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ABSTRACT 

Using sea ice as a test material, this dissertation explores how electromagnetic 

responses interact with low-induction-number composite materials as a function of 

instrument footprint size and shape. This research combines several interdisciplinary 

topics including electrical engineering, materials science in composites, signal 

processing, and the geophysics of sea ice itself. Specifically, this work explores the 

development of new best practices that address consistency issues with 

electromagnetic induction instruments used on sea ice that employ electrical 

conductivity as a material property measurement. It does so by using two methods: 

modeling and measurements. For modeling, a three-dimensional, full-physics, 

heterogeneous model is used to investigate the electromagnetic field response of 

several sea ice cases. These cases include changing the material makeup of the sea ice, 

as well as using different transmitter locations and orientations, with the focus being 

how instrument footprint varies in each simulated case. For measurements, a co-

calibration routine, among two physically different EM induction instruments in terms 

of instrument footprint, is developed and analyzed. Since these types of instruments 

are commonly used to measure conductivity in sea ice environments, historical 

calibration routines are only valid for one instrument at a time. The developed method 

presented herein provides a statistical solution for the material conductivities of both 

sea ice and seawater, as well as a solution for the actual ice thickness. These solutions 

are all based on field measurements made on sea ice during a data collection event 

held in Barrow, Alaska, in March 2013. 



 1 

Chapter 1 

INTRODUCTION 

Incorporating the principles of electromagnetics into sensing subsurface 

interfaces has developed various mature technologies, such as ground penetrating 

radar, radio echosounding, electromagnetic (EM) induction, and even millimeter-wave 

imaging to name a few. The general problem of subsurface interface detection of 

structures complicates quickly when geophysical composite materials are involved. In 

general, composite materials are a result of the combination of two or more different 

materials that have different physical properties into one material, where the combined 

material (the composite) has different physical characteristics then the individual 

components. Some examples of typical composite materials are aluminum alloys, 

cement, and plastics. In geophysical terms, composite materials can be clay, soil, and 

sea ice. Since the physical properties of these geophysical composite materials are 

constantly dynamic, where their characteristics change based on environmental 

factors, subsurface interface detection is a constant challenge. Therefore, 

electromagnetics is key in this area since it involves understanding the dynamic 

behavior of a composite material to accurately and successfully define interface 

detection.  

As mentioned previously, one geophysical composite material is sea ice. A 

particular area where electromagnetics is used is in determining sea ice thickness by 

way of measuring electrical conductivity levels present in the sea ice and surrounding 

media, such as seawater, snow, and air, by non-invasive means. A similar, but vastly 
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different, scenario to calculating sea ice thickness by conductivity measurements 

would be locating a landmine in buried soil. The objective in this example is to locate 

the device by the change in conductivity levels by subsurface interface detection, since 

both the landmine and surrounding soil have different conductivity levels. 

Furthermore, non-invasive means are required so that the landmine does not detonate.     

In terms of detecting conductivity changes in sea ice in order to calculate its 

thickness, sea ice is itself a low-conductive composite material, and has a bulk 

conductivity on the order of 20 mS/m [1]. The reason why sea ice is considered a 

composite material is that it is, by definition, frozen seawater. By extension, seawater 

is also considered a composite material since it contains unfrozen water and salt (i.e., a 

combination of sodium ions and chloride ions), and has a higher bulk conductivity 

value than sea ice, on the order of 2500 (mS/m) [1]. It is important to note here that 

natural variability in conductivity occurs in the sea ice and seawater, and bulk 

measurements are used for simplifying calculations. While the obvious difference 

between sea ice and seawater is that one is frozen and the other is fluid, the 

explanation for a lower conductivity value in sea ice is due to the physical process of 

brine rejection. When ice starts to form (called frazil ice crystals [2, 3]), salt 

accumulates into water droplets, which constitutes brine. Some of these droplets are 

expelled back into the ocean, and others remain in the ice structure. These brine 

droplets, which are more saline than the surrounding ice, drain over time. The 

drainage of these droplets reduces the salinity, and therefore the electrical 

conductivity, of the sea ice [2]. Temperature also has an effect on the natural 

variability in sea ice conductivity, as the melting and freezing cycles impact the brine 

content in the ice structure. On a molecular level, the salt ions that comprise brine 
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contain an electrical charge, and the more ions present, the more conductive ice is, and 

vice versa [4].  

Since conductivity is defined by how well electrical current flows in a material, 

current flow occurs in sea ice due to the presence of two components: a magnetic field 

and a conductor. In order to measure the conductivity of the sea ice and surrounding 

media, while being non-invasive so that the sample under study is undisturbed, an EM 

induction instrument is commonly employed to meet these requirements. EM 

induction instruments contain two coils that function as self-contained dipoles; one a 

transmitter coil, the other a receiver coil. The transmitter coil produces an alternating 

current at a particular frequency, usually in the kilohertz range, and creates a primary 

magnetic field in the space around the transmitter coil itself as well as the material 

below the transmitter. This magnetic field penetrates the sea ice and seawater 

underneath. The interaction of the primary field, which is a changing magnetic field, 

with the material underneath the transmitter induces small eddy currents in the 

material underneath the instrument. At this stage, the sea ice and seawater are 

electrically conducting, though seawater is more conductive than sea ice due to the 

ions being held by the intermolecular bonds in ice [5]. These eddy currents produce a 

secondary magnetic field that, along with the primary magnetic field that is a result of 

the alternating current produced in the transmitter coil, is detected by the receiver coil. 

The magnetic field values, along with the operating frequency and the coil separation 

of the instrument, provide a quantity referred to as “apparent conductivity” to the user. 

Apparent conductivity, in this context, can be defined as a representation of the 

electrical conductivity of an equivalent homogenous earth given by the integrated 

contribution from all the materials sensed by the receiver. Additionally, the 
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measurement of apparent conductivity is proportional to the ratio of the received 

primary and secondary magnetic field by way of low-induction-number theory [6]. 

This theory states that if the operating frequency is so low that the skin depth is much 

greater than the coil spacing, the magnitude of the secondary magnetic field is directly 

proportional to the ground conductivity [7]. 

Even though these apparent conductivity measurements at low-induction 

numbers provide necessary data to determine ice thickness, they do not tell the whole 

story. Since apparent conductivity is the contribution of all materials below the 

receiver, the sea ice/seawater interface still needs to be defined in order to provide a 

thickness. For further insight, these apparent conductivity measurements historically 

rely on one-dimensional (1D) approximations to a homogenous layered-earth solution 

to relate how the fields react with the material underneath the EM induction 

instrument. One such approximation is that sea ice conductivity is negligible. This 

approximation alone does not account for various physiographic features in sea ice, 

such as pressure ridges, cracks, and even brine intrusions form the seawater into the 

sea ice. Additionally, these historical approximations generalize instrument footprint 

to the 1D space, where the footprint increases with height. Instrument footprint is 

defined as the area contributing to a measurement made by an instrument. These 

historical thoughts on instrument footprint, along with the 1D approximations, can 

affect the overall accuracy of the ice thickness result. Since sea ice itself is three-

dimensional (3D), what is needed is a 3D full-physics, heterogeneous EM model to 

show how the EM field responses react to a change in material properties (i.e., 

interface detection), and how instrument footprint is affected, when the situation 

comprises of weakly conductive sea ice in contrast to stronger conductive seawater.  
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A model is an important first step to map the subsurface interface between sea 

ice and seawater to better improve accuracy in thickness measurements. As such, it 

provides a unique opportunity to explore, in detail, the effects of electromagnetic 

responses in a given composite material matrix in relation to subsurface interface 

detection in a general sense. However, the model currently uses simulated data in 

order to explore the EM response at the interface. Therefore, actual in situ field- 

collected data needs to be included, and also how it is used to calculate thickness must 

be considered and discussed. Since EM induction instruments collect apparent 

conductivity, this quantity can be related to ice thickness through various numerical 

routines, such as non-linear regression and digital filter techniques. While these 

routines provide a thickness result, they only establish thickness for one instrument at 

a time, and need to be recalculated for each additional instrument used. Additionally, 

some parameters established with these numerical routines have no geophysical 

meaning. What is needed to improve thickness accuracy with actual data is a way to 

co-calibrate multiple instruments in a statistically consistent manner to compare 

thickness measurement results between instruments of different footprint size with the 

type of dipole construct exhibited in using the EM induction technique. This routine 

could give insight into the general case of how a composite material matrix affects the 

actual field collected data from instruments that have different instrument footprints. 

In an effort to explore these areas of increasing accuracy in sea ice thickness 

by way of modeling and developing a new calibration approach for in situ data, this 

dissertation focuses on the following science question: 
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How can different aspects of geophysical composite properties, such as 

material conductivity, be used to improve the accuracy of sea ice thickness 

measurements based on numerical-modeling techniques and electromagnetic 

induction field instruments? 

This question will be answered by exploring the following topic areas: 

1) Objective 1 – Simulate field excitations of level and deformed sea ice with 

a 3D full-physics heterogeneous model in order to analyze field responses 

of multiple geophysical composite materials. 

2) Objective 2 – Develop a co-calibration algorithm among different EM 

induction instruments based on ground truth thickness data collected from 

a field excursion in Barrow, Alaska, during 2013.  

The anticipated impact of this research touches on three important areas: 1.) in-

depth analysis of the full three-dimensional electromagnetic field response when it 

interacts with sea ice, 2.) challenging long-standing assumptions about how sea ice 

can be treated in terms of dimensionality, and 3.) advancing the level of knowledge 

that could provide the capability to develop new types of instruments that collect data 

more accurately in the future.  

Therefore, in the context of this research dissertation, I outline these objectives 

in the following manner: Chapter 2 comprises a literature review, Chapter 3 provides 

the necessary mathematical background for this thesis, Chapter 4 is a modeling study 

that explores the use of a 3D numerical simulator to provide EM responses of several 

cases of sea ice to take a closer look at how instrument footprint and subsurface 

detection is affected by different physical properties, Chapter 5 describes the 

fieldwork conducted in Barrow, Alaska, and presents the mathematical theory for the 
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co-calibration algorithm, Chapter 6 is an analytical study that explores a co-calibration 

routine for two separate EM instruments based on the fieldwork and theory presented 

in Chapter 5, and Chapter 7 concludes this dissertation with responses to the central 

question posed for this research work. 
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Chapter 2 

LITERATURE REVIEW 

This chapter provides the necessary background to describe EM induction 

principles as they apply to the mapping of low-induction-number composite-layered 

materials. This chapter is organized into four sections. The first section presents a brief 

historical perspective of how EM induction instruments came into use when 

measuring sea ice. Additionally, it also presents alternatives to using EM induction in 

a sea ice environment The second section reviews the conceptual background for 

electromagnetic induction in the kilohertz range interacting with sea ice. It also 

discusses important concepts of electrical skin depth and instrument orientation. The 

third section reviews existing response functions used with EM induction units, 

depending on instrument orientation. The fourth section discusses the weakness of 

existing EM induction techniques at low induction numbers with respect to sea ice as 

the chosen test material. The goal of these summaries is to highlight the connections 

between instrument measurements of integrated surface apparent conductivity and 

layered composite materials with differing material conductivities within the low-

induction-number range.  

2.1 History of EM Induction on Ice-Covered Seas 

For the purposes of this dissertation, since EM induction instruments are 

interacting with sea ice, it is necessary to present a brief historical overview of how 

EM induction became involved with measuring sea ice during the modern era (1940s 
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onward).  During the Cold War, the study of sea ice thickness was based on a response 

to several factors. One such example was a response to submarine attack strategy, in 

which both the Soviet and US Navies would hide missile-launching submarines below 

pack ice where the inherent acoustical noise made detection very difficult [8]. One 

method explored during the Cold War to aid in determining ice thickness and counter 

these threats was with an EM induction instrument [9]. EM induction instruments 

were historically used by geophysicists to study strong conductivity contrast to the 

background soil, such as with ore bodies, groundwater, or even unexploded ordnance 

[1]. In turn, these instruments were applied to sea ice since this environment provides 

an excellent contrast between weakly conducting sea ice and stronger conducting 

seawater [9, 10].  

So how is information collected with an EM induction instrument on sea ice 

used today? The accurate measurement of sea ice provides critical information for 

decision making in areas of environmental and climate policy, logistics operations, 

civil infrastructure near sea ice, and national security issues as sea ice opens up new 

shipping lanes for commerce [11]. But what is the requisite accuracy of ice thickness 

estimates for policy decision makers? From the existing literature [12,13], EM 

induction instruments can measure thickness of flat ice to within 10% accuracy. For 

ridged ice, the uncertainties exceed 10%, with one main reason being footprint size 

and shape not being accounted for in those measurements. Therefore, if the requisite 

accuracy were to be quantified, ideally the uncertainty should not exceed 10% for both 

level and ridged ice for all measurement platforms (not just with using EM induction). 
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In the area of environmental and climate policy, Arctic sea ice, referred to as 

“Earth’s air conditioner”, is important since it keeps the polar region cold and also 

helps moderate the global climate as a whole [14]. For both logistics operations and 

civil infrastructure, the Arctic Ocean is a strategic sea route not only as described for 

the military, but also for commercial operations, both locally and abroad. Additionally, 

structures such as oil drilling platforms could be affected by changing ice conditions, 

as well as inaccurate ice thickness measurements. Here, the consequences could 

potentially be catastrophic. For example, if the ice thickness was underestimated in the 

face of changing ice conditions, structures such as oil drilling platforms could be 

destroyed since they would be constructed on ridged ice not accounted for in 

measurements instead of being constructed on a more secure footing, which would 

cause the platform to become unstable and potentially cause injuries. Another example 

of how changing ice conditions affect commercial operations is with the Prudhoe Bay 

oil fields in Alaska that lie on the shore, where pollutants can become an issue due to 

sea ice pattern change and would contaminate wide areas undetected beneath the ice 

cover [15]. Therefore, sea ice acts like a filter as well as an air conditioner. The Arctic 

also provides the shortest shipping route between Europe and Asia. Normally, ships 

have to sail around Africa, the Panama Canal, or in increasingly hostile seas to travel 

between these continents, but as sea ice continues to decline, routes continue to be 

tested and expanded into longer summer shipping seasons [15]. Using established 

scientific principles, one can address fundamental science questions, such as how the 

ice thickness relates to changes in the climate index (such as the Arctic Oscillation and 

the North Atlantic Oscillation [16]), how to develop a non-invasive method to measure 

something while preserving it, and how changes in sea ice thickness can possibly 
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project how it might recover. The next section provides alternatives to using EM 

induction on sea ice. 

2.1.1 Alternatives to EM Induction 

Outside of the EM induction method, there are other methods used to quantify 

sea ice thickness, such as satellites [17, 18], submarines and autonomous water 

vehicles by way of upward looking sonar [19], ground penetrating radar (GPR), and 

radio echosounding. While this is an incomplete list of all the methodologies used to 

collect sea ice information, the following examples are mentioned along with their 

respective strengths and weaknesses. Satellites can measure the largest swaths of ice 

compared to all methodologies, but the expense of resolution can be a concern. 

Submarines inherently measure sea ice from the bottom of the ice structure, but cannot 

capture topside information (such as snow thickness). GPR has been used successfully 

with freshwater ice, but has only proven partly successful with sea ice due to the brine 

content, which limits the propagation distance of the GPR signal [20]. Radio 

echosounding has achieved some success when used on glaciers, but emits pulse 

lengths that are too large to measure sea ice [20]. Additionally, to include EM 

induction with these examples, it provides rapid data collection, but a mathematical 

correlation from apparent conductivity data to sea ice thickness is always needed. 

However, the EM induction method compliments most existing methodologies used 

for sea ice, such as satellites and submarines, because it provides ground truth data for 

these systems. EM induction systems also provide repeatability and time series 

capability. 
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2.2 Electromagnetic Induction Fundamentals  

Figure 2-1 can be used as a visual reference to explain how the EM induction 

technique is levied on sea ice; it shows a transmitter-receiver pair separated by a coil 

spacing distance r. As introduced in Chapter 1, the transmitter is a coiled wire 

configured to generate a sinusoidal-varying electric current [7] at a specific low-

frequency f (1’s of kHz).  The electric current sets up a time-harmonic primary 

magnetic field P which emits spherically from the transmitter. The nearby conductive 

seawater responds to the emitted primary magnetic field by generating electric eddy 

currents, which, in turn create their own secondary S magnetic fields. Since the 

secondary magnetic fields are passively responding to the primary field, the response 

defines the induced magnetic field [21]. With regard to a sea ice environment, 

induction takes place in a thin layer under the ice because the more conductive 

seawater prevents deeper penetration of the fields [1]. This limiting factor is due to 

signal absorption and scattering in the ice [22]. Absorption is where electromagnetic 

signals become attenuated when travelling through a medium, and scattering occurs 

when the signal is deflected from a straight path due to material obstacles, such as 

roughness and inhomogeneous matter within the medium. In essence, using an EM 

induction instrument on sea ice is an ideal case for an approximate two layer system, 

that being the low-conductive (or highly resistive) sea ice against an infinitely deep, 

more conductive seawater as the background composite material [1].   

For completeness, the transmitter and receiver use complex signals both 

containing in-phase (real) and quadrature (imaginary) components with the secondary 

electric and magnetic responses being 90° out of phase with the primary fields [7]. 

With frequency domain EM instruments that operate in low-induction numbers, the 

secondary field is 90° out of phase with the primary field [6]. Essentially, the receiver 
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coil of a low-induction-number magnetic dipole pair behaves like an antenna to detect 

the magnetic field produced by nearby geophysical materials from eddy currents that 

are induced by the transmitter. Subsequently, the apparent conductivity quantity 

reported to the user is proportional to the ratio of the secondary (quadrature) magnetic 

field divided by the primary magnetic field [6]. In order to relate apparent conductivity 

to an actual thickness, physical sea ice measurements are obtained using the drill hole 

method. The drill hole method uses large augers to drill holes in the ice, which allows 

the thickness to be determined with measuring tape. While the drill hole method could 

be considered more accurate because of its inherent nature of providing a measured 

thickness, it is a slow process. When compared to EM induction units, the drilling 

equipment used for this method can be very heavy. On the other hand, EM induction 

units provide apparent conductivity information rapidly (with the push of a button). To 

sum up, apparent conductivity is a bulk average estimate of composite material layers 

with averaging weights applied based on EM field propagation principles.  

Additionally, the distance between the coils r is small compared to the 

electrical skin depth of the surrounding materials. As an important principle in 

electromagnetic theory, the electrical skin depth (commonly referred to as skin depth) 

of any material can be calculated to determine how far a signal will penetrate in a 

material, given the frequency of the instrument, the permeability of the material, and 

the conductivity of the material. Physically, the skin depth of a material can be defined 

as the distance in the halfspace that a propagating plane wave has travelled when its 

amplitude has been attenuated by e-1 of the amplitude at the surface. Halfspace is a 

geophysical term that means the material beneath the surface has the same physical 

properties as far as an instrument can detect [23]. In other words, halfspace is a 
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volume where half is air and the other half has constant physical parameters, such as 

conductivity, salinity, etc. [24].  The skin depth calculation of a physiographic 

material, such as sea ice, is also an important metric in determining the variability of 

instrument footprint. It can be defined mathematically as  

  , (2.1) 

where ω is the angular frequency, µ0 is the permeability constant of free space (4π * 

10-7 henries/meter), and σ is the conductivity of the material. The angular frequency is 

defined as   

  , (2.2) 

where f is the temporal frequency (Hertz). To put Equation 2.1 into words, the amount 

of signal that is able to penetrate a given medium decreases with either increasing 

frequency or increasing material conductivity. 

 EM induction instruments can also be used in different dipole configurations. 

Depending on the orientation used, the penetration depth of the transmit signal, as well 

as the information collected at the receiver, become affected. These configurations 

consist of a vertical dipole mode and a horizontal dipole mode [6]. In the vertical 

dipole mode, the dipoles are parallel to the surface under measurement, and the 

magnetic field is normal to the surface. In contrast, using the horizontal dipole mode 

means the dipoles are normal to the surface, and the magnetic field is parallel to the 

surface under measurement. The vertical dipole mode allows for more exploration 

depth when compared to the horizontal dipole mode. However, the horizontal dipole 

mode is more sensitive to responses near the surface than the vertical dipole mode 

since the relative response contribution from the materials underneath the instrument 

δ = 2
ωµ0σ

ω = 2π f
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is large, but decays with depth. For simplicity in this thesis, we will follow the 

terminology presented in [21], and subsequently label the vertical dipole mode as 

“horizontal coplanar” (HCP), and the horizontal dipole mode as “vertical coplanar” 

(VCP). Figure 2-2 demonstrates the respective geometries of HCP and VCP. 

 

 

Figure 2-1.   Schematic of EM induction concept through multiple level materials.  
Note that this schematic represents a vertical dipole configuration, which is depicted 
by having both the transmitting and receiving coils in a horizontal orientation. The 
secondary field is induced in the receiving coil by the eddy currents that were created 
(induced) in each material by the transmission of a primary field from the transmitter 
coil, separated by a fixed length r from the receiver coil. M represents the number of 
layers, h is the height of the layers, and σ is the conductivity of a particular material 
layer. 
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Figure 2-2.   EM induction instrument dipole geometries (a) Horizontal coplanar 
(HCP) is the dipole configuration where the dipoles are parallel (horizontal) to the 
surface under measurement, and the magnetic field is normal to the surface. (b) 
Vertical coplanar (VCP) is where the dipoles are normal (vertical) to the surface under 
measurement, and the magnetic field is parallel to the surface, indicated by the red 
circles with a red “X” through it. Here, the coil spacing r is shown for clarity. 

2.3 Responses of EM Induction Instruments 

With the previous section establishing how an EM induction unit (Figure 2-3) 

operates on a physical level, the response functions of these instruments must now 

also be defined. There are two types of functions used with EM induction instruments: 

relative response functions and cumulative response functions. First, the relative 

response function ϕ is defined as the relative contribution to the secondary magnetic 

field coming from a thin layer at a certain distance in a homogenous halfspace [6]. 

This function also gives the material’s relative contribution at different distances to the 
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apparent conductivity measured by the EM induction instrument [6]. The relative 

response function in the HCP mode can be defined mathematically as 

  , (2.3) 

where   

  , (2.4) 

and z is the depth. Since this function is related to a physical dimension of the 

instrument itself (r), the relative response for the VCP can be stated as  

  . (2.5) 

Figure 2-4 displays the relative responses for both HCP and VCP as mathematical 

functions relative to a certain distance ζ, and shows that the depth of penetration is 

greater for HCP when compared to VCP. For sea ice thickness scenarios, VCP mode 

will be a good choice for flat ice that is at most 3 m thick since the relative 

contribution is at a maximum at the surface, which demonstrates that it is sensitive to 

conductivity changes for thinner ice. If the study focuses on ridged ice (greater than 3 

m), then HCP should be used to provide further penetration depth, as this mode 

typically has a maximum depth of investigation limited to about twice the coil 

separation [25]. 

