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ABSTRACT 

Compared to other civil engineering structures. The cost of construction for 

earth structures is enormous. This is not only because of the large dimension of such 

structures, but also because of the high safety factors applied to reconcile the driving 

forces and prevent any possible failures. The fact that stringent policies specify very 

high safety factors is indicative of the paramount durability needed in earth structures. 

These policies, to some extent, are not irrational if one considers the extent of life and 

monetary loss associated with failure of such structures.  Traditionally, the analysis 

and design of earth structures is done following the working stress design principles. 

Recent developments have led to the application of Load and Resistance Factor 

Design (LRFD) in the analysis and design of such structures. In the broader 

engineering world, there are many optimization techniques that can be adopted in the 

analysis and design of earth structures. Once such technique namely, harmony search 

algorithm, falls under the category of metaheuristic optimization. In this study, 

harmony search algorithm is adopted and successfully applied in the design 

optimization of mechanically stabilized earth (MSE) walls reinforced with 

geosynthetic. The effects of using non-uniform length and spacing of reinforcement 

layers, on cost and design of the MSE walls, has been investigated. Results of this 

study showed that harmony search optimization algorithm is successful in optimally 

reducing the cost of construction of geosynthetic-reinforced MSE walls. 
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Chapter 1 

INTRODUCTION 

1.1 Reinforced Earth Walls 

Reinforced earth walls (also called mechanically stabilized earth walls or MSE 

walls) are soil walls constructed with artificial reinforcing. They can be used for 

retaining walls, bridge abutments, seawalls, and dikes. The primary constitutive 

elements of reinforced earth walls are the consecutive layers of engineered soil and 

layers of reinforcements. In fact, reinforced earth is a composite material consisting of 

cohesionless soil and flexible reinforcement. The most popular flexible reinforcing 

materials are metal strips and polymeric materials. A confined soil usually has high 

compressive strength but yields weak tensile performance. The tensile strength of the 

reinforced earth system is provided by frictional and mechanical interlocking between 

soil and reinforcement. Structurally, the least significant component of reinforced wall 

systems are the facing elements. Facings play the role of enhancing the aesthetics 

aspects of such structures. The facing blocks are usually prefabricated from concrete, 

steel sections, treated timber, or wire mesh. The analysis and design of a reinforced 

earth wall takes into account an integrated mass that acts cohesively, while supporting 

its own weight and applied loads. 
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The concept of reinforcement in earth walls dates back to ancient times. Two 

examples of ancient reinforced soils are the wooden reinforcement used in the 

Babylonian Gods temples in the ancient city of Dur-Kurigalzu, Iraq (Figure 1.1) and 

Beacon Tower in Western China. Straw, sticks, and branches were used in such 

structures to reinforce adobe bricks and mud dwellings. The modern form of these 

mechanically stabilized earth walls (MSE walls) was introduced by a French architect 

and engineer, Henry Vidal, in the 1960s. In 1968 and 1969, MSE walls were actively 

used during the construction of mountainous freeways in France. The first MSE wall 

in the United States was constructed in 1971 near Los Angles. Since then, more than 

23,000 MSE walls have been built around the world (Nicholson 2015). 

 

Figure 1.1 Babylonian Gods temple in ancient city of Dur-Kurigalzu ,Iraq 

[Modified from www. treasurenet.com] 

Reinforced earth walls are extensively used in highways, abutments of bridges, 

railroads and subways, docks, airports, industrial sites, and commercial and residential 
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landscaping projects. For such pervasive applications, reinforced earth walls are 

considered cheaper alternatives to other types of retaining walls. In addition, 

reinforced earth walls are known to be reliable solutions for projects with space 

limitations, weak ground conditions, and underground networks of utility lines. 

The significant benefits gained from reinforced earth walls include: 

 Economic efficiency 

 Low construction time 

 absence of need for complex construction tools and facilities 

 absence of need for expensive foundations 

 superior flexibility under seismic loads 

 Insensitivity to differential settlements 

 Durability and neat look 

 Constructability in limited spaces 

 Environmental friendly 

Geosynthetic reinforcements are engineered from strong and durable polymers. 

These materials offer MSE walls the capacity to withstand tensile loads, while 

deformations are kept under allowable values for over the design life of such 

structures. In addition, their integral behavior along with high flexibility and corrosion 

resistance makes them superior alternatives to steel reinforcement. The length of 

geosynthetic reinforcements can easily be extended beyond the potential failure 

surfaces of a soil mass. Any tensile force in the reinforced earth system is carried by 
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the geosynthetic layers. The geosynthetic layers also serve the purposes of confining 

the soil and offering resistance to movement, thus providing additional shear strength. 

The performance of geosynthetic reinforcements has seen growth due to the recent 

advancements in the polymer and material industry. One such advancement is in the 

area of maximizing the interaction efficiency between reinforcements and the confined 

soil layers. While the general MSE construction industry enjoys the perks of these 

recent advancements, this study looks into further optimizing the cost of construction 

of MSE walls reinforced with geosynthetic materials. Subsequent sections will briefly 

discuss the concepts behind the optimization methods. 

1.2 Optimization Methods for the Design of Reinforced Earth Walls 

Construction cost is one of, if not major, the decisive factors in engineering 

projects. Although the cost of construction for MSE walls is relatively low compared 

to gravity walls, the conventionally adopted design procedure, which is based on 

controlling the safety factors against the failure mechanisms for the initial design, does 

not allow for optimized design of MSE walls. Usually, the initial design is very 

conservative and satisfies all the required safety factors. In some cases, the obtained 

safety factor for one mechanism is close to the minimum allowable safety factors 

defined in design standards. On the other hand, safety factors for other mechanisms 

are very high. Such a design philosophy, even though results in a safe design, doesn’t 

necessarily result in an economical (i.e., optimum) design. Optimum engineering 

design should give due regard to the cost of projects in addition to safety. One way of 
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achieving an optimized design is by setting a target function (e.g., cost function) and 

optimizing it with appropriate techniques while the minimum safety requirements are 

preserved.    

Cost function in optimization problems is defined as a function that needs 

minimization or maximization, based on sought outcome, to obtain optimal 

performance of a given system. Cost function can be defined as an equation consisting 

of design variables and constants specified for the problem at hand. For instance, the 

constant specifications for reinforced earth walls are the unit weight of the soil, wall 

height, and the cost of reinforcement and embankments. Also, the tensile strength and 

length of the reinforcements are key design variables. For reinforced earth wall 

construction project, the cost function that is defined as a function of the variables 

listed above, is optimized by setting cost minimization as a target.  

Generally, optimization problems can be divided into two categories. The first 

category consists of problems where the variables in the cost function are not 

subjected to any constraint. Each variable can take any value without any limitation; 

however, the optimum value for the cost function is obtained for one single set of 

variables. The second category includes problems where some of the variables, or 

specific combinations of variables, are subjected to constraints. For example, the 

safety factors in the design of reinforced earth walls impose several constraints that 

need to be enforced. If a set of variables optimize the cost function but violates any of 

the safety factors, there should be a prognosis approach that prevents such variables.   
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The existence of such problems necessitated the development of robust techniques to 

account for constraints emerging in some problems. 

1.3 Metaheuristic Optimization Methods 

As mentioned in the previous section, MSE walls are among the structures that 

need enforcement of constraints emanating from required safety factors. When 

constraints constitute a set of linear algebraic equations, utilization of linear 

programming and simple technics such as the "Complex Method" (Box (1965), Guin 

(1968)) result in a single deterministic solution for the problem. On the contrary, 

quadratic functions and highly nonlinear and multimodal optimizations subjected to 

complicated constraints cannot be easily solved by using simple conventional 

methods. Metaheuristic optimization methods are simple mathematical probabilistic 

methods that are inspired by natural and artificial phenomena. Mother Nature have 

been successfully optimizing the evolution of the world and have been giving birth to 

new, evolved creatures to bring the world into balance. Although the results of the 

metaheuristic optimization methods are probabilistic, the measure of their 

performance can be correlated with that of the harmony Mother Nature has been able 

to keep since the creation of life. In addition, most of the metaheuristic methods have 

been applied for more complicated functions. The complexity in the formulation of 

these methods is minimized and only the behavior of a natural phenomenon is 

translated into their mathematical forms or algorithms. The first widely used 

metaheuristic method, known as Genetic Algorithm (GA), was developed by John 
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Holland in the 1960s (Holland 1992). GA relies on bio-inspired operators such as 

mutation, crossover, and selection. Table 1.1 shows a list of popular and commonly 

used metaheuristic methods that have been widely used in engineering optimization 

problems. 

Table 1.1 Commonly used metaheuristic methods. 

Method Developer Inspired by 

Simulated Annealing Kirkpatrick et al. (1983) Metal annealing processing 

Genetic Algorithms 
Holland in 1960s 

(Holland 1992) 
Biological systems 

Differential Evolution Storn and Price (1997) Biological systems 

Ant Colony 

Optimization 

Marco Dorigo 1992 

(Dorigo and Stützle 2004) 
foraging behavior of social ants 

Bee Algorithms Pham et al. (2005) foraging behavior of bees 

Particle Swarm Kennedy and Eberhart (1995) 
swarm behavior observed in 

nature  

Tabu Search 
Fred Glover in 1970s 

(Glover and Laguna 1997) 

uses memory and the search 

history 

Harmony Search 
Geem et al. 2001 

(Geem et al. 2001) 

improvisation process of a 

musician 

Firefly Algorithm Yang 2008 (Yang 2014) flashing behavior of fireflies 

Cuckoo Search (Yang and Deb 2009) 
brood parasitism of some 

cuckoo species 

1.4 Research Motivation 

In the engineering world, the construction of earth structures is very expensive 

and the design procedures use controlling approaches to evaluate the performance of 

the initial design. In most cases, the initial design is accepted when it satisfies the 

criteria imposed by factors of safety. Therefore, following the conventional methods 

results in a highly conservative design and imposes remarkable costs. An efficient 

optimization method is required to obtain a reliable economical design, where safety is 

ensured by satisfying constraints imposed based on standard codes. 
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The cost function for MSE walls is nonlinear and is influenced by several 

complicated constraints. These constraints make optimization unachievable with 

conventional methods. Harmony Search algorithm is a relatively new metaheuristic 

method that is known for using less complex mathematical operators and for 

employing the concept of "memory" to obtain the best harmony among the possible 

harmonies resulting from different combinations of variables.  

Most of the studies that have been done by previous researches were based on 

complicated optimization methods (e.g. Basaduhar et al. (2008)) that are not suitable 

for practical problems. Also, previous works lacks the possibility of having non-

uniform geosynthetic layers. Non-uniformity can be defined as different vertical 

spacing and length of geosynthetic. In this study, an attempt has been made to 

integrate harmony search algorithm with design considerations for MSE Walls 

reinforced with geosynthetics layers and optimize their design. 

1.5 Organization of the Thesis 

The remainder of this thesis will provide lengthy, yet informative details on the 

process utilized to successfully optimize the cost of construction for MSE walls 

reinforced with geosynthetic layers, where the design considerations and the criteria 

defined by safety factors are satisfied. Chapter 2 is composed of background 

information that is necessary for understanding the logic and reasoning behind the 

MSE walls and optimization approaches in geotechnical engineering. The first section 

of this chapter focuses on different types of MSE walls. A number of popular systems 
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are introduced and the benefits and disadvantages of each one is described. Finally, the 

superiority of the geosynthetic reinforced earth walls compared to other systems is 

discussed. The last portion of this chapter presents the history of optimization methods 

applied to geotechnical engineering problems. Chapter 3 focuses on the optimization 

of design parameters and the cost of geosynthetic-reinforced earth walls using the 

Harmony Search algorithm. Chapter 4, titled Optimum Design of Earth Walls 

Reinforced with Non-uniform Geosynthetic Layers, expands on the previous Chapter 

3. Most notably, a new system has been proposed in this chapter, where both the 

lengths and distances between geosynthetic layers are not required to be uniform. This 

chapter also includes an introduction to a new modified Harmony Search technique 

that enables the optimization algorithm to utilize a vector consisting of variables of the 

same type as a single input variable. Lastly, Chapter 5 presents the conclusions drawn 

from the work done in Chapters 3 and 4. In addition, the Matlab codes and the 

subroutines, developed during the implementation of Harmony Search and Improved 

Harmony Search Algorithms, are provided in Appendices A and B. 
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Chapter 2 

BACKGROUND 

2.1 Rigid Retaining Walls 

Based on their mode of load resistance, retaining walls can broadly be 

subdivided into two groups, namely rigid and flexible walls. Rigid retaining walls use 

their stiffness to support the lateral pressures imposed by the retained soil mass. In 

other words, the rigid wall restrains the soil, by virtue of stiffness and no deformation, 

to a slope that is larger than the slope associated with the shear strength of the soil 

(i.e., the angle of response). There are six rigid retaining walls that are popular and 

intensively used in geotechnical engineering, these are: 

 Gravity walls 

 Semi gravity walls  

 Cantilevered walls 

 Sheet piles  

 Bored piles 

 Anchored walls 

Figure 2.1 shows the various types of rigid retaining walls. Gravity walls rely 

on their mass to resist lateral pressures, which forces the wall to move horizontally, 

and remain stable against any overturning moments. The gravity walls are often made 

from mortarless stone or concrete units. A rigid footing is used below the wall to 
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maximize the stability of the wall. Gravity walls can also be built as composite 

structures where cellular confinement units are employed to enhance their flexibility. 

 

Figure 2.1 Different types of rigid retaining walls: (a) Gravity wall; (b) Semi 

gravity walls; (c) Cantilevered wall; (d) Sheet pile; (e) Bored pile; (f) Anchored walls. 



 12 

Semi-gravity retaining walls are a specialized form of gravity walls that 

include tension reinforcing steel bars to minimize the thickness of the wall without 

requiring extensive reinforcement (Figure 2.1(b)). The concept of reinforcement in 

these walls are borrowed from cantilevered walls. 

Due to the utilization of significant reinforcing steel bars, wall thickness is 

significantly reduced in cantilevered walls (Figure 2.1(c)). A relatively thin stem and a 

base slab are the main elements of the cantilevered wall. The base slab subdivides into 

the "heel" and "toe" slabs that join below the stem. Although cantilevered walls use 

much less concrete than monolithic gravity walls, more precision and precaution is 

required for successful design and construction of such walls. During service, the 

lateral pressures imposed by the soil are transferred, via a cantilever effect, to the 

footing slab and passed to the foundation soil below. When high lateral loads are 

expected or the height of the wall is relatively high, cantilevered walls employ 

buttresses on the front or counterfort on the back to facilitate the load transfer to the 

footing (Figure 2.2). Overall, these walls consume much less concrete compared to 

conventional gravity walls. 

 

Figure 2.2 Buttressed cantilevered (left) and counterfort (right) walls. 
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When a retaining wall is required for soft soil or there is a space limitation, 

sheet piles become the best choice. Sheet piles (Figure 2.1(d)) are customarily 

fabricated from steel or wooden material and driven into the ground, with 

approximately two thirds of the height of the sheet piles embedded in the ground. 

For proper construction of a bored pile retaining wall, a sequence of bored 

piles operations is installed in place and excavation of the soil proceeds on the desired 

side of the piles. The pile material could be timber, steel, or concrete.  

Anchors are components of a retaining system that can be integrated with any 

of the walls discussed above. Generally, anchoring of a retaining wall is performed by 

attaching a high-tensile-capacity cable or a tie-rod to the retaining wall and extending 

it to a location where sufficient friction is mobilized, to counterbalance the acting 

loads. The interlock of the anchor is ensured by either: grouting cement mortar around 

the tie-rod, or tying it to a "deadman" - a concrete block deep-seated in the soil mass.  

2.2 Mechanically Stabilized Earth (MSE) Walls 

As mentioned before the second broad class of retaining walls are the flexible 

retaining walls. Mechanically stabilized earth walls (MSE walls) is a common 

synonym to flexible retaining walls. In MSE walls, soil’s shear strength is enhanced 

by reinforcing and/or confining it with artificial materials. The interaction between 

soil and the reinforcement makes up a composite system that monotonously serves as 

a retaining wall. Figure 2.3 shows some application areas of mechanically stabilized 

earth (MSE). As can be seen, MSE systems can be used to support pile foundations, 
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shallow foundations (footings), road bases, and abutments. They also can be employed 

in sinkhole bridging. 

 

Figure 2.3 Different applications of MSE in geotechnical engineering (a) 

Retaining walls; (b) pile foundations; (c) road bases; (d) shallow foundations; (e) 

sinkhole bridging; and (f) abutments. 

Figure 2.3 (a) shows a very simplified schematic of the shape of a 

mechanically stabilized earth wall. As seen in the figure, the reinforcements are 
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extended beyond the failure surface of the soil, to create a monolithic mass that 

provides the required strength to resist failure. The failure mechanisms for reinforced 

earth walls will be described in detail later in Chapters 3 and 4. In the current section, 

different types of MSE walls are described from the construction point of view. Figure 

2.4 depicts the general, basic components of MSE walls. 

 

Figure 2.4 Basic elements of MSE walls. 

From Figure 2.4, it can be seen that a MSE wall consists of two important 

elements, the reinforcement material and a selected frictional soil. The interlocking 

and frictional interaction between these two elements gives birth to a monolithic mass 

that behaves like a composite material with enhanced shear strength.  
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2.2.1 Different types of reinforcements for MSE walls 

MSE walls employ different types of reinforcements to stabilize the soil. A 

simplified depiction of a reinforced soil wall is shown in Figure 2.5. Figure 2.5 (a) 

shows basic elements and configuration of a reinforced earth wall. A layer of 

engineered length of reinforcing strips, fabricated from metallic or polymeric material, 

is placed above and below each compacted soil layer. The horizontal (Sh) and vertical 

(Sv) spacing of the strips follow design code standards. The strips are tied to the facing 

skin. The facings are commonly made out of modular concrete blocks. Steel sheet 

facings are also common. Different tying approaches can be chosen, depending on the 

type of reinforcement and facing skin used.  
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Figure 2.5 Simple schematic view of a reinforced earth wall (a) MSE wall; (b) 

cross -shaped modular facing; (c) steel sheet facing. 

The most popular types of reinforcement used in MSE Wall construction are: 

steel strips, plastic strips, steel meshes, Geosynthetics (Geotextile and Geogrid), and 

locker and strip. Figure 2.6 shows the photograph of a MSE wall construction in 

which steel strips are used as reinforcement. The MSE wall in this figure shows a 

double face wall located in the corner of a construction site. As can be seen, strips 

from one face overlap those from the orthogonal face. Figure 2.7 shows steel meshes 

and their installation in MSE wall construction.  
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Figure 2.6 MSE wall reinforced by steel strips.1 

 

Figure 2.7 MSE wall (right) reinforced by steel meshes (left). 

Figure 2.8 shows a MSE wall construction using polymeric strip 

reinforcement. The polymeric strip passes through hoops on the backside of the facing 

                                                 

 
1 Figure 2.6 through 2-10 are adopted from Reinforced Soil Wall Seminar held in Iran, 

November, 17th, 2015. 
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blocks. The flexibility of these walls is relatively higher than that of metal strip 

reinforced walls.  

 

Figure 2.8 MSE wall reinforced by plastic strips. 

Figure 2.9 shows the construction of a MSE wall reinforced using the locker 

and polymeric strips. The strips pass through hoops attached on the back of the facing 

blocks and around a concrete locker embedded within the backfill. The inclusion of 

locker systems enhances the pullout resistance of the reinforcement. Such construction 

method, even though not common, is useful when there are space limitations. 
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Figure  2.9 MSE wall reinforced by locker and plastic strips. 

The most recent development in MSE walls is in the area of geosynthetic 

reinforcement. Geosynthetic fabrics are fabricated from woven polymers. Advancing 

the manufacturing and implementation aspects, and improving tensile strength of 

geosynthetic fabrics has been the focus of many research studies. Since their 

development, the application of geosynthetics has prevailed in several engineering 

fields, especially in Civil Engineering. Figure 2.10 shows the two most common forms 

of geosynthetic reinforcements (geogrid (a) and geotextile (b)) in the construction of 

MSE walls. From construction standpoint, it is a common practice to fold geosynthetic 

textile to the next layer and maintain continuity in confinement. A sequence of light 

concrete blocks have also been used in tiling the geotextile with the face of the wall. 
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Figure 2.10 Geosynthetics in construction of MSE walls: (a) Geogrid; (b) 

Geotextile. 

2.2.2 Considerations for the stabilized soil type and wall facing 

The considerations for the construction of MSE walls and the material 

requirements have been described in more details in several codes such as the FHWA 

NHI-10-024 and ASTM D 2488 standards (Elias et al. (2001), and AASHTO (1996)). 

In the following chapters, the technical aspects of the design will be discussed 

thoroughly. Here, only some considerations for reinforced fill are discussed. Based on 

the Federal Highway Administration standard, the percentage passing from the U.S. 

sieve number 4 should be 100 percent, which means that gravel particles are not 

allowed in the reinforced fill zone. In addition, the percentage passing from sieve 

numbers 40 and 200 must be less than 60 and 15 percent, respectively. The maximum 

plasticity index of the soil and minimum acceptable internal friction angle for the 

stabilized soil are limited to 6 and 25 degrees, respectively. AASHTO T-104 
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emphasizes that the material shall be substantially free of shale or other soft, organic 

poor durability particles (AASHTO 1996). Also, there are some chemical and 

electrochemical considerations that need to be evaluated before using the fill soil. The 

reinforced soil, at each layer of geosynthetics, must be compacted using suitable 

compactors before adding the next layer of reinforcement. 

Although facings are of least structural importance, the role they play in 

ensuring aesthetics is of paramount significance. A facing skin can be made from pre-

cast concrete sections or steel sheets. A cross-shaped pre-cast concrete facing and 

horizontal steel sheet facings were shown in Figures 2.5 (b) and (c), respectively. 

These facings are conventional type of facings that have been in use since the 

engineered construction of MSE walls begun. The pursuit for better finishing and 

flexibility in landscaping, has led to the development of newer type of facings such as 

gabions, concrete modular panels, concrete planter boxes, and steel mesh facings. 

The use of MSE walls reinforced with geosynthetics is expanding 

exponentially. In this study, geosynthetic-reinforced earth walls are selected for design 

and cost optimization purposes. In the rest of this chapter, a brief literature review of 

optimization techniques in geotechnical engineering is presented. 

2.3 Optimization in Geotechnical Engineering Problems 

Optimization has recently found its own place in civil engineering. Structural 

engineers try to reduce the weight of structures. For example, Lamberti (2008) 

presented an optimization algorithm, based on Simulated Annealing, that can be used 
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to optimize the design of truss structures. He examined the optimization algorithm on 

three different structural problems with the objective of minimizing the weight of bar 

trusses with 200 design variables and 3500 optimization constraints. Another example 

on the application of optimization techniques in structural engineering design is the 

work done by Serpik et al. (2016). In their work, Genetic algorithm was used to 

optimize the design of non-pre-stressed reinforced concrete structures of flat frames. 

(Serpik et al. 2016) considered the possibility of crack formation, nonlinear behavior 

of concrete and reinforcements, and minimized the cost of the concrete frame. A 

single-span reinforced concrete frames, similar to shown in Figure 2.11, were used to 

illustrate the performance of the proposed algorithm. 

