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ABSTRACT

Analysis and Modeling of Inelasticity in Tendon: Viscoelasticity,

Damage, and Plastic Deformation

Tendons are soft connective tissues that connect the muscular system to the

skeleton. Tendons are abundant in human body and their primary function is to en-

able transmission of mechanical force. These tissues are prone to overuse and disease.

To understand the relationships between tendon’s function and disease, one needs to

clearly understand the mechanical behaviors in a physiological context. Despite decades

of studies on tendon, a comprehensive framework for studying tendon mechanics that

addresses its inelastic mechanical response in relationship to its structure is missing.

The objective of this dissertation was to analyze and model the inelastic be-

haviors in tendon, which can be categorized into viscoelasticity, damage, and plastic

deformation, and study their underlying mechanisms by using state-of-the-art mechan-

ical testing, constitutive modeling, and micro-structural imaging. I addressed this gen-

eral objective through four specific aims: (1) developing a comprehensive and unifying

structurally-inspired modeling framework, reactive inelasticity (RIE), that describes

the major inelastic mechanical behaviors of tendon using kinetics of molecular bonds;

(2) evaluating damage and plastic deformation as the potential mechanisms of tendon

softening behavior during axial loading by using micro-mechanical experiments on tail

tendon and RIE modeling; (3) evaluating the poroelastic parameters of tendon, partic-

ularly hydraulic permeability, using lateral osmotic loading and biphasic mixture finite

element modeling; (4) visualizing and quantifying the 3D microstructure of tendon

using serial block-face SEM, and providing a model for interfibrillar load transfer.

v



This study is innovative in comprehensively addressing the mechanisms of inelas-

ticity in tendon by separately identifying and modeling inelastic behaviors, providing

a unifying theoretical explanation for the underlying mechanisms, elucidating novel

structure-mechanics relationships, and calculating the inelastic mechanical properties.

The outcomes of this study provide novel understanding of tendon mechanics and its

relationships to tendon’s multiscale structure. The results and tools developed in this

dissertation can be used in further studying structure-mechanics relationships in ten-

don and other tissues, optimizing treatments for pathologies, and designing engineered

tissues and materials.
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Chapter 1

INTRODUCTION

1.1 Tendon Etymology and Historical Significance

Tendon as a word can be traced back to medieval Latin tendōn, which is a

variation of the Greek word ténōn meaning sinew, a single cord or thread, power, or

mainstay [141]. The spelling with -d- occurs by association with Latin tendere that

stands for stretch [49]. As the verbal meaning indicates, the main function of tendon

is to be stretched and stream power, which occurs in a physiological setting through

transferring muscular contraction to the limbs.

Tendon has been an important material throughout human history. The pre-

industrial cultures have used tendon (sinew) as a strong and reliable material for making

bows for hunting, and tailoring durable clothing; even some cultures, such as the Inuit

people of Greenland, relied heavily on sinew as fixtures and ropes for making hand-

tools, tents, and sleds, which is because of the lack of availability of other sources of

fiber material such as vegetation [18, 154]. Tendon is an ancient-time super-material,

which is reflected in mythology and religious texts, as an example, the biblical hero,

Samson’s hands were tied with sinew because of the lack of a stronger material known

at the time [103]. Due to the strength and importance of tendons, tenotomy or excision

of tendon, was used as a form of punishment or degradation [103]. A famous example

is the Greek hero Achilles mentioned in Homer’s Illiad, which was only vulnerable at

his calcaneal tendon or commonly referred to as the Achilles tendon.

1.2 Clinical Significance

Every human movement engages at least one tendon. Disease and injury to ten-

don can significantly limit movement and cause pain. Tendons are prone to infectious
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Figure 1.1. Cultural and historical significance of tendon: (A) deer tendon (top)
and sinew rope made of it (bottom) [186] (B) an Inuit hunter using a sinew-made harpoon
line [63]. (C) An ancient Greek vase painting (540 BCE) depicting the a scene of death of
Achilles at the Trojan war, notice the arrow slimming through Achilles’ heel [225].

disease, and more commonly, they are subject to mechanical loading-induced injuries.

Due to the nature of human activities, tendons undergo complex mechanical loading.

These activities are often necessary to maintain a healthy tissue; however, they can lead

to acute and chronic disease that result in pain and dysfunction. Hence, the tendons

are medically significant. To provide further context about the clinical significance,

I review some of the infectious disease and injury-related pathological conditions in

tendon.

Tendons are prone to a range of infections caused by micro-organisms, however,

they are not common. Bacterial infections occur in tendon, such as purulent tendinitis

or tenosynovitis of the surrounding sheath of tendon [148]. This infection may be

caused by an animal bite, and the symptoms of infection may present with fever,

fatigue, and local tenderness [103]. In rare cases, tendons may also develop soft tissue
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sarcoma (clear-cell sarcoma or CCS) that is an aggressive cancerous tumor with “5-

year and 10-year survival rates of localized CCS around 60-70% and 40-50%” [39].

In general, the disease in tendon that are not induced by a direct mechanical injury

are not common, however, their development might be the sign of a serious medical

condition and would need immediate treatment.

The most common tendon disease are the ones related to injury and mechanical

loading. Acute rupture of tendon is common, and often occurs in the ankle, shoulders,

and the knee. The rupture can be due to an incident of high loading during the course

of a simple exercise or an automobile accident. Although these cases may be surgically

repaired, rate of success and recovery varies [25,62,229]. Even an incident of overloading

which does not result in rupture can result in complications. The acute overloading

of tendon can result in inflammation or tendinitis that is presented with pain [19].

The other common tendon-disease is chronic tendinosis that is the result of repeated

injuries to tendon that causes microstructural damage to the tissue. These may be due

to a repeated heavy use of tendons in sports or other physically-demanding activities.

Common examples are tennis elbow (lateral epicondylitis), and jumper’s knee (patellar

tendinosis). Despite this pathological classification, the symptoms and causations of

tendinosis and tendinitis can be overlapping and may be confounding each other, and

even tendinosis can lead to tendinitis, or vice versa. Hence, the prefered overarching

terminology for the mechanical loading induced injury is tendinopathy. A tendinopathic

tendon may show swelling, microstructural damage, and change of color (to yellow) due

to increased vasculirisation [59, 119, 203]. All of the aforementioned conditions can be

disabling, because the pain and dysfunction can make normal daily tasks unattainable.

In order to understand these disease, it is essential to understand the mechanisms of

the physiomechanical response of tendon.

1.3 Engineering Significance

Tendon’s common diseases and injury are related to mechanical loading. Un-

derstanding the mechanism of material’s response to loading and their damage is an
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engineering task. This can be explained in a broad sense, with the concept of struc-

tural damage. From a general engineering perspective, structural damage is an inelastic

(energetically irreversible) behavior that “degrades” the material properties, such as

stiffness, and hence causes a deterioration, and eventually loss of mechanical func-

tion that can lead to immobility and further complications. However, damage is not

the only inelastic behavior in tissue; viscoelasticity, and plastic deformation are sepa-

rate inelastic behaviors that have overlapping effects and physilogical mechanisms with

damage. Thus, these mechanisms should be studied by considering their interacting

effects and their structural basis across and along the different length scales. Studying

the mechanisms of inelastic behaviors by using analytical and engineering techniques is

essential in understanding the clinical disorders, designing therapeutic strategies, and

engineering artificial tissues.

1.4 Overview of the Dissertation

In this dissertation, theoretical modeling, experimental testing, and structural

imaging approaches are used for analyzing and modeling of the inelastic behaviors

of tendon. In Chapter 2, the background of the current knowledge about tendon’s

structure, and the the experimental and theoretical literature on tendon and tissue in-

elasticity is reviewed. This is followed with a description of the aims of the dissertation

and research objectives in Chapter 3. In Chapter 4, I present a structurally-inspired

continuum mechanics theoretical framework, reactive inelasticity (RIE), for modeling

fibrous tissue inelasticity based on reactive molecular kinetics. In Chapter 5, the RIE

is applied to experimental mechanical behavior of tendon to assess the potential of

damage and plastic deformation as mechanisms of inelasticity in tendon. Chapter 6

is focused on the fluid-flow-dependent viscoelasticity of tendon, where we use osmotic

loading and biphasic finite element modeling to calculate tendon’s poroelastic mechan-

ical parameters, particularly hydraulic permeability, which are important aspects for

understanding the role of fluid-flow in the mechanical response of tendon. In Chap-

ter 7, we study the micro-scale structure of tendon and its implications on mechanical
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behaviors by quantifying the 3D micro-scale structure of tendon using serial block-face

scanning electron microscopy (SBF-SEM), and providing an interfibrillar load-transfer

model based on helical fibrils and finite element analysis. I provide conclusions and

recommendations for future studies in Chapter 8.
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Chapter 2

BACKGROUND ON TENDON STRUCTURE-MECHANICS
ANALYSIS AND INELASTICITY MODELING

2.1 Overview

The focus of this chapter is the background of the structure and mechanics of

tendon. I provide an overview of the fibrous structure of tendon and its composition.

Since tendon structure is an active subject of research, we only focused on providing

a general overview of the literature. The chapter continues by dissecting the major

mechanical behaviors of tendon and the structure-mechanics relationships. I provide

the experimental accounts for each mechanical behavior, and their analysis. As de-

scribed earlier, the majority of tendon’s mechanical behaviors are inelastic in nature,

hence, I reviewed the modeling framework for analysis of inelasticity with a focus on

continuum mechanics and structurally-inspired models. I end this chapter by posing

the open questions and the research objectives of this dissertation.

2.2 Biochemistry and Hierarchical Structure

Tendons are one of the most abundant orthopedic tissues in human body and are

responsible for transmission of mechanical force from muscles to the skeleton. Tendon

is a hydrated strucutre with a hierarchical solid matrix structure (Fig. 2.1A). More

than 60% of its mass is water, and the rest is a strong fibrous matrix composed of

type-I collagen (65-80%), and various other proteins such as type-III collagen, elastin,

proteoglycans [109].

Collagen macromolecules (300 nm length 1.6 nm diameter [30]) are made of

three helical polypeptides chains (two α1 and one α2 chains) known as tropocollagen
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molecule [57,126] (Fig. 2.1B). These molecules are cross-linked to one another by sev-

eral mechanisms including enzymatic and non-enzymatic (e.g., advanced glycation end

products AGE) cross-linking (Fig. 2.1 B) [70]. The mechanical properties of collagen

structure are sensitive to the density of these cross-linkings, and their stability is a

function of temperature and external loading [30, 47, 227]. Other protein components

of tendon extracellular matrix such as elastin also are shown to have some potential

role in the mechanical response of tendon [33,85], however, this response is dominated

by collagen-I fibrous structure.

The assembly of collagen-I molecules makes collagen fibrils (Fig. 2.1A,C). Col-

lagen fibril’s diameter ranges from 50 to 500 nm [109]. Collagen-I fibrils have a band

pattern (D-period ∼ 65 nm), which is the signature of the type-I collagen structure.

Some electron microscopy analyses have indicated that collagen fibrils are subject to

structural damage such as kinks, when they are subject to high stretch (Fig. 2.1 D).

These micro-scale fibrils surround the tendon cells, tenocytes, thus their interactions

within the fibrillar network and with cells has a potential importance in the physiome-

chanical response of tendon (Fig. 2.1 A).

The next length-scale includes fasciles that can be visually seen without equip-

ment (Fig. 2.1 A). Each tendon is made of several fascicles that have a sub-millimeter

diameter (Fig. 2.1 A) (e.g., about 500 µm for rat tail tendon fascicles). The fascicles

are arranged in a complex interwoven network that in response to mechanical loading

show structural sliding, and rotational deformations, indicating an overall heteroge-

neous structure with underlying helical structures [222].

2.3 Mechanical Behavior

Tendon’s main mechanical function is during its axial loading by muscles. This

induces a complex mechanical behavior, described below, that is closely tied to its

fibrous structure. Tendon’s prominent mechanical behaviors include (Fig. 2.2): (1)

stress stiffening at low deformation known as a toe-region response, (2) softening at

higher deformation, (3) stress relaxation during sustained deformation, (4) creep and
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AGECollagen Molecule

B

Figure 2.1. (A) Schematic illustration of the hierarchical structure of tendon, adapted
from [215] (B) Molecular cross-linking of collagen showing two of the possible types of cross-
linking: Enzymatic and advanced glycation end products (AGE) [70]. (C) Longitudinal
(top) and transverse (bottom) cuts of fibril structure, showing radial packing and subfibrillar
structure due to crosslinking orientation (adapted from [95]) (D) SEM images of non-damaged
(top) and damaged (bottom) collagen-I fibrils (adapted from [228]) scale bar is 500 nm.

rupture under sustained force. These nonlinear inelastic mechanical behaviors are

the key to understanding the structure-mechanics relationships in tendon. In this

dissertation, I will refer to these behaviors at many occasions, thus, in the following, I

review some of the key literature on each behavior.
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Figure 2.2. Schematic illustration of the mechanical behaviors of tendon(A) Stress
stiffening and softening during ramp loading, (B) Unloading with damage (blue dashed) or
plastic deformation (red dashed), (C) Stress relaxation during sustained deformation (D)
Creep during sustained force

2.3.1 Stress stiffening or toe-region response

This response is a typical behavior of fibrous soft tissue (Fig. 2.2A). It results

in a J-shaped stress-strain response that is typically observed in axial mechanical tests.

Several theories have been proposed to explain this non-linear mechanical behavior.

The common interpretation is fiber-recruitment, which suggests that the stiffening is

due to uncrimping of collagen fibrils, and over the course of mechanical loading the

fibrils gradually straighten and eventually fully stretch marking a transition from the

toe-region to the linear region of the stress response [80]. Alternative theories suggest

that the micro-mechanical realignment and bending of tortuous fibrils cause such be-

havior [224]. The toe-region is considered the low-load region of mechanical behavior

and its transition to linear regime followed with softening is potentially correlated with

structural damage, thus this transition and the toe-region response provide important

insights into the role of fibrillar structure in tendon’s mechanical response [120].
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2.3.2 Softening at higher deformation

Softening at higher deformation occurs upon loading beyond the toe-region and

linear-region, and is evident as a progressive decrease in the tangent modulus of tissue

(Fig. 2.2A). This behavior can be explained based on an inherent decrease of material

stiffness, also known as damage, or a shift to the unloaded reference configuration of

material, plastic deformation(Fig. 2.2B). However, this behavior is dependent on the

loading history, and is highly nonlinear, thus, identification of the extent of each of

these mechanisms is difficult [1, 164,210]. This question will be addressed at length in

Chapters 4 and 5.

