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Abstract— In this article, the intrinsic properties of hyper-
spectral imagery (HSI) are analyzed, and two principles for
spectral–spatial feature extraction of HSI are built, including
the foundation of pixel-level HSI classification and the def-
inition of spatial information. Based on the two principles,
scaled dot-product central attention (SDPCA) tailored for HSI is
designed to extract spectral–spatial information from a central
pixel (i.e., a query pixel to be classified) and pixels that are similar
to the central pixel on an HSI patch. Then, employed with the
HSI-tailored SDPCA module, a central attention network (CAN)
is proposed by combining HSI-tailored dense connections of the
features of the hidden layers and the spectral information of
the query pixel. MiniCAN as a simplified version of CAN is
also investigated. Superior classification performance of CAN and
miniCAN on three datasets of different scenarios demonstrates
their effectiveness and benefits compared with state-of-the-art
methods.

Index Terms— Central attention, hyperspectral imagery (HSI),
spectral–spatial feature extraction, transformer.

I. INTRODUCTION

BY RECORDING reflectance spectral information of the
ground on an aircraft or satellite platform, hyperspectral

imagery (HSI), occupying dozens of or even hundreds of
contiguous narrow bands, possesses abundant discriminative
information for land use and land cover (LULC) classifi-
cation [1]–[6]. However, reflectances in adjacent bands are
often highly correlated, and spectral and spatial resolutions are
unbalanced, which deteriorates the classification performance.

Many traditional feature extraction methods have been
proposed. These methods are partitioned into three cate-
gories: spectral-based, spectral plus spatial feature extrac-
tion, and spatial–spectral feature extraction methods. For

Manuscript received October 18, 2021; revised January 8, 2022; accepted
February 24, 2022. This work was supported in part by the Beijing Natural
Science Foundation under Grant JQ20021 and in part by the National Natural
Science Foundation of China under Grant 61922013 and Grant U1833203.
(Corresponding author: Wei Li.)

Huan Liu, Wei Li, Mengmeng Zhang, Chen-Zhong Gao, and Ran Tao are
with the School of Information and Electronics, Beijing Institute of Tech-
nology, Beijing 100081, China (e-mail: huanliu233@gmail.com; liwei089@
ieee.org; xianggen@udel.edu; 7520200002@bit.edu.cn; 3120205425@
bit.edu.cn; rantao@bit.edu.cn).

Xiang-Gen Xia is with the School of Information and Electronics, Beijing
Institute of Technology, Beijing 100081, China, and also with the Department
of Electrical and Computer Engineering, University of Delaware, Newark,
DE 19716 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3155114.

Digital Object Identifier 10.1109/TNNLS.2022.3155114

spectral-based feature extraction, feature extraction is per-
formed only in the spectral domain. The principal compo-
nent analysis (PCA) [7] and the linear discriminant analysis
(LDA) [8] are the most classical unsupervised and supervised
feature extraction methods, respectively. Under the frame-
work of graph embedding [9], many methods have been
proposed for spectral feature extraction, including the unsu-
pervised sparsity preserving graph embedding (SPGE) [10],
the sparsity graph-based discriminant analysis (SGDA) [11],
and the collaboration-competition graph preserving embed-
ding (CCPGE) [12]. They learn low-dimensional features
from spectral information by particularly designed graphs.
For spectral plus spatial feature extraction, extended morpho-
logical profiles (EMP) [13], morphological attribute profiles
(AP) [14], and local binary pattern (LBP) [15] are commonly
used methods for spatial feature extraction on HSI. In general,
the extracted spatial features are stacked with the spectral
feature, which incurs the curse of dimensionality, causing
information redundancy and overfitting of classification mod-
els. For spectral–spatial feature extraction, spectral and spatial
features are jointly extracted to keep the most discriminative
information for HSI classification. The representative methods
include the spatial coherence distance (SCD) [16], the image
patches distance (IPD) [17], the spatial–spectral combined dis-
tance (SSCD) [18], the tensor sparse and low-rank graph-based
discriminant analysis (TSLGDA) [19], and the orthogonal total
variation component analysis (OTVCA) [20]. In general, for
those methods, feature extraction is performed on a patch
around a query pixel or on the whole HSI.