Second, the cumulative response function represents the multi-layer relative 

contribution to the secondary magnetic field from all material below a certain distance, 

not just a thin layer as in the case of defining the relative response. Simply put, it is the 

φ ζ( )HCP =
4ζ

4ζ 2 +1( )3/2

ζ = z
r

φ ζ( )VCP = 2 −
4ζ
4ζ 2 +1
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mathematical integration of the relative responses, where the integration is also the 

total secondary magnetic field at the receiver [6]. Additionally, if the coil spacing r is 

less than the skin depth of the cumulative layers, as is the case with materials that have 

low induction numbers such as sea ice, apparent conductivity for a simple two-layer 

system can be stated as 

 σ a =σ 1 1− R ζ1( )HCP,VCP⎡⎣ ⎤⎦ +σ 2R ζ1( )HCP,VCP   (2.6) 

where σa is the apparent conductivity recorded by the instrument, σ1 and σ2 are 

material conductivities for layers below the EM induction instrument, and the 

cumulative response functions R(ζ)HCP,VCP are defined per polarization, and the 

subscript of “1” indicates the response function of the first layer. Per [6], the 

cumulative response in HCP is expressed as  

  , (2.7) 

and for VCP, 

  . (2.8) 

The response curves for these equations are shown in Figure 2-5. The information on 

this curve works with respect to thickness of different materials and their placement in 

a layered composite by relating measured field quantities to unknown values. As an 

example to clarify this concept, assume a two-layer system such as sea ice (layer 1) 

and seawater (layer 2) where the EM induction instrument sits directly on top of the 

sea ice surface, their respective bulk material conductivities are known, as well as the 

R ζ( )HCP =
1

4 ζ( )2 +1

R ζ( )VCP = 4 ζ( )2 +1 − 2 ζ( )



 19 

ice thickness and the coil separation. The information from Figure 2-5 provides a 

value for the cumulative response function R, where the measured thickness z of layer 

1 is divided by the coil separation (i.e., Equation 2.4). This R value is valid for the 

space between the bottom of the instrument to the bottom of layer 1. Depending on the 

coil orientation, along with the material conductivities of layer 1 and layer 2, the 

determined R value (y-axis of Figure 2-5) is substituted into Equation 2.6 to provide 

an apparent conductivity result. This example, however, is only one possibility. 

Another possibility is if the apparent conductivity, the layer 1 thickness, and the coil 

separation are known, then the material conductivities of the layers can be deduced. 

Even the layer 1 thickness can be determined if all of the aforementioned parameters 

are known. Additionally, this concept also works with systems with more than two 

layers.   
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(a) 

 
(b) 

Figure 2-3.   Examples of EM induction units used on sea ice. Panel (a) shows the 
Geonics Limited EM31-MK2 [26], and panel (b) shows the Geophysical Survey 
Systems, Incorporated (GSSI) EMP-400 [27]. Shown in both panels is the coil spacing 
r as discussed in Figure 2-1. Additionally, the GSSI EMP-400 is shown in the 
horizontal dipole configuration, where the transmit and receive coils are in the vertical 
orientation. These photos of the author were taken during a fieldwork excursion in 
Barrow, Alaska, during March 2013. These photos also display the environment that 
the EM induction units were used in. (Photo Credit: Tracy DeLiberty) 

r = 3.67 m 

r = 1.219 m 
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Figure 2-4.   Relative response curves. The curves in this figure are a graphical 
representation of Equation 2.3 for the HCP case and Equation 2.5 for the VCP case. 
The HCP case allows for greater depth of exploration since the relative contribution 
from near-surface material is large, and the VCP case is more appropriate for 
shallower applications since the relative contribution at the surface is very small [6].  
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Figure 2-5.   Cumulative response curves. The curves in this figure are a graphical 
representation of Equation 2.7 for the HCP case and Equation 2.8 for the VCP case. 
This figure demonstrates the difference in responses from all material below an EM 
inductive instrument based on dipole configuration. 

2.4 Disadvantages of Using EM Low Induction Number Techniques 

This section will discusses two weaknesses that surround using EM induction 

instruments at low induction numbers as they apply to a sea ice environment: the 

accuracy with current methods used for a.) modeling sea ice environments, and b.) 

processing ice thickness results from field measurements. 
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2.4.1 Accuracy Concerns with Modeling Sea Ice Environments 

The shortcoming in accuracy with modeling sea ice environments lies in the 

specific problems found in approximations to the layered-earth model related to the 

instruments that use the EM induction technique at low-conduction numbers for 

geophysical applications. As mentioned in the previous chapter, current modeling 

techniques make approximations to the layered-earth model [28]. Two critical 

assumptions for these approximations are 1) all layers are level and 2) conductivity 

values are uniform for the material within each layer. These assumptions include 

negligible conductivity for air/snow/ice layers given an approximated conductivity (~2 

S/m) for the ocean. From [29], these assumptions can then be cast into semi-analytic 

formulae for the layered Earth problem, which are inversion based on the distance 

between the antenna and the ice/ocean interface. The specific thickness solution is 

rendered through digital filter techniques [30] based on Hankel transforms [31]. 

However, for sea ice geophysical conditions, the assumptions of lateral homogeneity 

through the idealized model aforementioned are proving to be inaccurate in the 

presence of major physiographic features such as ice rafting, ridges, and cracks.  

2.4.2 Accuracy Concerns with Processing Ice Thickness Results 

The same issue of accuracy, in regard to processing the thickness results, can 

be stated with EM induction instruments when the collected data is used against a 

calibration routine to determine actual ice thickness. One method to determine 

thickness from received apparent conductivity is through a non-linear regression 

approach [32-35]. Thickness data collected at drill holes serve a calibration point of 

measured thickness to the EM induction instrument’s reading of apparent 

conductivity. Multiple drill holes, drilled to the water line, are needed in order to 
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provide data points to construct thickness relationships. Since this approach provides 

an apparent conductivity/thickness relationship, any data point collected on survey 

lines in field campaigns can be matched to a total thickness through an exponential fit 

curve. However, there are several drawbacks to this approach. First, the calibration 

curve method relies on coefficients to “fit” the curve to the data, and these coefficients 

have no geophysical meaning. Second, the curve is solely based on apparent 

conductivity collected at the drill hole location, but does not account for physiographic 

features underneath the surface of the ice. Third, the curve is only valid for one 

instrument and its characteristics, such as coil spacing and operating frequency. 

Should any of these characteristics change, a new calibration curve must be generated. 

Finally, the curve is generated based on collected apparent conductivity values alone, 

without accounting for calculated material conductivity values of the individual layers 

of sea ice and seawater.  

To determine how accurate ice thickness calculations are with these types of 

processing routines one must calculate error propagation or uncertainty. Outside of 

using measured ice thickness values collected at drill hole sites, the apparent 

conductivity/thickness relationship values are calculated values based on field 

measurements, where uncertainty (or error) is an inherent part of the measurement 

process. To calculate the uncertainty, the following formula is used [36]: 

 Δerror = x ± t *
s
n

⎛
⎝⎜

⎞
⎠⎟

  (2.9) 

where  is the sample mean, t is the t-distribution, s is the sample standard deviation, 

and n is the number of samples (valid values of material conductivities). The t-

distribution is based on the 95% confidence interval and n-1 degrees of freedom. 

x
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Therefore, the results calculated with this metric provide a useful gauge on how 

accurate a method is for determining calculated ice thickness values.  

2.5 Chapter Summary 

This chapter expressed four key points necessary for this research. First, it 

presented a brief historical note on how EM induction units became involved with the 

study of sea ice thickness, and also introduced alternative methods to EM induction 

used in the study of sea ice. Second, a description of how the EM induction process 

works on sea ice at a conceptual level was also discussed. Third, the concept of 

response functions and how they relate to physical parameters of sea ice was also 

presented. Additionally, terms in that section were defined that will be used 

throughout this dissertation. Defining these terms was necessary in this context since 

the terminology of the classical literature in this field, at times, can be somewhat 

confusing to the reader. Lastly, this chapter also examined weaknesses of EM 

induction with low inductive materials like that of sea ice, specifically on the issues 

with accuracy with regard to modeling sea ice environments and processing thickness 

data. The degree of accuracy with models and measurements is based on calculating 

the uncertainty or error of propagation. Even though some of the methods discussed in 

this chapter provide accurate results, some assumptions (i.e., negligible ice 

conductivity) are made that can skew these results. But before these concerns can be 

addressed, a mathematical premise to this dissertation is presented in the next chapter 

to provide the background derivations to the formulas used in this research. 
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Chapter 3 

MATHEMATICAL BACKGROUND 

This chapter provides the necessary mathematical premise to the objectives 

discussed in Chapter 1. It does so by presenting a key aspect of electromagnetic 

theory, that of Maxwell’s equations. Some mathematical material was briefly 

introduced in Chapter 2, but this chapter goes more in depth to describe where the 

resulting equations are derived from. Therefore, the first section of this chapter 

presents a review of Maxwell’s equations and how they relate to the historical 

definition of apparent conductivity as discussed in [6]. The second section relates 

Maxwell’s equations to the numerical simulator presented and discussed in Chapter 4. 

The third section relates Maxwell’s equations to the relative and cumulative response 

functions needed for developing a co-calibration algorithm discussed in Chapter 5. 

The goal of this chapter is to align the objectives of this dissertation back to Maxwell’s 

equations, in the form of historical geophysical texts [37-39]. Therefore, while the 

contents of this chapter may be found throughout graduate textbooks and other 

references stated within this chapter, this chapter takes that information and presents it 

relative to the focus of this thesis work. 

3.1 Relating EM Induction Concepts to Maxwell’s Equations 

This section introduces Maxwell’s equations in both differential and integral 

form. It also discusses how to uncouple Maxwell’s equations, a step that is necessary 

to derive other equations needed in this dissertation. Vector potentials are also 
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presented since they relate to such concepts as defining the historical equation for 

apparent conductivity. Finally, this section also looks into the derivation of HCP and 

VCP modes for EM induction units of the magnetic dipole type. 

3.1.1 Maxwell’s Equations to Vector Potentials and Beyond 

Referring to Figure 2-1 and based on the historical definition from [6], 

apparent conductivity (σa) can be defined mathematically as  

   (3.1) 

where ω is the angular frequency defined by Equation 2.2, µ0 is the permeability of 

free space, r is the coil spacing between the transmitter and receiver of the inductive 

instrument, Hs is the secondary magnetic field, and Hp is the primary magnetic field. 

However, recall that there are two orientations for electromagnetic induction 

instruments, and two approaches for HCP and VCP are used herein to derive and 

define apparent conductivity. Since the equation in [6] for apparent conductivity is 

based on a homogeneous earth, a comment must be made here to detail the complexity 

of arriving at Equation 3.1 from first principles in the forthcoming discussion 

involving Maxwell’s equations. From [38] and [37], respectively, there are two 

approaches, one using Sommerfeld integrals and Bessel functions [38], and the other 

approach from [37] uses the aforementioned functions, plus Fourier transform pairs 

and Green’s functions. While the latter is more complicated, it is the most complete 

form, and will be presented here in this chapter, but only relevant equations to achieve 

the result of Equation 3.1 from both a VCP and HCP perspective. 

To start from first principles, Chapter 1 states that the use of EM induction is 

related to electromagnetics, and so, it is shown here now that Equation 3.1 can be 

σ a =
4

ωµ0r
2

Hs

H p

⎛

⎝⎜
⎞

⎠⎟
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derived from Maxwell’s equations. It should be noted that separate mathematical 

relations will be provided in later chapters and appendices of this dissertation based on 

the concepts presented in each particular chapter. This chapter presents the “base” 

equations needed for this research. With that, Maxwell’s equations are introduced, as 

defined in [31] and shown in Table 3-1. The field quantity terms, including the 

instantaneous (i.e., time-varying) field vectors, are defined in Table 3-2.  
	
	
	

Differential Form Integral Form 

  

   

   

  

		

   

   
   

   

   

Table 3-1. Maxwell’s equations in differential and integral forms. 

 
	
	
	
	
	
	
	
	
	
	
	
	
	

  
∇× E = −M i −

∂B
∂t

  
∇× H = Ji + Jc +

∂D
∂t

   ∇⋅D = qev

  ∇⋅B = qmv

  
∇⋅Jic = −

∂qev

∂t

    
E ⋅d l = − M i ⋅ds− ∂

∂t
B ⋅ds

S∫∫S∫∫C!∫

    
H ⋅d l = Ji ⋅ds + Jc ⋅ds

S∫∫ + ∂
∂t

D ⋅ds
S∫∫S∫∫C!∫

    
D ⋅ds = QeS!∫∫

    
B ⋅ds = QmS!∫∫

    
Jic ⋅ds = −

∂Qe

∂tS!∫∫
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Field Quantity Term Definition Units 

E Electric field intensity volts/meter 
Mi Impressed (source) 

magnetic current density 
volts/square meter 

B Magnetic flux density webers/square meter or 
teslas 

H Magnetic field intensity amperes/meter 
Ji Impressed (source) electric 

current density 
amperes/square meter 

Jc Conduction electric current 
density 

amperes/square meter 

Jic The sum of Ji and Jc amperes/square meter 
D Electric flux density coulombs/square meter 
qev Electric charge density coulombs/cubic meter 
qmv Magnetic charge density webers/cubic meter 
Qe Total electric charge coulombs 
Qm Total magnetic charge webers 
j Imaginary term √-1 

Table 3-2. Field quantity terms used in Maxwell’s equations. Boldface italic font 
denotes instantaneous field vectors.  

For the sake of completeness, the electromagnetic constitutive relationships are 

also presented. When materials are subjected to electromagnetic fields, charged 

particles within the material interact with the electromagnetic vector fields, in turn 

producing currents and affecting wave propagation in the material [31]. To account for 

these effects, and relating them to the electromagnetic vectors, these relationships can 

be mathematically expressed as 

   (3.2)  

   (3.3) 

 ,  (3.4) 

where ε is the permittivity of the medium (farads/meter), and µ is the permeability of 

the medium.  

  Jc =σ E

  D=εE

 B = µH
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 Note that Maxwell’s equations are coupled equations. Having coupled 

equations means that each equation in a set depends on the other. To demonstrate how 

these equations are coupled, consider the first two equations in Table 3-1, Faraday’s 

law and Ampere’s law, respectively. To solve for the vector fields E and H, it is 

necessary to uncouple these equations by increasing their order from first-order partial 

differential equations to second-order partial differential equations [31]. In order to put 

these equations into an uncoupled second-order differential equation form, the curl of 

both sides Faraday’s law and Ampere’s law, respectively, is taken in differential form, 

stated as 

    (3.5) 

  . (3.6) 

Using the vector identity 

   , (3.7) 

Equation 3.6 can be re-written as   

   . (3.8) 

Another relation from Gauss’s law can be stated as 

   , (3.9)  

or, equivalently, 

   . (3.10) 

Rearranging terms and substituting Equation 3.10 into Equation 3.9, the resultant 

equation is 

  
∇×∇× E = −∇× M i − µ∇× ∂H

∂t
⎛
⎝⎜

⎞
⎠⎟ = −∇× M i − µ ∂

∂t
∇× H( )

  
∇×∇× H = ∇× Ji +σ∇× E + ε∇ × ∂E

∂t
⎛
⎝⎜

⎞
⎠⎟ = ∇× Ji +σ∇× E + ε ∂

∂t
∇× E( )

∇×∇×V = ∇ ∇⋅V( )−∇2V

  

∇ ∇⋅E( )−∇2E = −∇× M i − µ ∂
∂t

Ji +σ E + ε ∂E
∂t

⎡
⎣⎢

⎤
⎦⎥

= −∇× M i − µ ∂Ji

∂t
− µσ ∂E

∂t
− µε ∂

2 E
∂t 2

 ∇⋅D = ε∇ ⋅E = qev

 
∇⋅E = qev

ε
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   . (3.11) 

The same method can be applied to Ampere’s law, stated as   

   . (3.12) 

Additionally Gauss’s law for magnetism can be expressed as  

  , (3.13) 

or, the equivalent as 

  . (3.14) 

Equation 3.14 can be substituted into 3.12 to receive the following:   

  . (3.15) 

Relevant to this thesis, these equations can also be expressed in time-harmonic 

(or frequency domain) form, which requires some explanation. Up until now, the 

instantaneous field vectors in these equations are assumed to be time-varying (or in the 

time domain), where each of these quantities has a value defined at every point in 

space and time. But in many systems involving electromagnetic waves the time 

variations are cosinusoidal and are referred to as time-harmonic [31]. Time-varying 

and time-harmonic forms can be related to each other as linear combinations of single-

frequency solutions through the use of Fourier transform pairs [40]. This transform 

pair is expressed as [41] 

 
 
F f t( ){ } = f̂ ω( ) = f t( )e− jωt dt

−∞

∞

∫   (3.16) 

 
 
F −1 f̂ ω( ){ } = f t( ) = 1

2π
f̂ ω( )e jωt dω

−∞

∞

∫  , (3.17) 

  
∇2E = ∇× M i + µ ∂Ji

∂t
+ 1
ε
∇qev + µσ ∂E

∂t
+ µε ∂

2 E
∂t 2

  

∇ ∇⋅H( )−∇2H = ∇× Ji +σ −M i − µ ∂H
∂t

⎛
⎝⎜

⎞
⎠⎟ + ε

∂
∂t

−M i − µ ∂H
∂t

⎛
⎝⎜

⎞
⎠⎟

= ∇× Ji −σ M i − µσ ∂H
∂t

− ε ∂M i

∂t
− µε ∂

2 H
∂t 2

 ∇⋅B = µ∇⋅H = qmv

 
∇⋅H = qmv

µ

  
∇2H = −∇× Ji +σ M i +

1
µ
∇qmv + ε

∂M i

∂t
+ µσ ∂H

∂t
+ µε ∂

2 H
∂t 2
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where  F indicates the Fourier transform. Additionally, if expressing equations in 

time-harmonic form from time-varying, then, in general 

 ,  (3.18) 

and vice versa. Providing an example here, the electric field intensity can be 

transformed using an inverse Fourier transform, stated as  

  , (3.19) 

where ejωt is the time dependence of the fields [40]. The bold non-italic font of the 

electric field intensity on the right-hand side of Equation 3.19 denotes time-harmonic 

form. 

To demonstrate the relationship shown in Equation 3.18, as well as using the 

electric field intensity again, consider as an example the following time-varying field: 

 
  , (3.20) 

where  
 ,  (3.21) 

and represents the phasor field. This result is possible from Euler’s identity [42] 

  . (3.22) 

Now, if the partial derivative of E in Equation 3.20 is taken with respect to time t, it 

leads to  

  . (3.23) 

Equivalently,  

  (3.24)  

∂
∂t

<=> jω

E x, y, z;t( ) = E
−∞

∞

∫ x, y, z;ω( )e jωt dω
2π

E = E cos ωt +φ( ) = Re Ephe
jωt⎡⎣ ⎤⎦

Eph = E e
jφ

e jφ = cosφ + j sinφ

∂E
∂t

E cos ωt +φ( )( ) = −ω E sin ωt +φ( )

∂E
∂t

= ∂
∂t

⎛
⎝⎜

⎞
⎠⎟ Re Ephe

jωt⎡⎣ ⎤⎦
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   (3.25) 

  , (3.26) 

and Equation 3.18 can generally be used. 

Unless otherwise indicated, the following equations will use time-harmonic 

form, and the vector quantities will be in bold non-italic font. Therefore, Equations 

3.11 and 3.15 can be rewritten as  

   (3.27) 

  . (3.28) 

In trying to relate the previous equations to the historical definition of apparent 

conductivity as shown in Equation 3.1, it is useful to explain an important concept, 

that of Schelkunoff potentials [39]. Schelkunoff potentials define the electromagnetic 

field by pairs of vector functions to a superposition of sources of electric type and 

magnetic type, and are used to solve wave equations in a space comprised of 

homogenous regions [37]. Schelkunoff potentials also use the concept of vector 

potentials from electromagnetic theory, where vector potentials in electromagnetics 

are used as aids in obtaining solutions for the electric and magnetic fields. The 

introduction of vector potentials often simplifies the solution, even though it may 

require the determination of additional functions. This process generally requires two 

steps: the first step, the vector potentials defined as magnetic (A) and electric (F), are 

found once the specific boundary-value problem is specified, and the second step 

quantifies the electric and magnetic fields after the vector potentials are determined.   

In order to begin the discussion of Schelkunoff potentials in a mathematical 

sense, the following equations are used:  

∂E
∂t

= Re ∂
∂t

⎛
⎝⎜

⎞
⎠⎟ Ephe

jωt⎡
⎣⎢

⎤
⎦⎥

∂E
∂t

= Re jωEphe
jωt⎡⎣ ⎤⎦ = jω Re Ephe

jωt⎡⎣ ⎤⎦

∇2E = ∇×Mi + jωµJi +
1
ε
∇qev + jωµσE+ω 2µεE

∇2H = −∇× Ji +σMi +
1
µ
∇qmv + jωεMi + jωµσH +ω 2µεH
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   (3.29) 

  , (3.30) 

where Em is the electric field intensity produced by magnetic currents, Ee is the 

electric field intensity produced by electric currents, Hm is the magnetic field intensity 

produced by magnetic currents, and He is the magnetic field intensity produced by 

electric currents. Since the end goal is to ultimately derive to Equation 3.1, the focus 

here will be on using Em and Hm. To start here, the Schelkunoff potential F can be 

used in the following manner, 

  . (3.31) 

Additionally, it is also necessary to introduce the term ϕm, which is an arbitrary 

magnetic scalar potential [31]. This term is introduced since the equality of the curls of 

two vectors does not require that the vectors be identical [37]. Using this arbitrary 

scalar potential, where the following vector identity can be used: 

  . (3.32) 

To see how the Schelkunoff vector potential F and ϕm can be used, Ampere’s law with 

Em and Hm terms are used in time-harmonic form, stated as 

 .  (3.33) 

Assuming for now a source-free region (i.e., Ji = 0), equation 3.33 can be rewritten as  

   (3.34) 

where subtracting terms leads to 

 ,  (3.35) 

where the quantity of σ + jωε is referred to as admittivity [43]. Admittivity is defined 

as the admittance per unit length [43], where admittance is a measure of electrical 

conduction in a system. Admittance can also be described as how well current flows in 

E = Em +Ee

H = Hm +He

Em = −∇× F

∇× −∇φm( ) = 0

∇×Hm = Ji +σEm + jωεEm

∇×Hm = σ + jωε( )Em

∇×Hm − σ + jωε( )Em = 0
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a circuit from circuit theory [44]. But also note the quantity of σ + jωε. The real 

component σ is referred to be “in-phase” with the electric field intensity. The 

imaginary component jωε is referred to be in “quadrature” with the electric field 

intensity for real ε [37]. 

Equation 3.31 can then be substituted into Equation 3.35 to receive the 

following: 

 ∇×Hm − σ + jωε( ) −∇× F( ) ,  (3.36) 

where, by factoring out the minus signs leads to  

 ∇×Hm + σ + jωε( ) ∇× F( )  . (3.37) 

Using the vector identity 

  ∇×A +∇×B = ∇× A +B( )  , (3.38) 

Equation 3.37 can now be restated as  
  ∇× Hm + σ + jωε( )F( ) = 0 .  (3.39) 

Invoking the vector identity established in equation 3.32, such that  
  Hm + σ + jωε( )F( ) = −∇φm  , (3.40) 

solving for Hm leads to  

   . (3.41) 

Substituting Equation 3.41 into Faraday’s law, complete with the source term Mi, 

leads to the following:  

  ∇×Em = −Mi − jωµHm   (3.42) 

  ∇×Em = −Mi − jωµ( ) −∇φm − σ + jωε( )F( )  , (3.43) 

where the quantity jµω is referred to as the impedivity [43]. Impedivity is defined as 

impedance per unit length [43], where physically, impedance is, the measure of 

current flow impediment in a circuit (from circuit theory) [44]. When the curl-curl of 

Hm = −∇φm − σ + jωε( )F
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the vector potential F is used with Equation 3.41, the following relationship can be 

stated   

  ∇×∇× F =Mi − σ + jωε( ) jωµ( )− jωµ( )∇φm  . (3.44) 

Using the vector identity established in Equation 3.7, and applying to the left-hand 

side of Equation 3.44 leads to   

  ∇ ∇⋅F( )−∇2F =Mi − σ + jωε( ) jωµ( )− jωµ( )∇φm  . (3.45) 

Since the term ϕm is arbitrarily defined, the divergence of F can also be defined, such 

that  

   . (3.46) 

Called the Lorenz gauge, Equation 3.46 allows the inhomogeneous wave equation, 

also referred to as the Helmholtz equation or complex wave equation, to be expressed 

as  

 ∇2F + k2F = −Mi  , (3.47) 

where k, the wavenumber, is defined as   

  . (3.48) 

3.1.2 HCP Configuration 

To begin with the HCP derivation, a general case of a source-free region is 

presented first.  The following equation is introduced here: 

  , (3.49) 

where uz is the unit vector in the z-direction. Equation 3.49 is known as the transverse 

electric (TE) vector potential. This equation is possible due to Equation 3.31 and the 

fact that, in a source-free region, the vector potential F due to magnetic sources does 

not need to be considered [43, 37].  Hence, a source-free Helmholtz wave equation 

using scalar potentials can now be written as  

∇⋅F = − jµω( )φm

k2 = µεω 2 − jµσω

F = Fuz
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  ∇
2F + k2F = 0 . (3.50) 

Equation 3.50 can be converted into an ordinary differential equation by way of a 

double Fourier transform pair that looks like 

   (3.51) 

  . (3.52) 

The resulting ordinary differential equation is then  

 ,  (3.53) 

where u is defined as  
 u = kx

2 + ky
2 + k2  . (3.54) 

The solution to Equation 3.53 is  
  , (3.55) 

where  is the Fourier transformed TE potential, and the “+” and “–” symbols 

represent downward and upward attenuations (decaying) waves [37].  

