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ABSTRACT 

 

Single-cell transcriptional heterogeneity pervades the fully differentiated brain. 

This heterogeneity is particularly prevalent in brain nuclei involved in the autonomic 

regulation of physiological functions such as cardiovascular homeostasis. Because 

neuronal function largely depends on its transcriptome, such heterogeneity confounds 

our understanding of how heterogeneous neurons contribute to their broader 

phenotypic function. In addition to the transcriptome, functional connectivity and in 

vivo anatomical environment are additional factors central to defining a neuron’s 

functional state. Given their importance, these factors may provide the added context 

necessary to understand how a distribution of heterogeneous neurons contributes to 

phenotypic function. Consequently, the overall goal of this work is to establish an 

organizational framework that characterizes single-neuron heterogeneity within a 

brain nucleus and elucidates its functional relevance. 

Towards this goal, we have taken a combined experimental and computational 

approach to determine the organizing principles driving complex interaction networks 

within and among transcriptionally diverse neurons within a brain nucleus. First, we 

generated a large-scale gene expression dataset from several hundred neurons, selected 

on the basis of their synaptic input types, taken from the nucleus tractus solitarius 

(NTS), a brainstem nucleus involved in the central regulation of blood pressure. Our 
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analysis of these neurons revealed an organizational structure in which transcriptional 

variability aligns with synaptic input type along a continuum of graded gene 

expression. This continuum is populated by distinct neuronal subtypes characterized 

by gene groups exhibiting correlated expression.  

In order to identify the molecular mechanisms driving this correlated behavior, 

we next developed a fuzzy logic modeling-based methodology to model quantitatively 

causal gene interaction networks from single-cell transcriptomic data. Our modeling 

results suggest that distinct input stimuli operating on distinct network structures 

corresponding to these subtypes can drive neurons through various transcriptional 

states. These results suggest that transcriptional heterogeneity represents a neuron’s 

adaptive response to various inputs. Based on these results, we propose that neuronal 

adaptation may be a mechanism through which the NTS robustly regulates blood 

pressure and cardiovascular homeostasis.  

To test this proposal, we examined what impact adaptation to neuronal 

subtypes in the NTS and brainstem would have on the short-term autonomic 

regulation of cardiovascular homeostasis under the simulated disease state of systolic 

heart failure via mathematical modeling. We developed a closed-loop control model 

characterizing neuronal regulation of the cardiovascular system by integrating 

previous quantitative models that simulated various aspects of the cardiovascular 

system. Because the goal of this study was to investigate the effects of neuronal 

subtype adaptation, we incorporated brainstem neuronal subtypes, such as those 

identified in our analysis of the NTS. Modeling simulation results suggest that 
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adaptation of these neuronal components can compensate for an impaired 

cardiovascular state due to systolic heart failure by decreasing neuronal inhibition (i.e. 

parasympathetic tone) of cardiac contractility.  

Finally, we tested the utility of a single-cell analysis approach to interpret 

single-cell heterogeneity throughout the brain by identifying a cellular network 

organization in a distinct brain nucleus – the suprachiasmatic nucleus (SCN), which 

regulates circadian rhythms in mammals. Similar to our analysis of the NTS, we 

generated and analyzed a high-dimensional gene expression dataset consisting of 

hundreds of transcriptionally heterogeneous SCN neurons. Our multivariate analysis 

of these neurons revealed both known and previously undescribed SCN neuron-types, 

which organize into a neuronal interaction network via known paracrine signaling 

mechanisms underlying the synchronizing functions of the SCN. 

Based on the analysis of heterogeneous single neurons, we have identified an 

organizational framework with which we can now interpret single-cell heterogeneity; 

a heterogeneous neuronal population comprises a mixture of distinct neuronal 

subtypes whose adaptive response to inputs is driven by distinct regulatory networks. 

Such adaptation provides a mechanism in which the brain is able to regulate robustly 

physiological functions by providing compensatory effects under perturbed or 

challenged states. 
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Chapter 1 

INTRODUCTION 

 

“The brain seems to be made up of a bewildering complexity of parts, and the cells 

within the parts seem to be characterized by an inscrutable complexity of form, extent, 

and relationships with each other.” 

Gordon M. Shepherd, in The Synaptic Organization of the Brain [1] 

“The brain is a wonderful organ, it starts working the moment you get up in the 

morning and does not stop until you get into the office.” 

Robert Frost (1874  1963) 

1.1 Motivation: Cell-Type and the Brain 

The human brain, highly differentiated and sophisticated, is the most complex 

organ of the body. During development, its neural components organize themselves 

into a rich and complex array of neuroanatomical structures that provide the biological 

foundation underlying not only the brain’s ability to regulate and coordinate 

physiological function, but also its emergent properties of cognition, memory, and 

intelligence [2–4]. While other mammals, such as rats and mice have similar 

neuroanatomical structures, what distinguishes our unique cognitive capabilities from 

our mammalian counterparts is the presence of an immense diversity of cell types and 
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the associated various complex cellular networks that maintain patterns of activity in 

the human brain. This diversity arises from the billions of neurons and trillions of 

synaptic connections between neurons in the human brain and underlies the emergent 

properties that enable it to generate and regulate physiological responses and behavior 

in order to predict, interpret, and respond to the external world. Consequently, 

dysfunction in these networks contribute to or cause maladaptive behavior and 

dysregulation associated with diseases [5–9]. Understanding how these networks 

organize, change, and adapt over time in the brain would bring insights into the neural 

mechanisms associated with healthy and disease states. Towards this goal, we first 

require an understanding of their constituent components i.e. the individual neuron and 

neuron types within the brain. . 

The investigation of neurons and their interactions with one another and other 

cellular components in the brain is one primary goal of Neuroscience. From the 

seminal work of Ramon y Cajol, which classified neurons based on their microscopic 

structures via golgi staining [10], dedicated efforts in the field have revealed a 

substantial amount of diversity in neuron types, based on connective, morphological, 

and histochemical properties of neuronal populations. With continual improvements 

being made to the resolution with which one can analyze a cell, these efforts have 

shifted to include the molecular properties and characteristics of neurons. For 

example, recent investigations have examined the developmental processes that drive 

a nascent cell into the various differentiated neurons types in the brain and nervous 

system by studying the molecular-scale characteristics such as the expression of a 
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single gene or a subset of them [11–13]. In addition to revealing the molecular 

programs central to the differentiation process, molecular-scale studies have been used 

to define disease phenotypes in the brain For example, variations in gene sequence or 

level of gene expression are associated with or cause Fragile X syndrome and 

Huntington’s disease [14–16]. Similar approaches focusing on a candidate gene or a 

small subset of genes, (i.e. one or few of the approximate 30,000 genes that comprise 

the genome within a neuron), continue to make up much of the basic and translational 

neuroscience research [4]. While these focused studies are critical to expanding our 

knowledge base, they do not fully account for the complexities involved in the 

regulation of gene expression. Within the sum total of a cell’s expressed genes, the 

cell’s transcriptome, genes interact with and are regulated by one another resulting in 

complex non-linear behaviors [17–20]. Because the transcriptome is a manifestation of 

the active genetic programing contributing to cellular function, the transcriptome and 

its associated processes are a major focus of investigation towards understanding the 

molecular mechanisms driving cellular function [21–27]. In this context it has been a 

major aspiration to connect cellular phenotype to genotype.  

The mapping of the human genome [28] and the recent initiation and progress 

of the Encyclopedia of DNA Elements (ENCODE) research project has provided an 

unprecedented perspective on the genome, including its transcriptional regions [29]. 

Coincident with these projects, recent technological advances in the precision of 

experimental techniques and high-throughput technologies have provided capabilities 

to enable sizeable amounts of data to be generated at faster and cheaper rates. Lately, 
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studies have begun to capitalize on these technological advances by characterizing the 

transcriptional programs and molecular landscape driving organ and brain 

development [26,30–32]. Techniques such as laser capture microdissection [33], 

lentiviral vector, and pseudorabies virus labeling [34–38] have enabled the 

Neuroscicence and broader research community to examine and manipulate targeted 

cell populations and even individual cells. The convergence of this comprehensive 

knowledge of the genome and the experimental and technological advances being 

achieved has created an environment in which the scientific community is on the verge 

of advancing tremendously our understanding of the brain, its constituent neuronal 

components, and the regulatory and integrative role in health and disease.  

1.1.1 The significance of cell-type in the BRAIN 

A recognition of the significance of cell-type, shared by researchers and non-

researchers alike, is evidenced strongly by the recent formation of Presidential 

initiative for Brain Research through Advancing Innovative Neurotechnologies 

(BRAIN initiative) [39]. The purpose of this initiative is to “accelerate the 

development and application of new technologies, theories, and analytical approaches 

to understand how individual brain cells and complex neural circuits interact at the 

speed of thought.” [39]. This initiative consists of a $100 million, 12 year commitment 

that spans multiple federal government funding agencies including the National 

Institute of Health (NIH), the Defense Advanced Research Projects Agency 

(DARPA), the National Science Foundation (NSF), and the Food and Drug 
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Administration (FDA). The shared understanding across these agencies emphasizes 

the magnitude of opportunities  now within scientific reach, as plainly stated by this 

initiative [40]:  

The time is right to… undertake the most groundbreaking and 
integrated approach ever contemplated to understanding how the brain 
works in health and disease. This is a moment when our knowledge 
base, our new technological capabilities, and our dedicated and 
coordinated efforts can generate great leaps forward… the public health 
need and scientific opportunity are so great that there has never been a 
better time to undertake this challenge. 

 

Towards this effort, seven major research priorities were identified that drive and will 

continue to drive research efforts, supplementing rather than replacing current efforts 

in basic, translational, and clinical neuroscience.  

Because the cell can be considered as the fundamental biological unit, and thus 

neurons as a core component of the brain [2], the first major research priority of the 

BRAIN initiative focuses on “Cell Type.” Specifically, this priority aims to define the 

cellular components of complex cellular networks in the brain. Classifying neurons 

and identifying the appropriate classifiers with which to classify them is central for 

understanding what neuron types are present and how these neuronal components are 

organized to drive the multicellular, networked behavior in the brain and in healthy 

and diseased states. Reaching a consensus regarding neuron-types, identifying the 

“parts-list” of the brain’s neuronal components of the brain will provide a foundation 

that will support future efforts in unraveling the mysteries of the brain.  
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The work presented in this dissertation takes place within the broad context 

described above. Here, this work seeks to develop and apply methodologies towards 

understanding the organizational principles of the brain’s neuronal components and 

how these principles define neuronal phenotypes and their functional role in regulating 

physiology. This work takes place against the backdrop of rapid innovation in -omics 

scale technologies and advances in experimental precision and accuracy that enable 

molecular-level examination of the brain at the single-neuron scale. Because 

characterization and classification of neurons should “. . . consist of the molecular, 

cellular, and structural properties of these components, which are major determinants 

of system-wide activity in the brain,” [39] this work capitalizes on these technological 

capabilities to identify molecular mechanisms underlying organizational and 

functional principles of neuron types and how such mechanisms apply towards their 

function. Before proceeding further, a brief introduction to the neuron’s structure, 

anatomical organization, and its relationship to the nervous system is given in the 

following section to provide some additional context.  

1.2 Neuron Structure and Anatomical Organization 

1.2.1 Structural organization of neurons 

Neurons, a principal cellular component of the brain, process and convey 

information through electrical and chemical signaling mechanisms. Generally, 

electrical signals are used to convey information from on part of the neuron to another. 
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Consequently neurons contain specialized regions for integrating, conducting, and 

transmitting information. All neurons include i) a soma or perikaryon – the cell body, 

which supports the metabolic and synthesis functions of the neuron, while most 

neurons also have ii) dendrites – a series of branching, tapering projections that 

receive stimuli or inputs relaying information from other neurons via iii) synapses 

(synaptic contacts), and iv) axons – long cylindrical structure, i.e. process (nerve 

fiber), that carries information from the soma and from terminal branches arise that 

synapse onto other neurons. Neurons can differ dramatically from one another based 

on their somatic, dendritic, and axonal morphology, thereby contributing to their 

functional diversity. In addition to underlying functional aspects of an individual 

neuron, these structural components contribute to the anatomical organization of 

neurons in the brain and nervous system.  

1.2.2 Anatomical organization of neurons 

Mature, fully differentiated, or post-mitotic, neurons within the fully developed 

brain are anatomically organized into densely packed cell bodies known as nuclei (not 

to be confused with the chromosome-containing organelle of a cell). Nuclei are one of 

two principal forms of anatomical organization of neurons found in the brain, the other 

being layered structures, observed in areas such as the cerebral cortex or cerebellum 

[2]. Individual neurons within a nucleus are traditionally understood to share 

similarities in their function and connectivity to other brain structures, though a 

nucleus may consist of complex internal structures, containing distinct region-specific 
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neuron-types. Brain nuclei connect to other nuclei by tracts, bundles of axons 

extending from the cell bodies and forming the basis of many major neuroanatomical 

structures in the brain. Brain nuclei and the individual neurons within them are 

traditionally understood to perform integrative and regulatory functions, receiving and 

responding to continual signals and synaptic inputs from other brain regions and 

various parts of the body in order to regulate critical physiological functions in the 

broader context of the nervous system. 

1.2.3 Organization of the nervous system 

The nervous system is composed of two main parts, the central nervous system 

(CNS) and the peripheral nervous system (PNS), the former consisting of the brain, its 

nuclei, and the spinal cord, the latter consisting mainly of sensory neurons, nerve cells 

that transduce external stimuli into internal electrical signals that are sent to the CNS. 

Thus the PNS connects the CNS to the limbs and organs of the body. These signals 

carry information regarding the external stimuli along afferent nerve fibers to the 

CNS. These primary afferents terminally connect to specific brain nuclei that 

integrate, process, and generate signals. Neurons receiving afferent inputs via direct 

synaptic connection, aptly named second-order neurons, serve as the second link in 

the signaling chain. In-turn these neurons connect to third-order neurons, which carry 

information to higher brain regions such as the cerebral cortex. Signals generated by 

various nuclei and networks of interconnected nuclei ultimately result in motor 

outflow signals sent from the CNS along a system of two neurons sets. The first of 
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these, called preganglionic neurons, serially connect to the second set of neurons 

known as postganglionic neurons. Signals are sent along the postganglionic axons (i.e. 

efferent fibers) that connect to and modulate the functional states of tissues and 

organs. 

 

Figure 1.1 The nervous system. A breakdown of the nervous system into the central 
and peripheral nervous systems is shown. Image has been modified from 
[41]. 

It is through these connections that the brain interacts with and regulates 

voluntary (conscious) and involuntary (unconscious) physiological actions and process 

throughout the body. In the context of regulating involuntary physiological functions 

critical to survival, such as heart rate and respiration, the brain controls a subdivision 

of the PNS known as the autonomic nervous system (ANS). The ANS consists of two 

arms or branches known as the sympathetic nervous system and parasympathetic 
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nervous system. The sympathetic nervous system is traditionally understood to 

regulate physiological responses associated with the “fight or flight” responses 

including increased heart rate, constriction of blood vessels, and dilation of lung 

airways. Sympathetic signals are transmitted through the splanchnic nerves, which 

carry nerve fibers that innervate almost every organ in the body. Conversely, the 

parasympathetic system is associated with “rest and digest” responses of the body 

including decreased heart rate, dilation of blood vessels, and constriction of airways in 

the respiratory tract (bronchi). Parasympathetic signals are transmitted to and from the 

brain primarily along the glossopharyngeal and vagus nerve. The sympathetic and 

parasympathetic branches act as modalities through which the brain modulates 

physiological responses of specific tissue and organ systems in order to maintain 

internal conditions in a stable steady state or homeostasis amid constantly changing 

internal and external bodily conditions and environments.  
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Figure 1.2 Autonomic nervous system. The diagram above lists some of the varying 
effects that each branch of the autonomic nervous system has on 
physiological functions. Both branches of the autonomic nervous system 
work in tandem to maintain homeostasis throughout the body. Image has 
been modified from [41]. 

To maintain this stable, dynamic constancy, brain nuclei and the individual 

neurons within them receive and integrate continual synaptic inputs from a multitude 

of sources, examples of which include, but not restricted to i) afferent fibers relaying 

information about the state of the peripheral state, ii) neighboring neurons within the 

microenvironment of the nucleus, as well as iii) neurons from other nuclei to which it 

they are connected. Furthermore, these synaptic inputs change continually, reflecting 

the dynamic nature of the internal and external environment. In this context, the 

function and state of an individual post-mitotic neuron is dependent upon its local 

anatomical environment and connectivity.  
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In connection with such structural and anatomical characteristics, molecular 

processes such as neuropeptide/neurotransmitter production, metabolism, and gene 

expression, play a central role in defining and distinguishing neuron-types and their 

functional states [24,42–45]. Each of these molecular processes and associated 

components has invited and continue to drive extensive research activity on their own 

behalf. Consequently, functionally defining neuron-types based on the totality of their 

underlying molecular processes is beyond the scope of this work. Rather, the present 

focus is on the analysis and identification of neuronal phenotypes by analyzing and 

developing methodologies to characterize the transcriptional state of individual 

neurons in a functional neuroanatomical context. In addition to the motivation 

provided in §1.1, experimental and theoretical evidence is described in the following 

section to motivate the utility of examining the transcriptome as it relates to the 

functional state of a cell.  

1.3 Cellular State and the Transcriptome 

Although every neuron in the brain contains the same genome, the 

combinations, dynamics, and interactions involved in a genome’s expression in a 

central manner distinguish these neurons and the developmental trajectory they take 

[26,46]. From the moment pluripotent stem cells are generated, they differentiate 

along developmental trajectories that enable these progenitor cells to mature into 

distinct cellular groups that share similar biochemical, morphological, and anatomical 

characteristics, or phenotypes. Experimental evidence has shown this differentiation is 
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largely a result of dynamic gene expression (transcriptional) programs. The 

differentiation and maintenance of a differentiated cell state depends on underlying 

transcriptional programs involving key molecular regulators and the modulation of 

multiple molecular pathways. Moreover, the sequence in which these programs occur 

also plays a factor in the differentiation process [47–50]. Examples of transcriptional 

programs influencing cellular differentiation have been identified in spinal neuron 

development [11–13] as well as other cell-types and tissues [26,30,51–53].  

This developmental process has been analogously described as one where an 

object traverses a topographical landscape, following various paths along this 

landscape into distinct wells or valleys representing differentiated cell-states, as 

illustrated in Figure 1.3.  
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Figure 1.3 Waddington’s “canalization.” A depiction of the classical Waddington 
representation of canalization where a ball rolling down the hill is 
directed into one of several different valleys, each representing some 
differentiated cell state. The ball represents some progenitor cell and its 
trajectory represents its development. The topology of the landscape, is 
effected by genes, which are represented by the black circles. Mutations 
in these genes can cause the shifts in the position of the black circles and 
can alter the landscape, affecting a cell’s developmental trajectory. 
Figure has been modified from [54,55]. 

The wells and canalized paths are shaped by pegs and stabilizing ropes 

representing the static influence genes have on the landscape through genetic 

mutations that affect the landscape over generations.  This “canalization” process,  a 

coinage of the developmental biologist C.H. Waddington [54,56,57], provides a 

conceptualization of cellular development that helps organize and relate the various 

cell types emerging from this process. The concept has been further modified to 
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include multiple molecular mechanisms such as changes in chromatin structure, 

extracellular signaling cues, and the random nature of gene expression that have more 

immediate effects on the developmental topology [26,55,58].  

Not only do the transcriptome and transcriptomic programs play a central role 

in phenotypic development, recent experiments have demonstrated the transformative 

impact the transcriptome plays in maintaining cellular phenotype, or cell-type 

competence [21]. A prominent example of the relationship between transcriptome and 

cellular phenotype was demonstrated elegantly by the induction of pluripotent cells 

from adult fibroblasts, a type of cell that synthesizes extracellular matrix and collagen 

and provides the structural framework of animal tissue [59]. This phenotypic change 

was stimulated by introducing a defined set of four transcription factors (Oct3/4, Sox2, 

c-Myc, and Klf4) into fibroblasts by retroviral transduction. These transduced cells 

exhibited morphology, growth properties, and biological markers associated with 

embryonic stem cells. Such results highlight the fact that perturbations to the 

transcriptomic state of a cell can trigger a cascade of molecular events that lead to 

phenotypic change and further support the idea that a differentiated cell-state is not 

immutable.  

Similarly, another experimental technique, aptly named transcriptome-induced 

phenotype remodeling (TIPeR) [60], illustrates the importance of the transcriptome in 

defining cellular phenotype. In this technique, the entire transcriptome of one cell-type 

is transfected into a host cell, allowing one to “directly point the transcriptome 

towards the target state by introducing the target transcriptome itself” [60]. Sul et al. 
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used TIPeR to convert mature, post-mitotic differentiated neurons into astrocyte-like 

cells by introducing into the host neuron astrocytic RNA components, including 

messenger RNA (mRNA), microRNA (miRNA), and long noncoding RNA (lncRNA) 

with ~40% efficiency. Additional experiments have also correlated the transcriptional 

states of neurons in the rat neocortex to their electrophysiological properties, a central 

phenotypic-defining characteristic used to define neuron types [61]. Examination of 

the transcript levels of 26 ion channels that regulate action potential and electrical 

activity of a neuron and electrical firing characteristics of such neurons to a particular 

type of electrical stimulation (including for example electrical spike frequency, action 

potential amplitude, and amplitude duration) showed that a positive correlation exists 

between expression of these ion channels and the distinct firing characteristics of 

unique neuron groups.  

Taken together, these results indicate the critical role the transcriptome fulfills 

in the development and maintenance of cellular phenotype. The transcriptome can be 

viewed as a molecular read-out, a ”snap-shot”, of a neuron’s functional state and more 

generally that of a cell [21,46,62,63]. Thus analyzing the transcriptome of individual 

neurons would elucidate the molecular mechanisms driving neuronal state and 

function and further elucidate what neuron-types exist in the brain.  

1.4 Transcriptional Variability 

Recent work examining the transcriptome at the single-cell scale, however, has 

revealed repeatedly significant variability in transcriptional state of individual cells 
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within functionally homogeneous populations [27,63], a phenomenon that has also 

been observed among clonal cell populations and in vitro cultures [64–69]. The 

phenomenon of single-cell transcriptional heterogeneity has been observed throughout 

the body, including the immune system [52,70–72], lungs [32], and heart [73]. This 

transcriptional heterogeneity complicates our understanding of how the transcriptional 

state of a cell relates to its phenotype function [22,25,27,74]. As high-throughput data 

acquisition methods have now become highly precise [70,75–78], we see that the 

variability observed in the results is not a mere distribution around a mean, but a 

reflection of true heterogeneity. Thus, individual cells appear to exist in a range of 

distinct states. Given that this single-cell transcriptional heterogeneity exists, several 

questions arise including i) what are the sources of this heterogeneity?, and ii) how do 

we integrate this variable transcriptomic behavior in defining cell-type? The following 

summaries of some experimental and computational efforts provide partial answers to 

these questions. 

1.4.1 Intrinsic sources of variability 

Two distinct causes of transcriptional heterogeneity may be classified as 

intrinsic or extrinsic. Intrinsic sources of variability refer to the random or stochastic 

nature of the multiple biochemical reactions that drive gene expression, or 

transcription, in cells. From a basic perspective, a gene can be divided into two parts, 

i) a promoter region and ii) a messenger RNA (mRNA) coding region. The promoter 

region, located upstream from the mRNA coding region, based on its interactions with 
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nuclear proteins in the cell nucleus (distinct from a brain nucleus), determines the 

conditions in which the gene’s coding region will be transcribed. Nuclear proteins that 

bind themselves to the promoter region include proteins known as transcription factors 

(TFs) that bind to a short DNA segment. These segments, known as the transcription 

regulatory element (TRE), are 8-24 base-pair sequences in length and lie within the 

promoter region. The TFs typically includes two functional domains: a DNA binding 

region that has a high affinity for the TRE and a protein interaction region that binds 

with a separate biological complex, consisting of RNA polymerase II (Pol II) and 

other factors [79–81]. Once bound, the Pol II complex, begins the elongation step, 

where it traverse the template DNA strand and begins to form an RNA copy, based on 

base pairing complementarity. Termination of elongation can occur through multiple 

mechanisms including the use of a termination factor or termination complex that 

binds to the polymerase [82]. This results in cleavage of the mRNA product, which is 

followed by the subsequent addition of a polyadenylated (poly-A) tail.  

The transcription process has been shown experimentally to occur in short 

”bursts” at a high frequency, followed by quiescent periods. The discrete, burst-like 

nature of transcription highlights the inherent or intrinsic nature of transcriptional 

variability. A landmark paper by McAdams and Arkin [83], demonstrates via 

mathematical modeling how intrinsic variability in transcription can lead to cell-type 

variability. Subsequent work and reviews have examined how variability in these 

processing steps affects gene expression and contributes ultimately to phenotypic 

variability [17,84–86]. 



 19

1.4.2 Extrinsic sources of variability 

Global sources of variation that affect expression of all genes within a cell are 

extrinsic sources. For instance, both the total amount or concentration of 

transcriptional activators or cell size affect transcriptional variability (upstream of 

transcriptional process or transcriptional cascades), greatly increasing variability in 

certain cases [86]. Cellular population growth dynamics examined experimentally in 

model systems such as E. coli indicates that cell division contributes to extrinsic 

variation. Computational models have also been developed that study these effects in 

yeast. In certain cases, population dynamics accounts for a portion of the extrinsic 

variability observed in GAL1 expression [87]. Mathematical models of gene 

expression variability that account for cell-cycle dependent changes in single-cell gene 

expression are still unable to account for expression variation observed experimentally 

[88].  

More recent studies have examined gene expression variability at a genome-

wide scale. Studies in yeast suggest that certain essential proteins involved in specific 

functions are associated with minimal variation. Another investigation in yeast 

examined the expression levels of multiple genes that were grouped together based on 

their co-expression behavior [89]. These groups of co-expressed genes, or 

transcription modules, exhibited distinct differences in expression variability, which 

suggests underlying gene interactions and regulatory relationships exist among these 

co-expressed genes and affect gene expression variation. 
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1.4.3 Gene networks impact transcriptional variability 

Genes interact with one another, often in a regulatory manner, to form gene 

networks that exhibit correlated expression behavior. The organization and structure of 

these networks result in network properties that affect expression variability. A 

prominent example in biological systems includes transcriptional cascades–a common 

gene regulatory feature or motif [90,91]. Experiments involving fluorescent protein 

showed that expression noise in an upstream gene can be transmitted to a subsequent 

downstream target gene, adding to the inherent (or intrinsic) noise of that downstream 

gene and amplifying the noise in that downstream gene’s expression [92]. Other 

computational studies have shown counterintuitive examples where stochastic gene 

expression behavior within a gene network can lower transcriptional variability [17]. 

Feedback interactions within gene networks also affect expression variability. For 

example, a protein encoded by a gene may either negatively or positively influence 

that gene’s expression, or that of an upstream gene. Negative feedback reduces 

transcriptional variability because fluctuations in expression are pushed back towards 

a mean or some set point value. On the other hand, positive feedback interactions can 

amplify expression variation. The generated protein increases gene expression, 

resulting in more protein production, which subsequently continues to promote its 

corresponding gene expression. Positive feedback interactions lead to a rapid response 

in gene expression, analogous to switching a gene from an OFF (unexpressed) state to 

an ON (expressed) state [90]. Based on such supporting evidence, we find that 

network structures, in addition to intrinsic and extrinsic sources of variability, should 
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be considered when analyzing and interpreting transcriptional heterogeneity that 

affects the phenotypic state of a cellular or, more specifically, a neuronal population. 

1.4.4 Single-cell transcriptional heterogeneity in the brain 

These concepts provide a conceptual framework within which to view 

transcriptional heterogeneity not only across cellular populations, but even within 

systems as complex and heterogeneous as that of the brain. Before considering further 

how these concepts may help us to interpret transcriptional heterogeneity in the brain, 

it is important to understand the extent to which transcriptional heterogeneity exists 

throughout the brain and how such heterogeneity affects our ability to define 

phenotype, given the pervasive variability that has been reported in individual neurons 

with nuclei and throughout the brain.  

Eberwine and Bartfai [93] revealed transcriptional heterogeneity across 

individual warm sensitive neurons belong to  a neuronal circuit in the Preoptic area of 

the hypothalamus. Despite the fact that these warm sensitive neurons are functionally 

similar and are claimed to be identical, based on their electrophysiological behavior 

and properties, Eberwine and Bartfai have shown that transcript levels of 500 

neurotransmitters, hormone receptors, and ion channels vary dramatically across 

individual warm sensitive neurons. This transcriptional heterogeneity has been 

observed repeatedly in different regions of the brain as well [94–99]. This variability 

is not only present at an individual cell level, but extends even to the neural network 
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function level [100,101]. These results directly conflict with the traditional 

understanding of how neurons are organized and function in the brain, in which 

definitions of neuron-types are based upon similarities of anatomical, physiological, 

and biochemical features and functionality. Reconciling cell-type in the face of the 

high degree of heterogeneity found in the adult mammalian brain and accurately 

defining post-development diversity is a difficult challenge [74,102]. 

Cells remain plastic, able to change adaptively in response to inputs; rather 

than reaching a final stable state or cell fate they continue in the mature organism to 

acquire new response capabilities. Thus, the current state of a cell is a product of the 

cumulative influences or inputs received throughout its history. The transcriptome, 

represents an essential “snapshot state memory” of a cellular phenotype [21]. The 

cell’s transcriptome adapts to inputs that change the cell, in effect becoming a 

repository of the cell’s input history. In the context of mature post-mitotic neurons, 

recent experiments demonstrate how cellular experience influences heterogeneity 

through “neurotransmitter respecification” in adult rat brains, accomplished by 

modifying the amount of light/dark stimulus received by adult rats [103]. Another 

example shows in vivo reprogramming of circuit connectivity in mature neocortical 

neurons in mice [104], results that can be considered as examples of extrinsic or 

external sources of variability driving functional diversity. These results further 

emphasize the impact that inputs have in shaping functional states of an individual 

neuron (as described in § 1.2.1). Taken together, these results point towards the 
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importance of analyzing single neuron heterogeneity in the context of the 

neuroanatomical environment and connectivity in which individual neurons function. 

Doing so may help reconcile the disparity between the shared functional purpose of 

individual neurons within a brain nucleus or neuronal circuit and the stark 

transcriptional heterogeneity they exhibit.  

1.5 Thesis Overview 

The previous sections demonstrate that much research has been performed and 

is on-going towards understanding neuronal function and neuron-type in the brain. 

Given the importance of the transcriptome in defining cellular function and the 

transcriptional variability pervasive across individual neurons within a brain nucleus, 

it is pertinent to ask how such variability affects the regulatory functions of a brain 

nucleus, presumably composed of homogeneous neuronal components. Although 

many of the previous examples described in §1.4 analyze transcriptional heterogeneity 

these studies typically involve the characterization of single neurons dissociated from 

an in vitro culture or organo-tissue samples. Consequently, such efforts are unable to 

incorporate the connective and anatomical micro-environment that plays a large part in 

defining neuronal function and neuron-type, as described in §1.2.1. Consideration of 

the neuroanatomical and connectivity characteristics of individual neurons may 

provide functional contexts for interpreting and understanding more clearly the 

purpose of single-neuron transcriptional heterogeneity pervasive within a 

neuroanatomical phenotype. This work focuses on this goal, to interpret single neuron 
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heterogeneity in the context of the synaptic connectivity and local anatomical 

environment to understanding the functional relevance of neuronal heterogeneity. 

This dissertation is organized into chapters that investigate the transcriptional 

heterogeneity of single neurons and interpret the functional relevance of such 

heterogeneity in the context of the regulatory function of the brain nuclei to which 

they belong. This is then followed by the development of a methodology that applies a 

systems identification approach towards identifying gene regulatory networks from 

single-cell transcriptional data. The functional relevance of single-cell heterogeneity is 

subsequently explored mathematically in a closed-loop model of the cardiovascular 

system. The work is concluded with an analysis of another brain nucleus, 

demonstrating the applicability of the single-cell analysis approach towards 

identifying organizing principles that reconcile single-cell heterogeneity and brain 

nucleus function. The chapters are described individually below: 

The initial research chapter, Chapter 2 describes the experimental and 

computational approaches applied in this work. First, motivation and a general 

description of the animal models used for studying individual neurons are provided. In 

addition, a description of the experimental techniques applied to collect and 

investigate the transcriptional response of single neurons is provided. The second half 

of the chapter provides a detailed description of the analytical techniques used to 

normalize high-throughput quantitative reverse transcription-polymerase chain 

reaction (qRT-PCR) gene expression data, which is a core component to this work. 

Finally, this chapter concludes with a brief review of the multivariate analytical 
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techniques relevant to high-dimensional data analysis that were applied throughout the 

work presented here to analyze single-neuron transcriptional heterogeneity.  

In Chapter 3, an analysis of the transcriptional responses of single NTS 

neurons is presented. Despite the high level of transcriptional heterogeneity observed, 

a multivariate analysis incorporating information regarding the well-established 

synaptic connectivity that in part defines neurons reveals a molecular organization that 

suggests an underlying structure to the variability observed in this brain nucleus. The 

work presented in this chapter has appeared in a journal article by the author [105]. 

Chapter 4 continues with the analysis of the molecular organization identified 

in Chapter 3. Because correlated gene expression behavior, identified in the analysis 

of single NTS neurons, suggests the presence of gene regulatory network influence, 

Chapter 4 focuses on the development of a methodology to identify underlying gene 

interaction networks from single-cell transcriptional data. The work presented here 

deals with the challenge of identifying causal gene interactions amidst the highly 

variable and continuous nature of single cell transcriptomic qRT-PCR data. 

Quantitative gene interaction network models from single-cell transcriptomic qRT-

PCR data are presented and statistical and simulation analysis is performed to gain 

insight into how gene network structures contribute to single-cell heterogeneity. This 

work has been presented in a journal article by the author [106]. 

In Chapter 5, the functional significance of the results and concepts of 

molecular organization of single NTS neurons presented in Chapters 3 and 4 is 

examined using a model that describes mathematically the physiological control 
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system known as the baroreceptor vagal reflex. A closed-loop model is developed that 

examines the functional relevance a molecular organization underlying single-cell 

heterogeneity in the NTS provides and how the types of adaptive transcriptional 

responses supported by results described in Chapter 3 provide robust regulation of the 

baroreceptor-vagal reflex and maintenance of cardiovascular homeostasis.  

In Chapter 6, the final research chapter in this dissertation, an analysis of 

single-neuron heterogeneity (similar to the analysis described in Chapter 3) is 

performed in a distinct brain nucleus, the suprachiasmatic nucleus (SCN). In addition 

to identifying an underlying molecular organizational framework that reconciles single 

neuron heterogeneity with overall brain nucleus function, this chapter presents results 

indicating that the organizing principles revealed from single neuron analysis are not 

specific to the NTS but can be applied to other regions of the brain as well.  

In Chapter 7, the results from Chapters 3-6 are summarized. Potential avenues 

for future research based on this work are proposed and discussed. 
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Chapter 2 

EXPERIMENTAL DESIGN AND COMPUTATIONAL APPROACHES TO 
ANALYZE FUNCTIONAL RELEVANCE OF SINGLE-CELL 

HETEROGENEITY 

 

To gain insight into the molecular organization and functional relevance of 

single-cell transcriptional heterogeneity in the brain, a combined experimental and 

computational approach is applied. This chapter provides a rationale for examining 

two specific brain nuclei, the nucleus tractus solitarius and the suprachiasmatic 

nucleus. Details regarding the experimental approaches used to perturb the animals, 

isolate in vivo single neuron samples, and multivariate analytical techniques to 

analyze high-dimensional transcriptomic data are provided in this chapter.  

2.1 Introduction 

Post-mitotic neurons in the brain constantly receive and respond to various 

synaptic and molecular inputs. The responses and adaptations of these neurons to 

extracellular stimuli are driven, in part, by their morphological features, where “form 

underlies function” [25]. Based on the importance that a neuron’s neuroanatomical 

environment and connectivity play in defining its functional state, as described in § 

1.2.2, considering these key features when analyzing the transcriptomic state of a 

neuron will provide additional context that will help us connect a neuron’s genotype to 
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its functional phenotype. Towards this goal, it is necessary to analyze neurons and 

their transcriptional responses in vivo. Despite the complexity of the brain and its 

sophisticated integration within the nervous system, significant advances have been 

made towards understanding the neural circuits and networks in which nuclei in the 

brain function and the physiological functions they regulate [107,108]. 

Using well-characterized neural systems, it is possible to trigger transcriptional 

responses in specific neuronal populations under controlled experimental conditions. 

However, due to the high-dimensional and highly variable nature of the transcriptomic 

state of individual neurons, as described in §1.4, it is necessary to apply both 

experimental and computational methodologies to manipulate, analyze, and interpret 

the transcriptional state of neurons in their neuroanatomical and functional context. 

Therefore, an integrated experimental and computational approach is employed in this 

dissertation to determine the functional relevance of transcriptional heterogeneity in 

the brain. Details regarding the experimental and computational approaches employed 

in this work are provided in this chapter, which is divided into four main sections:  

 

i. Introduction and rationale for the study of two specific brain nuclei, the 

nucleus tractus solitarius (NTS) and the suprachiasmatic nucleus (SCN) and 

the challenges functional heterogeneity of individual neurons poses in 

understanding the functional state of a single neurons as it pertains to the larger 

phenotypic function of these nuclei. 
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ii. Overview of the animal models and physiological perturbations applied in 

these experimental systems to trigger nuclei-specific responses. 

 

iii. Summary of the experimental techniques employed in this dissertation, 

including a review of the laser capture microdissection technology, the key 

experimental method utilized in this work for the analysis of single neurons in 

their neuroanatomical context. 

 
iv. Review of the various analytical and multivariate analytical techniques used in 

the analysis of high-throughput transcriptomic data.  

 

Finally, the chapter concludes with a brief discussion of the key points raised and how 

they pertain to the remaining research chapters in this dissertation.  

2.2 Brain Nuclei of Interest 

2.2.1 The Nucleus Tractus Solitarius 

The nucleus tractus solitarius (NTS) is the principal sensory integrative center 

for the internal organs of the periphery, i.e. viscera, and regulates physiological 

functions to maintain cardiovascular homeostasis. Extensive characterization of its 

functional role [34,107,109–116] and neuroanatomical connectivity [117–125] make 

the NTS an ideal candidate in which to study single neurons in the context of their 
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functional connectivity. Consequently, investigation of NTS neurons constitutes a 

majority of the work presented in this dissertation.  

The NTS is a brainstem nucleus located in the lower-half of the brainstem 

(medulla oblongata) and consists of the neuroanatomical phenotype defined by 

medium sized, fusiform neurons that form a column in the dorsal medulla. These 

neurons surround and are innervated by a tract, the tractus solitarius (ts), that conveys 

afferent inputs from two cranial nerves (CN), the glossopharyngeal (CN IX) and vagus 

nerve (CN X), which relay sensory information from visceral organs. Multiple afferent 

inputs converge onto NTS neurons and originate from multiple sensory neurons 

including, but not limited to i) baroreceptors–a type of mechano-stretch sensory 

neurons, located in the carotid sinus and aortic arch, that send electrical pulses (action 

potentials) when they sense a change (and rate of change) in arterial blood pressure, ii) 

chemoreceptors–sensory neurons also located in the carotid and aortic bodies that 

detect changes in oxygen, CO2 and pH changes in the blood, iii) cardiopulmonary 

receptors–a sub-type of baroreceptors that respond to lower blood pressures and are 

associated with the regulation of blood volume, and iv) lung stretch receptors–sensory 

neurons that respond to changes in lung volume during the course of the inspiration-

respiration cycle.  

The NTS acts as a central relay where the afferent inputs from the sensory 

neurons related to the cardiovascular and respiratory state of the body are integrated 

with other viscerosensory signals. In addition, the NTS receives synaptic inputs from 

higher-order brain structures through reciprocal connections shared with other brain 
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nuclei. These connections include the paraventricular and lateral nuclei of the 

hypothalamus, the rostral ventrolateral medulla (RVLM), caudal raphe nuclei, and 

area postrema [107]. NTS neurons also project to other nuclei within the medulla 

including the dorsal motor nucleus of the vagus (DMV) and the nucleus ambiguus 

(NA), which act as the sources of parasympathetic outflow affecting cardiac functions 

[38,126–130]. Interconnections among the NTS, CVLM, RVLM, DMV, and NA are 

part of a larger neural pathway, i.e. reflex arc, known as the baroreceptor reflex, which 

provides autonomic regulation of cardiovascular parameters such as heart rate, cardiac 

output, arterial resistance, and blood pressure in order to maintain cardiovascular 

homeostasis.  

2.2.1.1 The Baroreceptor Reflex 

The baroreceptor reflex (i.e. baroreflex) is a physiological control system that 

provides negative feedback regulation of arterial blood pressure [107]. The baroreflex 

is primarily responsible for short-term regulation of arterial blood pressure. The 

synaptic inputs that terminate in the NTS, with the exception of the lung-stretch 

receptors, are key components of the baroreflex. Axons of baroreceptors in the aortic 

arch travel along the glossopharyngeal nerve while baroreceptors in the carotid sinus 

travel along the vagus nerve, both of which converge on the NTS. The integration of 

these inputs in the NTS subsequently triggers a signaling cascade that regulates the 

activity of the sympathetic (SNS) and parasympathetic nervous systems (PNS). 

Sympathetic tone is regulated via NTS excitatory projections to the CLVM, which in-
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turn sends inhibitory fibers to the RVLM, which is the primary regulator of the SNS. 

The SNS supplies innervates cardiovascular targets such as the heart and arterioles. 

When blood pressure rises, synaptic inputs from the baroreceptors will activate NTS 

neurons, which activate CVLM neurons, which in turn inhibits the RVLM and 

decreases sympathetic outflow. Alternatively, some NTS neurons project excitatory 

fibers that innervate the DMV and NA to regulate the PNS. Like the SNS, the PNS 

innervates the heart and increases in PNS activity inhibits cardiac pace-making cells in 

the heart, reducing heart rate. When blood pressure rises, PNS activity is increased to 

reduce heart rate and contractile forces in the ventricles of the heart [130–132], and as 

a consequence, blood pressure.  

Because the NTS is the primary integrative center of cardiovascular sensory 

signals, it has been defined as the homeostatic control center of the baroreflex, 

regulating sympathetic and parasympathetic tone to modulate effector functions and 

maintain some nominal blood pressure set point [133–135]. Experimental 

manipulations on the reflex support its essential role in baroreflex integrity. For 

example, targeted manipulations of A2 neurons, a noradrenergic cell group embedded 

within the NTS that produce the neurotransmitter norepinephrine, result in a shift in 

the blood pressure set point in a rodent animal mode [34]. Conversely, electrical or 

pharmaceutical stimulation of the middle (i.e. medial) region of the NTS evokes 

decreases in heart rate, blood pressure, and sympathetic nerve activity [136]. 

Stimulation of NTS neurons with angiontensin II (Ang II), a neuropeptide whose 

corresponding receptor angiotensin II type 1 receptor (AT1R) is expressed heavily by 
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NTS neurons, leads to increases in blood pressure as well [137]. Animal models of 

hypertension have also demonstrated shifts in the molecular characteristics of the NTS 

in animal models of hypertension. Increases in pro-inflammatory molecules, including 

Ang II, are associated with hypertension pathology in animal models [111,138,139]. 

Moreover, Khan et al., demonstrated that a complex and coordinated transcriptional 

responses occurs in the NTS in response to changes in blood pressure [140] using an 

established experimental protocol involving an acute hypertensive challenge on rats. 

These results support the role that transcriptional state and its dynamics play in driving 

neuronal function, specifically within the context of NTS neurons and their role in 

regulating blood pressure.  

2.2.1.2 Functional heterogeneity in the NTS and baroreceptor reflex 

NTS neurons exhibit nonlinear signal processing capabilities as part of its 

integrative role in regulating cardiovascular homeostasis. This nonlinear behavior is 

exemplified at the single-neuron level. Despite the strong pulse-rhythmic inputs that 

are supplied by baroreceptors, single neurons do not encode this behavior in any 

obvious manner. In vivo recordings of NTS neurons show neuronal activation (as 

indicated by the generation of action potentials) in response to direct electrical 

stimulation of an incoming nerve or stretch-induced activation of the baroreceptors. 

But rarely do individual NTS neurons exhibit bursting patterns that align with the 

pulse-synchronous behavior of baroreceptor neurons [141]. This behavior conflicts 

with the general expectation that neurons belonging to a particular phenotype, such as 



 34

cardiovascular NTS neurons, should display similar functional behavior. Reconciling 

this nonlinear heterogeneous behavior, in the context of the single neuronal 

transcriptional heterogeneity, is the subject of Chapters 3-5.  

2.2.2 The Suprachiasmatic Nucleus 

The principal biological clock in mammals resides in the suprachiasmatic 

nucleus of the hypothalamus. SCN neurons express genes and generate electrical 

signals in a coordinated and oscillatory manner which ultimately synchronize 

physiology and behavior in a daily program that allows coordinated anticipation of the 

24 hr light/dark cycle. Thus, the SCN is known as the master circadian pacemaker 

(circa–about , diem–day). This nucleus is a paired neuronal structure that surrounds 

the third ventricle, a central fluid-filled cavity in the brain, just above the optic chiasm, 

where the optic nerves projecting from each retina cross. Within each side of this 

nucleus, or unilateral SCN, neurons are organized into two anatomic subdivisions: i) 

the “core”–the underside or ventral region, and ii) the “shell”–the upper side or dorsal 

region. Neurons within the core project densely to the shell while neurons in the shell 

project sparsely to the core [108,142]. In addition to their anatomic organization, SCN 

neurons are defined by their neurochemical content. Immunohistochemical studies 

have demonstrated that neurons in the core contain a neurotransmitter known as 

vasoactive intestinal polypeptide (VIP). Neurons in the shell contain another 

neurotransmitter known as arginine vasopression (AVP). Most SCN neurons, 



 35

regardless of their anatomic region, co-express gamma aminobutyric acid (GABA), a 

prominent inhibitory neurotransmitter pervasive throughout the brain [143–148].  

The SCN receives synaptic inputs from the retinohypothalamic tract, which is 

composed of axons of photosensitive retinal ganglion cells. In response to light or 

photic inputs received by the retina, glutamate and pituitary adenylate cyclase-

activating polypeptide (PACAP) is released at synaptic contacts in the SCN. The 

neuropeptide PACAP is known to have a modulatory role, enhancing the effects of 

glutamate, which depolarizes the neuronal membrane resulting in an influx of calcium. 

This influx triggers a complex signaling cascade involving kinases resulting in the 

phosphorylation of cAMP response element-binding protein (CREB), a transcription 

factor that binds to the calcium/cAMP response elements (CRE), a DNA sequence 

found within the promoter region of genes, and activates gene expression [149–151].  

Output signals generated by the SCN coordinate and synchronize processes in 

other brain regions and peripheral tissues. Synchronization is achieved through diverse 

pathways including hormonal factors and autonomic efferent neural connections 

within the brain [152,153] and to the periphery, which allow for direct communication 

between the SCN and peripheral tissue [153]. Through sympathetic efferent 

connections to various hormone producing glands, such as the pineal gland, and 

adipose tissue, the SCN is able to control directly hormonal secretion and body 

temperature [108,153]. Additional sympathetic efferent outflow from the SCN target 

the kidney, bladder, spleen, and hormone producing glands such as the thyroid gland, 

located in the neck, and the adrenal gland, located above the kidneys. The SCN is also 
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involved in parasympathetic innervation of the liver, pancreas, and submandibular 

gland in the lower jaw [108,153].  

While nearly all cells and organs exhibit their own periodic behavior, the 

central role the SCN plays in synchronizing circadian rhythms in mammals has been 

verified through extensive experimental studies. Lesions of the SCN result in the loss 

of circadian rhythmicity in behavior and endocrine production in rodents [150]. Rats 

that have had lesioned SCNs have had their circadian rhythms restored when fetal 

SCN tissue is implanted. Further, in animals genetically engineered to have 

abnormally short or long circadian rhythms, implanting SCN tissue modulated their 

circadian periods, indicating that circadian rhythms were determined by the genotype 

of the SCN donor, rather than the SCN-lesioned host [154].  

2.2.2.1 Functional heterogeneity in the SCN 

As the ability to synchronize behavior and physiological processes by the SCN 

is dependent on the coherent and robust signals it generates, it is surprising that 

individual SCN neurons exhibit autonomous circadian oscillations [142]. This is 

reflected not only in multi-electrode recordings of dispersed SCN neurons, but also in 

the period of their underlying transcriptional programs that provide the basis of their 

oscillatory behaviors. Despite the established neuroanatomical and biochemical 

organization of SCN neurons previously described, cross-species analysis and 

transcriptomic studies of the SCN suggest a greater complexity than supported by our 

current understanding. This complexity is studied through the use of an established 
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experimental animal model described in § 2.3.2. The analysis of the transcriptional 

heterogeneity of single SCN neurons is the subject of Chapter 6.  

2.3 Animal Models and Experimental Perturbations 

2.3.1 Acute hypertension challenge 

The use of carefully selected animal models and appropriately designed 

experimental perturbations enables us to conduct controlled studies to investigate the 

transcriptional responses of individual neurons to specific, controlled, physiological 

perturbations. Rat models such as the Sprague Dawley rat provide an extremely useful 

animal model with which to study many functional aspects of the brain in health and 

disease. The reason for using Sprague Dawley rats in this work is five-fold: 

1. The rat shares similar neural and cardiovascular structures and 
connectivity to those in humans.  
 

2. The rat has been thoroughly characterized, with its genome having 
been sequenced completely.  
 

3. The rat brain is large enough to enable identification and 
microdissection of specific brain structures of interest and has been 
used extensively to investigate the neurogenic aspects of blood 
pressure regulation and hypertension development.  

 
4. Rat brain connectivity and function with respect to blood pressure 

regulation is well-characterized. 
 

5. The Animal Facility at Thomas Jefferson University have 
established protocols and experience with both rats and mice for the 
purposes of investigating blood pressure and circadian rhythm 
regulation.  
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To investigate the transcriptional responses of individual NTS neurons within 

the context of their functional role and connectivity, we used the acute hypertensive 

model previously used by Khan et al [140], to investigate the dynamics of the 

transcriptional responses in NTS tissue. The following excerpt summarizes the acute 

hypertensive perturbation applied:  

Animals were anesthetized with isoflurane vaporized in O2 (5% 
induction; 1% maintenance), and one femoral artery and vein were 
cannulated (PE-50 tubing) via a small medial incision for measurement 
of arterial pressure and infusion of [Phenylephrine] drug, respectively. 
The cannulas were run subcutaneously to an exit incision between the 
scapulas. The leg wound was sutured and topical anesthetic (lidocaine) 
was applied to both skin incisions.  

Following the surgery and 1-h recovery, characterized by stable, 
normal resting blood pressure and heart rate, either 1 mL/hr sailine 
(control) or ~200 g/mL phenylephrine (~1 mL/hr) was infused [into 
the rat]. The latter was manually tittered to maintain an increase of [40] 
mmHg diastolic arterial pressure. [The] experimental design used a 
standard 60 min acute hypertension experimental treatment… 
[Following the 60 min treatment], rats were rapidly decapitated and 
brains were quickly removed…  

 

Following rapid decapitation, brain samples were placed in ice-cold artificial cerebral 

spinal fluid (ACSF). Brainstem samples were then quickly isolated manually from the 

rest of the brains and embedded and frozen in optimal cutting temperature (OCT) 

compound, which provides a convenient matrix for subsequent tissue slicing. OCT-

embedded brainstem samples were stored at -80˚C.  
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2.3.2 Circadian phase shift response 

The phasic behavior of the cellular components of the SCN are due, in part, to 

the negative feedback transcriptional regulatory cycle that results in the oscillatory 

expression patterns of key circadian genes [142,149]. Previous experiments have 

repeatedly shown that the circadian rhythms that resides in the SCN is susceptible to a 

phase shift induced by light at particular times throughout the 24 hour light-dark cycle 

[149,155]. Moreover, prior studies have shown that coordinated gene expression 

behaviors, or multi-genic responses, underlie this light induced phase-shift [149]. This 

has been demonstrated in unbiased global microarray studies [156,157]. This is 

evidenced by the induction of multiple immediate early genes (IEGs) such as Fos and 

Jun and genes involved in the circadian oscillatory cycle including Per1 and Per2 

[158,159]). These IEGs and circadian genes regulate directly or indirectly gene 

expression of downstream target genes that code for neuropeptides, membrane 

receptors, and signaling pathways facilitating intra- and inter-cellular communication.  

We have previously used a light-induced phase shift model in mice to study the 

multi-genic response of SCN tissue that drives this phase shift in circadian rhythms, as 

described by Zhu et al. (2012) 

4-6 week old male C57BL/6J mice were purchased from Charles River 
(Wilmington, Massachusetts). The animals were housed with 12-hour 
light, 12-hour dark cycles. During the light phase of the lighting cycle, 
light (150 lux) was provided by warm white fluorescent bulbs. Animals 
were entrained for 10 days with free access to food and water. On the 
day of experiment [i.e. physiological perturbation], animals were given 
a one-hour light exposure (150 luck of white light at ZT (Zeigtgieber) 
14, which is 2 hours into their regular dark period, and sacrificed one 
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hour later at ZT 15. SCN’s were also collected from non-light-pulsed 
animals at ZT 15… Animals were euthanized by CO2 asphyxiation in 
prevailing lighting condition (dim red light for ZT 15). Their brains 
were extracted, and the hypothalamic blocks [where the SCN exists] 
were dissected. Blocks were embedded in OCT compound, and frozen 
on dry ice.  

  

All animals were housed, fed, and handled according to pre-approved protocols 

approved by the Thomas Jefferson University Institutional Animal Care and Use 

Committee.  

These experimental approaches represent only a portion of the experimental 

aspects required to isolate and analyze the transcriptional state of single neurons. 

Multiple steps are involved in order to obtain individual neuron samples including i) 

cryosectioning, ii) cell-type visualization, and iii) single-cell isolation via laser capture 

microdissection. Before these experimental methodologies are discussed, however, it 

is necessary for one to have a basic understanding of the anatomical planes, as they 

apply to the rat and mouse, in order have an appropriate frame of reference to 

understand how neural tissue is handled for single neuron sample collection.  

2.3.3 Anatomical planes and terminology 

Before describing the techniques involved in collecting brainstem slices, it is 

pertinent to define the appropriate terminology used to describe anatomical locations 

and planes of the rat and mouse. This reference terminology will clarify for the reader 

the specific physical orientation in which brain tissue samples were cut and collected. 

Unlike humans, in which the brain and brainstem are oriented approximately 90 
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degrees from each other, these two sections lie along a single axis in the rat. The nose-

end (front) of the rat is defined as the rostral end, while the tail-end (rear) is defined as 

the caudal end. The underside of the rat is defined as the ventral side while the top 

side of the rat is defined as the dorsal side. In addition, three basic reference planes are 

used to further describe anatomical positioning throughout the rat, which include, 

coronal, saggital, and horizontal planes. The coronal plane divides the rostral and 

caudal sections of the rat, the saggital plane divides the left and right sides of the rat, 

and the horizontal plane divides the ventral and dorsal side sections of the rat. 

 

Figure 2.1 Anatomical planes of the rat. (A) Anatomical planes and terms illustrated 
for reference. (B) Sagittal cross-section of a rat brain, with a few brain 
nuclei (grey ovals) included for reference. (C) Coronal cross-section of 
brain stem, corresponding to the dashed-line in subpanel B. Images 
modified from [160,161]. Abbreviations include NTS (nucleus tractus 
solitarius), RVLM (rostral ventrolateral medulla), CVLM (caudal 
ventrolateral medulla), SCN (suprachiasmatic nucleus), NA (nucleus 
ambiguus), DMV (dorsal motor nucleus of the vagus). 
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2.4 Experimental Methods 

2.4.1 Tissue cryosectioning 

In order to collect sections of the brainstem, the embedded brainstem blocks 

were sectioned at 10μm using a cryostat (Microm Microtome Cryostat HM 505 E) and 

then thaw mounted onto glass slides (FisherbrandTM SuperfrostTM Plus Microscope 

Slides).  

2.4.2 Rapid immunofluorescent staining 

To preserve RNA, immunostaining is performed within 30 minutes using an 

accelerated protocol. This protocol is a variation of previous protocols tailored 

specifically for laser capture microdissection of samples. Slides are first fixed in ice-

cold acetone and hydrogen peroxide (Sigma–Aldrich) solution mixture (50 ml: 50 µl) 

for 1 minute, then blocked and permeabilized with a blocking buffer consisting of PBS 

(1X) and 2% (m/v) BSA (lyophilized powder,  96%, Sigma–Aldrich) for 30 seconds. 

Afterwards, brain sections were incubated with an appropriate primary antibody 

solution (1:25 – 1:50 primary antibody:blocking buffer ratio, depending on the 

primary antibody) for 2 minutes at room temperature. Slides were then washed and 

incubated with a secondary antibody (typically at a 1:50 antibody:blocking buffer 

ratio) for 3 minutes at room temperature in the dark. Subsequently slides were gently 

rinsed with PBS followed by a series of five dehydration steps involving 30s ethanol 

baths of increasing concentration (70%, 75%, 95%, 100%, 100%). Finally, stained 
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slides were dehydrated in Xylene for 5 min. The dehydration steps are critical to 

ensure that any residual water or moisture within the tissue is removed or displaced as 

excess water and moisture within the sample can negatively affect the laser-capture 

process [162]. 

2.4.3 Laser capture microdissection 

Originally developed at the National institutes of Health (NIH), laser capture 

microdissection (LCM) is an experimental technique designed for isolating highly 

pure cell populations (or individual cells) from some complex heterogeneous tissue 

sections. By taking advantage of the molecular profiling technologies available, LCM 

would enable one to characterize the molecular fingerprint of an individual tissue 

lesion, specific cell population, or individual cell sample, which would be beneficial 

for diagnosis and prognosis of disease conditions, for example.  

Two main classes of LCM currently exist, which include infrared (IR) capture 

systems and ultraviolet (UV) cutting systems. While the laser technology distinguishes 

these two classes, there are three principle factors that underlie LCM technology. 

These components include i) visualization of the cell(s) of interest via microscopy, ii) 

transfer of laser energy to a thermolabile polymer leading to either the formation of a 

polymer-cell composite (IR-laser) or phot volatilization of cells surrounding a selected 

area (UV system), and iii) removal of the cell(s) of interest from the heterogeneous 

tissue section [33]. This technique is compatible with various types of samples and has 

been applied successfully for the molecular profiling of a wide range of tissue types 
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including tumors, liver, and brain sections [163]. Moreover, this technique can obtain 

cells with a precision of 3-5 m. Given the single-cell focus of this work, an IR-laser 

LCM was used due to its precise nature and ability to capture individual cells from 

heterogeneous tissue sections while maintaining cellular morphology, proteins, DNA, 

and RNA of the collected cell(s) [33,164,165]. While the UV laser is able to 

microdissect thicker tissue sections up to 200 m thick, the UV laser is currently not 

precise enough to cut an individual cell sample.  

LCM incorporates an inverted light microscope and a near-IR laser for 

collecting the desired cells. After direct visualization of the sample, a laser pulse 

would be triggered, which would activate a thermoplastic film that expands and binds 

to the cell of interest and create a polymer-cell composite. This composite would then 

be lifted from the tissue sample, shearing the polymer-embedded cell from the tissue 

section.  
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Figure 2.2 Laser capture microdissection schematic. The process to capture a single 
cell from a tissue sample is illustrated above. The IR laser melts the 
thermolabile surface of the cap, which is in contact with the tissue 
sample. Once the thermolabile surface bonds with the cell of interest, the 
cap is pulled up from the tissue and the individual cell is gentle removed 
from the tissue sample. Image modified from [166]. 

Despite its remarkable precision, issues of cross contamination of LCM 

samples have been raised [167], particularly due to the heterogeneous nature of tissue 

samples, particularly within the brain, and the micro-length scales required for 

acquiring individual cell samples precisely. To address these concerns, we have 

conducted quality control studies to quantify the amount of non-specific cell 

contamination may occur in LCM-acquired samples and how this may affect gene 

expression measures at the single-cell level. These experiments and results are 

described in greater detail in Chapter 3. 

2.4.4 RNA extraction, reverse transcription, and pre-amplification 

In order to measure gene expression from an individual cell for subsequent reverse 

transcription and amplification via qRT-PCR, individual cell samples were lysed 

directly on the cap, using a lysis buffer solution. A lysis buffer solution (0.5 L: 5 L 
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solution of Lysis Enhancer:Resuspension Buffer; Life Technologies, Grand Island, 

NY) is added onto the single cell on the cap, incubated to lyse the cell and release the 

RNA. The sample is subsequently cooled on ice before storage at 80°C for 

subsequent reverse transcription, which would convert the RNA into cDNA. The 

cDNA generated provides the template for amplification. 

2.4.5 Quantitative PCR using the BioMarkTM platform 

To measure the transcriptomic state of a functionally relevant set of genes, we 

used the BioMarkTM platform (Fluidigm®, South San Francisco, CA). The BioMarkTM 

is a high-throughput quantitative PCR (qPCR) platform that enables the simultaneous 

measurements of 96 gene assays across 96 samples (i.e. single neurons) for a total of 

9,216 simultaneous reactions. This platform has been used extensively to 

transcriptionally profile a wide variety of biological samples across multiple length 

scales [32,78,95,168–170] with minimal technical variation [105,171]. Since the two 

nuclei (i.e. the NTS and SCN) investigated in this work regulate distinct physiological 

functions, two distinct gene sets were used to assay individual NTS and SCN neurons. 

Using prior knowledge derived from global microarray analysis of gene expression in 

the NTS [140] and in the SCN [83], focused sets of genes were selected based on their 

functional relevance in blood pressure regulation and involvement in the 

transcriptional programs associated with circadian regulation. Additional details are 

outlined in Chapters 3 and Chapters 6, respectively. Quantitative measures of gene 
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expression are reported as raw Ct values, which are calculated by the Real-Time PCR 

Analysis Software (Fluidigm®).  

2.4.6 Primer design 

Oligonucleotide forward and reverse primer sequences for the respective gene 

sets described in the previous section were designed and corresponding probes were 

selected using the Roche Universal Probe Library and used for the amplification 

process. Intron-spanning PCR primers and probes for every assay were designed using 

the Universal Probe Library Assay Design Center (www.universalprobelibrary.com), 

provided by Roche. This tool uses the Primer3 algorithm [172] to generate the intron-

spanning primer sequences. Intron-spanning primers are desirable because they 

distinguish between mRNA-derived cDNA and any genomic DNA, which does not 

reflect transcript levels of interest, present in the sample. 