 

Figure 2.11 Single-span reinforced concrete frame used by Serpik et al. (2016). 
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Another application of optimization in civil engineering and mechanical 

engineering is in the area of heat transfer. Heat transfer optimization problem is a 

multi-objective problem in which the rate of heat transfer must be maximized while 

the pressure drop is minimized (Abdollahi and Shams (2015a), Abdollahi and Shams 

(2015b), Jamali Keisari and Shams (2016), Alimoradi and Shams (2017)). 

The general advancements in optimization methods have reached the 

boundaries of geotechnical engineering for different practical problems such as 

retaining walls, seepage, back analysis in geotechnical constructions, pavement 

design, etc.  

In the area of MSE walls, multiple ongoing state-of-the-art studies have been 

performed. For example, Basudhar et al. (2008) used Sequential Unconstrained 

Minimization Technique (SUMT) to optimize the cost of the construction for 

geosynthetic-reinforced earth walls. Basha and Babu (2012) used a reliability-based 

design optimization (RBDO) to evaluate the internal seismic stability of reinforced 

soil structures based on three dominant failure modes. Basha and Raviteja (2016) 

optimized the tensile strength of geomembrane liner for V-shaped anchor trenches. 

Ben (2014) performed a limit analysis optimization of design factors for MSE wall-

supported footings. He conducted a parametric study to evaluate the effects of 

reinforcement strength, the location of footing, and failure mechanisms. Vahedifard et 

al. (2016) designed a constrained optimization approach to find the optimal facing 

profile for concave geosynthetic-reinforced soil structures (CGRSSs). They showed 
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that the use of concave facing results in higher stability and lower tensile pressure in 

reinforcement layers.  

Seepage is also another geotechnical engineering problem where optimization 

techniques have been found to apply. For example, Shahrokhabadi and Toufigh (2013) 

used a Genetic Algorithm integrated with a mesh-free method, called NEM, to find a 

solution for the unconfined seepage problem. Shahrokhabadi et al. (2016) integrated 

Particle Swarm Optimization (PSO) algorithm with a couple of other techniques to 

estimate the location of the phreatic line in unconfined seepage problem. They found a 

strong agreement between their proposed solution and existing analytical solutions and 

experimental tests. 

It has been shown that multi-objective problems can be defined in geotechnical 

engineering by borrowing concepts from other engineering fields. For example, 

Robinson et al. (2016) used a work optimization strategy to optimize traction control 

parameters for vehicles in loose dry sand. The interaction of vehicle tire and dry sand 

(see Figure 2.12) was their primary framework of optimization. 
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Figure 2.12 Interaction between tire and soil (Robinson et al. 2016) 

Zentar et al. (2001) used optimization based back analysis for the identification 

of soil parameters for modified Cam-Clay model. They minimized the difference 

between experimental data and the results obtained from integrated general finite 

element and an optimization code. Mattsson et al. (2001) proposed an optimization 

routine for identification of model parameters in soil plasticity. The concepts of 

Rosenbrock (Rosenbrock 1963) and simplex (Murty 1983) methods are borrowed in 

their work to identify model parameters on the basis of different soil tests. Zhang et al. 

(2009) used parallel hybrid moving boundary particle swarm optimization, for 

simulation-based calibration of geotechnical parameters. Their proposed model 
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showed a good performance for the calibration of the geotechnical models from 

laboratory of field measurements.  

Using an Iterative procedure unsaturated hydraulic properties of vertically 

heterogeneous soils have been estimated by Kosugi and Nakayama (1997), from 

transient capillary pressure profiles. Simunek et al. (1998) used Levenberg-Marquardt 

(Levenberg (1944), and Marquardt (1963)) optimization algorithm to estimate the 

unsaturated soil hydraulic properties from transient flow processes. 

Pucker and Grabe (2011) discussed the basics and applications of structural 

optimization in geotechnical engineering. The limitations and potentials of topology 

optimization were described in their work. They presented an example of a gravity 

wall, single anchored wall and grouted anchored wall for design optimization using 

topology approach. In addition, the application of design optimization was extended to 

foundations where the topology optimization is integrated with finite element model of 

strip foundation. Zhang et al. (2011) discussed reliability-based optimization for 

geotechnical systems and illustrated its application in shallow foundation design and 

retaining wall designs. In order to optimize the cost of construction they suggest a 

simplified reliability analysis by using mean first order method. 

In this study, a metaheuristic method, called Harmony Search Algorithm 

(HSA) has been utilized to optimize the cost of construction for MSE Walls reinforced 

with geosynthetics. A brief history and introduction to HSA is presented in the 

subsequent section. 
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2.4 Harmony Search Algorithm 

First proposed by Geem et al. (2001), Harmony Search Algorithm (HSA) is 

one of the newly developed metaheuristic optimization algorithms. It has gotten a lot 

of attention because of its fewer mathematical requirements and insensitivity to initial 

value of the variable vectors. HSA uses stochastic approaches to generate new 

variables and independent of derivative information. HSA also allows modification on 

each variable of the solution vector, which is not the case for other metaheuristic 

approaches. With such flexibility, HSA has shown successful performance in a wide 

variety of optimization problems (Lee and Geem (2004), Mahdavi et al. (2007), Kim 

et al. (2001), Geem et al. (2001), and Geem et al. (2002)). The detailed discussion of 

HSA will be presented later in subsequent chapters. 

2.4.1 The idea behind the Harmony Search Algorithms 

The idea behind the HSA algorithm is to create the best musical harmony by 

using a fixed number of musical notes where each note can choose any music pitch. 

Different combinations of the music pitches result in different harmonies, some are 

ear-catching while some are annoying. The most beautiful harmony that can be 

composed and performed by professional musicians is the optimal harmony. 

Professional musicians first choose a pitch for each note in the harmony and then, 

based on their experience, pitch-adjust each note to improve the song. This is the exact 

logic behind the harmony search optimization algorithm. A vector of variables, called 
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the solution vector, is defined for a given problem. Several vectors of the same type 

are saved in a memory matrix. The variables for each solution vector are pitch-

adjusted by both random and stochastic approaches. Finally, the vectors are sorted 

based on the resulting solution. Following an iterative procedure, a new vector is 

produced in each step. If the new vector produces a better solution. The worst solution 

in the memory matrix will be substituted by the new solution vector. If the solution did 

not improve in the new vector, the memory matrix remains unchanged.  

2.4.2 Parameters of Harmony Search Algorithms 

The probability of generating new value for each variable inside a solution 

vector is called Harmony Memory Consideration Rate (HMCR), and the probability of 

pitch-adjustment is called Pitch Adjustment Rate (PAR). The value of pitch-

adjustment is called Bandwidth (BW). These three parameters play a pivotal role in 

the quick convergence of the HSA algorithm, and their value needs to be defined 

based on the specifications of a given optimization problem.  

2.4.3 Some of the popular modified Harmony Search Algorithms 

The initial HSA assumes that the parameters listed in section 2.4.2 do not 

change during the iteration process. From the advent of the HSA, several researchers 

have tried to improve the performance of the algorithm by defining mathematical 

expressions for HSA parameters or including derivative variables. Some of the 

popular modified HSA algorithms are discussed here. 
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Geem (2008) proposed a novel derivative-based HSA algorithm that can be 

applied for problems with discrete design variables. He formulated a stochastic 

derivative for variables as a function of HSA parameter. Mahdavi et al. (2007) 

proposed an improved HSA algorithm where a logarithmic function is adapted to 

decrease the BW for each iteration. BW in the modified method changes between a 

minimum and maximum user-defined values. In addition, their proposed method 

follows a linear equation that increases the pitch adjustment rate with increase in 

iteration. It is worth mentioning that this Improved Harmony Search Algorithm 

(IHSA) will be discussed and applied in Chapter 4 of this study. Omran and Mahdavi 

(2008) borrowed concepts of swarm intelligence to create Global-best harmony search 

algorithm (GHS). In this method, BW is not involved in any of the steps. Instead, the 

best solution lend one of its variable to the new solution. Hasancebi (2008) and 

Hasancebi et al. (2009) attempted an adaptive HS which takes advantage of two 

varying control parameters, η and ρ, to generate new harmony vectors. Both of these 

parameters are selected from the average values that are observed within the current 

harmony memory matrix using a given probability density function. 

In all of the methods mentioned above the parameters of HSA are case 

dependent and should be defined by the operator. A number of studies tried to avoid 

the definition of initial parameters. For example, Wang and Huang (2010) proposed a 

new self-adaptive HS technique that is almost parameter-free and uses the minimum 

and maximum of the current HM members, to automatically control the pitch 

adjustment step. Geem and Sim (2010) defined PHF-HS algorithm that stands for 
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Parameter-Setting-Free Harmony Search. They added a new step to the original HSA, 

called Rehearsal, in which a few first steps of the iteration are used to adjust random 

initial values for PAR and HMCR. Then, the new values are set for the rest of the 

iterations. A thorough history of harmony search method can be found in Gao et al. 

(2015). 
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3.1 Abstract:  

This paper proposes a new approach to optimize the design of geosynthetic-

reinforced retaining walls. Minimizing the cost of construction is considered as the 

optimization criterion. A metaheuristic technique, named Harmony Search Algorithm 

(HSA), is applied in optimizing the design of geosynthetic-reinforced earth walls. The 

involved optimization procedures are discussed in a step-wise approach and their 

applicability is demonstrated on geosynthetic-reinforced walls of height 5, 7 and 9 

meters. The effect of static and dynamic load are considered. Results are compared 
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between this study and studies that used Sequential Unconstrained Minimization 

Technique (SUMT). It is found that the construction cost, for a geosynthetic-

reinforced walls optimized by HSA, showed as high as 9.2 % reduction from that of 

SUMT. 

3.2 Introduction 

Retaining walls are among the most extensively used structural elements in the 

construction industry. The abundance of construction materials and the simplicity in 

analysis, design, and construction had given rise to the early popularity of non-

reinforced retaining walls. It is known that the range of application of non-reinforced 

walls is limited to shorter heights. The need to enhance structural capacity by 

introducing a tension-resisting elements led to the introduction of reinforced wall 

systems. One of such developments was the geosynthetic-reinforced wall system. 

Geosynthetic reinforcement plays the superposed roles of isolation, tensile resistance 

and improved drainage in the reinforced system. These overlapping benefits have 

made geosynthetic-reinforced walls favorable and their design and implementation is 

expanding. Over the past five decades the production and use of polymer-based 

reinforcement has shown a sustained upsurge (Mouritz and Gibson 2006). 

Geosynthetic reinforced soil walls, compared to concrete or gravity walls, have 

superior flexibility that makes them better in withstanding natural disasters such as 

earthquake and landslides.  
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Construction cost is one of the decisive factors in engineering projects. 

Koerner and Soong (2001) have indicated that the cost of construction for 

geosynthetic-reinforced soil walls is the lowest as compared to gravity, steel-

reinforced Mechanically Stabilized Earth (MSE), and crib walls (see Figure 3.1). In 

addition to the benefits discussed above, their affordability have played a role in the 

increased use of geosynthetic reinforcement in weak and collapsible soils, soils in 

earthquake-prone areas, and projects involving the construction of large embankments.  

In recent studies, Harmony Search Algorithm (HSA) has been applied in 

various engineering optimization problems. A river flood model (Kim et al. 2001), an 

optimal design of dam drainage pipes (Paik et al. 2005), a design of water distribution 

networks (Geem 2006), a simultaneous determination of aquifer parameters and zone 

structures (Ayvaz 2007) are some applications of HSA in the Civil Engineering 

discipline. HSA has also been applied in space science studies towards the optimal 

design of planar and space trusses (Lee et al. (2005), Lee and Geem (2004))and the 

optimal mass and conductivity design of a satellite heat pipe (Geem and Hwangbo 

2006). Other studies that make use of HSA include: optimum design of steel frames 

(Degertekin (2008)), transport energy modeling problem (Ceylan et al. 2008), solving 

machining optimization problems such as water-water energetic reactor core pattern 

enhancement (Zarei et al. 2008), selecting and scaling real ground motion records 

(Kayhan et al. 2011), pressurized water reactor core optimization (Nazari et al. (2013 

(a)), and Nazari et al. (2013 (b))). 
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Figure 3.1 Cost of construction for various wall types (after Koerner and Soong 

(2001)) 

Using Sequential Unconstrained Minimization Technique (SUMT), assuming 

the length and strength of reinforcements as variables and construction cost as the 

objective function, Basudhar et al. (2008) optimized design of geosynthetic-reinforced 

walls. In this paper the cost of construction of geosynthetic-reinforced soil walls is 

optimized by using HSA. Optimization variables are the length of geosynthetic in each 

layer and the spacing between adjacent geosynthetic layers. Every optimization 

technique requires the definition of constraints that control the design process. Once 

the governing boundary conditions are formulated, they are imposed on objective 

functions so that results converge.  In optimizer systems constraints may be set in 

terms of factors of safety. Cost is a good example for objective functions that may be 

used in construction projects.  
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3.3 Analysis of Geosynthetic-Reinforced Earth Wall 

Stability analyses, for Geosynthetic-reinforced walls with a vertical face, are 

made assuming a rigid body behavior. Lateral earth pressures are computed on a 

vertical pressure surface located at the end of the reinforced zone. Rankine’s theory is 

followed as discussed in the FHWA (Elias et al. 2001). Parameters used in the design 

process are presented in Figure. 3.2. 

For horizontal and inclined backfill (angle 𝛽 from horizontal) retained by a 

smooth veritcal wall, the coefficient of active lateral earth pressure may be calculated 

from Equations (3.1) and (3.2) respectively. 

𝐾𝑎 = tan
2 (45 −

∅

2
) 3.1 

𝐾𝑎 = cos 𝛽 [
cos 𝛽 − √cos2 𝛽 − cos2 ∅

cos 𝛽 + √cos2 𝛽 − cos2 ∅
] 3.2 

In this paper the active earth pressure coefficient (𝐾𝑎) for the backfill is 

designated with 𝐾𝑎𝑒 . ∅ is defined as ∅𝑏 and ∅𝑓, for the soil in reinforced zone and the 

backfill (i.e. soil behind and on the top of the reinforced mass) respectively.  
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Figure 3.2 (a) Parameters used in different steps of the design; (b) external forces 

considered for the Geosynthetic reinforced retaining wall system. 

3.3.1 Evaluation of external stability 

Commonly, soil walls are classified as externally stable after three failure 

mechanisms are satisfied. They must be safe against sliding, bearing and overturning 

failures. Figure 3.2 (b) shows the external forces in a geosynthetic-reinforced wall 

system. Considering the reinforced system as a plain strain problem, the weight, 𝑉1, of 

the soil within the area defined by the height H and width l is considered to act as a 

block. Since the wall embedment depth is small, the stabilizing effect of the passive 

pressure (moment) has been neglected in the analysis. The factors of safety against the 

above failure mechanisms are presented below.  
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3.3.1.1 Safety factor against overturning  

Referring to Figure 3.2 (b), the safety factor against overturning is evaluated 

by considering moment equilibrium about point O. It can be calculated from: 

Where ∑𝑀𝑅𝑜and ∑𝑀𝑜are resisting and overturning moments respectively. 

Safety factor against sliding: sliding resistance is directly related to the 

interface friction angle (𝛿) between soil and the geosynthetic fabric. In this paper, the 

interface angle is taken to be (2/3)∅. Sliding resistance can be evaluated from∑𝑃𝑅 =

[𝑉1 + 𝑉2 + (𝐹𝑇1 + 𝐹𝑇2) sin 𝛽] tan 𝛿. It can be shown, from Figure 3.2 that the forces 

causing sliding are given by∑𝑃𝑑 = [𝐹𝑇1 + 𝐹𝑇2] cos 𝛽. With these two forces, the 

factor of safety against overturning can be defined as: 

𝐹𝑆𝑠𝑙𝑖𝑑𝑖𝑛𝑔 =
∑ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠

∑ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠
=
∑𝑃𝑅
∑𝑃𝑑

 3.4 

3.3.1.2 Safety factor for bearing capacity 

The overturning moment, because of the lateral pressure in the backfill results 

in an eccentric base reaction. The reaction’s eccentricity, e, from the centerline of the 

reinforced earth block, can be evaluated from moment equilibrium about point O. 

𝐹𝑆𝑜𝑣𝑒𝑟𝑡𝑢𝑟𝑛𝑖𝑛𝑔 =
∑𝑀𝑅𝑜
∑𝑀𝑜

=
𝑙2 (3(𝛾𝑏𝐻 + 𝑞𝑠) + 4𝛾𝑓(ℎ − 𝐻))

𝐾𝑎𝑒(𝑓)𝐻2 ((𝛾𝑓𝐻 + 3𝑞𝑠) + 3𝛾𝑓(ℎ − 𝐻))
 3.3 
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Considering a unit length of the wall one can obtain:  

𝑒 =
(𝐹𝑇1/3 + 𝐹𝑇2/2)(ℎ. cos 𝛽)(𝐹𝑇1 + 𝐹𝑇2)(ℎ. sin 𝛽)(𝑙/2) − 𝑉2(𝑙/6)

𝑉1 + 𝑉2 + (𝐹𝑇1 + 𝐹𝑇2) sin 𝛽
 3.5 

 

Two different pressure distribution namely "Trapezoidal" (Elias 2001) and 

"Meyerhof’s rectangular" (Prakash and Saran 1971) are usually used to calculate 

bearing capacity of foundations under eccentric loads (Meyerhof 1953).  These two 

distributions are illustrated in Figure 3.3. 

 

 

Figure 3.3 (a) Trapezoidal distribution of reaction (Elias 2001); (b) Rectangular 

distribution based on Meyerhof’s theory (Prakash and Saran 1971). 
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Based on the selected distribution 𝜎𝑣 or  𝑞𝑚𝑎𝑥 can be used to calculate the 

factor of safety for bearing capacity. In this study trapezoidal reaction pressure has 

been considered. Referring to Figure 3.3, for mild natural ground slope (i.e. small 

values of the angel 𝛽) the maximum stress in trapezoidal pressure can be calculated 

using the following equation: 

𝑞𝑚𝑎𝑥 = (𝑉1/𝑙 + 𝑞s) + (1 + 6𝑒/𝑙)  3.6 

Using the equation proposed by Terzaghi (1943) for a strip footing on a 

cohesion-less soil, and assuming q as the surcharge associated with the soil to the left 

of the wall that prevents failure, the ultimate bearing capacity can be calculated as: 

𝑞𝑢𝑙𝑡 = 𝑞𝑁𝑞 + 0.5γ𝑓𝑁𝑓𝑙 3.7 

1.7 

The safety factor for bearing capacity can be calculated from: 

𝐹𝑆𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
𝑞𝑢𝑙𝑡
𝑞𝑚𝑎𝑥𝑞

 3.8 

3.3.2 Evaluation of internal stability 

A geosynthetic reinforced soil system must withstand internal soil fracture and 

there should be no slippage along the soil-geosynthetic interface. The tensile strength 

of the geosynthetic reinforcement, in conjunction with the shear strength of the soil, 



 41 

ensure internal stability of the soil mass. In line with this, internal stability may be 

defined as the ability of this composite system to resist pullout, grid rupture and 

bulging. Factors of safety for grid rupture and bulging are not explicitly sought as 

these failure phenomena are prevented by providing code-specified minimum spacing 

between layers. 

3.3.2.1 Safety factor against pullout 

To calculate the factor of safety against pullout, information regarding the 

pullout resistance and tensile strength of the geosynthetic material is needed. The 

pullout resistance of the reinforcement, as given in Equation (3.9), is defined by the 

ultimate tensile load required to generate outward sliding of the reinforcement through 

the reinforced soil mass (Basudhar et al. 2008). 

𝑃𝑟 = α𝜎𝑣
′𝑙𝑒𝑖𝐶 tan 𝛿 3.9 

Where 𝛼 is the scale effect correction factor with a value of 1.0 for metallic 

and 0.6 to 1.0 for geosynthetic reinforcements. Here, 𝛼 is assumed to be 1.0. C is the 

reinforcement effective unit perimeter and recommended to have a value of 2 for 

strips, grids and sheets.  𝜎𝑣
′  is the effective vertical stress at the soil-reinforcement 

interfaces. 𝛿 is interface friction angle between the soil and the geosynthetic. Although 

this angle should be determined in the laboratory, here it has been taken to be (2/

3)∅ for the purposes of comparing our results with previous work. 𝑙𝑒 is the 



 42 

embedment length in the resisting zone behind the failure surface and can be written 

as: 

𝑙𝑒𝑖 = 𝑙𝑖 − (𝐻 − 𝑧𝑖) tan(45 − ∅𝑏/2) 3.10 

Incorporating the assumptions described above and considering mild ground 

slope, the expression for pullout resistance can be written as: 

𝑃𝑟𝑖 = 2(𝛾𝑏𝑧𝑖 + 𝑞𝑠) tan 𝛿 𝑙𝑒𝑖 3.11 

Assume 𝑆𝑖 and  𝜎ℎ as the spacing between consecutive geosynthetic layers and 

the horizontal stress at the middle of each layer respectively. The maximum lateral 

force allowed to be carried by each geosynthetic layer is equal to the tensile strength, 

𝑇𝑖, of the geosynthetic material. In addition to serving as a means to check resistance 

against pullout, this constraint ensures prevention of geosynthetic rupture intrinsically. 

𝑇𝑖 = 𝑠𝑖 × 𝜎ℎ 3.12 

Considering equation 3.12, the required strength of reinforcement varies from 

layer to layer and increases with depth. Correspondingly, the factor of safety against 

pullout should be calculated and controlled for each geosynthetic layer. For design 

layer located at depth  𝑧𝑖, safety factor against pullout is given by: 
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𝐹𝑆𝑝𝑢𝑙𝑙𝑜𝑢𝑡 =
𝑃𝑟𝑖
𝑇𝑖

 3.13 

3.3.2.2 Spacing between Geosynthetic layers: 

The spacing between geosynthetic layers, kept greater than the minimum 

specified by codes, is allowed to vary until the design is optimized.   

3.3.3 Considerations for dynamic loads 

The dynamic response of the retaining walls can be estimated from quasi-static 

design approaches. In quasi-static methods, pseudo-static loads are imposed on the 

retaining wall to simulate dynamic response. The pseudo-static load is composed of 

the dynamic soil thrust (𝑃𝐴𝐸) and the inertial force form the reinforced zone (𝑃𝐼𝑅). For 

illustration, a system with horizontal backfill has been selected and the dynamic forces 

acting on such a system have been shown in Figure 3.4. 

In the evaluation of external stability for a wall under dynamic conditions, in 

addition to the static force, the inertial force (𝑃𝐼𝑅) and half of the dynamic soil thrust 

(𝑃𝐴𝐸) are assumed to act on the wall (Basudhar et al. 2008). The reduced 𝑃𝐴𝐸  is used 

because the two dynamic forces are unlikely to peak simultaneously. Referring to 

Figure 3.4, 𝑃𝐴𝐸  and 𝑃𝐼𝑅 can be obtained using the following expressions. 
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𝑃𝐴𝐸 = 0.375𝐴𝑚𝛾𝑏𝐻
2 3.14 

𝑃𝐼𝑅 = 𝐴𝑚𝛾𝑓𝐻(𝐻/2)
2 = 0.5𝐴𝑚𝛾𝑓𝐻

2 3.15 

Where 𝐴𝑚 is the maximum acceleration at the center of the reinforced zone 

that can be estimated from: 

𝐴𝑚 = (1.45 − 𝐴)𝐴 3.16 

Where 𝐴 is the given value of the peak horizontal ground acceleration based on 

the design earthquake. 𝐴𝑚 and 𝐴 are defined in AASHTO Division I-A as acceleration 

coefficients (AASHTO 1996). 