 In an N-layered system, the decaying solutions, both upward (F+) and 

downward (F-), can be determined by incorporating a particular solution Fp. The 

particular solution is defined as the sum of any possible solution [43], therefore in this 

case it represents both F+ and F-. Since there will now be a source present with both 

VCP and HCP cases in a homogeneous earth, these source terms, along with the 

particular solution Fp, are accounted for now in the following equations. For the HCP 

configuration, the solution between the source and the earth’s surface can be expressed 

in Fourier transform space as 
   (3.56) 

 
!F kx ,ky , z( ) = F x, y, z( )e− j (kxx+kyy) dxdy

−∞

∞

∫
−∞

∞

∫

 
F x, y, z( ) = 1

4π 2
!F kx ,ky , z( )e j (kxx+kyy) dkx dky

−∞

∞

∫
−∞

∞

∫

 

d 2 !F
dz2

− u2 !F = 0

 
!F kx ,ky , z( ) = F+ kx ,ky( )e−uz + F− kx ,ky( )e+uz

 !F

 
!F = Fpe

−u0h e−u0z + rTEe
+u0z( )
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where, if some terms are rearranged such that the exponential is inside the parenthesis, 

results in  
 

 
!F = Fp e

−u0 h+z( ) + r
TE
e+u0 h+z( )( )  , (3.57) 

where Fp represents the particular solution between the source and the earth (as well as 

the decaying solutions aforementioned), u0 is u but the subscript of 0 indicates the 

zeroth layer (i.e., the surface), h represents the carry height of the EM induction 

instrument, z represents the thickness of the layers, and rTE is the reflection coefficient 

for the TE mode. 	

	 To derive individual field components for a homogeneous earth set, the field 

components of a layered system are expressed first since some terms will go to zero in 

the homogenous set case. Therefore, for this case in transform space,  	

  , (3.58) 

where  

  . (3.59) 

Additionally, m represents the infinitesimal magnetic dipole moment [37] and is 

expressed mathematically as  

   (3.60) 

where I is a small loop of current at the origin and S is the area of the loop. Recall then 

Equation 3.56, and substituting that into Equation 3.52 results in the following 

equation 

 ,  (3.61) 

where now Equation 3.59 can also be substituted into Equation 3.61 to receive the 

following result of  

 
!F = jωµ0m

2u0
e−u0he−u0z

Fp =
jωµ0m
2u0

m = IS

F = 1
4π 2 Fpe

−u0h e−u0z + rTEe
+u0z( )e j (kxx+kyy) dkx dky

−∞

∞

∫
−∞

∞

∫
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  . (3.62) 

Since the integral is a function of  because of the u0 term, the double Fourier 

transform can be converted to a Hankel transform using the relation described in [45]  

  , (3.63) 

where 
  , (3.64) 

J0 is the Bessel function of order 0, and  

  . (3.65) 

With this transform, Equation 3.62 can be recast into   

  , (3.66)  

where 
  . (3.67) 

Since cylindrical coordinates are being used, due to symmetry there will only be a ϕ 

component in the electric field  

  , (3.68) 

which is possible through the relations of [37] 

   (3.69) 

and 

  , (3.70) 

F x, y, z( ) = jωµ0m
8π 2 e−u0 z+h( ) + rTEe

+u0 z−h( )( ) 1u0 e
j (kxx+kyy) dkx dky

−∞

∞

∫
−∞

∞

∫
kx
2 + ky

2

F kx
2 + ky

2( )e j (kxx+kyy) dkx dky
−∞

∞

∫
−∞

∞

∫ = 2π F λ( )λJ0 λρ( )dλ
0

∞

∫

λ 2 = kx
2 + ky

2

ρ 2 = x2 + y2

F ρ, z( ) = jωµ0m
4π

e−u0 z+h( ) + rTEe
+u0 z−h( )( ) λu0 J0 λρ( )dλ

0

∞

∫

u0 = λ 2 − k0
2( )

Eφ = − jωµ0m
4π

e−u0 z+h( ) + rTEe
+u0 z−h( )( )λ

2

u0
J1 λρ( )dλ

0

∞

∫

Eφ = − y
ρ
Ex +

x
ρ
Ey

∂J0 λρ( )
∂x

= −λ x
ρ
J1 λρ( )
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where J1 is the Bessel function of order 1. Using the same approach, the horizontal 

magnetic field will only have a ρ (or radial) component, which can be expressed as 

[37] 

  , (3.71) 

and in integral form  

  . (3.72) 

Lastly, the vertical magnetic field can be given by the relation [37] 

  , (3.73) 

and in integral form 

  . (3.74) 

Now since Equation 3.1, as shown in [6], is only concerned with a homogenous earth, 

all z and h terms in Equations 3.68, 3.72, and 3.74 are set to zero. In order to derive the 

vertical magnetic field, the electric field is defined first, as  

  . (3.75) 

Equation 3.75 can also be transformed with the following approach from [37]. First, 

since  

  , (3.76) 

and multiplying the numerator and denominator of the integrand by λ – u, Equation 

3.75 can be restated as 

  . (3.77) 

Using the Lipschitz integral relation [46] 

H ρ =
x
ρ
Hx +

y
ρ
Hy

H ρ =
m
4π

e−u0 z+h( ) + rTEe
+u0 z−h( )( )λ 2J1 λρ( )dλ

0

∞

∫

∂2

∂z2
+ k0

2 = u0
2 + k0

2 = λ 2

Hz =
m
4π

e−u0 z+h( ) + rTEe
+u0 z−h( )( )λ

3

u0
J0 λρ( )dλ

0

∞

∫

Eφ = − jωµ0m
2π

λ 2

λ + u
J1 λρ( )dλ

0

∞

∫

k2 = λ 2 − u2

Eφ =
jωµ0m
2πk2

∂
∂ρ

λ 2J0 λρ( )dλ − λuJ0 λρ( )dλ
0

∞

∫
0

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥
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  , (3.78) 

where  

  , (3.79) 

while including the Sommerfeld integral relation [47]  

  , (3.80) 

and, using the following from [48] 

  , (3.81) 

where G is the three-dimensional scalar electromagnetic Green’s function, the relation 

of  

  , (3.82) 

can be applied to the electric field, such that  

  , (3.83) 

where finally 

  . (3.84) 

Then the vertical magnetic field can be derived from Faraday’s law and expressed as 

[37] 

  , (3.85) 

with the final result being  

  . (3.86) 

e−λzJ0 λρ( )dλ
0

∞

∫ = 1
r

r = ρ 2 + z2

G ρ, z( ) = 1
4π

λ
u0

∞

∫ e−u z J0 λρ( )dλ

G r( ) = e
− jkr

4πr

λ
u
e−uzJ0 λρ( )dλ = e

− jkr

r0

∞

∫

Eφ = − m
2πσ

∂
∂ρ

∂2

∂z2
1
r

⎛
⎝⎜

⎞
⎠⎟ −

∂2

∂z2
e− jkr

r
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
z=0

Eφ = − m
2πσρ 4 3− 3+ 3ikρ − k2ρ 2( )e− jkρ⎡⎣ ⎤⎦

Hz = − 1
jωµ0

1
ρ

∂
∂ρ

ρEφ( )

Hz =
m

2πk2ρ 5 9 − 9 + 9 jkρ − 4k2ρ 2 − jk 3ρ 3( )e− jkρ⎡⎣ ⎤⎦
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Hz can also be expressed in mutual impedance ratios, Z/Z0, where Z is the mutual 

impedance of small loops at the surface, and Z0 is the mutual impedance of the same 

loops albeit in free space. The ratios are obtained by dividing Hz by the fields 

measured in free space (–m/4πρ3), which results in the following for HCP  

  . (3.87) 

3.1.3 VCP Configuration 

Now, for VCP, the approach is similar, but the equations naturally change 

because of the different orientation. The Fourier transformed TE potential is now 

  . (3.88) 

Fp is obtained by equating the vertical magnetic field in Fourier transform space  

   (3.89) 

with   

   (3.90) 

to receive 

  . (3.91) 

Substituting Equation 3.91 into Equation 3.61 produces the following relationship 

  , (3.92) 

where, from Equation 3.63, can be converted from a Fourier to Hankel transform, 

which results in 

 .  (3.93) 

Z / Z0 =
2

k2ρ 2 −9 + 9 + 9 jkρ − 4k2ρ 2 − jk 3ρ 3( )e− jkρ⎡⎣ ⎤⎦

 
!F = jωµ0m

2u0
e−u0 z+h( )ux

 
!Hz
p = 1

jωµ0
∂2 !Fx
∂x∂z

= − jkx
m
2
e−u0 z+h( )

Hz =
1

jωµ0
∂2

∂z2
+ k2

⎛
⎝⎜

⎞
⎠⎟
Fz

Fp = − jωµ0m
2

jkx
kx
2 + ky

2

F x, y, z( ) = − jωµ0m
8π 2 e−u0 z+h( ) + rTEe

+u0 z−h( )( ) jkx
kx
2 + ky

2 e
j (kxx+kyy) dkx dky

−∞

∞

∫
−∞

∞

∫

F ρ, z( ) = − jωµ0m
4π

  ∂
∂x

e−u0 z+h( ) + rTEe
+u0 z−h( )( ) 1λ J0 λρ( )dλ

0

∞

∫    
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When the derivatives of Equation 3.93 are taken by the following formulas 

   (3.94) 

  , (3.95) 

and Equation 3.90, the resulting magnetic field components are  

   (3.96) 

   (3.97) 

  . (3.98) 

Again, since the focus is with a homogenous earth, and since the dipole is horizontally 

oriented, the focus is on the Hx and Hy components, where now z and h of the Hx and 

Hy components can be expressed as  

   (3.99) 

  , (3.100) 

where  

  . (3.101) 

Further refinements to Equation 3.101 can be made, such as multiplying the numerator 

and denominator of the integrand by λ – u leads to Ψtotal, stated as 

 Ψ total =
2
k2

λ − u( )λu
0

∞

∫ J1 λρ( )dλ   (3.102) 

Equation 3.102 can be recast in the following form 

  , (3.103) 

Hx =
1
jωµ

∂2Fz
∂x∂z

Hy =
1
jωµ

∂2Fz
∂y∂z

Hx =
m
4π

∂2

∂x2
e−λ z+h( ) + rTEe

+λ z−h( )( )
0

∞

∫ J0 λρ( )dλ

Hy =
m
4π

∂2

∂x∂y
e−λ z+h( ) + rTEe

+λ z−h( )( )
0

∞

∫ J0 λρ( )dλ

Hz =
m
4π

∂
∂x

e−λ z+h( ) + rTEe
+λ z−h( )( )λ

0

∞

∫ J0 λρ( )dλ

Hx = − m
4π

∂
∂x

x
ρ
Ψ

⎛
⎝⎜

⎞
⎠⎟

Hy = − m
4π

∂
∂y

x
ρ
Ψ

⎛
⎝⎜

⎞
⎠⎟

Ψ = 2 λu
λ + u

J1 λρ( )dλ
0

∞

∫

Ψ total = Ψ1 +Ψ2 +Ψ3
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where  

   (3.104) 

   (3.105) 

  . (3.106) 

Using the Sommerfeld integral relation [47] discussed with Equation 3.82 and the 

Lipschitz integral relation [46] discussed with Equation 3.78, Equations 3.104-3.106 

can be restated as   

   (3.107) 

   (3.108) 

  , (3.109) 

where, combining terms leads to  

  . (3.110) 

Substituting Equation 3.110 into the horizontal field components of Equations 3.99 

and 3.100 leads to 

   (3.111) 

  , (3.112) 

where  

  . (3.113) 
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∞
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Putting Equation 3.111 into mutual impedance ratio form, as discussed with Equation 

3.87, when x = 0, leads to  

  . (3.114) 

 If the effects of displacement currents are neglected [38], such that k can be 

recast into the following equation   

  , (3.115) 

and equating the radial components in Equations 3.87 and 3.114 to the coil separation 

such that ρ = r, then Equations 3.87 and 3.114 can be expressed in secondary-to-

primary magnetic field ratios as stated in [6] 

   (3.116) 

 

  . (3.117) 

Equations 3.116 and 3.117, coming from mutual impedance ratios per Equations 3.87 

and 3.114, can be greatly simplified with the following process per [6]. Taking into 

account the electrical skin depth as defined in Equation 2.1 and recast here in the 

following form 

  . (3.118) 

Equation 3.120 can be restated as  

   (3.119) 

where the ratio of r/δ can be expressed as  

   (3.120) 
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and B is the induction number. If B is much less than unity, the field ratio can reduce 

to  

   (3.121) 

For B to be less than unity such that it is referred to as a “low-induction number”, r 

must be much less than δ such that   

   (3.122) 

Therefore, the apparent conductivity to which the instrument reads is defined as 

Equation 3.1, shown here for completion 

  , (3.123) 

where “quadrature” denotes the imaginary component of a signal, whereas the real 

component is labeled “in-phase” [49, 50]. 

3.2 Relating Maxwell’s Equations to a 3D Full-Physics Heterogeneous Model 

Chapter 4 applies a 3D full-physics heterogeneous model to a sea ice 

environment. This model, termed Project APhiD [51], is a 3D finite-volume 

discretization of Maxwell’s equations, where APhiD stands for magnetic vector 

potential A and electric scalar ϕ (“Phi”) Decomposition. While Chapter 4 looks at this 

model in depth, this section derives the matrix equations used in [51] from first 

principles. Section 3-1 used Maxwell’s equations presented in Table 3-1 to derive the 

equations for apparent conductivity as per Equation 3.1. In that derivation, the concept 

of auxiliary vector potentials was discussed, but the electric vector potential F was 

used in that section. Since the APhiD model is based on the magnetic vector potential 

A as well as the scalar function ϕ (ϕe in this derivation), this section focuses on the 
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magnetic vector potential A and how it is used to derive the background equations for 

the model. The derivation starts by using Gauss’ law for magnetism as expressed in 

Equation 3.13. However, since the magnetic flux density is solenoidal because 

magnetic monopoles do not exist, Equation 3.13 can be restated as the following 

relationship [31]: 

  . (3.124) 

Using the vector identity   

   (3.125) 

the magnetic flux density B can now be stated as  

   (3.126) 

or, equivalently, 

  . (3.127) 

To find the electric field at this point, it can be stated from Faraday’s law that 

 ∇×E = − jωµH   (3.128) 

where, by using Equation 3.126 results in 

 ∇×E = − jωµH = − jω∇×A .  (3.129) 

Combining terms from Equation 3.129 leads to  

 ∇× E+ jωA[ ] = 0  . (3.130) 

The vector identity (similar to Equation 3.32) involving an arbitrary electric scalar 

potential ϕe can be stated as 

 ∇×∇φe = 0  , (3.131) 

which allows  

 E+ jωA = ∇φe  , (3.132) 

or alternatively, by subtracting terms, 

∇⋅B = 0

∇⋅ ∇ ×A( ) = 0

B = µH = ∇×A

H = 1
µ
∇×A
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 E = ∇φe − jωA  . (3.133) 

When the following assumption is made 

 φe = jωφ  , (3.134) 

Equation 3.133 can be recast into the following form found in [51] by substituting 

Equation 3.134 into Equation 3.133 as 

 E = − jω A −∇φ( )  . (3.135) 

Using the following form of Ampere’s law, which is Equation 3.35 with a source term 

and the admittivity included,  

 ∇×H − σ + jωε( )E = Ji ,  (3.136) 

Equation 3.135 can also be substituted into Equation 3.136. The substitution leads to 

the following expression:  

 ∇×H + jωσ̂ A −∇φ( ) = Ji ,  (3.137) 

where   

  . (3.138) 

Applying Equation 3.127 to Equation 3.137 leads to the following relationship: 

  , (3.139) 

When using the vector identity from Equation 3.7, Equation 3.139 can be expressed as   

  . (3.140) 

When the Lorenz gauge, originally introduced with Equation 3.32, but in this case, set 

to the following 

  , (3.141) 

and, assuming that the impedivity is included in the wavenumber k such that  

  , (3.142) 

Equation 3.140 can now be expressed as  

σ̂ =σ + jωε

∇×∇×A + jωµ0σ̂ A −∇φ( ) = µ0Ji

−∇2A +∇ ∇⋅A( ) + jωµ0σ̂ A −∇φ( ) = µ0Ji

∇⋅A = jωµ0σ̂φ

∇⋅A = k2φ
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  . (3.143) 

The Lorenz gauge, when compared to other gauges, such as the Coulomb gauge, 

allows one to uncouple the Helmholtz wave equation (refer to Equation 3.47) such that 

the scalar and vector potentials can be described as symmetrical equations [52]. Using 

this gauge paves the way for an alternative formulation that is sparse and symmetric, 

in matrix form, to allow computation of inhomogeneous structures while maintaining 

minimum computational resources [51]. As shown, Equation 3.143 is now a set of 

three scalar equations with four unknowns, where another equation is needed to 

complete the system. Per [51], Equation 3.137 implies that the divergence of J (i.e., 

the total electric current density Jic from Table 3-2) to be zero, but that condition is 

lost in Equation 3.143. However, the following equation allows the recovery of the 

total current density from taking the divergence of Equation 3.139 and substituting in 

Equation 3.142, stated as [51] 
  . (3.144) 

When the first term on the left side of Equation 3.144 is expanded, and also enforcing 

the Lorenz gauge from Equation 3.141 to be applied now leads to the scalar equation 

of [51]  
   (3.145)  

Equation 3.145 is important since it is a first-order equation relating the potentials to 

current density, and has one solution. Equation 3.145 can now be expressed in matrix 

form 

 ,  (3.146) 

which is the key system equation for the 3D model presented in the next chapter since 

it demonstrates a sparse and symmetric system when expanded [51]. While the 
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majority of Equations 3.124 through 3.146 are found in [51], they must be presented 

here for completeness to show how they relate to the first principles of Maxwell’s 

equations, as they show the magnetic and electric potential produced by the current 

density.  

3.3 Relating Maxwell’s Equations to Response Functions for EM induction 
Instruments 

Section 3.1 derived the historical definition of apparent conductivity found in 

[6] from first principles, i.e., Maxwell’s equations. In that derivation were expressions 

based on a homogenous half space, where the earth underneath is homogenous and 

isotropic. Some of the aforementioned equations will be used to define the relative and 

cumulative responses for EM induction instruments, introduced in Chapter 2 and used 

extensively in Chapter 5 as well as Appendix D. However, the equations will be 

applied to individual layers since the focus is on sea ice and seawater. 

The equations for the cumulative and response curves depend on the induction 

number B. To start the derivation, and for brevity since Maxwell’s equations were 

previously defined, Equation 3.87 can be expanded into a power series, stated as  

  , (3.147) 

where x = kρ. According to [21], Equation 3.147 can be recast into the following form  

 , (3.148) 

where retaining the higher order terms leads to   

 .  (3.149) 

Substituting the induction number B in Equation 3.171 yields 

Z / Z0( )HCP =
2
x2

−9 + 9 + 9x − 4x2 − x3( ) −1( )n x
n

n!n=0

∞

∑⎡

⎣
⎢

⎤

⎦
⎥

Z / Z0( )HCP = 1+ 2
−1( )n
n!

n −1( ) n − 3( )2 xn−2
n=4

∞

∑

Z / Z0( )HCP = 1+
2 ×12 × 3
4!

x2 − 2 × 2
2 × 4
5!

x3 + 2 × 3
2 × 5
6!

x4 − 2 × 4
2 × 6
7!

x5



 51 

  , (3.150) 

where, by expanding B, Equation 3.150 can be expressed as 

  . (3.151) 

With low induction numbers, B << 1, therefore, for both HCP and VCP configurations 

[21] 

  , (3.152) 

where the general case can be written as  

  , (3.153) 

where Qm is the geometric factor that depends on the coil geometry, layer thickness, 

and coil spacing of the EM instrument, where the mutual impedance ratio depends on 

the layer conductivities and the geometric factor [21]. The geometric factor also gives 

the cumulative response of the various layers as a function of layer depth normalized 

by the coil spacing, and can also be used to estimate the depth of exploration of the 

HCP and VCP configuration [21]. With that, the geometric factors for the HCP and 

VCP configurations match the cumulative responses given by Equations 2.7 and 2.8 

respectively, as well as those stated in [6]. They are stated again here for 

completeness: 

   (3.154) 

  . (3.155) 
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Additionally, the derivative of the geometric factor with respect to ζ give the relative 

response as discussed in [6] and given by Equations 2.3 and 2.5, and expressed here 

for completion: 

   (3.156) 

  . (3.157) 

As noted in Chapter 2 and [6], if the coil spacing is much less than the skin 

depth (Equation 2.1) in all of the layers, the relative contribution to the apparent 

conductivity from all material below the EM induction instrument can be summed 

independently. To clarify, for a two-layer system, the relative contribution from the 

first layer is given by  
 σ a =σ 1 1− R ζ( )HCP,VCP⎡⎣ ⎤⎦  , (3.158) 

where again, σ1 is the material conductivity of the first layer. The contribution from the 

second layer is given by   
 σ a =σ 2R ζ( )HCP,VCP ,  (3.159) 

where σ2 is the material conductivity of the second layer, and ζ is the thickness z over 

the coil spacing r (Equation 2.4). In total, the sum of Equations 3.158 and 3.159 is the 

apparent conductivity reading for a two-layer system, and is the same as Equation 2.6, 

which is repeated here: 
 σ a =σ 1 1− R ζ1( )HCP,VCP⎡⎣ ⎤⎦ +σ 2R ζ1( )HCP,VCP  . (3.160) 

To provide a brief discussion of how Equations 3.158-1.60 are possible, and 

using Figure 2-5 as a reference, one can deduce the contribution to the secondary 

magnetic field based on the thickness of the layer divided by the coil spacing (i.e., ζ). 

For example, if ζ has a value of 1, then it can be stated that the material below the 
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= φ ζ( )HCP =

4ζ
4ζ 2 +1( )3/2

dQVCP

dζ
= φ ζ( )VCP = 2 −
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device contributed approximately 25% to the secondary field, and therefore 25% to the 

apparent conductivity reading. To automate this process of determining the level of 

contribution to the apparent conductivity registered on the instrument based on an 

arbitrarily layered earth, the cumulative contribution from each layer can be added 

together independently as per the conditions previously stated. Equation 3.158 is 

possible since, at the top layer, the contribution from all of the material below is 100% 

of the meter reading. Subsequent layers add their own contribution (Equation 3.159), 

and adding them together produces Equation 3.160. The same process can be extended 

for a three-layer system, albeit in the following form, 

 
σ a =σ 1 1− R ζ1( )HCP,VCP⎡⎣ ⎤⎦ +

σ 2 R ζ1( )HCP,VCP − R ζ 2( )HCP,VCP⎡⎣ ⎤⎦ +σ 3R ζ 2( )HCP,VCP
,  (3.161) 

where the subscripts next to the response functions indicate that particular layer’s 

response function.  