2.5 Computational Methods 

Following sample and data acquisition, it is critical to first assess the quality of 

and normalize the high-dimensional transcriptional data obtained. Raw Ct values 

generated by the BioMarkTM must be normalized to enable an appropriate comparison 

of expression across genes and across samples by removing any systematic differences 

that could affect gene expression measures. Systematic differences such as unequal 

sample loading, non-identical reverse transcription efficiencies, RNA quantification 

errors, or other unforeseen technical causes may all affect initial sample 
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concentrations prior to PCR amplification. In the following sections, the normalization 

methodologies applied in this work are described.  

2.5.1 Data normalization 

The importance of selecting a proper normalization technique cannot be 

overstated. It is critical to normalize data in a manner that does not inadvertently add 

additional biases to the data. The addition of additional biases would result in an 

incorrect analysis and interpretation of the data [173–176]. While numerous 

methodologies have been developed to normalize gene expression data, a 

comprehensive review of such strategies is beyond the scope of this work. However, a 

brief review of some traditional strategies involved in gene expression normalization 

is given to provide additional context to the data processing procedures used in this 

work.  

Several strategies for gene normalization have been developed including data-

driven techniques and baseline reference normalization techniques, each type of 

technique having specific advantages and limitations. A traditional, data-driven 

technique that is used for normalizing qRT-PCR data involves mean-centering gene 

expression data, which shifts the expression distribution of a particular gene, across 

samples, about the mean. Thus for some gene g, the sample mean of the expression 

value of gene g, is subtracted from each individual gi value, where i represents the 

index of a particular sample. The result of mean-centering is the Ct value (Equation 
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2.1). These scaled expression values can now be used for subsequent analysis such as 

treatment comparison, for example. Comparing Ct values of samples across 

treatment conditions j and k, for instance, would involve the straightforward 

calculation of the difference between ∆  (the scaled expression of gene g within the 

ith sample from treatment j) and ∆  (the scaled expression of gene g within the ith 

sample from treatment k), which would result in the ∆∆  [171]. 

 
∆ = − ( ) 2.1 

 ∆∆ = ∆ − ∆  2.2 

This technique assumes that the data being normalized can be appropriately 

described with a normal distribution. As the raw Ct data represents the log-

transformation of the number of doublings that occurred during the amplification 

process, the log-transform makes the expression distribution more symmetric, and 

enables one to assume that the distribution of the data can be described by statistics 

characterizing a Gaussian distribution, which has been shown to be a fair assumption 

[75]. 

Mean-centering expression data scales the data, preventing only a few genes 

that are highly expressed from dominating subsequent results [176]. Because gene 

expression at the single-cell level has repeatedly exhibited large variation, as described 

in § 1.4, a median-centering approach is used in this work as it is less susceptible to 
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outlying gene expression values, which would have a greater effect on the mean than 

the median and skew the scaled data. 

In addition, ∆  values are somewhat non-intuitive because a negative ∆  

value indicates that the expression of gene g in sample i is greater than the mean 

expression level of gene g. Since Ct values represent the number of cycles required for 

the fluorescent detection, a large Ct value represents a low initial amount of cDNA and 

vice versa. Thus the Ct value is inversely related to the initial amount of cDNA in the 

sample and ultimately negative ∆  for sample i must be interpreted as having a 

higher than average expression level. To ease the interpretation of scaled gene 

expression data, we used Equation 2.3 to obtain median-centered expression data: 

 −∆ = −  2.3 

 

An additional method that has been used is a geometric mean-based 

normalization. Similar to the median-based normalization, the geometric mean, 

defined by Equation 2.4 is not affected as greatly by outlying values or abundance 

differences between different genes. 

 ̅ =  2.4 
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Here, n represents the number of genes used to determine the geometric mean 

and xi represents the Ct value of the ith gene. This method has been used to normalize 

microarray data as well as BioMarkTM data [169,177].  

Alternatively, a widely-used baseline reference approach for normalizing high-

throughput expression data, such as microarrays and qRT-PCR data, involves scaling 

gene expression data to an internal reference or “housekeeping” gene. This gene acts 

as an internal control that should not change, or change minimally, in response to 

perturbations applied to the sample. Subtracting expression levels of the housekeeping 

gene from expression levels of the gene of interest will scale the expression level and 

account for any offsets that may have occurred due to unequal loading across samples 

and so forth. Although the use of an internal reference gene is widely used, a major 

assumption made when using an internal reference is that this reference exhibits stable 

expression behavior. Previous work has shown that this assumption for several 

traditionally used housekeeping genes may vary considerably [174,178,179]. To 

account for such potential variability in internal reference genes, several methods have 

been developed, two of which will now be discussed below. 

2.5.1.1 Reference gene selection methods 

Given the potential variability in housekeeping gene expression behavior, it is 

important to determine whether or not these genes do indeed exhibit stable expression. 

Two methods that have been widely used, and which I have applied in this work, are 
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geNorm [174] and NormFinder [180]. geNorm, is a normalization approach developed 

originally for normalizing microarray data.  

2.5.1.1.1 geNorm 

Because the internal reference (housekeeping) gene approach assumes stable 

expression behavior of this gene, prior knowledge of another reliable measure to 

normalize the internal reference is required, in order to remove any nonspecific 

variation. Unless the same experimental conditions are conducted, allowing one to 

determine what gene is the most stable for those specific conditions, additional prior 

knowledge would be required to verify the stability of the gene that would then be 

used to normalize the “internal reference” gene, resulting in a circular problem. 

Therefore, Vandesomplete et al. developed an approach that would determine the 

expression stability of multiple control genes based on non-normalized expression 

levels. The method then identifies which combination of control genes provides the 

most stable normalization factor.  

The underlying principle of this approach is that the expression ratio of two 

“ideal” internal reference genes would be identical across samples, regardless of 

condition or cell type. Variation in the expression ratio that may exist across 

conditions would therefore suggest that one or both of these reference genes are not 

stable. This approach can be applied across multiple pairs of potential reference genes 

included in the experimental design. Using this approach, Vandesompele et al. [174] 
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defined a gene-stability measure, M, that quantifies the stability of a potential control 

gene, as measured against the expression behavior of other possible control genes. 

Since geNorm was developed originally to analyze microarray fluorescence intensity 

data, which requires the log-transformed data, adjustments to the approach are 

required making this approach suitable for the normalization of raw Ct data generated 

by the BioMarkTM, as outlined below:  

1. Calculate set of expression ratios Ajk. For all possible pairwise 
combinations of genes j and k, calculate expression ratios across all 
samples 

 = −
→

 2.5 

Where j  k. This will result in a vector of length m, where m is the 
number of samples. 

2. Calculate pairwise variation value Vjk.  

 =  2.6 

3. Calculate the internal control stability measure, Mj. The stability 
measure is defined by Vandesompele et al. as the average of pairwise 
variation values Vjk. Because the same gene across samples were not 
used in the calculation of Ajk (j  k), a normalization factor of n-1 was 
used in the calculation of Mj. 

 =
∑

− 1  2.7 

 

These steps were applied to a predetermined set of potential housekeeping 

genes, which have exhibited stable gene expression behavior in previous work [181–
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183]. This procedure, as developed originally, was performed iteratively, such that the 

gene with the highest Mj value (i.e. the least stable gene) was removed and the three 

steps were repeated. We applied this approach to our BioMarkTM data exploring the 

expression states of single brainstem neurons from hypertensive and normotensive 

rats.  

In addition to identifying reference genes with minimal expression variation, 

Vandesompele et al. proposed using multiple reference genes for expression 

normalization by applying the geometric mean  of the genes found to be most stable 

(i.e. lowest Mj ). Based on their analysis of RT-PCR microarray data measured from 

various types of human tissue, Vandesompele et al. recommend a range of 3-9 internal 

reference genes be used to calculate the geometric mean for subsequent gene 

expression normalization [174].  

The use of multiple internal reference genes reduces variation in the 

normalization (i.e. centering) factor and therefore minimizes systemic variation in the 

expression data set. In the context of the Ct data generated by the BioMarkTM 

(Fluidigm®) the arithmetic mean of the raw Ct values is used. Because Ct values 

represent the log-transform of the expression fluorescence intensity of the qRT-PCR 

reaction the geometric mean of the log-transformed microarray fluorescence data is 

equivalent to the arithmetic mean of the raw Ct values. 

 =    −   
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 =  2.8 

 log =  2.9 

 log =  2.10 

 log =
1

log  2.11 

 

The derivation above shows that the geometric mean of the fluorescence data 

over n samples is indeed the arithmetic mean of the log-transformed data.  

2.5.1.1.2 NormFinder 

The second method used in this work to identify internal reference genes is 

NormFinder [180]. However, in addition to determining the overall expression 

variation of potential reference genes, Andersen et al. designed this method to 

determine if a gene of interest exhibits any systematic variation across sample subsets. 

In this approach, Andersen et al. apply a model-based approach to estimate expression 

variation. Here, the log-transformed measured gene expression for the gene i in the jth 

sample in group g (yigj) is described by the following model: 
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 =  + +  2.12 

Where  represents the general expression level for the ith gene in the gth group. The 

variable  represents the amount of mRNA in the jth sample in the gth group and  

represents the random variation, characterized by a normal distribution with mean zero 

and some variance , due to biological and experimental factors. As part of this 

methodology, both the intra- and inter-group expression variation is estimated from 

the sample dataset. These two measures of variation are then used to define a stability 

score of the internal reference. This approach, (http://moma.dk/normfinder-software), 

was used as an alternative and independent method to verify the stability of possible 

internal reference genes.  

2.5.2 Multivariate techniques to analyze high dimensional transcriptomic data 

Concurrent to the completion of this dissertation, numerous multivariate 

techniques were being developed and continue to be refined to analyze the copious 

amounts of high-dimensional data being generated from high-throughput and –omics 

scale technologies. Several approaches have been applied and developed to identify 

underlying patterns or clusters of gene expression. These patterns of upregulated and 

downregulated expression behavior of genes, correlated expression patterns, and 

alternative organizational patterns of genes across individual cells provide insight into 

the transcriptional responses of cells to the inputs they receive. Because a plethora of 

multivariate analytical methodologies exist and continue to be developed and be 
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refined, a thorough review of such methods is beyond the scope of this work. 

However, we provide a brief review of some of the more widely used and recently 

developed analytical approaches designed to identify underlying patterns in 

transcriptomic data.  

2.5.2.1 Clustering-based algorithms 

Clustering-based algorithms are well-established approaches used in single-cell 

analysis that have been used to identify molecular phenotypes within a heterogeneous 

population. Clustering is iteratively performed to either agglomerate samples into a 

comprehensive group or divide samples into stand-alone classifying groups. 

Ultimately, both types of clustering algorithms partition samples into groups from the 

initial data set based on some measure of distance or dissimilarity between two 

samples, which in this case will be determined from the transcriptomic profiles of the 

single-cell samples collected. Euclidean, Pearson correlation, or Spearman rank 

correlation distances are typically used as a dissimilarity measure for clustering 

analyses [184].  

2.5.2.2 Data dimensionality reduction techniques 

Principal component analysis (PCA) is a mathematical technique that belongs 

to a larger group of unsupervised learning approaches and is used to identify hidden 

structures from unlabeled data. PCA has a wide range of applications including 

analysis of high-throughput qPCR and single-cell qRT-PCR data, RNA-seq data and 
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other high-dimensional datasets [185]. PCA reduces data dimensionality while 

retaining most of the variation in the data set by constructing principal components 

along which the variation in the data is maximal in the first principal component, with 

each subsequent principal component capturing the next largest amount of variation 

remaining in the data. These principal coordinates are constructed as a linear 

combination of the variables (i.e. genes) within the data set. Although gene 

interactions and correlations are far more complex and nonlinear in nature, this 

approach can be thought of as applying a linear filter to a data set with large variation 

and noise. Filtering out this variation has been useful in distinguishing cellular 

subtypes. For example, Hart et al. used PCA to not only identify potential clusters of 

single cells, but also to identify gene(s) that principally contribute to the variation 

observed [186]. PCA is one type of a data dimensionality reduction technique that 

enables one to identify a manageable set of genes/factors for subsequent analysis as in 

the characterization of neuronal subtypes [168,187].  

Non-metric multidimensional scaling (MDS), another unsupervised data 

analysis and visualization technique, is a powerful tool used to identify relational 

patterns within high-dimensional data. Similar to clustering methods described earlier, 

MDS relies on some dissimilarity metric between samples. In order to identify 

underlying subtypes, all pairwise dissimilarity measures are determined. Similar to 

PCA, MDS reduces data dimensionality, projecting or mapping the original higher n-

dimensional data points onto a new set of “configuration” points xi,…,xn in a lower k-

dimensional space. The goal of MDS is to project the samples in the lower k-
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dimensional space (typically 2- or 3-dimensions) such that their dissimilarities (or 

rank-order of dissimilarities) are well approximated by the pairwise distances of the 

projected samples. Applying MDS to high-dimensional transcriptomic data enables 

one to compare samples by visualizing the (dis)similarities among samples in an easily 

interpretable manner; the closer two cells are in the projected space, the more similar 

their transcriptional behavior are and vice versa. Because non-metric MDS focuses on 

maintaining the rank-order of dissimilarities between the original higher-order 

dimensional data and lower-order projected data, MDS is a nonlinear alternative to 

PCA and has been used extensively for classification in gene expression studies [188–

190].  

Alternatively, more recent visualization approaches, such as t-Distributed 

stochastic neighbor embedding (t-SNE), have been developed to discern multiple cell-

types from transcriptomic data [191]. This technique, and variations of this method, 

have been useful in recapitulating known cell types and identifying rare and novel 

cell-types due to its ability to represent the structure of relationships among high-

dimensional data in a two-dimensional (2D) representation more faithfully than 

methods such as PCA or MDS [191]. Unlike methods that rely on some distance 

metric, t-SNE represents pairwise (dis)similarity measures as a joint probability 

distribution in both the original high-dimensional and targeted 2-dimensional space 

representing the data.  

The high-dimensional distance between samples xi and xj is represented by a 

Gaussian distribution while the corresponding 2D “distance” is represented by a 
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Student’s t-distribution (with one degree of freedom [DF]). To maintain the 

(dis)similarities within the data, it is necessary to minimize the difference between the 

distributions of the two-dimensional projections and their original high-dimensional 

data points. The t-SNE approach involves an iterative optimization of the parameters 

that define the Gaussian and Student’s t-test distribution. The significance of using the 

Student’s t-test distribution (with 1DF) is that this distribution represents very small 

dissimilarity values with a non-negligible probability, due to the heavy-tailed nature of 

this distribution with 1DF. In other words, the use of the t-distribution minimizes 

“crowding” issues where samples with slight differences overlap with each other, 

which may occur when using PCA or MDS. Thus t-SNE is able to map similarities 

and differences in the 2D space and represent the “local” and “global” relationships 

among samples more faithfully [191]. This method and variations of this approach 

(e.g. viSNE, BH-SNE) have been used, often in combination with PCA, to identify 

cortical neuron types and visualize the spatial organization of gene expression in the 

brain [187,192,193]. 

2.5.2.3 Graphical analysis techniques 

Minimum spanning trees (MST) is a well-established approach used in 

problems of combinatorial optimization. This is a graphical approach in which nodes 

are connected by undirected, weighted edges. In our case, nodes would represent a 

single neuron’s multi-genic transcriptional profile. Similar to the clustering methods 

and several of the data-dimensionality reduction methods described earlier, the edges 
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connecting the nodes represent some type of dissimilarity or distance metric between 

pairs of nodes. The objective of the MST is to then connect all nodes in such a way 

that the sum of the edges is a minimum value as compared to the other possible 

connectivity configurations of the graph. This technique has been used effectively to 

identify cellular subtypes in the human cortex [97], identify continuums of single-cell 

molecular states in the immune system and the brain [194,195], and organize 

biological samples in a temporal manner [196]. In addition, MST has provided the 

basis of more recent techniques for single-cell analysis such as SPADE and Monocle 

[194,197]. 

Spanning-tree progression analysis of density-normalized events (SPADE) – 

builds upon agglomerative clustering and minimum spanning tree approaches to 

analyze and identify phenotypes along the continuum of phenotypic progression [194]. 

SPADE analyzes the high-dimensional set of characteristics describing a single-cell 

population to define a two-dimensional map that visualizes the potential cellular 

hierarchy that underlies cellular states. This approach consists of four computational 

modules which involve i) population density-dependent down-sampling to represent 

equally the various molecularly defined cell-types, ii) agglomerative clustering to 

group cell-types based on molecular phenotype similarity, iii) developing a minimum 

spanning tree to link clusters identified in the prior step, and iv) re-populating the 

clusters with the original samples collected.  

Monocle was developed to identify a “trajectory” of a single-cell’s progress 

along a biological process by means of sorting transcriptomic profiles of single-cells 
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based on their similarity relative to one another [197]. Monocle also builds upon 

previous minimum spanning trees applications [196]. The Monocle algorithm also 

involves a data dimensionality reduction step, which involves Independent Component 

Analysis (ICA) – a similar analytical technique to PCA, but assumes a non-Gaussian, 

statistical independence within the data. The dimensionality reduction step is followed 

by the development of a minimum spanning tree. Once the minimum spanning tree 

has been constructed, the longest sequence of transcriptionally similar cells is defined 

as the “main” transcriptional trajectory, whereas branching points are interpreted as 

alternative trajectories towards distinct cell fates [197], or in the case of post-mitotic 

neurons, distinct functional states.  

Community structure detection is yet another graphical approach that can be 

used to identify neuronal phenotypes by identifying community structures or modules 

of highly interconnected nodes, which may be representative of highly similar nodes, 

within some network topology. Unlike spanning trees, where a minimal path that 

connects all nodes is optimized, this approach seeks to identify communities hidden in 

an existing network topology. Here, a network graph is represented as a modular 

matrix, which represents the difference between the actual number of edges 

connecting to a node and the expected number of edges connecting to a node by 

chance. Thus the modular matrix represents the degree to which a node belongs to a 

highly interconnected module. The modular matrix is then partitioned into a set of 

representative vectors (of node members) that make principal contributions to the 

modularity of the original network topology [198]. Conceptually similar to PCA, 
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community detection seeks to identify groups of highly interconnected nodes that 

principally contribute to the overall modularity of the original network graph. This 

technique is applied in Chapter 6 to identify modules (i.e. neuronal phenotypes) of 

transcriptionally similar SCN neurons. 

2.5.2.4 Network-based classifiers to distinguish cellular subtypes 

In § 1.4.3, the importance of network structure and organization and their 

impact in transcriptional variability and thus the functional state of a cell was 

emphasized. A multitude of computational methodologies have been developed to 

determine gene networks. Boolean and Bayesian networks have been used 

successfully to identify regulatory interactions. Although Boolean models characterize 

genes in a simplified binary ON-OFF state, large-scale computable network models 

can be generated and analyzed for insights into signaling pathways and biological 

function [199,200]. Bayesian network models provide a probabilistic framework that 

integrates gene-expression data, for example, with a priori knowledge of the 

biological system.  

While Bayesian network models typically discretize expression data as well 

(though not necessarily in a binary manner) this approach has been successfully 

employed to identify gene-interaction networks associated with cell-function 

regulation and corresponding disease states  [201–203]. Alternatively, a popular 

information-theoretic methodology recently developed is known as ARACNE. This 

approach improves over other methods such as Bayesian networks [204] by 
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identifying key interactions based on observed nonlinear correlations between the 

components. Moreover, ARACNE is well-suited to discern between direct and indirect 

gene interactions by employing information-theoretic approaches, which are more 

robust to estimation errors than Bayesian network estimation [205]. 

2.6 Discussion 

In the current chapter, rationale for the examination of the NTS and SCN using 

a combined experimental and computational approach to investigate single-cell 

transcriptional heterogeneity was provided. Two established experimental protocols to 

trigger transcriptional responses in the NTS and SCN were described, specifically the 

acute hypertension challenge in Sprague Dawley rats and the light-induced circadian 

phase shift in C57BL/6J mice. In order to analyze the transcriptional states of 

individual neurons in the context of their local neuroanatomical context and functional 

connectivity, multi-genic expression measures using high-throughput real-time qPCR 

(BioMarkTM) in conjunction with laser capture microdissection technique are used 

throughout this work and a detailed review of these methodological approaches were 

provided.  

A brief review of the importance of data normalization and recently developed 

normalization techniques was also provided. Once appropriate internal reference genes 

are selected and gene expression data is normalized, multiple analytical techniques can 

be used to analyze and identify potential meaningful organizational patterns within the 

data. Several multivariate techniques developed from the fields of computer science 
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and graph network theory have proven to be quite useful in analyzing high-

dimensional datasets, such as high-dimensional multi-genic expression data that is the 

analyzed in this dissertation.  

These algorithms can be used to identify correlated expression behavior or 

clusters of samples based on gene expression, i.e. molecular signatures that would 

provide insight into the organizational structure underlying the transcriptional state of 

individual neurons. A review of a sample of these multivariate algorithms was 

provided and lays the technical foundation from which many of the multivariate 

analysis performed in subsequent chapters arise. In Chapter 3 PCA, MDS, and gene 

correlation network analyses are applied to the single-cell transcriptomic data set 

obtained from the acute hypertensive challenge model to gain insights into what 

molecular organization may exist underlying NTS neuronal heterogeneity. Building on 

the insights gained from this study, a novel gene interaction network identification 

approach is developed in Chapter 4. In Chapter 6, which represents a departure from 

the NTS, similar methodologies are applied to analyze the SCN to gain insights into 

the complex neuronal organization underlying transcriptionally heterogeneous SCN 

neurons.  
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Chapter 3 

IDENTIFYING TRANSCRIPTIONAL PHENOTYPES UNDERLYING 
SINGLE-NEURON HETEROGENEITY IN THE NUCLEUS TRACTUS 

SOLITARIUS 

 
In vivo experimental and multivariate analytical approaches are applied to 

analyze and interpret the transcriptional heterogeneity across individual neurons of 

the nucleus tractus solitarius in this chapter. Following the experimental and 

computational approaches described in Chapter 2, these approaches are used to 

identify a molecular organizational framework in which neuronal phenotypes, defined 

by their transcriptional state, align with cardiovascular synaptic input-types.  

3.1 Introduction 

As described in § 1.2.3, the functional states of individual neurons and the 

interactions among them play a central role in determining brain nuclei function that 

regulates physiological function. Thus identifying the constituent components or cell-

types that compose the tissue is central to elucidating overall brain nucleus function. 

Because the transcriptome plays a major role in driving cellular and neuronal 

phenotype, analyzing a neuron’s transcriptional state with respect to its functional 

connectivity would connect underlying molecular mechanisms to its functional 

phenotype [21,60]. However, accomplishing this task has proven to be quite 



 67

challenging due to the transcriptional variation that has been observed repeatedly in 

individual neurons from what was expected to be a homogeneous cell populations 

[93]. Reconciling cell-type in the face of such transcriptional heterogeneity in the adult 

mammalian brain and defining accurately post-development diversity is a difficult 

challenge [74,102] due, in part, to the fact that “phenotypes based on transcriptional 

profiles may change as a function of developmental stage, age, cell state (e.g., cell 

cycle for mitotic cells), activity levels, and experience among other things” [40]. 

Since neurons respond and adapt to varied and continual sensory synaptic 

inputs from tissues and organs in the periphery, it is plausible that the adaptive 

responses of neurons to inputs of this kind may cause, in part, the transcriptional 

variability observed in transcriptomic studies of phenotypically similar cells [62,93]. If 

this were the case, a phenotypic population of mature neurons, which would 

previously be expected to consist of transcriptionally homogenous cells, may rather 

consist of transcriptionally heterogeneous cells, divergent from one another due to the 

distinct synaptic inputs received by an individual neuron over its post-development 

history. Therefore, it is plausible to hypothesize that neuronal transcriptomic 

variability reflects the variety of synaptic inputs received by an individual neuron that 

belongs to a particular phenotype. Accordingly, the examination of gene expression 

across individual mature neurons belonging to the same neuroanatomical phenotype 

within the context of their functional connectivity may provide insight into this 

variability. In this chapter, the potential organization of expression differences in 

terms of neuronal input types is analyzed. If such an organization were supported by 
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the data, gene expression variability would be functionally meaningful, representing 

alternative responses of individual neurons within the phenotype.  

The hypothesis that synaptic input drives transcriptional variability is 

investigated in this chapter by analyzing the transcriptional state of several hundred 

individual neurons from the nucleus tractus solitarius (NTS). As outlined in § 2.2.1, 

the NTS plays an integrative role in autonomic cardiovascular homeostasis, receiving 

synaptic inputs conveying states of the peripheral organs, posture, exercise, 

temperature, circadian time, pain, and mood. These inputs place various physiological 

demands on the body and require appropriate physiological responses to maintain 

homeostasis. As individual NTS neurons must integrate multiple combinations of 

inputs in an effort to maintain cardiovascular homeostasis, their transcriptional 

variability may reflect the inputs received.  

We applied the pharmacologically induced acute hypertensive challenge on 

Sprague Dawley rats (detailed in § 2.3.1), causing a transcriptional response in NTS 

neurons. We subsequently examined the NTS neuronal phenotype in vivo by 

measuring the multi-genic state across several hundred NTS neurons, collected from 

their in situ tissue context, using microfluidic qRT-PCR (BioMarkTM) The expression 

of a functionally relevant set of 96 genes was derived from a previous global 

microarray study of the nucleus [140].  

This chapter presents a detailed analysis of the transcriptional profiles of NTS 

neurons responding to the acute hypertensive challenge. In the first part of this 

chapter, specific experimental details are provided. This is then followed by a 
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discussion of the specific challenges associated with analyzing heterogeneous 

transcriptional profiles of individual neurons and the computational approaches used 

to deal with these challenges. The findings from the multivariate analysis performed 

on the high-dimensional multi-genic expression profiles of single NTS neurons, with 

respect to synaptic input types, are discussed. In addition, statistical analysis is 

performed to verify the statistical significance of the reported findings. Lastly, the 

results and findings generated in this study are discussed. The key results in the 

current chapter have appeared in a journal article co-written by the author [105].  

3.1.1 Identifying synaptic input types in the NTS 

Two synaptic input-types that are critical for maintaining cardiovascular 

homeostasis are those that relay information related to changes in blood pressure and 

higher-order cardiovascular demands of the body. To analyze the differences in gene 

expression across neurons with respect to synaptic input types, we collected individual 

NTS receiving either one of these two synaptic input-types.  

Two intracellular markers that signify distinct inputs were used to identify 

NTS neurons, the immediate early gene Fos and tyrosine hydroxylase (Th). Extensive 

literature demonstrates the use of Fos as an indicator for the subset of NTS neurons 

that receive second-order synaptic inputs directly from first-order sensory neurons (i.e. 

baroreceptors) and is responsive to acute hypertensive disturbances. Carefully 

conducted control studies have shown that high Fos levels depends on neurons being 
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directly influenced by the increased activity of the blood pressure baroreceptor 

afferent inputs [206,207]. In this context, we used Fos expression to identify neurons 

directly influenced by blood pressure-baroreceptor afferent inputs [122–

125,141,208,209]. Simultaneously, the NTS population of norepinephrine cells, 

indicated by the expression of the gene coding for the catecholamine synthesis enzyme 

Th, receive higher-order influences through one or more additional interneurons and 

integrative inputs rather than direct blood pressure inputs from baroreceptors afferents 

[116,123–125,210]. Thus, the expression of Fos and Th and the presence of their 

corresponding proteins, FOS and TH, differentiate distinct NTS neuronal populations 

in terms of their expected inputs. Using Fos and Th as markers to distinguish expected 

input-types received by NTS neurons, we investigated differences in transcriptional 

states of individual NTS neurons with respect to these inputs. 

3.2 Materials and Methods 

3.2.1 Animal model 

Male, Sprague-Dawley rats (270-280 g, Charles River Laboratories, 

Wilmington, MA) were housed two per cage in the Thomas Jefferson animal facility. 

Facilities were maintained at constant temperature and humidity with 12/12 hour 

light/dark cycles. Lights were turned on at Zeitgeber time (i.e. experimental time) 0 h. 

By maintaining a consistent Zeitgeber time, all rats would synchronize or entrain to 

the same 12/12 hour light/dark cycle, which would minimize any circadian-based gene 
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expression variation across animals. The TJU Institutional Animal Care and Use 

Committee approved all protocols. 

3.2.2 Acute hypertension challenge 

Each rat was placed into an induction chamber to induce anesthesia (isoflurane 

5% in oxygen, Piramal, Bethlehem, PA). Once the rat was anesthetized, the rat was 

moved to a surgical station and remained anesthetized throughout the procedure by 

placing a breathing tube over the nose of the rat, which delivered an oxygen-isoflurane 

gas mixture (2% isoflurane in oxygen). The common iliac vein and artery were 

cannulated for delivery of pharmaceuticals (phenylephrine, or saline solution) and 

blood pressure measurement. During the drug infusion period (1 h), animal subjects 

received either phenylephrine, a vasoconstrictor that would cause a peripheral increase 

in blood pressure, or an equivalent amount of saline without phenylephrine, both of 

which were delivered via the venous cannula. In the phenylephrine-injected animals, 

hypertension was induced and maintained using a phenylephrine concentration that 

was determined to maintain a blood pressure level 40 mmHg above baseline levels. 

The infusion rate and dosage were maintained by an adjustable pump in order to 

maintain the 40mmHg increase in blood pressure. 

3.2.3 Experimental design 

Sprague-Dawley rats were divided into two experimental groups: i) 

hypertensive (n = 4 animal replicates), and ii) baseline normotensive (n = 2 animal 
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replicates). The reason for the unequal number of animal replicates between treatment 

groups is worth a brief discussion. Neurons responding to a change in blood pressure 

(FOS+) are only detectable in rats undergoing the acute hypertensive challenge. As a 

result, we collected both TH+ and FOS+ neurons from the hypertensive rats while we 

only collected TH+ neurons in the baseline normotensive rats.  

3.2.4 Tissue and sample preparation 

3.2.4.1 Rapid immunofluorescent staining 

We visualized NTS neuronal populations defined by their synaptic input-type 

using the rapid immunofluorescent staining procedure (§ 2.4.2). The primary 

antibodies used included anti-Tyrosine Hydroxylase (TH) (Pel-Freez® Biologicals, 

Rogers, AR) and anti-c-Fos solution, both of which were diluted to 1:25 

(antibody:blocking-buffer), The secondary antibody used was Alexa-488 anti-rabbit 

(Life Technologies, Grand Island, NY) (1:50, antibody:blocking-buffer). Only one 

secondary antibody was used since only one neuron-type (FOS+ or TH+ neurons) was 

selected from each tissue slice. Once primary and secondary antibody staining and 

incubation were completed, stained tissue sections were dehydrated in the series of 

EtOH baths and subsequent Xylene bath (§ 2.4.2), prior to sampling single neurons via 

laser capture microdissection. 

3.2.4.2 Single neuron sampling 

As part of the experimental design, 300 single neurons were lifted from the 

NTS of the four hypertensive and two normotensive rats, 220 of which were collected 

from hypertensive rats and the remaining 80 individual neurons collected from 



 73

normotensive rats. Due to the absence of a perturbation in arterial blood pressure in 

normotensive rats, Fos+ neurons responding to an acute hypertensive challenge were 

only collected in hypertensive rats. The anatomical distribution of collected Fos+ 

neurons within the NTS was consistent with the extensive literature characterizing Fos 

expression in the NTS [121–125,207,208,211–213].  

3.2.4.3 Gene selection 

Genes included in this study were chosen based on their functional relevance 

in the transcriptional programs underlying blood pressure regulatory functions in the 

NTS. Previous work in this laboratory analyzing the coordinated transcriptional 

responses to an acute hypertensive challenge in rats provided the foundation from 

which the 96 gene panel was designed [140]; Appendix A.1). 

3.2.4.4 High-throughput qRT-PCR 

Gene expression levels were measured across four high-throughput qPCR 

assay chips on the BioMarkTM, a highly reproducible qPCR platform. In order to 

characterize the technical variability inherent with the BioMarkTM platform, a set of 

serially diluted mRNA, extracted from tissue punches from the NTS of Sprague 

Dawley rats were assayed on each 96.96 BioMarkTM dynamic array (also referred to as 

a chip). A comparison of the same serial dilution set that was run across all four 

dynamic arrays, showed a tight clustering of samples along the 45 degree line, as 

shown in Figure 3.1. The minimal variation of dilution points from the 45 degree line, 
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which represents identical measures across two chips, indicates minimal technical 

variability from chip to chip, as shown in Figure 3.1.  

 

Figure 3.1 High-throughput qPCR reproducibility. A serial dilution sample set of 
mRNA extracted from tissue punches from the NTS of a Sprague Dawley 
rat was assayed on each 96.96 BioMarkTM dynamic array. A pairwise 
comparison among all dynamic arrays shows that the measured Ct values 
for the serial dilution sample sets fall along the 45 degree line (red 
dashed line) with minimal deviation. The slope and R2 values are nearly 
1 for all graphs indicating that the arrays are capable of measuring gene 
expression values, over 5 orders of magnitude, consistently with minimal 
technical variability. 
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3.2.4.5 Single-cell sample quality assessment 

Several concerns have been raised regarding the purity of single neuron 

samples obtained via laser capture microdissection (LCM) [167]. To minimize 

potential non-specific cross-contamination, we followed established sampling 

procedures [33], which involve visual inspection of the sample tissue and captured 

neuronal cell body. In addition, we measured the expression level of genes specific to 

neuron, astrocyte, microglial, and endothelial cells in a separate set of single neurons 

and astrocytes collected from the NTS via LCM. This sample quality assessment was 

performed to evaluate the extent of any potential cross-contamination from non-

targeted cell types that may have affected the single cell samples. Our results showed 

minimal to nonexistent cross-over contamination (Figures 3.2 and 3.3), consistent with 

the repeated performance of LCM approach by a number of other groups as seen in 

[33,214–217].  



 76

 



 77

Figure 3.2 Single neuron and astrocyte laser capture microdissection. (A) Tyrosine 
hydroxylase (TH) immunohistochemical staining and collection of TH+ 
single cells from a coronal section of a normotensive rat brainstem. 
Colored outline images represent magnified tissue sections from which 
TH+ single cells were captured. (B) Glial fibrillary acidic protein 
(GFAP) immunohistochemical staining and collection of GFAP+ single 
cells from an adjacent coronal section of a normotensive rat brainstem. 
Colored outline images represent magnified tissue sections from which 
GFAP+ single cells were captured. (C) Gel electrophoresis image of 
reverse-transcribed cDNA from whole brain tissue (positive control; 
lanes 1-3), a representative single neuron sample (lanes 5-7), a 
representative astrocyte sample (lanes 8-10), and a no-template control 
(NTC; negative control, lanes 11-12). All samples underwent 22 pre-
amplification cycles prior to undergoing a 40-cycle PCR. Products from 
the 40-cycle PCR were placed on an E-Gel® EX Agarose Gel 4% 
(InvitrogenTM). The rat whole brain positive control shows product bands 
for Gapdh (148 bp), Th (68 bp), and Gfap (93 bp). Both single neuron 
and astrocyte samples show formation of Gapdh. However, the neuron 
sample does not show any Gfap product at the expected 93 bp size. A 
light band in lane 7 at < 50 bp suggests a non-specific product. Similar 
behavior is observed in lane 9, where the astrocyte sample shows no Th 
product at the expected 68 bp size. Only a light product band at < 50 bp 
is present, suggesting a non-specific product. The results indicate 
minimal to no crossover contamination occurring between astrocytes and 
neurons. 
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Figure 3.3 High-throughput qPCR analysis of LCM collected single neurons and 
astrocytes. (A) Heat map representing gene expression levels of single 
neuron and astrocyte samples obtained via BioMarkTM. Raw Ct values are 
visualized in the heat map. Ten single neuron and eight single astrocyte 
samples were collected and measured. Two sets of technical replicates 
across samples and four technical replicates   across each assay were 
measured. Assays measuring the expression of housekeeping genes 
(Gapdh, Rpl19) and cell-type enriched genes were used. Cell-type 
enriched assays include an astrocyte-enriched gene (Gfap), neuron-
enriched genes (Cacna1d, Th), microglia-enriched gene (Itgam), and 
endothelial-enriched genes (Lamb3, Pecam1). Rat whole brain RNA 
extract was included as a positive control while DNA suspension buffer 
was included as a negative control. Expression of housekeeping genes 
occurs in both types of single cells (neurons and astrocytes) as expected. 
Gfap expression is present in all astrocyte samples while it is either low 
or non-existent in single neuron samples, which suggests minimal cross-
contamination of astrocytes in neuron samples. Expression of Cacna1d 
and Th is present in all neuron samples while it is non-existent in single 
astrocyte samples indicating no cross-contamination of neurons in 
astrocyte samples. Additionally, expression of microglia and endothelial-
enriched genes is non-existent in either neuron or astrocyte samples, 
which indicates no cross-contamination of microglial or endothelial cell-
types in either neuron or astrocyte samples collected by LCM. (B) A plot 
of sample (technical) replicate 1 versus sample (technical) replicate 2 
shows the highly-reproducible nature of the BioMarkTM platform and 
demonstrates the low technical variability affecting gene expression 
measures of single cell samples. (C) Representative qPCR amplification 
curves from the same single cell samples used in the gel-electrophoresis 
run (Figure 3.2). (D) Heat map representing median centered –Ct 
values. Raw Ct values were subtracted from the corresponding median Ct 
value of neuron replicate sample set 2 within each assay. Neuron samples 
show higher normalized expression of Cacna1d and Th (neuron-enriched 
assays) than astrocyte samples and minimal to no normalized expression 
of Gfap (astrocyte-enriched assay). 

3.2.4.6 Quality assessment of gene expression data 

Prior to data normalization of the raw Ct data, individual qRT-PCR results 

were examined to determine the quality of the qRT-PCR. An initial pass-fail-no call 

assessment was made for each reaction based on the qualitative nature of the reaction 
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curves obtained from the PCR. Following this initial review, both samples and gene 

assays having greater than 30% failed reactions were excluded from the present 

analysis. The “failure” criteria for a sample or gene assay was set fairly low in order to 

ensure that these failures would not bias the subsequent data analysis and further 

increase the quality and confidence in the data used for analysis. A total of 192 single 

cell samples (41 normotensive samples and 151 hypertensive samples) and 81 

different gene assays were included in the present analysis.  

3.2.5 Computational analytical techniques 

3.2.5.1.1 Data normalization 

Following a rigorous quality control (QC) assessment of the data, 192 single 

cell samples (41 normotensive samples and 151 hypertensive samples) and 81 

different gene assays were included in this analysis. Raw Ct values for individual 

samples were normalized against an average expression level between Actb and Rpl19 

to obtain a –∆Ct using Equation 3.1. 

 

 −∆ = ( , ) −  3.1 

 

Of the potential reference housekeeping genes included in the gene assay set, Actb and 

Rpl19, had the most stable behavior across the single neuron samples, per the stability 

measures as determined by using both the geNorm and NormFinder method [174,180] 

described previously in § 2.5.1.1.  
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Figure 3.4  Reference gene stability. (A) Stability measures of the four potential 
housekeeping genes as determined by the geNorm method developed by 
Vandesompele et al., (2002). The variability measure indicates a gene 
that has lower gene expression variation across the samples and 
conditions measured. (B) Variability of the four potential housekeeping 
genes as determined by the NormFinder method developed by Andersen 
et al., (2004). Similarly a lower variability value indicates more stable 
gene expression behavior across samples and conditions measured. In 
both cases, Actb and Rpl19 exhibited the most stable behavior. 

3.2.5.2 Principal Component Analysis 

The pcaMethods package [218] and associated functions in the R statistical 

software [219] were used to perform PCA. A subset of 48 genes was derived as 

significantly contributing to the observed variability, using the five highest and lowest 
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corresponding loading values along the first five principal components as a basis for 

gene identification.  

3.2.5.3 Similarity distance and multidimensional scaling 

Relative distances between single cells were determined using the Spearman 

rank correlations obtained for the set of hypertensive samples and subset of 48 genes 

identified from PCA. The following equations were used to determine distance: 

 =
∑ ( − ̅ )( − )

∑ ( − ̅ ) ∑ ( − )
 3.2 

Where  and  correspond to gene expression rank between two single cell samples 

 = 1 −  3.3 

Where  corresponds to the Spearman rank distance between two cells.  

The pairwise relative distances between single cell samples was performed using the 

stats package provided through the R statistical software [219].  

Non-metric multidimensional scaling was performed on single cells in 

conjunction with PCA in order to analyze single cells that lie in an n-dimensional 

space (due to the nature of the multiplex gene expression data). MDS was applied to 

visualize the (dis)similarities among the transcriptional states of the single cells 

obtained from hypertensive rats (based on ∆Ct). The isoMDS function provided in 
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the MASS package [220] for R platform was used to perform the MDS. Following 

MDS, single cell samples were annotated by their respective synaptic-input marker 

categorization (combinatorial expression levels of Th and Fos) overlaid on the 

samples. The first MDS axis discriminates samples based on the rank-ordering of 

expression levels of genes from transcription module 2. MDS axis 2 accounts for 

biological variability in both hypertensive and baseline samples (Figure 3.16) and 

MDS axis 3 discriminates cells based on rank expression levels of genes from 

transcription module 1. Both 2-dimensional and 3-dimensional plots were created via 

plotrix and rgl packages [221,222] provided by the R statistical software [219]. 

3.2.5.4 Gene correlation networks 

The statistical software R was used to determine rank correlation coefficients 

between the subset of 48 genes for the 6 different single cell “sub-phenotypes” 

initially identified. A Spearman rank correlation coefficient cutoff of 0.4 was used to 

define whether or not two genes had a correlative relationship. Cytoscape 

(www.cytoscape.org) was used to visualize the correlative relationships.  

3.3 Results 

3.3.1 Transcriptional heterogeneity across single NTS neurons 

Our results revealed significant variability in normalized gene expression 

across all single cells (Figure 3.5). Approximately two-thirds of the genes showed 

expression values spanning three orders of magnitude as measured across multiple 
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high-throughput qPCR runs, multiple rats, and in both hypertensive and baseline 

states.  

 

Figure 3.5 Gene expression and variance distributions. Boxplots overlaid with in-
line scatter plots showing the spread of expression data for all genes 
(ΔCt). Each grey dot corresponds to a particular gene expression level in 
a particular single cell sample. (A) Expression in neurons collected from 
baseline-normotensive rats, (B) Expression in neurons collected from 
hypertensive rats. 
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As outlined in § 2.5.2, a key step to analyzing large-scale gene expression data 

is to identify cluster gene expression data that may reveal underlying relationships 

within the data either across samples and genes. Initially we analyzed the variability in 

single cell gene expression using Principal Component Analysis (PCA) to identify 

clusters of gene expression data across the single-neuron samples, which may provide 

insight into the variability observed. Unfortunately, the PCA results did not reveal any 

clustering or structure to the variability observed in the cellular states, as illustrated in 

plots of the PCA scores along the first five principal components that accounted for 

48.94% of the variability in the data, based on the cumulative sum of their 

corresponding eigenvalues (Figure 3.6). 
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Figure 3.6 Principal component analysis of the gene expression data of single cells 
from hypertensive rats. (A) Projection of single cells (scores) along the 
first two principal components (PCs) is shown. Additional components 
were explored as well, but not shown in this figure. (B) Loading values 
of the genes along the first two PCs. Genes with the five highest and 
lowest loading values along PC 1 and genes with the five highest loading 
values along PC 2 are labeled. The highest and lowest genes along the 
multiple PCs explored provided the bases for the selection of a subset of 
48 genes with significant contributions to variability observed in the data. 

Despite the absence of any obvious clusters due to the large variation in 

express across the panel of genes measured, it is possible that focusing on a subset of 

genes that are the principal contributors to the data variation, i.e. reducing the 

dimensionality of the data, may reveal underlying clusters or structure that were not 

apparent initially. We subsequently derived a subset of 48 genes that significantly 

contributed to the observed variability by using the five highest and lowest 

corresponding loading values along the first five principal components as a basis for 

gene selection. Genes were rank-ordered based on their respective loading values, 

which were determined from PCA. The five highest and lowest ranked genes (10 
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genes total) from the first five principal components were identified as genes of 

interest for subsequent analysis (Appendix A.2).  

Additionally, various subsets of the single cell data were analyzed based on 

gene functions (Appendix A.1). These subsets were analyzed in order to identify any 

other genes contributing to the variability that may have been overshadowed by a few 

genes. In other words, these functional gene subsets were analyzed through PCA in 

order to identify less dominant sources of variability. Some of the functional 

categorizations used to subset gene groups included ion channels, neuromodulatory 

regulators, and intracellular signaling. A rank ordered list of genes along the first five 

principal components and the respective gene functional subsets in which the single 

cell data was analyzed is tabulated in Appendix A.2. The genes with corresponding 

bolded values in Table A.2.1 represent 30 of the final 48 genes selected that created 

the 48-gene dimensional data set on which further multivariate analysis was 

performed. The additional 18 genes were selected on the basis of their loading values 

from PCAs performed on the various subsets of data as described previously. As 

several genes were repeatedly identified as either a high or low ranking gene along 

multiple principal components (Appendix A.3), a final set of 48 genes was selected. 

3.3.2 MDS visualization of transcriptional states of single NTS neurons 

Next, we analyzed the single cell states, characterized by this 48-dimensional 

gene expression (i.e. transcriptional) profile per cell, to determine the presence of any 

structure or organization subtending these seemingly disparate cell states. We 
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performed all possible pairwise comparisons of the single cells using a Spearman rank 

correlation. The high-dimensional data set of correlation coefficients were then 

converted to corresponding similarity values, which were projected into three 

dimensions using MDS (Figure 3.7).  

 

Figure 3.7 Spearman rank correlation coefficients and multidimensional scaling of 
neurons from hypertensive rats. (A) Pairwise comparison of single cells 
based on Spearman rank correlation coefficients. Single cells are 
compared based on their respective 48-gene rank order. Red indicates a 
high correlation between cells while black represents no correlation 
between a pair of single cells. (B) The Spearman rank correlation 
coefficients are used to determine the similarity distance between each 
cell. The high dimensional set of similarity values between all possible 
single-cell pairs are then projected into three dimensions using 
Multidimensional scaling. A sphere in this 3D space represents a single 
neuron. The relative distance between two spheres in this 3D space 
corresponds to the relative (dis)similarity between two cells. 
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As outlined in § 2.5.2.2, MDS is useful to visualize similarities and 

dissimilarities of high-dimensional data in a lower dimensional space [189,223,224]. 

In this context, the proximity between any two cells in the MDS space corresponds to 

how similar or dissimilar the rank correlation of gene expression is between that 

particular cell pairing. Projecting the single-cell states resulted in an unstructured, 

distributed cloud in this MDS space (Figure 3.7), which revealed no obvious structures 

or organization to cell states. To analyze these multi-genic expression state 

(dis)similarities in the context of the synaptic input-types these NTS neurons receive, 

we subsequently analyzed the single-neuron variability with respect to gene 

expression of the two input-type markers Fos (transcript of FOS) and Th.  

3.3.3 Synaptic-input based analysis of single-neuron transcriptional 

heterogeneity 

We first considered the extremes of the single-cell multiplex gene expression 

distribution (Figure 3.7) with respect to the two input-type markers to identify and 

annotate two input-based subtypes (Figure 3.8): cells with Fos expression and minimal 

to no Th expression (Th-/Fos+) and cells with Th expression and minimal to no Fos 

expression (Th+/Fos-). A rank-ordering of Th expression levels (∆Ct) showed a 

significant decrease in ∆Ct values within the lower 15% quantile. A similar approach 

was applied to Fos expression levels, however the lower 30% quantile showed a 

significant drop in expression levels within the subset of hypertensive samples. Thus 

single neurons that fell within the lower 15% and 30% quantiles for Th and Fos 
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expression ranges were categorized as Th-/Fos+ and Th+/Fos- respectively. 

Categorization based on immunoreactivity of the same single cells to the respective 

markers was nearly identical to categorization based on mRNA expression. Only six 

individual NTS neurons categorized as “Fos-” showed FOS immunoreactivity. 

Although a single cell may be labeled as “Fos-”, this annotation is simply an indicator 

of low Fos mRNA levels in that particular neuron. Given the dynamic and transient 

nature of Fos regulation and expression, this slight discrepancy is unsurprising.  

Applying the mRNA-based annotation of these single cell subtypes to the 

MDS visualization of cell states revealed a surprisingly structured organization. The 

two subtypes were distinctly clustered at the opposing extremes of the overall 

distribution of cells, as shown in Figure 3.8.  
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Figure 3.8 Input-driven extreme-phenotypes. (A) Input-based cell type 
identification. A bivariate plot of single cells obtained from hypertensive 
rats based on their normalized expression of Th and Fos. The extremes of 
the distributions for each gene were initially explored resulting in two 
extreme classes of single cells 1) cells with no Th expression and 2) cells 
with no Fos expression. The grey lines indicate the threshold criteria used 
to define the extreme subtypes Th-/Fos+ (blue filled circles) and 
Th+/Fos- (orange filled circles). (B) Clustering of input-based cell types. 
A 3D MDS projection of single cells with the extreme phenotype 
classifications applied. These projects are based on the similarity of 
single cells with respect to their ranked expression order of the 48 gene 
subset. (C) Heat map of gene expression correlation coefficients and 
modules of highly correlated genes. The highly variable genes show that 
the underlying gene expression in these extreme subtypes can be 
organized into two correlative groups, or transcription modules. These 
transcription modules group genes that show higher correlations (upper 
left quadrant and lower right quadrant of the heat map) with each other 
across single cells of the extreme subtypes. Columns and rows with the 
same index representing a particular gene follow the row annotation in 
panel (D) Gene expression gradients in input-based cell types. Heat map 
of normalized gene expression data. An overall gene expression gradient 
can be observed in the gene expression profile of the 48 highly variable 
genes across the extreme subtypes. Focusing on the extreme regions to 
the left and right of the faded region on the heat map, opposite expression 
behaviors can be observed in the two transcription modules between the 
two extreme input-based subtypes. The upper set of genes in the heat 
map shows an overall decrease in gene expression in Th+/Fos- cells and 
an increase in Th-/Fos+ cells. The opposite behavior is observed in the 
lower set of genes. The expression patterns of these extreme subtypes 
occupy opposite ends of the gene expression gradient observed. 

Neurons categorized by their input-types (i.e., Fos or Th expression level) 

maintained close proximity to each other in the transcriptional space indicating that 

individual cells receiving a particular input-type share similar transcriptional profiles, 

an indicator of cell response. The separation of the two extreme subtypes was found to 

be statistically significant as no such clustering was observed in randomized 
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permutations of the data. Additional details on the permutations performed are 

discussed in § 3.3.6. 

This structured organization supports a novel perspective that diverse inputs to 

individual cells may drive variation in the transcriptional profiles of NTS neurons. It is 

interesting to note that the highly variable genes identified using PCA were rank 

correlated across many single cells categorized by the two input-type markers (Figure 

3.8C). Gene expression was organized into two gene groups (which we refer to as 

transcription modules) where gene expression across samples within a group 

correlated with Fos and Th expression profiles. The correlation shared among genes 

with Fos and Th suggests that the expression patterns of Fos and Th serve as 

exemplars for each transcription module that distinguish the two populations of NTS 

neurons (Figures 3.8C-D). It is also worth noting that the expression of other key 

genes relevant to catecholaminergic function (e.g. Dbh and Slc6a2) correlated most 

highly with Th gene expression, consistent with the well-regarded expectation that 

these genes are co-regulated [225–231]. This result serves as an internal validation of 

our analysis. The alignment of the two input-type markers with the variation seen in 

the measured transcriptional profiles of NTS neurons implies a causal relationship 

where inputs to individual cells play a major role in shaping the transcriptional 

profiles. This relationship supports the hypothesis that inputs influence neuronal 

transcriptional state, which is substantiated by the quantitative nature of this 

relationship.  
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3.3.3.1 Intermediate neurons 

While the majority of the cells expressed either Fos or Th, there were smaller 

populations with lower expression of one or both input-type markers. We interpret 

these various expression levels as indications of different populations with respect to 

the two input types. For example, some subset of Th-expressing cells may respond 

weakly to baroreceptor inputs through interactions with interneurons yielding variable 

Fos expression in those cells. If so, the NTS neuron types may form a continuous 

distribution with respect to strength of input from different sources, and by implication 

a continuous distribution of expression patterns may result. With this expectation, we 

categorized cells with Th and Fos expression levels lower than threshold used to 

define Th+ and Fos+ neurons, based on median expression for each input-type marker 

to yield four “intermediate” subtypes, shown in Figure 3.9. The ∆Ct ranges for Th 

and Fos for these double positive cells were split into two groups respectively. A 30% 

quantile value of the Th expression range across the remaining samples not classified 

as Th- neurons was used to define a threshold dividing Thhigh and Thlow cells while the 

median expression of the intermediate range of Fos expression levels was used to 

determine Foshigh and Foslow cells. Using this binary classification of expression levels, 

the remaining double positive cells could be classified in one of 4 groups, Thlow/Foslow, 

Thlow/Foshigh, Thhigh/Foslow, and Thhigh/Foshigh.  
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Figure 3.9 Input-driven intermediate-phenotypes. (A) Intermediate input-based cell 
types. Bivariate plot of single cells obtained from hypertensive rats (Fig. 
2A) based on their expression of Th and Fos. Finer classifications of 
single cells that express both input-type markers are included. The grey 
line segments in the upper right quadrant of the plot represent the 
threshold limits used to define four intermediary cell subtypes 1) 
Thhigh/Foslow (red circles), 2) Thhigh/Foshigh (yellow circles), 3) 
Thlow/Foslow (cyan circles), and 4) Thlow/Foshigh (grey circles) cells. A 
30% quantile limit of Th expression of the single cells from hypertensive 
rats was used to define which cells would be classified as Thlow and 
Thhigh. The median Fos expression value of the intermediary cells was 
used to define Foslow and Foshigh cells. (B) Locating intermediate cell 
types in multidimensional gene expression space. 3D MDS projection of 
single cells with the four intermediate subtype classifications applied. 
These intermediate subtypes lie in-between the extreme groups (smaller 
more transparent spheres). Neurons with higher Th expression are 
positioned closer to the extreme Th+/Fos- subtypes while cells with more 
dominant Fos expression are positioned closer to the extreme Th-/Fos+ 
subtypes group. (C) Gene expression gradients in intermediate cell types. 
Gene expression gradient pattern observed in heat map across 
intermediate cell groups. Focusing on the middle region in-between the 
whited-out sections of the heat map, gene expression gradient patterns 
occur across the ‘intermediate’ input-based cell groups. Moving from left 
to right, the overall expression patterns of genes in transcription module 1 
and transcription module 2 shift from one extreme subtype to the other. 
Single cells that have more dominant Th expression have gene expression 
profiles more similar to cells within the Th+/Fos- subtypes while cells 
with more dominant Fos expression have expression patterns similar to 
the Th-/Fos+ subtypes. 

Mapping these annotations onto the MDS visualization of cell states revealed 

that the subtypes showing lower Th or Fos levels were located in between the two 

extreme cell types (Figure 3.9B). Similarly, subtypes showing higher levels of Th or 

Fos aligning closer to the corresponding extreme input-based subtype. Additionally, 

these results indicate that the 48 highly variable genes show correlated expression 

within these intermediate subtypes (Figure 3.9C). The gene expression in the 
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intermediate subtypes was correlated based on the same modules observed in the cases 

of the extreme Th+/Fos- and Th-/Fos+ subtypes, as shown in Figure 3.10. 

 

Figure 3.10 Gene-to-gene spearman rank correlations. Spearman rank correlation 
coefficients were calculated for pairwise comparisons of the subset of 48 
genes across single cells having expression of both Th and Fos (i.e., cells 
in the intermediate groups). The Spearman correlation coefficients 
(ranging from 1 to 1) between all pairs are shown in the heat map. 
Genes within transcription module 1 have a slightly higher correlation 
coefficient with each other than with those in module 2 and vice versa. 
However, the overall values of the spearman correlation coefficients are 
lower than those calculated between genes across single cells of the 
extreme subtypes (Th+/Fos- and Th-/Fos+ groups). 
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3.3.3.2 Assessment of Th and Fos quantile limits 

We further tested the causal relationship of Fos and Th by varying the 

threshold limits used to define the neuronal subtypes. Threshold levels applied to Th 

and Fos expression levels ranging from a 5% to 25% quantile limit were used to 

redefine the subtypes. Using the new subtype classification, it is clear that regardless 

of the quantile limit used, cells classified in the extreme subtypes continue to cluster 

into extreme groups in the MDS space while the intermediate groups remain clustered 

in-between these extreme groups, as illustrated in the following series of figures (3.11-

3.14). 
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Figure 3.11 Varying Th+/Fos- and Th-/Fos+ thresholds (5% quantile limits). 
Specified quantile values were used to define the limits used to 
categorize single cells within the subtypes. Single cell projections in the 
MDS space were examined under various quantile limits used to 
categorize single cells in the two extreme subtypes. (A) 5% quantile limit 
for Th+ expression is represented by the blue dashed line. Cells below 
the blue dashed line are categorized as Th-/Fos+ cells. Single cells above 
the blue dashed line are categorized as either Thhigh or Thlow cells. The 
green dashed line represents the 30% quantile limit used to determine 
which cells are Thhigh (above green line) or Thlow (below green line). (B) 
5% quantile limit for Fos+ expression is represented by the orange 
dashed line. Single cells below the orange line are categorized as 
Th+/Fos- cells. The green dashed line represents the median expression 
value of the remaining single cells and is used to determine which 
remaining single cells are Foshigh or Foslow. (C) The resulting bivariate 
plot showing the scatter of single cells and what cells are categorized in 
the two extreme subtypes. (D) The resulting 3D MDS visualization of 
single cell correlations based on rank ordered gene expression. Note how 
the newly defined single cells continue to be projected at opposite 
extremes of the MDS space. (E) The corresponding rearranged heat map 
representing the scaled gene expression data. Rows represent genes while 
columns represent single cells. Single cells within each subtype are rank 
ordered by their respective Th or Fos expression level. 
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Figure 3.12 Varying Th+/Fos- and Th-/Fos+ thresholds (10% quantile limits). 
Stepwise process of defining expression limits for Th and Fos and how 
the resulting cells are projected into the 3D MDS space based on their 
similarity (or dissimilarity) in rank ordered gene expression of the 48 
genes identified from PCA. Annotation is identical to Figure 3.11. 
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Figure 3.13 Varying Th+/Fos- and Th-/Fos+ thresholds (15% quantile limits). 
Stepwise process of defining expression limits for Th and Fos and how 
the resulting cells are projected into the 3D MDS space based on their 
similarity (or dissimilarity) in rank ordered gene expression of the 48 
genes identified from PCA. Annotation is identical to Figure 3.11. 
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Figure 3.14 Varying Th+/Fos- and Th-/Fos+ thresholds (15% and 25% quantile 
limits). Stepwise process of defining expression limits for Th and Fos 
and how the resulting cells are projected into the 3D MDS space based 
on their similarity (or dissimilarity) in rank ordered gene expression of 
the 48 genes identified from PCA. A 15% quantile value is used to define 
Th+ cells while a 25% quantile value is used to define Fos+ cells. 
Annotation is identical to Figure 3.11. 
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The persistent placement of single cells at the extreme regions in the MDS 

space indicates that this multiplex gene gradient behavior across single cells is indeed 

strongly correlated to the strength and magnitude of the inputs received. Regardless of 

the Fos expression or Th expression threshold level used, cells with the highest Fos or 

highest Th expression tended to be the same cells having extreme expression of the 48 

variable genes highlighted by PCA. 

3.3.4 Distinct gene correlation network structures 

The coordinated gene expression patterns within the gene groups, or 

transcription modules (Figures 3.8), further differentiate the expression states of cells. 

The various active states that lie along the gradient structure are governed by 

underlying gene regulatory networks, which can be used to further distinguish these 

states. A comparison of rank correlative gene networks, a surrogate for the regulatory 

interactions occurring in single cells within the extreme states illustrated in Figure 

3.8C, shows distinct structures of correlative gene expression behavior, which is 

shown in Figure 3.15.  
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Figure 3.15 Gene correlation networks. The correlative network structures represent 
correlative relationships shared between TFs and target genes of each 
module across the three cell types: baseline Th+, hypertension Th+, 
hypertension Fos+. Cytoscape software was used to visualize the 
correlative network relationships. Edge opacity represents the strength of 
the correlation shared between genes across the respective sample subset 
(e.g., Th+/Fos- single cells), the darker the edge, the higher the 
correlation coefficient values. These network structures illustrate the 
pairwise spearman rank correlative relationships among the subset of 48 
genes. Transcription factors (TFs) are separated from the subset while the 
remaining genes are organized into their respective transcription modules 
1 and 2 (figure 3.8C). The correlation network is based on pairwise gene 
correlations across various subsets of single cells. Only pairwise 
Spearman correlation coefficients ≥ 0.4 were included. Node colors 
represent scaled −∆Ct values of from a representative single cell sample 
from the respective neuronal subtype. (A) Pairwise gene correlation 
network across normotensive single cells. Note the high number of 
correlative relationships shared between TFs and genes from both 
modules 1 and 2. (B) Correlation network based on hypertensive 
Th+/Fos- single cells show a significant change in the number of 
correlative relationships between TFs and downstream target genes and 
the majority of these relationships exist between TFs and genes within 
module 2. Similarly, this same shift in pairwise relationships occurs in 
Th-/Fos+ single cells, shown in (C). This shift in relationships suggests 
that a physiological perturbation, in this case acute hypertension, causes a 
shift in the correlative relationships between TFs and downstream genes. 

