0958	3.45¢ 3.50¢ 3.38¢	3.46¢ 3.48¢ 3.40¢	$\begin{array}{c} 0.33_{\varphi} \ +.206 \\ 0.38_{\varphi} \ +.092 \\ 0.35_{\varphi} \ +.165 \end{array}$	1.24 1.34 1.40	• • • • • • • • • • • • • • • • • • •	90.3 89.1 92.0	7.8 8.5 6.0	1.9 2.4 2.0	0.62 0.76 0.74
5-1	.0706	3.82¢	4.27φ	$1.07_{\phi}$ +.520	0.64		53.9	43.6	2.5	2.71
5-2	.0609	4.04¢	4.38φ	$1.19_{\phi}$ +.486	0.82		49.3	46.5	4.2	3.23
5-3	.0764	3.71¢	4.16φ	$1.64_{\phi}$ +.717	2.96		62.6	27.6	9.8	1.99
6-1 6-2 6-2 6-3	.1457 .1383 .1360 .1345	2.78¢ 2.85¢ 2.88¢ 2.89¢	2.77¢ 2.86¢ 2.88¢ 2.90¢	$\begin{array}{c} 0.45_{\varphi} \001 \\ 0.43_{\varphi} \020 \\ 0.42_{\varphi} \ +.016 \\ 0.41_{\varphi} \ +.025 \end{array}$	1.06 1.07 1.16 1.20		98.9 98.7 99.3 99.0	1.1 1.3 0.7 1.0		0.63 1.54 0.62 0.53
7-1	.0707	3.82¢	3.95φ	$1.98_{\phi}$ +.313	1.96		55.2	35.8	9.0	2.45
7-2	.0747	3.74¢	3.72φ	$1.80_{\phi}$ +.222	2.11		57.7	35.3	7.0	2.07
7-3	.0709	3.82¢	3.75φ	$1.44_{\phi}$ 039	0.79		56.9	41.4	1.7	2.12

November 1974 (cont.)

Station	50% mm	φ50	Mz	σ _i Sk _i	К _g	Percent Gravel	Percent Sand	Percent Silt	Percent Clay	Percent Volatiles
8-1 8-2 8-3	.0683 .0585 .0767	3.87φ 4.10φ 3.70φ	$4.02_{\phi} \\ 4.28_{\phi} \\ 3.97_{\phi}$	$1.18_{\phi}$ +.419 $1.83_{\phi}$ +.435 $1.37_{\phi}$ +.651	2.04 2.17 2.77		53.3 45.6 63.0	42.4 41.9 29.5	4.3 12.5 7.5	2.75 1.99 2.19
9-1 9-2 9-3	.0815 .0770 .0746	3.62φ 3.70φ 3.75φ	3.78¢ 3.92¢ 4.33¢	$\begin{array}{c} 1.30_{\varphi} \ +.526 \\ 1.34_{\varphi} \ +.452 \\ 1.93_{\varphi} \ +.687 \end{array}$	2.76 1.88 2.64		67.5 59.5 57.5	26.8 35.5 31.2	5.7 5.0 11.3	2.11 1.31 2.51
10-1 10-2 10-3	.0724 N 0 S .0737	3.79¢ A M P I 3.76¢	4.12φ L E 4.14φ	$1.13_{\phi}$ +.614 $1.40_{\phi}$ +.720	1.89 2.97		56.4 60.9	39.0 31.2	4.6 7.9	1.36 2.09
February	1975									
1-1 1-2 1-3	.2395 .2455 .2661	2.06φ 2.03φ 1.91φ	2.05φ 2.06φ 1.94φ	$\begin{array}{ccc} 0.30_{\varphi} &040 \\ 0.30_{\varphi} & +.167 \\ 0.32_{\varphi} & +.069 \end{array}$	1.20 1.06 1.29		99.2 99.4 99.2	0.8 0.6 0.8		0.26 0.49 0.44
2-1 2-2 2-3	.3444 .3613 .3498	1.54φ 1.47φ 1.52φ	1.30φ 1.25φ 1.27φ	$\begin{array}{rrr} 1.07_{\varphi} &295 \\ 1.01_{\varphi} &333 \\ 1.28_{\varphi} &521 \end{array}$	1.18 0.98 1.93	3.1 2.8 6.4	93.7 96.2 92.6	1.2 1.0 1.0	2.0	0.38 0.42 0.54
3-1 3-2 3-3	.3172 .2747 .2955	1.66φ 1.86φ 1.76φ	1.56φ 1.81φ 1.57φ	$1.06\phi107$ $1.06\phi155$ $1.47\phi355$	1.15 1.28 1.63	2.2 2.4 7.4	96.3 95.1 90.1	0.4 1.4 0.8	1.1 1.1 1.7	0.22 0.42 0.31

February 1975 (cont.)

Station	50% mm	_φ 50	Mz	σ _i Sk _i	Kg	Percent Gravel	Percent Sand	Percent Silt	Percent Clay	Percent Volatiles
4-1 4-2 4-3	.0940 .0907 .0930	3.41¢ 3.46¢ 3.43¢	3.38φ 3.55φ 3.43φ	$\begin{array}{c} 0.46_{\varphi} \096 \\ 1.05_{\varphi} \ +.437 \\ 0.49_{\varphi} \ +.005 \end{array}$	1.53 4.05 1.64		90.1 80.2 87.4	8.9 15.4 11.2	1.0 4.4 1.4	0.54 1.08 0.53
5-1	.0823	3.60φ	3.77φ	$1.35_{\phi}$ +.546	2.79		69.4	23.0	7.6	1.82
5-2	.0806	3.63φ	4.03φ	$1.58_{\phi}$ +.666	2.78		65.0	26.3	8.7	1.04
5-3	.0752	3.73φ	4.36φ	$1.73_{\phi}$ +.720	2.03		58.2	32.8	9.0	2.08
6-1 6-2 6-3	.1606 .0882 .1585	2.64 _¢ 3.50 _¢ 2.66 _¢	2.61¢ 3.43¢ 2.64¢	$\begin{array}{r} 0.44_{\varphi} \072 \\ 0.70_{\varphi} \220 \\ 0.45_{\varphi} \044 \end{array}$	0.99 1.33 0.98		99.1 83.1 99.1	0.9 16.9 0.9		0.31 0.39 0.42
7-1	.0808	3.63φ	4.18φ	$1.57_{\phi}$ +.775	3.73		73.3	19.2	7.5	1.39
7-2	.0762	3.71φ	4.10φ	$1.42_{\phi}$ +.666	2.60		61.3	31.0	7.7	2.42
7-3	.0813	3.62φ	3.80φ	$1.21_{\phi}$ +.629	3.43		71.9	21.4	6.7	1.08
8-1	.0873	3.52¢	3.53φ	$0.52_{\phi}$ +.119	2.09		87.0	11.9	1.1	0.49
8-2	.0588	4.09¢	4.71φ	2.13_{\phi} +.648	2.06		46.0	43.6	10.4	3.41
8-3	.0802	3.64¢	3.73φ	1.16_{\phi} +.452	3.01		69.1	25.6	5.3	1.79
9-1	.0836	3.58¢	3.82φ	$1.37_{\phi}$ +.599	3.45		72.9	19.7	7.4	2.70
9-2	.0596	4.07¢	4.55φ	$1.77_{\phi}$ +.637	2.48		46.5	42.2	11.3	2.47
9-3	.0680	3.88¢	4.30φ	$1.73_{\phi}$ +.573	2.25		53.9	36.2	9.9	1.77
10-1	.1275	2.97 _¢	3.43φ	$1.89_{\phi}$ +.658	1.94		64.1	26.8	9.1	1.31
10-2	.0492	4.34 _¢	5.48φ	2.64_{\phi} +.709	1.96		28.2	53.1	18.7	1.10
10-3	.0817	3.61¢	3.63φ	1.17_{\phi} +.307	2.38		71.9	23.2	4.9	1.14

Total number of individuls, percent occurrence, and percent of total fauna for species collected in quarterly samples

Station 1 Species	Total Number Individuals	Percent Occurrence	Percent of Fauna by Number
Nephtys picta Nephtys bucera Magelona sp. 2 Spiophanes bombyx Dispio uncinata Nucula proxima Nassarius trivittatus Tellina agilis Mulinia lateralis Spisula solidissima Mytilus edulis Donax variabilis Parahaustorius attenuatus Parahaustorius longimerus Bathyporeia parkeri Neomysis americana Paracaprella tenuis Ampelisca abdita Edotea triloba Corophium insidiosum Bathyporeia quoddyensis Chiridotea tuftsi Elasmopus laevis Xanthid sp. Protohaustorius wigleyi Orchestia grillus Sesarma reticulatum Ampelisca verrilli	$ \begin{array}{c} 8\\ 4\\ 8\\ 3\\ 1\\ 21\\ 1\\ 2\\ 21\\ 1\\ 1\\ 4\\ 216\\ 1\\ 1\\ 8\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 6\\ 2\\ 5\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array} $	$\begin{array}{c} 20.0\\ 26.7\\ 13.3\\ 6.7\\ 6.7\\ 33.3\\ 6.7\\ 6.7\\ 26.7\\ 6.7\\ 26.7\\ 6.7\\ 26.7\\ 100.0\\ 6.7\\ 26.7\\ 100.0\\ 6.7\\ 13.3\\ 13.3\\ 13.3\\ 13.3\\ 13.3\\ 13.3\\ 13.3\\ 13.3\\ 13.3\\ 13.3\\ 13.3\\ 6.7\\ 6.7\\ 13.3\\ 6.7\\ 6.7\\ 6.7\\ 6.7\end{array}$	$\begin{array}{c} 2.4\\ 1.2\\ 2.4\\ 0.9\\ 0.3\\ 6.4\\ 0.3\\ 0.6\\ 6.4\\ 0.3\\ 0.3\\ 0.3\\ 1.2\\ 65.8\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 2.4\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.9\\ 1.8\\ 0.6\\ 1.5\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\end{array}$
Station 2 <u>Nemertea</u> sp. <u>Spio setosa</u> <u>Spiophanes bombyx</u> <u>Glycera dibranchiata</u> <u>Phyllodoce arenae</u> <u>Magelona</u> sp. 2 <u>Heteromastus filiformis</u>	12 1462 30 11 3 2 7	26.7 60.0 46.7 40.0 13.3 13.3 20.0	0.43 53.18 1.09 0.40 0.10 0.07 0.25
Polydora socialis Aricidea sp. Asabellides oculatus	5 1 9	20.0 6.7 33.3	0.18 0.03 0.32

Station 2 (cont.)	Total Number	Percent	Percent of Fauna
Species	Individuals	Occurrence	by Number
Nephtys picta	35	60.0	1.27
Aricidea cerruti	10	13.3	0.36
Lumbrineris acuta	1	6.7	0.03
Scoloplos sp.	3	13.3	0.10
Streblospio benedicti	14	26.7	0.50
Mediomastus ambiseta	62	26.7	2.25
Glycera americana	7	33.3	0.25
Oligochaeta A	5	13.3	0.18
Clymenella torquata	]	6.7	0.03
Sabellaria vulgaris	9	26.7	0.32
Polydora ligni	]	6.7	0.03
Eteone heteropoda	1	6.7	0.03
Driloneris magna	3	6.7	0.10
Scoloplos acutus	<b>1</b>	6.7	0.03
Paranaitis speciosa	2	6.7	0.07
Scoloplos robustus	4	13.3	0.14
Harmothoe extenuata	23	26.7	0.83
Scoloplos fragilis	3	20.0	0.10
<u>Goniadella gracilis</u>	· . 1 · · ·	6.7	0.03
<u>Glycera</u> capitata	2	13.3	0.07
Eumida sanguinea	22	20.0	0.80
Polydora concharum	1	6.7	0.03
<u>Capitella capitata</u>	31	20.0	1.12
Ampharete acutifrons	2	6.7	0.07
<u>Nereis</u> <u>succinea</u>	1	6.7	0.03
<u>Lepidonotus</u> <u>sublevis</u>	1 - 1	6.7	0.03
Amphitrite ornata	5	13.3	0.18
<u>Nephtys incisa</u>	2	6.7	0.07
<u>lellina</u> agilis	242	100.0	8.80
Lyonsia hyalina	l	6./	0.03
Ensis directus	8	33.3	0.29
Crepidula fornicata	5	20.0	0.18
Mytilus edulis	604	33.3	21.97
Marginella roscida	1	6./	0.03
Nucula proxima	20	33.3	0./2
Mulinia lateralis	5	20.0	0.18
Acteocina canaliculata		13.3	0.07
Petricola pholaditormis		6./	0.03
<u>Crepidula piana</u>	3	6./ C 7	0.10
Paranaustorius attenuatus		b./ /0.0	0.03
Paranaustorius longimerus	10	40.0	U.30
Dathunonoia namkoni	ے ۲	13.3	0.07
Company tubaraulatum		0./	0.03
corophium cuperculatum	2	0./	0.07

Station 2 (cont.) Species	Total Number Individuals	Percent Occurrence	Percent of Fauna by Number
Unciola serrata Unciola irrorata Crangon septemspinosa Xanthid sp. Neomysis americana Lysianopsis alba Elasmopus laevis Pinnixa sp. Neopanope texana sayi Protohaustorius wigleyi Synchelidium americanum Siphonoecetes smithianus Edotea triloba Leptocuma minor Paraphoxus spinosus Pinnotheres maculata	12 4 5 5 2 6 2 1 1 1 2 1 1 1 1 1 1 1 1 1	40.0 6.7 13.3 20.0 13.3 26.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	$\begin{array}{c} 0.43\\ 0.14\\ 0.18\\ 0.18\\ 0.07\\ 0.21\\ 0.07\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\$
Spio setosa Asabellides oculatus Glycera dibranchiata Harmothoe extenuata Spiophanes bombyx Aricidea cerruti Sabellaria vulgaris Driloneris magna Caulleriella sp. 2 Nereis succinea Lepidonotus squamatus Pherusa affinis Polydora ligni Mediomastus ambiseta Oligochaeta A Heteromastus filiformis Streblospio benedicti Polycirrus eximius Ampharete acutifrons Nemertea sp. Eumida sanguinea Schistomeringos rudolphi	535 14 8 41 9 14 12 2 1 9 2 2 4 72 5 4 9 9 9 2 6 17 1	$\begin{array}{c} 66.7\\ 33.3\\ 33.3\\ 46.7\\ 46.7\\ 46.7\\ 40.0\\ 33.3\\ 13.3\\ 13.3\\ 6.7\\ 26.7\\ 6.7\\ 13.3\\ 13.3\\ 26.7\\ 13.3\\ 26.7\\ 13.3\\ 6.7\\ 26.7\\ 20.0\\ 13.3\\ 33.3\\ 46.7\\ 6.7\\ 26.7\\ 20.7\\ 20.7\\ 20.0\\ 13.3\\ 33.3\\ 46.7\\ 6.7\\ 26.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7\\ 20.7$	$\begin{array}{c} 26.65\\ 0.69\\ 0.39\\ 2.04\\ 0.44\\ 0.69\\ 0.59\\ 0.09\\ 0.09\\ 0.04\\ 0.44\\ 0.09\\ 0.09\\ 0.09\\ 0.19\\ 3.58\\ 0.24\\ 0.19\\ 0.44\\ 0.44\\ 0.44\\ 0.9\\ 0.29\\ 0.84\\ 0.04\\ 0.04\end{array}$

