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This work has been motivated by real-life experience regarding the challenging 

decision-making of high-impact interventions in complex, high-risk clinical situations, 

when recommendations from existing practice guidelines are either ambiguous or 

based on low-level scientific evidence.  

The central research question is as follows: Can we develop a new model that 

integrates the expected, time-related course of the disease to estimate the benefit from 

intervention in improving survival and/or quality of life against the cost of this 

intervention in terms of risk to the patient, financial cost and healthcare system 

resources?  

A literature review was conducted, with review of the existing methodologies 

for data analysis, the basis for optimal approach to data analysis, the Corbin-Strauss 

disease trajectory model and principles of resilience engineering.  

The objective of this research is to introduce a novel methodology for data 

analysis that can help clinicians make time-related, patient-specific and disease-

specific recommendations for diagnostic and therapeutic interventions.  

To achieve this objective, this work introduces a novel, hybrid model for 

clinical decision-making through the utilization of the Corbin-Strauss disease 

trajectory, which describes the expected/historical pattern of change in functional 

status and/or survival over time in chronic conditions and integrates resilience 

engineering tools to quantify the change in system function. 

ABSTRACT 
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Based on this, our research strategy included the development of a new 

resilience model, integrating the Corbin-Strauss trajectory.  

To test this model, data from a local cardiac surgery database was utilized in an 

index case of aortic valve replacement for aortic stenosis. Several equations were 

tested to quantify the survival benefit in this model. Our findings support a resilience 

model incorporating the Corbin-Strauss disease trajectory as a tool to help quantify the 

benefit of interventions in terms of improved survival and/or functional status. 

In conclusion, we introduce a novel, hybrid model based on the Corbin-Strauss 

trajectory and rooted in resilience engineering as a tool to assist in clinical decision-

making, especially in complex, high-risk situations. 



1 

INTRODUCTION 

In medical practice in general and in surgery in particular, recommendations 

regarding diagnostic and therapeutic decisions have a serious, life-altering impact on 

patients and the people around them. This is especially true in the area of 

cardiovascular surgery, which deals with diseases of the heart and the major blood 

vessels (namely the aorta), from infants to the elderly. Such surgical procedures carry 

a high risk of death or serious disability. Their results impact the entire life span of the 

patient, in cases of children and infants. Therefore, decisions regarding operating on 

the thoracic aorta, for instance, often present a significant challenge. 

Clinical practice guidelines were developed to provide evidence-based 

recommendations for safe, appropriate and effective diagnostic and therapeutic 

interventions for such high-risk clinical situations. A methodology for the hierarchy of 

the strength and reliance of scientific evidence supporting these recommendations has 

been developed by professional organizations. 

However, these guidelines frequently offer little or no support for the clinician, 

since their recommendations are often vague and—more importantly—based on low-

level scientific evidence. Examples of such situations include: 

1. Recommendations for management of the aorta in females with Turner 

syndrome are based on the guidelines for a significantly different 

disease (Marfan syndrome)  
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2. Recommendations for replacement of the ascending aorta in Turner 

syndrome patients are based on low-level evidence (Consensus of 

Expert Opinion or Level C) 

3. Recommendations for replacement of the ascending aorta in patients 

with bicuspid aortic valve disease are not well defined.  

4. Indications for replacement of the ascending aorta in cases of bicuspid 

aortic valve disease are based on Level C (Consensus of Expert 

Opinion) 

5. Recommendations for implantation of a left ventricular assist device 

(LVAD) in moderately advanced heart failure patients (New York 

Heart Association Functional Class IIIb) are unclear. 

These examples of real life, everyday situations that clinicians face clearly 

demonstrate the inadequacy of recommendations from current clinical practice 

guidelines, thereby causing decision-making to be more challenging for both the 

patient and clinician. There remain several shortcomings of the current methodology 

for data analysis that supports the recommendations in these guidelines. Because such 

clinical situations impart a significant impact on the patient’s survival, growth and 

quality of life, an improved and more effective approach to data analysis is imperative. 

1.1 Motivation  

The main motivation for this work stems from the following illustrative cases, 

which are all real situations encountered during the author’s clinical career: 

 A 37-year-old mother posing a question to the scientific panel of six 

distinguished experts during the annual Turner Syndrome Society 

meeting, regarding her 9-year-old daughter who had just been 

diagnosed with the condition. She wanted to know if she should 

agree to the highly invasive and high-risk aortic replacement 

surgery for the young girl, since the current guidelines consider her 

to be at an increased risk for aortic dissection. The response from 

the panel was that “We do not have enough data.” 
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 A 46-year-old male, who was changing jobs. During the routine 

employment physical examination, he was noted to have a bicuspid 

aortic valve with an ascending aortic diameter of 4.7 cm. Patient 

was informed of the possibility of a major surgery to replace his 

ascending aorta because of a perceived increased risk for dissection. 

The cardiac surgeon presented the case in a major national 

conference dedicated to aortic surgery. However, the issue was not 

resolved due to conflicting data. 

 A 32-year-old male with slowly declining functional status due to 

congestive heart failure, though he was still able to perform most of 

daily activities on medical therapy. He was not a candidate for 

transplantation because of social issues.  The optimal time for 

implantation of an LVAD—based on “how sick” the patient is and 

the expected worsening of his functional status—could not be 

decided during a discussion in a major national meeting.  

 A 25-year-old, morbidly obese female with rapidly deteriorating 

shock state due to end-stage heart failure, currently maintained on a 

short-term mechanical circulatory support pump and experiencing 

kidney failure.  Body size and kidney failure preclude 

transplantation, and the shock state severely increased the risk for 

LVAD implantation. No reliable data exist about the probability of 

meaningful recovery of heart function in such situations. 

1.2 Knowledge Gap 

Changes in modern healthcare systems and practice have highlighted the 

following challenges: 

 Quantification of the benefit of implementing high-risk, high-cost 

interventions in complex clinical cases is inadequate and is often 

left to “clinical judgment.” 

 In many clinical situations, the scientific evidence is insufficient or 

of low level and thus unreliable as a basis for life-changing 

interventions.  

 Current guidelines do not support long-term projections about the 

results of interventions in terms of changing the course of the 

disease towards improved survival and quality of life, especially in 

younger patients. 
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 Current and emerging approaches for data analysis are not yet able 

to provide quantifiable predictions about the outcome of 

interventions to guide clinical decision-making. 

In light of the paucity of data relating to this specific situation—with anecdotal 

and “expert opinion” evidence being the only options available—and the inadequacy 

of standard statistical approaches in determining risk (Sherif 2017, Rizzo 2014, 

Bertrand 2004, Dimik 2014), clinical decision-making regarding the implementation 

and outcomes of high-risk and high-cost interventions continues to be formidable 

challenges on a daily basis. Examples of such situations are the replacement of the 

ascending aorta in a young, asymptomatic female patient with Turner syndrome 

(Sherif 2016, Sherif 2015, Mauriera 2012) or the decision to perform mitral valve 

repair in mild-to-moderate valve insufficiency in the context of coronary artery bypass 

grafting (Chan 2012, Di Donato 2003). Such decisions are often called for in 

emergent, life-threatening situations, an example of which is the implementation of an 

extra-corporeal membrane oxygenator (ECMO) in cardiogenic shock, severe trauma 

or severe respiratory failure (Schmidt 2015, Schmidt 2013). 

1.3 Scope and Objectives 

The Corbin-Strauss model of disease trajectory (Corbin 1991) has been 

established in the medical and nursing literature as a graphical representation of the 

change in survival status, functional status, disability/dependence and/or quality of life 

over time in each specific disease.  

This trajectory provides a better understanding of the temporal aspects of 

disease progression and their impact on survival, functional status and overall well-

being; it is also a framework for correlating the scientific findings relevant to the 

disease process. This trajectory also depicts the results of various diagnostic and 
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therapeutic interventions, as well as “disruptive events”; i.e., disease genesis and 

trauma. The trajectory model comprises several “nodes” on the trajectory line, each 

corresponding to a “critical event” that shifts the course of the trajectory “up” towards 

improved survival/recovery or “down” towards deterioration/death.  

As such, the Corbin-Strauss trajectory is a dynamic, graphical model of the 

performance of the system over time, through phases of stability, injury and recovery 

leading to the return to stability. Thus, the change in the trajectory line relative to 

disruptive events reflects the “hardiness” or “resilience” (Attoh-Okine 2016) of the 

system (on various levels from the cellular, organ or system to the entire organism). 

 

Figure 1 A simplified diagram of the resilience response 

D

C

E

Functional	status

Timeto t1 t2

100%

75%

50%

25%

H

FG

Expected	course	after	Intervention

Expected	course	without	Intervention

Stable

Stable

Disruptive	event

Intervention

Recovery

Loss	of	function

End-stage	failure



 

6 

 

As Figure 1 details, the “normal” or expected functional status and/or 

probability of survival is represented by the point D on the actuarial curve (line A-D-

E). Assuming D to be the point when the disruptive event occurs, the progressive 

change in functional status and/or survival follows the Corbin-Strauss trajectory (line 

D-H-F), with point F being the ultimate failure point (e.g., death) if the effects of the 

disruptive event are unaddressed. Thus, an intervention at point H should be expected 

to produce a shift in the functional status and/or survival towards an improvement in 

probability of survival and/or an improvement in the quality of life, i.e., recovery. This 

shift in the trajectory represents the goal of interventions: to recover or improve 

system function (at different levels from the molecular or cellular levels to the entire 

human body or populations). 

Resilience is defined as the system’s capacity to recover its function to its 

baseline level after an event with a significant adverse impact on its performance. 

Mathematical relationships and formulae already in place (Attoh-Okine 2016, Bruneau 

2003, McDaniels 2008) can be adapted to quantify the effect of introduced events (i.e., 

interventions) on the trajectory course within a specific period of time for a specific 

disease process in a specific patient. 

1.3.1 Research Objectives 

1.3.1.1 Main objective 

The formulation of a novel hybrid model for decision making combining the 

Corbin-Strauss disease trajectory model and resilience engineering.  
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1.3.1.2 Sub-objectives 

1. To formulate a novel model based on the Corbin-Strauss disease 

trajectory model and resilience engineering,  

2. To utilize this hybrid model to quantify the probability of survival 

and/or functional status in an index case of aortic stenosis, using real-

world data from the medical records of a local cardiac surgery group, 

and  

3. To apply resilience engineering principles to quantify the probability of 

change in system performance (i.e., probability of survival) relative to 

the intervention. 

4. To evaluate the performance of the proposed model in an index case of 

surgical aortic valve replacement. 

1.4 Research Approach 

1.4.1 Conceptualization: 

An analysis of the principles and process for clinical decision-making by 

clinicians (especially physicians and surgeons) is discussed. The goal of clinical 

practice is to halt the course of the disease (i.e., effect a “cure”) or slow its 

progression, thus improving survival, quality of life, independence and freedom from 

interventions. (Porter 2010, Buck 1992, Donabedian 1990). This expectation of 

outcomes is fundamental for safe, effective, equitable and affordable utilization of 

diagnostic and therapeutic resources to address the disease process.  

Clinicians’ approach to data is discussed: The focus is the established process 

for obtaining, identification and categorization of scientific data (Lomas 1989, Sherif 

2009, Soley-Bori 2013, Denaxas 2015) in hierarchical levels of evidence that support 

different tiers of recommendations for practitioners, based on the perceived 
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importance or risk of the disease or condition and the known or expected benefit from 

the proposed intervention. 

A trans-disciplinary approach is introduced: Instead of using the traditional 

approach to data and procedures limited to the medical disciplines, the analytical 

approaches (Hollangel 2015, Attoh-Okine 2016, Cimellaro 2017) used by different 

engineering disciplines, such as civil engineering, mathematical biology, etc., are 

examined. Their principles are utilized to introduce a novel model for data analysis. 

1.4.2 Methodology 

 

 

Figure 2  Details of research methodology 
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1.4.2.1 Background and Literature Review 

A historical background about medical decision making is presented. An 

extensive review of the scientific literature was performed. This review encompasses 

the following: A discussion of the basis, process and implementations for establishing 

guidance and accountability for clinical decision-making (Digby 1994, Kish 2001, 

Steinberg 2011).  Professional regulations and the evolution of clinical guidelines as 

best evidence-based standards of practices to improve outcomes and protect the 

citizenry from the harmful effects of unregulated practice (Grimshaw 1993, Pronovost 

2013, Sherif 2014). 

Approaches to data analysis: A discussion of the current approaches to data in 

evaluating and stratifying scientific evidence from observational and experimental 

studies (Rizzo 2015, Denaxas 2015, Sherif 2015) including discussion of their 

limitations.  

Wisdom in data analysis: A discussion of the incorporating wisdom as the basis for an 

approach to data analysis towards supporting a decision which is most likely to benefit 

the patient(s) in terms of maintained status of health, improved functional status and 

improved probability of survival.  

1.4.2.2 Development of the Novel Hybrid Model 

A systems approach discussing the process line which details the sequence of 

events (Vincent 2004, Graves et al 2010, Sherif 2015) leading to the expected or 

observed outcome in clinical situations as the basis for understanding clinical 

decision-making and planning interventions designed to improve the outcome.  

Corbin-Strauss disease trajectory: An introduction to the Corbin-Strauss 

disease trajectory model (Glaser 1975, Corbin 1975, Corbin 1991, Corbin 1998) as the 
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graphical representation of the time-related change in survival and/or functional status 

as a result of the progression of disease in specific clinical conditions.  

Critical events and the disease trajectory: The sequence of specific events 

responsible for changes in the survival probability and/or functional status is 

emphasized as the basis for the progression of the disease (Robinson 1993, Conrad 

1997, Bury 2010) and for planning points of interventions aimed at changing its 

course. 

Impact of interventions on the trajectory: Using an illustrative example of a 

published analysis (Camboni 2011, Zangrillo 2012) of using extracorporeal membrane 

oxygenator (ECMO) in respiratory failure, the parameters of dysfunction and failure 

as predictors of outcome at the time of intervention are discussed. 

Resilience engineering approach: An introduction to resilience engineering 

(Woods 2004, Attoh-Okine 2009, Attoh-Okine 2016, Hollangel 2006, Hollangel 2015) 

with focus on resilience in biology, is discussed. The basis for choosing a resilience 

engineering approach (Sherif 2017) to clinical decision making is discussed. 

1.4.3 Implementation of Research: 

Introduction of a new model: The resilience pathway, its phases, the resilience 

triangle, recovery patterns and trajectories are discussed. The graphical mathematical 

modeling of the resilience pathway and its variables are discussed.  

Formulation: Through a review of the literature, different approaches to 

develop metrics for the resilience response were identified and relevant equations 

listed. The Corbin-Strauss trajectory model for aortic stenosis is discussed. A 

resilience model for aortic stenosis is constructed. 
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Proof of concept: Retrospective data were obtained from the medical records 

of a local cardiac surgery group. Exploratory data analysis was conducted and its 

results discussed.  The probability of survival 30 days after aortic valve replacement 

was estimated. A model of the Corbin-Strauss disease trajectory was constructed to 

quantify the probability of survival without valve replacement surgery. Predicted 

values for the probability of survival according to the Corbin-Strauss model and the 

exploratory data analysis were compared. A resilience engineering model was 

constructed, incorporating the Corbin-Strauss model, to examine the probability of 

survival 30 days after aortic valve replacement. Different equations were implemented 

to quantify the resilience response in this index case.  

Findings and limitations: Results of the equations and their interpretations 

were discussed. Comparison of the documented results from the local data set and 

results of the new model was performed. A commentary on the limitations of the study 

is included.  

Concluding remarks: A discussion of the research conducted and their 

implications on future applications of this novel approach in different clinical 

situations. Examples are given to illustrate the potential benefit of this approach and 

future directions of its application. 

1.5 Dissertation Organization 

Chapter 1: Introduction 

A brief discussion of the background and area of study is included. Discussion 

of the motivation to embark on this research is listed. The major objective and sub-

objectives of this research work are detailed. Specific details of the research approach 

are described. 
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 Chapter 2: Background 

This is an overview of clinical decision-making, including a background of the 

evolution and adoption of professional regulation of medical practice through clinical 

guidelines towards a safe and effective practice; the basis for identification and 

selection of scientific evidence to support recommendations for medical interventions 

is also discussed. 
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Chapter 3: Basic Medical Decision-Making 

This chapter presents a discussion of the basic principles in approaching data 

selection, organization and categorization as the foundation for making “wise” clinical 

decisions; i.e., responsible, safe and effective clinical management strategies designed 

to have the optimal benefit for the patients in terms of improved survival and/or 

quality of life. 

Chapter 4: The Corbin-Strauss Disease Trajectory Model 

The Corbin-Strauss disease trajectory model as a descriptive model of time-

related changes in disease course relative to critical events and interventions is 

discussed. This model is introduced as the basis for incorporating resilience 

engineering to develop a novel, hybrid model for data analysis. 

Chapter 5: Formulation 

This chapter includes a discussion of resilience of complex systems in 

engineering and in biology. Details of the resilience pathway and equations to quantify 

the change in system performance are discussed. As proof-of-concept, a resilience 

model for aortic stenosis is constructed. Exploratory data analysis using a local data 

set was conducted. The model was then tested using the same data set, and results of 

the conventional approach and the new approach were compared. A commentary 

about the results and limitations of the study is included. 

Chapter 6: Concluding Remarks 

A discussion of the results of this research work in incorporating resilience 

engineering in medical and healthcare decision making. A discussion and examples of 

possible future directions for applications of this approach are included.  
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BACKGROUND 

For millennia, the practice of medicine has been limited to an elite group, often 

the priests of gods, who were capable of producing dramatic results in terms of 

survival and cure. Ancient documents (Ghallioungui 1987, Feldman 1999) 

demonstrate the first instances of recommendations for medical decision making: 

“…say: This is a condition I shall treat”.  

Until recently, medical practice had a high level of variation between different 

practitioners. Moreover, the limited amount of medical information (Sherif 2014, 

Ackerknecht 2016) available at the time was scarce and only available to this elite 

group. These practitioners were considered infallible holy men or even gods (Risse 

1986). Their decisions and recommendations unquestionable and above reproach. An 

adverse outcome was never seen as the result of inappropriate diagnosis or treatment.  

The Enlightenment in medical education (Smith 1980, Hajar 2013) changed 

medical practice to be based on rigorous scientific knowledge rather than social status. 

 Guilds were the first organization attempting to set of standards of medical 

practice (Robinson 1984, Pelling 1997, Briggs 2005) for the practice of surgery. These 

standards were based on the best available scientific evidence. Later, the Royal 

College of Surgeons emerged as the sole authority for regulating the practice of 

surgery. Its mission statement affirms this: “committed to promoting and advancing 

the highest standards of surgical care for patients, and regulating the practice of 

surgery.”  

Chapter 2 
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Thanks to advances in the 20th century, the medical professional is no longer 

regarded as an infallible holy man, whose words, directions and decisions are never 

contested but rather as the true human professional he/she really is: A knowledgeable, 

highly educated, trained and skilled practitioner making decisions based on the best 

available and accessible information and held accountable for the outcomes of such 

decisions. Fortunately, the basic underpinnings of medical practice aiming to “do no 

harm” (Smith 2005) and striving to offer the most possible benefit to the patient—in 

terms of improving survival, reducing or eliminating pain, suffering and disability—

remain as steadfast today as in Hippocrates’ time. 

2.1 Field of Study 

2.1.1 Professional Regulation and Clinical Practice Guidelines 

The area of exchange of services involving the health and well-being of people 

has been known as the Medical Marketplace Interactions between the demand side 

(i.e., patients or the “consumers”) and the supply side (i.e., medical practitioners) have 

changed drastically over the centuries (Digby 1994, Bodenheimer 1999, Hall 2007). 