In the baseline Th+/Fos- network, transcription factors (TFs) showed a high 

degree of connectivity, i.e., correlative relationships, with genes across both 

transcription modules. However, under the hypertensive challenge, the relationships 

between TFs and genes within the transcription modules were reduced and shift 

mainly to genes in transcription module 2 in the Th+/Fos- (higher-order input cell) and 

Th-/Fos+ (second-order input cell) networks.  
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3.3.5 Comparison of single NTS neurons across treatment conditions and 

animals 

These input-driven shifts in expression correlation and potential gene 

regulation effects were also reflected in the constrained space occupied by 

hypertensive Th+/Fos- cells relative to the Th+ cells from control animals at baseline 

blood pressure levels. The constrained transcriptional response of the hypertensive 

Th+/Fos- cells are shown in Figure 3.16. The constrained transcriptional space 

occupied by hypertensive Th+/Fos- cells suggests that neurons in response to an acute 

hypertensive challenge are forced into constrained functional states, potentially 

reducing the adaptive response of these neurons. 
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Figure 3.16 Constrained transcriptional behavior of hypertensive cells. A projection 
of the similarity values of single cells (based on rank ordered gene 
expression of the 48 genes identified in PCA). Normotensive Th+ single 
cells (green spheres) are included along with hypertensive Th+/Fos- 
single cells (orange spheres) and Th-/Fos+ single cells (blue spheres). 
The ellipsoids represent the 65th percentile of the single cell density for 
each subtype. Outliers within each subtype (single cells outside of the 
95th percentile density for each subtype) were not included when defining 
these ellipsoids. In the case of the normotensive ellipsoids, two ellipsoids 
were included to represent the space occupied the normotensive single 
cells. The hypertensive Th+/Fos- cells occupy a smaller constrained 
space than their normotensive counterparts. 

Although there was some individual rat-to-rat variability within these 

transcriptional modules, each neuronal subtype is composed of samples from multiple 

rats. If animal variability were the dominant source of single-neuron transcriptional 

heterogeneity, then we would expect that each subtype identified would be composed 

mainly of samples from one anima. However, that is not the case as samples from 
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multiple animals comprise each of the neuronal subtypes; the same pattern of 

structured variation across input classes is present in each animal, represented in 

Figure 3.17. 

 

Figure 3.17 Subtype clusters maintained across animal subjects. Single cells in the 
3D MDS space are annotated with the respective animal subjects from 
which they were taken from. Ellipsoids were added to represent the 
input-type defined subtypes originally identified (orange: Th+/Fos-, red: 
Thhigh/Foslow, yellow: Thhigh/Foshigh, cyan: Thlow/Foslow, grey: 
Thlow/Foshigh, blue: Th-/Fos+). The ellipsoids represent the 65th percentile 
of the single cell density for each subtype. Outliers within each group 
(single cells outside of the 95th percentile population density for each 
subtype) were not included when defining these ellipsoids. Single cells 
from their respective animal subjects are scattered throughout all 
subtypes and are not concentrated to one particular ellipsoid indicating 
that these clusters are not an artifact of animal variability. 
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3.3.6 Statistical significance of Th and Fos quantile limits and neuronal subtype 

organization 

In order to determine the statistical significance of the molecular organization 

identified, as exemplified by the clustering of NTS neurons into transcriptional 

subtypes (Figure 3.8-3.9), we determined the likelihood of whether similar extreme 

neuronal subtypes would form randomly from the existing data set. Towards this goal, 

we performed the same statistical analysis described in § 3.2.5.3 (pairwise spearman 

rank gene correlation and MDS visualization of the dissimilarity data) on random 

permutations of the 48-gene “vectorized” data set of the single cells analyzed.  

Permutation of the data consisted of randomly shuffling the gene expression 

values (-ΔCt) within a single cell sample. For example, the original Fos expression 

value would be randomly switched with the expression value of Atf2, Th switched 

with Tac1, and so on and so forth. This random shuffling of gene expression data was 

performed on each single neuron resulting in a single iteration of a random 

permutation of the data. Using the randomly shuffled data set, all possible pairwise 

comparisons between single cells were made to determine the Spearman rank 

correlation coefficient. This was then converted into a distance metric and projected 

into a three dimensional space using MDS.  

The same Th and Fos quantile limits were used to define the two extreme sub-

types identified in our original analysis (Th+ limit: 15% quantile, Fos+ limit: 30% 

quantile). Thus the 15% quantile limit was defined by the randomized set of Th and 
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Fos expression values. The input-type annotation was then applied to the projected 

data for the extreme Th+/Fos- and Th-/Fos+ cell groups. We then characterized the 

relationship between the two extreme cell groups using two quantitative measures 

typically used to characterize clusters, centroid distance and minimum distance. In this 

case the centroid distance is defined as the distance between the center of mass (i.e., 

centroid) within a subtype (using neurons falling within the 95% of the density 

distribution for the respective subtype). The minimum distance is simply the minimum 

distance between any two neurons projected within the 3D MDS space. We repeated 

this permutation and cluster characterization process 1000 times with the existing data 

set to determine empirical distributions of the centroid and minimum distances.  

We then posed the null hypothesis, which states that the Euclidean distance 

(centroid or minimum distance) between the original extreme neuronal subtypes 

(within the MDS space) is no different than the distance measure between subtypes 

identified from the randomly shuffled data set. The alternative hypothesis in this case 

is that the distance measures between the original subtypes are greater than the 

distances from the shuffled data set. An example of a permutation and identification of 

the extreme subtypes and the resulting distributions are shown in Figure 3.18. 
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Figure 3.18 Statistical significance of Th+/Fos- and Th-/Fos+ thresholds. 
Normalized gene expression data was permuted over 1000 iterations to 
determine the possibility of similar extreme groups forming randomly. 
The centroid distance and minimum distance between the extreme 
subtypes were used to characterize their relative positioning. The centroid 
distance is the distance between central points of each group in the 3D 
MDS space while minimum distance is the distance between the two 
closest points between the two groups. (A) Intergroup distance 
(centroids). The minimum distance (green dashed line segment) between 
the two extreme subtypes from the original data set. (B)  Intergroup 
distance (closest points). The minimum distance (green dashed line 
segment) between the two extreme subtypes from the original data set. 
(C) Intergroup distance of permuted data (centroids). A representative 
example of a permuted data set and the resulting Th+/Fos- (orange 
spheres) and Th-/Fos+ (blue spheres) groups. The green dashed line 
represents the centroid distance while the green dashed line in (D) 
Intergroup distance of permuted data (closest points). The minimum 
distance between clusters generated from the permuted data set. (E) 
Distribution of the centroid distances calculated from the 1000 iterations 
performed. Only one random permutation achieved the formation of two 
extreme groups having a centroid distance equal to or greater than the 
distance found in the original data, shown by the red dashed line 
(p=.001). (F) Distribution of the minimum distances calculated from a 
permutation step. None of the iterations produced a minimum distance as 
large as the distance found in the original data set, shown by the red 
dashed line (p=0.000). 

Of the 1000 iterations performed to generate the distribution of centroid 

distances, only one permutation of the data was able to achieve a distance between the 

extreme neuronal subtypes equal to or greater than the distance between the originally 

defined Th+/Fos- and Th-/Fos+ neuron groups (Figure 3.18). Similarly, none of the 

permutations resulted in a minimum distance greater than the minimum distance 

between the original groups. Thus the empirically defined p-value of the centroid and 

minimum distance between the Th+/Fos- and Th-/Fos+ cell groups are 0.001 and 0, 
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respectively allowing us to reject the null hypothesis. These values give no reason to 

suspect that these extreme subtypes or clusters are a result of random chance. 

3.4 Discussion 

The present analysis of in vivo individual NTS neuron samples of the same 

neuroanatomical phenotype, examined in the context of specific neuronal input 

connectivity, revealed that post-developmental neuronal cell type is strongly 

associated with the specificity of connections. Studying gene expression profiles of 

NTS neurons at the single cell level provided us with the appropriate resolution to 

distinguish cell types with respect to the inputs they received. Our results support the 

importance of connectivity in defining a cell type, through the transcriptional 

regulation of neurons by their inputs. Viewing the distribution of neuronal cell types 

as a function of specific inputs allowed us to interpret cell-to-cell variability as 

structured heterogeneity rather than noise around a mean. 

This single cell variability likely reflects cellular functional heterogeneity [26], 

influencing a cell’s position along the gradient of the observed multiplex gene 

expression (Figure 3.8D). This structure is evident in the MDS visualization where 

single cells fall into input-defined clusters of cells that are positioned along an 

expression pattern gradient (Figure 3.8D, 3.9C). Since input-history of an individual 

cell influences the cell’s transcriptomic state, we postulate that the cumulative input-

history of a neuron provides a driving force for adjustment or analog tuning of the 

transcription modules, placing neurons within interchangeable, stable states along the 
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gradient of catecholaminergic (Th+/Fos-) and non-catecholaminergic (Th-/Fos+), 

hypertension-responsive neurons states.  

Visualization, using MDS, of gene expression gradients, dynamic landscapes, 

and analog tuning of expression defining cell development and function is a recent 

application used most notably in hematopoietic and embryonic stem cells, and cell 

signaling systems, such as NFKB signaling [52,53,232]. Our application of such 

techniques and concepts to ostensibly terminally differentiated single cells is novel as 

far as we are aware. The input-based ordered structure within the heterogeneous gene 

expression of single neurons in the MDS space now allows us to contextualize single 

cells along transcriptional module gradients, suggesting a plastic rather than a discrete 

cell phenotype. Finding correlated gene expression modules delineated by inputs is 

consistent with transcriptional phenotypes that result from combinatorial inputs. 

Subsequent variability within a given phenotype results from differences in input type 

and strength to each cell. In this context, any additional variability within a sub-

phenotype, reflected in the spread of single cells of that particular group, may reflect 

variability of other inputs to the cell population. Additional input-driven analysis 

would be expected to further fractionate the phenotype. 

Our results, which suggest an input-based organization of the NTS neuronal 

phenotype within a cloud of cellular states, raise intriguing possibilities as to the 

mechanisms through which such a gene expression gradient could be tuned in 

individual neurons. It is likely that combinatorial actions of transcriptional and post-
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transcriptional regulatory processes are involved in transducing cellular inputs into the 

downstream regulation of transcriptional state. Such regulatory network coordination 

to generate complex patterns of gene expression has been well described with respect 

to developmental dynamics, and typically involves a unique combination of regulatory 

factors for each cell type [11–13,233,234]. It is possible that such formalism extends 

into post-developmental gene expression variability between neuronal phenotypes. We 

should also consider alternative regulatory schemes where graded gene expression 

spanning the spectrum of cellular states may be driven by a set of regulators in 

common to the NTS neuronal phenotypes, with inputs tuning cell-to-cell differences in 

regulatory activity and combinatorial action. Given the 1 h duration of the 

hypertension perturbation in our study, it is unlikely for the transcriptional regulatory 

network to influence neuronal network connectivity in such a short period. Hence, 

such feedback cannot serve as an alternative explanation of association between 

cellular inputs and correlated gene regulatory states. 

These interchangeable cell states can be schematically represented as a 

dynamic gene expression landscape populated by individual cells based on their 

transcriptional response, illustrated in Figure 3.19A-B. The contour plots and 2D 

figures are used to help illustrate the concepts of distinct cell states and the influence 

inputs have in determining these states. The contour pots are a projection of the single 

cells in the 3D MDS space onto a 2D plane (Figure 3.19A-B). 
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Figure 3.19 Reversible cell states within the phenotype landscape shaping the 
variability and organization of single cell states. Contour plots are used to 
illustrate the concepts of distinct cell states and the influence inputs have 
in determining these states. The contour pots are a projection of the 
single cells in the 3D MDS space onto a 2D plane. The landscape 
topography is based on an inversion of the probability densities of single 
cells. Cell states are represented by wells in the landscape and ellipsoid 
regions in the 2D contour plot. The colored ellipsoids capture these states 
and symbolically represent potential “attractor”-like states within this 
landscape. These contour and landscape topographies were created for 
single cells collected from rats undergoing an acute hypertension 
challenge (A) and from baseline normotensive rats (B). Comparing these 
two landscapes (A and B) shows that the well in which 
catecholaminergic cells (orange spheres in A and B) lie is much more 
constrained and local under the hypertensive challenge than in the 
baseline state. The changing landscape between the two physiological 
states suggests that physiological perturbation (e.g., hypertension) 
influences not only the state of the single cells, but the very nature of the 
landscape in which they exist. Thus inputs have significant impact on 
transcriptional behavior and ultimately the phenotypic state of a cell. (C) 
Input-based gene expression phenotypes in NTS. Schematic of the 
influence of various inputs into the NTS shaping the cellular state and 
organization within a “homogeneous” single cell phenotype. Integrative 
inputs place demands on homeostasis such as those conveying visceral 
states, pain, posture, exercise, temperature, circadian time, mood etc. 
NTS neurons must integrate distinct combinatorial input sets. Our data 
revealed that gene expression variability across single neurons reflects 
their combinatorial inputs. 

This perspective provides a further reduction of the high-dimensional 

dissimilarity data set. Moreover, the contour plots provide a simplified perspective on 

how the various input-type groups are positioned relative to one another. The 

placement of the Th+/Fos- and Th-/Fos+ groups are clearly positioned at the extremes 

of the entire region, or landscape, while the intermediate groups occupy the 

intermediate region in-between the two extreme groups. This schematic also illustrates 
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the idea of how a single cell may transition between respective cell states and the 

likelihood of such a transition occurring. Cell states that share a high degree of 

overlap, as is the case with the Th+/Fos- and Thhigh/Foslow are more likely to have 

single cells transition between these states as opposed to distinct states that are much 

farther apart. The various colored contours represent the 65th, 95th, and 99th percentile 

of the single cells for any given input-type group. Outliers, defined as cells falling 

outside of the 95th percentile of all single cells classified within a subtype, were not 

included in defining the 65th, 95th, 99th percentile. The majority of cells lie within the 

inner most contour region in this topology (65th percentile – Figure 3.19A-B). 

To further emphasize the dominant transcriptional states and how these states 

relate to one another, a landscape topography was created. The landscape topography 

is based on an inversion of the probability densities of single cells. When there is a 

greater concentration of cells in a particular region, such as those found in the 65th 

percentile of a particular input-type group, the probability density is much higher and 

decreases as one moves away from these regions of high single cell concentration. A 

topographical plot based on the probability densities was then inverted in order to 

create regions of lower values or valleys in this landscape to highlight the stability 

associated with these dominant transcriptional or potential “attractor”-like states. As a 

single cell moves away from the inner most contour or deep well, it is transitioning 

away from the well and climbing up towards a less stable state, which is less occupied 

by the single cells. Depending on the inputs received, single cells may occupy these 

various stable valleys and intermediate levels within these valleys. 
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The landscape figures and 2D contour plots help illustrate the distinct cell 

states and the influence of inputs. Such a conceptualization is an evolution of the 

Waddington’s concept of “canalization” (§ 1.3), which describes developmental 

phenotypes [26,56] and was employed to organize the interrelationships between 

various cell types that emerge through dynamic expression changes during 

development [26]. The contour plots are a projection of the single cells in the 3D MDS 

space onto a 2D plane. The ‘depth’ of a well along the landscape at any given location 

was derived from the local density of cells so that a  cluster of many cells is deeper 

and indicates a potential local ”attractor” reflecting constrained gene expression in 

those particular cells. In this representation, these valleys and wells, or “attractor”-like 

states, correspond to dominant expression states of relatively stable expression 

modules (e.g., those corresponding to Th+/Fos- and Th-/Fos+ extreme subtypes). The 

remaining topography corresponds to potential intermediary states that may be 

transient in response to input histories of individual cells and physiological 

perturbations. The path that these cells take along the gene expression landscape is a 

function of the input(s) received and is likely to be as varied as the input(s) 

themselves. The exposure to a hypertensive challenge changes the constraints (Figure 

3.16) and distribution of cells within the gene expression landscape (Figure 3.19A-B), 

consistent with phenotypes that are determined by distinct state-dependent responses. 

Ultimately, the type of inputs received alters the regulatory network resulting in 

constrained cell states, akin to a phenotype being an adaptive product of cellular input. 

Plausibly, NTS Fos+ cells plausibly receive particular combinatorial inputs 
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beyond blood pressure and integrate variable sets of cardiovascular homeostasis 

modulators such as pain, temperature, exercise or mood, all of which affect cellular 

state and input-processing. The influence of various inputs on NTS cell state is 

symbolically represented in Figure 3.19C [109,210,235–237]. Such input-based 

influences imply that NTS neurons are individually gated in dynamic responses to 

combinatorial inputs, rather than behaving as a homogeneous population and 

integrating all inputs into a population rate code. NTS neurons dynamically 

responding to inputs drive a mechanism of blood pressure homeostasis based on the 

selection or gating of particular NTS neurons activated by combinatorial demands on 

blood pressure.  

Similarly demonstrating a functional meaning to variability, Marder and 

collaborators have shown that variability extends to the levels of electrical and neural 

network function [100]. In this mechanism, the "neural code" by which blood pressure 

regulation is performed would be based on molecular states of individual neurons. 

This novel explanation of blood pressure homeostasis in terms of parallel distinct 

functional response pathways is something not found when assuming a rate code 

control by a homogeneous neuronal population. A mechanism of this kind is 

consistent with the presence of variable activity and absence of a blood pressure rate 

code observed in NTS baroreceptor neurons [114,141,238].  

The principles of input-structured phenotype described in this chapter may 

extend to other central neuronal phenotypes. Large populations of neurons with 

multiple sources of inputs, adaptive response to inputs and variable activity of single 
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neurons are common in the brain. Measures of adaptive variability within a neuronal 

phenotype may enable development of a molecular physiology interacting with 

higher-level functions. This expectation of the influence of input history on neuronal 

cell type and function across the brain is supported by the emerging perspective 

reflected in the recently announced BRAIN initiative (§ 1.1.1). With the convergence 

of sophisticated experimental techniques and accurate and precise high-throughput 

technologies we have a unique opportunity to develop “…an integrated view of 

molecular identity (DNA sequence, single-cell transcriptomes, epigenomic 

information, and protein expression). This picture, in combination with information on 

anatomical connectivity and functional measures (e.g. physiology) will afford an 

unprecedented view of the vertebrate brain.” [40]. 

Based on the analyses and results described in this chapter, an alternative 

hypothesis can now be proposed on how a neuronal population and more generally a 

cellular population supports robust biological function: functional robustness is 

achieved through the development of distinct neuronal subtypes that exhibit graded 

cellular responses, rather than a uniform population response. The functional 

consequence of an adaptive neuronal response will be explored further via 

mathematical modeling in Chapter 5. The results detailed in this chapter expand the 

definition of a neuronal cell type to include post-developmental plasticity and 

highlights the role of transcriptional regulation in shaping these phenotypes. In a 

related manner, as correlated gene expression is indicative of underlying regulatory 

network influences, it is conceivable that the identification of cell-type-specific gene 
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network topologies may be facilitated by organizing the variable transcriptional 

responses of individual cells into distinct cellular subtypes. Concomitantly, identifying 

the underlying gene regulatory interactions would aid to clarify the molecular 

mechanisms that contribute to the formation of these phenotypes, which is the focus of 

Chapter 4. 
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Chapter 4 

GENE NETWORK IDENTIFICATION FROM VARIABLE SINGLE-CELL 
TRANSCRIPTOMIC DATA 

 

In Chapter 3, a molecular framework was identified in which transcriptionally 

heterogeneous single neurons belonging to the same neuroanatomical phenotype of 

the NTS organize into distinct neuronal subtypes that align with synaptic input-types. 

These subtypes are characterized by graded, correlated gene expression, which 

suggests the influence of underlying gene regulatory network(s). The development of a 

methodology to identify and generate quantitative models of gene interaction networks 

from heterogeneous single-cell transcriptomic data is the subject of the current 

chapter.  

4.1 Introduction 

As discussed in Chapter 3, the variability observed in the transcriptional states 

of single brainstem neurons can be understood in terms of the distinct combinatorial 

synaptic inputs each neuron receives [105]. These inputs drive individual NTS 

neurons into distinct neuronal subtypes that lie along a transcriptional landscape 

characterized by a gene expression gradient. The correlated gene expression spanning 

the distinct neuronal subtypes described in Chapter 3 suggest an underlying regulatory 
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network is influencing this expression behavior [67,239,240]. Identifying the gene 

interactions that drive the observed correlated gene expression would provide insight 

into the molecular mechanisms that shape these neuronal subtypes and further 

elucidate the “integrated view of molecular identity” of neurons within the brain [40]. 

There is a need, however, for a robust approach to derive data-driven causal network 

hypotheses that can be used to interpret and predict the heterogeneous transcriptional 

behavior of single cells along this transcriptional landscape. 

Inferring underlying gene regulatory networks via statistical analysis of single-

cell transcriptional data is often complicated by extensive single-cell heterogeneity. 

However, information about underlying regulatory networks are often manifest in the 

form of correlations observed in gene expression patterns across single cells. 

Consequently, single-cell transcriptomic data sets provide a rich experimental 

sampling of transcriptional states over a wide range of cellular responses that can then 

be used to infer the underlying regulatory network structure [27,30,69,241]. Several 

methods have been previously developed for deducing regulatory network structures 

from gene expression data. Statistically-based approaches rely on correlational 

relationships and dependencies to cluster gene expression profiles, with the rationale 

being that co-expressed genes are likely to be functionally related [239,242]. One 

concern with these methods is that the correlational relationships confound direct and 

indirect effects and do not necessarily imply causal interactions.  

Other approaches such as the popular method known as ARACNE overcome 

these limitations by employing information-theoretic approaches to distinguish 
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between direct and indirect gene interactions [205]. Alternatively, Boolean networks 

have been used successfully to identify regulatory interactions. Although Boolean 

models characterize genes in a simplified binary ON-OFF state, large-scale 

computable network models can be generated and analyzed for insights into signaling 

pathways and biological function [199,200]. Another network modeling approach 

involves the use of and Bayesian statistics. Bayesian network models provide a 

probabilistic framework that integrates gene expression data with a priori knowledge 

of the biological system. While Bayesian network models typically discretize 

expression data, though not necessarily in a binary manner as in Boolean networks, 

this approach has been successfully employed to identify gene interaction networks 

associated with cell function, regulation, and disease states [201–203]. The 

discretization of gene expression does not necessarily capture the graded responses 

that occur in biological systems, as observed in the transcriptional responses of NTS 

neurons for example (§ 3.3.1). Thus, often times, the complex, nonlinear relationships 

underlying gene expression and the transcriptional state of a cell are ignored. To 

overcome some of the limitations of the discretization-based methods, fuzzy logic 

approaches that consider the biologically relevant continuum of gene expression have 

been used to develop regulatory network models [214,243–246].  

In this chapter, we develop an approach that builds upon the principles and 

prior applications of fuzzy logic [247–250] for analyzing high-throughput single-cell 

transcriptomic data to identify and model regulatory networks quantitatively. Using 

this approach, we identify and analyze the regulatory networks underlying the 
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structured variability of gene expression corresponding to the multiple neuronal 

subtypes described in Chapter 3. In the first section of this chapter, some background 

to fuzzy logic and its previous applications towards modeling gene networks is 

provided. This is then followed by an outline of the strategy used to adapt fuzzy logic 

towards developing quantitative gene interaction network models from single-cell 

transcriptomic data. These models are then used to investigate the potential sources of 

single-neuron transcriptomic heterogeneity. Results from quantitative model 

development and simulation analysis are presented. Finally, the implications of these 

results are discussed. The material in the current chapter has appeared in a journal 

article by the author [106]. 

4.2 Fuzzy Logic Modeling of Gene Regulatory Networks 

4.2.1 Fuzzy logic background 

Fuzzy logic is a form of multi-valued logic that deals with approximate 

reasoning via fuzzy sets [248]. Fuzzy sets contain a continuum of graded membership, 

ranging from 0 to 1, which allows a variable to transition gradually across multiple 

membership classes, as opposed to distinct binary membership (0 or 1). Fuzzy logic 

provides a method for describing complex systems using a set of linguistic rules, 

easily interpretable and expandable, that are derived from expert and/or a priori 

knowledge [243,245,251]. The inherent flexibility of “fuzzy” membership of a 

variable and the ability to expand rules that describe a system allow fuzzy logic 
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modeling approaches to deal with uncertain, vague, or incomplete information about a 

process or system of interest. These capabilities make fuzzy logic modeling a viable 

approach for modeling complex biological systems such as gene regulatory networks, 

as prior work has successfully shown [243,245,251–253].  

A scalability issue, however, arises as the number of process variables and 

states increases: the proliferation of rules required to explore all possible 

combinatorial relationships results in computationally intractable models. Several 

strategies have been employed to address this issue. For example, prior work has 

demonstrated that constraining the number of rules produce accurate regulatory 

network models [245]. Optimization techniques such as genetic algorithms have been 

employed to derive an optimal number of rules [251,254,255]. The genetic algorithm 

utilizes principles of natural evolution in order to seek solutions in a large or possibly 

infinitely large search space [256]. Although a review of the genetic algorithm is 

beyond the scope of this work, however reviews outlining the specifics of the genetic 

algorithm can be found in [257,258].  

More recently, Morris et al. [259] integrated these strategies into a 

“constrained fuzzy logic” (cFL) approach that enabled them to develop quantitative 

protein signaling network models, which they used to investigate protein-signaling 

network behaviors in response to various biochemical perturbations. A limitation for 

utilizing cFL to infer gene regulatory networks is that the approach developed by 

Morris et al. [259] was formulated from data measured in experiments that maximally 

stimulated or inhibited pathways via saturating doses of a ligand or drug. Such 
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targeted, binary-type perturbations do not mimic the continuous fluctuations and 

variability observed in single-cell transcriptomic data sets [105,260].  

4.2.2 Adapting constrained fuzzy logic 

In this study, we formulated a cFL approach applicable to single-cell 

transcriptomic data. Using these concepts and building on these previous efforts, we 

develop a methodology to model quantitatively gene regulatory networks based on a 

priori knowledge and context-specific single-cell transcriptomic data. An overall 

summary of the methodology is illustrated in Figure 4.1. In this chapter, in vivo gene 

expression measures that were analyzed in Chapter 3 are used.  
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Figure 4.1 Inferring gene regulatory networks via fuzzy logic. (A) Transcriptional 
profiles of 300 individual brainstem neurons taken from hypertensive rats 
were measured using the BioMarkTM

 (Chapter 2). Multidimensional 
analysis of the single cell transcriptional data set revealed emergent 
neuronal subtypes that aligned with synaptic input-type and were 
composed of two sets of correlated gene expression modules. To infer the 
gene regulatory networks underlying these neuronal subtypes, an a priori 
network is trained against the single-cell transcriptional data set using 
principles of fuzzy logic modeling. Multiple quantitative regulatory 
network models are generated from the fuzzy logic methodology and are 
considered as part of a network ensemble that quantitatively characterizes 
plausible gene interactions and influences driving the highly variable 
transcriptional state of individual neurons. (B) The fuzzy logic 
methodology involves training an a priori network composed of gene 
interactions and influences curated from literature and transcription factor 
databases against context-specific gene expression data. Using a genetic 
algorithm, the initial a priori network is optimized such that unnecessary 
interactions (or edges) are removed while maintaining the network 
model’s ability to fit the experimental data (below a certain error 
threshold). The trained network is then refined, where network model 
parameters (Figure 4.2) are optimized to improve model fit. A final 
reduction step is then performed where redundant directed edges not 
necessary for the model to fit the experimental data are removed to 
generate a simplified regulatory network model. 

The a priori gene regulatory network, shown in Figure 4.1B consists of direct 

and indirect causal interactions curated from i) literature, ii) transcription factor 

databases, and iii) gene pairs with high correlation in the single neuron expression 

profiles. We are interested in exploring multiple gene regulatory pathways and 

therefore include a large number of potential gene interactions. Similar to the earlier 

cFL approach of Morris et al. [259], each interaction within the network is modeled as 

an “input-output” reaction, where an input-output pairing refers to gene nodes 

connected by a directed edge, mathematically defined by a transfer function. In order 



 132 

to model biologically relevant nonlinear gene interactions, transfer functions 

approximating Hill functions were used.  

To address reactions involving multiple gene inputs and facilitate development 

of a computable model, the fuzzy logic framework relies on Zadeh fuzzy logic gates 

(Figures 4.2B, 4.3B) [261,262] to determine the output of multi-gene interactions. The 

network identification approach utilizes a limited number of Hill-function parameter 

sets spanning a wide range of linear to near-binary ON-OFF-type relationships to 

define quantitatively a particular interaction. The specific Hill-function parameter 

values are identified based on the experimental data in a subsequent training step. 
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Figure 4.2 Modeling input-output gene interactions. (A) Schematic of a 
representative, causal (i.e. directed) gene regulatory network. In this 
network, both gene X and gene Y are required to “activate” gene Z. (B). 
An example of a Hill function equation used to model nonlinear input-
output relationships and a Zadeh logic AND gate used to determine 
which input will determine the output from gene Z. n is the Hill 
coefficient and determines the sensitivity (i.e. sharpness of the curve), k 
represents the input level at which half of the maximal output response is 
achieved (EC50 in panel C). (C) Representative sigmoidal curves 
characterizing saturating input-output relationship among the genes.  

Once the a priori gene regulatory network is specified, it is then trained against 

the experimental transcriptional data set via a genetic algorithm to determine an 

optimal network structure capable of fitting the experimental data below a 

predetermined error threshold. The mean square error (MSE) was used as a measure of 

the fit and predictive capability of the network model. Following the optimization 

scheme of Morris et al. [259], each independent run of the genetic algorithm generated 
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a population of regulatory network models (referred to as optimized unprocessed 

models), with the “best” network model (i.e., lowest MSE) selected for further 

refinement. The Hill-function parameters in the selected unprocessed model were then 

further refined using a non-linear optimization scheme based on the subplex algorithm 

[263], which produces an unprocessed-refined network model. 

Although the training step removes reactions not supported by the data, we 

observed a number of redundant reactions, i.e. different input components activating 

the same output, included in the original a priori network remained in the 

unprocessed-refined network. In order to simplify the model further, the unprocessed-

refined network model went through a final model reduction step. Here, the frequency 

of input selection for each gene interaction (as defined by the Zadeh gates − Figures 

4.2B, 4.3B) was determined from simulations performed during the training step. 

These calculated frequencies were translated into edge weights that indicated the 

relative “dominance” of a particular gene interaction. In certain cases, some redundant 

gene interactions were not removed during the optimization step of the model training. 

These non-dominant or unused gene interactions were removed in order to generate a 

final unprocessed-refined-reduced gene regulatory network model. 

Due to the stochastic nature of the genetic algorithm, multiple plausible 

network solutions can be generated that fit the data equally well, each representing a 

plausible network of regulatory interactions corresponding to the experimentally 

measured transcriptional states of single cells. Similar to prior fuzzy logic-based 

model development approaches, we considered an ensemble of network model 
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solutions that are generated through multiple iterations of the training, refinement, and 

reduction processes [245,259,264]. The abundance or lack of a particular gene 

interaction across individual network models within an ensemble was interpreted as 

the likelihood of the particular relationship driving that specific response [264,265].  

4.3 Modeling Methodology 

In this section, the statistical analysis, data-type, and computational platforms 

used to develop this methodology and analyze single-neuron transcriptomic data are 

described in detail.  

4.3.1 Statistical analysis and significance of the network ensemble 

To assess the fit and predictive capabilities of each unprocessed-refined-

reduced network model, an n-fold cross validation procedure was performed. In this 

process, two-thirds of the data set was defined as the training subset used to train, 

refine, and reduce the a priori network. The remaining one-third was set aside as a 

validation subset that would be used to evaluate the predictive capabilities of the 

unprocessed-refined-reduced network. Within an iteration of the cross-validation 

process, the training-refinement-reduction step was repeated five times in order to 

identify several different plausible models generated by the genetic algorithm. This 

step was then repeated forty times resulting in a total of 200 potential network-model 

solutions. Network models with the corresponding lowest twenty-five MSE values 

were selected to form a network ensemble. 
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In addition to cross-validating the a priori network, we performed a series of 

tests to determine the statistical significance of the ensemble of regulatory network 

models. We compared the network ensemble of unprocessed network models to 

unprocessed models trained against randomized data or unprocessed network models 

derived from randomized a priori networks. The randomized a priori networks were 

generated either by i) randomizing directed edge placement throughout the a priori 

network, or ii) generating a randomize network topology. Both types of randomized 

networks maintained a directed acyclic structure. This constraint was placed on the 

network randomization process to avoid the inclusion of any feedback interactions, the 

effects of which would not be observable in a single time point. Consequently training 

a network with feedback interactions against the single time point data set would 

falsely increase the MSE of the unprocessed randomized cyclic network. A priori 

network training with random edge removal was also performed to evaluate the 

dependence of the training process on the a priori network structure.  

4.3.2 Simulation and analysis of single neuronal transcriptional states 

To elucidate the structure of the underlying gene regulatory networks 

corresponding to neuronal subtypes, we trained the a priori network against i) the 

scaled gene-expression data for each neuronal subtype identified in our prior analysis, 

and ii) the scaled gene-expression data set spanning all neuronal subtypes [105]. 

Comparing regulatory network model fits of the network ensembles produced from 

training by either type of data set would provide insight into whether a common 
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regulatory network or distinct regulatory networks underlie the experimentally 

observed distribution of neuronal transcriptional states. 

Next, we investigated the response of the network ensemble to a range of 

randomly generated regulatory network stimuli levels using Latin hypercube sampling 

(LHS). We analyzed the simulated single-cell transcriptional states generated from our 

network ensembles using non-metric multidimensional scaling (MDS), as described in 

§ 2.5.2.2 and applied in Chapter 3.  

4.3.3 Single-cell gene expression data normalization 

While the same normalized –∆Ct data analyzed in Chapter 3 is used in the 

present modeling efforts, an additional scaling step is performed on the –∆Ct data such 

that the gene expression data exist in a range of [0, 1] to prevent a subset of genes that 

are expressed much more dramatically than others from biasing the modeling results. 

Expression levels for each gene were normalized by subtracting the minimum 

expression value across all single-neuron samples and dividing the difference by the 

corresponding expression level range. This normalization/scaling technique has been 

used in previous fuzzy logic analyses of gene expression data [243,244,253].  

4.3.4 Computational platforms 

Genetic algorithm training and network ensemble simulations were performed 

in the R statistical software using various functions with the CellNOptR and 

CNORfuzzy packages [199,259]. Several functions within these packages were 
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modified to account for continuous levels of network inputs, applicable to the present 

single cell transcriptional data set. MDS analysis and Latin hypercube sampling was 

performed using the MASS package [220] and lhs package respectively, in the R 

statistical software. All regulatory network figures were generated using Cytoscape 

v2.8.3 [266]. 

4.4 Results 

4.4.1 A priori network of the AT1R-mediated pathway 

We employed the developed fuzzy-logic methodology to infer a gene-

regulatory network involved in the angiotensin type 1 receptor (AT1R)-mediated 

pathway. AT1R mediates central autonomic control of blood pressure by the 

octapeptide angiotensin II (AngII) via modulation of NTS neurons. The activation of 

AT1R (initiated upon binding with AngII) triggers a signaling cascade resulting in an 

increased activation of transcription factors (TFs) such as ELK1, FOS, and JUN 

[267,268], as well as an increase binding activity of AP-1, consisting of 

phosphorylated FOS and JUN proteins. AP-1 binds to target promoters leading to 

changes in gene expression of tyrosine hydroxylase (Th), dopamine β-hydroxylase 

(Dbh), and norepinephrine transporter (Slc6a2), all critical to the production and 

release of the catecholamine norepinephrine. These changes result in neuromodulation 

of catecholamines as well as enhanced inhibitory GABAergic transmission, both 

associated with hypertension [269]. 
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Figure 4.3 The a priori network model of the AT1R-mediated regulatory network. 
(A) Gene interactions and influences associated with the AT1R-mediated 
pathway used to formulate the a priori network. The network consists of 
four tiers − i) upstream network inputs, ii) transcription factors, iii) 
negative feedback, and iv) downstream targets – hierarchically layered to 
capture the signaling cascade that occurs when AT1R is stimulated by 
AngII binding. Genes of interest are assigned to each tier according to 
their functional role in this pathway (Table 4.1). Because the 
transcriptional dataset consists of a single time point, the a priori 
network is formulated as a directed acyclic network, where negative 
feedback influences regulating Agtr1a, are modeled as direct inhibitory 
interactions with downstream targets. (B) Examples of transfer functions 
and Zadeh logic gates used in the a priori network. Multi-input reactions 
are modeled using either an AND or OR Zadeh logic gate. In the AND 
gate example, the minimum value of Th, as calculated by the two transfer 
functions (ThAtf2 and ThFosl1), determines the resulting Th value. The 
minimum value is used in order to represent the effects a limiting input 
substrate would have in a multi-input reaction. In the OR gate example, 
the maximum value of Dbh, as calculated by the two transfer functions 
(DbhArrb1 and DbhPhox2b), determines the resulting Dbh value. Here, the 
maximum value simulates a competitive reaction, where the input having 
greater influence on the output determines the reaction output. (C) Heat 
map of scaled –Ct gene expression values used to train the a priori 
network. Both neuronal subtype-specific data subsets and the entire –Ct 
data set were used to train the a priori network. 

In order to model the AT1R mediated regulatory network, we formulated a 

four-tiered hierarchically structured a priori set of gene interactions derived from 

relevant literature and constrained within the bounds of the gene set measured across 

the single-neuron samples. Since the transcriptional changes previously described 

occur upon AT1R activation, the corresponding gene, Agt1r was positioned in the first 

tier of the hierarchical structure. And while AT1R mediates the effects of AngII, the 

latter is the product of the enzymatic reaction between the angiotensin-converting 

enzyme (ACE) and angiotensinogen (Agt). Therefore the genes Ace and Agt were 
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placed alongside Agt1r as upstream-signal (i.e. “network”) inputs. Stimulating these 

three first-tier network inputs activates the second tier of TFs. These TFs interact with 

two gene groups referred to as “feedback” and “downstream target” genes, forming a 

third and fourth tier, respectively. Additional genes were added to the TF-, feedback-, 

and downstream-target- tiers as supported by literature and computational analysis of 

promoter-gene regions using the PAINT software and the TRANSFAC database [79]. 

The nodes in the a priori network and the relevant literature implicating the role for 

each network node are summarized in Table 4.1. 

Table 4.1 AT1R a priori regulatory network genes 

Upstream (network) inputs 
 Ace, Agt, Agtr1a – [268,270] 
 
Transcription factors 
 Phox2b, Egr1, Atf2 – [271] 
 Fos, Jun – [268,271] 
 Fosl1, Junb, Jund – [271,272] 
 Creb1 – [271–273] 
 Elk1 – [268,271,273] 

 
Negative feedback 
 Arrb1, Arrb2 – [274,275]   
 Rgs2, Rgs4 – [276] 
 
Downstream targets 
 Th, Dbh – [268,269] 
 Slc32a – [79,277] 
 Slc6a2 – [268,269,271] 
 Gad1 – [114] 
 Gal – [268,271,278] 
 Tac1 – [137,279,280] 
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The fuzzy logic input-output interactions cannot handle cycles in the 

regulatory network due to their unidirectional nature of the Hill-like function used to 

model quantitatively these gene interactions. To address this issue, feedback 

interactions were considered as affecting the target gene expression levels as a 

functional consequence of signaling regulation. In the directed acyclic graph, direct 

feedback inhibition on Agt1r coming from Arrb1, Arrb2, Rgs2, and Rgs4 was 

rearranged to inhibit expression of Agt1r target genes as shown in Figure 4.3. 

4.4.2 Network ensembles recapitulate single-neuron transcriptional variability 

Using the cross-validation procedure previously described in § 4.3.1 we 

evaluated the fit and predictive capabilities of the unprocessed-refined-reduced 

network models. With the exception of the second-order neuronal subtype-specific 

network ensemble, each subtype-specific ensemble produced lower MSE values than 

the common, or general, network ensemble. However, comparing the fit of the general 

network ensemble to the second order neuronal-specific data subset revealed a higher 

MSE than the corresponding subtype-specific network ensemble MSE, shown in 

Figure 4.4. The result indicated that the subtype-specific networks better fit the data.  
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Figure 4.4 Trained regulatory network performance. Boxplots showing MSE values, 
representing a trained network model’s overall ability to fit experimental 
data, of the general network ensemble and neuronal subtype-specific 
network ensembles. With the exception of the second order network 
ensemble, the subtype-specific network ensembles produced lower MSE 
values than the general network ensemble. When assessing the general 
network ensemble’s ability to fit the second order subtype-specific data 
subset, however, the general network ensemble produced a higher MSE 
value (rightmost boxplot). Therefore, all subtype-specific ensembles fit 
the experimental data better than the general ensemble. 

We further assessed the predictive capabilities of these models by using heat 

maps for simple visual interpretation. Comparison of the simulated transcriptional 

states generated by a representative unprocessed-refined-reduced network model and 

the corresponding experimental test data show similar transcriptional behavior across 

single cells and genes, further corroborated by the low absolute difference between 

data and simulation (i.e., residuals), as illustrated in the heat maps in Figure 4.5 
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Figure 4.5 Simulated gene expression. Heat maps (top row) were used to visually 
assess the predictive capabilities of the subtype-specific trained networks. 
Each pair of heat maps consists of the “validation” data subset, set-aside 
during the cross-validation procedure, and the corresponding simulated 
scaled gene expression data of single neurons from a representative 
trained network from the subtype-specific network ensemble. Heat maps 
in the bottom row visualize the absolute difference between the 
“validation” subset and corresponding simulated scaled gene expression 
of single neurons. The mean absolute residual was calculated across all 
networks within a subtype-specific ensemble and averaged. Gray pixels 
represent instances where data was unavailable (failed qPCR reactions). 

A similar performance of model simulations to experimental data was 

observed across all neuronal subtypes modeled. The improved ability of the subtype-
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specific network ensembles to fit the transcriptional profiles of individual neurons 

indicates that the previously observed transcriptional gradient [105] is not driven by 

some common regulatory network, but rather by distinct networks corresponding to 

these neuronal subtypes.  

4.4.3 Distinct regulatory network topologies define neuronal subtypes 

When comparing the ensemble network topologies of the extreme neuronal 

subtypes (catecholaminergic, i.e. higher-order, and second-order subtypes), several 

distinct network structures distinguished these two extreme neuronal subtypes. For 

example, the transcriptional states of Agt and Agtr1a strongly influence the 

transcriptional output of the catecholaminergic ensemble network, which corresponds 

with previous expectations of AT1R mediated effects of AngII on catecholaminergic 

neurons. These Agt-Agtr1a influences, however, were reduced in the second-order 

ensemble network where Ace shows a stronger influence on subsequent transcription 

factors, as indicated by edge thickness (Figure 4.6). This shift in influence suggests 

that Agtr1a-mediated effects were more dependent upon the availability of AngII. 

Alternatively, the prominent influence of Ace in the individual neurons of the second 

order neuronal-subtype may reflect the direct effects Ace has on intra-neuronal 

signaling [281].  
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Figure 4.6 Comparison of catecholaminergic (higher-order) and second order 
neuronal network ensembles. The unprocessed-refined-reduced network 
ensembles underlying the (A) catecholaminergic (higher-order) and (B) 
second-order neuronal subtypes are depicted in the first and second 
panel. Edge thickness represents the strength (i.e. frequency across all 
networks within an ensemble) of a particular interaction determined 
during the training process. Edge color represents stimulatory (green) or 
inhibitory (red) interactions. Multiple interactions were pruned from the 
original a priori network structure, particularly in the interactions 
between transcription factors and downstream target genes. The 
frequency of edges (x) was classified into three bins: i) 0.12 ≤ x ≤ 0.4, ii) 
0.4 < x ≤ 0.7, and iii) 0.7 < x ≤ 1.0. Only edge frequencies x ≥ 0.12 were 
included in network ensemble images in order to focus on more dominant 
interactions and aid in visual interpretation. 

Additionally, the prominent TF interactions (Atf2, Fosl1, and Jund) regulating 

Th and Dbh expression in the catecholaminergic-specific ensemble differentiated this 
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subtype from the second order neuronal network ensemble (Figure 4.6). The presence 

of the AP-1 interactions in the catecholaminergic ensemble and absence in the second-

order ensemble matches previous reports of increased AP-1 activation in 

catecholaminergic neurons [269]. Second-order neurons do not express Th and Dbh, 

and hence the interactions corresponding to AP-1 activation of Th and Dbh expression 

were absent in the second-order ensemble. Likewise, an increase in TF stimulatory 

interactions for Gal, Gad1, and Tac1 was observed in the second-order ensemble. 

Second-order neurons may play an inhibitory role in blood pressure regulation [269]. 

Our modeling results, which predict an increased number of TF interactions in the 

second-order network ensemble, suggest a causal link between AT1R-mediated 

pathway activation and neuronal inhibitory transmission.  

The signaling feedback interactions were another distinguishing feature of the 

network ensembles; second-order neuron networks support the presence of inhibitory 

interactions, which were not observed in the catecholaminergic ensemble. As an 

example, Rgs2 and Rgs4 inhibit downstream target genes, such as Gad1. These 

distinct interactions mediating the effects of Agt, Agtr1a, and Ace in catecholaminergic 

vs. second-order neurons indicate that these subtypes are driven by distinct regulatory 

networks. Consistent with these results, the regulatory networks corresponding to the 

intermediate neuronal subtypes also showed a subset of distinct causal interactions that 

drive the transcriptional states of individual neurons along a gene expression gradient, 

previously discussed in §3.4.4. The individual networks corresponding to the 

intermediate neuronal subtypes is shown in Figure 4.9. 
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Figure 4.7 Distinct gene regulatory networks distinguish neuronal subtypes. (A) 
Network figure depicts both common and unique edges between the 
catecholaminergic (higher-order) and second-order ensembles. Gene 
interactions unique to catecholaminergic neurons (orange) depict a 
greater number of AP-1 transcription factor related interactions affecting 
Th and Dbh while interactions specific to second-order neurons (blue) 
depict distinct transcription factor regulation of downstream target genes. 
(B) As neurons traverse the intermediate neuronal subtypes that lie along 
the transcriptional landscape [105], distinct causal gene interactions are 
driving these transcriptional states. Unique directed edges for the 
intermediate neuronal subtypes are colored as follows: Thhigh Foslow (red), 
Thhigh Foshigh (yellow), Thlow Foslow (cyan), Thlow Foshigh (dark grey). 
Directed edges common to all neuronal subtypes are shown in light grey. 
Edge frequency is not accounted for in these network visualizations. 
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Figure 4.8  Gene network ensembles for intermediate neuronal subtypes identified in 
the NTS. The resulting unprocessed-refined-reduced network ensemble 
generated from the fuzzy logic process. Color and edge thickness 
annotations are identical to what was described in Figure 4.6. 

4.4.4 Distinct network topologies and stimuli support a distribution of single-

neuron transcriptional states 

To investigate how distinct regulatory networks drive the emergent neuronal 

subtypes, we simulated the transcriptional states of individual neurons by stimulating 

the network ensembles with the same set of randomly selected stimuli levels of Agt, 

Agtr1a, and Ace. Using our network ensemble models we reproduced the distribution 

of neuronal subtypes, as visualized via MDS analysis (Figure 4.9). 
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Figure 4.9 Interpreting single cell variability via multidimensional scaling of 
network simulations. Schematic of the simulation workflow using 
network ensembles and subsequent analysis via multidimensional scaling 
(MDS). Random network input values (scaled gene expression values) 
for Ace, Agt, and Agtr1a were selected from the multidimensional 
network input space using Latin hypercube sampling. This set of 
randomly selected network input values was used to stimulate all 
subtype-specific network ensembles, as in Figure 4.5. Using 
multidimensional scaling (Chapter 3), the simulated single-cell 
transcriptional states was then projected into a 3D MDS space. 

Similar to the previous analysis presented in Chapter 3, our analysis of 

simulated transcriptional states yielded distinct clusters of neurons segregated by the 

regulatory network subtype. The differences between transcriptional states are driven 

by subtype-specific regulatory networks receiving a similar overall spectrum of inputs. 

Within each subtype, we observed a wide distribution of neuronal transcriptional 

states indicated by the large area covered by each subgroup in the MDS space. In 

certain cases, the pairwise distance between the transcriptional states of simulated 

neurons is shorter across neuronal subtypes than within a neuronal subtype despite 

differences in the underlying regulatory networks.  



 151 

 



 152 

Figure 4.10 MDS visualization of simulated transcriptional states. (A) The first and 
third MDS coordinates capture the variability across single neurons. 
Subsequent analysis was performed along MDS coordinate axes 1 and 3. 
(B) Significant variability is reproduced in the network ensemble 
simulations, indicated by the spread of the data points within and across 
neuronal subtypes. However, an overlap between neuronal subtypes is 
also observed. Focusing on the catecholamine. (catecholaminergic, i.e. 
higher-order) and second-order neuronal subtypes, the intra-subtype 
Euclidean distance between simulated neurons within the upper 75%- 
and lower 25%-quantile of the population density (along MDS axis 3) is 
nearly twice the distance between higher-order neurons in the 75%-
quantile and second-order neurons within the lower 25%-quantile of the 
population density (along MDS 1; 0.3391 vs. 0.1764). This larger intra-
subtype distance also holds for the second-order neuronal subtype 
(0.5481 vs. 0.1764). Distances were determined between centroids for 
each quantile-group. To investigate the causes of this variability, 
transcriptional states generated from distinct network inputs stimulating 
the catecholaminergic and second-order regulatory network ensembles 
were examined. (C) Subtype-specific network responses to similar 
network inputs yielding distinct transcriptional states. (D). Second-order 
subtype-specific network response to distinct network inputs yield similar 
transcriptional states. 

In these instances, distinct network inputs appear to drive the differing 

regulatory networks towards a similar transcriptional state (Figure 4.10). Thus, our 

fuzzy-logic network modeling predicts that the pervasive transcriptional variability 

observed in vivo is likely a product of distinct regulatory network interactions as well 

as response to distinct network stimuli [70,86,93,192,282,283] 

4.4.5 Statistical significance and predictive capabilities of network ensembles 

To further test and verify the predictive capabilities of the fuzzy logic-based 

models, we evaluated how well a particular subtype-specific ensemble would predict 

the transcriptional states of catecholaminergic neurons captured and measured 
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independently from the data set used to cross-validate the a priori regulatory network. 

Simulations of the catecholaminergic-specific network ensemble using the scaled 

network input levels measured from the independent neurons reproduced the 

experimentally measured transcriptional states remarkably well, illustrated in Figure 

4.11. 
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Figure 4.11 Predictive capabilities of catecholaminergic-subtype network ensemble. 
(A) A refined-reduced network ensemble was used to predict the 
transcriptional states of neurons independently measured from the 
transcriptional data set used for cross-validation. Gene expression 
profiles from fifteen single brainstem neurons of the catecholaminergic 
phenotype were measured using the BioMarkTM. The scaled gene 
expression of Ace, Agt, and Agtr1a were used to stimulate the higher-
order network ensemble. Using Spearman rank correlation distances and 
MDS, we visualized the simulated transcriptional states with those of the 
independently sampled neurons Because the network ensemble consists 
of twenty-five plausible network models, an excess of predicted states 
was generated (relative to the fifteen independent brainstem neurons). 
Both the simulated and experimentally measured transcriptional states of 
neurons fall within the 65%-quantile population density and overlap 
considerably. This overlap suggests reasonable performance of the 
catecholaminergic-specifc network ensemble and increases the 
confidence of the other network ensembles derived using this fuzzy logic 
approach. (B) The average absolute residuals between the simulated and 
experimentally measured transcriptional states of the independently 
captured catecholaminergic neurons from a separate rat are visualized in 
a heat map. The predominantly low value for each scaled gene expression 
level across all single-neuronal samples further corroborates the 
predictive capabilities of the catecholaminergic-specific network 
ensemble. 
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Further statistical analysis and comparison of the unprocessed network 

ensembles revealed that nearly all subtype-specific unprocessed network models were 

indeed statistically significant. All other randomized a priori network structures 

resulted in higher MSE values (empirically determined p values < 0.05).  

Table 4.2 Statistical significance of subtype-specific unprocessed a priori networks 
and dependence of training process on a priori network structure (p-
values) 

 
 
In only one instance did a p-value > 0.05 occur (Thlow Foslow network ensemble, p-

value = 0.058). While this may not meet the statistical threshold of significance 

typically used, a p-value of 0.058 indicates a low probability that similar or better 

network predictions could be obtained from a network trained against randomized data 

4.5 Discussion 

In this chapter, we developed a fuzzy logic modeling approach that supports 

the inference of causal gene regulatory networks from highly variable in vivo single-

neuron transcriptomic data. This approach treats the single-neuron transcriptomic data 

set as an abundant source of information about underlying gene regulatory 

Catecholaminergic 
neurons (Th+ Fos-) 

Thhigh Foslow 

neurons
Thhigh Foshigh 

neurons
Thlow Foslow 

neurons
Thlow Foshigh 

neurons
Second order 

neurons  (Th- Fos+)

Randomized data 0.032 0.010 0.048 0.058 0.000 0.006

Randomized edge 
placement 0.000 0.000 0.000 0.004 0.002 0.020

Random a priori 
network  0.000 0.000 0.000 0.002 0.000 0.002
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interactions, which manifest as correlated gene expression patterns across hundreds of 

single neurons. [105]. The quantitative regulatory network models developed in this 

study allow us to interpret how regulatory network interactions drive, in part, the 

structured organization of neuronal subtypes from a distribution of heterogeneous 

single neurons; distinct regulatory network topologies and their responses to distinct 

network inputs drive individual neurons through a range of transcriptional states.  

In comparison to other approaches based on fuzzy logic, we find that our fuzzy 

logic modeling approach provides a robust technique to infer quantitative regulatory 

network models from variable single-cell gene expression data. Previous fuzzy logic 

modeling has identified only qualitative gene regulatory networks from microarray 

data, in the context of activators, repressors, and target gene triplets [243,245]. In 

instances where quantitative network models have been developed, these models 

relied on data generated under defined, binary-type experimental perturbations [259], 

which do not capture the continuous changes in network inputs observed in vivo. The 

fuzzy logic approach developed in this work, however, accounts for continuous levels 

of gene regulatory network inputs and allows us to model single-cell gene expression 

responses to more subtle changes occurring under physiological conditions. This 

methodology is a novel approach to infer quantitative regulatory network models that 

provide insight into the regulatory mechanisms contributing to the heterogeneous 

nature of single cells.  
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4.5.1 Distinct regulatory networks underlying heterogeneous responses at the 

single-cell level 

The presence of distinct regulatory structures underlying neuronal variability 

posits implications as to how a neuronal population will respond to a targeted gene 

intervention. Apart from the variability one would expect given the stochastic nature 

of gene expression [86], manipulating a specific gene within a neuronal regulatory 

network is likely to differentially affect neuronal subtypes. As opposed to an “analog” 

or population response to a targeted gene intervention, our models suggest a more 

“discrete” or subpopulation-specific response based on their respective and distinct 

network topology. Our model-based prediction aligns with previous results 

demonstrating heterogeneous dose response across single cells, as in the case of NF-

kB in response to TNFα [232]. Similarly, heterogeneous responses to drug treatment 

have been observed in clonal cancer cell lines [284]. With multiple studies repeatedly 

demonstrating a large degree of heterogeneity among individual cells, our network 

modeling approach provides a path towards understanding the regulatory network 

topology of cellular subtypes. 

Individual cells naturally respond to a variety of environmental cues and 

stimuli in order to develop properly and perform specific cellular functions (§ 1.2.3 

and § 2.2.1.2). These developmental and functional responses are supported by distinct 

genetic programs and regulatory network rewiring. While gene regulatory networks 

are often cast as static snapshots, regulatory networks are cell-, tissue-, and condition-

specific and exhibit dynamic adaptation in response to both internal and external 
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signals [282]. For instance, in the context of disease such as cancer, regulatory 

network adaptation is highly prevalent in the differential response between normal and 

diseased cells. One example of this network adaptation involves a drug treatment that 

targets the intracellular ERK signaling pathway. While the drug inhibits the ERK 

pathway and effectively removes tumors in melanomic patients with an oncogenic 

BRAF mutation [285], the same drug activates the ERK pathway in cells with wild-

type BRAF, potential promoting tumors in those cells [286]. Moreover, experimental 

evidence in yeast strains has shown that widespread changes occur in gene interaction 

networks and the pathways they represent during cellular response to DNA damage 

[287]. These reorganized interactions demonstrate that cells rely upon the ability to 

rewire regulatory network programming in order govern dynamic cellular functions in 

response to changing environments, stress, and stimuli.  

4.5.2 Distinct stimuli and regulatory networks drive single cells across a 

transcriptional landscape 

Within the brain, distinct gene regulatory network activity and genetic 

programs are critical in modulating the transcriptional state of neurons. Specific 

transcriptional mechanisms shape the developmental trajectory of neurons, which 

contributes to overall neuronal diversity and connectivity [12,13,233]. Not only are 

specific genetic programs critical to neuronal development, changes and adaptations of 

regulatory networks continue to play an essential role in post-mitotic neurons. In 
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response to cellular inputs, distinct regulatory network interactions direct individual 

neurons into distinct subtypes to support physiological functions. 

 

Figure 4.12 Dynamic transcriptional states of NTS neurons. This schematic, similar 
to the transcriptional landscape in Figure 3.19, represents the idea that 
both distinct gene interaction networks and the input stimuli that operates 
on them drive an individual neuron through a range of transcriptional 
states along this landscape. 

Relating this back to the transcriptional landscape described in § 3.5, these 

distinct regulatory networks drive neurons towards specific transcriptional states. In 

addition, distinct network inputs stimulating subtype-specific regulatory networks can 

drive seemingly divergent neuronal subtypes towards similar transcriptional states, 

with likely impact on physiological function. Our simulations indicate that the 
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transcriptional states of individual neurons can be tuned via graded inputs to the 

subtype-specific regulatory networks, suggestive of an adaptive response. The 

transcriptional (i.e. functional) flexibility and diversity of individual neurons provide a 

mechanistic explanation to the experimentally observed plasticity of mature neurons 

[103,104]. Furthermore, the tunable nature of the transcriptional states of individual 

neurons poses intriguing possibilities regarding the dynamics of how neurons traverse 

across subtype-specific transcriptional states. Similar to developmental trajectory, are 

there critical regulatory interactions that can shift an individual or a subpopulation of 

neurons to a different trajectory towards a particular state in the development of 

disease? Likewise, how does the tunable, i.e. adaptive nature of these individual post-

mitotic neurons and neuronal subtypes affect central regulation of physiological 

functions, such as those involved in maintaining cardiovascular homeostasis? While 

answers to the former question require time course data from single neurons as well as 

modifications to our approach to consider dynamics, the second question can be 

explored further via mathematical modeling, which is the subject of the next chapter.  

4.5.3 Modeling assumptions  

Our trained network ensembles contain likely gene interactions and influences 

that fit in vivo gene expression data remarkably well. The biological scope of the 

regulatory interactions and mechanisms predicted by the network ensembles is limited 

to the data types used to train the network models. The approach could be expanded to 

include additional regulatory mechanisms such as post-translational regulation and 
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micro RNA (miRNA) interactions, which have been recently reported to have a 

significant impact on neurogenic hypertension development [288]. While the mRNA 

levels of key genes have been shown to correlate with corresponding protein levels 

and neuronal function [61,96], this remains an assumption inherent to the 

hypothesized gene regulatory interactions derived from the experimental data sets 

from the transcriptomic domain. However, a significant advantage of fuzzy logic 

models lies in their flexibility and capacity to easily expand the a priori network. 

Additional regulatory components and interactions can therefore be incorporated with 

relative ease. By adding the appropriate gene-miRNA interactions to the a priori 

network, for instance, we can extend the biological scope of the regulatory 

mechanisms involved in gene regulation and the transcriptional heterogeneity present 

from neuron to neuron or cell to cell. Our study enables new opportunities to employ 

the fuzzy logic-based network models to inform future experimental design and 

iteratively refine the network ensembles to further elucidate the mechanisms that 

support neuronal and other cell-type diversity within the central nervous system.  

4.5.4 Concluding remarks 

In this chapter, the development and application of a novel fuzzy logic-based 

approach to analyze single-cell in vivo transcriptomic data is described. Using this 

methodology, we have been able to identify the contributions of regulatory network 

interactions and those of cellular inputs have in shaping the transcriptional states of 

neuronal subtypes. The results described in this chapter support a new approach that 
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builds upon the identification of neuronal subtypes based on their transcriptomic 

profiles (Chapter 3). The approaches developed and utilized in this chapter defines 

neuronal subtypes not only by transcriptional profiles, but on the regulatory networks 

and gene interactions that drive their transcriptional states. While the work presented 

in the current chapter reveals the presence of an organizational framework in which 

distinct neuronal subtypes are shaped, in part, by distinct gene network responses to 

synaptic input-types received, the functional significance of these distinct neuronal 

subtypes and the adaptive responses supported by these networks within the NTS 

remain unclear. The functional relevance of distinct NTS neuronal subtypes and 

adaptive responses of neuronal subtypes to inputs is explored in the broader functional 

context of cardiovascular homeostatic regulation in the following chapter.  
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Chapter 5 

INVESTIGATION OF THE EFECTS OF BRAINSTEM NEURONAL 
ADAPTATION ON BARORECEPTOR REFLEX REGULATION OF 

CARDIOVASCULAR HOMEOSTASIS 

 

Single-cell analysis of brainstem neurons indicate that single-neuron 

transcriptional heterogeneity in the brainstem represents the adaptive responses of 

individual brainstem to the various synaptic inputs received. These results are further 

supported by quantitative modeling and analysis of underlying gene networks, which 

suggest that inputs to individual neurons can drive them across a range of 

transcriptional states. In this chapter, the functional relevance of adaptive responses 

in brainstem neurons is explored in the functional context of baroreceptor reflex 

regulation of cardiovascular homeostasis via mathematical modeling. A closed-loop 

control system model characterizing baroreceptor reflex regulation of cardiovascular 

functions is developed and used to test the functional role neuronal adaption fulfills 

under the simulated condition of systolic heart failure. 

 

5.1 Introduction 

In Chapters 3 and 4, analysis and results were presented that reveal an 

underlying molecular organizational framework in which the transcriptional states of 

an in individual neuron aligns with the synaptic inputs received. Consequently, these 
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neurons form distinct neuronal subtypes that populate a transcriptional landscape 

defined by graded, correlated gene expression. Further analysis showed that distinct 

gene regulatory networks subtend these neuronal subtypes. Taken together, these 

findings suggest that the transcriptional heterogeneity observed across NTS neurons is 

due in part to the adaptation of individual neurons to the inputs they receive over the 

course of its post-developmental history. From these results, we propose that the 

presence of distinct neuronal subtypes and adaptation of neuronal subtypes support 

robust biological function through graded cellular responses. In this chapter, we test 

this proposal by examining the functional impact that neuronal adaptation of input-

driven subtypes has on cardiovascular function via mathematical modeling. Towards 

this goal, we develop a mathematical model that incorporates distinct input-driven 

neuronal subtypes within the context of the baroreceptor reflex, referred to as the 

baroreflex, the physiological control mechanism that regulates arterial blood pressure. 