Station 3 (cont.)	Total Number Individuals	Percent Occurrence	Percent of Fauna by Number
Lepidonotus sublevis	4	6.7	0.19
Amphitrite ornata	1	6.7	0.04
Phyllodoce maculata	2	13.3	0.09
Tharyx sp. 2	1	6.7	0.04
Podarke obscura		6.7	0.04
Glycinde solitaria		6.7	0.04
<u>Nephtys picta</u>	20	53.3	0.99
<u>Glycera</u> americana	5	20.0	0.24
Scolopios tragilis	3	13.3	0.14
Phyllodoce arenae	3	20.0	0.14
Schistomeringos caecus		6.7	0.04
<u>Lhaetozone</u> sp.	4	b./	0.19
Driioneris ionga	l A	0./	0.04
<u>Polydora socialis</u>	4	0.7	0.19
Lopidametria commencalic	1	13.3	0.29
Capitolla capitata	1	67	0.04
Tolling agilis	153	86.7	7 62
Mytilus edulis	870	53 3	/13 70
Marginella roscidium	7	20.0	0.34
Doridella obscura	1	6.7	0.04
Nassarius trivittatus	1	6.7	0.04
Nucula proxima	6	26.7	0.29
Spisula solidissima	1	6.7	0.04
Crepidula plana	11	20.0	0.54
Crepidula convexa	1	6.7	0.04
Crepidula fornicata	2	6.7	0.09
Ensis directus	3	13.3	0.14
Lyonsia hyalina	1	6.7	0.04
Mulinia lateralis	1	6.7	0.04
Pagurus longicarpus	12	26.7	0.59
Unciola <u>serrata</u>	23	60.0	1.14
<u>Pinnixa sayana</u>	1	6.7	0.04
<u>Unciola irrorata</u>	4	26.7	0.19
Xanthid sp.	15	26.7	0.74
Hexapanopeus angustifrons	1	6.7	0.04
<u>Pinnixa</u> sp.	3	20.0	0.14
<u>Pinnixa</u> retinens	1	6.7	0.04
Upogebia affinis	1	6.7	0.04
Lysianopsis alba	23	20.0	1.14
<u>Cancer</u> irroratus	1	6.7	0.04
<u>Panopeus herbsti</u>	1	6.7	0.04
<u>Euceramus</u> praelongus	l	6.7	0.04

Station 3 (cont.) Species	Total Number Individuals	Percent Occurrence	Percent of Fauna by Number
Parahaustorius longimerus	1	6.7	0.04
<u>Callianassa</u> sp. cf.	0	70.0	0.00
L. atlantica	2	13.3	0.09
Oxvurostylis smithi	5	6.7	0.24
		•••	
Station 4			
Nephtys bucera	5	26.7	0.77
Spiophanes bombyx	13	40.0	2.00
Spio setosa	4	20.0	0.61
Dispio uncinata	1	6.7	0.15
<u>Glycera</u> <u>dibranchiata</u>	18	53.3	2.77
<u>Nephtys picta</u>	5	33.3	0.77
Nemertea sp.	18	40.0	2.77
<u>Glycinde</u> solitaria	4	20.0	0.61
<u>Scolopios</u> robustus	14	40.0	2.16
<u>Glycera</u> <u>capitata</u>	31	66.6/	4.78
Scolopios acutus	2	13.3	0.30
Asabellides oculatus	3	13.3	0.40
Scolopios Trayins	2	13.3	0.30
Mutilus odulis		67	0.15
Tolling agilis	121	03 33	20.21
Mulinia lateralis	11	26.7	1 69
Nucula proxima	119	40.0	18.36
Acteon punctostriatus	7	13.3	1.08
Acteocina canaliculata	8	26.7	1.23
Ensis directus	1	6.7	0.15
Protohaustorius wigleyi	148	26.7	22.83
Synchelidium americana	1	6.7	0.15
Ampelisca verrilli	9	26.7	1.38
Ampelisca vadorum	1	6.7	0.15
<u>Oxyurostylis smithi</u>	6	13.3	0.92
<u>Pinnixa sayana</u>	4	20.0	0.61
Trichophoxus epistomus	71	46.7	10.95
Pinnixa retinens	1	6.7	0.15
Pinnixa sp.	2	b./	0.30
Pagurus long1carpus	1	b./	0.15
AICYONIDIUM POLYOUM		<b>b.</b> /	U.10

Station 5 Species	Total Number Individuals	Percent Occurrence	Percent of Fauna by Number
Capitella capitata Spio setosa Asabellides oculatus Scoloplos robustus Lumbrineris acuta Sthenelais limicola Glycera americana Glycera dibranchiata Pectinaria gouldii Nephtys incisa Heteromastus filiformis Tellina agilis Yoldia limatula Siliqua costata Nucula proxima Mulinia lateralis Ensis directus Mytilus edulis Nassarius trivittatus Haminoea solitaria Acteocina canaliculata Protohaustorius wigleyi Ampelisca verrilli Neomysis americana Ampelisca vadorum Lysianopsis alba Oxyurostylis smithi Parahaustorius longimerus Upogebia affinis Pinnixa retinens Ampelisca abdita	$     19 \\     3 \\     19 \\     2 \\     1 \\     2 \\     4 \\     1 \\     1 \\     2 \\     389 \\     15 \\     1 \\     2 \\     389 \\     15 \\     1 \\     1 \\     2 \\     389 \\     15 \\     1 \\     1 \\     1 \\     2 \\     2 \\     9 \\     1 \\     2 \\     2 \\     9 \\     1 \\     2 \\     2 \\     9 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     8 \\     8 $	$\begin{array}{c} 26.7 \\ 13.3 \\ 13.3 \\ 13.3 \\ 6.7 \\ 13.3 \\ 26.7 \\ 6.7 \\ 6.7 \\ 6.7 \\ 6.7 \\ 6.7 \\ 13.3 \\ 93.3 \\ 40.0 \\ 6.7 \\ 93.3 \\ 26.7 \\ 60.0 \\ 20.0 \\ 13.3 \\ 13.3 \\ 13.3 \\ 13.3 \\ 13.3 \\ 13.3 \\ 13.3 \\ 6.7 \\ 13.3 \\ 6.7 \\ 6.7 \\ 6.7 \\ 6.7 \\ 6.7 \\ 6.7 \\ 13.3 \end{array}$	0.08 0.01 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.73 0.06 0.00 95.45 0.08 0.45 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Nephtys bucera Scoloplos sp. Nephtys picta Nemertea sp. Spio setosa Magelona sp. 2 Nucula proxima	11 2 4 1 2 1 1	40.0 13.3 6.7 6.7 6.7 6.7 33.3	2.50 0.45 0.90 0.22 0.45 0.22 2.50

Station 6 (cont.) Species	Total Number Individuals	Percent Occurrence	Percent of Fauna by Number
Ensis directus Spisula solidissima Mulinia lateralis Tellina agilis Turbonilla interrupta Parahaustorius longimerus Acanthohaustorius millsi Bathyporeia parkeri Acanthohaustorius shoemaker Parahaustorius holmesi Protohaustorius wigleyi Trichophoxus epistomus Mancocuma altera	$ \begin{array}{c}     4 \\     19 \\     2 \\     3 \\     1 \\     168 \\     104 \\     16 \\     1 \\     1 \\     83 \\     1 \\     1 \\     1 \end{array} $	$\begin{array}{c} 6.7\\ 20.0\\ 13.3\\ 13.3\\ 6.7\\ 73.3\\ 80.0\\ 20.0\\ 6.7\\ 6.7\\ 73.3\\ 6.7\\ 6.7\\ 6.7\\ 6.7\\ 6.7\end{array}$	$\begin{array}{c} 0.90 \\ 4.31 \\ 0.45 \\ 0.68 \\ 0.22 \\ 38.18 \\ 23.63 \\ 3.63 \\ 1.13 \\ 0.22 \\ 18.86 \\ 0.22 \\ 0.22 \\ 0.22 \end{array}$
Station 7 <u>Asabellides oculatus</u> <u>Scoloplos robustus</u> <u>Spio setosa</u> <u>Heteromastus filiformis</u> <u>Glycera capitata</u> <u>Capitella capitata</u> <u>Glycera dibranchiata</u> <u>Streblospio benedicti</u> <u>Nephtys incisa</u> <u>Scoloplos fragilis</u> <u>Nephtys bucera</u> <u>Paraprionospio pinnata</u> <u>Glycera americana</u> <u>Sipunculidae sp.</u> <u>Pectinaria gouldii</u> <u>Glycinde solitaria</u>	6 9 13 4 5 1 3 1 15 1 3 1 2 2 2 2 1	20.0 46.7 26.7 13.3 13.3 6.7 20.0 6.7 60.0 6.7 60.0 6.7 6.7 13.3 6.7 13.3 6.7 6.7	1.27 $1.91$ $2.76$ $0.85$ $1.06$ $0.21$ $0.63$ $0.21$ $0.63$ $0.21$ $0.63$ $0.21$ $0.42$ $0.42$ $0.42$ $0.21$
Spiophanes bombyx Nemertea sp. Nephtys picta Yoldia limatula Tellina agilis Mulinia lateralis Crepidula fornicata Ensis directus Nucula proxima Turbonilla interrupta Mytilus edulis	2 1 19 61 68 1 6 107 1 3	6.7 6.7 33.3 66.7 60.0 6.7 33.3 46.7 6.7 6.7	0.42 0.21 0.21 4.04 12.97 14.46 0.21 1.27 22.76 0.21 0.63

Station 7 (cont.) Species	Total Number Individuals	Percent Occurrence	Percent of Fauna by Number
Siliqua costata Acanthohaustorius millsi Bathyporeia quoddyensis Bathyporeia parkeri Ampelisca vadorum Parahaustorius longimerus Ampelisca verrilli Pinnixa retinens Edotea triloba Trichophoxus epistomus Ampelisca abdita Oxyurostylis smithi Cancer irroratus Protohaustorius wigleyi	1 6 1 2 8 89 1 2 1 2 1 14 1 1 3	$\begin{array}{c} 6.7\\ 26.7\\ 6.7\\ 6.7\\ 13.3\\ 20.0\\ 73.3\\ 6.7\\ 6.7\\ 6.7\\ 20.0\\ 6.7\\ 6.7\\ 13.3\end{array}$	$\begin{array}{c} 0.21 \\ 1.27 \\ 0.21 \\ 0.21 \\ 0.42 \\ 1.70 \\ 18.93 \\ 0.21 \\ 0.42 \\ 0.21 \\ 2.97 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.63 \end{array}$
Station 8 Hydroides dianthus Polydora ligni Marphysa sanguinea Sabellaria vulgaris Polydora socialis Nereis succinea Polycirrus eximius Syllis gracilis Spio setosa Heteromastus filiformis Proceraea cornutus Asabellides oculatus Capitella capitata Harmothoe extenuata Lepidonotus squamatus Streblospio benedicti Lepidonotus sublevis Pectinaria gouldii Phyllodoce arenae Glycinde solitaria Tharyx sp. 2 Maldanidae sp. 1 Oligochaeta B Glycera americana Diopatra cuprea Eteone heteropoda Eteone longa	$\begin{array}{c} 2601\\ 309\\ 109\\ 852\\ 104\\ 109\\ 310\\ 14\\ 38\\ 111\\ 2\\ 305\\ 27\\ 165\\ 125\\ 14\\ 13\\ 6\\ 9\\ 65\\ 5\\ 2\\ 14\\ 13\\ 6\\ 9\\ 65\\ 5\\ 2\\ 15\\ 4\\ 1\\ 1\\ 3\end{array}$	$\begin{array}{c} 93.3\\ 60.0\\ 86.7\\ 93.3\\ 60.0\\ 93.3\\ 80.0\\ 33.3\\ 46.7\\ 80.0\\ 6.7\\ 93.3\\ 46.7\\ 80.0\\ 6.7\\ 93.3\\ 46.7\\ 60.0\\ 86.7\\ 40.0\\ 20.0\\ 20.0\\ 20.0\\ 33.3\\ 60.0\\ 20.0\\ 33.3\\ 60.0\\ 20.0\\ 6.7\\ 26.7\\ 26.7\\ 6.7\\ 6.7\\ 6.7\\ 6.7\\ 6.7\\ 6.7\\ 6.7\\ $	$\begin{array}{c} 9.57\\ 1.13\\ 0.40\\ 3.13\\ 0.38\\ 0.40\\ 1.14\\ 0.05\\ 0.13\\ 0.40\\ 0.00\\ 1.12\\ 0.09\\ 0.60\\ 0.45\\ 0.05\\ 0.04\\ 0.02\\ 0.03\\ 0.23\\ 0.01\\ 0.00\\ 0.05\\ 0.01\\ 0.00\\ 0.00\\ 0.01\\ \end{array}$

Station 8 (cont.) Species	Total Number Individuals	Percent Occurrence	Percent of Fauna by Number
Sthenelais boa	13	40.0	0.04
Mediomastus ambiseta	288	66.7	1.05
Phyllodoce maculata	5	6.7	0.01
Amphitrite ornata	1	6.7	0.00
Oligochaeta A	27	40.0	0.09
Zygeupolia rubens	]	6.7	0.00
Pherusa affinis	6	6.7	0.02
Nemertea sp.	17	46.7	0.06
Scolopios robustus		6.7	0.00
<u>Eumida Sanguinea</u>	804	66.7	2.95
Bodanka abcaura	4	b./	0.01
Schictomoningos nudolphi	21	53.3	0.07
Elatuorm A	4	13.3	0.01
Glycera capitata	4	13.3	0.01
Polydora concharum	2	13.5	0.01
Spiophanes hombyx	1	6.7	0.01
Nephtys incisa	2	6.7	0.00
Cirratulidae sp.	5	20.0	0.01
Polvdora caullervi	1	6.7	0.00
Mytilus edulis	13,904	60.0	51.15
Tellina agilis	29	86.7	0.10
Mulinia lateralis	2	13.3	0.01
Nucula proxima	483	86.7	1.77
Crepidula plana	166	53.3	0.61
<u>Crepidula convexa</u>	. 1	6.7	0.00
<u>Mercenaria</u> <u>mercenaria</u>	86	80.0	0.31
<u>Petricola pholadiformis</u>	1	6.7	0.00
Lyonsia hyalina	1	6.7	0.00
<u>Hydrobia</u> totteni	]	6.7	0.00
<u>Acteocina</u> <u>canaliculata</u>	1	6./	0.00
Doradella obscura	1	b./	0.00
Luthona concinna	1	b./	0.00
Nacha corollata		0.7	0.00
Reopanope cexana sayi	90	00./	0.34
Vanthid cn	71/	10.0	2.62
Unciola serrata	2 827	100.0	10 40
Corophium simile	1,596	100.0	5.87
Lembos smithi	348	86.7	1.28
Paracaprella tenuis	4	6.7	0.01
Paraphoxus spinosus	28	46.7	0.10
Elasmopus laevis	17	46.7	0.06
Erichthonius brasiliensis	26	40.0	0.09

Station 8 (cont.) Species	Total Number Individuals	Percent Occurrence	Percent of Fauna by Number
Microdeutopus gryllotalpa Pagurus longicarpus Oxyurostylis smithi Melita nitida Parahaustorius longimerus Heteromysis formosa Ampelisca abdita Protohaustorius wigleyi Corophium tuberculatum Acanthohaustorius millsi Ampelisca verrilli Crangon septemspinosa Caprella equilibra Ampelisca verrilli Phoxocephalus holbolli Tanystylum orbiculare Pinnixa sp. Neomysis americana Cancer irroratus Paracaprella tenuis Parapleustes aestuarius Edotea triloba Batea cathariensis Corophium tuberculatum	3 9 53 41 4 3 24 1 3 2 9 2 99 4 7 10 3 7 10 3 7 1 3 8 8 8 9 1	$\begin{array}{c} 6.7\\ 40.0\\ 46.7\\ 66.7\\ 13.3\\ 6.7\\ 53.3\\ 6.7\\ 53.3\\ 6.7\\ 6.7\\ 6.7\\ 6.7\\ 6.7\\ 40.0\\ 13.3\\ 6.7\\ 13.3\\ 6.7\\ 13.3\\ 6.7\\ 6.7\\ 6.7\\ 6.7\\ 20.0\\ 20.0\\ 20.0\\ 6.7\\ 6.7\\ 6.7\end{array}$	$\begin{array}{c} 0.01\\ 0.03\\ 0.19\\ 0.15\\ 0.01\\ 0.01\\ 0.08\\ 0.00\\ 0.01\\ 0.03\\ 0.01\\ 0.03\\ 0.01\\ 0.36\\ 0.01\\ 0.36\\ 0.01\\ 0.02\\ 0.03\\ 0.01\\ 0.02\\ 0.00\\ 0.01\\ 0.02\\ 0.03\\ 0.00\\ 0.01\\ 0.02\\ 0.03\\ 0.00\\ \end{array}$
Cirratulidae sp. Syllis gracilis Lumbrineris acutus Nucula proxima Mercenaria mercenaria Tellina agilis Mytilus edulis Lyonsia hyalina Crepidula convexa Crepidula plana Anomia simplex Ensis directus Petricola pholadiformis Anachis avara Doradella obscura Mitrella lunata	2 3 1 370 78 27 3,322 5 3 17 2 1 1 5 1 2	$\begin{array}{c} 6.7\\ 6.7\\ 93.3\\ 73.3\\ 66.7\\ 66.7\\ 20.0\\ 6.7\\ 33.3\\ 13.3\\ 13.3\\ 6.7\\ 6.7\\ 13.3\\ 6.7\\ 6.7\\ 6.7\\ \end{array}$	$\begin{array}{c} 0.01 \\ 0.02 \\ 0.00 \\ 3.26 \\ 0.68 \\ 0.23 \\ 29.27 \\ 0.04 \\ 0.02 \\ 0.14 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.01 \end{array}$