Fierce competition (Posner 1975) among the “providers” existed, each vying for their 

own “market share” and the opportunity to make quick profits without consideration 

for the risks to the unsuspecting public.  

The first serious efforts to regulate (Browne 1935, Maks 2002, Garoupa 2004) 

the practice of medicine, with an objective of protecting the citizenry and promoting 

the safety of the public, were the formation of professional organizations (i.e., 

colleges, societies, boards and associations) dedicated to: 

1. Define the requirements in education, training and skills to practice a 

specific area of medicine. 
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2. Develop clear, scientific, evidence-based guidelines for the safe 

practice of the profession. 

3. Determine the competency of candidates to safely practice medicine. 

4. Provide a mechanism to hold practitioners accountable for their 

decisions as compared to the standards-of-care. 

This evolution of these bodies (Ackerknecht 2016) has dramatically influenced 

the practice of medicine, restoring its main objective of preventing harm and 

improving survival and quality of life. This fundamental principle of safety (Knebel 

2003, Leape 2009) remains the sine qua non foundation of quality of medical practice 

for all medical professionals and the major incentive to join this prestigious 

profession. 

The 20th century has witnessed a dramatic and explosive growth in biomedical 

knowledge, connecting with other fields such as data storage, material science, 

biomedical engineering, mathematical modeling, simulation and bioinformatics. This 

multidisciplinary overlap continues provide us with a vast volume of rapidly 

expanding data. 

For instance, the Human Genome Project (Sawicki 1993, Kelavkar 2006) has 

enabled practitioners to offer treatment of conditions previously deemed untreatable. 

Advances in the development of devices have had a tremendous impact in improving 

survival and the quality of life for numerous patients. Partly because of increased 

public awareness of such advances this has created an ethical dilemma when a patient 

is “kept alive” for an extended period of time (Bramstedt 2008) and at an exorbitant 

cost simply because the technology is readily available. 

These heightened expectations of ‘miraculous outcomes’ even in dismal 

clinical situations and rising demand from the public for the most advanced, and 

expensive therapeutic modalities has strained the available resources of the healthcare 
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system. In addition, there has been a dramatic increase in the number and cost of 

litigation against medical practitioners at all levels, increasing the cost of malpractice 

insurance. This led to a shift towards defensive medicine, including unnecessary 

interventions to defend their decisions; further increasing the cost of healthcare. 

Besides, the increasingly active role of industry in influencing medical practice 

has contributed to an increase in the number of sponsored clinical trials examining 

“products” ranging from food substances and additives to artificial organs. The 

established industry marketing, cost versus profit, “customers” versus “patients”—has 

dramatically changed the landscape (Hall 2007, Angell 2008) for medical practice.  

Practitioners are hardly keeping abreast of the latest findings from basic 

sciences and other areas of research, let alone incorporating them in their practice.  

Recently (Bloche 2002), the influence of non-medical administrators dictating 

specific practices has grown. This is driven by insurers and their own assessment of 

risk in terms of reimbursement—not outcomes. In the well-publicized “sugar window” 

(Fullerton 2014) report of regulation for the cardiothoracic surgical community, the 

entire hospital was held accountable and sustained punitive financial measures based 

on an arbitrary, single measurement that was inappropriately used as a “metric” 

despite being unrelated to the outcomes, safety or quality of the clinical process. 

Therefore, over the past decades, more and more practice guidelines have been 

developed –and are being promoted by such authorities as the Institute of Medicine 

(Field 1990, Audet 1990)—with the following goals in mind: 

 To clearly define therapeutic goals—in terms of irreversibly halting 

the disease process (“cure”), altering or delaying its course, thereby 

improving survival and quality of life. 
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 To improve healthcare quality through: standardization of safe, 

effective and appropriate interventions. 

 To promote the highest yield at the lowest cost to the patients, 

payers and the healthcare system. 

 As the basis for metrics of success or failure of therapy. 

Though imperfect, clinical practice guidelines remain a foundation for 

healthcare practice. These recommendations for safe and high-quality healthcare 

practice have been credited with improving survival and quality of life for millions as 

they are being adopted by more healthcare authorities and practitioners around the 

world. Additionally, these guidelines provide a sustained momentum to scientific 

research in medical, biomedical and biotechnology fields. This constant feedback and 

interdependence between regulatory agencies, professional organizations, healthcare 

practitioners and the scientific community continues to prove beneficial for the health 

and welfare of patients everywhere. 

2.2 Current State of the Art 

2.2.1 Derivation of Clinical Guidelines 

Most of the clinical practice guidelines in force today are based on a consensus 

of a group of experts (Hiratzka et al 2010, Epstein et al 2002) in the field through 

writing groups and task forces assembled by professional organizations; to provide 

safe, evidence-based recommendations for specific clinical problems deemed of high 

importance, risk or population impact. Such groups review the scientific literature and 

establish a hierarchy of the level of evidence depending on the type of research 

addressing the field that has produced this evidence.  
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The standards for developing and stratifying scientific evidence supporting the 

recommendations for diagnostic and therapeutic interventions is illustrated in the 

following excerpt from the 2010 guidelines (Hiratzaka et al 2010) for management of 

thoracic aortic disease, issued by a combined task force from several professional 

organizations.  

Table 1  Classification of recommendations as based on the level of evidence 

Level of Evidence 

Level A: 

Multiple randomized-controlled trials or meta-analysis of multiple large populations 

Level B:  

Single randomized or non-randomized studies of limited populations 

Level C:  

Consensus of experts’ opinions, case reports. very limited populations 

Classes of Recommendation 

Class I: 

Benefit is MUCH > risk. SHOULD perform intervention 

Class IIa:  

Benefit > risk. REASONABLE to perform intervention 

Class IIb: 

Benefit ≥ risk. May CONSIDER intervention 

Class III: 

No benefit/ harmful. Should NOT perform intervention 
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 As outlined in the table, the level of evidence assessment for each 

recommendation is not indicative of the rigor of the scientific evidence supporting it.  

The highest level (Level A) is data from multiple randomized, controlled 

studies, which offer the optimal opportunity to evaluate the causative effect of factors 

contributing to the disease process. However, such studies are often impractical, high-

risk or unethical to conduct. Therefore, much reliance has been given to lower-level 

evidence (Level C) or Consensus of Expert Opinion, which is essentially the common 

conclusion of personal experiences and viewpoints of such senior figures. It is 

estimated that only 11% of these recommendations are based on evidence from the 

“gold standard” (Sullivan 2011, Bothwell 2016) of controlled randomized trials. 

Reasons for this are multiple and include ethical considerations, difficulties in 

recruiting subjects, funding issues and disappointing results from some trials—at a 

considerable cost. 

In assessing the results from all such clinical trials, the standard methodology 

for statistical analysis is always employed. Assumed distribution with measures of 

central tendency, deviation, mean, median and p values provide the bedrock 

foundation for examining and interpreting all scientific evidence. As expected, case 

reports and anecdotal evidence (“expert opinion”) do not lend themselves to such 

mathematical analysis. Yet, such unquantifiable, low-level evidence still provides the 

‘foundation’ for high-level recommendations that have a significant impact on 

patient’s lives and welfare. 

2.2.2 Inadequate Adoption of Guidelines 

Despite their important role in improving survival and quality of life for 

patients, clinical practice guidelines remain under-utilized (Cabana 1999, Pronovost 
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2003) by the healthcare community, but may be over-utilized by the regulatory 

agencies and healthcare payers, such as insurance companies. 

A balanced, rational approach to understanding and implementing these 

guidelines remains elusive. Several factors contribute to the under-utilizations of 

clinical practice guidelines: 

Awareness: 

The majority of practitioners are struggling to keep abreast (Balk 1997, Cruse 

2002, Holland-Barkis 2006) of the recent results from scientific studies and the 

subsequent recommendations through conferences and journals; especially research 

emerges from a different discipline or specialty. 

Applicability: 

Since current practice guidelines are developed to address the most common 

(therefore most studied), most risky or most famous conditions, their application to 

(Mansfield 1995, Olesen 1997) less frequently encountered or rare conditions is less 

than optimal.  

Relevance: 

Most scientific studies emerge from industrialized countries in Europe, North 

America and Asia. Though well-designed, rigorously executed and analyzed, 

practitioners in other parts of the world may consider the results not relevant (Klein 

2002, Ahmed 2003) or inapplicable to their own population.  

Reproducibility: 

A recent article in Nature (Baker 2016) reports that researchers have not been 

able to duplicate the published results of over 70% of scientific studies, including the 
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original researchers in many cases. This lack of reproducibility casts a shadow of 

doubt over the results of such studies as the basis of clinical decision-making.  

Precision: 

Clinical guidelines are often based on intermediate and low-level scientific 

evidence, derived largely from small-sized studies and even anecdotal evidence. Thus, 

they do not have the statistical power to make well-supported recommendations. 

(Alston 1997, Hutchinson 1996, Sherif 2016)  

Credibility: 

Since many of the guidelines are based on expert opinion, there is an inherent 

suspicion among practitioners that these are not necessarily scientifically valid or that 

they are even outdated. (Steinberg 2011, Rosenfeld 2013, Sherif 2016). This continues 

to be a major barrier to developing and adopting guidelines. 

Trust: 

Guidelines are developed by small groups of ‘experts’, with little or no input 

from other stakeholders, such as allied medical personnel or patients. This disconnect 

between these experts as professional regulators (Salem-Schatz 1997, Christianson 

2005, Tiler 2008) and actual users results in a mistrust of recommendations seen as 

“top-down”. Importantly, the increasing influence of non-medical administrators 

drafting institutional or national guidelines has led to increasing resentment from 

practitioners who consider these administrators to be “telling professionals how to do 

their job”.  

Adaptability: 

Based on their unique knowledge, medical professionals have always 

developed their own self-regulatory mechanisms. (Weiss 1982, Light 1986, Cutler 
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2009, Sherif 2016) Hence, they are usually averse to regulations perceived to force 

them to practice “standardized” or “cookbook medicine”. This is especially relevant in 

the current era of “industrialized or corporate medicine. 

Liability: 

Existing guidelines are seen as the “gold standard” for practice, and any 

perceived deviation from these recommendations is considered malpractice. 

Therefore, many practitioners are shifting their decisions (Kessler 1996, Studdert 

2005, Banja 2010, Sherif 2014, Bishop 2010) towards adhering to the letter of the 

recommendations at all costs. 

These barriers to adoption are due to the paucity of a rational, common sense, 

easily understandable and adaptable set of clinical practice guidelines. A discussion of 

the characteristics (Nathan 1998, Seligman 1996, Grol 2003, Pronovost 2009, 

Lugtenberg 2009) of such guidelines follows. 

2.3 The Ideal Practice Guidelines 

By definition, clinical practice guidelines serve a dual role: 

On one hand, they function as triage models, aiding the clinician in 

establishing a quick and accurate diagnosis of the condition or the problem at hand, as 

well as the level of severity and/or urgency associated with it, based on the predicted 

risk of this specific condition at this specific juncture in the course of the natural 

history of the disease. 

On the other hand, they are meant to be powerful decision support systems, 

providing the rationale, scientific foundation and predictive property to the course of 

action decided upon, whether diagnostic or therapeutic. The body of evidence and 

supporting the guidelines should help the clinician choose the decision most likely to 
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beneficially impact the natural history of the disease for this specific patient at this 

specific time, given the other factors influencing this natural history. 

As such, an ideal set of practice guidelines should be: 

1. Relevant: Guidelines should aim (Davis 1997, Lohr 1992, Laine 2011) 

to address the most common, most serious or most significant 

complication(s) of a specific disease process or a group of diseases 

sharing common pathophysiologic or clinical features. 

2. Encompassing: Guidelines should provide recommendations for all 

possible effects or complications of a disease process or a treatment 

modality. (Hutchinson 2003, Burgers 2003) This offers an opportunity 

for the utilization of the increasingly large volume of data. 

3. Reproducible: Recommendations should be expected to have the same 

result when applied to the disease process with a fairly high degree of 

consistency. (Grimshaw 1993, Grimshaw 1995, Grilli 2000)  

4. Individualized: Diagnostic and therapeutic modalities must have a 

tailored approach (Marshall 2000, Eddy 2011, Reach 2014) to 

accommodate for the high degree variations in phenotypes, biology and 

quality of life. 

5. Engaging: The welcome trend of empowering patients (Toman 2001, 

van de Chiaramonte 2008, van de Bovenkamp 2009) in shared 

decision-making as the central members of the healthcare team requires 

that different but complementary versions of guidelines for different 

“users”, e.g., patients, caregivers, nurses, etc.  

6. Easily applicable: Guidelines are meant to be applied to the largest 

patient population possible. They must be formulated in clear language, 

using clear objectives, with clearly defined intervention criteria. 

(Terenziani 2004, Abidi 2006, Pérez 2010)  

7. Expandable and adaptable: As the body of scientific literature rapidly 

expands, (Shekelle 2001, Boxwala 2001, Rosenfeld 2013) thanks to the 

increasing communication and collaboration between different 

scientific disciplines, guidelines must be designed to accommodate new 

data. 

8. Logic-based (common-sense guidelines): Medical practice in general is 

a complex environment. Surgery, and particularly cardiovascular 
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surgery, deals with complex, high-risk, life-changing situations. Thus, 

guidelines should incorporate not only the clinical data but also 

personal, legal, financial and ethical considerations. (Dans 1994, Wang 

2002, O’Connor 2005, Sherif 2016).  

9. Incorporating predictive properties: The complex, dynamic, changing 

clinical environment offers a highly non-uniform and highly “unstable” 

data set that responds to factors, such as growth, physical activity 

lifestyle choice, pregnancy, etc. (Burgers 2004, Porter 2010) Therefore, 

guidelines should support decisions based on data sets predicted to 

happen in the future (e.g., career change or pregnancy). 

10. Probabilistic: Instead of a ‘snapshot’ approach to data analysis, 

guidelines should adopt a dynamic approach based on addressing the 

clinical conditions most likely to be high risk, high impact or resource-

intensive. (Borum 1996, Sherif 2009, Sherif 2015, Mitchell 2008, Peleg 

2013)  

11. Systems approach: Modern healthcare is shifting from the single 

practitioner model to multi-disciplinary teams, especially in high-risk 

areas. (Cretin 2001, Terenziani 2004, Brouwers 2010) Therefore, 

guidelines should incorporate recommendations from other disciplines 

involved in the management plan. 

A report by the Institute of Medicine in 2011 lists over 3700 clinical practice 

guidelines in existence in 39 countries.  At the same time, the number and cost of 

medical errors (Brennan 2000) have continued to rise, being responsible for an 

estimated 94,000 to 143,000 preventable deaths and over 1,000,000 injuries each year. 

Clearly, what is needed is not more regulations but rather more precise and effective 

regulations. One of the most formidable challenges towards this goal is the sheer 

volume of scientific evidence since the first guidelines were introduced over 25 years 

ago. However, this also offers a great opportunity to base modern guidelines on a 

robust, wide-ranging and constantly updated volume of data. The rapid growth and 

widespread implementation of bioinformatics and artificial intelligence tools holds 
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great promise towards more dynamic, better structured, more precise clinical practice 

guidelines.  

2.4 Approaches to Data Analysis 

Statistical analyses of clinical or healthcare data face several challenges: Errors 

in measurement decrease their precision (Soley-Bori 2013, Denaxa 2015), especially 

in smaller-sized populations. The correlation between the variable and its predictor 

significance is very important, thus making using too many predictor variable 

correlations undesirable. In addition, most statistical analytical approaches assume a 

normal or quasi-normal distribution. Standard approaches work best with a smaller 

number of variables, particularly those that are discrete or categorical in nature. This 

limits their efficacy in incorporating continuous variables or borderline states. 

Overfitting (Rizzo 2014, Hawkins 2004) the model by including too many variables 

can lead to imprecise measurements. In addition, current analyses are based on static 

past observations, limiting their predictive power.  

2.5 Developing Improved Guidelines 

Clinical practice guidelines are evidence-based recommendations in support of 

clinicians’ decisions and actions towards the foundational goal of healthcare of 

improving survival and quality of life through safe, effective, reliable, appropriate care 

with the optimal utilization of resources. This holistic, altruistic principle remains the 

bedrock of healthcare at all times, regardless of the methodology or tools implemented 

in its practice. 

Guidelines also aim to reduce errors and unjustifiable practices. In processing 

the relevant body of scientific data, the goal should always be to utilize analytical data 
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approaches that have (ideally) zero or negligible margin of error, to further promote 

the safety, reliability and usability of their recommendations. 

Thus, the ideal set of guidelines (Woolf 2000, Miller 2000, Séroussi 2004, 

Grando 2011, Peleg 2013) must be goal-oriented, i.e., its objective must be to meet the 

goals of care defined by the specific patient or population, not just addressing an 

isolated factor in the clinical situation. It also should be process-based; i.e., based on a 

comprehensive understanding on the multiple factors involved in the causation and 

progression of disease and not focused on one or a few parameters.  

Guidelines must support precision medicine, i.e., patient-specific, disease-

specific, disease phase-specific assessments. This is through offering a dynamic, time-

dependent assessment of the risks and benefits of interventions relative to specific 

points along the patient’s lifetime and/or the course of the disease.  

In order to increase their acceptance and compliance by practitioners, 

guidelines should strive to mimic the reasoning and decision methodology (Hunt 

1998, Sherif 2006, Lugtenberg 2009, Taylor 2013) relatable to and understandable by 

clinicians and patients; as opposed to mechanistic processing of data (Brooks 2017).  

The introduction of computer-based analytical and modeling tools (Grando 

2010, Latoszek-Berendsen 2010, Papagregoriou 2012, Peleg 2013), including artificial 

intelligence tools, in the generation and interpretation of clinical practice guidelines 

utilizing electronic health records (EHR), holds promise for incorporating the ever-

growing volume of data from different disciplines. These approaches, however, must 

adhere to these established principles that govern practice at all times and maintain the 

privacy and anonymity of patients’ confidential information. 
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2.6 Summary 

Clinical practice guidelines remain instrumental in promoting professionalism 

and ensuring high value in healthcare by providing rigorous analysis of the available 

scientific evidence relevant to and impacting diseases and interventions with the goal 

of promoting the cornerstones of quality in healthcare: safe, appropriate, reliable, 

reproducible and affordable care through patient-specific, disease-specific, time-

dependent interventions towards the goal of improving survival, preventing disability 

and improving quality of care. The utilization of advanced tools for data analysis is 

promising for the possibility to utilize the vast volumes of available healthcare data, 

while adhering to the fundamental principles of quality and professionalism in the 

practice of medicine. 
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BASIC MEDICAL DECISION-MAKING 

3.1 Quality in Healthcare 

Since ancient cultures, physicians were held in high regard because of their 

beneficence and altruism (Beauchamp 2007) in offering treatment towards preventing 

harm and promoting the benefit of mankind.  

This deep-rooted concern for the safety and well-being of patients is at the very 

foundation of the practice of medicine (Miles 2005) and constitutes its core mission: 

To reduce harm, pain and disability, to improve survival and the quality of life.  The 

ancient and modern versions of the Hippocratic Oath both stipulate: “…for the benefit 

of the sick according to my ability and judgment; I will keep them from harm and 

injustice”. 

Quality of healthcare (Kimberly 2000, Harteloh 2003, Porter 2010) can be 

simply defined as “what matters for patients and is a common interest for all 

stakeholders in the healthcare system”. As such, it is the nominator in the value 

equation, with the denominator being the cost of healthcare and its delivery. Since 

healthcare is primarily concerned with improving survival and quality of life, the 

principles of high-quality healthcare include: 

 Safety: This is the most important criterion (AHRQ 2007, Mitchell 

2008) The “first principle” is “do no harm” or “primum non 

nocere”.  