Compared with traditional feature extraction, deep-learning-
based methods extract deeper and more discriminative fea-
tures. For convolutional neural network (CNN), a strategy was
proposed to classify HSI (CNNHSI) directly in the spectral
domain [21], while spatial information was not utilized at
all. CNNPPF [22] was fed with a pair of pixels to learn
the pixel-pair features, and the final classification result of
a query pixel was decided by the voting strategy on the
results of all pairs of the query pixel and its neighboring
pixels. The benefit of this network is that training sam-
ples are augmented tremendously, but spatial information
is not utilized. In [23], the randomized principal compo-
nent analysis (RPCA) was first performed on the original
spectral–spatial features, and the transformed features were fed
into a designed CNN-based network (RPCACNN) to extract
deeper spectral–spatial features. Similarly, in SSCNN [24],
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a traditional spectral–spatial extraction method was exerted on
the original features, followed by a designed CNN. Contextual
deep CNN (CDCNN) performed spectral–spatial extraction on
a patch by a multiscale convolutional filter bank [25]. A novel
network called diverse region-based CNN (DRCNN) was fed
with a patch and different parts of the patch around a query
pixel simultaneously to learn contextual interactional features,
and the learned spectral–spatial features from different parts
of the patch were merged to obtain the final feature [26].
For tree species classification based on HSI, a 3-D CNN
framework was proposed [27] to fully exploit the local spectral
structure information. To tackle the small sample set problem,
a lightweight convolutional neural network (LWCNN) was
proposed [28], where the joint spectral–spatial information was
extracted by spectral–spatial Schroedinger eigenmaps (SSSE)
and then fed into a designed CNN network. To address the
problem of a limited number of training samples, CNNs with
multiscale convolution (MS-CNNs) were proposed by extract-
ing deep multiscale features from HSI [29]. To reduce the com-
putational cost of the patch-based learning framework, a fast
patch-free global learning (FPGA) framework was proposed
for HSI classification [30]. To maintain detailed information
while preserving semantic information, a multiscale CNN-
based module called information compensation was proposed
by integrating the original input with more abstract hierar-
chical learning feature maps [31]. As a variant of CNN, the
graph convolutional network (GCN) has combined the concept
of convolution with graph [32] and attracted a lot of attention.
In [33], by combining CNN and GCN, a framework called
FusCNNGCN was proposed for HSI classification, where
features were generated by CNN and GCN, and then fused by
a full connection layer. Similarly, a deep feature aggregation
framework driven by GCN (DFAGCN) was developed for
scene classification in remote sensing by the combination of
CNN and GCN [34], where features in different layers of
a pretrained VGGNet-16 were concatenated and fed into a
graph-level classification model based on GCN.

Recently, based on the self-attention mechanism, trans-
former [35] has been applied in many other fields of machine
learning and become more and more successful. For HSI
classification, bidirectional encoder representations from trans-
formers (BERTHSI) [36] were introduced. In BERTHSI,
a pixel sequence with a query pixel and its neighbors was
first fed into an embedding module with features and posi-
tional embedding, and then, the output embedded pixels
were fed into a BERT module to learn the final features.
By combining attention mechanism with CNN, an attention
mechanism-based method termed the multilevel feature net-
work with spectral–spatial attention model (MFNSAM) was
proposed [37]. This network consists of a multilevel CNN
and a spectral–spatial attention module. For many other deep-
learning-based methods, please refer to the literature [38].

Although the existing deep-learning-based methods achieve
a certain level of HSI classification performance, some prob-
lems exist. For CNN-based or CNN-mixed methods, on the
one hand, some methods extract features only in the spectral
domain and do not utilize spatial information or utilize spatial
information partly, such as CNNHSI [21] and CNNPPF [22].

On the other hand, spatial information is excessively utilized
in some methods, and the spectral feature of a query pixel
does not stand out sufficiently, such as RPCACNN [23],
SSCNN [24], CDCNN [25], DRCNN [26], 3DCNN [27], and
FusCNNGCN [33]. These methods treat all pixels of a patch
around a query pixel equally without highlighting the query
pixel. For attention-based methods, such as BERTHSI [36],
they treat all relationships with equal right without high-
lighting the relationships between the query pixel and its
surrounding pixels. This is unreasonable since it is the query
pixel that is labeled, not the patch. Though the pixels around
the query pixel provide discriminative information as spatial
information, the query pixel should be more important than
these pixels.

In this article, to highlight a query pixel and correctly extract
the spatial information brought by the pixels around the query
pixel simultaneously, the central attention network (CAN)
is proposed. In CAN, shallower features of a query pixel
and the surrounding pixels are fed into multilayer central
attention modules, where deeper features of each pixel and the
similarity weight of each pixel relative to the query pixel are
obtained in the spectral domain or channel dimension. Then,
by weighted averaging pooling, pixels with more weights
have more contribution in the feature extraction of the next
layer. CAN adopts a dense connection strategy, that is, all the
former features and weights are reused in the current layer.
Specifically, for the original HSI patch, the spectral feature
of a query pixel is reused in the third last layer; for hidden
nodes, both weight matrices and features are reused for all the
deeper layers. In addition, a simplified version of CAN called
miniCAN is investigated with lower computation complexity.

The main contributions can be summarized as follows.
1) To demonstrate the intrinsic properties of HSI, pixel-

level HSI classification is revisited, and two princi-
ples for spectral–spatial feature extraction on HSI are
built: one emphasizes the important role of the spectral
information of a query pixel and the other defines
the exploitable spatial information. They provide a
brand-new perspective for designing excellent feature
extraction methods for pixel-level HSI classification.

2) Based on the two principles, the proposed central atten-
tion module in CAN performs feature extraction on
HSI and calculates the similar weights between a query
pixel and its neighbors, simultaneously. By doing
so, spectral–spatial feature extraction is obtained by
collecting the information of a query pixel and its
neighbors that are similar to the query pixel. The design
is completely HSI-tailored.

3) The proposed dense connection strategy is also HSI-
tailored. For the input original HSI patch, the reuse of
the spectral information of a query pixel emphasizes
the spectral information; for hidden nodes, both weight
matrices and features are reused for all the deeper layers
and help collect detailed and useful spatial information.