2.3.3 Stress relaxation during sustained deformation

During sustained boundary deformation tendons experience an asymptotic de-

cay of stress to equilibrium Fig. 2.2C) [240]. This phenomena is commonly known

as stress relaxation, and it is typically observed in soft tissue. Stress relaxation is a

viscoelastic behavior. The time-to-equilibrium in tendon is dependent on deformation,

and can vary from the order of minutes at small strains, up to to hours at higher

deformations [188,193,216]. Stress relaxation is seen both under a constant sustained

deformation level and under cyclic loading between two levels of deformation which

also presents as a hysteresis stress-strain behavior (Fig. 2.2B) [210].

The viscoelastic behaviors cause dissipation of energy, hence they can be cat-

egorized as inelastic behaviors. Two structural mechanisms are likely to mediate the

dissipation of energy: fluid exudation through the fibrous structure, and intrinsic vis-

coelasticity of the solid matrix [35, 170, 245]. However, the extent of each of these is

not yet known. A framework for modeling solid matrix viscoelasticity will be provided

in Chapter 4, and the poroelastic behavior will be addressed in Chapter 6.

2.3.4 Creep and rupture under sustained force

Creep is another inelastic mechanical behavior in tendon that occurs during

sustained force loading (or engineering stress) Fig. 2.2D) [117, 219]. Similar to the
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viscoelastic stress relaxation, creep behavior may result in an equilibrium strain state

under both constant and cyclic levels of force, however, unlike relaxation, at high levels

of sustained force the equilibrium state may not be achieved, and the tissue can become

unstable and deform until rupture (Fig. 2.2D). As an example, it has been shown in

Wallaby tail tendon, that 10 MPa of sustained stress can cause creep rupture in a

matter of hours, where the yield stress is a much larger number of 144 MPa [233].

The mechanisms of the viscoelastic part of this mechanical behavior, similar to

stress relaxation, can be attributed to the exudation of fluid, and intrinsic viscoelastic-

ity of solid matrix [171]. Further, several structural analyses have also shown that creep

loading can cause localized deformation in the collagenous structure, known as discrete

plasticity, which may explain the creep rupture [86]. However, the the mechanisms of

viscoelastic creep and creep rupture are not yet well understood. While, creep will not

be directly addresses here, the modeling framework provides techniques to study creep

in future work (Chapter 8)

2.4 Structurally-inspired Modeling for Tissue

The best mechanical models are the ones that relate the structure and physiology

to the mechanical behavior of the tissue. Although the phenomenological models are

effective in describing the mechanical behaviors in a wide range of observed behaviors,

often a physical interpretation is hard or even impossible to achieve. Hence, much

efforts have been taken to develop models with physiological and structural bases.

One of the common methods for incorporating the fibrillar structure of tissue for

modeling multiscale mechanical behavior is by using a representative volume element

modeling (RVE). As an example, the discrete fiber network model uses volumes of

fiber networks generated according to stochastically determined parameters [76], and

the overall finite element problem is solved by the means of volume-averaged stress

from each RVE [196]. The heterogeneity and the spatial distribution of the parameters

can be incorporated into these models, based on image-analysis of fiber alignment

[246]. The structural parameters of the RVE may also be controlled by mathematical
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parametrization [26, 175]. However, incorporating structural details comes with the

cost of the complexity of the system and more expensive computation.

An alternative method is structurally-inspired modeling that uses both the bene-

fits of phenomenological models and has a sound structural explanation. Structurally-

inspired models have been used by many investigators to address both elastic and

inelastic mechanics of tissue. As an example, the shear-lag model is used to explain

microstructural sliding, stiffening, and softening behaviors of tendon [2,216]. Another

example of structurally-inspired modeling is the use of kinetics of reactive molecu-

lar bonds to model mechanical behavior of tissue. The applications of this modeling

framework include reactive viscoelasticity [10], reactive damage [151], and growth/re-

modeling [8]. These models use the structural features of tissue and observable state

variables, and also allow for a continuum mechanics framework formulation. In this

dissertation, I continued the work on reactive mechanics and generalized it to a compre-

hensive framework for modeling tissue inelasticity, reactive inelasticity, with theoretical

detail included Chapter 4, and applied it to the experiments on tendon in Chapter 5.

2.5 Modeling Frameworks for Inelastic Mechanics Analysis

Tendon’s mechanical behaviors, as described earlier, are majorly inelastic; hence,

I review the common inelasticity modeling frameworks for analysis of tendon mechanics

and their essential formulation.1 We first need to establish the groundwork of general

continuum mechanics, which will also provide clarity about our notation. We first re-

view the formulation of the classic continuum damage mechanics (CDM). The section

continues with a brief overview of the mixture theory by focusing on the biphasic mix-

ture modeling, and the chapter finishes with examples of structural and structurally-

inspired models for studying tissue inelasticity.

1 At this point, a reader with good knowledge of continuum mechanics may choose to skip to Chapter 3
without missing the continuity of the dissertation.
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2.5.1 General Continuum Mechanics

If χ(X) describes the positions of the material points in spatial coordinate as

a function of its reference position (X), the deformation gradient is defined as

F =
∂χ

∂X
(2.1)

For a general deformation, F is a second order tensor without any requirement for

symmetry; however, for an admissible deformation the determinant will be positive-

definite detF > 0. Subsequently, the right Cauchy strain strain tensor is derived as

C = F TF (2.2)

Where, unlike F , C is a symmetric tensor. It should be noted that, in this dissertation

we will use the tensor notation unless otherwise mentioned; and a ‘bold-face symbol’

indicates a tensor variable. It goes without saying that this definition also includes the

vectors, as rank-one tensor variables.

Now, consider the Helmholtz free energy density (Ψ) for a material during an

isothermal process. A useful consideration is when the material is hyperelastic, which

indicates that there is a one-to-one relationship between state of deformation and en-

ergy. This idealized concept has the practical importance of being useful for simplifying

the description of nonlinear elastic behavior and providing a basis for more complex

continuum models. Due to the principal of objectivity, the free energy should not be a

function of coordinate system, thus the free energy for a hyperelastic material can be

written as a function of the strain tensor invariants [205]

Ψ(C) = Ψ(I1, I2, I3) . (2.3)

Where are I1,2,3 are the invariants of C:

I1 = tr(C), I2 =
1

2

[
tr(C2 − tr(C2)

]
, and I3 = det(C) . (2.4)
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It is common to include other pseudo invariants to this set of invariants to account for

anisotropic material behavior, which can be related to the stretch of fibrillar component

and invariants of higher order structure tensors. [205]

The second Piola-Kirchhoff stress for a hyperelastic material, under isothermal

deformation can be written as [211]

S = 2
∂Ψ

∂C
=

(∑
i

2
∂ψ

∂Ii

∂Ii
∂C

)
(2.5)

Also, it can be shown that the Cauchy stress tensor is [89]

T = J−1FSF T (2.6)

2.5.2 Continuum Damage Mechanics

In classical continuum damage mecahnics (CDM), typically a damage term (0 <

D < 1) is introduced as an internal variable to modify material behavior. The idea

of damage term was first introduced and used for solving the creep damage problem

of metals [105]. Continuum damage mechancis later evolved for different applications

in engineering including fracture mechanics, and fatigue of composite material [113,

231, 232]. Recently there have been some studies applying the idea of CDM to tissue

mechanics including mechanics of cardiovascular [16], tendon [149, 230, 233], ligament

[191, 220], intervertebral disk [92], and articular cartilage [118] tissues. CDM models

usually consist of a hyperelastic reference material state which is altered to the damaged

state by damage term (D). More elaborate models also have been developed such as

viscoelastic [161,202], and plastic and viscoplastic damage models [202].

Using an appropriate scalar function for D, it is possible to account for non-

linear softening. Further, it should be noted that for a hyperelastic material there is

a unique one-to-one relationship between a given deformation and the state of energy

and consequently stress, however, when damage is accumulated, this relation should
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be modified. It is assumed that during a damage-inducing loading the material pro-

gressively loses its ability to absorb strain energy in a non-recoverable way. As a result,

the one-by-one relation does not hold anymore. However, this process will still obey

the laws of thermodynamics, and thus the dissipation of energy should maintain the

conditions of the second law for a non-reversible process. Using the damage term as

an internal variable [34], one can modify the Helmholtz free energy as the following:

Ψ(C, D) = (1−D)Ψ0(C) (2.7)

As a result, using the Clasius-Duhem equation as one form of the second law of ther-

modynamics [34, 89] the dissipation of energy due to damage is

D =
1

2
S : Ċ − Ψ̇ ≥ 0 (2.8)

Where D is the energy dissipation per unit volume. For any physically admissble

process the following relations will hold [ [34]

1

2
S : Ċ − (1−D)

∂Ψ0

∂C
: Ċ + Ψ0Ḋ ≥ 0 (2.9)

This inequality should stand for any physically admissible process. As a result:

S = 2(1−D)
∂Ψ0

∂C
= (1−D)S0 , and Ḋ ≥ 0 (2.10)

Two main points can be taken from these relationships. First, the stress can be derived

from a scalar energy equation, which is similar to the hyperelastic case, however, it is

multiplied by the damage term (1−D) that is always less than one. Second, since the

energy density has a positive value, the rate of damage (Ḋ) has to be greater than or

equal to zero to meet the conditions of the second law of thermodynamics, meaning

damage increases if the system does not heal. This method provides a framework for

using the common formulation for hyperelastic constitutive relations in combination
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with damage that can account for irreversible softening of the system. It should also be

added, that the scalar D applies to isotropic damage case, however, for a generalized

anisotropic case a tensor definition might be necessary, which, more or less, would

follow a similar theoretical setting [104].

2.5.3 Mixture Theory and Biphasic Modeling

As described earlier, tendons and other soft tissue, are complex hydrated biopoly-

meric structures. To address the mechanics of these complex systems, mixture theory

is a powerful framework that has been successfully applied to modeling poroelastic-

ity [143], with inert and charged solutes [97,115], multi-generation material [12], growth

and remodeling [8,11], reactive solids [10,150], and complex combinations of soft tissue.

The underlying assumption in mixture theory is to treat the material as a continuum

with multiple phases of material co-occupying the space. That is, for an infinitesimal

volume dvol

dm =
∑
i

dmi =
∑
i

ρidvol , (2.11)

where, dm is the total mass, dmi is the mass of each phase (with superscript i), and

ρi is the apparent density of phase ‘i’, which is defined as:

ρi =
dvoli

dvol
ρi0 (2.12)

where ρi0 is the intrinsic density of the phase, and dvoli

dvol
is the volume fraction of the

phase φi:

φi =
dvoli

dvol
(2.13)

Hence, by assuming that there is no void space in the continua, one can easily show

that ∑
i

φi = 1 . (2.14)

A mixture can be generalized into having multiple phases, and based on the number

and types of phases one can formulate biphasic [143], triphasic [115], and in general
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multiphasic mixtures, which have a significantly more challenging mathematical setup

for increasing number of phases. For tendon, due to dominance of collagen-I and small

GAG content, it is reasonable to assume that there are only two phases, thus tendon

can be considered to be a biphasic mixture, with a solid phase (i = s) and fluid phase

(i = f). In tendon, fresh-frozen φs is approximately 50% [183]. Moving forward we

will only focus on a simplified form of biphasic formulation.

To continue the continuum formulation we should account for continuity, and

conservation of linear momentum. The continuity equation can be written as

∇.(φsvs + φfvf ) = 0 , (2.15)

Where, vs and vf are the velocity of solid and fluid phase respectively, and can be

derived from the deformation of each phase, ui = xi −X, as:

vi =
∂ui

∂t
+ ui.∇(ui) (2.16)

By using Eq. (2.14) the above relation can be simplified to

∇(vs +w) = 0 (2.17)

Where w = φf(vf − vs) is a measure for the flux of the fluid relative to the solid

phase. As a simple model, Darcy’s law can be used to relate w to the gradient of the

pressure (∇p) in the medium

w = −k.∇p (2.18)

This relation indicates that fluid would move in the opposite direction to increasing

pressure. The velocity of the fluid depends on the tensorial variable k which is often

called the hydraulic permeability. For an isotropic case, hydraulic permeability is a

scalar and for tissue it is common to use either units of mm4(N s)−1 or m4(N s)−1. For

the anistropic case, a second order tensorial format would be appropriate [14].
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The conservation of linear momentum for a continuum in equilibrium reads as

∇.T + ρb = 0 (2.19)

Where, T is the Cauchy stress and b is the body force. In tissue mechanics application,

body forces such as gravity and other forms often are small compared to the actual

tractions on the system, and they maybe neglected; therefore

∇.T = 0 (2.20)

In the biphasic mixture theory, the Cauchy stress can be explicitly written as

T = −pI + T s (2.21)

where, T s is the stress-share of the solid phase. Therefore, the linear momentum

equation can be rewritten as

−∇p+∇.T s = 0 (2.22)

In summary, the set of differential equations (Eqs. (2.17) and (2.22)), with

appropriate constitutive relations for solid matrix stress (Ts ) (that can be derived

from from a scalar energy relation and Eq. (2.6)), and hydraulic permeability (such as

Darcy’s law Eq. (2.18)) result in four equations with the four unknowns of pressure (p),

solid stress (Ts), the relative flux of fluid phase (w), and solid matrix deformation (vs).