 Reliability: Healthcare interventions must have a high degree of 

reproducibility, which makes their effects reliable. (Cheng Lim 

Chapter 3 
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2000, AHRQ 2002) In other words, they must have a high 

probability of producing the same effect every time. 

 Appropriateness: Healthcare interventions must be the best suited 

for the specific disease in a specific patient. (Joint Commission 

1990 and 1997, Runciman 2012)   

 Timeliness: (AHRQ 2002, Elixhauser 2005) Medical interventions 

should be dynamic, reacting in real time and evolving with the 

disease process. 

 Outcomes: The central criterion of quality in healthcare (AHRQ 

2002, Elixhauser 2005, Batalden 2007) improved survival, 

improved quality of life and freedom from disability and support.   

3.2 Wisdom in Data Analysis 

All actions and decisions are based on information (i.e., data) relevant to the 

specific situation or problem to be addressed (Rowley 2007, Frické 2009, Jifa 2014). 

The following principles from information engineering illustrate the hierarchy of 

levels of data analysis: 
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Figure 3  The hierarchy of information processing levels  

Raw Data: This simply the identification of various data points observed or 

measured in the specified environment (Ackoff 1989, Rowley 2007). One example is 

the identification of the individual chess pieces and their positions on the chess board. 

Though vast in volume, (Schaller 1997) it is impossible to reach any meaningful 

conclusion from this disorganized data. 

Information: The classification and categorization of the data points into data 

sets (Rowley 2006, Rowley 2009, Aven 2013). This requires describing logical or 

mathematical relationships between two or more data points. Such as grouping of the 

chess pieces in related categories: Pawns, Rooks, Bishops, etc. Grouping data points in 

categories is the first step towards identifying associative relationships.  

Knowledge: Associative, influence and perhaps causative relationship between 

small data sets, and their hierarchy can be recognized here as direct or multi-linear 

relationships. In the chess example, we know that the pawns have the lowest level of 
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influence, and the Queen has the highest level of influence. Other pieces’ influence on 

the chess board activities falls in between these two limits. 

 Rife with simplistic assumptions, this is the lowest level of scientific evidence 

and the domain for rule-based decision-making (Bellinger 2004, Rowley 2006, 

Rowley 2009, Bernstein 2011). Interestingly, several clinical practice guidelines are 

still based on such one-dimensional rules.  

Intelligence: By examining the relationships between data in multiple 

dimensions, sequential cause-and-effect relationship patterns emerge among moderate 

size data sets (Hey 2004, Rowley 2009, Bernstein 2011, Aven 2013) and in networks. 

In the chess example, moving the Knight in a certain direction to a specific location on 

the chess boards creates a specific benefit for the player and risk for the opponent. 

Thus, each event (piece movement or activity) is a ‘critical event’; with its own 

specific impact on the course of the chess game as a whole. 

Since they rely on higher-order mathematical analysis of the relationships 

between different data sets, the level of scientific evidence is higher and more reliable. 

This is where clinical pathways and management algorithms are developed and, with a 

vision for automated medical practice—since such well-structured flowcharts are 

better suited for computer-based decision-making (Bergmann 2002, Jankowski 2008, 

Bernstam 2010), hence the term “artificial intelligence”.  

Wisdom or Higher Intelligence: Often described as an area of philosophy, this 

may be better termed “strategic planning”. This is where chess masters excel: 

coordinating multiple combinations and variations of individual pathways towards 

formulating a successful strategy for winning the game.  
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Making a “wise” decision (Towle 1999, Bornstein 2001, Rothman 2017) 

requires the ability to formulate the optimal realistic, fact-based pathway to reach the 

desired goal in the safest way, with the best utilization of resources. Examples of this 

approach include the decision to implant a ventricular assist device in a moderately 

sick patient, whether to replace the ascending aorta in cases of Turner syndrome, and 

other controversial situations. 

This hierarchy of knowledge or hierarchy of information serves as a basic 

platform for processing or “making sense of” observational and measured data. In 

business, this is referred to as “operationability”, or the ability to produce beneficial 

results (Melé 2010) according to planned goals, in the environment (system, organism 

or organization) based on the optimal utilization of data and pathways. 

The key principle thus becomes the definition of the goal towards which the 

structure for data analysis should be directed. This can take the form of a research 

question, a hypothesis or a specific outcome. In all these cases, this goal must be the 

primary drive for the analytic methodology. In other words, the goal should always be: 

”How does evidence (data) support the answer to this specific research/clinical 

question?”.  

Reliance on standard statistical approaches has its shortcomings, resulting from 

general, unguided statistical data-driven analysis. Two papers (Austin et al 2006, 

Austin et al 2008) demonstrate the dubious yet statistically supported conclusion that 

the zodiac sign does indeed influence patients’ risk for congestive heart failure or 

pelvic fracture. 

A recently introduced approach is the “bottom-up”, which relies on identifying 

patterns (obvious or hidden) in raw data and using these results as the foundations for 
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decisions. This approach is often based on neural networks, which rely on assumed 

simplistic universal connections (“edges”) between data entities (“nodes”). Though 

this can be useful in large volumes of data, it is based on statistical generalizations or 

“universal statements”, with the basic understanding of “inference” that these data 

points are “true”. 

The random data associations between large numbers of nodes along numerous 

edges in neural network models (Hayes 2015, Nguyen et al 2015) sometimes produce 

unrealistic results (Google DeepDream project 2017) of non-existing patterns in 

images of hillsides or cloud formations. Basing healthcare interventions on such 

results of data analysis in a clinical environment can be catastrophic to patients’ 

outcomes. 

This highlights the difference between astrology and astronomy as two 

different approaches to data analysis. Both rely on the same data set of the positions 

and trajectory of heavenly bodies. In astrology, assumed relationships between stars 

have produced entire non-existent universes of gods and other creatures. This is a 

poorly structured, non-goal-driven approach that relies on unfounded assumptions 

about data truth, validity and association. In contrast, an intricate device known as the 

Antikythera Mechanism, (Freeth et al 2006) was constructed 2000 years ago using a 

complex set of gears to calculate the position of stars and other heavenly bodies for the 

purpose of safe and precise navigation. This methodology uses a scientific, purpose-

driven approach to properly organize data according to realistic, fact-supported 

assumptions 

The result of these two methodologies to analyze the same data set could not 

be more different or more significantly impactful on peoples’ lives and safety. Those 
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who follow recommendations from the astrologers or the daily horoscopes would 

almost certainly get lost during their journey, if they ever decide to take it in the first 

place. Meanwhile, those relying on sound, scientific, purpose-driven navigation tools 

would be more assured of reaching their destination safely. 

Paraphrasing the words of Popper (1963): starting with pure observation in 

nature alone without any theory is absurd. In less strong words, however, 

simplistically relying on raw data alone without having a logical structure is not sound 

and can actually be misleading or even harmful. 

The more realistic approach is to start by identifying the problem that needs to 

be solved and the goal of our solution, or the desired outcome. This will guide the 

optimal, most efficient methodology to analyze and utilize the data at hand to reach 

that goal. Insights from Game Theory are invaluable in producing the optimal “yield” 

or “reward” in this regard. In other words, these insights should provide a plan to best 

play the hand that one is dealt in order to win the card game or formulating the most 

successful strategy to reach this goal with the most efficient utilization of resources, 

which is defined as resource management. 

3.3 Wisdom in Healthcare Decisions 

“It is much more important to know what sort of a patient has a disease than 

what sort of a disease a patient has.” --Sir William Osler. 

This quote summarizes the essence of healthcare: How to best address the 

impact of the disease or injury on that specific patient being examined. The nursing 

profession has recognized this foundational principle (McKie 2012), since the 1960s, 

describing the underpinning of the nursing theory: 
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Scientific knowledge (or episteme) is coupled with a thorough understanding 

of current technology (techne) and guided by ethics (phronesis) to form a basic 

framework of caring (sophia). Interestingly, “sophia” is traditionally translated as 

“wisdom”. 

The definition of wisdom according to Matney et al (2011) can thus be 

modified to describe wise healthcare decision-making as the “application of 

information through technology; mediated and guided by ethics and values, toward the 

common good (goal) for the entire healthcare team, centered around the patient”.   

In this context, the Berlin Wisdom Paradigm, developed around 1993 (Baltes 

& Staudinger, 1993; Smith, Dixon & Baltes 1989; Baltes & Staudinger 2000) offers 

insight into the application of wisdom in processes that require “judgment”, typically 

involving complex and/or high-risk environments.  

The Berlin Wisdom Paradigm describes a methodology to integrate 

information (or data) organized in different “themes”, as a framework for optimal 

utilization of any set of data, guided by ethics and person or patient-specific interests, 

values and goals. 

According to this model, a huge volume of population data can be “filtered” or 

adapted according to the specific problem addressed at the time, for which an 

effective, realistic solution is being sought. This application of data derived from a 

large data set is guided by the specific criteria for quality which govern the safety, 

appropriateness, reliability, and cost-effectiveness of the possible diagnostic and/or 

therapeutic interventions).   

These influences are then processed and organized to formulate a planned 

action, which then requires an “action management plan” (McKenna 2005), which is 
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then appropriately implemented. The results of this implementation are then reviewed, 

providing feedback towards adjustments and corrections of the entire process. 

Thus, the role of wisdom reflects the important principle of “multum, non 

multa” or “Much, Not Many” (Wright 1979). The sheer volume of data in itself 

creates a dilemma as to how to “make sense” of it all.  The great Einstein reminds us 

that “information is not knowledge”, and Dr. Osler also details how information (or 

data) is but bits and pieces of “building blocks”, if you will, that bear no resemblance 

to the end result, much like how wheat resembles bread.  Full knowledge of all the 

available parts (data sets) still requires a sound, process-based and goal-directed 

methodology to process it, in order to reach a meaningful, effective and safe outcome 

in clinical practice. 

3.4 Summary 

The emerging principle of patient-empowered, patient-centered decision-

making emphasizes collecting every bit of information (i.e., data) about the patient, 

their family, their support system, their values and their wishes as the central 

stakeholder (Lindman 2014) in making decisions about interventions that have a 

significant impact on his/her longevity and quality of life. In this context, the role of 

the clinician in identifying and correlating these data points is paramount in advising 

the patient about the best decision regarding the plan of management that will lead to 

the highest benefit as defined or desired by the patient. This approach in wise 

decision-making integrates scientific knowledge, empathy and ethics towards 

improving the quality of care offered to the patient. In contrast, reliance on 

mechanistic data analysis has the risk of producing unrealistic or unrelated results, 
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which can have a harmful impact on the patient, against the foundational principles of 

healthcare practice. 
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THE CORBIN-STRAUSS DISEASE TRAJECTORY MODEL 

4.1 Background 

Since its decisions and outcomes have a significant impact on patients’ 

survival and quality of life, the practice of medicine has traditionally been closely 

intertwined with the supernatural, since effecting a positive change by reversing the 

effects of disease or injury was regarded as a “miracle”. In ancient civilizations, 

physicians were also priests of the gods, and sometimes seen as gods themselves 

(Sherif 2014). Their decisions were unchallenged, with no accountability for adverse 

outcomes. In the Middle Ages, European medical practitioners were almost 

exclusively members of the clergy.  Hence, medical practitioners remained above 

reproach and immune from accountability (Digby 1994). 

The improved education in medical schools, with well-structured didactic and 

clinical teaching and training, and exams for competency, reinvented the practice of 

medicine as a profession rooted in the scientific method (Pelling 1997, Raach 1944). 

The Age of Enlightenment further asserted this basis for a safe and effective practice 

and saw the emergence of professional organizations (guilds, societies and colleges). 

Such organizations took on the responsibility of:  

1. protecting the public through ensuring that only qualified professionals 

were allowed to practice medicine,  

2. developing scientifically-based practice guidelines to improve 

outcomes,  

Chapter 4 
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3. ensuring accountability for adverse outcomes resulting from 

inappropriate or unsafe decisions and practices, and, most recently,  

4. improving resource utilization and promoting affordable, accessible, 

equitable and cost-effective healthcare delivery.  These goals have 

come to form the foundation of quality healthcare. 

4.2 Importance of Guidelines 

The ultimate objectives of clinical practice guidelines as decision-support tools 

remain promoting the safety, health and welfare of the populace, as well as protecting 

the public from the decisions and practices of the unqualified and incompetent. These 

guidelines also provide a quantitative, scientific foundation for the timing, indication 

and expected outcomes of diagnostic and therapeutic interventions.  

A more relevant definition to the current discussion of the goals of clinical 

practice guidelines is to halt the course of the disease (i.e., “cure”) or slow its 

progression, thus improving survival, quality of life, independence and freedom from 

intervention (Porter 2010). This expectation of outcomes is fundamental for safe, 

effective, equitable and affordable utilization of diagnostic and therapeutic resources 

to address the disease process. In other words, having a more quantifiable expectation 

of outcomes is essential for providing a higher quality healthcare (Buck 1992). 

The implementation of statistical methodologies for predictive modeling by 

Health Maintenance Organizations (HMOs), insurance companies and healthcare 

regulators has been well established, albeit for a different goal, namely, reducing cost 

of healthcare delivery, based on the mortality and morbidity risk of each patient. In 

many cases, this has caused a shift of healthcare delivery away from chronic (“pre-

existing”) conditions and towards preventive and palliative measures (Wagner 2000, 

Nolte 2008). 
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Recently, such practices have migrated into the clinical decision-making realm, 

where clinicians’ decisions have been influenced by reimbursement or financially 

punitive measures from healthcare regulatory agencies and insurance companies, in 

some instances replacing or conflicting with evidence-based guidelines. The recent 

experience in cardiothoracic surgical critical care practice with the so-called “sugar 

window” (Fullerton 2014) provides a clear example, where one arbitrary measure was 

selected as the basis for regulating clinical decision-making (including financial 

penalty for the entire hospital) across the widely variable spectrum of individual 

patients undergoing cardiovascular surgical procedures.  

4.3 Disease Trajectory and the Corbin-Strauss Model 

Since the 1970s, Strauss and others observed the changes in functional status 

and need of support in patients with chronic illness as they approach the terminal 

phase or their disease, as a means to guide the strategies that must be developed by 

them, their families, their caregivers and healthcare professionals to manage these 

situations.  

The term “trajectory” was introduced in a 1975 book (Glaser & Strauss 1975) 

to describe the course of an illness over time. This book also introduced the 

fundamental principle that the course (and effects) of a disease process can be 

addressed and changed by proper management, which is the essence of medical 

practice and the goal of practice guidelines. A disease course can be extended at its 

current level and kept stable, its symptoms maintained under control or even reversed 

through application of proper diagnostic and therapeutic measures. 

Building on this principle and an extensive review of nursing literature, Corbin 

and Strauss introduced a nursing model (Corbin & Strauss 1991) for management of 
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chronic illness based on the trajectory framework.  This model of medical practice, 

which is no longer limited to nursing, aims to provide a framework for developing 

management strategies for controlling the symptoms and optimizing adaptation to the 

decreased functional status (disability) incurred by the disease (e.g., as a result of a 

stroke) or to the impact of the psychological and societal changes that affect the 

patients and their families (e.g., advanced malignancy, frailty or congestive heart 

failure). To these goals can be added the often ambitious goal of completely reversing 

the course of the disease and returning the patient’s functional status to the “normal 

baseline”, thereby providing a “cure”. 

However, the objectives of this “theoretical” framework (Corbin 1998) are as 

follows: 

 Providing insight and improving the understanding of the 

mechanistic aspects of disease progression and its impact on 

survival, functional status and psychological well-being.  

 Providing a framework to help organize and apply the extensive 

and rapidly growing body of scientific evidence relevant to that 

specific disease. 

 Improving the understanding of the “hardiness” or “resilience” of 

the organ, system or patient affected by the disease, as in being able 

to adapt to and recover (partially or completely) from significant 

events in the course of the disease. 

 Provide direction and guidance to develop best practice models 

(i.e., Clinical Practice Guidelines) for healthcare professionals in all 

tiers and classes, medical and biomedical researchers, healthcare 

regulators and policymakers.  

The trajectory framework has been further detailed by Corbin and others 

(Corbin & Strauss 1991) as not only describing the course of the disease over time, but 

also the actions taken by various participants (including the patient and their decision 
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maker) to impact, shape or control this course. To help achieve this goal, the disease 

trajectory is broken down into several phases, each of which is associated with 

specific characteristics based on causative or associated factors or events. 

Different diseases demonstrate different trajectories. Advanced malignancy has 

a fairly stable course with rapid deterioration in functional status until death within a 

year. 

 

 

Figure 4  The Corbin-Strauss disease trajectory in advanced malignancy 

Frailty secondary to malnutrition, for example, has a trajectory of progressive 

decline at a relatively steady pace, as in the following diagram (Figure 5).  
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Figure 5  The Corbin-Strauss disease trajectory in frailty 

Conversely, advanced organ failure, such as congestive heart failure, exhibits a 

trajectory of gradual decline in functional status but punctuated by episodes of periods 

of instability, decompensation or crisis, marked by partial recovery towards the 

original trajectory line. As organ failure progresses, the level of recovery from each 

episode of decompensation is lower than the previous one, until a limit is reached 

when recovery is no longer possible and functional status continues to deteriorate until 

death. The following diagram (Figure 6) illustrates this characteristic course: 
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Figure 6  The Corbin-Strauss disease trajectory in advanced organ failure 

Trajectories of other chronic conditions usually exhibit a steady trend towards 

worsening of survival or functional status over time, progressing at different rates 

(“slopes” of the curve) depending on the specific condition, and reaching recovery in 

response to intervention.  

Each of the various stages in the Corbin-Strauss trajectory indicates a specific 

phase in the disease process, which is usually the result of a pathophysiologic set-up, a 

clinical event, a diagnostic or therapeutic intervention or other life events. As such, the 

specific goal of management at each phase is different from other phases in the course 

of the disease, depending on the precipitating causes for the change in course, the 

underlying mechanisms responsible for these events and—importantly—the 

expectations for survival, functional status and quality of life relevant to this particular 
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phase as well as the anticipated effect on the subsequent phases in the trajectory and 

the objective of medical management at each phase: 

Table 2 Different phases in the disease trajectory 

Disease Phase Characteristics Objective  

Baseline Stable function Prevent onset of disease 

Onset Initial symptoms or 

signs 

Prevent loss of function 

Unstable Limited functional 

status 

Return to baseline status 

Recovery Gradual return to 

baseline status 

Support functional status 

Crisis Rapid deterioration 

of function 

Remove threats to life 

Sustain essential function 

Downward slide Difficulty 

controlling 

symptoms 

Adapt to increasing disability 

End-stage Irreversible 

shutdown of 

function 

Comfort, dignity 

 

Calcific aortic stenosis (Figure 7) demonstrates a nearly stable course 

(Horskotte 1988) until the onset of symptoms, at which point the trajectory changes to 

a rapid decline, with death in 2-3 years if untreated.  
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Figure  

Figure 7  Trajectory of aortic stenosis 
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Abrupt, sudden catastrophic changes have been observed in the course of chronic 

diseases such as coronary artery disease (acute coronary thrombosis precipitating 

massive myocardial infarction causing cardiogenic shock) or Marfan syndrome (aortic 

dissection or rupture after a period of progressive aneurysmal dilatation). In such 

situations where the trajectory phases change unexpectedly and dramatically, the value 

of having an established trajectory projection and management plan becomes 

paramount in dealing with the new phase. 

4.4 Systems Approach 

A disease is considered to be an abnormal performance of a specific biologic 

system.  In other words, it is a disruptive event that causes a decrease in the functional 

status/performance of the system, which—if unaddressed—leads to failure of the 

system. The “system” can be defined at the molecular, genetic, cellular, tissue, organ 

system or entire organism levels. Pslek (2001) defines a system as a “set of interacting 

parts to achieve a common goal”.  