 

Figure 3.4 Static and pseudo-static forces acting on a reinforced zone (Basudhar et 

al. 2008). 
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To evaluate internal stability under dynamic loading conditions, the pseudo-

static internal force acting on the failure zone is determined by: 

𝑃𝐼𝑅 = 𝐴𝑚𝑊 3.17 

Where 𝑊 is the weight of the soil block within Rankine’s failure zone. This 

force is distributed to each layer in proportion to the length of reinforcement that 

extends beyond the potential failure surface (i.e. the “effective length” as shown in 

Figure 3.2). A dynamic component of the tensile force for each layer is calculated 

following the approach discussed above. Having added this force to the static forces, 

safety factor against pullout is calculated for each layer. 

3.4 Design Constraints 

Design constraints, in terms of safety factors, hold information on the limits 

inside which all considerations that prevent failure are satisfied. Recommended design 

safety factors for each mechanism are shown in Table 3.1. 

Table 3.1 Minimum recommended safety factors (Basudhar et al. 2008) 

Safety factor FSoverturning FSsliding FSbear FSreinforcement strength FSpullout 

Value 2.0 1.5 2.0 1.5 2.0 

 

Design constraints (𝑔1 to 𝑔6) relevant to the safety factors discussed above are 

as presented below (Basudhar et al. 2008). 
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3.4.1 Constraint related to overturning 

The factor of safety for overturning, calculated from Equation 3.3 must be 

greater than the design factor of safety or:  

𝑔1 = 𝐹𝑆𝑑𝑒𝑠𝑖𝑔𝑛(𝑜𝑣𝑒𝑟𝑡𝑢𝑟𝑛𝑖𝑛𝑔) − 𝐹𝑆𝑜𝑣𝑒𝑟𝑡𝑢𝑟𝑛𝑖𝑛𝑔 ≤ 0 3.18 

3.4.2 Constraint related to sliding:  

The factor of safety for sliding, calculated from Equation 3.4 must be greater 

than that of the design or:  

𝑔2 = 𝐹𝑆𝑑𝑒𝑠𝑖𝑔𝑛(𝑠𝑙𝑖𝑑𝑖𝑛𝑔) − 𝐹𝑆𝑠𝑙𝑖𝑑𝑖𝑛𝑔 ≤ 0 3.19 

3.4.3 Constraint related to bearing capacity 

The factor of safety for bearing capacity, calculated from Equation 3.8 must be 

greater than the corresponding design factor of safety or:  
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𝑔3 = 𝐹𝑆𝑑𝑒𝑠𝑖𝑔𝑛(𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) − 𝐹𝑆𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≤ 0 3.20 

3.4.4 Constraint related to geosynthetic pullout 

The factor of safety for pullout, calculated from Equation 3.13 must be greater 

than the corresponding design factor of safety or:  

𝑔4 = 𝐹𝑆𝑑𝑒𝑠𝑖𝑔𝑛(𝑝𝑢𝑙𝑙𝑜𝑢𝑡) − 𝐹𝑆𝑝𝑢𝑙𝑙𝑜𝑢𝑡 ≤ 0 3.21 

3.4.5 Constraint related to spacing between geosynthetic layers 

The spacing between geosynthetic must be greater than the proposed minimum 

spacing: 

𝑔5 = 𝑠𝑚𝑖𝑛 − 𝑠 ≤ 0 3.22 

3.4.6 Constraint related to allowable tensile strength of geosynthetic 

The greater the allowable tensile strength (𝑇(𝑢)𝑖), the higher the cost of 

geosynthetic. Accordingly, the tensile strength of geosynthetic was set to comply with: 
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𝑔6 = 𝑇(𝑢)𝑖 − 60 (𝑘𝑁 / 𝑚) ≤ 0 3.23 

3.4.7 Constraint related to length of geosynthetic 

The effective length of geosynthetic must be greater than the assumed 

minimum effective length:  

𝑔7 = 𝑙𝑒−𝑚𝑖𝑛 − 𝑙𝑒 ≤ 0 3.24 

The methods used to apply these constraints to objective function will be 

discussed in next section. 

3.5 Objective Function 

3.5.1 Mathematical formulation 

Objective function, in optimization problems, is a function that the optimizer 

utilizes to maximize or minimize something based on the problem requirements. For 

the geosynthetic reinforced retaining walls considered in this study, construction cost 

has been selected as the objective function and parameters, set to constraints, have 

been optimized such that the cost of construction is minimized. The rates associated 

with various items (i.e. the cost factors) are presented in Table 3.2. For comparison 



 49 

purposes, the same cost parameters, to that of Basudhar et al. (2008), have been 

adopted. 

Table 3.2 Assumed cost factors (after Basudhar et al. (2008)) 

Item cost Engineering and testing cost 

Symbol: 𝑐1 𝑐2 𝑐3(𝑔𝑡) 𝑐3(𝑔𝑔) 𝑐4 𝑐5(𝑔𝑡) 𝑐5(𝑔𝑔) 𝑐6 

Value: $10 $3 $[Ta(0.03)+2.6] $ [Ta(0.03)+2.0] $60 $30 $10 $50 

Unit: m 1000kg m2 m2 m2 m2 m2 m2 

 

The costs, applied per unit length of the wall, are as follows: 

Cost of leveling pad = 𝑐1 

Cost of the wall fill = 𝑐2 × 𝛾𝑏/ 𝑔 × 𝐻 × 𝑙                

Cost of the geosynthetic used = 𝑐3 × 𝑛𝑖 × 𝑙  

Modular Concrete face unit (MCU) cost = 𝑐4 × 𝐻  

Engineering and testing cost = 𝑐5 × 𝐻  

Installation cost = 𝑐6 × 𝐻  

The value attained by the objective function, in terms of the length and spacing 

between the geosynthetic reinforcements (i.e. the design variables), is obtained by 

summing all the costs listed above. 
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3.5.2 Applying design constraints to the objective function 

The gamut of approaches proposed to incorporate the effect of constraints into 

random optimization problems may be categorized into two major classes. The first 

category operates based on concepts that search for the variables from acceptable 

ranges of design. Methods in this category were mostly used for simple problems with 

few number of variables. For problems that are complicated in their very nature and 

that involve numerous design constrains, the second category namely Penalty Function 

Method has been more useful. Methods in this category use approaches that change a 

constrained problems into an unconstrained one by constructing a new function 

(Coello 2002). For the second class, the mathematical formulation for an objective 

function subject to m constraints can expressed as follows: 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥)𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:
𝑔𝑗 ≤ 0;    𝑗 = 1,2, … ,𝑚

 3.25 

The modified objective function ∅(𝑅) can then be represented by: 

∅(𝑥) = 𝑓(𝑥)[1 + 𝐾 × 𝐶] 3.26 

Where K and C are penalty parameters in which K is a constant coefficient and 

for most engineering problems K =10 is assumed appropriate. C is a violation 

coefficient defined as: 
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C =∑𝐶𝑗

𝑚

𝑗=1

   ← {
𝐶𝑗 = 𝑔𝑗    if   𝑔𝑗 > 0

𝐶𝑗 = 0     if   𝑔𝑗 ≤ 0
 3.27 

3.6 Harmony Search Algorithm (HSA) 

Natural and artificial phenomena are attributed as to have inspired the 

development of some of the recent metaheuristic algorithms including Tabu Search, 

Simulated Annealing, Evolutionary Algorithm, and HSA. For example music is a 

relaxing phenomenon which is produced artificially by human beings and naturally by 

nature. Harmony in human-made music is achieved by playing different overlapping 

notes simultaneously such that the sound of multiple instruments eventually evolve 

into an  audibly rhythmic and beautiful song. HSA is introduced as one of the new 

metaheuristic optimization methods that were inspired by music and the improvisation 

ability of musicians (Geem 2000). The fundamental concepts of HSA were introduced 

by the famous ancient Greek philosopher and mathematician Pythagoras. Since the 

pioneering work by Pythagoras, many researchers have investigated HSA. French 

composer and musician Jean Philippe, who lived in the years 1764-1683, has proved 

the classical harmonic theory (Parncutt 1989). The complete structure of the algorithm 

was then presented by Geem (2000). 

Figure 3.5 shows a flowchart of the HSA idealized as a five step process. The 

optimization program is initiated with a set of individuals (solution vectors that 
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contain sets of decision variables) stored in an augmented matrix called harmony 

memory (HM). These processes are indicated as steps 1 and 2 in Figure 3.5. The word 

"individuals" in this paper refers to solution vectors that contain sets of decision 

variables. HM is a centralized algorithm where, at each breeding step, new individuals 

are generated by interacting with the stored individuals. HS follows three rules in the 

breeding step (shown as step 3 in Figure 3.5) to generate a new individual: memory 

consideration, random choosing, and pitch adjustment. In the fourth step, the 

algorithm tests if the new individual is better than the stored individuals in the HM. If 

“yes”, a replacement process is triggered. This process continues iteratively until the 

HS has stagnated and all criteria are satisfied in the termination step (i.e. step 5). The 

description for each step is presented below for a geogrid wall with the height equal to 

7 m, length of 200 m, 𝐴𝑚 = 0 and 𝑞𝑠 = 10. 

3.6.1 Step 1: Introducing optimization program and parameters for the 

algorithm. 

In this step, a set of specific parameters in HSA is introduced including:  

1. The harmony memory size (HMS) which determines the number of 

individuals (solution vectors) in HM. For the given wall, 10 solution 

vectors are introduced to build the harmony memory. 

2. The harmony memory consideration rate (HMCR), which is used to 

decide about choosing new variables from HM or assign new arbitrary 

values. 
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3. The pitch adjustment rate (PAR), which is used to decide the 

adjustments of some decision variables selected from memory. 

 

Figure 3.5 Harmony Search Algorithm flowchart. 

4. The distance bandwidth (BW), which determines the distance of the 

adjustment that occurs to the individual in the pitch adjustment 

operator. 

5. The maximum number of improvisations (NI) which is also called 

stopping criteria and is similar to the number of generations. 

The values of the parameters HMCR, BW, PAR and HMS are different from 

one problem to another. The value of these parameters can affect the convergence of 

the HSA. Therefore, sensitivity analysis is necessary for evaluation of these 
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parameters. Generally, HMCR is considered to have values in the range of 0.70 to 

0.99. For most problems, 0.95 is used as the optimum value for HMCR. The harmony 

memory size is dependent on the number of decision variables. The bigger the 

harmony memory size, the bigger the dimension of the problem and the more 

computational time and cost needed. Therefore, it is better to select a small value for 

this parameter. Generally, a value between 5 and 50 for HMS is reasonable. The pitch 

adjustment rate (PAR), is considered to have a value between 0.3 and 0.99. However, 

depending on the conditions of the problem, smaller values may be considered 

(Mahdavi et al. 2007). Lee et al. (2005) proposed a value between 0.7 and 0.95 for 

HMCR; 0.2 and 0.5 for PAR; and 10 to 50 for HMS to achieve a good HSA 

performance. In this study, based on trial and error approach and sensitivity analysis, 

the values for HMCR, PAR and HMS are chosen to be 0.7, 0.5 and 10, respectively.  

The optimization problem is initially represented as minimizing or maximizing 

{𝐹(𝑅)|𝑅 ∈ 𝑅(𝑡)}, where 𝐹(𝑅)is the objective function, and 𝑅 = {𝑅𝑖|𝑖 = 1,… ,𝑁} is 

the set of decision variables where N represents the number of decision variables 

which in this particular problem is equal to 2 (i.e. i=1 and  i=2 that indicate length and 

number of reinforcements (𝑁𝑜𝐺), respectively). 𝑅(𝑡) = {𝑅(𝑡)𝑖|𝑖 = 1,… ,𝑁} is the 

possible value range for each decision variable. The lower and upper bounds for the 

decision variable 𝑅(𝑡)𝑖 is 𝐿𝑖 and 𝑈𝑖 (i.e. 𝑅(𝑡)𝑖 ∈ [𝐿𝑖 , 𝑈𝑖 ]). In this paper the lower and 

upper values of 𝑅(𝑡) are 1m and 10 m for reinforcement’s length. The second variable 

is the number of geosynthetic (𝑁𝑜𝐺). 𝑁𝑜𝐺 is obtained from possible values 

corresponding to minimum and maximum spacing (0.5 m and 1.5 m respectively) and 
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the height of the wall. As the variables are assigned, objective function is optimized by 

minimizing its value. Upon the process of optimization, to minimize the objective 

function, individuals are arranged from smallest to largest values. 

3.6.2 Step 2: Initialization of initial Harmony Memory (HM). 

In this step, the initial HM matrix is populated with as many randomly 

generated individuals as the HMS and the corresponding objective function value of 

each set of random individual 𝐹(𝑅). Each individual is generated from the possible 

value range ( )R t . The initial harmony memory is formed as follows: 

𝐻𝑀 =

[
 
 
 
𝑅1
1 𝑅2

1 ⋯ 𝑅𝑁
1

⋮ ⋮ ⋯ ⋮
𝑅1
𝐻𝑀𝑆−1 𝑅2

𝐻𝑀𝑆−1 ⋯ 𝑅𝑁
𝐻𝑀𝑆−1

𝑅1
𝐻𝑀𝑆 𝑅2

𝐻𝑀𝑆 ⋯ 𝑅𝑁
𝐻𝑀𝑆

 ||

𝐹(𝑅1)
⋮

𝐹(𝑅𝐻𝑀𝑆−1)

𝐹(𝑅𝐻𝑀𝑆) ]
 
 
 
 3.28 

The initial HM matrix for the given wall and corresponding worst harmony 

(i.e. column 7) are presented in Table 3.3. It is inferred, from Table 3.3, that HMS and 

the number of decision variables (N) for the given wall are equal to 10 and 2, 

respectively. 

Table 3.3 Randomly generated initial variables for HM matrix for Geogrid wall 

Am = 0, qs = 10 

Harmony 

Number 
1 2 3 4 5 6 7 8 9 10 

Length 4.54 4.53 5.44 5.11 6.12 4.9 4.3 5.59 6.465 5.77 

NoG 6 7 8 11 6 14 11 11 7 11 
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Cost ($) 236763.1 238523.3 252407 254272 256233 257402 1192619 261242 263200 263830 

3.6.3 Step 3: Improvisation for a new individual.  

In this step, a New Harmony vector 𝑅′ = {𝑅′𝑖|𝑖 = 1,… ,𝑁}, is improved based 

on three mechanisms:  

1- memory consideration  

2- Random selection  

3- Pitch adjustment.  

Memory consideration and random choosing are mechanisms that allow the 

algorithm to produce New Harmony vector to be compared with existent harmony 

vectors in HM. In this step, the value of each decision variable in the new harmony 

vector (𝑅′𝑖), is randomly selected from previously stored values, in the HM 

individuals {𝑅𝑖
1, 𝑅𝑖

2, … , 𝑅𝑖
𝐻𝑀𝑆}, with a probability of 𝐻𝑀𝐶𝑅 ∈ (0,1). The HMCR is the 

rate of choosing one value from the historical values stored in HM. Then, decision 

variables that are not assigned with values according to the memory consideration are 

randomly chosen according to their range of 𝑅(𝑡) with a probability of 1-HMCR. 1-

HMCR is the rate of randomly selecting one value from the possible range of values: 

𝑅𝑖
′ ← {

𝑅𝑖
′ ∈ {𝑅1

1,  𝑅1
2, … , 𝑅1

𝐻𝑀𝑆 }  with probability 𝐻𝑀𝐶𝑅

𝑅𝑖
′ ∈ 𝑅(𝑡)                 with probability (1 − 𝐻𝑀𝐶𝑅)

 3.29 

For instance, assuming HMCR equal to 0.85, HSA selects the new variables 

from values stored in HM with a probability of 85%. 
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In pitch adjustment, each decision variable 𝑅𝑖
′
 of the new 

individual, {𝑅1
′ , 𝑅2

′ , … , 𝑅𝑁
′ }, that has been assigned a value by the memory 

consideration is pitch adjusted with the probability of PAR, where 𝑃𝐴𝑅 ∈ (0,1) as 

follows: 

Pitch adjusdting decision for 𝑅𝑖
′ ← {

𝑌𝑒𝑠              with probability 𝑃𝐴𝑅

No     with probability (1 − 𝑃𝐴𝑅)
 3.30 

In pitch adjustment, if the decision for 𝑅′𝑖 ends with a “Yes”, the value of 𝑅′𝑖 

is modified to its neighboring values. For the Given problem pitch adjustment is 

applied for length (L) as described with the following expression: 

𝐿𝑖
′ ←= 𝐿𝑖

′ ± (𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒) × 𝐵𝑊;  𝐵 = 0.02(𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛)  3.31 

The random value in equation 3.31 can be determined using a possibility 

membership function or it can randomly be chosen from a specific range. A Gaussian 

Membership Function is used in order to find this value. If the random value is chosen 

simply from a solid specified range, the values outside this range do not have any 

chance to be chosen. Gaussian Membership Function covers a higher range for the 

random value and gives a small possibility to higher values to be chosen. 

Pitch adjustment is also applied for the number of reinforcements (NoG) as 

follows: 
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𝑁𝑜𝐺𝑖
′ ←= 𝑁𝑜𝐺𝑖

′ ± (𝑟𝑎𝑛𝑑(1 𝑜𝑟 2)) 3.32 

It should be noted that, if pitch adjustment causes a variable to fall outside the 

given range for variable, an alternative value must be replaced with outlier. This 

alternative value can be the minimum or maximum of the range assigned to the 

variable.  

3.6.4 Step 4: Updating the harmony memory 

If the newly generated harmony vector is better than the any of the stored 

harmony vectors in the HM (i.e. has better objective function value than that of a 

stored individual) it will replace the old stored vector in the HM. Otherwise, the 

algorithm enters the next loop (iterating between steps 3 and 4) without any 

replacement. Table 3.4 shows the HM generated after one iteration in this study. The 

7th vector (solution) in the initial harmony memory (i.e. Table 3.3) which had the 

worst cost function value is replaced by new one which is highlighted in Table 3.4. 

Table 3.4 HM matrix after first iteration for Geogrid wall Am = 0, qs = 10 

Harmony 

Number 
1 2 3 4 5 6 7 8 9 10 

Length 4.54 4.53 5.44 5.11 6.12 4.9 5.11 5.59 6.465 5.77 

NoG 6 7 8 11 6 14 7 11 7 11 

Cost ($) 236763.1 238523.3 252407 254272 256233 257402 245897 261242 263200 263830 
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3.6.5 Step 5: Evaluation of termination rule. 

Steps 3 and 4 continue to repeat until the termination rule is satisfied. The last 

solution vector that meets the requirements of the termination rule is reported as the 

optimized solution for the problem under consideration. Undoubtedly, the maximum 

number of generations could be different from problem to problem depending on the 

desired accuracy. Here, the termination rule is considered to be satisfied, when for 50 

consecutive iterations the values of cost function, F(R), are equal up to ten decimal 

places. Figure 3.6 shows the reduction in cost with progressive iterations. In order to 

reduce the iterations, 10 new harmonies are produced in each iteration based on 

mentioned rules. It is shown that Mean Cost Values in HM converge to the best cost, 

after 120 iterations. Further iteration causes slight changes in variables, however, the 

change in cost function will be insignificant. 

 

Figure 3.6 Reduction in cost with progressive iterations for Geogrid wall Am=0, 

qs=10. 
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3.7 Results and Discussions 

To compare results and illustrate the effectiveness of the proposed method, an 

example has been described in this section. Since the following analyses and 

associated results are compared to the results of Basudhar et al. (2008), similar 

parameters and geometry are considered. HSA is used to run the optimization problem 

for walls of height 5, 7 and 9 meters. The input parameters used to define the problem 

are presented in Table 3.5. 

 

Table 3.5 Input design parameters 

Parameter Value 

Height of Wall (H) 5-9 m 

Minimum embankment of the fill (he) 0.45 

Angle of internal friction of the backfill ( f  ) 30° 

Unit weight of the backfill ( f ) 18 kN/m3 

Angle of internal friction of the fill ( b ) 35° 

Unit weight of the fill in the reinforced zone ( b ) 20 kN/m3 

Ultimate tensile strength of the geosynthetic (Tu) <60 kN/m 

Allowable tensile strength of the geosynthetic (Ta) 1.5a uT T   kN/m 

Surcharge slope angle (β) 0° 

Minimum length of the reinforcement (l e min) 1.0 m 

Length of the wall 200 m 

 

Table 3.6 shows the summary of results, obtained by SUMT method, that has 

been referred to compare the results of this study with that of Basudhar et al. (2008). 

The values for the total cost in Table 3.6 were obtained by applying the cost factors 
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given in Table 3.2 and the spacing and length that were obtained by Basudhar et al. 

(2008). An example calculation, for a geogrid-reinforced wall, on how the values in 

Table 3.6 were obtained is presented here. 

Example:  
 

For 5 m geogrid reinforced wall (No surcharge; No earthquake load) 

Wall embedment = 0.45 Hd = 5 m + 0.45 m = 5.45 m 

Parameters from Table 3.5 (Basudhar et al. 2008): Number of layers, nl = 4; Length of 

each layer, l = 3.73; Length of wall, L = 200m; Ultimate tensile strength of geogrid, Tu 

= 40.24 kN/m; Allowable tensile strength of geogrid, Ta = 26.83 kN/m (Using 

expression, for geogrid, from Table 3.1) 

Cost of leveling pad: (200 m)($10/m) = $2000 

Cost of the reinforced wall fill: (200 m)(5.45 m)(3.73 m)[(20 

kN/m3)/(9.81)]($3/1000kg) = $24866.67 

Cost of geogrid reinforcement: (4 layers)(3.73 m)(200 m)[(26.83 

kN/m)(0.03)+2.0]($/m2) = $8369.82 

Cost of the MCU face units: (200 m)(5.45 m)($60/m2) = $65400 

Cost of Engineering and testing: (200 m)(5.45 m)($10/m2) = $10900 

Installation cost: (200 m)(5.45 m)($50/m2) = $54500 

 

Adding all the costs, Total cost = $166036.49. This is value is indicated in 

bold in Table 3.6. Similarly calculated cost values are populated in the same table. 

Table 3.7 and Table 3.10 present the result of static analysis, in the absence of 

overburden, for Geotextile and Geogrid respectively. As can be inferred from the 

tables, the total cost of construction for 5m high reinforced retaining walls with 

Geotextile and Geogrid was reduced by about 4.42% and 4.08% respectively, 

compared to SUMT results. Under the same loading conditions the cost savings for 7 

m and 9 m walls reinforced with geosynthetic wrap and geogrid were 4.27% and 
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3.72% respectively. For this loading condition no significant cost changes were 

observed for the 9 m wall. 