The remainder of this article is organized as follows.
In Section II, the problem of pixel-level HSI classification
is revisited, and two principles for HSI classification and
their rationality are introduced. Section III explicitly explains
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Fig. 1. Gap between CNN-based method and real situation of HSI
classification (the pixel in the red rectangle is a query pixel).

the proposed CAN. Experimental results are displayed in
Section IV to demonstrate the superior performance of CAN.
In Section V, we conclude this article.

II. PRELIMINARY

The earlier work of CNN for HSI classification only utilizes
spectral information while neglecting spatial information [21].
To incorporate spatial information, a query pixel is replaced
by a patch around the query pixel as input so that spatial
information can be utilized as well. By spatial convolution, the
local spatial structures of an image are obtained to discriminate
images of different classes. However, for pixel-level HSI
classification, the most important information mainly comes
from the spectral domain with dozens or even hundreds of
dimensions, and the spatial information is the relationships
between a query pixel and its neighbors. As shown in Fig. 1,
for the CNN-based methods, pixels in an HSI patch share
the same right with a query pixel. However, in reality, pixels
that are similar to a query pixel provide effective spatial
information that helps for the correct classification of the
query pixel, but those that are dissimilar to the query pixel
provide interference spatial information, which hinders the
correct classification of the query pixel. Therefore, the specific
spatial information of HSI may not be well-extracted by CNN.

Inspired by the success of transformer and BERT [39],
the vision transformer (ViT) [40] was proposed and achieved
better classification performance than CNN. It is not sur-
prising since the self-attention module in ViT encodes the
relationships between different pixels, and thus, the global
spatial structure is extracted and more discriminating than the
local spatial structures extracted by CNN. However, it may
be not well-suited for HSI classification since the relation-
ships of a query pixel to its neighbors are more important
than other relationships between the surrounding pixels, but
all relationships are treated equally in ViT. BERTHSI [36]
follows the same rule as ViT; therefore, the extracted features
still have redundant and interference information from other
relationships.

Based on the above analysis for pixel-level classification
of HSI, two principles are presented for the spectral–spatial
feature extraction of pixel-level HSI classification in the
following.

Principle 1: The class of a query pixel in HSI pixel-level
classification is mainly decided by its spectral feature.

Principle 1 points out that spectral information is the
most discriminative information for LULC classification. One

material is made up of a combination of molecules or
atoms, and different materials have different molecular or
atomic structures. Starting from the quantum hypothesis of
energy proposed by Planck, the absorption and radiation
of energy by atoms and molecules are not continuous but
discrete, and thus, different atoms and molecules have dif-
ferent reflectance spectra. Furthermore, different materials
are made of different combinations of atoms or molecules;
therefore, different materials have different reflectance spectral
features.

By combining spectroscopic and imaging technologies,
hyperspectral imaging is an image-spectrum merging technol-
ogy, and every pixel of an HSI is a reflectance spectral feature
that expands a wide spectrum band. Taking different spectral
features, pixels of categories, such as water and building, can
be easily distinguished. Moreover, by occupying a sufficient
number of spectrum bands, pixels of categories that cannot
be differentiated by RGB images is well-differentiated, such
as the fine classification of tree species [27]. Therefore, the
discriminative nature of spectral information is the foundation
of pixel-level HSI classification.

Principle 2: Besides the spectral feature of a query pixel,
neighboring pixels that are similar to the query pixel also
contain discriminative information for the classification of the
query pixel, which is called effective spatial information.

Principle 2 points out that discriminative spatial information
can be derived from neighboring pixels that are similar to the
query pixel. Although the spectral feature of a query pixel
provides primary discriminative information for classification,
in reality, one class of LULC consists of different materials,
and the material composition in the same LULC class varies
from pixel to pixel. Therefore, in order to reduce the inter-
ference caused by the variation of material composition, it is
necessary to use the information of the surrounding pixels to
reduce the negative effect on classification from the variation.
How can we reduce the variation?

By extracting the effective spatial information defined in
Principle 2, we can reduce the variation. This definition of
spatial information is different from most of the existing
methods. Some of them define spatial information as texture
information, such as LBP [15]. Indeed, this information can be
used for object detection of different shapes. However, it is not
well-suited for pixel-level HSI classification as it may sabotage
the fine structure of the most discriminative information—
spectral information. Other methods define spatial information
as the query information and all its adjacent pixels without
highlighting the query pixel and the more similar adjacent
pixels. It is obviously unreasonable to use all the surrounding
pixels without differentiation and treat them equally. This
is because some of the surrounding pixels are in the same
category as the query pixel, and some may not be. In this
case, the information that is not in the same category becomes
interference information and may prevent the correct feature
extraction. Therefore, in order to extract effective spatial
information, we need to give more attention to pixels that are
similar to the query pixel and ignore those that are less similar
to the query pixel since similar pixels are more likely to be
the same class as the query pixel.
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Fig. 2. Illustration of the proposed CAN for HSI classification, including central attention module and HSI-tailored dense connection.

III. PROPOSED CENTRAL ATTENTION NETWORK

Based on the two principles for pixel-level HSI classifica-
tion, the proposed model architecture of CAN is illustrated in
Fig. 2, including the central attention module and HSI-tailored
dense connection.

A. Central Attention Module

In the central attention module, a 3-D tensor made of pixels
as input is mapped along the channel dimension into two
new 3-D tensors, called key and value tensors, respectively,
made of the same number of pixels as the input. Every pixel
of the key and value tensors are called the value and key
of the corresponding pixel of the input tensor, respectively.
By a compatibility function of the key tensor and its central
pixel, a weight matrix is obtained. The output is the weighted
averaging pooling of the value tensor with the weight matrix
as the corresponding weights. In the following, we describe it
in more detail.