In its 2010 recommendations for addressing “sentinel events” or medical 

errors, the Joint Commission (2010) provided the definition of root cause analysis as a 

“process for identifying the basic or causal factors that underlie variation in 

performance”. This framework for investigating errors is designed to “assist 

organizations in improving processes and systems to prevent injuries from occurring”.  

This definition is precisely the objective of clinical practice guidelines: to prevent 

harm and injury and disability and to improve the quality of life. 
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4.5 Process Line and Trajectory 

A process is defined as a “series of actions, changes or functions bringing 

about a result”, or “a series of operations performed in the making or treatment of a 

product”. Hence, a process map is simply a graphical representation of how a given 

work flow happens or the order in which things occur. Therefore, a process line 

describes the sequence of events in any given process, from manufacturing to system 

performance to disease progression. The basic steps in defining a process line are: 

defining the boundaries (baseline conditions, onset, course and outcome); listing the 

steps in the process; listing the sequence of steps; then plotting the entire pathway or 

line. 

This process line is punctuated by various points describing the time of 

occurrence and effect of events involved in the process (Eden 1992, Kenett 2014). 

This is the basis for establishing a graphical model of events that occur along the 

process timeline and their effect on the course and its direction.  

Thus, a process line or trajectory (Figure 8) describes a linear system model, 

with blocks representing the essential steps and sequential arrows describing the 

direction of the process line towards its goal or result. The most important information 

from such diagrams is that each step or event is the result of one or more factors that 

cause it to happen, and it in turn sets the stage for the next event to occur when the 

appropriate input is introduced at the appropriate time. This sequence repeats, 

changing the system compartments as sequential inputs are applied. The final state of 

the system component is the planned or desired end-result. The following diagram 

(Graves et al 2010) illustrates the basic steps in medication administration. 
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Figure 8  Basic process line. Modified from Graves et al (2010). Used with 

permission. 

Understanding the sequence of events in any process and their relative position 

on the process trajectory is fundamental to the understanding of the performance of 

this particular system and any “error” or “failure” that adversely affects system 

performance. Errors and failures are events marked by a change in system 

performance and heralded by a shift of the process trajectory towards an unexpected, 

unintended and undesirable direction. Failure mode analysis has been well established 

in the science of safety and accident analysis (Stamatis 2003, Vincent 2004). Its main 

purpose is to provide a clear, evidence-based explanation for why the “error” occurred 

(the specific factor causing the event responsible for the trajectory shift), how it 

occurred (the point where the process trajectory has shifted) and to identify actions 

that must be put in place to ensure that it does not occur again. (Hambleton 2005, 

Graves et al 2010). 

Since diseases and injuries are adverse events occurring along the course of a 

the lifetime of a person, group or population, such events have a significant impact on 
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the performance of the person, group or population (i.e., the health of such system) 

Each disease or injury has its own disease trajectory (the Corbin-Strauss trajectory) 

that provides a graphical representation of the sequence of events (and their causative 

factors) responsible for the genesis, progression and outcome of this condition in terms 

of death, disability and the change in the quality of life. This perspective on how 

diseases start and progress (etiology and pathogenesis) and how they affect quality of 

life (natural history, course or trajectory) provides the foundation for developing 

relevant, effective and comprehensive clinical practice guidelines. Understanding the 

origin and causative factors influencing each event in a disease process provides us 

with the foundational information to devise diagnostic tools to (a) predict this 

abnormal performance and its timing and (b) implement therapeutic tools to counter 

the effect of these factors that have caused the deviation from the expected course. 

4.6 Critical Events 

Partly as a result of the standard statistical interpretation of clinical and basic 

science research, clinical practice guidelines are frequently based on simplistic 

assumptions of a linear relationship between the cause and effect. In other words, a 

linear system configuration (DiStefano 2015) with a fixed input-to-output relationship 

is assumed, i.e., input y applied to the system component (compartment) A will result 

in a change in the status of system compartment B. Thus, the status of B is dependent 

on change in the status in A, which is the result of the input y.  
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Figure 9  A 2-compartment linear system with a fixed input-output relationship 

 In this example, the change in the status of A is a critical event that has an 

impact on the definition of the next system compartment (B). Extending this example 

to a linear system with multiple compartments produces the sequential effect on the 

system as a result of a number of factors (inputs), each acting on a specific 

compartment at a specific time, producing a critical event that further acts as the 

subsequent input to the following compartment in the system.  
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Figure 10  The effect of sequential events on the behavior of a multi-compartment 

system 

Critical events in the disease trajectory can be due to a single factor or the 

combined effect of more than one factor. To better illustrate this, the trajectory for 

death due to venous thromboembolism (VTE-PE) is examined. The trajectory for this 

condition describes a progressive course (Nadkarni 2004) starting from the baseline 

condition of obesity.   

 

Functional	Status

Time

100%

50%

Event	4

Event	3

Event	2Event	1

Input	1 Input	2

Input	3
Input	4

t1 t2 t3 t4 t5
t0



 

54 

 

 

Figure 11  The Corbin-Strauss disease trajectory for death due to pulmonary 

embolism 

The limited mobility associated with being obese places the patient at high risk 

for iliofemoral deep vein thrombosis (DVT). These thrombi in the large veins of the 

pelvis and thigh can detach, travel downstream to the pulmonary circulation and thus 

progress to pulmonary embolism. This repeated process causes chronic 

thromboembolic pulmonary hypertension (CTEPH) (McNeil 2007, Pepke-Zaba 2011). 

This, in turn, leads to chronic right ventricular strain because of the progressive 

increase in pulmonary vascular resistance. Untreated, CTEPH causes progressive right 

ventricular failure, which ultimately causes death. Each event can be the result of a 

single input or the combined effect of a number of factors. For instance, venous 

thrombosis is dependent on the presence of the three independent elements (Figure 12) 

of the classic Virchow Triad (Brotman 2004, Dickson 2004) of stasis, endothelial 
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injury and increased blood viscosity all acting in unison. Stasis, on the other hand, is 

dependent on decreased mobility and increased venous pressure. 

 

Figure 12  Genesis of thrombosis according to the Virchow Triad 

Thus, in the Corbin-Strauss trajectory model described above, obesity is the 

precursor for the development of deep venous thrombosis (DVT). The direct 

precipitating factor for DVT, however, is the Virchow triad. In other words, obese 

patients are at a higher risk for developing DVT, but that event does not occur until the 

Virchow triad becomes a direct causative factor for this condition. Therefore, the shift 

in the disease trajectory due to obesity is not as significant as that caused by DVT. 

4.7 Critical Events and the Disease Trajectory  

The Corbin-Strauss trajectory presents a graphical model of the critical events 

in the course of the disease process, which occur as a result of a causative factor (input 
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at a specific point in time. The effect of this input is to shift the line of the trajectory in 

a different direction from the expected outcome towards a different outcome, akin to 

the change in the course of a billiard ball when struck by the cue or another ball. The 

force of impact (i.e., the magnitude of the effect of the input on the stability of the 

system) causes the object (or the process line) to shift at an angle away from the 

expected course towards a new, predicted course with a different outcome. 

 

Figure 13  The shift of the process or disease trajectory as a result of critical events 
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This stimulus or input can be an external factor (e.g., infection, trauma, 

toxicity, drug intake, surgical or other invasive procedure), an internal event (e.g., 

effects of a gene mutation, internal bleeding, rupture of a cyst, hormonal surge, rupture 

of a vulnerable coronary plaque, etc.)  

Each critical event that is precipitated by a specific stimulus also elicits a 

specific measurable effect or effects, such as symptoms, signs, imaging and laboratory 

data. These effects are also proportionate to the magnitude of the input and thus are 

related to its effect on the shift in the trajectory line. This makes it possible to stage the 

severity of the disease process by quantifying the degree of shift from the expected 

(e.g., historical or actuarial) point on the survival curve. A certain value of a specific 

biomarker (e.g., BNP in congestive heart failure) can thus be a staging as well as 

prognostic marker, given its correlation with the degree of severity and the stage of the 

disease.  

In the following diagram (Figure 14), the system function is measured starting 

at the baseline time t0. The system continues to function at a certain level until time 

point t1, when Input 1 is applied (Event 1), thus changing the function level. The new 

level of function continues until another input (Input 2) occurs at time mark t2 (Event 

2). As a result, functional status changes over time to reach a different level at point t3. 

At this point, another input (Input 3) exerts its effect to change the function level in 

another direction over time. Functional status continues in this new direction until time 

mark t4, when the next event (Event 4) is precipitated by Input 4, resulting in another 

change of the trajectory line towards the last measurement at point t5.  
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Figure 14  The effect of input on critical events in the trajectory 

4.8 The Corbin-Strauss Model as the Basis for the Application of Resilience 

Engineering 

The Corbin-Strauss model is a graphical representation of the performance of 

the entire system (in this case, the patient) over time, in the context of and as a result 

of a specific disease process or injury. Thus, the Corbin-Strauss trajectory can be 

considered a graphical representation of the system function Q over time Q(t).  

Because of the inescapable effects of ageing, the absence of disease does not 

mean that the system performance of the human organism would remain at 100% 

throughout the person’s lifetime. Thus, the Corbin-Strauss model for a healthy person 

will still reflect this gentle, gradual downward slope over the course of the person’s 

lifetime. However, the added effects of an injury or disease process will alter this 

slope in various ways, depending on the pathophysiologic processes of the disease as 
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well as the coping and compensatory mechanisms (internal and external) within the 

human body. 

 

Figure 15  Resilience paths of a single infrastructure system. Modified from Attoh-

Okine (2009). Used with permission. 

Similarly, monitoring the function of complex systems (infrastructures, 

utilities, ecologic systems, etc.) demonstrates an almost identical trend. Figure 16 

illustrates the different paths of performance (Quality Index or QI) of a single 

infrastructure system over time. Ideal function (at 100% performance) is represented 

by the horizontal line starting at point a. Realistically, normal function is represented 

by the gently sloping line a-b, reflecting the gradual decrease in function due to the 
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expected normal wear-and-tear occurring over a specific time interval from baseline 

status at time mark (t0) to the end of the time period examined at time mark (t1). The 

dashed line at points c and d represents the lowest level of function (the threshold 

limit) that the system reaches as a result of wear and tear and other factors causing 

degradation of system function.  

Sudden, catastrophic failure is represented by the path a-c, which exhibits a 

much quicker decrease in functional level that reaches the threshold level well before 

the expected end of the time period examined. Another pattern of accelerated decrease 

in function (due to increased wear-and-tear) is represented by segment a-d, which 

illustrates the lower level of function at the end of the time interval examined (t1). 

4.9 Impact of Intervention on the Trajectory 

Prediction of recovery versus failure after initiation of extra-corporeal 

membrane oxygenator in cases of severe respiratory failure remains a significant 

clinical challenge. The causes of acute respiratory failure are numerous and include 

trauma, adult respiratory distress syndrome, viral infection, and pneumonia, as well as 

toxicity. This clinical situation is extremely critical, requiring admission to the 

intensive care unit and aggressive supportive measures. In addition to its significantly 

increased risk for mortality, this also considerably impacts the physical and 

physiological well-being of the patient and their quality of life. In recent years, there 

has been an increase in the use of the extra-corporeal membrane oxygenator (ECMO) 

for support of ventilation and gas exchange until the recovery of native lung function. 

However, prediction of the success of this highly invasive and resource-intensive 

modality remains in need of improvement.  
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Zangrillo et al (2012) and Camboni (2011) reviewed the results of 12 studies 

conducted involving 1763 patients to evaluate 30-day mortality after implementation 

of ECMO.  

A number of scoring systems (PRESERVE score; Schmidt et al 2013, Enger et 

al 2014, Pappalarado 2013) has been developed to help better quantify the risk of 

mortality after the initiation of ECMO as tools to help patient selection and clinical 

decision-making.  

Data variables used in the development of these scoring systems were 

numerous and included historical, demographic and physiologic parameters.  In each 

scoring system, each of these factors chosen was given a certain weight. For instance, 

in the ECMOnet scoring system (Pappalardo 2013), pre-intervention length of stay 

was given a weight between 0.5 and 2, the same range for serum hematocrit, while 

serum creatinine had a range of 0-3.5.  

Data analysis relied on conventional statistical retrospective data analysis 

methodology. Statistical consistency was expressed in the familiar 95% confidence 

interval and 2-tailed p value estimates, in accordance with the assumed normal 

distribution.  

Probabilities of survival were plotted using different methods: The Kaplan-

Meier estimate curve was used to display the results of the ECMO PRESERVE study, 

while the area under the curve was used in the ECMOnet study. 

The results of these predictive models provide varying levels of probability of 

survival, depending on the calculated severity score. The PRESERVE score, for 

instance, describes 14 levels of severity, which correspond to progressively decreasing 
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probability of survival: from 80% or above for a score of 0-2 to around 20% for a 

score >7.  

 

Figure 16 The Corbin-Strauss trajectory for probability of survival after ECMO. 

Modified from: Schmidt et al (2013). Used with permission. 
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Severe respiratory failure not responsive to conventional medical management 

and mechanical ventilation is a life-threatening situation and often even lethal if not 

promptly and effectively treated. The profound systemic metabolic effects due to this 

condition, remain the major contributing factor to the significantly increased risk of 

mortality in such extreme cases. This risk is even more elevated in certain patients 

whose pre-existing chronic conditions and limited or decreased physiologic reserves.  

Therefore, it is often a great challenge to make the decision to implement the 

highly invasive, high-risk, resource-intensive therapeutic modality of ECMO towards 

a prompt, effective and reliable reversal of the disease insult and to allow the recovery 

of function of the lungs. Its inherent high risk for mortality within the early period 

after initiation of support, the high cost and impact on resource allocation and 

utilization all add to this challenge. Yet the most important challenge remains the 

prediction of the probability of the success of this therapy within the early period after 

initiation, since all these risks escalate significantly after the first 2-3 weeks. 

As described above, current efforts to develop a predictive model for 

estimation of the probability of success of ECMO—understandably—continue to 

place the greatest emphasis in reducing morality within the early period after initiation 

of support. These scoring systems have relied on the analysis of the following 

parameters: 
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Parameters of function: These are indicators of the patient’s expected 

functional status at the “baseline” or before the disease insult. Factors such as age, 

body mass index, immunocompromised status, etc. indicate the expected state of 

health before admission to the hospital. These are the same parameters that determine 

the patient’s coordinates on the actuarial survival curve (Fig.), based on the known 

risk factors for mortality without the influence of the disease process. 

These parameters are also the goals of therapy: to return the patient’s 

functional status to or as close as possible to the functional level at which it was before 

the onset of disease. Thus, the parameters serve to measure the success of therapy in 

negating or eliminating the detrimental effects of the disease process. 
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Figure 17  Parameters of function, dysfunction and failure 

a. Parameters of dysfunction or failure: 

These measurements and variables help quantify the magnitude of disturbance 

in the patient’s physiologic balance and the extent and severity of the resulting organ 

and systemic loss or decrease in function.  

For instance, the degree of acute lung injury can be quantified by examining 

the parameters of mechanical ventilation, supplemental oxygen and the need for other 

maneuvers. The degree of systemic malperfusion is estimated using such parameters 

as serum lactate and the total dose of sodium bicarbonate infusion needed for 

resuscitation. 
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Figure 18  Coordinates of function (Point D), dysfunction (Point H) and failure 

(Point F) on the disease trajectory 

Assumptions: 

Time mark of disturbance: t0 

Time mark of dysfunction: t1 

Time mark of recovery: t2 

Time mark of failure: t3 

Time mark of recovery at failure: t4 

Time of deviation from normal: T1 = t1-to (dysfunction), T2 = t3 - t0 (failure) 
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Time of recovery at dysfunction: T3 = t2 - t1        

Time of recovery in failure T4 = t4 – t3 

 

These parameters describe the factors influencing the patient’s coordinates on 

the Corbin-Strauss disease model (Line DHF in Fig.) and their deviation from the 

expected coordinates on the actuarial or historical trajectory (normal or baseline 

status) as discussed above. The farther these coordinates diverge, the more significant 

the level of injury and disruption to the patient’s physiologic balance has been. 

Subsequently, if the Corbin-Strauss coordinates are severely displaced from the 

actuarial coordinates, it becomes easier to predict the degree and aggressiveness of 

ECMO support needed to restore the patient’s functional parameters to their pre-insult 

level or at least close to it. 

The quantifiable level of functional status Q(t) corresponding to each point on 

the disease trajectory reflects the effect of the disease on the patient’s physiologic 

status and reserve. Thus, the observed functional status Q(t)t1 at point of dysfunction 

H represents the smaller effect of disease on the patient’s status and thus probability of 

survival, while functional level Q(t)t3 at point of failure F represents the lowest level 

of function, at which the system has depleted all its energy reserves and probability of 

survival is at its lowest. It follows, then, that the effort and energy required to return 

functional status to the baseline level Q(t)to is easier starting at point H than starting at 

point F, where the detrimental effects of the disease are more advanced. 

The objective of healthcare in general and medical practice in particular is to 

eliminate, mitigate or reduce the effects of disease and injury on the organ-system, 

individual, groups or population. In other words, the goal of all medical interventions 
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(and the recommendations from the clinical practice guidelines) is to implement 

therapeutic modalities as critical events that will change the course of the disease 

towards improved functional status and survival. The timing of these events is of 

paramount importance, given the time needed for recovery. Also important is the cost 

of recovery, in terms of financial considerations, equipment and personnel as opposed 

to the expected yield of this intervention in improving quality of life, functional status 

and survival. 

Therefore, an approach implementing the Corbin-Strauss trajectory model as 

the basis for devising to direct events in the natural history of the disease instead of 

being a response to these events is much more advantageous, as follows: 

Table 3  Comparison between different approaches to planning medical 

interventions 

 

Traditional Approach 

 

Resilience Approach 

Reactive Proactive 

Reflexive Predictive 

Static Dynamic 

Passive Active 

“Snap-shot” Time dependent 

Task oriented Goal oriented 
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4.10 Summary 

The Corbin-Strauss trajectory model provides a graphical representation of the 

change in functional status relative to time in different disease processes. The 

trajectory can be plotted over the entire lifetime of the patient, over the last few years 

of the patient or over a specific period of time; depending on the disease and 

interventions being examined. The course of this trajectory is determined by a series 

of critical events, each occurring as a result of an internal or external input. Due to its 

time-related nature, the Corbin-Strauss trajectory provides a valuable tool to quantify 

the level of functional status, correlating to the probability of survival, at different time 

points along the course of the disease. Comparing the Corbin-Strauss trajectory to the 

trajectory of functional status and/or survival in normal patients offers the foundation 

for quantifying the effort or energy required to implement interventions as inputs to 

shift the trajectory towards the normal or baseline course, thus producing recovery of 

function and/or improved probability of survival. 
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FORMULATION 

Background 

Aortic valve stenosis is the most common valve disease in the world. In this 

condition, the narrowed valve limits the flow of blood from the left ventricle to the 

aorta and the rest of the body. This reduced flow leads to specific symptoms, such as 

chest pain (due to decreased coronary flow), fainting or syncope (due to decreased 

flow to the brain), and progressive decline of heart function (congestive heart failure 

or CHF) due to the increased mechanical demands to overcome the obstruction at the 

aortic valve level and subsequent geometric changes in the heart. The patients usually 

remain free of symptoms for most of the course of the disease, and the condition is 

often discovered incidentally during evaluation for other conditions. Survival during 

this phase remains close or identical to the expected survival, given the patient’s 

specific phenotype, history and risk profile. Thus, the probability of survival for 5 

years in the absence of other factors is generally expected to be >75%. 

  

Chapter 5     
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Figure 19  The course of aortic valve stenosis. Modified from Carabello and Paulus 

(2009). Used with permission. 