3.4 Chapter Summary 

This chapter provided the necessary mathematical background needed for 

conducting the research in this dissertation. First, the historical definition for apparent 

conductivity was derived from first principles, i.e. Maxwell’s equations, to relate 

terms used in sea ice geophysics to electrical engineering, thus demonstrating that this 

work is truly interdisciplinary. Second, the equations used in the 3D full-physics 

heterogeneous model presented in Chapter 4 were also derived from Maxwell’s 

equations. Finally, the equations that will be used in Chapter 5 (and briefly introduced 

in Chapter 2) to develop a co-calibration routine among multiple EM induction 

instruments were also derived from first principles. These equations are based on low-

induction number theory, and are dependent on the relative contributions from each 
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independent layer to provide an apparent conductivity number, which in turn translates 

to ice thickness. Therefore, the highlight here, as with any original work, is that the 

results achieved can be traced back to mathematical theory, and in this case the results 

can be mathematically derived from Maxwell’s equations. The next two chapters use 

the mathematical premise presented here as a background to meet the objectives 

specified in Chapter 1. 
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Chapter 4 

TESTING A 3D FULL-PHYSICS HETEROGENEOUS NUMERICAL MODEL 
AS AN ANALYSIS TOOL 

This chapter, as presented in [53] and reprinted with permission of the 

International Glaciological Society per Appendix A, explores simulated responses of 

electromagnetic signals and quantifies the effects of their responses when using 

materials that have a different conductivity makeup. Overall, the motivating question 

for this objective is the following: 

How sensitive is an instrument footprint to a material conductivity change 

when a low-conductive material is surrounded by a stronger conductive material? 

This question is answered in three hierarchical steps. First, to provide 

electromagnetic responses of various ice types, the input characteristics are described 

for a full-physics heterogeneous computational model called APhiD. The model 

computes the fields everywhere, where each grid cell acts as a receiver within the 

model volume, and captures the complete, coupled interactions between air, snow, sea 

ice, and seawater as a function of their conductivity. Second, visualizations of the 

modeled simulations are defined as the results are presented in 2D-sliced renderings of 

their associated electromagnetic fields at discrete frequencies. Third, interpretations of 

the results present the most important new finding, where conductivity changes affect 

the EM field response by modifying the magnitude and spatial patterns of current 

density and magnetic fields. These effects are demonstrated through a visual feature 

defined as “null lines, ” and are shown in the 2D-sliced visualization output.  As a 
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result, these visualization outputs encourage the use of null lines as a planning tool for 

better ground truth field measurements near deformed ice types.  

4.1 Description of Numerical Model – APhiD 

The electromagnetic response of a generalized 3D air/snow/ice/ocean system is 

modeled here using a finite volume heterogeneous solution to Maxwell’s equations, 

which fully accounts for both ohmic conduction (σ) and displacement current (J) 

effects [51]. The model domain is composed of a rectilinear grid. The cells of this grid 

are each assigned a particular conductivity (σ)/permittivity (ε) pair of material 

properties. Magnetic permeability (µ) variations are expected to be negligible in sea 

ice/water systems and thereby safely ignored [51].   

Model cells with defined electric properties are used to describe each material 

within the model domain. Specific model inputs to consider for a sea ice environment 

are: 1) definition of grid geometry (cell shape and size) and 2) electric properties of 

each grid cell. A Cartesian Yee grid cell [54] describes the location and direction of 

electromagnetic field components. Figure 4-1 displays this grid cell, configured for 

use in APhiD. The transmitter is approximated in the model by a set of four points 

along a chosen cell face within the model domain. In this way it comprises a loop 

antenna, which is representative of the coils found in EM induction instruments. This 

model can use either HCP or VCP modes as discussed in Chapter 2. With the source 

and conductivity properties at each grid cell thus defined, electromagnetic potentials 

throughout the model domain are computed. By inverting the finite volume system of 

equations with a matrix-free iterative scheme, these calculations are possible. The 

iterative scheme is differentiated to yield estimates of the observable fields [51]. The 

quasi-minimum-residual (QMR) method with a Jacobi preconditioner is used with 



 57 

APhiD for smooth convergence to a solution given a certain tolerance, vice using a 

biconjugate gradient method for positive definite systems since biconjugate gradient is 

susceptible to numerical instabilities [55]. This iterative method provides a possible 

target residual factor τ (i.e., accuracy) of 10-12 [51]. Since each grid cell behaves like a 

receiver within the model volume, each receiver point is a distance r (Figure 2-1) from 

the transmitter, similar to the coil separation defined in Chapter 2. From this 

perspective, the responses of many receivers in the model volume, depending on grid 

size, relative to one transmitter can be visualized from each steady state solution.  

 

Figure 4-1.  Yee grid cell configuration for APhiD. H and E represent the magnetic 
and electric field intensities (in units of amperes/meter and volts/meter), and their 
direction. The black and blue dots indicate nodes where grid corners and faces align. 
Indices i, j, k relate Cartesian space along x, y, and z directions, respectively. 



 58 

The goal is to apply APhiD to a sea ice environment as shown in Figure 4-2. 

The specific parameters of grid geometry and the properties of each cell are discussed 

here. Since the computation of results depends on both the size of the model volume 

and overall computation runtime, the geometry of the volume needs careful planning. 

For this study, a 100x100x150 cell grid is set up with resolution of uniform size 0.5-

meter-cubed cells is chosen. Out of this cell grid, 100 vertical cells are attributed with 

either snow, ice, or water properties, and the remaining 50 vertical cells contain air 

properties. The electrical properties that comprise each cell, as well as four specific 

simulation cases used with this setup, are presented in Table 4-1. For simplicity, the 

air-ice boundary is level across the entire horizontal surface at z = 0 m. With this 

particular configuration, the simulation runtimes average approximately 30 minutes 

per run. Therefore, multiple runs can be attempted within a reasonable amount of time 

to analyze visualization results.  

Now that the model geometry and the electrical properties of the cells are 

defined, the transmitter characteristics also need to be determined. As presented in 

Chapters 2 and 3, EM induction instruments contain both a transmitter and receiver 

coil, where the transmitter produces an alternating current at a particular frequency in 

order to produce primary and secondary magnetic fields needed to make apparent 

conductivity measurements. With this knowledge, a source is chosen that shares the 

characteristics of a typical EM induction instrument, such as the Geonics EM31 [26, 

33]. For example, the operating frequency of the EM31 is 9.8 kHz, which is also the 

frequency used in the APhiD model runs. Model simulation runs in this study are 

configured with the transmitter positioned 0.5 meters above the surface of the snow to 

mimic typical carry heights in the field. Additionally, all simulations reported in Table 
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4-1 are in the HCP mode, but the VCP configuration is also easily adapted, and shown 

later in this chapter. 

 
Simulation Cases Thickness (h) of Snow 

and Ice Layers 
Conductivity (σ) of Ice 

1.) Air-Water        
Only*,*** 

N/A N/A 

2.) Add Level 
Ice*** 

0.5 m (snow) 
3 m (level ice) 

0.020 S/m* 

3.) Consolidated     
Multiyear Ice  
Ridge 

0.5 m (snow) 
3 m (level ice) 

10 m (ridge ice) 

0.020 S/m*  
(both level and ridged ice) 

4.) 
Unconsolidated         
First-Year 
Deformed Ice 
Ridge 

0.5 m (snow) 
3 m (flat ice) 

10 m (ridge ice) 

0.170 S/m** (level ice) 
0.5 S/m** (ridged ice) 

*   Conductivity (σ) of air/snow is 1.0 x 10-8 S/m and seawater is 2.5 S/m throughout as per  
     [1]. 
** Values per [56]. 
*** Control runs. 

Table 4-1. Simulation types and material properties. 

In an actual sea ice environment, however, the conductivity of the sea ice and 

the seawater are in a constant state of change. But the purpose of these simulations is 

to look at a snapshot of material conductivities to see how they affect the footprint. 

Control runs are initially run to provide a reference relative to the existing literature 

for well-known level sea ice situations. In these cases, such as those discussed in [1], 

the air, sea ice, and seawater each have their respective bulk conductivity values 

assigned as though each were an individual layer of material. In an actual sea ice 

environment, however, the conductivity of the sea ice and the seawater are in a 
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constant state of change. But the purpose of these simulations is to look at a snapshot 

of material conductivities to see how they affect the footprint.  

The first control run contains air and seawater layers only, such that it provides 

a base case to simulations that involve more layers. The second control run includes 

the previous two layers with 0.5 meters of snow added above a three-meter layer of 

level ice in a configuration matching traditional level-earth models, and is shown in 

Figure 4-2a. The transmitter for these control runs is located in the center of the 

horizontal face of a grid cell just above the surface (at z = 0.5 m, Table 4-1).  

After running the two control runs, an ice ridge (Figure 4-2b) is added to the 

model volume to study the effects that geophysical features have on instrument 

footprint. An ice ridge is represented by adding a simple triangular shape, without 

surface deformation, to the bottom of the ice layer in the model volume such that the 

apex of the ridge is in the center. The simulations are run for each ridge scenario to 

evaluate responses to different positions of the transmitter relative to the ridge. For the 

first position run in each ridge scenario, the transmitter is located halfway between the 

start of the model domain and the beginning of the ridge. For the second position run, 

the transmitter is located at the beginning of the ridge where it just starts to deepen 

below the level ice. For the final position run, the transmitter is located above the apex 

of the ridge.  

4.1.1 Initializing Conditions 

To simulate a ridge in APhiD, a mask file is created, which describes the 

dimensions of the ridge as well as material layers. This mask file is also based on two 

criteria. First, the size of the mask is determined by ΔX1, ΔX2, and ΔX3 (Figure 4-2b), 

where ΔX1 is the distance from the left edge of the model to the start of the ridge (i.e., 
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15 m across given 0.5 m resolution of each cell), ΔX2 is the width of the ridge (20 m), 

and ΔX3 is the distance from the right side of the ridge to the right edge of the model 

(15 m). Second, an integer value is assigned to each grid cell to discriminate which 

material corresponds to that cell, such that a mask value of  “0” corresponds to a cell 

with air, “1” is a cell with ice, “2” is snow, and “3” is air. Each mask value is 

subsequently matched with appropriate conductivity values of a particular material 

layer. 
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Figure 4-2.   Model geometry. Panel (a) is the level ice case configured to match the 
solution (Figure 2-1) but expanded to a 3D grid. Panel (b) is a deformed ice case 
involving a simple triangular ridge below sea level (no surface deformation). The z 
direction is positive downward, opposite of that shown in Figure 2-1 Additionally, 
H_air and H_earth show the direction of the magnetic field pulse (A/m) through the 
respective media, and Transmitting Coil shows the direction of the position of the 
transmitter at certain locations as described in the text along the ridge during 
sequential model runs with the center of the coil shown by the black dot. The 
Receiving Coil is each grid cell in the model volume, with the receiver coil located in 
the center of each cell and being a distance r from the transmitter. 
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4.2 Characteristics 
 

Using the control runs listed in Table 4-1, the output from APhiD is exported 

into an open-source, multiplatform data analysis, and visualization software called 

ParaView [57]. Four specific features are visualized in Figure 4-3 using 2D profile 

slices to represent the entire volume under study. These four specific features begin 

with two well-known electromagnetic parameters of (1) electric current density lines, 

and (2) magnetic flux density lines. Additionally, two parameters are defined to 

communicate visually interesting characteristics in the field. These two features are (3) 

color map of magnetic flux density quadrature component in the vertical direction 

(BZ*), and (4) effects called “null lines” which manifest as concentrated gradients in 

the color map of magnetic flux density quadrature each time the polarity of the pulse 

changes. The purpose of these particular outputs is to demonstrate an electromagnetic 

response to an excitation of a source through its interaction between a low conductive 

medium against a stronger conductive medium. Additionally, physiographic features, 

such as an ice ridge, affect the electromagnetic response. In turn, the changes in these 

features highlight the differences of footprint based on conductivity changes.  

(1) Electric Current Density Lines 

By Faraday’s Law, a time varying magnetic field induces an electromotive 

force, which produces an electric current density in a media. White colored semi-

circles in the tilted x-y horizontal slice (Figure 4-3) represent the normalized real 

component of these current flow lines. These electric current density lines can be 

related mathematically by Ohm’s law, as stated by Equation 3.2. 
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 (2) Magnetic Flux Density Lines 

The magnetic flux density (and for our purposes, the normalized imaginary 

component of the magnetic flux density) is represented by yellow curves emanating 

from the origin in the x-z plane (Figure 4-4a). Generally, magnetic flux density is 

expressed mathematically as Equation 3.4. In electromagnetic theory, the magnetic 

flux density is also related to the electric field intensity, and, in turn, electric current 

density, by way of Faraday’s law and Ohm’s law just described above in subsection 

(1), and where Faraday’s law is expressed as the first equation in Table 3-1.  

In a physical sense, what Faraday’s and Ohm’s laws are saying is that the 

electric current density lines and magnetic flux density lines are related to each other 

since their respective fields are transverse waves, where they are mutually 

perpendicular and also perpendicular to the direction of propagation [58]. 

Additionally, magnetic flux density B has in-phase and quadrature components of 
 

  , (4.1) 

where * indicates the quadrature (imaginary) components produced by the induced 

eddy currents, and terms without asterisk are the in-phase or real components 

produced by the transmitter [6, 49, 50].  

The strength of the quadrature component of the magnetic flux density in the z-

direction (i.e., Bz*) is scaled on the color map (Figure 4-3a) with red indicating 

strongest magnetic flux density. The values of the color map are stated mathematically 

as 

  
  . (4.2) 

B = Bx + Bx
*( ) î + By + By

*( ) ĵ + Bz + Bz
*( ) k̂

C = log10 Bz
*
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It is also important to note that the higher values of magnetic flux density occur at the 

location of the strongest conductivity response (refer to Appendix B).  

(3) Color map 

As stated previously, the color map in Figure 4-3 represents the strength of the 

magnetic flux density’s quadrature component in the z-direction (Bz*). A change in 

color shows the exponential decay of the transmitter pulse as it travels through the sea 

ice and seawater.  

(4) Null Lines   

When Bz* on the right hand side of Equation 4.2 equals zero (i.e., C = log10|0|), 

the magnetic field changes polarity during positive and negative cycles as the 

alternating current transmitter signal travels in the downward (positive) z-direction. 

These polarity changes are referred to as “null lines” because the absolute value of an 

oscillating signal creates strong gradients, which manifest as strong horizontal lines 

from a vertically transmitting oscillating pulse of the magnetic field. For illustration 

purposes, a 1D heuristic example is provided (Figure 4-4) in the form of the well-

known damped oscillator of an alternating normalized current sine wave (i.e., what the 

EM31 generates from the transmitter coil).  Assuming a 1D travelling wave 

propagating downward in the x-z plane, a typical decaying (or attenuating) travelling 

wave within a lossy medium, such as sea ice and seawater, has the general solution 

form of 
 ,  (4.3) 

where A is the amplitude (m), A0 is the initial wave amplitude (m), α is the attenuation 

constant (Np/m), z is the direction the wave is travelling in, t is the time (s), β is the 

phase constant (rad/m), and ϕ is the reference phase (rad). It should be noted that  

  
A z,t( ) = A0e

−α z sin βz −ωt +φ( )
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  , (4.4) 

where λ is the spatial wavelength (m) of the wave. Sine dependence is chosen to 

express the imaginary component as per Euler’s identity (and as per Equation 3.22), 

  , (4.5) 

where θ refers to the phase angle [42].  

For our study, this general form reduces to the steady state solution for a z-

directed wave, with A0=0.5 m, α=5 Np/m, f = 10 Hz, λ = 0.2 m, t=0 s, and ϕ0 = 0 rad. 

Hence, the waveform and its respective envelopes are described mathematically as  
   (4.6)  

   (4.7) 

 ,  (4.8) 

where the envelopes show the decrease in amplitude with distance [58].  

As the wave travels through a material, the signal attenuates, but still maintains 

the waveform. When the absolute value of the waveform is taken in Equation 4.3, the 

waveform shape is no longer represented in negative space (i.e., retaining only 

positive values – Figure 4-4b). When the waveform intersects zero amplitude, the 

polarity changes. When the logarithm of zero is taken as per Equation 4.3, strong 

gradient lines asymptotically approach -∞. In equation form (Figure 4-4c), it can be 

stated mathematically that 
  . (4.9)  

When the absolute value of either envelope is taken in Equations 4.7 or 4.8, 

and then followed by taking the logarithm, the result forms a straight line of the 

maximums of the logarithm of the decaying waveform. This equation is expressed as 
   (4.10) 

 
β = 2π

λ

  e
jθ = cosθ + jsinθ

  
x1 = 0.5e−5z sin 10π z( )

x2 = −0.5e−5z

x3 = +0.5e−5z

  
x4 = log 0.5e−5z sin 10π z( )

x5 = log −0.5e
−5z
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   (4.11) 

for the envelope in Equations 4.7 and 4.8. Note that with these equations, “spikes” 

occur each time the waveform amplitude (Figure 4-4a) equals zero, which indicate a 

change in polarity; thus, a null line is defined. From a geophysical perspective, null 

lines appear near material boundaries where transmitted signals refract off the sharp 

material gradient interface.  

 Another important relationship to describe with the characteristics of this 

model is skin depth. Skin depth describes the effective penetration depth of an emitted 

signal through each material, and is expressed as Equation 2.1. It is important to note 

here that skin depth is not only a vertical penetration parameter, but also a measure of 

horizontal penetration such that skin depth means the penetration depth through a 

material in any direction. To provide a numerical example, the skin depth of the sea 

ice for all simulation cases is shown in Table 4-2 as provided by Equation 2.1, where 

it can be shown that increasing conductivity leads to less depth of penetration. The 

ability of APhiD to resolve 3D structure makes it possible to explore horizontal issues 

that traditional 1D level-earth models could not (Figure 2-1). Most importantly, the 

mapping of skin depth patterns through the location and visualization of null lines 

provides us with an effective tool to characterize material conductivities, which are 

presented next.   
 
 
 
 
 
 
 
 
 
 

x6 = log +0.5e
−5z
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Sea Ice Cases Conductivity (σ) of Ice Skin Depth (δ) of Ice 
1.) Level Ice 0.020 S/m 35.9494 m 
2.) Consolidated     
Multiyear Ice  
Ridge 

0.020 S/m  
(both level and ridged 

ice) 

35.9494 m  
(both level and ridged ice) 

3.) 
Unconsolidated         
First-Year 
Deformed Ice 
Ridge 

0.170 S/m (level ice) 
0.5 S/m (ridged ice) 

12.3306 m (level ice) 
 7.1899 m (ridged ice) 

Table 4-2. Comparison of skin depth of all ice types in the simulation cases for a 
frequency f of 9.8 kHz. 

4.3 Simulation Results 

To highlight the initial conditions of the electromagnetic response without 

changing material conductivities, the first control run of the air-water interface only is 

shown in Figure 4-3a. Here, null lines form a kink at the air-water interface. This 

feature is subsequently labeled a “kink” because of the pronounced bend in the null 

line shape at the material discontinuity between the air and water layers. Another 

important shape to these null lines is their width relative to the coil spacing r. Null line 

width L, which as presented herein is a visual reference to footprint [35] (term 

introduced in Chapter 1) or spot size from beam optics [59], defines the footprint size 

of each polarity change at each depth. Comparing L (Figures 4-3a and 4-3b), footprint 

is definitely sensitive to each material’s conductivity, which is important for showing 

the relationship between material conductivity and the scale of the electromagnetic 

field response to different materials.  

For the second control run of an air-sea ice-water solution (Figure 4-3b), the 

magnetic flux density lines also show the kink at the ice-water interface, three meters 
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below sea level. Notice that the kink here is at a sharper angle in the air-ice-water case 

than the air-water case (Figure 3-3a). Accordingly, this simulation shows that the 

footprint L of the magnetic field widens with the inclusion of a layer of level sea ice, 

compared with the initial case for no sea ice. This result is something unanticipated in 

prior 1D level-earth models.  
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Figure 4-3.   Control runs showing simulated field responses from APhiD. Axes 
shown are in dimensionless grid coordinates with each grid value equivalent to a half-
meter resolution. Representative slices of the 50x50x75 m3 volume provided along the 
vertical x-z slice and tilted horizontal x-y slice between induction instrument 
transmitter source and: (a) an air and water layer; and (b) of air, 0.5 meters of snow, 3 
meters of flat level sea ice, and seawater. In the tilted horizontal x-y slice, the white 
colored semi-circles are a half-cut representation of the normalized real component of 
the electric current density (J) in the media as induced by the transmitter magnetic 
field. The yellow curves emanating from the origin represent the normalized 
imaginary component of the magnetic flux density (B). The color map of the 
quadrature component of the magnetic flux density in logarithmic space is shown 
along x-z and tilted x-y slices (axes in meters). Null lines (highlighted in panel (a) by 
black arrows) are defined as polarity changes in traveling direction of the transmit 
signal. These null lines indicate the shape of the magnetic field interaction into the (a) 
water, and (b) ice then water. Kinks in the null lines and magnetic flux density lines 
indicate a material discontinuity. In panel (a) and (c), L represents the extent/width 
(spot size) of the magnetic field at the points of polarity reversal. In panel (b), layers 
of snow, sea ice, and seawater are indicated for clarity. Panel (c) is a close-up of the 
boxed region of interest from panel (b) to emphasize kinks, skin depth, and footprint 
size.    
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Figure 4-4.   Decaying sinusoidal wave. Panel (a) represents a typical sinusoidal wave 
as it decays when penetrating through a material. Null lines occur at polarity reversals, 
as denoted by the red circles on the zero line of the amplitude. Panel (b) represents the 
absolute value of the decaying waveform in panel (a), and also denotes where the null 
lines/polarity reversals occur at the red circles. The positive envelope is shown for 
clarity. Panel (c), plotted in logarithmic space, shows how the actual null lines occur 
when the log is taken of the decaying waveform. Here, the blue waveform (x5) 
possesses “spikes” when the logarithm approaches -∞, thus resulting in a null line. The 
logarithm of the envelopes (Figure 4-4a) forms a straight line of the maximums of the 
logarithm of the decaying waveform.   
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When a simple triangular ridge is added with the same conductivity as the ice 

in the control run (Figure 4-5), the resulting electromagnetic field pattern gets 

complicated. First, depending on the location of the transmitter, the current density 

lines (Figure 4-5; white lines, normalized real component of J) outline the ridge 

structure. Meanwhile, null lines are skewed in various directions depending on the 

location of the transmitter, with kinks appearing within homogeneous layers. 

