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ABSTRACT

Imaging in the millimeter wave (mmW) frequency range is being explored for

applications where visible or infrared (IR) imaging fails, such as through atmospheric

obscurants. However, mmW imaging is still in its infancy and imager systems are

still bulky, expensive, and fragile, so experiments on imaging in real-world scenarios

are difficult or impossible to perform. Therefore, a simulation system capable of

predicting mmW phenomenology would be valuable in determining the requirements

(e.g. resolution or noise floor) of an imaging system for a particular scenario and aid in

the design of such an imager.

Producing simulation software for this purpose is the objective of the work

described in this thesis. The 3D software package Blender was modified to simulate the

images produced by a passive mmW imager, based on a Geometrical Optics approach.

Simulated imagery was validated against experimental data and the software was applied

to novel imaging scenarios. Additionally, a database of material properties for use in

the simulation was collected.

xi



Chapter 1

INTRODUCTION

In this chapter we introduce millimeter waves (mmWs), discuss some of the

motivation behind imaging in the mmW regime, and introduce the passive mmW

(pmmW) simulation software that is the subject of this thesis.

1.1 Millimeter Waves

Millimeter waves comprise the portion of the electromagnetic spectrum between

approximately 30 to 300GHz, with wavelengths between 10 and 1mm. Millimeter waves

are emitted by every object with a non-zero temperature; the power a perfectly emissive

black body with surface area dA radiates into a solid angle dΩ, across a bandwidth dν,

is given by Planck’s Law,

P =
2hν3

c2
1

ehν/kT − 1
dA dν dΩ ≈ 2kν2

c2
T dA dν dΩ (1.1)

where h = 6.626× 10−34 J s is Planck’s constant, c = 2.998× 108 ms−1 is the speed

of light, k = 1.318× 10−23 JK−1 is Boltzmann’s constant, and T is the absolute tem-

perature of the emitter in Kelvin. The approximation is due to taking the first two

terms of a Taylor series expansion for ehν/kT , and is accurate for objects at terrestrial

temperatures even to several hundred gigahertz. From this, a black body at room

temperature radiates approximately 800 nW of power, per square meter of surface

area, per steradian, per gigahertz bandwidth at 95GHz; by way of comparison, the

peak emission is 5mWm−2 sr−1 GHz−1 at a wavelength of 17�m, nearly four orders of

magnitude higher than the pmmW emission.

Both the low power and the low energy of the individual photons (400�eV at

95GHz) makes passive imaging in the mmW regime difficult; however, both detection
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Figure 1.1: Atmospheric absorption under several atmospheric conditions. STD is a
standard atmosphere with 7.5 gm−3 water vapor; humid is a standard atmosphere
with 15 gm−3 water vapor; rain corresponds with a rain rate of 4mmh−1; fog
corresponds with a dense fog with 100m visibility in the visible wavelengths [4].

and imaging has been demonstrated using microbolometers [1] or a heterodyne process,

through either up or downconversion [2, 3].

1.2 Motivation

Regardless of the challenges associated with the detection of mmW radiation,

millimeter waves have several properties that make them attractive for imaging. Mil-

limeter waves have relatively good propagation characteristics in atmosphere, as shown

in Figure 1.1 [4]; though there are several peaks due to water and oxygen absorption,

there are multiple frequency ranges where the waves propagate with essentially no

attenuation, particularly around 35, 77, 95, 140, and 220 GHz; this allows both passive

and active systems to be used at distances of several kilometers with attenuation

comparable to visible-wavelength systems. More importantly, however, mmWs retain

good propagation characteristics even in foggy or rainy weather, where the visibility in

other wavelength regimes degrades significantly.

Additionally, in passive outdoor imaging scenarios, the sky is a constant source

of illumination: the 3 K cosmic microwave background signal is largely unattenuated
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by the intervening atmosphere, leaving the sky a low-temperature target, regardless of

weather or time of day. Terrestrial objects, meanwhile, are relatively warm, leading to

high contrast within the scene.

Finally, mmW wavelengths are small enough to achieve reasonable resolution

without requiring an excessively large imager; while a man-portable imager might not

be feasible, a system with adequate performance could easily be mounted on a vehicle

platform.

Three applications of pmmW imaging come immediately to mind. First, objects

small enough to remain suspended in the atmosphere are also small enough that mmW

scattering is in the Rayleigh regime, where the factor of (d/λ)4 means that scattering

is effectively negligible, allowing imaging through fog, dust, or other atmospheric

obscurants. This phenomenology is demonstrated for fog and rain (as in Figure 1.1) and

similar results for suspended dust have been reported [5]. This has potential applications,

for example, in allowing aircraft to land safely in adverse weather conditions in the

absence of active ground-based systems, enabling search-and-rescue operations in low

visibility, or imaging in maritime fog. Second, due to their thickness and material

properties, most clothing items are effectively transparent to mmW radiation. This has

already been applied, with many airports deploying active mmW imaging systems to

scan travelers for concealed contraband, and similar systems employing passive imagers

are also being considered. Because most plastics are also transparent, such systems

can be used to scan optically opaque containers as well. Third, as compared to IR

imaging or radar, mmW imaging is a relatively new technology. While there are mature

techniques for camouflage in the visible, IR, or radar spectra, countermeasure techniques

in millimeter waves are still underdeveloped, and mmWs could be used to counteract

countermeasures optimized for other parts of the EM spectrum.

However, before resources are devoted to deploying mmW systems for these

applications, it would be advantageous to determine whether a mmW imager could

perform the required task at all, which motivates the creation of simulation software.

3



1.3 mmW Blender

Our simulation software is based on a modified version of the 3D modeling and

rendering software Blender [6]. Our motivation for using Blender as a base was threefold.

Though we could have written our own rendering engine from scratch, it would not

have been well-integrated with any scene creation tools; using Blender allows us to

provide a unified system where one can design, model, and simulate an mmW image,

all as part of the same workflow. This ties in with usability: there is a lower bound on

the ease-of-use of any sufficiently powerful software package, but the wide availability

of tutorials and community support for Blender eases the learning curve considerably.

Finally, there was programming time: modifying existing software enabled us to quickly

produce a functional mmW simulator, and the first version of mmW Blender was put

into use in 2010 after only a few months of development.

In the remainder of this section, we give an overview of Blender and define some

of the terminology we use later in this thesis.

Blender is an open-source 3D modeling, animation, and rendering software

package, written primarily in C, C++, and Python. It was originally developed as

a commercial product, but when the company producing it shut down in 2002, the

community surrounding it bought the source code and released it under the GNU GPL.

The nonprofit Blender Foundation and a team of volunteers from around the world have

been developing it since. Blender now supports rigid body simulation, fluid simulation,

smoke, fire, and hair rendering, GPU-accelerated rendering, and many modeling and

animation features that make it useful not only for rendering mmW scenes, but also

creating them in the first place.

Blender considers geometry as being constructed from triangular or quadrilateral

polygons, called faces; the faces have associated with them vertices and edges. Alternate

bases for geometries, such as those constructed from primitive shapes (e.g. spheres,

cylinders, or prisms) or NURBS surfaces—which Blender supports, though it converts

them to triangles for rendering—are possible, and used by other software. A collection

of these faces makes up a mesh (e.g. a cube, person, Möbius strip, or collection of

4



disconnected triangles), and each mesh is associated with an object; a collection of

objects is a scene, and this scene is what is finally simulated. It is important to note that

Blender has no intrinsic concept of solid or volumetric objects; volumetric rendering

techniques (e.g. loss while propagating through a material) can only be simulated by

assuming the underlying mesh geometry is well-behaved.

Each face is assigned a material; the material has associated with it a number of

properties; some (such as index of refraction) are taken from the real world and others

(such as RGB color) have no real-world analogue but are used in various approximations

of real-world behavior. The scene simulation, called rendering, is performed based

on the location, orientation, dimensions, and material properties of each face in the

scene, and the position of a virtual detector called a camera; the details of how this is

performed for mmW simulation is discussed in the following chapters.

5



Chapter 2

PASSIVE MILLIMETER WAVE SIMULATION

In this chapter we present the techniques used in our simulation of passive

mmW scenarios. We describe and justify the approximations we make, and validate

the simulation with experimentally collected data.

2.1 Geometrical Optics

In this section, we discuss our approach to geometrical optics, our chosen ap-

proximation for pmmW simulation. Beginning from Maxwell’s Equations, we introduce

the concept, develop the equations for propagation of mmW energy within a scene, and

formulate an expression for the power detected by an imager in a scene.

2.1.1 Introduction

The geometrical optics approach considers an infinitely thin “pencil ray” origi-

nating from somewhere, either within or outside the scene. The ray enters the scene,

interacts with scene geometry (potentially being split by reflection, refraction, or scat-

tering into multiple rays), and eventually either makes its way to the detector where it

is transformed into an image pixel, or is lost by escaping the scene or being completely

absorbed. The ray experiences no diffraction effects, and is affected only by geometry

it directly intersects.

Unfortunately, though this is the correct formulation of geometrical optics, in

that the properties of all emitted rays are known fully and no approximations save for

geometrical optics applying are made, it is highly inefficient computationally. Because

the detector small in comparison to the scene, the probability of any particular ray

interacting with it is small, so the overwhelming majority of rays do not contribute

6



anything to the final image. This wastes computation time and increases the simulation

run time beyond what is acceptable. The usual approach, which the Blender ray tracing

engine implements, is to take advantage of reciprocity and run the process in reverse:

rays originate at the camera and are launched to the scene; they interact with scene

geometry, being split into multiple child rays, until a set number of interactions is

reached or the ray escapes the scene. Those rays are then back-propagated to the

detector.

The geometrical optics approximation is justified when surfaces are smooth, flat,

and large in comparison to the wavelength of the radiation under consideration. Where

geometrical optics fails, an extension called the geometrical theory of diffraction, which

accounts for diffraction effects by considering additional rays originating at edges and

corners [7], or various more complicated methods are used. However, at 95 GHz, the

free-space wavelength is approximately 3 mm; many objects of interest, including most

architecture, vehicles, and human bodies, are smooth on the scale of 1 mm; they are

each also considerably larger than 3 mm. Therefore, we expect geometrical optics to be

a good approximation of the behavior of passive millimeter waves, for many objects we

would be interested in imaging. This is justified by several experiments found in the

literature, two of which are described below.

We first consider a study on the monostatic reflection of a road surface at 35 GHz

[8]; the authors attempt to fit monostatic (wherein the detector is at the same location

as the illumination source) reflection at mmW frequencies to a Phong-like model. The

Phong model is based on a lighting model from 3D graphics, and is characterized by

a weak diffuse lighting term that radiates approximately isotropically, and a sharp

specular reflection centered around some reflection direction [9]; on a curved surface

this manifests as a bright specular highlight. The authors find that the monostatic

reflection exhibits a sharp specular highlight when the surface is being viewed head-on,

and a much weaker return off-normal. The results of this fit are shown in Figure 2.1,

which shows the monostatic scattering return for a road surface, as a function of angle

from normal.

7



Figure 2.1: Monostatic reflectance from a road surface fit with two reflectivity models
[8].
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The quality of the fit is not important to us; rather, the important thing to note

is that at only 5◦ away from the normal, the returned signal has dropped 18 dB from

the signal at normal. This indicates that the specular cone is less than 10◦ wide at

normal incidence, i.e. that most of the energy is reflected in the specular direction.

There is no significant backscatter at any other angle.

Stronger demonstration of the mostly specular nature of the reflections is obtained

from bistatic measurements [10]. A soil surface with r.m.s surface height 3.28 mm,

corresponding to 0.52λ at the experimental frequency of 34.5 GHz, was illuminated from

an angle of 20◦ from zenith, and the response was measured as a function of azimuthal

and zenithal angle. The response in the vertical polarization from a vertically-polarized

incident field is plotted in Figure 2.2.

The incident direction is denoted by Tx. For this surface, the maximum response

in an off-specular direction is −6 dB, corresponding to 25% of the specular reflection;

notably, the strongest non-specular reflection is in the backscatter direction, which is

expected due to micro-corner reflectors in the dirt; the reflection in all other directions

is significantly weaker. By reciprocity, this means that most of the energy being

reflected in the Tx direction originates either from specular reflection, or from Tx. Thus,

geometrical optics is a good first approximation to the reflection from even a rough

surface.

2.1.2 Plane Waves

We now describe the pencil rays of Section 2.1.1 in terms of a plane wave solution

to Maxwell’s equations. In the absence of free charges, Maxwell’s Equations are

∇ ·D = 0 (2.1a)

∇ ·B = 0 (2.1b)

∇× E = −∂B

∂t
(2.1c)

∇×H =
∂D

∂t
(2.1d)

9



Figure 2.2: Bistatic reflection from a rough (0.52λ r.m.s. height) soil surface at
34.5GHz [10].

In an isotropic, linear medium with complex permeability µ and complex per-

mittivity ε (i.e. B = µH and D = εE for scalar µ and ε that are not functions of H or

E), Maxwell’s equations admit a plane wave solution of the form

E (r, t) = E0e
i(k·r−ωt) (2.2)

where ω is the temporal angular frequency, r and t are the position vector and time,

respectively, E0 is a complex vector, and k is the complex vector wavenumber, which

obeys the dispersion relation

k · k = k2 = ω2µε (2.3)

Substituting this solution into Maxwell’s equations, we can replace the differential

operators ∇ ⇒ ik and ∂
∂t

⇒ −iω; canceling the phase factors ei(k·r−ωt+φ), Maxwell’s

10



Equations become

k · E0 = 0 (2.4a)

k ·H0 = 0 (2.4b)

k× E0 = ωµH0 (2.4c)

k×H0 = −ωεE0 (2.4d)

It is important to note that all above vector quantities (k, E0, and H0) can

be complex. The scalar quantities ε and µ can also be complex, but ω is taken to

be real (i.e. the wave exists for all time). For the permittivity we write ε = ε0εr,

where ε0 is the permittivity of free space, an exact quantity defined as ε0 = 1/c2µ0 ≈
8.854 × 10−12 F m−1, and εr is the dielectric constant, which can be complex; in that

case, we write εr = ε?r + iε??r . εr is a function of frequency for most materials across

the entire frequency range; in contrast, for most materials at high frequencies, the

permeability approaches the vacuum permeability, i.e. µ = µ0 = 4π × 10−7 H m−1; we

assume that our frequencies of interest are high enough that this is the case for the

remainder of this thesis.