Table 3.8 and Table 3.11 present the results for the case where there is an 

assumed overburden of 10 kN/m2. A relatively higher cost reduction (6%) was 

obtained for the wall with height of 5m. Here also, the cost savings for the 9 m wall 

were small (i.e. 0.32% and 1% for Geotextile-wrap and geogrid respectively).  

Table 3.9 and Table 3.12 show the results of analysis when the seismic loading 

is considered. It was found that the cost of construction for a 5m wall reduced by 

7.62% and 6.36% respectively for geotextile and geogrid reinforcement. For 7 m high 

wall, the cost reduction were of 9.18% and 7.54% respectively for geotextile and 

geogrid. A reduction equal to 6.32% and 6.0% were obtained for 9m wall reinforced 

with geotextile and geogrid respectively. It is undeniable that, in big scale construction 

projects that involve mechanically stabilized walls, a small percentile decrease in cost 

is a big save. It can also be observed that, compared to geotextile reinforced walls, the 

cost of construction for geogrid reinforced walls is considerably higher. This could be 

related to the additional cost of modular concrete blocks and leveling pad in geogrid-

reinforced walls. 
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Table 3.6 Summary of results from SUMT method (modified from Basudhar et al. (2008)) 

 

 

Geotextile-Wrap wall 

Am = 0 , qs = 0 Am = 0 , qs = 10 Am = 0.05 , qs = 0 

Ht (m) NoG L(m) Tu (kN/m) Cost ($)1 NoG L(m) Tu (kN/m) Cost ($)1 NoG L(m) Tu (kN/m) Cost ($)1 

5 4 3.73 40.24 122226.59 5 3.73 35.72 124429.38 4 4.55 45.66 130321.38 

7 6 4.78 45.12 182850.62 7 4.96 42.65 188378.86 6 6.23 51.19 203066.45 

9 9 5.84 45.38 255580.15 10 5.82 44.6 259123.94 8 7.9 58.83 290257.32 

Geogrid wall 

Am = 0 , qs = 0 Am = 0 , qs = 10 Am = 0.05 , qs = 0 

Ht (m) NoG L(m) Tu (kN/m) Cost ($)1 NoG L(m) Tu (kN/m) Cost ($)1 NoG L(m) Tu (kN/m) Cost ($)1 

5 4 3.73 40.24 166036.19 5 3.73 35.72 167791.38 4 4.55 45.66 173737.38 

7 6 4.78 45.12 241009.02 7 4.96 42.65 245812.46 6 6.23 51.19 260180.85 

9 9 5.84 45.38 326872.95 10 5.82 44.6 329739.94 8 7.9 58.83 360273.32 

Bold value signifies the result obtained from the demonstrated cost calculation before the table 
1Total values indicated as Cost ($) are calculated using the cost functions (Table 1 of Basudhar et al. (2008)) by following the illustration provided in section 4.1 of the same 
reference. 
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Table 3.7 Optimum cost for Geotextile-Wrap wall Am = 0, qs = 0 

Ht (m) L(m) Ta-max (kN/m) NoG Spacing (m) Cost ($/m2) Saving w.r.t. SUMT (%) 

5 3.23 26.5 3 1.25 116826.20 4.42 

7 4.34 38.5 5 1.17 175045.20 4.27 

9 5.59 37.8 10 0.82 253864.80 0.67 

 

Table 3.8 Optimum cost for Geotextile-Wrap wall Am = 0, qs = 10 

Ht (m) L(m) Ta-max (kN/m) NoG Spacing (m) Cost ($/m2) Saving w.r.t. SUMT (%) 

5 3.24 30 3 1.25 117066.00 5.92 

7 4.43 36.75 6 1 178993.70 4.98 

9 5.62 37.1 11 0.75 258287.40 0.32 
 

Table 3.9 Optimum cost for Geotextile-Wrap wall Am = 0.05, qs = 0 

Ht (m) L(m) Ta-max (kN/m) NoG Spacing (m) Cost ($/m2) Saving w.r.t. SUMT (%) 

5 3.62 32 3 1.25 120390.50 7.62 

7 4.83 40 6 1 184432.20 9.18 

9 6.15 37.84 12 0.692 271914.30 6.32 
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Table 3.10 Optimum cost for Geogrid-Wrap wall Am = 0, qs = 0  

Ht (m) L(m) Ta-max (KN/m) NoG Spacing (m) Cost ($/m2) Saving w.r.t. SUMT (%) 

5 3.233 26.5 3 1.25 159262.70 4.08 

7 4.341 38.5 5 1.17 232052.60 3.72 

9 5.59 37.8 10 0.82 322755.30 1.26 
 

Table 3.11 Optimum cost for Geogrid wall Am = 0, qs = 10 

Ht (m) L(m) Ta-max (kN/m) NoG Spacing (m) Cost ($/m2) Saving w.r.t. SUMT (%) 

5 3.238 30 3 1.25 159510.60 4.94 

7 4.43 36.75 6 1 235405.10 4.23 

9 5.626 37.1 11 0.75 326459.70 1.0 
 

Table 3.12 Optimum cost for Geogrid wall Am = 0.05, qs = 0 

Ht (m) L(m) Ta-max (kN/m) NoG Spacing (m) Cost ($/m2) Saving w.r.t. SUMT (%) 

5 3.62 32 3 1.25 162693.40 6.36 

7 4.83 40 6 1 240560.50 7.54 

9 6.15 37.84 12 0.692 338650.20 6.00 
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Table 3.9 and Table 3.12 show the results of analysis when the seismic loading 

is considered. It was found that the cost of construction for a 5m wall reduced by 

7.62% and 6.36% respectively for geotextile and geogrid reinforcement. For 7 m high 

wall, the cost reduction were of 9.18% and 7.54% respectively for geotextile and 

geogrid. A reduction equal to 6.32% and 6.0% were obtained for 9m wall reinforced 

with geotextile and geogrid respectively. It is undeniable that, in big scale construction 

projects that involve mechanically stabilized walls, a small percentile decrease in cost 

is a big save. It can also be observed that, compared to geotextile reinforced walls, the 

cost of construction for geogrid reinforced walls is considerably higher. This could be 

related to the additional cost of modular concrete blocks and leveling pad in geogrid-

reinforced walls. 

3.8 Conclusions 

In this study different cost optimization methods were highlighted. The 

application of one of the metaheuristic optimization techniques, namely Harmony 

Search Algorithm, was shown on designing geosynthetic reinforced walls. The 

iterative design optimization was coded with MATLAB. Optimization using HSA 

resulted in reduced cost of construction. Geosynthetic-wrap and geogrid reinforcement 

options were optimized with HSA. Static and dynamic loading conditions were 

considered under the existence and absence of overburden. Compared to results 

obtained with the SUMT optimization technique (Basudhar et al. 2008), the cost of 

construction -for a 5, 7, and 9 meter geotextile-reinforced walls- were reduced by 
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4.42%, 4.27%, and 0.67% respectively. These savings were obtained under static load 

assumptions. The reductions under dynamic loading conditions were 7.62%, 9.18%, 

and 6.32% respectively. For geogrid-reinforced walls the cost savings for the 5, 7 and 

9 meter walls were 4.08%, 3.72% and 1.26% for static analysis and 6.36%, 7.54%, 

and 6.0% for dynamic analysis respectively. It was also found that the HSA program 

has a very fast rate of convergence towards the most optimum design.  
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Chapter 4 

MANUSCRIPT 2. A MODIFIED HARMONY SEARCH ALGORITHM FOR 

THE OPTIMUM DESIGN OF EARTH WALLS REINFORCED WITH NON-

UNIFORM GEOSYNTHETIC LAYERS 
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4.1 Abstract 

Traditional Design and Construction of Reinforced Earth Walls assumes 

uniform length and spacing of reinforcements. Even though the assumption simplifies 

the design and construction efforts, the inherently conservative approaches followed in 

picking the final values for the reinforcement length and spacing result in 

unnecessarily big construction costs. This paper presents an Improved Harmony 

Search (IHS)-based approach that can be adopted to optimize the design of 

Geosynthetic-Reinforced Earth Walls. An existing Improved Harmony Search 

Algorithm is modified into a New Harmony Search Algorithm by extending its 
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capabilities to consider permutation-based operations for inter-dependent variables. 

The involved optimization procedures are discussed in a step-wise approach. This 

novel approach allows the consideration of non-uniform length and spacing for the 

reinforcement layers. As such, Length of the Geosynthetic Reinforcement and the 

Spacing between adjacent Geosynthetic layers are taken as the design variables to be 

manipulated until the cost of construction is optimized. Static and Dynamic loads are 

considered. The application of the proposed optimization technique is demonstrated on 

Geosynthetic-Reinforced Earth Walls of height 5, 7 and 9 meters. The extent of cost 

saving is assessed by comparing the results of this work and previous work. The 

previous work selected for comparison uses Harmony Search Algorithm (HSA) to 

optimize the design and construction of Earth Walls reinforced with uniform length- 

and spacing-Geosynthetic layers. The IHS-based optimization resulted in Cost 

reduction of up to 11%. 

4.2 Introduction 

Retaining walls are among the most extensively used structural elements in the 

construction industry (Manahiloh et al. 2015). In spite of their ubiquitousness, 

applicability of non-reinforced retaining walls is confined to lower heights (Pourbaba 

et al. 2013). To overcome this limitation and enhance the performance of walls at 

higher heights, different types of reinforcing material are introduced. The tension-

resisting element (i.e. the reinforcement) in reinforced earth wall systems works as a 

unit with surrounding soil to augment its strength and sustainability. One group of 
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such reinforcements consists of different types of Geosynthetics. Geosynthetic 

reinforcements are fabricated from polymeric material. In reinforced earth systems, 

the Geosynthetic element plays the combined pivotal roles of isolation, increased 

tensile resistance and improved drainage. Use of Geosynthetics as reinforcement 

provides additional strength against various failure mechanisms. This in turn allows 

increasing the reinforced-wall height without the need for external lateral support (e.g. 

heavy gravity walls constructed by substantial concrete material (Yoo et al. 2007). The 

decent endurance of the polymeric material against erosion has made it a better choice 

in reinforcing earth structures (Lawrence 2014). These overlapping benefits have 

made Geosynthetic-reinforced walls favorable and their design and implementation is 

expanding. Over the past five decades the production and use of polymer-based 

reinforcement has shown a sustained upsurge. Geosynthetic reinforced soil walls, 

compared to the classic rigid-walls, have superior flexibility which makes them better 

in withstanding natural disasters such as earthquakes and landslides (Yoo et al. 2007).  

In addition to aforementioned benefits, in Geosynthetic-reinforced soil walls, 

the cost of the construction is significantly lower than other earth retaining systems 

(Zhang et al. 2006). Construction cost is one of the decisive factors in the execution of 

engineering projects. (Koerner and Soong 2001) compared the cost of construction for 

different types of retaining walls and showed that the cost of construction for 

Geosynthetic-reinforced soil walls is by far lower than its classic competitors.  

In recent studies, Harmony Search Algorithm (HSA) has been applied in 

various engineering optimization problems. River flood models (Kim et al. (2001) and 
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Karahan et al. (2013)), optimal rainfall-runoff models (Paik et al. 2005), a design of 

water distribution networks (Geem 2006), a simultaneous determination of aquifer 

parameters and zone structures (Ayvaz 2007) are some applications of HSA in the 

Civil Engineering discipline. HSA has also been applied in scheduling problems 

(Wang et al. 2011), steel frame designs (Degertekin 2008), reliability optimizations 

(Zou et al. 2010), optimal design of planar and space trusses and the optimal mass and 

conductivity design of a satellite heat pipe (Lee et al. (2005), Lee and Geem (2004)). 

Other studies that make use of HSA include: transport energy modeling problem 

(Ceylan et al. 2008), selecting and scaling real ground motion records (Kayhan et al. 

2011), a water-water energetic reactor core pattern enhancement (Nazari et al. 2013 

(a)), solving machining optimization problems (Zarei et al. 2008), pressurized water 

reactor core optimization (Nazari et al. 2013 (b)). 

Compared to other metaheuristic methods HSA possesses unique features in 

that it: considers all the solution harmonies during new iterations; and utilizes 

stochastic random searches. These features enable HSA to, systematically, handle huge 

optimization problems with less mathematical requirements (Mahdavi et al. 2007) and 

make it a preferable tool in optimization-related research.  

Recently, different methods (i.e. Particle Swarm Optimization (PSO), Ant 

Colony etc.) have been combined with HSA in pursuit of improved hybrid-algorithms 

(Wu et al. (2012), and Shi et al. (2013)). Several other studies have also tried to further 

improve the performance of HSA. Wang and Li (2013) proposed a differential 

harmony search algorithm in solving non-convex economic load dispatch problems. 
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An improved harmony search (IHS) (Mahdavi et al. 2007) and a global-best harmony 

search (GHS) (Omran and Mahdavi 2008) algorithms have been implemented to 

enhance the searching power of the HSA.  

Basudhar et al. (2008) optimized Geosynthetic-reinforced walls using 

Sequential Unconstrained Minimization Technique (SUMT algorithm). Using HSA, 

and assuming the constant-length and number of Geosynthetic layers as design 

variables and construction cost as the objective function, Manahiloh et al. (2015) 

optimized the design of Geosynthetic-reinforced walls. In both studies the length of 

reinforcement and the spacing between adjacent layers were set to be constant. 

In this study the applicability of IHS is discussed and its utilization is 

demonstrated by optimizing the design and construction of Geosynthetic-reinforced 

Earth Walls. The algorithm associated with IHS is modified and expanded to account 

for non-uniform length of Geosynthetic reinforcement layers and non-constant spacing 

between adjacent layers. The optimization variables are: the independent lengths of 

Geosynthetic in each layer; and a vector that contains distance information between 

two adjacent Geosynthetic layers.  

4.3 Analysis of Geosynthetic-Reinforced Earth Wall 

Stability analysis for Geosynthetic-reinforced walls introduced in FHWA code 

(Elias et al. 2001) uses Rankine’s theory. The same theory is adopted in this study to 

analyze walls while non-uniform variation in spacing and length of geosynthetic 

reinforcement is permitted. The non-uniform length and spacing values are set to be 
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picked with a random selection process pre-defined in the HSA. The feasibility of 

construction is accounted for by constraining the variation in length of geosynthetics 

in such a way that it shows a consistent trend. Moreover, the length of geosynthetics in 

each layer is kept lower than the smaller of: the maximum limit of the range for 

length; and the length of geosynthetic in the layer above. Stability analyses, for 

Geosynthetic-reinforced walls with a vertical face, are made assuming a rigid body 

behavior for the reinforced zone as shown in Figure 4.1. Lateral earth pressures are 

computed on a vertical surface located at the end of the reinforced zone. The 

reinforced zone is further divided into multiple sub-zones. The first zone related to 

shortest length of the reinforcement which is associated with the bottom layer of 

geosynthetics. The other zones are fractions of an assumed rigid body that exceed the 

area corresponding to the least length. Parameters used in the design process are 

presented in Figure. 4.1. 

For horizontal and inclined backfill (angle  from horizontal) retained by a 

smooth veritcal wall, the coefficient of active lateral earth pressure may be calculated 

from Equations (4.1) and (4.2) respectively. 

𝐾𝑎 = tan
2 (45 −

∅

2
) 4.1 

𝐾𝑎 = cos 𝛽 [
cos 𝛽 − √cos2 𝛽 − cos2 ∅

cos 𝛽 + √cos2 𝛽 − cos2 ∅
] 4.2 
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In this study the active earth pressure coefficient (𝐾𝑎) for the backfill is 

designated with 𝐾𝑎𝑒. ∅ is defined as ∅𝑏 and ∅𝑓, for the soil in reinforced zone and the 

retained soil (i.e. soil behind and on the top of the reinforced mass) respectively.  

 

Figure 4.1 Parameters used in different steps of the design and external forces 

considered for the Geosynthetic reinforced retaining wall system. 

4.3.1 Stability Analysis 

Regardless of type of reinforcement, any reinforced system should be checked 

for internal and external stability. The internal stability deals with interactions between 

reinforcements and the material in contact with them and mechanisms that lead to soil 

fracture and the associated rupture of the reinforcements. The external stability, on the 

other hand, deals with the behavior of the rigid body of reinforced-soil zone 

interacting with neighboring soil and the mechanisms that disturb its stability. The 
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design of geosynthetic-reinforced soil walls is not considered safe until the safety 

factors against internal and external failure mechanisms are above the corresponding 

minimum values specified by codes.  

Internal stability analysis of non-uniform lengths and spacing is exactly the 

same as that of uniform lengths and spacing. Details regarding this have been covered 

in other literature (e.g. Manahiloh et al. (2015), and Elias et al. (2001)). 

Generally, three failure mechanisms are assessed in examining the external 

stability of retaining structures. In geosynthetic-reinforced earth wall systems, the 

sliding of the rigid body of reinforced-soil system, bearing capacity of the foundation 

soil below the reinforced zone and overturning of the reinforced-soil zone are 

considered to be these three failure mechanisms. Figure 4.1 shows the external forces 

in a geosynthetic-reinforced wall system. In the figure, Vi refers to the weight of the 

soil enclosed by the associated geometric shapes. The summation of the weights Vrec, 

Vq and V1 through VNoG-1, is the total weight of the soil within the reinforced zone 

where NoG refers to the number of geosynthetic layers. Considering the reinforced 

system as a plane-strain problem, this weight is considered to act as a block. Since the 

wall embedment depth is small, the stabilizing effect of the passive pressure (moment) 

has been neglected in the analysis. The factors of safety against the above failure 

mechanisms are presented below. 
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4.3.1.1 Safety factor against overturning:  

It is assumed that, if overturning takes place, the whole reinforced zone will 

behave as a rigid body. Referring to Figure 4.1, the safety factor against overturning is 

evaluated by considering moment equilibrium about point O. It can be calculated 

from: 

𝐹𝑆𝑜𝑣𝑒𝑟𝑡𝑢𝑟𝑛𝑖𝑛𝑔 =
∑𝑀𝑅𝑜
∑𝑀𝑜

=
(𝐹𝑇1 × (ℎ/3) + 𝐹𝑇2 × (ℎ/2)) cos𝛽

𝑉𝑟𝑒𝑐 × (𝑙𝑚𝑖𝑛/2) + 𝑉𝑞 × (2𝑙𝑚𝑎𝑥/3) + ∑ (𝑉𝑖 ×
𝑙𝑖 + 𝑙𝑚𝑖𝑛

2
) + 𝑞𝑠 × (𝑙𝑚𝑎𝑥

2 /2)𝑁𝑜𝐺−1
𝑖=1

 4.3 

Where ∑𝑀𝑅𝑜 and ∑𝑀𝑜 are the resisting and overturning moments 

respectively. The other parameters in Eq. 3 are as defined and indicted in Figure 4.1. 

4.3.1.2 Safety factor against sliding 

Three relevant components are accounted for during the evaluation of safety 

against sliding. The first consists of the weight of the reinforced zone and all vertical 

forces acting above this zone. Interface friction angle between the soil and fabric(𝛿)is 

the second component that needs consideration. The third components refers to all the 

driving lateral forces that try to cause sliding. The factor of safety against sliding can 

be expressed as:  
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𝐹𝑆𝑠𝑙𝑖𝑑𝑖𝑛𝑔 =
∑ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠

∑ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠
=
∑𝑃𝑅
∑𝑃𝑑

=
(𝑉𝑟𝑒𝑐 + 𝑉𝑞 + ∑ 𝑉𝑖 + 𝑞𝑠 × 𝑙𝑚𝑎𝑥

𝑁𝑜𝐺−1
𝑖=1 ) × tan 𝛿

(𝐹𝑇1 + 𝐹𝑇2) cos 𝛽
 4.4 

Where ∑𝑃𝑅 and ∑𝑃𝑑  are resisting and driving forces respectively. 

4.3.1.3 Safety factor for bearing capacity 

The reaction’s eccentricity, e, from the centerline of the reinforced earth block, 

can be evaluated from moment equilibrium about point A: 

𝑒 =
∑𝑀𝑑 − ∑𝑀𝑅

∑𝑉
 

4.5 

In this study Meyerhof’s equivalent-rectangular pressure distribution 

(Meyerhof (1953), and Das (2007)) is used to calculate the bearing capacity of the 

foundation soil under eccentric load conditions. To stay in the conservative side of 

design, 𝑙𝑚𝑖𝑛 is used in calculating the vertical stress acting on the foundation. For mild 

natural ground slopes (i.e. small angels of 𝛽 in Figure 4.1), the vertical pressure 𝜎𝑣 can 

be calculated using the following equation: 
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𝜎𝑣 = (𝑉𝑟𝑒𝑐 + 𝑉𝑞 + ∑ 𝑉𝑖

𝑁𝑜𝐺−1

𝑖=1

) (𝑙𝑚𝑖𝑛 − 2𝑒)⁄  4.6 

Using the Terzaghi’s equation (Terzaghi 1943) for a strip footing on a 

cohesion-less soil and assuming q as the surcharge associated with the soil to the left 

of the reinforced-soil, the ultimate bearing capacity can be calculated as: 

𝑞𝑎𝑙𝑡 = 𝑞𝑁𝑞 + 0.5𝛾𝑓𝑁𝑓𝑙𝑚𝑖𝑛 4.7 

The safety factor for bearing capacity is then obtained from: 

In the evaluation of external stability for a wall under dynamic conditions, in 

addition to the static forces, the inertial force and half of the dynamic soil thrust are 

assumed to act on the wall (Elias et al. 2001). The details for dynamic considerations 

can be referred from earlier works (e.g. Manahiloh et al. (2015), and AASHTO 

(1996)). 

𝐹𝑆𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
𝑞𝑢𝑙𝑡
𝜎𝑣

 4.8 
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4.4 Objective Function 

4.4.1 Mathematical Formulation 

In this study the cost of construction is taken as the objective function and is 

minimized by searching for a set of optimum design variables. The rates associated 

with various items (i.e. the cost factors) are presented in Table 4.1. For comparison 

purposes, the same cost parameters, to that of Manahiloh et al. (2015) have been 

adopted. 

Table 4.1 Assumed cost factors (after Manahiloh et al. (2015)) 

Item 

Assumed cost factor 
Cost applied per unit 

length of the wall Symbol 
Value 

Geogrid Geotextile 

Leveling pad C1 $10/m $10/m C1 

Wall fill C2 $3/1000kg $3/1000kg 
𝑐2 ×

𝛾𝑓

𝑔
× (𝑉𝑜𝑙𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑑 𝑧𝑜𝑛𝑒) 

 

Geosynthetic C3 $[Ta(0.03)+2.0]m2 $[Ta(0.03)+2.6]m2 
∑𝑐3

𝑁𝑜𝐺

𝑖=1

× 𝑙𝑖 

 

MCU face 

unit* 
C4 $60/m2 0 𝑐4 × 𝐻 

Engineering 

tests 
C5 $10/m2 $30/m2 𝑐5 × 𝐻 

Installation C6 $50/m2 $50/m2 𝑐6 × 𝐻 

* The Modular Concrete Facing Units (MCU) are only applied for Geogrid type walls. 
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The total amount attained by the objective function, in terms of the length and 

spacing between the geosynthetic reinforcements (i.e. the design variables), is 

obtained by summing all the costs listed above. 