The onset of symptoms (angina, syncope or congestive heart failure or HF) 

dramatically changes the probability of survival. Depending on the specific symptom, 

the probability of 5-year survival plummets to around 50% (Otto 1997, Rosenhek 

2004, Pellikka 2005, Rosenhek 2010, Carabello 2009). The type of symptom also has 

an impact on the outcome. Angina or syncope is precipitated by the decrease in blood 

flow to the coronary arteries and the brain, respectively, but in both cases the function 

of the heart muscle (estimated by the left ventricular ejection fraction) remains stable 

or normal. Congestive heart failure is a serious indicator of the degree of decreased 

function of the ventricular muscle, which is the reason it correlates with the steepest 

decline in survival and/or functional status. 

The most effective treatment for aortic stenosis is to replace the valve with an 

artificial (mechanical or biologic) valve that restores normal blood flow to the body. 
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Aortic valve replacement (AVR) is the most frequently performed valve surgery 

around the world. The survival rate changes significantly after aortic valve 

replacement, returning almost to the expected value according to actuarial estimates. 

Current clinical practice guidelines (Bonow et al 2008, Vahanian et al 2012, Holmes et 

al 2012, Lancellotti 2013, Nishimura et al 2014) are based on numerous studies 

demonstrating that aortic valve replacement is highly effective in reducing the risk of 

mortality and improving functional status from untreated aortic valve stenosis.  

However, in some cases, surgery does not provide this expected high level of 

reduction of mortality risk (Otto 1997, Carabello 2002, Carabello 2004). In such cases, 

the timing of surgery becomes important because operating too late in the course of 

the disease will subject the patient to unnecessary surgical risk while the expected 

benefit remains small. Conversely, the benefit of early operation in asymptomatic 

severe or even moderate aortic valve stenosis remains unclear. 

Therefore, justifying a highly invasive, high-risk procedure in a patient with aortic 

stenosis but has no symptoms is challenging. This clinical situation remains a point of 

debate (Brown 2008, Cioffi 2011) and has been one of the motivations for this work. 

5.1 The Corbin-Strauss trajectory of aortic stenosis  

The previous chapters have discussed the Corbin-Strauss trajectory model in 

detail. 30 illustrates the disease trajectory by plotting the probability of survival (as a 

surrogate for functional status) against time during each phase of the disease course.  
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Figure 20  The probability of survival in aortic stenosis. Modified from: Carabello 

(2008). Used with permission. 

5.2 Resilience Engineering Approach 

The word “resilience” itself simply means “bouncing back”. In other words, it 

describes the ability or capacity of a system or an organism to return to its normal 

functional state after a disruptive event or stimulus.  Originally described by Holling 

(1973) as the “persistence of relationships within a system” and further defined by 

Lebel (2006), Hollangel (2014) and Walker et al (2004), it is the ability of a system to 

absorb disturbance and reorganize while undergoing change while still retaining the 

same structure and function. According to this definition, resilience is a time related 

phenomenon, where an event occurring at a specific point in time triggers a response 
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or a series of responses that adversely affect the structural and functional integrity and 

stability of the system, structure or organism.  

Resilience is a functional property of the system more than a structural one.  

The maintenance and recovery of function, especially in complex, interdependent 

systems is entirely related to the responses within the system as a result of an external 

or internal disruptive event. That said, resilience is also related to the configuration of 

the system components, which directly impacts their functional capability. Thus, a 

resilient system exhibits the following aspects: 

 

 A detailed process trajectory elaborating on the sequence of events 

necessary for the system to perform its function. This is the “blueprint” 

of the system, which allocates all components and their functional 

relationships and inter-dependencies. Especially important are the 

cause-and-effect relationships. 

 Elemental capacity: This describes the components required for the 

system to properly function. 

 Elemental function: Also known as the essential function, this describes 

the “bare bones” or very basic system components that can sustain 

minimal system function. These components are also the available, 

undamaged resources that will enable the system to recover its 

function. 

 Full function: This is the full system configuration under normal 

operating conditions that allows for a full or a maximal system 

function. 

Resilience systems can continue operating and/or recover their function after 

interruption by disruptive events due to certain functional attributes: 
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 Cushionability. This is the property that allows the system to reduce its 

function to a minimal level.  

 Resistance: This property allows the system to negate the effect of 

hazards or disruptive events by redirecting its impact to less critical 

components and/or functional processes. 

 Robustness: The property by which the system maintains a certain level 

of internal energy to support its function 

 Redundancy: Complex systems incorporate several layers of functional 

components with overlapping and integrated functions. The loss of 

function due to disruptive events can be covered by other components 

within the system. 

 Graceful extensibility: The system property that allows it to recover its 

function after partial failure due to an external or internal stressor 

Resilience (Woods 2006, Woods & Hollangel 2006, Attoh-Okine 2016, Ayyub 

2014, Nan 2017) describes the ability or capacity of a system or an organism to return 

to its normal functional state after a disruptive event or injury.  According to this 

definition, resilience is a time-related phenomenon, where an event occurring at a 

specific point in time triggers a response or a series of responses that adversely affect 

the structural and functional integrity and stability of the system, structure or 

organism.  
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Figure 21  System performance in resilient and non-resilient systems. Modified 

from: Yodo, N., & Wang, P. (2016). Used with permission. 

In Figure 21, as a result of the disruptive event at time point td, system function 

or performance (P) decreases at over time (degradation) from its baseline or optimal 

value (Po) until it reaches a threshold level (Pv) at time point tv. In a resilient system 

(pathway a), the return of performance to its baseline level is observed in the ensuing 

time period. In non-resilient systems, the degradation of system performance 

continues over time beyond the threshold point, with inevitable collapse of the system 

without any recovery of function (pathway c). 

Resilience has been described in many areas of human endeavor, as the 

following table illustrates: 
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Table 4  Comparison between the process of resilience in complex engineering and 

biological systems 

 Civil Engineering Biology and 

Healthcare 

Cardiovascular 

Medicine and 

Surgery 

Primary 

objective 

Safe performance 

of structures 

Stable structural 

integrity 

Successfully coping 

with external and 

internal stressors to 

maintain function 

Maintenance of blood 

flow to the entire 

body and organs 

Elements Single structures 

Complex systems 

Multiple, 

interdependent 

practitioners, structures 

and systems 

4-chamber heart with 

one-way valves, aorta 

and arterial tree, 

capillaries, venous 

tributaries 

Stressor External forces Internal mechanisms 

(disease processes) 

External mechanisms 

(injury, infection) 

Genetic defects 

Age-related processes 

Innate 

repair 

mechanism 

Structural 

properties 

Predictive homeostasis Myocardial and 

vascular wall repair 

mechanisms 

Additional 

resources 

Maintenance Reactive homeostasis Up- or down-

regulation of control 

mechanisms  

Acute 

energy 

shortage 

Severe accident End-stage homeostatic 

failure 

(Shock state. Depletion 

of resources) 

Catastrophic events 

(dissection, 

hemorrhage) 

Chronic 

stress  

Progressive 

structural fatigue 

Homeostatic overload  

Chronic degenerative 

conditions 

Progressive wall 

weakness, aneurysms 

Dilated ventricle and 

congestive heart 

failure. 
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5.3 Resilience in Biology 

Resilience in medicine and biology is often referred to as “allostasis”, which is 

the process by which the organism maintains stability and equilibrium (McEwen 1998, 

McEwen 2003) within its internal environment through active, energy-consuming 

continuous adjustments and changes in its physiologic mechanisms and processes. 

These adjustments maintain all basic physiologic processes within a narrow, safe life-

sustaining range.  The maintenance of these physiologic parameters is called 

homeostasis. The process of change is mediated by various stress response mediators 

or compensatory mechanisms, mostly in the form of stress hormones and other related 

physiologic processes.  

Homeostasis occurs at four different levels, described in the following table. 

Each level corresponds to the magnitude and duration of stressors, both internal and 

external, that the organism is subjected to during the course of its lifetime. The 

response to each stressor requires a certain level of energy expenditure (McEwen 

2000) in order to shift these physiologic processes to meet the increased energy 

demands needed to maintain survival. This energy expenditure is also critically 

dependent on the available energy stores and resources of the organism at that time 

(physiologic reserve). 
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Table 5  Different energy levels required to maintain the normal function of the system in response to varying degrees of 

stressors 

Homeostatic Phase Stressor Stress Response 

Activation Level 

Energy Expenditure Allostatic Energy 

(Energy Balance) 

Homeostatic Overload Chronic, sustained, 

high-amplitude stress 

Chronically elevated 

above normal level 

Sustained high above 

normal level 

Ei  

Reactive Homeostasis Periodic, brief, low-

amplitude stress 

Short-term 

elevation, slightly 

above normal level 

Brief, low-amplitude 

“spikes” 

E2 

Predictive Homeostasis Recurrent, normal low-

level fluctuations 

Well within normal Baseline energy 

expenditure 

E1 

Homeostatic Failure Short-term, extremely high 

demand 

Sustained at a very 

high level 

Depletion of energy 

reserves 

E0 
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 Normal, daily reparative mechanisms require very little energy (E1) to address 

the normal fluctuations on a cyclic, daily or even seasonal basis. Brief periods of 

low-level stress (exercise, mild injury or infection) require a slightly elevated energy 

expenditure (E2) that the organism can easily meet, drawing on its reserves without 

harming the system balance. Major stressors (severe injury, severe infection/sepsis, 

etc.) require a much higher level of energy expenditure (Ei) that may not be all 

available to the organism from its energy resources (Kline Leidy 1989). This is the 

level where interventions (pharmacologic, surgical or otherwise) are needed to assist 

in maintaining function. The energy resources required in severe or catastrophic 

stressors (aortic dissection, severe hemorrhage, end-stage organ failure with shut-

down, etc.) occurring in a short period of time is usually so great (E0) that the 

organism is in accelerated functional decline and eventually shut-off due to the severe 

depletion of energy reserves. External energy and support may fail to meet the 

demands to maintain function on a sustainable, long-term basis. 

The relationship between homeostasis and the energy required to maintain the 

state of health at an optimal level is fundamental for determining the resilience 

response of the organism.  

Under normal, everyday operating conditions, the small-scale fluctuations in 

energy requirements due to physiologic variations such as the circadian rhythm, 

exercise and sleep are easily met with the small adjustments in energy expenditure 

(E1) through the predictive homeostatic process. This level of energy expenditure is 

the lowest and most affordable in the organism.   
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Figure 22  Change in system performance relative to the severity of stressor and the change of energy balance
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The next higher level of energy requirement and expenditure is E2, which is the 

level required to meet the metabolic demands of processes that require a slightly 

higher energy on a short-term basis in cases of short-term stress, such as approaching 

danger.  During these brief periods of stress, the organism’s regulatory responses 

easily provide the required “burst” or “spike” in energy level that only slightly exceeds 

the basic requirement level and only for a transient time. 

On one extreme end of the energy spectrum are cases of homeostatic overload, 

where the entire organism is functioning under a “heightened state of alert”, which is a 

chronic, sustained and prolonged period of the characteristic “fight or flight response”. 

During this time, all mediators of stress and inflammation (from epigenetic and 

genetic control to neuro-hormonal pathways to local regulatory mechanisms) are 

maintained at a persistently high level. (McEwen 1999, Chrousos 2009) The results 

are sustained pro-inflammatory and pro-fibrotic changes in the organ systems that lead 

to long-term adverse changes. In the cardiovascular system, for instance, sustained 

long-term increases in heart rate, blood pressure, blood viscosity, ventricular wall 

fibrosis, vascular wall stress and coagulability, among other pathophysiologic changes 

(Tsigos 2000, Rich 2005), are all chronic active processes that divert the available 

“surplus” energy from the body’s resources and direct it towards the perpetuation of 

these adverse effects, depriving other reparative and beneficial processes of their basic 

energy requirements. This lopsided energy distribution sets the stage for a situation in 

which any additional external or internal stressor (e.g., hypertensive crisis, thrombotic 

stroke, coronary thrombosis, hemodynamically significant dysrhythmia, etc.) will 

result in a significant increase in the energy requirements, thereby precipitating an 

“energy crisis” that further overloads the already strained energy resources, thus 
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causing significant general deterioration. This sudden and significant overload 

severely limits and reduces the organism’s ability to adjust and maintain its baseline or 

normal state of health.  

The other end of the energy homeostatic spectrum is homeostatic failure. This 

is the situation when energy sources and stores are depleted, commonly because of 

long-standing malnutrition, chronic debilitating illness or general frailty. As a result, 

and although there is a continued need for sustained energy expenditure, the organism 

cannot meet these energy requirements due to the severe, chronic depletion of its 

energy stores. Hence, it resorts to converting its own structural elements (e.g., fat and 

muscle) into useable energy, further exacerbating the energy “crisis” just to meet the 

requirements for daily activities, which are also down-regulated as a compensatory 

mechanism. This critical shortage of energy makes the organism and its 

regulatory/compensatory mechanisms very vulnerable to any sudden demand for 

energy in cases of serious illness or trauma. Such high-level stressors cause a 

catastrophic failure of energy supply and expenditure, and the organism’s system 

experiences an accelerated failure (multi-system organ failure). Survival and quality of 

life fall drastically, and death becomes imminent.  

Therefore, resilience in medicine and biology, or the ability to return to a 

normal or close to normal functional status, is entirely dependent on the energy 

required to counteract the effects of the stressor or disruptive event that has caused the 

deviation from the expected course of physiologic processes.   

Since the effects of stressors are always time dependent, it then follows that the 

timing of intervention plays a fundamental role as well. As the Corbin-Strauss 

trajectory model as a process map demonstrates, all biologic and physiologic 
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processes are time dependent; the time of introduction of the stressor amplifies and 

increases its deleterious effects on the homeostatic mechanisms. 

The recovery of function of the system depends on a favorable balance of the 

energy required for stable performance of the system versus the energy reserve 

(internally or externally provided) required to mitigate or reverse the effects of the 

disruptive event (sometimes called “surplus energy”) (Attoh-Okine 2017, Costella 

2009, Madni 2009) between the energy requirement and the available energy to 

recover and maintain normal system function after a disruptive event. More resilient 

systems have sufficient energy reserves to counteract the impact of the disruptive 

event (stressor) and thus minimize the degree and duration of the loss of function. 

Jeong et al (2017) have defined a metric of the resilience of a system (the Resilience 

Index) as the ratio between the surplus energy in the water distribution network and 

the input energy (amount of energy supplied to the system), given the energy loss 

during the operation of the system, which is increased as a result of the disruptive 

event. 

5.4 The Stability-Injury-Recovery-Stability Resilience Pathway 

Mathematical modeling of the resilience of any system is based upon the time-

dependent property of system performance. Since resilience addresses the changes in 

system function over time, the graphical mathematical model for quantifying 

resilience plots system performance as a function over time: P(t). Therefore, the 

timing and pattern of change in system function can be estimated, as in the basic 

diagram below: 
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Figure 23  The sequence of events in the resilient response to injury. Modified from: 

Attoh-Okine (2016). Used with permission. 

The process of resilience in any system describes four distinct and consecutive 

phases (Attoh-Okine 2016, Yodo 2016, Ayyub 2015, Ayyub 2014): 

I. First Stability Phase: 

This is the baseline condition at the start of examination of system 

performance. During this phase, all forces and factors acting on the structure are in a 

state of balance or equilibrium, known in biology as “homeostasis”. This favorable 

balance of forces maintains a stable environment within the structure that allows for its 

optimal functional status. In biologic or physiologic terms, this phase describes the 

“normal state of health”, where all body systems and organs are functioning at their 

expected level of performance, without increase or decrease in energy requirements or 
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expenditure outside the expected range needed for fulfillment of average daily 

activities and for growth. 

In graphical representation, this phase is often expressed as a straight 

horizontal line, corresponding to its continuation over time (the X axis) and starting at 

the highest point of functional status (or survival) on the Y axis.  Since all humans are 

mortals, in the survival versus time graph and depending on the specific time interval 

examined (i.e., an entire lifespan in chronic diseases versus a specific time interval for 

acute, short- or mid-term evaluations), this phase describes a line that slightly deviates 

downwards from the horizontal, thus representing the normal actuarial decrease in 

survival relative to age. 

II. Injury or Unreliability Phase: 

This phase is heralded by a point in time (t0) at which a stressor exerts its effect 

on the process line. This is the point of onset. At this point, the process line 

(trajectory) begins its shift downwards at an angle α, thus assuming a different 

trajectory that is dependent on the magnitude of the stressor as well as the expected or 

predicted effect on the innate process at hand. The shift in the trajectory, indicating the 

degree of decrease in system performance, progresses at a variable rate. This is 

reflected by the wide variations in the angle α, ranging from a small acute angle in 

cases when the function loss is minimal and progressing at a slow rate, to a 90-degree 

angle, indicating a precipitous drop in system performance.  

The effect of the stressor is a decrease in functional status or expected survival. 

As long as the stressor is in effect, the new trajectory continues downwards until it 

reaches the “nadir”, which is the lowest level of decreased functional status or of 



 

87 

 

expected survival. This point (t1) represents the maximal detrimental effect of the 

stressor on the process line. 

III. Recovery Phase: 

This begins at the point of intervention, whether diagnostic or therapeutic. 

Though not ideal, as the following discussion elaborates, healthcare interventions 

implemented at the point of worst decline in functional status mark the beginning of 

the trajectory representing the process line back to the expected course during this 

particular time interval. The full effect of recovery, i.e., a return to the expected level 

of survival and/or quality of life, intersects the original, expected process line 

trajectory at angle β, thus marking the successful completion of the recovery phase. 

IV. Second Stability Phase: 

This is the desired outcome or goal of intervention: to return the system or the 

organism to its previous state of stability and equilibrium. At time mark (t2), the 

effects of the stressor on changing the trajectory will have been reversed by the effects 

of the intervention, thus restoring the balance of forces in the system At this point, the 

energy requirements and expenditure of the system decrease to their baseline level. 

Performance returns to its normal, baseline level. This is also the point where the 

outcome of the process (i.e., result of intervention or management plan) matches the 

expectation, thus indicating a success of intervention in meeting the stated/planned 

goal. 

As such, the resilience pathway describes the sequence of events in the course 

of the treatment of a disease condition. The functional status of the subject (patient, 

group of patients or a community) declines at a variable pace in response to a stressor 

(disease onset, infection, trauma, epidemic, famine, etc.). Healthcare intervention (at a 
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molecular, cellular, tissue, organ or population level) reverses this trend of decline in 

functional status until the subject resumes its “normal” (i.e., expected based on 

historical, actuarial and risk adjustments) status. 

Some reports in the engineering literature  (Henry 2012, Ouyang 2012, 

Dessavre 2016) describe the resilience pathway as comprising five states: reliability 

(reflecting the normal or baseline functional state); unreliability (the stage 

immediately following the impact of the stressor, during which system performance 

continues to decline); disruptive state (a state of continued function at the lowest level, 

for a variable duration); recovery (the time period during which the system gradually 

regains its function) and recovered steady state, during which the system continues to 

operate at the previous, normal baseline level. (Figure 24) 

This pattern of the resilience response may be applicable in the case of 

biological and medical situations. For example, after the resolution of the acute phase 

of a myocardial infarction, leading to a degree of damage to a certain area of the 

ventricular muscle, the ventricle continues to operate at a reduced level (i.e., in a 

disruptive state). After blood flow is restored to the heart muscle with coronary artery 

bypass surgery, ventricular function improves (recovery phase) to reach normal level.  
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Figure 24  A five-state resilience pathway. Modified from: Yodo, N., & Wang, P. 