A brief summary of this physiological system can be found in § 2.2.1.  

Despite extensive investigation and characterization of the baroreflex, 

understanding the behavior of this control system as a whole remains a challenge. 

Some of the main difficulties in understanding this system lie in the nonlinear 

behavior of individual components and nonlinear interactions among these 

components. Consequently, the behavior of the overall system is likely to be different 

from the sum of the individual parts. Mathematical modeling has provided valuable 

insight into the nonlinear relationships occurring in the baroreceptor reflex and how 

they affect cardiovascular function [289–293].  
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Autonomic regulation, mediated by sympathetic and parasympathetic nerves 

that innervate cardiovascular organs such as the heart and vasculature, manifests in 

linear and nonlinear ways [294–298]. The two branches of the autonomic nervous 

system (ANS) interact nonlinearly in such a way that the activity of one branch of the 

ANS simultaneously enhances the antagonistic effects of the other branch on the 

innervated organ. This accentuated antagonism has been experimentally observed to 

affect key cardiac (i.e. heart) effector functions. For example, parasympathetic tone, 

which reduces heart rate, has a much larger inhibitory effect in the presence of 

sympathetic tone [299]. Ventricular contractility (i.e. inotropy), another cardiac 

function, is affected in a similar manner [296,300,301]. Despite extensive 

experimental evidence that emphasize the importance of parasympathetic tone on 

cardiac functions beyond heart rate (i.e. chronotropy), which is mediated by vagal 

innervation of the heart (Figure 5.1, [131]), a majority of prior models focus primarily 

on sympathetic influence on cardiovascular functions. Of the mathematical models 

that do account for parasympathetic effects, they primarily focus on parasympathetic 

influence on heart rate or its inverse, heart period [291,293,302–304].  

Recent clinical evidence suggests that parasympathetic activity, manipulated 

by vagal nerve stimulation, has profoundly positive effects in cases of treating heart 

failure [305]. In this context, elevated parasympathetic, or vagal, tone has been shown 

to be therapeutic and provides cardioprotective effects. Conversely, a decrease in 

vagal tone has been associated with many forms of heart disease and may even 

precede many of the actual symptoms [306]. The cellular and molecular mechanisms 
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that determine vagal output to the heart present an area of major significance for 

treating heart disease. The mechanisms underlying vagal-mediated cardioprotection 

represent potential targets for early diagnosis and novel palliative therapy. As the 

control center regulating autonomic tone, the NTS and the neuronal subtypes within 

project to multiple brainstem nuclei including the nucleus ambiguus (NA) and dorsal 

motor nucleus of the vagus (DMV) to regulate parasympathetic tone. Experimental 

evidence has shown that the NA and DMV act as the sources of vagal tone and affect 

distinct cardiac functions [38,126,130,131,307,308] and represent two targets of 

continued investigation with respect to vagal regulation of cardiac function.  

The addition of these extra components related to the neuroanatomic 

organization of vagal outflow certainly increases the complexity of any baroreflex 

model. However, the added complexity represents features that have not been 

explicitly examined within the broader context of the cardiovascular system, to our 

knowledge. Including these features in a mathematical model enables us to understand 

more clearly how various interactions and adaptation to NTS neuronal subtypes and 

neuronal populations in the NA and DMV affect vagal tone and overall 

parasympathetic influence on cardiovascular functions. Since adaptation is a process 

occurring in response to a changing environment, or challenged state, we investigate 

what the functional consequences of neuronal adaptation are under an impaired i.e. 

diseased cardiovascular state – systolic heart failure post myocardial infarction. Before 

details of the model are presented, a brief review on the key physiological components 

of the cardiovascular system, as it pertains to this model, is provided for additional 
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context about the physiological system modeled in this study. This is then followed by 

a brief review of previous modeling efforts that have formed the foundation of the 

current model used in this chapter.  

5.2 Physiological Components Involved in Cardiovascular Homeostasis  

5.2.1 Autonomic regulation and the cardiovascular system 

The principal purpose of the cardiovascular system is to circulate blood 

throughout the body in order to transport oxygen, carbon dioxide, hormones, and 

nutrients to and from cells and maintain homeostasis (defined in § 1.2.3). Key 

physiological variables of the cardiovascular system include arterial blood pressure, 

blood gas composition, and circulating blood volume. These variables are regulated in 

part by the baroreflex, which is primarily responsible for short-term regulation of 

arterial blood pressure and manipulates cardiovascular effector functions by varying 

sympathetic and parasympathetic tone. Parasympathetic regulation of this reflex, 

mediated by the vagus nerve, provides rapid (milliseconds), inhibitory regulation on 

cardiac functions such as heart rate (i.e. chronotropy) and ventricular contractility (i.e. 

inotropy) and balances the stimulating effect the sympathetic regulation has on cardiac 

function, which occurs on a slightly longer time-scale (seconds).  

As described in § 2.2.1, blood pressure, aspects of respiration, and blood 

volume are measured either directly or indirectly by i) baroreceptors located in the 

aortic and carotid arches, ii) cardiopulmonary stretch receptors found in cardiac 
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regions such as the atria, cardiac ventricles, and pulmonary vessels carrying blood 

from the lungs to the heart, and iii) slowly adapting lung stretch receptors located in 

smooth muscle fibers of the lung airways [309,310]. These receptors respond to 

distension by triggering neuronal firing patterns that are sent the glossopharyngeal and 

vagus nerve. These nerves terminate in the NTS where these signals are integrated 

with other higher order signals that results in a subsequent signaling cascade that 

determines sympathetic and parasympathetic tone, which affect cardiovascular 

effector functions such as heart rate, cardiac contractility, and peripheral resistance of 

the vasculature.  

The activation of these receptor-types in isolation or in combination triggers 

distinct effector function responses. For example, baroreceptor activation, 

representative of increases in arterial blood pressure, lead to decreases in heart rate 

and ventricular contractility [311,312]. Activation of cardiopulmonary baroreceptors, a 

subset of baroreceptors that measure low pressure points in the circulation, result in 

the inhibition of efferent sympathetic outflow, which decreases heart rate and 

modulates peripheral resistance of vascular beds in the body. These changes, in 

combination of others that occur in response to the demands placed on the 

cardiovascular system ultimately result in changes in arterial blood pressure.  

Multiple lung stretch receptor types exist including slowly adapting receptors 

(SARs), rapidly adapting receptors (RARs), and bronchopulmonary C fibers. These 

receptor types reflect a subset of cardiorespiratory mechanisms that affect 

cardiovascular function and each type has distinct effects on cardiovascular function 
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such as heart rate. For the purposes of this study, modeling efforts focused on SAR 

inputs to the NTS. Activation of slowly adapting receptors (SAR) have varying effects 

on cardiac function, which has been shown to be dependent upon the rate of SAR 

activation, history of SAR activation, and duration of SAR activation. In this model, 

we use data generated by Greenwood et al. [313] and Hainsworth [314], which shows 

that SAR activation leads to tachychardia , an increase in heart rate above the normal 

resting heart rate, and reduces ventricular contractility [310].  

5.2.2 The pumping heart and the cardiac cycle 

The heart is one of the primary components of the cardiovascular system. It is 

a muscular organ that pumps blood through the pulmonary and systemic circulatory 

systems. It is composed of four main compartments: i) upper right atrium, ii) lower 

right ventricle, iii) upper left atrium, and iv) lower left ventricle. Both the right side of 

the heart (right heart) and left side of the heart (left heart) include two valves, an 

atrioventricular valve, which separates the atrium and ventricle, and a semilunar valve, 

which separates the ventricles from the main arteries. The atrioventricular valves, 

which include the tricuspid valve (right heart) and mitral valve (left heart), and the 

semilunar valves, which include the pulmonary valve (right heart) and aortic valve 

(left heart), ensure a unidirectional blood flow from the atria to the ventricles to the 

main arteries. The heart pumps blood in a rhythmic manner that is determined by a 

group of pacemaking cells in the sinoatrial node (SA node, Figure 5.1). These cells 

generate an electrical impulse that travels though the atrioventricular node, which 
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conducts electrical signals to the atria and ventricles. The generation of these impulses 

initiates a heartbeat, or cardiac cycle. Although the SA node spontaneously generates 

electrical impulses, sympathetic and parasympathetic nerves innervate this node and 

regulate the rate of impulses generated, thus regulating heart rate. 
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Figure 5.1 Anatomy of the heart. (A) The basic anatomical components of the heart. 
White arrows indicate direction of blood flow (B) The sinoatrial node is 
located in the wall of the right atrium. This group of pacemaker cells 
generate electrical impulses that cause the heart to contract. These 
impulses are conducted through the heart and are coordinated by the 
atrioventricular node, which electrically connects the atrial and 
ventricular chambers. (C) Schematic diagram indicating the multiple 
regions of the heart that are innervated by the vagus. The diagram of the 
heart has been modified from [315]. The schematic of vagal innervation 
is based on a diagram from [316]. 
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The cardiac cycle, or the generation and completion of a single heartbeat, 

involves two main phases, the diastole (relaxation of the heart), when blood pressure 

decreases and systole (contraction of the heart) where blood pressure rises and reaches 

its maximum level (Figure 5.2). 
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Figure 5.2 Cardiac cycle. Top panel: left ventricular pressure (LVP) and volume 
(LV volume) plotted over the four main steps of the cardiac cycle: i) 
diastolic filling, ii) isometric contraction, iii) ejection, and iv) 
isovolumetric (isometric) relaxation. The pressure at the end of diastole is 
indicated by (a). This is when ventricular filling completes and the 
ventricle has reached its end diastolic volume (EDV). Once ventricular 
pressure exceeds aortic pressure (b), the aortic valve opens and ejection 
begins. When the aortic valve closes, ejection ends and the ventricle has 
reached its end systolic volume (ESV). Subsequently the ventricle begins 
to relax isometrically (c). Finally, when ventricular pressure drops below 
atrial pressure, the mitral valve opens up and the ventricle begins to fill 
with blood (d). Bottom panel: pressure-volume relationship (PV loop) 
during the cardiac cycle. The red line in the upper left corner represents 
the end systolic pressure volume relationship (ESPVR). The slope of this 
line represents the maximal contractile state of the ventricle and is 
represented by the variable Emax in the model. The red curve along the 
bottom of the PV loop represents the end diastolic pressure volume 
relationship (EDPVR), or the passive filling of the ventricle. ESV – end 
systolic volume, EDV – end diastolic volume. The figure of the cardiac 
cycle has been modified from [317]. 
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These two phases consist of four basic steps, i) diastole, which includes atrial 

systole, ii) isovolumetric contraction, iii) ventricular ejection, and iv) isovolumetric 

(i.e. isometric) relaxation time. During diastole the semilunar valves connect to the left 

and right atria close, the atrioventricular valves open, and the muscle fibers of the 

heart relax. This is then followed by systole, where the left and right atria contract, 

sending blood into the ventricles. Subsequently, the atrioventricular valves close and 

the ventricles begin to contract, with no change in ventricular volume during the 

isometric contraction stage. Following isometric contraction, the ventricles continue to 

contract as the blood empties out and flows into the pulmonary artery (from right 

ventricle) to oxygenate blood or the ascending aorta (from the left ventricle) to provide 

blood for systemic circulation. Concomitantly, the semilunar valves to the atria open. 

Finally, in isometric relaxation, the heart muscle fibers relax, ventricular pressure 

decreases while ventricular volume remains constant and the atria refill with blood.  

5.2.3 The venous system 

Beyond heart rate and cardiac contractility, the baroreflex actively regulates 

the venous system, another key physiological component that affects blood flow, or 

hemodynamics [290]. The venous system returns blood from the periphery to the heart 

and to store blood, acting as a capacitor to maintain filling of the heart with blood. 

Veins account for approximately 70% of the total blood volume, the arteries account 

for approximately 18%, and terminal arteries and arterioles account for approximately 

3%. The ability of the venous system to store blood, or its capacitance, varies for 
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different vascular compartments. Similarly, the volume of blood stored within a blood 

vessel is dependent upon its compliance – the ability of a blood vessel to expand and 

contract passively with respect to changes in transmural pressure (difference between 

the internal and external pressures of the vessel). Consequently, the blood volume in a 

vessel when the transmural pressure is zero is referred to as the unstressed volume. 

The blood volume at a non-zero transmural pressure is referred to as the stressed 

volume [318].  

Veins are the most compliant compartment in the body and can easily 

accommodate changes in blood volume. Veins that run through the internal organs of 

the abdomen, or splanchnic compartment are some of the most compliant veins in the 

body and thus act as reservoirs for blood. Veins outside of the splanchnic 

compartment, or extrasplanchnic veins are less compliant. In particular, the systemic 

and pulmonary arteries through blood from the heart flows to the pulmonary and 

systemic circulation, respectively, have very low compliances. Conversely, vascular 

resistance, which reduces blood flow and increases pressure, differs among the various 

vascular compartments as well.  

These variables play affect cardiac function based on their ability to modulate 

circulation and blood flow into the heart, they play a central role in affecting cardiac 

function. Moreover, changes to these variables in different compartments have varying 

effects on cardiac function and arterial blood pressure. For instance, an increase in 

arterial resistance causes a significant increase in arterial blood pressure. However, a 

similar increase in venous resistance results in a decrease in blood flow to the heart 
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(venous return) and affects how much blood is ultimately pumped out to the arteries. 

Thus vascular compliance, unstressed and stressed volumes, and vascular resistance 

are key physiological variables that affect hemodynamic behavior and cardiovascular 

state [290,292].  

The nonlinear manner in which these various mechanisms behave make it 

difficult to predict the overall behavior of the cardiovascular system, whose function is 

based on the superimposed functions of these previously described mechanisms. 

Moreover, the nonlinear regulatory effects imposed by the sympathetic and 

parasympathetic branches of the ANS increases the complexity of this system. 

However, because the baroreflex is a physiological control system, providing negative 

feedback regulation on arterial pressure, we take a control systems engineering 

approach to systematically and quantitatively characterize the complexities of these 

various nonlinear components and interactions, as illustrated in Figure 5.3. Further, a 

control systems engineering approach provides a framework within which to explore 

the effects adaptations to neuronal subtypes and neuronal populations within the 

brainstem have on cardiovascular function and state.  
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Figure 5.3 Autonomic innervation of the cardiovascular system. (A) Schematic 
illustrating representative sympathetic and parasympathetic innervation 
of target organs and tissue in the cardiovascular system. Afferent 
information from the carotid and aortic baroreceptors is sent along the 
glossopharyngeal (CN IX) and vagus nerves (CN X). The vagus is the 
primary nerve that carries parasympathetic afferent and efferent signals. 
(B) Corresponding control block diagram of the cardiovascular system 
shown in (A). This diagram represents information flow involved in the 
autonomic regulation of the cardiovascular system. 
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In the next section, a brief review is provided of a few select models of interest 

exploring key aspects of baroreceptor reflex regulation and the behavior of central 

physiological components including the heart and vasculature.  

5.3 Previous Modeling Efforts 

Because the baroreflex is a physiological control system, quantitative 

approaches from the field of control systems theory provide methodologies with which 

to systematically characterize and model this physiological reflex. Several efforts have 

focused on analyzing the sources of the oscillatory nature of blood pressure, which 

varies between a maximum systolic pressure and minimum diastolic pressure, and the 

stability of this oscillatory behavior. Burgess et al. [319] developed a first-order linear 

feedback model describing the response of mean arterial pressure to changes in 

sympathetic drive. The model includes a proportional controller representing neural 

control mechanisms and a sensor or “feedback” gain. Using their model, Burgess et al. 

showed that high-frequency oscillations (~4 Hz) observed in the blood pressure of rats 

could be accounted for by the time-delays associated with the sympathetic response to 

blood pressure changes. One implication to this simple yet elegant model, is that a 

strict relationship between the vasculature and sympathetic tone must exist to maintain 

stable blood pressure oscillations. Stimuli that would alter the gain in the feedback 

loop (e.g. altered baroreflex gain) would cause the system behavior to become either 

unstable (gain increase) or asymptotically stable (gain decrease) [319,320]. Therefore, 
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in order to maintain stable oscillatory behavior, the linear feedback model suggests 

that continuous adaption must occur in the system.  

Subsequent work by Ringwood and Malpas [320] included nonlinear input-

output relationships describing the central nervous system and vasculature components 

within the feedback model. By incorporating nonlinearities into the feedback model, 

Ringwood and Malpas determined that oscillatory behavior at a low frequencies, 

(~0.3Hz) can be maintained via nonlinear input-output relationships within the CNS 

over a wide range of gain changes that could occur at various points in the feedback 

loop. In other words, nonlinearities in the CNS afford greater stability to the 

oscillatory behavior of blood pressure.  

Additional baroreceptor modeling efforts have further emphasized the 

nonlinear nature of the baroreceptor response to blood pressure changes 

[293,321,322]. Interestingly, it has been shown in closed-loop simulations of 

baroreflex regulation of heart rate, baroreceptor, sympathetic, and parasympathetic 

nerve firing follows a hysteresis curve (time dependence of system outputs to present 

and past inputs). Moreover, the hysteresis loop associated with model conditions 

simulating healthy normotensive adults is wider than those associated with model 

conditions simulating hypertensive cases. This suggests some maladaptation (or lack 

of adaptation) in conditions associated with hypertension development [293].  

A key physiological component to cardiovascular system that affects blood 

flow and pressure is the vasculature or venous system. Despite its complexity, many 

models have successfully utilized simple yet effective models that rely on concepts 
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from electrical circuit design to characterize venous blood flow. A commonly used 

model that captures key hemodynamic properties is the Windkessel model [323]. 

Originally used to describe aortic blood flow from the heart, it likens the heart and 

aortic flow to a closed hydraulic circuit that includes a water pump (i.e. heart) 

connected to a chamber. This modeling approach has been used effectively to 

incorporate hemodynamic effects on blood pressure [292].  

In addition, the respiratory system is intertwined with the cardiovascular 

system and affects heart rate variability. Although an examination of the 

cardiorespiratory system is beyond the scope of this work, modeling work has shown 

that respiratory sinus arrhythmia has beneficial effects, including reducing the work 

load of the heart while maintaining physiological levels of CO2 [324]. 

Finally, several previous efforts have integrated these neurogenic and 

physiological mechanisms into a more comprehensive models. An example of such a 

model is a closed-loop hemodynamic model of baroreceptor reflex regulation of 

arterial blood pressure developed by Ursino [291]. This model is of particular interest 

because this model includes many of the physiological and neural regulatory 

mechanisms involved in regulating arterial blood pressure. Multiple cardiovascular 

effector functions are included such as pulsatile heart rate, cardiac contractility, 

hemodynamics, and autonomic regulation of vascular system properties like vascular 

resistance. In addition, compartmentalized physiological structures are integrated into 

this model in order to provide a more accurate representation of the physiological 

components affecting hemodynamics and blood pressure. For example, Ursino 



 181 

incorporated a compartmentalized vascular system composed of components 

characterized by distinct capacitances; resistances; and unstressed volumes. Using this 

model, Ursino showed that the pulsatile perfusion of the carotid sinus leads to an 

overall decrease in baroreflex gain and that venous unstressed volumes in the 

vasculature play a larger role in hemodynamic responses to acute blood loss 

(hemorrhaging) than does systemic resistance or heart rate [291]. This model has since 

been modified to study cardiovascular functions under various conditions, including 

exercise-induced stress [325], and univentricular flow resulting from right heart-

bypass operations as a treatment for congenital heart disease [289].  

5.4 Baroreceptor Reflex Model Structure 

In this study, we extend the models developed by Ursino [289,291,326] to 

include additional components representing neuronal subtypes in the brainstem 

involved in regulating vagal outflow. Additional details regarding the original Ursino 

model are provided in Appendix B. 

5.4.1 Modeling the brainstem nuclei and their role in regulating vagal outflow 

Multiple transfer functions are included to represent the molecular organization 

identified in Chapter 3, the neuroanatomical organization of the vagal efferent sources, 

and the neuronal projections they receive from the neuronal subtypes within the NTS. 

We include distinct input-output transfer functions to represent specific input-driven 

NTS neuronal subtypes, as identified in Chapter 3. In our extended model, we focus 
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on three neuronal subtypes corresponding to three types of peripheral signals that 

affect cardiovascular function: i) carotid baroreceptors, ii) cardiopulmonary receptors, 

and iii) SAR lung-stretch receptors. Similarly, transfer functions were included to 

represent the signal processing and vagal regulatory functions of the NA and DMV. 

Each transfer function models the input-output relationship characterizes neuronal 

response to a given input signal as a sigmoidal relationship to capture the biologically 

relevant behavior associated with neurons active in the baroreflex [141,291,327]. 

Because vagal outflow has been shown to increase monotonically with activity in the 

sinus nerve with an upper saturation, sigmoidal functions, similar to those used in 

Chapter 4, are used to describe the input-output responses of these components. The 

sigmoidal relationship is described by the following equation: 

 

Here, fmin,j and fmax,j represent the firing frequency output range of the jth neuronal 

subtype or neuronal population. finput,j refers to the firing frequency from the respective 

receptor-type to which that the specific neuronal subtype is responding. fmidpt,j 

represents the input firing frequency value that would trigger a firing frequency 

response that is half of the maximum firing frequency output. Finally kj represents the 

input sensitivity of the neuronal subtype. A large k-value represents low input 

sensitivity, i.e. a gradual increase in output over a range of inputs whereas a smaller k-

 , =
, +  , ∗ , − ,

1 + exp , − ,
,

 5.1 
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value represents a higher input sensitivity. A k-value of unity results in a near-binary 

switch-like response profile.  

This sigmoidal model was chosen due to minimal number of parameters 

required and the physiological relevance and interpretability of the parameters. It is 

important to note that our findings in Chapter 3 do not necessarily support the use of a 

population rate code, which conflicts with the use of firing frequencies as the input 

and output type for these transfer functions. However, firing frequencies are used here 

because they represent a straightforward manner with which to represent the 

information transmitted to and processed by distinct neuronal subtypes and neuronal 

populations in the brainstem.  

5.4.2 Functional connectivity in the brainstem 

Physiological experiments have shown that the NA and DMV modulate 

specific cardiac effector functions. The NA modulates heart rate and to a lesser extent 

ventricular contractility while the DMV primarily affects contractility [38,307,328–

330]. The connection between these brain nuclei and the NTS neuronal subtypes were 

defined based on experimentally established electrophysiological characteristics of the 

NA and DMV. Firing patterns of the NA have been shown to align with the 

respiratory cycle suggesting that neuronal populations within the NA are in part 

dependent upon synaptic signals relaying information related to respiration. 

Alternatively, firing patterns within the DMV have been shown to be independent of 

respiration [131,331], suggesting respiratory rhythms have minimal influence on the 
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DMV. Taking together, these results suggest that neuronal populations in the NA and 

DMV have specific effects on effector functions. Based on these findings, we propose 

a particular connectivity between the NTS subtypes, NA, and DMV, as illustrated in 

Figure 5.4.  

 

Figure 5.4 Control block diagram of revised model. Components outlined in blue 
represent the new components incorporated into the model. A sigmoidal 
function (Equation 5.1) is used to represent the input-output transfer 
functions for the neuronal subtypes and neuronal populations added in 
the brainstem. NA-ctrc refers to the influence neuronal populations in the 
NA have on ventricular contractility. 

5.4.3 Vagal efferent outflow 

The extended model includes vagal efferent effects on the end systolic 

ventricular pressure volume relationship, which is a measure of ventricular elasticity. 
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This addition represents a novel extension to the previous models as no other model 

has examined vagal influence on cardiac function beyond that of heart rate to our 

knowledge. The elasticity measure (Emax) in this model represents the linear 

relationship between end systolic pressures and volume [311]. Experimental evidence 

has established Emax as a robust correlate of contractility, independent of changes to 

blood flow that are known to affect other measures of ventricular contractility 

[311,332]. Similar to heart rate, elasticity is regulated by the accentuated antagonistic 

interplay between sympathetic and vagal activity [298,333].  

By including vagal efferent effects on ventricular contractility, we are now 

able to capture the accentuated antagonistic effect that vagal and sympathetic tone 

have on ventricular contractility. To capture quantitatively this antagonistic effect, 

sympathetic and vagal tone were modeled to affect the inverse of elasticity. This value 

is a mathematical relationship used to capture the nonlinear effects of combined 

sympathetic and vagal tone on elasticity and not a calculation of ventricular 

compliance, which corresponds to the stiffness of the cardiac muscle. Ursino was able 

to replicate this accentuated antagonistic effect on heart rate by modeling a linear 

relationship between heart period (the inverse of heart rate) and autonomic tone [291]. 

5.4.4 Sympathetic efferent outflow 

Sympathetic efferent outflow is modeled using a monotonically decreasing 

exponential curve to capture the decrease in sympathetic activity (represented by firing 

frequency) in response to increased baroreceptor activity [291]. Both sympathetic and 
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parasympathetic activity and their effects on modulating effector functions are 

associated with time delays, with parasympathetic efferent effects having a much 

shorter time delay (~milliseconds), than sympathetic efferent effects (~seconds).  

5.5 Parameter Selection 

Because the primary goal of this study is to investigate the effects of neuronal 

adaptations, we focus on the modeling efforts required to incorporate the presence of 

neuronal subtypes in the NTS and neuronal populations in the brainstem and tune the 

parameters corresponding to the transfer functions characterizing these components. 

Additional details regarding parameter values corresponding to the multiple 

physiological components are included in Appendix B.2 for additional information.  

5.5.1 Brainstem model parameter selection 

Since this model formulation and detail related to autonomic (i.e. 

parasympathetic) regulation has heretofore not been modeled, parameters were tuned 

to fit relevant experimental data. A central issue in parameter tuning involved 

selecting the appropriate data and experimental design from which this data was 

generated. Because model parameters for afferent components (i.e. receptors) have 

been previously determined [289–291,326], experimental data for parameter tuning of 

the brainstem neuronal components required controlled stimulation of afferent 

receptors and measures of effector function output. For example, to tune parameters 

describing the baroreceptor input-driven NTS subtype and its effect on ventricular 
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contractility, experimental data relating arterial pressure to ventricular contractility 

would be ideal. Thus brainstem parameters were tuned to simulate changes in heart 

rate and ventricular contractility measured in relevant physiological experiments 

[311].  

Based on the model structure (Figure 5.4), the transfer functions representing 

the NA, DMV, and the NA’s effect on contractility, i.e. NAcontractility, occur 

downstream of the transfer functions representing the NTS neuronal subtypes. As a 

result, multiple parameter values could potentially be selected for these downstream 

transfer functions, depending on the experimental data used. To address this issue, 

only one set of parameters for the downstream transfer functions were used based on 

the parameter values that best fit data related to baroreceptor effects on heart rate and 

contractility. These set parameters were subsequently used when defining parameters 

for the transfer functions representing the remaining NTS neuronal subtypes.  

Baroreceptor input-driven subtype parameters were tuned to simulate 

experimental data generated by Suga et al. [311] who measured the percent change 

(relative to control conditions) in heart rate and left ventricular contractility (Emax) in 

response to changes in arterial pressure (Figure 5.5). Lung stretch receptor input-

driven subtype parameters were tuned to simulate data from Greenwood [313] and 

Hainsworth [314]. In both cases, Greenwood and Hainsworth measured changes in 

heart rate relative to control conditions (Figure 5.6). While these experiments were 

conducted in canines, we assumed that similar changes would apply to the human 

model, where baseline heart rate and ventricular contractile values were based on 
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physiological data taken from healthy humans. It is important to note that when tuning 

both sets of parameters, they were adjusted in open-loop model structures mimicking 

the open-loop conditions of the experiments from which the data was generated. Once 

acceptable parameter values were defined, based on simulation fit to experimental 

data, these parameters were then used to determine the parameter set associated with 

the cardiopulmonary receptor neuronal subtype, which was tuned in a closed loop 

model structure.  
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Figure 5.5 Parameter fitting for baroreceptor input-driven subtype, NA, NAcontractility, 
and DMV parameters. The simulated effects (dashed lines) of arterial 
pressure on heart-rate and ventricular contractility are shown with fitted 
parameters and compared against experimental results measuring percent 
changes in heart rate and contractility in canines (solid lines). Percent 
changes were scaled to physiological values corresponding to adult males 
using baseline heart rate and contractility values of 61.2 bpm and 2.695 
mmHg/mL, respectively. Parameters were tuned in open-loop model 
conditions emulating the experimental design used to measure the 
changes in heart rate and contractility. 
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Figure 5.6 Lung stretch receptor input-driven subtype parameter fits. The simulated 
effects of lung volume on heart-rate and ventricular contractility are 
shown with fitted parameters and compared against experimental results 
measuring changes in heart rate and contractility in canines per 
experimental data found in [313] (purple lines) and [314] (black lines). 
Changes in heart rate and contractility were scaled to physiological 
values corresponding to adult males using baseline heart rate and 
contractility values of 84.6 bpm and 2.392 mmHg/mL, respectively 
(experimental – solid, simulated – dashed). Baseline parameters were 
drawn from simulations using the original model by Ursino [289,291] 
mimicking the open-loop conditions used in the experimental design, 
which differed from those used in [311]. Parameters were tuned in open-
loop model conditions emulating the experimental design used to 
measure the changes in heart rate and contractility. 

To tune parameters related to the cardiopulmonary baroreceptor input-driven 

subtype, experimental data generated by Frey [297] were used. In this case, 

experimental data was collected from adult females placed in a lower body negative 

chamber, which causes blood to pool in the lower body and results in a deactivation or 
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unloading of cardiopulmonary receptors. Therefore, these parameters were tuned in a 

closed loop model structure.  

 

Figure 5.7 Cardiopulmonary receptor input-driven subtype parameter fits. The 
simulated effects of different lower body negative pressures on simulated 
heart-rate, cardiac output, and stroke volume (dashed lines) are shown 
with fitted parameters and compared against experimental results (solid 
lines) measuring these parameters in adult females placed in a lower 
body negative chamber [297]. Because the lower body negative chamber 
is a non-invasive technique that leads to changes in circulating blood 
volume, parameters were tuned in closed-loop model conditions, using 
the fitted parameters identified for the NA, NAcontractility, DMV, 
baroreceptor-, lung stretch receptor-neuronal subtypes from the previous 
model fitting results (Figures 5.5, 5.6). Experimental data (solid lines) 
and simulated fits (dashed lines) are shown. 
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We recognize that because multiple parameters are involved in influencing the 

vagal effects on heart rate and contractility, resulting in an over-parameterized model, 

multiple parameter sets are likely to yield reasonable fits to experimental data. 

However, because the model extensions only include a single input-output transfer 

function to represent neuronal populations from the NA and DMV that influence heart 

rate (NA) and ventricular contractility (NAcontractility and DMV), we included only one 

set of parameters for each of the three transfer functions in order to constrain the 

possible parameter space. For reference, a comprehensive list of model parameters and 

supplementary text describing the original Ursino model and related equations are 

included in Appendix B.2. 

5.5.2 Accentuated antagonistic effects on ventricular contractility 

Previous experimental methods have demonstrated the nonlinear effects that 

simultaneous sympathetic and vagal drive have on cardiac functions beyond 

chronotropy. We use a similar technique to capture the nonlinear effect that combined 

sympathetic and vagal drive have on heart rate. Based on the resulting parameter 

values identified from the model fitting efforts, the model is able to capture the 

accentuated antagonistic effects that modulate ventricular contractility, as illustrated in 

Figure 5.8. 
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Figure 5.8 Accentuated antagonistic sympathovagal effects on ventricular 
contractility. Simulations were conducted to show the effect that (A) 
increasing vagal tone (fev), as represented by firing frequencies (Hz), has 
on contractility at different levels of sympathetic tone and (B) the effect 
increasing sympathetic tone has  on contractility at different levels of 
vagal tone. Note that at higher sympathetic levels (fes), vagal tone has a 
larger inhibitory effect on contractility, as indicated by the larger drop in 
contractility (orange plot in A). 

5.6 Simulation Results 

The computational model described herein includes input-output transfer 

functions that reflect the input-driven neuronal subtype organization recently 

identified (Chapter 3), known neuroanatomical organization of parasympathetic 

efferent origins, and vagal efferent effects on multiple effector functions including 

heart rate and ventricular contractility. Given the closed-loop nature and complexities 
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associated with this system, including distinct time-delays characterizing sympathetic 

and vagal efferent effects and multiple interacting compartments, the model was 

developed in the SIMULINK environment (MathWorks®), which facilitates the 

modeling of these dynamic and interacting components. Ordinary differential 

equations incorporated into this model were solved using ODE15s, with an error 

tolerance of 1e3.  

5.6.1 Simulation of physiological conditions  

Prior to using the model to explore the impact of neuronal adaptation under the 

disease state of systolic heart failure post myocardial infarction, simulations were 

conducted to evaluate the model’s ability to recapitulate hemodynamic and 

cardiovascular behavior consistent with healthy physiology of a 70 kg adult. To 

evaluate simulated cardiovascular performance, multiple hemodynamic parameters 

were used, including end diastolic pressure and volume (EDP and EDV, respectively) 

and end systolic pressure and volume (ESP and ESV, respectively). These values are 

traditionally visualized as the pressure-volume loop associated with the cardiac cycle. 

Additional parameters left ventricular pressure, left ventricular flow rates, ejection 

fraction, which measures the fraction of blood pumped out of the ventricle after 

systole, and cardiac output, which is a measure of the total volume of blood pumped 

by the heart per unit time. Some clinically relevant cardiovascular parameters and their 

acceptable ranges, based on hemodynamic measures observed in literature, are 

provided in Table 5.1.  
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Table 5.1 Hemodynamic parameters for adult females(64 kg) 

Parameter Value (units) Reference 

SBP 123 (11) mmHg [334] 
DBP 72 (8) mmHg [334] 
EDV 118 (19) mL [334] 
ESV 43 (11) mL [334] 
EDP 9 (3) mmHg [335]  
ESP 120 (20) mmHg [335] 
EF 0.64 (0.08) -- [334] 
CO 85 (21) mL/s [334] 
SV 75 (15) mL/beat [334] 

 
Values in parenthesis represents standard deviation as reported in sources. 
Abbreviations: systolic blood pressure (SBP), diastolic blood pressure (DBP), end 
diastolic volume (EDV), end systolic volume (ESV), end diastolic pressure (EDP), 
end systolic pressure (ESP), ejection fraction (EF), cardiac output (CO), and stroke 
volume (SV) 

 
These values, measured in adult females [334], were used as reference to 

compare model simulations against. Because the mass of the females varied around 64 

kg, their hemodynamic measures would be more appropriate to use as a reference for 

the model, which was based on parameters scaled to an 70 kg adult [291]. 

Hemodynamic simulations of the cardiac cycle demonstrate that the model does 

simulate cardiovascular behavior that lies well within the expected range of 

hemodynamic measures associated with healthy adults, with an approximate mass of 

70 kg.  
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Figure 5.9 Hemodynamic performance of left ventricle over multiple cardiac cycles. 
(A) The pressure volume relationship, P-V loop, is shown for the 
extended model. The various steps of the cardiac cycle represented 
include, i) filling phase, ii) isometric contraction, iii) ejection, and iv) 
isometric relaxation. The variability observed in the P-V loop is due to 
the effects of respiration, which is captured in changes in thoracic 
pressure that affects flow into the right atrium. (B) Flow rate of blood 
pumped out of the left ventricle. (C) Bar plot of cardiac output (mL/s). 
The dotted red lines represent the physiological ranges of cardiac output 
for healthy adults, approximately 70 kg [334]. (D) Systemic pressure 
(Psa, black dashed line) and left ventricular pressure (Pmax,lv, solid black 
line) over the course of multiple cardiac cycles. 

5.6.2 Simulating systolic heart failure due to myocardial infarction 

Simulating a diseased or impaired cardiovascular state would present a 

situation that could potentially cause dramatic changes in the synaptic inputs received 

by brainstem neurons. In this study we chose to examine the effects of neuronal 

adaptation under closed-loop conditions mimicking systolic heart failure due to 
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myocardial infarction. This condition was chosen for two main reasons: i) damages 

incurred from myocardial infarction affect left ventricular structure and functions can 

be simulated by modifying corresponding physiological parameters of the heart in this 

model, and ii) relevant animal models exist that can be used to simulate systolic heart 

failure post myocardial ischemia, which will enable us to test and verify 

experimentally predictions made based on model simulations and analysis.  

Systolic heart failure following a myocardial infarction is characterized by 

ventricular remodeling that results in an enlarged left ventricle. In addition, ventricular 

contractility is reduced, which results in an impaired ability to pump blood out of the 

heart and a subsequent reduced ejection fraction, where an ejection fraction less than 

0.5, which is considered to be the clinical threshold for classifying reduced ejection 

fraction [305,336,337]. These changes lead to increases in EDV and ESV and result in 

reduced cardiac output, reduced cardiovascular health and increases the risk of a 

reoccurrence of a myocardial infarction. However, both systolic and diastolic blood 

pressures continue to exist within ranges considered to be normotensive [338]. To 

simulate these physiological characteristics, parameters associated with left ventricular 

contractility, resistances, unstressed volumes, and sympathetic tone to the heart were 

modified to match qualitatively the physical changes that are known to occur in the 

heart following a myocardial infarction. Modified parameters are included in 

Appendix B.2.  
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Figure 5.10 Simulating systolic heart failure due to myocardial infarction. 
Hemodynamic performance of the left ventricle under the nominal 
(black) and diseased state (red) is shown, as in Figure 5.9, including the 
(A) P-V loop, (B) flow rate of blood pumped out of the left ventricle, (C) 
cardiac output (mL/s), and (D) systemic (Psa) and left ventricular 
pressure (Pmax,lv). 

5.6.3 Compensatory effects of brainstem neuronal adaptations 

To simulate neuronal adaptations, we modified parameters, defined in 

Equation 5.1, to change various aspects of the nonlinear sigmoidal behavior of the 

neuronal subtypes and specific populations included in the model. Using the 

cardiovascular measures outlined in Table 5.1 as reference for hemodynamic 

parameters in healthy adults (i.e. nominal values), we evaluate how parameter changes 

to the transfer functions can potentially compensate for or worsen cardiovascular state 

under the simulated conditions of systolic failure.  
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Initial simulation efforts focused on modifying parameters associated with all 

brainstem neurons included in the model to determine the extent to which neuronal 

adaptation could potentially compensate for impaired cardiac function. We explored a 

parameter space encompassing a 10-fold increase or decrease of the nominal 

parameters tuned to fit experimental data. We used a Sobol sampling technique to 

generate 1000 randomly selected parameter sets to explore the parameter space and 

evaluate the corresponding effects on hemodynamic behavior. Simulation analysis 

revealed that only few parameter sets were able to compensate adequately for 

impaired cardiac function, an example of this compensatory effect is illustrated in 

Figure 5.11. 



 200 

 

Figure 5.11 Hemodynamic performance based on representative neuronal adaptations 
in the brainstem. Hemodynamic performance of the left ventricle under 
the nominal (black), diseased state (red), and adapted state (blue) are 
shown. Hemodynamic behavior illustrated include (A) P-V loop, (B) 
flow rate of blood pumped out of the left ventricle, and (C) cardiac output 
(mL/s), and (D) systemic (Psa) and left ventricular pressure (Pmax,lv). 
Based on these neuronal adaptations, the resulting ejection fraction is 
0.635. 

In this example, changes to parameters associated with all brainstem transfer 

functions were able to shift the pressure-volume relationship from the diseased state 

back towards the nominal hemodynamic condition. Ejection fraction, EDV, EDP, 

ESV, and ESP were brought back to near nominal levels. Although a slight increase in 

systolic and diastolic pressures occurred, these pressures were well within 

normotensive blood pressure ranges. A closer examination of the behavior of the 



 201 

modified brainstem transfer functions show that multiple changes to input-output 

response, as illustrated in Figure 5.12. 

 

Figure 5.12 Representative adapted input-output transfer function relationships of 
neuronal subtypes and populations modeled in the brainstem. Changes to 
the sigmoidal input-output relationships describing neuronal function are 
shown for the input-driven neuronal subtypes and neuronal brainstem 
populations included in the brainstem portion of the model. Nominal 
(solid black line) and adapted (dashed blue line) input-output behavior is 
shown for the (A) baroreceptor subtype, (B) lung stretch receptor 
subtype, and (C) cardiopulmonary subtype. Additional brainstem 
neuronal populations included those in the (D) NA, primarily affecting 
heart rate, (E) NAcontractility, primarily affecting ventricular contractility, 
and (F) DMV, which primarily affects ventricular contractility. 

Changes included increases in the dynamic response range of these neuronal 

populations. The rightward shift of the sigmoidal curve indicates an increase in the 

range of input values to which these populations are sensitive. Moreover, the 
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sensitivity of these neuronal populations, indicated by the slope of the curve, changes 

as well. To gain a better understanding of how these changes affected vagal tone, we 

analyzed the time-dependent changes to the various inputs and outputs associated with 

these neuronal populations. The corresponding input and output firing frequencies are 

compared in Figure 5.13.  

 

Figure 5.13 Input signal characteristics in brainstem due to adaptations occurring 
throughout the brainstem. Firing frequency outputs are shown over the 
last 50 secs of the 200 sec simulation for the nominal (black), diseased 
(red), and adapted (blue) states. In (A), the top subpanel illustrates the 
input firing frequency received by the neuronal population in the NA that 
primarily affects heart rate. Middle panel: Input firing frequency signal to 
the neuronal population in the NA that primarily affects contractility. 
Bottom panel: Input firing frequency signal to the neuronal population in 
the DMV that affects contractility. (B) Top panel: firing frequency 
representing vagal tone (fev) that modulates contractility (Emax). This 
firing frequency represents the sum of the output signals generated by 
brainstem neuronal populations represented by the NAcontractility and DMV 
transfer functions. Bottom panel: the resulting contractility of the left 
ventricle. (C) Top panel: firing frequency representing the vagal tone that 
modulates heart rate. Bottom panel: resulting heart rate.  
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From the results, it is apparent that regardless of the higher input firing 

frequencies to the NA, DMV, or NAcontractility, lower firing frequencies are generated 

by these neuronal populations resulting in decreased vagal tone. This decrease in vagal 

tone results in a corresponding increase in ventricular contractility and a slight 

increase in heart rate. Ultimately, this leads to a desirable increase in cardiac output 

and improved ejection fraction (0.635, Figure 5.11). 

Having demonstrated that compensation could be achieved through neuronal 

adaptation in the brainstem, we next sought to determine whether this compensatory 

effect could be localized to a particular neuronal subtype or population. Based on the 

functional importance the NTS plays in blood pressure regulation and the distinct roles 

that the NA and DMV have in regulating vagal outflow, we divided and examined the 

brainstem into two distinct sections, i) the NTS, and neuronal subtypes therein, and ii) 

the NA and DMV. We therefore examined the effects of adaptation to the NTS and 

associated neuronal subtypes separate from adaptive changes occurring to the neuronal 

populations mediating the effects the NA and DMV have on heart rate and 

contractility. Similar to the initial simulation analysis, we preformed simulation 

analysis using randomly selected parameter sets for each division of the brainstem. 

Our analysis revealed that of the 1000 independently selected parameter sets tested, 

none were able to complete compensate and return hemodynamic behavior of the 

cardiovascular system. However, several parameter sets were able to improve 

hemodynamic behavior, decreasing EDV and ESV while increasing ejection fraction 

to values nearing 0.5 (ejection fraction = 0.425), an example of which is shown in 
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Figure 5.14, along with the corresponding changes to the input-output transfer 

function behavior in Figure 5.15. 

 

Figure 5.14 Hemodynamic performance based on representative neuronal adaptations 
in the NTS. Hemodynamic performance of the left ventricle are shown 
based on neuronal adaptations occurring only in the NTS neuronal 
subtypes. Nominal (black), diseased (red), and adapted states (blue) are 
represented with (A) P-V loop, (B) flow rate of blood pumped out of the 
left ventricle, and (C) cardiac output (mL/s), and (D) systemic (Psa) and 
left ventricular pressure (Pmax,lv). Based on these neuronal adaptations, 
the resulting ejection fraction is 0.425. 
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Figure 5.15 Representative adapted input-output transfer function relationships of 
neuronal subtypes in the NTS. Changes to the sigmoidal input-output 
relationships describing neuronal function are shown for the input-driven 
neuronal subtypes in the NTS. Nominal (black), diseased (red) and 
adapted (dashed blue line) input-output behavior is shown for the (A) 
baroreceptor subtype, (B) lung stretch receptor subtype, and (C) 
cardiopulmonary subtype. Note that the nominal and adapted transfer 
functions in (D-F) overlap each other because no changes were made to 
the NA, NAcontractility, and DMV transfer functions. 

In this particular case, it is interesting to note that in Figure 5.15, the baroreceptor-

driven neuronal subtypes experience a large rightward shift is observed, larger than 

any shift observed in the other neuronal subtypes. In addition, the increase in the 

dynamic response range of this subtype and the lung-stretch-receptor-driven neuronal 

subtype is much larger than the adaptation required to compensate for systolic heart 

failure when all neuronal populations in the brainstem were modified. The 
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corresponding input and output firing frequencies associated with adaptation occurring 

only in the NTS are provided in Figure 5.16. 

 

Figure 5.16 Input signal characteristics in brainstem due to adaptations occurring in 
neuronal populations outside of the NTS. Firing frequency outputs are 
shown over the last 50 secs of the 200 sec simulation for the nominal 
(black), diseased (red), and adapted (blue) states. (A), Top panel: input 
firing frequency received by the neuronal population in the NA that 
primarily affects heart rate. Middle panel: Input firing frequency signal to 
the neuronal population in the NA that primarily affects contractility. 
Bottom panel: Input firing frequency signal to the neuronal population in 
the DMV that affects contractility. (B) Top panel: firing frequency 
representing vagal tone that modulates contractility. This firing frequency 
represents the sum of the output signals generated by brainstem neuronal 
populations represented by the NAcontractility and DMV transfer functions. 
Bottom panel: the resulting contractility of the left ventricle. (C) Top 
panel: firing frequency representing the vagal tone that modulates heart 
rate. Bottom panel: resulting heart rate. 

The figures above, comparing the corresponding firing frequencies of the 

nominal, diseased, and near-compensated state, show a similar reduction in vagal tone 



 207 

affecting ventricular contractility and heart rate. It is interesting to note that the firing 

frequencies received by the NA are much lower and more stable than the input firing 

frequencies in the previous example, where all brainstem parameters were modified. 

This reduction in firing frequencies is due, in part, to the large rightward shift 

observed in the baroreceptor-driven NTS neuronal subtype. Because the input 

frequency required to achieve half of the maximum response output increased 

dramatically, it effectively desensitized this subtype to any inputs generated by the 

baroreceptors. This in turn resulted in the decreased output from this NTS subtype and 

decreased the overall input to the NA, which subsequently decreased vagal tone. 

While the adaptations differ from those that occurred from the initial parameter 

adjustment study, the effects are the same – a reduction in vagal tone leading to an 

increase in ventricular contractility. 

Finally, simulations involving parameter modifications to only the NA, 

NAcontractility, and DMV revealed that hemodynamic behavior can be restored to 

nominal ranges. An example of compensatory effects of neuronal adaptation in these 

neuronal populations is presented in Figures 5.17-5.18: 
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Figure 5.17 Hemodynamic performance based on representative neuronal adaptations 
in the NA, NAcontractility and DMV neuronal populations. Hemodynamic 
performance of the left ventricle are shown based on neuronal 
adaptations occurring only in the NTS neuronal subtypes. Nominal 
(black), diseased (red), and adapted states (blue) are represented with (A) 
P-V loop, (B) flow rate of blood pumped out of the left ventricle, and (C) 
cardiac output (mL/s), and (D) systemic (Psa) and left ventricular 
pressure (Pmax,lv). Note the increase in systemic pressure due to the 
adapted state. This is likely due to the increased flow from the left 
ventricle. Based on these neuronal adaptations, the resulting ejection 
fraction is 0.630. 
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Figure 5.18 Representative adapted input-output transfer function relationships of 
brainstem neuronal subtypes outside of the NTS. Changes to the 
sigmoidal input-output relationships describing neuronal function are 
shown for the input-driven neuronal subtypes in the NTS. Nominal 
(black), diseased (red) and adapted (dashed blue line) input-output 
behavior is shown in the input-driven NTS subtypes in (A-C). Note that 
no changes are observed as parameters associated with these subtypes 
remained constant in this representative example. Nominal and adapted 
states are shown for (D) NA, (E) NAcontractility, and (F) DMV transfer 
functions, i.e. neuronal populations. 
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Figure 5.19 Input signal characteristics in brainstem due to adaptations occurring in 
neuronal populations outside of the NTS. Firing frequency outputs are 
shown over the last 50 secs of the 200 sec simulation for the nominal 
(black), diseased (red), and adapted (blue) states. (A), Top panel: input 
firing frequency received by the neuronal population in the NA that 
primarily affects heart rate. Middle panel: Input firing frequency signal to 
the neuronal population in the NA that primarily affects contractility. 
Bottom panel: Input firing frequency signal to the neuronal population in 
the DMV that affects contractility. (B) Top panel: firing frequency 
representing vagal tone that modulates contractility. This firing frequency 
represents the sum of the output signals generated by brainstem neuronal 
populations represented by the NAcontractility and DMV transfer functions. 
Bottom panel: the resulting contractility of the left ventricle. (C) Top 
panel: firing frequency representing the vagal tone that modulates heart 
rate. Bottom panel: resulting heart rate. 

Although hemodynamic behavior were restored to levels within nominal 

ranges, there was a corresponding increase in blood pressure (systolic blood pressure 

= 142 mmHg, diastolic blood pressure = 89 mmHg), a result due to change in cardiac 

output, which was above nominal conditions. Similar to other conditions that 

improved or returned hemodynamic behavior, vagal tone was decreased, which led to 



 211 

an increase in contractility and in increase in cardiac output. Vagal tone affecting heart 

rate showed a much more dynamic profile than the vagal tone affecting contractility. 

This difference was due to the presence of distinct transfer functions (neuronal 

populations) that affect either heart rate or contractility. The parameter changes 

affecting the NA neuronal population modulating contractility caused a larger shift in 

the input threshold, effectively minimizing the response output of this population to 

the input firing frequencies received. The parameter changes associated with the NA 

neuronal population affecting heart rate did not shift the input threshold as 

dramatically and thus this neuronal population would generate output firing 

frequencies that mimic the dynamics of the input signal received.  

5.7 Discussion 

In this study, we investigated the functional relevance of adaptation occurring 

to distinct neuronal subtypes within the context of baroreceptor reflex regulation of 

arterial blood pressure. By developing a closed-loop control model of short-term 

baroreflex regulation of distinct cardiovascular functions, we were able to examine 

how adaptation of neuronal subtypes within the NTS and brainstem affect vagal tone 

and compensate for changes associated with a diseased state. By modifying the 

parameters characterizing the left heart, we were able to reproduce hemodynamic 

behavior corresponding to systolic heart failure induced by myocardial infarction.  

The results from the simulation analysis suggest that neuronal adaptation is 

necessary to compensate for the impaired systolic function of the left heart. These 
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compensatory changes are the result of reduced vagal tone which ultimately results in 

increased ventricular contractility, cardiac output, and improved ejection fraction. 

Based on the organization of the brainstem and the distinct connections of neuronal 

populations affecting specific cardiac functions, heart rate was not as dramatically 

affected in compensated conditions as ventricular contractility.  

A common theme across the compensated conditions under the impaired 

cardiovascular state induced by systolic heart failure was reduced vagal tone. These 

results align with current knowledge, which dictates that cardiac vagal activity is 

diminished and unresponsive in diseased states [38]. Impaired vagal activity is 

typically coupled with increased sympathetic activity, leading to many symptoms 

observed in heart disease. However, our results indicate that this decreased vagal 

activity acts as a short-term compensatory mechanism by which brainstem neurons 

seek to improve hemodynamic behavior and cardiovascular state. This short-term 

compensatory response aligns with the expected physiological changes associated with 

systolic heart failure following myocardial infarction. Because the compliance of the 

heart decreases, i.e. cardiac muscle fibers become “stiffer” as a result of the infarction, 

the contractility of the heart decreases [339,340]. To compensate for the resulting 

lowered cardiac output, a possible mechanism to increase cardiac output is to increase 

neuronal excitation (or similarly decrease neuronal inhibition) of the ventricles to 

increase contractile efforts. This can be achieved by increasing sympathetic tone and, 

as suggested by our model simulations, by decreasing vagal tone and the inhibitory 

influence of parasympathetic innervations to the ventricles.  
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Despite the compensatory effects decreased vagal tone may have in the short-

term, sustained impairment of vagal tone is undesirable, so much so that it has become 

prognostic indicator of heart health [341]. In addition, clinical evidence supports the 

benefits of elevating vagal tone in heart disease, which provides cardioprotective 

effects. As our model indicates what neuronal adaptations occur to provide a short-

term compensatory effect, it is possible that these changes are somehow sustained and 

continue to inhibit vagal tone long-term. By understand the adaptive changes that 

occur initially, it may be possible to investigate and target these mechanisms to 

improve vagal drive.  

Our simulation analysis provides several interesting insights into these 

neuronal mechanisms. Because the NTS, NA, DMV, and the neuronal subtypes within 

these nuclei are connected and modulate vagal tone [38], neuronal adaptation may 

affect multiple neuronal populations within the brainstem and affect vagal tone. Our 

results indicate that neuronal adaptation, represented by parameter changes to the 

corresponding transfer functions, must occur in multiple brainstem neuronal 

populations to compensate for impaired systolic function. Adaptations occurring only 

in NTS neuronal subtypes were not enough to fully compensate for the impaired state 

nor improve cardiac output and ejection fraction to nominal levels. While the 

parameter space explored in our analysis involved a 10-fold increase/decrease from 

the nominal parameter values, exploring a larger parameter space would unlikely lead 

to different results or conclusions. This is due to the structure of signal flow occurring 

from the NTS to the NA and DMV and the sigmoidal input-output transfer functions 
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used. Reducing vagal tone in the context of this model would require decreasing 

output firing frequencies from the NTS neuronal subtypes. However, minimum firing 

frequencies tested in our simulations included near-zero firing levels. Thus, it is 

unlikely that exploring a larger parameter space would result in the identification of 

parameter sets representative of neuronal adaptations that would fully compensate for 

systolic heart failure. The need for adaptations to occur in the neuronal populations of 

the NA and DMV supports the importance that these nuclei play in regulating 

cardiovascular function and state. 

The neuronal changes occurring in the transfer functions representing the 

neuronal populations in the NA and DMV indicate that they minimize the outputs 

generated by the NTS. These adapted neuronal populations appear to act as filters or 

synaptic gates, modulating the input signals generated by the neuronal subtypes in the 

NTS, as seen in Figures 5.13, 5.16, and 5.19. Neuronal adaptations that lead to this 

gating effect may be a potential area to focus. Targeting molecular mechanisms 

contributing to this sustained gating effect by neuronal populations in the NA and 

DMV may improve or reverse this neuronal gating behavior by the NA or DMV that 

when sustained, leads to the impaired vagal tone and overall autonomic imbalance 

associated with heart disease.  

Several molecular mechanisms associated with autonomic imbalance in other 

conditions of heart disease and cardiac dysfunction have focused on ion-channels 

affecting membrane potential. One example includes the Kv1.1 Shaker-like potassium 

channel encoded by the Kcna1 gene. Gene knockout studies investigating sudden 
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unexplained death in epilepsy (SUDEP) have shown that this gene plays a central role 

in primary neurogenic cardiac dysfunction, affecting neural signaling between the 

brain and heart [342]. Specifically, increased parasympathetic tone as a result of 

deficient or absent Kcna1 expression in the vagal nerve fibers was found to contribute 

to the neurocardiac defect in mouse models. In this context, a sustained 

overexpression of Kcna1 in neurons within the NA and DMV may contribute to the 

reduced vagal drive observed in the model simulations. Another ion channel related 

target includes N-type Ca2+ channels (NCCs). Pharmacological studies performed in 

dnNRSF-Tg mice, a transgenic mouse model of cardiomyopathy, revealed that 

blocking NCCs improved autonomic imbalance by reducing sympathetic overdrive as 

well as improving parasympathetic drive [343]. Although the molecular mechanisms 

underlying this autonomic modulation remain unclear, it is believed that blocking 

NCCs affect the interaction between the sympathetic and parasympathetic arms of the 

ANS. Thus characterizing expression of genes coding for NCCs and the associated 

regulatory interactions affecting expression in the NA and DMV may reveal potential 

novel therapeutic targets for improving parasympathetic drive.  

While this model represents a quantitative characterization of brainstem 

neuronal components involved in cardiovascular regulation that have not been 

modeled to this extent, as far as we know, there are limitations to this model worth 

discussing. While only a few select afferent input-types were included in this model, 

the NTS receives a diverse array of afferent and higher-order inputs. For example, 

chemoreceptor afferents terminate in the NTS and play a major role in cardiovascular 
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regulation. Although chemoreceptors have a larger influence in regulating pH and 

oxygen levels in the blood and certainly impact cardiovascular and respiratory 

function. Furthermore, neuronal populations in the DMV have been shown to generate 

spontaneous rhythmic firing patterns. These pacemaker neurons play a critical role in 

modulating heart rate and respiration, both of which impact cardiovascular function as 

well [131,331]. While these omissions limit what types of physiological conditions 

can be explored with this model, they provide future opportunities to improve the 

model and enable one to use this model to explore additional conditions such as 

neuronal mechanisms involved in impaired response to exercise-induced stress in 

those suffering systolic heart failure post myocardial infarction.  

Despite these limitations, this model provided a platform with which to 

examine the functional relevance of neuronal adaptation, as suggested from the single-

neuron analysis of the NTS. The adaptive responses generated by input-driven 

neuronal subtypes and neuronal populations in the brainstem provide a mechanism 

through which the autonomic nervous system is able to provide short-term 

compensation for changes or impaired function, such as the case of systolic heart 

failure. These results suggest that neuronal adaptation provides a mechanism which 

enables robust short-term regulation of cardiovascular homeostasis by the brain. 

Further analysis is required to explore how or why these neuronal adaptations, which 

lead to this gating effect that inhibits vagal tone, are potentially sustained in cases of 

systolic heart failure. Possible model extensions and simulation work are provided in 

the final chapter of this dissertation.  
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Chapter 6 

MOLECULAR AND CELLULAR ORGANIZATION UNDERLYING THE 
CIRCADIAN PHASE SHIFT RESPONSE IN THE SUPRACHIASMATIC 

NUCLEUS 

 

In this chapter, the approaches and concepts developed in Chapters 3 and 4 

are applied towards identifying an organizational framework in which 

transcriptionally heterogeneous single neurons form neuronal phenotypes within the 

suprachiasmatic nucleus. A statistical analysis is also performed to identify paracrine 

signaling mechanisms through which these phenotypes form a cellular interaction 

network that underlies the response of the suprachiasmatic nucleus to a light-induced 

circadian phase-shift.  

6.1 Introduction 

The work presented in this chapter represents a departure from the NTS and 

the neurons within. In Chapters 3 and 4, experimental and multivariate analytical 

approaches were applied to identify transcriptional phenotypes amid the 

transcriptional heterogeneity pervasive across single NTS neurons. Analyzing the 

heterogeneous transcriptional states of these neurons with respect to their functional 

connectivity revealed distinct input-driven neuronal subtypes, which respond 

adaptively to the inputs received. Using similar approaches, we test the generality of 
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this type of molecular organization by studying another brain nucleus, the 

suprachiasmatic nucleus (SCN). In this study, the transcriptional heterogeneity of 

single SCN neurons is analyzed to identify not only what neuronal phenotypes may 

exist in the SCN, but to determine how these neuronal phenotypes may organize into 

larger more complex cellular networks, which are critical in maintaining SCN 

function.  

As discussed in § 2.2.2, the principal biological clock in mammals resides in 

the suprachiasmatic nucleus (SCN). This nucleus synchronizes physiological and 

behavioral processes throughout the body to cycles with periods of approximately 

twenty-four hours, i.e. circadian rhythms. Synchronization, which enables coordinated 

anticipation of the 24 h daily light/dark cycle, results from coherent, rhythmic output 

signals generated and adjusted by the SCN in response to photic inputs. This cyclic 

behavior of the SCN arises from single neurons, which exhibit autonomous circadian 

rhythms, interacting with one another via synaptic and paracrine signaling 

mechanisms to form cellular interaction networks that synchronize the oscillatory 

behavior of individual SCN neurons [108]. Consequently, SCN tissue is able to 

generate synaptic and molecular signals that are more precise and rhythmic than those 

of individual neurons. Because synchronization results in part from emergent 

properties of the cell-interaction networks underlying SCN function, a better 

understanding of such properties requires knowledge of the functional behavior of 

these cellular networks and how their constituent components (i.e., single neurons) are 

organized. 
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Prior studies characterizing SCN neurons relied on intrinsic neurochemical 

features and spatial localization, connecting SCN regional phenotypes to biomolecular 

signaling mechanisms. Immunohistochemical (IHC) staining of neurons expressing 

vasoactive intestinal polypeptide (VIP) or arginine vasopressin (AVP) have shown 

that these neurons mainly localize within the ventrolateral (core) or dorsomedial 

(shell) regions of the SCN, respectively [148,344,345]. VIP+ and AVP+ neurons 

differ in the expression of cell-surface receptors and genes involved in circadian 

regulation (i.e. core clock genes) in response to light stimuli. Distinct spatial 

localization and transcriptional responses in VIP+ and AVP+ neurons have made these 

neuropeptides convenient neuronal phenotypic markers that have provided insight into 

the function and spatial organization of the photic input-oscillator-output system that 

entrains the SCN to a light/dark cycle [346–349].  

However, single-cell level analyses have shown that individual neurons 

comprising SCN cell-networks are heterogeneous across multiple functional levels, as 

exemplified in single neuron firing patterns, which occur at different phases of the 

circadian cycle [350], and in the period of oscillatory gene expression programs, 

which varies from 22 h to 30 h [98,273,351]. Additionally, while most VIP+ and 

AVP+ neurons exhibit intrinsic rhythmic firing rates and transcriptional programs, not 

all neurons (in vitro) exhibit circadian behavior. In the absence of synaptic signaling, 

these behaviors can become unstable, resulting in some neurons losing their intrinsic 

rhythmicity while others can spontaneously gain rhythmicity [352]. Further, waves of 

gene expression travel through cultured SCN tissue in an orderly fashion [353] 
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indicating that a complex phase relationship exists among neuronal oscillators, even 

when functionally coupled. 