Station 9 (cont.) Species	Total Number Individuals	Percent Occurrence	Percent of Fauna by Number
Hydrobia totteni Mulinia lateralis Anadara ovalis Xanthid sp. Oxyurostylis smithi Corophium simile Pagurus longicarpus Neopanope texana sayi Ampelisca verrilli Edotea triloba Elasmopus laevis Batea catharinensis Paracaprella tenuis Melita nitida Unciola serrata Lembos smithi Erichthonius brasiliensis Paraphoxus spinosus	1 1 3 340 35 645 11 82 6 22 17 2 7 56 955 111 63 27	$\begin{array}{c} 6.7\\ 6.7\\ 13.3\\ 80.0\\ 53.3\\ 66.7\\ 33.3\\ 46.7\\ 40.0\\ 46.7\\ 46.7\\ 13.3\\ 20.0\\ 46.7\\ 75.3\\ 53.3\\ 40.0\\ 20.0\\ 20.0\\ \end{array}$	0.00 0.02 2.99 0.30 5.68 0.09 0.72 0.05 0.19 0.14 0.01 0.06 0.49 8.41 0.97 0.55 0.23
Corophium tuberculatum Phoxocephalus holbolli Panopeus herbsti Hydroides dianthus Nereis succinea Marphysa sanguinea Harmothoe extenuata Glycinde solitaria	11 4 2,603 131 64 35 96	6.7 6.7 80.0 66.7 73.3 60.0 93.3	$\begin{array}{c} 0.09 \\ 0.03 \\ 0.03 \\ 22.93 \\ 1.15 \\ 0.56 \\ 0.30 \\ 0.84 \end{array}$
Spio setosa Driloneris longa Glycera americana Capitella capitata Polydora ligni Sabellaria vulgaris Polydora socialis Asabellides oculatus	14 8 13 10 53 288 17 194 260	20.0 13.3 46.7 13.3 40.0 73.3 33.3 93.3	0.12 0.07 0.11 0.08 0.46 2.53 0.14 1.70 2.27
Nemertea sp. Oligochaeta A Heteromastus filiformis Scoloplos robustus Streblospio benedicti Pherusa affinis Lepidonotus sublevis Mediomastus ambiseta Sthenelais boa	269 24 79 245 3 50 1 42 394 15	40.0 26.7 93.3 20.0 46.7 6.7 13.3 80.0 40.0	2.37 0.21 0.69 2.15 0.02 0.44 0.00 0.37 3.47 0.13

X

Station 9 (cont.) Species	Total Number Individuals	Percent Occurrence	Percent of Fauna by Number
Lepidonotus squamatus Eumida sanguinea Amphitrite ornata Tharyx sp. 2 Eteone heteropoda Phyllodoce arenae Pectinaria gouldii Glycera dibranchiata Goniadella gracilis Podarke obscura Flatworm A Polydora concharum Proceraea cornuta Lepidometria commensalis Chaetozone sp. 1 Glycera capitata Lysianopsis alba Ampelisca abdita Caprella equilibra Thyone briareus Balanus improvisus	42 321 3 6 3 14 20 2 4 17 4 2 4 1 5 1 3 2 1 1 3 2 1 1	53.3 66.7 6.7 13.3 6.7 33.3 46.7 6.7 26.7 6.7 13.3 26.7 6.7 13.3 26.7 6.7 13.3 6.7 13.3 6.7 6.7 20.0 13.3 6.7 6.7 20.0	$\begin{array}{c} 0.37\\ 2.82\\ 0.02\\ 0.05\\ 0.02\\ 0.12\\ 0.17\\ 0.01\\ 0.03\\ 0.14\\ 0.03\\ 0.01\\ 0.03\\ 0.01\\ 0.03\\ 0.01\\ 0.03\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\$
Station 10 <u>Spio setosa</u> <u>Glycera americana</u> <u>Asabellides oculatus</u> <u>Scoloplos robustus</u> <u>Streblospio benedicti</u> <u>Sthenelais limicola</u> <u>Heteromastus filiformis</u> <u>Glycinde solitaria</u> <u>Pherusa affinis</u> <u>Harmothoe extenuata</u> <u>Diopatra cuprea</u> <u>Nephtys incisa</u> <u>Pectinaria gouldii</u> <u>Scoloplos fragilis</u> <u>Paraprionospio pinnata</u> <u>Nephtys picta</u> <u>Glycera dibranchiata</u> <u>Yoldia limatula</u> <u>Tellina agilis</u>	1 4 27 7 1 1 1 9 1 1 1 1 1 7 1 1 1 1 1 1 3 2 15 52	$\begin{array}{c} 6.7\\ 20.0\\ 20.0\\ 20.0\\ 6.7\\ 6.7\\ 6.7\\ 13.3\\ 6.7\\ 6.7\\ 6.7\\ 26.7\\ 6.7\\ 33.3\\ 6.7\\ 13.3\\ 13.3\\ 13.3\\ 13.3\\ 66.7\\ 86.7 \end{array}$	0.11 0.47 3.21 0.83 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1

Station 10 (cont.) Species	Total Number Individuals	Percent Occurrence	Percent of Fauna by Number
Nucula proxima	435	100.0	51.84
Mulinia lateralis	56	73.3	6.67
Mytilus edulis	47	40.0	5.60
Pandora gouldiana	1	6.7	0.11
Acteocina canaliculata	8	20.0	0.95
Acteon punctostriatus	2	13.3	0.23
Polinices duplicatus	1	6.7	0.11
Nassarius trivittatus	1	6.7	0.11
Thyone briareus	2	6.7	0.23
Ampelisca abdita	34	33.3	4.05
Ampelisca verrilli	75	86.7	8.93
Bathyporeia parkeri	1	6.7	0.11
Oxyurostylis smithi	2	13.3	0.23
Edotea triloba	3	20.0	0.35
Corophium tuberculatum	. ]	6.7	0.11
Xanthid sp.	1	6.7	0.11
Erichthonius brasiliensis	1	6.7	0.11
Neopanope texana savi	1	6.7	0.11
### Table AVI-3

Number of individuals of each species collected in all samples

Species	May 1-1	/ 1974 1-2 1-3	Aug 1-1	ust 1 1-2	974 1-3	Novembe 1-1 1-	r 1974 2 1-3	Febr 1-1	uary 1-2	1975 1-3	May 1-1	1975 1-2	1-3
Nephtys picta Nephtys bucera Magelona sp. 2 Spiophanes bombyx	.1		• • • <b>1</b> • •		]	1	6 7 3	• • •	1			]	]
Dispio uncinata Nucula proxima Nassarius trivittatus Tellina agilis					5	1	0 1 2	]			2	3	]
Mulinia lateralis Spisula solidissima Mytilus edulis Donax variabilis Parabaustorius attenuatus	]	] ] ]	9	9	2	7	د :		1				
Parahaustorius longimerus Bathyporeia parkeri Neomysis americana Paracaprella tenuis	4	4 6 1 1	36	45	33	28	7 4	17	12	11	2	3	4
Ampelisca abdita Edotea triloba Corophium insidiosum Bathyporeia quoddyensis			7 1		1				1	· · · · ·			•
<u>Chiridotea tuftsi</u> <u>Elasmopus laevis</u> <u>Xanthid</u> sp. Protohaustorius wigleyi				2	6 2		1 1 4						
Orchestia grillus Sesarma reticulatum Ampelisca verrilli Sertularia argentea	X						]		1				
<u>Campanularia</u> sp. <u>Hydractinia</u> echinata	<b>X</b>		X										

Species	Ma	y_1974	່ຳ	Augu	ist 19	974	Nove	ember	1974	Febr	uary	1975	Ma	y 197	5
species	2-1	6-6 6	2-3 Z	- !	2-2	2-3	2-1	2-2	2-3	2-1	2-2	2-3	2-1	2-2	2-3
Nemertea sp. Spio setosa Spiophanes bombyx Glycera dibranchiata Phyllodoce arenae	4 10 2 2	14	10 11 1	6 85	3	10				3	1	4	3 345 3 2	2 446 1 1	1 545 2
Magelona sp. 2 Heteromastus filiformis Polydora socialis	1 2 1		1	1	4			· .		· .		1	•	3	
Asabellides oculatus Nephtys picta Aricidea cerruti	Ę	]	2 2	1 9			1	15	7	2		1	3	3	2
Lumbrineris acuta Scoloplos sp. Streblospio benedicti Mediomastus ambiseta Glycera americana Oligochaeta A		]	•	2 10 53 1 2	2	1 7				1		1	3	1	] ] ]
<u>Clymenella</u> torquata <u>Sabellaria</u> vulgaris <u>Polydora ligni</u> <u>Eteone heteropoda</u> Driloneris magna			•	1 1 1 3									4	3	1
Scoloplos acutus Paranaitis speciosa Scoloplos robustus Harmothoe extenuata Scoloplos fragilis Goniadella gracilis				<b>1</b>	2	5	2 1 1				1		1	16	1
Eumida sanguinea Polydora concharum					· · · · · ·	•		·			<b>8</b> 		4 1	17	1

Species	Ma 2 - 1	ay 197	4	Au	just 1	974	Nover	nber	1974	Febr	uary	1975	Ma	y 197	5
species	2-1	2-2	2-3	2-1	۵- ۵	2-3	2-1	L= L	2-3	2-1	2-6	2-3	2-1	2-2	2-5
Capitella capitata											1		6	10	15
Ampharete acutifrons													2		
Nereis succinea		· · ·												1	
Lepidonotus sublevis														Ī	
<u>Amphitrite</u> ornata								-						]	4
<u>Nephtys incisa</u>											•	· ·			2
<u>Tellina agilis</u>	9	8	13	9	5	3	51	33	51	15	5	]	14	13	12
Lyonsia hyalina	1	-			_										
Ensis directus	. 1	1		3	2			1.	•						•
<u>Crepidula fornicata</u>				. 1				•						2	2
Mytilus edulis					4	6							55	429	110
Marginella roscida						1	•			0	2				
Nucula proxima							2	5	8	2	3				
Mulinia lateralis		4					.2	l T	2						
Acteocina canaliculata	•						•	· . •	1	7			ан. А		
Petricola pholaditorinis	a									. 1				2	
Ranahaustonius attonuatus	٦													3	
Parahaustorius longimorus	2			r			2	7			2		•	٦	
Oxyupostylis smithi	1		1						1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19		<u> </u>			•	
Bathynoreia parkeri	1	· · · · ·	*												
Corophium tuberculatum	•	2													
Unciola serrata		1	1	2		2				•				3	3
Unciola irrorata		•	4	·										-	
Crangon septemspinosa				1		4			4. ¹						
Xanthid sp.				. 1		1								3	
Neomysis americana				7				- 1					1 - E		
Lysianopsis alba				2		2					Q:			1	1
Elasmopus laevis					2										
Pinnixa sp.	•.					]									
											4				

Species	Ma 2-1	y 197 2-2	4 2-3	Aug 2-1	ust 1 2-2	974 2-3	Nove 2-1	mber 2-2	1974 2-3	Febr 2-1	uary 2-2	1975 2-3	Ma 2-1	y 1975 2-2	; 2-3
Protohaustorius wigleyi Synchelidium americanum Siphonoecetes smithianus Edotea triloba Leptocuma minor Paraphoxus spinosa Pinnotheres maculata Hydractinia echinata	X		~ ~	τ. Τ	- <u>-</u>	~ ~		2	1		]	1		]	1
<u>Electra monostacnys</u> <u>Conopeum truitti</u> <u>Conopeum tenuissimum</u> <u>Membranipora tuberculatum</u> <u>Alcyonidium polyoum</u> <u>Amphioplus abditus</u>	x	x x x	X	x x	x x x x	x				t tig si Tig si	÷				•
	3-1	3-2	3-3	3-1	3-2	3-3	3-1	3-2	3-3	3-1	3-2	3-3	3-1	3-2	3-3
Spio setosa Asabellides oculatus Glycera dibranchiata Harmothoe extenuata Spiophanes bombyx	20 4 1 3 1	9 5 3 1	1	. 1 3	2 1 1 9	2 6	3					3	Ţ	Ĩ	1
Aricidea cerruti Sabellaria vulgaris Driloneris magna Caulleriella sp. 2 Nereis succinea	1	3 2		2	2 1 2	3	3		7			•	•	1	
Lepidonotus squamatus Pherusa affinis Polydora ligni				2 1 1	]	3									

Species	May 1974 3-1 3-2 3-3	August 1974 3-1 3-2 3-3	November 1974 3-1 3-2 3-3	February 1975 3-1 3-2 3-3	May 1975 3-1 3-2 3-3
Mediomastus ambiseta		34 10 5	13	· · · · · ·	
Oligochaeta A		4	1		a ¹
Heteromastus filiformis		4			
Streblospio benedicti		1 2	5 1	•	
Polycirrus eximius	•	2 3	4		
Ampharete acutifrons		1	and the second		1
Nemertea sp.		2 1	1 1	· ]	
Eumida sanguinea		3	· 3 6	1 1	1 2
Schistomeringos rudolphi		1			
Scoloplos <u>robustus</u>		3	1 2	1	
Lepidonotus sublevis		4			
Amphitrite ornata		1			,
<u>Phyllodoce</u> <u>maculata</u>		1	1		
Tharyx sp. 2		· · · · · · · · · · · · · · · · · · ·			
<u>Podarke</u> obscura		1			
<u>Glycinde</u> <u>solitaria</u>			]		
Nephtys picta			1 1	2 7 1	3 1 4
<u>Glycera americana</u>			1 1 3		_
<u>Scoloplos fragilis</u>			2	-	1
Phyllodoce arenae	e de la companya de l				
Schistomeringos caecus					
<u>Chaetozone</u> sp.			4		
Driloneris longa					
Polydora socialis	•		4		0
Glycera capitata				3 1	2
Lepidametria commensails					1
Lapitella Capitata	0 1 0	о I	1 E	27 22 24	
Mutilua adulta			I D	51 55 34	<u>3</u> 13 /
mytilus eaulis	3 1	35/ 30 205			10 129 20

Species	May 3-1 3	1974 -23	-3	Aug 3-1	ust 1 3-2	974 3-3	Nove 3-1	mber 3-2	1974 3-3	Februar 3-1 3-	y 197 2 3-	5 3	May 3-1 3	1975 -2 3-3
Marginella roscidium	<b>]</b> .					5		1.						
Doridella obscura	1							-						
Nassarius trivittatus		1												
Nucula proxima			1		2	2						1		
Spisula solidissima			1			· ·								
Crepidula plana				7	3					•			1	
Crepidula convexa			÷	1										
<u>Crepidula fornicata</u>					- 2									
Ensis directus											1			2
<u>Lyonsia hyalina</u>			1.1											1
<u>Mulinia</u> <u>lateralis</u>							1111							1
Pagurus longicarpus	4	5	_					2						1
<u>Unciola</u> <u>serrata</u>	]	1	3			1	- 4	3	5				1	4
<u>Pinnixa</u> sayana		1										2		
Unciola irrorata			I			2.0	-		-		1	1		1
<u>Xanthid</u> sp.						- 10	. I	3						
Hexapanopeus angustifrons						1	-	-						
Pinnixa sp.						1	ł	1						
Pinnixa retinens						1								
Upogebia affinis						ļ	7.4							
Lysianopsis alba						0	14	· ۲						
Dancer Trroratus							1							
Fundamente and a longue	*						l T							
Danahaustanius langimentus								. 7						
Callianacca ca of Callianacca	ntica							I					٦	
Unciple dissimilie	nuica								•			r		
Ovvirostylis smithi												1	5	
Flectra monostachys	x	x		v		v	v	v	v				5	
Alcyonidium polyoum	x	X	X	x	X	x		~	<b>^</b>					