(2016). Used with permission 

5.4.1 Patterns of Recovery 

As established earlier, recovery of system performance is graphically plotted as a 

function curve. This curve has a starting point as the time mark when the deleterious 

effects of the disruptive event cease, and it continues until the system has regained its 

previous level of performance. Ideally, the recovery returns system performance to its 

previous level, without any residual decrease. Frequently, the disruptive event 

adversely affects system structure and functional relationships. This causes the 

recovery to lead to suboptimal level of performance. Conceptually (Yodo 2016, the 

structural-functional relationships, especially the system redundancies and backup 

mechanisms, may over-compensate for the injurious effects of the stressor. The result 

is the return of system function at a higher level than the baseline. While preferred to a 

lingering decrease in system, this may not occur in all cases.  
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Figure 25  Different patterns of recovery curves. Modified from: Yodo et al (2016). 

Used with permission. 

The difference in the pattern as well as the magnitude of recovery are highly 

dependent on specific system architecture and the governing functional relationships 

between its elements. There is a wide variation between the mathematical 

relationships governing the unreliability profiles and recovery profiles in complex 

systems, especially in biological systems. In addition, because of the presence of 

uncertainty in system performance affecting both the response to stressors as well as 

reliability and recovery, recovery curves are very often non-linear, exhibiting curved 

or irregular trajectories: 
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Figure 26  Different recovery curves. Modified from: Yodo, N., & Wang, P. (2016) 

after Munoz and Dunbar (2015). Used with permission 

Another example of this variation in recovery patterns has been proposed by 

Sharma (2018) to demonstrate the different patterns of recovery of a system, reaching 

the same level of function within the same time period but along three different 

trajectories.  
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Figure 27  Different trajectories for the recovery curve. Modified from: Sharma et al 

(2018). Used with permission. 

Assuming decline in system function occurs precipitously to its lowest level at 

t0, the sustained return of function should—ideally—be expected at the earliest 

possible time (t1) as opposed to a later point t2. Hence, the recovery pattern described 

by Linear 3 in Fig 27. would be more desirable than Linear 2 or the S-shaped curve. In 

the case of gradual decline of function over time interval t0-t1, the expected recovery 

course to the point of sustained function (t2) is the second half of the Linear 1 curve. 

Most resilience models are based on the assumption that recovery is a 

continuous process that starts at the time of intervention and continues at different 
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rates and along different trajectories until recovery of function is achieved and 

sustained. However, this may not be the case in many systems that are susceptible to 

the impact of repeated disruptive events or “shocks” occurring in rapid succession.  

 
 

Figure 28  Impact of successive “shocks” to the system on recovery of function. 

Modified from: Sharma et al (2018). Used with permission. 

Assuming the initial shock occurs at time mark 0, the recovery curve beginning 

at time mark  j-1 is interrupted at time mark j-1. Recovery resumes at time mark j but 

is interrupted again at time mark j+1. This repeating pattern of successive shocks to 

the system accentuates the effects of each shock on the structural components of the 

system and their functional relationships. The result is usually a recovery occurring 

over a longer period of time, and often with a suboptimal return of function. In their 
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2018 report, N. Sharma et al provide an equation (Equation 14, page 54) to estimate 

the overall resilience moments in such a model.  

Examples of this situation include:  

 

 Infrastructure in an area prone to frequent seismic activity,  

 An urban power grid that is subject to repeated episodes of power 

interruptions,  

 The brief loss of cardiac ejection due to the characteristic pause that follows 

“extra-systoles” or ventricular premature beats, 

 The decreases in ventricular function as a result of multiple episodes of 

myocardial infarction 

 the course of chronic obstructive pulmonary disease, which is characterized by 

recurrent episodes of “decompensation” or decreased performance of the 

pulmonary system.  

5.5 The Resilience Curve 

Quantification of the resilience is fundamental for the optimal design and 

construction of any engineering or complex system, including features that can 

predict, prevent or counteract the harmful effects of disruptive events (Yodo et al 

2016).  However, the development of standardized metrics for resilience is still a 

challenge (Hosseini 2016). 

One of the important resilience metrics is the quantification of the effect of the 

disruptive event on the system performance. This metric, defined as Performance Loss 

or System Impact. This is the total time-related decrease in system function as a result 

of the stressor.  
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Figure 29  Performance loss as the area-under-the-curve. Modified from: Attoh-

Okine (2016). Used with permission. 

5.6 Resilience Equations 

Yu and Hao (2008) developed a mechanism to calculate resilience based on the 

statistical analysis of two system components that reflect the resilient response in the 

system: (1) intrinsic resilience degree (direct effect on the system) and (2) special 

resilience degree (indirect effect on the system). Accordingly, they divided all 

variables contributing to or affecting the resilience of the system into these two groups 

based on their mechanism of effect, presumably along the lines of a process map or a 

decision tree. Their equation to calculate the resilience of a system is as follows: 
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                                                             (1) 

 

Where i = 1, …n; n is the amount of system assessment index variables, fi 

represents condition indices of contributing factors, k is a coefficient of transform and 

i is the weighting coefficient of the index method. 

A more relevant definition of resilience is the ability to prevent functional 

failure of the system. Thus, it becomes possible to measure the change in function of 

the system over time as an indicator of the system’s resilient properties and 

performance in relation to specific stressors affecting specific system components for 

defined or predicted periods of time. The following model of the resilience response is 

modified from the original conceptual model proposed by Adams (2012).  
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Figure 30  A simplified representation of the resilience response. Modified from: 

Attoh-Okine (2016). Used with permission. 

Assuming resilience R is a function of quality (functional status or survival) 

over time Q(t), then the change in this function over time relative to the stressor 

(Attoh-Okine 2016, Molyneaux 2016, Franchin & Cavalieri 2015, Adams 2012, 

Cimellaro 2016) can be expressed as follows: 

𝑅 = ∫
[𝑄(𝑡)]𝑑𝑡

(𝑡2 − 𝑡0 ) 

𝑡2

𝑡0
                                                                                (2) 

Which represents the integration of the area under the quality function Q(t) 

between different time intervals. Along similar lines, Bruneau (2003) described the 

following equation: 

R= ∫ [1 − 𝑄(𝑡)]𝑑𝑡
𝑡2

𝑡0
                                                                        (3) 
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Using the same parameters as in Fig 27, Li and Lence (2007) redefined the 

resilience index originally described by Hashimoto (1982) as a vector of the time 

points in the resilience response curve as follows: 

𝑅(𝑡1,𝑡2) = [
𝑔(𝑡2 )≥0

𝑔(𝑡1)≥0
 ]                                                                            (4) 

Where R(t1,t2) represents the resilience of the system between time points t1 

and t2, while g(t1) and g(t2) are the system performance at these time points, 

respectively.  

Since resilience is an active, energy-demanding process, it becomes important 

to devise a formula to calculate the cost (in term of interventions, personnel, materials 

and money) of returning the system performance to a normal level.  

In their 2009 report, Attoh-Okine et al used the quality index (i.e., the 

measured performance level as a percentage of the ideal 100%) to develop a resilience 

index as follows: 

Resilience = ∫ (
[𝑄(𝑡)]𝑑𝑡

100−(𝑡2 −𝑡1)
)

𝑡2

𝑡1
                                                              (5) 

5.7 Quantifying Resilience: The Resilience Triangle and the Area Under the 

Curve 

The basic concept of the systemic impact (SI) (Vugrin 2014, Yodo 2016, 

Ayyub 2016, Nan et al 2017) is defined as the difference between the expected or 

target system performance (TSP) and the actual, observed system performance (SP). 

In medical terms, this represents the difference between the expected or desired 

functional status for the specific patient or patient population (coordinates on the 

actuarial/historical trajectory) and the observed or measured functional status 

(coordinates on the Corbin-Strauss trajectory). These observations are relative to 

points t0, corresponding to the baseline functional status, and tf , corresponding to the 
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observed status. Thus, calculation of SI can be defined as the area under the curve for 

the resilience triangle, as follows: 

𝑆𝐼 = ∫ [𝑇𝑆𝑃(𝑡) − 𝑆𝑃(𝑡)]𝑑𝑡
𝑡𝑓

𝑡0
                                                                 (6) 

Using the area under the curve as a representation of the energy required for 

recovery of function, the recovery effort (RE) or total recovery effort (TRE) can be 

calculated as follows: 

                                                                                (7) 

This important metric RE(t) represents a valuable indicator of the degree of 

change in system function or performance during the entire resilience pathway 

(stability-injury-recovery-stability phases). A stable system performing normally (i.e., 

a healthy person) experiences no change of function over time. In this case, RE(t) = 

zero.  

The following diagram illustrates the different parameters in the resilience 

pathway relating to a sudden loss of function caused by a disruptive event:  

 

 



 

100 

 

 

Figure 31  The resilience pathway with sudden decrease of function. Modified from: 

Yodo and Wang (2016). Used with permission. 

Another model describes the parameters in the pathway characterized by 

gradual decrease of function and gradual recovery to normal state: 
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Figure 32  The resilience pathway demonstrating a biphasic gradual change in 

function. Modified from: Yodo and Wang (2016). Used with permission. 

Where P(t) is the system performance as a function of time (t), Po is the normal level 

of function, Pv is the lowest level of function as a result of the event, t0 is the time 

mark for the beginning of the process, td is the time mark for the event, tn is the time 

mark for recovery, X is the degree of deterioration of function at the time of event (P0 

– Pv), AP(t) is the area under the curve for recovered stable state and T is the time 

period from the onset of the event until the return of function. In this model, the 

impact of the event on the system performance is the difference in performance before 

and after the disruptive event. Based on these diagrams, the following “dimensions of 

resilience” can be calculated: 
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Table 6  Three dimensions of resilience 

Parameter Description Equation 

Impact Effect of event on performance Po(t0) – Pv (tv) 

Performance loss Total loss of function until recovery 
  ( )  

 

Recovery Time required to return to normal 

function 

tn - td 

 

 

Impact = [Initial performance level Po – Post-event level Pv]                         (8) 

Relative to the time of event and the time of recovery, the loss of function is 

the area under the curve as bounded by the optimal level of function, interval X 

(degree of loss of function) and interval T (time to recovery). This area is called the 

resilience triangle, representing the total loss of function until the system recovers. 

This is calculated as follows: 

Impact area = Loss of Function = loss = 
𝑋𝑇

2
                                          (9) 

 loss = ∫  [𝑃𝑜(𝑡0) − 𝑃(𝑡)]𝑑𝑡
𝑡𝑛

𝑡𝑑
                                                      (10) 

Based on this, the resilience of the system  can be calculated as follows: 

Resilience  = ∫
𝐴𝑃(𝑡)

𝑇
 𝑑𝑡

𝑡𝑛

𝑡𝑑
                                                                            (11) 

This equation describes resilience in a single “snapshot” instance of the system 

performance. Assuming multiple events occur throughout the service time or lifetime 

of the system T*, it becomes possible to calculate the resilience of the system during 

this time as follows: 

Resilience  = 𝑃𝑜 (𝑡0) − ( 
𝑋𝑇

𝑇∗  )                                                            (12) 
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Using the parameter  in a Poisson process to represent the average number of 

events per unit time, the resilience can be calculated as follows: 

Resilience  = 1 -  E[IA]                                                                              (13) 

Where E[IA] is the expected impact area (i.e., loss of function or the resilience 

triangle) occurring with each event. 

Similarly, Ayyub (2015) describes another equation based on a modification of 

the following figure.  

  



 

104 

 

 

Figure 33  Resilience pathway with a sudden decrease in function. Modified from: 

Ayyub 2015. Used with permission. 

As a Poisson process with a rate , an event occurring at time ti may cause 

failure F at time tf, after a time interval Tf and followed by a period of recovery at 

time interval Tr. Therefore, the duration of total disruption Td (loss of function D) 

is: 

Td = Tf + Tr                                                                                              (14) 

 Given the time to incident Ti, time to failure Tf and time to recovery Tr, the 

resilience of the system relative to the event Re can be calculated as: 

 

Re =                                                                                    (15) 
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This approach applies to situations where there is a precipitous drop in system 

performance over an extremely short period of time with an almost instantaneous start 

of the recovery phase. In this model, the time of loss of function (disruption duration 

or Td) is identical to the duration of recovery or Tr. In biologic systems, this is most 

commonly associated with trauma or acute injury, but it can also be associated with 

other catastrophic events such as acute aortic dissection. A classic example is loss of 

function due to a fracture of a bone. Up to this point, the system function remains at 

the highest level, dropping suddenly and precipitously as a result of the disruption of 

the mechanics of the limb. Bone healing allows for the gradual return of function to its 

previous level. 

Resilience engineering is an estimate of the system’s property of experiencing 

a disruptive event, minimizing its impact on loss of function and returning to normal 

steady-state performance. (Attoh-Okine 2009, McDaniles 2008, Ayyub 2016, Yodo 

2016, Nan 2017, Koliou et al 2018). Todman (2016) further defines the resilience 

response as dependent on the degree of return to normal function, the time needed to 

return to normal function, the rate of return (performance per time) and the efficiency 

(loss of function relative to the disturbance, ideally at zero) thus providing the 

foundation for devising preventive and/or corrective measures to preserve optimal 

system function. Hence, the purpose of resilience engineering is to: 

 

a. Predict and quantify the potential and probability of failure of function 

in a system 

 

b. Formulate plans for prevention of catastrophic system failures 

 

c. Conceptualize and formulate corrective and reparative plans and 

processes for preservation of optimal system performance 
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d. Project the cost of reparative and corrective measures over the service 

life of the system 

Resilience engineering (O’Rourke 2007, Reed 2009, Bocchini 2013, Ganin 

2016, Frangopol 2016) discusses the performance of complex systems in ecology and 

infrastructure. By definition, these systems comprise multiple, highly organized, 

autonomous components (sub-systems) that are highly connected, inter-related and 

interdependent. For instance, an urban healthcare system describes a highly developed 

network of practitioners, support staff, diagnostic and therapeutic equipment and 

medical records. This system has its own resources, rules and regulations, feedback 

and overall mission of providing optimal healthcare to the population. Yet, this 

complex, autonomous system is highly dependent on other equally complex systems 

in the urban environment or a “network of networks” (Attoh-Okine 2017), such as the 

electricity power grid; the physical streets and traffic signal systems; transportation 

systems, including ambulances; the water supply and a myriad of other industries 

providing medical gases, instruments and equipment. The success of the urban 

healthcare system in performing its mission is highly dependent on the complex 

relationships within itself as well as within the larger network of systems in the urban 

environment. 

Similarly, the human body is an autonomous, functionally independent, 

complex organism that comprises a number of autonomous complex subsystems 

(“system of systems”) working in concert to facilitate optimal performance of the 

entire person, i.e., maintain the state of health. The entire body, for instance, is 

dependent on the stable and sustained adequate level of blood flow from the 

cardiovascular system for its very survival and continued function. The maintenance 

of blood flow at an optimal rate and volume (i.e., a healthy, fully functional 
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cardiovascular system) is dependent on a number of structural (anatomic), functional 

(physiologic), regulatory (neural and hormonal feedback) and global (age-related, 

genetic, inflammatory and degenerative processes) mechanisms that involve other sub-

systems (brain, central nervous system, autonomic nervous system, adrenal glands, 

etc.). 

Since “health” is defined as the maintenance of a normal function of the human 

body and/or its sub-systems, especially in response to harmful stimuli, injury and 

external and internal disease processes, the study and implementation of the resilience 

of complex systems (Rose 2013, Orwin 2004, Alipour 2016, Yodo 2016, Cimellaro 

2017, Cimellaro 2018) provides the fundamental underpinnings of the 

conceptualization, formulation, implementation and evaluation of materials, 

instruments, methodologies, procedures and protocols as interventions for the 

diagnosis and treatment of conditions that affect the function of the human body, i.e., 

medical decisions and interventions and the practice guidelines that govern their use 

and implementation. 

This model (Ayyub 2016, Yodo 2016) also allows for estimation of the 

predictive properties of the system performance. For this, the following two 

definitions are described: 

 

 Robustness of the system: This is the ability of the system and its 

elements/components to withstand the disruptive event without a 

significant loss of performance.  

 

 Redundancy of the system: This is the extent to which the system and 

its elements can sustain function during the disruptive event.  

Thus, failure events are a measure of decreased robustness of the system. The 

failure profile F can be estimated as follows: 
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F = 
∫ 𝑓 𝑑𝑡

𝑡𝑓

𝑡𝑖

∫ 𝑄 𝑑𝑡
𝑡𝑓

𝑡𝑖

                                                                                                     (16) 

Based on a biphasic resilience pathway model, Nan et al (2017) described 

another integrated resilience metric estimating the measure of performance (MOP, 

referred to as Q in Ayyub [2016]) and defined as the time-average performance loss 

(TAPL). This is calculated as follows: 

TAPL =
∫ [𝑄(𝑡0)−𝑄(𝑡

𝑡𝑛𝑠
𝑡𝑑

)]𝑑𝑡

( 𝑡𝑛𝑠−𝑡𝑑 )
                                                                  (17) 

Where t0 is the time of baseline performance, td the time of onset of disruption, 

tr the time of lowest performance (failure) and tns the time of return to normal status. 

The importance of providing a mathematical resilience model for predicting 

failure and catastrophe in critical infrastructure has been highlighted in recent years 

(Linkov and Palma-Oliveira 2017, ASCE 2017, Linkov et al 2018). Incorporating 

resilience engineering in designing buildings and other infrastructure is valuable in 

assuring the continuation of functionality and reducing the time needed for repair as a 

requirement for return to full function. In biologic terms, this means providing 

preventive measures to anticipate and prevent system failure (i.e., disability) due to 

disease or injury, ensuring preservation of functional status (i.e., health) and reducing 

the recovery period and its attendant resources. 

Sharma (2018), quoting Bonstrom and Corotis (2016), builds on the typical 

resilience metric described in the following equation: 

 

= 
∫ �̆�(𝜏)𝑑𝜏

𝑇𝑅
0

𝑇𝑅
                                                                           (18) 

This equation has been based on a typical resilience model, describing an 

abrupt and significant decrease in system performance from its highest (baseline) level 
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Q(t) as a result of a severe stressor (“shock”) applied to the system at time mark tI. The 

system performance at that time is lowest, at a level Qres, reflecting the residual 

function at the beginning of the s-shaped recovery curve over the period tI to tL.  

 

 

Figure 34  Recovery curve in a typical resilience model. Modified from: Sharma, 

Tabandeh, & Gardoni (2018). Used with permission. 

This time interval  reflects the recovery time as in Equation 18, used to 

calculate the resilience metric R. This is based on the assumption that recovery time 

TR = tL-tI. This is the basis for defining system performance as a function of time. 

𝑄 ̌ (𝑡) = 𝑄(𝑡). 

Sharma, N., Tabandeh, A., & Gardoni, P. (2018). Resilience analysis: a mathematical 

formulation to model resilience of engineering systems. Sustainable and Resilient 
Infrastructure, 3(2), 49-67.
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One of the limitations of using such above-listed equation to quantify of 

resilience is that these assumptions lead to the same result of the resilience metric R, 

regardless of the different combinations of 𝑄 ̌ (𝑡) or TR.  

This is because assuming that 𝑄 ̌(𝑡) = 𝑄(𝑡) approximates the recovery 

function curve to a linear function. As detailed in the previous chapter, the recovery 

curve varies widely in different scenarios. N. Sharma (2018) provides this illustrative 

example of three different patterns of recovery in this resilience pathway: 

 

 

Figure 35  Impact of different recovery curves on the resilience metric. Modified 

from: Sharma et al (2018). Used with permission. 
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 In this monophasic resilience model (focusing on the recovery phase), all 

recovery curves begin at the same time mark, (0). Linear 1 curve describes a straight 

line reaching recovered steady state at time mark 1 and continues at that level to time 

mark 2. Linear 2 curve is also a straight line, beginning at the same time but has a 

different angle, thus reaching the same functional level at a later time period (2). The 

third recovery curve also begins at time mark (0) and ends at time mark (2), but it 

describes a sinuous, S-shaped curve with the change of phase from a gradual increase 

to a more robust increase coinciding with time mark (1).  