4.4.2 Design Constraints 

The design constraints, applied to check the stability of the reinforced earth-

wall and corresponding minimum recommended safety factors, have been presented 

by Manahiloh et al. (2015). In addition to six constraints applied for the case of 

uniform lengths and spacing described by Manahiloh et al. (2015), a new constraint is 

needed to consider the feasibility of construction. Accounting for the process of 

excavation which imposes a restriction that confine the length of each geosynthetic to 

be lower than that of the adjacent upper layer, we can introduce the following 

constraint: 

4.4.3 Applying Design Constraints to the Objective Function 

For the sake of simplicity, a linear penalty function has been used in this study. 

The mathematical formulation for an objective function subject to seven constraints 

can be expressed as follows: 

𝑔7 = 𝑙𝑛+1 − 𝑙𝑛 < 0   for 𝑛 = {1,2, … ,𝑁𝑜𝐺 − 1} 4.9 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥)𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:
𝑔𝑗 ≤ 0;    𝑗 = 1,2, … , 7

 4.10 

The modified objective function ∅(𝑥) can then be represented by: 

∅(𝑥) = 𝑓(𝑥)[1 + 𝐾 × 𝐶] 4.11 

Where K and C are penalty parameters in which K is a constant coefficient 

which increases the rate of penalty applied to the function and for most engineering 

problems K =10 is assumed appropriate. C is a measure of violation defined as: 

C =∑𝐶𝑗

𝑚

𝑗=1

   ← {
𝐶𝑗 = 𝑔𝑗    if   𝑔𝑗 > 0

𝐶𝑗 = 0     if   𝑔𝑗 ≤ 0
 4.12 

4.5 Design Variables 

In traditional HSA, the variables are independent. Using each spacing, as an 

individual variable, results in a conflict during algorithm execution. Noting that the 

summation of all spacing values must be equal to the height of the wall, the algorithm 

conflict can systematically be avoided by introducing an additional constraint that 

restricts the summation of all spacing values to be equal to the height of the wall. 

However, it has been discovered that this method introduces additional computational 

effort. To overcome this difficulty, a vector that contains all the distances (𝑑𝑛) 
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between consecutive geosynthetic layers is considered in each harmony as a single 

variable (𝐒) as shown in Equation 4.13. 

𝐒 = [𝑑1, 𝑑2, … , 𝑑𝑁𝑜𝐺 , 𝑑𝑁𝑜𝐺+1] 4.13 

The allocation of each value in this vector depends on the discretization of the 

acceptable range for spacing. It is also dependent on the algorithm’s capability to 

search for combinations of spacing values whose summation equals to the height of 

the wall. The details are provided in the next sections. 

The other variables are the lengths of geosynthetic in each layer staring from 

top of the wall. Each harmony, therefore, consists of a vector of dependent variables 

for spacing and lengths of each layer as independent variables as shown in Equation 

4.14. 

𝐻 = [𝐒,  𝑙1, 𝑙2, … , 𝑑𝑛−1, 𝑑𝑛|𝐶] 4.14 

In the calculation for spacing values between adjacent layers of geosynthetic 

layers, the spacing associated with each layer is assumed as the average of distances 

above and below each layer. This assumption is indicated in Equation 4.15. 
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𝑆𝑛 =
𝑑𝑛 + 𝑑𝑛+1

2
 4.15 

This value is modified for the first and last layers of geosynthetics to account 

for absence of adjacent layer of geosynthetics above and below those layers 

respectively. 

4.6 Implementation of Harmony Search Algorithm 

The process of finding a pleasing and ear-catching harmony in music is 

analogous to finding the optimality in an optimization process (Yang 2009). HSA is 

known as one of the powerful metaheuristic optimization methods inspired by 

improvisation ability of musicians that involves less mathematical efforts and highly 

accurate results. The base structure of this algorithm has been presented by Geem 

(2000).  Since then, efforts have been made to modify the functionality of the base 

algorithm. In this study an improved harmony search, proposed by Mahdavi et al. 

(2007), is extended and implemented to the optimization of the cost associated with 

the construction of geosynthetic-reinforced earth walls. 
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Figure 4.2 IHS Algorithm flowchart. 

 

The steps involved in the 𝐼𝐻𝑆 are presented in the flowchart shown in Figure 

4.2. As indicated in the flowchart, the optimization program is initiated with a set of 

random harmonies (also called solution vectors or individuals) stored in a matrix 

called Harmony Memory (𝐻𝑀). The term "harmony" refers to solution vectors that 

contain sets of decision variables. 𝐻𝑆 algorithms use three mechanisms to produce a 

new harmony: memory consideration, random choosing, and pitch adjustment. The 

basic 𝐻𝑆 algorithm uses a constant probability and a fixed value to pitch-adjust the 

variables inside the new harmonies. 𝐼𝐻𝑆, on the other hand, employs interactive 

functions to improve the convergence of the harmonies to the optimized solution. In 
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each step, every new solution that is better than any of the stored harmonies from 

previous steps takes the place of the worst solution in the 𝐻𝑀 until termination criteria 

is satisfied. In order to fit the dependent variables into the 𝐻𝑀 and assign a random 

neighborhood for them, a new procedure is developed as discussed below.  

4.6.1 Step 1: Introduction of the optimization program and parameters for the 

algorithm. 

In this step, a set of specific parameters is introduced to the 𝐼𝐻𝑆𝐴. Some of the 

parameters are:  

1- The Harmony Memory Size (𝐻𝑀𝑆). This determines the number of 

individuals (solution vectors) in the 𝐻𝑀. For a given wall, in this work, 10 

solution vectors are introduced to build the harmony memory. 

2- The Harmony Memory Consideration Rate (𝐻𝑀𝐶𝑅). This parameter is 

utilized while decision is made to choose new variables from the HM or to 

assign new arbitrary values. 

3- The Pitch Adjustment Rate (𝑃𝐴𝑅). 𝑃𝐴𝑅, increasing functionally with 

iteration, is used to decide the adjustments of some decision variables 

selected from memory. The 𝐼𝐻𝑆𝐴 expects the definition of minimum and 

maximum 𝑃𝐴𝑅 values to this function. 

4- The Bandwidth function (𝐵𝑊). This function determines the range of the 

adjustment that occurs to the variables in each iteration. A set of minimum 
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and maximum bandwidth values (BWmin and BWmax) must be introduced to 

this function. The value of this function decreases from BWmax in first 

iteration to BWmin in last iteration. 

5- The maximum Number of Iteration (NI) which is also called Stopping or 

Termination Criteria. 

6- The Permutation Evaluation Rate (PER). This parameter is useful in 

deciding whether different permutations of the solution vector, holding 

information about the non-uniform geosynthetic spacing values, are 

considered or not. This parameter is not included in the traditional HSA and 

HIS. It is proposed, by this work, in order to increase the probability of 

considering rare occurrences for vector S and to evaluate its different 

permutations. 

The values attained by the parameters 𝐻𝑀𝐶𝑅, 𝑃𝐴𝑅𝑚𝑖𝑛, 𝑃𝐴𝑅𝑚𝑎𝑥, 𝐵𝑊𝑚𝑖𝑛, 

𝐵𝑊𝑚𝑎𝑥 and 𝐻𝑀𝑆 differ from one problem to another and can affect the convergence 

of the 𝐻𝑆𝐴 to the optimum solution. Lower values attained by the 𝑃𝐴𝑅 indicate an 

increased chance of adjusting one parameter without changing the others. However, 

𝐵𝑊 must take bigger values for the first few iterations in order to ensure the creation 

of diversified solution vectors by the algorithm (Mahdavi et al. 2007). Setting 

appropriate values for these parameters will also enable the algorithm to avoid getting 

trapped in a local optimum. Lee et al. (2005) proposed a value between 0.7 and 0.95 

for 𝐻𝑀𝐶𝑅; 0.2 and 0.5 for 𝑃𝐴𝑅; and 10 and 50 for 𝐻𝑀𝑆 to achieve a good 



 

 87 

performance in the traditional 𝐻𝑆𝐴. In 𝐼𝐻𝑆 Algorithm  the value of 𝑃𝐴𝑅 and 𝐵𝑊 

varies with progressive iterations (Mahdavi et al. 2007). 

The optimization problem is initially presented as minimizing 

𝐹(𝐒, 𝑙1, 𝑙2, … , 𝑙𝑁) which is the objective function. The vector S and geosynthetic 

lengths are the decision variables where 𝐒 = [𝑑1, 𝑑2, … , 𝑑2, 𝑑𝑁𝑜𝐺+1]  and  𝑙 =

{𝑙𝑁|𝑁 = 1,2, … , 𝑁𝑜𝐺}. Therefore, the number of decision variables (𝑁𝑜𝑉) is equal to 

the number of geosynthetic layers plus one (i.e. Equation 4.16). Each length value is 

an independent variable which is represented by its layer number and the additional 

variable 𝐒 is an array made up of the inter-dependent spacing values. 

𝑁𝑜𝑉 = 𝑁𝑜𝐺 + 1 4.16 

In this paper the lower and upper bounds for the decision variables of type 𝑙 

(i.e. reinforcement length) are set to 1m and 10 m respectively. Applying the terms 

upper and lower bound for the array 𝐒 does not make a clear sense as S contains a set 

of inter-dependent spacing-related variables (𝑑). However, the lower and upper 

bounds for the dependent variables can be defined. The minimum and maximum 

values for the individual spacing values are considered to be 0.2 m and 1.5 m, 

respectively. These numbers were picked to be consistent, for result comparison 

purposes, with Mahdavi et al. (2007). In addition, these limit values can be applied to 

𝑑-values so that the spacing values are allowed to vary within a specified range.  
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One of the challenging tasks, faced in this study, was how to assign the inter-

dependent 𝑑 values and form an optimized vector 𝐒. One way this task could be 

accomplished is by combining the gradient descent method with Harmony Search 

Algorithm and finding the optimum value of the 𝐒 vector. Another, yet simpler, way is 

to discretize the domain of 𝑑 into a few finite values and design a probabilistic method 

to find the optimum vector 𝐒. In the later approach, any possible combination of the 

discretized values of the domain -with a fixed summation equaling to the height of the 

wall- will have an equal probability of being chosen to make up the vector 𝐒. To 

elaborate on this, let’s assume that the continuous range of 𝑑 values (i.e. [0.2, 1.5]) is 

to be discretized into a certain number of distances (i.e. 𝑁𝑜𝐷). The difference between 

each discretized value in the given range is kept constant and less than a specified 

value. In this paper, 𝐷𝑉 refers to this value and the 𝑁𝑜𝐷 is then given as: 

𝑁𝑜𝐷 = |
𝑆𝑚𝑎𝑥 − S𝑚𝑖𝑛 +𝐷𝑉

𝐷𝑉
| 4.17 

The exact value of the difference between each discretized value within the 

domain is found by dividing the range by 𝑁𝑜𝐷. Once calculated, the discretized values 

are set in a vector. A random combination of the 𝑁𝑜𝐺 + 1 number of the discretized 

values -with a fixed summation equaling to the height of the wall- can be assumed as a 

possible solution for the vector 𝐒. 

The values for the length of geosynthetic layers (i.e. 𝑙 values) are 

independently selected with a stochastic process. The ranges from which the algorithm 
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picks values for the 𝑁𝑜𝐺 and 𝑙 values are set based on experience and validated 

literature. 

4.6.2 Step 2: Initialization of initial Harmony Memory (HM). 

In this step, the initial 𝐻𝑀 matrix is populated with as many randomly 

generated individuals as the 𝐻𝑀𝑆 and the corresponding Objective Function value of 

each set of random individuals 𝐹(𝐒, 𝑙1, 𝑙2, … , 𝑙𝑁). The initial Harmony Memory is 

formed as follows: 

𝐻𝑀 =

[
 
 
 
𝐒𝟏 𝑙1

1 𝑅2
1 ⋯ 𝑙𝑁

1

⋮ ⋮ ⋮ ⋯ ⋮
𝐒𝐻𝑀𝑆−1 𝑙1

𝐻𝑀𝑆−1 𝑙2
𝐻𝑀𝑆−1 ⋯ 𝑙𝑁

𝐻𝑀𝑆−1

𝐒𝐻𝑀𝑆 𝑙1
𝐻𝑀𝑆 𝑙2

𝐻𝑀𝑆 ⋯ 𝑙𝑁
𝐻𝑀𝑆

 ||

𝐹(𝑅1)
⋮

𝐹(𝑅𝐻𝑀𝑆−1)

𝐹(𝑅𝐻𝑀𝑆) ]
 
 
 

 4.18 

After the variables are assigned, the 𝐼𝐻𝑆 algorithm solves the problem such 

that the Objective Function is optimized by minimizing its value. Upon the process of 

optimization, to minimize the Objective Function, Cost values associated with each set 

of individuals are arranged in a numerically ascending order. 

4.6.3 Step 3: Improvisation for a New Harmony: 

In this step, a New Harmony vector 𝐹′(𝐒′, 𝑙′1, 𝑙′2, … , 𝑙′𝑁)., is improvised based 

on three mechanisms:  

(1) Memory Consideration 

(2) Random Selection 

(3) Pitch Adjustment 
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4.6.3.1 Harmony Memory Consideration:  

𝐻𝑀𝐶𝑅 and 1 − 𝐻𝑀𝐶𝑅 are defined as the rate of choosing one value from 

previously stored values in 𝐻𝑀 and the rate of randomly selecting one value from the 

possible range for variables respectively. For the 𝑖𝑡ℎ iteration and the 𝑗𝑡ℎ variable in 

each harmony vector we can write the following: 

For j = 1:    𝐒𝑖
′

← {
𝐒𝑖
′ ∈ {𝐒𝟏, 𝐒𝟐, … , 𝐒𝑯𝑴𝑺 }                                       with probability 𝐻𝑀𝐶𝑅

 𝐒′ ∈ 𝐴 𝑛𝑒𝑤 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐻      with probability (1 − 𝐻𝑀𝐶𝑅)
 4.19 

For j > 1:    𝑙𝑖𝑗
′

← {
𝑙𝑖𝑗
′ ∈ {𝑙𝑗

1, 𝑙𝑗
2, … , 𝑙𝑗

𝐻𝑀𝑆 }                                              with probability 𝐻𝑀𝐶𝑅

𝑙𝑖
′ ∈ [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥]                                              with probability (1 − 𝐻𝑀𝐶𝑅)

 4.20 

For an instance, assuming 𝐻𝑀𝐶𝑅 equal to 0.95, 𝐻𝑆𝐴 selects the new variables 

from values stored in 𝐻𝑀 with a probability of 95%. 

4.6.3.2 Pitch Adjustment:  

In this step, each decision variable associated with the new individual is pitch-

adjusted with a probability that was assigned to that variable. The main difference 

between 𝐻𝑆𝐴 and 𝐼𝐻𝑆 is observed when the pitch adjustment rate (𝑃𝐴𝑅) is assigned 

to each variable in each step. In 𝐼𝐻𝑆 a lower and upper level is defined for 𝑃𝐴𝑅. With 
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progressive iterations, 𝑃𝐴𝑅 linearly changes from low to high values. Variation of 

𝑃𝐴𝑅 with iteration in 𝐼𝐻𝑆 was expressed by Mahdavi et al. (2007) as: 

𝑃𝐴𝑅𝑖 = 𝑃𝐴𝑅𝑚𝑖𝑛 +
𝑃𝐴𝑅𝑚𝑎𝑥 − 𝑃𝐴𝑅𝑚𝑖𝑛

𝑁𝐼
× 𝑖 4.21 

Where 𝑖 is the iteration number and 𝑁𝐼 is the maximum number of iterations as 

defined previously. The justification for this linear relationship was that small 𝑃𝐴𝑅 

values significantly increase the number of iterations  Mahdavi et al. (2007). However, 

small 𝑃𝐴𝑅 values are essential in first iterations to prevent the algorithm from being 

trapped in local optimums. 

𝐼𝐻𝑆 bases itself on the dynamic interaction between 𝑃𝐴𝑅 and 𝐵𝑊. This 

dynamic interaction is manifest as the magnitude (distance) of the adjustment made to 

each variable, on each harmony, in the Pitch Adjustment operator. Generating high 

values of 𝐵𝑊 during the first iterations helps the algorithm to evaluate higher 

distances. This in turn augments the search capability of the algorithm. As the number 

of iterations increases, the system examines closer neighborhoods (distances from the 

newly obtained and assigned variables) and optimize their results further. The values 

of the 𝐵𝑊 which are bounded by lower and upper limits (i.e. 𝐵𝑊𝑚𝑖𝑛 and 𝐵𝑊𝑚𝑎𝑥), are 

set to decrease exponentially from 𝐵𝑊𝑚𝑎𝑥 to 𝐵𝑊𝑚𝑖𝑛. Mahdavi et al. (2007) proposed 

the following equation for 𝐵𝑊 in each iteration: 

𝐵𝑊𝑖 = 𝐵𝑊𝑚𝑎𝑥 + exp(𝑐 × 𝑖) 4.22 
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Where c is a coefficient given by: 

𝑐 =
ln (

𝐵𝑊𝑚𝑖𝑛
𝐵𝑊𝑚𝑎𝑥

)

𝑁𝐼
 

4.23 

Pitch Adjustment is applied to two kinds of variables. These are: (i) A vector 

of dependent variables (i.e. vector 𝐒 made of the spacing values), and (ii) A set of 

independent variables (i.e. lengths). 

4.6.3.2.1 Pitch adjustment for the vector S 

In this study, the values of 0.35 and 0.99 are considered for PARmin, PARmax, 

respectively. Having calculated the PARi, within the range [PARmin, PARmax], for each 

iteration from Equation (4.21), one can adjust the values of the vector S with the 

probability of PARi, as: 

Pitch adjusdting decision for 𝐒𝑖
′ ← {

𝑌𝑒𝑠              with probability 𝑃𝐴𝑅𝑖
No     with probability (1 − 𝑃𝐴𝑅𝑖)

 4.24 

 

Two simple methods can be adopted to define neighborhoods for vectors 

which are made of inter-dependent individual variables whose summation must 

remain constant (e.g. Vector 𝐒). The first method uses a small noise vector of the same 

number of elements and adds these elements with that of the original vector. Assume 

that 𝐒𝑆+𝑁 is a vector made by summing elements of the random noise vector (scaled 

by 𝐵𝑊1) and elements of vector 𝐒. 
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𝐒𝑆+𝑁 ←= 𝐒 + 𝐵𝑊1𝑖 × (𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑜𝑖𝑠𝑒 𝑣𝑒𝑐𝑡𝑜𝑟) 4.25 

Where 𝐵𝑊1𝑖  [𝐵𝑊1𝑚𝑖𝑛, 𝐵𝑊1𝑚𝑎𝑥] is distance (neighborhood) bandwidth for 

vector 𝐒 and can be calculated from Equation (4.22) for each iteration. 𝐵𝑊1𝑖 is 

introduced to the 𝐼𝐻𝑆 in order to assist the algorithm pick an optimal path in the close 

neighborhoods of vector S.  Note that the sum of the elements of the vector defined in 

Equation (4.25) does not add up to a value equal to the height of the wall. In order to 

bring the summation to a value equaling the height of the wall, one needs to assess the 

locus of such vectors which takes the shape of a hyper-diamond. If the sum of the 

elements of 𝐒𝑆+𝑁is designated by 𝑉𝑠𝑢𝑚, a new pitch adjusted neighborhood for the 

vector 𝐒 (i.e. 𝐒′𝑖) located on the hyper-diamond can be defined as: 

𝐒𝒊
′ ←= (𝑆𝑠 𝐒𝑆+𝑁)/𝑉𝑠𝑢𝑚 4.26 

Where 𝑆𝑠 represents the sum of the elements of vector 𝐒. 

This method, however, does not accommodate for any definite arrangement 

and order in framing the neighborhoods. There is an alternative approach that enables 

the algorithm to have an arranged set of vectors. In this method the neighborhoods of a 

vector can be defined by adding a set of defined vectors that add a small value to some 

elements and subtract it from other elements so as to keep the summation of the 

elements fixed. Each row of the matrix presented below shows some vectors that can 

be used to manipulate vector 𝐒 and produce a new neighborhood: 
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N𝑠𝑒𝑡 =

[
 
 
 
 
 
 
 

𝐵𝑊1𝑖 −𝐵𝑊1𝑖 0 0 0 0 ⋯
𝐵𝑊1𝑖 × 2 −𝐵𝑊1𝑖 × 2 0 0 0 0 ⋯
𝐵𝑊1𝑖 × 2 −𝐵𝑊1𝑖 −𝐵𝑊1𝑖 0 0 0 ⋯
−𝐵𝑊1𝑖 × 2 𝐵𝑊1𝑖 𝐵𝑊1𝑖 0 0 0 ⋯
𝐵𝑊1𝑖 × 3 𝐵𝑊1𝑖 × 2 𝐵𝑊1𝑖 −𝐵𝑊1𝑖 −𝐵𝑊1𝑖 × 2 −𝐵𝑊1𝑖 × 3 ⋯
−𝐵𝑊1𝑖 × 2 −𝐵𝑊1𝑖 𝐵𝑊1𝑖 𝐵𝑊1𝑖 × 2 0 0 ⋯
𝐵𝑊1𝑖 𝐵𝑊1𝑖 −𝐵𝑊1𝑖 −𝐵𝑊1𝑖 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ]

 
 
 
 
 
 
 

⏟                                                      
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝐒

 
4.27 

In Equation (4.27), each row of 𝐍set is a vector that contains scaled 𝐵𝑊1 

values that can be used in defining a neighborhood for vector 𝐒. Each row can be 

added to (or subtracted from) vector 𝐒 to produce a new neighborhood. All 

permutations of the elements in each row of 𝐍set  need to be considered in the 

calculation in order to have accurate estimate of the neighborhood vectors. Similar to 

the first method discussed above, this approach assigns values for 𝐵𝑊1𝑖  within a 

range bounded by a minimum and maximum. In this study the lower and upper limits 

for 𝐵𝑊1 are set to 0.009 and 0.2 respectively. These boundary values are set to attain 

an increased accuracy while running iterations for the spacing values that add up to 

give the height of the wall. Using the second approach, a set of random neighborhoods 

for the vector 𝐒 can be generated using the following equation. 

𝐒𝑖
′ ←= 𝐒 + 𝑁𝑠𝑒𝑡 4.28 

In this paper, all close neighborhoods are: generated using the second method; 

evaluated with the probability of 𝑃𝐴𝑅𝑖; and stored in a matrix ready to be evaluated 

with other adjusted harmonies. 
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4.6.3.2.2 Pitch adjustment for lN:  

The values of 𝑃𝐴𝑅𝑚𝑖𝑛 and 𝑃𝐴𝑅𝑚𝑎𝑥 are the same for independent variables 

(lengths). Pitch adjustment for the lengths is done with the probability of 𝑃𝐴𝑅𝑖: 

Pitch adjusdting decision for 𝑙𝑖
′ ← {

𝑌𝑒𝑠              with probability 𝑃𝐴𝑅𝑖
No     with probability (1 − 𝑃𝐴𝑅𝑖)

 4.29 

The lengths are modified to their neighboring values with the probability 

of 𝑃𝐴𝑅1. For the problem discussed in this paper, Pitch Adjustment is applied for 

length (𝑙𝑖) as described by the following expression: 

𝑙𝑖
′ ←= 𝑙𝑖

′ ± (𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒) × 𝐵𝑊2𝑖 4.30 

Where 𝐵𝑊2𝑖  for each step is calculated from Equation (4.22). The values of 

𝐵𝑊2𝑚𝑖𝑛 and 𝐵𝑊2𝑚𝑎𝑥 are given by Equation (4.31). 