1) Scaled Central Dot-Product Attention: In analogy to the
self-attention proposed in [35], our particular central attention
module is called “scaled central dot-product attention,” as
shown in Fig. 3.

Suppose that an input is a 3D tensor patch Xi ∈ R
Ci ×m×n,

where m and n are the height and width, respectively, and Ci is
the number of channels of the input. Note that m = n is an odd
integer, and the central pixel of an HSI patch as an input tensor
is a query pixel to be classified. In the process of calculation,
we transform the 3D tensor into a pixelwise 2-D matrix

xi ∈ R
Ci ×mn. The value matrix y ∈ R

Co×mn corresponding
to a value tensor is obtained by

y = ReLU(Woxi + bo) (1)

where Wo ∈ R
Co×Ci and bo ∈ R

Co×mn are learnable parame-
ters, Co is the number of channels of the value tensor, and
ReLU is a rectified linear unit. Then, y is transformed into
Y ∈ R

Co×m×n as the value tensor. The key matrix z ∈ R
Co×mn

corresponding to a key tensor is obtained by

z = W1xi + b1 (2)

where W1 ∈ R
Co×Ci and b1 ∈ R

Co×mn are learnable parame-
ters. Let zo be the middle column vector of the key matrix z,
i.e., the key of the central pixel of the input Xi . Then, the 1-D
weight vector of size mn is

w = SoftMax
(

zT
o z√
Co

)
(3)

where SoftMax(·) is the softmax activation function. The
scaling factor of (1/(Co)

1/2) is analogical to that of the
self-attention in [35]. Then, w is transformed into a weight
matrix W ∈ R

m×n . The output is Xo ∈ R
Co×(m−2)×(n−2)

obtained by

Xo = AvgPool(Y ⊗ W)/AvgPool(W) (4)

where ⊗ and / are pointwise multiplication and division,
respectively, W is repeated along channel dimension C0 times
to adapt to the size of Y, and AvgPool is the average pooling
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Fig. 3. Comparison between scaled dot-product central attention of the proposed CAN and scaled dot-product attention of transformer. Q, K, V, and Kc are
the abbreviations of query, key, value, and the central pixel of the key (i.e., the key of the query pixel for an HSI patch), respectively.

Fig. 4. (a) Participant times in the calculation of average pooling of kernel
size 3. (b) Corresponding implicit spatial weights.

of kernel size 3, stride 1, and padding 0. By weighted average
pooling, information of pixels with more similarity weights
to the central pixel can flow with more ratio into the next
layer, but that of dissimilar pixels to the central pixel has little
influence on the next layer. In addition, since the stride of
the weighted average pooling is 1, the pixels that are closer
to the central pixel participate more times in the calculation of
the average pooling. This indicates an implicit spatial weight
for every pixel, and this implicit spatial weight is defined as
the ratio between the participation times of the pixel and that
of all pixels, as exemplified in Fig. 4. This is reasonable since
closer pixels are more likely to be the same class as the central
pixel (i.e., the query pixel of an HSI patch as an input tensor),
and the central pixel stands out with the highest implicit spatial
weight.

There are differences between the proposed central atten-
tion module and self-attention module in the transformer,
as shown in Fig. 3. First, relationships between all pixels
are calculated in the self-attention module, while only the

relationships between the central pixel of an input tensor and
its surrounding pixels are calculated. Second, the self-attention
module contains value, query, and key, and the weight matrix
is a function of query and key [35]; however, the central
attention module contains value and key, and the weight
matrix is a function of key and key’s central pixel. Finally,
the central attention module has used batch normalization
and ReLU activation that are not used in the self-attention
module. For language translation, the needed features are
extracted from word sequences, and layer normalization is
empirically better than batch normalization; therefore, in the
self-attention based methods, such as transformer and ViT as
its variant for RGB image classification, layer normalization
and ReLU are used in a feed-forward network (FFN) after
the self-attention to generate nonlinear features. However, for
pixel-level HSI classification, spectral information possesses
the most discriminative information; therefore, feature extrac-
tion can be directly conducted in the spectral domain, and the
uses of batch normalization and ReLU are beneficial for better
nonlinear feature extraction empirically.

2) Multihead Central Attention: As it is beneficial to use
multihead attention in transformer, by analogy, multihead
central attention is designed.

Let the number of heads be h. Then, the value tensor
Y ∈ RCo×m×n is divided along the channel dimension into
Y1, Y2, . . . , Yh ∈ R

(Co/h)×m×n , and the key matrix z ∈ R
Co×mn

is divided along the channel dimension into z1, z2, . . . , zh ∈
R

(Co/h)×mn. By Eqs. (2) and (3), Xoj corresponding to (Y j , z j )
in (4) for each j is obtained. The output tensor is

Xo = Concat(Xo1, . . . , Xoh) (5)
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Fig. 5. Comparison between multihead central attention of the proposed CAN and multihead attention of transformer.

where Concat means that all the tensors are concatenated
along the channel dimension. As shown in Fig. 5, com-
pared with multihead attention in transformer, the proposed
multihead central attention is generalized trivially from the
single-head central attention module and has no extra 1-D con-
volution layer. The benefits of this are twofold. First, different
from self-attention, central attention extracts favorable feature
without any extra layer; therefore, the extra 1-D convolution
is not needed for multihead attention. Second, an extra 1-D
convolution means extra parameters to be trained. Accordingly,
the complexity is reduced without the extra 1-D convolution.