	May 1974	August 1974	November 1974	Februarv 1975	May 1975
Species	3-1 3-2 3-3	3-1 3-2 3-3	3-1 3-2 3-3	3-1 3-2 3-3	3-1 3-2 3-3
Membranipora tuberculatum Membranipora tenuis Schizoporella errata Cryptosula pallasiana Hydractinia echinata Astrangia danae Cliona celata Conopeum truitti Conopeum tenuissimum		X X X X X	X X X X X X	X X	X
	4-1 4-2 4-3	4-1 4-2 4-3	4-1 4-2 4-3	4-1 4-2 4-3	4-1 4-2 4-3
<u>Nephtys bucera</u> <u>Spiophanes bombyx</u> <u>Spio setosa</u> <u>Dispio uncinata</u> Glycera dibranchiata	1 1 1 2 2 1	1 2	2	3 2	4 3 1 1 3 1
Nephtys picta Nemertea sp. Glycinde solitaria		1 1 1 6 1 2 1	1 1 3 5 1	1	2
<u>Scolopios robustus</u> <u>Glycera capitata</u> <u>Scolopios acutus</u> Asabellides oculatus		1 4 1 6 10 1 2	1 2 1	2 2 2	3 1 4 1
<u>Scoloplos fragilis</u> <u>Sthenelais limicola</u> Mytilus edulis	]	1	1 1	1	
Tellina agilis Spisula solidissima Mulinia lateralis	4 2 4	6 14 17	56 5 3 2	1 2 6	726
Nucula proxima		10	44 14 2	<u>.</u>	37 11

Species	Ma 4-1	y 197 4-2	4-3	Aug 4-1	ust 1 4-2	974 4-3	Nove 4-1	mber 4-2	1974 4-3	Febru 4-1	uary 4-2	1975 4-3	Ma 4-1	y 197 4-2	5 4-3
Actoon nunctostnistus		1.7 1.1					2	Л				, -			
Acteorina canaliculata							3	. <del>4</del>	2	1	2	3			
Ensis directus		•								•		Ŭ			1
Protohaustorius wigleyi	10	86	51				1								
Synchelidium americana			1	-		· · ·				-		1 			
Ampelisca verrilli			1	<b>I</b>	. 1	5						•	2		
Oxvurostylis smithi					4										2
Pinnixa sayana						2					1		. 1		<b>L</b> -4
Trichophoxus epistomus							17	34	8	7		2	1		2
<u>Pinnixa</u> <u>retinens</u>								1							
Pinnixa sp.								2			۲				
Parahaustorius longimerus											י ר				
Alcyonidium polyoum	•		X												
								·				-			•
	5-1	5-2	5-3	5-1	5-2	5-3	5-1	5-2	5-3	5-1	5-2	5-3	5-1	5-2	5-3
Canitella canitata	10	•	•										Г	6	. 2
Spio setosa	10	2								+			] -	<u>0</u>	<u> </u>
Asabellides oculatus		6	13												
Scoloplos robustus		1	1												
Lumbrineris acuta		 -												71	
Glycora amoricana		1	. 1							٦		. ] .		ן ד	
Glycera dibranchiata			· ·							1	·· •	i			
Pectinaria gouldii										1					
Nephtys incisa												1			
Heteromastus filiformis	77	10	10	7 /	50	~ ~	<b>~</b>		10	'n	r	1	110	00	]
Yoldia limatula	11 T	13	19	14	50	55	b	11	10	2	1	· T	110	29	50
Yoldia limatula	1	4	6							2		1		1	

	Ма	ay 197	4	Aug	just '	1974	Nove	ember	1974	Febr	uary	1975	Ma	y 197	5
Species	5-1	5-2	5-3	5-1	5-2	5-3	5-1	5-2	5-3	5-1	5-2	5-3	5-1	5-2	5-3
Siliqua costata	•	٦													
Nucula proxima		9	18	1299	5653	3489	1857	2315	1405	3	2	2	4787	184	370
Mulinia lateralis		5	11								- 1	1			
Ensis directus		23	61	5	1	5		1				3		1	٦
Mytilus edulis			1		e Sast								1	1	
<u>Nassarius trivittatus</u>								1		]					
<u>Haminoea</u> <u>solitaria</u>								. ]	2						
Acteon punctostriatus								6	8			7			
Acteocina canaliculata		· 2								, e <b>l</b>		1			
Ampolisce vorrilli		2	<u>з</u> .							· · · · · · · · · · · · · · · · · · ·	2	n			
Neomysis americana	•	· 1	5	1							J	1			
Ampelisca vadorum				i							1				
Lysianopsis alba			··· .	•	1						•		•		
Oxyurostylis smithi					-					1					
Parahaustorius longimerus												1			
Upogebia affinis												1			
<u>Pinnixa</u> retinens							•							1	:
Ampelisca abdita					. •									.4	- 4
			c ò '				c 1	<u> </u>	с ° Э	· C 7	<b>c</b> 0	<b>c</b> 2	C 1	<b>C</b> 0	c >
	0-1	0-2	6-3	0-1	6-2	0-3	0-I	0-2	. 6-3	0-1	0-2	0-3	0-1	0-2	0-3
Nephtys bucera	1			3	1		3	2	. ]						
Scoloplos sp.					1	1									
Nephtys picta						4									
Nemertea sp.								. 1							
<u>Spio setosa</u>													2		
Magelona sp. 2	-							~					· • •		
Nucula proxima			л	3			4	2					I		
Ensis airectus			4	0	r.	10									
Spisula Solluissina				2	່ ວ	12									

Table AVI-3 (cont.)

Species	Ma 6-1	y 197 6-2	4 6-3	Aug 6-1	ust 1 6-2	974 6-3	Nove 6-1	mber 6-2	1974 6-3	February 6-1 6-2	1975 6-3	Ma 6-1	y 197 6-2	5 6-3
Mulinia lateralis Tellina agilis Turbonilla interrupta						•	. *	2	  ]	<b>1</b> .		, 1	·	
Parahaustorius longimerus Acanthohaustorius millsi Bathyporeja parkeri	24 30 8	4	20 24 7	23 1	22 3	53 25	3 4	4	3	1		7 6	4	5 1
Acanthohaustorius shoemake Parahaustorius holmesi Protohaustorius wiglevi	ri		*	5 1	Ţ	Q	13	3	6	20 11	Б	2		10
Trichophoxus epistomus Mancocuma altera					4	<b>,</b>	1	5	U	20 11	5	· <u>L</u>		1
	7-1	7-2	7-3	7-1	7-2	7-3	7-1	7-2	7-3	7-1 7-2	7-3	7-1	7-2	7-3
Asabellides <u>oculatus</u> Scoloplos <u>robustus</u> Spio setosa	4 1 1	1	1	]	1	2		•				5	2	1 2 5
Heteromastus filiformis Glycera capitata Capitella capitata		7 1		•			3	•					4	
<u>Glycera</u> <u>dibranchiata</u> <u>Streblospio</u> <u>benedicti</u>			1		2			ć	~9			1	1	
Nephtys incisa Scoloplos fragilis Nephtys bucera				Z	3	3	3	2.					1	l
Paraprionospio pinnata Glycera americana							1	]		1	•	. '		. *
Pectinaria gouldii Glycinde solitaria	- - -	· . ·				.*		2	2	· · · · · · · · · · · · · · · · · · ·				

Species	May 7-1	y 1974 7-2	↓ 7-3	Aug 7-1	ust 1 7-2	974 7-3	Nov 7-1	ember 7-2	1974 7-3	Febr 7-1	uary 7-2	1975 7-3	Ma 7-1	y 197 7-2	5 7-3
Spiophanes bombyx			•				•						2		
Nemertea sp.													1		
Nephtys picta	-				· · · ·					Ň			0		
Yoldia limatula	. <b>I</b> .	٦	0	3	,	1					٦	2	0 10	ס. דר	10
lellina agilis		1	2	2		3		<b>n</b> .	4	0	1	3 1	12	17	19
Mulinia lateralis		1	٦	20	28	13		1		2	1		I		
<u>Crepidula fornicata</u>			I	7			0	•					7	. 7	г
Ensis directus				1	20	22		7		0		Λ	1	I	1
Nucula proxima				21	-32	33	r	I		8		4	·		
Mutilua adulta							1						2		
Mytilus eaulis													5	٦	
Siliqua costata	· •							7					г	ו ר	
Acanthonaustorius milisi	3							1				•	1		
Bathyporeia quoddyensis	т.			•									1		
Bathyporeia parkeri	1	г													
Ampelisca vadorum	1.	1											2	Л	
Paranaustorius longimerus	2			. 0	. ·	n	.7	75	c	0	25	16	2	4	2
Amperisca verritit	а			۷.	<u>່</u> ວ	<u>כ</u>	1	10	0	. 0	20	10	. 4		<u>د</u>
Finnixa retinens						1	· • •	•							
Edolea Lriioba		· ·					2	٦							
Ampolicon abdita							1997 - A.	1	1		12	•		́ т	
Amperisca aburta									4		12	1	5	1	
Capacity in Starting											٦	1	· ·		
Drotobaustonius wiglowi										•	. 1		2		
Alevenidium polyoum											. •		<i>L</i> ,		
ATCYONTATUM poryoum			- X.												
	8-1	8-2	8-3	8-1	8-2	8-3	8-1	8-2	8-3	8-1	8-2	8-3	8-1	8-2	8-3
Inducidae dianthus	ררך	10	n	106	20	150	202	101	O.A⁺	600	50 <i>1</i>	160 -	70		22
Hydroides diantnus	220	10	3	100	30	159	202	494	24 0	009	004 1 C	100	19		66
Polydora 11gn1	229.	-17	14	n	c	2		10	2	. 0	15	10	· 2	12	л
marphysa sanguinea	22	ö	4	4	0	3	ð	14		9		. 3	0	12	4

Species	Ma 8-1	y 197-	4	Aug	ust 1	974	Nove	mber 8-2	1974	Febr	uary	1975	Ma 8_1	ay 197	5
Species	0-1	0-2	0-5	0-1	0-2	0-5	0-1	0-2	0-0	0-1	0-2	0~0	0-1	0-2	0~0
Sabellaria vulgaris	15	1		23	3	30	35	79.	231	225	114	51	11	21	13
Polydora socialis	44	8.	3				,	7	1	3		5	3	30	
Nereis succinea	16	10	5	2	3	3	9	14	3	1		1	14	21	7
Polycirrus eximius	10	5	. 3				7	14	4.	114	18	45	4	66	20
Syllis gracilis	- 3						5	2					1	3	· ·
<u>Spio setosa</u>	1	11	7				1						1	3	14
<u>Heteromastus</u> filiformis	8	12	28	1.	6		7	9	13		3		1	18	5
Proceraea cornutus	1		· _					1		,	•				
Asabellides oculatus	1	5	4	11	177	12	34	3	3		6	10	16	18	5
<u>Capitella</u> <u>capitata</u>		3	g			3						-	6	10	. 4
Harmothoe extenuata	/9	22	6	2		.3	7.0			. "m	C	/	24	12	10
Lepidonotus squamatus	14.		 A	2		చ ం	14	27	11	- · · b ·	6	17	14	9	1
Strepiospio benedicti		2	4	1		3		Ē		· 3					1
Lepidonolus subievis		2		0			2	5						2	
Pectinaria goulari		1			-		. 2	· 1	Ċ				· · ·	ა ა	
<u>Clucindo solitania</u>	. '	1 1		3	a	2	2	0	22					12	3
Thanky on 2		.3	1	5	9	5	۷.	9	23					14	5
Maldanidae sp. 1		2	1.						1						
Oligochaeta B		1						. 1					5		8
Glycera americana		1						i	1						1
Diopatra cuprea		1						·	•						•
Eteone heteropoda			1												
Eteone longa			3												
Sthenelais boa				2				2	2				1	3	3
Mediomastus ambiseta		·		14	9		10	37	61		9	19	2	99	28
Phyllodoce maculata				5											
Amphitrite ornata				1											
Oligochaeta A				4				4	3			1		12	3
Zygeupolia rubens				1					· · ·	ал ж. Ал					

	Ma	y 197	4	Aud	ust 1	974	Nove	ember	1974	Febr	uary	1975	М	ay 197	75
Species	8-1	8-2	8-3	8-1	8-2	[′] 8-3	8-1	8-2	8-3	8-1	8-2	8-3	8-1	_̃8−2	8-3
Pherusa affinis			•		6										
Nemertea sp.				•	3	·	. ]			2		6	· ]	3	7
Scoloplos robustus					3										
Eumida sanguinea						12	9	54	48	18	60	124	44	309	126
Goniadella gracilis	• •						4								
Podarke obscura							4	5	3		3	1	1	3	1
Schistomeringos rudolphi							1							3	
Flatworm A								· 3	1						
Glycera capitata							1 		]				1		
Polydora concharum												]	<u> </u>		
Spiophanes bombyx													1		
Nephtys incisa													2		
Cirratulidae sp.													1	3	1
Polydora caulleryi													-		1
Mytilus edulis	887	24	24	17	2	•				2			6029	5427	1492
Tellina agilis	2		]	1	5	8	1	1	1	2	٦		2	2	2
<u>Mulinia lateralis</u>	· . ]			1											
Nucula proxima		23	13		15	17	31	26	- 30	35	10	9	10	84	180
<u>Crepidula plana</u>			56				5		7	2	82		2	1	11
<u>Crepidula convexa</u>			1									• •			
<u>Mercenaria</u> <u>mercenaria</u>				2	1	3	12	- 18	19	7	71	5	3	6	3
<u>Petricola pholadiformis</u>					1		*								
Lyonsia hyalina						1									
<u>Hydrobia totteni</u>							٦								
Acteocina <u>canaliculata</u>									•	1					
Doradella <u>obscura</u>												1			
<u>Cuthona concinna</u>								•					]		
Doto coronata											24 1		1		
<u>Neopanope texana sayi</u>	16		.*	33	. 8	8	3	2	· ]	3	<u></u> 3	1	7	3	7
<u>Panopeus herbsti</u>	2											]			

Species	Ma 8-1	y 197 8-2	4 8-3	Aug 8-1	gust 1 8-2	974 8-3	N 8	ove -1	mber 8-2	1974 8-3	Febr 8-1	uary 8-2	1975 8-3	ا -8	1ay 19 1 8-2	75 8-3
Xanthid sp. Unciola serrata Corophium simile Lembos smithi	132 177 516 55	16 47 42 6	18 32 8	108 264 162 21	26 6 6	21 108 123 9	•	40 38 81 18	93 279 242 130	11 82 73 9	79 600 72 41	44 429 117 30	30 477 30 15	4 2 4	9 40 5 154 3 73 2 11	7 109 9 1
Paraphoxus spinosus Elasmopus laevis Erichthonius brasiliensis	12 2 6	1	. 1	3 6	2	6			1 4 3	4 1		6 6		•	   }	
Pagurus longicarpus Oxyurostylis smithi Melita nitida Parahaustorius longimerus	3	1 2 5	1 11 1	3	1 1	6	•	5	3	2 1 2	12	3 3	18 12		1 8	1
Heteromysis formosa Ampelisca abdita Protohaustorius wigleyi				3	2				•	1.	3	3	9		2	
Acanthohaustorius millsi Ampelisca verrilli Crangon septemspinosa				•	2	9		1			•			]		
<u>Caprella equilibra</u> <u>Ampelisca verrilli</u> <u>Phoxocephalus holbolli</u> Tanystylum orbiculare			•					4 1 7	31 4	2		. 33	3	. 22	2 7	·
Pinnixa sp. Neomysis americana Cancer irroratus Paracaprella tenuis			•							3 7	1	•				
Parapleustes aestuarius										• •	3	3		2		

Species	Ma 8-1	y 197 8-2	4 8-3	Aug 8-1	just 1 8-2	974 8-3	Nove 8-1	mber 8-2	1974	Febr 8-1	uary 8-2	1975	Ma 8-1	y 197 8-2	′5 8-3
	•	<b>-</b>		υ,	<u> </u>	00	•••	<u> </u>	0 0	0 1			0.		
Edotea triloba						-					3	3		2	
Batea cathariensis											9				
Corophium tuberculatum													1		
<u>Sertularia</u> <u>argentea</u>	Х		X												
Tubularia crocea	Х					•									
Electra monostachys	Х						Х	• •					X		
Conopeum tenuissimum		х	Х						Х		· •				
Alcyonidium polyoum	х	х						х		X	х				
Schizoporella errata	х	х	Х				X	х	Х	х	х		r		
Microciona prolifera	х			х	х						х		•		
Membranipora tenuis					x										
Cliona celata					X										
Thyone briareus												1			
Starfish (juv.)							•						1		
Triticella elongata														х	
	 9-1	9-2	9-3	9-1	9-2	9-3	9-1	9-2	9-3	9-1	9-2	9-3	9-1	9-2	9-3
							· ·		e.			а ( <u>1</u>			
Cirratulidae sp.		· ·			•								2		
Syllis gracilis	•		· · ·									1 A	3		
Lumbrineris acutus															1
Nucula proxima	2		9	5	36	6	57	33	25	41	38	37	58	. 1	23
Mercenaria mercenaria	2				8		16	11	7	11	2	7	6	4	4
Tellina agilis	8	2	2	3	2	3	4						1	1	1
Mytilus edulis	2	1008	7	54	14	56				10			1553	417	201
Lvonsia hvalina				2	2		1								
Crepidula convexa				3			·								
Crepidula plana					3			2	2	9		1			
Anomia simplex		an a			1		1								· .