[𝐵𝑊2𝑚𝑖𝑛, 𝐵𝑊2𝑚𝑎𝑥] = [0.009, 0.05 × (𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛)] 4.31 
 

Where 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 are the lower and upper limits for the range defined for 

lengths of geosynthetics which are equal to 1 m and 10 m, respectively. The random 

value in Equation (4.30) is determined using the Gaussian Membership Function 

which covers a higher range for the random value and gives a small possibility to 

higher values to be chosen. If Pitch Adjustment causes a variable to fall outside the 

given range, an alternative value must be replaced for the outlier. This alternative 

value can be the minimum or maximum of the range assigned to the variable. 
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4.6.3.3 Permutation evaluation for the vector S 

In this study, a set of random number of permutations of the vector 𝐒 is also 

evaluated with the probability of 𝑃𝐸𝑅 to increase the chance of the 𝐒 vectors that have 

small probability of random selection. This evaluation is done after Pitch Adjustment 

for the produced 𝐒 vectors. The number of these permutations is randomly chosen 

from 1 to 10. 

4.6.4 Step 4: Updating the Harmony Memory. 

If the newly generated Harmony Vector is better than any of the stored 

Harmony Vectors in the HM (i.e. results in a better Objective Function value than that 

for the stored individuals), it will replace the old stored vector in the HM. Otherwise, 

the algorithm enters the next loop (iterating between Steps 3 and 4) without any 

replacement.  

4.6.5 Step 5: Evaluation of the Termination Rule. 

Steps 3 and 4 continue to repeat until the Termination Rule is satisfied. The 

last solution vector that meets the requirements of the Termination Rule is reported as 

the optimized solution for the problem under consideration. Undoubtedly, the 

maximum number of generations could be different from problem to problem 

depending on the desired accuracy. In this study, The Termination rule is considered 

to be satisfied, when the values of Cost Function, F, are equal up to ten decimal places 
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for 200 consecutive iterations. Figure 4.3 shows the reduction in cost with iterations 

for 9 meter Geogrid-Wrap Wall with Am=0 and overburden pressure equal to qs=10. It 

can be seen that the Mean Cost Values in the HM converge to the best cost, after 300 

iterations. Further iteration causes slight changes in the variables, however, the 

changes in cost function will be insignificant.  

 

Figure 4.3 Reduction in cost with iterations for 9 meter Geogrid-Wrap Wall with 

Am=0, qs=10 

4.7 Results and Discussions 

As was discussed in Section 6, an Improved Harmony Search (IHS) was 

modified into a novel searching algorithm by incorporating a permutation-based 

optimization technique to handle non-uniform length and spacing of geosynthetic 

reinforcements. The analyses discussed herein and the associated results were 

compared to the work by Manahiloh et al. (2015). As such, the parameters, system 

geometry and load configurations were made, by design, similar to that of Manahiloh 
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et al. (2015) The input parameters used in defining each problem are presented in 

Table 4.2. 

Table 4.2 Input design parameters (after Manahiloh et al. (2015)) 

Parameter value 

Height of Wall (H) 5-9 m 

Minimum embankment of the fill (he) 0.45 

Angle of internal friction of the backfill ( f  ) 30° 

Unit weight of the backfill ( f ) 18 kN/m3 

Angle of internal friction of the fill ( b ) 35° 

Unit weight of the fill ( b ) 20 kN/m3 

Ultimate tensile strength of the geosynthetic (Tu) <60 kN/m 

Allowable tensile strength of the geosynthetic (Ta) 1.5a uT T   kN/m 

Surcharge slope angle (β) 0° 

Minimum length of the reinforcement (l e min) 1.0 m 

 

Table 4.3 shows the summary of results, obtained for uniform length and 

spacing values, that had been referred to in comparing the results of this study with 

that of Manahiloh et al. (2015). The results obtained for problems solved in different 

modes (i.e. Geotextile-wrap, Geogrids with; Static loading, Dynamic(seismic) loads) 

and their comparison with the results obtained by Manahiloh et al. (2015) are 

presented in Table 4.4 through Table 4.9. 
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Table 4.3 Summary of results for uniform length and spacing values (modified from Manahiloh et al. (2015)) 

Geotextile 

 
Am = 0 , qs = 0 Am = 0 , qs = 10 kPa Am = 0.05 , qs = 0 

Ht (m) NoG l(m) Ta-max(KN/m) Total Cost($) NoG L(m) Ta-max(KN/m) Total Cost($) NoG l (m) Ta-max(KN/m) Total Cost($) 

5 3 3.23 26.5 116826.2 3 3.24 30 117066 3 3.62 32 120390.5 

7 5 4.34 38.5 175045.2 6 4.43 36.75 178993.7 6 4.83 40 184432.2 

9 10 5.59 37.8 253864.8 11 5.62 37.1 258287.4 12 6.15 37.84 271914.3 

Geogrid 

 
Am = 0 , qs = 0 Am = 0 , qs = 10 kPa Am = 0.05 , qs = 0 

Ht (m) NoG L(m) Ta-max(KN/m) Total Cost($) NoG L(m) Ta-max(KN/m) Total Cost($) NoG l (m) Ta Total Cost($) 

5 3 3.233 26.5 159262.7 3 2.238 30 159510.6 3 3.62 32 162693.4 

7 5 4.341 38.5 232052.6 6 4.43 36.75 235405.1 6 4.83 40 240560.5 

9 10 5.59 37.8 322755.3 11 5.626 37.1 326459.7 12 6.15 37.84 338650.2 
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Table 4.4 Optimum design values for Geotextile-wrap walls Am=0, qs=0 

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to equal lengths and spacings (%) 

5 36.5 1 m 10 m 113705.6 2.67 

Lengths 
l1 l2 l3 l4 

 distances 
d1 d2 d3 d4 d5    

4.62 2.04 1.26 1.11  1.5 1.5 1.5 0.29 0.21    

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to equal lengths and spacings (%) 

7 55.86 1 m 10 m 166944.58 4.62 

Lengths 
l1 l2 l3 l4 l5  

distances 
d1 d2 d3 d4 d5 d6   

7.97 3.1 2.3 1.5 1.11  1.5 1.5 1.5 1.5 0.79 0.21   

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to equal lengths and spacings (%) 

9 60 1 m 10 m 229028.5 9.8 

Lengths 
l1 l2 l3 l4 l5 l6 l7  

distances 
d1 d2 d3 d4 d5 d6 d7 d8 

10 6.7 4.1 2.6 2.1 1.5 1.2  1.5 1.5 1.5 1.5 0.96 1.15 0.53 0.35 

Table 4.5 Optimum design values for Geogrid-reinforced walls Am=0, qs=0 

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to equal lengths and spacings (%) 

5 36.5 1 m 10 m 156217.1 1.91 

Lengths 
l1 l2 l3 l4 

 distances 
d1 d2 d3 d4 d5    

4.62 2.04 1.26 1.11  1.5 1.5 1.5 0.3 0.2    

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to equal lengths and spacings (%) 

7 54.8 1 m 10 m 225120.5 2.98 

Lengths 
l1 l2 l3 l4 l5 l6  

  distances 
d1 d2 d3 d4 d5 d6 d7  

8 3.1 2.3 1.5 1.2 1.1  1.5 1.5 1.5 1.5 0.59 0.21 0.2  

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to equal lengths and spacings (%) 

9 59.9 1 m 10 m 301860.6 6.47 

Lengths 
l1 l2 l3 l4 l5 l6 l7 l8 

distances 
d1 d2 d3 d4 d5 d6 d7 d8 d9 

10 6.7 4 2.66 2.11 1.65 1.3 1.16 1.5 1.5 1.5 1.47 1 1 0.6 0.2 0.23 
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The results for No Earthquake and No Surcharge Load (i.e. Am=0, qs=0) 

presented in Table 4.4 and Table 4.5 indicates that the amount of saving increases as 

the height of the wall increases. As was expected, the cost savings were higher for 

larger wall heights that involve larger volume of excavation. For smaller heights, the 

amount of saving is higher for Geotextile-wrap walls as compared to that of Geogrid-

reinforced walls. The tensile strength required for the reinforcement was found to be 

higher for he cases involving taller wall heights. A decreasing trend, for both spacing 

and length values, was observed from upper to lower geosynthetic layers.  

As shown in Table 4.6 and Table 4.7, higher saving was obtained for the case 

of No Earthquake and Surcharge of 10 kPa (Am=0 and qs=10 kPa) as compared to the 

cases presented in Tables 4.4 & 4.5. A general increasing trend in the percentage of 

cost reduction was observed. 

The total saving in the presence of seismic loads was found to be lower (Table 

4.8 and Table 4.9) compared to the other modes of analyses. This reduction in total 

saving can be related to the extent of seismic load considered in analysis. The inertial 

force was assumed to act over a zone of width equaling half of the wall height. This 

assumption indeed leads to a conservative design. The total saving for Geotextile-

Wrapped Walls was found to be higher than that of Geogrid-reinforced Walls. 
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Table 4.6 Optimum design values for Geotextile-wrap walls Am=0, qs=10 kPa 

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to uniform lengths and spacing (%) 

5 40 1 m 10 m 115006.56 1.76 

Lengths 
l1 l2 l3 l4 

 Distances 
d1 d2 d3 d4 d5    

5.1 2.1 1.38 1.11  1.33 1.49 1.48 0.5 0.2    

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to uniform lengths and spacing (%) 

7 60 1 m 10 m 167738.5 6.29 

Lengths 
l1 l2 l3 l4 l5   

  Distances 
d1 d2 d3 d4 d5 d6   

8.1 3.1 2.3 1.54 1.12   1.49 1.5 1.49 1.47 0.82 0.22   

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to uniform lengths and spacing (%) 

9 60 1 m 10 m 231288.1 10.45 

Lengths 
l1 l2 l3 l4 l5 l6 l7 l8 

Distances 
d1 d2 d3 d4 d5 d6 d7 d8 d9 

10 7.5 3.49 2.74 2.2 1.59 1.3 1.17 1.5 1.5 1.5 1.4 0.88 1.14 0.54 0.33 0.2 

Table 4.7 Optimum design values for Geogrid-reinforced walls Am=0, qs=10 kPa 

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to uniform lengths and spacing (%) 

5 39.8 1 m 10 m 157449.7 1.29 

Lengths 
l1 l2 l3 l4 

 Distances 
d1 d2 d3 d4 d5    

5.23 2.2 1.44 1.11  1.2 1.48 1.47 0.63 0.22    

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to uniform lengths and spacing (%) 

7 56.55 1 m 10 m 225458.7 4.22 

Lengths 
l1 l2 l3 l4 l5 

  Distances 
d1 d2 d3 d4 d5 d6 

 

9.26 3.41 2.63 1.85 1.4 0.88 1.5 1.5 1.5 0.87 0.75 

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to uniform lengths and spacing (%) 

9 59.8 1 m 10 m 303382.37 7.1 

Lengths 
l1 l2 l3 l4 l5 l6 l7 l8 

Distances 
d1 d2 d3 d4 d5 d6 d7 d8 d9 

9.99 6.49 4.53 2.7 2.23 1.77 1.27 1.16 1.5 1.5 1.5 1.45 0.84 1.02 0.69 0.3 0.2 
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Table 4.8 Optimum design values for Geotextile-wrap walls Am=0.05, qs=0 

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to equal lengths and spacings (%) 

5 39.3 1 m 10 m 118560.7 1.52 

Lengths 
l1 l2 l3 l4 

 distances 

d1 d1 d1 d4 d5    

5.92 2.14 1.27 1.1 1.5 1.5 1.49 0.31 0.2    

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to equal lengths and spacings (%) 

7 56.55 1 m 10 m 225458.7 4.22 

Lengths 
l1 l2 l3 l4 l5 l6 

  distances 
d1 d2 d3 d4 d5 d6 d7 

9.53 4.64 2.36 1.54 1.2 1.11 1.5 1.5 1.5 1.5 0.6 0.2 0.2 

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to equal lengths and spacings (%) 

9 59.9 1 m 10 m 248689.4 8.54 

Lengths 
l1 l2 l3 l4 l5 l6 l7 l8 

distances 
d1 d2 d3 d4 d5 d6 d7 d8 d9 

10 9.54 7.2 4.16 2.16 1.76 1.34 1.2 1.48 1.49 1.49 1.14 1.22 0.83 0.89 0.25 0.21 

Table 4.9 Optimum design values for Geogrid-reinforced walls Am=0.05, qs=0 

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to equal lengths and spacings (%) 

5 39.34 1 m 10 m 160904.7 1.1 

Lengths 
l1 l2 l3 l4 

 distances 

d1 d1 d1 d4 d5    

5.9 2.13 1.26 1.11 1.5 1.5 1.5 0.3 0.2    

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to equal lengths and spacings (%) 

7 58.16621 1 m 10 m 234729.7 2.42 

Lengths 
l1 l2 l3 l4 l5 l6 

 distances 
d1 d2 d3 d4 d5 d6 d7 

9.99 3.77 2.49 1.55 1.22 1.12 1.5 1.5 1.5 1.5 0.6 0.2 0.2 

Ht (m) Ta-max (kN/m) lmin lmax Cost($) Saving with respect to equal lengths and spacings (%) 

9 59.78175 1 m 10 m 319736.72 5.58 

Lengths 
l1 l2 l3 l4 l5 l6 l7 l8 

distances 
d1 d2 d3 d4 d5 d6 d7 d8 d9 

10 9.96 6.3 3.74 2.65 1.73 1.58 1.32 1.5 1.5 1.46 1.28 1.05 0.93 0.7 0.22 0.36 
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The total saving in the presence of seismic loads was found to be lower (Table 

4.8 and Table 4.9) compared to the other modes of analyses. This reduction in total 

saving can be related to the extent of seismic load considered in analysis. The inertial 

force was assumed to act over a zone of width equaling half of the wall height. This 

assumption indeed leads to a conservative design. The total saving for Geotextile-

Wrapped Walls was found to be higher than that of Geogrid-reinforced Walls. 

The range for the length of geosynthetic layers, for the results presented in all 

of the cases discussed in Tables 4.4 –4.9, was [lmin, lmax] = [1m, 10m]. This range was 

selected to be consistent with a previous study done for uniform length and spacing 

values (Manahiloh et al. 2015). However, the authors would like to note that this range 

can be altered to increase the overlap of the geosynthetic layers which helps in 

enhancing the integrity of the reinforced zone. To compare the results with smaller 

ranges for lengths of geosynthetic and justify the arrangement of layers obtained by 

IHS Algorithm, the optimization program is repeated for the 9m Geogrid-reinforced 

wall with Am=0 and qs=10 kPa. The lower bound is kept as 1 meter and the upper 

bound is changed to 9 and 5.7 meters which is close to the optimum value of length 

for the case of equal length and spacing. The results are presented in Table 4.10 
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Table 4.10 9m Geogrid-reinforced Wall with Am=0 and qs=10 kPa with two different range for lengths. 

lmax  Ta-max (kN/m) Cost($) Saving with respect to uniform lengths and spacings (%) 

8 m 60 305999.9 6.2 

Lengths 
l1 l2 l3 l4 l5 l6 l7 l8 

Distances 
d1 d2 d3 d4 d5 d6 d7 d8 d9 

8 7.8 6.2 3.5 2.35 1.58 1.3 1.18 1.5 1.47 1.49 1.47 0.8 1.2 0.54 0.21 0.32 

lmax Ta-max (kN/m) Cost($) Saving with respect to uniform lengths and spacings (%) 

5.7 m 60 311696.3 4.5 

Lengths 
l1 l2 l3 l4 l5 l6 l7 l8 

Distances 
d1 d2 d3 d4 d5 d6 d7 d8 d9 

5.7 5.69 5.65 5.64 5.41 4.7 2.99 2.98 1.5 1.5 1.5 1.42 0.84 1.17 0.54 0.23 0.3 
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It was obtained that, with decrease in lmax, the amount of saving reduced. 

Figure 4.4 shows the arrangement of geothynsetics for 9m Geogrid-Wrap Wall with 

Am=0 and qs=10 kPa, and for three different lmax. It is inferred that reducing the range 

over which the length of geosynthetic layers can vary, increases the length of 

geosynthetic for lower layers. Figure 4.4 (c) shows the arrangement for maximum 

length equal to 5.7 meter which was equal to the optimum length of geosynthetics for 

the case of same lengths and spacing (Manahiloh et al. 2015). Table 4.10 also 

indicates that, using variable lengths and spacing values, the total cost is higher 

compared to the case of equal lengths and spacing values (Manahiloh et al. 2015) with 

same maximum length for both cases. It can be inferred from Figure 4.4 that the 

overall trend for spacing and length is decreasing for lower layers. This trend is same 

for all heights and static and seismic analysis (see Table 4.4 to Table 4.9) 

 

 

Figure 4.4 Arrangement of geosynthetics for 9m Geogrid-Wrap Wall with Am=0 

and qs=10 kPa with three different range for lengths 
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The range of spacing and lengths in this study are chosen to be equal to the 

previous study was performed by Manahiloh et al. (2015). This study mainly 

performed to examine the applicability of the mentioned method, however, it is 

desirable to decrease the spacing and increase the overlapping between layers that 

ensures the integrity of the reinforced zone.  

4.8 Conclusions 

In this study the principles involving different constrained optimization 

methods were highlighted. A novel Improved Harmony Search Algorithm (IHS) was 

developed and used to optimize the design of Geosynthetic-reinforced walls with non-

uniform lengths and spacing values. Heuristic methods were employed to modify the 

traditional Harmony Search Algorithms and extend their capability to add a vector -

composed of dependent variables- as a single variable in the process of defining the 

optimization problem. In each layer, the IHS algorithm was enabled to confine the 

strength of the geosynthetics to allowable values set using constraints. While strength 

requirements are met at each layer, the optimum tensile strength of the geosynthetics 

were set to correspond to those values that result in reduced overall cost of 

construction. In addition to the cost of geosynthetic itself, the big proportion of cost 

reduction came from the reduction of the volume of fill and the associated reduction in 

the length of reinforcements for lower layers.  

The newly developed IHSA was applied to optimize the construction of 

geosynthetic reinforced earth walls of height 5, 7 and 9 meters. Various cases 
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considered were: geotextile vs. geogrid reinforcement; static (Am = 0) vs. dynamic (Am 

= 0.05) loading conditions; and the presence (qs = 10 kPa) vs. absence (qs = 0) of a 

surcharge load. The geometrical and loading values were selected to be consistent with 

a previous work with which relative observations were made. Cost savings were 

reported in comparison to the work done by Manahiloh et al. (2015) using the 

“classic” HSA. 

For geotextile-reinforced wall construction: for the case of no dynamic and no 

surcharge loads, the cost of construction of the 5, 7, and 9 meter walls showed a 

reduction of 2.67%, 4.62%, and 9.8% respectively; for the case where no dynamic 

load and qs=10 kPa were considered, the corresponding cost savings were found to be 

equal to 1.76%, 6.29%, and 10.45% respectively; and for the case where dynamic 

analysis is performed with Am = 0.05 in the absence of surcharge, the cost reductions 

were 1.52%, 4.22%, and 8.54% respectively. In all cases, it was observed that the rate 

of cost saving increased with the height of the walls. For Geogrid-reinforced walls the 

cost savings was about 30% less than that of Geotextile-reinforced walls. In addition, 

the spacing between adjacent geosynthetic layers and the corresponding lengths were 

observed to decrease from top to bottom of the walls. The authors believe that the 

ideas implemented in this newly improved algorithm could be used towards 

optimizing the design of other geotechnical projects that involve variable parameters 

in their design. 
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Chapter 5 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS  

Two commonly used Harmony Search Algorithms were utilized to optimize 

the cost of construction for MSE walls reinforced with geosynthetic layers. 

Quantitative comparisons and specific conclusions were made in the appropriate 

sections of Chapters 3 and 4. In this chapter, a general summary of the findings is 

presented. 

Harmony search algorithm was shown to be one of the newly developed, 

mathematically less complicated, search algorithms that benefits from the concept of 

memory. The utilization of this method, for engineering problems where absolute 

deterministic results are not required, is highly recommended. In this study, it was 

shown that the results obtained from HSA (for the design of MSE walls) are very close 

to those of the deterministic optimization approaches. The HSA optimization was 

modified in such a way that it always succeeded in finding global optimum, without 

the threat of getting trapped by the local optimums.  

The optimal design of conventional MSE walls, reinforced with uniform 

geosynthetic layers, was presented in Chapter 3. The length and vertical spacing of the 

reinforcements were assumed to be fixed over all reinforcement layers. The results of 

this study were compared with that of Basudhar et al. (2008). The maximum cost 

reduction was 9%. This much cost reduction was found to be very significant, taking 
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into consideration the big-scale of retaining wall construction. The cost function was 

assumed to be the cost of construction and the simple general form of the harmony 

search algorithm was used in optimizing the overall cost of the construction. This 

study showed that, even the simple form of the HSA was successful in searching the 

optimum design variables. 

Improved Harmony Search Algorithm (IHSA) was utilized to optimize the cost 

of construction for MSE walls with non-uniform geosynthetic layers. The length and 

vertical spacing of the layers were allowed to vary across different reinforcement 

layers. To account for constructability, one additional constraint was added to the 

optimization problem. This constraint limits the length of the reinforcements in a 

given layer to be equal or less than that of the top layer. It was shown that a set of 

variables of the same type could be introduced to IHSA as a single vector-type 

variable. In addition, a new permutation adjustment was introduced to the pitch-

adjustment-step of the optimization for such a vector-type variable. The cost of 

construction was shown to reduce by 10% compared to the HSA optimization result 

obtained with the assumption of uniform length and spacing of reinforcement (i.e., 

Chapter 3). 

The over conservative design outcomes that result from the use of high factors 

of safety can be significantly be improved by using optimization methods. The 

complexity of geotechnical engineering problems and their constraints (most 

importantly factors of safety) can benefit from adopting metaheuristic methods of 

obtaining optimal design. Based on the results obtained by this work, the application 
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of HSA algorithm is highly recommended for the optimization of geotechnical 

engineering designs. 
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Appendix A 

THE CODE FOR UNIFORM REINFORCEMENT ARRANGEMENT (USED 

IN CHAPTER 3) 

In Appendix A the Matlab code used for optimization of design for an earth 

wall with uniform geosynthetic layers is presented. Firstly the main body of the code 

is presented and then the two subroutines to get the required parameter and calculate 

the cost of the construction is mentioned. 