This set of partial differential equations can be solved with a given set of boundary

conditions, such a prescribed pressure, deformation, or traction. The mixture theory,

and particularly the biphasic model, have been extensively studied in the literature for

the cases of stress and creep, and hence in the interest of the length of this dissertation

we skip the details of considerations for thermodynamic equilibrium, details of the

boundary conditions, and finite element implementation (for further details see [115,

132])
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Chapter 3

RESEARCH QUESTIONS AND OBJECTIVES

Despite decades of studies on tendon mechanics, several essential questions are

unanswered about the mechanisms of inelastic mechanical behavior of this tissue. These

include, but are not limited to, the share of damage and plastic deformation in softening

and failure of tissue, the relative roles of fluid flow and intrinsic viscoelasticity in the

mechanical response of tendon, and the relationship between the fibrous structure of

tendon and its inelastic behaviors.

Particularly, a comprehensive framework for analysis and modeling of the in-

elastic mechanisms in tendon is not available. Hence, the objective of this dissertation

was to analyze and model the inelastic behaviors in tendon, which can be catego-

rized into viscoelasticity, damage, and plastic deformation, and study their underlying

mechanisms by using state-of-the-art mechanical testing, constitutive modeling, and

micro-structural imaging. I pursued this overall objective through four aims. Each aim

was part of collaborative research, hence, in each aim, where the author is referred to,

the plural first-person ‘we’ is used instead of the single pronoun ‘I’.

3.1 Aim 1: Reactive Inelasticity

To distinguish the mechanical behaviors of tissue, we developed a theoretical

framework that comprehensively addresses tissue inelasticity. Inspired by the molecu-

lar structure of soft tissue, we developed a comprehensive continuum mechanics mod-

eling framework, reactive inelasticity (RIE), that is based on the energy of reactive

molecular bonds. This framework is capable of distinctively addressing hyperelas-

ticitiy, viscoelasticity, damage, and plastic deformation within the same constitutive

setting by using the concept of bond breaking and reformation (reactivity) in response
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to external mechanical stimulation. We show that by combination of different bond

types, a wide range of elastic and inelastic mechanical behaviors can be modeled. This

aim is discussed in Chapter 4.

3.2 Aim 2: Is Tendon Softening Due to Damage or Plastic Deformation?

We used experimental mechanical data to explain whether damage or plastic de-

formation are responsible for the softening behavior seen in tendon stress-strain curves

prior to failure, which is the focus of Chapter 5. This is important, because damage

reduces material stiffness, where in plastic deformation the reference configuration is

shifted, without necessarily a change to the material properties. Because of the non-

linearity in stress-strain response (toe-region), and the viscoelastic behavior of tendon,

it is difficult to measure these behaviors solely by mechanical tests. Hence, we devel-

oped two models, each for damage or plastic deformation by using the RIE modeling

framework and applied these models by multi-start optimization to macro-scale exper-

imental data on tail tendon. We validated the models by predicting an independent

experimental dataset on similar tissue.

3.3 Aim 3: Assessing Tendon’s Poroelastic Parameters and the Potential

Role of Fluid Viscoelasticity

Tendon’s viscoelastic behavior in general can be attributed to two mechanisms:

fluid-flow-dependent viscoelasticity (poroelastic effect), and inherent solid matrix vis-

coelasticity. However, the relative extent of these are not known. In this aim, we

quantified the poroelastic parameters of tendon, especially the hydraulic permeability,

by isolating the mechanics of fluid flow and solid matrix viscoelasticity using lateral

osmotic swelling experiments and biphasic mixture finite element (FE) modeling. This

aim is addressed in Chapter 6. We osmotically loaded tail tendon fascicles in the lat-

eral direction, quantified the induced lateral strain over time, and fitted the temporal

lateral strain to the FE model and evaluated the permeability and the other poroelastic
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properties of tendon. This study provides the required information for understanding

the potential role of fluid flow in the mechanical behavior of tendon.

3.4 Aim 4: 3D Micro-structure of Tendon and Mechanical Model for In-

terfibrillar Load-transfer

The scope of this aim was to visualize the three-dimensional fibril organization

of rat tail tendon and to study the potential of interfibrillar friction within helically

wrapped groups of fibrils to serve as a mechanism for load transfer Chapter 7. First, we

visualized the microstructure of tendon in three dimensions using SBF-SEM. We found

a complex network, with many helically wrapped fibrils. These observations informed

the second part of this study, in which we used finite element (FE) analysis to test the

hypothesis that frictional contact between helically wrapped fibrils can transfer stress

(load) between fibrils without a need for a mediating matrix.

3.5 Summary of the aims and impact

This study is significant in that it advances knowledge in three fronts of tendon

and tissue mechanics, that include: theoretical modeling (Chapters 4 and 5), analysis

of the experimental mechanical behaviors (Chapters 5 and 6), and structure-mechanics

relations at different length-scales (Chapter 7). Particularly, the reactive inelastic-

ity framework, multi-start model parameter identification technique, lateral osmotic

loading, and analysis of microstructure with SBF-SEM are novel methods and tools

that could be adopted to understand the inelastic mechanical behaviors of other tissue

systems as well. In summary, the aims of this dissertation are designed to answer

the central questions about the inelastic mechanical behaviors of tendon, yet the find-

ings have important implications for tissue mechanics analysis and modeling that are

discussed in this dissertation (Chapter 8).
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Chapter 4

A REACTIVE INELASTICITY THEORETICAL FRAMEWORK FOR
MODELING VISCOELASTICITY, DAMAGE, AND PLASTIC

DEFORMATION IN FIBROUS SOFT TISSUE

These findings are published in Babak N. Safa, Michael H. Santare, Dawn M. El-

liott. ‘A Reactive Inelasticity Theoretical Framework for modeling Viscoelasticity, Plastic

Deformation, and Damage in Soft Tissue,’ Journal of Biomechanical Engineering (2018)

(https://doi.org/10.1115/1.4041575)

4.1 Introduction

Fibrous soft tissues such as tendon, meniscus, intervertebral disc, etc., are

biopolymeric material that have non-linear, anisotropic, and inelastic mechanical be-

haviors. An inelastic behavior, contrary to an elastic behavior, is one that dissipates

energy during mechanical loading. Three major inelastic behaviors that are experi-

mentally observed in fibrous soft tissues are: viscoelastic behavior [36, 93, 241], plastic

deformation [1, 27, 134, 178], and damage [149, 230]. Understanding the underlying

mechanisms of these behaviors is essential for elucidating the relationships among the

mechanical loading, pathological conditions (e.g., tendinopathy, meniscus rupture, and

disc herniation), and tissue’s structure.

Fibrous soft tissues have a hierarchical structure that is predominantly com-

posed of extracellular proteins such as different types of collagen and proteoglycans,

and have a high water content, where the underlying microstructural organization is

responsible for the variations in tissue’s mechanical properties. Inelastic mechanical

responses can occur with loading, resulting in altered microstructure and mechanical

properties, and even loss of function and rupture. While tissue’s elastic and viscoelas-

tic behaviors have been studied for decades, there is no comprehensive framework
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for studying inelastic behaviors of tissue in a structural context; perhaps due to the

complex nature of experimental measurement of the inelastic behaviors that occur si-

multaneously and can have overlapping effects (e.g., plastic deformation and damage).

Thus, a theoretical framework is necessary to study these behaviors that uniquely iden-

tifies characteristics of different inelastic behaviors and their underlying mechanisms

based on tissue structure.

From a theoretical point of view, an inelastic behavior is a path-dependent and

irreversible thermodynamic process that may be modeled using the theory of inter-

nal state variables (ISV) [34,91]. Various phenomenological ISV expressions have been

used to model tissue’s mechanical behavior. For instance, decomposition of strain [174]

and stress [90] tensors into elastic and inelastic components is a common practice to

model viscoelasticity, where the inelastic components are hidden internal variables

that correspond to the non-equilibrium part of the mechanical response. For plastic

deformation (permanent set) in tissue [247] used a structural approach to model this

inelastic behavior in cyclic loading by proposing a shift in reference configuration of

exogenously crosslinked matrix of tissue. In another study, to model softening based

on permanent set and damage, two weight factors were used based on alterations to

the fibrous structure of tissue due to mechanical loading [159,160]. A similar inelastic

variable set was used to model permanent deformation and damage that evolve ac-

cording to the history of maximum energy of fiber families [60] that is based on the

theory of pseudo-elasticity [51, 235]. Damage, perhaps the most common variable for

modeling tissue inelasticity [125], is often used to model stress-softening or Mullin’s ef-

fect [48,145]. In tissue, damage is usually modeled according to the number of “broken”

fibers [4,149,189]. This formulation is similar to the definition of the damage parame-

ter in classic continuum damage mechanics that is based on occurrence of micro-voids

in engineering material such as metals and concrete [105, 123]. Despite nearly four

decades of successful use of phenomenological approaches to study tissue’s inelastic

behaviors, their applicability is limited by the focus of individual models on a subset

of inelastic behaviors, and in particular for ISV approaches, there is often not a clear
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physical interpretation of parameters.

In this study, we used the combination of theory of ISVs and the kinetics of

molecular bonds to develop a structurally-inspired continuum mechanics framework

that addresses the inelastic behaviors of tissue’s solid matrix. In a few words, we define

reactive bonds as those which break and reform in response to mechanical loading; this

process results in dissipative changes to the stored energy of the material and inelastic

mechanical behaviors. We selected the number fraction of molecular bonds (wα), their

reference deformation gradient (Πα), and damage parameter (D) as state variables

to address inelastic behaviors. This framework allows for modeling of all three of

the aforementioned inelastic behaviors, viscoelastic behavior, plastic deformation, and

damage, using the same set of constitutive relations at different ranges of kinetic rate

of bond breakage and reformation.

Kinetics of molecular bonds has been previously introduced by Tobolsky and

co-workers to model stress-relaxation of polymers based on the energy of a network of

molecules with transient cross-links, that is commonly referred to as the two-network

model [73, 223]. In a similar way, permanent set has been modeled using the idea of

kinetics of breaking and reforming bonds [6, 168], where often the concept of mate-

rial with multiple natural configurations is employed in a thermomechanical frame-

work [144, 169]. This framework is widely used for studying mechanical behaviors of

engineering polymers [46,136,139,192,239] with various physical interpretations based

on the molecular structure of polymers [48]. For tissue mechanics application, a similar

idea was recently adapted to model damage of cartilaginous constructs that addresses

damage as the fraction of failed bonds, which is an observable variable and can be

experimentally measured [151]. Reactive viscoelasticity was introduced by Ateshian

to model viscoelasticity of a constrained solid mixture [10, 150]. In that model, two

separate bond types were introduced: weak and strong, to model the transient and

equilibrium mechanical response, respectively. In the current work, we generalize that

concept and show that these bonds are not separate, and strong bonds are a special
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case of weak bonds. Additionally, by employing this generalization and taking inspira-

tion from prior work in polymer mechanics, the sliding bond type was introduced that

can instantaneously break and reform into a stressed-configuration, which results in

plastic deformation. Given the structural basis of this framework and its consistency

in addressing several inelastic behaviors, reactive inelasticity is well suited for studying

the underlying mechanisms of inelasticity in tissue. Thus, the objective of this study

was to comprehensively address tissue inelasticity by developing a structurally-inspired

continuum mechanics framework, reactive inelasticity (RIE), based on the energy of

reactive molecular bonds.

This chapter is organized as follows: in Section 4.2 we formulate the theory

of reactive inelasticity by defining the free energy of a reactive body with generic

molecular bond types, where the concepts of intrinsic hyperelasticity and generalized

bond kinetics are formulated. Further, we introduce special bond types suited for

different mechanical behaviors: formative bonds for a viscoelastic behavior, permanent

bonds for hyperelastic behavior, and sliding bonds for plastic deformation. Damage is

added to the formulation by allowing for the reduction of the number fraction of load

bearing bonds. To demonstrate the key features of this framework, in Section 4.3 we

provide several numerical examples of the mechanical behavior of single bond types

and their combinations. Finally, in Section 4.4, comparisons to the other existing

inelasticity models for tissue, and physical interpretation of bonds are discussed.

4.2 Reactive Inelasticity

In the following, we will describe the mechanics of a reactive material. In brief,

a reactive material is made of a combination of different bond types each with different

characteristics. Each bond type is associated with a certain mechanical behavior (e.g.,

formative bonds with viscoelastic behavior). Bonds break and reform (i.e., react) when

subjected to an external loading and this process initiates new generations. Generations

are molecular bonds of certain bond type that were initiated at the same time and, thus,

have a mutual reference configuration. Damage is introduced to all of the bond types
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by reducing the fraction of active bonds in the material, and finally the consequences

of the second law of thermodynamics are discussed.

4.2.1 Kinematics and relative deformation

Consider a solid body made of a set of material points that are energetically

constrained with different types of molecular bonds (indicated by a subscript γ). These

bonds deform in a smooth path x := χ(X, t), where x stands for the current configu-

ration of bonds and X is their master reference configuration. Hence, the deformation

gradient tensor is defined as F := ∂χ(X,t)
∂X

and the right Cauchy-Green deformation

tensor as C := F TF . Each bond type may have different generations (indicated by

superscript α), and despite their mutual path of deformation and master reference

configuration, every generation has a different reference configuration (Xα
γ ), which is

a function of the conditions at the time of formation of the bonds (Fig. 4.1). By us-

ing the chain rule of differentiation, the relative deformation gradient tensor for each

generation (F α
γ ) is

F α
γ := F (Πα

γ )−1 , (4.1)

where Πα
γ :=

∂Xα
γ

∂X
is the reference deformation gradient tensor of generation α of

bond type γ. This procedure results in multiplicative decomposition of deformation

[121,129,200]. As a result, the relative right Cauchy-Green deformation tensor Cα
γ is

Cα
γ := (Πα

γ )−TC(Πα
γ )−1 ; (4.2)

note that A−T := (A−1)T .