We write the vector k in terms of the scalar wavenumber k as k = kk̂, with

k̂ · k̂ = 1; according to Equation 2.3, k = ω
√
µε = ωn

√
µ0ε0 = ωn/c where n =

√
εr is

the refractive index of the medium. Finally, we note that the unit vector k̂ can be real

or complex. If it is real, we say the wave is homogeneous, otherwise it is heterogeneous;

some implications of a complex k̂ will be explored in a later section.

2.1.3 Jones Formalism

We have described the propagation within a material with Equation 2.2; now we

wish to determine the ray that results after interacting with a surface.

We consider a plane wave, denoted by E0 (r, t), at frequency ω in a material

with refractive index n0 propagating in the direction of k̂0. Note that we need only the

electric field, as the magnetic field H0 (r, t) can be trivially obtained from Equation
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2.4c. We cast Equation 2.2 in terms that are more amenable to computation by defining

two unit vectors ŝ0 and p̂0 such that ŝ0, p̂0, and k̂0 form an orthonormal triple. Then

E0 (r, t) =
?
Aŝ0 + Beiφp̂0

?
ei(

ω
c
n0k̂0·r−ωt) (2.5)

where the ei(
ω
c
n0k̂0·r−ωt) term as usual denotes the time-harmonic phase propagation

in the k̂0 direction; the term in square brackets describes the polarization state, with

real scalars A, B, and φ; this representation is unique up to an arbitrary phase. In the

case of a coherent field, φ has a set value that determines the polarization of the wave:

for real ŝ0 and p̂0, φ = 0 or φ = π gives linear polarization, φ = π/2 gives circular,

and so on. If the radiation is incoherent, however, φ is ill-defined and can take on any

value between 0 and 2π; additionally, any time-averaged quantity we extract from the

incoherent field must also be averaged over all possible values of φ.

We now compute the results of the interaction of the plane wave of Equation 2.5

with matter. To do this, we consider two basic interactions: the propagation through a

material, and the interaction with an interface between two materials. We write the

plane wave after j − 1 interactions; that is, the field has been reflected or transmitted

through a material interface, and propagated between interactions j − 1 times. The

plane wave now has the form

Ej−1 (r) = [fj−1 (φ) ŝj−1 + gj−1 (φ) p̂j−1] e
i(ω

c
nj−1k̂j−1·r−ωt) (2.6)

where fj−1 and gj−1 are unknown functions of φ and ŝj−1 and p̂j−1 are complex

polarization basis vectors orthogonal to k̂j−1. We now consider this field incident on

the jth interface. We call the local incident-field coordinates ŝij and p̂i
j , and we write

the incident field in terms of the local coordinates (dropping the propagation terms and

explicit φ dependence for the sake of clarity)

Ei
j−1 =

?
fj−1ŝj−1 · ŝij + gj−1p̂j−1 · ŝij

?
ŝij +

?
fj−1ŝj−1 · p̂i

j + gj−1p̂j−1 · p̂i
j

?
p̂i
j (2.7)
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We compute the vector k̂j , i.e. the propagation direction after interacting with

the surface, using some relation to be determined later, then compute the outgoing

local coordinates ŝj and p̂j , and write the field as a result of the interaction as

Ej =
?
χss,j

?
fj−1ŝj−1 · ŝij + gj−1p̂j−1 · ŝij

?
+ χsp,j

?
fj−1ŝj−1 · p̂i

j + gj−1p̂j−1 · p̂i
j

??
ŝj

+
?
χpp,j

?
fj−1ŝj−1 · p̂i

j + gj−1p̂j−1 · p̂i
j

?
+ χps,j

?
fj−1ŝj−1 · ŝij + gj−1p̂j−1 · ŝij

??
p̂j

(2.8)

The χ terms depend on the nature of the interaction with the surface and can

be based on either theory or experiment (e.g. bistatic reflection measurements [10]);

the explicit form we use is given in Sections 2.2.4 and 2.2.5. Finally, this new field will

propagate along some vector dj before it interacts with another surface. Therefore, it

will acquire a phase factor of ei
ω
c
nj k̂j ·dj . We can write the final expression for the field

Ej compactly in matrix notation,

Ej = fj ŝj + gjp̂j (2.9a)

fj
gj


 =


e

iω
c
nj k̂j ·dj 0

0 ei
ω
c
nj k̂j ·dj




χss,j χsp,j

χps,j χpp,j




 ŝj−1 · ŝij p̂j−1 · ŝij
ŝj−1 · p̂i

j p̂j−1 · p̂i
j




fj−1

gj−1




(2.9b)

This allows us immediately to find the form of the original field of Equation 2.5

after N bounces, namely,

EN = fN ŝN + gN p̂N (2.10a)

fN
gN


 = T


 A

Beiφ


 (2.10b)

T =
1?

j=N


e

iω
c
nj k̂j ·dj 0

0 ei
ω
c
nj k̂j ·dj




χss,j χsp,j

χps,j χpp,j




 ŝj−1 · ŝij p̂j−1 · ŝij
ŝj−1 · p̂i

j p̂j−1 · p̂i
j




=
1?

j=N

PjχjRj

(2.10c)

where Pj is the propagation matrix in the jth material, χj is the scattering matrix of

the jth interface, and Rj is the rotation matrix into the local coordinates defined for

the jth interface.
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We now take the field EN incident upon a detector. The detector has local

coordinates x̂ and ŷ, so we must write the field in these coordinates. We do this in the

usual way:

Edetector = Exx̂ + Eyx̂ (2.11a)

Ex

Ey


 =


ŝN · x̂ p̂N · x̂
ŝN · ŷ p̂N · ŷ


T


 A

Beiφ




=


M00 M01

M10 M11




 A

Beiφ




(2.11b)

Equation 2.11 allows us to begin with an arbitrary wave originating anywhere in

the scene, and, knowing the path it takes to reach the detector and the parameters of the

materials it interacted with, to compute its form at the detector. Thus, Equation 2.11

is the general solution for wave propagation in the geometrical optics approximation.

There are several non-obvious assumptions, limitations, and errors in this formu-

lation. First, we implicitly assumed that the imager coordinate basis vectors x̂ and ŷ

are real; in that case, we cannot necessarily project the field into them as in Equation

2.11b, so any derived quantities will also be incorrect. Second, we assume that a ray is

self-coherent along its entire propagation distance within the scene; if the initial field

is itself coherent, this causes no problems; however, if the initial field is incoherent,

it is possible that the phase difference between the s and p polarizations will become

large enough that the two can no longer be considered as interacting coherently when

projected to a new surface coordinate system, i.e. that we can no longer use the Rj

matrix to transform into local coordinates; there is no obvious solution to this problem

but, absent birefringent materials, it should be rare. Relatedly, there is no way to

extend this formulation to birefringent or anisotropic materials, as this exacerbates

the problem as well as adding issues of spatial coherence. And finally, we have as yet

presented no way of determining the path the ray takes to the detector; this important

detail is deferred until Sections 2.2.4 and 2.2.5.
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2.1.4 Stokes Parameters

A mmW detector does not measure instantaneous field strength directly; rather,

it measures a time-averaged power, which we compute here. The four Stokes parameters

I , Q, U , and V are a convenient measure not only of time-averaged power but also

polarization information for an incoherent field. They are defined as

I = |Ex|2 + |Ey|2 (2.12a)

Q = |Ex|2 − |Ey|2 (2.12b)

U = 2Re
?
ExE

∗
y

?
(2.12c)

V = 2Im
?
ExE

∗
y

?
(2.12d)

The parameter I is the total intensity of the incident field; Q is the degree of

horizontal-vertical linear polarization: Q > 0 if the polarization state is more horizontal

than vertical, and Q < 0 if it is more vertical than horizontal; U is the degree of linear

polarization in a basis rotated at a 45◦ angle from the horizontal, analogously to Q;

and V is the degree of circular polarization: V > 0 if the field is left-circular, V < 0 if

the field is right-circular from the point of view of the detector.

From Equation 2.11b, the field incident upon the detector, with the ei(
ω
c
nnk̂n·r−ωt)

propagator implied, is

Ex = M00A + M01Be
iφ (2.13a)

Ey = M10A + M11Be
iφ (2.13b)

Recall that all time-averaged quantities for incoherent radiation must also be

averaged over all values of φ. Therefore, we evaluate the auxiliary quantities and average

15



over all φ

|Ex|2 =

2π
ˆ

0

?
M00A + M01Be

iφ
? ?
M ∗

00A + M ∗
01Be

−iφ
?
dφ

= |M00|2A2 + |M01|2B2 (2.14a)

|Ey|2 =

2π
ˆ

0

?
M10A + M11Be

iφ
? ?
M ∗

10A + M ∗
11Be

−iφ
?
dφ

= |M10|2A2 + |M11|2B2 (2.14b)

ExE
∗
y =

2π
ˆ

0

?
M00A + M01Be

iφ
? ?
M ∗

10A + M ∗
11Be

−iφ
?
dφ

= M00M
∗
10A

2 + M01M
∗
11B

2 (2.14c)

This gives the Stokes parameters,

I =
?
|M00|2 + |M10|2

?
A2 +

?
|M01|2 + |M11|2

?
B2 (2.15a)

Q =
?
|M00|2 − |M10|2

?
A2 +

?
|M01|2 − |M11|2

?
B2 (2.15b)

U = 2Re {M00M
∗
10}A2 + 2Re {M01M

∗
11}B2 (2.15c)

V = 2Im {M00M
∗
10}A2 + 2Im {M01M

∗
11}B2 (2.15d)

Note that all terms in Equation 2.15 have an A2 or B2 dependence only, i.e.

that each term is dependent only on the powers (or, equivalently through Equation

1.1, radiometric temperature) of each initial polarization state; therefore, we can work

entirely in terms of power (temperature). Also note that the terms |Ex|2 and |Ey|2, i.e.

the power along the x and y axis of the imager, can be trivially obtained either from

Equations 2.14 or 2.15 if they are needed.

2.1.5 Stokes Parameters from Many Rays

We have presented the Stokes parameters in the geometrical optics approximation

due to some field that interacts with some set of surfaces on its way to the detector.

Now we further extend this formulation in order to develop full passive mmW scene

simulation.
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We have already assumed that all rays are self-coherent (i.e. that we can obtain

the Stokes parameters through Equations 2.11 and 2.15). Now we must assume that

all rays are incoherent with each other; put another way, we assume that there is no

spatial or temporal coherence between any emitters in the scene. This means that we

can calculate the Stokes parameters due to any ray independent of any other ray, then

add them at the detector.

Then, the Stokes parameter measured by the detector is a sum over all the rays

in the scene, of the Stokes parameter of each ray. Then, for any Stokes parameter S

Sdetector =
?

all rays

Sray (2.16)

2.2 Implementation

We have so far kept the derivation of the physics completely general. This allows

us to use any functional form, whether based on first-principles calculations or an

empirical model, for every parameter (e.g. χss), for every object where the geometrical

optics approximation applies. In our simulation, we use as the parameters the results

from infinite flat interfaces with infinite-extent plane waves impinging upon them; in

this section, we derive these results and present a simple model to extend them to

irregular surfaces. We also present a model for the temperature seen by a ray exiting

the scene.

The description in this section is still general, and could be applied to any

simulation software; changes specific to mmW Blender are given in Section 2.2.9.

2.2.1 Snell’s Law

A ray propagating in medium 1, which has refractive index n1, impinges on

an interface with material 2, which has refractive index n2. Assuming the surface is

smooth, the ray is split into two child rays: the reflected ray propagates away from

the interface in medium 1, while the refracted ray is transmitted into medium 2 and

propagates away from the interface in it; this is shown in Figure 2.3. We wish to know

the direction of propagation of the reflected and transmitted rays.
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Figure 2.3: Geometry for plane wave interaction with a plane.

From standard ray optics [11], we know the reflected and transmitted rays are

in the plane defined by the incident direction and the normal of the interface. The

reflected ray makes the same angle with the surface normal as the incident ray. For the

transmitted ray, if the incident ray makes an angle θi with the normal of the interface,

the angle of refraction θt is given by Snell’s Law as

n1 sin θi = n2 sin θt (2.17)

Equation 2.17 applies generally. However, if either of the materials is lossy (i.e.

has a complex refractive index), then the angles must also be complex, and thus lose

their simple geometrical meaning. In this section, we derive a vectorial form of Snell’s

Law in terms of the notation we have previously introduced.

For the remainder of this section, we follow the derivation of Dupertuis et al.

[12, ?], changing the notation to align more closely with the one we have already

established. We write the wave vectors of the incident, reflected, and transmitted waves

as ki, kr, and kt, respectively; note that all three vectors are potentially complex, which

is not well illustrated by Figure 2.3. We write the incident, reflected, and transmitted

fields as Ei = E0
i e

i(ki·r−ωt+φi), Er = E0
re

i(kr ·r−ωt+φr), and Et = E0
t e

i(kt·r−ωt+φt). Without

loss of generality, shift our coordinate system such that the interface is given by the

plane n̂ · r = 0, where n̂ is the normal to the interface.

One of the boundary conditions for electric fields is the continuity of the tangential
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electric field. This reduces to the phase matching condition1

ki × n̂ = kr × n̂ = kt × n̂ (2.18)

Equation 2.18 is a vectorial form of Equation 2.17 and reduces to the familiar

form for real vectors ki, kr, and kt. We now wish to find an explicit form for kt. Using

Equation 2.18 we write kt in terms of the components perpendicular and parallel to

the surface as

kt = kdn̂ + n̂× (ki × n̂) (2.19)

where kd is an unknown scalar. We apply the dispersion relation, kt · kt = k20n
2
2, and

simplify,

kd = ±k0
?
n2
2 − n2

1

?
k̂i × n̂

?
·
?
k̂i × n̂

?
(2.20)

The plus or minus sign is chosen such that kt is always pointing in the correct

direction relative to the normal, i.e. in the same direction as ki; care must be taken

computationally due to the branch cut in the square root.