Understanding how neurons interact and form cell-interaction networks 

regulating circadian behavior is further confounded by the inherent transcriptional 

heterogeneity exhibited by single neurons, as reported in [27,93] and analyzed 

previously in Chapters 3 and 4. The results obtained from the analysis of single NTS 

neurons in Chapter 3 suggests that single-neuron transcriptional heterogeneity may be 

understood in terms of the synaptic and neuromodulatory inputs that drive neurons 

into distinct transcriptional states [106]. Concomitantly, recent work has shown that 

phase-shift behavior in the SCN arises from the expression behavior of multi-genic 

networks [149,156,157,159]. These results, when considered with the input-driven 

nature of photosensitive SCN neurons and their region-specific peptide expression 

behavior, suggest that analyzing both the transcriptional responses of individual SCN 

neurons to photic inputs and their spatial distribution throughout the nucleus would 

provide insight into the neuronal phenotypic states and organization of these states 

comprising the cell-networks that drive the robust and synchronized outputs of this 

brain nucleus.  

In this chapter, an analysis of the SCN is performed to reconcile the 

heterogeneous behavior of individual SCN neurons with the coordinated behavior of 

the SCN. A combined experimental and computational approach, similar to those 

described in Chapter 3, are applied. The transcriptional and spatial diversity of single 

SCN neurons are analyzed in mice experiencing a light-induced phase-shift in their 
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circadian rhythms and a neuronal interaction network model is developed, which is 

used to interpret the single-cell heterogeneity in the context of tissue-level function 

[22]. Towards this objective, hundreds of individual SCN neurons are sampled, using 

laser capture microdissection [33,105,354,355], while their in situ positions are 

tracked simultaneously. These neurons are subsequently characterized, independent of 

prior knowledge of known SCN neuron-types, using their transcriptional states across 

a panel of circadian-related genes in order to characterize neurons more 

comprehensively than might be possible from a single biomarker or a select few 

biomarkers [94]. Given the previous extensive characterization of the transcriptional 

regulation of circadian rhythms [156,158,356,357], the current study focuses on 

analyzing the expression levels of 96 genes relevant to intercellular signaling and gene 

expression programs previously identified to contribute to neuronal phase-shifting 

behavior [149,156,157,159]. Prior studies have shown that gene panels of similar scale 

and functional diversity provide a sufficient basis to define a framework within which 

to interpret the transcriptional heterogeneity of single cells in the brain [97,105]. 

Single SCN neurons from dark-adapted mice or mice experiencing a light-induced 

(light-pulsed) phase shift in their circadian rhythms. Using multivariate analytical 

techniques and a particular technique from the field of graph network theory known as 

community structure detection, we analyzed the transcriptional states of these neurons 

and identify a molecular organizational framework within which distinct functional 

groups of SCN neurons function and interact. The material in the current chapter has 

appeared in a journal article co-written by the author.[358] 
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6.2 Experimental and Computational Methods 

6.2.1 Animal Model 

The objective of this study was to study the in vivo transcriptional responses of 

SCN neurons to a light-induced circadian phase-shift. To this end, C57BL/6J male 

mice between 4–6 weeks (Charles River Laboratories - Wilmington, MA) were 

housed within 12 hour light, 12 hour dark cycles and given free access to food and 

water. Warm white fluorescent bulbs (150 lux) were used for the light cycle. After 10 

days of light/dark cycle entrainment, the lights were switched off. On the second day 

of the constant dark period, animals were given a one-hour light exposure (150 lux of 

white light) at Zeitgeber time (ZT) 14 h, 2 hours into their subjective dark period, and 

sacrificed one hour later at ZT 15 (light-pulsed). SCNs were also collected from non-

light-pulsed animals at ZT 15 (dark-adapted). Animals were euthanized by carbon 

dioxide asphyxiation in dim red light, and brains were extracted in light. 

Hypothalamic tissue blocks were dissected and embedded in Optimal Cutting 

Temperature (OCT) embedding medium and frozen on dry ice. OCT-embedded tissue 

samples were stored at 80˚C prior to sectioning and laser capture microdissection. All 

protocols were approved by the TJU Institutional Animal Care and Use Committee.  

6.2.2 Staining and immunofluorescent analysis 

In order to minimize RNA degradation and maintain quality of the tissue 

samples for laser capture microdissection the rapid immunofluorescent staining 
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protocol described in § 2.4.2 was used. In this study, the primary antibody anti-NeuN 

1:25 (Millipore®) and the secondary antibody Alexa-488 anti-mouse 1:50 diluted in 

PBS containing 2% BSA were used to identify SCN neurons. The slides, again 

washed with PBS, subsequently underwent a standard dehydration process (75% 

ethanol, 30sec; 95% ethanol, 30 sec; 100% ethanol, 30 sec; 100% ethanol, 30 sec), 

rinsed briefly in Xylenes (Sigma-Aldrich) for 1 min, and then transferred into another 

bath of fresh Xylenes for 5 min to further remove any trace of ethanol. Finally, the 

slides were air-dried for 5 min prior to laser capture microdissection. 

6.2.3 Sample collection and spatial tracking 

We collected 352 single SCN neurons from the light-perturbed or dark-adapted 

mice (also referred to as dark-dark mice as they are housed in constant darkness as 

opposed to being exposed to a 12 h light – 12 h dark cycle) using laser capture 

microdissection [33]. Neurons throughout the SCN were selected in an unbiased 

fashion and their anatomic location recorded. Within each coronal section collected, 

beginning with the first appearance of the rostral SCN, based on the identification of 

anatomical landmarks referenced against the mouse brain atlas, spatial coordinates 

within a 10 µm by 10 µm grid system were recorded to determine neuron location in 

each coronal section of the SCN. To indicate the grid location, 7 divisions were used 

beginning laterally from brain midline and dorsally from the ventral SCN border with 

the optic chiasm. Seven divisions were used along each axis to indicate the grid 

location. 
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6.2.4 cDNA preparation and high-throughput qRT-PCR 

Using the procedures described in § 2.4.5, the expression levels of 96 genes 

were measured using the BioMarkTM high-throughput qPCR platform. Primer-probe 

assays were developed using the Universal Probe Library (Roche, Indianapolis, IN). A 

detailed list of probe and primer sets is included in Appendix C. These gene/primer 

pairs were pre-validated by both standard PCR and qPCR analysis using cDNA 

generated from mouse hypothalamic RNA (Clontech Laboratories Inc., Mountain 

View, CA).  

The same sample preparation procedures required for high-throughput qPCR 

analysis were used, as described in § 2.4.4 and as applied in the analysis of NTS 

neurons. Raw Ct values generated from qPCR analysis in the BioMarkTM were subject 

to quality assessment prior to analysis. 

6.2.5 Gene selection 

Genes included in this study were chosen based on their functional relevance 

in the transcriptional programs underlying the oscillatory behavior of SCN neurons. 

Previous efforts in this laboratory exploring the multi-genic expression programs 

involved in circadian phase-shifts provided the foundation from which the 96 gene 

panel was designed [149]. Expression measurements included transcripts involved in 

intracellular signaling pathways, regulated downstream targets, and core-clock 

functions (Appendix C)  
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6.2.6 Qualitative assessment of data 

Due to the region-specific expression nature of certain SCN markers, we 

expected several samples to show minimal to no expression of certain genes (e.g. Vip, 

Avp). Therefore, individual reactions that failed were interpreted to represent either too 

low or no measurable amount of cDNA in the amplified sample. Consequently, a 

“minimum-1” value was substituted for that particular qRT-PCR reaction (the 

minimum value being the lowest ∆∆Ct value across all DD and LP single neuron 

samples for a particular gene) [176]. 

6.2.7 Data normalization 

Expression levels were normalized by using the Ct method, described in 

[171] and outlined previously in § 2.5.1. In this procedure, gene expression within a 

single neuron is first normalized relative to the average of three housekeeping genes, 

Actb, Hprt, and Atp5b, which do not show circadian expression rhythms 

[182,183,359,360]. In addition, these genes were shown to have the most stable 

expression across the single-neuron samples using geNorm [174]. Modified z-values 

were then calculated by means of dividing the Ct the standard deviation within a 

gene assay across all single-cell samples. Modified z-values were used for data 

visualization using heat maps.  
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6.2.8 Silhouette score 

One of the main objectives in analyzing single SCN neurons is to identify 

groups or clusters of transcriptionally similar neurons, which are interpreted to 

represent a functional phenotype. To quantify the consistency across members within 

a designated transcriptional phenotype, a silhouette score is calculated using Equation 

6.1 for each member within a cluster:  

 ( ) =
( ) − ( )

max { ( ), ( )} 6.1 

 

Here a(i) represent the average dissimilarity of member i  relative to all other 

members within its designated cluster, the lower the value of a(i), the better the cluster 

assignment. Average dissimilarity values of member i relative to all other clusters are 

then calculated, from which the lowest average dissimilarity value is chosen as b(i). 

Based on Equation 6.1, silhouette scores fall within a range of 1 ≤ s(i) ≤ 1 

A value approaching 1 indicates that the difference of a member across a 

distinct cluster is much larger than the difference within its designated cluster meaning 

that the member is well matched and vice-versa. In order to quantify the overall 

similarity across members within a cluster, the arithmetic average of all s(i) values is 

calculated within a group. Similar to an individual score, an average score 

approaching 1 indicates a well-defined cluster, 1 indicates an ill-defined cluster, and 

0 represents a neutral clustering of members. Silhouette scores were determined using 

the silhouette function provided in the R package cluster [361]. 
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6.2.9 Statistical significance of correlation thresholds 

Pearson correlation coefficients, a measure of the linear correlation between 

two variables (i.e. genes) are used to quantify the correlated expression patterns of 

genes. To verify the statistical significance of pairwise Pearson correlation coefficients 

among genes (expression levels between gene pairs across neurons) and among cells 

(expression levels within pairs of neurons across genes), we permute the data (1000 

times) to determine a distribution of correlation coefficient values. From this 

distribution, determined empirically, we identify a range of Pearson correlation 

coefficient values that are not likely to be repeated or achieved by random chance (p < 

0.05). These statistically significant coefficient values represent potential threshold 

limits that can be used in determining what correlations are included in the networks 

developed in this study. Permutations are performed across DD neurons, LP neurons, 

and specific subsets of neurons.  

6.2.10 Gene correlation networks 

A Pearson correlation coefficient threshold of 0.5 is used to define a 

statistically significant relationship between a gene pair. This correlation value of 0.5 

was empirically verified as a statistically significant threshold using repeated random 

permutations of the gene expression data within the various defined cell-types 

(described in § 6.3.7). All network figures visualizing the correlative relationships of 

interest were generated using Cytoscape version 2.8.4 (www.cytoscape.org).  
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6.2.11 Community structure detection 

The development and analysis of gene networks have offered insights into 

gene interactions underlying distinct neuronal subtypes, an example of which was 

described in Chapters 3 and 4. As part of the multivariate analysis performed on 

individual SCN neurons, we apply the leading eigenvector community detection 

technique [198]. Briefly, this technique decomposes a modular matrix representation 

of a graph composed of edges and vertices, which may represent an individual neuron 

for example. The modular matrix is partitioned into a set of representative vectors (of 

cells or genes) that principally contribute to the modular structure “hidden” within the 

original network topology [198]. In this context, the representative vectors are 

considered to represent a module or group of similar neurons. The igraph package and 

associated functions in the R statistical software [219] were used to perform leading 

eigenvector community detection in the correlation networks developed in this work.  

6.3 Results 

6.3.1 Sample collection and quality assessment 

We collected 352 single SCN neurons from mice kept either in constant 

darkness for 2 days (dark-dark or DD mice, n=2) or kept in darkness for 2 days and 

then exposed to a light-pulse (LP) at a clock time corresponding to 2 hours after lights-

out of the previous 12 h light-dark cycle (Zeitgeber time [ZT] 14; LP mice n=6). 

Brains were collected after 1 hour of light exposure in the LP group and at the 
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corresponding clock time in the DD group (ZT15, Fig. 1A). Single-cell cDNA from 

these single neuron samples was analyzed with 30,624 individual qRT-PCR 

measurements. Numerous stringent quality control tests were used to assess the data 

and ensure that only high-quality single-cell data was included in the subsequent 

analysis, as described in § 3.3.4.4. Of the total single-neuron samples collected, 29 

samples were excluded due to failed reactions, improper sample loading, or poor 

signal quality. Ultimately, 88 neurons from DD mice and 235 from LP mice were 

analyzed. Since expression levels were normalized to the mean expression level of 

three Actb, Atp5b, and Hprt, and six assays were excluded due to poor signal quality 

or assay contamination, neurons were characterized based on the normalized 

expression of 87 genes. Having assessed the quality of the single-neuron expression 

data and normalized the data to allow for an appropriate comparison of gene 

expression between treatment conditions, we performed various multivariate analytical 

methods to identify a molecular organizational framework that would enable us to 

interpret single-neuron heterogeneity in the context of the SCN’s synchronizing 

functions.  

6.3.2 Dark-adapted neurons exhibit multiple functional states  

Our analysis revealed substantial transcriptional heterogeneity across neurons 

from the DD mice (referred to as DD neurons) evidenced not only in the wide range of 

expression levels of neuropeptide and membrane receptor genes but also in the 

combinations of several key neuropeptide genes expressed. For example, Vip showed 
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binary-like expression across DD neurons, of which 45% expressed Vip levels below 

the detection limit. Single neurons expressing Vip were localized within the ventral 

portion of the SCN (Figure 6.1), as expected [108,148,362].  

 

Figure 6.1 Distribution of Vip+ and Avp+ neurons along ventrodorsal axis. A box 
plot of the ventrodorsal positioning of individual Vip+ (Ct > 0) and 
Vip- (Ct <= 0) neurons. Circles represent individual data points (i.e. 
single SCN neurons) whose color reflect the normalized expression value 
of Vip or Avp, respectively, in each plot. A Wilcoxon rank sum test was 
performed to determine if there were significant differences in 
ventrodorsal positioning between the two neuron groups. A p-value of 
1.78e4 indicates that the null hypothesis can be rejected and that there is 
a statistically significant difference (*) between the ventrodorsal 
positioning of Vip+ and Vip- neurons. Similarly, significant differences 
in ventrodorsal positioning were observed between Avp+ and Avp- 
neurons (Wilcoxon rank sum test p-value = 1.14e3). 

Avp expression, however, spanned a 4000-fold expression range across the DD 

neurons. Surprisingly, gene expression of adenylate cyclase-activating polypeptide 

(Adcyap1), which codes for the neuropeptide PACAP (a molecular input signal 
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generated by primary ganglion neurons in the retinohypothalamic tract [RHT], which 

innervates the ventral regions of the SCN) occurred in approximately 25% of neurons 

sampled from DD mice, as observed in Figure 6.2. Contrary to previous results, which 

defined distinct SCN neuronal populations based on their exclusive production of VIP 

or AVP [142,352], many DD neurons sampled expressed combinations of Vip, Avp, 

and Adcyap1, as illustrated in Figure 6.2, suggesting that these neurons may exist in 

various functional states.  

 

Figure 6.2 Multi-genic expression of Vip, Avp, and Adcyap1 in subset of neurons 
collected from dark-adapted mice. Ternary plot of the proportional 
expression levels of the neuropeptide genes Vip, Avp, and Adcyap1, 
which sum to a total value of 1. Each circle represents an individual 
neuron’s compositional Vip-Avp-Adcyap1 expression profile. This 
sample subset of single neurons from dark-adapted mice exhibits positive 
normalized expression of the three genes of interest. Colored circles 
represent individual neurons with positive co-expression of Vip/Avp 
(blue), Vip/Adcyap1 (green), Avp/Adcyap1 (orange), and 
Vip/Avp/Adcyap1 (grey). 
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Subsequent hierarchical clustering analysis based on 32 neuropeptide and 

membrane receptor genes, as well as 13 light-response genes, performed on the DD 

neurons revealed four neuronal subpopulations having distinct expression profiles 

(Figure 6.3). In addition to co-expressing combinations of Vip, Avp, and Adcyap1, 

these subpopulations were characterized by correlated expression patterns of three 

distinct groups of genes (i.e., transcription modules; Figure 6.3A) with Pearson 

correlation coefficient values greater than the statistically significant threshold 

(discussed in § 6.3.7). Despite showing no distinct expression patterns across the 

neuronal subpopulations, light-response genes including Fos, Egr1, Egr2, Jun, and 

Junb, forming a fourth transcription module, were included in Figure 6.3A to serve as 

a qualitative internal validation of our experimental approach and analysis. Because 

SCN neurons increase expression of these genes upon light-mediated activation 

[156,158,159], we expected downregulated expression of these genes in DD neurons, 

which was what was observed (Figure 6.3A). The remaining genes measured did not 

lead to further distinction of subpopulations were therefore not included when 

determining the four transcription modules heat map. The remaining genes are shown 

in Figure 6.3C. While correlations between gene expression states related DD neurons 

to a particular subpopulation, there was no clear spatial organization among these 

subpopulations (Figure 6.3B).  
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Figure 6.3 Clustering of neurons collected from dark-adapted mice. (A) Heat map 
visualizes relative expression levels (Ct) of 32 key neuropeptide, 
receptor, and light-response genes measured in the 88 single neurons 
from DD mice. Hierarchical clustering, based on the Pearson correlation 
coefficient, revealed four groups of genes (transcription modules) 
showing correlated expression across four neuronal subpopulations 
(groups of columns) defined by gene expression profiles. Colored bars 
above each group correspond to specific subpopulations. (B) Mapping of 
SCN neuronal subpopulations. Color annotation of subpopulations 
identical to gene expression-based groups defined in (A). Single neurons 
were plotted based on their recorded spatial coordinates (Material and 
Methods) along the mediolateral, ventrodorsal, rostrocaudal axes of the 
SCN. (C) Remaining gene expression shown in heat map. The remaining 
56 genes were arbitrarily sectioned into two groups for ease of visual 
interpretation and do not represent additional transcriptional modules. 

Sample clusters of DD neurons were also supported by the presence of clusters 

of neurons detected from a principal component analysis (PCA) of these neurons 

(Figure 6.4). 
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Figure 6.4 Principal component analysis (PCA) of neurons from dark-adapted mice. 
(A) Scores plot along the first three principal components obtained from 
PCA of transcriptional profiles of DD neurons (dark-grey spheres). The 
normalized Ct values were used in the PCA. Corresponding loading 
values of genes along PC 1 v. PC 2 (B), PC 1 v. PC 3 (C), and PC 2 v. 
PC 3 (D) are represented in the 2D plots. The labeled genes have a larger 
contribution to the variability observed in the dataset. The scattered 
positioning of the neurons in (A) suggest that several neurons cluster 
together and that there may be some transcriptional organization to these 
DD neurons. 
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6.3.3 Gene expression profiles distinguish dark-adapted from light-pulsed SCN 

neurons 

Concomitantly, we compared the transcriptional states of the DD and LP 

neurons using several multivariate analytical techniques to verify light-mediated 

changes in neuronal state. The Pearson correlation coefficient was used as a measure 

of similarity between all possible pairs of transcriptional profiles of neurons, which we 

visualized in a heat map. This analysis revealed two distinct clusters composed 

predominantly of positive correlation coefficients among pairs of neurons within 

treatment groups indicating that transcriptional states were more similar within than 

across treatments (Figure 6.5A). 
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Figure 6.5 Comparing neurons from dark-adapted and light-treated mice. (A) 
Pearson correlation of 332 single neurons collected across dark-adapted 
(88 neurons) and light-treated (235 neurons) mice. (B) Scores plot 
obtained from a Principal Component Analysis (PCA) on the single 
neurons (spheres) sampled shows that neurons responding to the light 
pulse (yellow) form a distinct cluster from that of the dark-adapted 
neurons (dark-gray) along the first three principal components. The 
distinct clusters indicate distinct transcriptional states between these two 
treatment groups. (C) Scores plot obtained from PCA of only neurons 
from light pulsed animals shows a large amount of variability as 
indicated by the large spread of neurons. (D) Loading values obtained 
from the PCA analysis of neurons taken from light-perturbed animals are 
plotted for PC1 and PC2 and PC1 and PC3. The labeled genes contribute 
more to the observed variability in the data, with the signaling 
neuropeptide genes Vip and Avp having the largest contributions to 
neuronal variability along PC1 and PC2. Adcyap1 and other labeled 
genes contribute to variability along PC3. 
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In a separate analysis, we used PCA to characterize the variation across the 

transcriptional states of DD and LP neurons by transforming the multi-genic 

expression states into a lower-dimensional gene expression space defined by new 

coordinate axes (i.e. principal components). We found that the first three principal 

components retained 46% of the variation in the original data, which was sufficient to 

distinguish neuronal states between the two treatment groups (Figure 6.5B). Next, we 

examined the weighted contributions (i.e. loadings) each gene had to each of the first 

three principal components to determine which genes had the largest influence on the 

distribution of transcriptional states of LP and DD neurons along these principal 

components. Genes having the largest influences (i.e. loadings with the largest 

magnitude values) along the first three principal components included light-induced 

genes such as Per1, Egr1, Egr2, Fos, and Jun [363–365], and GABA-associated 

inhibitory signaling genes such as Gabra1 and Slc12a5, which are involved in phase-

shifting responses in the SCN and synchronizing SCN neurons [144,366]. These 

results further support the idea that single-cell transcriptional profiles can be used to 

distinguish distinct functional states of neurons between treatment groups, as 

previously reported [31,105,367]. 

Although the transcriptional states of neurons between the two treatment 

groups were distinct, the large spread of transcriptional states of the LP neurons in the 

principal component space (PC 1-3) indicated that a large amount of variation within 

the LP neuronal dataset remained (Figure 6.5B yellow spheres). A PCA performed on 

the LP neurons indicated that variation across the transcriptional states of these 
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neurons were due in part to expression variations of Vip, Avp, and Adcyap1 (Figure 

6.5C-D). Interestingly, Adcyap1 expression was observed across multiple neurons 

throughout the SCN under both treatment conditions (Figure 6.6), suggesting that 

endogenous PACAP production, in addition to light-induced production in the RHT, 

may also play a role in synchronization.  

 

Figure 6.6 Spatial distribution of Adcyap1 expressing neurons. The combined 
scatterplot and histograms show light-treated cells with positive 
expression of Adcyap1 (Ct > 0) are not localized to a particular 
location and are distributed throughout the SCN. The scatterplot depicts 
the ventrodorsal and mediolateral position of the single cells. Red-
outlined circles indicate single neurons that display positive Adcyap1 
expression. The corresponding histograms show the distribution of cells 
with positive Adcyap1 expression along the ventrodorsal and 
mediolateral axes. 
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As Vip, Avp, and Adcyap1 are involved in circadian regulation and were some 

of the major contributors to gene expression variation in the LP neurons, supported by 

the loading values plotted in Figure 6.5D, we examined how well a biased 

classification approach, one based on the expression levels of these three genes, would 

be able to categorize transcriptional phenotypes of SCN neurons.  

6.3.4 Neuropeptide-based classification poorly characterizes transcriptional 

states of light-pulsed neurons 

Classifying neurons based on a binary classification of expression levels for 

Vip, Avp, and Adcyap1, with neurons either demonstrating positive (–∆∆Ct > median 

gene expression) or negative expression (–∆∆Ct <= median gene expression), yielded 

eight clusters (Figure 6.7A). Similar to the behavior of DD neurons, a small subset of 

LP neurons (10%) co-expressed Vip, Avp, and Adcyap1 (Figure 6.7B), which aligns 

with prior observations of Vip and Avp co-expression reported by Romijn et al. [146] 

and Mieda et al. [145].  
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Figure 6.7 Sorted gene expression profiles of SCN neurons in light-pulsed (LP) 
mice with respect to Vip, Avp, and Adcyap1. (A) Heat map visualizing 
normalized gene expression of Vip, Avp, and Adcyap1 across LP neurons. 
Neurons are categorized based on positive (Ct,gene-i > 
median(Ct,gene)) or negative (Ct,gene-i <= median(Ct,gene)) 
expression. (B) Boxplots show distribution of Vip+/Avp+ neurons and 
remaining sampled neurons along ventrodorsal, mediolateral, and 
rostrocaudal axis of SCN. A majority of Vip/Avp+ neurons are 
positioned dorsally relative to the Vip+/Avp+ neurons. (C) Heat map 
visualizing expression of 87 genes from across light-treated neurons. 
Neurons are organized as in (A). Dendrogram on left side of heat map 
indicates how genes were grouped was based on the Pearson correlation 
coefficient. 
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A heat map of the rearranged multi-genic profiles of LP neurons revealed four 

transcription modules that showed distinct, correlated expression patterns across 

several, but not all of the eight neuronal groups (Figure 6.7C). Since gene expression 

within the transcription modules appeared to correlate with Vip, Avp, and Adcyap1 

expression, we expected that these genes would act as central regulators or hubs in 

gene networks in which the expression of core clock and functional genes would be 

co-regulated. We subsequently identified statistically significant correlative 

relationships (Pearson correlation coefficient > 0.5) among all pairwise combinations 

of the 87 genes measured and developed gene correlation networks to investigate gene 

regulatory network behavior [368–370]. Gene correlation networks were developed 

from expression data across LP neurons and subsets of LP neurons, defined by 

positive normalized expression of key neuropeptide (Vip+, Avp+, Adcyap1+) and 

receptor genes involved in circadian rhythmicity and synchronization.  
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Figure 6.8 Gene correlation networks within specific SCN cell-types. (A) Combined 
gene correlation network across all genes and all subsets of neurons. 
Edges between nodes (genes) correspond to a Pearson correlation 
coefficient greater than 0.5, which was determined to be statistically 
significant (refer to Figure 6.20). Vip, Avp, and Adcyap1 are separated 
from their highly interconnected gene clusters in order to highlight these 
specific neuropeptide genes. Node placement is identical in the 
subsequent correlation networks for specific neuron-types (B-D). (B) 
Vip+ neuron gene correlation networks. When Vip expression is 
upregulated, few correlations are shared with other genes whereas Vip2r 
shows a larger number of gene correlations when it is expressed at high 
levels. (C) Avp+ neuron gene correlation network. Similar correlation 
behavior among genes with respect to neuropeptides and receptors is 
observed. Moreover, minimal correlations are observed among genes 
with the receptors for Avp (Avpr1a, Avpr2a) in Avp+ neurons. (D) 
Adcyap1+ neuron gene correlation network. Gene correlation networks 
were constructed using Cytoscape version 2.8.4. 
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The gene correlation network across all LP neurons showed a large number of 

pairwise correlations involving Vip, Avp, and Adcyap1 (Figure 6.8A). However, 

correlation networks within the subsets of LP neurons revealed few statistically 

significant correlations involving these three neuropeptide genes. Within Vip+ LP 

neurons, Vip shared correlations with only three other genes (Fig. 4B). Similarly, 

neither Adcyap1 nor Avp shared any pairwise correlations in Adcyap1+ or Avp+ LP 

neurons, respectively (Figure 6.8C-D). Similar correlated behavior, or rather a lack of 

correlated expression behavior, was observed in neurons defined by positive 

expression of receptor genes, illustrated in Figures 6.9-6.11. 
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Figure 6.9 Gene correlation network within Adcyap1r1+ cells and Avpr1a+ cells. 
Gene correlation network across all genes in single LP neurons. Only 
correlative relationships (edges) with a Pearson correlation coefficient 
greater than 0.5 between genes (nodes) are included in network. Nodes 
are arranged in an identical manner as in Figure 6.8 and node colors 
represent median expression values of genes within the respective subsets 
of light-treated SCN neurons. (A) Gene correlation network across genes 
in single neurons expressing Adcyap1r1 at levels greater than or equal to 
the normalized median expression level of Adcyap1r1 across all cells. 
Receptor genes such as Prokr2, Vipr2, Avpr1a, Drd1a, and Grin2c show 
a greater number of correlative relationships among other genes than 
neuropeptide genes Vip, Avp, and Adcyap1. (B) Gene correlation network 
across all genes in single LP neurons expressing Avpr1a at levels greater 
than or equal to the normalized median expression level of Avpr1a across 
all cells. Receptor genes such as Npy1r, Npy2r, Npy5r, Avpr2, Avpr2a, 
Prok2, and Vipr2 show a large number of correlative relationships among 
other genes suggesting that receptor gene expression plays a strong 
regulatory role driving the transcriptional states of specific SCN cell-
types. Gene correlation networks were constructed using Cytoscape 
version 2.8.4. 
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Figure 6.10 Gene correlation network within Avpr1b+ cells and Avpr2+ cells. Gene 
correlation network across all genes in single LP neurons. Only 
correlative relationships (edges) with a Pearson correlation coefficient 
greater than 0.5 between genes (nodes) are included in network. Nodes 
are arranged in an identical manner as in Figure 6.8 and node colors 
represent median expression values of genes within the respective subsets 
of LP neurons. (A) Avpr1b at levels greater than or equal to the 
normalized median expression level of Avpr1b across all cells. Receptor 
genes such as Npy2r, Npy5r, Vipr2, Avpr1a, and Avpr2a show a large 
number of correlative relationships among other genes suggesting that 
receptor gene expression plays a strong regulatory role driving the 
transcriptional states of specific SCN cell-types. (B) Gene correlation 
network across all genes in single LP neurons expressing Avpr2 at levels 
greater than or equal to the normalized median expression level of Avpr2 
across all cells. Receptor genes such as Npy2r, Npy5r, Avpr1b, and Avpr2 
show a greater number of correlative relationships among other genes 
than Vip, Avp, or Adcyap1. Moreover, Vipr2, Prokr2, and Grin2c also 
show a large number of correlative relationships further suggesting the 
regulatory relationships underlying specific cell-types are driven by the 
inputs the cell-type is responding to rather than the ligand or signal it is 
generating. Gene correlation networks were constructed using Cytoscape 
version 2.8.4. 
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Figure 6.11 Gene correlation network within Vipr2+ cells. Gene correlation network 
across all genes in single LP neurons expressing Vipr2 at levels greater 
than or equal to the normalized median expression level of Vipr2 across 
all cells. Only Pearson correlation coefficients (edges) greater than 0.5 
between genes (nodes) are included. Node colors represent median 
expression value of the gene across Vipr2+ LP neurons. Node 
arrangement is identical to that of Figure 6.8. Receptor genes such as 
Npy2r, Npy5r, Avpr1b, and Avpr2 show a greater number of correlative 
relationships among other genes than Vip, Avp, and Adcyap1. Networks 
were constructed using Cytoscape version 2.8.4. 

To further verify the ability (or inability) of this neuropeptide expression-based 

categorization to describe the transcriptional states of SCN neurons, we assessed both 

qualitatively and quantitatively how well the transcriptional states of these neurons 

clustered with respect to this categorization scheme. Multidimensional scaling (MDS), 

hierarchical clustering, and minimum spanning trees (Figure 6.12) repeatedly showed 

poor consistency across the transcriptional states within the eight clusters.  



 249 

 

Figure 6.12 Neuronal hierarchical clustering (light-pulsed neurons). (A) Dendrogram 
of light-pulsed neurons based on the Pearson correlation coefficient 
distance. Cell-type definition based on neuropeptide gene expression 
does not align with hierarchical clustering indicating that the 
neuropeptide-based classifier does not accurately characterize the 
transcriptional states of single neurons. A minimum spanning tree (B) 
and a 2D MDS plot (C) further supported the inability of the 
Vip/Avp/Adcyap1 expression-based categorization to group 
transcriptional states Color annotation corresponds to the cluster colors 
used in Figure 6.7A and 6.7C. Silhouette scores for each cluster represent 
an average of the silhouette scores calculated for each member within an 
assigned cluster (§ 6.2.8) – cluster 1 (0.509), cluster 2 (0.085), cluster 
3 (0.181), cluster 4 (0.049), cluster 5 (0.175), cluster 6 (0.047), 
cluster 7 (0.104), cluster 8 (0.075). 
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Furthermore, nearly all silhouette scores (Figure 6.12 legend), a quantitative 

measure of the similarity of transcriptional states within each group, were negative, 

indicating poor consistency across transcriptional states within these groups. These 

results suggest that despite their utility in defining SCN neuron-types, categorization 

of transcriptional states based on Vip, Avp, and Adcayp1 expression is not 

comprehensive enough to describe the single-neuron heterogeneity observed. 

6.3.5 Distinct single-cell transcriptional phenotypes in light-pulsed neurons 

Due to the poor consistency of transcriptional states within clusters defined in 

the earlier approach, we sought an alternative way to characterize this transcriptional 

heterogeneity. Therefore we applied an approach that relied on the full extent of the 

multi-genic transcriptional states measured to group the LP neurons. Neurons sharing 

statistically significant similar transcriptional states (neuron-pairwise Pearson 

correlation coefficient ≥ 0.5, empirically determined to be statistically significant 

threshold using similar computational approaches outlined in § 6.2.9, the results of 

which are described in § 6.3.7), were assumed to exist in similar functional states and 

to form distinct neuronal phenotypes. We constructed a neuronal correlation network 

by connecting LP neurons having similar transcriptional states.  
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Figure 6.13 Community detection in correlation network. (A) Neuron correlation 
network based on Pearson correlation analysis across the multi-genic (87 
genes) transcriptional states of the light-treated neurons. Each node 
represents an individual light-treated neuron (purple nodes). Edges 
indicate positive Pearson correlation coefficients > 0.5. An edge between 
two nodes represents a pairwise Pearson correlation coefficient between 
two neurons. The bottom portion shows neurons that did not correlate 
strongly ( < 0.5) with other neurons. (B) Reorganized graph network 
based on community structures identified using the leading eigenvector 
community detection algorithm [198]. Highly interconnected groups of 
neurons, representing community structures within the correlation 
network, are labeled and colored accordingly. A fifth group of neurons 
(representative gray node) showed little or no correlations with other 
neurons. Genes listed next to each group correspond to the five genes 
with the highest number of correlations with the other genes (across 
cells) within the defined neuronal group. The network map was created 
using Cytoscape version 2.8.4. 

We subsequently performed a topological analysis [198,371] on the neuronal 

correlation network to identify highly interconnected modules within the network that 

were representative of neuronal phenotypes. We identified four highly interconnected 
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modules or neuronal groups and created a fifth group that consisted of neurons 

showing a minimal number of or no significant correlation with any other neurons, 

represented by the single gray node in Figure 6.13. A reorganized heat map of the 

transcriptional states based on this grouping revealed that nearly all neuronal groups 

possessed distinct expression motifs (Figure 6.14A), which was further supported by 

the more organized clustering of neurons, based on the newly identified group 

structures, in the 2D-MDS plot in Figure 6.14B. 



 253 

 

Figure 6.14 Heat map and MDS visualization of neuronal groups identified from 
community detection algorithm. (A) Heat map visualizing the underlying 
transcriptional states corresponding to the SCN neuronal subtypes 
identified in Figure 6.13B (B) 2D MDS plot of light-treated neurons, 
similar to that of Figure 6.12C, but with new neuronal group annotation 
(Figure 6.13B). Using the new neuronal group annotation, distinct 
clusters emerged, with the exception of Group 5, whose neurons are 
scattered throughout the plot, which reflects some of the similarities that 
these neurons share transcriptionally to the neurons of the other groups. 
Silhouette scores for the neuronal groups were calculated to be: Group 1 
(0.554), Group 2 (0.239), Group 3 (0.321), Group 4 (0.324), and Group 5 
(0.258). 
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To verify these neuronal groups, we compared the expression behavior and 

spatial organization of these presumptive groups (Figure 6.15) aligned with the known 

intrinsic molecular behavior and regional specificity of SCN neuron-types.  

 

Figure 6.15 Spatial distribution of neuronal groups throughout SCN. Individual 
neurons are color-labeled with the same color annotation defined in 
Figure 6.13. The same anatomical coordinates were used to track spatial 
positioning of light-treated neurons throughout the SCNs from which 
they were collected. (A) − (E) Scatterplots with marginal histograms 
show the locations and relative density of these neuronal groups along 
the ventrodorsal and mediolateral axes. (F) All 235 neurons were plotted 
with respect to their anatomical position. 
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Our analysis revealed that gene expression behavior within these groups not only 

aligned with current understanding of the SCN, but also reflected nuanced expression 

behavior and spatial organization throughout the SCN, as illustrated in Figure 6.15 and 

Figure 6.16. 

Group 1 consisted of 19 neurons that showed high Vip, Per1, and Per2 

expression, suggesting that these neurons responded directly to photic inputs from the 

RHT [148,365,372,373]. Concomitantly, immediate early genes including Fos, Jun, 

Junb, and Egr2 were also upregulated. Group 1 neurons were also predominantly 

located in the SCN core, as illustrated in Figure 6.15. Further, upregulated expression 

of Vip and immediate early genes along with the localization of these neurons within 

the core (Figure 6.15A-B) agree with prior results that map VIP+ neurons in the SCN 

core [150,351].  

Group 2 included neurons characterized by upregulated expression of Avp and 

Per2. Core clock genes were also upregulated including Cry1, Rora, Rorb, Clock, and 

Arntl1  all transcriptional regulators for Avp and Per2, which is co-expressed in 

AVP+ neurons upon light-induction [363]. Upregulated expression of VIP receptor 

gene, Vipr2, in these Avp+ neurons further relates our results to those of others  

showing interactions between VIP+ and AVP+ neurons [146,148]. Alignment between 

the core clock genes’ expression behavior across the LP neuron samples and the 

previously identified molecular behavior of the SCN lend additional validity to our 

approach and results. Group 2 neurons tended to localize medially, spanning the 

ventrodorsal region of the SCN. Although several of these neurons were located more 
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ventrally than expected, given their upregulated expression of Avp, Group 2 neurons 

were mainly located dorsally to Group 1 (Figure 6.16), which agrees with the known 

region-specific arrangement of VIP+ and AVP+ neurons in the SCN [344,374].  

 

Figure 6.16 Spatial distribution of Vip+ Group 1 neurons and Avp+ Group 2 neurons. 
Neurons (spheres) are plotted according to their spatial coordinates 
within the SCN recorded during sample collection. Group 1 neurons (red) 
are predominantly ventral to the Group 2 neurons (yellow), aligning with 
the known organization of VIP+ and AVP+ neurons in the SCN. 

Group 3 consisted of neurons exhibiting upregulated expression of Adcyap1. 

Since PACAP is produced in the RHT, the unexpected endogenous expression of 

Adcyap1 prompted us to investigate the expression behavior of other circadian genes 

in this group more thoroughly. Cell surface receptor genes including Avpr1b, Avpr2, 
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Npy1r, and Npy2r were consistently upregulated across these neurons, suggesting that 

these neurons are receptive to both AVP and neuropeptide Y (NPY). Analysis of the 

spatial organization of these neurons revealed that they were distributed throughout 

the SCN, as illustrated in Figure 6.15D. This broad spatial distribution was further 

reflected in their nuanced gene expression behavior, which included gene expression 

specific to both core and shell regions. Genes traditionally understood to be expressed 

in the core, such as Egr2, Cebpb, Jun, Rrad, and the calbindin-related gene, Calb2, 

were all upregulated. However, other genes associated with core-specific expression 

such as Crebbp and Creb1, which are involved in CREB-mediated intracellular 

signaling [149,150], were downregulated across a majority of these neurons.  

Group 4 neurons were characterized by upregulated expression of Gabra1 and 

the PACAP receptor gene Adcyap1r1. Similarly, intracellular signaling genes 

including Mapk3, Camk2b, and Prkaca [149] and the neuropeptide signaling gene 

Pcsk1n, which codes for the precursor molecule of the peptide little-SAAS, were 

upregulated as well. Since little-SAAS has been reported to be involved in 

intercellular coordination within the SCN [375], this upregulated behavior suggests 

that Group 4 plays a synchronizing role in the SCN. Similar to Group 3, these neurons 

did not show any clear spatial organization as illustrated in Figure 6.15. 

Finally, the fifth group consisted of 73 neurons not considered transcriptionally 

similar to those of other groups. However, these neurons did share some similar 

expression and spatial organizational characteristics associated with Groups 1-4. A 

subset of Group 5 neurons, for example, expressed levels of Avp similar to Group 2 
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neurons, a majority of which were located dorsomedially within the SCN. Similarly, 

several Group 5 neurons that exhibited upregulated expression of Vip and other core 

clock genes (e.g. Per2, Cry1, and Clock) mirrored both expression behavior and 

ventral localization of Group 1 neurons. However, differences in Slc12a7 and Grin2m 

expression distinguished these neurons from those of Groups 1 and 2. Likewise, 

another subset of Group 5 neurons expressed increased levels of Adcyap1r1 and 

decreased levels of Vip and Avp, similar to Group 4 neurons. However, decreased 

expression of Pcks1n differentiated these sets of neurons. It is possible that Group 5 

neurons may represent functional variances of neurons within Groups 1-4 and add 

functional robustness [376] to the coordinated SCN response to photic inputs. 

Of the five groups, Groups 1-4 included distinct transcription modules that 

were associated with upregulated expression of a key neuropeptide gene (Group 1 – 

Vip; Group 2 – Avp; Group 3 – Adcyap1; and Group 4 – Pcsk1n), which would appear 

to support current neurochemical criteria used to describe SCN neurons. However, the 

current criteria does not fully account for the underlying transcriptional states of these 

neurons, as evidenced by the presence of Group 5 neurons that express multiple 

neuropeptides and exhibit nuanced gene expression behavior. Moreover, a 

correlational analysis of the genes within each transcription module within Groups 1-4 

revealed that of the five genes having the highest number of correlations (Pearson 

correlation coefficient >=0.5), none were neuropeptide genes (Table 6.1). 
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Table 6.1 Rank order of genes with highest number of correlations within each 
neuronal group (top five genes) 

Gene 
No. of Pearson 

correlations ( 
0.5) 

Group 1 
Prokr2 15 
GPer1 14 
Gria4 14 
Nr4a1 13 
Brs3 13 

Group 2 
Rasd1 12 
Per2 11 
Rasa1 11 
Cry1 10 
Gabra1 10 

Group 3 
Rora 24 
Drd1a 23 
Prokr2 23 
Arntl 22 
Egr2 21 

Group 4 
Csnk1e 11 
Gsk3b 9 
Adcyap1r1 9 
Rora 8 
Egr1 8 

 

Furthermore, a quantitative reassessment of the reliability of this multi-genic 

approach to classify neuronal phenotypes showed that the silhouette scores for the 

newly annotated groupings of LP neurons in the MDS plane (Figure 6.14) did improve 
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(negative to positive scores), indicating better consistency among the transcriptional 

states within these groups (Figure 6.14 legend).  

In summary, topological analysis of the neuronal-correlation network revealed 

distinct transcriptomic phenotypes that are likely involved in the phase-shift response 

in LP neurons. Although the correlational analysis elucidated presumptive functional 

groups within the neuron-interaction networks, this analysis does not provide any 

insight into possible inter-neuronal signaling mechanisms through which SCN cell 

networks are maintained. Given the established role that paracrine signaling plays in 

regulating circadian cycling [377] and the broad spatial distribution of neurons within 

Groups 3-5 throughout the SCN (Figure 6.15), which suggests the presence of possible 

paracrine signaling mediated interactions, we investigated what plausible signaling 

interactions may be connecting these functional groups.  

6.3.6 Statistical inference of plausible group interactions in neuronal network 

As part of the functional gene panel used to assess transcriptional states, 

several neuropeptides and corresponding receptor genes, such as Vip-Vipr2 and Avp-

Avpr1b, were measured. Utilizing this information, we examined the distributions of 

neuropeptide and corresponding receptor gene expression across the five groups to 

infer plausible neuronal group interactions. The bivariate expression behavior of 

neuropeptide-receptor pairs across LP neurons was divided into three distinct 

signaling expression regimes:  
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i) paracrine source: (Ct,peptide > 0 and Ct,receptor <= 0) 

ii) paracrine target: (Ct,peptide <= 0 and Ct,receptor > 0)  

iii) autocrine signaling: (Ct,receptor > 0 and Ct,receptor > 0).  

 

The regime where low peptide and receptor gene expression occurred were not 

considered to play a dominant signaling role within this defined signaling scheme and 

were therefore ignored. These three regions are illustrated in a representative bivariate 

plot of ligand and receptor gene expression in Figure 6.17. In the interest of focusing 

on statistically significant group interactions, we used Fisher’s exact test to identify 

which groups, if any, were statistically enriched in each signaling regime and to 

determine their potential signaling role (Table 6.2).  
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Figure 6.17 Inferring neuronal group interactions. Neurons expressing mRNA for 
neuropeptides (ligands) and their corresponding receptors are identified 
by –ΔΔCt values and plotted in a bivariate plot. The combinatorial 
expression of the neuropeptide and receptor genes defines paracrine 
source/target and autocrine signaling roles. Each quadrant of the bivariate 
plot in the legend represents a particular signaling role a neuronal group 
may fulfill. If neuronal group(s) were determined to be statistically 
enriched within a particular quadrant (Fisher’s exact test - Table 6.2) then 
the group(s) were defined to fulfill one of the following signaling roles: i) 
paracrine source (–ΔΔCt,ligand > 0 and –ΔΔCt,receptor <= 0), ii) paracrine 
target (–ΔΔCt,ligand <= 0 and –ΔΔCt,receptor > 0), or iii) autocrine signaling 
(–ΔΔCt,ligand > 0 and –ΔΔCt,receptor > 0) role. A representative set of 
neuronal group interactions are shown based on the following 
neuropeptide-receptor pairings: Avp-Avpr1a, Vip-Vipr2, Adcyap1-
Adcyap1r1, Prok2-Prokr2, Adcyap1-Vipr2. 
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Table 6.2 Statistical enrichment of neuronal groups in signaling roles (Fisher’s 
exact test) 

 
Bold values indicate statistically significant enrichment (conditions with p-val < 0.05). 

 

Consistent with behavior of the established input-output pathway in which 

photic input stimulates VIP-producing neurons, which in turn stimulate AVP-

Fraction of group p-val Fraction of group p-val Fraction of group p-val

1 0.16 7.60E-01 0.53 9.41E-04 0.05 9.95E-01

2 0.42 7.24E-04 0.08 9.89E-01 0.39 2.13E-02

3 0.04 9.99E-01 0.41 5.70E-05 0.41 1.39E-03

4 0.05 9.99E-01 0.09 9.97E-01 0.02 9.99E-01

5 0.32 2.20E-03 0.11 9.95E-01 0.26 3.54E-01

1 0.08 8.14E-01 0.19 1.35E-01 0.03 9.93E-01

2 0.53 4.53E-06 0.06 9.99E-01 0.28 2.47E-01

3 0.00 1.00E+00 0.51 1.22E-06 0.45 2.41E-05

4 0.04 9.99E-01 0.21 7.43E-01 0.04 9.99E-01

5 0.36 4.06E-04 0.12 9.99E-01 0.22 5.83E-01

1 0.11 9.19E-01 0.42 3.44E-02 0.11 9.66E-01

2 0.44 1.68E-04 0.06 9.99E-01 0.36 5.13E-02

3 0 1.00E+00 0.49 9.52E-07 0.45 1.15E-04

4 0.05 9.99E-01 0.14 9.68E-01 0.02 1.00E+00

5 0.34 2.10E-04 0.12 9.97E-01 0.23 6.13E-01

1 0.11 9.81E-01 0.42 1.04E-02 0.16 9.32E-01

2 0.08 9.99E-01 0.44 6.07E-05 0.42 3.10E-02

3 0.49 6.69E-05 0.00 1.00E+00 0.49 1.34E-04

4 0.41 4.40E-03 0.02 1.00E+00 0.02 1.00E+00

5 0.12 9.99E-01 0.25 6.74E-02 0.27 5.44E-01

1 0.05 9.99E-01 0.42 8.40E-02 0.21 6.07E-01

2 0.31 6.66E-01 0.22 7.74E-01 0.19 6.88E-01

3 0.94 2.15E-26 0.00 1.00E+00 0.04 9.99E-01

4 0.04 1.00E+00 0.41 3.35E-03 0.39 2.90E-04

5 0.03 9.99E-01 0.32 2.05E-01 0.30 6.34E-01

1 0.21 6.07E-01 0.32 2.36E-01 0.37 1.93E-01

2 0.00 1.00E+00 0.53 1.35E-05 0.31 3.10E-01

3 0.41 1.88E-04 0.02 9.99E-01 0.51 1.09E-05

4 0.32 2.06E-02 0.04 1.00E+00 0.02 1.00E+00

5 0.10 9.99E-01 0.34 3.92E-03 0.22 8.67E-01
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producing neurons to generate synaptic and molecular outputs, we observed an 

enrichment of Group 1 neurons as a VIP paracrine source that interacts with the 

paracrine target neurons of Group 2, which co-express the corresponding VIP 

receptor, Vipr2, and Avp (Figure 6.17). Paracrine feedback signaling between Group 2 

and Group 1 via the AVP-AVPR2 pairing was supported by the data as well (Figure 

6.17, Table 6.2). Moreover, increased expression of glutamate receptors Grm1 and 

Grm5 and glutamate receptor subunit Grin1 across Group1 neurons suggest that these 

neurons are receptive to light-induced production of glutamate in the RHT.  

In addition to recapitulating known neuron interactions mediated by VIP and 

AVP, our analysis revealed additional group interactions involving Group 3 neurons. 

Interactions between Group 3 and 2 neurons were supported by upregulated 

expression of the prokineticin 2 (Prok2) and PROK2 receptor, Prokr2, pairing (Figure 

6.17). The upregulated expression of Prok2 across neurons of Group 3 suggest that 

this group fulfills PROK2-mediated roles including coordinating peptidergic output of 

the SCN [378,379]. Concomitantly, Group 3 neurons exhibited upregulated expression 

of glutamate receptor Gria4 and downregulated expression of PACAP-sensitive 

receptors Adcyap1r1 and Vipr2. The diverging expression behavior of these receptor 

genes, when considered with the fact that these neurons were co-localized in the 

ventral region (Figure 6.15) where the RHT innervates the SCN, may indicate that this 

group is responsive to glutamate-specific signals generated by the RHT, in response to 

photic inputs.  



 266 

Multiple interactions involving Group 4 also hinted at the interconnected 

nature of the neuronal network within the SCN. A plausible interaction between Group 

4 and 3, mediated by the PACAP-ADCYAP1R1 pairing (Figure 6.17), was supported 

by the increased expression of Adcyap1 in Group 3 and of Adcyap1r1 in Group 4. 

Upregulated expression of Adcyap1r1 also supports the possibility that Group 4 

neurons respond directly to photic inputs via PACAP released from the RHT 

[143,380]. Additionally, the increased expression of Pcsk1n in Group 4 implies that 

this group may fulfill a synchronizing role. Previous studies have shown that Pcsk1n 

expression localizes in neurons located centrally within the SCN, overlapping with 

neurons producing gastrin-releasing peptide (GRP) [375]. Although Grp expression 

data was not included in our final analysis (due to assay contamination), assuming that 

Group 4 neurons co-express Grp, upregulated expression of gastrin-releasing peptide 

receptor (Grpr) in Groups 2 and 3 suggests that additional interactions occur between 

these groups and Group 4, further supporting its integrating role in the SCN. 

By viewing plausible neuronal interactions in this manner, we can develop a 

more comprehensive neuron-interaction network that builds upon the established 

input-oscillator-output system. In addition to recapitulating known interactions 

between VIP+ and AVP+ neurons [142], our analysis suggests that paracrine signaling 

mechanisms connect neuronal phenotypes that are independent of the anatomical 

regions that have, in part, previously defined SCN neuron types (Figure 6.18). 
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Figure 6.18 Proposed inter-neuronal SCN networks and input-output pathways. (A) 
Dominant interactions between presumptive neuronal groups. Nodes 
represent neuronal groups while directional arrows and neuropeptide 
labels represent mode of interaction between connected neuronal groups. 
Edge thickness corresponds to the fraction of single neurons within each 
group expressing a peptide or receptor involved in the interaction. 
Dominant interactions were identified as those having a Pearson 
correlation coefficient larger than those determined from random 
permutations of the peptide-receptor expression data across the LP 
neurons. (B)  (C) Comparison of one representation of the established 
input-output pathway of the SCN versus our proposed input-output 
pathway, based on the newly identified neuronal groups. 
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6.3.7 Statistical analysis of correlation thresholds 

To determine statistically significant Pearson correlation coefficient values, 

from which a threshold limit was selected, a similar approach to that described in § 

3.4.6 was used. Multiple permutation studies of were performed on the normalized 

gene expression data (Ct) from DD neurons and LP neurons. From the gene 

expression data of the DD neurons, a distribution of all possible pairwise Pearson 

correlation coefficients between genes was determined over 1000 iterations. The 

resulting distribution of coefficients is illustrated in Figure 6.19. 
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Figure 6.19 Empirical determination of significance threshold for Pearson correlation 
coefficient values in neurons from DD mice. Normalized gene expression 
data was permuted over 1000 iterations to determine the distribution of 
gene-gene correlations across the 88 cells collected from dark-adapted 
mice Given the sample size and variability in gene expression data 
present across the dark-adapted neurons, the empirically determined 
distribution of correlation coefficients suggests that Pearson correlation 
coefficient values >= 0.25 are statistically significant to a p-value of 
0.053, marked by the red dashed line. Therefore positive Pearson 
correlation coefficients >= 0.25 determined within the dark-adapted 
neuronal data set are not likely to be a result of random chance. The 
adjacent table lists the number of significant correlations shared by the 
tabulated genes, which were depicted in the heat map of DD neurons 
(Figure 6.3). The adjacent table below lists the corresponding p-value, 
empirically determined, for the various Pearson correlation coefficient 
values from the permuted data. 

Correlation coefficients greater than or equal to a value of 0.25 have an 

associated p-value of 0.053. Thus positive gene-to-gene Pearson correlation 
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coefficients determined across DD neurons with values greater than 0.25 were 

interpreted to not likely be a result of random chance. 

The statistical significance of gene-gene and cell-cell correlation coefficients 

across LP neurons were determined in a similar fashion. Pearson correlation 

coefficients for all possible pairs were calculated using normalized gene expression 

data (Ct) that was permuted over 1000 iterations for both gene-to-gene and cell-to-

cell correlation coefficient distributions, which are shown in Figure 6.20. 
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Figure 6.20 Empirical determination of significance threshold for neuronal 
correlation network. Normalized gene expression data was permuted over 
1000 iterations to determine the possibility of generating a neuron-neuron 
correlation equivalent to or greater than those found in the data (i.e. 
pairwise neuron Pearson correlation coefficient >= 0.5). For each 
permutation, Pearson correlation coefficients were calculated for all pairs 
of LP neurons. The two histograms represent distributions of these 
Pearson correlation coefficients between various functional relationships 
determined from permuting gene expression across genes within a single 
neuron sample. None of the iterations resulted in a Pearson correlation 
coefficient equal to or larger than the correlations represented in the 
neuronal correlation network. 
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Of the 1000 permutations performed for determining either gene-to-gene or cell-to-

cell correlation coefficients, not a single permutation-based coefficient was larger than 

0.5. Thus, in the context of this study, Pearson correlation coefficients greater than 0.5 

were interpreted to be statistically significant.  

Despite the negligible possibility that a Pearson correlation coefficient between 

genes or cells greater than 0.5 could occur randomly across all genes and LP neurons 

assayed, it is possible that the correlation threshold of 0.5 may not be statistically 

significant in subsets of SCN neurons. The “noisy” nature of gene expression across 

the single SCN neurons reduces the strength of any underlying correlation between 

genes or cells. To address this concern, Pearson correlation coefficient distributions 

were determined across the subsets of SCN neurons identified in § 6.3.4. Like the 

statistical analysis performed on the LP neurons, a Pearson correlation coefficient of 

0.5 was found to be statistically significant. Distributions of correlation coefficients 

developed from the permuted data subsets are presented in Figure 6.21. 
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Figure 6.21 Empirical determination of significance threshold for gene correlation 
network (LP neurons). Normalized gene expression data was permuted 
over 1000 iterations to determine the possibility of generating a gene-
gene correlation equivalent to or greater than those found in the data (i.e. 
pairwise gene Pearson correlation coefficient >= 0.5). For each 
permutation, Pearson correlation coefficients were calculated for all pairs 
of genes. Histograms represent distributions of these Pearson correlation 
coefficients between various functional relationships including 
correlations shared with receptor genes and all the neuropeptide genes 
measured (Adcyap1, Avp, Pcsk1n, Prok2, and Vip). The dashed red line 
represents the correlation coefficient threshold used in generating the 
gene correlation network (Figure 4). These distributions were determined 
for gene-gene correlations within subset of SCN neurons including (A) 
Adcyap1+ neurons, (B) Adcyap1r1+ neurons, (C) Avp+ neurons, (D) 
Avpr1a+ neurons, (E) Avpr1b+ neurons, (F) Avpr2+ neurons, (G) Vip+ 
neurons, and (H) Vipr2+ neurons. None of the iterations resulted in a 
Pearson correlation coefficient equal to or larger than the correlations 
represented in the gene networks. 

6.4 Discussion 

A driving motivation for this dissertation is to understand how single-neuron 

heterogeneity, as defined by their heterogeneous transcriptomic state, relates to 

phenotypic function in distinct brain nuclei. Towards this goal, we analyzed and 

identified distinct transcriptomic phenotypes in the SCN and developed a molecular 

framework in which these distinct phenotypes organize into plausible cellular 

networks that contribute to and regulate SCN coordination of circadian rhythms. 

Although prior work relied on neurochemical criteria and physiological approaches to 

characterize SCN neuron types, functional heterogeneity across single SCN neurons 

conflicts with these classification approaches.  
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In this chapter, we analyzed the transcriptional and spatial organization of 

single SCN neurons from DD and LP treated mice. By integrating this precise spatial 

and gene expression data from hundreds of SCN neurons with multivariate 

mathematical techniques, we identified organizational frameworks (or lack thereof in 

the case of the DD neurons) that begin to reconcile the heterogeneous behavior 

observed in SCN neurons in dark-adapted and light-pulsed conditions. The absence of 

any clear anatomical organization in the DD neurons, relative to the structured 

anatomical organization between Group 1 (Vip+) and Group 2 (Avp+) LP neurons, 

suggests that photic inputs force a constrained transcriptional response. A diverse 

array of inputs, including non-hypothalamic neuronal innervations and paracrine 

signaling neuropeptides [377] are continually influencing and driving neuronal state 

and function [105]. The diversity of inputs is reflected in the wide range of 

transcriptional states exhibited by the DD neurons and random anatomical distribution 

through the SCN. Because the DD neurons are not receiving photic input, they are not 

forced to respond to this external constraining force and hence likely exist in a wider 

range of transcriptional states. Conversely, LP neurons exhibit more constrained and 

organized transcriptional states, due in part to the photic input received by these 

neurons. The anatomic organization between Groups 1 and 2 supports a spatially 

biased transcriptional response of SCN neurons to photic input. It is plausible that this 

spatial organization is due to RHT innervation of the SCN core. Such a cellular input-

driven transcriptional response aligns with our previous findings from an analysis of 
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single NTS neurons responding to inputs from baroreceptors sensing changes in blood 

pressure [105]. 

In addition, we established a classification of SCN neurons, which provided a 

transcriptional basis from which we could infer cell-interaction network models from a 

population of heterogeneous neurons contributing to SCN function and robustness 

[108,147,351]. Our analysis not only recapitulated known neuronal phenotypes 

(Group 1-Vip+ neurons and Group 2-Avp+ neurons), but also revealed additional 

phenotypes that have not been described previously. While there is an extensive 

amount of literature detailing the various excitatory and inhibitory signaling 

mechanisms affecting the SCN, we have focused our single-cell transcriptomic 

analysis on the neuropeptides and paracrine signaling mechanisms deemed to regulate 

the circadian clock. Within the context of this paracrine signaling network (Figure 

6.18), the neuronal phenotypes that arise from our unique single-cell transcriptomic 

data set represent neuron-types that add complexity to the paracrine signaling network 

underlying synchronization or circadian clock across the SCN. Our analysis and 

development of a neuronal network structure provides a model with which to interpret 

and understand more comprehensively the transcriptional heterogeneity pervasive 

across individual SCN neurons. 

The multi-genic analysis of SCN neurons revealed greater molecular 

complexity across a population of SCN neurons than heretofore described 

[148,149,374]. This complexity manifested in several ways including i) the spatial 

organization of a subset of Avp+ Group 2 neurons, ii) the co-expression of Vip and 
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Avp, and iii) the endogenous expression of Adcyap1 in neurons located throughout the 

SCN. One possible explanation for the larger than expected spatial distribution of 

Avp+ Group 2 neurons may be due to differences in the rhythmicity between mRNA 

and peptide expression [381]. AVP mRNA expression is robustly rhythmic while the 

corresponding peptide expression is less so. Therefore, some IHC studies have used 

the drug colchicine to inhibit release and promote accumulation of neuropeptides in 

the perikarya to enhance staining. Because single-cell qRT-PCR approaches measure 

mRNA, obviating the need for colchicine, it is possible that this approach revealed a 

subset of AVP mRNA-expressing neurons that lies outside of the dominant 

dorsomedial shell region identified by protein staining. Previous studies using in situ 

hybridization to map mRNA expression in the SCN have shown similar localization of 

AVP mRNA [344]. While co-expression of Vip and Avp is not characteristic of SCN 

neurons, our results and those of others [145,382] do support the idea that Vip and Avp 

co-expression does occur within a small subset of SCN neurons. Finally, the precise 

nature of LCM sampling, as demonstrated by results described in § 3.2.4.4, and the 

large spatial distribution of Adcyap1+ neurons throughout the SCN suggest that these 

results are not an artifact of any unlikely residual RHT processes contaminating the 

samples.  

Despite the central roles neuropeptides play in circadian regulation, our gene 

correlational network analysis suggested that neuronal states are driven more by the 

inputs they receive rather than the peptidergic outputs they produce. This result 

parallels with the results described in Chapter 3. Concurrently, this receptor-based 
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transcriptional regulation occurring in SCN neurons may reflect a neuron’s ability to 

sensitize itself to specific inputs. This sensitization or “gating” modulates SCN 

responsiveness to photic inputs at specific times during the circadian cycle 

[151,383,384]. Because transcriptional profiles were measured early in the dark cycle 

(ZT15 - a time when SCN neurons are more sensitive to phase-shifting photic inputs), 

it is possible that receptor-correlated expression reflects this gating behavior in vivo 

[151].  

6.4.1 Study limitations 

This analysis showed that nearly all neurons were associated with a particular 

neuronal phenotype, with the exception of Group 5 neurons. While we hypothesize 

that Group 5 may play multiple roles in the neuron-interaction network, the presence 

of these neurons brings to light some limitations of our sample set. Given the complex 

and dynamic nature of circadian regulation, SCN neurons are continually responding 

to multiple input types. Had we measured single-neuron transcriptional profiles at 

multiple times, our analysis would have likely revealed neuronal groups distinct from 

those identified herein.  