Furthermore, results (Figure 4-6) show variations due to differences in sea ice 

conductivity for two different ridge cases. The level and ridged ice have two different 

conductivities (Figure 4-6) following the observations of [56]. These differences 

impact the current density lines such that they are more flat in shape than the previous 

simulation (Figure 4-5), and the null lines take on a different shape. Additionally, 

when the transmitter is directly over the apex of the ridge, the footprint (L) is narrower 

than in the previous results (Figure 4-5).  
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Figure 4-5.   Simulated current density lines (normalized real component), magnetic 
flux density lines (normalized imaginary component), and color map of the quadrature 
component of the magnetic flux density in logarithmic space for multilayer structure 
with a multiyear (MY) ice ridge, values as listed in [1] (0.020 S/m for both level and 
ridged ice). Axes shown are in dimensionless grid coordinates with each grid value 
equivalent to a half-meter resolution. This configuration has air, 0.5 meters of snow, 3 
meters of level sea ice, a MY ridge, and seawater, scaled (Figure 4-3) with the 
transmitter loop as a black “source” dot shown in an approximate horizontal location 
for clarity. In panel (c), the layers of snow, sea ice, seawater, and an ice ridge are 
labeled for clarity. Field line results are shown from two perspectives with source at 
three locations. Properties of simulation described in Table 4-1, listed as simulation 
number 3. 
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Figure 4-6.   Unconsolidated first-year deformed ridge using conductivity values 
(0.170 S/m for flat ice, and 0.5 S/m for ridged ice) from [56], following Figures 4-3 
and 4-5  — simulation number 4 as listed in Table 4-1. Axes shown are in 
dimensionless grid coordinates with each grid value equivalent to a half-meter 
resolution. Panels (a), (b), and (c) show a front view of the electromagnetic field 
mapping of a ridge structure with different conductivity, and panels (d), (e), and (f) 
show a perspective view from below the seawater/ice interface. Note that the magnetic 
flux density lines (normalized imaginary component) are more compressed relative to 
those in Figure 4-5 since the ice is more conductive in this scenario. 
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As a direct comparison of the various simulation outcomes, the ridge effect 

(R.E.) differences of the imaginary component of vertical B is plotted in Figure 4-7, 

i.e., Bz*, at each grid cell between the level ice control case (Figure 4-3b) and both 

ridged cases (Figures 4-5 and 4-6), and cast the absolute value of the difference into 

logarithmic form. In a mathematical sense, 
 .  (4.12) 

The impact of a ridge is more apparent in the consolidated multiyear (MY) ice 

ridge case (Figure 4-7; left panels) since the ice in the ridge is less conductive 

compared to the unconsolidated first-year ridge case. For clarification, MY ice is 

defined as ice that has survived two or more summer melt seasons [3]. Therefore, the 

R.E. has a larger difference when compared to the control run in the cases where the 

ridged ice is less conductive since the skin depth has a larger value (Table 4-2).  As an 

additional feature note, the null lines change as the position of the transmitter moves, 

relative to the deformed ice position, across the x-axis.  

R.E.= log10 Bz,ridge
* − Bz,no  ridge

*
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Figure 4-7.   Ridge effect differences in null line shape due to the difference between 
the imaginary components of vertical B (Bz*) cast into logarithmic form. Axes shown 
are in dimensionless grid coordinates with each grid value equivalent to a half-meter 
resolution. Results of imaginary vertical B component (Bz*) from ridged ice cases 
(Figures 4-5 and 4-6) are subtracted from the imaginary vertical B component (Bz*) of 
the control run (Figure 4-3b), then cast the absolute value of the difference into 
logarithmic form to demonstrate change in structure of the EM field lines between 
simulations. Panels (a), (b), and (c) show the results from Figure 4-5 subtracted from 
those of Figure 4-3b, and panels (d), (e), and (f) show the results from Figure 4-6 
subtracted from those in Figure 4-3b. Transmitter is shown with red outlined dot and 
placed in its approximate horizontal location for clarity.  Note that the strongest 
differences occur in panels (b) and (e) with the transmitter at the edge of the ridge 
rather than the apex. 
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4.3.1 Model Results for Transmitter in VCP Orientation 

Up to this point, the numerical model results are shown based on a transmitter 

in HCP configuration. The results of the HCP configuration study are very important 

as they challenge historical approximations to the layered-earth model. But the focus 

of this section is on the physical characteristics (such as the current density and 

magnetic field density lines) of the electromagnetic field response when the 

transmitter is in the VCP configuration and encounters the same interfaces as the first 

two control runs shown with the HCP configuration. The eventual goal is to relate the 

numerical model to field data collected in Barrow, Alaska, during March 2013, where 

the data was collected in the VCP configuration. To visualize the difference in dipole 

configurations with respect to the model, refer to Appendix C. 

For a visual comparison, Figure 4-8 displays 4 cases. Panels (a) and (b) are the 

control runs in the vertical polarization as shown in Figure 4-3. Panels (c) and (d) are 

the same as panels (a) and (b), with the exception of the snow layer being omitted 

since it has the same conductivity as air in these modeling scenarios. However, the rest 

of the parameters are the same in terms of material conductivities, operational 

frequency, transmitter location, and 3 meters of level sea ice are the same, albeit in the 

VCP polarization. Panels (e) and (f) are side views of panels (c) and (d). Some of the 

characteristics that result have the same principle as the vertical polarization, such as 

the null line kink at the material boundary (refer to Figure 4-9 for a clearer aspect). 

There are two key differences, outside of the polarity change, between the sets of 

panels in Figure 4-8. First, the current density lines are remarkably different than the 

HCP polarization case. While the magnetic field density lines also are different due to 

the polarization change, and while the current density lines still exist in the x-y plane, 

they also possess a sharp 90° turn into the vertical direction, and also “dip” to the 
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ice/water interface when 3 meters of ice is present, as compared to the air/water only 

case. Second, the null line width L is much wider than compared to the HCP case. 

Like the HCP case, L increased when a material is added (in this case sea ice), proving 

again that even slight changes in conductivity affect the overall response. Figure 4-10 

presents a numerical value attribute to L to quantify how much L does change based 

on polarization state, where L is wider in VCP than HCP. This widening can be 

attributed to the relative response to the secondary magnetic field, where the relative 

contribution from the material near the surface is large, but falls off with depth as 

discussed in [6] and shown in Figure 2-3. In summation, it is key to have a proper 

visualization aid of the field responses based on the configuration of the instrument at 

the time of data collection. This visualization tool displays what is physically taking 

place in the electromagnetic realm when the user of the EM induction instrument 

presses the button on the device to take a measurement. Simply put, a lot of interesting 

physical interactions take place in this environment, with more to be explored beyond 

the scope of this work.  
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Figure 4-8.   HCP configuration control runs versus VCP configuration control runs. 
Axes shown are in dimensionless grid coordinates with each grid value equivalent to a 
half-meter resolution. Panels (a) and (b) are the air-water and air-snow-ice-water 
interface, respectively from Figure 4-3. Panels (c) and (d) are the same as (a) and (b) 
but in VCP polarity (with the exception of the snow layer being omitted since it has 
the same conductivity as air in these modeling scenarios) in regard to material 
parameters and operating frequency. Panels (e) and (f) are side views of panels (c) and 
(d). It should be noted that the color map shown in panel (f) is the same scale used in 
both HCP and VCP polarizations. 
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Figure 4-9.   Continuation of Figure 4-8 where the field lines are removed for clarity. 
Panel (a) is the air/water only case, and panel (b) is the air/ice/water case, where 3 
meters of level ice are added, where both cases are in VCP polarization. In this figure, 
the null line width L is much wider than those of their respective counterparts in HCP 
in Figure 4-8 panels (a) and (b). Axes shown are in dimensionless grid coordinates 
with each grid value equivalent to a half-meter resolution. 
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Figure 4-10.  Demonstration of numerical value of L based on polarization change 
(field lines removed for clarity). L is the length of the green horizontal line. Panels (a) 
and (b) represent the air/water only case of the control runs established in Table 4-1, 
where panel (a) is in HCP and panel (b) is in VCP. Axes, as well as the numbers in 
white reported underneath the green horizontal line, are in dimensionless grid 
coordinates with each grid value equivalent to a half-meter resolution. Accounting for 
half-meter resolution, actual numbers for L are reported within the plots. Panels (c) 
and (d) represent the 3 meters of level ice added as part of the control runs established 
in Table 4-1, where panel (c) is in HCP and panel (d) is in VCP. It is important to note 
that the only case where L is numerically close to r of 3.67 meters (as used with the 
Geonics EM31 [26]) is panel (a) in HCP, since VCP is more sensitive at the surface 
when compared to HCP. 

4.4 Simulation Discussion, Insights, and Impacts 

Low-frequency induction results examined here identify the ice-water interface 

through the exponential decay of long-wavelength secondary-eddy-field responses in 

the near field, i.e., distances much less than a wavelength.  This exponential decay 

generates a system of eddy currents induced within each material layer. The result is a 
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sensitive measure of distance between the receiving antenna and material conductivity 

along any direction. As such, the sensitivity of eddy-field responses is comparable to 

ground penetrating radar (GPR) responses since both concepts are based on the 

detection of a signal through a medium from a transmitting device [58]. However, as 

stated previously, when compared to EM induction instruments, GPR has difficulties 

with high salinity ice (brine inclusive ice) as it will attenuate the signal and cause 

scattering [20, 60, 61]. In line with this thought, it seems that EM induction, through 

the results of these simulations, may also be affected from scattering, perhaps more so 

than first thought. Hence, this study is only beginning to simulate a number of new 

and interesting responses of EM systems when explored as 3D responses.  

Some of the positive outcomes of the model results are as follows. First, 

pending a number of graphical improvements, the modeling results shown herein can 

be used to plan more effective field experiments before making expensive excursions 

to the Arctic; specifically seasonal and regional sensitivities related to strong 

conductivity gradients as well as site selection, line survey selection methods, and 

approaches to physiographic features. In particular, model simulators such as APhiD 

provide a capability to numerically test novel sensor packages that measure the 

complete, three-component induction field for a given transmitter antenna. These 

novel packages can be designed either through a range of fixed frequencies, or 

preferably as a transient pulse. Historically, such an approach was adopted in the early 

2000s by service providers in the hydrocarbon well-logging industry, such as 

Schlumberger, Baker Atlas, and Halliburton [62-64], when it became apparent that 

geological anisotropy confounded traditional methods of well-log data analysis. 

Several years later, deployment of 3-component, multi-sensor induction logging tools 



 83 

are the standard in difficult drilling environments, geo-steering and measurement-

while drilling, although the tools are still proprietary. Therefore, the results of this 

study can be seen as potentially leading to a similar shift in sea ice measurement 

technologies, thus inviting future mapping work and analysis on the full 3D nature of 

climate/sea ice dynamics.  

Second, airborne 3D modeling work in sea ice was attempted before [65], but 

after extensive and advanced computing only minor improvements were made in 

analyzing field data [29]. Since computers have increased in processing power over 

time, a new capability now exists with APhiD to produce 3D electromagnetic models. 

As per the results here, the output produces interesting results that not only show the 

current density lines and the magnetic flux density lines, but they also show how the 

entire field reacts as a function of 3D distributed material conductivities, as well as the 

footprint changes based on material makeup and instrument polarization. As shown in 

Appendix B, the relationship between the model output and material conductivities 

provides an opportunity to increase understanding between geophysical properties, 

such as material conductivity, and instrument responses, such as apparent 

conductivity. When the field encounters level sea ice instead of an air-water interface 

(such as Figure 4-3), the footprint size increases along the horizontal, even more so 

when using VCP configuration. This footprint is important because the instruments 

used in the field assume a footprint based primarily on the carrying height of the 

instrument [35]. Conversely, in these findings, the footprint of a pulse varies 

considerably based on the conductivity of the material outside of instrument 

polarization, which means that the footprint of the instrument is going to be sensitive 

to ice type, season of year, temperature, and other environmental variables not 
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currently formulated in any EM models. Further studies are underway to quantify how 

L varies as a function of sea ice conductivity, with the intention to develop an 

algorithm characterizing these changes from parameterized physical properties. 

Third is the potential use of APhiD as a planning tool for positioning 

instruments in the vicinity of sea ice ridges to improve ground truth data collection 

best practices. There are considerable patterns (Figures 4-5 and 4-6) that are 

reminiscent of refraction and physiographic interference at the beginning of the ridge.  

A postulate here is that the physiographic feature —i.e., the ice ridge — induces both 

refraction and interference patterns depending on the ridge shape and conductivity of 

the ice. To explain, both of these patterns are based on Huygens-Fresnel principle. 

Refraction is where the electromagnetic waves “bend” — visually similar to the 

appearance of a pencil in a glass of water — due to the wave speed change across the 

boundary of two different media dependent on its material properties, such as 

conductivity [58]. Interference is the result of the spherical wave generated by the 

wavefront — in our case, the wavefront is the transmitter coil — where the envelope 

of the spherical waves constitutes a new wavefront via superposition [59]. The only 

time that these patterns do not occur is when the transmitter is above the ridge apex, in 

which case ridge symmetry matches the field shape waveform symmetry.  

Hence, the beginning of the ridge may be a promising area for an EM 

refractive and interference process study, while the peak of the ridge is more important 

to EM calibration. APhiD also provides a means to rethink instrument designs for in 

situ measurements to capture 3D data by leveraging understanding about changing 

footprints (ΔL) as a function of sea ice conductivities (or lack of conductivity in the 

associated snow layer – which also impacts footprint size). The magnetic flux density 
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lines bend away from the vertical when a pressure ridge is present since the ridge is 

less conductive then the surrounding seawater. The MY ice (Figure 4-5) is less 

conductive than the unconsolidated ridges (Figure 4-6), hence the magnetic flux 

density lines are further away from the vertical in Figure 4-5. The tendency for these 

lines to appear further away provides potential insight when interpreting airborne EM 

responses due to spatial resolution such as NASA’s IceBridge program [66] and a 

multi-sensor airborne sea ice explorer (MAiSIE) [56]. A benefit to using APhiD is that 

it is a tool that can be modified for any number of scenarios, as shown with the 

polarity change in Figures 4-8 and 4-9.  

4.5 Conclusion 

A set of simulations of the electromagnetic response of various sea-ice types 

has been discussed here in order to demonstrate how variable footprint is to 

conductivity changes within materials of low conductivity, such as sea ice, which are 

surrounded by stronger conductive materials, such as seawater. These simulations 

mimic an environment where an electromagnetic induction instrument, as commonly 

used in sea ice field studies, interacts with different conductivity values within 

different media to display the footprint sensitivity in the visualizations shown 

throughout this chapter.  Current approximations using the 1D layered-earth solution 

assume that material layers above the conductive seawater are essentially negligible in 

terms of conductivity. However, with the results presented in this chapter, changes in 

conductivity, especially at the sea ice/seawater interface, do have an effect on the 

overall 3D electromagnetic field response in both polarizations, thus answering the 

scientific question posed in the introduction of this chapter. A simple change of the 

location of the transmitter, with respect to deformed ice, also leads to interesting 
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electromagnetic field responses as demonstrated in the visualizations of the deformed 

ice simulation cases.  

In summation, four key findings are identified. First, using a full-physics, 

heterogeneous finite volume EM model demonstrates through a qualitative 

visualization how the inherent assumptions in existing 1D model approximations are 

violated when physiographic features are present. Second, APhiD modeled EM 

parameters can be combined to show where null lines, or polarity reversals of the 

magnetic field, are located. Third, these null lines constitute kinks at different material 

interfaces with different conductivity makeup. Null line kinks also develop uniquely 

through field patterns when physiographic features are present. While these patterns 

are more pronounced when they encounter the beginning of a ridge as per the 

simulation cases described in the text, further study is warranted to explore if these 

patterns can aid in determining the shape of the ridge in addition to the thickness. 

Finally, the most important outcome is that sea ice conductivity has an important role 

to play in the horizontal extent of EM footprint sizes, as shown in null line width L, 

and therefore is a key parameter for interpreting EM thickness retrievals from field 

campaigns. These simulation results can be explored further to develop new in situ 

instruments, improve ground truth calibration, and validate airborne, spaceborne, and 

underwater instruments.   

4.6 Future Considerations 

Work with the APhiD model can continue in several ways. Even though the 

simulations focus on a particular defined scenario of ridged ice where there is a 

singular ridge, the reality is, that for an actual Arctic environment, there are multiple 

ridges, with different sizes and different conductivities. The sizes of the ridges depend 
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on many factors, such as the water currents underneath the ice, as well as the 

surrounding environment on the topside of the ice, such as the changing of the 

seasons, weather storms, etc. Sheets of ice can also collide with one another to form 

ridges. As far as the conductivity of the sea ice is concerned, again, many factors come 

into play with that as well. Some examples include brine intrusions, air pockets, and 

repeated melt/freeze cycles within the ice itself.  

As far as modeling these different scenarios with the model discussed in 

Chapter 4 are concerned, it is possible, but must be limited to a reasonable volume size 

so that simulation results can be achieved in a practical amount of time. Another 

possibility would be to run the simulations in “batch mode” on a cluster. The results in 

Chapter 4 were based on running one simulation at a time. Running “batch mode” 

allows several simulations to be run at once on a cluster of high-performance 

computers. This action can potentially allow more complex scenarios to be defined 

within the model volume and still finish within a finite time window (vice running 

several days). 

One possible scenario for running in batch mode is to analyze two ice ridges 

coming into contact with one another. This contact would ultimately lead into a 

collision that would form a singular ridge of different shape and structure. An 

interesting result would be to analyze the electromagnetic field responses that result in 

this collision to see what effects it produces in an electromagnetic sense. Additionally, 

the transmitter can also be placed in different positions to visualize the field from a 

different perspective in these scenarios. In short, there are multiple possibilities that 

still exist with the APhiD modeler.  
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The accuracy of the model can also be improved. Currently, the target residual 

τ is 10-12 as previously mentioned. This factor can be decreased (i.e., less than 10-12) in 

APhiD to increase the accuracy of the simulated solutions, but would result in longer 

runtimes of the simulation, and also lead to having the maximum amount of iterations 

increased. Even though the τ in APhiD is low, one possible alternative method to 

improve the accuracy further, independent of APhiD, is to use a direct solver to 

compare solution accuracy. Direct solvers are methods that solve linear systems by a 

finite sequence, unlike iterative solvers that update “guesses” and converge to a 

solution. Hence, direct solvers are more robust as they can provide an exact solution. 

Even though direct solvers (such as LU factorization used in matrix operations) can 

provide an exact answer, they are typically more computationally expensive then 

iterative solvers [67]. This problem alone does not affect APhiD, but is a common 

issue in numerical computing.  

While the results presented here are based on numerical simulations, the 

ultimate goal would be to adapt current instrumentation to extract more information 

from the sea ice and seawater than just 1D apparent conductivity measurements. One 

possible approach would be to have an EM induction instrument that has one 

transmitter and many receivers. This approach would mimic the simulation scenario 

because each grid cell in the APhiD volume can be considered its own receiver. 

However, instead of being confined to just software, the actual EM induction 

hardware would capture the information over the sea ice directly. The receivers could 

be configured in such a way on the ice so that the full 3D response would be received. 

Additional configurations could have software integrated into this prototype EM 
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induction instrument that provides the information that APhiD does, albeit in real 

time. 
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Chapter 5 

FIELD EXPERIMENT AND CO-CALIBRATION ALGORITHM 

In order to address the improvement in the accuracy of sea ice thickness 

measurements by way of magnetic-dipole type EM induction instruments, one of the 

objectives in this dissertation is to develop a co-calibration algorithm for these types of 

instruments to improve best field practices. In order to meet this objective among 

these types of EM induction instruments, several steps need to occur, and are 

discussed in this chapter as follows. First and foremost, a field experiment is needed to 

collect the necessary apparent conductivity data among physically different EM 

induction instruments. This experiment enables a direct comparison of data collected 

by two different instruments over the same material, which, in this case is sea ice. 

Second, a historical calibration routine is presented, and concludes with the reason of 

why an alternative routine needs to be developed. Third, the co-calibration routine is 

developed from solving a linear set of two equations that have two unknowns. Fourth, 

conditions are implemented to establish valid solution pairs, which are used in the 

inversion solution for ice thickness, which also concludes that section.  

5.1 Field Experiment 

During March 2013, a field campaign was established to collect data from 

Barrow, Alaska. Barrow is situated inside the Arctic Circle and contained vast 

amounts of ice for study. In order to determine ice thickness in Barrow, two EM 

induction units were used to collect the apparent conductivity readings of the sea ice: 
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the Geonics EM31-MK2, and the GSSI EMP-400 (refer to Figure 2-3). The apparent 

conductivity readings were collected using data loggers, set up in a manual 

configuration in which the user of the instrument presses a trigger button to record the 

data at a pre-determined location. The data loggers consisted of the Allegro Field PC 

used with the Geonics EM31-MK2 and the Trimble GeoXH used with the GSSI EMP-

400. Additionally, Global Positioning System (GPS) data was also logged where both 

use World Geodetic System-84 datum operating in the “Fix Data” sequence [68], 

along with the time of the reading, and the survey leg number. The Trimble GeoXH 

was connected to the Allegro Field PC to provide GPS data, since the Allegro Field 

PC alone does not have that capability, and the Trimble GeoXH itself has a Wide Area 

Augmentation System (WAAS) built into it along with the software for the GSSI 

EMP-400.   

Overall, data was collected with the EM induction instruments over two days 

on a survey line, where one day used the EM31, and the other day used the EMP-400. 

On this survey line, calibration points, which are drilled holes in the sea ice, are 

established at 25-meter increments with their measured ice thicknesses recorded. The 

length of the survey line was approximately 400 meters long over mostly flat ice along 

the shoreline in Barrow, where the collected apparent conductivity samples were 

collected at one-meter intervals. Included in these intervals are 16 calibration points, 

since, as stated previously, the calibration points were drilled at every 25 meters, 

including the start point of the survey line. Both instruments collected data in VCP 

mode. The Geonics EM31-MK2, with an operating frequency of 9.8 kHz, not only 

logs apparent conductivity values, but also in-phase readings, and GPS information. 

However, it should be noted for completeness that the in-phase readings were not 
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recorded properly with the EM31, even during instrument testing before Barrow, 

possibly due to damage beforehand (due to it being a rental unit). The GSSI EMP-400 

logs more information compared to the Geonics EM31-MK2, in that it has a built-in 

accelerometer for tilt error and an altimeter for the altitude above mean sea level. 

Additionally, the GSSI EMP-400 also logs the multi-frequency data of the in-phase, 

quadrature, and apparent conductivity values, as well as the calibration data when the 

instrument is calibrated to the ground and the approximate height it will be carried. It 

is noted here that since the objective for using the GSSI EMP-400 was to collect 

apparent conductivity data, one of the transmit frequencies needs to be set at 15 kHz 

per the user manual [69]. Therefore, the transmit frequencies of 1, 10, and 15 kHz 

were used in the field experiment. Table 5-1 shows some of the physical 

characteristics of both instruments. 
Specification Geonics EM31-MK2 GSSI EMP-400 

Operating Frequency [kHz] 9.8 1,10,15 

Coil Separation [m] 3.67 1.219 

Weight [lbs.] 10 25 

Instrument Carry Height on 
Survey Line [m] 

0.9 (West), 0.95 (East) 0.22 

Table 5-1. Physical characteristics attributed to the Geonics EM31-MK2 and GSSI 
EMP-400. 

There are benefits and drawbacks to using a multi-frequency unit such as the 

GSSI EMP-400.  Recall that the skin depth, per Equation 2.1, tells us how far a signal 

can penetrate into a given medium based on certain parameters, such as the frequency 

used and the conductivity of the medium. At the frequencies stated, and using a bulk 
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conductivity parameter of 20 mS/m from the literature [1], the multi-frequency 

instrument would not be skin depth limited, and would still meet the low-induction 

number standard since the coil spacing (1.219 m for the EMP-400) is much less than 

the skin depth. An advantage here would be to use a lower frequency (1 kHz) to look 

at thicker ice since it can penetrate further via the skin depth relationship, and thus 

improve the resolution capability for determining sea ice thickness over ridges. 

Additionally, since the EMP-400 has a shorter coil spacing then the EM31, the 

expectation for the instrument is that it would deliver improved resolution over ridged 

ice [70].  In this same vein, higher frequencies (such as 15 kHz) could also provide 

better resolution for shallower ice cases since the penetration depth required is much 

less than thicker ridged ice. However, [71] does raise the issue of having a multi-

frequency instrument accurately setting and maintaining zero-point calibrations (i.e., 

instrument zeros) among the multiple frequencies. To counter this point, GSSI 

commissioned a field study on sea ice that compares both the Geonics instrument and 

the EMP-400. The results achieved with both instruments show that there is no 

difference in derived ice thicknesses over flat ice, and with ridged ice there are slight 

differences at different frequencies but are insignificant [70].  

As mentioned previously, the raw data imported from the loggers used to a 

local machine for analysis was recorded in the fix data sequence. In order to use this 

data for further calculations, another routine needed to be developed in order to post-

process the data. Post-processing of the data makes the measured apparent 

conductivity values easier to develop into codes to determine ice thickness. This 

particular routine was written in PV-Wave, which is an array-based programming 

language that has routines based on the International Mathematics and Statistics 
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Library (IMSL) [72].  Therefore, data post-processing was a necessary first step, not 

only for the purpose of this dissertation (and starting with the following section), but 

also for archiving in the National Science Foundation’s Arctic Data Repository [73]. 