A.1 The Main Body of the Code 

 

%% Problem Definition 

  
% Cost Function: 

CostF(NoG,A,Hd,alfa,e,c1,qs,Ke,Ki,delta,Nf,Nq,teta,J,k,gg,h,I,CoG);        

% Cost Function 
[a1,alfa,qs,b,c1,d,e,gg,h,I,J,k,Nf,Nq,teta,Hd,delta,Ke,Ki]=getpar();                      

% Get the parameters 

  
%% Harmony Search Parameters 

  
    prompt = {'Maximum Iteration:',... 
               'Harmony Memory Size:',... 
               'New Memory Size:',... 
               'Harmony Memory Consideration Rate:',... 
               'Pitch Adjustment Rate:',...                
               'Fret Width Damp Ratio:'}; 

     
            pause(0.01); 

  
    dlg_title1 = 'Assign the height of the wall and specify a range 

for geosynthetic spacing and length:'; 

  

  
    num_lines1 = 1; 
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    def1 = {'5000','20','20','0.5','0.5','0.9995'}; 

  
    options.Resize='on'; 
    options.WindowStyle='normal'; 
    options.Interpreter='tex'; 

  
    answer = inputdlg(prompt,dlg_title1,num_lines1,def1,options); 

  
    CCC = cell2mat(answer(1)); 
    MaxIt = str2double(CCC);            % Maximum Number of 

Iterations 

     
    DDD = cell2mat(answer(2)); 
    HMS = str2double(DDD);              % Harmony Memory Size 

     
    EEE = cell2mat(answer(3)); 
    nNew = str2double(EEE);             % Number of New Harmonies 

     
    FFF = cell2mat(answer(4)); 
    HMCR = str2double(FFF);             % Harmony Memory 

Consideration Rate     

     
    GGG = cell2mat(answer(5)); 
    PAR = str2double(GGG);              % Pitch Adjustment Rate 

     
    HHH = cell2mat(answer(6)); 
    FW_damp = str2double(HHH);          % Fret Width Damp Ratio 

  

  
%% if both of the Spacings and lengths are constant along the wall 

height: 

  

  

     
    nVar=2;                 % Number of Decision Variables 
    VarSize=[1 nVar];       % Decision Variables Matrix Size 

     
    prompt = {'Smin:',... 
               'Smax:',... 
               'Lmin:',... 
               'Lmax:'}; 

     
            pause(0.01); 

  
    dlg_title1 = 'specify ranges for geosynthetic spacing and 

length:'; 
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    num_lines1 = 1; 

  
    def1 = {'0.5','1.2','1','7'}; 

  
    options.Resize='on'; 
    options.WindowStyle='normal'; 
    options.Interpreter='tex'; 

  
    answer = inputdlg(prompt,dlg_title1,num_lines1,def1,options); 

  
    AA = cell2mat(answer(1)); 
    Smin = str2double(AA); 

     
    BB = cell2mat(answer(2)); 
    Smax = str2double(BB); 

     
    CC = cell2mat(answer(3)); 
    Lmin = str2double(CC); 

     
    DD = cell2mat(answer(4)); 
    Lmax = str2double(DD); 

  

  
%Maximum and minimum number of Geosynthetics: 

  
NN1=(round(Hd/Smin))-1; 
NN2=(round(Hd/Smax))-1; 

  
%Band Widthes: 

  

  
FW1=0.02*(Smax-Smin);    % Fret Width (Bandwidth) for Spacings 
FW2=0.02*(Lmax-Lmin);    % Fret Width (Bandwidth) for lengths 

  
%% Cost of Geosynthetics: 

  
    prompt = {'Cost of Geosynthetic (2.6 for geotextile & 2 for 

geogrid):'}; 

     
            pause(0.01); 

  
    dlg_title1 = 'Cost of Geosynthetic:'; 

  

  
    num_lines1 = 1; 

  
    def1 = {'2.6'}; 
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    options.Resize='on'; 
    options.WindowStyle='normal'; 
    options.Interpreter='tex'; 

  
    answer = inputdlg(prompt,dlg_title1,num_lines1,def1,options); 

  
    AAA = cell2mat(answer(1)); 
    CoG = str2double(AAA); 

  
    %% Cost of Geosynthetics: 

  
    prompt = {['Choose between ' num2str(NN2) ' and ' num2str(NN1) ' 

:']}; 

     
            pause(0.01); 

  
    dlg_title1 = 'Number of Geosynthetic:'; 

  
    num_lines1 = 1; 

  
    def1 = {num2str(NN2)}; 

  
    options.Resize='on'; 
    options.WindowStyle='normal'; 
    options.Interpreter='tex'; 

  
    answer = inputdlg(prompt,dlg_title1,num_lines1,def1,options); 

  
    BBB = cell2mat(answer(1)); 
    NoG = str2double(BBB); 

    

  
%% Initialization 

  
% Empty Harmony Structure 
empty_harmony.NoG=[]; 
empty_harmony.NoS=[]; 
empty_harmony.Length=[]; 
empty_harmony.Spacing=[]; 
empty_harmony.Cost=[]; 
empty_harmony.CoV=[]; 

  
% Initialize Harmony Memory 
HM=repmat(empty_harmony,HMS,1); 

  
% Create Initial Harmonies 
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for i=1:HMS 

     
    % assign length to harmony position 
    HM(i).NoG=NoG;                                 %Assign a random 

value for GeoS numbers; 
    HM(i).NoS=NoG+1; 
    HM(i).Spacing=Hd/HM(i).NoS; 
    HM(i).Length=unifrnd(Lmin,Lmax,[1 NoG]);       %Uniform random 

values for Lengths; 

     
    %the costs of initial harmonies: 
    

[HM(i).CoV,HM(i).Cost]=CostF(HM(i).Length,HM(i).Spacing,HM(i).NoG,Hd,

alfa,e,c1,qs,Ke,Ki,delta,Nf,Nq,teta,J,k,gg,h,I,CoG); 
end 

  

  
% Sort Harmony Memory 
[BbBb, SortOrder]=sort([HM.Cost]); 
HM=HM(SortOrder); 

  
% Update Best Solution Ever Found 
BestSol=HM(1); 

  
% Array to Hold Best CoV 
BestCoV=zeros(MaxIt,1);       

  
% Array to Hold Best Cost Values 
BestCost=zeros(MaxIt,1); 

  
% Array to Hold Mean Cost Values 
MeanCost=zeros(MaxIt,1); 

  
HMit=repmat(empty_harmony,nNew+HMS,1); 

         

  
%% Harmony Search Main Loop 

  
for it=1:MaxIt 

     
    % Initialize Array for New Harmonies 
    NEW=repmat(empty_harmony,nNew,1); 

     
    % Create New Harmonies 

     
    for kk=1:nNew 

         
    NEW(kk).NoG=NoG;                                 %Assign a random 

value for GeoS numbers; 
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    NEW(kk).NoS=NoG+1; 
    NEW(kk).Spacing=HM(kk).Spacing; 

     

      
    % Create New Harmony Position and set Probability analysis 
        NEW(kk).Length=unifrnd(Lmin,Lmax,[1 NoG]);   %Uniform random 

values for Lengthes; 
        for j=1:NoG 
            if rand<=HMCR 
                % Use Harmony Memory 
                i=randi(1,1,[1,HMS]); 
                    NEW(kk).Length(1,j)=HM(i).Length(1,j);                                    
            end 

             
            % Pitch Adjustment 
            if rand<=PAR                 
                           % Length 
                    %DELTA=FW2*unifrnd(-1,+1);    % Uniform 
                     DELTA=FW2*randn();           % Gaussian (Normal) 
                     NEW(kk).Length(1,j)=NEW(kk).Length(1,j)+DELTA;                 

                 
                % Apply Variable Limits                

  
                     % Length 
                    

NEW(kk).Length(1,j)=max(NEW(kk).Length(1,j),Lmin); 
                    

NEW(kk).Length(1,j)=min(NEW(kk).Length(1,j),Lmax);                         

                 
            end 

         
        end 

         
        % Evaluation 
        

[NEW(kk).CoV,NEW(kk).Cost]=CostF(NEW(kk).Length,NEW(kk).Spacing,NEW(k

k).NoG,Hd,alfa,e,c1,qs,Ke,Ki,delta,Nf,Nq,teta,J,k,gg,h,I,CoG); 

         
    end 

     
    % Merge Harmony Memory and New Harmonies 
    HMit=[HM 
        NEW]; 

     
    % Sort Harmony Memory 
    [AaAa, SortOrder]=sort([HMit.Cost]); 
    HMit=HMit(SortOrder); 

     
    % Truncate Extra Harmonies 
    HM=HM(1:HMS); 
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    % Update Best Solution Ever Found 
    BestSol=HM(1); 

     
    % Store Coefficient of violation Ever Found 
    BestCoV(it)=BestSol.CoV; 

     
    % Store Best Cost Ever Found 
    BestCost(it)=BestSol.Cost; 

     
    % Store Mean Cost 
    MeanCost(it)=mean([HM.Cost]); 

  
    % Show Iteration Information 
    disp(['Iteration ' num2str(it) ': Best Cost = ' 

num2str(BestCost(it))   ': Best CoV = ' num2str(BestCoV(it))]); 

     
    % Damp Fret Width 
    FW1=FW1*FW_damp; 
    FW2=FW2*FW_damp; 

     
end 

  
%% Results 

  
figure; 
semilogy(BestCost,'r','LineWidth',2); 
hold on; 
semilogy(MeanCost,'b:','LineWidth',2); 
hold off; 
xlabel('Iteration'); 
legend('Best Cost','Mean Cost'); 

 

A.2 Subroutine Used to Get the Input Parameters 

 

In this subroutine the value of different parameters used in design of the MSE 

Walls reinforced by geosynthetics, acquired by an input user interface. 

function [a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s]=getpar(x) 

  

  
prompt = {'H(m):',... 
               'peak acceleration coefficient:',... 
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               'Surcharge(KN/M):',... 
               'Angle of internal friction of the 

fill(phi,degree):',... 
               'Unit weight of the fill(KN/m3):',... 
               'Angle of internal friction of the 

backfill(phi,degree):',... 
               'Unit weight of the backfill(KN/M3):',... 
               'FS(ovd,min):',... 
               'FS(sld,min):',... 
               'FS(bcd,min):',... 
               'FS(std,min):',... 
               'FS(pld,min):',... 
               'Nf:',... 
               'Nq:'}; 

     
            pause(0.01); 

  
    dlg_title1 = 'inter the input parameters:'; 

  
    num_lines1 = 1; 

  
    def1 = 

{'5','0','0','34','20','30','18','2','1.5','2','1.5','2','41.06','29.

44'}; 

  
    options.Resize='on'; 
    options.WindowStyle='normal'; 
    options.Interpreter='tex'; 

  
    answer = inputdlg(prompt,dlg_title1,num_lines1,def1,options); 

  
    AA = cell2mat(answer(1)); 
    a = str2double(AA); 

  
    BB = cell2mat(answer(2)); 
    b = str2double(BB); 

  
    CC = cell2mat(answer(3)); 
    c = str2double(CC); 

     
    DD = cell2mat(answer(4)); 
    d = str2double(DD); 

  
    EE = cell2mat(answer(5)); 
    e = str2double(EE); 

  
    FF = cell2mat(answer(6)); 
    f = str2double(FF); 

     
    GG = cell2mat(answer(7)); 
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    g = str2double(GG); 

  
    HH = cell2mat(answer(8)); 
    h = str2double(HH); 

  
    II = cell2mat(answer(9)); 
    i = str2double(II); 

     
    JJ = cell2mat(answer(10)); 
    j = str2double(JJ); 

  
    KK = cell2mat(answer(11)); 
    k = str2double(KK); 

  
    LL = cell2mat(answer(12)); 
    l = str2double(LL); 

     
    MM = cell2mat(answer(13)); 
    m = str2double(MM); 

  
    NN = cell2mat(answer(13)); 
    n = str2double(NN); 

                
%failure wedge slopes at an angle(teta): 
o=(d/2)+45; 
%Design height: 
p=a+.45; 
%friction between soil and reinforcement: 
q=(2*d)/3;          
%('Kae='); 
r=(1-sind(f))/(1+sind(f)); 
%('Kai='); 
s=(1-sind(d))/(1+sind(d)); 

  
%[a1,alfa,qs,b,c1,d,e,gg,h,I,J,k,Nf,Nq,teta,Hd,delta,Ke,Ki]=getpar() 

 

A.3 Subroutine Used to Calculate the Cost of the Wall 

 

The cost of construction is calculated and compared to the method of non-

uniform reinforcement layers. The penalty function is also applied in this subroutine. 
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Function 

[CCC,CostF]=CostF(A,SpS,NoG,Hd,alfa,e,c1,qs,Ke,Ki,delta,Nf,Nq,teta,J,

k,gg,h,I,CoG) 

  

  
%Initial spacings and length of Geosynthetics 

  
% A   = a vector of lengths 
% SpS = spacing 
% NoG = Number of Geosynthetics 

  
Amax=max(A); 

  
%% Factors of safety: 

  
%pseudo static external force: 
Fe=(.375*alfa*e*(Hd^2))*.5+.5*(alfa*c1*Hd*Amax); 

  
%pseudo static internal force: 
Fi=.5*alfa*Amax*Hd*c1; 

  
%FS overturning 
Fo=((3*(c1*Hd+qs))*(Amax^2))/(Ke*(Hd^2)*(e*Hd+3*qs)+Fe); 

  
%FS sliding 
Rs=(c1*Hd+qs)*Amax*tand(delta); 
Pa=.5*Ke*e*(Hd^2)+Ke*qs*Hd; 
Fsl=Rs/(Pa+Fe); 

  
%FS bearing capacity 
e1=(Ke*(Hd^2)*(e*Hd+3*qs))/(6*(c1*Hd+(qs/Amax))); 
qmax=(c1*Hd+qs)*(1+((6*e1)/Amax)); 
qnet=.5*c1*Nf*Amax+qs*Nq; 
Fb=qnet/(qmax+Fe); 

  
%FS pullout 

  
zi=zeros(1,NoG); 
le=zeros(1,NoG); 
leSum=0; 

  
for i=1:NoG 
    zi(i)=i*SpS; 
    le(i)=A(i)-((Hd-zi(i))/tand(teta)); 
    leSum=leSum+le(i);     
end 

  
g=zeros(1,NoG); 
G=zeros(1,NoG); 
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for i=1:NoG 
         g(i)=Ki*(qs+e*zi(i))*SpS;                                             

%required strength geosynthetic 
         

G(i)=(2*(c1*zi(i)+qs)*(tand(delta)*(le(i))))/(g(i)+(Fi*(le(i)/leSum))

);               %FS Pullout          
end 

  

  
%% constraints 

  

  
E=zeros(1,NoG); 
pp=zeros(1,NoG); 
ll=zeros(1,NoG); 

  
SumPP=0; 
SumE=0; 
Sumll=0; 

  
for j=1:NoG 

     
      if (g(j)/(60/J))-1<=0,     % C for Ta<60 
       E(j)=0; 
      else 
       E(j)=(g(j)/(60/J))-1; 
       SumE=SumE+E(j); 
      end 
       if 1-(G(j)/k)<=0,         % C for Pull out 
       pp(j)=0; 
       else 
       pp(j)=1-(G(j)/k); 
       SumPP=SumPP+pp(j); 
       end 
       if 1-(le(j))<=0,         %C For effective length >1  
      ll(j)=0; 
       else 
       ll(j)=1-(le(j)); 
       Sumll=Sumll+ll(j); 
       end 
 end 

  

     
if 1-(Fo/gg)<=0,        %C for F overturning 
    C1=0; 
else 
    C1=1-(Fo/gg); 
end 
if 1-(Fsl/h)<=0,           %C for F slide 
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    C2=0; 
else 
    C2=1-(Fsl/h); 
end 
if 1-(Fb/I)<=0,    %C for f bearing 
    C3=0; 
else 
    C3=1-(Fb/I); 
end 

  

  

   
%cost of geosynthetic  

   
  Gcst=zeros(1,NoG); 
  Gcstall=0; 

   
for j=1:NoG 
    Gcst(j)=((g(j)*0.03)+CoG)*A(i);   %CoG = Cost of geot=2.6  geog=2 
    Gcstall=Gcstall+Gcst(j); 
end 

  
%Coefficient of violation 

  
CCC=C1+C2+C3+SumPP+Sumll+SumE; 

  
  %Cost Function  
   CostF=((3*20*Hd*Amax/9.81)+Gcstall+10+80*Hd)*200*(1+10*CCC); 
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Appendix B 

THE CODE FOR NON-UNIFORM REINFORCEMENT ARRANGEMENT 

(USED IN CHAPTER 4) 

In Appendix B the Matlab code used for optimization of design for an earth 

wall with non-uniform geosynthetic layers is presented. First, the main body of the 

code is presented and then the two subroutines to get the required parameter and 

calculate the cost of the construction is mentioned. 

B.1 The Main Body of the Code 

 

%% Input parameters 
[H0,alfa,qs,b,c1,d,e,gg,h,I,J,k,Nf,Nq,teta,Hd,delta,Ke,Ki]=getpar(); 

  

  
CoG=2.6; 
NoG=8; 

  

  
%% Problem Definition 

  
% Cost Function: 

CostF(NoG,A,Hd,alfa,e,c1,qs,Ke,Ki,delta,Nf,Nq,teta,J,k,gg,h,I,CoG);        

% Cost Function 

  

  
%% Harmony Search Parameters 

  
MaxIt=1200;     % Maximum Number of Iterations 

  
HMS=20;         % Harmony Memory Size 

  
nNew=20;        % Number of New Harmonies 
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%% if both of the Spacings and lengths are constant along the wall 

height: 

     

  

  
    Smin = 0.2; 

  
    Smax = 1.5; 

  
    Lmin = 1; 

  
    Lmax = 10; 

     

  

     
%for NoG=6:10 

     

     
    SoG=NoG+1; 
    nVar=NoG+1;                 % Number of Decision Variables 
    VarSize=[1 nVar];       % Decision Variables Matrix Size 

     
%Maximum and minimum number of Geosynthetics: 

  
max_NoG=(round(Hd/Smin))-1; 
min_NoG=(round(Hd/Smax))-1; 

  
%% define IHS parameters: 

  
HMCR=0.95;       % Harmony Memory Consideration Rate 

  
% For L: 

  
PARmaxL=0.99;        % Pitch Adjustment Rate 
PARminL=0.35; 
PARminLIt=PARminL; 

  
FWminL=0.009; 
FWmaxL=0.05*(Lmax-Lmin); 
FWmaxLIt=FWmaxL; 

  
C_FWL=(log(FWminL/FWmaxL))/MaxIt; 

  
% For S: 

  
PARmaxS=0.99;        % Pitch Adjustment Rate 
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PARminS=0.35; 
PARminSIt=PARminS; 

  
FWminS=0.009; 
FWmaxS=0.2; 
FWmaxSIt=FWmaxS; 

  
C_FWS=(log(FWminS/FWmaxS))/MaxIt; 

  
DscrtV=0.1;         % Discretization value for S 
Prmt_S=100;         % Number of permutations considered 
PAR1=0.5;           % Permutation Consideration Probability  

  

  
%% Applicability 

  
Limit1=SoG*Smin; 
Limit2=SoG*Smax; 

  
  if Limit1 > H0 || Limit2 < H0 
   error(['Error, inappropriate NoG. Please choose between ' 

num2str(min_NoG) ' and ' num2str(max_NoG)]) 
  end 

  

  

  
%% For NN2:NN1 

  
Diff=max_NoG-min_NoG+1; 

  
%% Initialization 

  
% Empty Harmony Structure 

  
empty_harmony.PositionL=[]; 
empty_harmony.PositionS=[]; 
empty_harmony.NoG=[]; 
empty_harmony.Cost=[]; 
empty_harmony.CoV=[]; 
empty_harmony.Ti=[]; 
empty_harmony.MAXT=[]; 
empty_harmony.Saving=[]; 
empty_harmony.CCC=[]; 
HMtwo=[]; 

  
% Initialize Harmony Memory 
HM=repmat(empty_harmony,HMS,1); 
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%what is initial spacing and length? (I assigned equal spacing and 

equal length) 

  

  
% Create Initial Harmonies 

  
for i=1:HMS 

     
    HM(i).NoG=NoG; 
    %    ============================= TOP     |                 | 
    %    ##                 | S1               |                 | 
    %    ##                 |                  |                 | 
    %    -------------------------             |                 | 
    %    ##             | S2                   |                 | 
    %    ##             |                      |                 | 
    %    -------------------------             |                 | 
    %    ##           | S3                     |H0               | 
    %    ##           |                        |                 | 
    %    -------------------------             |                 |  

Hd 
    %    ##       | S4                         |                 | 
    %    ##       |                            |                 | 
    %    ------------------------              |                 | 
    %    ##    | S5                            |                 | 
    %    ##    |                               |                 | 
    %    ============================          |                 | 
    %    ##       |                                              | 
    %    ##     0.45                                             | 
    %    ##       |                                              | 

     
        [XX]=q2(Smin,Smax,DscrtV,NoG+1,H0); 
        HM(i).PositionS=XX(1,:); 

  
        HM(i).PositionL(1,1)=unifrnd(Lmin,Lmax);                  

%A=unifrnd(Lmin,Lmax); 
            for L1st=2:NoG 
               

HM(i).PositionL(1,L1st)=unifrnd(Lmin,HM(i).PositionL(1,L1st-1));                  

%A=unifrnd(Lmin,Lmax); 
            end             
              

[HM(i).CCC,HM(i).MAXT,HM(i).Ti,~,HM(i).CoV,HM(i).Cost]=CostFN(HM(i).P

ositionL,XX,NoG,Hd,alfa,e,c1,qs,Ke,Ki,delta,Nf,Nq,teta,J,k,gg,h,I,CoG

); 

  
end 

  

  
% Sort Harmony Memory 
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[~, SortOrder]=sort([HM.Cost]); 
HM=HM(SortOrder); 

  
HMone=HM; 

  
% Update Best Solution Ever Found 
BestSol=HM(1); 

  
% Array to Hold Best CoV 
BestCoV=zeros(MaxIt,1);       

  
% Array to Hold Best Cost Values 
BestCost=zeros(MaxIt,1); 

  
% Array to Hold Mean Cost Values 
MeanCost=zeros(MaxIt,1); 

  
HMit=repmat(empty_harmony,nNew+HMS,1); 

  
%% Harmony Search Main Loop 

  
for it=1:MaxIt 

     
    % Initialize Array for New Harmonies 
    NEW=repmat(empty_harmony,nNew,1); 

  
% Create New Harmonies 
 for kk=1:nNew 

     
    NEW(kk).NoG=NoG; 
        [ZZ]=q2(Smin,Smax,DscrtV,NoG+1,H0); 
            NEW(kk).PositionS=ZZ(1,:); 

  
            NEW(kk).PositionL(1,1)=unifrnd(Lmin,Lmax);                  

%A=unifrnd(Lmin,Lmax); 
            for L1st=2:NoG 
               

NEW(kk).PositionL(1,L1st)=unifrnd(Lmin,NEW(kk).PositionL(1,L1st-1));                  

%A=unifrnd(Lmin,Lmax); 
            end 

             
            