Moreover, while the underlying transcriptional organization of most of the 

groups identified was independent of animal-animal variability, Group 3 was 

composed predominantly of neurons taken from one animal subject (Figure 6.22). 

Given the extent of transcriptional heterogeneity observed, which in many cases 

surpass animal-animal variability [31,105,367], it is surprising to see such a 
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concentration of neurons from one animal as no experimental biases or particular 

behavioral or physiological phenotypes were identified. Further, single-cell RNA 

sequencing of SCN neurons would have provided a comprehensive perspective of the 

transcriptional states of SCN neurons and potentially lead to the identification of 

additional neuron-types not included in our analysis.  
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Figure 6.22 Animal variability across neuron correlation network. The same neuron-
neuron correlation network (Figure 6.13) is annotated with the animal 
source from which the single neurons were sampled. Each group is 
outlined with their corresponding group color as in Figure 6.13. Although 
most groups are composed of neurons from multiple light-treated mice, 
Group 3 neurons were composed predominantly of neurons from Animal 
2. 

However, the main intent of this work was to provide a molecular framework 

from which to interpret the single-cell heterogeneity of SCN neurons. Given that the 

transcriptional components underlying circadian rhythms are well characterized 
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[156,356,357], our analysis focused on these and other functionally relevant genes to 

develop an organizational framework sufficient to reconcile SCN function and single-

neuron transcriptional heterogeneity. While the data used in this study did not measure 

the complete transcriptome of the SCN neurons sampled, this study, along with 

previous efforts [97,105], suggests that the depth and breadth of the gene panel 

manually curated here is indeed able to infer a meaningful organizational framework. 

Given these limitations, further investigation - including single-cell RNAseq analysis 

across multiple time points in which photic input sensitivity and light/dark cycle 

durations differ - would provide valuable information regarding the function and 

organization of SCN networks. 

The ability to interpret how single cells organize into functional interaction 

networks from heterogeneous cellular behavior not only provides fundamental insight 

into SCN organization, but also provides similar insights into the molecular 

organization of cellular networks and neuronal circuits of other tissues that regulate 

stable steady states, such as cardiovascular homeostasis, which was examined in 

Chapter 5. These neuronal circuits undergo distributed rearrangements throughout life 

yet are able to maintain stable behavior within an environment of continual 

perturbations [8]. Previous work has investigated how neuronal circuits and networks 

configure and self-regulate via synaptic connections, synaptic scaling, and permissive 

signaling that modulate cellular behavior [8,9]. And while current efforts continue to 

yield insight into network homeostasis, questions regarding how coordinated changes 

and phenotypic modulation that regulate network homeostasis remain. “The challenge 
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is to begin assembling an emerging molecular ‘parts list’...” and “[specify] cell 

identity,” in order to understand how neural activity is regulated [9]. The approaches 

developed in Chapters 3 and 4 and applied herein to analyze and develop a data-driven 

cellular network structure provides a methodology with which to interpret how single-

cell heterogeneity contributes to cell network and neuronal circuit formation and has 

the potential to provide insight into the molecular parts list.  

6.4.2 Concluding remarks 

Our results show distinct functional phenotypes that exist outside the 

traditional neurochemical definitions of the SCN. Even though these neurochemical 

criteria are useful and conveniently describe key aspects of SCN function, they fall 

short of fully capturing the complexity and diversity of the neuronal components 

driving SCN function. Although our findings are limited to specific times chosen for 

this study, our approach provides a unique perspective of SCN functional networks 

that provide plausible explanations as to how these neuronal phenotypes and neuron-

neuron interactions organize under dark-adapted and phase-shifting behavior.  

These approaches and results discussed in this chapter provide a 

complementary perspective to the previous and more recent modeling work that 

characterizes the oscillatory molecular behavior of the SCN. Detailed work has 

modeled quantitatively the mechanistic roles of VIP [385,386], and the role that 

epidermal growth factor (EGFR) signaling plays in circadian regulation [387]. In 

addition, more recent work have applied techniques from information theory to 
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identify functional networks in the SCN based on the coupling of Per-luciferase 

expression in decoupled and coupled neurons [388]. These efforts are a few of the 

examples of some of the useful insight that have been gained in SCN function from 

focusing on a small set of genes. These methods can be applied towards understanding 

the multiple molecular mechanisms connecting the neuronal phenotypes identified in 

this chapter. As single-cell transcriptomic technologies continue to improve and 

become more widely accessible, it is important to have a viable methodology with 

which to analyze and interpret the heterogeneous transcriptional states underlying 

neuronal function. The single-cell analysis methodologies described in this chapter 

provide one such approach and thus may play a role in the continued study of the 

individual neurons in the SCN and their role in regulating circadian rhythms.  
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Chapter 7 

CONCLUSIONS AND FUTURE DIRECTION 

 

“A man would do nothing if he waited until he could do it so well that no one could 

find fault.”  

John Henry Newman (1801  1890), in Lectures on the Present Position of 

Catholics in England [389] 

7.1 Conclusions 

Throughout this dissertation, we have developed methodologies and an 

approach to analyzing and characterizing the molecular organizational principles 

underlying single-neuron heterogeneity in the mammalian brain. We applied a 

combined experimental and computational approach to analyze single-cell 

transcriptional heterogeneity in two distinct brain structures, the nucleus tractus 

solitarius and the suprachiasmatic nucleus, whose functional connectivity and spatial 

organization have been well characterized. From these efforts we have developed 

methodologies and quantitative models that characterize key molecular and 

physiological aspects of single-neuron heterogeneity in the brain.  

The ultimate goal of this work, however, is not the analytical approaches or 

models themselves, but rather the insights gained from the application of these models 
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and methods. Through our analysis of transcriptionally heterogeneous neurons with 

respect to their functional connectivity and spatial organization, we have developed an 

alternative perspective from which to interpret and understand the functional relevance 

of transcriptionally heterogeneous single neurons. Rather than being primarily the 

result of intrinsic and extrinsic stochastic factors, transcriptomic heterogeneity 

provides functional robustness through a graded set of cellular responses, as opposed 

to some uniform population response. Transcriptional heterogeneity, which reflects the 

adaptive response of neurons, provides more nuanced responses and robust regulation 

of physiological functions critical to maintaining homeostasis.  

In Chapter 2, rationale for studying the NTS and SCN as model brain nuclei to 

understand single-neuron transcriptional heterogeneity in their functional context was 

provided. To accomplish this task, details regarding the combined experimental and 

computational approach were provided. Well-established animal model systems, 

specific physiological perturbations triggering targeted transcriptional responses, 

precise sampling of single neurons via laser capture microdissection, and high-

throughput qPCR platforms such as the BioMarkTM create the experimental foundation 

that enabled the characterization of transcriptionally heterogeneous neurons in their 

neuroanatomical and functional context. A critical aspect of the analysis of high-

dimensional gene expression data includes data normalization, which removes 

systemic biases that affect subsequent analysis and prevents the appropriate 

interpretation of the data. To remove these biases, multiple normalization techniques 

were discussed. Two normalization techniques, geNorm and NormFinder [174,180], 
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used to identify multiple internal reference genes, was applied throughout the single-

cell analysis described in this dissertation. Further, given the high-dimensional nature 

of gene expression that has been observed at the single-cell level, a brief summary was 

provided of the various multivariate analytical methods that could be used to identify 

organizational patterns that would help to clarify the relevance of single-neuron 

heterogeneity.  

In Chapter 3, the combine experimental and computational approaches 

described previously were used to analyze single-neuron heterogeneity in the NTS. As 

alluded to in Chapter 2, the remarkable amount of heterogeneity observed across 

individual NTS neuron required multiple computational/multivariate techniques to 

analyze the data. Although the use of techniques such as PCA, MDS, and hierarchical 

clustering revealed a subset of genes that principally contribute to the transcriptional 

variation in the data, a meaningful interpretation of this transcriptional variability was 

only possible when the transcriptional profiles were analyzed in the context of the 

transcripts corresponding to intracellular markers of synaptic input-types received by 

these neurons. When individual neurons were classified by the types and strength of 

synaptic inputs received, distinct subtypes of transcriptionally similar neurons 

emerged from the high-dimensional gene expression data set. These neuronal subtypes 

were characterized by graded, correlated gene expression behavior of two underlying 

transcription modules. The presence of these input-driven subtypes suggests that the 

transcriptional heterogeneity of single neurons reflects their adaptive responses to 

these inputs. These results suggest an addendum be made to the canalized 
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developmental landscape initially proposed by Waddington [56,57]; once a cell 

reaches a differentiated state, the continual inputs it receives continually drives that 

cell along a dynamic transcriptional landscape populated with wells and valleys that 

represent various functional states in which a cell may exist. Furthermore, the graded 

and coordinated expression behavior across the two transcription modules suggest the 

presence of gene regulatory network(s) that coordinate this correlated behavior. The 

identification of these gene networks was the subject of Chapter 4. 

Chapter 4 describes a systems identification approach that was developed to 

generate quantitative models of gene interaction networks that characterize plausible 

mechanisms underlying the emergent neuronal subtypes identified in Chapter 3. 

Despite the difficulties in analyzing highly variable gene expression of single cells, 

these heterogeneous transcriptional states can be viewed as providing distinct 

transcriptional response profiles across these single neurons. Concomitantly, taking 

advantage of a priori knowledge of causal gene interactions reported in literature, the 

single-cell transcriptional dataset represents input-output measures that can be used to 

develop a model of the underlying processes, i.e. gene interaction networks, driving 

these input-output responses. To develop quantitative models of these networks, a 

fuzzy logic-based modeling approach was developed and applied towards analyzing 

our single-neuron high-dimensional transcriptional data set. Hill-type functions, that 

can model near-linear to near-binary ON-OFF input-output relationships, were used to 

model quantitatively nonlinear gene interactions. An optimization technique known as 

the genetic algorithm, which is based on evolutionary principles, was subsequently 
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used to train, optimize, and refine the a priori network against the context specific 

single NTS neuron transcriptional data set.  

Using this methodology, we developed and trained an a priori gene interaction 

network characterizing the AT1R functional pathway, which is heavily involved in 

blood pressure mechanisms in the brainstem. Our modeling and analysis of the AT1R 

pathway in NTS neurons revealed that distinct gene interactions were found to 

correspond to the distinct neuronal subtypes identified. Permutation studies and an n-

fold cross-validation procedure were applied and verified the statistical significance of 

the a priori network structure and the predictive capabilities of the resulting trained 

network models. Simulation studies using these network models subsequently 

revealed that the response of these distinct network structures to distinct input stimuli 

can drive single-neurons across a range of transcriptional states. Taken together, these 

results indicate that both distinct network structures and distinct network inputs 

operating on these networks contribute to the transcriptional heterogeneity observed in 

single NTS neurons; these factors can drive an individual neuron along the 

transcriptional landscape that help define the functional states of NTS neurons. We 

interpreted this ability to exist in multiple transcriptional i.e. functional states to be 

representative of a neuronal adaptive response to received inputs. Based on these 

results, we proposed that this adaptive responses represents a mechanism that enables 

the brain to regulate robustly physiological functions, such as the maintenance of 

cardiovascular homeostasis.  
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In Chapter 5 a closed-loop control model of autonomic regulation of arterial 

blood pressure and relevant cardiovascular function was developed to test this 

proposal, specifically to explore what functional relevance adaptation of neuronal 

subtypes in the NTS and in the brainstem plays in the broader functional context of 

cardiovascular homeostasis. Using this closed-loop control model we simulated the 

diseased state of systolic heart failure due to myocardial infarction, which leads to an 

impaired cardiovascular state, to evaluate what effects neuronal adaptation would have 

on baroreflex regulation of cardiovascular performance. We then tested the effects of 

neuronal adaptation on short-term baroreflex regulation of the cardiovascular system 

by running multiple simulations using randomly selected parameters sets 

corresponding to the input-output transfer functions corresponding to the distinct 

neuronal subtypes in the brainstem. Simulation results revealed that neuronal 

adaptations can compensate for impaired cardiac function by reducing vagal tone that 

inhibits ventricular contractility. Although a sustained decrease in vagal tone is 

detrimental to overall cardiac health, decreased vagal drive provides a short-term 

compensatory mechanism that improves hemodynamic behavior and ejection fraction 

of the heart. In addition, these results suggest that neuronal adaptation must occur 

across multiple neuronal populations in the NTS, NA, and DMV to renormalize 

clinically relevant hemodynamic outputs like ejection fraction, cardiac output, 

diastolic, and systolic ventricular volumes. These results support our earlier proposal 

(§ 3.5) that neuronal adaptation, as observed across individual brainstem neurons, 

provides robust regulation cardiovascular homeostasis. 
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In Chapter 6 the input-driven organizational principles identified in the NTS, 

described in Chapters 3 and 4, and their utility in understanding single-neuron 

heterogeneity throughout the brain was examined in a distinct forebrain nucleus, the 

SCN. Despite extensive characterization of SCN neurons, based on neuropeptidergic 

and region-specific characteristics, single-neuron heterogeneity complicates our 

understanding of how SCN neurons interact and form cellular networks that regulate 

SCN function. By performing single-cell transcriptional analysis of the SCN, we were 

able to identify transcriptional signatures of neuronal phenotypes and paracrine 

signaling mechanisms using several multivariate techniques that were applied in 

Chapter 3 as well as techniques developed in the field of graph network theory.  

Thorough examination of the gene expression behavior of single SCN neurons 

revealed multiple neuronal phenotypes whose gene expression behavior aligned with 

known SCN peptide production as well as support previously undescribed SCN 

neuron-types. An example of such a neuron-type includes neurons expressing 

Adcyap1, which were located throughout the SCN. With the exception of the Avp+ 

and Vip+ groups, these neuronal phenotypes were distributed throughout the SCN. 

However, analyzing gene expression corresponding to known ligand and receptor 

pairs involved in SCN paracrine signaling mechanisms revealed multiple plausible 

interactions among the identified neuronal phenotypes. Thus, these results suggest that 

transcriptionally heterogeneous SCN single neurons form distinct functional states in a 

molecular framework in which these neuronal phenotypes synchronize with one 

another through paracrine signaling mechanisms.  
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The above results demonstrate the utility of performing an analysis of single 

cells belonging to a complex organ such as the brain in the context of their in vivo 

neuroanatomical environment and functional connectivity. The combined 

experimental and computational approach described throughout this dissertation 

provides an overall platform that enables one to elucidate what neuron-types and how 

many exist in the brain and what functional roles they play. We have discovered an 

organizational framework within which individual neurons adaptively respond to the 

inputs they receive. Based on our single-cell analysis of the brain, we can now view a 

heterogeneous neuronal population as a mixture of distinct neuronal subtypes whose 

adaptive response to various inputs is driven by distinct regulatory networks. This 

adaptive response manifests as individual neurons transitioning across a range of 

transcriptional states that reflect an array of functional states that a neuron may exist 

in. Such adaptation provides robust regulation of physiological function, providing 

compensatory effects under challenged states. While these results provide the 

beginnings of how one may address the question of “what is a cell-type” and “what is 

the functional relevance of neuronal heterogeneity”, significant work and 

opportunities remain. 

7.2 Future Work  

In this final section, several possible directions in which the work presented here 

can be taken are discussed. The present work only scratches the surface on 
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understanding transcriptional heterogeneity across single neurons and the role it plays 

in brain function and its regulation of physiological processes throughout the body. 

7.2.1 Experimental techniques 

High-throughput qPCR provides a broader molecular perspective on the state 

of an individual cell than what would be achieved using “reductionist” approaches, 

where a single gene or a particular signaling pathway is studied extensively. Although 

the analysis of the NTS and SCN in this dissertation involved brain nucleus-specific 

sets of 96 genes, which proved to be sufficient to identify distinct neuronal 

phenotypes, 96 genes represent only a fraction of a cell’s transcriptome. Although 

these genes were carefully selected based on their functional relevance, as indicated by 

prior global microarray studies, investigating hundreds of genes is somewhat limited 

in scope. Technological advances that improve accuracy, precision, and availability of 

omics-scale assay platforms are continually being made. RNA sequencing of 

individual cells, or single-cell RNA-seq (scRNA-seq), a technique that sequences the 

entire transcriptome provides a comprehensive view of the molecular state of a cell.  

During the completion of this dissertation, this technology has been applied 

effectively towards measuring single-cell transcriptomic heterogeneity 

[31,71,86,105,367] and will continue to be used to improve understanding of 

transcriptional heterogeneity underlying (dis)similarities existing between neuron-

types. The approaches developed in this dissertation would benefit from applying 

scRNA-seq. Deeper profiling of individual neurons in the NTS and SCN with respect 
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to their functional connectivity and local neuroanatomical environment may reveal 

additional neuronal phenotypes supporting a more subtle and nuanced perspective of 

cell-types. Knowledge of the dominant and rare functional states in which neurons 

exist and how these states differ would provide additional mechanistic detail of 

physiological and pathological conditions, beyond what can be determined from 

analyzing hundreds of genes.  

7.2.2 Acute hypertension model 

Dynamics of single cell transcriptomic heterogeneity  Chapter 3 described 

work that demonstrated that an acute physiological perturbation such as an acute 

hypertension challenge can drive a change in the transcriptional landscape of NTS 

neurons. Although extensive sampling across multiple animals was performed in the 

analysis of the NTS, these results were based on a single time point, 60 min post-

phenylephrine injection. While lateral sampling of single neurons would require a 

sampling scale that is beyond the scope of this dissertation, it is possible to consider 

the findings in Chapter 3 and create a plausible experimental design including a 

reasonable number of samples panning both animal replicates and multiple time 

points. Because the transcriptional variability observed across neurons within an 

animal was as large as, and in many cases larger than, the transcriptional variability 

observed across animals, it is plausible to suspect that cell-to-cell variability, rather 

than animal-animal variability, would be the dominant source of transcriptional 

heterogeneity within a time point. Consequently, a more thorough single-cell sampling 
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from one animal across multiple time points, with fewer single-cell samples collected 

across animals per time point would allow one to study transcriptional states and 

underlying organization of transcriptional states over time.  

This proposed sampling approach can be applied to study single-neuron 

heterogeneity over time in established animal models of neurogenic disease. One 

example includes the spontaneously hypertensive rat (SHR) and its control 

counterpart, the Wistar Kyoto Rat (WKY). Analyzing single neurons in key brainstem 

nuclei would provide insight into the molecular mechanisms driving autonomic 

regulation in hypertension development. For instance, one can investigate the 

organizing principles of single neurons in the RVLM, the central nucleus regulating 

sympathetic outflow to the body, in SHRs and WKYs at key developmental stages of 

hypertension development including 4 weeks (pre-hypertensive), 6-8 weeks 

(hypertension development), 12 weeks (hypertension established) and 14-16 weeks 

(hypertension sustained). Such a study would potentially reveal how the molecular 

organization of single neurons persists or changes and how these changes drive the 

neurogenic aspects of hypertension pathology. This type of study may reveal 

transcriptional targets that may be manipulated to prevent a subset of neurons from 

adapting into a functional state associated with hypertension development. A similar 

longitudinal study was performed, which investigated microRNA states of multiple 

cell types in the brainstem and identified several microRNA targets that may prevent 

inflammatory pathways from reaching maladapted states that support hypertension 

progression [288]. 
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Alternatively, another avenue of interest to pursue would not focus on the 

immediate transcriptional response of neurons to an acute hypertensive challenge, but 

rather investigate how individual neurons recover from such a challenge. Chapter 3 

describes NTS neurons as having a constrained transcriptional response to an acute 

hypertensive challenge. However, it remains unclear whether these neurons revert 

back to some nominal state once the hypertensive challenge/perturbation dissipates. If 

neurons do not revert back to some nominal state, in what ways does this new state 

differ from the normotensive condition? This investigation would provide interesting 

insights into how neurons may (or may not) adapt to acute physiological challenges 

and what the effects of a challenge (or repeated challenges) may have on the 

functional state of brainstem neurons. 

7.2.3 Gene regulatory network applications 

Chapter 4 provides a methodology to identify gene interaction networks from 

inherently variability single-cell transcriptomic data. One logical step forward would 

be to perform sensitivity analysis on these network models. Determining how sensitive 

the gene interaction network system to the individual gene components, or 

combinations of genes, would provide additional insight into the underlying gene 

network. Identifying gene(s) having the largest impact on systemic responses would 

also provide plausible targets that can be further investigated either computationally or 

experimentally, through the use of targeted gene manipulation techniques in SHRs. It 

would be possible to study whether these targets can be manipulated to affect 
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transcriptional states of NTS neurons to rescue maladapted or dysfunctional neurons 

that affect physiology [34,390].  

7.2.4 Circadian cellular network modeling 

A simple extension of the single-neuron analysis of the SCN presented in 

Chapter 6 would be to apply fuzzy logic modeling, as described in Chapter 4, to the 

transcriptional profiles of SCN neurons. Detailed analysis revealed distinct neuronal 

phenotypes and applying the fuzzy logic modeling methodology may reveal distinct 

gene interaction networks underlying the functional states of these neuronal 

phenotypes. While the transcriptional programs underlying SCN circadian behavior 

are well established [108,142], this knowledge is based on tissue-level samples that 

average out the heterogeneity prevalent at the single-cell scale. If differences in gene 

interaction network structure were indeed present in SCN neurons, investigating 

differences among fuzzy-logic-based network models of different SCN neuronal 

populations would provide complementary information to recent results and ongoing 

studies focusing on the SCN.  

As described in Chapter 6, one such example includes the study by Abel, et al. 

[388] which investigated the temporal dynamics of Per expression in single SCN cells 

using Per-luciferase. Their study revealed that small-world network structures, in 

which cells are sparsely connected, drive the temporal coordinated behavior of the 

SCN [388]. These cellular nodes in the small world networks may correspond to the 

distinct neuronal phenotypes identified in Chapter 6. Given the results presented in 
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Chapter 4, it is possible that distinct gene interaction networks correspond to the 

neuronal phenotypes identified in Chapter 6. Identifying and analyzing these gene 

networks would further help to distinguish these cell types and provide a model that 

can be used to study how these neuronal phenotypes may transition from one 

transcriptional phenotype to another in a small world network or other network 

structure. 

Further, the cyclic nature of circadian rhythms strongly motivates a lateral 

study that investigates the changes of neuronal phenotypes at various time points 

during the circadian cycles. Questions regarding the persistence or adaptability of 

neuronal phenotypes, similar to those raised regarding the acute hypertensive 

challenge model and hypertension pathology apply to circadian rhythms as well.  

The neuronal phenotypes identified from the single-neuron analysis of the 

SCN can also be integrated with previous modeling results that explore the oscillatory 

nature of VIP+ and AVP+ neurons [391]. In previous studies, oscillatory models 

examined how SCN synchronization could be explained by the interaction of these 

two neuron-types. Similar oscillatory models can be extended to include the 

previously unidentified neuronal phenotypes described in Chapter 6. Building a multi-

phenotypic model that reflects the biological complexity observed in the SCN would 

be useful to explore what effects the presence of these neuronal phenotypes have on 

system sensitivity and robustness. Such a model can be used to generate hypothesis as 

to what gene, or group of genes, or even neuronal phenotype(s) would impact SCN 

synchronization for experimental testing in vitro and in vivo.  



 299 

7.2.5 Baroreflex modeling 

There are several possibilities in which this model can be used to further study 

autonomic regulation of blood pressure and cardiovascular homeostasis.  

 

i) Including additional afferent inputs and corresponding neuronal subtypes in the 

NTS. These subtypes can be used to further explore how neuronal adaptation 

affects baroreflex regulation under other challenged cardiovascular states, such as 

exercise-induced stress. Patients suffering from systolic heart failure post 

myocardial infarction are reported to have impaired cardiovascular function in 

response to exercise-induced stress. Adding chemoreceptor inputs and additional 

components such as pacemaking neurons that align with the respiratory cycle will 

capture more accurately the interconnection between cardiovascular and 

respiratory processes may reveal potential neuronal populations and interactions 

that can be targeted to improve this impaired response.  

 

ii) Limits of controller compensation – simulations showed that neuronal adaptation 

is able to compensate for an injured heart. However, the modified conditions 

represent one set of conditions emulating systolic heart failure. It is possible that 

more extreme changes to left heart function would causes changes that could not 

be fully compensated for by neuronal adaptation. Thus understanding what the 

compensatory limits of neuronal adaptation are would provide insight into what 

other systemic changes are required to compensate for the impaired disease state.  
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iii) Diastolic heart failure – there are multiple ways that impaired cardiac function 

manifests itself, with systolic heart failure following myocardial infarction 

representing one of multiple disease states. Diastolic heart failure is another 

disease state that associated with myocardial infarction and is characterized by 

impaired filling during diastole. In this case, ejection fraction is not affected as it is 

in systolic heart failure and is preserved. Understanding what compensatory 

changes result from diastolic heart failure and what neuronal responses are 

required to achieve such changes may provide additional insight into the array of 

neuronal adaptations associated with heart failure.  

iv) Heart rate variability – although not included in the analysis in Chapter 5, the 

current model includes mechanisms through which respiration affects heart rate. 

This respiratory-induced variability in heart rate, or respiratory sinus arrhythmia, 

has been used a clinical measure of cardiac health as well as understanding the 

interplay between sympathetic and parasympathetic drive regulating heart rate. 

Thus, similar to using hemodynamic measures to examine the effects of neuronal 

adaptation, heart rate variability can potentially be used as a measure to examine 

the effects of neuronal adaptation on parasympathetic drive. 

v) Incorporating gene regulatory networks – this model provides insight into what 

potential changes in neuronal behavior in the brainstem affects vagal drive. In 

Chapter 4, a methodology and quantitative models were developed characterizing 

brainstem neurons. Integrating these two types of models would provide a 
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molecular perspective on the mechanisms that may be causing the gating effect 

that was exhibited by the NA and DMV neuronal populations. 



 302 

REFERENCES 

[1] G.M. Shepherd, The Synaptic Organization of the Brain, Oxford University 
Press, USA, 2004. 

[2] J. Nolte, The Human Brain: An Introduction To Its Functional Anatomy, Sixth, 
Elsevier, New York, 1988. 

[3] S.B. Nelson, K. Sugino, C.M. Hempel, The problem of neuronal cell types: a 
physiological genomics approach., Trends Neurosci. 29 (2006) 339–45. 
doi:10.1016/j.tins.2006.05.004. 

[4] N.N. Parikshak, M.J. Gandal, D.H. Geschwind, Systems biology and gene 
networks in neurodevelopmental and neurodegenerative disorders, Nat. Rev. 
Genet. 16 (2015) 441–458. doi:10.1038/nrg3934. 

[5] Y. Ko, S. a Ament, J. a Eddy, J. Caballero, J.C. Earls, L. Hood, N.D. Price, Cell 
type-specific genes show striking and distinct patterns of spatial expression in 
the mouse brain., Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 3095–100. 
doi:10.1073/pnas.1222897110. 

[6] T.I. Lee, R.A. Young, Transcriptional Regulation and Its Misregulation in 
Disease, Cell. 152 (2013) 1237–1251. 

[7] M.H. Hastings, A.B. Reddy, E.S. Maywood, A clockwork web: circadian 
timing in brain and periphery, in health and disease, Nat. Rev. Neurosci. 4 
(2003) 649–661. doi:10.1038/nrn1177. 

[8] A. Maffei, A. Fontanini, Network homeostasis: a matter of coordination, Curr. 
Opin. Neurobiol. 19 (2009) 168–173. doi:10.1016/j.conb.2009.05.012. 

[9] G.W. Davis, Homeostatic Signaling and the Stabilization of Neural Function, 
Neuron. 80 (2013) 718–728. doi:10.1016/j.neuron.2013.09.044. 

[10] R. Yuste, The discovery of dendritic spines by Cajal., Front. Neuroanat. 9 
(2015) 18. doi:10.3389/fnana.2015.00018. 

[11] A.I. Chen, J.C. de Nooij, T.M. Jessell, Graded Activity of Transcription Factor 
Runx3 Specifies the Laminar Termination Pattern of Sensory Axons in the 
Developing Spinal Cord, Neuron. 49 (2006) 395–408. 



 303 

[12] I. Kramer, M. Sigrist, J.C. de Nooij, I. Taniuchi, T.M. Jessell, S. Arber, A Role 
for Runx Transcription Factor Signaling in Dorsal Root Ganglion Sensory 
Neuron Diversification, Neuron. 49 (2006) 379–393. 

[13] A. Friese, J.A. Kaltschmidt, D.R. Ladle, M. Sigrist, T.M. Jessell, S. Arber, 
Gamma and alpha motor neurons distinguished by expression of transcription 
factor Err3., Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 13588–93. 
doi:10.1073/pnas.0906809106. 

[14] D.C. Crawford, J.M. Acuña, S.L. Sherman, FMR1 and the fragile X syndrome: 
human genome epidemiology review., Genet. Med. 3 (2001) 359–371. 
doi:10.1097/00125817-200109000-00006. 

[15] C. Landles, G.P. Bates, Huntingtin and the molecular pathogenesis of 
Huntington’s disease. Fourth in molecular medicine review series., EMBO Rep. 
5 (2004) 958–63. doi:10.1038/sj.embor.7400250. 

[16] R.A.C. Roos, Huntington ’ s disease : a clinical review, (2010) 2–9. 

[17] M. Thattai,  a van Oudenaarden, Intrinsic noise in gene regulatory networks., 
Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 8614–9. doi:10.1073/pnas.151588598. 

[18] M.A. Savageau, Design principles for elementary gene circuits: Elements, 
methods, and examples., Chaos. 11 (2001) 142–159. doi:10.1063/1.1349892. 

[19] G.M. Miller, B.A. Ogunnaike, J.S. Schwaber, R. Vadigepalli, Robust dynamic 
balance of AP-1 transcription factors in a neuronal gene regulatory network., 
BMC Syst. Biol. 4 (2010) 171. doi:10.1186/1752-0509-4-171. 

[20] D.E. Zak, R.K. Pearson, R. Vadigepalli, G.E. Gonye, J.S. Schwaber, F.J. Doyle, 
Continuous-time identification of gene expression models., OMICS. 7 (2003) 
373–86. doi:10.1089/153623103322637689. 

[21] J. Kim, J. Eberwine, RNA: state memory and mediator of cellular phenotype., 
Trends Cell Biol. 20 (2010) 311–8. doi:10.1016/j.tcb.2010.03.003. 

[22] J. Eberwine, J.-Y. Sul, T. Bartfai, J. Kim, The promise of single-cell 
sequencing, Nat. Methods. 11 (2013) 25–27. doi:10.1038/nmeth.2769. 

[23] S.D. Ginsberg, I. Elarova, M. Ruben, F. Tan, S.E. Counts, J.H. Eberwine, J.Q. 
Trojanowski, S.E. Hemby, E.J. Mufson, S. Che, Single-Cell Gene Expression 
Analysis: Implications for Neurodegenerative and Neuropsychiatric Disorders, 
Neurochem. Res. 29 (2004) 1053–1064. 
doi:10.1023/B:NERE.0000023593.77052.f7. 



 304 

[24] B.M. Kadakkuzha, S. V Puthanveettil, Genomics and proteomics in solving 
brain complexity., Mol. Biosyst. 9 (2013) 1807–21. doi:10.1039/c3mb25391k. 

[25] J. Eberwine, J. Kim, Cellular Deconstruction: Finding Meaning in Individual 
Cell Variation, Trends Cell Biol. 25 (2015) 569–578. 
doi:10.1016/j.tcb.2015.07.004. 

[26] T. Enver, M. Pera, C. Peterson, P.W. Andrews, Stem cell states, fates, and the 
rules of attraction., Cell Stem Cell. 4 (2009) 387–97. 
doi:10.1016/j.stem.2009.04.011. 

[27] J.P. Junker, A. van Oudenaarden, Every cell is special: genome-wide studies 
add a new dimension to single-cell biology., Cell. 157 (2014) 8–11. 
doi:10.1016/j.cell.2014.02.010. 

[28] M.D. Adams, J.M. Kelly, J.D. Gocayne, M. Dubnick, M.H. Polymeropoulos, H. 
Xiao, C.R. Merril, A. Wu, B. Olde, R.F. Moreno, A.R. Kerlavage, W.R. 
McCombie, J.C. Venter, Complementary DNA sequencing: Expressed 
sequence tags and human genome project, Science (80-. ). 252 (1991) 1651–
1656. 

[29] E.P. Consortium, An integrated encyclopedia of DNA elements in the human 
genome., Nature. 489 (2012) 57–74. doi:10.1038/nature11247. 

[30] G. Guo, M. Huss, G.Q. Tong, C. Wang, L. Li Sun, N.D. Clarke, P. Robson, 
Resolution of cell fate decisions revealed by single-cell gene expression 
analysis from zygote to blastocyst., Dev. Cell. 18 (2010) 675–85. 
doi:10.1016/j.devcel.2010.02.012. 

[31] R. Durruthy-Durruthy, A. Gottlieb, B.H. Hartman, J. Waldhaus, R.D. Laske, R. 
Altman, S. Heller, Reconstruction of the mouse otocyst and early neuroblast 
lineage at single-cell resolution, Cell. 157 (2014) 964–978. 
doi:10.1016/j.cell.2014.03.036. 

[32] B. Treutlein, D.G. Brownfield, A.R. Wu, N.F. Neff, G.L. Mantalas, F.H. 
Espinoza, T.J. Desai, M.A. Krasnow, S.R. Quake, Reconstructing lineage 
hierarchies of the distal lung epithelium using single-cell RNA-seq, Nature. 509 
(2014) 371–375. doi:10.1038/nature13173. 

[33] V. Espina, J.D. Wulfkuhle, V.S. Calvert, A. VanMeter, W. Zhou, G. Coukos, 
D.H. Geho, E. Petricoin, L. Liotta, Laser-capture microdissection, Nat. Protoc. 
(2006) 586–603. 

[34] H. Duale, H. Waki, P. Howorth, S. Kasparov, A.G. Teschemacher, J.F.R. Paton, 



 305 

Restraining influence of A2 neurons in chronic control of arterial pressure in 
spontaneously hypertensive rats., Cardiovasc. Res. 76 (2007) 184–93. 
doi:10.1016/j.cardiores.2007.06.018. 

[35] J.P. Card, S. Fitzpatrick-McElligott, I. Gozes, F. Baldino, Localization of 
vasopressin- , vasoactive intestinal polypeptide-, peptide histidine isoleucine- 
and somatostatin-mRNA in rat suprachiasmatic nucleus, Cell Tissue Res. 252 
(1988) 307–315. 

[36] J.P. Card, L. Rinaman, J.S. Schwaber, R.R. Miselis, M.E. Whealy, A.K. 
Robbins, L.W. Enquist, Neurotropic properties of pseudorabies virus: uptake 
and transneuronal passage in the rat central nervous system., J. Neurosci. 10 
(1990) 1974–94. 

[37] A. Standish, L.W. Enquist, J.S. Schwaber, Central Neuronal Circuit 
Transneuronal Transport Innervating the Rat Heart Defined by of Pseudorabies 
Virus, J. Neurosci. 15 (1995). 

[38] J. Wang, M. Irnaten, R. a Neff, P. Venkatesan, C. Evans,  a D. Loewy, T.C. 
Mettenleiter, D. Mendelowitz, Synaptic and neurotransmitter activation of 
cardiac vagal neurons in the nucleus ambiguus., Ann. N. Y. Acad. Sci. 940 
(2001) 237–246. doi:10.1111/j.1749-6632.2001.tb03680.x. 

[39] C. Bargmann, W. Newsome, D. Anderson, E. Brown, K. Deisseroth, J. 
Donoghue, P. MacLeish, E. Marder, R. Normann, J. Sanes, M. Schnitzer, T. 
Sejnowski, D. Tank, R. Tsien, K. Ugurbil, Brain 2025, A Scientific Vision, 
2014. 

[40] NIH RFA-MH-14-215, BRAIN Initiative: Transformative Approaches for Cell-
Type Classification in the Brain (U01), (2013). 
http://grants.nih.gov/grants/guide/rfa-files/RFA-MH-14-215.html. 

[41] OpenStax, Parts of the Nervous System, OpenStax CNX. (2015). 
https://cnx.org/contents/fb1b3b55-ef15-44f3-9d52-df597ba53b4d@6. 

[42] P. Nemes, A.M. Knolhoff, S.S. Rubakhin, J. V. Sweedler, Single-cell 
metabolomics: Changes in the metabolome of freshly isolated and cultured 
neurons, ACS Chem. Neurosci. 3 (2012) 782–792. doi:10.1021/cn300100u. 

[43] S.S. Rubakhin, E.J. Lanni, J. V. Sweedler, Progress toward single cell 
metabolomics, Curr. Opin. Biotechnol. 24 (2013) 95–104. 
doi:10.1016/j.copbio.2012.10.021. 

[44] M. Jove, M. Portero-Otin, A. Naudi, I. Ferrer, R. Pamplona, Metabolomics of 



 306 

Human Brain Aging and Age-Related Neurodegenerative Diseases, 73 (2014) 
640–657. 

[45] A. Bayés, S.G.N. Grant, Neuroproteomics: understanding the molecular 
organization and complexity of the brain., Nat. Rev. Neurosci. 10 (2009) 635–
46. doi:10.1038/nrn2701. 

[46] S.B. Nelson, C. Hempel, K. Sugino, Probing the transcriptome of neuronal cell 
types, Curr. Opin. Neurobiol. 16 (2006) 571–576. 
doi:10.1016/j.conb.2006.08.006. 

[47] M.K. Shin, J.M. Levorse, R.S. Ingram, S.M. Tilghman, The temporal 
requirement for endothelin receptor-B signalling during neural crest 
development., Nature. 402 (1999) 496–501. doi:10.1038/990040. 

[48] J. Jacob, C. Maurange, A.P. Gould, Temporal control of neuronal diversity: 
common regulatory principles in insects and vertebrates?, Development. 135 
(2008) 3481–3489. doi:10.1242/dev.016931. 

[49] J.S. Odorico, D.S. Kaufman, J. a Thomson, Multilineage differentiation from 
human embryonic stem cell lines., Stem Cells. 19 (2001) 193–204. 
doi:10.1634/stemcells.19-3-193. 

[50] I. Muñoz-Sanjuán, A.H. Brivanlou, Neural Induction, The Default Model and 
Embryonic Stem Cells, 3 (2002) 1–10. doi:10.1038/nrn786. 

[51] M. Mingueneau, T. Kreslavsky, D. Gray, T. Heng, R. Cruse, J. Ericson, S. 
Bendall, M.H. Spitzer, G.P. Nolan, K. Kobayashi, H. von Boehmer, D. Mathis, 
C. Benoist, A.J. Best, J. Knell, A. Goldrath, V. Jojic, D. Koller, T. Shay, A. 
Regev, N. Cohen, P. Brennan, M. Brenner, F. Kim, T.N. Rao, A. Wagers, K. 
Rothamel, A. Ortiz-Lopez, N. a Bezman, J.C. Sun, G. Min-Oo, C.C. Kim, L.L. 
Lanier, J. Miller, B. Brown, M. Merad, E.L. Gautier, C. Jakubzick, G.J. 
Randolph, P. Monach, D. a Blair, M.L. Dustin, S. a Shinton, R.R. Hardy, D. 
Laidlaw, J. Collins, R. Gazit, D.J. Rossi, N. Malhotra, K. Sylvia, J. Kang, A. 
Fletcher, K. Elpek, A. Bellemare-Pelletier, D. Malhotra, S. Turley, The 
transcriptional landscape of αβ T cell differentiation., Nat. Immunol. 14 (2013) 
619–32. doi:10.1038/ni.2590. 

[52] S.C. Bendall, E.F. Simonds, P. Qiu, E.D. Amir, P.O. Krutzik, R. Finck, R. V 
Bruggner, R. Melamed, A. Trejo, O.I. Ornatsky, R.S. Balderas, S.K. Plevritis, 
K. Sachs, D. Pe’er, S.D. Tanner, G.P. Nolan, Single-cell mass cytometry of 
differential immune and drug responses across a human hematopoietic 
continuum., Science. 332 (2011) 687–96. doi:10.1126/science.1198704. 



 307 

[53] S.R. Hough, A.L. Laslett, S.B. Grimmond, G. Kolle, M.F. Pera, A continuum of 
cell states spans pluripotency and lineage commitment in human embryonic 
stem cells., PLoS One. 4 (2009) e7708. doi:10.1371/journal.pone.0007708. 

[54] K.J. Mitchell, The genetics of brain wiring: from molecule to mind., PLoS Biol. 
5 (2007) e113. doi:10.1371/journal.pbio.0050113. 

[55] E. Pujadas, A.P. Feinberg, Regulated noise in the epigenetic landscape of 
development and disease., Cell. 148 (2012) 1123–31. 
doi:10.1016/j.cell.2012.02.045. 

[56] C.H. Waddington, Canalization of Development and the Inheritance of 
Acquired Characters, Nat. Publ. Gr. (1942). 

[57] C.H. Waddington, Principles of Embryology, New York :Macmillan, 1956. 

[58] S. Huang, G. Eichler, Y. Bar-Yam, D.E. Ingber, Cell Fates as High-
Dimensional Attractor States of a Complex Gene Regulatory Network, Phys. 
Rev. Lett. 94 (2005) 128701. doi:10.1103/PhysRevLett.94.128701. 

[59] K. Takahashi, S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse 
Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell. 126 (2006) 
663–676. doi:10.1016/j.cell.2006.07.024. 

[60] J.-Y. Sul, C.K. Wu, F. Zeng, J. Jochems, M.T. Lee, T.K. Kim, T. Peritz, P. 
Buckley, D.J. Cappelleri, M. Maronski, M. Kim, V. Kumar, D. Meaney, J. Kim, 
J. Eberwine, Transcriptome transfer produces a predictable cellular phenotype., 
Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 7624–9. 
doi:10.1073/pnas.0902161106. 

[61] M. Toledo-Rodriguez, B. Blumenfeld, C. Wu, J. Luo, B. Attali, P. Goodman, 
H. Markram, Correlation maps allow neuronal electrical properties to be 
predicted from single-cell gene expression profiles in rat neocortex., Cereb. 
Cortex. 14 (2004) 1310–27. doi:10.1093/cercor/bhh092. 

[62] T.K. Kim, J.-Y. Sul, N.B. Peternko, J.H. Lee, M. Lee, V. V Patel, J. Kim, J.H. 
Eberwine, Transcriptome transfer provides a model for understanding the 
phenotype of cardiomyocytes., Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 
11918–23. doi:10.1073/pnas.1101223108. 

[63] D.K. Singh, C.-J. Ku, C. Wichaidit, R.J. Steininger, L.F. Wu, S.J. Altschuler, 
Patterns of basal signaling heterogeneity can distinguish cellular populations 
with different drug sensitivities., Mol. Syst. Biol. 6 (2010) 369. 
doi:10.1038/msb.2010.22. 



 308 

[64] O.N. Suslov, V.G. Kukekov, T.N. Ignatova, D.A. Steindler, Neural stem cell 
heterogeneity demonstrated by molecular phenotyping of clonal neurospheres., 
Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 14506–11. 
doi:10.1073/pnas.212525299. 

[65] K.H. Narsinh, N. Sun, V. Sanchez-freire, A.S. Lee, P. Almeida, S. Hu, T. Jan, 
K.D. Wilson, D. Leong, J. Rosenberg, M. Yao, R.C. Robbins, J.C. Wu, Single 
cell transcriptional profiling reveals heterogeneity of human induced pluripotent 
stem cells, J. Clin. Invest. 121 (2011) 1217–1221. doi:10.1172/JCI44635DS1. 

[66] L.H. Loo, H.J. Lin, D.K. Singh, K.M. Lyons, S.J. Altschuler, L.F. Wu, 
Heterogeneity in the physiological states and pharmacological responses of 
differentiating 3T3-L1 preadipocytes, J. Cell Biol. 187 (2009) 375–384. 
doi:10.1083/jcb.200904140. 

[67] A. Ståhlberg, D. Andersson, J. Aurelius, M. Faiz, M. Pekna, M. Kubista, M. 
Pekny, Defining cell populations with single-cell gene expression profiling: 
correlations and identification of astrocyte subpopulations., Nucleic Acids Res. 
39 (2011) e24. doi:10.1093/nar/gkq1182. 

[68] D.G. Tang, Understanding cancer stem cell heterogeneity and plasticity, Cell 
Res. 22 (2012) 457–472. doi:10.1038/cr.2012.13. 

[69] K. a Janes, C.-C. Wang, K.J. Holmberg, K. Cabral, J.S. Brugge, Identifying 
single-cell molecular programs by stochastic profiling., Nat. Methods. 7 (2010) 
311–7. doi:10.1038/nmeth.1442. 

[70] S.C. Bendall, G.P. Nolan, M. Roederer, P.K. Chattopadhyay, A deep profiler’s 
guide to cytometry., Trends Immunol. 33 (2012) 323–32. 
doi:10.1016/j.it.2012.02.010. 

[71] A.K. Shalek, R. Satija, X. Adiconis, R.S. Gertner, J.T. Gaublomme, R. 
Raychowdhury, S. Schwartz, N. Yosef, C. Malboeuf, D. Lu, J.J. Trombetta, D. 
Gennert, A. Gnirke, A. Goren, N. Hacohen, J.Z. Levin, H. Park, A. Regev, 
Single-cell transcriptomics reveals bimodality in expression and splicing in 
immune cells., Nature. 498 (2013) 236–40. doi:10.1038/nature12172. 

[72] R. Satija, A.K. Shalek, Heterogeneity in immune responses: from populations 
to single cells, Trends Immunol. 35 (2014) 219–229. 
doi:10.1016/j.it.2014.03.004. 

[73] R. Bahar, C.H. Hartmann, K. a Rodriguez, A.D. Denny, R. a Busuttil, M.E.T. 
Dollé, R.B. Calder, G.B. Chisholm, B.H. Pollock, C. a Klein, J. Vijg, Increased 
cell-to-cell variation in gene expression in ageing mouse heart., Nature. 441 



 309 

(2006) 1011–1014. doi:10.1038/nature04844. 

[74] S.J. Birren, E. Marder, Neuroscience. Plasticity in the neurotransmitter 
repertoire., Science. 340 (2013) 436–7. doi:10.1126/science.1238518. 

[75] A. Ståhlberg, V. Rusnakova, A. Forootan, M. Anderova, M. Kubista, RT-qPCR 
work-flow for single-cell data analysis., Methods. 59 (2013) 80–8. 
doi:10.1016/j.ymeth.2012.09.007. 

[76] A.K. White, M. VanInsberghe, O.I. Petriv, M. Hamidi, D. Sikorski, M.A. 
Marra, J. Piret, S. Aparicio, C.L. Hansen, High-throughput microfluidic single-
cell RT-qPCR., Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 13999–4004. 
doi:10.1073/pnas.1019446108. 

[77] Q. Deng, D. Ramsköld, B. Reinius, R. Sandberg, Single-cell RNA-seq reveals 
dynamic, random monoallelic gene expression in mammalian cells., Science. 
343 (2014) 193–6. doi:10.1126/science.1245316. 

[78] L. Warren, D. Bryder, I.L. Weissman, S.R. Quake, Transcription factor 
profiling in individual hematopoietic progenitors by digital RT-PCR., Proc. 
Natl. Acad. Sci. U. S. A. 103 (2006) 17807–12. doi:10.1073/pnas.0608512103. 

[79] R. Vadigepalli, P. Chakravarthula, D.E. Zak, J.S. Schwaber, G.E. Gonye, 
PAINT: a promoter analysis and interaction network generation tool for gene 
regulatory network identification., OMICS. 7 (2003) 235–52. 
doi:10.1089/153623103322452378. 

[80] M. Ptashne, A. Gann, Genes and Signals, Cold Spring Harbor Press, Cold 
Spring Harbor, NY, 2002. 

[81] W.P. Tansey, Transcriptional activation: risky business., Genes Dev. 15 (2001) 
1045–50. doi:10.1101/gad.896501. 

[82] T. Platt, and the Regulation of Gene Expression, 4310 (1986). 

[83] H.H. McAdams,  a Arkin, Stochastic mechanisms in gene expression., Proc. 
Natl. Acad. Sci. U. S. A. 94 (1997) 814–9. 

[84] J.M. Raser, E.K. O’Shea, Noise in gene expression: origins, consequences, and 
control., Science. 309 (2005) 2010–3. doi:10.1126/science.1105891. 

[85] E.M. Ozbudak, M. Thattai, I. Kurtser, A.D. Grossman, A. van Oudenaarden, 
Regulation of noise in the expression of a single gene., Nat. Genet. 31 (2002) 
69–73. doi:10.1038/ng869. 



 310 

[86] A. Raj, A. van Oudenaarden, Nature, nurture, or chance: stochastic gene 
expression and its consequences., Cell. 135 (2008) 216–26. 
doi:10.1016/j.cell.2008.09.050. 

[87] D. Volfson, J. Marciniak, W.J. Blake, N. Ostroff, L.S. Tsimring, J. Hasty, 
Origins of extrinsic variability in eukaryotic gene expression., Nature. 439 
(2006) 861–4. doi:10.1038/nature04281. 

[88] N. Rosenfeld, J.W. Young, U. Alon, P.S. Swain, M.B. Elowitz, Gene regulation 
at the single-cell level, Sci. STKE. 307 (2005) 1962. 
doi:10.1126/science.1106914. 

[89] A. Bar-Even, J. Paulsson, N. Maheshri, M. Carmi, E. O’Shea, Y. Pilpel, N. 
Barkai, Noise in protein expression scales with natural protein abundance., Nat. 
Genet. 38 (2006) 636–43. doi:10.1038/ng1807. 

[90] U. Alon, An introduction to systems biology: design principles of biological 
circuits, CRC press, 2006. 

[91] U. Alon, Network motifs: theory and experimental approaches., Nat. Rev. 
Genet. 8 (2007) 450–61. doi:10.1038/nrg2102. 

[92] S. Hooshangi, R. Weiss, The effect of negative feedback on noise propagation 
in transcriptional gene networks, Chaos. 16 (2006). doi:10.1063/1.2208927. 

[93] J. Eberwine, T. Bartfai, Single cell transcriptomics of hypothalamic warm 
sensitive neurons that control core body temperature and fever response 
Signaling asymmetry and an extension of chemical neuroanatomy., Pharmacol. 
Ther. 129 (2011) 241–59. doi:10.1016/j.pharmthera.2010.09.010. 

[94] D. Usoskin, A. Furlan, S. Islam, H. Abdo, P. Lönnerberg, D. Lou, J. Hjerling-
Leffler, J. Haeggström, O. Kharchenko, P. V Kharchenko, S. Linnarsson, P. 
Ernfors, Unbiased classification of sensory neuron types by large-scale single-
cell RNA sequencing, Nat. Neurosci. 18 (2014) 145–153. doi:10.1038/nn.3881. 

[95] I.M. Chiu, L.B. Barrett, E.K. Williams, D.E. Strochlic, S. Lee, A.D. Weyer, S. 
Lou, G.S. Bryman, D.P. Roberson, N. Ghasemlou, C. Piccoli, E. Ahat, V. 
Wang, E.J. Cobos, C.L. Stucky, Q. Ma, S.D. Liberles, C.J. Woolf, 
Transcriptional profiling at whole population and single cell levels reveals 
somatosensory neuron molecular diversity., Elife. 3 (2014) e04660. 
doi:10.7554/eLife.04660. 

[96] D.J. Schulz, J.-M. Goaillard, E. Marder, Variable channel expression in 
identified single and electrically coupled neurons in different animals., Nat. 



 311 

Neurosci. 9 (2006) 356–62. doi:10.1038/nn1639. 

[97] S. Darmanis, S.A. Sloan, Y. Zhang, M. Enge, C. Caneda, L.M. Shuer, M.G. 
Hayden Gephart, B.A. Barres, S.R. Quake, A survey of human brain 
transcriptome diversity at the single cell level, Proc. Natl. Acad. Sci. 112 (2015) 
201507125. doi:10.1073/pnas.1507125112. 

[98] D.K. Welsh, D.E. Logothetis, M. Meister, S.M. Reppert, Individual neurons 
dissociated from rat suprachiasmatic nucleus express independently phased 
circadian firing rhythms., Neuron. 14 (1995) 697–706. doi:10.1016/0896-
6273(95)90214-7. 

[99] V. Rusnakova, P. Honsa, D. Dzamba, A. Ståhlberg, M. Kubista, M. Anderova, 
Heterogeneity of astrocytes: from development to injury - single cell gene 
expression., PLoS One. 8 (2013) e69734. doi:10.1371/journal.pone.0069734. 

[100] E. Marder, A.L. Taylor, Multiple models to capture the variability in biological 
neurons and networks., Nat. Neurosci. 14 (2011) 133–8. doi:10.1038/nn.2735. 

[101] C.I. Bargmann, E. Marder, From the connectome to brain function., Nat. 
Methods. 10 (2013) 483–90. doi:10.1038/nmeth.2451. 

[102] H. Wichterle, D. Gifford, E. Mazzoni, Neuroscience. Mapping neuronal 
diversity one cell at a time., Science. 341 (2013) 726–7. 
doi:10.1126/science.1235884. 

[103] D. Dulcis, P. Jamshidi, S. Leutgeb, N.C. Spitzer, Neurotransmitter switching in 
the adult brain regulates behavior., Science. 340 (2013) 449–53. 
doi:10.1126/science.1234152. 

[104] A. De la Rossa, C. Bellone, B. Golding, I. Vitali, J. Moss, N. Toni, C. Lüscher, 
D. Jabaudon, In vivo reprogramming of circuit connectivity in postmitotic 
neocortical neurons., Nat. Neurosci. 16 (2013) 193–200. doi:10.1038/nn.3299. 

[105] J. Park, A. Brureau, K. Kernan, A. Starks, S. Gulati, B. Ogunnaike, J. 
Schwaber, R. Vadigepalli, Inputs drive cell phenotype variability., Genome 
Res. (2014). doi:10.1101/gr.161802.113. 

[106] J. Park, B. Ogunnaike, J. Schwaber, R. Vadigepalli, Identifying functional gene 
regulatory network phenotypes underlying single cell transcriptional variability, 
Prog. Biophys. Mol. Biol. 117 (2015) 87–98. 
doi:10.1016/j.pbiomolbio.2014.11.004. 

[107] M.C. Andresen, D.L. Kunze, Nucleus tractus solitarius--gateway to neural 



 312 

circulatory control., Annu. Rev. Physiol. 56 (1994) 93–116. 
doi:10.1146/annurev.ph.56.030194.000521. 

[108] J.A. Mohawk, C.B. Green, J.S. Takahashi, Central and Peripheral Circadian 
Clocks in Mammals, Annu. Rev. Neurosci. 35 (2012) 445–462. 
doi:10.1146/annurev-neuro-060909-153128. 

[109] L.C. Michelini, The NTS and integration of cardiovascular control during 
exercise in normotensive and hypertensive individuals., Curr. Hypertens. Rep. 9 
(2007) 214–21. 

[110] J.L. Seagard, C. Dean, F. a Hopp, Properties of NTS neurons receiving input 
from barosensitive receptors., Ann. N. Y. Acad. Sci. 940 (2001) 142–156. 

[111] M. Takagishi, H. Waki, M. Bhuiyan, S. Gouraud, A. Kohsaka, H. Cui, T. 
Yamazaki, J.F.R. Paton, M. Maeda, IL-6 microinjected in the nucleus tractus 
solitarii attenuates cardiac baroreceptor reflex function in rats, Am. J. Physiol. 
Regul. Integr. Comp. Physiol. 298 (2010) R183–R190. 

[112] M.J. McKinley, A.L. Albiston, A.M. Allen, M.L. Mathai, C.N. May, R.M. 
McAllen, B.J. Oldfield, F.A.O. Mendelsohn, S.Y. Chai, The brain renin-
angiotensin system: location and physiological roles., Int. J. Biochem. Cell 
Biol. 35 (2003) 901–18. 

[113] H. Waki, S.S. Gouraud, M.E.R. Bhuiyan, M. Takagishi, T. Yamazaki, A. 
Kohsaka, M. Maeda, Transcriptome of the NTS in exercise-trained 
spontaneously hypertensive rats: implications for NTS function and plasticity in 
regulating blood pressure., Physiol. Genomics. 45 (2013) 58–67. 
doi:10.1152/physiolgenomics.00074.2012. 

[114] J.F. Paton, Y.W. Li, J.S. Schwaber, Response properties of baroreceptive NTS 
neurons., Ann. N. Y. Acad. Sci. 940 (2001) 157–68. 

[115] R. Vadigepalli, G.E. Gonye, J.F.R. Paton, J.S. Schwaber, Adaptive 
transcriptional dynamics of A2 neurons and central cardiovascular control 
pathways., Exp. Physiol. 97 (2012) 462–8. 
doi:10.1113/expphysiol.2011.059790. 

[116] L. Rinaman, Ascending projections from the caudal visceral nucleus of the 
solitary tract to brain regions involved in food intake and energy expenditure., 
Brain Res. 1350 (2010) 18–34. doi:10.1016/j.brainres.2010.03.059. 

[117] V.S. Affleck, J.H. Coote, S. Pyner, The projection and synaptic organisation of 
NTS afferent connections with presympathetic neurons, GABA and nNOS 



 313 

neurons in the paraventricular nucleus of the hypothalamus., Neuroscience. 219 
(2012) 48–61. doi:10.1016/j.neuroscience.2012.05.070. 

[118] S.K. Agarwal, F.R. Calaresu, Reciprocal connections between nucleus tractus 
solitarii and rostral ventrolateral medulla, Brain Res. 523 (1990) 305–308. 
doi:10.1016/0006-8993(90)91503-9. 

[119] R.A. Dampney, J.W. Polson, Y. Hirooka, J. Horiuchi, Functional organization 
of brain pathways subserving the baroreceptor reflex: studies in conscious 
animals using immediate early gene expression., Cell Mol. Neurobilogy. 23 
(2003) 597–616. 

[120] C. Núñez, F. Martín, A. Földes, M. Luisa Laorden, K.J. Kovács, M. Victoria 
Milanés, Induction of FosB/ΔFosB in the brain stress system-related structures 
during morphine dependence and withdrawal, J. Neurochem. 114 (2010) 475–
487. doi:10.1111/j.1471-4159.2010.06765.x. 

[121] M. Miura, K. Takayama, J. Okada, Neuronal expression of Fos protein in the rat 
brain after baroreceptor stimulation., J. Auton. Nerv. Syst. 50 (1994) 31–43. 

[122] Y.-W. Li, R.A.L. Dampney, Expression of fos-like protein in brain following 
sustained hypertension and hypotension in conscious rabbits, Neuroscience. 61 
(1994) 613–634. doi:10.1016/0306-4522(94)90439-1. 

[123] R.K. Chan, P.E. Sawchenko, Spatially and temporally differentiated patterns of 
c-fos expression in brainstem catecholaminergic cell groups induced by 
cardiovascular challenges in the rat., J. Comp. Neurol. 348 (1994) 433–60. 
doi:10.1002/cne.903480309. 

[124] R.K.W. Chan, P.E. Sawchenko, Hemodynamic regulation of tyrosine 
hydroxylase messenger RNA in medullary catecholamine neurons: a c- fos-
guided hybridization histochemical study, Neuroscience. 66 (1995) 377–390. 
doi:10.1016/0306-4522(94)00600-A. 

[125] R.K. Chan, P.E. Sawchenko, Organization and transmitter specificity of 
medullary neurons activated by sustained hypertension: implications for 
understanding baroreceptor reflex circuitry., J. Neurosci. 18 (1998) 371–87. 

[126] A. Machhada, N. Marina, A. Korsak, D.J. Stuckey, M.F. Lythgoe, A. V. 
Gourine, Origins of the vagal drive controlling left ventricular contractility, J. 
Physiol. 0 (2016) n/a-n/a. doi:10.1113/JP270984. 

[127] D. Mendelowitz, Firing properties of identified parasympathetic cardiac 
neurons in nucleus ambiguus., Am. J. Physiol. 271 (1996) H2609–H2614. 



 314 

[128] Z. Cheng, T.L. Powley, Nucleus ambiguus projections to cardiac ganglia of rat 
atria: an anterograde tracing study., J. Comp. Neurol. 424 (2000) 588–606. 

[129] J.S. Schwaber, B.S. Kapp, G. Higgins, The origin and extent of direct amygdala 
projections to the region of the dorsal motor nucleus of the vagus and the 
nucleus of the solitary tract, Neurosci. Lett. 20 (1980) 15–20. 
doi:10.1016/0304-3940(80)90226-8. 

[130] M.W. Chapleau, R. Sabharwal, Methods of assessing vagus nerve activity and 
reflexes, Heart Fail. Rev. 16 (2011) 109–127. doi:10.1007/s10741-010-9174-6. 

[131] J.H. Coote, Myths and realities of the cardiac vagus., J. Physiol. 591 (2013) 
4073–4085. doi:10.1113/jphysiol.2013.257758. 

[132] J.F.X. Jones, Physiology : Vagal control of the rat heart Physiological Society 
Symposium – Vagal Control : From Axolotl to Man Vagal control of the rat 
heart, (2016) 797–801. doi:10.1113/eph8602269. 

[133] M.A. Henson, B.A. Ogunnaike, J.S. Schwabert, F.J.D. I, The Baroreceptor 
Reflex: A Biological Control System with Applications in Chemical Process 
Control, Society. (1994) 2453–2466. 

[134] T.N. Thrasher, Baroreceptors, baroreceptor unloading, and the long-term 
control of blood pressure., Am. J. Physiol. Regul. Integr. Comp. Physiol. 288 
(2005) R819-27. doi:10.1152/ajpregu.00813.2004. 

[135] B.S. Zanutto, M.E. Valentinuzzi, E.T. Segura, Neural set point for the control of 
arterial pressure: role of the nucleus tractus solitarius., Biomed. Eng. Online. 9 
(2010) 4. doi:10.1186/1475-925X-9-4. 

[136] D.J. Reis, The brain and hypertension: reflections on 35 years of inquiry into 
the neurobiology of the circulation., Circulation. 70 (1984) III31--45. 

[137] J.W. Wright, J.W. Harding, The brain renin-angiotensin system: a diversity of 
functions and implications for CNS diseases., Pflugers Arch. 465 (2013) 133–
51. doi:10.1007/s00424-012-1102-2. 

[138] H. Waki, S.S. Gouraud, M. Maeda, M.K. Raizada, J.F.R. Paton, Contributions 
of vascular inflammation in the brainstem for neurogenic hypertension., Respir. 
Physiol. Neurobiol. (2011) 1–7. doi:10.1016/j.resp.2011.05.004. 