7 presents the mathematical relationship they described to calculate the 

recovery function. According to their calculations, all three curves reflect the same 

resilience metric R.  

Table 7  Mathematical relationships for different recovery curves. After Sharma et 

al (2018. Used with permission. 

Curve TR Recovery Function R R(TH =2) R(TH =3) 

Linear 1 1-0 = 

1 

0.5 + 0.5 t 0.75 0.87 0.92 

Linear 2 2-0= 

2 

0.5+0.25 t 0.75 0.75 0.83 

S-shaped 2-0= 

2 

0.75-0.25 cos ( t/2) 0.75 0.75 0.83 

 

 

As an attempt to compensate for this discrepancy, various researchers (Reed et 

al 2009, Cimellaro 2010a, Decò et al 2013) have replaced tL in Equation 18 with a 

fixed time horizon denoted tH. Subsequently, the resilience metric R(tH)  
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By implementing this change, the resilience metric is set at R(TH =2) or as 

R(TH =3). Calculating for these values, the resilience metric for the three different 

curves Linear 1, Linear 2 and S-shaped are listed in the right-hand columns of the 

table.  

According to this example, the resilience metric R(TH) corresponding to a fixed 

time horizon TH does not differentiate between different recovery patterns (in this case 

between linear and S-shaped curves)  

The authors then proposed a new resilience metric to quantify resilience given 

a specific recovery curve in terms of partial descriptors of �̆�(𝜏). This new metric 

(Cumulative Resilience Function or CRF) represents the overall recovery by time  

and defines the time interval to recovery as TR ( tL – tI). The overall recovery time for 

any resilience pathway is defined as . 

Thus, the cumulative recovery function (defined as a continuous function of 

quality Q over time) can be represented as follows: 

        𝑞(𝜏) =  𝑑
�̆�

𝑑𝜏
          for all    𝜏 ∈ [ 0, 𝑇𝑅]                                                  (19) 
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Table 8  List of equations reviewed 

 

# 

Reference Equation Comment 

1 Nan 2017 𝑞(𝜏) =  𝑑
�̆�

𝑑𝜏
   for all   [0, TR] Cumulative recovery function 

2 Yodo 2016 

 

 

 

Attoh-Okine 2016 

 = ∫
𝐴𝑃(𝑡)

𝑇
 𝑑𝑡

𝑡𝑛

𝑡𝑑
 Resilience 

3  = 𝑃𝑜 (𝑡0) − ( 
𝑋𝑇

𝑇∗  ) Resilience 

4  System impact 

5 Yodo 2016 
  ( )  

 

Performance loss 

6  Total recovery effort 

7 Bonstrom and Corotis 

2016 
=

∫ �̆�(𝜏)𝑑𝜏
𝑇𝑅

0

𝑇𝑅
  

Resilience 
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Table 8 Continued 

 
 

# 

Reference Equation

 

Comment 

8 Attoh-Okine 2016 
 

Resilience 

9 Ayyub 2015 Re =  

 

Resilience 

10 Attoh-Okine 2009  Resilience 

11 Yu and Hao 2008 
 

Resilience 

12 Liu and Lence 2007 
 

Resilience 

13 Bruneau 2003 
 

Resilience 

5.7.1 Data Analysis 
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Table 9  A sample of the data variables as collected. Non-numeric data have been converted to numeric code 

 Gender Age Mortality Days Location Survival GenderDef Place 

1 Male 67 Alive 3 DE 100 1 1 

2 Male 67 Unknown 5 DE 50 1 1 

3 Male 69 Alive 11 DE 100 1 1 

4 Male 67 Alive 18 NJ 100 1 2 

5 Female 66 Alive 7 DE 100 2 1 

6 Female 81 Alive 9 DE 100 2 1 

7 Male 74 Alive 6 DE 100 1 1 

8 Male 81 Unknown 21 PA 50 1 3 

9 Male 81 Alive 8 DE 100 1 1 

10 Female 85 Unknown 14 DE 50 2 1 

11 Female 86 Alive 12 NJ 100 2 2 

12 Male 88 Dead 22 NJ 0 1 2 

13 Male 81 Unknown 11 DE 50 1 1 

14 Male 70 Alive 8 DE 100 1 1 

15 Male 64 Unknown 6 DE 50 1 1 
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Table 9 Continued 

 
 Gender Age Mortality Days Location Survival GenderDef Place 

16 Male 50 Unknown 16 PA 50 1 3 

17 Male 73 Unknown 7 DE 50 1 1 

18 Male 80 Alive 7 DE 100 1 1 

19 Male 81 Unknown 8 DE 50 1 1 

20 Male 85 Alive 5 DE 100 1 1 
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5.8 Patient Cohort 

The Society of Thoracic Surgeons Adult Cardiac Surgery Database (Executive 

Summary 2017) is the world’s largest registry for cardiac surgery patients. Since its 

establishment in 1989, it now has over 6.3 million records submitted by over 31000 

surgeons around the world. This registry has been instrumental in evaluating the 

outcomes of different treatment modalities and different operative techniques and 

devising indications for surgery. It serves as the repository of scientific evidence for 

the development and revision of clinical practice guidelines (Brown et al 2009, Dewey 

et al 2008, Wendt et al 2009, Tommaso et al 2012, Mack et al 2015). 

After obtaining the necessary permission from the local administrator of the 

Society of Thoracic Surgeons Adult Cardiac Surgery Database, the electronic health 

records of 500 patients who had undergone aortic valve replacement within the last 

3 years were reviewed. All patient identifiers were removed, and data was anonymized 

and retained in secure storage with access limited to the primary investigator. Data 

from 153 patients were excluded due to incomplete follow-up. Data from the 

remainder 347 records were analyzed. 

5.9 Data Variables 

 Age 

 Gender 

 Geographic location: Delaware, Pennsylvania, New Jersey or Maryland 

 Time interval from decision to surgery (in days) 

 Survival status (also expressed as mortality percentage) at 30 days after 

surgery 
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Table 10  Summary of the data variables and their characteristics 

 Characteristics Comments 

Number of data 

entities 

347 Study cohort 

Age Discrete variable  

Gender Categorical variable Coded as Male/Female 

Geographic location Categorical variable Coded as: DE, NJ, PA, 

MA 

Time from diagnosis 

to surgery 

Continuous variable  

30-day survival Categorical variable Coded as: Alive, Dead, 

Unknown 
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Data from the 347 patient records was used, with columns representing each 

data variable and rows representing each patient. Non-numeric data (gender and 

location) were represented in separate columns by numeric equivalents. Survival status 

was expressed numerically as percentage values (0, 50 and 100%) in a separate 

column. Gender data was defined as (Male=1, Female=2), Location data was specified 

as detailed above. 

The following parameters were calculated: minimum, maximum, mean, 

median, 1st quartile, 3rd quartile, standard deviation, variance. 

Table 11  Calculated parameters 

 Min 1st Qrt Median Mean 3rd Qrt Max Variance Std Dev 

Age 20.00 66.50 76.00 73.85 83.00 97.00 167.1934 12.93033 

Days 2.00 7.00 11.00 11.63 16.00 30.00 31.0666 5.573742 

 

 

5.10 Graphical Representation of Statistical Analysis 

5.11 Comments 

Exploratory data analysis of this small group of patients reveals a survival rate 

of 87.6%, reflecting a postoperative mortality rate of 2.5%. This is excluding the 

patients with an unknown survival status (9.7%). These findings correlate with the 

published reports (Brown 2009 [risk of 2.7%], Swinkles 2011 [risk of 2-5%], Iturra 

2014 [risk of 2.8%], Reardon 2017 [risk of 4.4%]), which list the national average of 

<2 and 2-5% for low and intermediate risk, respectively. Considering the lack of a 
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specific risk assessment for each patient in this cohort, the patient population 

examined is assumed to have an intermediate risk for aortic valve replacement. The 

expected operative risk (30-day mortality risk) for this mixed group of patients is 2-

5%.  

In examining the data analysis, the distribution of survival and of the time to 

surgery is skewed. According to Ogunnaike (2009), this can be addressed as a log-

normal distribution. Given the skewness of the distribution (the shape of which is 

related to the standard deviation ), its height is related to the arithmetic mean ; the 

change in which changes the height or scale of the distribution but not its shape. 

Therefore, the median is a better indicator of the central tendency in this distribution. 

Given the arithmetic mean of the random variable as , the median m is 

calculated as: 

Median = m = e. 

5.12 Proof of Concept 

In cardiothoracic surgery, survival at 30 days after surgery has been 

established as the benchmark measure of quality (Monte 2018, Krumholz 2006, 

Shroyer 2003). This metric has been expressed alternatively as the probability of 

survival (as a percentage) or the probability of mortality (also as a percentage). This 

principle provided the basis to construct a resilience model incorporating the Corbin-

Strauss trajectory to estimate the change in probability of survival relative to surgery 

in an index case of aortic stenosis.  

Step 1:  

The first part of the mathematical proof of concept was to construct the 

Corbin-Strauss trajectory for untreated aortic stenosis using historical large-population 
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studies. In constructing this model, the time-related probability of survival in untreated 

aortic stenosis, based on data from the published literature (Brunwald 1990, Carabello 

2008, Varadarajan 2006, Rosenhek 2010), was assumed to be as follows: 1-year 

survival 62-75% (average 68%), corresponding to 1-year mortality of 26-48% 

(average 37%). Extrapolating from these findings, the rate of decrease is assumed to 

be 5.7% per month, correlating to a daily rate of approximately 0.19%. Based on these 

observations and his own findings, Carabello (2008) estimates a monthly mortality 

risk of ~2%.  

Assuming a constant rate of decline, the probability of survival Q(t) was assumed to 

be as a decay function representing the Corbin-Strauss trajectory in this situation. This 

function was plotted as a linear decay function.  
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Figure 49  The Corbin-Strauss trajectory for aortic stenosis 

 The expected or predicted probability of survival (based on this model) is 

projected on the graph as 97.9% at 12 days, 94.3% at 30 days and 92.1% at 42 days. In 

addition to these predictions from the trajectory, the results of the exploratory data 

analysis of our local data set, reflecting the probability of survival at specific time 
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points (time of diagnosis [t0], time of surgery [t1] and 30 days after surgery [t2]), were 

calculated and the results tabulated in the graph.  
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Figure 50  The Corbin-Strauss trajectory plotted as a linear decay function 
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Alternatively, we explored the assumption that the Corbin-Strauss trajectory 

may be an exponential decay function. Accordingly, the mathematical relationship in 

this situation was also plotted in Figure 51. 

 

 

Figure 51  The Corbin-Strauss trajectory plotted as an exponential decay function 

 However, this assumption suggests an unrealistically accelerated rate of 

decrease in the probability of survival, which is predicted to reach 0.0% at 30 and 42 

days. These predictions significantly contradict the published results and estimations 
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based on the analysis of data from large-scale clinical studies. Therefore, this 

assumption was not applied in the comparison of results, which follows below. 

Step 2: 

For the purpose of comparison of the results from the Corbin-Strauss trajectory 

model and our own analysis, a composite graph was constructed, plotting the Corbin-

Strauss trajectory as a linear decay function with the parameters specified above. The 

predicted probability of survival at the three time intervals described (12, 30 and 42 

days) were plotted along the trajectory line (grey circles in Figure 35). In addition, the 

estimated probability of survival -without treatment- at those same time points 

(according to the results of our data analysis of a decrease in survival of 2.5% at 42 

days) were also plotted as clear circles in the same figure. The results of our data 

analysis were noted to fall within a range of 2.0 percentage points from the predictions 

of the Corbin-Strauss model. Notably, in this model, our findings represent an 

observed survival of 87.6% and mortality of 2.5%, likely due to the censored or 

excluded patients with an “unknown” survival status. 
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Figure 52  Comparison of results of data analysis and the Corbin-Strauss trajectory 

Step 3: 

A biphasic resilience model was constructed according to the time marks along 

the trajectory. Q(t) or the probability of survival at the time of diagnosis t0 was highest 

at 100%. The expected probability of survival at the endpoint of 30-days after surgery 

or t2 was 92%.  
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Figure 53  The resilience model incorporating the Corbin-Strauss trajectory. 

 Time intervals T1 and T2 were plotted to describe the time from diagnosis to 

surgery and the 30-day period after surgery, respectively, while X represents the 

degree of change in the probability of survival between baseline and the time of 

surgery. 

For the purpose of this work, the probability of survival has been implemented 

as a surrogate measure of the system performance Q(t). Therefore, normal system 

performance Q(t)0 at baseline corresponds to survival status of 100%. Meanwhile, the 

projected or expected survival status of 98% as a result of the onset of symptoms (time 

mark t0) is represented as Qv, or the lowest expected performance of the system 
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(corresponding to the expected reduced quality of life). The estimation of the 

progressive decrease in system performance over time due to the effect of untreated 

aortic stenosis is here represented as a decline in expected survival. The slope of this 

line is based on the assumption that patients have presented with symptoms of either 

angina or syncope, reflecting a preserved left ventricular function and the absence of 

congestive heart failure. Time interval to surgery (t1 – t0) is represented as T1, and 

postoperative time to recovery of function (t2 – t1) is represented as T2, both in days.  

Assumptions: 

Q0 = 𝑄(𝑡)𝑡0
 =100% 

Qv = 𝑄(𝑡)𝑡1
= 98% 

Change in system performance X = Q0 – Q v = 2% 

T1 = (t1- t0) = (12-0) =12 days 

T2 = (t2 – t1) = (42-12) =30 days 

T1 + T2 =  (t1- t0) + (t2 – t1) = 42 days 

Documented mortality rate 2.5% 

The following equations were solved to estimate the resilience of the system as 

represented by the total impact on the system performance (i.e., the resilience triangle 

or the area under the curve) or expressed in percentage of the baseline (optimal or full) 

system performance: 

Loss of Function = System Impact = Resilience Triangle  = Ψ𝑙𝑜𝑠𝑠 =  
𝑋𝑇

2
= 42        

Total recovery effort: 

TRE = ∫ [𝑅𝐸(𝑡)]𝑑𝑡 = 
𝑡𝑓

𝑡0 ∫ [𝑄(𝑡)]𝑑𝑡
𝑡1

𝑡0
= (𝑄𝑡0

−  𝑄𝑡1
) =  100 − 98 = 2%   
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Resilience: 

R = ∫ [1 − 𝑄(𝑡)]𝑑𝑡
𝑡2

𝑡0
 = ∫ 1 𝑑𝑡 −  ∫ 𝑄(𝑡)𝑑𝑡

𝑡2

𝑡0

𝑡2

𝑡0
 = (t2-t0) -[Q(t0)- Q(t2)]   

= 42-[100-100] = 42      

Resilience: 

 R = = 
[𝑄(𝑡)]𝑑𝑡

42
 = 

98

42
 = 2.3% 

Resilience: 

𝑅 =  ∫ (
[𝑄(𝑡)𝑑𝑡

100( 𝑡2− 𝑡0)

𝑡1

𝑡0
) =

∫ [𝑄(𝑡)]𝑑𝑡
𝑡1

𝑡0

1( 𝑡2−𝑡0 )
= 

98

1(42)
= 2.3%                                                           

Resilience: 

R = ∫ [ 𝑄0(𝑡0)
𝑡2

𝑡0
− 𝑄(𝑡)] 𝑑𝑡 = ∫  𝑄0(𝑡0)

𝑡2

𝑡0
−  ∫ [𝑄(𝑡)]𝑑𝑡

𝑡2

𝑡0
  =100− 98 =  2%                        

Resilience as performance loss:  

Performance loss = = [100-98] = 2%                        

Change in performance: 

The change in performance = ∫ [𝑇𝑆𝑃(𝑡) − 𝑆𝑃(𝑡)]𝑑𝑡
𝑡𝑓

𝑡0
  

= ∫ 𝑇𝑆𝑃(
𝑡𝑓

𝑡0
𝑡)𝑑𝑡 − ∫ 𝑆𝑃(𝑡)𝑑𝑡

𝑡𝑓

𝑡0
 = 100 – 98 = 2%       

 

Based on the parameters defined in the model, several equations were used to 

calculate the resilience in the described model. The results are summarized in the 

following table: 
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5.13 Findings 

Table 12  Summary of equations applied 

 Equation Calculated 

Resilience 

Calculated 

System 

Impact 

Documented 

Change in 

Survival 

Comment 

1 
Ψ𝑙𝑜𝑠𝑠 =  

𝑋𝑇

2
 

 42 2.5%  

2 TRE = ∫ [𝑅𝐸(𝑡)]𝑑𝑡
𝑡𝑓

𝑡0  2% 42 2.5% Within 5% margin 

3 R = ∫ [1 − 𝑄(𝑡)]𝑑𝑡
𝑡2

𝑡0
  42 2.5%  

4 

R=  

2.3%  2.5% Within 5% margin 

5 
𝑅 =  ∫ (

[𝑄(𝑡)𝑑𝑡]

100( 𝑡2 −  𝑡0)

𝑡1

𝑡0

) 
2.3%  2.5% Within 5% margin 

6 R = ∫ [ 𝑄0(𝑡0)
𝑡2

𝑡0
− 𝑄(𝑡)] 𝑑𝑡 2%  2.5% Within 5% margin 

7 
Resilience=  

2%  2.5% Within 5% margin 

8 Change in performance= ∫ [𝑇𝑆𝑃(𝑡) −
𝑡𝑓

𝑡0

𝑆𝑃(𝑡)]𝑑𝑡 

2%  2.5% Within 5% margin 
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The following table lists the equations not applied to this model: 

 

 Equations Not Evaluated 

1 𝑞(𝜏) =  𝑑
�̆�

𝑑𝜏
  for all   [0, TR] 

2  = ∫
𝐴𝑃(𝑡)

𝑇
 𝑑𝑡

𝑡𝑛

𝑡𝑑
 

3 
𝑅 = (𝑡𝑛  − 𝑡𝑑) × 𝑃0( 𝑡0) − ∫ 𝑃(𝑡)𝑑𝑡

𝑡𝑛

𝑡𝑑

 

4 
 

5 R=  

6  

7  
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  A total of 15 equations were examined. Seven equations were not applied. Of 

the 8 equations applied, equations 1 and 3 calculate the system impact measure as 

identical to the assumed model parameter of 42. Equations 2, 6 and 8 calculate the 

resilience (as the change in system performance) as 2%, within a 0.5% difference from 

the documented results. The results of equations 4 and 5 are each 2.3%, also within a 

0.5% range. The results of all equations applied fall within a 5% range of the 

documented change in survival.  

5.14 Limitations 

This study appears to be among the earliest applications of theoretical 

principles and equations of resilience engineering to a real-world model of assessing 

the outcomes in an individual clinical situation.  

Some assumptions and limitations of this study: 

 

1. The resilience model is a mathematical approximation of the 

measurements and parameters influencing the clinical process. For 

instance, the projected survival trajectory of untreated aortic stenosis 

(the Corbin-Strauss trajectory) is described as a straight line, while 

actual, real-life data from population studies are almost always a 

curvilinear trajectory. The following diagram illustrates the Corbin-

Strauss trajectory in the case of medical management versus aortic 

surgical management (aortic valve replacement or AVR) for aortic 

stenosis. The trajectory describes a curvilinear line, with a variable 

slope of the curve depending on the time scale (days to months or 

years) 
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Figure 54 Corbin-Strauss trajectory of survival in aortic stenosis. Modified from: 

Rosenhek et al (2010). Used with permission. 