[NEW(kk).CCC,NEW(kk).MAXT,NEW(kk).Ti,~,NEW(kk).CoV,NEW(kk).Cost]=Cost

FN(NEW(kk).PositionL,ZZ,NoG,Hd,alfa,e,c1,qs,Ke,Ki,delta,Nf,Nq,teta,J,

k,gg,h,I,CoG); 

          

  
NEWJ_HMCR=repmat(NEW(kk),nVar,1); 
NEWJ_PAR1=repmat(NEW(kk),nVar,1); 



 

 

 

136 

NEWJ_PAR2=repmat(NEW(kk),nVar,1); 
NEWJ_PAR3=repmat(NEW(kk),Prmt_S,1); 

  
        for j=1:nVar 
%% Harmony Memory Consideration             
P_HMCR=rand; 
            if P_HMCR<=HMCR 
                % Use Harmony Memory 
                i=randi([1 HMS]); 
              if j==1 
                NEW(kk).PositionS=HM(i).PositionS; 
              else 
                NEW(kk).PositionL(1,j-1)=HM(i).PositionL(1,j-1); 
              end 

               
              %Multiple Evaluation (1) 
              

[NEWJ_HMCR(j).CCC,NEWJ_HMCR(j).MAXT,NEWJ_HMCR(j).Ti,~,NEWJ_HMCR(j).Co

V,NEWJ_HMCR(j).Cost]=CostFN(NEW(kk).PositionL,NEW(kk).PositionS,NoG,H

d,alfa,e,c1,qs,Ke,Ki,delta,Nf,Nq,teta,J,k,gg,h,I,CoG);               
               NEWJ_HMCR(j).PositionL=NEW(kk).PositionL;                  
               NEWJ_HMCR(j).PositionS=NEW(kk).PositionS; 
               NEWJ_HMCR(j).NoG=NoG; 
            end 

             

             
 Cpar1=0; 
 Cpar2=0; 
 Cpar3=0; 

             
%% Pitch Adjustment 
P_PAR=rand; 

  

                 
                if j==1 
                    if P_PAR<=PARminSIt 
                          

[YY]=Vicinity_H(NEW(kk).PositionS,Smin,Smax,FWmaxSIt,SoG); 
                           S3=size(YY); 
                           NEWD1=repmat(empty_harmony,S3(1,1),1); 

            
                               for ww3=1:S3(1,1) 
                                   

[NEWD1(ww3).CCC,NEWD1(ww3).MAXT,NEWD1(ww3).Ti,~,NEWD1(ww3).CoV,NEWD1(

ww3).Cost]=CostFN(NEW(kk).PositionL,YY(ww3,:),NoG,Hd,alfa,e,c1,qs,Ke,

Ki,delta,Nf,Nq,teta,J,k,gg,h,I,CoG); 
                                    

NEWD1(ww3).PositionL=NEW(kk).PositionL;              
                                    NEWD1(ww3).PositionS=YY(ww3,:); 
                                    NEWD1(ww3).NoG=NoG; 
                               end 
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                          [~, SortOrder2]=sort([NEWD1.Cost]); 
                           NEWD1=NEWD1(SortOrder2); 
                           NEW(kk)=NEWD1(1); 

  
                     %Multiple Evaluation (2)        
                    

[NEWJ_PAR1(j).CCC,NEWJ_PAR1(j).MAXT,NEWJ_PAR1(j).Ti,~,NEWJ_PAR1(j).Co

V,NEWJ_PAR1(j).Cost]=CostFN(NEW(kk).PositionL,NEW(kk).PositionS,NoG,H

d,alfa,e,c1,qs,Ke,Ki,delta,Nf,Nq,teta,J,k,gg,h,I,CoG);     
                     NEWJ_PAR1(j).PositionL=NEW(kk).PositionL;                  
                     NEWJ_PAR1(j).PositionS=NEW(kk).PositionS; 
                     NEWJ_PAR1(j).NoG=NoG; 
                     HCount=1; 
                    end 
                end 

                 
               if j>1 
                   if P_PAR<=PARminLIt 
                    %DELTA=FW*unifrnd(-1,+1);    % Uniform 
                     DELTA=FWmaxLIt*randn();           % Gaussian 

(Normal) 
                     NEW(kk).PositionL(1,j-1)=NEW(kk).PositionL(1,j-

1)+DELTA; 
                     %% Apply Variable Limits 
                     NEW(kk).PositionL(1,j-

1)=max(NEW(kk).PositionL(1,j-1),Lmin); 
                     NEW(kk).PositionL(1,j-

1)=min(NEW(kk).PositionL(1,j-1),Lmax); 

                      
                     %Multiple Evaluation (3) 
                    

[NEWJ_PAR2(j).CCC,NEWJ_PAR2(j).MAXT,NEWJ_PAR2(j).Ti,~,NEWJ_PAR2(j).Co

V,NEWJ_PAR2(j).Cost]=CostFN(NEW(kk).PositionL,NEW(kk).PositionS,NoG,H

d,alfa,e,c1,qs,Ke,Ki,delta,Nf,Nq,teta,J,k,gg,h,I,CoG);     
                     NEWJ_PAR2(j).PositionL=NEW(kk).PositionL;                  
                     NEWJ_PAR2(j).PositionS=NEW(kk).PositionS; 
                     NEWJ_PAR2(j).NoG=NoG; 
                   end 
               end 
        end 

     
P_PAR2=rand;         
        if P_PAR2<=PAR1 

   
            SC1=0; 
            for CparC=1:Prmt_S 
                    SC1=SC1+1; 
                    ranC2=randperm(SoG); 
                    

[NEWJ_PAR3(SC1).CCC,NEWJ_PAR3(SC1).MAXT,NEWJ_PAR3(SC1).Ti,~,NEWJ_PAR3

(SC1).CoV,NEWJ_PAR3(SC1).Cost]=CostFN(NEW(kk).PositionL,NEW(kk).Posit
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ionS(ranC2),NoG,Hd,alfa,e,c1,qs,Ke,Ki,delta,Nf,Nq,teta,J,k,gg,h,I,CoG

);     
                    NEWJ_PAR3(SC1).PositionL=NEW(kk).PositionL; 
                    

NEWJ_PAR3(SC1).PositionS=NEW(kk).PositionS(ranC2); 
                    NEWJ_PAR3(SC1).NoG=NEW(kk).NoG; 
            end         
        end 

         
                NEW_Total=[NEWJ_HMCR 
            NEWJ_PAR1 
            NEWJ_PAR2 
            NEWJ_PAR3]; 

         
       [~, SortOrder3]=sort([NEW_Total.Cost]); 
       NEW_Total=NEW_Total(SortOrder3); 
       NEW(kk)=NEW_Total(1); 

         

  
end 

  
    % Merge Harmony Memory and New Harmonies 
    HMit=[HM 
        NEW]; 

     
    if it==1 
        HMtwo=[HM 
            NEW(1)]; 
    [~, SOr]=sort([HMtwo.Cost]); 
    HMtwo=HMtwo(SOr); 
    end 

     
    % Sort Harmony Memory 
    [~, SortOrder2]=sort([HMit.Cost]); 
    HMit=HMit(SortOrder2); 

     
    % Truncate Extra Harmonies 
    HM=HMit(1:HMS); 

     

  

     
    % Update Best Solution Ever Found 
    BestSol=HM(1); 

     
    % Store Coefficeient of violation Ever Found 
    BestCoV(it)=BestSol.CoV; 

     
    % Store Best Cost Ever Found 
    BestCost(it)=BestSol.Cost; 
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    % Store Mean Cost 
    MeanCost(it)=mean([HM.Cost]); 

  
    % Show Iteration Information 
    disp(['Iteration ' num2str(it) ': Best Cost = ' 

num2str(BestCost(it))   ': Best CoV = ' num2str(BestCoV(it))]); 

     
    % Damp Fret Width for Length 
    PARminLIt=PARminL+((PARmaxL-PARminL)*it/MaxIt); 

     
    FWmaxLIt=FWmaxL*exp(C_FWL*it); 

     
    % Damp Fret Width for Length 
    PARminSIt=PARminS+((PARmaxS-PARminS)*it/MaxIt); 

     
    FWmaxSIt=FWmaxS*exp(C_FWS*it); 

     
end 

  
%% Results 

  

  
figure; 
semilogx(BestCost,'r','LineWidth',8); 
hold on; 
semilogx(MeanCost,'b:','LineWidth',8); 
hold off; 
xlabel('Iteration'); 
ylabel('Cost'); 
legend('Best Cost','Mean Cost'); 

  

  
if CoG==2 

  
PMKD=['D:\Paper-Works\HArmony 2\A' num2str(alfa) 'q' num2str(qs) '-

gg\excel-' num2str(H0) 'm\']; 
mkdir(PMKD, [ num2str(H0) '-' num2str(NoG) '-' num2str(MaxIt) 'NoG']) 
PMKDfig1=['D:\Paper-Works\HArmony 2\A' num2str(alfa) 'q' num2str(qs) 

'-gg\excel-' num2str(H0) 'm\' num2str(H0) '-' num2str(NoG) '-' 

num2str(MaxIt) 'NoG\' 'CstIt.fig']; 
savefig(PMKDfig1) 

  
end 

  
if CoG==2.6 

  
PMKD=['D:\Paper-Works\HArmony 2\A' num2str(alfa) 'q' num2str(qs) '-

gt\excel-' num2str(H0) 'm\']; 
mkdir(PMKD, [ num2str(H0) '-' num2str(NoG) '-' num2str(MaxIt) 'NoG']) 
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PMKDfig1=['D:\Paper-Works\HArmony 2\A' num2str(alfa) 'q' num2str(qs) 

'-gt\excel-' num2str(H0) 'm\' num2str(H0) '-' num2str(NoG) '-' 

num2str(MaxIt) 'NoG\' 'CstIt.fig']; 
savefig(PMKDfig1) 

  
end 

  
%% Calculate the saving 

  
if CoG==2.6 

  
    if H0==5 
       if alfa==0 && qs==0 
          CTC=116826.2;    
       elseif alfa==0 && qs==10 
          CTC=117066;        
       else 
          CTC=120390.5; 
       end 
    end 

     
    if H0==7 
       if alfa==0 && qs==0 
          CTC=175045.2;   
       elseif alfa==0 && qs==10 
          CTC=178993.7;       
       else 
          CTC=184432.2; 
       end 
    end 

     
    if H0==9 
       if alfa==0 && qs==0 
          CTC=253864.8; 
       elseif alfa==0 && qs==10 
          CTC=258287.4;      
       else 
          CTC=271914.3; 
       end 
    end 

     
end 

  

             
if CoG==2 

  
    if H0==5 
       if alfa==0 && qs==0 
          CTC=159262.7;   
       elseif alfa==0 && qs==10 
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          CTC=159510.6;       
       else 
          CTC=162693.4; 
       end 
    end 

     
    if H0==7 
       if alfa==0 && qs==0 
          CTC=232052.6; 
       elseif alfa==0 && qs==10 
          CTC=235405.1;      
       else 
          CTC=240560.5; 
       end 
    end 

     
    if H0==9 
       if alfa==0 && qs==0 
          CTC=322755.3; 
       elseif alfa==0 && qs==10 
          CTC=326459.7;     
       else 
          CTC=338650.2; 
       end 
    end 
end 

  
Perc_C=(CTC-BestSol.Cost)/CTC; 
disp(['Saving(%): ' num2str(Perc_C) '% ']) 
disp(['Previous Cost value($): ' num2str(CTC)]) 

  
for iS=1:HMS 
    HM(iS).Saving=Perc_C; 
end 

  

  
%% plot the arrangement of reinforcements 

  
FIGLSUM=0; 
figure; 
for i=1:NoG 
    FIGZ=HM(1).PositionS(1,i); 
    FIGL=HM(1).PositionL(1,i); 
    FIGLSUM=FIGLSUM+FIGZ; 
    FIGH=H0-FIGLSUM; 
    FIGX=[0 FIGL]; 
    FIGY=[FIGH FIGH]; 
    plot(FIGX,FIGY); 
    hold on; 
end 
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FIGX=[0 H0/tand(teta)]; 
FIGY=[0 H0]; 
plot(FIGX,FIGY); 

  
hold off; 
xlabel('Length of Geosynthetics (m)'); 
ylabel('Height of Geosynthetics (m)'); 
axis([0 HM(1).PositionL(1,1)+0.5 0 FIGLSUM+HM(1).PositionS(1,SoG)]) 

 

B.2 Subroutine Used to Get the Input Parameters 

 

In this subroutine the value of different parameters used in design of the MSE 

Walls reinforced by geosynthetics, acquired by an input user interface. 

function 

[H0,alfa,qs,b,c1,d,e,gg,h,I,J,k,Nf,Nq,teta,Hd,delta,Ke,Ki]=getpar() 

  

  
prompt = {'H(m):',...                                                           

%H0      1 
               'peak acceleration coefficient:',...                             

%alfa    2 
               'Surcharge(KN/M):',...                                           

%qs      3 
               'Angle of internal friction of the 

fill(phi,degree):',...        %b       4 
               'Unit weight of the fill(KN/m3):',...                            

%c1      5 
               'Angle of internal friction of the 

backfill(phi,degree):',...    %d       6 
               'Unit weight of the backfill(KN/M3):',...                        

%e       7 
               'FS(ovd,min):',...                                               

%gg      8 
               'FS(sld,min):',...                                               

%h       9 
               'FS(bcd,min):',...                                               

%I       10 
               'FS(std,min):',...                                               

%J       11 
               'FS(pld,min):',...                                               

%k       12 
               'Nf:',...                                                        

%Nf      13 
               'Nq:'};                                                          

%Nq      14 
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            pause(0.01); 

  
    dlg_title1 = 'inter the input parameters:'; 

  
    num_lines1 = 1; 

  
    def1 = 

{'9','0','10','35','20','30','18','2','1.5','2','1.5','2','41.06','29

.44'}; 

  
    options.Resize='on'; 
    options.WindowStyle='normal'; 
    options.Interpreter='tex'; 

  
    answer = inputdlg(prompt,dlg_title1,num_lines1,def1,options); 

  
    AA = cell2mat(answer(1)); 
    H0 = str2double(AA); 

  
    BB = cell2mat(answer(2)); 
    alfa = str2double(BB); 

  
    CC = cell2mat(answer(3)); 
    qs = str2double(CC); 

     
    DD = cell2mat(answer(4)); 
    b = str2double(DD); 

  
    EE = cell2mat(answer(5)); 
    c1 = str2double(EE); 

  
    FF = cell2mat(answer(6)); 
    d = str2double(FF); 

     
    GG = cell2mat(answer(7)); 
    e = str2double(GG); 

  
    HH = cell2mat(answer(8)); 
    gg = str2double(HH); 

  
    II = cell2mat(answer(9)); 
    h = str2double(II); 

     
    JJ = cell2mat(answer(10)); 
    I = str2double(JJ); 

  
    KK = cell2mat(answer(11)); 
    J = str2double(KK); 
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    LL = cell2mat(answer(12)); 
    k = str2double(LL); 

     
    MM = cell2mat(answer(13)); 
    Nf = str2double(MM); 

  
    NN = cell2mat(answer(13)); 
    Nq = str2double(NN); 

                
%failure wedge slopes at an angle (teta): 
teta=(b/2)+45; 
%Design height: 
Hd=H0+.45; 
%friction between soil and reinforcement: 
delta=(2*b)/3;          
%('Kae='); 
Ke=(1-sind(d))/(1+sind(d)); 
%('Kai='); 
Ki=(1-sind(b))/(1+sind(b)); 

  
%[a1,alfa,qs,b,c1,d,e,gg,h,I,J,k,Nf,Nq,teta,Hd,delta,Ke,Ki]=getpar() 

B.3 Subroutine Used to Calculate the Cost of the Wall 

 

The cost of construction is calculated and compared to the method of non-

uniform reinforcement layers. The penalty function is also applied in this subroutine. 

function 

[CCCC1,MAXT,g,SpS,CCC,CostF]=CostFN(A,SpS,NoG,Hd,alfa,e,c1,qs,Ke,Ki,d

elta,Nf,Nq,teta,J,k,gg,h,I,CoG) 

   
%Initial spacings and length of Geosynthetics 

  
% Ys  = an array of Yns 
% A   = an array of Lengths 
% SpS = a vector of spacings 
% NoG = Number of Geosynthetics 

   
A_min=min(A); 

  
%% Factors of safety: 

  
%pseudo static external force: 
Fe=(.375*alfa*e*(Hd^2))*0.5+0.5*(alfa*c1*((Hd-0.45)^2)); 
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%pseudo static internal force: 
Fi=0.5*alfa*((Hd-0.45)^2)*c1; 

  
%% FS overturning 

  
MVo=0; 
MVoNoG=zeros(1,NoG); 

  
for i=1:NoG 
    if i==1 
        MVoNoG(i)=(SpS(i)+(SpS(i+1)/2))*A(i)*c1*(A(i)/2); 
    elseif i==NoG 
        MVoNoG(i)=((SpS(i)/2)+SpS(i+1)+0.45)*A(i)*c1*(A(i)/2); 
    else 
        MVoNoG(i)=((SpS(i)+SpS(i+1))/2)*A(i)*c1*(A(i)/2);             
    end 
   MVo=MVo+MVoNoG(i); 
end 

  
MVototal=(qs*(A(1)^2)/2)+MVo;   

  
Mo=Ke*c1*(Hd^3)*(1/6)+Ke*qs*(Hd^2)*(1/2)+Fe; 

  
Fo=MVototal/Mo; 

  
% for same length and same spacings:     
% Fo=((3*(c1*(Hd-0.45)+qs))*(A_max^2))/(Ke*((Hd-0.45)^2)*(e*(Hd-

0.45)+3*qs)+Fe); 

  
%% FS sliding 

  
%total valume of the soil to be excavated: 

  
VolT=0; 
SVolT=zeros(1,NoG); 

  
for i=1:NoG 
    if i==1 
        SVolT(i)=(SpS(i)+(SpS(i+1)/2))*A(i); 
    elseif i==NoG 
        SVolT(i)=((SpS(i)/2)+SpS(i+1)+0.45)*A(i); 
    else 
        SVolT(i)=((SpS(i)+SpS(i+1))/2)*A(i);             
    end 
   VolT=VolT+SVolT(i); 
end 

  
% calculate the FSsliding 
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Rs=( (c1*(Hd))*A_min + (VolT-(A_min*Hd))*c1 + qs*A(1) )*tand(delta); 
Pa=0.5*Ke*e*(Hd^2)+Ke*qs*Hd; 
Fsl=Rs/(Pa+Fe); 

  
%% FS bearing capacity 

  
SigmaMV2=0; 
MV2=zeros(1,NoG); 

  
%Moment of extra lengths more than A(NoG) 

  
for i=1:NoG 
    if i==1 
        MV2(i)=(SpS(i)+(SpS(i+1)/2))*(A(i)-

A_min)*c1*((A(i)+A_min)/2); 
    elseif i==NoG 
        MV2(i)=((SpS(i)/2)+SpS(i+1)+0.45)*(A(i)-

A_min)*c1*((A(i)+A_min)/2); 
    else 
        MV2(i)=((SpS(i)+SpS(i+1))/2)*(A(i)-

A_min)*c1*((A(i)+A_min)/2);          
    end 
   SigmaMV2=SigmaMV2+MV2(i); 
end 

  
Driving_Moments=(1/3)*(0.5)*Ke*e*(Hd)^3+(qs*(Hd)^2*Ke)*0.5; 
Resisting_Moments=SigmaMV2; 
Vert_Load=VolT*c1+A(1)*qs; 

  
%e1=(Ke*(Hd^2)*(e*Hd+3*qs))/(6*(c1*Hd+(qs/A_max))); 
e1=(Driving_Moments-Resisting_Moments)/Vert_Load; 
%qmax=(c1*Hd+qs)*(1+((6*e1)/A(NoG))); 
qmax=(A(1)*qs+VolT*c1)/(A_min-2*e1); 
qnet=.5*c1*Nf*A_min+qs*Nq; 
Fb=qnet/(qmax+Fe); 

  
%% FS pullout 

  
zi=zeros(1,NoG); 
le=zeros(1,NoG); 
leSum=0; 
SpSc=0; 
for i=1:NoG 
    SpSc=SpSc + SpS(i); 
    zi(i)=SpSc; 
    le(i)=A(i)-((Hd-0.45-zi(i))/tand(teta)); 
    leSum=leSum+le(i);     
end 

  
g=zeros(1,NoG); 
G=zeros(1,NoG); 
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for i=1:NoG 
         

g(i)=(Ki*(qs+c1*zi(i))*((SpS(i)+SpS(i+1))/2))+(Fi*(le(i)/leSum));                     

%required strength geosynthetic 
         

G(i)=(2*(c1*zi(i)+qs)*(tand(delta)*(le(i))))/(g(i)+(Fi*(le(i)/leSum))

);               %FS Pullout          
end 

  
 %% constraints 

   
E=zeros(1,NoG); 
pp=zeros(1,NoG); 
ll=zeros(1,NoG); 

  
SumPP=0; 
SumE=0; 
Sumll=0; 

  
for j=1:NoG 

     
      if (g(j)/(60/J))-1<=0,     % C for Ta<60 
       E(j)=0; 
      else 
       E(j)=(g(j)/(60/J))-1; 
       SumE=SumE+E(j); 
      end 
       if 1-(G(j)/k)<=0,         % C for Pull out 
       pp(j)=0; 
       else 
       pp(j)=1-(G(j)/k); 
       SumPP=SumPP+pp(j); 
       end 
       if 1-(le(j))<=0,         %C For effective length >1  
      ll(j)=0; 
       else 
       ll(j)=1-(le(j)); 
       Sumll=Sumll+ll(j); 
       end 
 end 

      
if 1-(Fo/gg)<=0,        %C for F overturning 
    C1=0; 
else 
    C1=1-(Fo/gg); 
end 
if 1-(Fsl/h)<=0,           %C for F slide 
    C2=0; 
else 
    C2=1-(Fsl/h); 
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end 
if 1-(Fb/I)<=0,    %C for f bearing 
    C3=0; 
else 
    C3=1-(Fb/I); 
end 

     
%% cost of geosynthetic  

   
  Gcst=zeros(1,NoG); 
  Gcstall=0; 
  MAXT=zeros(1,NoG); 

     
for j=1:NoG 
    Gcst(j)=((g(j)*.03)+CoG)*A(j);   %Cost geos=2.6  geog=2 
    MAXT(j)=g(j)*1.5; 
    Gcstall=Gcstall+Gcst(j); 
end 

  
C4=0; 

  
for koli=2:NoG 
    if A(koli) >= A(koli-1) 
        C4=C4+0.1; 
    end 
end 

   
%% Coefficient of violation 

  
CCC=C1+C2+C3+C4+SumPP+Sumll+SumE; 

  
CCCC1=[C1 C2 C3 C4 SumPP Sumll SumE]; 

  
%% Cost function: 

   
  %Cost Function  
  if CoG==2.6 
   CostF=((3*c1*VolT/9.81)+Gcstall+10+80*Hd)*200*(1+6*CCC); 
  elseif CoG==2 
   CostF=((3*c1*VolT/9.81)+Gcstall+10+120*Hd)*200*(1+6*CCC); 
  end 

   
  % If g(i) is negative: 

  
  if CostF<=0 
      CostF=CostF*(-900); 
  end 