Tables 5-2 and 5-3 shows a “cut-away” of what the raw data looks like, and what the 

data looks like after post-processing, respectively.  

 
@,235051.00,7119.963154,N,15640.819460,W,2,09,1.0,15:50:38.91 
SH10       1.000   222.750    20.478 15:50:39.19 
@,235052.00,7119.963153,N,15640.819483,W,2,09,1.0,15:50:39.74 
@,235103.00,7119.962785,N,15640.820648,W,2,09,1.0,15:50:50.78 
@,235103.00,7119.962785,N,15640.820648,W,2,09,1.0,15:50:50.78 
SH10       2.000   222.250    20.478 15:50:51.49 
@,235104.00,7119.962781,N,15640.820656,W,2,09,1.0,15:50:51.76 
@,235111.00,7119.962351,N,15640.821861,W,2,09,1.0,15:50:58.68 
SH10       3.000   221.250    20.478 
15:50:59.51@,235112.00,7119.962354,N,15640.821875,W,2,09,1.0,15:50:59.78 

Table 5-2. Typical representation of raw data collected in the field from an EM 
induction instrument. This example data is from the Geonics EM31-MK2. 

Index # σa Latitude Longitude HH Alaska 
Local 

MM Alaska 
Local 

Sec Alaska 
Local 

1 222.75 71.33271923 156.68032446 15 50 39.19 
2 222.25 71.33271304 156.68034423 15 50 51.49 
3 221.25 71.33270589 156.68036453 15 50 59.51 

	

Table 5-3. A sample of post-processed data derived from the points in Table 5-2 ready 
for calculation purposes and archiving. 

5.2 Relating Field Collected Apparent Conductivity to Sea Ice Thickness via a 
Non-linear Regression Approach 

The last section detailed how the apparent conductivity information was 

collected on sea ice using EM induction instruments. Now, the apparent conductivity 
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data collected with the Geonics EM31-MK2 is used in order to develop a relationship 

between the apparent conductivity data itself and actual ice thickness data from the 

calibration points along the survey line. One method that can be used here is an 

exponential best-fit curve. In a mathematical sense, this exponential fit used to 

describe the aforementioned relationship, as shown in [35], is stated as 

   (5.1) 

where A, B, and C are the modeled coefficients, and z, which is the distance between 

the instrument and the highly conductive seawater, is the inverse of Equation 5.1, 

stated as  
   (5.2) 

where 
  . (5.3) 

Since z is now determined, the actual sea ice thickness zi can be determined through 

the following equation as 

   (5.4) 

where z0 is the distance between the instrument and the top surface, otherwise known 

as the instrument carry height (see Table 5-1), and zs is the snow thickness, which, for 

the purposes of this dissertation, is assumed to be 5 cm on the survey leg.  

The modeled coefficients are necessary pieces to these equations. But in order 

to establish their final values, an initial guess has to be made. The initial guess chosen 

for this data set was based off of values from another ice experiment in the Arctic [74], 

which are correlated values determined from [33]. The values from [74] are from the 

Barrow area during April of 2007, and these values were chosen as an initial guess 

since the excursion took place at roughly the same time during the year (March). 

  σ a = A+ Be(−Cz )

  
z = zref − ln(σ a − A) / C

  
zref = ln(B) / C

  zi = z − z0 − zs
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These values for the initial guess are as follows: A = 54.7, B = 1178.4084, and C = 

0.872.   

Based on the further analysis of the initial guess, the values for A, B, and C are 

more refined by using a non-linear regression routine found in PV-Wave software, 

where the solved coefficients used herein are A = 26.48, B = 1049.40, and C = 0.7624 

[35]. With these coefficients, a plot is cogenerated along with the drill hole thickness 

measurements at calibration points, and apparent conductivity collected at those 

particular calibration points, on a single plot shown in Figure 5-1. The plot shown in 

Figure 5-1 allows visualization of all apparent conductivity points collected to be 

translated into a total thickness as defined by Equation 5.2. In this data set, the 

uncertainty is +/- 0.1442 meters. 
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Figure 5-1. Plot of exponential relationship between vertical distance (z) of instrument 
height combined with total snow and ice thickness versus apparent conductivity values 
(where here in the x-axis, “Sigma” is equal to σa) of strongest source (seawater 
beneath sea ice). Also shown are drilled calibration points. Because most of the sea ice 
along transects were from flat and level first year (FY) ice, the coefficients chosen are 
of those found in [35]. 

In order to visualize how these numbers are able to report just the ice thickness 

of the transect, Figure 5-2 shows a MATLAB plot of the ice thickness profiles of the 

Geonics EM31 data in two directions, east and west, where west is heading away from 

the center of the survey array, and east is heading back towards the center. 

Additionally, the thickness of the calibration holes is also shown as green circles on 

the plot along with the thickness data of the EM31. 
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Figure 5-2. MATLAB plot of ice thickness profiles along survey line. In this plot, the 
modeled coefficients were used to develop ice thickness values from calculated 
Geonics EM31 values for the west and east directions along the survey line. This plot 
also displays drill hole thickness at the calibration points (green circles) along the 
survey line to serve as a comparison. 
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But there is a drawback to this non-linear regression method. As discussed in 

Chapter 2, this exponential fit, along with the modeled coefficients that have no 

geophysical meaning, are only valid for one instrument at a time. In other words, a 

whole new fit needs to be established for a different instrument that traversed the same 

path.  Therefore, the next section focuses on a recently developed calibration approach 

to the non-linear method described in this section in order to provide an alternative 

path for calibrating more than one EM induction instrument of the magnetic-dipole 

type.  

5.3 Alternative Calibration Method for EM Induction Instruments 

As the previous section highlighted some of the shortcomings with an 

established calibration routine, this section explores an alternative calibration method 

that is purely based on electrical engineering, as well as geophysical, properties. 

Additionally, this alternative method has the ability to calibrate instruments in a 

consistent way to compare results between instruments with the same calibration 

procedure and dipole construct. To demonstrate how these properties can aid in the 

development calibration routine, the following information is given. First and 

foremost, the EM induction instruments measure apparent conductivity, which is 

comprised of the material conductivities below the instrument. Second, the EM 

induction instruments also have a measured coil spacing. Third, ice thickness is a 

measured quantity at drill hole calibration points. Fourth, the cumulative response 

functions are the multi-layer response to the secondary magnetic field from all 

material below a certain distance, and also account for the coil spacing. Additionally, 

as shown in Equation 2.6 and Equation 3.160, if the coil spacing is less than the skin 
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depth of the cumulative layers, then the contribution from each layer can be added 

independently [6]. Therefore, in a mathematical sense, expanding Equation 2.6 for a n-

layered system can be expressed as  

  , (5.5) 

where σa is the apparent conductivity recorded by the EM induction instrument, all σ 

on the right-hand side of the equation represents the material conductivity at each 

layer, and R(ζn) is the cumulative response as a function of the n-th layer depth z 

divided by coil separation r, which is dependent on instrument configuration (HCP or 

VCP). Since the focus is on determining the thickness of sea ice, n in this case can be 

2 because the investigation focuses on the responses from sea ice and seawater. 

Therefore, Equation 5.5 can be reduced to the following two-layer form:  
  , (5.6) 

where R(ζ0) is the cumulative response function for the space between the bottom of 

the instrument to the top of the surface under study (i.e., the carry height) divided by 

the coil spacing. Note that in Equation 5.5 that R(ζ0) is equal to 1, but not in Equation 

5.6. When R(ζ0) is equal to 1, the instrument is placed directly on the surface under 

study. To translate Equation 5.5 physically, referring to Figure 2-5, and referring to the 

statements made about Equations 3.158-3.160, the material underneath the EM 

induction instrument is yielding 100% relative contribution to the secondary field at 

the receiver coil. However, when the instrument is at a certain carry height above the 

surface, it requires the use of its own response function since the relative contribution 

percentage will now be less than that compared to having the instrument placed on the 

surface.  

σ a =σ 1 1− R ζ1( )HCP,VCP⎡⎣ ⎤⎦ +σ 2 R ζ1( )HCP,VCP − R ζ 2( )HCP,VCP⎡⎣ ⎤⎦

+σ n R ζ1( )HCP,VCP − ...− R ζ n−1( )HCP,VCP − R ζ n( )HCP,VCP⎡⎣ ⎤⎦ +σ n+1R ζ n( )HCP,VCP

σ a =σ 1 R ζ 0( )HCP,VCP − R ζ1( )HCP,VCP⎡⎣ ⎤⎦ +σ 2R ζ1( )HCP,VCP
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Up to this point, the measured quantities for Equation 5.6 are known. The 

unknowns are the material conductivities at each layer, as well as the ice thickness 

itself. In order to address the calculation of the unknown material conductivities, a 

system of two equations, based on Equation 5.6, needs to be established to solve for 

two unknowns, such as  

  , (5.7) 

where σ1 and σ2 are the sea ice and seawater conductivities, respectively, Ra0 and Rb0 

represent the height of the bottom of the instrument to the top of the ice (including 

snow thickness) divided by the respective instrument’s coil spacing and are considered 

weighting terms, Ra1 and Rb1 represent the total thickness divided be the instrument’s 

coil spacing, and σa and σb represent the apparent conductivity collected at different 

calibration points locations along the survey line.  

At this point, one can define σ2 as a function of σ1 and vice versa since the set 

of equations in Equation 5.7 is linear. While the full solution of defining σ1 and σ2 is 

presented in Appendix D, the approach is outlined here. First, σ2 is found by re-

arranging terms such that σ1 is in terms of σ2. This arrangement allows σ1 to be 

substituted back into the first equation in the set of Equation 5.7, combine terms, and 

solve for a final σ2 solution. The same process occurs for defining a final equation for 

σ1, but σ2 is defined first. The final solutions for σ1 and σ2 can be stated as  

  , (5.8) 

and 

  . (5.9) 

σ a =σ 1 Ra0 − Ra1[ ]+σ 2Ra1
σ b =σ 1 Rb0 − Rb1[ ]+σ 2Rb1

σ 1 =
σ aRb1 −σ bRa1
Ra0Rb1 − Rb0Ra1

σ 2 =
σ a Rb0 − Rb1[ ]−σ b Ra0 − Ra1[ ]

Ra1Rb0 − Rb1Ra0[ ]
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 Even though this outline is brief, and the detailed mathematics are in 

Appendix D, it begs the question of what do these relationships signify, and what is 

the difference between this approach and historical approaches, such as in [6]? First, 

notice that the solutions to these equations are paired solutions and require the use of 

location pairs. Location pairs represent the comparison of one instrument reading 

versus another instrument reading for apparent conductivity over a calibration point. 

Location pairs can be from either the EM31 or the EMP-400 at different points, the 

EM31 against itself (albeit in different directions on the survey line), or the EMP-400 

against itself (again, in different directions on the survey line). With this ability, 

solutions can be developed while accounting for variability in instrument footprint 

among two physically different instruments such as the EM31 and EMP-400. Second, 

since the material conductivities are found, more than one EM induction instrument 

can be calibrated, which is an improvement over historical routines where only one 

instrument can be calibrated at a time. Third, these equations use all geophysical 

parameters in order to relate experimentally measured apparent conductivities from 

these instruments, as well as calibration point ice thickness and instrument carry 

height simultaneously to achieve material conductivity. Even though the material 

conductivities are defined here, the next section describes the conditions that need to 

be implemented to achieve valid numbers for both σ1 and σ2. 

5.4 Establishing Valid Conditions 

The last section defined material conductivities based on a linear system of two 

equations solved for two unknowns. This section details the process of determining if 

a particular material conductivity solution is valid or not. Before this process is started, 

many possible combinations exist for σ1 and σ2. To further explain these possible 
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combinations, there are 16 calibration points along the survey line as mentioned 

previously. A total of 4 transects were traversed: 2 for the EM31 in both directions 

(east and west), and 2 for the EMP-400 (east and west). From this information, there 

are a total of 64 calibration data points here (16 * 4 = 64) where measured apparent 

conductivity, as well as measured ice thickness, are known values. But since Equation 

5.7 is an Equation set, comparison cases need to be made, such as EM31 “West” 

versus EMP-400 “West”, EM31 “East” versus EMP-400 “West”, etc. for a total of 64 

possible cases. If these possible cases are multiplied by the combination of calibration 

points, then, with this current data set collected from Barrow, there a possible 4,096 

total values for both σ1 and σ2 (since 64 * 64 = 4,096).   

Now, these values represent the total possible solutions, but there could be 

some instances where the result is not valid. One possible example would be to have a 

negative conductivity value, which does not exist in sea ice and seawater mediums.  

Therefore, in order for both material conductivities to have physical meaning, both σ1 

and σ2 have to be positive definite, such that  

 σ 1 =
σ aRb1 −σ bRa1
Ra0Rb1 − Rb0Ra1

> 0   (5.10) 

and  

 σ 2 =
σ a Rb0 − Rb1[ ]−σ b Ra0 − Ra1[ ]

Ra1Rb0 − Rb1Ra0[ ] > 0  . (5.11) 

However, there are additional conditions (or “flags”) to ensure the validity of σ1 and 

σ2. From the literature, such as [1], seawater is more conductive than sea ice. So a 

third condition for this algorithm is   

 σ 2 >σ 1  . (5.12)  
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To further reduce the possibility of having invalid values, in addition to those 

stated in Equations 5.10-5.12, the repeat location pairs where location “a” is equal to 

location “b” can be omitted. As an example, in matrix mathematics, this would 

represent the diagonal elements of the matrix, such as a11, a22, a33, etc. In essence, the 

focus would be on a unit lower triangular matrix for the valid ranges of σ1 and σ2 [75]. 

Two other flags can be stated that ensure valid material conductivity values based on 

location pairs as well as the definitions of σ1 and σ2 themselves. The first flag is that 

the difference in apparent conductivities are positive definite, i.e.,   

 σ a −σ b > 0  . (5.13) 

The second flag ensures the differences in the calculated response curves of the total 

response between the bottom of the instrument and the bottom of the ice are also 

positive definite, expressed as  

 Ra1 − Rb1 > 0  . (5.14) 

There are two important remarks to be addressed at this point. First, an additional flag 

can be set to Equation 5.14 to ensure that it is above a certain threshold value, which is 

considered noise in the calculations, and demonstrates the sensitivity of the response 

curves (to be discussed with the results presented in Chapter 6). Additionally, these 

equations depend on how the data is “packed” into the algorithm. To explain, while 

comparing location pairs, if location “a” for one instrument is held constant while each 

of the location “b” readings change, then the above equations are valid. For example, 

if location “a” is the first calibration point for the EM31 in a particular direction 

(assume west in this example), location “b” would be the comparison value of all the 

other instruments, as well as the EM31 “West” values. Now, if the reverse were true, 
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such that location “b” were held constant while the location “a” readings change, then 

Equations 5.13 and 5.14 would have to be rearranged accordingly, such as 

 σ b −σ a > 0   (5.15) 

and  

 Rb1 − Ra1 > 0  . (5.16) 

Tables 5-4 and 5-5 provide this example, in column view, for a visual demonstration 

of how data “packing” works for this particular algorithm. 
	
Sample Number 

[N] 
Location “a” Location “b” σa [mS/m] σb [mS/m] 

1 1 1 222.75 222.75 
2 1 2 222.75 209.00 
3 1 3 222.75 215.25 
4 1 4 222.75 237.25 
5 1 5 222.75 219.25 
6 1 6 222.75 191.25 
7 1 7 222.75 220.25 

	

Table 5-4. Sample of EM31 data array on western transect without flags applied.  For 
this sample, Location “a” is the value of the first calibration point that the EM31 
encounters. Location “b” is the same instrument, but the calibration point changes. 
Location “a” will be held constant until all other calibration points from all other 
instruments have been reported in location “b”. Equations 5.13 and 5.14 are valid 
when the data is “packed” in this manner. 
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Sample Number 
[N] 

Location “a” Location “b” σa [mS/m] σb [mS/m] 

1 1 1 222.75 222.75 
2 2 1 209.00 222.75 
3 3 1 215.25 222.75 
4 4 1 237.25 222.75 
5 5 1 219.25 222.75 
6 6 1 191.25 222.75 
7 7 1 220.25 222.75 

	

Table 5-5. Sample of EM31 data array on western transect without flags applied.  For 
this sample, which is opposite of Table 5-4, Location “b” is the value of the first 
calibration point that the EM31 encounters. Location “a” is the same instrument, but 
the calibration point changes. Location “b” will be held constant until all other 
calibration points from all other instruments have been reported in location “b”. 
Equations 5.15 and 5.16 are valid when the data is “packed” in this manner. 

	

It should also be noted here that there were flags developed that failed, but also 

proved that there is a dependence on the numerator and denominator for the 

definitions of σ1 and σ2. For σ1 these conditions are 

 
  

Rb1

σ b

>
Ra1

σ a

   (5.17) 

and  

 
  

Rb0

Rb1

<
Ra0

Ra1

 . (5.18) 

For σ2 these conditions are 

 
  

Rb0 − Rb1

σ b

>
Ra0 − Ra1

σ a

  (5.19) 

and 

 
  

Rb0

Rb1

<
Ra0

Ra1

 . (5.20) 
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The next section looks at the inverse solution to find an actual ice thickness based off 

of the definitions of σ1 and σ2 and implementing the conditions as discussed in this 

section. 

5.4.1 Inversion Solution for Determining Ice Thickness 

Now that the material conductivities have been quantified as a function of 

known values and conditions set to develop valid values, an ice thickness (Z1) value 

can also be determined from these equations to compare to other methods, such as a 

non-linear regression approach [32-35]. The mathematics for defining the inverse 

solution are located in Appendix D, where the final result, developed from the 

cumulative response equations and the calculated material conductivities, is stated as  

 

 Z1 =
r 1− R ζ1( )2( )
4R ζ1( )  . (5.21) 

To interpret Equation 5.21, focus on the cumulative response function, and notice that 

R(ζ1) is the significant weighting term here. As stated before, R(ζ0) is the response 

from the bottom of the instrument to the top of the surface under study. But R(ζ1) is 

the response from the bottom of the instrument to the bottom of the first layer, which 

in this case is the sea ice. To show this difference between R(ζ0) and R(ζ1) along the 

cumulative response curve per Figure 2-5, a heuristic example plot is provided in 

Figure 5-3. Note that the curve is the same as Figure 2-5, but rotated in such a way to 

emphasize the difference between the two response value functions. In this example, 

the EM31 is used in VCP mode, with a coil spacing r of 3.67 m, and a carry height of 

0.95 m, which would be characteristic of the parameters used to calculate R(ζ0). For 

R(ζ1), the coil spacing remains the same, but the thickness of the ice is 2.59 m. This 
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example shows that there is indeed a difference between the R(ζ0) and R(ζ1) terms, and 

the reasoning behind why Equation 5.21 is weighted by it. 

 

Figure 5-3. MATLAB plot the cumulative response function shown in Figure 2-5, 
albeit rotated for the purposes to demonstrate the differences of R(ζ0) and R(ζ1) terms. 
The black “X” is R(ζ0), and the red “X” is R(ζ1). Note here how the change in depth 
affects the response curve value, where R(ζ1) indicates the response from the bottom 
of the instrument to the bottom of the sea ice.  

5.5 Chapter Summary 

This chapter established a co-calibration routine for magnetic dipole-type 

instruments based on data that was collected in a field exercise held in Barrow, 

Alaska. This developed routine varies from historical routines since it is based on 

geophysical properties, as well as enabling results to be formulated from two types of 

instruments that have different instrument footprints. The main premise behind the 
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routine is to calculate two unknowns, which are the material conductivities of sea ice 

and seawater, from a linear set of equations and lead to an actual thickness result. The 

ice thickness solution is an inverted solution developed from the cumulative response 

equations and the calculated material conductivities. The inversion solution depends 

on the response function since it is the total response from the bottom of the 

instrument to the bottom of the sea ice. Therefore, the theory presented in this chapter 

will be vital to the results achieved in Chapter 6. 
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Chapter 6 

DEMONSTRATION OF CO-CALIBRATION ROUTINE 

6.1 Central Objective 

The previous chapter detailed how field collected apparent conductivity values 

can be related to thickness values by one method, that being a non-linear regression 

routine. However, this routine does have some disadvantages associated with it, such 

as only being able to calibrate one instrument at a time. In turn, Chapter 5 provided the 

mathematical basis for the development of a co-calibration routine for two magnetic 

dipole EM induction instruments. This routine was developed so that more than one 

EM induction instrument could be calibrated against known thickness values at 

calibration hole sites. The algorithm chosen is also based off of a two-layer system 

that involves the use of measured apparent conductivity values and calculated material 

conductivity values by way of an instrument’s inherent response. Therefore, this 

chapter implements the theory and aims to answer the following question: 

Can a co-calibration algorithm developed for two magnetic dipole EM 

induction instruments provide an ice thickness that is comparable to historical 

methods?  

This question is answered by presenting a case study application of the 

algorithm discussed in Chapter 5 by focusing on the following areas. First, since the 

non-linear regression routine provided thicknesses for the EM31 instrument only, this 

chapter provides thicknesses for both instruments on all transects by way of using the 

linear regression method. Second, while the conditions set forth in Chapter 5 do 
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provide valid conductivity pairs, some of these answers may be affected by “noise”, in 

a statistical sense, stemming from the sensitivity of cumulative response functions. 

Therefore, the concept of the signal-to-noise ratio, an important electrical engineering 

metric, is introduced and applied to solution pairs. Third, a statistical analysis of the 

valid solution pairs, after noise removal is considered, based on their geophysical 

traits. To clarify, even though the sea ice that was traversed in Barrow was stated to be 

flat, there are instances where the ice has some ridges when referring to Figure 5-2. 

These instances are referred to as “bumpy factors” and analyzed as such. Lastly, the 

co-calibration routine is used with two approaches, one using the means of the valid 

conductivity pairs, and the other using an error minimization scheme based on the sum 

of squares. 

6.2 Linear Regression of Calibration Hole Ice Thickness 

As stated previously, Chapter 5 provided a relationship, based on non-linear 

regression, that matched apparent conductivity values with ice thickness 

measurements at calibration hole sites for only two of the transects walked. However, 

in order to compare the co-calibration thickness results to the measured ice thickness 

at the drill hole sites of all 4 transects, a linear regression of the data was performed.  

Linear regression is a method to where the data is fit along a best-fit line. In the case 

of the transect lines walked in Barrow, each transect has there own best-fit line. The 

best-fit lines can be mathematically defined in slope-intercept form as   

 ztotal = m*σ a + b   (6.1) 

where ztotal is the total thickness of ice, snow thickness, and carry height of the 

instrument, m is the slope, σa is the apparent conductivity collected at the calibration 

hole, and b is the intercept. To find just the measured ice thickness, the snow thickness 
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and carry height are subtracted per Equation 5.4. To provide a best-fit line, each of the 

apparent conductivity values is plotted against the total thickness aforementioned at 

the calibration hole sites. Table 6-1 lists the equations for each of the transects. Note 

that the nomenclature of GSSI and EMP-400 used within this dissertation are the same 

instrument and are used interchangeably. Figure 6-1 shows the generated profile 

thickness for all 4 transects based on linear regression. Figure 6-2 shows each of the 

transect profile thickness with 95% confidence intervals. Note that these profile plots 

will show the ice thickness only, similar to Figure 5-2. 