• • . . .

Spania	May	197	4	Aug	just ]	974	Nove	mber	1974	Febr	uary	1975	Maj	y 197	5
species	9-1	9-2	3-0	3~1	9-2	9-0	9-1	9-2	9-3	9-1	9-2	9-3	9-1	9-2	9-3
Ensis directus						T									
Petricola pholadiformis						1									
Anachis avara						•	2			3					
Doradella obscura							1								
Mitrella lunata							2								
<u>Hydrobia totteni</u>							1								
<u>Mulinia lateralis</u>								1							
<u>Anadara ovalis</u>										1			2		
<u>Xanthid</u> sp.	1			63	50	81	21	4	8	45	2		37	22	6
<u>Oxyurostylis smithi</u>	2						3	10	1	12	2		3		2
Corophium simile		4		141	49	294	· 96		8	22			17	13	1
Pagurus longicarpus		]			4		· 1		3			2			
<u>Neopanope texana sayı</u>		l		21	14	30	1	-					6	9	
Ampelisca verrilli		4	-					1	~			~			~
Edotea triloba		1	. 1	-		0	-	1	2	. 10		6			1
Elasmopus laevis		1		చ		9.	1		ŀ	<b></b>			1		
Batea catharinensis														0	
Paracaprella tenuis		2		c	0	20	0		г	<i>r</i> -			ა 1	Z	
Merita nitida				150	61	39	2	1/	10	C 100	10		1	10	0
Lomboc smithi				159	01	242	00 	14	40	129	15		88	13	8
Erichthonius bracilionsis				6	9 11	۲L /۱۵	4/	с г	0	10	1			2	
Paraphovus spinosus				0	2	.21	1	1		3				۲.	
Coronhium tuberculatum					11	<u> </u>				J					
Phoxocenhalus holbolli							Д								
Panopeus herbsti			•				-1			٦			3		
Hydroides dianthus	440			633	219	816	175	28	10	99	13	٦	117	52	
Nereis succinea	11			27	9	45	6			12	.3	•	9	7	2
Marphysa sanguinea	2			15	6	18	2	2	6	6	ī		3	3	-

4 <b>•</b> •	Ma	y_197	4	Aug	ust 1	974	Nove	mber	1974	Febr	uary	1975	Maj	y 197	5
Species	9-1	9-2	9-3	9-1	9-2	9-3	9-1	9-2	9-3	9-1	9-2	9-3	9-1	9-2	9-3
Harmothoe extenuata	]	1		9	6	3			*	3			6	5	1
<u>Glycinde solitaria</u>	2		4	15	9	9	9	3	13	12	3	5	6	1	5
<u>Spio setosa</u>	5	5													4
Driloneris longa	2											• •	6		
Glycera americana	2	1		3				3	- 2		1	1			
Capitella capitata	2				1							· ·		8	
Polydora ligni	33	4					5		1	9	1		•		
Sabellaria vulgaris	8			66	24	84	20	. 2	14	36	3		30	٦	
Polydora socialis	4						•	1	5				3		4
Asabellides oculatus	1	16	10	39	30	39	5		1	21	2	1	6	19	4
Polycirrus eximius	1			75	24	18	8		9	33	14	4	- 39	34	10
Nemertea sp.	2				3			1	. 1				15		2
Oligochaeta A	1			33		27			18						
Heteromastus filiformis	-5	3		18	18	75	2	1	14	45	13	18	9	3	21
Scoloplos robustus		1						1	1						
Streblospio benedicti		2		. 9	6	15			•		3		12		3
Pherusa affinis		-	1												
Lepidonotus sublevis				27		15									
Mediomastus ambiseta				36	30	51	18	7	31	120	4	18	60	5	14
Sthenelais boa				6	3		1		3		1				1
Lepidonotus squamatus		•		3			17	1	2	3	2		12	2	
Eumida sanguinea				52		45	27	1	25	54	. 9	•	84	12	12
Amphitrite ornata					3								1		
Tharyx sp. 2					3	3									
Eteone heteropoda						. 3									
Phyllodoce arenae							3			6	1	1			3
Pectinaria gouldii							3	3	4	3		3	3		1
Glycera dibranchiata							2								
Goniadella gracilis							4								
Podarke obscura							10		3			]	-3		
Flatworm A							4								

. Get

Species	Ma 9-1	y 1974 9-2 9-3	Augus 9-1 S	st 1974 9-2 9-3	November 9-1 9-2	1974 9-3	February 1 9-1 9-2	975 1 9-3 9-	May 1975 1 9-2 9-3
<u>Polydora concharum</u> <u>Proceraea cornuta</u> <u>Lepidometria commensalis</u>	•		 			] ] ]	3	•	1
<u>Chaetozone</u> sp. 1 <u>Glycera capitata</u> Lysianopsis alba					1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19		3	<b>]</b>	2
Ampelisca abdita Caprella equilibra Sertularia argentea		x						1	1
Electra monostachys Conopeum tenuissimum Membranipora tenuis	X X	x x	x	X			x x		• <b>X</b> • • • •
Schizoporella errata Triticella elongata			, <b>X</b>	X X X	x	Х	X		
Halichondria cf. H. bowerbanki Conopeum truitti			•	x				. · ·	x
Thyone briareus Balanus improvisus							0 1 10 0 1		
Spio setosa	10-1 1	10-2 10-3	10-1 10	)-2 10-3	10-1 10-2	10-3 1	0-1 10-2 10	U-3 IU-	1 10-2 10-3
<u>Glycera americana</u> <u>Asabellides oculatus</u> Scoloplos robustus	1 12 4	14 1 2		]			2		
<u>Streblospio benedicti</u> Sthenelais limicola			• •			· · ·	•		

Species	10	Ma -1	y 1974 10-2 1	0-3	Au 10-1	gust 1 10-2	974 10-3	Nove 10-1	ember 10-2	1974 10-3	Fe 10-	brua	ary 0-2	1975 10-3	א 10-1	ay 19 10-2	75 10-3	
Untransition Callifornia		-		•														
Heteromastus Tilitormis		I																
Glycinde solitaria		5	4			•							•		•			
Pherusa attinis		1	-															
Harmothoe extenuata			I.															
Diopatra cuprea			1	1			-											
Nephtys incisa					1	· · · · ·	<b></b>			I					•		4	•
Pectinaria gouldii					ļ		•							~				
Scolopios fragilis					1	2	3	· · · ·					3	2				
Paraprionospio pinnata								1							· · · ·			
Nephtys picta													- 2 -	-	•			
<u>Glycera</u> dibranchiata										_				1	· · _	_	Ţ	
<u>Yoldia limatula</u>		4	2		1	2	1	1		1					٢	1	]	
<u>Tellina agilis</u>		6	4	1		4	8	4	4	4		1	3	10	2		- 1	
<u>Ensis</u> <u>directus</u>		5	11.	1	· ]	2						]			1 A			
<u>Nucula proxima</u>		3	11	2	32	37	64	-74	74	56		2	. 4		27	19	30	
<u>Mulinia lateralis</u>		6	9	6	7	14	4	. 1	- 5	1			2	1				
Mytilus edulis			3	28			1								ç	3	. 3	
Pandora gouldiana							1											
Acteocina canaliculata			,					5	1	2							· .	
Acteon punctostriatus									]	1	· · · ·							
Polinices duplicatus					· .								1					
Nassarius trivittatus					1997 - 1997 ¹								1					
Thyone briareus																2		
Ampelisca abdita	1 <b>1</b>	7	3	1							· · · ·				22	1		
Ampelisca verrilli		7	7		2	2	2	]	1	4	1	5	7	13	ç	5		
Bathyporeia parkeri			1															
Oxyurostylis smithi			1						•			1						
Edotea triloba			1									1		1				

 
 May 1974
 August 1974
 November 1974
 February 1975
 May 1975

 Species
 10-1 10-2 10-3
 10-1 10-2 10-3
 10-1 10-2 10-3
 10-1 10-2 10-3
 10-1 10-2 10-3

 Corophium tuberculatum Xanthid sp.
 1
 1
 1

 Erichthonius brasiliensis
 1
 1

 Neopanope texana sayi
 1
 1

### Table AVII-1

Benthic invertebrates in grab samples Station 3

-	Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
3006 3014 4011	Zygeupolia rubens Nemertea sp. Mediomastus ambiseta	]	2	2 21	10	59	2 11	4	18	1	16	4 10	3	1 25	1 26	1		1 1	1 41	8	6
4018 4171 4071	Chaetozone sp. 3 Aricidea cerruti	1 2		4			2	2	4	3	3	3	1	5	1		2	2	19	• •	2
4105	<u>Sthenelais</u> boa Polydora ligni	1		3	6	]	6		]		3	2	Ō	1	3	7	1	5	1	1	7
4119 4061	<u>Streblospio</u> benedicti Travisia carnea	1	Λ	]	1	1	1 ]-		1	1	2	۷		2	2	<b>I</b>	1	1	2		1
4101 4088 4055	Harmothoe extenuata Nereis succinea		-13 2	40 11	12 5	15	19 3	26 5	23 12	7 5	9 2	8	5	6 2	9 1	8	3	1	8	]] ]]	7 6
4002 4137 4091	<u>Asabellides oculatus</u> <u>Polycirrus eximius</u> Lepidonotus squamatus			11	4	2 3	2 6	3 1 1	1 5 1	4	2 5	9 24	2	4 3 2	8 4	2	2		3	1	3
4111 4080 4066	<u>Polydora socialis Eumida sanguinea</u> Orbinia ornata		. 1		5 1 1			]	5 6	1	]		1		3	1			]		-4
4134 4010 4021	Amphitrite ornata Heteromastus filiformis Schistomeringos rudolphi	•		2 2	1		1		1 1	]	1	1		2	1		1		3	2	
4023 4140 4025	Marphysa sanguinea Cirratulidae sp. Glycera americana			2	· · ·	1	2	1	1	2	2	2		]	<b>]</b>			1		.]	

· · ·	Species	•	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
4092	Lepidonotus sublevis						3	2		1	3	4		3		3	1	1		2		2
4172	Chaetozone sp. 1						1								1					_	- 1	
4076	Pectinaria gouldii						1													1		
4084	Phyllodoce arenae	* a. a					Ţ															
4125	Procerae cornuta						I			-												
4016	<u>Chaetozone</u> <u>setosa</u>							.4		i l	*9							-				
4024	Pherusa affinis										1		· · · ·	1				, I				l
4001	Ampharete acutifrons												2		1							
41/3	Chaetozone sp. 4									2			1	7	-							
4006	Driloneris longa									1.1		2	1	I	I							
4064	Scolopios tragilis											· 7 ·	. 2							1		
4020	Bionocullic on											1								I		
41/4	Pionosyllis sp.											1					r	r		2		2
41/0	Nereis arenaceouonia																1	1		2		2
4109	Socionias popular											· ·						1				
4005	Bodanko obscura																	1	,		2	
4030	Chaotozono sp. 2																				1	T
4171	Daranaitic speciesa		•																	٦	1	1
4000	Schistomaringos caecus						• '									,				· 1		
4400	Oligochaeta A					1	6					6	1	4	5	2				6	3	÷ 1
4401	Oligochaeta B			. •				· .				Ũ	•		Ĩ	-			,		Ŭ	
5027	Nassarius trivittatus		2		1					1				3								2
5013	Crepidula convexa		4		3	3	6	- 2		1	2		5	1		5		1	1		]	_
5087	Corbula contracta	•	1													•						
5014	Crepidula plana	,		1	1			1							2						5	
5053	Mytilus edulis		1	67	894	221	99	271	529	433	235	153	706	194	211	130	15	100	4	69	289	191
5047	Nucula proxima				3	3		1		1			1	2		1		1		2		
5080	Ensis directus				1							·	1		1		•		1	1.		1
5029	Marginella roscida				. 3	1	2			2			5	2	1	1						
5070	Tellina agilis	· · · ·			2	1		1		2		· 1.	4	2				3	7	1		1

	Species	1		2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
5012	<u>Crepidula fornicata</u>																			1	
7115	<u>Pagurus longicarpus</u>	]														7	,	,			
7086	<u>Lysianopsis alba</u>	1	•	-11	2	23	18	28	21	14	11 .	18	3	11	10	]	22		12		10
7145	<u>Heteromysis</u> formosa	2							3	_	-			2		1	1				
7146	Xanthidae sp.	6		26	11	23	16	.12	5	7	- 4	38	5	18	71	5	18		12		14
7130	<u>Pinnixa sayana</u>	. ]		3			1				•	2	1	2	_		1		1		
7125	<u>Panopeus herbsti</u>			2	1	_	1		-			2	1		3		_		1		
7056	<u>Unciola serrata</u>			2	11	. 1			1	2	2.	4	3	• •	- 2		2		4		
7068	<u>Elasmopus laevis</u>				1										_					• ,	
7147	<u>Pinnixa</u> sp.			1		1						2	1		T	1	]	3			•
7148	<u>Callianassa</u> sp. cf. <u>C.</u>				• .		_											•	•		
	atlantica						1				1		н 1		- 1				1		
7054	Erichthonius brasiliensis			·			1														
7121	<u>Cancer irroratus</u>								1			]	1	1							
7013	<u>Cyathura burbancki</u>								1	1											1
7149	Euceramus praelongus											1									
7111	Crangon septemspinosa																				
7116	Pagurus pollicaris															<u>.</u>					
7127	Hexapanopeus angustifrons						1	]	]		•								•		
7144	Pinnotheres maculatus							Ţ	1	1											
9003	<u>Amphioplus</u> abditus						1												1		
8012	Membranipora tenuis	Х		X			Х			х									X		х
	Hydractinia echinata	Х				х			х			х				х		X			
8023	Schizoporella errata		· )		•	· .					1.				÷	х	Х				
8002	Alcyonidium polyoum				х	X		Х	x	•	X		х			X			Х	х	
8013	Membranipora tuberculatum			×			х			X			х						х		х
	Electra monostachys			х		х	х			x	X	х	х			X		Х	X		х
8014	Conopeum tenuissimum			X		X		х	х					X							
8028	Cribulina punctata														•	X			х		
8015	Conopeum truitti															¥.					