For completeness, the reflected wave vector is

kr = ki − 2 (ki · n̂) n̂ (2.21)

which trivially satisfies the dispersion relation and Equation 2.18.

2.2.2 Amplitude Reflection and Transmission Coefficients

The reflection and transmission coefficients are computed assuming, as we have

previously done, an infinite plane wave incident upon an infinite, smooth interface. We

continue the derivation of Dupertuis et al. [12, ?].

1 For more details, see Appendix B.2.
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The full boundary conditions for time-harmonic plane waves are

n̂× Ei + n̂× Er − n̂× Et = 0 (2.22a)

n̂×Hi + n̂×Hr − n̂×Ht = 0 (2.22b)

ε1n̂ · Ei + ε1n̂ · Er − ε2n̂ · Et = Σ/2 (2.22c)

n̂ ·Hi + n̂ ·Hr − n̂ ·Ht = 0 (2.22d)

where the new term Σ is the surface charge density, which is not necessarily zero;

however, if all terms are time-harmonic, on average it is zero. Again, n̂ is the surface

normal, and incident, reflected, and transmitted fields are denoted by subscripted i, r,

and t, respectively.

We now construct the local ŝ-p̂ coordinate system first introduced in Section

2.1.3. Our conditions were that ŝ, p̂, and k̂ form an orthogonal triplet. Therefore, it is

natural to define

ŝ =
n̂× k̂?

(n̂× k̂) · (n̂× k̂)
(2.23a)

p̂ = k̂× ŝ (2.23b)

If n̂ and k̂ are collinear (i.e. n̂× k̂ = 0) we pick ŝ as an arbitrary vector perpendicular

to n̂.

Note that this definition allows us to keep the same ŝ for the incident, reflected,

and transmitted rays. In general k̂ is complex, so both ŝ and p̂ will also be complex. We

can decompose the fields as described in Section 2.1.3: E = Esŝ+Epp̂, H = Hsp̂+Hpŝ

(the s and p subscripts apply to the orientation of the electric field) and compute the

amplitude reflection coefficients2 for s and p polarizations as

rs =
Es,r

Es,i

=
ki · n̂− kt · n̂
ki · n̂ + kt · n̂

(2.24a)

rp =
Hp,r

Hp,i

=
ε2ki · n̂− ε1kt · n̂
ε2ki · n̂ + ε1kt · n̂

(2.24b)

2 For a complete derivation, see Appendix B.3
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and the amplitude transmission coefficients as

ts =
Es,t

Es,i

= 1 + rs =
2ki · n̂

ki · n̂ + kt · n̂
(2.25a)

tp =
Hp,t

Hp,i

= 1 + rp =
2ε2n̂ · ki

ε2ki · n̂ + ε1kt · n̂
(2.25b)

Note that rp < rs for most incidence angles.

We have already defined kd = kt · n̂ (Equation 2.19), and can use a similar form

for ki · n̂. However, this does not significantly simplify the above expressions.

2.2.3 Multilayer Stack

Having solved the case of wave interaction with a single interface, we now consider

a set of N − 1 parallel interfaces, with a wave incident upon them. The N − 1 interfaces

form the boundaries of a stack of N − 2 layers between the first and last medium,

which are assumed to continue to infinity. Such a problem arises when attempting

to simulate thin objects, such as clothing or a pane of glass (where N = 3 and the

two surrounding media are both air), or layered objects, such as human skin (with a

layer for the epidermis, the dermis, and subcutaneous tissue, each with its own set of

material properties, thickness, and temperature). The media are enumerated 1 to N ,

and material m is said to have a refractive index nm; additionally, if it is not the first

or last medium, it has thickness dm.

Unlike previous calculations, we consider the field to be propagating coherently

between interfaces, such that interference between forward and backward-traveling

waves is possible; this is reasonable if the total thickness of the stack is considerably

smaller than the coherence length of the radiation.

To solve for this case, we again use a transfer matrix formalism. We note that

there are two basic forms of interaction between the wave and the dielectric stack which

change the magnitude and phase of the wave. The first, propagation across a layer,

is shown in Figure 2.4a. The second, shown in Figure 2.4b, is interaction with some

interface. Figure 2.4c summarizes the notation we will use for the remainder of this

section: a superscript + indicates that the wave propagates in the direction of increasing
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Figure 2.4: Schematic diagram of field propagation in a multi-layer stack of materials.

(a) Propagation through a
single layer.

(b) Propagation across an
interface.

(c) Propagation through a many-layered structure.

layer number (right, in the diagram), and a superscript − indicates the inverse; a prime

(?) indicates the field evaluated immediately on the left (lower layer number) side of

an interface, while an unprimed field is evaluated on the right (higher layer number).

Note that though we have drawn the direction of field propagation as normal to the

interface, nothing in the derivation limits us to only this case, and the results presented

here are general for all directions of field propagation.

Considering the case of propagation, we can write for the forward-going wave,

using Equation 2.2,

E+
m =E+

m0e
i(km·r−ωt) (2.26a)

E
?+
m =E+

m0e
i[km·(r+n̂dm)−ωt] (2.26b)

where r has been restricted to the interface. Note that we have implicitly defined

the normal vector n̂ as pointing to the right; we will continue with this convention;

also note that the only difference between the terms is a factor of eik·n̂dm ; in Equation

2.19 we defined kd = k · n̂; substituting this and following the same procedure for the
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back-propagating wave E−
m, we write the final transfer matrix for propagation as


E

?+
m

E
?−
m


 =


e

ikdmdm 0

0 e−ikdmdm




E+

m

E−
m


 = Pm


E+

m

E−
m


 (2.27)

For the case of interactions at an interface (Figure 2.4b), we can write the waves

propagating away from the interface in terms of waves propagating towards it

E+
m+1 =rm+1,mE

−
m+1 + tm,m+1E

?+
m (2.28a)

E
?−
m =rm,m+1E

?+
m + tm+1,mE

−
m+1 (2.28b)

where rm,m+1 is the reflection coefficient from medium m to medium m + 1, tm+1,m is

the transmission coefficient from medium m+ 1 to medium m, and so forth. After some

algebra, this reduces to the transfer matrix for transmission,

E+

m+1

E−
m+1


 =

1

tm+1,m


 1 rm+1,m

rm+1,m 1




E

?+
m

E
?−
m


 = Tm,m+1


E

?+
m

E
?−
m


 (2.29)

which holds true for both s and p polarizations, using the appropriate amplitude

reflection and transmission coefficients. Finally, we combine these according to Figure

2.4c and obtain the transfer matrix for the entire stack

E+

N

E−
N


 =

?
3?

j=N

Tj−1,jPj−1

?
T1,2


E

?+
1

E
?−
1


 =


L00 L01

L10 L11




E

?+
1

E
?−
1


 (2.30)

From the transfer matrix L in Equation 2.30, we extract the reflection coefficients;

we do this by considering the ray to be originating in medium N and setting E−
N = 1,

E+
N = r, E

?−
1 = t, and E

?+
1 = 0 in Equation 2.30. This leads to the simple expression

for reflection and transmission through a stack of thin materials

r =
L01

L11

(2.31a)

t =
1

L11

(2.31b)

which, again, applies for both polarization states.

We note as an aside that this formalism is used in the free-space determination

of mmW dielectric properties of material samples [13, 14, 15].
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2.2.4 Power Propagation and Power Reflection and Transmission Coeffi-

cients

We have so far been manipulating field quantities and wave vector k. However,

as mentioned previously, a mmW imager measures time-averaged power. Therefore, we

must evaluate the properties associated with power flow, rather than the wave vector

or field quantities. Average power flow is given by the Poynting vector

S =
1

2
Re {E×H∗} (2.32)

Taking E to have the form given in Equation 2.2 and evaluating H∗ using

Maxwell’s equations, the power flux for a time-harmonic inhomogeneous plane wave is3

S =
1

2ωµ0

e2Im{k}·r [(E0 · E∗
0)Re {k} − iIm {k} × (E0 × E∗

0)] (2.33)

This form of the Poynting vector is problematic several reasons. First, the power

flux in a ray decreases (or increases, though we do not consider this in the passive

case) in the direction of Im {k}; this is not necessarily the same as the direction of

power propagation; in fact, Equation 2.33 explicitly shows that the direction of power

flux has a component perpendicular to Im {k} (though this component will be zero

if E0 × E∗
0 = 0, as is the for a homogeneous wave or a wave in a lossless medium).

This means that Beer’s Law does not apply in general, which is problematic from

a phenomenological standpoint. Moreover, we see that the direction of propagation

depends not only on the homogeneity of the wave but also, for an inhomogeneous wave,

its polarization state. This means it is possible to construct multiple waves propagating

in the same direction, but that will refract in different directions when they interact

with a material. We also note, incidentally, that once a wave becomes inhomogeneous

through interactions with materials, it is difficult to make it homogeneous again.

Due to these facts, the ray tracing approach described in Section 2.1.1 is funda-

mentally incompatible with the behavior of inhomogeneous plane waves.

3 See Appendix B.4 for a full derivation.
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This is because for ray tracing to work, we must make an assumption about the

properties of the ray at the detector, rather than the emitting in the scene. We only

know that some wave with power flow along the launched ray vector makes its way to

the detector; if we make the guess that this wave is homogeneous at the detector, then

attempt to propagate back to the point where it entered the scene, we could very well

find that the wave is no longer homogeneous (e.g. because it was transmitted through

a lossy material between two surfaces that were not parallel), and that its k-vector

does not match that of the wave we know enters the scene at that point; that is, the

back-propagating approach does not match the boundary conditions.

To resolve this, we could attempt to find a inhomogeneous vector at the camera

that, when propagated back to its origin, would match the boundary condition; however,

any optimization algorithm to do this would fail because the problem space is pathologi-

cally not smooth. We must first guess at an inhomogeneous k-vector that gives the same

direction of power flow—an infinite number of possibilities exist, but finding them is not

trivial, given Equation 2.33—and then propagate it back. However, an inhomogeneous

wave will have a different direction of power propagation (the quantity we care about)

after interacting with a surface, so its path will diverge from the original homogeneous

ray after some interactions; it will end up originating at a different point in the scene,

having interacted with different surfaces, and still not satisfying the boundary condition.

On top of this, a small perturbation in propagation direction will lead to vastly different

end points, because the direction of power propagation after a surface interaction also

depends on the surface normal and the surface normals vary discontinuously; even if

they did not, the objects do: a ray might barely hit an object at a glancing angle, while

a slightly offset neighbor would miss the object entirely.

Attempting to satisfy the boundary conditions for inhomogeneous waves using

back-propagating waves from the camera, then, is hopeless. We instead resolve this

problem by making one more assumption: all propagating waves are homogeneous.

That is, in the expression k = kk̂, k̂ is always real. We justify this with the observation

that inhomogeneous waves are produced from homogeneous waves by transmission
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through a lossy material (the more lossy the material, the more inhomogeneous the

wave), so we expect that most waves carrying any significant amount of energy will be

mostly homogeneous.

Note that this immediately implies both that Beer’s Law holds and that power

propagates in the direction of k̂.

Then, analogously to the amplitude reflection coefficients of Section 2.2.2, we

can write the reflection and transmission coefficients for power flux4

Rs =r∗srs (2.34a)

Rp =r∗prp (2.34b)

Ts =t∗stsRe

?
k∗d,t
k∗d,i

?
(2.34c)

Tp =t∗ptpRe

?
k∗d,t/εi

k∗d,i/εt

?
(2.34d)

where r and t are the amplitude reflection and transmission coefficients from Equations

2.24 and 2.25 and εi and εt are the dielectric constants on the incident and transmition

side of the interface. These equations apply to materials with a thin coating applied, if

one uses r and t from Equation 2.31 instead.

Note that for a series of layered materials, if any layers are lossy it is possible

that R + T < 1. It is also possible, if the layers in the stack are less lossy than the

medium the field originates from, that at glancing angles R + T > 1. This is because

the low-loss layer acts effectively as a waveguide, moving incident power “downstream”

in a channel that is less lossy than the surrounding media. Therefore, the reflected field

will be comprised of both the reflection from the incident field at that point, and energy

from “upstream.” This is not a desired result for simulation; therefore, if it occurs, we

scale R and T such that R + T = 1.
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Figure 2.5: Flowchart for the ray tracing algorithm.
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2.2.5 Ray Tracing

Having made the assumption that all propagating waves are homogeneous, we

can now describe the ray tracing procedure in mmW Blender.

The ray tracing algorithm is described schematically in Figure 2.5; arrows track

the M matrix from Equation 2.11b associated with a ray as it propagates through

the scene. At the camera M is initialized to the identity matrix. Every circular block

multiplies the M matrix by a corresponding matrix based on Equation 2.10c; these are

explained in detail below. The algorithm iterates recursively until the ray exits the

scene or is otherwise terminated.

The “Child Ray” blocks split off child rays and working copies of the matrix and

pass them along instead of the original; the new k vectors are also calculated where

necessary.

At every “I , Q, U , V ” block, we compute the Stokes parameters for the current M

matrix and ray temperatures according to Equation 2.15, then terminate the ray tracing

and add the ray’s contribution to the pixel’s Stokes parameters. The ray temperature

can be Tmaterial, the bulk temperature of the object, Tsurface, the temperature of any

coating layer applied to the material (which is not necessarily the same as Tmaterial),

or Tsky, the temperature of a ray entering the scene. Tsky is usually a function of the

direction the ray leaves the scene, and can be polarized as in Equation 2.5; more details

are given in Section 2.2.7. For surface and material emission, we take A = B = T .

Additionally, in order to prevent infinite recursions, the ray tracing is set to

terminate after a user-defined recursion level is reached; this is not illustrated in the

flowchart. The terminating temperature in this case is that of the last object the ray

interacted with.

The matrix R is the rotation matrix from one set of local coordinates to another.