B. HSI-Tailored Dense Connection

As pointed out in [41], based on dense connection,
DenseNets alleviates the vanishing-gradient problem, strength-
ens feature propagation, encourages feature reuse, and sub-
stantially reduces the number of parameters. Inspired by the
significant improvement of DenseNets over other state-of-the-
art methods, two HSI-tailored dense connections are designed
for CAN, i.e., dense connection for value and weight matrix,
and dense connections for HSI patch.

1) Dense Connection for Value Tensor and Weight Matrix:
In DenseNet, to reuse all the former features, the features of all
former layers are concatenated as the input of the current layer,
and the widths and heights of the output features of all layers
are set equal for the convenience of concatenation. In the
proposed CAN, values in different layers are supposed to be
reused. However, unlike DenseNet, the widths and heights
of the values of different layers are different. How can we
concatenate all the former values when they have different
patch sizes? We reuse not only all the former values but also all
the former weight matrices. By weighted average pooling with
different kernel sizes in different layers, i.e., using a smaller
kernel size for value with a weight matrix in a shallower layer,
and a larger kernel size for that in a deeper layer, the patch

sizes of all the former layers adapt to the patch size of the
latest former layer. Only by doing so, the features of all the
former layers can be reused as the input for the next layer.

The weight matrix represents the relationships between the
central pixel and its surrounding pixels. On the one hand,
by weighted average pooling with a small kernel size in the
central attention module, more detailed spatial information
flows into the next layer. For example, if there is one pixel in
the upper left corner that is the same category as the central
pixel, then its spatial information is meaningful. By weighted
average pooling with a small kernel size, spatial information
is kept well. However, by weighted average pooling with a
large kernel size, the information of this pixel is submerged
by pixels that are more similar to the central pixel. Therefore,
to keep more detailed spatial information, a small kernel size
should be used. On the other hand, by weighted average
pooling with a large kernel size in dense connection, more
useful spatial information flows into the deeper layer. For
example, if there is no pixel in the upper left corner that
is the same category as the central pixel, then its spatial
information is meaningless. By weighted average pooling with
a small kernel size, this information flows into deeper layers.
However, in deeper layers, the pixels are more similar to the
central pixel. Therefore, to reuse more accurate and useful
spatial information, the pixels in shallower layers that are more
similar to the central pixel should be reused in deeper layers.
By weighted average pooling with a large kernel size, more
similar pixels stand out.

In practical implementation, for the convenience of cal-
culation, the weight matrices and values in different former
layers are reused by performing average pooling and weighted
average pooling with the same kernel size (in practice, 3)
different times, to adapt to the patch sizes of the value
tensor and weight matrix of the latest former layer. As shown
in Fig. 6, performing average pooling with a small kernel
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Fig. 6. Implicit spatial weights for different cases. (a) Average pooling with
a kernel size 5. (b) Two average pooling with a kernel size 3.

size multiple times obtains a patch with the same size as
performing average pooling with a large kernel size once;
however, one benefits more from the former strategy, i.e., the
central pixel and the pixels that are spatially closer to the
central pixel have more implicit spatial weights in the former
strategy. For example, in Fig. 6, the implicit spatial weight of
the central pixel by average pooling of a kernel size 5 once is
1/25, which is less than that by average pooling of a kernel
size 3 twice, i.e., 1/9. Therefore, the central pixel and the
pixels closer to it are highlighted with more ratio by average
pooling of a small kernel size multiple times, which conforms
to the intuition of central attention.

2) Dense Connection for HSI Patch: The patch size of an
HSI patch is different from that of the value tensor in deeper
layers. However, since an HSI patch has no weight matrix,
the strategy of dense connection for value tensor and weight
matrix cannot be used for an HSI patch.

How can we reuse an HSI patch in deep layers? The answer
is that the spectral information of the query pixel on an HSI
patch is reused in the third last layer by concatenating it
with one-dimensional features extracted by multilayer central
attention modules. By multilayer central attention modules,
information of the query pixel and its neighbors is similar to it
is extracted. However, the potential drawback is that the infor-
mation of the query pixel may be submerged by surrounding
pixels. The benefit of this dense connection strategy is that
the spectral features of the query pixel are highlighted, which
conforms to the first principle, i.e., the class of a query pixel in
HSI pixel-level classification is mainly decided by its spectral
information.

C. MiniCAN

In the proposed CAN, the structure of CAN varies for
input HSI patches of different sizes, i.e., the number of layers

Fig. 7. Illustration of the proposed miniCAN for HSI classification.

increases with the increase in the patch size, and more layers
mean more trainable parameters, which increases training and
testing times, and raises computational complexity. In light of
this, a simplified version of CAN called miniCAN is further
designed, as shown in Fig. 7. In miniCAN, only one layer
of the central attention module is used, and adaptive global
average pooling replaces the average pooling with a kernel size
of 3 × 3 in (4) so that the number of layers is fixed no matter
how large the patch size is. In addition, the computational
complexity of miniCAN is much lower than that of CAN since
the number of trainable parameters is much less than CAN.