 

Transect Equation 

EM31 West ztotal = -.0068*σa + 3.9156 

EM31 East ztotal = -.0075*σa + 3.8830 

GSSI West ztotal = -.0059*σa + 2.5746 

GSSI East ztotal = -.0069*σa + 2.6521 

Table 6-1. Transects and their respective linear regression equations. 
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Figure 6-1. Profile thickness of all 4 transects traversed in Barrow. Plot generated 
using linear regression of the data. Green dots represent measured ice thickness at drill 
hole calibration sites.  
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Figure 6-2. Individual transect profile thickness plots based on linear regression values 
and 95% confidence intervals of measured ice thickness at calibration sites. Clockwise 
from top left is the plot for EM31 West, EM31 East, GSSI East, and GSSI West. 

6.3 Noise Analysis 

To start the demonstration of the calibration routine developed in Chapter 5 

between two different EM induction instruments, the noise in the solution pairs must 

be first considered. In Chapter 5, it was determined that the complete data set from 

Barrow yielded a possible 4,096 values between the data collected from the EM31 and 

the EMP-400. While the conditions, or “flags”, defined in Chapter 5 reduce the 

possible combinations, the effect of noise is also present. The term noise, in a general 

sense, is customarily used to designate unwanted disturbances in signals [76]. Many 
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“noises” exist in this vein, such as atmospheric noise, thermal noise, electrical noise, 

and so on. In this calibration routine, the focus is on statistical noise present based on 

the calculated results and the conditions applied. One metric applied in the analysis of 

noise is the signal-to-noise ratio (SNR). The SNR is defined as the ratio of the 

measurement of a signal compared to the noise level of that signal. In a statistical 

sense, for this data set the SNR can be expressed as [77] 

  , (6.2) 

where µS is the sample mean and σS is the sample standard deviation, where both of 

these quantities are measured after the conditions/flags discussed in Chapter 5 are 

implemented. Based on Equation 6.2 and the values used per the conditions set in 

Chapter 5, the SNR for σ1 is 1.82, and the SNR for σ2 is 6.63. Typically, in an 

engineering environment, these numbers, since they are greater than one, indicate that 

there is more signal than noise for both material conductivities. For statistical analysis 

purposes, the higher the value of the SNR, the better quality in the data [77].  

While the ratio provides a useful number to determine if there is more signal 

than noise, it does not say where the noise comes from. In order to determine where 

the noise arises, consider the differences in both cumulative response functions for the 

Ra1 and Rb1 functions against σ1 and σ2 separately. Recall that Ra1 and Rb1 are the 

response functions from the bottom of the instrument to the bottom of the ice, but at 

location “a” and location “b”. When the differences between these two values are 

taken and plotted against each other, as shown in Figure 6-3, note that there are 

distinct “clusters” of data in two locations for both σ1 and σ2: (1) data values that range 

from approximately 0-0.05 on the difference scale, and (2) data values from 

approximately 0.1-0.2 on the difference scale. But look at the shape of the cluster. The 

SNR = µS

σ S
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(1) cluster, denoted by red arrows in Figure 6-3 appears to be more random in shape 

when compared to the (2) cluster where the points are more concentrated and closer 

together. This random shape is statistical noise, and is due to the fact that the coil 

spacing of the comparison pairs in the (1) cluster is the same. Additionally, from 

Figure 6-3, one can estimate that this random shape alone would have a low SNR 

value because the values are approaching zero. For clarification, these “noisy” 

comparison cases in the (1) cluster are not part of the diagonal matrix as discussed in 

Chapter 5, but they are the same instrument compared against itself only at different 

points along the survey line. Since the points in the (1) cluster can be considered noise 

and since they possess a low SNR, they can be filtered out of the solution pairs below 

a certain threshold value (determined experimentally to be 0.12) because there is such 

a small difference between the results in the differences of the response functions on 

the cumulative response curve. When these pairs are removed, the SNR of the 

remaining solution pairs improves to 2.04 for σ1 and 7.75 for σ2. It is also noted that 

this noise can be shown as well when the differences of σa and σb are compared, but 

those results will be the same solution pairs that are affected by the cumulative 

response difference threshold value aforementioned. 
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Figure 6-3. Noise analysis through the difference in response functions. Ra1 and Rb1 
are the response functions from the bottom of the instrument to the bottom of the ice, 
albeit at different locations. The responses denoted by a red arrow indicate the noise 
present in the sample data. This noise is a result where the differences of the response 
curves are close to zero due to the same coil spacing being used in the solution sets. 
This figure shows the difference in response curves for (a) σ1 and (b) σ2. 

Cluster (1) 

Cluster (2) 

(a) 

Cluster (1) 

Cluster (2) 

(b) 
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6.4 Statistical Analysis of Chosen Calibration Values 

To start with the statistical analysis of the values that satisfy the conditions 

aforementioned, consider a histogram plot shown in Figure 6-4. This particular 

histogram chart displays the number of occurrences for each possible solution for σ1 

and σ2 per the conditions discussed in Chapter 5, and removing the noise as discussed 

in the previous section. With these histograms some insight can be made. Both 

histogram charts follow a general Gaussian “bell-shaped” curve, but it should be noted 

that the histogram for σ2 is slightly skewed to the left under a normal distribution. To 

clarify, skewness is a measure of the asymmetry of a normal distribution, where the 

“tails” of one side of the distribution longer are than the other, such as the left tail for 

σ2 distribution [78]. The histograms also report key statistical values, such as the 

sample mean, sample median, sample standard deviation, 25% quartile, 75% quartile, 

and the 95% confidence interval. The sample mean for σ1 is 85.54 mS/m, and the 

sample mean for σ2 is 536.66 mS/m. These values will be used when the ice thickness 

is computed. Additionally, the sample median for σ1 is 82.90 mS/m, and the sample 

median for σ2 is 543.99 mS/m.  

The values achieved with the histogram chart can also be broken down by a 

“bumpy factor” of the ice when compared to σ1, σ2, and their location pairs with 

respect to the calculated ice thickness. Before the actual definition of the “bumpy 

factor” is disclosed, some geophysical clarifications need to be addressed. Recall that 

the measured transects in Barrow are flat ice. While that is true on the surface of the 

ice, underneath the ice, the structures can be very different. For example, there may 

exist such features like small pressure ridges and cracks, but without an underwater 

visual aid (such as a submarine or diver with a camera), the true structure of the ice is 

not known. As previously stated in Section 6.1, from Figure 5-2 it appears as though 
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there are some small ridges in the ice, especially in the mid-section of the survey line. 

Therefore, these small ridges can be characterized into a “bumpy factor” since the ice 

underneath the surface possesses small bumps, while exploring how the responses of 

σ1, σ2, and the location pairs are categorized based on the ice thickness of the transect. 

The “bumpy factor” can be broken down into four factor categories, ranging from 0 to 

3 (or least “bumpy” to most “bumpy”), as shown in Figure 6-5. A factor of 0 indicates 

strictly flat ice without any sharp slopes or bumps. A factor of 1 indicates a slope that 

will result in a “bump”. A factor of 2 represents a small “bump,” where a 3 indicates a 

large “bump”. To explain further, the deepest point of the mid-section of the survey 

leg aforementioned would receive a value of 3, and the slopes on either side of that 

“bump” would receive a 1. Additionally, a factor of one would also be associated with 

the slopes of a small “bump”, or a factor of 2. Figure 6-5 shows box plots of the 

calculated material conductivities organized by their “bumpy factor” and their 

location. In the box plot, the blue rectangles represent the 25% (lower limit) and 75% 

(upper limit) quartile values. The red lines indicate the sample median. The red dots 

denote the sample mean. And the “whiskers” (black vertical dashed lines with 

horizontal solid lines at the end) are set to the range of the 95% confidence interval. 

Values outside of this range, shown with a red cross, are referred to as “outliers.” 
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Figure 6-4. Histograms of calculated values for σ1 and σ2. Panel (a) shows the number 
of occurrences of values calculated for σ1 based on conditions set forth in Chapter 5. 
Panel (b) is of the same format, but for calculated values of σ2. In both plots the red 
dashed lines represent the calculated sample mean. The yellow dashed lines represent 
the calculated sample median. The black dotted lines represent the 95% confidence 
interval. The blue dashed lines represent the standard deviation, where “S” indicates a 
sample standard deviation. The green dashed lines represent the 25% and 75% quartile 
values, respectively.   

(a) 

(b) 
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Figure 6-5. Boxplots of “bumpy factor” based on location pair and material 
conductivity. Here, the “bumpy factor” represents how smooth or rough the ice is 
based on a scale from 0 to 3, where 0 is considered smooth and 3 is rough. Panels (a) 
and (b) show the “bumpy factor” broken down in these categories for σ1 based on its 
respective location pairing, and (c) and (d) are of the same format, but for σ2. 

6.5 Determination of Survey Line Ice Thickness with Co-Calibration Routine 

6.5.1 Results Using Sample Means 

Now that the results of σ1 and σ2 are established based on the conditions set 

forth in Chapter 5 and with the noise removed, one test conducted with the co-

calibration algorithm was to use the sample means of the resultant data in combination 

with Equation 5.21 to determine absolute ice thickness. Using the mean is equivalent 

(a) (b) 

(c) (d) 
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to using a bulk conductivity value for sea ice and seawater, where the bulk 

conductivity value is provided by Archie’s law. Archie’s law can be stated 

mathematically as [33] 
 σ i =σ bVb

m  , (6.3) 

where σi is the bulk ice conductivity, σb is the brine conductivity, and Vb
m is the brine-

volume fraction. Therefore, Equation 5.21 will be used four times since there were a 

total of 4 passes walked on the survey line. Recall though that the carry height for the 

Geonics EM31 is slightly different in the west and east directions. In the end, using 

this equation will result in an ice thickness plot similar to Figure 5-2.  

However, before a plot is made, the uncertainty, or error propagation, also 

needs to be considered with these ice thicknesses since they are based on calculated 

material conductivity values. Since the sample means of σ1 and σ2 are already 

established, along with their respective sample standard deviation, the uncertainty can 

be calculated by the following equation [36], which is a slight modification in 

terminology to Equation 2.9, stated as 

  , (6.4) 

where  is the sample mean, t is the t-distribution, sσ1,2 is the sample standard 

deviation of σ1 and σ2 (calculated separately), and n is the number of samples (valid 

values of material conductivities). The t-distribution is based on the 95% confidence 

interval and n-1 degrees of freedom. When Δerror is calculated, it can be applied to 

Equation 5.21. But, Equation 5.21 also needs to have uncertainties established as well. 

To clarify, uncertainties exist with both the numerator and denominator of R(ζ1), as 

well as Z1. From certain relationships provided in [79, 80] the uncertainty in R(ζ1) can 

be expressed mathematically as  

Δerror = x ± t *
sσ1,2
n

⎛
⎝⎜

⎞
⎠⎟

x
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 ΔR ζ1( ) = ±
∂R ζ1( )
∂σ 1

Δσ 1

⎛
⎝⎜

⎞
⎠⎟

2

+
∂R ζ1( )
∂σ 2

Δσ 2

⎛
⎝⎜

⎞
⎠⎟

2

 , (6.5) 

where  

  ,  (6.6) 

  , (6.7) 

the Δ indicates an uncertainty of that value, and a bar above a value (i.e., ) indicates 

the mean of that value. Additionally, Δσ1 can be defined as 
  , (6.8) 

and, likewise,  Δσ2 can be defined as  
  . (6.9) 

At this point, a “walkthrough” of these equations and results must be presented. When 

the uncertainty in R(ζ1) is compared to the noise levels discovered in calculating the 

SNR when taking the difference of the response curves, the uncertainty here is 

comparable to the random noise levels. To clarify, the approximate noise levels with 

the difference in the response functions were stated to range between 0-0.05. The 

uncertainty calculations with Equation 6.4, when using information collected with 

both the EM31 and EMP-400 in both directions, averages a value of ±0.003, which is 

within the range of values in the differences of the R(ζ1) response curve. Additionally, 

determining the uncertainty in R(ζ1) also effects determining material conductivity 

since the material conductivity is dependent on the response functions themselves. In 

other words, having a low or high uncertainty at this point will affect the material 

conductivity result, and change the reported ice thickness determined from the 

∂R ζ1( )
∂σ 1

=
−R ζ 0( ) σ 2 −σ 1( ) + σ a −σ 1R ζ 0( )( )

σ 2 −σ 1( )2
∂R ζ1( )
∂σ 2

=
σ a +σ 1R ζ 0( )
σ 2 −σ 1( )2

σ 1

Δσ 1 =σ 1 − Δerror ,σ1

Δσ 2 =σ 2 − Δerror ,σ 2
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inversion solution. Taking this investigation further leads to the consideration of the 

uncertainties in Equations 6.8 and 6.9. Using the “means only” method, the 

uncertainties here are ±2.67 mS/m for σ1 and ±4.41 mS/m for σ2. If the noise values 

from Section 6.3 were left in, the uncertainties would increase to ±2.89 mS/m for σ1 

and ±4.77 mS/m for σ2. Therefore, removing the noise does help in lowering the 

uncertainty in the calculated material conductivities. But do note that the uncertainty 

for σ1 can have a considerable effect in calculations since the bulk conductivity of the 

sea ice is low per the literature. 

Since the inversion solution for the ice thickness depends on R(ζ1), which in 

turn depends on the calculated material conductivities as shown in Appendix D, the 

investigation leads to the uncertainty in the inversion solution itself. The uncertainty in 

Z1 can also be expressed mathematically as 

 ΔZ1 = ± ∂Z1
∂R ζ1( )ΔR ζ1( )⎛

⎝⎜
⎞

⎠⎟

2

,  (6.10) 

where  

  . (6.11) 

Based on these equations, this current “means only” approach can be visualized with 

all transects. Figure 6-6(a) shows the ice thickness according to an absolute calculation 

per equation 5.21 while subtracting the snow thickness and carry height (as does both 

the non-linear and linear regression routine). Table 6-2 provides the ice thicknesses at 

the drill hole locations only based on the transects plotted in Figure 6-6, where “old” 

refers to the non-linear regression method, and “new” refers to the routine developed 

in Chapter 5 using the means as discussed herein. From the perspective of the drill 

hole points, most of the data tends to be following an over/under thickness, as do both 

∂Z1
∂R ζ1( ) = r

−R ζ1( )2 −1
4R ζ1( )2

⎛

⎝
⎜

⎞

⎠
⎟
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regression methods. While some of the results overshoot considerably by 50% in 

ridged ice (the 200 m mark), the East direction numbers, especially with the EMP-400, 

overshoot drastically, even when there is no ridged ice present. Investigating this issue 

further, Figure 6-6(b) shows the ridged ice around the 200-meter mark (from 200 m to 

210 meters), and Table 6-3 displays the thickness information for the 6 possibilities, 

similar to Table 6-2. Focusing on the 205-meter point, which is not a calibration point, 

the new method underestimates the non-linear regression method by a meter 

(approximately 100%), but the East overestimates this value by approximately 150% 

(with EM31 in the East) to nearly 375% overshoot with the EMP-400 in the East. 

 Again, the numbers aforementioned were absolute cases, where no uncertainty 

was considered. Now, the uncertainties previously discussed are added into Figure 6-

7, through error bar plots, to present a more thorough answer. Both figures’ results 

compare themselves to the Geonics EM31 transect ice thickness calculated shown in 

Figure 5-2 which used non-linear regression. The uncertainties ranged from 

approximately 0.02 m as a minimum to 59.75 m as a maximum. This large maximum 

uncertainty is due to a “spike” that occurs at the end of the transect shown in Figure 6-

7(c). Excluding this “spike”, while the absolute data, along with the uncertainties, does 

follow the same form as compared to the non-linear regression method and matches 

some of the calibration points, there is overshooting. These facts demonstrate that this 

routine displays a sensitivity to instrument footprint, especially at ridged locations 

with the EMP-400, as the results are amplified. This explanation is due to the 

difference in carry height used in the response functions when calculating the material 

conductivities (even though it was subtracted out of the final thickness result), and is 

also in line with what was witnessed with the simulation study in Chapter 4 with 
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changing geophysical parameters. However, this process is a first step in developing a 

robust algorithm that is based wholly on geophysical parameters.   
	

	
 

Figure 6-6. Plot of absolute ice thickness based on developed consistency routine. 
Panel (a) shows all transect thickness, including the transect thickness from the non-
linear regression model per Figure 5-2, and panel (b) shows a “zoom-in” of panel (a) 
around the 200-meter mark. The “zoom-in” does show overshooting, especially with 
the GSSI instrument. 
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Drill 
Hole 
Location 
[m] 

Measured 
Thickness 
[m] 

EM31 
West –  
Old [m] 

EM31 
East –  
Old [m] 

EM31 
West – 
New [m] 

EM31 
East – 
New [m] 

GSSI  
West – 
New [m] 

GSSI    
East –    
New [m] 

0 1.34 1.33 1.42 1.13 1.39 0.93 1.09 
25 1.41 1.43 1.54 1.37 1.7 1.04 1.9 
50 1.55 1.39 1.54 1.25 1.7 1.19 1.9 
75 1.38 1.24 1.45 0.91 1.47 1.11 1.46 

100 1.39 1.36 1.66 1.19 2.07 1.18 2.11 
125 1.48 1.57 1.43 1.74 1.42 1.59 1.89 
150 1.43 1.35 1.48 1.17 1.56 1.20 1.16 
175 1.31 1.27 1.38 0.98 1.29 1.11 1.25 
200 1.84 1.77 1.69 2.32 2.16 2.55 2.89 
225 1.71 1.40 1.51 1.29 1.64 1.95 2.28 
250 1.55 1.34 1.46 1.15 1.5 1.40 1.62 
275 1.44 1.34 1.77 1.15 2.42 1.25 2.99 
300 1.7 1.45 1.63 1.42 1.96 2.43 3.92 
325 1.64 1.50 1.81 1.55 2.52 2.04 3.69 
350 1.5 1.50 1.58 1.55 1.83 2.04 2.31 
375 1.64 1.55 1.83 1.67 2.6 2.14 3.42 

Table  6-2. Thickness at drill hole calibration points with both calibration methods. 
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Distance 
[m] 

EM31 West 
– Old [m] 

EM31 East 
– Old [m] 

EM31 West 
– New [m] 

EM31 East 
–  New [m] 

GSSI West 
– New [m] 

GSSI East 
– New [m] 

200 1.77 1.85 2.32 2.68 2.55 2.82 
201 1.76 1.94 2.31 3.00 2.28 2.77 
202 1.80 2.02 2.44 3.30 2.84 3.65 
203 1.85 2.16 2.59 3.85 3.11 4.86 
204 2.04 2.39 3.30 4.93 5.11 12.68 
205 2.13 1.93 3.68 2.97 7.42 8.38 
206 1.87 1.92 2.67 2.92 3.69 7.09 
207 1.90 1.98 2.77 3.14 3.02 6.10 
208 1.86 1.96 2.63 3.05 3.57 4.06 
209 1.78 1.69 2.38 2.16 3.23 2.89 
210 1.71 1.74 2.16 2.32 2.68 3.27 

 

Table  6-3. Thickness at ridged ice point per Figure 6-6(b).  
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Figure 6-7. Plot of uncertainty in ice thickness for the consistency algorithm. Panels 
(a) and (b) are a direct comparison to the transect thickness per Figure 6-3(a) since the 
same instrument (Geonics EM31) is used. Panel (c) and (e) are of the GSSI, but panel 
(d) is a “zoom-in” of panel (c) due to a “spike” near the end of the transect in panel 
(c). 

So what do these results mean? These results show that using just the sample 

means of the calculated σ1 and σ2 values as a sole calibration value will not result in a 

(a) (b) 

(c) (d) 

(e) 
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viable solution. Additionally, this initial result proves that the conductivity in both the 

sea ice and seawater exhibits natural variability. This variability is shown in the 

histogram plots per Figure 6-4. This natural variability is also demonstrated in work 

per [81]. In this work, the study was conducted in the Antarctic using Wenner 

electrode arrays to measure the conductivity of ice core samples. At one part of the 

core sample (0.2-0.3 m), the conductivity was 31.25 mS/m. The next sample (0.3-0.4 

m), the conductivity was 108.69 mS/m, which is roughly triple to the first sample 

reading. To put these values in perspective, Figure 6-8 takes a “cutaway” of the σ1 

histogram and highlights the values aforementioned in the work done by [81]. For this 

reason, the next subsection presents a minimization method based on the sum of 

squares method. 
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Figure 6-8. Histogram “cutaway” of Figure 6-4 to highlight conductivity values 
mentioned in [81]. The red arrows indicate the conductivity values of the core samples 
in [81] as they relate to the Barrow field data, but also highlight the fact of natural 
variability in conductivity levels.  

6.5.2 Results Using Error Minimization 
  

Since the usage of just the mean values of the calculated σ1 and σ2 values did 

not provide a “one size fits all” approach due to conductivity variability, another 

approach is to use error minimization. Here, the conductivity pairs from the conditions 

set forth in Chapter 5 and after noise removal (per section 6.3) are still utilized. The 

strategy here is to calculate the Z1 thickness at the drill hole calibration sites per 

Equation 5.21 based on the valid conductivity pairs initially. Then, the next step is to 
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subtract the initial calculated Z1 thickness at the drill hole locations from the 

physically measured ice thickness collected at the calibration hole to give the 

difference between the two. This result will comprise the residual sum of squares 

(RSS), which can be stated mathematically as [82]  

 RSS = yi − f xi( )( )2
i=1

n

∑  , (6.12) 

where, for this case, the predicted value yi is the actual measured ice thickness at the 

drill hole sites, and the explanatory value xi are the Z1 thickness at the drill holes for a 

particular transect. The result from this formula is then applied again to Z1, which, in 

turn provides a new thickness. The results of this new method are shown in Figure 6-9 

for all transects compared to linear regression values.  
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Figure 6-9. Profile thickness calculated from co-calibration algorithm based on error 
minimization scheme. Clockwise from top left are the following transects, EM31 
West, EM31 East, GSSI East, and GSSI West. Green dots in each plot denote 
measured ice thicknesses at drill hole locations. 

Given these plots are based on absolute values (i.e., no uncertainties yet), the 

relative error for this method can also be calculated. Relative error can be defined 

mathematically as [83]  

 δ x = Δx
x

 , (6.13) 
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where Δx is the absolute error, and x is the actual value. Δx can also be expressed as a 

percentage, expressed as   

 %δ x = δ x *100  , (6.14) 

where δ x is the mean of the relative error. Table 6-4 lists the relative errors for each 

of the transects based on the co-calibration routine. The instruments used in the West 

directions have less than 10% relative error, but the East directions have significant 

relative error, even though most of the drill hole quantities are closely aligned with the 

co-calibration thickness profile quantities.  

 

Transect Relative Error (%) 

EM31 West 9.58% 

EM31 East 33.40% 

GSSI West 9.64% 

GSSI East 22.27% 

Table 6-4. Relative errors for all 4 Barrow transects. 

In order to further explore the uncertainty based on this minimization scheme, 

the approach presented in Section 6.5.1 is used, but slightly adjusted. Equations 6.5-

6.10 can now be stated as  

 ΔR ζ1( ) = ±
∂R ζ1( )
∂σ 1,min

Δσ 1

⎛
⎝⎜

⎞
⎠⎟

2

+
∂R ζ1( )
∂σ 2,min

Δσ 2

⎛
⎝⎜

⎞
⎠⎟

2

 , (6.15) 

where 
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∂R ζ1( )
∂σ 1,min

=
−R ζ 0( ) σ 2,min −σ 1,min( ) + σ a −σ 1,minR ζ 0( )( )

σ 2,min −σ 1,min( )2
  (6.16) 

 
∂R ζ1( )
∂σ 2,min

=
σ a +σ 1,minR ζ 0( )
σ 2,min −σ 1,min( )2

 , (6.17) 

and  
 Δσ 1 =σ 1,min − Δerror ,σ1

  (6.18) 

 Δσ 2 =σ 2,min − Δerror ,σ 2
 , (6.19) 

where σ1,min and σ2,min are based on the minimum error calculated with Equation 6.12. 