4 The derivation of these terms is found in Appendix B.5
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It is written as

R =


 ŝo · ŝ p̂o · ŝ
ŝo · p̂ p̂o · p̂


 (2.35)

with ŝ and p̂ calculated from n̂ and ŝo and p̂o calculated from n̂o according to Equation

2.23, where n̂ and n̂o are vectors normal to the current and previously encountered

surface, respectively. For rays escaping the scene, we introduce the vector Ẑ, the z-axis

in global (i.e. world) coordinates; recall that x̂ and ŷ were defined in terms of local

imager coordinates, and can be oriented in any direction in world space. The use of

a global Ẑ allows us to consistently describe the polarization of rays from outside the

scene, independent of the imager orientation.

In the case of a coating comprised of lossy layers, the surface itself might be

absorptive; this is accounted for in the “Surface” child ray, which considers the loss

(and therefore emission) equal to the amount not reflected from or transmitted through

the surface. That is, in terms of the power reflection coefficients of Equation 2.34

S =



√

1 − Rs − Ts 0

0
?

1 − Rp − Tp


 (2.36)

The square root is due to considering fields rather than powers (i.e. the terms

are squared to obtain powers in Equation 2.15).

The absorption matrix A is based on the propagation matrix P from Equation

2.10c; knowing that we will be evaluating time-averaged powers allows us to simplify

the the expression

A =


e

−αd/2 0

0 e−αd/2


 (2.37)

where α = 2Im {k} is the absorption coefficient of the medium and d is the distance

traveled. The factor of 1/2 in the exponential is again to ensure the appropriate behavior

of the power.
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The emission matrix is closely related, in the sense that any absorbed energy is

emitted at the temperature of the absorbing medium. Thus, we write

E =



√

1 − e−αd 0

0
√

1 − e−αd


 (2.38)

again making sure that the magnitude squared gives the appropriate value for emission.

The reflection and transmission matrices χr and χt are formulated such that

taking the complex magnitude squared gives the appropriate reflection and transmission

coefficients from Equation 2.34. Thus

χr =


rs 0

0 rp


 (2.39)

χt =



ts

?
Re

?
k∗d,t
k∗d,i

?
0

0 tp

?
Re

?
k∗d,t/εr,i
k∗d,i/εr,t

?


 (2.40)

We use r and t rather than
√
rr∗ or

√
tt∗ because r or t can be complex (indicating

a relative phase shift) and it is important to preserve that.

Once ray tracing of all child rays terminates, the final value of the Stokes

parameters are returned for that pixel. After all pixels have been evaluated, the

simulation terminates. Finally, the image is normalized such that it can be displayed

on a computer monitor.

2.2.6 Non-glossy Surfaces

All calculations so far have assumed a mirror-smooth surface between materials;

while this is a good approximation for many man-made materials, it notably fails for

dirt, grass, and other natural surfaces. Therefore, in order to simulate outdoor scenes,

we need a model for reflection and transmission through rough surfaces. The purpose

of the model presented here is not complete accuracy or fidelity, but rather it is to be

a reasonable, usable approximation while we collect further data and develop a more

accurate model.
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We base the rough surface model from a non-glossy reflection model that Blender

has built-in; it is based upon perturbing the normal of the surface the ray hits, then

computing the ray propagation (reflection and transmission) based on this perturbed

normal; multiple samples are computed and the results are averaged per-pixel, simulating

sub-pixel roughness.

The specific procedure Blender uses is as follows: we assume without loss of gener-

ality that the surface normal n̂ points in the ẑ direction. The perturbed normal is given

by n̂? = (n̂ + v) / |n̂ + v|; we choose the perturbing vector v = r (x̂ cosφ + ŷ sinφ),

where φ uniformly sampled from the interval [0, 2π) and r =
√

1 − b2L, where b is uni-

formly sampled5 on the interval [0, 1) and L = (1 − g)3, where g is the gloss parameter;

if g = 1, the surface is completely glossy, if g < 1, the surface becomes increasingly

rough-looking, with reflected and transmitted images becoming increasingly blurry; a

check is performed to ensure the reflected or transmitted rays end up on the appropriate

side of the surface.

As with many models in computer graphics, this particular form of the perturbed

normal was chosen because it gave aesthetically pleasing results, rather than because it

is physically accurate. Unfortunately, creating a more accurate model is beyond the

scope of this thesis; such a model can be easily plugged in to the simulation code once

it is developed, however.

2.2.7 Sky Model

We require a model for the temperature of a ray entering the scene, called Tsky

above. We require this information as a function of ray direction. Here we present a

model for estimating Tsky for an outdoor terrestrial scene [16].

First, we expect that, in the absence of atmosphere, the temperature would be

a uniform 3 K due to the cosmic microwave background. The presence of atmosphere

5 As is often the case, better results for less computation time are achieved by using a
quasi-random point set, rather than random sampling. Blender uses the Hammersley
point set for this purpose, but any method of generating uniform values on the interval
[0, 1)2 is acceptable.
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would tend to increase the temperature toward that of the atmosphere, in proportion

to the distance traveled; thus, we would expect that the sky is coldest at zenith and

approaches ambient temperature near the horizon.

We simulate the atmosphere as a series of N layers, each with its own temperature

and composition. For each layer, we calculate an absorption coefficient α based on the

frequency and the gas composition. Then the temperature of a ray in the j + 1th layer

(counting from the top of the atmosphere down) is given by the recurrence relation

Tj+1 = Tje
−αjdj + T l

j

?
1 − e−αjdj

?

where T l
j , αj , and dj are the temperature, absorption coefficient, and distance traveled

within the jth layer, respectively. The initial condition is T l
0 =3 K, the cosmic background

temperature. The viewing angle is adjusted for by increasing dj , taking the curvature

of the earth into account; the presence of clouds is modeled by adjusting the absorption

coefficient due to liquid water in the layers with the clouds present; the temperature

and composition of each layer is obtained from the lapse rates of each quantity, for

which there are meteorological models [17] [18].

The results of applying this model are shown in Figure 2.6. In this range, the

absorption peaks are due to water and oxygen. This manifests as both a higher absorp-

tion coefficient and higher temperature near the absorption peaks. The atmospheric

windows at 35 GHz and 77 to 95 GHz are clearly visible.

2.2.8 Imager Model

The simulation we have described produces a perfect image, of the sort that one

would see through an infinitely-sensitive camera that simultaneously avoids diffraction

and depth of field effects. The simulated image has no limits on resolution or resolvable

feature size, only on the number of pixels we are willing to wait to simulate. A real-world

imager is not so ideal. The approach we take is to compute a point spread function

(PSF) for the imager we wish to simulate, then convolve the simulated image with it;

this is in general complicated because the PSF is dependent on not only the imager,
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Figure 2.6: Atmospheric model under various weather conditions.

(a) Propagation loss at sea level.

(b) Zenithal sky temperature.
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but also the frequency and position in the image that one considers. For the purpose of

this work, we use the Airy disk PSF [11]

I (θ) =

?
2J1 (ka sin θ)

ka sin θ

?2
(2.41)

where θ is the angle between the center-line of the image and a blurring pixel, a is the

radius of the aperture, k is the wavenumber, and J1 is a Bessel function of the first

kind, of order 1. We compute the convolution of this with the image assuming that it

is the PSF applies for every pixel in the image and that the angle between every pixel

is the same; these assumptions are reasonably accurate so long as the imager field of

view is small.

Real imagers also have noise from various physical processes; we again choose

the simplest possible model: we apply an additive Gaussian noise with the appropriate

noise temperature (corresponding to the standard deviation of the Gaussian curve) to

every pixel in the final image.

2.2.9 Implementation-Specific Features

Here we describe simulation features specific to the implementation of mmW

Blender.

When a ray enters a material, it refracts and propagates according to the

properties of that material; when it exits, it refracts and propagates based on the

properties of the medium it was traveling in, and the new medium—which might be

atmosphere. The interaction of a ray with a surface, then, requires two pieces of

information: the properties of the medium it originated in, and the properties of the

medium it is impinging upon. However, Blender is based upon polygons, with no

concept of a solid object; therefore, we must determine the properties of the media

on either side of the interface, knowing (at most) the properties of the surface and

the properties of the surfaces the ray has previously interacted with. The process of

determining these is based on assuming that every solid object has a surface that is a

closed, orientable manifold, and is best illustrated with an example.

34



Consider a ray propagating in free space, encountering a surface with material A.

The ray splits into a reflected and a transmitted ray, the reflected ray continuing in free

space, the transmitted ray in medium A. The transmitted ray propagates some distance,

then encounters another surface, where it splits again into a reflected and a transmitted

ray; the reflected ray continues in medium A. If the material of the surface is also A,

the transmitted ray is assumed to leave medium A and is now propagating in free space

again. If the surface has material B, however, the transmitted ray is now assumed to be

propagating in medium B; additionally, the next surface the transmitted ray encounters

is assumed to have material A (because every object is closed and orientable, every ray

that enters an object must eventually leave it), so it is ignored and the ray continues

propagating without any interaction. This means that to have a ray propagate from

medium A to medium B, two closed objects with material A and B must be brought

in contact such that they are very slightly interpenetrating.

This creates a nonphysical situation where rays travel a different distance in

each material depending on which side of the interface they originate from; additionally,

there are errors around the corner of a penetrating object at certain angles; both of

these can be minimized by making the penetration depth as small as possible. Even

with these errors, this is the cleanest solution, as other possibilities would require either

more work for the user, or considerably more program logic.

Thin coating layers can be added to a material as described in Section 2.2.3.

The coating layers are evaluated as though the incident radiation was fully coherent;

this accurate for layers that are much thinner than the coherence length c/∆f where

∆f is the bandwidth. As the imager bandwidth cannot be set for the simulation, it

is left up to the user to ensure the total coating thickness does not become too large.

The order the coating layers are evaluated depends on whether the ray is found to be

entering or leaving the material.

We also allow four additional material properties to be selected by the user.

Materials can be set to be: metal, in which case the material is perfectly reflective at

all angles, with rs = −1 and rp = 1; blackbody, in which case the material is perfectly
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absorptive at all incidence angles, with rs = rp = 0, ts = tp = 1, and the absorption

α = ∞; opaque, in which case rs and rp are computed as normal, but ts = tp = 0 at all

angles; and thin, in which case the material is considered to be only a series of thin

sheets, and the transmitted ray keeps the properties of the incident medium. We take

an opaque metal to behave as a metal, an opaque blackbody or metal blackbody to

behave as a blackbody, and a thin metal and blackbody to still behave as a metal and

blackbody, respectively. Each of these surface types can have a coating applied to it; in

this case, the reflection and transmission coefficients are set in the leftmost matrix in

Equation 2.30, and all other matrices are evaluated as normal.

We allow the user to change the parameters of the atmosphere. The user can

set the loss (in dB km−1) as well as the temperature. The sky model of Section 2.2.7 is

implemented by allowing the user to set the temperature in each polarization of a ray

leaving the scene, as a function of direction. This allows the sky model to be computed

off-line and applied as a texture map.

Finally, we we allow the user to set the maximum number of levels of recursion,

limiting the number of times any particular ray can interact with the scene. Three or

four bounces is typically enough to capture most of the phenomenology, though more

might be necessary in a complicated scene with many non-lossy objects. The user also

has the option for restricting the number of bounces using a threshold: if the total

contribution to the image of a particular ray is less than the threshold, the rendering

for that ray is terminated.

2.3 Validation

In this section we discuss the validation of the simulation techniques by compar-

ison to experimentally measured images. We first describe the mmW imaging system

used to obtain the experimental data, then describe several test scenes and compare

the simulation of these scenes to experimental data. All material parameters used in

the simulations are also provided.
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2.3.1 Scanning Cart

We first briefly describe the imaging system used to collect the experimental

data.

The imager, built at the University of Delaware, operates in the Ka band, though

the spectral response is not well-characterized; we assume, for the purposes of simulation,

that it is monochromatic at 35 GHz. It is a single pixel detector, consisting of a horn

antenna mounted in a focusing dish. The dish is mounted on a set of computer-controlled

gimbals, which provides freedom of movement in the azimuthal and zenithal directions.

An image is produced by raster-scanning the detector across scene, collecting data

at each pixel; the process takes several minutes. The imager has a dish diameter of

0.6 m, and has been found to be nearly diffraction-limited, so the Airy disk point spread

function given in Equation 2.41 is expected to apply. It is capable of simultaneously

capturing x and y polarizations, with a 2 K noise figure per polarization; it does not

capture the Stokes parameters, however. The scanning antenna, associated hardware,

and control electronics are mounted in a wheeled cart for ease of transport.

More details about the imager can be found in [5], and a detailed description of

the principles behind its operation in [3].

Finally, we note that though the focal depth is adjustable, meaning that in theory

every pixel of a collected image could be in focus, in practice the focal depth is set to

one particular value for the entire image; the focal depth was set to 7 m for every image

in the validation set. There are, unfortunately, no fast ways to accurately simulate

depth-of-field effects (though several algorithms exist for producing visually-convincing

approximations), so this was not done for the simulated images.

2.3.2 Cinderblocks

We begin with a relatively simple scene: a stack of cinderblocks in a desert

environment. A visible image of the scene is shown in Figure 2.7a. The surroundings

are open and flat, with no significant structures nearby. A list of the material properties

of objects in the scene is given in Table 2.1.
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Figure 2.7: Cinderblocks in the desert at visible wavelengths and 35GHz.

(a) Visible image of cinderblocks.

(b) x-polarized image of cinderblocks. (c) x-polarized simulated image of cinderblocks.

(d) y-polarized image of cinderblocks. (e) y-polarized simulated image of cinderblocks.
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Table 2.1: Material properties used in the Cinderblocks scene

Object ε?r ε??r Temperature (K) Notes
Cinderblock 5.5 0.5 300 Concrete [19]
Ground 3.9 0.56 300 Sand [19]

The experimental data in the x polarization, shown in Figure 2.7b, has several

interesting features. First, there is no clear boundary between the cinderblock and

its reflection from the ground. Second, the top of the cinderblock is very cold; this

is because it produces a nearly-specular reflection of the cold sky. Finally, the cavity

inside the cinderblock is very warm. All of these are reproduced in the simulated image

in Figure 2.7c, for both the near and far cinderblock. In the y polarization, shown

in Figure 2.7d, the reflection coefficient is much lower, since the imager ŷ coordinate

is along the p̂ direction of the local coordinate system; the lower reflection from the

sky leads to a dramatically decreased contrast, and complete disappearance of the

cinderblocks; the simulation, shown in Figure 2.7e, captures this behavior.