IV. EXPERIMENTS AND ANALYSIS

In this section, the proposed CAN and miniCAN are uti-
lized on three HSI datasets to validate their effectiveness.
First, three HSI datasets of different scenarios are introduced,
including Gaofeng State Owned Forest Farm, Houston2013,
and Yellow River Estuary that correspond to woodland, city,
and wetland scenarios, respectively. Second, the classification
performances of different patch sizes are analyzed for the
three datasets. Then, ablation experiments are conducted to
verify the effectiveness of the proposed miniCAN and CAN.
Finally, experiments of CAN are carried out in compari-
son with several traditional and state-of-the-art algorithms,
including OTVCA [20], CNNHSI [21], RPCACNN [23],
SSCNN [24], CDCNN [25], DRCNN [26], BERTHSI [36],
FusCNNGCN [33], and 3DCNN [27].

A. Datasets

1) Gaofeng State Owned Forest Farm: The first HSI dataset
is the Gaofeng State Owned Forest Farm dataset, which was
obtained by the AISA Eagle II diffraction grating push-broom
hyperspectral imager carried by the airborne LiCHy (LiDAR,
CCD, and Hyperspectral) system of the Chinese Academy of
Forestry Sciences over Gaofeng State Owned Forest Farm in
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Fig. 8. False-color images and the distributions of training and testing samples for Gaofeng State Owned Forest Farm, Houston2013, and Yellow River
Estuary datasets, respectively.

TABLE I

CLASS LABELS AND TRAIN–TEST DISTRIBUTION OF SAMPLES

FOR GAOFENG STATE OWNED FOREST FARM

Guangxi province in south China in January 2018. It consists
of 572 × 906 pixels with the spatial resolution of 1 m × 1 m
and 125 spectral bands in the wavelength range of 0.4–1.0 μm
with the spectral resolution of 3.3 nm. It contains nine different
forest vegetation classes and three nonforest vegetation classes,
and the numbers of training and testing samples of each class
are listed in Table I. The false-color image of Yellow River
Estuary and the distribution of those samples are shown in
Fig. 8.

2) Houston2013: The second HSI dataset is the Hous-
ton2013 dataset, which was gathered by the CASI-1500 senor
over the University of Houston and neighboring areas in June
2012 for the 2013 GRSS Data Fusion Contest. It consists of
349 × 1905 pixels with the spatial resolution of 2.5 m and
144 spectral bands in the wavelength range of 0.38–1.05 μm
with the spectral resolution of 4.65 nm. It contains five natural
objects and ten man-made objects, and the numbers of training

TABLE II

CLASS LABELS AND TRAIN–TEST DISTRIBUTION OF

SAMPLES FOR HOUSTON2013

and testing samples of each class are listed in Table II. The
false-color image of Houston2013 and the distribution of those
samples are shown in Fig. 8. Note that, in the red rectangle of
the false-color image of Houston2013, there is an area affected
by the cloud.

3) Yellow River Estuary: The third dataset is the Yellow
River Estuary dataset, which was collected by GF-5 satellite
over the Yellow River Delta in November 2018. It consists
of 1185 × 1342 pixels with the spatial resolution of 30 m,
150 spectral bands in VNIR 0.40–1.00 μm with the spec-
tral resolution of 5 nm, and 180 spectral bands in SWIR
1.00–2.50 μm with the spectral resolution of 10 nm, respec-
tively. After moving the bands 1 and 2 in VNIR and
42–53, 96–115, 119–121, 172–173, and 175–180 in SWIR,
285 spectral bands remain. It contains 20 typical wetland
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TABLE III

CLASS LABELS AND TRAIN–TEST DISTRIBUTION OF SAMPLES
FOR THE YELLOW RIVER ESTUARY DATASET

classes, and the numbers of training and testing samples of
each class are listed in Table III. The false-color image of
Yellow River Estuary and the distribution of those samples
are shown in Fig. 8.

B. Analysis of Patch Size

In this section, the influence of HSI patch size on the clas-
sification performance is analyzed experimentally. The patch
size is chosen from the set {7, 9, 11, 13}. For the training of
the proposed miniCAN and CAN, we use the Adam optimizer
with β1 = 0.9, β2 = 0.99, and the learning rate is decayed by
multiplying γ = 0.5 every 20 epochs. The initial learning
rate is set as 0.001 for both Gaofeng State Owned Forest
Farm and Houston2013 datasets, and 0.1 for the Yellow River
Estuary dataset empirically in the subsequent experiments. The
overall accuracy (OA) is used to evaluate the classification
performance.