 

2. The slope of the Corbin-Strauss trajectory varies depending on age. 

Older patients exhibit a Corbin-Strauss trajectory line with a steeper 

slope, with the predicted survival decreasing more rapidly than in 

younger patients. The trajectory in our model is a mathematical 

construct, based on the assumption that patients have a mean age of 76 

years.  

Survival

100%

50%

1 3 5 Time	(Years)
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Figure 55  Corbin-Strauss trajectory in patients above and below 80 years of age. 

Modified from: Varadarajan et al (2006). Used with permission. 
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3. Several other factors also influence the shape and slope of the Corbin-

Strauss trajectory. An important factor in this regard is the ventricular 

function, typically estimated by measuring the ejection fraction or EF. 

Patient with congestive heart failure (CHF) often have a reduced 

ejection fraction and reduced survival expectancy. The presence of 

severe aortic stenosis further reduces the predicted survival in these 

patients, as reflected by the change in the shape and slope of the 

Corbin-Strauss trajectory: 

          

Figure 56  Impact of ventricular function on the Corbin-Strauss trajectory. Ibid. 
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4. The Corbin-Strauss trajectory of most chronic illnesses very often does 

not describe a regular straight or curvilinear pattern, especially when 

examined over an extended period of time, such as the patient’s 

lifetime or the last years of life. In clinical practice, the change in 

functional status due to chronic diseases has a widely variable course, 

depending on the individual patient’s phenotype and specific disease-

related and other co-existing factors.  

 

Figure 57  Change in functional status in chronic illness. Modified from: Baker and 

Heitkemper (2016). Used with permission. 

  

Functional	Status

Stable

Stable CrisisStableSevere	Illness
Recovery

Gradual	Decline

Injury

Time

50%

100%



 

138 

 

5. The Corbin-Strauss trajectory is continually affected by various life 

events, physiologic changes, interventions and complications and their 

treatment. Loss of loved ones, which have varying degrees of impact on 

functional status.  

 

Figure 58  Impact of different events on the Corbin-Strauss trajectory. Modified 

from: Reed, E., & Corner, J. (2013). Used with permission. 

6. The impact of these events on the change in functional status can be 

quite pronounced; especially in older patients with multiple co-

morbidities and therefore a higher operative risk. Hence, careful 

consideration (Müller-Mundt 2013, Metzelthin 2013) is always given 

for the benefits of surgery to better determine the benefit of the results 

of this high-risk intervention in light of the expectations of 

improvement of functional status and decreasing disability as opposed 

to just the prolongation of life.  

 

7. Due to the progressive impact of chronic diseases on the functional 

status, the need for pharmacologic and physical support and the level of 

independence of the patients, expectations for improvement of 

functional status are often limited.  

 

Reed E, Corner J

Defining the illness trajectory of metastatic breast cancer

BMJ Supportive & Palliative Care Published Online First: 23 July 

2013. doi: 10.1136/bmjspcare-2012-000415
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Figure 59  Different expectations for the result of intervention in different chronic 

diseases. Modified from Murray et al (2008). Used with permission. 

This is very common in clinical practice, especially in older patients or 

those with aggressive disease; the optimal outcome desired by the 

patient is not to return to the full functional status but rather to 

ameliorate their functional status as much as possible, reduce their 

dependence on support or palliate symptoms. The definition of the goal 

of management makes defining the resilience triangle challenging.  

 

8. In this model, the time of diagnosis is assumed to be the time of onset 

of symptoms. This assumption simplifies the calculations but does not 

relate to the real-world findings. There is a relative lack of data about 

functional status and survival in patients with known aortic stenosis 

who do not have symptoms. In fact, the decision to operate on such 

patients is an area of controversy (Amato 2001, Brown 2008, Monin 

2009) within the cardiothoracic surgical community and a motivation 

for this work. 

 

9. The expected probability of survival at the time of surgery in this study 

is assumed to be 98%, corresponding to an estimated average mortality 

risk of 2% for untreated aortic stenosis. This is based on approximation 

of published data from large, often multi-center, trials. According to 

our exploratory data analysis, the observed mortality rate at 42 days 

was estimated at 2.5%. In addition to being small, the study cohort 

describes a mixed group of patients across a range of ages, as explained 
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in the exploratory data analysis. This variation in age, as well as other 

factors, affects the survival probability or mortality risk for individual 

patients.  

 

10. Furthermore, the data set in this study did not include specific 

individual patient risk factors, which are fundamental in calculating the 

specific mortality risk for each patient, according to the Society of 

Thoracic Surgeons or the EuroSCORE risk scoring systems. These risk 

assessment tools have become the benchmark tools for evaluating 30-

day mortality risk after cardiac surgical procedures, and they continue 

to undergo modifications and improvements to their accuracy and 

individualization. Thus, the estimated probability of survival, reflecting 

the 30-day mortality risk used in this study should be seen as an 

approximate representation of the mixed risk of a heterogeneous group 

of patients. It is our expectation that future iterations, modifications and 

possible expansions of this model application will allow for inclusion 

of more patient factors and parameters, permitting a more precise 

assessment of mortality risk.  

 

 

11. This study is a retrospective, chart-review study, based on collecting a 

limited number of variables from the electronic health records of a 

small number of patients in a single center. This small data set, which 

decreases the accuracy of statistical analysis and limits the application 

of compensatory statistical methodology. The endpoint in this study 

was the recorded death at 30 days after aortic valve replacement 

surgery. In addition, the data does not differentiate between different 

types of operations for aortic valve replacement (i.e., open surgical 

approach versus the trans-catheter approach) As such, the endpoint 

does not differentiate between death due to surgery or due to other 

factors. This is extremely important in constructing a mathematical 

model to investigate the effects of surgical intervention on changing the 

mortality risk for specific patients or patient groups.  

5.15 Summary 

Real-life retrospective data were obtained from the medical records of a local 

cardiac surgery group. Exploratory data analysis was conducted and its results 

discussed.  The probability of survival at 30 days after aortic valve replacement was 

estimated. A model of the Corbin-Strauss disease trajectory was constructed to 
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quantify the probability of survival without valve replacement surgery. Predicted 

values for the probability of survival according to the Corbin-Strauss model and the 

exploratory data analysis were compared. A resilience engineering model was 

constructed to examine the probability of survival at 30 days after aortic valve 

replacement. A literature review was conducted, and a total of 15 different equations 

for calculation of the resilience of systems, both in terms of impact on the system 

performance (area-under-the-curve) or the percentage of change in system 

performance, were found. Eight different equations were chosen to be implemented to 

quantify the resilience response in this index case. The results of our calculation 

correlated within an acceptable range with the documented change in probability of 

survival as per the constructed Corbin-Strauss model as well as our exploratory data 

analysis. 
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CONCLUDING REMARKS 

6.1 Introduction 

The majority of the existing literature discusses resilience engineering in 

various fields and enterprises; including infrastructure, ecology, interconnected 

network systems and civil engineering. This study appears to be among the emerging 

works examining the increasing role of resilience engineering in medical decision-

making and the prediction of outcomes of interventions in terms of change in 

functional status and/or survival.  

The main goal of medical practice is to provide high-quality care at a 

reasonable cost. This means providing care that is safe, efficient, reproducible and 

reliable at optimal resource utilization, in terms of financial cost, personnel and 

equipment allocation and utilization. Since healthcare aims to maintain the health 

status for the individual, the group and the population at large, the goal of all 

interventions remains to provide the highest beneficial yield of interventions in terms 

of improvement in survival and/or functional status, based on the stated wishes and 

goals of the patient. These principles have established foundation for the national 

mandate for precision medicine, requiring the introduction of novel data analytical 

tools and methodologies towards the improvement of clinical decision-making 

towards providing recommendations and interventions that are tailored to the patient at 

specific points in time in their specific disease, which conform to the patient’s specific 

wishes, values and goals. 

Chapter 6 
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6.2 Discussion 

Considering the human organism is a highly complex “system of systems”, 

healthcare management can then be defined as measures taken to predict, prevent, 

detect and address disruptive events at different levels of this system (molecular, 

cellular, tissue, organ, system, individual, group or population). The overarching goal 

of all these measures and interventions is to maintain and/or optimize the function of 

the system at any level against the effects of disruptive events. Examples include 

maintenance of societal function in the case of an influenza epidemic, maintenance of 

mobility in the case of an acute fracture of the lower extremity bones, optimization of 

health status in the context of congenital cardiac defects, etc. Given these objectives, 

resilience engineering metrics present the healthcare professionals with valuable tools 

to reach these goals.  

Resilience engineering provides mathematical tools to predict and quantify the 

change in the system performance in response to disruptive events; thus, it is a 

platform for devising and selecting measures and interventions to address the known 

and/or expected effects of such disruptive events to prevent harm and maintain normal 

or optimal function. It is an added methodology to assist in effectively coordinating 

the allocation and utilization of personnel, skills, experience, technology, equipment, 

rules and regulations and finances against the effects of known or possible disruptive 

events. 

Resilience engineering metrics are always time-dependent estimates of the 

system performance, (e.g., the course of an injury or an infection or plans for end-of-

life care in geriatric population) or across the entire lifespan of the system (e.g., 

maintenance of health in specific populations, such as Turner syndrome patients, or 

optimization of health status in patients with single-ventricle physiology). Since 
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medicine deals primarily with human subjects, who sustain the effects of disease and 

injury and stand to benefit from diagnostic and therapeutic interventions, the 

importance of quantifying the benefit of the intervention for each patient cannot be 

overstated. Thus, the emerging guiding principle of patient-centered care, based on 

patient-empowered decision-making has become central to the formulation and 

implementation of a management plan, with patients’ interests and wishes at the 

foreground. In engineering terms, resilience analysis of the complex systems in 

healthcare must focus on engaging the ultimate stakeholders, i.e., patients. The 

formulation and implementation of a patient-specific, disease-specific, time-dependent 

management plan is the definition of precision medicine.  

This correlates well with the recently introduced  concept of “endogenous 

preference”, which describes the level of system performance desired by the 

stakeholder at a specific time, especially in the context of an actual or projected 

disruptive event. It is often challenging to present patients and their families with 

easily quantitative models of the risk versus benefit of such interventions that are 

tailored to their specific condition, in terms of survival and quality of life. The same is 

true in the case of professional organizations and regulatory agencies considering or 

examining scientific evidence to provide recommendations for safe, effective, reliable 

and scientifically sound clinical practice guidelines. This is especially relevant in the 

situations where experimental or even observational evidence is insufficient, as in the 

cases of rare or incompletely understood conditions. Resilience engineering can 

provide helpful modeling of the disease course and the projected effects of 

interventions on survival and quality of life. 
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 The current body of scientific literature in resilience engineering grants insight 

into the study of past experiences of disruptive events and the analysis of the system 

responses to the type, magnitude, duration and quality of the event. The study of the 

available resources and the processes that were recruited to cope with the effects of 

disruption provide the necessary data for quantifying the system’s potential for 

adaption (“adaptive reserve”) and is fundamental for assessing the system’s response 

to future disruptions by the same events or variations thereof. This is also the basis for 

assessing how far the system resources can be “stretched” before failing. Repeatedly 

stressing the system or triggering its adaptive mechanisms into multiple, successive 

adaptive cycles can precipitate system decompensation, where the time needed by the 

system to recover increases (critical slowing down). This is indicative of the 

progressive exhaustion of the system’s adaptive ability and is nearing the point of 

“irreversible” failure, and it is also an indicator of the high system impact or loss of 

function due to disruptive event(s). The quantification of this process is very helpful in 

understanding and modeling clinical situations characterized by multiple relapses and 

recovery phases.  

6.3 Conclusions 

This work has achieved its main objective, which has been to formulate a 

novel model based on the Corbin-Strauss disease trajectory model and resilience 

engineering.  

The first sub-objective has been reached through the identification and 

formulation of a mathematical model of a disease-specific Corbin-Strauss trajectory.  
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This model was further quantified by the implementation of the results of 

analysis of data obtained from real-world patient records from the local chapter of the 

national cardiac surgery database.  

This has offered us the opportunity to estimate the probability of survival 

relative to the specific time points along the disease process, as defined by the Corbin-

Strauss trajectory specific to the phase of disease management being examined, 

thereby achieving the second sub-objective. 

A resilience engineering model was then constructed to predict the change in 

the probability of survival as a result of the intervention. The model was tested using 

established equations from the resilience engineering literature. 

The results of the Corbin-Strauss model and the resilience engineering model 

were compared to the observed results from the literature. The results of our models 

fell within an acceptable range from the published results from national large-scale 

studies. This has achieved the third sub-objective. 

We conclude that this novel hybrid model for clinical decision-making, based 

on the Corbin-Strauss model and resilience engineering is both feasible and fairly 

accurate. 

6.4 Recommendations 

 

In 1986, the manual of preoperative and postoperative care published by the 

American College of Surgeons included a chapter with useful pearls of advice for 

young surgeons and surgical trainees as they launch their clinical career. One such 

statement advised the surgeon to “avoid surprises!” 
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Medical practice in general, and surgical practice in particular, involves 

making decisions dealing with the highly complex, high-risk environment of disease 

effects on the complicated system of the human organism. Instead of focusing (in 

practice, metrics, rules, policies, guidelines and regulatory and accountability 

measures) on adverse outcomes or errors as the definition of safe practice, the goal has 

shifted to measures, policies and methodologies designed to promote the maintenance 

of optimal function, based on the wishes and goals of the stakeholder. In other words, 

the focus is changing from “what goes wrong” to “what is going right” as the basis for 

monitoring and adjusting system performance.  

Resilience engineering presents valuable tools to further our knowledge and 

expertise in the following areas where much research is still needed: 

 How diseases affect the function of human or healthcare systems, 

 How human and human-technical systems maintain function or fail 

to adapt, 

 What mechanisms need to be developed, identified or supported to 

ensure optimal system function at all levels and in all 

configurations, 

 How to predict and anticipate risks and surprises in order to prepare 

the system to manage their effects, 

 How to improve system architecture and functional relationships to 

better adapt to disruptive events. 

 

Whether on the individual human system level or the complex human-socio-

technologic healthcare system level resilience engineering offers valuable tools for the 

maintenance of sustained optimal system performance that produces the best yield for 
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patients (in terms of favorable outcomes), healthcare teams (effective, cohesive, high-

performance teamwork with minimal or no tension or disruption) and healthcare 

delivery systems (affordable, cost-effective care that adapts for emergency situations 

and significant disruptions). This relies on the implementation of the four basic 

qualities of resilient systems: 

1. To continuously monitor system performance in terms of meeting the 

stated goal at the time, 

2. To respond to expected and unexpected changes in performance, 

3. To learn from successes and failures in system performance in terms of 

how it meets its goal, 

4. To anticipate short- and long-term changes that can have a disruptive 

effect on the system. 

6.5 Future Directions 

Resilience analysis is not limited to resilience as “rebound”, i.e., the 

assessment of system function and how it changes over time in response to disruptive 

events and interventions. In fact, the study and application of resilience engineering 

provides valuable insights into “graceful extensibility” or the basic architecture of the 

system as it is designed to adapt and compensate for the loss of function due to 

disruptive events. This particular area examines the availability and recruitment of 

anatomic and physiologic redundancies and ‘back-up” systems (“system reserves”) 

that can recover function during and after disruption. Examples include neural area 

crossovers in cases of stroke, muscle transfer in cases of limb injury, lung ventilator 

reserve in cases of severe respiratory failure, etc.  
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A key to graceful extensibility is predictive modeling: Similar to the virtual 

reality constructs in flight simulation, the introduction of low-, intermediate- and high-

impact events in a mathematical or computer model of system failure is essential for 

the design and implementation of adaptive and responsive structures and processes 

that can or should be activated in such events.  These metrics of system performance 

are based on incorporating the probability of occurrence of disruptive events. These 

models examine system performance and are designed to predict the probability and 

impact of a disruptive event (either as an anticipated effect based on system 

architecture or as a random event) that can have a catastrophic impact on the system 

structure and function. Resilience engineering models can provide an additional layer 

of certainty in anticipating such serious events, such as acute coronary syndromes due 

to sudden coronary artery stent thrombosis or acute aortic dissection.  

These two conditions are examples of catastrophic, often life-threatening 

events for which current statistical models are sometimes insufficient in predicting the 

risk, which is reflected in the inadequate, incomplete or generalized and vague 

recommendations in the literature. Utilizing data from the scientific literature and 

experimental studies, quantification of the effect of each of the most important factors 

affecting the structural integrity of the aortic wall (through organization and 

maturation of its structural proteins collagen and elastin) is a prerequisite to calculate 

the Young modulus relative to each factor. Data from longitudinal and experimental 

studies can be utilized for quantification of the change in Young modulus due to 

growth, the force of pulsation, chronic hypertension as well as other metabolic 

conditions. This will facilitate the estimation of the resilience of the aortic wall 

relative to specific time periods in the life of specific patients. Thus, the risk of acute 
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aortic dissection, typically affecting young and otherwise healthy patients, can be 

predicted as a random event.  

. As is the case with investigating any complex system, the study of failure is 

fundamental to ensuring success. In fact, failure is the other normal alternative 

outcome of the system performance. Understanding how, when and why complex 

systems fail and the effects of system failure on the connected systems and 

environment is essential for maintenance of health and safety for individuals, groups 

and the population at large. This is dependent on a thorough understanding, analysis 

and modeling of the entire process line and the sequence of events along its trajectory 

for the system as a whole or for any specific component. Events that alter the optimal 

sequence in this trajectory are plotted against time, and their effects on the system 

performance are noted, as is the degree of impact they have on the overall outcome.  

Failure of a system is the result of an error. An is defined as an unexpected or 

unintended event that alters the course of the process examined. Thus, an error is a 

function of the system architecture; some systems exhibit a higher risk for errors: the 

“Vulnerable System Syndrome”. Woods reminds us that adverse outcomes (“errors”) 

result from the brittleness (reduced robustness) and complexity (and thus hidden or 

unrecognized interdependencies) of the system rather than an error or the abnormal 

behavior of one of its components. In ensuring successful performance of the system, 

the probability of an error should be—ideally—reduced to zero. Resilience 

engineering has emerged as a more suitable approach in complex, dynamic, time-

dependent systems as opposed to other linear-based risk assessment methodologies. 

This is by definition, since resilience analysis requires the understanding of how 

different system components respond to disruptions (unexpected events or “errors”). 



 

151 

 

One of the properties of resilient systems is robustness, or the ability of the system to 

adjust its performance to changes and/or disturbances. In other words, it is a measure 

of the system to absorb perturbations to maintain performance. This is especially 

important if the perturbation is not well modeled, thereby challenging the system’s 

adaptive capacity. Thus, resilience engineering offers a useful platform for the 

identification of critical parts or sequences in the system that can predict specific 

abnormal behavior, which is a valuable tool for predicting errors, assessing and 

quantifying their impact on system function, and devising and implementing 

mechanisms to minimize their occurrence. In addition to identifying the critical 

structural and process vulnerabilities of the system, resilience analysis is also useful in 

identifying and/or predicting the time as well as the frequency at which these errors 

are generated, thus determining their projected impact on the system performance. 

This is especially important in situations when some seemingly random events (e.g., 

coronary thrombosis, cerebrovascular embolism, intimal tear of the aorta, etc.) can 

have significant or life-threatening consequences. In healthcare terms, this means an 

increased capacity to predict structural and/or functional errors in molecular pathways, 

organ function or time-dependent processes (e.g., impact of genetic errors on 

embryonic development or metabolic errors on ageing) and predict their effect on the 

health of the individual. 

By providing valuable insights and models into how complex human, human-

technical or socio-technical systems function or fail, resilience engineering is proving 

to be beneficial for healthcare planning, decision-making and interventions. It is a 

novel, active area where clinical medicine, healthcare and engineering (especially 
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biomedical engineering) join efforts towards their common goal to further advance 

human health and well-being. 
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and Templates in IRBNet) 
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