Turning our attention to the ground, rather than modeling it as a flat plane, a

texture affecting the direction of the surface normal is applied to it; this changes the

relative power of the reflections, and simulates the ground being bumpy. Though it is

not perfect, this basic ground model already is a good match for the real ground. It

could be improved by adding ground clutter, or having different areas of the ground be

warmer or cooler, depending on, e.g., the color in visible wavelengths.

Using this relatively simple scene, we have demonstrated the basic capabilities

of the simulation software. We have also demonstrated that it is possible to use

experimental data for material properties to produce a highly accurate simulated

pmmW image. We have also demonstrated it is possible to use a relatively simple model

(a flat plane with a texture map) to accurately simulate the complex phenomenology of

reflection from a rough surface.
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Table 2.2: Material properties used in the Truck scene

Object ε?r ε??r Temperature (K) Notes
Truck Body N/A N/A N/A Metal
Tires 7.7 0.38 300 SA-9 tire [21]
Interior 2.2 0.06 300 Leather [13]
Ground 3.9 0.56 300 Sand [19]

2.3.3 Truck

The next scene we consider is a truck in a desert environment. A visible image

of the scene is shown in Figure 2.8a. Again, the surroundings are open and flat. The

truck in the simulated images is based on a publicly-available 3d model [20]. A list of

the material properties of objects in the scene is given in Table 2.2.

The experimentally measured x-polarized image is shown in Figure 2.8b, with

the corresponding simulation in 2.8c; there is some detail seen in the reflections from

the side of the truck body, though it is too distorted to make out clearly. The reflection

of the truck is clearly visible in the ground, appearing as a bright cavity where rays are

trapped in the underside of the truck. We again see in the y polarized images (Figures

2.8d and 2.8e) that the reflections from the ground are washed out and all ground

features are lost; it does not affect the contrast in this scene as much, however, because

the metal remains reflective at both polarizations; these horizontal surfaces are the

coldest portions of the scene at both polarizations. We also see that there are cavities

in the wheel wells and the cab, which show up comparatively warm, in both simulation

and experiment. In fact, where simulation and experiment differ, the differences are

minor and attributable to the scene geometry (i.e. the 3D model of the truck and the

positioning of the camera).

For the ground we used the simple model introduced in the Cinderblocks scenario

in Section 2.3.2. Again, though it could be improved, it is a good first approximation

for the behavior of dirt at 35 GHz.

We have again demonstrated the ability to populate a scene with objects, assign

experimentally determined material properties to those objects, and run the simulation
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Figure 2.8: A pickup truck in the desert at visible wavelengths and 35GHz.

(a) Visible image of a pickup truck.

(b) x-polarized image of a pickup truck. (c) x-polarized simulated image of a pickup truck.

(d) y-polarized image of a pickup truck. (e) y-polarized simulated image of a pickup truck.
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Table 2.3: Material properties used in the Bike Racks scene

Object ε?r ε??r Temperature (K) Notes
Posts N/A N/A N/A Metal
Chain N/A N/A N/A Metal
Bicycle Frame N/A N/A N/A Metal
Bricks 5.5 0.5 288 Concrete [19]
Windows 3.9 0 288 Fused silica [24]
Grass 4.9 2.1 288 Moist soil [21]
Tires 7.7 0.38 288 SA-9 tire [21]
Plastics 1.9 0.01 288 Polypropylene [25]

to produce an image that exhibits the same phenomenology as experimentally measured

image, even for more complicated geometry.

2.3.4 Bike Racks

For the final scene, we consider a set of bike racks located behind Evans Hall at

the University of Delaware. A visible image of the scene is shown in Figure 2.9a. Not

visible in this photograph is a large tree directly behind the imager, nor the buildings

surrounding this area. All are modeled, however, as they have significant impact on the

simulated image. The bicycles in the simulated scene are based on publicly-available

3d models [22, 23]. A list of the material properties of objects in the scene is given in

Table 2.3.

The experimental and simulated images for the x polarization are shown in

Figures 2.9b and 2.9c respectively; the experimental and simulated images for the y

polarization are shown in Figure 2.9d and 2.9e respectively.

All key features of the experimental data are reproduced in the simulation. The

bicycle frame (or other metal parts) are the coldest objects in the scene, exactly as

expected; the rear wheel of the near bicycle also features prominently, but the wheels

of the far bicycle, being positioned to mostly reflect the horizon, are barely visible. The

differences in relative power of the bicycle frame and front gear between the experimental

and simulated image are due to slight differences in the model geometry and orientation.

The bike lock, though faint in the experimental data, is also visible in both. The largest
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Figure 2.9: Bicycles outside Evans Hall at visible wavelengths and 35GHz.

(a) Visible image of bicycles.

(b) x-polarized image of bicycles. (c) x-polarized simulated image of bicycles.

(d) y-polarized image of bicycles. (e) y-polarized simulated image of bicycles.
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difference between the x and y-polarized images is the presence of reflections from the

bricks and this is faithfully reproduced in the simulation as well.

The conical cap on the fence posts and bike racks are major features, as are

the chains between the fenceposts. The fenceposts themselves, reflecting the horizon,

are significantly less visible. In the first iteration of the simulated image, while the

fenceposts were invisible, their reflections in the bricks were very clear; this is because

rays reflecting from the posts would be traveling at a low angle and leave the scene near

the horizon, while rays reflected from the bricks to the fenceposts would leave the scene

at an angle much closer to zenith, thus appearing cold; however, once the tree behind

the imager was modeled, those rays could no longer exit the scene, and the reflected

images of the posts disappeared.

Using the bicycle model, we have shown that the simulation software is capable

of reproducing even complex scenes faithfully. We have also incidentally demonstrated

the importance of modeling all objects in the scene, not just the ones that are in the

imager field of view. Most importantly, we once again used experimentally derived

values for the dielectric properties of the objects and reasonable values for the sky

model, with no attempts at tweaking the values to more closely match the experiment;

when combined with an accurate representation of the scene geometry, we demonstrated

that the simulation software produces an image remarkably close to the experimental

data, validating the simulation.
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Chapter 3

NOVEL IMAGING SCENARIOS

In this chapter we apply our simulation software to novel mmW imaging scenarios.

Three scenarios are chosen from military and civilian imaging applications for which

millimeter waves are being considered. The goal of this chapter is not to exhaustively

explore every scenario in detail, nor is it to design an imaging system for any scenario.

The goal, rather, is primarily to showcase the value of the simulation software in

determining whether a pmmW-based system is applicable to the given scenario.

Note that although we have not validated the simulated Stokes parameters, the

x and y-polarized simulation values are derived from them; it is therefore reasonable to

expect that the simulation of I , Q, U , and V will also be accurate, so in the following

scenarios we report the Stokes parameters where they are useful.

3.1 Airplane Landing In Adverse Conditions

We first apply the ability of mmWs to penetrate fog to evaluate an airplane

landing guidance system based on passive mmW imaging.

3.1.1 Scene Description

A small airplane makes its final landing approach at a 4◦ glide angle to a 20 m

wide, 600 m long runway. The imager is placed on the nose of the aircraft. The imager

targets are a series of passive mmW beacons, placed every 50 m alongside the runway,

and every 5 m at the beginning and end. The beacons are 1 m square metal plates

at a 45◦ angle, aligned such that they reflect the coldest part of the sky, at zenith,

toward the airplane. Two possible beacon configurations are shown in Figure 3.1: the

beacons can be, as previously described, a single 1 m square metal plate, shown in
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Figure 3.1: Two styles of passive mmW landing guidance beacons.

(a) A single large metal plate. (b) Many small metal plates

Figure 3.1a; alternatively, the metal plate could be broken up into a series of low-profile

angle brackets, with each edge still angled at 45◦, of a size and dimension such that

the projected area is the same as the single plate, as shown in Figure 3.1b; a set of 10

brackets with a 10 cm side length placed with a 1 m gap between them would accomplish

this. Either beacon is cheap and easy to deploy, completely non-reliant on an external

power source, can be made flimsy enough to not damage an aircraft in the event of

an emergency, and is trivial to camouflage such that it is invisible from the air except

along the landing path.

The scene is simulated at both 35 and 95 GHz. The imager is a circular aperture

with a diameter of 0.6 m for both frequencies, which produces a 500×500 pixel image,

with a per-pixel noise of 4 K. The imager field of view is 10◦. The material properties

of all objects in the scene are given in Table 3.1. Three different weather conditions

are simulated: cloudy, heavy fog, and extreme fog. Fog was generated using the model

presented in Section 2.2.7, setting the cloud base height to 0 m (i.e. ground level), the

cloud top to 600 m, and the columnar density of water in the clouds to 0.02 g cm−2

(corresponding to a volumetric density of 0.3 g m−3) for heavy fog or 0.06 g cm−2 (1 g m−3)
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Table 3.1: Material properties used in the Airplane Landing scenario.

Dielectric Constant
35 GHz 95 GHz

Object ε?r ε??r ε?r ε??r Temperature (K) Notes
Reflector N/A N/A N/A N/A N/A Metal
Runway 2.5 0.6 2.25 0.18 288 Asphalt [19]
Ground 4.9 2.1 3.7 1.2 288 Moist soil [21]

Table 3.2: Fog attenuation properties for the Airplane Landing scenario.

Attenuation (dB km−1)
Weather Water Content (g m−3) Visibility (m) [27] 35 GHz 95 GHz
Cloudy 0 N/A 0.17 0.92
Heavy Fog 0.3 50 - 150 0.40 2.29
Extreme Fog 1.0 25 - 70 0.88 5.05

for extreme fog. The attenuation characteristics of the model fog, along with the visible-

wavelength visibility of such a fog, are given in Table 3.2. The calculated fog attenuation

corresponds well with the attenuation of 0.6 to 1.5 dB km−1 g−1 m3 at 35 GHz and 3 to

5 dB km−1 g−1 m3 at 95 GHz [26].

Two distances to the runway are considered: 1000 m and 400 m. Both are

considerably longer than visual range for the foggy weather conditions. All images are

of the parameter |Ey|2 because it was found to provide the highest contrast.

3.1.2 Landing In Cloudy Weather

In this scenario, there is no obscuring fog. This scenario serves as a basis of

comparison for the remaining two conditions. The pmmW images in these conditions

are shown in Figure 3.2.

There are several things to note regarding this imaging scenario. First, both

frequencies allow recognition of the beacons at both ranges. This is important because

it shows that, fundamentally, it is not impossible to land an aircraft based on data

from a passive mmW imager. Second, the 35 GHz image is much lower quality. This is

because at a 0.6 m aperture diameter, at a distance of 400 m, at 35 GHz, the spot size

is approximately 14 m in diameter; given that the separation between beacons is only
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Figure 3.2: Simulated mmW image of passive beacons in the absence of fog.

(a) 35GHz image, 1000m distance (b) 35GHz image, 400m distance

(c) 95GHz image, 1000m distance (d) 95GHz image, 400m distance
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5 m, it is impossible to distinguish between individual beacons. All image pixels smear

together to such an extent that it is only due to the extremely low temperature of the

sky that we are able to see the beacons at all; the image is lighter at the top and darker

at the bottom due to the slight difference in sky temperature between horizon and

9◦ above horizontal (the direction of specular reflection at the bottom of the image),

illustrating the extreme loss of contrast. A larger aperture, such as could be mounted

on a larger aircraft, would perform significantly better at 35 GHz. Similarly, at 95 GHz,

the spot size at 1000 m is 13 m in diameter and the beacons blur together. Third, the

runway itself is indistinguishable from the surrounding ground; this is because at such

a shallow angle, both surfaces have nearly 100% reflectivity.

3.1.3 Landing In Heavy Fog

We now consider landing in a heavy fog. In this scenario, the runway is invisible

from both distances; due to the nose of the aircraft, it possible that the pilot cannot

see the ground at 1000 m from the runway, though it becomes visible before before

the aircraft reaches the 400 m point. Any lights on the ground are most likely visible

throughout the approach. The pmmW images under these conditions are shown in

Figure 3.3.

Again, at both frequencies the landing beacons are visible, and, again, the

35 GHz image is too low-contrast to be usable at 1000 m. It is interesting to note that

the images at are not significantly different from those taken in cloudy weather; this is

because the fog does not significantly affect the zenith temperature. At 95 GHz, the

total additional path loss from the sky to the detector via the beacon due to fog is only

2.2 dB (0.8 dB traveling vertically through the 600 m of fog, the remainder traveling the

1000 m to the detector). The fog has even less effect at 35 GHz, but the image is too

poor due to the aperture size for this to matter.
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Figure 3.3: Simulated mmW image of passive beacons through 0.3 gm−3 water
content fog.

(a) 35GHz image, 1000m distance (b) 35GHz image, 400m distance

(c) 95GHz image, 1000m distance (d) 95GHz image, 400m distance
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3.1.4 Landing In Extreme Fog

We now consider landing in extremely heavy fog. In this scenario, the runway is

invisible from both distances, and remains invisible until immediately before touchdown;

it is possible, for some larger aircraft, for the pilot to never see the ground at all until

the front landing gear contacts the runway. Landing under such conditions is currently

possible only using ground-based radio transmitters to guide the aircraft. The pmmW

images under these conditions are shown in Figure 3.4.

The value of mmW imaging is illustrated most strongly in this scenario. The

35 GHz image is again not degraded significantly compared to the cloudy weather

version but, again, the image was very low quality to begin with. The image at 95 GHz

is degraded by the fog, but the runway markers are still visible even at a 1000 m range.

This is notable because in this heavy a fog, absolutely nothing is visible from the cockpit

in any other imaging regime; light from the ground would be attenuated and scattered

by the intervening fog, and no structure tall enough to be seen through it would be

built this close to a runway. The pilot would have radar altimetry and GPS guidance,

but no way to absolutely orient himself in the absence of active transmissions from the

ground. The pmmW beacons in conjunction with a passive imaging system can be used

for this purpose, even in zero-visibility conditions.