4.2.2 Free energy and intrinsic hyperelasticity

The free energy density of the system is the combination of the energy density

of all the bond types

Ψ =
∑
γ

Ψγ , (4.3)
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Figure 4.1. Reference configuration of generations. In a body with the master
reference configuration X for generation α the relative deformation gradient tensor (F α) is
defined using the reference configuration (Xα).

where Ψ is the Helmholtz free energy density (per volume). The energy density of each

bond type is the sum of the energy from each of its generations

Ψγ =
∑
α

nαγ ψ̄
α
γ , (4.4)

where nαγ is the number density, and ψ̄αγ is the average energy of bonds from generation

α of bond type γ. Alternatively, by defining the number fraction of each generation as

wαγ =
nαγ∑
α n

α
γ

=
nαγ

nγ,total
, (4.5)

where nγ,total is the number density of a bond type in the natural state of the material,

Eq. (4.4) can be re-written as

Ψγ =
∑
α

wαγψ
α
γ , (4.6)

where

ψαγ = nγ,totalψ̄
α
γ . (4.7)

Here, ψαγ denotes the overall energy density of a generation, which, in general, can

be a function of deformation, temperature and other state variables. However, in this
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formulation we consider a unique deformation dependence that implies that generations

are intrinsically hyperelastic. That is,

ψαγ = ψγ(C
α) . (4.8)

The above equation also denotes that the intrinsic hyperelasticity relation is the same

for all of the generations of one bond type, and thus is a characteristic of that type of

bonds. Therefore, Eq. (4.6) reads as

Ψγ =
∑
α

wαγψγ(C
α
γ ) . (4.9)

Note that for a bond type with no damage

∑
α

wαγ = 1 , (4.10)

which indicates that the energy density of each bond type (Eq. (4.9)) is a weighted

sum of the energy density of all its generations. Thus, the overall free energy density

of the material can be written in the following form

Ψ(F , wαγ ,Π
α
γ ) =

∑
γ

∑
α

wαγψγ(C
α
γ ) . (4.11)

Here, deformation (represented by F ), the number fraction of generations of bond

types (wαγ ) as well as their reference deformation gradient (Πα
γ ) are the state variables.

To simplify the notation without losing generality, we will continue the discussion for

one type of bond, where the total response for a mixture of multiple bond types should

be taken as a summation over all existing bond types (such as in Eq. (4.11)).

The second Piola-Kirchhoff stress tensor is written as [34]

S(F , wαγ ,Π
α
γ ) = 2

∂Ψ(F , wαγ ,Π
α
γ )

∂C
. (4.12)
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Also, by using Eq. (4.9) for a reactive material, Eq. (4.12) can be re-written as (see

the Appendix A)

S(F , wα,Πα) =
∑
α

wα(Πα)−1Sα(Cα)(Πα)−T , (4.13)

where we also adopted the following definition for stress associated with each genera-

tion:

Sα(Cα) := 2
∂ψ(Cα)

∂Cα . (4.14)

For coordinate-invariance, the state of stress equivalently is determined using the in-

variants of Cα:

Iα1 = tr(Cα), Iα2 =
1

2

[
tr(Cα)2 − tr

(
(Cα)2

)]
, and Iα3 = det(Cα) , (4.15)

where tr(.) and det(.) stand for trace and determinant of a second order tensor, re-

spectively. Often, the given set of invariants suffices to define the state of deformation;

however, it is customary to add additional pseudoinvariants for anisotropic material

(e.g., tendon, and ligament). A common pseudoinvariant for transversely isotropic

material is defined as [40,205]

Iα4 := Mα : Cα , (4.16)

In this equation, Mα is a second-order structure tensor defined as

Mα := eαγ ⊗ eαγ , where eαγ :=
Παe0

γ

||Παe0
γ||
. (4.17)

Here, eαγ is a unit vector on the dominant fiber direction in the generation α reference

configuration. Therefore, the second Piola-Kirchhoff stress (S) in terms of deformation
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invariants reads as

S(F , wα,Πα) =
∑
α

wα(Πα)−1

(
4∑
i=1

2
∂ψ

∂Iαi

∂Iαi
∂Cα

)
(Πα)−T , (4.18)

where the derivatives of the deformation invariants are

∂Iα1
∂Cα = I,

∂Iα2
∂Cα = Iα1 I −Cα,

∂Iα3
∂Cα = Iα3 (Cα)−1, and

∂Iα4
∂Cα = Mα . (4.19)

The Cauchy stress (T ) is then obtained from the second Piola-Kirchhoff stress (Eq. (4.18))

as T = J−1FSF T (Eq. (2.6)), where J = det(F ). By using the relative deformation

gradient tensor, defined earlier in Eq. (4.1), the Cauchy stress tensor for each bond

type is

T (F , wα,Πα) =
1

J

∑
α

wαF α

(
4∑
i=1

2
∂ψ

∂Iαi

∂Iαi
∂Cα

)
(F α)T , (4.20)

and by defining the contribution of each generation (T α) as [136]

T α(F α) := F α

(
4∑
i=1

2
∂ψ

∂Iαi

∂Iαi
∂Cα

)
(F α)T , (4.21)

the Cauchy stress tensor for a specific bond type reads as

T (F , wα,Πα) =
1

J

∑
α

wαT α(F α) . (4.22)

Similar to energy, the above equation indicates that the Cauchy stress of a bond type

is the weighted sum of the contributions from all the generations of that bond type.

So far, we have described the fundamental formulation for states of energy and

stress in terms of state variables (F , wα,Πα). In the following sections, we will describe

the energy relations and kinetics of bonds to describe the states of energy and stress

in a reactive material.
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4.2.3 Reactive bond kinetics

In general, the reactive bonds break and reform (react) when subjected to load-

ing. This process produces the evolution of the states of energy and stress (Eqs. (4.11)

and (4.22)). As an example, for a system with one type of bonds, after a unit step

deformation the bonds start breaking and their number fraction (w0) starts to decrease

(Fig. 4.2). Simultaneously, the broken bonds reform to a new state, initiating a new

generation, where the number fraction of this new generation (w1) increases over time.

In the absence of damage, according to Eq. (4.10) the sum of the number fraction of

the breaking and reforming bonds is one (i.e., w0(t) +w1(t) = 1). As a result, the free

energy for a step deformation is

Ψ(F , w0, w1,Π0,Π1) = w0(t)ψ(C0) + w1(t)ψ(C1) . (4.23)

If the bonds reform in a stress-free fashion (C1 = I), without further loading all of the

energy would be dissipated. That is,

Ψ̇ = ẇ0(t)ψ(C0) < 0, and lim
t→∞

Ψ = 0 , (4.24)

where the ‘dot’ notation stands for time derivative. To determine the rate of breakage

of bonds, a kinetics rate equation is used. The general form of the kinetics rate equation

may be written as

ẇα = Υ(wα,Γi) . (4.25)

In this equation, Υ(.) is a negative-valued function of the available reactants (breaking

bonds of wα) and other state variables such as relative deformation (Γ = F α) [10],

temperature (Γ = θ) [239], or for polymeric macro molecules, geometrical characteris-

tics of bonds such as the end-to-end distance and directional angles [139,218]. Despite

features that can be added to the rate equation, there are general conditions that need

to be satisfied. First, any rate equation should not result in a negative number fraction

for any bond generation. Secondly, it should induce a breaking bond number fraction
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Figure 4.2. Example of bonds with first-order rate equation. After a step deforma-
tion at t = 0, the bonds start to break (w0), and simultaneously reform to a new state (w1).
With no further loading, all the bonds eventually break and reform to the new configuration
as t→∞ (in this example τ = 10).

that asymptotically decays to zero in the limit of infinite time. In this paper, we used

the first-order relation, which is the simplest form of a kinetics rate equation satisfying

the above conditions:

ẇα = −1

τ
wα . (4.26)

In the above equation τ is the time constant of reaction that controls the rate of

breakage and reformation. When multiple consecutive steps of deformation occur at

tα ∈ {t0, t1, t2, · · · , tn}, the number fraction resulting from each deformation for this

first-order system is (Fig. 4.3A) [10]

wα(t) =

f
α(t) tα < t ≤ tα+1

fα(tα+1) exp(−(t− tα)/τ) tα+1 < t
. (4.27)

In the above relation fα(t) = 1−
∑

(α;tα<t) w
α(t) according to Eq. (4.10) that describes

the reformation of bonds. The dependence of the rate of breakage on the number

fraction of breaking bonds results in an asymptotic exponential decay of bonds. Note

that Eq. (4.27) can only be used for first-order kinetics with non-varying time-constant,

and for a general rate equation, the number fraction of bonds is numerically calculated

from Eqs. (4.10) and (4.25).
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4.2.4 Bond types

The state of energy (Eq. (4.11)) for a given bond type depends on the number

fraction (wα) of bonds and their reference deformation gradient (Πα). To charac-

terize the evolution of these variables we define three types of bonds: (1) formative,

(2) permanent, and (3) sliding to address viscoelasticity, hyperelasticity, and plastic

deformation, respectively.

4.2.4.1 Formative bonds

These bonds have a time constant that is on the order of the characteristic

time (tc) of the experimental observation. That is, τf/tc ≈ 1, where γ = f stands

for formative bond type (Fig. 4.3A). The reference deformation gradient of the new

generations of bonds is defined at the current configuration at the time the bonds were

initiated (Fig. 4.3D)

Πα
f = F (tα) . (4.28)

Equivalently, for two consecutive generations

Πα
f = Πα−1

f + u(t− tα)(F (tα)− F (tα−1)) , (4.29)

where u(.) is the unit step function. In this case, during a sustained deformation the

energy and stress of the system asymptotically decays as the bonds break, resulting in

a fluid-like behavior; a transient viscoelastic mechanical response with zero equilibrium

stress.

4.2.4.2 Permanent bonds

Permanent bonds represent a special case of kinetics rate, where the rate of

breakage of bonds is extremely slow (τp/tc →∞, γ = p) (Fig. 4.3B). As a result, only

one generation of bonds exists (w0
p = 1) and the reference deformation gradient of that

generation is (Fig. 4.3E)

Πα
p = I . (4.30)
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Since the bonds are intrinsically hyperelastic (Eqs. (4.8) and (4.14)), the overall be-

havior of permanent bonds is hyperelastic, where the states of energy and stress are

independent of the history of deformation.

4.2.4.3 Sliding bonds

Sliding bonds represent another special case, where the rate of breakage and

reformation of bonds is extremely fast compared to the characteristic time (τs/tc → 0,

γ = s) (Fig. 4.3E). In this case, if the bonds could reform to the current configuration,

all the energy would immediately be dissipated. If the newly formed bonds have a

different reference deformation gradient Πα
s than the current configuration, they slide

(Fig. 4.3F). This implies that the bonds are reforming in a loaded state, and only part

of the energy is used for the sliding process and the rest is stored. Since Πα
s is a state

variable, by selecting appropriate constitutive relations the sliding process can be made

to produce plastic deformation.

The evolution of Πα
s is governed by a set of constitutive relations. Following

from the classical theory of plasticity [112, 201] we formulated the evolution of the

sliding reference deformation gradient using a sliding condition and sliding rule in a

rate-independent formulation. Similar to Eq. (4.29) the sliding process is incremental

from one generation to the next, i.e.,

Πα
s (t) = Πα−1

s (tα) + u(t− tα)∆Πα
s , (4.31)

where ∆Πα
s is an incremental infinitesimal change to the reference deformation gradient

due to sliding. Note that the zeroth generation’s reference deformation gradient is the

identity tensor (I = ei ⊗ ei). Although the change is infinitesimal, it does not imply

that Πα
s is infinitesimal, nor that the incremental nature of the sliding process goes

away, no matter how small the sliding would be.

The sliding only occurs when the sliding condition is met. Otherwise, bonds

do not break and due to intrinsic hyperelasticity assumption they behave similarly to

34



0 15 30 45 60 75

Time

0

0.5

1

Formative

A

0 15 30 45 60 75

Time

0

0.5

1
B

Permanent

0 15 30 45 60 75

Time

0

0.5

1
C

Sliding

0 15 30 45 60 75

Time

1

1.05

1.1

D

0 15 30 45 60 75

Time

1

1.05

1.1

E

0 15 30 45 60 75

Time

1

1.05

1.1

F

Figure 4.3. Consecutive step deformations and multiple generations (A-C) Num-
ber fraction of multiple generations initiated at four consecutive step deformations at
t = 0, 15, 30, 45 with a first-order rate equation, and (D-F) their corresponding reference
deformation gradients. (A,D) Formative bonds (B,E) Permanent bonds (C,F) Sliding bonds.
(A-C) For the number fraction graphs, the sum of all of the generations is shown with a
horizontal green dashed line. (D-F) The deformation stretch is shown with a red dashed line
on reference configuration graphs. Note that Πα in general is a second-order tensor, and we
used a one-dimensional representative for more convenient illustration.

permanent bonds. The sliding condition (analogous to yield condition) is defined as

ϕs(Ξs, rs) := Ξs − rs ≤ 0 , (4.32)

where Ξs is the sliding variable and rs is the sliding threshold, where all are scalar.

The sliding variable is a function of deformation, or equivalently the invariants of

deformation:

Ξs = Ξ̂s(C) ≡ Ξ̂s(I1, I2, I3, I4) . (4.33)

The sliding threshold rs is defined as the maximum value of Ξs obtained in the history

of deformation [199]

rs := max

{
(r0)s, max

t̃∈(−∞,t]
Ξs(t̃)

}
. (4.34)

The initial value of rs before any loading is the initial sliding threshold denoted by
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(rs)0, which is a material property. Equations (4.32) and (4.34) indicate ϕs(Ξs, rs) ≤ 0,

which corresponds to the physically admissible deformations [201]. Sliding can only be

initiated when ϕs = 0 (necessary condition). To determine the sufficient condition, we

need to include the loading direction by defining the second order tensorial normal to

the sliding surface (ϕs = 0)

N s :=
∂ϕs
∂C
|ϕs=0 . (4.35)

While the necessary condition for sliding is in place, two scenarios of loading can

occur [147] N s : Ċ ≤ 0 (no sliding)

N s : Ċ > 0 (sliding)
, (4.36)

where only the second scenario can initiate a sliding behavior. Here, Ċ is the material

time derivative of the right Cauchy-Green deformation tensor Ċ := F T
(
Ḟ F−1 + F−T Ḟ

T
)
F .