Additionally, for this minimization scheme, Equation 6.4 can be restated as  

 Δerror = δ x ± t *
sσ1,2
n

⎛
⎝⎜

⎞
⎠⎟

 . (6.20) 

The uncertainties using the minimization method ranged from 0.25 m at a minimum to 

5.41 m at a maximum, once again occurring in the East direction with the large 

“spike” occurring at about the center of the transect. Figure 6-10 displays all 4 

transects with their respective Z1 uncertainties, based on Equation 6.10, plotted. Table 

6-5 compares the measured ice thickness at the drill hole calibration points to the 

values calculated with the minimization scheme at those same locations at all 4 

transects. 
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Figure 6-10. Uncertainty plots of all 4 transects using minimization. Clockwise from 
top left are the plots of the following transects: EM31 West, EM31 East, GSSI East, 
and GSSI West. These plots contain the profile thickness of the co-calibration routine 
that uses minimization and the respective uncertainties at calibration sites as error 
bars, as well as the linear regression profile thickness as a reference. Green circles 
represent actual measured ice thickness at calibration points. 
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Calibration 
Hole 
Location [m] 

Measured Ice 
Thickness [m] EM31 West [m] EM 31 East [m] GSSI West [m] GSSI East [m] 

0 1.34 1.37 1.20 1.14 1.15 
25 1.41 1.56 1.40 1.21 1.26 
50 1.55 1.47 1.69 1.29 1.51 
75 1.38 1.19 1.24 1.24 1.26 

100 1.39 1.42 1.49 1.29 1.42 
125 1.48 1.85 1.58 1.50 1.75 
150 1.43 1.40 1.38 1.30 1.23 
175 1.31 1.25 1.16 1.25 1.20 
200 1.84 2.29 2.49 1.87 1.79 
225 1.71 1.50 1.40 1.65 1.40 
250 1.55 1.39 1.38 1.41 1.33 
275 1.44 1.39 1.18 1.33 1.28 
300 1.70 1.60 1.53 1.83 1.58 
325 1.64 1.70 1.77 1.69 1.53 
350 1.50 1.51 1.42 1.50 1.57 
375 1.64 1.80 1.88 1.73 1.76 

Table 6-5. Comparison of the minimization ice thickness values versus the measured 
ice thickness at drill hole sites. 

Even though the minimization scheme does improve the results from the 

“means only” approach, there are still differences overall, which can be attributed to 

both instrument footprint and variability in conductivity. Based on the results of the 

“means only” approach, the error minimization scheme, and the work per [81], 

highlighted in Table 6-6, the ice conductivity is still highly variable for a “one size fits 

all” approach.  
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Co-Calibration Method/Calculated 
Conductivity Pairs 

Wenner array as per [81] 

Mean σ
1 
of all calculated pairs –  
85.54 mS/m 

σ
ice

 at 0.2-0.3 m core depth –  
31.25 mS/m 

σ
1
 in minimization for EM31 West – 

77.51 mS/m 
σ
ice

 at 0.3-0.4 m core depth –  
108.69 mS/m 

Table 6-6. Example of variability in sea ice conductivity of various methods. 

6.6 Chapter Summary  

This chapter demonstrated an analytical study based on the co-calibration 

routine that was developed in Chapter 5. This study consisted of a noise analysis, a 

statistical analysis, and a comparison of two approaches to use with the co-calibration 

routine. The results demonstrate two key points: calibration of this instrument is 

affected by instrument footprint, and material conductivity exhibits natural variability 

such that using a bulk conductivity number like the “means only approach” will not be 

a good fit. Additionally, using the same instruments for generating valid conductivity 

pairs contributes to statistical noise in the algorithm, and are not considered in the final 

results.  

To summarize, calibration to one number does not provide the thickness results 

that one expects in a real-world environment. As a best field practice, two different 

instruments with different footprints need to be used to address the natural variability 

of material conductivity in geophysical composites such as sea ice and seawater. 

Another possible best field practice would be that apparent conductivity data should 

be collected when the instrument is on the ground in addition to carrying the EM 

induction normally, as this would compare the effects of variable carry height with 
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regard to the response functions. While this new approach does need to be improved, 

it is on its way to becoming more robust so that it can be implemented as a new best 

field practice in Arctic environments to aid in measuring sea ice thickness. 

6.7 Future Considerations 

This chapter establishes that the co-calibration routine can be developed into a 

robust algorithm given some fine-tuning and further study into the variability of 

material conductivity. Beyond that, there are more possibilities. Even though the 

survey leg used in Barrow was considered to be flat ice, there were some small ridges 

(or “bumps”) in the ice, which is shown in the transect thickness plots across all 

methodologies. Here, optimization of the response functions could be used to better 

align “bumpy” ice so that the co-calibration routine increases accuracy. Optimization 

of the response functions can also be applied to variable carry height as the routine 

improves. Additionally, the co-calibration algorithm only looked at values based on 

the VCP configuration since this was the orientation used with the field instrument in 

Barrow. Therefore, in order to expand the scope of the consistency algorithm, these 

two possibilities (optimization over ridges/variable carry height and dipole 

configuration) can be further investigated.  

Another possibility would be to test the consistency algorithm on magnetic 

dipole type EM instruments that are not ground based, i.e., airborne EM units. 

Airborne units, such as those found in [29], use the same concepts as EM units used 

on the ground. The only difference here would be the height of the instrument used in 

the calculations of the response functions. However, the response functions of airborne 

units vary to those used on the ground, such that a minor substitution of terms cannot 

be used. Even though this possibility would be further “down the road” when 
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compared to investigating how the HCP configuration compares to VCP configuration 

data, and how the routine behaves over true-ridged ice, it still warrants a further look 

to increase the applicability of the algorithm as a whole. 
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Chapter 7 

CONCLUSION 

The work presented in this dissertation used sea ice as a geophysical test 

material to explore how electromagnetic responses interact with low-induction-

number composite materials as a function of instrument footprint size and shape. In 

turn, this dissertation details new, original, and interesting aspects with respect to the 

study of sea ice with regard to improving the accuracy of its measurement as well. 

While the focus with developing these new aspects centered on using EM induction 

instruments, more importantly, however, this dissertation answered the following 

scientific question: 

How can different aspects of geophysical composite properties, such as 

material conductivity, be used to improve the accuracy of sea ice thickness 

measurements based on numerical-modeling techniques and electromagnetic 

induction field instruments? 

This dissertation answered this question with two objectives, restated here: 

3) Objective 1 – Simulate field excitations of level and deformed sea ice with 

a 3D full-physics heterogeneous model in order to analyze field responses 

of multiple geophysical composite materials. 

4) Objective 2 – Develop a co-calibration algorithm among different EM 

induction instruments based on ground truth thickness data collected from 

a field excursion in Barrow, Alaska, during 2013.  
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The objectives were met in Chapter 4-6, but with necessary background information 

presented in Chapters 1-3. However, this conclusion chapter will focus on how the 

objectives were met in Chapters 4-6 since they present the most original work. 

 To start, Chapter 4’s scientific question was stated as: 

How sensitive is an instrument footprint to a material conductivity change 

when a low-conductive material is surrounded by a stronger conductive material? 

The numerical model study in Chapter 4 met Objective 1 in the following ways. First, 

the APhiD model is a heterogeneous three-dimensional, full-physics numerical model 

that allows a user to simulate various geophysical scenarios with certain excitation 

parameters, and computes the fields everywhere inside a model volume. The output of 

these electromagnetic interactions can then be visualized in 3D rendering software, 

such as ParaView. For the purposes of this dissertation, in order to define the model 

volume, several ice cases were considered. First, the control runs of air-seawater only, 

followed by air, 3 m of sea ice, and seawater provided a necessary background 

response field for the more complex model simulations, which involved ridged ice. 

The ridged ice scenarios involved changing the conductivity makeup of the sea ice, as 

well as identifying the effects of locating the transmitter, with respect to the ridge, had 

on the electromagnetic field responses. While these first runs were simulated in HCP 

mode, VCP mode was also discussed. 

 But is instrument footprint impacted at all from the interaction between an 

induction instrument and the conductivity makeup of the ice? The answer to this 

question is yes, and the output from the simulations clearly shows some interesting 

features relating to instrument footprint. The footprint width L, defined in Chapter 4, 

changes based on material conductivity, as first noticed when flat ice was introduced 
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to the air-seawater only case in the control runs. The footprint is also sensitive to the 

transmitter’s location, as well as its orientation. As far as instrument orientation is 

concerned, it appears that the footprint width does increase in size when the EM 

induction instrument is in the VCP orientation. This result is shown in Figure 4-10, 

where a numerical value comparison between HCP and VCP cases is provided.   

 In order to visualize how null line width can change, an important aspect of the 

modeling study included defining “null lines”. Null lines are polarity changes in the 

magnetic field. The shape of the null lines is also affected by transmitter position, as 

well as the geophysical and electromagnetic properties of the sea ice. The same can be 

said for the magnetic flux lines and the current density lines as well. However, the null 

lines help to define the shape of a “kink,” where a kink is the pronounced bend in the 

null line shape. The kinks occur at material boundaries. Opposite of the case with the 

null line width L, kinks are not sensitive to instrument orientation, as they still result at 

a material discontinuity as shown in Figure 4-10. 

 To conclude, footprint size and shape of pulses from EM induction instruments 

are not constant over sea ice due to natural variability in the material conductivity of 

sea ice and seawater. As a result of this model study, a best field practice here is that 

the accuracy of sea ice thickness measurements will be improved by taking into 

account sensitivity to instrument footprint size and shape created from interactions 

between EM pulses and horizontal “skin depth”. The model study demonstrates the 

need for this best since the results display unanticipated aspects when compared to 

prior 1D level-earth models. 
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Objective 2 was met in Chapters 5 and 6, where a new co-calibration algorithm 

was defined in Chapter 5 based on field collected quantities, and Chapter 6 provided 

an analytical study of the new algorithm. Chapter 6’s scientific question was:  

Can a co-calibration algorithm developed for two magnetic dipole EM 

induction instruments provide an ice thickness that is comparable to historical 

methods?  

In order to answer this question, there were two initial steps that needed to take place 

before a new method could be developed. First, field collected data was needed to 

make a comparison between new and historical methods, which was provided from a 

field exercise in Barrow, Alaska. Second, in keeping with a comparison theme, the 

collected data needed to be translated to ice thickness with a historical routine, which, 

for this dissertation, was based initially on non-linear regression, then subsequently 

followed by linear regression to provide a profile thickness for all 4 transects.  

 Since the thickness results were achieved with these historical routines, a 

closer look at some of the disadvantages associated with these methods needs to be 

discussed. The regression fits used coefficients to fit the data to a curve (for non-linear 

regression) or a line (for linear regression). But these coefficients were not based on 

any geophysical parameters. Instead, they were purely guesses that could be tuned to 

adjust the curve so that it could better fit the data. In the case of non-linear regression, 

another key drawback is that it only fit one curve to a singular EM induction 

instrument. Different guesses, and therefore a different curve, would need to be 

established for each instrument used. Linear regression also needs a separate fit for 

each transect traversed. 
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 Therefore, with the goal of being able to calibrate more than one EM induction 

instrument at a time, a closer look focused on the cumulative response functions since 

they are geophysically-based parameters. Even though the response functions are 

sensitive to instrument orientation, the curves of the response functions are the same 

shape regardless of the instrument used. Additionally, the response functions can be 

used in layered systems, and can determine values such as material conductivity or 

thickness if some parameters are known. So, if two equations, based off of Equation 

5.6, can be considered, then the material conductivities of the sea ice and the seawater 

can be defined, and an ice thickness established. This set of equations inherently 

solves two unknowns with two equations.  

 There are key benefits to using the developed algorithm as compared to 

historical routines. First, as stated previously, all parameters are geophysically based. 

Second, two instruments can be calibrated to provide an ice thickness based on 

location pairs. These traits alone eliminate the need to adjust a best-fit curve on 

coefficients as per non-linear regression, as well as defining more than one curve as 

previously mentioned. But most importantly, the instrument footprint of both of two 

different EM induction instruments is accounted for when using this method. While 

the results of the response function calculations will be different because of the 

different physical characteristics, the response curve information stays constant. 

 Chapter 6 provided a study of this routine to see how it compared to regression 

models. First, a noise analysis showed that where the coil separation is the same in the 

resulting solution pairs generates random noise, and therefore these solutions can be 

removed. Second, geophysical features of the survey line were broken down into 

“bumpy factors” and given a statistical analysis when compared to material 
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conductivities. Lastly, the inversion solution to provide ice thickness was calculated 

and an uncertainty study conducted. Here, two approaches are presented: a “means 

only” approach that uses the mean value of the valid conductivity pairs calculated per 

the conditions established in Chapter 5, and another approach based on error 

minimization. The results of both methods are compared to the actual drill hole 

calibration points, as well as the non-linear regression thickness plot shown in Figure 

5-2 (for the “means only” approach) and the linear regression profile thicknesses as 

well (for the error minimization approach). The results with the co-calibration routine 

from both approaches are comparable to those established with the regression methods 

in the fact that the same transect “waveform” shape was followed, i.e., when a ridge 

was present, both approaches used with co-calibration routine and the regression 

methods agreed on the result. However, the co-calibration routine tends to overshoot 

with both approaches. An explanation of this overshooting is due to the sensitivity of 

instrument footprint, as well as the variable nature of the conductivity in the sea ice 

and seawater. Therefore, using one number as a calibration metric does not suffice in 

providing thickness results. 

 A better field practice in this case includes using two different instruments 

with different footprints to address the variability in conductivity. Other possible best 

practices that can improve this routine are making multiple apparent conductivity 

measurements at the same locations (preferable at calibration points) and having the 

instrument sit on the surface of the ice to remove the variability in carry height for a 

comparison. Additionally, another key best practice is the ordering of how location 

pairs are entered into the algorithm, known as “packing” the data. As mentioned in 

Chapter 5, depending on how the data is fed into the algorithm with regard to location 
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pairs, both Equations 5.13 and 5.14 can be implemented, or Equations 5.15 and 5.16 

can be implemented (along with Equations 5.10-5.12, regardless of the order of 

location pairing). These equation pairs cannot be interchanged with each other (e.g., 

Equation 5.13 and Equation 5.16 cannot be used together), as it will cause the 

algorithm to not output correct results. 

As a final point to this conclusion, the hope here is that the results achieved 

can lead to not only the implementation of better field practices mentioned in this 

chapter, but also better instrumentation to measure these quantities. While EM 

induction instruments are only one instrument out of many that are used in the arena of 

measuring sea ice, they are an important component. The results presented in this 

dissertation, along with the future work outlined in the chapters within this 

dissertation, will improve the accuracy of sea ice thickness measurements and 

simulations. 
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Appendix B 

APPARENT CONDUCTIVITY FROM A GEOPHYSICAL STANDPOINT 

Relative to terminology in [6], the relationship between apparent conductivity, 

ratios in magnetic fields, and material conductivity is expressed as follows (refer to 

Figure 2-1 for a visual reference):   

 
   
σ a =

4
ωµ0r

2

Hs

H p

⎛

⎝
⎜

⎞

⎠
⎟ ≈ j σ n φ(ζ )dζ

ζ n−1

∞

∫ − φ(ζ )dζ
ζ n

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥n=1

N

∑   (B.1) 

 
  
σ a = j σ n Rn−1 − Rn⎡⎣ ⎤⎦

n=1

N

∑   (B.2) 

where:  

σa = the apparent conductivity at instrument receiver location (mS/m) 

ω = 2πf 

µ0  = the magnetic permeability of free space (4π x 10-7 H/m)  

Hs = the secondary magnetic field (A/m) 

Hp = the primary magnetic field (A/m) 

σn = the conductivity of material at location n 

ϕ = the relative response function at point n as a function of ζ 

ζ  = z/r 

z = the depth (m) 

r = the coil separation length (m) 

n = locations 1 to N where each location is the same size 

  γ = jωµ0σ  
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f  = coil separation length (m) 

σ = electric conductivity (mS/m) 

  
δ = 2

ωµ0σ
 = 

2 j
γ

= skin depth (m); e-folding signal strength 

  
Ψ = r

δ
= induction number. 

Assumptions: 

1.)   γ r <<1; Ψ <<1 

2.) Composite layers are horizontal and each layer is uniform 

  

φV (ζ ) = 4ζ

4ζ 2 +1( )3/2

φH (ζ ) = 2− 4ζ

4ζ 2 +1( )1/2

. 

Cumulative Response: 
  
R(ζ ) = φ(ζ )dζ

ζ

∞

∫  

where: 

  

RV (ζ ) = 1

4ζ 2 +1( )1/2

RH (ζ ) = 4ζ 2 +1( )1/2
− 2ζ

. 

Special Cases: 

 
  
R0(ζ ) = φ(ζ )dζ = 1

ζ =0

∞

∫   (B.3) 

 
  
RN (ζ ) = φ(ζ )dζ = 0

ζ =N

∞

∫  , (B.4) 

such that a general numerical solution through superposition is 

 
  
σ a = j σ an

n=1

N

∑   (B.5) 

 
  
n = 1:σ a1

= jσ 1 R0 − R1⎡⎣ ⎤⎦ = jσ 1 1− R1⎡⎣ ⎤⎦   (B.6) 
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1< n < N :σ an

= jσ n Rn−1 − Rn⎡⎣ ⎤⎦   (B.7) 

 
  
n = N :σ aN

= jσ N RN−1 − RN⎡⎣ ⎤⎦ = jσ N RN−1 − 0⎡⎣ ⎤⎦ = jσ N RN−1  . (B.8) 
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Appendix C 

APhiD DIPOLE LOOP CONFIGURATION 

 

Figure C-1. Schematic of how a dipole loop is configured in the APhiD model with (a) 
a vertical dipole (HCP mode) and (b) a horizontal dipole (VCP mode). 
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Appendix D 

CO-CALIBRATION ROUTINE DERIVATIONS 

As stated in Chapter 5, the following set of linear equations is used as the 

starting point to determine the material conductivities of σ1 and σ2 used in the 

developed co-calibration routine. Equation 5.7 is repeated here: 

  . (D.1) 

First, σ2 can be defined for in terms of solving for σ1 first by rearranging terms, such 

as,   

  . (D.2) 

Then, σ1 is substituted into σa in the following manner,  

  , (D.3) 

where expanding terms leads to   

  . (D.4) 

Both sides of Equation D.4 can now be multiplied through by the denominator, 

resulting in the following form of  

 . (D.5) 

The next several steps consist of placing σ2 on one side, via a continuation of Equation 

D.5: 

   (D.6) 

   (D.7) 

  , (D.8) 

σ a =σ 1 Ra0 − Ra1[ ]+σ 2Ra1
σ b =σ 1 Rb0 − Rb1[ ]+σ 2Rb1

σ 1 =
σ a −σ 2Ra1
Ra0 − Ra1

= σ b −σ 2Rb1
Rb0 − Rb1

σ a =
σ b −σ 2Rb1
Rb0 − Rb1[ ] Ra0 − Ra1[ ]+σ 2Ra1

σ a =
σ bRa0 +σ 2Rb1Ra1 −σ 2Rb1Ra0 −σ bRa1

Rb0 − Rb1
+σ 2Ra1

σ a Rb0 − Rb1[ ] =σ bRa0 +σ 2Rb1Ra1 −σ 2Rb1Ra0 −σ bRa1 +σ 2Ra1Rb0 −σ 2Ra1Rb1

σ a Rb0 − Rb1[ ]−σ bRa0 +σ bRa1 =σ 2Rb1Ra1 −σ 2Rb1Ra0 +σ 2Ra1Rb0 −σ 2Ra1Rb1

σ a Rb0 − Rb1[ ]−σ bRa0 +σ bRa1 =σ 2 Rb1Ra1 − Rb1Ra0 + Ra1Rb0 − Ra1Rb1[ ]
σ a Rb0 − Rb1[ ]−σ bRa0 +σ bRa1
Rb1Ra1 − Rb1Ra0 + Ra1Rb0 − Ra1Rb1[ ] =σ 2
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where now σ2 can be stated in final form as 

  . (D.9) 

A similar approach is used for defining σ1 from the system defined in Equation 

D.1, but now σ2 is solved first this time, starting with the following relationship:  

  . (D.10) 

Now Equation 5.6, stated as 
  , (D.11) 

 can be substituted into the first part of the system in Equation D.1 as 

    (D.12) 

  , (D.13) 

where multiplying through the substitution of σ1 results in the following equations: 

   (D.14) 

  . (D.15) 

Now, when the denominator is multiplied through on both sides of Equation D.15, the 

following relationship develops, 

  , (D.16) 

where putting σ1 on one side results in the following steps: 

   (D.17) 

   (D.18) 

  . (D.19) 

Finally, σ1 can be defined as  

  . (D.20) 

σ 2 =
σ a Rb0 − Rb1[ ]−σ b Ra0 − Ra1[ ]

Ra1Rb0 − Rb1Ra0[ ]

σ b −σ 1 Rb0 − Rb1[ ]
Rb1

=σ 2

σ a =σ 1 R ζ 0( )HCP,VCP − R ζ1( )HCP,VCP⎡⎣ ⎤⎦ +σ 2R ζ1( )HCP,VCP

σ a =σ 1 Ra0 − Ra1[ ]+σ 2Ra1

σ a =σ 1 Ra0 − Ra1[ ]+ σ b −σ 1 Rb0 − Rb1[ ]
Rb1

Ra1

σ a =σ 1 Ra0 − Ra1[ ]+ σ b −σ 1Rb0 +σ 1Rb1
Rb1

Ra1

σ a =σ 1 Ra0 − Ra1[ ]+ σ b −σ 1Rb0Ra1 +σ 1Rb1Ra1
Rb1

σ aRb1 =σ 1Ra0Rb1 −σ 1Ra1Rb1 +σ bRa1 −σ 1Rb0Ra1 +σ 1Rb1Ra1

σ aRb1 −σ bRa1 =σ 1Ra0Rb1 −σ 1Ra1Rb1 −σ 1Rb0Ra1 +σ 1Rb1Ra1
σ aRb1 −σ bRa1 =σ 1 Ra0Rb1 − Ra1Rb1 − Rb0Ra1 + Rb1Ra1[ ]

σ aRb1 −σ bRa1 =σ 1 Ra0Rb1 − Rb0Ra1[ ]

σ 1 =
σ aRb1 −σ bRa1
Ra0Rb1 − Rb0Ra1
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For defining the inversion solution of Z1, Equation D.11 is used, and making 

the appropriate distributions leads to the following: 

  . (D.21) 

Since finding Z1 is the objective, recall that R(ζ1) is a function of ζ, which is the 

thickness divided by the coil spacing. So to receive Z1 on one side, the following steps 

show the process: 
   (D.22) 

   (D.23) 

   (D.24) 

  . (D.25) 

Equation D.25 can also be set to the cumulative HCP or VCP response equations 

discussed in Chapter 2 (Equations 2.7 and 2.8, respectively). For the purposes of this 

dissertation, Equation D.25 will be set to the VCP response equation, expressed as  

  . (D.26) 

Rearranging some terms leads to  

  . (D.27) 

If both sides of Equation D.26 are squared, the result is   

  . (D.28) 

Expanding the right-hand side of Equation D.28 leads to the following equation: 

 . (D.29) 

  σ a =σ 1R ζ 0( )−σ 1R ζ1( ) +σ 2R ζ1( )

  σ a −σ 1R ζ 0( ) = −σ 1R ζ1( ) +σ 2R ζ1( )
  σ a −σ 1R ζ 0( ) =σ 2R ζ1( )−σ 1R ζ1( )

  σ a −σ 1R ζ 0( ) = R ζ1( ) σ 2 −σ 1( )

  
R ζ1( ) = σ a −σ 1R ζ 0( )

σ 2 −σ 1
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Combining terms results in  

 . (D.30) 

Some terms on the left-hand side cancel, and Equation D.30 can be restated as 

   . (D.31) 

Finally, Z1 can be expressed as 

  , (D.32) 

or, per Equation 5.21 restated here, 

 
Z1 =

r 1− R ζ1( )2( )
4R ζ1( )  . (D.33) 
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