3.1.5 Conclusion

A set of mmW beacons placed alongside a runway can aid in landing in extreme

weather conditions where it would otherwise be impossible. The beacons themselves are

cheap, safe, low-power, covert, and frequency-agnostic. The most stringent requirement

on the imaging system is the aperture size: the system must be able to resolve individual

beacons, otherwise (as in the 35 GHz images) the contrast is degraded too far to be

reliably useful. Lower frequencies provide improved propagation characteristics, but

require a larger aperture. More study, including specific details about the proposed

imager performance, is required to make a final determination of the feasibility of such

a system, though we have proven that the concept is sound.
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Figure 3.4: Simulated mmW image of passive beacons through 1.0 gm−3 water
content fog.

(a) 35GHz image, 1000m distance (b) 35GHz image, 400m distance

(c) 95GHz image, 1000m distance (d) 95GHz image, 400m distance
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Figure 3.5: Visible image of the underarm holster used in the mmW simulation.

3.2 Concealed Weapon Detection

We apply the ability of mmWs to penetrate clothing to evaluate the capabilities

of a concealed weapon detection system based on passive mmW imaging.

3.2.1 Scene Description

A man dressed in street clothing carries a handgun in an underarm holster of

the kind shown in Figure 3.5; this holster is easily concealed under street clothing; the

torso and human model are based on a publicly-available 3d model [28]. We have not

developed a hair model, so the man is taken to be bald.

Weight, and thus aperture size, is less of an issue for a ground-based system,

so we take the imager as having a circular aperture with a diameter of 1.0 m. The

imager is placed at a height of 1.5 m above the ground. Two distances to the target are

considered: 4 and 20 m, corresponding to checkpoint and standoff imaging scenarios; at

4 m the field of view is 30◦ and at 20 m the FOV is 6◦. Two locations for the target are
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Table 3.3: Material properties used in the Concealed Weapon Detection scenario.

Dielectric Constant
35 GHz 95 GHz

Object ε?r ε??r ε?? ε??r Temperature (K) Notes
Shoes 2.2 0.06 2.21 0.161 300 Leather [13]
Holster 2.2 0.06 2.21 0.161 310 Leather [13]
Gun N/A N/A N/A N/A N/A Metal
Clothing 1.6 0.06 1.61 0.121 300 Denim [13]
Person 14 16 5.9 9.4 310 Dry skin [29, 30]
Ground 2.5 0.6 2.25 0.18 296 Asphalt [19]

considered: outdoors and indoors; outdoors, reflections from the cold sky at various

angles are expected to provide the largest contrast and aid in detection, while indoors

the contrast is expected to result from temperature differences between the person and

his surroundings.

The scene is simulated at both 35 and 95 GHz. We consider all polarization

states: the Stokes parameters I , Q, U , and V , as well as |Ex|2 and |Ey|2. The imager

produces a 740×440 pixel image with a per-pixel noise of 4 K for each polarization state.

The material properties of all objects in the scene are given in Table 3.3.

We have chosen denim for the clothing as it is the thickest and most lossy

material that is commonly worn. The denim is assumed to be 0.8 mm thick and the

leather holster is 2 mm.

It should be noted that we can only present still images here; seeing the subject

in motion (e.g. turning around slowly) would significantly improve detection probability.

3.2.2 Outdoors

The simulated outdoor images, 35 GHz from a distance of 4 m, 95 GHz from

4 m, and 95 GHz from 20 m are shown in Figures 3.6, 3.7, and 3.8, respectively. The

35 GHz image from 20 m is almost too blurry to resolve the person, much less detect

any concealed weapons, so it is not included.

1 Dielectric constant values were not found in literature at 95 GHz; the values were
extrapolated based on low-frequency data.
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Figure 3.6: Concealed weapons detection at 35GHz, outdoors at 4m.

(a) Stokes I (b) Stokes Q (c) Stokes U

(d) Stokes V (e) |Ex|2 (f) |Ey|2
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Figure 3.7: Concealed weapons detection at 95GHz, outdoors at 4m.

(a) Stokes I (b) Stokes Q (c) Stokes U

(d) Stokes V (e) |Ex|2 (f) |Ey|2
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Figure 3.8: Concealed weapons detection at 95GHz, outdoors at 20m.

(a) Stokes I (b) Stokes Q (c) Stokes U

(d) Stokes V (e) |Ex|2 (f) |Ey|2
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We notice several things about these images. First, the V Stokes parameter

(degree of left/right circular polarization, Figures 3.6d, 3.7d, and 3.8d) images conveys

no useful information; there is simply not enough circular polarized radiation in this

scenario to be worth detecting. Second, the darkest pixels are consistently the top of

the head, the shoulders, and parts of the upper chest; this is unsurprising, as these parts

are angled to reflect the coldest part of the sky at zenith. Since the images are displayed

by setting the coldest pixel to black, the hottest to white, and linearly interpolating the

other values2, these cold patches lead to the rest of the scene being washed out. Finally,

the handgun is visible in every frequency and distance; it is not always obvious as a

threat, but it is always visible as a foreign object in at least one of the polarizations.

We now analyze each frequency-distance pairing individually.

Figure 3.6 shows the images produced at 35 GHz from a distance of 4 m. One

immediately notices that the handgun has an exceptionally strong signature in the Q

and U (Figures 3.6b and 3.6c, respectively) images, with even the trigger guard being

visible. This is unfortunately a happy coincidence of a particular arrangement of sky

temperature, viewing angle, and contraband position, and is not the case in general,

as illustrated by the higher-frequency images. We also see this in Figure 3.9, which

shows the Q image from a series of different angles, with the visibility of the handgun

varying depending on viewing angle, demonstrating that multiple viewing angles will

be needed to reliably detect hidden contraband. One observation that does apply in

general, however, is that the lumpiness of the body combines with the high variation in

the sky temperature profile to produce several artifacts near folds of skin, especially

around the abs, thighs, and knees in the I , |Ex|2, and |Ey|2 images; however, these

2 As part of the display process, the real-valued image data is converted to an 8-bit
integer between 0 (black) and 28− 1 = 255 (white); it was found that setting the coldest
pixel to black would result in the lowest 40 or 50 integers each being assigned to a
single digit number of pixels, with similar behavior for white pixels. This caused the
8-bit image to effectively use only 7 bits, significantly decreasing the contrast. The
black (white) level is actually set such that the coldest (hottest) 1/256th of the pixels
are black (white), and the rest of the values are linearly interpolated.
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contributions affect all polarizations almost equally, so they nearly cancel out in the Q

and U states. Finally, the clothing is invisible except where it bags under the arms,

and the holster is entirely invisible.

Switching to the same view at 95 GHz, shown in Figure 3.7, reveals several

finer details (such as toes; note that the person is wearing sandals) due to shorter

wavelength. The clothing is visible as shadows around the legs and torso, though it

does not significantly affect the image; the holster is now visible as well, and it obscures

the barrel of the handgun; the hand-grip is still clearly visible, however. There is less

variation in sky temperature, so the aforementioned artifacts in Figure 3.6 are much

weaker. Also, the handgun no longer shows up particularly strongly in the Q and U

images (Figures 3.7b and 3.7c, respectively), though it does remain visible.

Finally, consider the 95 GHz image from a distance of 20 m shown in Figure

3.8. The handgun is no longer recognizable as a handgun, though it and the holster

are visible as foreign objects. It has, however, disappeared from the Q and U images;

in fact, in the Q image it is more noticeable from the way it disrupts the bright line

running up the edge of the torso. This disruption of the generally smooth shape of the

human body suggests a characteristic of concealed objects that the operator could be

trained to look for.

3.2.3 Indoors

The simulated indoor images, 35 GHz from 4 m, 95 GHz from 4 m, and 95 GHz

from 20 m are shown in Figures 3.10, 3.11, and 3.12, respectively. Again, the 35 GHz

image at 20 m is too blurry to be usable.

Save for the level of blur and some minor differences in the visibility of clothing

items, the images are effectively identical, so we discuss them together.

The images have a considerably higher apparent noise than the outdoor images;

this is due to the much lower contrast in the scene: the surroundings are uniformly

296 K, and the person is 310 K, leading to a maximum temperature difference of 14 K;

the 4 K noise figure is a significant fraction of that range. In most mmW imaging
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Figure 3.9: Series of outdoor images at 35GHz taken from a distance of 4m. All
images are of the Q parameter.
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Figure 3.10: Concealed weapons detection at 35GHz, indoors at 4m.

(a) Stokes I (b) Stokes Q (c) Stokes U

(d) Stokes V (e) |Ex|2 (f) |Ey|2
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Figure 3.11: Concealed weapons detection at 95GHz, indoors at 4m.

(a) Stokes I (b) Stokes Q (c) Stokes U

(d) Stokes V (e) |Ex|2 (f) |Ey|2
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Figure 3.12: Concealed weapons detection at 95GHz, indoors at 20m.

(a) Stokes I (b) Stokes Q (c) Stokes U

(d) Stokes V (e) |Ex|2 (f) |Ey|2
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scenarios, contrast is due to differences in reflected temperature between objects; here,

however, the reflected temperature is uniform, so the imager has effectively become a

low-quality clothing-penetrating thermal camera.

Again we see a bright line up the edge of horizontal surfaces in the Q images

(Figures 3.10b, 3.11b, and 3.12b), with the handgun disrupting it; the value of this

observation is dubious in this case, as the handgun is plainly visible in the I , |Ex|2, and

|Ey|2 images. We also again see the value of considering multiple polarization images:

visual artifacts, such as increased brightness in cavity areas (e.g. under the chin and

around the groin), either disappear or are diminished in some images, while anomalous

objects (the handgun in this scenario) remain visible in some form in every image.

3.2.4 Conclusion

A passive mmW imaging system can be used to see through clothing and aid in

the detection of concealed weapons from a distance. Whether such a system is effective

depends on the location, the viewing angle, and the sort of contraband that one hopes

to detect.

Humans are essentially bags of salt water, and water has a relatively high

dielectric constant in the microwave and mmW regime, which leads to a relatively

high reflectivity for human skin. Dielectric materials concealed under clothing would

have lower reflectivity, but be at the same temperature as the body, and so show up

warm; highly reflective materials, such as metals, would reflect the colder surroundings,

and show up as cold. This occurs both indoors and outdoors, though outdoors the

reflections from the head, shoulders, and chest provide a much colder return than from

a vertically-oriented reflector strapped to the torso, and a strategy must be devised to

deal with this. Besides the aperture size/resolution design, there is the non-obvious

tradeoff between 35 and 95 GHz that, while mmWs at 95 GHz have improved detection

capabilities (evidenced by the holster becoming visible), they also have a decreased

ability to penetrate clothing.
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We note that we performed imaging in the atmospheric windows of 35 and

95 GHz; this led to degraded performance outdoors due to the cold sky. However,

if we were to perform the imaging in one of the mmW absorption bands, such as

near 60 GHz, the sky temperature would be considerably higher, while at reasonable

detection ranges the propagation loss to the imager would still be relatively low. This

would lead effectively to indoor-like imaging in all weather conditions; whether this is

preferable depends on the capabilities of the imager.

Most importantly, though, the simulation software has enabled us to reach these

conclusions without needing to perform expensive and time-consuming experiments.

3.3 Search and Rescue

We apply the ability of millimeter waves to image through clouds to evaluate

using passive mmW imaging to aid in the search portion of search-and-rescue operations.

3.3.1 Scene Description

A Cessna 172 (a small metal-skinned airplane) has crashed in a desert scrub

land environment; a visible image of the crash is shown in Figure 3.13a; the airplane

model in this and the simulated mmW images is based on a publicly-available 3d model

[31]. A passive mmW search system is mounted on the underside of a search aircraft

flying at 3000 m, pointed down; the imager has a field of view of 10◦, corresponding to a

500 m wide search area, per flyover. The imager has a diameter of 2 m, which would be

difficult to achieve with a full aperture, but a 2 m equivalent synthetic aperture system

could be produced with antennas distributed over all horizontal surfaces of the search

craft.

The scene is simulated at 35 and 95 GHz, which corresponds to a spot size on

the ground of 13 and 5 m, respectively. The imager produces a 300×300 pixel image,

with a 4 K per-pixel noise at each frequency. The material properties of all objects in

the scene are given in Table 3.4.
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Figure 3.13: Visible images of the targets in the Search and Rescue scenario.

(a) A crashed Cessna 172
(b) A pmmW beacon made from a metalized Mylar
emergency blanket

Table 3.4: Material properties used in the Search and Rescue scenario.

Dielectric Constant
35 GHz 95 GHz

Object ε?r ε??r ε?r ε??r Temperature (K) Notes
Dry Ground 3.1 0.2 2.9 0.2 300 Dry soil [21]
Wet Ground 4.9 2.1 3.1 1.2 300 Moist soil [21]
Rocks 6.7 0.31 6.7 0.43 300 Basalt [32]
Aircraft N/A N/A N/A N/A N/A Metal
Blanket N/A N/A N/A N/A N/A Metal
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We consider three variants of this scenario. In the first, basic scenario, we

attempt to find the plane. In the second scenario, the pilot attempts to signal the

search plane, using a Mylar emergency blanket (shown in Figure 3.13b); the blanket is

metal-coated, so it would be 100% reflective; it is 1.5 m wide and 2 m long. In the last

scenario, the pilot has a pack of 12 emergency blankets and uses them to make a large

beacon measuring 6 m by 6 m. We also consider three weather conditions: clear, cloudy,

and moderate rain. The latter two weather conditions would disrupt search-and-rescue

efforts by high-altitude aircraft operating at visible or IR wavelengths. Note that this

scenario could also take place at any time, as time of day is not a significant factor in

the mmW temperature of the atmosphere, which is another significant advantage over

a visible or IR system in this scenario.