When the necessary and sufficient conditions of sliding (ϕs = 0 and N s : Ċ > 0) are

in place, the incremental sliding can be calculated using the sliding rule:

∆Πα
s = R(F ,Πα−1

s ) , (4.37)

where R is a second-order tensor function. An example of sliding rule for a medium

with a dominant fiber direction would be

∆Πα
s =

∂fs(Ξs)

∂Ξs

∆ΞsM̃
α
, (4.38)

where fs is the sliding function, ∆Ξs is the difference between sliding variables of

two consecutive generations involved in the sliding process (Eq. (4.31)), and M̃
α

is a

second-order structure tensor. To define M̃
α

it was assumed that the initial dominant

fiber orientation is preserved in the sliding configurations, i.e. eα = λαs e
0. Therefore,

one can show (see the Appendix B)

M̃
α

= e0 ⊗ e0 (4.39)
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This particular constitutive relation indicates that the configuration of increments of

sliding depends on the extent of deformation and the orientation of bonds in the master

reference configuration. As another example, for three-dimensional cases where an

analytical expression is available for F , one can choose Πα
s = F (λαs ) [168]. In general,

however, for finite strain plastic deformation an analytic expression is not available,

and one should use the well established theory of finite-strain plasticity to formulate

the intermediate configuration [7, 44,121].

For completeness, because the reference configuration is time invariant after

formation of bonds and the sliding process is incremental (Eq. (4.31)), the rate of

sliding for each reforming bond generation is determined using

Π̇
α

s = δ(t− tα)∆Πα
s (tα) , (4.40)

where δ(.) is the Dirac delta function that denotes the incremental nature of sliding

process. This relation will be helpful later in the analysis of the second law of thermo-

dynamics (Section 4.2.6).

4.2.5 Damage of bonds

Damage is an irreversible process that is due to a loss of chemical bonds [113].

This is often observed as a softening behavior that is also referred to as Mullin’s

effect [145]. The idea of relating damage to molecular bonds in tissue can be traced

back as early as [31] for modeling the hysteresis effect. In the current framework,

damage of the various bonds (D) was considered as another state variable, where with

a damaging load, the broken bonds may not be reformed, which in turn decreases the

number of active bonds. That is,(∑
α

wα

)
Damaged

= (1−D)
∑
α

wα , (4.41)
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where D is the damage parameter of a certain bond type and it takes a value between

zero and one (D ∈ [0, 1]) [151]. Damage can be applied to each of the bond types

(Fig. 4.4). By doing so, the total energy of the bonds decreases as the number fraction

of damaged bonds increases. Hence, the free energy is

Ψ(F , wα,Πα, D) = (1−D)
∑
α

wαψ(Cα) . (4.42)

which always has a value less than the non-damaged case.

To determine the evolution of damage, similar to the sliding case, the damage

condition is defined as

ϕD(ΞD, rD) := ΞD − rD ≤ 0 , (4.43)

Here, ΞD is the damage variable that is a function of deformation invariants

ΞD = Ξ̂D(C) ≡ Ξ̂D(I1, I2, I3, I4) , (4.44)

and rD is the damage threshold defined as the maximum value of ΞD in the past history

of deformation [199]. The damage threshold rD is defined separately for each bond type

as

rD := max

{
(r0)D, max

t̃∈(−∞,t]
ΞD(t̃)

}
. (4.45)

The value of rD before any loading is the initial damage threshold ((rD)0), which is a

material property. Damage occurs when ϕD = 0 (necessary condition). The loading

direction determines the sufficient conditions. By defining the second order tensorial

normal to the damage surface (ϕD = 0) as

ND :=
∂ϕD
∂C
|ϕD=0 , (4.46)

38



0 15 30 45 60 75

Time

0

0.5

1

FormativeA

0 15 30 45 60 75

Time

0

0.5

1

PermanentB

0 15 30 45 60 75

Time

0

0.5

1

SlidingC

Figure 4.4. Effect of damage on molecular kinetics. Multiple generations initiated at
four consecutive step deformations at t = 0, 15, 30, 45 with a first-order rate equation with
damage shown for (A) formative bonds (B) permanent bonds and (C) sliding bonds, the sum
of bonds declines after each step of loading until the final value of 0.75 (D = 0.25).

and by using the following normality conditions [199]

ND : Ċ ≤ 0 (no damage)

ND : Ċ > 0 (damage)
; (4.47)

damage only occurs when (ϕD = 0 and ND : Ċ > 0). Thus, during a damaging load,

the damage parameter increases according to the damage rule

Ḋ =
∂fD(ΞD)

∂ΞD

Ξ̇D , (4.48)

where fD(ΞD) is the damage function. Note that the damage variable (ΞD) is different

from damage parameter (D), where D is the number fraction of permanently broken

bonds.

4.2.6 Implications of the second law of thermodynamics

As a consequence of the second law (as shown in detail in the Appendix C),

the bonds are ‘second-law compatible’ if appropriate constitutive relations are used.

Formative and permanent bonds are second-law compatible when appropriate kinetics

relation is used, and for sliding bonds, the change in reference configuration (Eq. (4.38))

needs to be defined so as to satisfy positive dissipation of energy (Appendix C). For

damage, fD (Eq. (4.48)) needs to be selected to guarantee Ḋ ≥ 0 (e.g., cumulative
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distribution function of a continuous statistical distribution). Examples of appropriate

constitutive relations will be provided in Section 4.3.

4.2.7 Summary of formulation

In summary, a reactive inelasticity model was formulated that defines different

types of bonds corresponding to different mechanical behaviors. The combination

of bond types should be selected according to the desired mechanical behaviors (as

described in Section 4.2.4). In selecting the constitutive relations it is perhaps more

convenient to take the discrete steps that are outlined in Table 4.1. In the following

section, several illustrative examples are provided that both help in understanding the

model and also to exemplify some practical applications to mechanics of soft tissue,

where reactive inelasticity can be useful.

4.3 Illustrative Examples

To demonstrate key features of the reactive inelasticity (RIE) framework we pro-

vide three numerical examples. First, the sensitivity of formative bonds to the kinetics

rate is demonstrated using a Heaviside step loading that shows transitions between dif-

ferent bond types (Example I). Second, we simulate the stress response of an increasing

cyclic loading by using a fiber-exponential constitutive relation that is commonly used

in tissue mechanics, and we compare the stress response between non-damaged and

damaged cases (Example II). Finally, incremental stress relaxation with softening is

presented for an anisotropic case, which has importance to understand mechanisms

of plastic deformation and damage in tissue. This is done by using a combination of

formative bonds and either sliding bonds or permanent bonds with damage (Example

III). The model is implemented as a Matlab function using a custom written code in-

tended for uniaxial deformations. The source code and details of implementation are

provided at Appendix D and are accessible online1.

1 https://github.com/BabakNSafa/ReactiveBond
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Table 4.1. Summary of structure of a reactive bond type’s constitutive relations.

Step 1 Select the bond types (i.e., formative, permanent,
sliding)

Step 2 Select the kinetics relation (e.g., Eq. (4.26))
Step 3 Select the intrinsic hyperelasticity relation ψγ(C

α)
(e.g., neo-Hookean)

Step 4 If sliding bonds, select appropriate constitutive
relations:

Sliding variable (Ξs) (Eq. (4.33))
Sliding rule and function (fs) (Eq. (4.38))

Step 5 If damage is included, select appropriate constitutive
relations:

Damage variable (ΞD) (Eq. (4.44))
Damage rule and function (fD) (Eq. (4.48))

For all of the examples, the axial component of the Cauchy’s stress tensor (i.e.,

T = T33) was used to represent the state of stress during a uni-axial isochoric defor-

mation

F = F̂ (λ(t)) := ei ⊗ ei
1√
λ

+ e3 ⊗ e3(λ− 1√
λ

) i = 1, 2, 3 . (4.49)

The following constitutive relations were implemented in the steps outlined in Table 4.1:

• Step 1- Bond type selection: The bond type was selected depending on the
expected mechanical behavior. Formative bonds were used for a viscoelastic be-
havior with zero equilibrium stress, permanent bonds for a hyperelastic behavior,
and sliding bonds were used for plastic deformation. Note that for Example III,
which includes a combination of bonds, the response was calculated indepen-
dently for each bond type and added according to Eq. (4.11).

• Step 2- Kinetics relation: For all of the examples, a first-order kinetics relation
was used (Eq. (4.26)).

• Step 3- Intrinsic hyperelasticity: Three types of non-linear constitutive re-
lations were used. First, we used the neo-Hookean relation in Example I. This
is the simplest non-linear constitutive relation and was used to demonstrate the
general behaviors of the model, where the potential energy is

ψNH(I1) = C1(I1 − 3) . (4.50)

Here, C1 is the independent model parameter with dimensions of stress.
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Second, for relevance to tissue applications, in Examples II and III we used a
one-dimensional exponential constitutive relation with a non-zero stiffness only
in the e3 direction (fiber direction) in tension [100,189]

ψEF (I4) = C2

(
exp

[
C3(I4 − 1)2

]
− 1
)
u(I4 − 1) , (4.51)

where C2 and C3 are positive-valued model parameters.

Third, for showing a three-dimensional tissue mechanics application, we used a
Holmes-Mow material (Example III)

ψHM(I1, I2, I3) = α0

(
I−β3 exp [α1(I1 − 3) + α2(I2 − 3)]− 1

)
. (4.52)

In this relation, α0 is a positive number with the dimension of stress and [β, α1, α2]
are positive non-dimensional numbers. To comply with the energy- and stress-
free reference configuration, β = α1 + 2α2 must be satisfied [88]. Note that
the Holmes-Mow model parameters are related to the more familiar infinitesimal
linear-elastic parameters as:

α1 =
E/α0

4(1 + ν)
− α2 , and α2 =

(E/α0)ν

4(1 + ν)(1− 2ν)
, (4.53)

where E is the Young’s modulus, and ν is the Poisson’s ratio. Hence, [E, ν] were
preferred instead of the original Holmes-Mow parameters.

• Step 4- Sliding: The overall stretch was selected as the sliding variable

Ξs = λ =
√
I4 . (4.54)

To describe the sliding rule for the one-dimensional fiber intrinsic hyperelastic-
ity relation (Example II) (Eq. (4.51)) the form represented in Eq. (4.38) was
employed with the sliding function as

fs(Ξs) = c (Ξs − (rs)0)b , (4.55)

where the constant parameters [c, b] are dimensionless positive numbers, and (r0)s
is the initial sliding threshold. Also, e3 was taken as the sliding direction and was
used to define structural direction tensor as M̃ := e3 ⊗ e3 (Eq. (4.38)). In this
case, as long as λN−1

s < λNs < λ the condition of second law is satisfied , and it can
be easily verified that

(
−∂ψEF (λ/λNs )/∂λNs

) (
λNs − λN−1

s

)
> 0, which proves the

compatibility of these constitutive relations with the second law (for details see
the Supplementary document). For the three-dimensional constitutive relation
cases it was assumed that ΠN

s takes the form of F̂ (λNs ) during sliding, where
by using the Taylor series expansion, it can be shown that all of the constitutive
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equations are compatible with the second law of thermodynamics (Supplementary
document).

• Step 5- Damage: For the case with damage of bonds, similar to sliding, the
overall stretch was used as the damage variable

ΞD =
√
I4 , (4.56)

and a Weibull’s cumulative distribution function was used as the damage function
[151]

fD(ΞD) = 1− exp

{[
−
(

ΞD − (rD)0

l − 1

)k]}
, (4.57)

where k is the shape parameter, l is the scale parameter, and (r0)D is the initial
damage threshold.

4.3.1 Model parameters used in the illustrative examples

The illustrative examples were designed using the noted constitutive relations

to demonstrate the important features of the framework with no particular focus on

certain tissues; however, in practice, specific constitutive relations should be employed

to use the framework for successfully modeling of the inelastic behaviors of tissue. The

models generated with this framework may have different number of model parame-

ters. Thus, in general, no specific number of parameters could be associated with the

framework. Below we have listed the model parameters used for different examples.

Table 4.2. Parameters used for dynamic response of single bond types (Fig. 4.6).

τ C2 C3 c b (r0)s k l (r0)D
Formative 10 0.1 40 - - - - - -
Permanent 1010 0.1 40 - - - 2 1.04 1.03
Sliding 0.01 0.1 40 9 2 1.01 - - -

Table 4.3. Parameters used for the incremental stress relaxation response tests
(Fig. 4.7).

τ C2 C3 E v α0 c b (r0)s k l (r0)D
Formative 10 0.1 40 - - - - - - - - -
Permanent 1010 - - 50 0.3 0.1 - - - 2 1.05 1.02
Sliding 0.01 - - 50 0.3 0.1 8 2 1.02 - - -
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4.3.2 Sensitivity of the formative bonds to the kinetics rate (Example I)

As discussed in Section 4.2, the kinetics rate is the predominant difference be-

tween various bond types. To show this, we simulated the response of formative bonds

to a Heaviside step deformation at a wide range of reaction kinetics rate, where the

only variable was the time constant (τf ) (Fig. 4.5). For a large τf (slow kinetics rate)

the response approaches the hyperelastic behavior (permanent bonds), and as τf gets

smaller (high kinetics rate) the response approaches a singular stress behavior (sliding

bonds). For all of the kinetics rates, the response at t = 0 is the same and equal to

the hyperelastic stress for that deformation. This response at t = 0 also corresponds

to the peak stress response of the initial generation in Eqs. (4.23) and (4.24).

This simple example lies at the heart of reactive inelasticity and demonstrates

the consistency of inelastic behaviors that are all based on the kinetics of breaking and

reforming bonds. In what follows, more complex loading scenarios are investigated

that are all based on a summation of incremental step deformations.

4.3.3 Cyclic loading and damage (Example II)

Example II demonstrates the response of single bond types with the model

parameters listed in Table 4.2 to a cyclic loading (Fig. 4.6A). In response, formative

bonds dissipate energy in a cyclic hysteresis (Fig. 4.6B), while the permanent bonds

have a hyperelastic response that is independent of history of deformation (Fig. 4.6C).