[139] H. Waki, E.B. Hendy, C.C.T. Hindmarch, S. Gouraud, M. Toward, S. 
Kasparov, D. Murphy, J.F.R. Paton, Excessive leukotriene B4 in nucleus tractus 
solitarii is prohypertensive in spontaneously hypertensive rats., Hypertension. 



 315 

61 (2013) 194–201. doi:10.1161/HYPERTENSIONAHA.112.192252. 

[140] R.L. Khan, R. Vadigepalli, M.K. McDonald, R.F. Rogers, G.R. Gao, J.S. 
Schwaber, Dynamic transcriptomic response to acute hypertension in the 
nucleus tractus solitarius., Am. J. Physiol. Regul. Integr. Comp. Physiol. 295 
(2008) R15-27. doi:10.1152/ajpregu.00152.2008. 

[141] R.F. Rogers, J.F. Paton, J.S. Schwaber, NTS neuronal responses to arterial 
pressure and pressure changes in the rat NTS neuronal responses to arterial and 
pressure changes in the rat, Am J Physiol Regul Integr Comp Physiol. (1993) 
R1355–R1368. 

[142] D.K. Welsh, J.S. Takahashi, S.A. Kay, Suprachiasmatic nucleus: cell autonomy 
and network properties., Annu. Rev. Physiol. 72 (2010) 551–77. 
doi:10.1146/annurev-physiol-021909-135919. 

[143] J.M. Dragich, D.H. Loh, L.M. Wang, A.M. Vosko, T. Kudo, T.J. Nakamura, 
I.H. Odom, S. Tateyama, A. Hagopian, J. a. Waschek, C.S. Colwell, The role of 
the neuropeptides PACAP and VIP in the photic regulation of gene expression 
in the suprachiasmatic nucleus, Eur. J. Neurosci. 31 (2010) 864–875. 
doi:10.1111/j.1460-9568.2010.07119.x. 

[144] C. Liu, S.M. Reppert, GABA synchronizes clock cells within the 
suprachiasmatic circadian clock., Neuron. 25 (2000) 123–128. 
doi:10.1016/S0896-6273(00)80876-4. 

[145] M. Mieda, D. Ono, E. Hasegawa, H. Okamoto, K. Honma, S. Honma, T. 
Sakurai, Cellular Clocks in AVP Neurons of the SCN Are Critical for 
Interneuronal Coupling Regulating Circadian Behavior Rhythm, Neuron. 85 
(2015) 1103–1116. doi:10.1016/j.neuron.2015.02.005. 

[146] H.J. Romijn, A.A. Sluiter, C.W. Pool, J. Wortel, R.M. Buijs, Evidence from 
confocal fluorescence microscopy for a dense, reciprocal innervation between 
AVP-, somatostatin-, VIP/PHI-, GRP-, and VIP/PHI/GRP-immunoreactive 
neurons in the rat suprachiasmatic nucleus., Eur. J. Neurosci. 9 (1997) 2613–
2623. doi:9517467. 

[147] A.C. Liu, D.K. Welsh, C.H. Ko, H.G. Tran, E.E. Zhang, A. a. Priest, E.D. Buhr, 
O. Singer, K. Meeker, I.M. Verma, F.J. Doyle, J.S. Takahashi, S. a. Kay, 
Intercellular Coupling Confers Robustness against Mutations in the SCN 
Circadian Clock Network, Cell. 129 (2007) 605–616. 
doi:10.1016/j.cell.2007.02.047. 

[148] E.E. Abrahamson, R.Y. Moore, Suprachiasmatic nucleus in the mouse: Retinal 



 316 

innervation, intrinsic organization and efferent projections, Brain Res. 916 
(2001) 172–191. doi:10.1016/S0006-8993(01)02890-6. 

[149] H. Zhu, R. Vadigepalli, R. Rafferty, G.E. Gonye, D.R. Weaver, J.S. Schwaber, 
Integrative gene regulatory network analysis reveals light-induced regional 
gene expression phase shift programs in the mouse suprachiasmatic nucleus, 
PLoS One. 7 (2012). doi:10.1371/journal.pone.0037833. 

[150] M.C. Antle, R. Silver, Orchestrating time: arrangements of the brain circadian 
clock, Trends Neurosci. 28 (2005) 145–151. doi:10.1016/j.tins.2005.01.003. 

[151] M.U. Gillette, J.W. Mitchell, Signaling in the suprachiasmatic nucleus: 
selectively responsive and integrative, Cell Tissue Res. 309 (2002) 99–107. 
doi:10.1007/s00441-002-0576-1. 

[152] R. Teclemariam-Mesbah, A. Kalsbeek, P. Pevet, R.M. Buijs, Direct vasoactive 
intestinal polypeptide-containing projection from the suprachiasmatic nucleus 
to spinal projecting hypothalamic paraventricular neurons, Brain Res. 748 
(1997) 71–76. doi:10.1016/S0006-8993(96)01246-2. 

[153] T.J. Bartness, C.K. Song, G.E. Demas, SCN efferents to peripheral tissues: 
implications for biological rhythms., J. Biol. Rhythms. 16 (2001) 196–204. 
doi:10.1177/074873040101600302. 

[154] M. Sujino, K. Masumoto, S. Yamaguchi, G.T.J. van der Horst, H. Okamura, S.-
I.T. Inouye, Suprachiasmatic nucleus grafts restore circadian behavioral 
rhythms of genetically arrhythmic mice, Curr. Biol. 13 (2003) 664–668. 

[155] S.J. Kuhlman, R. Silver, J. Le Sauter, A. Bult-Ito, D.G. McMahon, Phase 
resetting light pulses induce Per1 and persistent spike activity in a 
subpopulation of biological clock neurons., J. Neurosci. 23 (2003) 1441–50. 
doi:23/4/1441 [pii]. 

[156] R. Araki, M. Nakahara, R. Fukumura, H. Takahashi, K. Mori, N. Umeda, M. 
Sujino, S.-I.T. Inouye, M. Abe, Identification of genes that express in response 
to light exposure and express rhythmically in a circadian manner in the mouse 
suprachiasmatic nucleus, Brain Res. 1098 (2006) 9–18. 
doi:10.1016/j.brainres.2006.04.096. 

[157] M.H. Hastings, E.S. Maywood, A.B. Reddy, Two Decades of Circadian Time, 
J. Neuroendocrinol. 20 (2008) 812–819. doi:10.1111/j.1365-
2826.2008.01715.x. 

[158] V.M. Porterfield, H. Piontkivska, E.M. Mintz, Identification of novel light-



 317 

induced genes in the suprachiasmatic nucleus, BMC Neurosci. 8 (2007) 98. 
doi:10.1186/1471-2202-8-98. 

[159] V.M. Porterfield, E.M. Mintz, Temporal patterns of light-induced immediate-
early gene expression in the suprachiasmatic nucleus, Neurosci. Lett. 463 
(2009) 70–73. doi:10.1016/j.neulet.2009.07.066. 

[160] R.A.L. Dampney, Central mechanisms regulating coordinated cardiovascular 
and respiratory function during stress and arousal., Am. J. Physiol. Regul. 
Integr. Comp. Physiol. 309 (2015) R429-43. doi:10.1152/ajpregu.00051.2015. 

[161] F.J. Doyle III, M. Henson, B.A. Ogunnaike, J.S. Schwaber, I. Rybak, Neuronal 
Modeling of the Baroreceptor Reflex with Applications in Process Modeling 
and Control, in: O. Omidvar, D.L. Elliot (Eds.), Neural Syst. Control, Academic 
Press, San Diego, 1997: pp. 87–122. 

[162] G.A. Ordway, A. Szebeni, M.M. Duffourc, S. Dessus-Babus, K. Szebeni, Gene 
expression analyses of neurons, astrocytes, and oligodendrocytes isolated by 
laser capture microdissection from human brain: Detrimental effects of 
laboratory humidity, J. Neurosci. Res. 87 (2009) 2430–2438. 
doi:10.1002/jnr.22078. 

[163] G.I. Murray, ed., Laser Capture Microdissection, Humana Press, Totowa, NJ, 
2011. doi:10.1007/978-1-61779-163-5. 

[164] J. Mojsilovic-Petrovic, M. Nesic, A. Pen, W. Zhang, D. Stanimirovic, 
Development of rapid staining protocols for laser-capture microdissection of 
brain vessels from human and rat coupled to gene expression analyses, J. 
Neurosci. Methods. 133 (2004) 39–48. doi:10.1016/j.jneumeth.2003.09.026. 

[165] E. Kummari, S.X. Guo-Ross, J.B. Eells, Laser Capture Microdissection - A 
Demonstration of the Isolation of Individual Dopamine Neurons and the Entire 
Ventral Tegmental Area, J. Vis. Exp. (2015) 1–14. doi:10.3791/52336. 

[166] N.L. Simone, R.F. Bonner, J.W. Gillespie, M.R. Emmert-Buck, L.A. Liotta, 
Laser-capture microdissection: Opening the microscopic frontier to molecular 
analysis, Trends Genet. 14 (1998) 272–276. doi:10.1016/S0168-
9525(98)01489-9. 

[167] B. Oktay, K. Sugino, S.B. Nelson, A quantitative Comparison of Cell-Type-
Specific Microarray Gene Expression Profiling Methods in the Mouse Brain, 
PLoS One. (2011). 
http://www.plosone.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371
%2Fjournal.pone.0016493&representation=PDF. 



 318 

[168] B. Tasic, V. Menon, T.N.T. Nguyen, T.T.K. Kim, T. Jarsky, Z. Yao, B.B. Levi, 
L.T. Gray, S.A. Sorensen, T. Dolbeare, D. Bertagnolli, J. Goldy, N. 
Shapovalova, S. Parry, C.C. Lee, K. Smith, A. Bernard, L. Madisen, S.M. 
Sunkin, M. Hawrylycz, C. Koch, H. Zeng, Z. Yao, C.C. Lee, N. Shapovalova, 
S. Parry, L. Madisen, S.M. Sunkin, M. Hawrylycz, C. Koch, H. Zeng, Adult 
mouse cortical cell taxonomy revealed by single cell transcriptomics, Nat. 
Neurosci. advance on (2016) 1–37. doi:10.1038/nn.4216. 

[169] K. Freeman, M.M. Staehle, Z.H. Gümüş, R. Vadigepalli, G.E. Gonye, C.N. 
Nichols, B.A. Ogunnaike, J.B. Hoek, J.S. Schwaber, Rapid temporal changes in 
the expression of a set of neuromodulatory genes during alcohol withdrawal in 
the dorsal vagal complex: molecular evidence of homeostatic disturbance., 
Alcohol. Clin. Exp. Res. 36 (2012) 1688–700. doi:10.1111/j.1530-
0277.2012.01791.x. 

[170] K. Freeman, M.M. Staehle, R. Vadigepalli, G.E. Gonye, B.A. Ogunnaike, J.B. 
Hoek, J.S. Schwaber, Coordinated dynamic gene expression changes in the 
central nucleus of the amygdala during alcohol withdrawal., Alcohol. Clin. Exp. 
Res. 37 Suppl 1 (2013) E88-100. doi:10.1111/j.1530-0277.2012.01910.x. 

[171] S.L. Spurgeon, R.C. Jones, R. Ramakrishnan, High throughput gene expression 
measurement with real time PCR in a microfluidic dynamic array., PLoS One. 3 
(2008) e1662. doi:10.1371/journal.pone.0001662. 

[172] S. Rozen, H. Skaletsky, Primer3 on the WWW for general users and for 
biologist programmers., Methods Mol. Biol. 132 (2000) 365–386. 
doi:10.1385/1-59259-192-2:365. 

[173] J. Quackenbush, Microarray data normalization and transformation., Nat. 
Genet. 32 Suppl (2002) 496–501. doi:10.1038/ng1032. 

[174] J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe, 
F. Speleman, Accurate normalization of real-time quantitative RT-PCR data by 
geometric averaging of multiple internal control genes., Genome Biol. 3 (2002) 
RESEARCH0034. 

[175] B.M. Bolstad, R. a Irizarry, M. Astrand, T.P. Speed, A comparison of 
normalization methods for high density oligonucleotide array data based on 
variance and bias., Bioinformatics. 19 (2003) 185–93. 

[176] A. Bergkvist, V. Rusnakova, R. Sindelka, J.M.A. Garda, B. Sjögreen, D. Lindh, 
A. Forootan, M. Kubista, Gene expression profiling--Clusters of possibilities., 
Methods. 50 (2010) 323–35. doi:10.1016/j.ymeth.2010.01.009. 



 319 

[177] K. Freeman, A. Brureau, R. Vadigepalli, M.M. Staehle, M.M. Brureau, G.E. 
Gonye, J.B. Hoek, D.C. Hooper, J.S. Schwaber, Temporal changes in innate 
immune signals in a rat model of alcohol withdrawal in emotional and 
cardiorespiratory homeostatic nuclei., J. Neuroinflammation. 9 (2012) 97. 
doi:10.1186/1742-2094-9-97. 

[178] J.A. Warrington, A. Nair, M. Mahadevappa, M. Tsyganskaya, Comparison of 
human adult and fetal expression and identification of 535 housekeeping / 
maintenance genes Comparison of human adult and fetal expression and 
identification of 535 housekeeping / maintenance genes, Genomics, Physiol. 2 
(2000) 143–147. doi:2/3/143 [pii]. 

[179] O. Thellin, W. Zorzi, B. Lakaye, B. De Borman, B. Coumans, G. Hennen, T. 
Grisar, A. Igout, E. Heinen, Housekeeping genes as internal standards: Use and 
limits, J. Biotechnol. 75 (1999) 291–295. doi:10.1016/S0168-1656(99)00163-7. 

[180] C.L. Andersen, J.L. Jensen, T.F. Ørntoft, Normalization of real-time 
quantitative reverse transcription-PCR data: a model-based variance estimation 
approach to identify genes suited for normalization, applied to bladder and 
colon cancer data sets., Cancer Res. 64 (2004) 5245–50. doi:10.1158/0008-
5472.CAN-04-0496. 

[181] J. Gründemann, F. Schlaudraff, B. Liss, UV-laser microdissection and mRNA 
expression analysis of individual neurons from postmortem parkinson’s disease 
brains, 2011. doi:10.1007/978-1-61779-163-5_30. 

[182] J.K. Cleal, J.N. Shepherd, J.L. Shearer, K.D. Bruce, F.R. Cagampang, 
Sensitivity of housekeeping genes in the suprachiasmatic nucleus of the mouse 
brain to diet and the daily light-dark cycle, Brain Res. 1575 (2014) 72–77. 
doi:10.1016/j.brainres.2014.05.031. 

[183] S. Westfall, A. Aguilar-Valles, V. Mongrain, G.N. Luheshi, N. Cermakian, 
Time-Dependent Effects of Localized Inflammation on Peripheral Clock Gene 
Expression in Rats, PLoS One. 8 (2013) 1–15. 
doi:10.1371/journal.pone.0059808. 

[184] R. Santana, L.M. McGarry, C. Bielza, P. Larrañaga, R. Yuste, Classification of 
neocortical interneurons using affinity propagation., Front. Neural Circuits. 7 
(2013) 185. doi:10.3389/fncir.2013.00185. 

[185] M. Ringnér, What is principal component analysis ?, Nat. Biotechnol. 26 (2008) 
303–304. 

[186] C.E. Hart, L. Sharenbroich, B.J. Bornstein, D. Trout, B. King, E. Mjolsness, 



 320 

B.J. Wold, A mathematical and computational framework for quantitative 
comparison and integration of large-scale gene expression data, Nucleic Acids 
Res. 33 (2005) 2580–2594. doi:10.1093/nar/gki536. 

[187] A. Zeisel, A.B.M. Manchado, S. Codeluppi, P. Lönnerberg, G. La Manno, A. 
Juréus, S. Marques, Cell types in the mouse cortex and hippocampus revealed 
by single-cell RNA-seq, (2015) 1–8. 

[188] M.E. Ross, X. Zhou, G. Song, S.A. Shurtleff, K. Girtman, W.K. Williams, H.-
C. Liu, R. Mahfouz, S.C. Raimondi, N. Lenny, A. Patel, J.R. Downing, 
Classification of pediatric acute lymphoblastic leukemia by gene expression 
profiling., Blood. 102 (2003) 2951–9. doi:10.1182/blood-2003-01-0338. 

[189] Y.-H. Taguchi, Y. Oono, Relational patterns of gene expression via non-metric 
multidimensional scaling analysis., Bioinformatics. 21 (2005) 730–40. 
doi:10.1093/bioinformatics/bti067. 

[190] G.N. Fuller, K.R. Hess, C.H. Rhee, W.K.A. Yung, R.A. Sawaya, J.M. Bruner, 
W. Zhang, Molecular Classification of Human Diffuse Gliomas by 
Multidimensional Scaling Analysis of Gene Expression Profiles Parallels 
Morphology-Based Classification, Correlates with Survival, and Reveals 
Clinically-Relevant Novel Glioma Subsets, Brain Pathol. 12 (2006) 108–116. 
doi:10.1111/j.1750-3639.2002.tb00427.x. 

[191] L. Van Der Maaten, G. Hinton, Visualizing Data using t-SNE, J. Mach. Learn. 
Res. 9 (2008) 2579–2605. doi:10.1007/s10479-011-0841-3. 

[192] E.D. Amir, K.L. Davis, M.D. Tadmor, E.F. Simonds, J.H. Levine, S.C. Bendall, 
D.K. Shenfeld, S. Krishnaswamy, G.P. Nolan, D. Pe’er, viSNE enables 
visualization of high dimensional single-cell data and reveals phenotypic 
heterogeneity of leukemia., Nat. Biotechnol. 31 (2013) 545–52. 
doi:10.1038/nbt.2594. 

[193] A. Mahfouz, M. van de Giessen, L. van der Maaten, S. Huisman, M. Reinders, 
M.J. Hawrylycz, B.P.F. Lelieveldt, Visualizing the spatial gene expression 
organization in the brain through non-linear similarity embeddings, Methods. 
73 (2015) 79–89. doi:10.1016/j.ymeth.2014.10.004. 

[194] P. Qiu, E.F. Simonds, S.C. Bendall, K.D. Gibbs, R. V Bruggner, M.D. 
Linderman, K. Sachs, G.P. Nolan, S.K. Plevritis, Extracting a cellular hierarchy 
from high-dimensional cytometry data with SPADE, Nat. Biotechnol. 29 (2011) 
886–891. doi:10.1038/nbt.1991. 

[195] R. Sánchez-Alvarez, S. Gayen, R. Vadigepalli, H. Anni, Ethanol diverts early 



 321 

neuronal differentiation trajectory of embryonic stem cells by disrupting the 
balance of lineage specifiers., PLoS One. 8 (2013) e63794. 
doi:10.1371/journal.pone.0063794. 

[196] P.M. Magwene, P. Lizardi, J. Kim, Reconstructing the temporal ordering of 
biological samples using microarray data, Bioinformatics. 19 (2003) 842–850. 
doi:10.1093/bioinformatics/btg081. 

[197] C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N.J. 
Lennon, K.J. Livak, T.S. Mikkelsen, J.L. Rinn, The dynamics and regulators of 
cell fate decisions are revealed by pseudotemporal ordering of single cells., Nat. 
Biotechnol. 32 (2014) 381–6. doi:10.1038/nbt.2859. 

[198] M.E.J. Newman, Finding community structure in networks using the 
eigenvectors of matrices, Phys. Rev. E. 74 (2006) 36104. 
doi:10.1103/PhysRevE.74.036104. 

[199] J. Saez-Rodriguez, L.G. Alexopoulos, J. Epperlein, R. Samaga, D. a 
Lauffenburger, S. Klamt, P.K. Sorger, Discrete logic modelling as a means to 
link protein signalling networks with functional analysis of mammalian signal 
transduction., Mol. Syst. Biol. 5 (2009) 331. doi:10.1038/msb.2009.87. 

[200] S. Bulashevska, R. Eils, Inferring genetic regulatory logic from expression 
data., Bioinformatics. 21 (2005) 2706–13. doi:10.1093/bioinformatics/bti388. 

[201] N. Friedman, M. Linial, I. Nachman, D. Pe’er, Using Bayesian networks to 
analyze expression data., J. Comput. Biol. 7 (2000) 601–20. 
doi:10.1089/106652700750050961. 

[202] B.W. Kunkle, C. Yoo, D. Roy, Reverse engineering of modified genes by 
Bayesian network analysis defines molecular determinants critical to the 
development of glioblastoma., PLoS One. 8 (2013) e64140. 
doi:10.1371/journal.pone.0064140. 

[203] N. Friedman, Inferring cellular networks using probabilistic graphical models., 
Science. 303 (2004) 799–805. doi:10.1126/science.1094068. 

[204] K. Basso, A.A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera, A. 
Califano, Reverse engineering of regulatory networks in human B cells., Nat. 
Genet. 37 (2005) 382–90. doi:10.1038/ng1532. 

[205] A.A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Dalla 
Favera, A. Califano, ARACNE: an algorithm for the reconstruction of gene 
regulatory networks in a mammalian cellular context., BMC Bioinformatics. 7 



 322 

Suppl 1 (2006) S7. doi:10.1186/1471-2105-7-S1-S7. 

[206] P.D. Potts, J.W. Polson, Y. Hirooka, R.A.L. Dampney, Effects of Sinoaortic 
Denervation on Fos Expression in the Brain Evoked by Hypertension and 
Hypotension in Conscious Rabbits, Neuroscience. 77 (1997) 503–520. 
doi:10.1016/S0306-4522(96)00459-9. 

[207] R.K.W. Chan, E.V. Jarvina, P.E. Sawchenko, Effects of selective sinoaortic 
denervations on phenylephrine-induced activational responses in the nucleus of 
the solitary tract, Neuroscience. 101 (2000) 165–178. doi:10.1016/S0306-
4522(00)00332-8. 

[208] Y. Li, N. Zealand, W. Correspondence, Expression of c-fos protein in the 
medulla oblongata of conscious rabbits in response to baroreceptor activation, 
144 (1992) 70–74. 

[209] M.J. Glass, J. Chan, K.A. Frys, M. Oselkin, M.J. Tarsitano, C. Iadecola, V.M. 
Pickel, Changes in the subcellular distribution of NADPH oxidase subunit 
p47phox in dendrites of rat dorsomedial nucleus tractus solitarius neurons in 
response to chronic administration of hypertensive agents., Exp. Neurol. 205 
(2007) 383–95. doi:10.1016/j.expneurol.2007.02.016. 

[210] L. Rinaman, Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, 
endocrine, cognitive, and behavioral functions., Am. J. Physiol. Regul. Integr. 
Comp. Physiol. 300 (2011) R222-35. doi:10.1152/ajpregu.00556.2010. 

[211] J.Y.H. Chan, W.-C. Chen, H.-Y. Lee, S.H.H. Chan, Elevated Fos Expression in 
the Nucleus Tractus Solitarii Is Associated With Reduced Baroreflex Response 
in Spontaneously Hypertensive Rats, Hypertension. 32 (1998) 939–944. 
doi:10.1161/01.HYP.32.5.939. 

[212] J.C. Graham, G.E. Hoffman, A.F. Sved, c-Fos expression in brain in response 
to hypotension and hypertension in conscious rats, J. Auton. Nerv. Syst. 55 
(1995) 92–104. doi:10.1016/0165-1838(95)00032-S. 

[213] C.-D. Shih, S.H.H. Chan, J.Y.H. Chan, Participation of Fos protein at the 
nucleus tractus solitarius in inhibitory modulation of baroreceptor reflex 
response in the rat, Brain Res. 738 (1996) 39–47. 

[214] J. Wang, H. Zheng, X. Ou, L.M. Fink, M. Hauer-Jensen, Deficiency of 
Microvascular Thrombomodulin and Up-Regulation of Protease-Activated 
Receptor-1 in Irradiated Rat Intestine, Am. J. Pathol. 160 (2002) 2063–2072. 

[215] P. Ye, R. Bagnell, A.J. D’Ercole, Mouse NG2+ Oligodendrocyte Precursors 



 323 

Express mRNA for Proteolipid Protein But Not Its DM-20 Variant: A Study of 
Laser Microdissection-Captured NG2+ Cells, J. Neurosci. 23 (2003) 4401–
4405. 

[216] W. Zhang, J. Mojsilovic-Petrovic, M.F. Andrade, H. Zhang, M. Ball, D.B. 
Stanimirovic, The expression and functional characterization of ABCG2 in 
brain endothelial cells and vessels., FASEB J. 17 (2003) 2085–7. 
doi:10.1096/fj.02-1131fje. 

[217] J.A. Macdonald, N. Murugesan, J.S. Pachter, Validation of immuno-laser 
capture microdissection coupled with quantitative RT-PCR to probe blood–
brain barrier gene expression in situ, J. Neurosci. Methods. 174 (2008) 219–
226. 

[218] W. Stacklies, H. Redestig, M. Scholz, D. Walther, J. Selbig, pcaMethods -- a 
Bioconductor package providing PCA methods for incomplete data, 
Bioinformatics. 23 (2007) 1164–1167. 

[219] R Core Team, R: A Language and Environment for Statistical Computing, 
(2013). 

[220] W.N. Venables, B.D. Ripley, Modern Applied Statistics with S, Fourth, 
Springer, New York, 2002. 

[221] J. Lemon, Plotrix: a package in the red light district of R, R-News. 6 (2006) 8–
12. 

[222] D. Adler, D. Murdoch, rgl: 3D visualization device system (OpenGL), (2013). 

[223] M.E. Ross, X. Zhou, G. Song, S. a Shurtleff, K. Girtman, W.K. Williams, H.-C. 
Liu, R. Mahfouz, S.C. Raimondi, N. Lenny, A. Patel, J.R. Downing, 
Classification of pediatric acute lymphoblastic leukemia by gene expression 
profiling., Blood. 102 (2003) 2951–9. doi:10.1182/blood-2003-01-0338. 

[224] G.N. Fuller, K.R. Hess, C.H. Rhee, W.K.A. Yung, R. a Sawaya, J.M. Bruner, 
W. Zhang, Molecular classification of human diffuse gliomas by 
multidimensional scaling analysis of gene expression profiles parallels 
morphology-based classification, correlates with survival, and reveals 
clinically-relevant novel glioma subsets., Brain Pathol. 12 (2002) 108–16. 

[225] M.D. Dogan, C. Sumners, C.S. Broxson, N. Clark, N. Tümer, Central 
angiotensin II increases biosynthesis of tyrosine hydroxylase in the rat adrenal 
medulla, Biochem. Biophys. Res. Commun. 313 (2004) 623–626. 



 324 

[226] E.M. Richards, M.K. Raizada, C.H. Gelband, C. Sumners, Angiotensin II type 1 
receptor-modulated signaling pathways in neurons., Mol. Neurobiol. 19 (1999) 
25–41. doi:10.1007/BF02741376. 

[227] D. Lu, H. Yang, M.K. Raizada, Angiotensin II regulation of neuromodulation: 
downstream signaling mechanism from activation of mitogen-activated protein 
kinase., J. Cell Biol. 135 (1996) 1609–17. 

[228] S. Gallinat, Gene Expression Profiling of Rat Brain Neurons Reveals 
Angiotensin II-Induced Regulation of Calmodulin and Synapsin I: Possible 
Role in Neuromodulation, Endocrinology. 142 (2001) 1009–1016. 
doi:10.1210/en.142.3.1009. 

[229] T. Stadler, A. Veltmar, F. Qadri, T. Unger, Angiotensin II evokes noradrenaline 
release from the paraventricular nucleus in conscious rats, 1992. 

[230] A. Blume, T. Herdegen, T. Unger, Angiotensin peptides and inducible 
transcription factors, J. Mol. Med. 77 (1999) 339–357. 
doi:10.1007/s001090050360. 

[231] F. Qadri, E. Badoer, T. Stadler, T. Unger, Angiotensin II-induced noradrenaline 
release from anterior hypothalamus in conscious rats: a brain microdialysis 
study, Brain Res. 563 (1991) 137–141. 

[232] S. Tay, J.J. Hughey, T.K. Lee, T. Lipniacki, S.R. Quake, M.W. Covert, Single-
cell NF-kappaB dynamics reveal digital activation and analogue information 
processing., Nature. 466 (2010) 267–71. doi:10.1038/nature09145. 

[233] C.-L. Chen, D.C. Broom, Y. Liu, J.C. de Nooij, Z. Li, C. Cen, O.A. Samad, 
T.M. Jessell, C.J. Woolf, Q. Ma, Runx1 determines nociceptive sensory neuron 
phenotype and is required for thermal and neuropathic pain., Neuron. 49 (2006) 
365–77. doi:10.1016/j.neuron.2005.10.036. 

[234] L. Luo, G. Fishell, S.A.D.T. di Sanguinetto, J.S. Dasen, S. Arber, 
Transcriptional mechanisms controlling motor neuron diversity and 
connectivity, Curr. Opin. Neurobiol. 18 (2008) 36–43. 

[235] R.A.L. Dampney, J. Horiuchi, Functional organisation of central cardiovascular 
pathways: studies using c-fos gene expression, Prog. Neurobiol. 71 (2003) 359–
384. doi:10.1016/j.pneurobio.2003.11.001. 

[236] H. Grill, M. Hayes, Hindbrain neurons as an essential hub in the 
neuroanatomically distributed control of energy balance., Cell Metab. 16 (2012) 
296–309. 



 325 

[237] J.F. Paton, Convergence properties of solitary tract neurones driven synaptically 
by cardiac vagal afferents in the mouse., J. Physiol. 508 ( Pt 1 (1998) 237–52. 

[238] R.F. Rogers, W.C. Rose, J.S. Schwaber, R.F. Rogers, C. Rose, J.S. Schwaber, 
Simultaneous encoding of carotid sinus pressure and dP / dt by NTS target 
neurons of myelinated baroreceptors Simultaneous Encoding of Carotid Sinus 
Pressure and dP / dt by NTS Target Neurons of Myelinated aroreceptors, J 
Neurophysiol. 76 (1996) 2644–2660. 

[239] B. Zhang, S. Horvath, A general framework for weighted gene co-expression 
network analysis., Stat. Appl. Genet. Mol. Biol. 4 (2005) Article17. 
doi:10.2202/1544-6115.1128. 

[240] B. Schwanhäusser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. 
Chen, M. Selbach, Global quantification of mammalian gene expression 
control., Nature. 473 (2011) 337–42. doi:10.1038/nature10098. 

[241] Y. Buganim, D. a Faddah, A.W. Cheng, E. Itskovich, S. Markoulaki, K. Ganz, 
S.L. Klemm, A. van Oudenaarden, R. Jaenisch, Single-cell expression analyses 
during cellular reprogramming reveal an early stochastic and a late hierarchic 
phase., Cell. 150 (2012) 1209–22. doi:10.1016/j.cell.2012.08.023. 

[242] A.J. Butte, P. Tamayo, D. Slonim, T.R. Golub, I.S. Kohane, Discovering 
functional relationships between RNA expression and chemotherapeutic 
susceptibility using relevance networks., Proc. Natl. Acad. Sci. U. S. A. 97 
(2000) 12182–6. doi:10.1073/pnas.220392197. 

[243] P.J. Woolf, Y. Wang, M.R. Aniba, S. Siguenza, A. Friedrich, F. Plewniak, A. 
Marchler-bauer, J.D. Thompson, A fuzzy logic approach to analyzing gene 
expression data A fuzzy logic approach to analyzing gene expression data, 
Physiol. Genomics. 3 (2000) 9–15. 

[244] G.N. Brock, W.D. Beavis, L.S. Kubatko, Fuzzy logic and related methods as a 
screening tool for detecting gene regulatory networks, Inf. Fusion. 10 (2009) 
250–259. doi:10.1016/j.inffus.2008.11.008. 

[245] B.A. Sokhansanj, J.P. Fitch, J.N. Quong, A.A. Quong, Linear fuzzy gene 
network models obtained from microarray data by exhaustive search., BMC 
Bioinformatics. 5 (2004) 108. doi:10.1186/1471-2105-5-108. 

[246] S. Zhang, G. Jin, X.-S. Zhang, L. Chen, Discovering functions and revealing 
mechanisms at molecular level from biological networks., Proteomics. 7 (2007) 
2856–69. doi:10.1002/pmic.200700095. 



 326 

[247] R.M. Tong, A Control Engineering Review of Fuzzy Systems*, Automatica. 13 
(1977) 559–569. 

[248] L.A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965) 338–353. 

[249] T.L. Seng, M. Bin Khalid, R. Yusof, Tuning of a neuro-fuzzy controller by 
genetic algorithm., IEEE Trans. Syst. Man. Cybern. B. Cybern. 29 (1999) 226–
36. doi:10.1109/3477.752795. 

[250] H. Ying, A general technique for deriving analytical structure of fuzzy 
controllers using arbitrary trapezoidal input fuzzy sets and Zadeh AND 
operator, Automatica. 39 (2003) 1171–1184. doi:10.1016/S0005-
1098(03)00086-4. 

[251] R. Linden, A. Bhaya, Evolving fuzzy rules to model gene expression., 
Biosystems. 88 (2007) 76–91. doi:10.1016/j.biosystems.2006.04.006. 

[252] H. Ressom, D. Wang, R.S. Varghese, R. Reynolds, Fuzzy logic-based gene 
regulatory network, 12th IEEE Int. Conf. Fuzzy Syst. 2003. FUZZ ’03. 2 (2003) 
1210–1215. doi:10.1109/FUZZ.2003.1206604. 

[253] H. Ressom, R. Reynolds, R.S. Varghese, Increasing the efficiency of fuzzy 
logic-based gene expression data analysis., Physiol. Genomics. 13 (2003) 107–
17. doi:10.1152/physiolgenomics.00097.2002. 

[254] Y. Jin, Fuzzy modeling of high-dimensional systems: complexity reduction and 
interpretability improvement, IEEE Trans. Fuzzy Syst. 8 (2000) 212–221. 
doi:10.1109/91.842154. 

[255] Y. Jin, S. Member, B. Sendhoff, Evolving in silico Bistable and Oscillatory 
Dynamics for Gene Regulatory Network Motifs, (2008) 386–391. 

[256] M. Martínez-Ballesteros, I.A. Nepomuceno-Chamorro, J.C. Riquelme, 
Discovering gene association networks by multi-objective evolutionary 
quantitative association rules, J. Comput. Syst. Sci. 80 (2014) 118–136. 
doi:10.1016/j.jcss.2013.03.010. 

[257] A. Schatten, Genetic Algorithm Tutorial, (2002). 
http://www.cs.ucdavis.edu/~vemuri/classes/ecs271/Genetic Algorithms Short 
Tutorial.htm. 

[258] M. Mitchell, An introduction to genetic algorithms, MIT press, 1998. 

[259] M.K. Morris, J. Saez-Rodriguez, D.C. Clarke, P.K. Sorger, D. a Lauffenburger, 



 327 

Training signaling pathway maps to biochemical data with constrained fuzzy 
logic: quantitative analysis of liver cell responses to inflammatory stimuli., 
PLoS Comput. Biol. 7 (2011) e1001099. doi:10.1371/journal.pcbi.1001099. 

[260] C. Trapnell, B.A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M.J. van Baren, 
S.L. Salzberg, B.J. Wold, L. Pachter, Transcript assembly and quantification by 
RNA-Seq reveals unannotated transcripts and isoform switching during cell 
differentiation., Nat. Biotechnol. 28 (2010) 511–5. doi:10.1038/nbt.1621. 

[261] L. Zadeh, Fuzzy logic, Scholarpedia. 3 (2008) 1766. 
doi:10.4249/scholarpedia.1766. 

[262] Y. Jin, L. Wang, eds., Fuzzy Systems in Bioinformatics and Computational 
Biology, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. 
doi:10.1007/978-3-540-89968-6. 

[263] S.G. Johnson, The NLopt nonlinear-optimization package, (2008). 

[264] D. Marbach, C. Mattiussi, D. Floreano, Combining multiple results of a reverse-
engineering algorithm: application to the DREAM five-gene network 
challenge., Ann. N. Y. Acad. Sci. 1158 (2009) 102–13. doi:10.1111/j.1749-
6632.2008.03945.x. 

[265] S. Datta, B. a Sokhansanj, Accelerated search for biomolecular network models 
to interpret high-throughput experimental data., BMC Bioinformatics. 8 (2007) 
258. doi:10.1186/1471-2105-8-258. 

[266] P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. 
Amin, B. Schwikowski, T. Ideker, Cytoscape: a software environment for 
integrated models of biomolecular interaction networks., Genome Res. 13 
(2003) 2498–504. doi:10.1101/gr.1239303. 

[267] A.K. Mitra, L. Gao, I.H. Zucker, Angiotensin II-induced upregulation of AT 1 
receptor expression : sequential activation of NF-  B and Elk-1 in neurons, 
(2010) 561–569. doi:10.1152/ajpcell.00127.2010. 

[268] C. Sumners, M.A. Fleegal, M. Zhu, Experimental Biology 2001 Symposium 
Neurotransmitters in Cardiovascular Regulation : Angiotensin ANGIOTENSIN 
AT 1 RECEPTOR SIGNALLING PATHWAYS IN NEURONS, (2002) 483–
490. 

[269] S.J. Veerasingham, M.K. Raizada, Brain renin-angiotensin system dysfunction 
in hypertension: recent advances and perspectives., Br. J. Pharmacol. 139 
(2003) 191–202. doi:10.1038/sj.bjp.0705262. 



 328 

[270] P.K. Mehta, K.K. Griendling, Angiotensin II cell signaling : physiological and 
pathological effects in the cardiovascular system, (2007) 82–97. 
doi:10.1152/ajpcell.00287.2006. 

[271] R. Kvetnansky, E.L. Sabban, M. Palkovits, Catecholaminergic Systems in 
Stress : Structural and Molecular Genetic Approaches, (2009) 535–606. 
doi:10.1152/physrev.00042.2006. 

[272] T. Herdegen, J.D. Leah, Inducible and constitutive transcription factors in the 
mammalian nervous system: control of gene expression by Jun, Fos and Krox, 
and CREB/ATF proteins, Brain Res. Rev. 28 (1998) 370–490. 
doi:10.1016/S0165-0173(98)00018-6. 

[273] M. Karin, Z. Liu, E. Zandi, AP-1 function and regulation, Curr. Opin. Cell Biol. 
9 (1997) 240–246. doi:10.1016/S0955-0674(97)80068-3. 

[274] L.M. Luttrell, R.J. Lefkowitz, The role of beta-arrestins in the termination and 
transduction of G-protein-coupled receptor signals., J. Cell Sci. 115 (2002) 
455–65. 

[275] J.D. Violin, S.M. Dewire, W.G. Barnes, R.J. Lefkowitz, G protein-coupled 
receptor kinase and beta-arrestin-mediated desensitization of the angiotensin II 
type 1A receptor elucidated by diacylglycerol dynamics., J. Biol. Chem. 281 
(2006) 36411–9. doi:10.1074/jbc.M607956200. 

[276] H. Zhong, R.R. Neubig, Regulator of G protein signaling proteins: novel 
multifunctional drug targets., J. Pharmacol. Exp. Ther. 297 (2001) 837–45. 

[277] B. Gasnier, The SLC32 transporter, a key protein for the synaptic release of 
inhibitory amino acids., Pflugers Arch. 447 (2004) 756–9. doi:10.1007/s00424-
003-1091-2. 

[278] T. Melander, A. Riikaeus, A.C. Cuello, W.H. Oertel, A. Verhofstad, 
Coexistence of Galanin-like lmmunoreactivity with Catecholamines , GABA 
and Neuropeptides in the Rat CNS, 6 (1986) 3640–3654. 

[279] Y. Marc, C. Llorens-Cortes, The role of the brain renin-angiotensin system in 
hypertension: implications for new treatment., Prog. Neurobiol. 95 (2011) 89–
103. doi:10.1016/j.pneurobio.2011.06.006. 

[280] M.E. Hall, F.B. Miley, J.M. Stewart, Cardiovascular effects of substance P 
peptides in the nucleus of the solitary tract, Brain Res. 497 (1989) 280–290. 
doi:10.1016/0006-8993(89)90273-4. 



 329 

[281] D.W. Lambert, N.E. Clarke, A.J. Turner, Not just angiotensinases: new roles 
for the angiotensin-converting enzymes., Cell. Mol. Life Sci. 67 (2010) 89–98. 
doi:10.1007/s00018-009-0152-x. 

[282] D. Pe’er, N. Hacohen, Principles and strategies for developing network models 
in cancer., Cell. 144 (2011) 864–73. doi:10.1016/j.cell.2011.03.001. 

[283] Y. Buganim, D. a Faddah, A.W. Cheng, E. Itskovich, S. Markoulaki, K. Ganz, 
S.L. Klemm, A. van Oudenaarden, R. Jaenisch, Single-cell expression analyses 
during cellular reprogramming reveal an early stochastic and a late hierarchic 
phase., Cell. 150 (2012) 1209–22. doi:10.1016/j.cell.2012.08.023. 

[284] A.A. Cohen, N. Geva-Zatorsky, E. Eden, M. Frenkel-Morgenstern, I. Issaeva, 
A. Sigal, R. Milo, C. Cohen-Saidon, Y. Liron, Z. Kam, L. Cohen, T. Danon, N. 
Perzov, U. Alon, Dynamic proteomics of individual cancer cells in response to 
a drug., Science. 322 (2008) 1511–6. doi:10.1126/science.1160165. 

[285] K.T. Flaherty, I. Puzanov, K.B. Kim, A. Ribas, G.A. McArthur, J. Sosman, P.J. 
O’Dwyer, R.J. Lee, J.F. Grippo, D. Ph, K. Nolop, P.B. Chapman, Inhibition of 
mutated, activated BRAF in metastatic melanoma, N. Engl. J. Med. 363 (2010) 
809–819. 

[286] P.I. Poulikakos, C. Zhang, G. Bollag, K.M. Shokat, N. Rosen, RAF inhibitors 
transactivate RAF dimers and ERK signalling in cells with wild-type BRAF., 
Nature. 464 (2010) 427–30. doi:10.1038/nature08902. 

[287] S. Bandyopadhyay, M. Mehta, D. Kuo, M.-K. Sung, R. Chuang, E.J. Jaehnig, 
B. Bodenmiller, K. Licon, W. Copeland, M. Shales, D. Fiedler, J. Dutkowski, 
A. Guénolé, H. van Attikum, K.M. Shokat, R.D. Kolodner, W.-K. Huh, R. 
Aebersold, M.-C. Keogh, N.J. Krogan, T. Ideker, Rewiring of genetic networks 
in response to DNA damage., Science. 330 (2010) 1385–9. 
doi:10.1126/science.1195618. 

[288] D. DeCicco, H. Zhu, A. Brureau, J.S. Schwaber, R. Vadigepalli, Dynamic 
regulation of microRNA networks in the brainstem underlie hypertension 
development, in: Exp. Biol., 2014. 

[289] E. Magosso, S. Cavalcanti, M. Ursino, Theoretical analysis of rest and exercise 
hemodynamics in patients with total cavopulmonary connection., Am. J. 
Physiol. Heart Circ. Physiol. 282 (2002) H1018-34. 
doi:10.1152/ajpheart.00231.2001. 

[290] M. Ursino, M. Antonucci, E. Belardinelli, Role of active changes in venous 
capacity by the carotid baroreflex: analysis with a mathematical model., Am. J. 



 330 

Physiol. 267 (1994) H2531–H2546. 

[291] M. Ursino, Interaction between carotid baroregulation and the pulsating heart: a 
mathematical model., Am. J. Physiol. 275 (1998) H1733–H1747. 

[292] W.C. Rose, J.S. Schwaber, Analysis of heart rate-based control of arterial blood 
pressure., Am. J. Physiol. 271 (1996) H812-22. 

[293] M.S. Olufsen, H.T. Tran, J.T. Ottesen, L. a Lipsitz, V. Novak, Modeling 
baroreflex regulation of heart rate during orthostatic stress., Am. J. Physiol. 
Regul. Integr. Comp. Physiol. 291 (2006) R1355–R1368. 
doi:10.1152/ajpregu.00205.2006. 

[294] D.L. Eckberg, Nonlinearities of the human carotid baroreceptor-cardiac reflex, 
Circ. Res. 47 (1980) 208–216. doi:10.1161/01.RES.47.2.208. 

[295] H. Degeest, M.N. Levy, H. Zieske, R.I. Lipman, Depression of Ventricular 
Contractility By Stimulation of the Vagus Nerves., Circ. Res. 17 (1965) 222–
235. doi:10.1161/01.RES.17.3.222. 

[296] R.J. Henning, I. Khalil, A u t o n o m i c nervous stimulation affects left 
ventricular relaxation more than left ventricular contraction, 28 (1989) 15–25. 

[297] M. Frey, Cardiovascular response of women to lower body negative pressure, 
Aviat. Sp. Environ. Med. 57 (1986) 531–538. 

[298] J.L. Ardell, P.S. Rajendran, H.A. Nier, B.H. KenKnight, J.A. Armour, Central-
peripheral neural network interactions evoked by vagus nerve stimulation: 
functional consequences on control of cardiac function., Am. J. Physiol. Heart 
Circ. Physiol. 309 (2015) H1740-52. doi:10.1152/ajpheart.00557.2015. 

[299] N. Levy, H. Zieske, Autonomic control and atrioventricular of cardiac 
pacemaker transmission activity, J. Appl. Physiol. 27 (1969) 465–470. 

[300] M.E. Lewis,  a H. Al-Khalidi, R.S. Bonser, T. Clutton-Brock, D. Morton, D. 
Paterson, J.N. Townend, J.H. Coote, Vagus nerve stimulation decreases left 
ventricular contractility in vivo in the human and pig heart., J. Physiol. 534 
(2001) 547–52. doi:10.1111/j.1469-7793.2001.00547.x. 

[301] B. Casadei, Physiological Society Symposium - Vagal Control: From Axolotl to 
Man. Vagal control of myocardial contractility in humans, Exp. Physiol. 86 
(2001) 817–823. doi:10.1113/eph8602297. 

[302] A.C. Fowler, M.J. McGuinnes, A delay recruitment model of the cardiovascular 



 331 

control system, J. Math. Biol. (2005) 508–526. 

[303] H. van de Vooren, M.G.J. Gademan, C. a Swenne, B.J. TenVoorde, M.J. 
Schalij, E.E. Van der Wall, Baroreflex sensitivity, blood pressure buffering, and 
resonance: what are the links? Computer simulation of healthy subjects and 
heart failure patients., J. Appl. Physiol. 102 (2007) 1348–1356. 
doi:10.1152/japplphysiol.00158.2006. 

[304] S. Cavalcanti, Arterial baroreflex influence on heart rate variability: a 
mathematical model-based analysis., Med. Biol. Eng. Comput. 38 (2000) 189–
197. doi:10.1007/BF02344775. 

[305] H.U. Klein, G.M. De Ferrari, Vagus nerve stimulation: A new approach to 
reduce heart failure, Cardiol. J. 17 (2010) 638–643. 

[306] S. Bibevski, M.E. Dunlap, Evidence for impaired vagus nerve activity in heart 
failure., Heart Fail. Rev. 16 (2011) 129–35. doi:10.1007/s10741-010-9190-6. 

[307] A. Machhada, R. Ang, G.L. Ackland, N. Ninkina, V.L. Buchman, M.F. 
Lythgoe, S. Trapp, A. Tinker, N. Marina, A. V. Gourine, Control of ventricular 
excitability by neurons of the dorsal motor nucleus of the vagus nerve, Hear. 
Rhythm. 12 (2015) 2285–2293. doi:10.1016/j.hrthm.2015.06.005. 

[308] V.J. Massari, L.W. Dickerson, A.L. Gray, J.M. Lauenstein, K.J. Blinder, J.T. 
Newsome, D.J. Rodak, T.J. Fleming, P.J. Gatti, R.A. Gillis, Neural control of 
left ventricular contractility in the dog heart: Synaptic interactions of negative 
inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine 
hydroxylase immunoreactive terminals, Brain Res. 802 (1998) 205–220. 
doi:10.1016/S0006-8993(98)00613-1. 

[309] E.S. Schelegle, J.F. Green, An overview of the anatomy and physiology of 
slowly adapting pulmonary stretch receptors, Respir. Physiol. 125 (2001) 17–
31. doi:10.1016/S0034-5687(00)00202-4. 

[310] L. Kubin, G.F. Alheid, E.J. Zuperku, D.R. McCrimmon, Central pathways of 
pulmonary and lower airway vagal afferents., J. Appl. Physiol. 101 (2006) 618–
27. doi:10.1152/japplphysiol.00252.2006. 

[311] H. Suga, K. Sagawa, D.P. Kostiuk, Controls of ventricular contractility assessed 
by pressure-volume ratio, Emax, Cardiovasc. Res. 10 (1976) 582–592. 

[312] L.M. McDowall, R. a L. Dampney, Calculation of threshold and saturation 
points of sigmoidal baroreflex function curves., Am. J. Physiol. Heart Circ. 
Physiol. 291 (2006) H2003-7. doi:10.1152/ajpheart.00219.2006. 



 332 

[313] P.V. Greenwood, R. Hainsworth, F. Karim, G.W. Morrison, O.A. Sofola, 
Reflex Inotropic Responses of the Heart from Lung Inflation in Anaesthetized 
Dogs, Eur. J. Physiol. 205 (1980) 199–205. 

[314] R. Hainsworth, Circulatory inflation responses in anesthetized from lung dogs, 
Am. J. Physiol. 226 (1974). 

[315] Boundless, Boundless Anatomy and Physiology, 2016. 

[316] J.H. Coote, Myths and realities of the cardiac vagus., J. Physiol. 591 (2013) 
4073–85. doi:10.1113/jphysiol.2013.257758. 

[317] R.E. Klabunde, Ventricular Pressure-Volume Relationship, (2015). 
http://www.cvphysiology.com/Cardiac Function/CF024.htm. 

[318] D.S. Warner, M. a Warner,  a P. Story, Venous Function and Central Venous 
Pressure, Anesthesiology. 108 (2008) 735–48. 
doi:10.1097/ALN.0b013e3181672607. 

[319] D.E. Burgess, J.C. Hundley, S.G. Li, D.C. Randall, D.R. Brown, First-order 
differential-delay equation for the baroreflex predicts the 0.4-Hz blood pressure 
rhythm in rats, Am J Physiol. 273 (1997) R1878-84. 

[320] J. V Ringwood, S.C. Malpas, Slow oscillations in blood pressure via a 
nonlinear feedback model., Am. J. Physiol. Regul. Integr. Comp. Physiol. 280 
(2001) R1105–R1115. doi:citeulike-article-id:2195425. 

[321] J.T. Ottesen, Modelling of the baroreflex-feedback mechanism with time-
delay., J. Math. Biol. 36 (1997) 41–63. doi:10.1007/s002850050089. 

[322] J.T. Ottesen, M.S. Olufsen, Functionality of the baroreceptor nerves in heart 
rate regulation, Comput. Methods Programs Biomed. 101 (2011) 208–219. 
doi:10.1016/j.cmpb.2010.10.012. 

[323] N. Westerhof, J.W. Lankhaar, B.E. Westerhof, The arterial windkessel, Med. 
Biol. Eng. Comput. 47 (2009) 131–141. doi:10.1007/s11517-008-0359-2. 

[324] A. Ben-Tal, S.S. Shamailov, J.F.R. Paton, Central regulation of heart rate and 
the appearance of respiratory sinus arrhythmia: New insights from 
mathematical modeling, Math. Biosci. 255 (2014) 71–82. 
doi:10.1016/j.mbs.2014.06.015. 

[325] E. Magosso, M. Ursino, Cardiovascular response to dynamic aerobic exercise: 
A methematical model, Med. Biol. Eng. Comput. 40 (2002) 660–674. 



 333 

doi:10.1007/BF02345305. 

[326] M. Ursino, E. Magosso, Acute cardiovascular response to isocapnic hypoxia. I. 
A mathematical model., Am. J. Physiol. Heart Circ. Physiol. 279 (2000) H149–
H165. 

[327] T. Kawada, M. Sugimachi, T. Shishido, H. Miyano, T. Sato, R. Yoshimura, H. 
Miyashita, T. Nakahara, J. Alexander, K. Sunagawa, Simultaneous 
identification of static and dynamic vagosympathetic interactions in regulating 
heart rate., Am. J. Physiol. 276 (1999) R782–R789. 

[328] Z. Cheng, T.L. Powley, J.S. Schwaber, F.J. Doyle, Projections of the dorsal 
motor nucleus of the vagus to cardiac ganglia of rat atria: an anterograde tracing 
study., J. Comp. Neurol. 410 (1999) 320–41. 

[329] S. Mastitskaya, N. Marina, A. Gourine, M.P. Gilbey, K.M. Spyer, A.G. 
Teschemacher, S. Kasparov, S. Trapp, G.L. Ackland, A. V Gourine, 
Cardioprotection evoked by remote ischaemic preconditioning is critically 
dependent on the activity of vagal pre-ganglionic neurones., Cardiovasc. Res. 
95 (2012) 487–94. doi:10.1093/cvr/cvs212. 

[330] R.A.L. Dampney, Functional organization of central pathways regulating the 
cardiovascular system., Physiol. Rev. 74 (1994) 323–364. 
doi:10.1017/CBO9781107415324.004. 

[331] J.F. Jones, Y. Wang, D. Jordan, Activity of C fibre cardiac vagal efferents in 
anaesthetized cats and rats., J. Physiol. 507 ( Pt 3 (1998) 869–80. 

[332] J.A. Sala-Mercado, M. Moslehpour, R.L. Hammond, M. Ichinose, X. Chen, S. 
Evan, D.S. O’Leary, R. Mukkamala, Stimulation of the Cardiopulmonary 
Baroreflex Enhances Ventricular Contractility in Awake Dogs: A Mathematical 
Analysis Study., Am. J. Physiol. Regul. Integr. Comp. Physiol. (2014) 
ajpregu.00510.2013-. doi:10.1152/ajpregu.00510.2013. 

[333] R.J. Henning, I.R. Khalil, M.N. Levy, Vagal stimulation attenuates sympathetic 
enhancement of left ventricular function., Am. J. Physiol. 258 (1990) H1470–
H1475. 

[334] P.A. Cain, R. Ahl, E. Hedstrom, M. Ugander, A. Allansdotter-Johnsson, P. 
Friberg, H. Arheden, Age and gender specific normal values of left ventricular 
mass, volume and function for gradient echo magnetic resonance imaging: a 
cross sectional study., BMC Med. Imaging. 9 (2009) 1–10. doi:10.1186/1471-
2342-9-2. 



 334 

[335] M. Homoud, Normal intracardiac pressures, Tufts Open Coursew. (2010). 
http://ocw.tufts.edu/Content/50/lecturenotes/634463/634530. 

[336] S. Schwartzenberg, M.M. Redfield, A.M. From, P. Sorajja, R.A. Nishimura, 
B.A. Borlaug, Effects of vasodilation in heart failure with preserved or reduced 
ejection fraction: Implications of distinct pathophysiologies on response to 
therapy, J. Am. Coll. Cardiol. 59 (2012) 442–451. 
doi:10.1016/j.jacc.2011.09.062. 

[337] W.J. Paulus, C. Tschope, J.E. Sanderson, C. Rusconi, F.A. Flachskampf, F.E. 
Rademakers, P. Marino, O.A. Smiseth, G. De Keulenaer, A.F. Leite-Moreira, 
A. Borbely, I. Edes, M.L. Handoko, S. Heymans, N. Pezzali, B. Pieske, K. 
Dickstein, A.G. Fraser, D.L. Brutsaert, How to diagnose diastolic heart failure: 
A consensus statement on the diagnosis of heart failure with normal left 
ventricular ejection fraction by the Heart Failure and Echocardiography 
Associations of the European Society of Cardiology, Eur. Heart J. 28 (2007) 
2539–2550. doi:10.1093/eurheartj/ehm037. 

[338] C.L. Hung, A. Verma, H. Uno, S.H. Shin, M. Bourgoun, A.H. Hassanein, J.J. 
McMurray, E.J. Velazquez, L. Kober, M.A. Pfeffer, S.D. Solomon, 
Longitudinal and circumferential strain rate, left ventricular remodeling, and 
prognosis after myocardial infarction, J. Am. Coll. Cardiol. 56 (2010) 1812–
1822. doi:10.1016/j.jacc.2010.06.044. 

[339] B.A. Borlaug, W.J. Paulus, Heart failure with preserved ejection fraction: 
Pathophysiology, diagnosis, and treatment, Eur. Heart J. 32 (2011) 670–679. 
doi:10.1093/eurheartj/ehq426. 

[340] A.M. Katz, E.L. Rolett, Heart failure: When form fails to follow function, Eur. 
Heart J. 37 (2016) 449–454. doi:10.1093/eurheartj/ehv548. 

[341] M.K. Lahiri, P.J. Kannankeril, J.J. Goldberger, Assessment of Autonomic 
Function in Cardiovascular Disease. Physiological Basis and Prognostic 
Implications, J. Am. Coll. Cardiol. 51 (2008) 1725–1733. 
doi:10.1016/j.jacc.2008.01.038. 

[342] E. Glasscock, J.W. Yoo, T.T. Chen, T.L. Klassen, J.L. Noebels, Kv1.1 
Potassium Channel Deficiency Reveals Brain-Driven Cardiac Dysfunction as a 
Candidate Mechanism for Sudden Unexplained Death in Epilepsy, J. Neurosci. 
30 (2010) 5167–5175. doi:10.1523/JNEUROSCI.5591-09.2010. 

[343] Y. Yamada, H. Kinoshita, K. Kuwahara, Y. Nakagawa, Y. Kuwabara, T. 
Minami, C. Yamada, J. Shibata, K. Nakao, K. Cho, Y. Arai, S. Yasuno, T. 
Nishikimi, K. Ueshima, S. Kamakura, M. Nishida, S. Kiyonaka, Y. Mori, T. 



 335 

Kimura, K. Kangawa, K. Nakao, Inhibition of N-type Ca2+ channels 
ameliorates an imbalance in cardiac autonomic nerve activity and prevents 
lethal arrhythmias in mice with heart failure, Cardiovasc. Res. 104 (2014) 183–
193. doi:10.1093/cvr/cvu185. 

[344] R.K. Leak, J.P. Card, R.Y. Moore, Suprachiasmatic pacemaker organization 
analyzed by viral transynaptic transport., Brain Res. 819 (1999) 23–32. 
doi:10.1016/S0006-8993(98)01317-1. 

[345] L.P. Morin, SCN Organization Reconsidered, J. Biol. Rhythms. 22 (2007) 3–
13. doi:10.1177/0748730406296749. 

[346] M.P. Gerkema, E. a Van der Zee, L.E. Feitsma, Expression of circadian 
rhythmicity correlates with the number of arginine-vasopressin-immunoreactive 
cells in the suprachiasmatic nucleus of common voles, Microtus arvalis, Brain 
Res. 639 (1994) 93–101. doi:0006-8993(94)91768-X [pii]. 

[347] T. Hamada, M.C. Antle, R. Silver, Temporal and spatial expression patterns of 
canonical clock genes and clock-controlled genes in the suprachiasmatic 
nucleus, Eur. J. Neurosci. 19 (2004) 1741–1748. doi:10.1111/j.1460-
9568.2004.03275.x. 

[348] X. Jin, L.P. Shearman, D.R. Weaver, M.J. Zylka, G.J. de Vries, S.M. Reppert, 
A molecular mechanism regulating rhythmic output from the suprachiasmatic 
circadian clock, Cell. 96 (1999) 57–68. doi:10.1016/S0092-8674(00)80959-9. 

[349] E.A. Van der Zee, M. Oklejewicz, K. Jansen, S. Daan, M.P. Gerkema, 
Vasopressin immunoreactivity and release in the suprachiasmatic nucleus of 
wild-type and tau mutant Syrian hamsters., Brain Res. 936 (2002) 38–46. 
doi:S0006899302024976 [pii]. 

[350] J. Schaap, H. Albus, H.T. VanderLeest, P.H.C. Eilers, L. Détári, J.H. Meijer, 
Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for 
circadian waveform and photoperiodic encoding., Proc. Natl. Acad. Sci. U. S. 
A. 100 (2003) 15994–15999. doi:10.1073/pnas.2436298100. 

[351] C.H. Ko, Y.R. Yamada, D.K. Welsh, E.D. Buhr, A.C. Liu, E.E. Zhang, M.R. 
Ralph, S. a. Kay, D.B. Forger, J.S. Takahashi, Emergence of Noise-Induced 
Oscillations in the Central Circadian Pacemaker, PLoS Biol. 8 (2010) 
e1000513. doi:10.1371/journal.pbio.1000513. 

[352] A.B. Webb, N. Angelo, J.E. Huettner, E.D. Herzog, Intrinsic, nondeterministic 
circadian rhythm generation in identified mammalian neurons., Proc. Natl. 
Acad. Sci. U. S. A. 106 (2009) 16493–8. doi:10.1073/pnas.0902768106. 



 336 

[353] J.A. Evans, T.L. Leise, O. Castanon-Cervantes, A.J. Davidson, Dynamic 
Interactions Mediated by Nonredundant Signaling Mechanisms Couple 
Circadian Clock Neurons, Neuron. 80 (2013) 973–983. 
doi:10.1016/j.neuron.2013.08.022. 

[354] S.H. Chung, W. Shen, Laser capture microdissection: from its principle to 
applications in research on neurodegeneration., Neural Regen. Res. 10 (2015) 
897–8. doi:10.4103/1673-5374.158346. 

[355] S. Datta, L. Malhotra, R. Dickerson, S. Chaffee, C.K. Sen, S. Roy, Laser 
capture microdissection: Big data from small samples, Histol. Histopathol. 30 
(2015) 1255–1269. doi:10.14670/HH-11-622. 

[356] C. Doherty, S.A. Kay, Circadian Control of Global Gene Expression Patterns, 
Annu. Rev. Genet. 48 (2010) 1–6. 
doi:10.1097/MPG.0b013e3181a15ae8.Screening. 

[357] T.K. Sato, S. Panda, S. a Kay, J.B. Hogenesch, DNA arrays: applications and 
implications for circadian biology., J. Biol. Rhythms. 18 (2003) 96–105. 
doi:10.1177/0748730403252245. 

[358] J. Park, H. Zhu, S. O’Sullivan, B.A. Ogunnaike, D.R. Weaver, J.S. Schwaber, 
R. Vadigepalli, Single-cell Transcriptional Analysis Reveals Novel Neuronal 
Phenotypes and Interaction Networks involved In the Central Circadian Clock, 
Front. Neurosci. 10 (2016). doi:10.3389/fnins.2016.00481. 