### Table AVII-2

Benthic invertebrates in dredge samples Station 3

t a la anti- tilite	Species		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2002 2007 2008	Tubularia crocea Hydractinia echinata Podocorvne carnea			1	1	1	1			1		1	2	1	1	τ.	1	T	0	1		1
3006	Zygeupolia rubens				•				1.				1			ן ז		1		1		
3014	Nemertea sp.		[ ר	1		1	1	3								1	1	i	1		1	
4001	Asabellides oculatus		3		1	1	1	1	1	1				1	1.	1		1	].	2	· .	
4006	Mediomastus ambiseta		7	5	3	5	4	5	5	5	5	3	2	5	5	5	7	5	7	7	5	5
4015 4018	Caulleriella sp. 2 Tharyx sp. 2					1																
4021 4023	Schistomeringos rudolp Marphysa sanguinea	<u>ohi</u>		1	1	•												1		1		
4024 4027	<u>Pherusa affinis</u> Glycera dibranchiata		1		· .							1								1		
4030 4055	Podarke obscura		5	5	4	. <u>२</u>	. 3	1	3	5	5	3	3	5	5	5	5	Д	5	. 7	3	3
4071	Aricidea cerruti Rostinamia gouldii		Ĩ		,			Ĩ	1			Ŭ	1	ĩ	1		ĩ	т	ĩ	,	5	5
4070	Eteone heteropoda		י 1 ז	1	]	1	1	5	3	2	3		]	7	2	1	1	3	-]	5	]	]
4080	Paranaitis speciosa				2	4		5	3	3		l	1	5			5	5 1	1	5	చ -	1
4085 4088	Phyllodoce maculata Harmothoe extenuata		7	5	7	7	5	7	7	7	7	5	7		7	6	7	7	7	7	1 7	7
4091 4092	Lepidonotus squamatus Lepidonotus sublevis		3	1	]	1	1 3		1			ן 1	1	1	1	1	1		٦		1	1
4093 4101	Sabellaria vulgaris Hydroides dianthus	*	1		   	1	] ]	1	<b>]</b>	1				1		1	1 1			1	1	

	Species	]	2	3	4	5	6	7	8	. 9	10	11	12	13	14	15	16	17	18	19	20
4109	Polvdora concharum	1														1.	1	1.			
4110	Polydora ligni	7		6	7	7	7	7	7	7	5	7	7	5	5	7	7	7	- 7	7	5
4111	Polvdora socialis	1			•		•	-	•			•			-	j	j	1		•	
4117	Spio setosa	1					1	3	3			. ]	1			1	1	j	4		
4119	Streblospio benedicti	1	1				1		1				1	1		1	ì		1		1
4124	Parapionosyllis longicirrata		1	1.									i								
4137	Polycirrus eximius	5	1	3	5	3	4	-3	4	4	3	5	4	3	3	3	4	5	5	3	3
4140	Cirratulidae sp.													Ĩ				1		1	
4146	Aricidea sp.	3									•								]	5	
4171	Chaetozone sp. 3				1			1	1.			1	1			•	1	1	1		
4172	Chaetozone sp. 1	1																•			
4176	Chaetozone sp. 2	]									÷.						1	1			
4177	Lepidonotus (juv.)		ν.	1	5			3	3	3		1				1	1	]	1		
4400	Oligochaeta	3				1			3					3		7			1		
5012	Crepidula fornicata				1																
5013	Crepidula convexa	7	1		1	1					1	1			1	1	2	1			
5014	Crepidula plana	3	5	5	5	5	5	3	3		1	3	- 3	3	5	3	7	6			. 3
5023	Mitrella lunata				1	1	1	1							٦	1					1
5027	Nassarius obsoletus				1				1		-								1		
5029	Marginella roscida	3	1			3			1			1	1	]		· 1	7	1		1	1
5042	Chaetopleura apiculata					•											1				
5047	Nucula proxima	1.		1	1	]	1	1	1	1	1.	5	1	]	3	3	3	3	3	3	1
5053	Mytilus edulis	7	7	7	. 7	7	7	-7	7 .	7	7	7	7	7	7	7	· · 7	- 7	7	7	7
5064	Mysella planulata												1								
5070	Tellina agilis	]								1					1.				1	1	
5097	Nudibranchia sp.							1													
6009	Balanus (Balanus) improvisus			1															-		
7002	Neomysis americana	3		. 3	5	6	3	5	7	5		] .		- 3	1.	- 3	1			] .	
7011	Cyathura polita																]			· •	
7013	Cyathura burbancki												1								
7035	Ampelisca abdita		1						•							. ·					
7049	Corophium acherusicum							1	1												

	Species		]	2	3	4	5	6	.7	8	9	10	11	12	13	14	15	16	17	18	19	20
7056	Unciola serrata				1	1	3	1	.5	5				1		1				1	1	
7058	Corophium simile				1																	
7086	Lysianopsis alba		5	3	3	3	4	1	2		3	5		3	4	4	5	. 3	5	4	5	5
7111	Crangon septemspinosa		3	1		1	1	1	3	3	1	3		1		1	- 1		1	- 1		1
7115	Pagarus longicarpus	· •	1	1	1	1				1	·		1	3			1	1				1
7116	Pagarus pollicaris			1						1		1	1.			1						
7121	Cancer irroratus			1		1					1 -		1	1	1	1		]		. 1	1	1.
7124	Neopanope texana sayi			1	1	-	÷.,							1								
7125	<u>Panopeus herbsti</u>			÷											1							
7138	<u>Libinia emarginata</u>				_				1		1					i.						
7146	Xanthid sp.			1		- 3	3	3	- 3 -	1	3	1	1	3	1.	1	2	3	4	5		1
7147	<u>Pinnixa</u> sp.																1					
7152	<u>Libinia</u> sp. (juv.)							_				_		_			1					
8002	<u>Alcyonidium</u> polyoum	ł	4	5	5	2	1	]	3	7	3	3	3	1	3	5	3	3	3	_	3	5
8012	<u>Membranipora tenuis</u>		3		4	]	3	1		3	1	3	3	3	3	_			1	1		1
8013	Membranipora tuberculata		]	3				5	5	2		3	.3			1	2	]	1	1		
8014	<u>Conopeum tenuissimum</u>			1.		1	5	-	5	]		1	3		•	3	4	4	_	3	1	
8015	<u>Conopeum truitti</u>			_			1	1		1		1		1	1				]	3	_	
8018	<u>Electra hastingsae</u>		3	3	4	5	, 5	4	3	3	4	4	3	3	5	- 4	3	4	5		3	5
8022	<u>Cryptosula pallasiana</u>					-	1		l.	I			.	3	-	5	3	3	1	3	-	-
8023	<u>Schizoporella</u> errata			I	3.	1	1	1	1	4	2		1	1	1	1	1	1		1	3	1
8024	<u>Schizoporella biaperta</u>				_								<b>.</b>	-	-	5	4	4		. 3		-
8025	Microporella ciliata				3.					<b> </b> .				1	1	1	1		l		1	I
9001	<u>Asterias forbesi</u>											I	3					-				`
9003	Amphioplus abditus									-								1				
9004	Arbacia punctulata							7		I											÷ •	
9005	Echinarachnius parma							I						÷.,	· .		~	Ċ,	~		•	٦
9008	Starfish (juv.)														I	ł	1	5	- 3	1	-3	I

### Table AVII-3

Benthic invertebrates in grab samples Station 4

•	Species		1	2	3	4	5	. 6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
3014	Nemertea sp.		1	3		2	1	1	1		7		1	2			]		5	1	]	
4034	Amphitrite ornata											1										
4002	Asabellides oculatus	•						• • •	2		1	4							1		. 1	
4026	<u>Glycera capitata</u>		4	8	2	4	7	5	4	3.	2	1	3	5	3	4	3	7	5	9	1	1
4027	Glycera dibranchiata		1	]	1.	1		5	4	. 3	1	2	3	]	3			2		]	2	4
4028	Glycinde solitaria							1	1		2			- 2	1	1		1	3	]		
4010	<u>Heteromastus</u> filiformis								1										• . • .			
4011	Mediomastus ambiseta					2												•				
4053	Nephtys picta					2:		.1					1		1							1
4084	Phyllodoce arenae												1									
4085	<u>Phyllodoce</u> maculata									- 1 -												
4116	<u>Scolelepis</u> squamata						2														1	
4063	<u>Scoloplos</u> <u>acutus</u>													2					2			
4064	<u>Scoloplos</u> <u>fragilis</u>		1 .	2	4	-3	5	13	. 8	3	5	3	1	5	2	3	4		2		3	
4065	<u>Scoloplos</u> robustus						. •				,							4				
4117	<u>Spio setosa</u>								1			-										
4118	<u>Spiophanes</u> bombyx		1			1	1	2	]	2	4		1	1	1	· ]	1	1		4	2	
4105	<u>Sthenelais limicola</u>				-1													]				
4025	<u>Glycera americana</u>		<b>.</b> .													]						
5080	Ensis directus						1		2		+ + _	1	1	2	2	1	3	1	·	3	1	1.
5082	<u>Mulinia lateralis</u>			3	1	1	- ]	2 -	4	2	3		4	3	•		•		2	1	4	
5070	<u>Tellina agilis</u>		8	5	8	6	10	5	13	10	12	17	10	12	14	16	21	- 2	9	17	12	6
703 <b>7</b>	<u>Ampelisca verrilli</u>		1	5		]	4	2		2	3	1	3	1	2	3	8	4	3	1	8	1
7029	Erichsonella filiformis															-				1		
6001	Limulus polyphemus															1		1	*			
7086	<u>Lysianopsis</u> <u>alba</u>			1					•						-		•					
7009	Oxyurostylis smithi			1		3.		1	7	2	4		3	4		3			]			٦
7147	<u>Pinnixa</u> sp.						•	]														
7130	Pinnixa sayana									1	2						3	1	1			

	Species	1	2	3 4	5	6	7	8	9	10	11	12	13 14	15	16	17	18	19	20
7091 7093 7146	Synchelidium americanum Trichophoxus epistomus Xanthid sp.			1	1				2		ן ו		1.		2	1			2 1
8018 8009 8002	<u>Electra hastingsae</u> <u>Triticella elongata</u> Alcyonidium polyoum							X			. <b>.</b>	X		X					

### Table AVII-4

Benthic invertebrates in dredge samples Station 4

	Species		]	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2032	Metridium <u>senile</u>					1									1							
3014	Nemertea sp.		1		1	1		1	1													٦
4118	<u>Spiophanes</u> bombyx			_	-		-	_		_	-	_		-	-		Ī					· ·
4002	Asabellides <u>oculatus</u>	:	5	5	5	3	1	6	3	5	5	5	3	5	5	5	5	5		l		1
4010	Heteromastus filiformis		<b>~</b>	2	r	2	2		7			2	2		n	٦			7	2	0	7
4026	Glycera capitata	•	ວ່ າ	く ゴ	5	3	3	3			'n	3	3		3	l'	5	,	, <b>I</b> ,	3	2	I
4027	<u>Glycera</u> <u>dibranchiata</u>		1	1	2	ŕ			ו ר	г	ן ר	•	٦	٦			, 1	ł	•			r
4028	Nonois sussings				3	1			1	.1	1	7	ł	1			1					J
4055	Hanloscoloplos fragilis			٦	٦	З	5	٦	٦	٦	3	1	1		٦	ſ	1			ſ	7	T
4004	Phyllodoce arenae			<b>В</b> _	1	5	5	*	.,	•	5		1		1		,		1	1	•	6
4092	Lepidonotus sublevis																		i			
4110	Polydora ligni										]	1		¹					•			
4116	Scolelepis squamata										1											
4117	Spio setosa		3	1	1	1		1	1			3	1		1	1						1
4119	Streblospio benedicti								-		1											
4142	Scoloplos sp.				•									٦								
4176	Chaetozone sp. 2						· .	1														
5013	<u>Crepidula convexa</u>			1		÷.,						1	1			3						
5014	<u>Crepidula plana</u>			1						_									· 1			
5023	<u>Mitrella lunata</u>			-						1	Ţ	-										
5027	Nassarius obsoletus		•	1				-		1	. 1	1			7	-	l	. 1		-		
5047	Nucula proxima			3									·		1	1				i		
5066	Mercenaria mercenaria		-	5	E	E	2	1	E	2	E	E ·	Ē	Ē	E	E	Ē	n	ว	E	2	E
5070	Frais divectus		י כ כ	ວ ວິ	ว า	c	5	.) 1	 	. T	5		י כ ד	· )	с г	с г	່ ວ 1	. J		С	ט ר	כ ו
5060	Elisis directus	•	<b>)</b>	J .	1			1	1 L	1		3		1	· 1·	. 1	ו ד	· 1.			1	
5082	Mulinia lateralis	ſ	5	7	5	5	5	5			7	5	5	5	5	5	5	5	5	5	5	5
5002	Ivonsia hvalina			, 1	1	5	1	2	7	r	,	. 3	נ ר	1	J.	5	1	.1	5	J	5	1
5051	Lyonora nyarina				F		•	L.,	,	· · ·				•			•	1				

Table AVII- 4 (cont.)

	Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
7002 7009 7028	<u>Neomysis americana</u> Oxyurostylis smithi Edotea triloba	<b>1</b>	3	5 1	5 1 1	5	7	7 3	7	7	7 1	7 1	5 1		5	7	5 1	5 1	5	3	3
7029 7037	<u>Erichsonella filiformis</u> Ampelisca verrilli	5	3	5	3	1	4	1	. 1	1 5	1 3	3	3	1	1	1	1	3	1		3
7048 7049	<u>Cerapus tubularis</u> Corophium acherusicum							5		1 5	1	1			1	1					
7053 7054	<u>Corophium tuberculatum</u> Erichthonius brasiliensis		1					5	]	5 1	5 1	1	•	1.		1				• •	
7080 7082	<u>Neohaustorius</u> biarticulatus <u>Microprotopus</u> raneyi				_	1	1	5	5				_				10 - ¹		· ·		
7091	<u>Synchelidium americanum</u> <u>Trichophoxus epistomus</u>	1	~		1		3	3	1	-		1	1		1		1	3	1	2	1
7115	<u>Pagarus</u> <u>longicarpus</u>	l	3 1	. 1		1		3	1	1	3	1			3	1	1		1.		
7119	<u>Cancer irroratus</u>									l		. <b>I</b>				1					
7137	<u>Pinnixa</u> sp.		1	<b>1</b>		1	1	2	1	]	7	-4				]	,	à		1	
8002 8003	Alcyonidium verrilli		3	1	•	•		3	I	3	1	1		٦	3	1 -				1	. · ·
8009 8014 7130	Conopeum truitti				1						1			l T							

# Table AVII-5

Benthic invertebrates in grab samples Station 5

	Species	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
3014	Nemertea sp. 2	2 1	2	, J	2		. 1	1	2		4,						• •			
4116	<u>Scolelepis</u>	~ 1	2	J			;	1 	1											
1061	squamata 1		· .	•				1												
4001	carnea	1					-													
4025	Glycera			_		•						. •		÷	•					
4064	americana			1	1															
4004	fragilis			. 1		÷.											·			
4063	Scoloplos								· · .											
4105	<u>acutus</u> Sthenelais																			
	limicola									7								÷		
4117	Spio setosa												<u>1</u>			1		*		
4010	filiformis	•						· .					1							
4140	Cirratulidae sp.			•				•			• •			2			1		_	
4052	Nephtys incisa Tolling agilis 46	: 30	30	. 25	25	65	12	54	15	60	55	17	. 20	52	57	27	. 12	20	10	26
5080	Ensis directus 4	, <u>39</u>   1	3	5	2	5	43	2	45		4	.8	1	6	. 4	1	13	2	2	20
5048	Yoldia limatula 1		2		2		. 2	]				1							3	
5047	NUCUIA provima 926	1.993	991	437	445	2683	1572	1722	1689	2602	4713	1294	7581	5941	6907	11937	14233	2272	322	2681
5027	Nassarius		101	- <b>+</b> 01	110	2000	1012	1166	1005	2002	1715	1694	7501	5541	0507	11557	14200	<i>L_ L_ / L_</i>	066	2004
5000	trivittatus 1				1.					· .					•					
5082	lateralis	1		ר	. 7		2		]			۲.				1				
5040	Turbonilla			•.	,			· · · ·								•				
	interrupta				•				1											

	Species	]	2	3	4	5	6	.7	8	9	10	11	12	13	14	15	16	17	18	19	20
501	l <u>Crepidula</u> plan	a										•		·	32			· · · ·			
501	2 <u>Crepidula</u> fornicata												• •		1						
505	B Mytilus edulis	0							-		•				5	0					
714	Pinnixa sp. Pagurus	2						1	1		2					2					
702	<u>longicarpus</u>		2	•		2									1	1					
703.	verrilli			1			•														
7009	Oxyurostylis smithi				1	1	. · ·														
700	Squilla empusa	-			1		· .			•											
711	spinosa	-			:	1.				2	1					3					
714	2 Mysid sp. B Edotea triloba										1		1	1	· ·			1000 1000 1000		.1	
709	3 Trichophoxus												•							•	
705	<u>epistomus</u> 3 Corophium								•				1							• •	
706	tuberculatum 5 Gammarus	•								•					2						
700	mucronatus			· ·					•				· · · .		1.				•		
700	2 <u>Neomysis</u> americana		<b>x</b> -														1			•	
712	1 <u>Cancer</u>			*													1				
713	8 Libinia		•						•							•	•	•			
801	<u>emarginata</u> 2 Membranipora t	enuis	• •	X									•				1				
801	8 Electra monosta	achys	-	Х	•	v	. •						1. A.							•	
800	9 Alcyonidium sp	·				^		х				•		•					•		
621		ж ^а	· ·		•	•								~					•		

# Table AVII- 6

Benthic invertebrates in dredge samples Station 5

•	Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2007	Hydractinia echinata		2		3				3	3				1							
4010 4024	Pherusa affinis					1							:				1		ł		
4025	Glycera americana	•					· .											٦			
4027	Glycera dibranchiata							1										•			
4028	Glycinde solitaria							•			٦.				,						
4052	Nephtys incisa	3		1	1.		3	3	2	· 3	i	1		1	1	· . ]	3	\$	3		1
4055	Nereis (Neanthes) succinea	υ.		•			0	1	-	U.	•	•		•	•	•	Ĩ				
4064	Haploscoloplos fragilis						3	J											1		
4065	Haploscoloplos robustus			,		1	-														
4091	Lepidonotus squamatus				1					-											
4092	Lepidonotus sublevis				1	]															
4093	Sabellaria vulgaris		]						. 1												
4107	Paraprionospio pinnata					1															
4110	Polydora ligni		2																		
4117	Spio setosa				1	3			1							· ·				1	
4137	Polycirrus eximius	4	7																		
5012	Crepidula fornicata				- 7															· -	
5014	Crepidula plana	1	5	0	5.	-3		4	3	5				1	3	]					
5025	Busycon carica		]							1	1										
5027	<u>Nassarius</u> <u>trivittatus</u>	· ].	2			1				]	]										
5047	<u>Nucula proxima</u>	7	7	7	. 7	7	7	7.	7	. 7	. 7	7	5	7	. 7	7	7	- 7	7	7	7
5048	<u>Yoldia limatula</u>	1	6	1			1		]	3	1	1			1	3	2	1		3	
5053	<u>Mytilus edulis</u>	1	3	·	3.	1	1	<u>.</u>	1	5	_			-	1	_	·	_			
5070	Tellina agilis	3	5	5	5	5	5	5	5,	5	5	4		5	5	5	5	(1)	5	. 5	5
5079	<u>Siliqua costata</u>	_			1	· · ·		_		_		_	· · ·		_	_	-				_
5080	<u>Ensis directus</u>	5	2		1	3	3	3	3	ł		1	1	3	1	1	3	3	3		1
5082	Mulinia lateralis	4	4			1		1	I	3		1	3			3	2		3	3	
6009	Balanus (Balanus) improvisus		3.																		

	Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
7002	Neomysis americana	4	6	3	5	_	3	5	3	<b>7</b>	6	3		5	5	3	3	1	]	3	1	
7037	Ampelisca verrilli					1	_												<b>i</b> .			
7055	Unciola irrorata						1										• 					
7056	Unciola serrata				1	1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997		1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			•								· .			
7080	Neohaustorius biarticulatus			3											^							
7082	Microprotopus raneyi													~	4.	-	-			7		
7111	Crangon septemspinosa	5	5	5	5	5	5	7	5	7	7	5	1	3	- 5	l					. <b>I</b>	
7115	Pagurus longicarpus			1	3		1.		· ] .	1	1			. 1			•	l		1		
7116	Pagurus pollicaris	1	- 4		1	1.			1	1		•			1					1	· · ·	
7121	Cancer irroratus	1	]	1	1			1				1			1							
7138	Libinia emarginata							1						_						•		
8002	Alcyonidium polyoum		3		7	3		3	1	3				1	4					3		
8014	Conopeum tenuissimum		1																			
8018	Electra hastingsae		3																			

#### Table AVII-7

Benthic invertebrates in grab samples Station 9

-	Species		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
3006	Zygeupolia rubens					3		1				2									
3008	Cerebratulus lacteus				2									3							
3014	Nemertea sp.				18					2	3		12				4			1	
3016	Flatworm A															1					
4002	Asabellides oculatus		57	9	15	48	30	18	22	24	34	26	30	15	36	6	17	48	18	17	16
4006	Driloneris longa														.*					1	
4009	<u>Capitella capitata</u>		3								•								·		
4010	Heteromastus filiformis		6	ł	27	15	30	6	9	12	20	14	27	21	24	3	12	11	15	8	2
4011	<u>Mediomastus</u> <u>ambiseta</u>		12	4	3	21	12	36	62	10	109	88	114	16	36	9	150	78	53	29	2
4016	<u>Chaetozone</u> <u>setosa</u>			1			3		1		3		3 .				2				
4018	<u>Tharyx</u> sp. 2		3								_								_		_
4023	<u>Marphysa sanguinea</u>		6	]	6	9	9	12	10	7	2	2	3	9	12	15	1.	6	6		3
4024	<u>Pherusa affinis</u>														, c		. 1	_			
4025	<u>Glycera</u> americana			. ]		3	3	3	- 1	·	1							1			
4026	<u>Glycera</u> <u>capitata</u>			I	~	~		•		-	3.0		~ -		10	7.0	~	<u>.</u>	•	•	
4028	<u>Glycinde</u> solitaria			2	9	27		3	12	. 5	18	20	27	3	12	18	24	24	8	9	8
4044	<u>Clymenella</u> spp.		~	-			10	0.7	.'	10			7 5	~	00	7.0	7 -				
4055	Nereis succinea		9		.9		12	21	1	10	12	· /	15	3	23	16.	15	10	. 9		2
4065	Haploscolopios robustus			2						· 7							л		c		
4079	Eteone longa				10		<u>^</u>	р 70	-			· –		10	50	40	4	יי ד	0	,	
4080	Eumida sanguinea				12		9	12	/	0	8 I	5	15	10	52	49	5		14	1	
4088	Harmothoe extenuata		٦			3	3		0	1	1	٦	0 2			3.	n				٦
4084	Phyllodoce arenae		1		C	3			2	- 1	2	1.	3	S			- 3		c	. 1	1
4004	Hapioscolopios tragilis		C	٦	3 c	2	c		2	G				3	0	0	2	12	. O		. 1
4091	Lepidonotus sublavis		0	I	0	3	O .	15	3	0	- 9			9	9	9	2	12	. 9		
4092	<u>Sebelleria</u> wulgeria		c	<b>.</b>	c		2	10		24	C 10		10	זב	10	21	E.	2	6		
4093	Doctinomia douldii		ט זב	11	0	c	3	21 2	1	24	10	۲	12	I D	12	21	- C - C	2	6		ŗ
4070	Feculiaria goulaii	•	10.			3	2	3	- 1 - 2			ן ר		· .	12		3	. <u>C</u>	U		1
40//	<u>cleune</u> neceropoda		3	2			3		· 3		1.1	- <b>I</b>			3			.4			

Table AVII- 7 (cont.)

	Species		1	2	3	4	5	6	<u> </u>	8	9	10	11	12	13	14	15	16	17	18	19
4101 4105	Hydroides dianthus Sthenelais boa		171 6	5	15 3	9 3	144 3	2	24 2	36 1	22 2		57 6	62	204 3	303	10 1	17	81 3		
4109	Polydora ligni			3	3			2			1							1		1	1
4119	<u>Streblospio</u> benedicti		6	24	6		6	21	34	6	28	33	24	5	16	6	59	35	38	20	8
4134 4131	Amphitrite ornata Syllis gracilis					3	3			3	1		3					÷.			
4137 4140	Polycirrus eximius		24		54	15	27	24	16	10	32	9	30	6	27	9	6	5	15	4	
4401	Oligochaeta B			<b>.</b>			3		16	•		4		3	. *	. *		2			
4400 5008	Triphora nigrocincta			noti	1	9			4										. 1		
5013 5014	<u>Crepidula convexa</u> Crepidula plana				5			,		1 3	1		1	1				3	1		
5022	Anachis avara Mitrolla lunata		3		5		7	2	1	6	3		5	2		1				· · ·	
5025	Busycon canaliculatum				5		1	<u>د</u> :	1		<b>L.</b>	-	. 1								
5027 5047	Nassarius trivittatus Nucula proxima		17	16	28	13	12	8	55	31	16	19	22	14	12	11	9	38	10	23	2
5053 5056	<u>Mytilus edulis</u> Crassostrea virginica		13		5	1	10	20	4	51	4		38		6	22		12	. 3	1	1
5066	Mercenaria mercenaria			1	5	1	1	6	2	14	4	1	2	5	3	1	14	9	2	2	]
5009	<u>Tellina agilis</u>	•	7	7	2	4	3	12	3	1	2	2	1	1	2	2	9	4	4	-	3
5080 5082	<u>Ensis directus</u> Mulinia lateralis				1			1						2			1	3			
5091 5096	Lyonsia hyalina Odostomia dianthophilia		1	1	3	5		11		3		6		3	1		.8		2	3	-1
6001	Limulus polyphemus Parasterone polley	• .					1					1		Ĭ							
0012							1														
Table AVII-7 (cont.)

	Species	- 1	2	3	4	5	6	- 7	8	9	10	11	12	13	14	15	16	17	18	19
7002	Neomysis americana	· .	1																	
7005	<u>Bowmaniella</u> <u>dissimilis</u>											•.				1				
7035	<u>Ampelisca</u> <u>abdita</u>			1			3		]	1					1	1				3
7037	<u>Ampelisca</u> <u>verrilli</u>				3														2	
7042	<u>Lembos smithi</u>	2		2				1	ווו	5		3	9	22	13	4			1	
7043	Microdeutopus gryllotalpa					17	· ]	1											2	
704 <b>7</b>	<u>Batea catharinensis</u>					1														
7053	<u>Corophium tuberculatum</u>						-5						1	1	1			4		
7054	Erichthonius brasiliensis	2			4	3	2	2	9	4		5	1	24	13	1	16	9		
7056	<u>Unciola serrata</u>	34	151	12	12	48	409	37	118	74	6	47	86	94	185	37	127	7	8	
7058	Corophium simile	11	71	2	1	28	73	5	208	40	1	57	47	83	212	42	51	7		
7068	Elasmopus laevis				1	3	2	1	3			2		4	5	1	1			
7070	<u>Melita nitida</u>		9	1		4	2	6	7	1		4		5	3		2			
7092	<u>Paraphoxus spinosus</u>				1	6	2	1	9	2		1		11	2	1	3			
7106	<u>Paracaprella tenuis</u>					2														
7111	<u>Crangon</u> <u>septemspinosa</u>																	*	]	
7114	<u>Callianassa</u> <u>atlantica</u>			1						_						_			_	
7115	Pagarus longicarpus	. · ·	_	3				1		2	1			1	±	3		2	- 1	
/124	<u>Neopanope texana sayi</u>	. 7.		2	]	25	18	11	8	2	•	. 4	13	3	5	8	7	9	2	
7145	Heteromysis formosa		_					••	4	1.		2		1						
7146	Xanthid sp.	35	5		20	57	41	8	100	34	17	34	51	76	90	19	37	23	9	
7147	<u>Pinnixa</u> sp.		1						2			4						. · ·		
7148	<u>Callianassa</u> sp. cf. <u>C.</u>								· · ·			· ·					_	ъ. ¹		
	atlantica				_		. • .										1			
7149	<u>Euceramus praelongus</u>				]															
7177	<u>Corophium bonelli</u>												• *				23			
9007	<u>Thyone briareus</u>			1		1				1				1	1					
	<u>Schizoporella</u> errata	Х			Х			Х	×X	Χ.	Х		Х				Х			
	Alcyonidium polyoum	X		÷	. X	X	Х		Х	. X ·		х	х				X	X		
	<u>Ampelisca</u> verrilli			· · ·	х				Х						1.1					
	<u>Membranipora</u> tenuis		Х									х	X		Х					Х

di de

Table AVII-7 (cont.)

Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Conopeum truitti		х				-													
licrociona prolifera							X	X		X	х	х	X				X	X	
Conopeum tenuissimum							х		х			х		Х		X		х	Х -
Bowerbankia gracilis								х											
riticella elongata														Х					
Porifera sp. A														х	~	X			
lectra monostachys			÷.													х			
lalichondria bowerbanki																· •	X		
					-			н 1								•			

Benthic invertebrates in dredge samples Station 9

÷ ''	Species	]	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1003 1006	<u>Microciona prolifera</u> <u>Cliona celata</u>	6	4	5	5 5	6 5	7	1 7	1 5	1	3	3 3	3 5	3 5	4 5	5	5	5 7	6	7 7	7.
1008	cf. <u>Halichondria</u> bowerbanki	_															5	5			
2002	<u>Tubularia crocea</u>	-									,								]		
3006	Zygeupolia rubens	1		-		-		_			_·	1			-				1		-
3014	Nemertea sp.			1		1		ł		<u> </u>	1	_			l						Į
3016	Flatworm A	-	. ]	1		I					I	1	1					· 3·	. 1		
4010	Heteromastus filitormis			1	~	· •	-	-		~		<b>F</b>	5			-		1	<b>-</b>	Ľ,	~
4011	Mediomastus ampiseta	5	3	5	5		1	1	3	6	0	5	5	0	4	5	5	5	5	5	5
4019	Inaryx sp. 1					చ															
4021	Schistomeringos rudolphi	<b>r</b>	r	مام ا	7	 	<b>.</b>			~	г	0	1	·	٦	2	0	ο	0	0	
4023	Marphysa sanguinea	5	ь	5.	1	5	3	0	5	U	1	0	4	3.	1	5	.0	3	U	U	1
4025	Giycera americana			,													చ			٦	
4028	Algorita Solitaria	E		7	E	. 7	<b>C</b>	E	7	7	E	r	-7.	6	Ē	7	-7	·. 7.	~7	1	7
4000	Hanlosselen for silis	5	/	/	5		D	Э	/	. /	. <b>ว</b>	Э		O	· 5	/	1	1	/	/ ר	1
4004	Ftoopo botopios fragilis	· 2		T	7	0	0	7	0	0	. 0	٦	0	Ω	7	7				<b>I</b> .	
4077	Europoda	5	7	7	. 1	7		7	0	-0-7	U 5	1	07	7	. 7	1	7	7	7	7	7
4000	Lumathaa autonuata	5 7	1	/ E	ງ 	./	/ E .	2	- / 	· _	. ) . E	./ .	/ E	/ E	/ c	. / 	/. E···	່ / ວ່	/ E	/ E	/ E
4000	Lopidamotnia common calic	/		Э	э	5 .	5	3	Э	Э.	5	ວ 1	5	5	S	3	Э	<u>່</u> ວ	.C	С	5
4090	Lepidametria commensaris	2	2	0	2	Δ	2	7	0	2	. 7	5	2	5	. 1	F	Л	.2	2	Б.	2
4091	Lepidonotus sublevis	1	5	0	3	0	3		.U.	с С	ן 2	5	5	. 0	2		4	נ ו	1	- 0	0
4092	Sabollania vulganis	5	7	7	7	7	5	7	7	7	6	7	7	7	7	7	7	7	7	7	5
4000 A101	Hydroides dianthus	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	. 7	7	7
4101	Sthenelais hoa	2		7	í	7	n n	7	í	,	Ó	'n	1	· .	· 1	í	-0	1	ń	1	1
4105	Spio setosa	£ .		•			U	. *	U	1	. 0	.1		υ.	. 1	· · ·	U	•		,	i
4119	Streblospio benedicti	٦	2	2	ר ר	7	1		٦	'n	0 [°]	ו	3	1	'n	3	5	1	3	5	Δ
4131	Syllis gracilis	i	6	]	•.	•	1	•	į	•	Ū	•			U	5	5	ı	1	ĩ	7
4137	Polycirrus eximius	i	1	0	0	1								1	0	0	1	1	Ó	1	1

Table AVII-8 (cont.)

	Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
4002	Asabellides oculatus	3	0	1	Ö	3	1	1	0	3	0	3	2	0	2	3	3	1	1.	3	3
4400	Oligochaeta A				1							5	0	0	1						
4401	Oligochaeta B	3	. 1	- 4	0	2	3	1	1	0	0	5	7	0	5	7.	5	Ĩ	5	- 7	7
5013	Crepidula convexa							1	0	1	0	0	0	0	0	1	1	0	0	0	0
5014	Crepidula plana	7	5	3	4	3	0	5	1	3	0	3	0	. 3	1	1	1	5	0	0	1
5020	<u>Urosalpinx cinerea</u>						·											1			
5022	<u>Anachis avara</u>	1	0	0	0	1	0	1					÷ .				1	0	1	1	0
5023	<u>Mitrella lunata</u>	3	. 1	1	1	0	1	1	0	1	3	.1	. 0	1	1	- ]	1	1 -	1	0	0
5026	<u>Busycon</u> canaliculatum					••	÷.				1									1	
5027	<u>Nassarius</u> obsoletus													1							
5037	<u>Sayella fusca</u>														v.						
5040	<u>Turbonilla</u> interrupta		-	. :						_	-	].						_	_	-	_
5047	Nucula proxima	3	0	]	0	0	1	1	0	3	0	1	1	1	0	3	1	0	1.	- 0	3
5053	<u>Mytilus edulis</u>	-7	5	- 6	7 -	7	7	7 -	7	7.	7	7	7	- 7	7	7	7	7	7	7	7
5050	Anadara ovalis					-				•	~	~		•	-		1	•	~	•	
5069	Petricola pholadiformis					1	0	1	Ũ	0	0	6	0	0 7		2	1	0	0	0	
5070	lellina agilis	-				I	0	0	-	3	Ŭ	0	0	1	U	1.,	I	0	1	0	.0
5082	Mulinia lateralis	1					, ·				1	1									
5091	Lyonsia nyalina	-7	F	-7	2	۰ _۳	r	~		-7	-7	~	-7	0	r~	1			-7	-7	-7
5096	Udostomia dianthophilia	/	5	1	3	5	5	5	/	1	1	U	1	U	5	1	/	/	1	· /	·· /
5097	Nudibranchia sp.	. 1	n																		
5098	Acteocina canaliculata		I						7	٦	0	0	٦	0	۰. ۲	7	0	0	'n	0	0
2002	Hydrobia coccent							٦	1	1.	U 1	0	0	0	0	1	U	U I	1	0	0
7002	Americana Americana							ł	1	U	i	U	0	U	U	0	1	I.	U T	0	. U
7035	Ampeiisca addita	٦	Ω	0	Δ	٦	0	0	0	٦	. 1	ı	0	Ο	0	Ο	Ω	0	0	1	0
7037	Amperisca verritti	2	บ เร	5	5	1	ט ז'י	2	U E	1. う.	5	1	5	5	5	5	5	5	7	5	5
7042	<u>Conceptium tuboreulatum</u>	5	5	0	5	1	I	3	2 1	0	0	- 5 - 1	5	5	5	5	. 5	5	/	3	5
7053	Enjohthanius brasilionsis	ว	Б	٦	5	5	5	F	Г Б	2	5	ו ה	Ω	Ę	2	Б	5	2	Б	5	Ω
7054	Erichenonius brasiliensis	. 0	7	7	5	5 7	5	5	5	3	5	5 7	.7	7	. J	5	7	7	- 5	- 3 - 7	7
7050	Componisium crimile	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
7058	Corophium Simile	2	2	2	/ E	7	/ E	/ E	5	2	/ 	/ ⊑	/ 1	1	/ 5	, 1	- / E	/ 5	. 2	/ 5	/
7068	ETASHOPUS TAEVIS	्उ	3	ാ	Э	, D	С	Э	Э	3	5	Э	I	U	5	1	5	Э	3	Э	U

629

Table AVII-8 (cont.)

	Species	÷	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
7070	Melita nitida		3	0	0	0	1	1	0	1	. 0	0	0	1								
7086	Lysianopsis alba													3					А. С. А.			
7092	Paraphoxus spinosus		6	5	7	7	5	5	1	5	5	5	5	5	0	.5	5	5	5	5	3	0
7097	Parametopella cypris														1							
7105	Caprella equilibra																1	1	]	1	- 0	0
7111	Crangon septemspinosa		0	0	1	1	0	0	1.0	0	1	1	0	0	0	1	7	0	1	0	1	0
7115	Pagurus longicarpus		1.	0	0	0	0	0	0	7	]	0	1	0	0	0	1	0	0	1	0	1
7124	Neopanope texana sayi		1	0	0	0	0	0	0	0	1	0	1	0	0	3	0	0	0	0	0	0
7125	Panopeus herbsti											•			1							
7131	Sesarma cinereum										•											1
7137	Libinia dubia										1				•							
7146	Xanthid sp.		5	5	5	5	5	3 -	4	4	5	5	5	5	7	5	4	5	5	5	7	5
7150	Ampithoidae sp.									1		· .										
7177	Corophium bonelli		0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7153	Ampelisca macrocephala		0	0	0	0	0	0	0	· 0.	0	0	0	0	0	0	0	0	0	1	1	Ò
8002	Alcyonidium polyoum		5	0	5	3	1	1	1	0	3	0	3	0	3	3	0	1.	0	5	7	1
8003	Alcyonidium verrilli		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Q	1	0	0
8004	Alcyonidium mammillatum		0	0	0	0	0	0	0	1	0	0	0	0	2	1	0	0	0	0	0	0
8008	Bowerbankia gracilis	•	0	0	0	0	0	0	0	0	1	- 0	0	0	0	0	0	0	0	0	0	0
8009	Triticella elongata		0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	1	0	0	0	0
8012	Membranipora tenuis		0	0	1	0	0	0	0	0	.]	0	. O.	- : 0	0	0	0	1	0	0	0	0
8014	Conopeum tenuissimum		0	5	5	7	5	5	1	0	3	3	3	5	3	3	3	3	3	0	0	1
8018	Electra hastingsae		0	0	0	0	].	0	0	- 0	0	. 0	0	1	0	0	0	0	0	0	0	0
8022	Cryptosula pallasiana		0	5	0	0	0	0	0	0	·* 0	0	- 0	0	0	0	0	0	0	0	0	0
8025	Microporella ciliata		0	0	0	0	0	0	0	0	0	1	0	0	. 0	0	0	0	0	0	0	0
8023	Schizoporella errata	• •	0	0	0	1	0	3	0	0	0	5	0	0	0	- 0	0	0	0	0	0	0
9008	Starfish (juv.)		1	0	0	0	σ	0	0	0	] -	0	0	0	0	0	0	0	0	0	0	0
4110	Polydora ligni		3	1	5	3	5	5	3	· 3	1	5	5	2	5	4	5	3	5	5	3	4
4084	Phyllodoce arenae		0	0	0	0	. 1	0	0	0	0	0	0	Q	0	0	0	0	0	0	1	0
7082	Microprotopus ranevi		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0

	50% mm	φ50	Mz	σI	SKI	ĸ _G	% Gravel	% Sand	% Silt	% Clay	% Volatiles
3-1	0.2896	1.79¢	1.23¢	2 <b>.3</b> 8¢	236	1.23	18.3	71.5	8.5	1.8	3.81
3-2	1.8269	-0.87¢	-0.39¢	3.21¢	+.334	0.74	49.0	41.2	6.5	3.3	0.66
3-3	0.2772	1.85¢	<b>1.73</b> ¢	1.19¢	108	1.31	0.9	94.3	2.0	2.8	1.14
3-4	0.3507	1.51φ	<b>0.91</b> ¢	2.28¢	286	1.09	20.5	73.3	4.8	1.4	1.06
3- 5	0.2256	2.15¢	$1.40\phi$	2.07ø	164	1.20	16.6	73.7	8.4	1.3	0.92
3- 6	0.1968	2.35¢	<b>1.</b> 84¢	3.21¢	135	1.82	16.9	65.0	12.9	5.2	1.24
3-7	0.2615	1.90¢	1.35φ	3.26¢	208	0.86	24.1	56.2	17.1	2.6	2.23
3-8	0.1775	2.49¢	<b>2.</b> 80ø	2.75ø	+.140	1.28	8.1	64.8	22.5	4.6	1.21
3- 9	0.2548	1.97φ	1.13¢	3.10¢	218	1.17	21.3	62.8	12.7	3.2	1.15
3-10	0.3393	$1.56\phi$	0.92φ	$2.95\phi$	118	1.24	24.2	65.4	6.3	4.1	1.32
3-11	0.4536	1.14φ	0.79¢	2.02¢	235	1.09	18.1	77.1	2.7	2.1	0.75
3-12	0.3203	1.64¢	1.12¢	2.04φ	398	1.26	16.1	79.3	2.4	2.2	0.95
3-13	0.2131	2.23¢	2.20ø	3.06¢	+.095	2.02	11.7	69.7	9.6	9.0	1.28
3-14	0.2067	2.27¢	1.93¢	2.76¢	165	1.29	14.7	60.9	21.0	3.4	1.05
3-15	0.3329	$1.59\phi$	0.73¢	2.49¢	358	0.73	29.0	65.0	3.3	2.7	1.17
3-16	0.3102	1.69 $_{\phi}$	1.15φ	2.10¢	320	1.22	17.0	77.3	2.6	3.1	0.31
3-17	0.3520	1.51φ	<b>1.</b> 48ø	1.94φ	033	0.99	9.5	78.2	9.5	2.8	2.16
3-18	0.2860	<b>1.</b> 81¢	<b>1.</b> 62ø	2.13¢	126	1.29	10.0	76.9	11.6	1.5	1.40
3-19	0.2426	2.04¢	$1.30_{\phi}$	$3.55\phi$	198	0.66	29.8	49.7	16.3	4.2	2.78
3-20	0.2961	$1.76\phi$	$0.82\phi$	2.93¢	234	1.19	23.4	66.4	6.9	3.3	0.97

	50%	mm	φ50	Mz	σI	SKI	K _G	% Gravel	% Sand	% Silt	% Clay	% Volatiles
4- ]	.09	22	3.44¢	$3.44\phi$	0.38φ	+.078	1.38		90.1	8.0	1.9	0.87
4-2	.09	14	3.45 ₀	3.45¢	0.39¢	+.101	1.41		88.5	9.8	1.7	0.74
4-3	.09	42	3.410	3.420	0.39φ	+.130	1.40		90.5	8.0	1.5	1.67
4-4	.09	15	3.45 ₀	$3.49_{\phi}$	0.41¢	+.180	1.48		86.9	11.6	1.5	0.91
4-5	.09	16	3.45φ	$3.53\phi$	$0.44\phi$	+.300	1.45		84.6	13.4	2.0	0.53
4-6	.08	89	3.49¢	3.51¢	$1.92\phi$	+.489	10.35		86.3	7.2	6.5	0.93
4-7	.09	03	3.47 ₀	$3.54\phi$	0.88φ	+.493	3.83		83.8	11.9	4.3	1.64
4- 8	.08	93	3.49¢	$3.53\phi$	0.71φ	+.342	2.99		84.7	12.3	3.0	1.09
4-9	. 08	94	3.48 ₀	3.47¢	0.440	+.004	1.53		87.6	10.3	2.1	0.80
4-10	.09	20	3.44 ₀	$3.50\phi$	$0.55\phi$	+.342	1.89		85.4	12.0	2.6	0.94
4-11	.09	08	3.460	$3.45\phi$	0.380	+.072	1.29		89.4	9.1	1.5	1.47
4-12	.08	97	3.48 ₀	$3.50^{+}_{\phi}$	$0.50_{\phi}$	+.269	1.93		87.3	9.7	3.0	1.30
4-13	. 09	26	3.43 ₀	3.440	0.37¢	+.132	1.33	,	89.6	8.9	1.5	0.74
4-14	.09	18	3.45 ₀	$3.44\phi$	0.38¢	+.025	1.40		90.7	7.8	1.5	0.84
4-15	.09	09	3.466	$3.53_{\Phi}$	0.810	+.450	3.44		84.3	12.2	3.5	1.71
4-16	.08	88	3.49 ₀	3.510	0.460	+.160	1.68		87.1	9.7	3.2	0.72
4-17	.08	97	3.48 ₀	$3.50_{\phi}$	0.820	+.391	3.95		87.8	8.2	4.0	0.42
4-18		41	3.41¢	3.420	0.49φ	+.271	2.03		90.4	6.4	3.2	0.90
4-19	.08	84	$3.50_{\phi}$	3.640	0.97φ	+.545	3.56		80.1	15.6	4.3	1.65
4-20	.09	27	3.43ģ	3.44ģ	0.38¢	+.150	1.46		89.7	8.4	1.9	0.99

 $\delta q$ 

	50% mm	φ50	Mz	σI	sk _i	KG	% Gravel	% Sand	% Silt	% Clay	% Volatiles
)- 1	.0607	4.04¢	4.49φ	1.860	+.557	2.03		13.1	76.5	10.4	2.85
1-2	.0936	$3.42\phi$	$3.55\phi$	1.320	+.502	3.63		78.6	15.1	6.3	1.88
- 3				NO	S A	MPL	Ε				
)- 4	.0782	3.68	<b>3.94</b> ⁰	1.410	+.564	2.44		62.7	30.1	7.2	1.89
)- 5	.0695	3.850	4.17.	$1.59_{0}$	+.588	2.46		54.3	36.8	8.9	1.94
)- 6	.0595	4.07	5.030	2.460	+.683	1.90		47.5	37.5	15.0	2.85
)- 7	.0769	3.700	5.030	$2.47_{0}$	+.784	2.17		61.4	21.9	16.7	2.70
)- 8	.0537	4.220	5.350	2.470	+.705	1.51		41.1	41.4	17.5	2.64
)- 9	.0562	4.150	5.02¢	$2.39\phi$	+.643	1.86		44.7	40.7	14.6	2.90
9-10	.0695	3.850	$4.55\phi$	2.030	+.715	2.20		54.5	33.6	11.9	1.71
)-11	.0745	$3.75_{\phi}$	$4.18_{0}$	$1.56_{\phi}$	+.692	2.56		58.8	32.3	8.9	2.27
)-12	.0746	$3.74_{0}$	4.420	$1.59_{\oplus}$	+.852	2.22		56.1	33.3	10.6	2.74
)-13	.0680	3.880	<b>4.</b> 50∲	1.816	+.689	2.07		53.4	35.5	11.1	3.40
)-14	.0763	3.710	4.13¢	1.430	+.710	2.74	,	61.2	30.9	7.9	3.20
)-15	.0508	4.30¢	5.30¢	$2.40\phi$	+.663	1.39		40.3	42.7	17.0	3.77
9-16	.0757	3.720	4.05¢	$1.46_{\phi}$	+.658	2.74		59.9	31.9	8.2	1.65
)-17	.0708	3.82¢	4.16¢	$1.58\phi$	+.568	2.69		55.0	37.0	8.0	2.89
)-18	.0595	4.07φ	4.52¢	$1.52\phi$	+.580	1.75		46.9	45.0	8.1	2.47
)-19	.0753	3.73¢	4.00¢	$1.14_{\phi}$	+.590	2.08		58.1	37.8	4.1	2.10
-20	.0731	3.77¢	4.23¢	$1.64\phi$	+.694	2.81		56.8	32.4	10.8	2.09

	50% mm	φ50	Mz	σI	SKI	К _G	% Gravel	% Sand	% Silt	% Clay	% Volatiles
5-1	.0861	3.540	3.830	1.600	+.630	3.27		73.0	18.1	8.9	2.11
5-2	.0896	3.480	3.600	1.330	+.520	3.68		77.7	16.1	6.2	2.06
5-3	.0842	3.57 a	3.910	1.476	+.614	2.53		69.6	23.0	7.4	1.67
5-4	0795	3.65	3.84	1.32	+.574	2.86		64.8	27.7	7.5	1.68
5- 5	.0835	3.58%	3.77%	0.786	+.380	1,21		71.4	25.7	2.9.	1.95
5- 6	.0811	3.624	4.564	2.22	+ 774	2.38		63.1	24.1	12.8	2.23
5-7	.0842	3.57a	3.914	1.52	+.628	2,65		68.2	23.9	7.9	1.53
5-8	.0930	3.436	3.53¢	0.97	+.490	3.49		81.6	13.9	4.5	0.96
5-9	.0865	3.530	3.67%	0.97	+.461	1,93		73.7	22.4	3.9	2,30
5-10	.0907	3.46	3.580	1.43	+.547	4.57		79.9	12.9	7.2	1.20
5-11	.0831	3.590	4.30m	1.77a	+.729	1.65		65.5	26.4	8.1	1.66
5-12	.0915	3.450	3.590	1.21	+.552	3.52		78 0	16.1	5.9	1.10
5-13	0849	3.564	4.120	1.87¢	+.705	2.84		69.2	19.8	11.0	2.04
5-14	1008	3.314	3.324	0.486	+ 168	1 40		90.6	6.9	2.5	1 78
5-15	0959	3 384	3 454	1 124	+ 463	3 59		83 3	113	54	1 43
5-16	0912	3 454	3 584	1 01 4	+ 476	2.67		79.2	16.7	41	1.48
5 10	0863	$353_{\pm}$	3 774	0.95	+ 486	1 63		73 7	22 7	3 6	2 05
5-12	0751	3 734	Δ 13 ₄	$1.30 \pm$	+ 608	1 23		56 7	38.4	49	2.12
5-19	0833	3.59 ₄		$1.00\phi$	+ 565	2 74		72 7	22 1	52	1.70
5-20	. 0994	3.33φ	3.40m	0.74 _Φ	+.409	2,15		84.8	13.1	2.1	1.60