The sliding bonds undergo plastic deformation that is evident by the shift in the point

of zero stress after each cycle, while there is no change in stiffness during the consecutive

loading parts (Fig. 4.6D). Note that the sliding bonds account for strain softening that

results in a decrease in stress after reaching the peak stress (points 3 and 4 in Fig. 4.6D),

and it is different from strain hardening that is associated with plasticity in metals and

some engineering polymers. Further, by adding damage (decreasing the total number

of bonds) the Mullin’s effect was captured for all three types of bonds. In addition

to decreasing stiffness and the corresponding stress values, the damage increases the
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Figure 4.5. Example I: Time response of formative bonds to a Heaviside-step
deformation in a large range of kinetics rates. The kinetics rate is controlled by
time constant of reaction where (τf )0 = 10 and the range of time constants is covered by
multiplying (τf )0 with powers of two. Formative bonds show an asymptotic decay in Cauchy
stress during a sustained loading, whereas for large values of τf (slow kinetics rate) the
response approaches a hyperelastic behavior (permanent bonds) marked with dashed red
line, and at small τf (high kinetics rate), the stress response approaches a singular behavior
that is immediately decays to zero (sliding bonds). The step deformation is λ(t) = 1.1u(t)
and the neo-Hookean intrinsic hyperelasticity parameter is C1 = 100.

difference between the loading and unloading parts of the stress response. This results

in increased hysteresis and further dissipation of energy (Fig. 4.6E, F, and G).

The expansion of sliding and damage thresholds are shown in Fig. 4.6A by the

dashed lines. It is evident from the simulations that the behavior of bonds, especially

permanent bonds with damage and sliding bonds are similar. However, certain char-

acteristics are unique to each bond type. For example, contrary to sliding bonds, there

is no shift in reference configuration for permanent bonds with damage.

4.3.4 Incremental stress relaxation with softening and anisotropy (Exam-

ple III)

In Example III a typical combination that may be used to model anisotropic

response of tissue in a stress relaxation test is demonstrated that also includes soften-

ing. Softening in tissues often occurs at high deformations [131,216]. It is not possible

to distinguish between damage and plastic deformation solely by loading the tissue in

tension and analyzing the stress response. This is demonstrated in the example by
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Figure 4.6. Example II: Cyclic loading and damage (A) an increasing cyclic loading
protocol applied for non-damaged (B) formative, (C) permanent, (D) sliding bonds. When
damage is added to the response for (E) formative, (F) permanent, and (G) sliding bonds, all
the bond types show a softening behavior. The evolution of sliding and damage thresholds
is also shown in (A) in response to loading and unloading phases, where sliding starts after
λ = (rs)0 = 1.01, and damage after λ = (rD)0 = 1.03.

using a combination of formative bonds and either sliding bonds, or permanent bonds

with damage (Fig. 4.7). In these examples, formative bonds account for the transient

stress response in axial direction, and sliding (or permanent bonds) produce the equi-

librium part of the stress response (model parameters in Table 4.3). Identical behaviors

are observed during ramp and relaxation loading phases (Fig. 4.7). However, during
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unloading it is evident that the reference configuration is shifted when implementing

the sliding bonds, where for permanent bonds with damage there is no shift in the

zero-stress configuration.

Experimental evaluation of this shift in the reference configuration in soft tissue

is often challenging due to non-linearity in stress-strain behavior, when the initial stiff-

ness is low that gradually increases by further deformation (toe-region effect). However,

by having a theoretical framework for both of the candidate mechanical behaviors (i.e.,

plastic deformation and damage) it is possible to fit the models to the loading phase

and make predictions about either the unloading phase, or other experimental results

(e.g., cyclic loading in Example II) to assess the success of the model in predicting the

experimental data, and thus evaluating the contribution of each of the aforementioned

inelastic behaviors in tissue [182].

4.4 Discussion

This study provides a structurally-inspired framework for modeling inelasticity

in tissue. It uses a thermodynamic scheme, where internal state variables and kinetics

of molecular bonds are employed to capture the major inelastic behaviors of tissue.

This framework consistently addresses a range of inelastic behaviors. The formative,

permanent, and sliding bonds correspond to viscoelastic behavior with zero equilibrium

stress, hyperelastic response, and plastic deformation, respectively. Additionally, the

formulation of bond kinetics allows for the inclusion of damage by reducing the number

of bonds, which introduces damage as an inelastic behavior to all of the bond types.

Any combination of the bond types can be employed to model various kinds of inelastic

behaviors, such as a combination of formative bonds and permanent bonds with damage

to model a viscoelastic behavior with softening.

The reactive inelasticity framework uses ISV formulation, where it is usually

assumed that the variables are “hidden”; however, despite the similar mathematical

formulation, the variables used herein can be physically measured, and as suggested by

Ateshian and co-workers are “observable state variables” [10, 151]. Connective tissues
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Figure 4.7. Example III: Incremental stress relaxation with softening for (A,C)
formative and sliding bonds, and (B,D) formative bonds with permanent bonds and damage.
The effect of selection of either sliding bonds or permanent bonds is only observed during
unloading. When the sliding bonds are used there is a shift in the reference configuration
(C) which is not true for permanent bonds with damage (D).

matrix is mostly made of various types of collagen that are cross-linked. These cross-

links are formed via several mechanisms including enzymatic lysyl oxidase-mediated

and non-enzymatic glycation-induced cross-links to produce larger collagenous struc-

tures [57, 177]. The mechanical properties of collagenous material are sensitive to the

density, structure and properties of these cross-links [47]. Several studies support a cor-

relation between mechanical loading and the state of molecular bonding as described

below. Fourier transform-Raman spectroscopy during tendon’s incremental stress re-

laxation tests [137], and thoracic aortic wall’s ramp-to-failure [81] show that the protein
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conformation is highly dependent on mechanical loading. Additionally, when over-

loaded, collagen fibrils show local deformities (kinks) that contain denatured-collagen-

rich regions [86,227]. In fact, the denatured collagen density is closely correlated with

reactive damage parameter [151]. Recent advancements in using collagen hybridizing

peptides (CHP) provided new opportunities to visualize the spatial distribution and

level of disruption in these regions after mechanical overloading [126, 212, 249]. Fur-

thermore, using in-silico molecular dynamics experiments, two potential mechanisms

of molecular disruption, shear and tension dominant, were suggested and these closely

resemble the sliding and damage processes modeled here with RIE [249]. However,

despite these advances demonstrating a role for molecular bonds as observable state

variables, more experimental work needs to be done to elucidate structural mechanisms

of inelasticity in terms of molecular bonding.

The reactive inelasticity framework is a generalization of the reactive viscoelas-

ticity model [10], where an inclusive and consistent treatment of inelastic processes is

provided. The reactive viscoelasticity model of Ateshian provided the essential con-

cepts of weak and strong bonds that correspond to formative and permanent bonds,

respectively. We chose the terminology of formative and permanent bonds because of

their analogy to kinetics rate of bonds and their behavior. Additionally, in contrast

to [10] we based our formulation on the number fraction of bonds rather than mass

fraction, which emphasizes that in general, bonds are levels of energy and individual

bonds do not correspond to a physical mass. Although at the first sight these param-

eters appear to be equivalent, due to their non-dimensional nature, this non-inertial

bond assumption is particularly important when considering the singular accelerations

arising in the case of sliding bonds. Massless bonds keep the model in the realm of

admissibility in the general sense. Further, by making these generalizations we showed

that the bonds are interchangeable at the extremes of kinetics rate, where the behavior

of formative bonds is hyperelastic (permanent bonds) in the limit of slow kinetics rate

(Fig. 4.5), and at high rates of bond kinetics formative bonds turn into sliding bonds

that correspond to a plastic deformation (Fig. 4.6).
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Plastic deformation has been experimentally observed in tissue at the macro-

[134], micro- [120, 216], and nano-scale [198]. Several phenomenological ISV modeling

approaches have been taken to address these phenomena that often are focused to ad-

dress specific inelastic behaviors and usually omit the relationships between different

inelastic behaviors and their mechanisms [60, 66, 134, 160, 247]. In the current frame-

work, we particularly focused on providing a consistent formulation between different

inelastic behaviors and their structural relevance. It should be noted that the concept

of sliding bonds is a fundamentally different concept compared to classic plasticity,

and it rather should be compared to the theory of permanent set in polymer mechan-

ics (rubber-like material) [48]. In a similar framework, for cross-linked polymers a

molecular bond approach has been used to model stress relaxation and plastic necking

instability [139,140]; however, in that theory, only plastic necking rather than general

plastic deformation was addressed, and therefore, their formulation does not explic-

itly provide for the shift in unloaded configuration that is observed in tissue, such

as non-recoverable interfibrillar sliding [120]. In our model, the generation reference

deformation gradient (Πα) is a state variable that is directly related to the plastic

deformation and thus is an observable variable accounting for the shift in unloaded

configuration of the material.

Damage was applied to each of the bond types regardless of their kinetics rate.

This allowed for modeling the effect of damage on different components of structure

that produce the mechanical behavior of material, such as degradation in the viscous

components of a viscoelastic behavior without affecting its elastic part. Previously, a

similar concept was used to study damage in cartilage that was only applied to the

permanent bonds. This resulted in the damage effect being limited to the equilibrium

behavior [151]. The reduction in number fraction of active bonds results in a decrease

in the ability of material to absorb energy, which provides a generalized definition of

damage as a behavior. By adding this ability, it is possible to model mechanical be-

havior up to rupture, where, if the formative bonds could not be damaged, no rupture

could occur. Another benefit of this definition is in that it forms a clear theoretical
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basis for distinction between plastic deformation and damage. As shown in Fig. 4.6,

plastic deformation alone does not result in a decrease in stiffness; however, adding

damage would cause a reduction in stiffness, which is a common mechanical property

used to assess the extent of damage in a material. By using the current theoretical

framework for addressing damage and other forms of inelastic response that was pro-

vided in this study, it is possible to elucidate the mechanisms and role of each inelastic

behavior in the mechanical response of tissue from the experimental stress response

of the material. One future direction, for example, is using a specific loading profile

with repeated scenarios (e.g., loading, unloading and reloading) to curve fit different

versions of reactive inelasticity and using the fit parameters to predict an independent

experimental mechanical behavior. From the quality of the predictions, one can assess

the relevance of the involved inelastic behaviors and their contribution; this is studied

in the following chapter.

In this framework, one of the limitations may be that we made a continuum body

assumption to relate the molecular energy to the macro-scale mechanical behavior,

where hierarchical structural effects, as well as statistical considerations for molecular

bonding were not included; however, the simplicity of the model and its ability to

reproduce a spectrum of macro-scale behaviors were chosen here over complexity of

formulation. Additionally, damage was modeled as a scalar variable that may overly

constrain a generalized three-dimensional case [104]. These issues can be addressed

by utilizing multiple bond types with different directional preferences to achieve a

desired level of anisotropy [151]. The current formulation does not study the geometry

effects, spatial variation of material properties, and or other heterogeneities, which

can be incorporated when RIE is solved on a certain geometry. Finally, since tissues

have a significant fluid content, the fluid pressurization and poroelastic effects can

play an important role in the mechanical response. Those effects were not included

in this model, which is a limiting factor for applying this framework to experimental

data. However, including poroelasticity with other material models has been studied

in depth by others, thus we did not focus on that; where, a multiphasic mixture model
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can be used with inelastic solid phase to address fluid flow effects [9, 93,132].

In conclusion, we have provided a structurally-inspired framework for modeling

inelastic behaviors of tissue based on the kinetics of reactive molecular bonds that

break and reform in response to mechanical loading. The model addresses viscoelastic-

ity, plastic deformation, and damage of a fibrous structure in an inclusive framework.

We introduced three types of molecular bonds: formative, permanent, and sliding that

result in viscoelastic, hyperelastic, and plastic deformation behaviors. Damage was

applied to each of the bond types by reducing the number fraction of bonds, which con-

sequently decreases the ability of material to absorb energy. All of the aforementioned

inelastic behaviors are modeled within the same framework and by using similar sets

of constitutive equations. This allows for investigating the mechanisms of inelasticity

by providing a comprehensive theoretical basis for analyzing the mechanical response

of tissue that can be used to understand mechanical loading induced pathological con-

ditions, to develop more effective treatment protocols, and to engineer replacement

tissues.
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Chapter 5

EVALUATING PLASTIC DEFORMATION AND DAMAGE AS
POTENTIAL MECHANISMS OF INELASTICITY IN TENDON

These findings are published in Babak N. Safa, Andrea H. Lee, Michael H. Santare,

Dawn M. Elliott. ‘Evaluating Plastic Deformation and Damage as Potential Mechanisms

for Tendon Inelasticity Using a Reactive Modeling Framework,’ Journal of Biomechanical

Engineering (2019) (https://doi.org/10.1115/1.4043520)

5.1 Introduction

Inelastic mechanical behaviors, as described in Chapter 4, occur during ten-

don’s overload and in loading-induced pathological conditions such as degeneration

and tendinopathy [37,133]. Inelastic behaviors in tissue include viscoelasticity, plastic

deformation, and damage. In particular, plastic deformation and damage are asso-

ciated with stress softening, commonly referred to as Mullin’s effect in polymer me-

chanics [48, 135]. In tissue, softening is observed as a progressive decrease in tensile

modulus prior to failure [122, 158, 165, 183] and can be described based on the con-

cepts of plastic deformation and damage. In plastic deformation, there is a shift in

the unloaded reference state, and in damage the material loses its ability to absorb

energy without a change to the unloaded reference state [3, 48, 125]. These inelastic

behaviors can contribute to the development of clinical disorders, such as tendinopathy

and rupture by changing the macro-scale mechanical behavior [64] and can also affect

tissue degeneration and regeneration, by changing the cell loading [38].

Tendon’s mechanical and structural studies support both of the potential mech-

anisms of plastic deformation [1,178,210] and damage [54,149] for softening. However,

53

https://doi.org/10.1115/1.4043520


plastic deformation and damage are hard to differentiate experimentally. Plastic defor-

mation and damage cannot be differentiated during the commonly used ramp-to-failure

tests due to the similar softening effect of these two mechanisms during loading, and a

repeated loading protocol, such as loading and unloading, is essential to quantify plas-

tic deformation and damage. However, even when unloading is added, the low stiffness

in the toe-region and viscoelastic behaviors can still limit differentiation between plas-

tic deformation and damage [210]. Structural studies also do not resolve the question:

non-recoverable micro-scale sliding [120] supports plastic deformation, collagen denat-

uration due to mechanical loading [228,249] supports damage, and the inelastic tensile

response of individual collagen fibrils [128, 198] may support both. Despite numerous

mechanical and structural studies, tendon’s inelastic behaviors are not well described.