[359] A. Balsalobre, F. Damiola, U. Schibler, A serum shock induces circadian gene 
expression in mammalian tissue culture cells, Cell. 93 (1998) 929–937. 
doi:10.1016/S0092-8674(00)81199-X. 

[360] N. Gossan, L. Zeef, J. Hensman, A. Hughes, J.F. Bateman, L. Rowley, C.B. 
Little, H.D. Piggins, M. Rattray, R.P. Boot-Handford, Q.J. Meng, The circadian 
clock in murine chondrocytes regulates genes controlling key aspects of 
cartilage homeostasis, Arthritis Rheum. 65 (2013) 2334–2345. 
doi:10.1002/art.38035. 

[361] M. Maechler, P. Rousseeuw, A. Struyf, M. Hubert, K. Hornik, cluster: Cluster 
Analysis Basics and Extensions., (2015). 

[362] R.Y. Moore, J.C. Speh, R.K. Leak, Suprachiasmatic nucleus organization, Cell 
Tissue Res. 309 (2002) 89–98. doi:10.1007/s00441-002-0575-2. 

[363] H. Dardente, V.-J. Poirel, P. Klosen, P. Pévet, M. Masson-Pévet, Per and 
neuropeptide expression in the rat suprachiasmatic nuclei: 



 337 

compartmentalization and differential cellular induction by light., Brain Res. 
958 (2002) 261–71. doi:S0006899302035631 [pii]. 

[364] Y. Shigeyoshi, K. Taguchi, S. Yamamoto, S. Takekida, L. Yan, H. Tei, T. 
Moriya, S. Shibata, J.J. Loros, J.C. Dunlap, H. Okamura, Light-Induced 
Resetting of a Mammalian Circadian Clock Is Associated with Rapid Induction 
of the mPer1 Transcript, Cell. 91 (1997) 1043–1053. doi:10.1016/S0092-
8674(00)80494-8. 

[365] L. Yan, R. Silver, Differential induction and localization of mPer1 and mPer2 
during advancing and delaying phase shifts, Eur. J. Neurosci. 16 (2002) 1531–
1540. doi:10.1046/j.1460-9568.2002.02224.x. 

[366] C.N. Allen, N.J. Klett, R.P. Irwin, M.G. Moldavan, Mechanisms of Circadian 
Systems in Animals and Their Clinical Relevance, in: R. Aguilar-Roblero, M. 
Diaz-Munoz, M.L. Fanjul-Moles (Eds.), Mech. Circadian Syst. Anim. Their 
Clin. Relev., Springer International Publishing, 2015: pp. 133–148. 
doi:10.1007/978-3-319-08945-4. 

[367] E. Llorens-Bobadilla, S. Zhao, A. Baser, G. Saiz-Castro, K. Zwadlo, A. Martin-
Villalba, Single-Cell Transcriptomics Reveals a Population of Dormant Neural 
Stem Cells that Become Activated upon Brain Injury, Cell Stem Cell. 17 (2015) 
329–340. doi:10.1016/j.stem.2015.07.002. 

[368] V. Moignard, S. Woodhouse, L. Haghverdi, A.J. Lilly, Y. Tanaka, A.C. 
Wilkinson, F. Buettner, I.C. Macaulay, W. Jawaid, E. Diamanti, S.-I. 
Nishikawa, N. Piterman, V. Kouskoff, F.J. Theis, J. Fisher, B. Göttgens, 
Decoding the regulatory network of early blood development from single-cell 
gene expression measurements, Nat. Biotechnol. advance on (2015). 
doi:10.1038/nbt.3154. 

[369] J. Park, B.A. Ogunnaike, J.S. Schwaber, R. Vadigepalli, Identifying distinct 
gene regulatory networks subtending catecholaminergic neuronal subtypes 
contributing to hypertension development, in: AIChE Annu. Meet., 2013. 

[370] O. Stegle, S.A. Teichmann, J.C. Marioni, Computational and analytical 
challenges in single-cell transcriptomics, Nat. Publ. Gr. 16 (2015) 133–145. 
doi:10.1038/nrg3833. 

[371] A. Clauset, M.E.J. Newman, C. Moore, Finding community structure in very 
large networks, Phys. Rev. E. 70 (2004) 66111. 
doi:10.1103/PhysRevE.70.066111. 

[372] U. Albrecht, Timing to Perfection: The Biology of Central and Peripheral 



 338 

Circadian Clocks, Neuron. 74 (2012) 246–260. 
doi:10.1016/j.neuron.2012.04.006. 

[373] U. Albrecht, Z.S. Sun, G. Eichele, C.C. Lee, A differential response of two 
putative mammalian circadian regulators, mper1 and mper2, to light., Cell. 91 
(1997) 1055–64. doi:10.1016/S0092-8674(00)80495-X. 

[374] R.Y. Moore, R. Silver, Suprachiasmatic Nucleus Organization, Chronobiol. Int. 
15 (1998) 475–487. doi:10.3109/07420529808998703. 

[375] N. Atkins, J.W. Mitchell, E. V. Romanova, D.J. Morgan, T.P. Cominski, J.L. 
Ecker, J.E. Pintar, J. V. Sweedler, M.U. Gillette, Circadian integration of 
glutamatergic signals by little SAAS in novel suprachiasmatic circuits, PLoS 
One. 5 (2010) 1–13. doi:10.1371/journal.pone.0012612. 

[376] P. Paszek, S. Ryan, L. Ashall, K. Sillitoe, C. V Harper, D.G. Spiller, D. a Rand, 
M.R.H. White, Population robustness arising from cellular heterogeneity., Proc. 
Natl. Acad. Sci. U. S. A. 107 (2010) 11644–11649. 
doi:10.1073/pnas.0913798107. 

[377] E.S. Maywood, J.E. Chesham, J.A. O’Brien, M.H. Hastings, A diversity of 
paracrine signals sustains molecular circadian cycling in suprachiasmatic 
nucleus circuits., Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 14306–14311. 
doi:10.1073/pnas.1101767108. 

[378] M.Y. Cheng, C.M. Bullock, C. Li, A.G. Lee, J.C. Bermak, J. Belluzzi, D.R. 
Weaver, F.M. Leslie, Q.-Y. Zhou, Prokineticin 2 transmits the behavioural 
circadian rhythm of the suprachiasmatic nucleus., Nature. 417 (2002) 405–10. 
doi:10.1038/417405a. 

[379] H.M. Prosser, A. Bradley, J.E. Chesham, F.J.P. Ebling, M.H. Hastings, E.S. 
Maywood, Prokineticin receptor 2 (Prokr2) is essential for the regulation of 
circadian behavior by the suprachiasmatic nuclei., Proc. Natl. Acad. Sci. U. S. 
A. 104 (2007) 648–653. doi:10.1073/pnas.0606884104. 

[380] H. Dziema, K. Obrietan, PACAP potentiates L-type calcium channel 
conductance in suprachiasmatic nucleus neurons by activating the MAPK 
pathway., J. Neurophysiol. 88 (2002) 1374–86. 

[381] K. Kume, M.J. Zylka, S. Sriram, L.P. Shearman, D.R. Weaver, X. Jin, E.S. 
Maywood, M.H. Hastings, S.M. Reppert, mCRY1 and mCRY2 Are Essential 
Components of the Negative Limb of the Circadian Clock Feedback Loop, Cell. 
98 (1999) 193–205. doi:10.1016/S0092-8674(00)81014-4. 



 339 

[382] H.J. Romijn, J.F.M. Van Uum, J. Emmering, V. Goncharuk, R.M. Buijs, 
Colocalization of VIP with AVP in neurons of the human paraventricular, 
supraoptic and suprachiasmatic nucleus, Brain Res. 832 (1999) 47–53. 
doi:10.1016/S0006-8993(99)01468-7. 

[383] S.M. Abbott, J.M. Arnold, Q. Chang, H. Miao, N. Ota, C. Cecala, P.E. Gold, J. 
V. Sweedler, M.U. Gillette, Signals from the Brainstem Sleep/Wake Centers 
Regulate Behavioral Timing via the Circadian Clock, PLoS One. 8 (2013) 
e70481. doi:10.1371/journal.pone.0070481. 

[384] R. Iyer, T.A. Wang, M.U. Gillette, Circadian gating of neuronal functionality: a 
basis for iterative metaplasticity1, Front. Syst. Neurosci. 8 (2014) 1–14. 
doi:10.3389/fnsys.2014.00164. 

[385] T.-L. To, M. a Henson, E.D. Herzog, F.J. Doyle, A molecular model for 
intercellular synchronization in the mammalian circadian clock., Biophys. J. 92 
(2007) 3792–3803. doi:10.1529/biophysj.106.094086. 

[386] M.A. Henson, Multicellular model for intercellular synchronization in circadian 
neural networks, Biophys. J. 101 (2011) 12–20. doi:10.1016/j.bpj.2011.04.051. 

[387] D.E. Zak, H. Hao, R. Vadigepalli, G.M. Miller, B.A. Ogunnaike, J.S. 
Schwaber, Systems analysis of circadian time-dependent neuronal epidermal 
growth factor receptor signaling., Genome Biol. 7 (2006) R48. doi:10.1186/gb-
2006-7-6-r48. 

[388] J.H. Abel, K. Meeker, D. Granados-Fuentes, P.C. St. John, T.J. Wang, B.B. 
Bales, F.J. Doyle, E.D. Herzog, L.R. Petzold, Functional network inference of 
the suprachiasmatic nucleus, Proc. Natl. Acad. Sci. (2016) 201521178. 
doi:10.1073/pnas.1521178113. 

[389] J.H. Newman, Lectures on the present position of Catholics in England . 
Second edition, Burns & Lambert, 1851. 

[390] P.J. Marvar, E.B. Hendy, T. Cruise, D. Walas, D. DeCicco, R. Vadigepalli, J.S. 
Schwaber, H. Waki, D. Murphy, J.F.R. Paton, Systemic leukotriene b4 receptor 
antagonism lowers arterial blood pressure and improves autonomic function in 
the spontaneously hypertensive rat., J. Physiol. 0 (2016) 1–15. 
doi:10.1113/JP272065. 

[391] C. Vasalou, E.D. Herzog, M.A. Henson, Multicellular model for intercellular 
synchronization in circadian neural networks, Biophys. J. 101 (2011) 12–20. 
doi:10.1016/j.bpj.2011.04.051. 



 340 

[392] R. Bailón, G. Laouini, C. Grao, M. Orini, P. Laguna, O. Meste, The integral 
pulse frequency modulation model with time-varying threshold: Application to 
heart rate variability analysis during exercise stress testing, IEEE Trans. 
Biomed. Eng. 58 (2011) 642–652. doi:10.1109/TBME.2010.2095011. 

[393] A.H. Moreno, A.I. Katz, L.D. Gold, An integrated approach to the study of the 
venous system with steps toward a detailed model of the dynamics of venous 
return to the right heart., IEEE Trans. Biomed. Eng. 16 (1969) 308–324. 
doi:10.1109/TBME.1969.4502662. 



 341 

Appendix A 

ANALYSIS OF SINGLE NEURONS FROM THE NUCLEUS TRACTUS 
SOLITARIUS 

A.1 Nucleus tractus solitarius gene assay set and functional annotation for 
analysis 

Table A.1 Gene categorization, primer sequences, and entrez ID 

Entrez 
ID 

Gene Primer Design 
Forward 

    Primer Design 
Reverse 

   UPL# Gene Functional 
Categorization 

24310 Ace gacaactatccagagggaattga cacaacaccttggctgtcc 25 Angiotensin System 

81822 Actb ctggctcctagcaccatga tagagccaccaatccacaca 63 housekeeping 

25238 Adrbk1 aagaagatcctgctgccaga ccggaaaagcaggtatccta 89 Signaling feedback 

24179 Agt cacctacgttcacttccaagg agaactcatggagcccagtc 7 Angiotensin System 

24180 Agtr1a ggctagccaaaggaagagtca ctgccagcgaactgttttc 42 Angiotensin System 

24182 Agtr2 gaacagaattacccgtgacca atgaatgccaacacaacagc 121 Angiotensin System 

298646 Agtrap ccatcttcagcttgctgct cctgagaaggtccgaagaaa 2 Angiotensin System 

24185 Akt1 aacgacgtagccattgtgaa ccatcattcttgaggaggaagt 71 Intracellular Signaling 

64363 Araf gaagacaagcccaagatgga gactgggcaggtgccata 77 Intracellular Signaling 

25387 Arrb1 gggagaccttgcatccagt ggagtctcgctctctggaac 76 Signaling feedback 

25388 Arrb2 gatcctgtcgatggtgtggt ggaaagacaggcccagtaca 98 Signaling feedback 

81647 Atf2 ctggtggctgaaaggaacat tcccaagttgccatctagtgt 85 transcriptional regulators 

29716 Cacna1d ggcagaagacatagatcctgaga actggtgggcatgctagtgt 55 Ion Channel 

24241 Calca cagatgaaagtcagggagctg caggatctcttctgggcagt 63 neuromodulatory regulator 

314322 Fos cagcctttcctactaccattcc acagatctgcgcaaaagtcc 67 transcriptional regulators 

81646 Creb1 ctagtgcccagcaaccaagt ggaggacgccataacaactc 9 transcriptional regulators 
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81648 Crh caacctcagccgattctgat gcgggacttctgttgaggt 69 neuromodulatory regulator 

25699 Dbh actactgtcgccacgtgct accggcttcttctgggtagt 81 neuromodulatory regulator 

116663 Dusp6 tctctgatcactggagccaaa gtttttgcctcgggcttc 123 Intracellular Signaling 

24330 Egr1 cgaacaaccctacgagcac gcgccttctcgttattcaga 114 transcriptional regulators 

114090 Egr2 ctacccggtggaagacctc tcaatgttgatcatgccatctc 60 transcriptional regulators 

25148 Egr3 caatctgtaccccgaggaga ccgatgtccatcacattctct 7 transcriptional regulators 

314436 Elk1 caccagtccaaaccccttag tcaactcttcagatttctggtttg 16 transcriptional regulators 

25445 Fosl1 gcagaaaccgaagaaaggaa tcctccaacttgtcggtctc 4 transcriptional regulators 

29705 Gabra1 cgatcctctctcccacactt tcttcatcacgggcttgtc 50 neuromodulatory targets – 
Ion channel 

289606 Gabra2 ggtttccgctgcttgttct ttcttggatgttagccagcac 20 neuromodulatory targets – 
Ion channel 

140675 Gabra4 gtacctgcgatcgtgctgt ctgtcctggggattcgttta 98 neuromodulatory targets – 
Ion channel 

24922 Gabrb3 tcatgggtgtccttctggat atggtgagcacggtggtaat 84 neuromodulatory targets – 
Ion channel 

65187 Gabrq gcggagaatcgtgtatttcaa gctgctgttgtggtaagtcg 123 neuromodulatory targets – 
Ion channel 

24379 Gad1 tacaacctttggctgcatgt tgagtttgtggcgatgctt 77 neuromodulatory regulator 

29141 Gal tggagtttctcagtttcttgcac ggtgtggtctcaggactgct 10 neuromodulatory regulator 

29627 Gria2 gccaaggactcgggaagta cccccgacaaggatgtaga 67 neuromodulatory targets – 
Ion channel 

29628 Gria3 ttcaacaaaagaatttttcagacg ccgtcagctgttgttttgg 21 neuromodulatory targets – 
Ion channel 

24409 Grin2a cgtcatggtctccaggagtaa gaggcactgaagggttcg 94 neuromodulatory targets – 
Ion channel 

24408 Grin1 gcttttgcagccgtgaac gggctctgctctaccactctt 69 neuromodulatory targets – 
Ion channel 

24410 Grin2b tcctgcagctgtttggagat gctgctcatcacctcattctt 106 neuromodulatory targets – 
Ion channel 

24411 Grin2c ggcactcctgcaacttctg gttctggcagatccctgaga 78 neuromodulatory targets – 
Ion channel 

24412 Grin2d gccctgctgcgagactat cggttatcccaggtgatgtt 67 neuromodulatory targets – 
Ion channel 

59075 Grk5 ccaccaaagaaagggctgt tcttggaattgttttgatgctg 124 Signaling feedback 

59076 Grk6 atgtctttgggctggatgg cagttcccacagcaatcctt 85 Signaling feedback 

114244 Hcn2 cacccctacagcgacttcag tttcccaccatgaacaacag 95 neuromodulatory targets – 
Ion channel 

24465 Hprt1 gaccggttctgtcatgtcg acctggttcatcatcactaatcac 95 housekeeping 

293621 Hras tcacagtaaattatttgatggtctt 
ga ccacaggcactacacctcct 20 Intracellular Signaling 



 343 

25262 Itpr1 catcacagccctcatccttaac ggagtagctttgaagcattgttct 60 Intracellular Signaling 

25679 Itpr3 gtgatggagaccaagctgaag tagtctaggcgcacgttgag 80 Intracellular Signaling 

24516 Jun ttctgaccaactgcctggat gaagggactctccaagtgctc 17 transcriptional regulators 

24517 Junb gggagctgagagaagagacg tggtagctgtgcgtaaaagc 50 transcriptional regulators 

24518 jund caagctggagcgtatctcg cggtgttctggcttttgag 25 transcriptional regulators 

29712 Kcnj2 gctgccttcctcttctccat tcgggcactcgtctgtaac 115 neuromodulatory targets – 
Ion channel 

170851 Map2k1 ggcctggttatggctagga gatgatctggttccggattg 80 Intracellular Signaling 

287398 Map2k4 aacaaaatggtccacaaacca tttttcatccacaagttgatcgt 118 Intracellular Signaling 

363855 Map2k7 tcaggggacttccagtcatt gatgaagctgtgttcaagtagtttg 114 Intracellular Signaling 

309168 Map3k11 cgggaagagacacgtgga ccaggagcagagcgtgata 22 Intracellular Signaling 

25579 Map3k12 cctctcacctccattcctga agccaggtgtgctgagtagc 3 Intracellular Signaling 

116596 Map3k8 acctccggggaacagaga gcctgtctgcatgtgaatga 125 Intracellular Signaling 

116590 Mapk1 tgaagttgaacaggctctgg tgaatggtgcttcagcaatg 1 Intracellular Signaling 

50689 Mapk3 ggaggtggaggtggtgaa gcacgtggtcatatgctgag 46 Intracellular Signaling 

114509 Mapk7 acccagcaactgtccaagtc ggtcaaagccaacaccgtag 16 Intracellular Signaling 

116554 Mapk8 gcagccgtctcctttaggt cattgacagacggcgaaga 89 Intracellular Signaling 

24604 Npy atccctgctcgtgtgtttg ctggccatgtcctctgct 129 neuromodulatory regulator 

29358 Npy1r ctgcaaccacaatctgctgt tgacgcaggtggagatcat 53 neuromodulatory regulator 

29431 Pak1 tcgagaagattggacaaggtg gccctgtggctacatccat 98 Intracellular Signaling 

81745 Pdpk1 aaaactttcttcgtccacacg ggactgctctggtactgttgc 79 Intracellular Signaling 

29542 Pebp1 cggacctcccaaagacac agaggctgctcctgctcata 20 Intracellular Signaling 

364152 Phox2b gagagtccaggtgtggttcc ggcttctttgctctcgtcat 70 transcriptional regulators 

60664 Pik3r3 atcccaaacttgatgtgaagc ttatcttcttttaccaactgatcctg 130 Intracellular Signaling 

24680 Prkca tacggcgtgctcctgtatg cttggcagggtgtttggt 44 Intracellular Signaling 

24654 Plcb1 cgccaaaaaggatagcaaga gcggatgagccatgatct 3 Intracellular Signaling 

29322 Plcb3 cttcacacaatacctatctcactgc cggtacatctccactgacga 20 Intracellular Signaling 

25594 Ppp1cb tgaacgtggacagcctcat acaatttttcccggacgac 67 Intracellular Signaling 
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24669 Ppp1cc ggcggatatcgataaactcaa tggcttggaccctctcact 66 Intracellular Signaling 

117281 Ppp2r1a gctacatggtggcagacaaa tagtgatctcaggcccaactg 50 Intracellular Signaling 

65179 Ppp5c ccgaaggcactctgaagc tgatagcgttctcgtagtccttg 82 Intracellular Signaling 

29340 Prkce tctaccctgtctggcttagca cgggttcttggtcatgaaag 89 Intracellular Signaling 

50646 Ptk2b caatctgctggctcctaagc taggagagctggcacacaga 85 Intracellular Signaling 

24697 Ptpn1 ggaacaggtaccgagatgtca agtcattatcttcctgatgcaattt 114 Intracellular Signaling 

117063 Ptpn2 aggctacaaccgctcagaag catttaggtgtctgtcaatcttgg 84 Intracellular Signaling 

24703 Raf1 tttcttgccgaataagcaaag cagtcgtgcaagctcatcc 114 Intracellular Signaling 

25676 Rasa1 catctaataaacgccttcgtca tggtagtttatgagcttcttcaata 
tg 66 Intracellular Signaling 

192213 Rasgrf1 ggctggtctcaaacttaggatg tcatgcctgtaatcccagcta 49 Intracellular Signaling 

114513 Rasgrf2 aggagcaagcagggaaaga tctcaatcaaaatgtctgcgtaa 58 Intracellular Signaling 

29434 Rasgrp1 gttcatccatgtggctcaga acagccattagcgtgttgaa 22 Intracellular Signaling 

54289 Rgs1 gcaagaagaacagggtgagg cactgtatttcatgacagtaccaca 12 Signaling feedback 

84583 Rgs2 aacttttatcaagccttctcctga acgctctgaatgcagcaag 113 Signaling feedback 

54293 Rgs3 ccggaagagaaagagcaaaaa ggccccaggagattcatt 124 Signaling feedback 

29480 Rgs4 caagatgtgcaaaggactcg ccagccgatgtttcatatcc 4 Signaling feedback 

54294 Rgs5 ccagagaagcctgccaag gaagtttgtccagggattgg 25 Signaling feedback 

81767 Rpl19 tgccggaagaacaccttg gcaggatcctcatccttcg 85 housekeeping 

157074 Sdha tgccatccattacatgacaga aaatcctcccatcttcagtcc 16 housekeeping 

83612 Slc32a1 aggctcggaaacttgacctt gacgcagtagattccaagcac 76 neuromodulatory targets – 
Ion channel 

83511 Slc6a2 agtgaagacatcgggaaagg aaccaggagcacaaagagga 76 neuromodulatory targets – 
Ion channel 

59114 Slc9a3r1 caggaccggattgtggag agcagcttggcttcatcac 121 neuromodulatory targets – 
Ion channel 

24797 Sst agcccaaccagacagagaac cctcatctcgtcctgctca 1 neuromodulatory regulator 

24949 Syn1 ggacggaagggatcacatta tggtgatccccaatgagtg 25 neuromodulatory targets – 
Ion channel 

24806 Tac1 cagaaaggctgctgtgagg gaagcgcaagacacacagg 13 neuromodulatory regulator 

25085 Th gggagctgaaggcttatggt cctctgacagggagtgcag 66 neuromodulatory regulator 
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A.2 Selection of genes contributing to expression variability 

Table A.2 PCA loadings for genes across PC 1-5 

No. Gene 
Symbol 

PC 1 
loadings 

PC 2 
loadings 

PC 3 
loadings 

PC 4 
loadings 

PC 5 
loadings 

1 Th 0.444 -0.137 0.208 -0.218 0.051 

2 Dbh 0.317 -0.068 0.107 -0.258 0.005 
3 Gabrq 0.228 -0.006 0.101 0.040 0.081 
4 Gal 0.212 0.016 0.095 -0.117 0.144 
5 Rgs4 0.202 0.002 0.102 0.069 0.024 
6 Slc6a2 0.186 -0.053 0.121 -0.165 -0.055 
7 Phox2b 0.162 0.089 0.057 0.040 -0.105 
8 Rasgrp2 0.148 0.004 0.034 0.035 0.116 
9 Gria3 0.141 0.215 -0.173 -0.090 0.015 
10 Gria2 0.133 0.160 -0.105 -0.017 -0.009 
11 Rgs2 0.132 0.049 0.106 0.048 -0.067 
12 Rasgrf2 0.131 0.055 0.052 0.008 0.139 
13 Cacna1d 0.128 0.074 0.080 0.059 0.077 
14 Grin 2a 0.128 0.098 -0.048 0.062 0.106 
15 Dusp6 0.115 0.047 0.072 -0.058 -0.009 
16 Prkca 0.101 0.227 -0.435 -0.192 -0.082 
17 Ppp5c 0.099 0.113 -0.139 -0.017 -0.025 
18 Hprt1 0.097 0.081 0.016 0.115 0.019 
19 Grin1 0.088 0.094 0.146 0.166 -0.007 
20 Atf2 0.088 0.096 -0.007 0.069 0.052 
21 Fosl1 0.086 0.068 0.113 -0.098 -0.218 
22 Araf 0.085 0.062 -0.011 0.083 0.016 
23 Ptpn1 0.085 0.050 0.093 -0.049 0.071 
24 Map2k1 0.085 0.064 0.009 0.116 0.017 
25 Grin2b 0.084 0.112 0.021 0.012 0.048 
26 Mapk1 0.083 0.096 -0.041 0.100 0.042 
27 Ace 0.082 0.038 0.103 0.001 0.084 
28 Rgs3 0.079 0.059 -0.172 -0.194 0.069 
29 Gabra2 0.070 0.120 -0.003 0.113 0.102 
30 Gabra4 0.069 0.066 0.018 0.145 0.089 
31 Pak1 0.064 0.065 0.032 0.093 0.050 
32 Syn1 0.050 0.119 0.045 0.076 0.052 
33 Ppp2r1a 0.048 0.062 0.039 0.102 0.050 
34 Adrbk1 0.044 0.106 -0.019 0.038 0.030 
35 Raf1 0.043 0.196 -0.275 -0.166 0.035 
36 Pdpk1 0.041 0.130 -0.027 0.001 0.066 
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37 Elk1 0.039 0.192 -0.060 -0.088 0.083 
38 Akt1 0.039 0.065 -0.003 0.043 0.082 
39 Prkce 0.037 0.103 0.111 0.082 0.067 
40 Jund 0.036 0.033 0.099 0.051 0.002 
41 Map2k7 0.032 0.062 -0.064 0.047 0.044 
42 Rasa1 0.028 0.100 -0.063 0.016 0.092 
43 Ppp1cc 0.024 0.083 0.072 0.024 0.059 
44 Map3k12 0.022 0.107 0.085 0.038 0.117 
45 Grin2c 0.021 0.061 0.000 -0.122 -0.019 
46 Ppp1cb 0.020 0.071 0.013 0.024 0.023 
47 Arrb1 0.017 0.100 0.022 0.041 0.077 
48 Gabra1 0.016 0.196 -0.099 0.315 0.144 
49 Pik3r3 0.014 0.088 -0.020 0.006 0.123 
50 Hcn2 0.014 0.075 -0.112 -0.071 0.037 
51 Rpl19 0.004 0.012 -0.034 -0.032 -0.008 
52 Ptpn2 0.002 0.047 0.092 -0.032 0.021 
53 Creb1 0.000 0.079 0.076 -0.061 0.070 
54 Itpr1 -0.001 0.058 0.091 -0.073 0.123 
55 Mapk7 -0.003 0.055 0.047 -0.083 0.058 
56 Actb -0.004 -0.012 0.034 0.032 0.008 
57 Mapk3 -0.005 0.042 -0.085 -0.014 0.037 
58 Jun -0.005 0.126 0.117 0.018 -0.066 
59 Egr1 -0.006 0.284 0.113 0.013 -0.369 
60 Plcb1 -0.011 0.231 -0.165 -0.049 0.122 
61 Agt -0.015 0.021 0.127 0.050 0.061 
62 Arrb2 -0.017 0.109 -0.001 0.098 0.010 
63 Agtrap -0.017 0.063 -0.011 -0.045 0.076 
64 Pebp1 -0.019 0.051 0.002 0.087 0.014 
65 Agtr1a -0.021 0.029 0.136 -0.182 0.096 
66 Fos -0.034 0.341 0.192 -0.036 -0.556 
67 Map3k11 -0.041 0.054 0.006 -0.114 0.091 
68 Grk5 -0.063 0.077 0.002 -0.062 0.100 
69 Rasgrf1 -0.075 0.105 0.126 -0.140 0.050 
70 Gad1 -0.077 0.157 0.165 0.104 0.141 
71 Slc9a3r1 -0.081 0.035 0.057 -0.104 0.077 
72 Hras -0.083 0.061 0.079 -0.228 0.104 
73 Npy1r -0.092 0.054 0.143 -0.120 0.149 
74 Junb -0.092 0.209 0.100 -0.035 -0.186 
75 Kcnj2 -0.105 0.116 0.037 -0.277 0.057 
76 Rgs1 -0.105 0.026 0.113 -0.221 0.066 
77 Crh -0.119 0.068 0.056 -0.248 0.045 
78 Npy -0.129 0.088 0.231 0.114 0.030 
79 Slc32a1 -0.141 0.118 0.222 0.046 0.168 
80 Tac1 -0.145 0.115 0.139 -0.109 0.092 
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81 Sst -0.289 0.159 0.029 -0.043 0.168 
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A.3 Rank order of PCA loadings (PC 3-5) 
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Figure A.1 Contribution of genes to variability. Ranked loading values for all 81 
genes analyzed across multiple principal components (PCs). (A) PC 3, 
(B) PC 4, and (C) PC 5 are included. Different genes have greater (or 
lower) contributions to the variation in data along each principal 
component.
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Appendix B 

HEMODYNAMIC MODEL OF SHORT-TERM BAROREFLEX 
REGULATION OF CARDIOVASCULAR SYSTEM 

B.1 Model description of base hemodynamic model 

The model described in Chapter 5 is based on a quantitative model originally 

developed by M. Ursino, who used the model to examine the interaction between 

carotid baroregulation and the pulsating heart [291]. Subsequent revisions to this 

model has been made by Ursino, et al. to explore various aspects of carotid 

baroregulation, respiration, and how this physiological control system responds to 

various stressors. A combination of various versions of this model [289,291,325,326] 

are used in order to capture hemodynamic characteristics necessary to incorporate 

neuronal components driven by afferent input types. Conservation of mass and force 

balance equations used to characterize hemodynamics throughout the cardiovascular 

system are reproduced here. The following equations use the following variables to 

characterize hemodynamic behavior. Note that the subscript j represents the jth 

compartment.  



 351 

Table B.1 Hemodynamic variables 

Model parameters Corresponding physiological 
parameter 

 Intravascular pressure 

,  Unstressed volume 

 Blood flow 

 Compliance 

 Inertance 

 Resistances 

,  Flow out of right ventricle 

,  Flow out of left ventricle 

 
Vascular system 

Conservation of mass at pulmonary arteries (pa) 

 
Balance of forces at pulmonary arteries (pa) 

 

  =
1

, −  B.1 

  =
1

− −  ∗  B.2 
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The inertance represents the change in pressure required to cause a change in flow-rate 

of a fluid. Due to the large diameter of the arteries, inertances affect hemodynamic 

behavior more noticeably in these blood vessels than in the smaller diameter veins.  

 

Conservation of mass at pulmonary peripheral circulation (pp) 

 
Conservation of mass at pulmonary veins (pv) 

 
Conservation of mass at systemic arteries (sa) 

 
Force balance at systemic arteries 

 
Conservation of mass at peripheral systemic circulation – splanchnic, extrasplanchnic, 
and lower body compartments (sp, ep, mp) 

  =
1

−
−  

 B.3 

  =
1 −  

−
−  

 B.4 

  =
1

, −  B.5 

  =
1

− −  ∗  B.6 
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Where  

NOTE: To incorporate the effects of varying abdominal pressure  due to 

respiration, transmural pressure is calculated by subtracting  from . Equations 

for  are provided in later equations.  

This transmural pressure is subsequently used to determine downstream pressures.  

 
Conservation of mass at extrasplanchnic venous circulation (ev) 

 
Conservation of mass at skeletal muscle, part of the lower body (mv) 

 
Conservation of mass at thoracic vein (tv) 

 
 =

1
+ +

∗ −
−  

−
−  

−
− 

 

B.7 

 =  
1

+  
1

 B.7.1 

 =  −    B.7.2 

  =
1 −  

−
−  

−
 ,  B.8 

  =
1 −  

−
−  

−
 ,  B.9 

  =
1 −  

+
−  

+
−  

−
−  

 B.10 



 354 

NOTE: To incorporate the effects of varying thoracic pressure   due to 
respiration, transmural pressure is calculated by subtracting  from . Equations 
for  are provided in later equations.  

 
Conservation of mass to determine splanchnic venous circulation, which assumes total 
blood volume (Vt) is known. 

Here, Vrv and Vlv are the volumes of the right and left ventricles. Vu is the total 

unstressed volume, defined by: 

 

Pulsatile (left) heart 

Conservation of mass at left atrium (la) 

 
Fi,l refers to the flow into the left ventricle, determined by the following mass balance: 

 

 =  −   B.10.1 

 

=
1

− ∗ − + + ∗ −

∗ − ∗ − ∗ − ∗

− − ∗ − ∗ − ∗

− ∗ − −  

B.11 

  =
1 −  

− ,  B.12 

 , =
0, <

−  
, ≥  B.13 
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Ventricular volume is calculated using the following equation: 

 
And flow out of the left ventricle (Fo,l) is determined by: 

 

Pmax,lv represents the isometric pressure of the left ventricle. This value is used to 

determine ventricular pressure over the course of the cardiac cycle. Rlv represents the 

viscous resistance of the left ventricle and is assumed to be proportional to Pmax,lv , 

where: 

kR,lv is a constant parameter. 

Instantaneous pressure in the left ventricle represents the difference between the 

isometric pressure (Pmax,lv) and viscous losses, therefore: 

 

Isometric pressure is time-dependent and varies throughout the cardiac cycle. The base 

model by Ursino assumes that isometric pressure/volume can be characterized by an 

exponential function during diastole, when the ventricle is relaxed, and by a linear 

 
 = , − ,  B.14 

 , =
0, , <

, − 
, , ≥  B.15 

 = , ∗ ,  B.16 

 = , − ∗ ,  B.17 
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function at the end of systole, when the ventricle is contracted maximally. Thus 

isometric pressure transitions between an exponential and linear function over the 

course of the cardia cycle. 

Where 0 ≤ ( ) ≤ 1 

Emax,lv is the ventricular elastance at the maximal contraction of the ventricle. Vu,lv is 

the corresponding unstressed volume of the ventricle and is the x-axis intercept of the 

end-systolic pressure/volume function. P0,lv and kE,lv are constant parameters that 

describe the monoexponential pressure/volume function at diastole.  

 

The term ( ) represents the “activation function” of the ventricle. When ( ) = 1, 

the ventricle is at maximum contraction, when ( ) = 0, it is at complete relaxation. 

This activation function is defined as: 

 

T represents the heart period (i.e. inverse of heart rate). Tsys is the duration of systole 

and u is a dimensionless variable ranging between 0 and 1 and represents the fraction 

 
, ( ) − ( ) ∗ , ∗ − , + [1 − ( )]

∗ ∗ (exp , ∗ − 1 
B.18 

 ( ) =

⎩
⎨

⎧sin
∗ ( )

( ) ∗ , 0 ≤ ≤

0,                                  ≤ ≤ 1
 B.19 
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of the cardiac cycle. A value of u = 0 corresponds to the beginning of systole. This 

variable has been modeled as an integral pulse frequency modulation function [392].  

The fractional part of this equation [frac()] indicates that the variable u(t) is reset to 

zero as soon as the value reaches a value of 1.  

 

The duration of systole is determined by the following equation: 

 
Where ksys and Tsys,0 are constant parameters. A similar set of equations (B.13-B.22) 

are used to describe the right heart as well.  

 

Pulsatile (right) heart 

Conservation of mass at right atrium (ra) 

 
Flow into right ventricle: 

 
Volume of right ventricle: 

 ( ) =
1
( ) + ( )  B.20 

 = , − ∗
1

 B.21 

  =
1 −  

− ,  B.22 

 , =
0, <

−  
, ≥  B.23 
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Flow out of right ventricle: 

 
Viscous resistance of right ventricle: 

 
Instantaneous pressure in right ventricle: 

 
Isometric pressure in right ventricle: 

 
Where ( ) is determined from equations B.20-B.22. 

 

Afferent input types 

Baroreceptors are modeled using a linear derivative first-order dynamic function and a 

sigmoidal static characteristic function in series, described by the following equations: 

 
 = , − ,  B.24 

 , =
0, , <

, −  
, , ≥  B.25 

 = , ∗ ,  B.26 

 = , − ∗ ,  B.27 

 
, ( ) − ( ) ∗ , ∗ − , + [1 − ( )]

∗ ∗ (exp , ∗ − 1 
B.28 

 
 = + ∗  −  B.29 
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Here, and are time constants for the real pole and real zero in the linear dynamic 

block.  is the arterial pressure measured by the baroreceptors.  is the output 

variable of the dynamic block (with dimensions of pressure).  is the frequency of 

spikes in the afferent fibers.  and are the lower and upper saturation limits of 

the frequency discharge of the baroreceptors.  is the intrasinus pressure at the central 

point of the sigmoidal curve and is a constant parameter (with dimensions of 

pressure).  

 

Cardiopulmonary receptors are modeled using a first-order low-pass filter in series 

with the same sigmoidal static characteristic function type used to model the 

baroreceptors. Because cardiopulmonary receptors depend on transmural pressure at 

the pulmonary veins, this pressure difference is used as an input to first-order low-pass 

filter: 

 

Here −  is the transmural pressure at the pulmonary vein or input value to the 

low-pass filter function. is the output variable of the low-pass filter.  is the spike 

 = + ∗
−

1 +
−

 B.30 

 
 = − + −  B.31 

 = ,

1 + −  B.32 
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frequency of the afferent fibers from the cardiopulmonary receptors and ,  is the 

upper saturation limit of the frequency discharge of these receptors, the lower limit 

being zero.  represents the pulmonary venous pressure at the central point of the 

sigmoid curve.  is another constant that determines the slope of the sigmoid curve, 

or sensitivity of the cardiopulmonary receptors. 

 

Lung stretch receptors are modeled using a first-order low-pass filter: 

 

Here  is the firing discharge rate of the slowly adapting lung stretch receptors 

(SARs).  is the time constant of the receptor response to lung inflation.  is a 

constant gain factor and is the lung volume.  

 

Efferent sympathetic outflow 

Sympathetic efferent outflow is modeled to be dependent on the afferent input signals 

sent by the baroreceptor, cardiopulmonary, and lung stretch receptors. Moreover, the 

combined effects of these input signals affect sympathetic efferent outflow to different 

effector functions differently. Therefore a series of calculations are included to 

determine i) the afferent firing frequency input that is then used to determine ii) the 

 
 = ∗ − + ∗  B.33 
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distinct sympathetic efferent outflow signals to the respective effector functions 

associated with the heart (h), peripheral circulation (p), and unstressed volumes (v) 

 

, , where j is a general index for the heart, peripheral circulation, or unstressed 

volume, represents a constant gain factor indicating how much influence each afferent 

input has on determining sympathetic efferent outflow. A factor of -1 is used for 

, as this provided the best fits for the model. The resulting ,  values are then 

used to determine sympathetic efferent outflow to the respective effector functions 

using a negative monotonic function to relate afferent activity to efferent neural 

pathways, 

 

 

Parasympathetic (vagal) efferent output is described in detail § 5.4.1.  

 , = , ∗ − ∗ + , ∗  B.34 

 , = , ∗ + , ∗ + , ∗  B.35 

 , = , ∗ + , ∗ + , ∗  B.36 

 , = , + , − , ∗ − ∗ ,  B.37 

 , = , + , − , ∗ − ∗ ,  B.38 

 , = , + , − , ∗ − ∗ ,  B.39 
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Effector function regulation 

Physiological parameters affected by sympathetic and parasympathetic outflow 

include resistances, unstressed volumes, and cardiac elastances. Sympathetic outflow 

regulates resistances and unstressed volumes via a monotonic logarithmic static 

function, a low-pass first-order dynamics, and a time delay specific to each effector 

function. 

 
Where θ represents a generic controlled parameters (i.e. resistance or unstressed 

volume). τθ and Dθ are the time constants and time delays associated with sympathetic 

regulatory mechanisms on these effector functions. Gθ is a constant gain factor for the 

various effector functions and θ0 represents constant values for respective effector 

functions. Note that fes,j is used to represent the different sympathetic tones specific to 

a particular effector function. 

 

Heart period  

 ( ) =
∗ , ( − ) − , + 1 , , ≥ ,

0                                                             ,   , < ,
  B.40 

 
∆

 
( ) =

1
∗ −∆ ( ) + ( )  B.41 

 ( ) = ∆ ( ) +  B.42 
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In the original model developed by Ursino [291], heart period, as opposed to heart 

rate, is modeled. By modeling heart period, Ursino was able to reproduce the 

nonlinear effect that sympathetic and vagal tone have on heart rate. Thus a linear 

interaction between sympathetic and parasympathetic effect on heart period is used. 

Heart period (not heart rate) has been shown to be linearly dependent on vagal drive, 

while the same monotonic logarithmic static function and low-pass first-order 

dynamics characterize sympathetic effects on heart period. 

 

Ventricular Contractility 

Because ventricular contractility is dependent on the balance of sympathetic and 

parasympathetic drive, similar to heart period, a similar approach is used to determine 

 , ( ) = , ∗ , ( − ) − , + 1 , , ≥ ,
0                                                                   ,   , < ,

  B.43 

 
∆

 
( ) =

1
,

∗ −∆ ( ) + , ( )  B.44 

 , = , ∗ , − ,  B.45 

 
∆

 
( ) =

1
,

∗ −∆ ( ) + , ( )  B.46 

 = ∆ + ∆ +  B.47 
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contractility. Thus a linear interaction between sympathetic and parasympathetic 

effects on the inverse of Emax is used 

Here, , , and , ,represent the time constants associated with the sympathetic and 

parasympathetic regulatory mechanisms on contractility. ,  and ,  correspond to 

the time delays associated the sympathetic and parasympathetic mechanisms. Once 

1
,

is determined, ,  can easily be calculated using equation B.53. 

, ,  represents a constant, baseline elasticity value determined from experimental 

 

, ( ) =

− , ∗ , − , − , + 1 , , ≥ ,
0                                                                            ,   , < ,

  
B.48 

 
∆ 1

,

 
( ) =

1
,

∗ −∆ 1
,

( ) + , ( )  B.49 

 , = , ∗ , − ,  B.50 

 
∆ 1

,

 
( ) =

1
,

∗ −∆ 1
,

( ) + , ( )  B.51 

 1
,

= ∆ 1
,

+ ∆ 1
,

 B.52 

 , = , + , ,  B.53 
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data collected from a dog whose stellate ganglion and vagal nerve fibers were 

denervated, effectively removing any autonomic influence [311]. 

Similar equations (B.48-B.53) are used to determine 1
,

 (right ventricle). 

However, all gains were adjusted by a factor of (1/0.59), based on the ratio value used 

to relate contractility between the right and left ventricle used by Ursino originally. 

 

Lung volume, thoracic, and abdominal pressures 

A linear relationship between lung volume and thoracic pressure is used to model lung 

volume measured by the lung stretch receptors: 

 

Thoracic pressure varies with time due to the effects of the respiratory cycle, which is 

modeled independently from any autonomic regulation. Parameters were chosen based 

on experimental work by Moreno, et al. [393]. Thoracic pressure varies linearly during 

respiration between a minimum of 9 mmHg and a maximum of 4 mmHg, which 

represents steady-state thoracic pressure during the respiratory pause.  

 = , − 0.1 ∗  B.54 
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Where  represents the respiratory period,  represents the duration of 

inspiration and  represents the duration of expiration.  is a dimensionless 

variable, similar to the variable ( ), used to represent the fraction of the cardiac cycle 

that has completed. Here,  is calculated by solving for an additional state variable,  

 

Where the fractional portion ( ) resets the variable ( ) to zero once it reaches a 

value of 1.  

  

 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ −2.5 ∗ ∗

⁄
− 4                     0 < <

⁄

−2.5                                                        
⁄

< <

−2.5 ∗ ∗                   < <

−5 ∗ ∗ − 4      < < 1

  B.55 

  =
1

 B.56 

 ( ) = ( ) B.57 
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B.2 Full model  parameter values 

Table B.2 Hemodynamic parameter values (vascular system) 

Parameter Value Reference 

Compliances (mL/mmHg) 
 0.28 [291] 
 2.05 [291] 
 1.36 [289] 
 0.31 [289] 
 43.11 [289] 
 28.40 [289] 
 6.60 [289] 
 33 [289] 
 0.76 [291] 
 5.80 [291] 
 25.37 [291] 

Unstressed Volumes (mL) 
,  0 [291] 
,  274.40 [291] 
,  274.1 [289] 
,  62.50 [289] 
,  1121 [291] 
,  1120 [289] 
,  255 [289] 
.  0 [325] 
.  0 [291] 
,  123 [291] 
,  120 [291] 

Hydraulic Resistances (mmHg*s*mL-1) 
 0.06 [291] 
 3.307 [291] 
 1.725 [289] 
 4.130 [289] 
 0.038 [291] 
 0.0197 [289] 
 0.0848 [289] 
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 0.0054 [289] 
 0.0230 [291] 
 0.0894 [291] 
 0.0056 [291] 

Inertance (mmHg*ml*s-2) 
 2.2e-4 [291] 
 1.8e-4 [291] 

 

Table B.3 Hemodynamic parameters (left heart) 

Parameter Value Units Reference 

 19.23 mL/mmHg [291] 
,  25 mL [291] 

 2.5e-3 mmHg*s*mL-1 [291] 
,  1.5 mmHg [291] 
,  0.014 mL-1 [291] 
,  16.77 mL [291] 
, ,  1.283 mmHg/mL estimated 

,  3.75e-4 s/mL [291] 
 

Table B.4 Activation function parameters 

Parameter Value Units Reference 

 0.075 sec2 [291] 
,  0.40 sec [291] 

 

 



 369 

Table B.5 Hemodynamic parameters (left heart) 

Parameter Value Units Reference 

 31.25 mL/mmHg [291] 
,  25 mL [291] 

 2.5e-3 mmHg*s*mL-1 [291] 
,  1.5 mmHg [291] 
,  0.0110 mL-1 [291] 
,  40.8 mL [291] 

, ,  0.7570 mmHg/mL estimated 
,  1.4e-3 s/mL [291] 

Table B.6 Afferent input parameters (baroreceptors) 

Parameter Value Units Reference 

 92 mmHg [291] 
 2.52 Hz [291] 
 47.78 Hz [291] 

 11.758 mmHg [289] 
 6.37 sec [291] 
 2.076 Sec [291] 

Table B.7 Afferent input parameters (cardiopulmonary receptors) 

Parameter Value Units Reference 

 10.80 mmHg [289] 
.  20 Hz [291] 

 11.758 mmHg [289] 
 10 sec [289] 
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Table B.8 Afferent firing frequency gains (to heart) 

Parameter Value Units Reference 

,  1 -- [291] 
,  -1.541 -- Estimated 
,  2 -- [289] 

Table B.9 Afferent firing frequency gains (to peripheral circulation) 

Parameter Value Units Reference 

,  1 -- [291] 
,  0.33 -- [326] 
,  2.5 -- [289] 

Table B.10 Afferent firing frequency gains (to unstressed volumes) 

Parameter Value Units Reference 

,  1 -- [291] 
,  0 -- [289] 
,  0 -- [289] 

Table B.11 Efferent sympathetic outflow parameters 

Parameter Value Units Reference 

,  16.11 Hz [291] 
,  2.1 Hz [291] 

,  2.66 Hz [291] 
 0.0675 Sec [291] 
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Table B.12 Effector function regulation (gains) 

Parameter Value Units Reference 

,  0.695 mmHg*mL-1*-1 [291] 
,  0.653 mmHg*mL-1*-1 [291] 
,  2.81 mmHg*mL-1*-1 [289] 

,  -265.4 mL/ [291] 
,  -107.5 mL/ [289] 
,  -25 mL/ [289] 
,  -0.13  [291] 
,  0.09  [291] 

, ,  0.103 mmHg*mL-1*-1 estimated 
, ,  0.205 mmHg*mL-1*-1 estimated 

Where  = spikes/s (i.e. Hz) 

Table B.13 Effector function (time constants) 

Parameter Value Units Reference 

,  2 sec [291] 
,  2 sec [291] 
,  2 sec [289] 

,  5 sec [291] 
,  5 sec [289] 

,  5 sec [289] 
,  2 sec [291] 
,  0.2 sec [291] 
,  2 sec estimated 
,  0.2 sec estimated 
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Table B.14 Effector function (constants) 

Parameter Value Units Reference 

,  2.49 mmHg*s*mL-1 [291] 
,  0.78 mmHg*s*mL-1 [291] 
,  4.13 mmHg*s*mL-1 [289] 

, ,  1435.4 mL [291] 
, ,  1247 mL [289] 
, ,  290 mL [325] 

 0.58 sec [291] 
,  0.2 sec [291] 
, .  1.283 mmHg/mL estimated 
, .  0.757 mmHg/mL estimated 

Table B.15 Respiration 

Parameter Value Units Reference 

 1.6 sec [325] 
 4.0 sec [325] 
 1.4 sec [325] 

 
 
Parasympathetic (vagal) outflow 

Table B.16  Neuronal subtype parameters (baroreceptor-input subtype) 

Parameter Value Units Reference 

,  0.30 Hz estimated 
,  21.50 Hz estimated 
,  1.76 Hz estimated 
 2.14 Hz estimated 
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Table B.17 Neuronal subtype parameters (cardiopulmonary receptor-input subtype) 

Parameter Value Units Reference 

,  0.30 Hz estimated 

,  21.50 Hz estimated 

,  1.76 Hz estimated 

 2.14 Hz estimated 

Table B.18 Neuronal subtype parameters (lung-stretch receptor input subtype) 

Parameter Value Units Reference 

,  2.75 Hz estimated 

,  31.57 Hz estimated 

,  0.96 Hz estimated 
 7.52 Hz estimated 

Table B.19 Nucleus ambiguus neuronal population parameters (heart rate) 

Parameter Value Units Reference 

,  4.88 Hz estimated 

,  15.78 Hz estimated 

,  0.74 Hz estimated 

 2.55 Hz estimated 

Table B.20 Nucleus ambiguus neuronal population parameters (contractility) 

Parameter Value Units Reference 

,  0.61 Hz estimated 

,  11.00 Hz estimated 
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,  0.62 Hz estimated 
 1.20 Hz estimated 

Table B.21 Dorsal motor nucleus neuronal population (contractility) 

Parameter Value Units Reference 

,  2.59 Hz estimated 

,  6.66 Hz estimated 

,  0.53 Hz estimated 

 1.24 Hz estimated 
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Appendix C 

SUPRACHIASMATIC NUCLEUS GENE ASSAY SET AND FUNCTIONAL 
ANNOTATION 

Table C.1 Gene categorization, primer sequences, and accession number 

Gene Symbol Accession No. Forward Design Reverse Design Function 
Actb NM_007393.3 aaggccaaccgtgaaaagat gtggtacgaccagaggcatac housekeeping 
Adcyap1 NM_009625.2 gagaatctgggggcaagtct caccagcacctgatctgtca neuropeptide 

Adcyap1r1 NM_007407.3, 
NM_001025372.1 ggctgtgctgaggctctact ccacagagctgtgctgtcat receptor 

Arih1 NM_019927.2 gccacttcaattgggataaaga ggattaattacatgacactcagcaa light induced 
Arntl NM_007489.3 accttcccgcagctaacag tcctctttgggccacctt circadian clock 
Atp5b NM_016774.3 ctgaggtcttcacgggtca gcttgttctgggagatggtc housekeeping 
Avp NM_009732.1 ctacgctctccgcttgtttc gggcagttctggaagtagca neuropeptide 
Avpr1a NM_016847.2 gccaaggatgactcggatag tgggcttcggttgttagaat receptor 
Avpr1b NM_011924.2  tcctcggtgtcacctctca gggaggtgggtgttaatatgg receptor 
Avpr2 NM_019404.1 tgggtcctcaagatgagtcc aggagggtgtatccttcatcag receptor 
Bhlhe40 NM_011498.4 cagcttcatgaacccagaca gtgccaaaggagaagggagt circadian clock 

Bhlhe41 NM_001271768.1, 
NM-024469.2 cctgcccttctatctgctgt tcttgtctagccagggctgt circadian clock 

Brs3 NM_009766.3 gtgagcagtgccctctttct atgacacgtgaacagccaga receptor 

Calb1 NM_009788.4 tctgtgtgagaagaacaaacagg taagagcaaggtctgttcggta signal 
transduction 

Calb2 NM_007586.1 gatggcaaattgggtctctc tctgaggtcagcttcataccc signal 
transduction 

Camk2a NM_009792.3, 
NM_177407.4 cagatcgtccacttccacag tccagcaaaatccaaaggag signal 

transduction 

Camk2b NM_007595.4  cagccccaaaggatctctc ttccttaatcccgtccactg signal 
transduction 

Cebpb NM_009883.3 aagatgcgcaacctggag cagggtgctgagctctcg light induced 

Clk 
NM_001289826.1, 
NM_001305222.1, 
NM_007715.6 

tgacaaggacaaagcaaaaaga cgcgttaccaggaagcata circadian clock 

Creb1 
NM_001037726.1, 
NM_009952.2, 
NM_133828.2 

ccactgatggacagcagattc ggtatgtttgtacatcgcctga signal 
transduction 

Crebbp NM_001025432.1 gatgaggactctcaatgcccta ggctgttgatctgttgttattcc signal 
transduction 

Cry1 NM_007771.3 ctatatcctcgacccctggtt caagacactgaagcaaaaatcg circadian clock 

Cry2 NM_009963.4, 
NM_001113333.1 gccatcatgacccaactga ctcccagctgacccagag circadian clock 
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Csnk1d NM_139059.2, 
NM_027874.2 catcctcagctccacattga acattgtagtccccctcagc circadian clock 

Csnk1e NM_013767.6 tgagcatgagactccacagag tcaaatggcacgcttgtct circadian clock 
Csnk2a1 NM_007788.3 gtttggatatgtggagcttgg tgttcccagaaccttggcta circadian clock 

Cul5 NM_001161618.1, 
NM_027807.3 gcatattataagtgcgggccta gctccacatacttctcagagtcag receptor 

Dbp NM_016974.3  cttttgaccctcggagacac ccggctccagtacttctcat circadian clock 

Drd1a NM_001291801.1, 
NM_010076.3 tgtgcatcgaggtgaatgag cagcgatgagcccaactatc receptor 

Dusp1 NM_013642.3 ccactcaagtcttctttctccaa gactgtttgctgcacagctc light induced 
Dusp4 NM_176933.4 acggacatctgcctgctta ggtgctgggaggtacagg light induced 
Egr1 NM_007913.5 cctatgagcacctgaccaca tcgtttggctgggataactc light induced 
Egr2 NM_010118.3 cccttccagtgtcggatct tgtgggttcggatgtgagta light induced 
Fos NM_010234.2 gggacagcctttcctactacc gatctgcgcaaaagtcctgt light induced 
Gabbr2 NM_001081141.1 ctgcggaggacagtggag gtgttttcgcagtgttccag receptor 
Gabra1 NM_010250.4 gctccggctaaacaacctta cacagacttctttccattgtgg receptor 
Gadd45b NM_008655.1 ctgcctcctggtcacgaa ttgcctctgctctcttcaca light induced 
Gapdh NM_008084.2 tgtccgtcgtggatctgac cctgcttcaccaccttcttg housekeeping 

Gria1 NM_001113325.1, 
NM_008165.3 tttgctttgtcacaactcacg tttggagaactgggaacagaa receptor 

Gria2 
NM_001039195.1, 
NM_001083806.1, 
NM_013540.2  

gatggtcaacactcgaagagaa tcataagtcagggccgaagt receptor 

Gria4 
NM_001113180.1, 
NM_001113181.1, 
NM_019691.4 

cttcagctaagaccttcattgaga cctgctttttccattatagcttg receptor 

Grin1 NM_008169.1 tacaagcgacacaaggatgc ggctctgctctaccactctttc receptor 
Grin2c NM_010350.2 gaagcgggccatagacct tggcagatccctgagagc receptor 

Grm1 NM_001114333.1, 
NM_016976.2 gatgagaagggggatgcac caggttcccacatggacata receptor 

Grm5 NM_001081414.2, 
NM_001143834.1 gcagtgaaccgtgtgagaaa gtgtgcaggtccaacaacag receptor 

Grp NM_175012.2 acgacgttcaaaccgctaag tggcagttcctcccttttc neuropeptide 
Grpr NM_008177.2 ctccatgctccactttgtca aggggttcacacaggagttg receptor 
Gsk3b NM_019827.6 ttctacaggacaagcgatttaaga cggactatgttacagtggtctagc circadian clock 
Hprt NM_013556.2 tcctcctcagaccgctttt cctggttcatcatcgctaatc housekeeping 
Id2 NM_010496.3 actatcgtcagcctgcatca agctcagaagggaattcagatg circadian clock 
Jun NM_010591.2 tggagtgggaaggacgtg aaagtctgccggccaatag light induced 
Junb NM_008416.2 cgtctacaccaacctcagca cgggtatgagctcccagtc light induced 

Mapk1 NM_001038663.1, 
NM_011949.3 accgtgacctcaagccttc tgatctggatctgcaacacg signal 

transduction 

Mapk3 NM_011952.2 acacccctgtccttttggat tctgggttgagcaaagttca signal 
transduction 

Nfil3 

XM_006516877.1, 
XM_011244379.1, 
XM_006516878.1, 
XM_006516875.1, 
XM_006516876.2 

gaccagggagcagaaccac ccccagtcttctttcaggtct circadian clock 

Nmbr NM_008703.2 gctgggctgcaaactcat catggggttcacgatagctc receptor 
Npas2 NM_008719.2 ggcacctcaggctacgact ctttgccaaactgcatcaga circadian clock 
npy1r NM_010934.4  catcatgctgctctccattg tggttccagtcgaacacagt receptor 

npy2r NM_001205099.1, 
NM_008731.3 gcggatcttttggtgaaca ttccactctcccatcaaggt receptor 

npy5r NM_016708.3 cgcagtgttttctacagactgac cacgtggaagacgtggagt receptor 
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Nr1d1 NM_145434.3 aggagctgggcctattcac cggttcttcagcaccagag circadian clock 
Nr1d2 NM_011584.4 cagcactaccagctcaggaa ccaatcacttcctcctttgc circadian clock 
Nr4a1 NM_010444.2 gctgcaagggcttcttca tctggaagcggcagaact light induced 

Nr4a2 NM_001139509.1, 
NM_013613.2 tcagagcccacgtcgatt tagtcagggtttgcctggaa light induced 

Nras NM_010937.2 agtacatgaggacaggcgaag ctttcacacgcttaatttgctc signal 
transduction 

Pcsk1n NM_013892.3 gatcctcaccggaagttcg aaatcctggtccacagatcg neuropeptide 

Per1 NM_011065.4, 
NM_001159367.1 gcttcgtggacttgacacct tgctttagatcggcagtggt circadian clock 

Per2 NM_011066.3 acccacacaccaaactgctt ggcgtctcgatcagatcct circadian clock 
Per3 NM_011067.2 cactgcacctctggtgagc actgctggcactgcttcc circadian clock 

Pou2f2 
NM_001163554.1, 
NM_001163555.1, 
NM_011138.2 

ggcccaactcatgctgac actgagcaggtggctgga light induced 

Ppp1ca NM_031868.2  cagccattgtggatgagaag ctaatctgctccatggattgc signal 
transduction 

Ppp2ca NM_019411.4 gctgaacgagtgcaagcag cgttggattcttttgtcagga signal 
transduction 

Prkaca NM_008854.4 aaaaatgggagaccccttctc gtgccaagggtcttgattcta signal 
transduction 

Prkacb NM_011100.4, 
NM_001164198.1 gcaggacatggacattgtgt tccaccgccttattgtaacc signal 

transduction 

Prkca NM_011101.3 ggaatgagtccttcacgttca cccatgaagtcattccgagt signal 
transduction 

Prkcb NM_008855.2 accaagacattctgtggcact agacttcccgtagggctgat signal 
transduction 

Prkg1 NM_001013833.2, 
NM_011160.2 cacctcccataattccaagtg atgtcccagcctgagttgtc signal 

transduction 

Prkg2 NM_008926.4  cgatggctaccttaagttggtt ccacagaatgtccacgttttc signal 
transduction 

Prok2 
NM_015768.2, 
NM_001037539.2, 
NM_001170419.1 

tcatttggggcagacgtt aaagccagtgggccagat neuropeptide 

prokr2 NM_144944.3 gggcatcctcacagcctac ggggaagaagtctcgcacta receptor 

Pvalb NM_013645.3 ggcaagattggggttgaag agcagtcagcgccacttag signal 
transduction 

Rasa1 NM_145452.3  tccttagtcagacaaatgttgtcaat aaacaagaaacgtgactgtaataacc signal 
transduction 

Rasa2 NM_053268.2 gctaaagtcaccagatgttcagc gcagcaacagtcgtacaagg signal 
transduction 

Rasd1 NM_009026.4 tgcacagcgacctcatgta acacagcgctccttgtcc signal 
transduction 

Rgs16 NM_011267.3 ctctccacgacgtgctgtc ccgcgtcttgaactctttg signal 
transduction 

Rora NM_013646.1 cctactgttccttcaccaacg atgttctgggcaaggtgttc circadian clock 

Rorb NM_001043354.1, 
NM_146095.3 cacgtgtgaaggctgcaa ggcaggagtaagaggcattg circadian clock 

Rrad NM_019662.2 gggttgtgcgccagatac ttcttgccaaggctctcc light induced 
Slc12a4 NM_009195.2 cccctacttcctgctcaaca ccaggtaagcgctccaga receptor 
Slc12a5 NM_020333.2 tttctggacaaccatccaca ttcaccttctcagcctccat receptor 

Slc12a6 NM_133648.2, 
NM_133649.2  ggtgccatcaagtcttcctt ttgatgacagggtacggttg receptor 

Slc12a7 NM_011390.2 gtaccacctcaggatcagtgc ctcataggtgaatgcggaaat receptor 
Slc32a1 NM_009508.2 acgtgacaaatgccattcag tgaggaacaaccccaggtag receptor 
Tbp NM_013684.3 gggagaatcatggaccagaa gatgggaattccaggagtca housekeeping 
Vip NM_011702.2 gcctctctttggaccacctt ctccttcaaacggcatcct neuropeptide 
Vipr2 NM_009511.2 cttcctggcctaccttctga gtcccagcaacctgtgtctt receptor 
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