We model small-scale ground clutter such as rocks, boulders, shrubs, and trees;

we do not model large-scale clutter objects such as streams or other major terrain

features which would break up the uniform terrain and make detection more difficult;

however, there are very few large, flat, horizontal, metallic objects in nature, so the

airplane and beacons will still always be the coldest objects in the scene. Many small

aircraft are partially or entirely fabric-skinned, however, with a metal (or composite

material, for newer craft) skeleton, which would be far less visible; we attempt to address

this problem by removing the airplane from the scene when beacons are present; we do

not attempt to simulate a fabric-skinned composite material-framed aircraft without

beacons. Finally, we do not model phase noise or scattering in the atmosphere, which

can be significant over long distances [33]; our only sources of image degradation are

aperture size effects, propagation loss due to attenuation, and a per-pixel imager noise.

3.3.2 Clear Weather

In this scenario, the weather is clear; as the best-case imaging scenario, this

serves as a baseline for comparison for the other weather conditions. The pmmW image

is shown in Figure 3.14. The path loss from the aircraft to the ground is 0.1 dB at

35 GHz and 0.3 dB at 95 GHz.
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Figure 3.14: Simulated mmW search and rescue from an altitude of 3000m in clear
weather.

(a) Airplane at 35GHz (b) Small beacon at 35GHz (c) Large beacon at 35GHz

(d) Airplane at 95GHz (e) Small beacon at 95GHz (f) Large beacon at 95GHz
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We notice several things in these images. First, the airplane and beacons are

clearly visible at both frequencies; not only are they visible, they are each easily the

brightest object in the scene. Second, all ground clutter features have disappeared,

having been blurred out and lost in the imager noise; additionally, the slight bumpiness

and variation in terrain height has also been washed out. This is useful because it

renders the background essentially free of small clutter. Third, the signal is not obviously

a downed aircraft at 35 GHz, nor is it distinguishable from the beacons; at 95 GHz.,

however, the shape of the airplane is clear. Fourth, the small beacon is a much weaker

signal than the aircraft, but still visible under these conditions; this means that pilots

of fabric-skinned aircraft could reasonably use an emergency blanket as a pmmW signal.

Finally, the lower resolution of the 35 GHz system is most obvious when considering the

small beacon, which is far smaller than the smallest resolvable feature at this distance;

it is cold enough to remain visible, but the noise level is much higher.

3.3.3 Cloudy Weather

In this scenario, the weather is cloudy. The clouds are considered as having an

altitude between 1000 and 2000 m (recall the aircraft is at 3000 m); this degrades the

imaging in two ways: first, the search craft must see through the clouds, and second,

the signal from the ground is weaker due to the increased sky temperature caused by

the clouds. The pmmW image is shown in Figure 3.15. The path loss from the aircraft

to the ground is 1.2 dB at 35 GHz and 5.6 dB at 95 GHz.

The first thing to notice is that, when compared to the image in clear weather,

the 35 GHz image is barely degraded. The images are somewhat noisier (indicated by

the background becoming grayer), but the airplane, small beacon, and large beacon

each remain easily visible through the clouds. Again, though, it is only possible to

detect the crashed airplane, and not to determine its shape. Regarding the 95 GHz

images, the airplane and large beacon remain visible. The small beacon is reduced to a

few pixels and is very nearly lost in the noise; however, it would show up clearly as the
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Figure 3.15: Simulated mmW search and rescue from an altitude of 3000m through
a 1000m thick cloud layer.

(a) Airplane at 35GHz (b) Small beacon at 35GHz (c) Large beacon at 35GHz

(d) Airplane at 95GHz (e) Small beacon at 95GHz (f) Large beacon at 95GHz
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Table 3.5: Rain attenuation parameters for the Search and Rescue scenario, at a
rainfall of 10mmh−1 [34].

Frequency (GHz) a b Attenuation (dB km−1)
35 0.235 1.009 2.4
95 1.06 0.745 5.9

search plane moved over the terrain, so we can still consider it as being visible from the

air.

3.3.4 Rainy Weather

In this scenario, the weather is moderate rainfall, at a rate of 10 mm h−1. At-

tenuation at mmW frequencies for a rain rate R (given in mm h−1) is given by the

empirical relation,

A = aRb

where the parameters a and b are dependent on frequency and temperature. We use

the values of a and b calculated by Olsen et al. in [34] for a rain temperature of 20 ◦C.

Values of a, b, and the associated loss are given in Table 3.5. For comparison, the

attenuation at visible wavelengths is on the order of 4.5 dB km−1 at this rain rate [35];

however, in visible-wavelength imaging, the unattenuated signature would be much

weaker, decreasing the effective range significantly.

We take the rainclouds as having a height between 1000 and 2000 m, and the

rain a height up to 1500 m. The path loss from the aircraft to the ground is 4.8 dB at

35 GHz and 11.7 dB at 95 GHz. The image from this altitude is shown in Figure 3.16.

Notably, both the airplane and large beacon are still visible at 35 GHz; unfortu-

nately, the small beacon has disappeared. The image is approximately on par with the

image at 95 GHz through clouds (the second row of Figure 3.15). The 95 GHz image

gives no useful information. Even unblurred (i.e. using an infinite-diameter aperture)

the maximum temperature difference in the 95 GHz image is on the order of 2 K, which

would be completely lost below the noise floor; there is simply nothing to see at this

frequency.
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Figure 3.16: Simulated mmW search and rescue from an altitude of 3000m through
10mmh−1 rain.

(a) Airplane at 35GHz (b) Small beacon at 35GHz (c) Large beacon at 35GHz

(d) Airplane at 95GHz (e) Small beacon at 95GHz (f) Large beacon at 95GHz
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3.3.5 Conclusion

Millimeter waves capable of penetrating rain and clouds can assist in search-

and-rescue operations under adverse weather conditions, particularly when combined

with passive beacons placed by the target. Though the target cannot be resolved at

35 GHz, it can still be easily detected even through moderate rain. Thicker clouds

and heavier rain (or higher-altitude clouds, so the rain accounts for more of the path)

would increase the path loss, potentially making the mmW image unusable, though

there is still some headroom at 35 GHz; however, poor weather also negatively affects

other imaging techniques, so this is not in itself a mark against the pmmW system.

An advantage of the pmmW system is that small scrub and clutter does not adversely

effect the imager performance, as the contrast is too low for it to be visible. Also, most

of the loss is in the lower atmosphere, through the rain and the clouds; if the imager

aperture could be increased (and the resolution, such that the search target is larger

than a single pixel), there is no real limit to how high the search plane could fly, or

how large an area it could cover in a single pass, making it superior to conventional

techniques; the challenge, of course, would be increasing the aperture size.
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Chapter 4

CONCLUSIONS AND FUTURE WORK

We have described a methodology for simulating the images taken by a pmmW

imaging system; moreover, we have implemented pmmW simulation capabilities in

Blender, demonstrated the software’s validity, and simulated three novel scenarios of

interest to the pmmW imaging community.

Not covered in this thesis is the possibility of simulating scenes with active

mmW sources. We already have the capability of performing active coherent simulation

using physical optics implemented in Blender. However, it is prohibitively slow and

memory-intensive, making it unusable for any reasonably-sized scenes we would be

interested in simulating; current efforts include attempting to increase the speed and

decrease the memory footprint.

Work on the simulation software was begun when the most recent version of

Blender was 2.49b; in the time since, Blender has undergone major improvements in

functionality and usability that are not reflected in the current program; future work

includes porting the simulation capabilities to the most recent code version.

The software presented in this thesis, however, is still useful for simulation of

passive phenomenology and has already been used in conjunction with an imager model

to aid in the design of a real imaging system.
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Appendix A

DIELECTRIC CONSTANTS OF SELECTED MATERIALS

Most materials are not well-characterized at mmW frequencies. There are a

number of reasons for this, including the difficulty in collecting dielectric constant

data, variability in materials making it impossible to obtain a single overall value for

any parameter, and, until recently, lack of utility of such measurements. It is also

usually the case that, when a new measurement technique is presented, the authors

validate it against some well-characterized material (e.g. Teflon or polypropylene) but

do not perform measurements of novel materials; when new materials are explored, it

is typically with the aim of characterizing materials for mmW integrated circuits or

similar non-imaging applications [36, 37, 38, 39, 40, 41, 42, 15], so many measurements

exist of e.g. semiconductor materials or other mmW components that are rarely found

in nature. This section contains a compilation of material properties we have found

useful for scene simulation.

Note that differences in measurement techniques and material samples will lead

to differences in reported dielectric properties; moreover, there is typically a range

of materials known as e.g. concrete or fiberglass with different material properties.

Therefore, when possible, measurements should be performed on the material one is

hoping to simulate. However, as demonstrated in Section 2.3, even approximately

correct material parameters give good results if the geometry is modeled correctly.
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Table A.1: mmW dielectric properties of common materials.

Dielectric Constant
35 GHz 95 GHz

Material ε?r ε??r ε?r ε??r Reference
Concrete 5.5 0.5 2.49 6.8 × 10−2 [19, 15]
Asphalt 2.5 0.6 – – [19]
Brick 1.3 7.4 × 10−2 – – [14]
Sand 3.0 0.56 4.6 7 × 10−3 [19, 43]
Ice 3.1 2 × 10−3 3.1 9 × 10−3 [44]
Dry soil 3.1 0.2 2.9 0.2 [21]
Moist soil 4.9 2.1 3.1 1.2 [21]
Basalt 6.7 0.28 6.8 0.45 [32]
Granite 5.3 2.3 × 10−2 – – [45]
Denim 1.6 6 × 10−2 – – [13]
Beige leather 2.2 6 × 10−2 – – [13]
Human skin 14 16 5.9 9.4 [29, 30]
Oak leaves 7.3 5.6 4.1 3.3 [46]
Polypropylene 2.3 1.8 × 10−4 2.26 1.3 × 10−3 [47, 48]
Plexiglass 2.3 2 × 10−2 2.59 1.9 × 10−2 [25, 48]
Nylon 2.99 2.1 × 10−2 2.99 2.5 × 10−2 [49, 48]
Fiberglass 4.3 0.11 3.78 9.3 × 10−2 [50, 51]
Water 12.5 22.5 6.65 9.4 [52]
Salt water 12.3 23.2 5.82 10.1 [52]
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Appendix B

DERIVATIONS

There are several derivations that were glossed over in the body of this thesis.

For the sake of completeness, we include them here.

B.1 Mathematical Background

Unless noted otherwise, all vector quantities used in this thesis occupy the space

C3. That is, a vector A can be written

A = axx̂ + ayŷ + azẑ

where aj is a complex number and the real vectors x̂, ŷ, and ẑ form an orthonormal

basis spanning C3; x̂, ŷ, and ẑ need not be real.

The dot product is defined as

A ·B =
?

j

ajbj

The standard definition for the dot product for complex vectors is A·B =
?

j ajb
∗
j

because that allows the dot product to be used as an inner product on C3 as it is on R3.

Therefore caution is required when implementing the simulation using existing software

libraries.

Using this dot product we define the unit vector in the direction of A (i.e. the

vector Â such that A = AÂ with Â · Â = 1)

Â =
A√
A ·A

A =
√
A ·A
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Note here that due to the definition of the dot product the magnitude A is not necessarily

a real number.

The cross product is defined in the usual way

A×B =

?????????

x̂ ŷ ẑ

ax ay az

bx by bz

?????????
= x̂ (aybz − azby) − ŷ (axbz − azbx) + ẑ (axby − aybx)

These definitions allow us to use the standard vector identities

A · (B×C) = B · (C×A) = C · (A×B) (B.1)

A× (B×C) = (A ·C)B− (A ·B)C (B.2)

(A×B) · (C×D) = (A ·C) (B ·D) − (B ·C) (A ·D) (B.3)

(A×B) × (C×D) = (A ·B×D)C− (A ·B×C)D (B.4)

where A, B, C, and D are arbitrary (real or complex) vectors.

B.2 Phase Matching Condition

One boundary condition is the continuity of the tangential electric field across

any boundary. This can be written as

(Ei + Er − Et) · n⊥ = 0 (B.5a)

?
E0

i e
i(ki·n⊥−ωt) + E0

re
i(kr ·n⊥−ωt) − E0

t e
i(kt·n⊥−ωt)

?
· n⊥ = 0 (B.5b)

where n⊥ is any vector such that n⊥ · n̂ = 0 (i.e. it is on the interface). Every term

varies with a eik·n⊥ dependence; because the boundary condition must be satisfied over

the entire interface, we require that

ki · n⊥ = kr · n⊥ = kt · n⊥ (B.6)

Because n̂ · n̂ = 1 and n̂ · n⊥ = 0 we can write

k · n⊥ = (k · n⊥) (n̂ · n̂) − (n̂ · n⊥) (k · n̂)
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This has the form of Equation B.3. Thus,

(ki × n̂) · (n⊥ × n̂) = (kr × n̂) · (n⊥ × n̂) = (kt × n̂) · (n⊥ × n̂)

Because n⊥ is arbitrary, n⊥ × n̂ can be any vector on the interface. Therefore

ki × n̂ = kr × n̂ = kt × n̂

B.3 Amplitude Reflection and Transmission Coefficients

We consider the geometry defined in Section 2.2.1. We have defined the fields in

terms of the local coordinates ŝ and p̂ (Equation 2.23) as

E = Esŝ + Epp̂ (B.7a)

H = Hsp̂ + Hpŝ (B.7b)

We now seek a relationship between Es, Hs, Ep, and Hp. Applying Equations

2.4c, 2.23, and B.2

Hsp̂ + Hpŝ =
k

ωµ
k̂× (Esŝ + Epp̂) =

k

ωµ
(Esp̂− Epŝ)

Hs =
k

ωµ
Es (B.8a)

Hp = − k

ωµ
Ep (B.8b)

Beginning with Equations 2.22a and 2.22b, we use Equations B.7a and B.7b for

the incident, reflected, and transmitted fields

n̂× (Es,iŝ + Ep,ip̂i) + n̂× (Es,rŝ + Ep,rp̂r) − n̂× (Es,tŝ + Ep,tp̂t) = 0

n̂× (Hs,ip̂i + Hp,iŝ) + n̂× (Hs,rp̂r + Hp,rŝ) − n̂× (Hs,tp̂t + Hp,tŝ) = 0

We know from applying Equation B.2 to Equation 2.23 that

n̂× p̂ = n̂×
?
k̂× ŝ

?
= n̂×




k̂×
?
n̂× k̂

?