In Chapter 4, we reviewed the reactive inelasticity (RIE) theoretical framework

to address the inelastic behaviors of soft tissue by using the kinetics of molecular

bonds. This structurally-inspired continuum mechanics framework is an extension of

the reactive viscoelasticity model by Ateshian [10] and prior work in polymer mechan-

ics [6, 48, 96, 239], which addresses all three of the aforementioned inelastic behaviors

of tissue (i.e., viscoelasticity, plastic deformation, and damage) by using the same con-

stitutive settings at different kinetic rates of bond breakage and reformation. This

characteristic makes RIE distinct from other models for tissue’s inelastic behaviors,

which address viscoelasticity without softening [52, 171, 245], or include softening by

focusing on either plastic deformation [210, 247], damage [53, 75, 125, 149, 151, 224], or

their combination [60,134,160,161]. In the RIE framework there are three bond types;

formative bonds are used to model a transient viscoelastic behavior, permanent bonds

are used for modeling the hyperelastic behavior, and sliding bonds are used for plastic

deformation. Damage is added to each bond type by reducing the number fraction

of the available bonds Chapter 4. By combining different bond types, a wide vari-

ety of mechanical behaviors can be modeled. Hence, the RIE framework provides a

comprehensive tool for investigating the inelastic behaviors of tissue by using a unified

structurally-inspired theory to model inelasticity.
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Our long-term goal is to study tissue inelasticity, bridging the gap between ex-

periments and modeling. The objectives of this chapter are to apply the RIE modeling

framework to tendon’s tensile behavior, to evaluate the model performance in fitting the

macro-scale experimental data for plastic deformation and damage mechanisms, and to

validate the models by predicting an independent experimental dataset. Our previous

study on rat tail tendons demonstrated that uniaxial mechanical loading can change

both macro-scale mechanical properties and micro-scale structure [120]. However, this

experimental study was not designed to distinguish between plastic deformation and

damage, and it did not provide numerical measures for inelastic effects. We will show

that we can describe the inelastic behaviors in tendon by using RIE-based models

specific to plastic deformation (combination of formative bonds and sliding bonds) or

damage (combination of formative bonds and permanent bonds). Importantly, for vali-

dation we then apply the resulting model parameters to predict results from a separate,

independent experiment. This study is significant in that it pursues a systematic ap-

proach to elucidate the mechanisms of tissue degeneration and failure, and it provides a

path forward for understanding the connection between structural hallmarks of tendon

pathology and mechanical behavior.

5.2 Methods

We formulated two material models using the reactive inelasticity (RIE) frame-

work that address either plastic deformation or damage. These models account for

physics of tendon by simultaneously addressing: stress stiffening (toe-region), stress-

relaxation (viscoelasticity), unloading, and softening. The models were independently

fit to the experimental data from Lee and co-workers [120]. We first evaluated the per-

formance of these two models in fitting the experimental data. To validate the model

prediction, we applied the resulting model parameters to a separate, independent ex-

periment that measured the stress response of tendon fascicles in constant-rate tensile

tests (Szczesny and co-workers [214]).
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5.2.1 Reactive inelastic modeling

In the following, we briefly describe the theoretical formulation of RIE and its

specific application to this study; for further details the reader is referred to Chap-

ter 4. The RIE framework employs the kinetics of molecular bonds to simulate the

inelastic behaviors. There are two levels for categorizations of bonds: “bond types”

and “generations”. A bond type, specifies its mechanical behavior (e.g., hyperelastic or

plastic deformation). Bonds break when subjected to external loading, and reform to

a new configuration. The reformed bonds initiate a new generation. The generations

are bonds that were formed at the same time and have the same reference deformation

gradient. Different generations can have different stress and relative deformations, but

the sum of the number fraction of the generations is conserved at unity [10]. That is,

∑
α

wαγ = 1 . (5.1)

Where, wαγ is the number fraction of the generation (α) from a bond type (γ), which

is a positive scalar less than one. In this formulation, the number of generations in

calculated based on the discretization of deformation into a finite number of time steps,

which results in adequate numerical convergence.

By adding the response of generations, the overall response of a bond type is cal-

culated, and by combining different bond types, an RIE material model is formulated.

This constitutive setting allows for consistent modeling of the inelastic behaviors using

the same set of equations Chapter 4. We used a simplified one-dimensional version of

RIE to model the rat tail tendon’s axial tensile tests. We assumed that the stress in

the material is the sum of all the bonds types (T =
∑

γ Tγ), and that the stress of

a bond type is a weighted sum of the stresses from generations that depends on the

overall stretch λ and the reference stretch of each generation λαγ , such that

T (λ,wαγ , λ
α
γ ) =

∑
γ

∑
α

wαγTγ(λ/λαγ ). (5.2)
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In this equation, Tγ is the intrinsic hyperelasticity stress function that provides a unique

stress for each deformation for each generation of a bond type. As a result, the state

variables that control stress are λ, wαγ , and λαγ Chapter 4.

We modeled the kinetics of molecular bonds to formulate the evolution of wαγ ,

and λαγ for the different bond types Chapter 4. Three types of bonds are defined based

on their kinetic rate: formative (γ = f), permanent (γ = p), and sliding (γ = s), which

account for viscoelastic, hyperelastic, and plastic deformation behaviors, respectively

Chapter 4. The formative bonds have a finite rate of breakage and reformation and

the reference stretch is determined by the deformation at which the generation was

initiated. That is, λαf = λ(tα), and tα is the time at which the generation was gen-

erated. This results in a viscoelastic behavior with a stress-free equilibrium condition

(Fig. 5.1A,D) [10, 239]. Permanent bonds do not break (w0
p = 1 and λ0

p = 1), which

results in a hyperelastic behavior with no deformation history dependence. The perma-

nent bonds are a special case of formative bonds at the limit of slow kinetics. Sliding

bonds are the other limit case; this time the kinetics rate is fast and the bonds almost

instantaneously break and reform. In this case, the plastic deformation behavior can

be formulated using constitutive relations for λαs , where, for the 1D uniaxial tensile

loading, λαs ≤ λ is the sufficient condition Chapter 4.

In this formulation, damage can be applied to all of the bond types by reducing

the number fraction of the bonds able to carry load Chapter 4. As a result,

T (λ,wαγ , λ
α
γ , Dγ) =

∑
γ

(1−Dγ)
∑
α

wαγTγ(λ/λαγ ). (5.3)

In the above relation, Dγ is the damage parameter for each bond type that is a scalar

in the range [0,1] and it is defined as

Dγ = 1−
∑

α w̄
α
γ∑

αw
α
γ

. (5.4)

Here, w̄αγ is the number fraction of bonds with damage. According to Eq. (5.1) it reads
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Figure 5.1. Schematic difference between the plastic deformation and damage
models. In the plastic model (A-C) a combination of formative bonds with damage and
sliding bonds is used. For the damage model (D-F) a combination of formative bonds with
damage, and permanent bonds with damage is used. Both of the models have similar behav-
iors during loading, and relaxation ((A,D) and (B,E)); however, when looking closer at the
boxed region in (B) and (E) during unloading (C and F) the plastic model shows a shift in
reference unloaded configuration, where there is none for the damage model.

as

Dγ = 1−
∑
α

w̄αγ . (5.5)

Hence, if no bonds are damaged Dγ = 0, and if all of the bonds are damaged Dγ = 1

[151]. Both damage and the change of reference configuration in sliding bonds have

a similar behavior during loading (Fig. 5.1B,E); however, during unloading the dif-

ference between these two processes becomes evident. Unlike plastic deformation,

damage causes the softening effect without a shift in the reference unloaded configu-

ration (Fig. 5.1C,F) Chapter 4. Note that for an example case with only permanent

bonds (γ = p), because there is just one generation with non-zero number fraction (i.e.,

wαp = w0
p = 1), Eq. (5.3) reduces to

T = (1−Dp)Tp(λ) , (5.6)

which is the common formulation used in classic continuum damage mechanics for
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isotropic damage [28,105,123,151].

5.2.2 Plastic deformation and damage constitutive relations

In this study, two separate models were created using the RIE framework: (1)

plastic deformation model and (2) damage model. For the plastic deformation model

we used a combination of formative bonds (γ = fP ) and sliding bonds (γ = sP ), where

Tplastic = TfP + TsP . (5.7)

For the damage model, a combination of formative bonds (γ = fD) and permanent

bonds (γ = pD) was used, where

Tdamage = TfD + TpD. (5.8)

The details of the constitutive relations and parameters are explained in the following

and are summarized in Table 5.1.

5.2.2.1 Kinetics

For formative bonds, an nth-order kinetics rate equation was used:

dwαf
dt

= −Kf (w
α
f )Nf . (5.9)

In this relation, the model parameters are (Kf , Nf ), where Kf is a positive number that

scales the rate of the reaction and Nf is the order of the breakage reaction (Nf ≥ 1).

For the special case of Nf = 1, this relation reduces to a first-order kinetics equation,

where its time constant is τf = 1/Kf [23]. For the sliding bonds, a step kinetics relation

is used, where for breaking generations wαs = 0, and for reforming generation wα+1
s = 1

Chapter 4. For the permanent bonds, since there is no bond breakage, τp = 1/Kp →∞.
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Table 5.1. Summary of the bond types, constitutive relations, and the model
parameters used for each of the inelastic models.

Bond Type Kinetics Int HElast. Sliding Damage # par

Plastic

Formative Nth-order Fiber-exp - Weibull

10
[K(s−1), N ]fP [C1(MPa), C2]fP - [k, l, r0]fP

Sliding Step Fiber-exp. Mod.Weibull -
- [C1(MPa), C2]sP [b, c, r0]sP -

Damage

Formative Nth-order Fiber-exp - Weibull

10
[K(s−1), N ]fD [C1(MPa), C2]fD - [k, l, r0]fD

Permanent - Fiber-exp - Weibull
- [C1(MPa), C2]pD - [k, l, r0]pD

5.2.2.2 Intrinsic hyperelasticity

To account for nonlinear stiffening of tissue (toe-region), since the rat tail tendon

fascicles have a mostly parallel makeup [166], a typical nonlinear fiber-exponential

constitutive relation was used as the intrinsic hyperelastic function of the bonds [176,

240]:

Tγ(λ/λαγ ) = C1[exp
(
C2(λ/λαγ − 1)

)
− 1]u(λ/λαγ − 1). (5.10)

In this equation, C1 and C2 are positive-valued model parameters. In the plastic

model, C1 and C2 are the same for formative and sliding bonds, and likewise for the

damage model C1 and C2 are the same for formative and permanent bonds. This is a

simplifying assumption that indicates the bonds from each model have the same load

bearing capability, but their difference is due to the difference in their kinetics and

inelastic parameters. In addition, u(.) is the Heaviside step function, which is included

so that the constitutive relation does not provide for stiffness in compression.

5.2.2.3 Sliding

The axial stretch was used as the sliding variable (Ξs = λ(t)), which governs

the sliding process in a non-reversible way Chapter 4. That is, sliding stretch increases

upon loading, and its value does not change during unloading or lower loading. Hence,

the difference between the reference stretch of two consecutive generations of the sliding
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bonds (α− 1 and α) is calculated as Chapter 4

λαs − λα−1
s = fs(Ξs(t

α))− fs(Ξs(t
α−1)) . (5.11)

A modified Weibull’s relation was used for fs such that

fs(Ξs) = (Ξs − 1)

(
1− exp

[
−
(

Ξs − (r0)s
c− 1

)b])
. (5.12)

The model parameters are b (b ≥ 1) the shape parameter, c the scale parameter, and

(r0)s is the initial threshold of sliding (c ≥ 1 , (r0)s ≥ 1). For a simple ramp loading with

(r0)s = 1, one can show that λαs = fs(Ξs)+1. This constitutive relation guarantees that

for a tensile loading, the reference configuration of bonds always is a non-compressive

configuration (i.e., 1 ≤ λαs < λ). For convenience, the sliding stretch of the last

generation λαs will be simply referred to as the sliding stretch λs.

5.2.2.4 Damage

Similar to the sliding formulation, the axial stretch was used as the damage

variable (ΞD = λ(t)) and the Weibull’s cumulative distribution function (CDF) was

used for accumulation of damage [75,151]

fD(ΞD) = 1− exp

[
−
(

ΞD − (r0)D
l − 1

)k]
. (5.13)

In this equation (k, l) are the Weibull’s shape and scale parameters, respectively, and

(r0)D is stretch at the initial onset of damage (k ≥ 1, l ≥ 1 , (r0)D ≥ 1) Chapter 4.

The accumulation of damage is calculated by considering the history of deformation

and Ḋγ = (∂fD/∂ΞD)Ξ̇D using a non-recoverable scheme that only allows for increase

in damage during loading Chapter 4. Similar to λαs it can be shown that if (r0)D = 1,

for a simple ramp loading Dγ = fD(ΞD). Damage is applied to permanent bonds

for the damage model. Additionally, the formative bonds in both models are allowed
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to accumulate damage, because otherwise post-yield failure would not be possible.

This is also consistent with the creep rupture of tendon under force-loading, because a

viscoelastic response with no damage would converge to an “equilibrium” under that

regime of loading, which further justifies our consideration for damage on formative

bonds [5, 233].

5.2.3 Experimental micro-tensile test data

Experimental data from Lee and co-workers [120] was used to fit the two mod-

els. Briefly, tendon fascicles were dissected from the tail of Sprague-Dawley rats and

tested in a PBS bath. The mechanical tensile test consisted of ∼ 5 mN preload, 5

cycles of preconditioning to 4% strain, a ramp load at 1%/sec to either 4% , 6%, or

8% grip-to-grip strains (n=7/group)(loading phase), held for 15 minutes (relaxation

phase). Following relaxation, the specimen was unloaded at 1%/s (unloading phase),

and reloaded to failure (reloading phase) (Fig. 5.2). The initial cross-sectional area

and grip-to-grip length were used to calculate stress and strain. We used the max-

imum optical strain (reported as the tissue strain in [120]) to scale the grip-to-grip

strain to account for the gripping effects and to avoid the errors in estimation of the

applied strain to the tissue. The stress data was smoothed using the moving average

method and re-sampled to one-thousand data points for each loading, relaxation, un-

loading, and reloading phases, and were then used for curve-fitting to calculate the

model parameters.