As shown in Fig. 9 (GSOFF and YSE are the abbreviations
of Gaofeng State Owned Farm and Yellow River Estuary,
respectively), a general trend is that OA is increased with the
increase in the patch size. This is because CAN and miniCAN
gather more information from a larger HSI patch so that better
classification performance is obtained. However, the number of
training samples is limited, and more trainable parameters are
needed with the increase in the patch size. As a result, CAN
is overfitted with a large HSI patch. OAs for Gaofeng State
Owned Forest Farm and Houston2013 datasets are slightly
worse when the patch size is 13, as shown in Fig. 9. For
the proposed CAN, the best patch sizes for Gaofeng State
Owned Farm Forest, Houston2013, and Yellow River Estuary
datasets are 11, 9, and 13, respectively. However, competitive
classification performance for Yellow River Estuary is also
achieved in patch size 11. To reduce computational complexity,
the patch size for Yellow River Estuary is set as 11. Therefore,
the patch sizes for the three datasets are set as 11, 9, and 11,

Fig. 9. OA [%] versus HSI patch size on Gaofeng State Owned Farm Forest,
Houston 2013, and Yellow River Estuary datasets for the proposed CAN.

respectively, in the subsequent experiments. For the proposed
miniCAN, the best patch sizes for the three datasets are all 11,
so the patch size is set as 11 for miniCAN in the subsequent
experiments. Note that 11 is empirically a good number for
patch size that is recommended to other datasets.

C. Ablation Studies

The ablation experiment is conducted to verify the effective-
ness of different parts in the proposed miniCAN and CAN, i.e.,
the scaled dot-product central attention (SDPCA), the dense
connection of hidden layer (DCHL), and the dense connection
of the central pixel of HSI patch (DCCP). If SDPCA is not
used, then only 1-D convolution is used for feature extraction
in every layer, and the number of layers is the same as CAN or
miniCAN. OA is used to evaluate classification performance.

As listed in Table IV, after SDPCA is introduced into
HSI feature extraction, the improvements in classification
performance are significant. In miniCAN, the overall accuracy
increases from 64.67% to 98.66%, 82.54% to 90.86%, and
83.39% to 92.24% for Gaofeng State Owned Forest Farm,
Houston2013, and Yellow River Estuary datasets, respectively.
In CAN, the overall accuracy increases from 63.78% to
97.53%, 80.88% to 90.94%, and 79.96% to 95.66% for the
Gaofeng State Owned Forest Farm, Houston2013, and Yellow
River Estuary datasets, respectively. Therefore, the effective-
ness of SDPCA for HSI spectral–spatial feature extraction is
confirmed. In addition, the performance of DCHL and DCCP
is different in three experimental datasets for miniCAN and
CAN. In miniCAN, the performance gaining from DCCP is
nearly 0.9% and 0.24%, respectively, for the Houston2013 and
Yellow River Estuary datasets. Nevertheless, the gaining is
insignificant for the Gaofeng State Owned Forest Farm dataset,
i.e., only 0.06%. In CAN, the performance gained from
DCHL/DCCP is significant for both Houston2013 and Yellow
River Estuary datasets, i.e., 0.8%/1% and 0.3%/0.5%, respec-
tively. For the Gaofeng State Owned Forest Farm dataset,
the performance gained from DCCP is insignificant, i.e., only
0.01%, but that from DCHL is significant, i.e., 0.4%. However,
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TABLE IV

ABLATION EXPERIMENTS FOR THE PROPOSED MINICAN AND WITH RESPECT TO THE CLASSIFICATION PERFORMANCE (OVERALL ACCURAY [%]) FOR
GAOFENG STATE OWNED FOREST FARM, HOUSTON2013, AND YELLOW RIVER ESTUARY DATASETS

TABLE V

CLASSIFICATION PERFORMANCE [%] OF DIFFERENT METHODS FOR THE GAOFENG STATE OWNED FOREST FARM DATASET

TABLE VI

CLASSIFICATION PERFORMANCE [%] OF DIFFERENT METHODS FOR THE HOUSTON2013 DATASET

the performance gained from the combination of DCHL and
DCCP is consistent for all the three datasets, i.e., 0.5%, 1.9%,
and 1.4%, respectively, which confirms the effectiveness of the
designed DCHL and DCCP.

D. Classification Performance

To validate the effectiveness of the proposed miniCAN
and CAN, experiments are conducted on the three datasets

in comparison with the aforementioned state-of-the-art meth-
ods, i.e., OTVCA [20], CNNHSI [21], RPCACNN [23],
SSCNN [24], CDCNN [25], DRCNN [26], BERT-HSI [36],
FusCNNGCN [33], and 3DCNN [27]. The hyperparameters of
those methods are set by their recommendations. As shown in
our previous work [42], length normalization (LN) can reduce
the intraclass difference. However, this normalization may
not suit some comparison methods. To be fair, normalization
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Fig. 10. Ground truth and classification maps of the Gaofeng State Owned Forest Farm dataset produced by different methods.

Fig. 11. Ground truth and classification maps of the Houston2013 dataset produced by different methods.

methods, including standardization, 0-1 normalization, and
LN, are all tried to preprocess the three datasets for all
the comparison methods, and the best classification results

based on the preprocessed dataset by the three normalization
methods are chosen. The class-specific accuracy (CA), OA,
average accuracy (AA), and Kappa coefficient are employed
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TABLE VII

CLASSIFICATION PERFORMANCE [%] OF DIFFERENT METHODS FOR THE YELLOW RIVER ESTUARY DATASET

to evaluate the classification performance. Classification per-
formances of different methods on the Gaofeng State Owned
Forest Farm, Houston2013, and Yellow River Estuary datasets
are listed in the Tables V–VII, respectively.