?
(n̂× k̂) · (n̂× k̂)




= n̂×




n̂−
?
k̂ · n̂

?
k̂

?
(n̂× k̂) · (n̂× k̂)


 = −

?
k̂ · n̂

?
ŝ

(B.9)
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This allows us to group terms that are perpendicular and parallel to ŝ

(Es,i + Es,r − Es,t) n̂× ŝ = 0 (B.10a)

(Hp,i + Hp,r −Hp,t) n̂× ŝ = 0 (B.10b)
?
Ep,ik̂i · n̂ + Ep,rk̂r · n̂− Ep,tk̂t · n̂

?
ŝ = 0 (B.10c)

?
Hs,ik̂i · n̂ + Hs,rk̂r · n̂−Hs,tk̂t · n̂

?
ŝ = 0 (B.10d)

Dividing Equations B.10a and B.10b by Es,i and Hp,i, respectively, and using

the definition of rs, rp, ts, and tp from Equations 2.24 and 2.25, we obtain

1 + rs − ts = 0

1 + rp − tp = 0

Substituting for Ep and Hs in Equations B.10c and B.10d from Equations B.8a

and B.8b

−ωµ

ki
Hp,ik̂i · n̂− ωµ

kr
Hp,rk̂r · n̂ +

ωµ

kt
Hp,tk̂t · n̂ = 0

ki
ωµ

Es,ik̂i · n̂ +
kr
ωµ

Es,rk̂r · n̂− kt
ωµ

Es,tk̂t · n̂ = 0

Using the dispersion relation k2 = ω2µε we know that ωµ/k = k/ωε. We have

also defined k = kk̂; additionally, both ω and µ are constants, so we cancel them. This

gives

− 1

ε1
Hp,iki · n̂− 1

ε1
Hp,rkr · n̂ +

1

ε2
Hp,tkt · n̂ = 0

Es,iki · n̂ + Es,rkr · n̂− Es,tkt · n̂ = 0

Dividing through by Hp,i and Ep,i, multiplying the first equation by ε1ε2, and

grouping terms

rp (ε1kt · n̂− ε2kr · n̂) − ε2ki · n̂ + ε1kt · n̂ = 0

rs (kr · n̂− kt · n̂) + ki · n̂− kt · n̂ = 0
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rp =
ε1kt · n̂− ε2ki · n̂
ε1kt · n̂− ε2kr · n̂

rs = −ki · n̂− kt · n̂
kr · n̂− kt · n̂

Finally, we note from Equation 2.21 that kr · n̂ = −ki · n̂; substituting this and

canceling negative signs completes the derivation.

B.4 Poynting Vector

We begin with the standard expression for a propagating wave

E = E0e
i(k·r−ωt)

H = H0e
i(k·r−ωt)

Then the time-averaged power flow is given by the Poynting vector

S =
1

2
Re {E×H∗} =

1

2
Re

?
E0e

i(k·r−ωt) ×H∗
0e

−i(k∗·r−ωt)
?

=
1

2
e2Im(k)·rRe {E0 ×H∗

0}

We know from Maxwell’s equations that H0 = k× E0/ωµ0. Thus

S =
e2Im(k)·r

2ωµ
Re {E0 × (k∗ × E∗

0)}

Evaluating the quantity E0 × (k∗ × E∗
0) using Equation B.2

S =
e2Im(k)·r

2ωµ
Re {(E0 · E∗

0)k
∗ − (E0 · k∗)E∗

0}

=
e2Im(k)·r

2ωµ
[(E0 · E∗

0)Re {k} −Re {(k∗ · E0)E
∗
0}]

From Maxwell’s equations, E0 · k = E∗
0 · k∗ = 0. Therefore

− (k∗ · E0)E
∗
0 = (k∗ · E∗

0)E0 − (k∗ · E0)E
∗
0

which has the form of the right side of Equation B.2. Making this substitution

S =
e2Im(k)·r

2ωµ
[(E0 · E∗

0)Re {k} + Re {k∗ × (E0 × E∗
0)}]

The product E0 × E∗
0 is purely imaginary (or zero, if E0 is real). Therefore, we

make the substitution E0 × E∗
0 = iv where v is real. Then

Re {k∗ × (E0 × E∗
0)} = Re {ik∗ × v} = −Im {k∗} × v = Im {k} × v
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Substituting back v = −iE0 × E∗
0 gives the Poynting vector

S =
e2Im(k)·r

2ωµ
[(E0 · E∗

0)Re {k} − iIm {k} × (E0 × E∗
0)]

B.5 Power Reflection and Transmission Coefficients

We consider the geometry defined in Section 2.2.1. We know that at steady-state,

in a time-averaged sense we have conservation of energy across an interface. Additionally,

at the surface itself we have no dissipation. Then, we can write the conservation of

energy across an interface in terms of the Poynting vector in medium 1 and 2, denoted

S1 and S2 as

S1 · n̂ = S2 · n̂ (B.11)

The power flux in medium 2 is due only to the field transmitted from medium 1

to medium 2; we denote this St. In medium 1, however, we have power flux Si due to

the incident field, power flux Sr due to the reflected field, and an additional term Sm

due to the interference of incident and reflected fields. Thus

(Si + Sr + Sm) · n̂ = St · n̂ (B.12)

Si = Re {Ei ×H∗
i } (B.13a)

Sr = Re {Er ×H∗
r} (B.13b)

Sm = Re {Ei ×H∗
r + Er ×H∗

i } (B.13c)

St = Re {Et ×H∗
t} (B.13d)

In fact, the statement of energy conservation in Equation B.12 is not the most

general condition on energy flux at the boundary as we require only continuity of the

real part of E×H, i.e. the time-averaged power flux. The imaginary part of E×H,

however, is related to the average stored energy [53] and this quantity must also be

continuous across the interface. Therefore, the general energy conservation relation is

(Si + Sr + Sm) · n̂ = St · n̂ (B.14)
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Si = Ei ×H∗
i (B.15a)

Sr = Er ×H∗
r (B.15b)

Sm = Ei ×H∗
r + Er ×H∗

i (B.15c)

St = Et ×H∗
t (B.15d)

We now evaluate Si, Sr, Sm, and St. To do this, we decompose E and H using

Equations B.7 and B.8, and substitute values of r and t defined in Equations 2.24 and

2.25, and use the fact that ωµ/k = k/ωε. Doing this we obtain

Si = Ei ×H∗
i = (Es,iŝi + Ep,ip̂i) ×

?
H∗

s,ip̂
∗
i + H∗

p,iŝ
∗
i

?

= Es,iH
∗
s,iŝ× p̂∗

i + Ep,iH
∗
p,ip̂i × ŝ∗ + Es,iH

∗
p,iŝ× ŝ∗ + Ep,iH

∗
s,ip̂i × p̂∗

i

=
k∗1
ωµ

Es,iE
∗
s,iŝ× p̂∗

i −
k1
ωε1

Hp,iH
∗
p,ip̂i × ŝ∗ + Es,iH

∗
p,iŝ× ŝ∗ − k∗1

k1
Hp,iE

∗
s,ip̂i × p̂∗

i

Sr = Er ×H∗
r = (Es,rŝ + Ep,rp̂r) ×

?
H∗

s,rp̂
∗
r + H∗

p,rŝ
∗?

= Es,rH
∗
s,rŝ× p̂∗

r + Ep,rH
∗
p,rp̂r × ŝ∗ + Es,rH

∗
p,rŝ× ŝ∗ + Ep,rH

∗
s,rp̂r × p̂∗

r

=
k∗1
ωµ

rsr
∗
sEs,iE

∗
s,iŝ× p̂∗

r −
k1
ωε1

rpr
∗
pHp,iH

∗
p,ip̂r × ŝ∗

+ rsr
∗
pEs,iH

∗
p,iŝ× ŝ∗ − k∗1

k1
rpr

∗
sHp,iE

∗
s,ip̂r × p̂∗

r

Sm = Ei ×H∗
r + Er ×H∗

i =


 (Es,iŝ + Ep,ip̂i) ×

?
H∗

s,rp̂
∗
r + H∗

p,rŝ
∗?

+ (Es,rŝ + Ep,rp̂r) ×
?
H∗

s,ip̂
∗
i + H∗

p,iŝ
∗?




=


 Es,iH

∗
s,rŝ× p̂∗

r + Ep,iH
∗
p,rp̂i × ŝ∗ + Es,iH

∗
p,rŝ× ŝ∗ + Ep,iH

∗
s,rp̂i × p̂∗

r

+Es,rH
∗
s,iŝ× p̂∗

i + Ep,rH
∗
p,ip̂r × ŝ∗ + Es,rH

∗
p,iŝ× ŝ∗ + Ep,rH

∗
s,ip̂r × p̂∗

i




=




k∗1
ωµ

r∗sEs,iE
∗
s,iŝ× p̂∗

r −
k1
ωε1

r∗pHp,iH
∗
p,ip̂i × ŝ∗ + r∗pEs,iH

∗
p,iŝ× ŝ∗

+
k∗1
ωµ

rsEs,iE
∗
s,iŝ× p̂∗

i −
k1
ωε1

rpHp,iH
∗
p,ip̂r × ŝ∗ + rsEs,iH

∗
p,iŝ× ŝ∗

−k∗1
k1
r∗sHp,iE

∗
s,ip̂i × p̂∗

r −
k∗1
k1
rpHp,iE

∗
s,ip̂r × p̂∗

i
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St = Et ×H∗
t = (Es,tŝ + Ep,tp̂t) ×

?
H∗

s,tp̂
∗
t + H∗

p,tŝ
∗?

= Es,tH
∗
s,tŝ× p̂∗

t + Es,tH
∗
p,tŝ× ŝ∗ + Ep,tH

∗
s,tp̂t × p̂∗

t + Ep,tH
∗
p,tp̂t × ŝ∗

=
k∗2
ωµ

tst
∗
sEs,iE

∗
s,iŝ× p̂∗

t −
k2
ωε2

tpt
∗
pHp,iH

∗
p,ip̂t × ŝ∗

+ tst
∗
pEs,iH

∗
p,iŝ× ŝ∗ − k∗2

k2
tpt

∗
sHp,iE

∗
s,ip̂t × p̂∗

t

Substituting the expanded quantities into Equation B.12 gives a natural grouping

into independent equations for s, p, and cross-polarized states

0 =
Es,iE

∗
s,i

ωµ
(k∗1 ŝ× p̂∗

i + k∗1rsr
∗
s ŝ× p̂∗

r + k∗1r
∗
s ŝ× p̂∗

r + k∗1rsŝ× p̂∗
i − k∗2tst

∗
s ŝ× p̂∗

t ) · n̂

0 =
Hp,iH

∗
p,i

ω



−k1
ε1
p̂i × ŝ∗ − k1

ε1
rpr

∗
pp̂r × ŝ∗ − k1

ε1
r∗pp̂i × ŝ∗

−k1
ε1
rpp̂r × ŝ∗ +

k2
ε2
tpt

∗
pp̂t × ŝ∗


 · n̂

0 = Es,iH
∗
p,i

?
ŝ× ŝ∗ + rsr

∗
p ŝ× ŝ∗ + r∗p ŝ× ŝ∗ + rsŝ× ŝ∗ − tst

∗
pŝ× ŝ∗

?
· n̂

+ Hp,iE
∗
s,i



−k∗1
k1
p̂i × p̂∗

i −
k∗1
k1
rpr

∗
s p̂r × p̂∗

r −
k∗1
k1
r∗s p̂i × p̂∗

r

−k∗1
k1
rpp̂r × p̂∗

i +
k∗2
k2
tpt

∗
sp̂t × p̂∗

t


 · n̂

If the incident wave is homogeneous, then ŝ, p̂i, and p̂r are real; thus, ŝ× ŝ∗ =

p̂i × p̂∗
i = p̂r × p̂∗

r = 0. Additionally, the vectors ki, Re {kt}, Im {kt} and n̂ are all in

the same plane, and thus so are p̂i, p̂r, and p̂t; therefore, p̂i × p̂∗
r · n̂ = p̂r × p̂∗

i · n̂ =

p̂t × p̂∗
t · n̂ = 0, and the mixed and cross-polarization terms vanish. We now evaluate

the remaining vector quantities

(ŝ× p̂∗) · n̂ =
?
ŝ×

?
k̂∗ × ŝ∗

??
· n̂ =

?
(ŝ · ŝ∗) k̂∗ −

?
ŝ · k̂∗

?
ŝ∗
?
· n̂

= k̂∗ · n̂ =
k∗ · n̂
k∗

(p̂× ŝ∗) · n̂ =
??

k̂× ŝ
?
× ŝ∗

?
· n̂ = −

?
ŝ∗ ×

?
k̂× ŝ

??
· n̂

= −
?

(ŝ∗ · ŝ) k̂ +
?
ŝ∗ · k̂

?
ŝ
?
· n̂ = −k̂ · n̂ = −k · n̂

k

Making these substitutions and factoring out constants,

0 = k∗
i · n̂ + rsr

∗
sk

∗
r · n̂ + r∗sk

∗
r · n̂ + rsk

∗
i · n̂− tst

∗
sk

∗
t · n̂

0 =
ki · n̂
ε1

+ rpr
∗
p

kr · n̂
ε1

+ r∗p
ki · n̂
ε1

+ rp
kr · n̂
ε1

− tpt
∗
p

kt · n̂
ε2
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Then, recalling that kr · n̂ = −ki · n̂ we can write

0 = 1 −Rs − Ts

0 = 1 −Rp − Tp

Rs = rsr
∗
s

Ts = tst
∗
s

k∗
t · n̂

k∗
i · n̂

Rp = rpr
∗
p

Tp = tpt
∗
p

ε1kt · n̂
ε2ki · n̂

Sr · n̂ = RSi · n̂

St · n̂ = T Si · n̂

If the incident wave is homogeneous, Si is real, therefore Si = Si and Sr · n̂ =

RSi · n̂. If we take the transmitted wave as also being homogeneous (it will in general

not be) then, similarly, St · n̂ = Re {T }Si · n̂
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