In Tables V–VII, for all experiments on the three
datasets, the classification performance of spectral-only fea-
ture extraction method CNNHSI is generally worse than
those of spectral–spatial feature extraction methods except
for RPCACNN with the worst performance where random-
ized PCA is performed on HSI patch beforehand and may
reduce the discriminative information from the complete HSI
patch. For spectral–spatial feature extraction methods, 3DCNN
performs better in Gaofeng State Owned Forest Farm and
Yellow River Estuary datasets but worse in the Houston2013
dataset since Houston2013 as an urban HSI dataset is more
complex than the other two datasets. However, the classi-
fication performances of OTVCA, DRCNN, BERTHSI, and
FusCNNGCN are consistently good in all three datasets. The
performance of the proposed miniCAN/CAN is superior and
better than all the other aforementioned state-of-the-art meth-
ods by approximately 2.2%/1.6% in Gaofeng State Owned
Forest Farm, 5.7%/7.6% in Houston2013, and 0.8%/4.5% in
Yellow River Estuary, respectively, over the second-highest
other methods in terms of OA. In particular, the result of the
proposed miniCAN is a litter better than that of the proposed
CAN in the Gaofeng State Owned Forest Farm dataset. This
may result from that the training samples are randomly sam-
pled from the ground-truth map and evenly distributed, and
the testing samples are neighboring pixels of these training
samples, as shown in Fig. 9. It may reveal that this clas-
sification task is not complex compared with the other two
tasks. As a result, as a less complex spectral–spatial feature
extraction model, miniCAN may achieve a better classification
result, indicating that miniCAN with lower computational

complexity can perform as good as CAN in noncomplex
scenarios.

To visually demonstrate the effectiveness of miniCAN and
CAN, classification maps of all the aforementioned methods
are illustrated in Figs. 10–12. The produced maps by CNNHSI
contain many salt-and-pepper pixels, which confirms the poor
classification results listed in Tables V–VII. This is because
spatial information is not utilized in CNNHSI. By comparison,
although the classification performance of OTVCA, as listed
in Tables V–VII is acceptable, the produced maps are not
satisfactory since they are oversmoothed, and many small
objects are submerged. For example, for Gaofeng State Owned
Forest Farm dataset, the building land in the red rectangle
has been covered by other classes, as shown in Fig. 10.
However, the proposed miniCAN and CAN produce more
accurate and spatially smoother classification maps with fewer
mislabeled pixels than other methods, which are consistent
with the results listed in Tables V–VII. In particular, the
building land is well-preserved in the maps of Gaofeng State
Owned Forest Farm produced by miniCAN and CAN. For
the sea area marked by the red rectangle in Fig. 12, it is
easily mislabeled with the Yellow River or ecological reservoir
by other methods. However, that area is correctly labeled as
sea by miniCAN and CAN. For the Houston2013 dataset, the
challenge mainly comes from the shadow area covered by the
cloud where pixels of the same class in the cloud-covered area
and other areas have different spectral characteristics. What is
worse, most of the training data come from the areas that
are not covered by the cloud. Not surprisingly, in the cloud
area, the highway is mislabeled by all the other state-of-the-
art methods except for CNNHSI (see the red rectangle area in
Fig. 11). However, it is well-classified by miniCAN and CAN.
This is because CAN and miniCAN extract the most effective
spatial information around a patch and reduce the interference
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Fig. 12. Ground truth and classification maps of the Yellow River Estuary dataset produced by different methods.

TABLE VIII

COMPUTATION TIME [SECOND] OF DIFFERENT METHODS FOR THE

GAOFENG STATE OWNED FOREST FARM, HOUSTON2013, AND
YELLOW RIVER DATASETS

information that may prevent from correct classification. As a
result, most essential properties of a pixel in cloud-covered or
other areas are extracted, and by these properties, the pixels
in the cloud-covered area can be discriminated to some extent
by the spectral and label information from other areas.

To illustrate the computational complexities of the proposed
CAN and miniCAN compared to other methods, Table VIII
provides the computation time of training and testing of several
methods on the aforementioned three datasets by using Pytorch
in Python on AMD Ryzen 7 5800X eight-core Processor with
32-GB RAM and NVIDIA Geforce RTX 3070 with 8-GB
RAM. For all three datasets, the training and testing costs
of CNNHSI are the lowest since the network of CNNHSI is
the simplest. By comparison, the training costs of DRCNN

are the highest since DRCNN contains two stages, i.e., the
pretraining and fine-tuning stages. Followed by DRCNN are
CAN, BERTHSI, and miniCAN. As the simplified version of
CAN, miniCAN is nearly half of that of CAN in Houston2013
and Yellow River Estuary datasets, and a third in Gaofeng
State Owned Forest Farm dataset in terms of training time.

V. CONCLUSION

In this article, an efficient spectral–spatial feature extrac-
tion network called CAN has been proposed based on two
principles for HSI classification. In CAN, the HSI-tailored
scaled dot-product central attention and the multihead central
attention are utilized to extract spectral–spatial information
from a query pixel and the pixels that are similar to the query
pixel on an HSI patch. Also, to reuse the former features and
the spectral information of the query pixel, HSI-tailored dense
connections are utilized. To reduce the complexity of CAN,
miniCAN as a simplified version of CAN has been investigated
with lower computational complexity. Experiments on three
HSI datasets of different scenarios have demonstrated that the
proposed CAN and miniCAN outperform the existing state-of-
the-art HSI feature extraction methods, which has confirmed
their effectiveness.
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