5.2.4 Model implementation and parameter identification

The models were implemented using a custom written Matlab package for re-

active inelasticity (ReactiveBond v1.1 [181]). For each phase of loading, relaxation,

unloading, and reloading, one-thousand time-steps were used that results in the same

number of generations for loading, unloading, and reloading. Note that no generations

are initiated at the relaxation phase. These time steps were adequate for reaching
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Figure 5.2. Micro-tensile mechanical testing profile. (A) The samples were ramped
to a target grip strain (4%, 6%, or 8%) at a 1%/sec rate (loading phase), held for 15 min
(relaxation phase), unloaded at 1%/sec (unloading phase), and reloaded to failure (reloading
phase). The profile shown corresponds to a 6% target strain test.

numerical convergence. For parameter identification, we used a constrained multivari-

able nonlinear optimization method (fmincon, Matlab). The root-mean square error

(RMSE) was used as the optimization cost function. To minimize the chance of con-

vergence to local minima, we ran the optimization for each of the experimental stress

curves using 48 randomly generated initial guesses and the solution with the minimum

final residual value was selected as the optimal answer (MultiStart, Matlab).

5.2.5 Data analysis

The optimized curve-fit results were individually plotted for each phase of the

test, and the resulting model parameters were illustrated using parallel coordinate

plots (PCP) to visualize the fit parameters in a compact way [102]. In addition to the

individual fit parameters, the means, medians, and the interquartile range (IQR) were

calculated and displayed in the PCP. The resulting fit parameters’ similarity to normal

distributions were tested using a Jarque-Bera test (jbtest. Matlab) with a significance

level set at (p < 0.05).

The goodness of the fits was assessed using the percent-error between the fits

and the experiments, calculated as %err = 100(Tfit−Texp)/Texp,max. The IQR of %err

is evaluated for both of the models, and plotted for each phase of the deformation as a

function of the normalized time of the phase defined as t = (t− t1)/(t2 − t1), where t1

and t2 correspond to the time at the beginning and the end of the phase, respectively.
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Normalization of time was performed to visualize the patterns of the errors due to

variability in strains reached at each phase.

The constitutive relations used for formative bonds were the same between the

models, so we hypothesized that the formative bond parameters are not sensitive to the

choice of other bond types. To test this hypothesis, we compared the pairs of formative

bond model parameters by using Wilcoxon signed rank test (signrank Matlab, p <

0.05).

5.2.6 Quantification of inelastic effects

The accumulation of inelastic effects are plotted for each bond type in each

model. The inelastic effect of damage is represented by the damage parameter Dγ for

formative bonds and permanent bonds. To calculate the inelastic effect of sliding on

stress, analogous to the damage parameter, we defined a normalized representation of

the sliding effect (when the sliding is occurring) as

πsP = 1− TsP/Ts0 , (5.14)

where Ts0 is the stress response of sliding bonds using the same intrinsic hyperelastic-

ity relation with no sliding (equivalent to a permanent bond response). As a result,

πsP takes a value between zero and one, where πsP = 0 indicates that there is no

sliding in the system, and πsP = 1 has a zero-stress response. To compare the in-

elastic effect between the models, the median stretches at the 50% inelastic effect

(DfP , πsP , DfD, DpD = 50%) were compared. Using paired comparison, median stretch

of the formative bonds of two models were compared to each other, and the median

stretches for sliding bonds were compared to permanent bonds (signrank, p < 0.05).

5.2.7 Model validation

To validate the models, we compared the response of both models to the constant

strain-rate ramp experimental tests by Szczesny and co-workers [214]. This type of

mechanical testing is widely used for material characterization, thus it is a suitable
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choice for validation [122, 242]. It is important to note that the validation data was

not included for the curve-fitting. We used the non-stained constant-rate ramp data

from [214] (n=4, Figure 6 in [214]). The median values from the fit results of the models

(Table 5.1) are used for predicting the mechanical response to a 1%/sec deformation

curve, up to the peak stress, and the time step between the initiation of the generations

was set as 1.5 ms that results in adequate convergence. The modulus and the peak

stress are compared between the experimental data and the model predictions.

5.3 Results

Both the plastic deformation and damage models resulted in excellent fits to the

experimental data (Fig. 5.3). In particular, both of the models were capable of fitting

the loading phase that showed stress stiffening (toe-region) followed by the linear-region

(Fig. 5.3A,E). During the sustained loading of the relaxation phase, stress relaxation

was closely fit as a result of using the nth-order kinetics relation for the formative

bonds (Fig. 5.3B,F). The unloading phase had a different nonlinear response compared

to the loading phase due to the inelastic behaviors (Fig. 5.3C,G). The reloading curves

showed significant softening before reaching the peak stress that was captured by both

models (Fig. 5.3D,H).

The errors were generally small between the model fits and the experiments,

where the median of errors did not exceed 5% (Fig. 5.4). However, the performance

of the models were not equal in all of the phases. In particular, both of the models

overestimated the loading toe-region in the loading phase (Fig. 5.4A,E). The error

during relaxation was maximum at the higher stress values–the start of relaxation–and

it declined as the relaxation progressed (Fig. 5.4B,F). Both of the models had minimal

overestimation during the unloading phase, where the plastic model had a slightly

better performance towards the end of unloading (Fig. 5.4C,G). Upon reloading, the

models underestimated the stress in the nonlinear stiffening region, and the error was

lesser at the end of the reloading phase (Fig. 5.4D,H).
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Figure 5.3. Fit results for individual experiments. The fits are overlaid (black dashed
line) on top of individual experimental stress responses, for (A,E) loading, (B,F) relaxation,
(C,G) unloading, and (D,H) reloading phases of the experiment. (A-D) are fits to the plastic
model and (E-F) to the damage model.
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Figure 5.4. The IQR of %err of the model fits of (A,E) loading, (B,F) relaxation, (C,G)
unloading, and (D,H) reloading phases as a function of the normalized time of each phase
defined as t̃ = (t − t1)/(t2 − t1), where t1 is the beginning of the phases and t2 corresponds
to end of the phase. (A-D) are %err for the plastic model and (E-F) for the damage model
(median = dashed line, Q1, Q3 = dotted lines).

The fit parameters were visualized using parallel coordinates plots (PCP), where

each piece-wise line corresponds to the fit parameters of one sample (Fig. 5.5). Several

model parameters had a different median and mean values, which is a sign for non-

normality of the distributions; this was also confirmed by the normality tests that
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indicates for an overall response the median is more appropriate compared to the

mean value (Table E.1). Both of the models showed a similar trend in fit parameters for

formative bonds, which were modeled using the same parameter sets, but independently

fit using each model (Fig. 5.5). However, the statistical comparisons indicated that

formative bonds’ parameters had some differences. In particular, for kinetics of bonds

Kf parameters were slightly different (p < 0.05), where for plastic model Kf = 0.32s−1,

and for the damage model Kf = 0.34s−1, but there was no difference between the order

of the kinetics relation (Nf ∼ 1.5). Additionally, contrary to our hypothesis all of the

pairs of intrinsic hyperelasticity (C1f , C2f ) and damage (kf , lf , (r0)f ) parameters were

different, except for only lf that did not show a difference (p < 0.05) (Table E.1).

The sliding parameters of sliding bonds and the damage parameters of the permanent

bonds were dissimilar, which was expected since they belong to different bond types

(Figure 5.5 and Table E.1).

The inelastic effects on the bonds were calculated for each experiment and the

stretch at which 50% inelastic effect for a bond type was reached (Fig. 5.6). In the

plastic model, the formative bonds’ damage reached DfP = 0.50 at the stretch value of

1.07[1.04, 1.09] (read as median[Q1, Q3], Fig. 5.6A). The sliding bonds in the plastic

model, πsP reached 50% at the stretch of 1.05[1.04, 1.06] (Fig. 5.6B). For the damage

model, the formative bonds reached DfD = 0.50 at λ = 1.06[1.05, 1.07], which had

a slightly different distribution compared to that of formative bonds in the plastic

model (p < 0.05) (Fig. 5.6C) and the permanent bonds DpD = 0.5 was reached at

λ = 1.05[1.03, 1.05] which was similar to the sliding bonds (Fig. 5.6D). When looking at

the individual samples, due to the non-recoverable nature of the inelastic effects during

reloading, higher values were reached for all of the inelastic parameters compared to

their counterpart in the loading phase (Fig. 5.6). In addition to the inelastic effects,

for sliding bonds we plotted the reference stretch λs that reached the small value of

1.01[1.0, 1.02] during loading, and it increased to 1.05[1.04, 1.05] at the end of reloading

phase (Fig. 5.6B).

To validate the model fits, the median parameter from both of models were used
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Figure 5.5. Parallel coordinates plots of the fit parameters for (A) plastic deforma-
tion model and (B) damage models, color-coded based on the nominal grip strain (red = 4%,
orange = 6%, and blue = 8%). The interquartile range (IQR) is shaded, where the median
value is plotted using a solid black line. The mean value is marked with “×”.

to predict independent experiments [214], where both models produced similar stress-

strain curves that include the initial stiffening (toe-region) and subsequent increase

in stress followed with softening (Fig. 5.7). Average experimental modulus and peak

stress were 909± 27 MPa and 58± 4 MPa, respectively [214]. The predicted modulus

of the plastic model was 832 MPa and the peak stress was 31 MPa. Respectively, these

values were −8% and −46% different from the experiments. For the damage model,

the modulus was 1036 MPa, and the peak stress was 64 MPa, which were 14% and 10%

different from their experimental counterparts, respectively. In overall, both models

produced similar stress-strain curve shapes, and modulus values; however, the damage

model resulted in a closer peak stress prediction when compared to the plastic model

(Fig. 5.7).

68



1 1.05 1.1 1.15
0

0.2

0.4

0.6

0.8

1

1 1.05 1.1 1.15
0

0.2

0.4

0.6

0.8

1

1

1.05

1.1

1.15

1 1.05 1.1 1.15
0

0.2

0.4

0.6

0.8

1

1 1.05 1.1 1.15
0

0.2

0.4

0.6

0.8

1

Max. D  (and 
s
) Loading

Max. D  (and 
s
) Reloading

Median D  (and 
s
)

Max. 
s
 Loading

Max. 
s
 Reloading

Median 
s

Figure 5.6. Accumulation of damage and plastic deformation. The overall response
for accumulation of damage (Dγ), and normalized plastic deformation (πs) are plotted for each
bond type using the median of the fit parameters (solid line). The 50% inelastic effect lines
are marked using horizontal straight lines and the median stretch of all samples’ intersected
with this 50% inelastic effect line is marked with a vertical line. Additionally, the maximum
damage and normalized plastic deformation reached during individual fits in loading (open
circle), and reloading (star) phases for the individual fits. For the sliding bonds, the sliding
stretch (λs) is also plotted (brown dashed line) and the maximum plastic deformation stretch
during loading (open square) and reloading (cross) phases is plotted with respect to the right
y-axis (brown).

1 1.02 1.04 1.06 1.08 1.1 1.12
0

10

20

30

40

50

60

(Szczesny et al. 2014)

Plastic Model

Damage Model

Experiment Plastic Damage
0

200

400

600

800

1000

1200

Experiment Plastic Damage
0

20

40

60

80

Figure 5.7. Validation plots for prediction of plastic and damage models, showing
the comparison of the experimental data from [214] to the predictions of the plastic model
(red) and damage model (blue) to a ramp loading.

69



5.4 Discussion

5.4.1 Comparison between the plastic deformation and damage models

In this study we successfully applied the theoretical framework of reactive inelas-

ticity to tendon experimental data [120]. We implemented two independent models,

specific to plastic deformation or damage, and showed excellent fits to the experi-

ments (Fig. 5.3), and visualized the outcome parameters using parallel coordinate

plots, which enhances visualization of the complex relationships among them. The

fits showed that the plastic model had slightly smaller errors towards the end of the

unloading phase, which was due to inclusion of plastic deformation that agrees with

previous studies [1,210]. However, when comparing the model predictions using the re-

sultant fit parameters to independent validation experimental data, both of the models

predict similar stress-strain curves, with the damage model having more similar be-

havior (Fig. 5.7). These results do not strongly favor one approach over the other,

and both of the inelastic mechanisms may contribute to the mechanical response, thus

further investigations and different experimental testing protocols are needed to differ-

entiate between tendon plastic deformation and damage behaviors. Particularly, force-

controlled tests that can enable unloading to zero-force rather than zero-deformation

can be helpful to distinguish plastic deformation and damage.

5.4.2 Interpretation of inelastic effects

The J-shaped form for the accumulation of inelastic behaviors in our study

(Fig. 5.6) are consistent with the findings of a recent study that reported the increase

in denatured collagen during tensile loading by using collagen hybridizing peptides

(CHP) [249]. This indicates that the accumulation of inelastic effects may be corre-

lated with collagen denaturation due to mechanical loading. However, the CHP study

suggested onset of damage at higher strains (∼ 8% strain) [249] compared to our study

((r0)γ < 5%) and other studies [1, 120, 210]. This suggests that in addition to colla-

gen denaturation, other molecular mechanisms and proteins in extra-cellular matrix

(perhaps elastin or decorin) may play a role in the inelastic mechanical response of
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tendon [58, 85, 172]. Further, part of the inelastic response also can arise from multi-

scale “sliding” between tendon’s fibrous components [77,214] that is not intended to be

represented by the sliding bonds, which specifically address the macro-scale response

in a continuum mechanics scheme. While identification of the relationships between

tendon’s inelastic mechanics and molecular disruptions require further investigations,

the inelastic effects can be quantified by using mechanical modeling for understanding

the mechanical properties of tendon, and assessing its altered mechanical properties in

various stages of disease, injury, and healing [5, 68, 203].

5.4.3 Remarks about RIE modeling

We hypothesized that the formative bond parameters would be the same for

both models regardless of the choice of sliding or permanent bonds for the equilibrium

response. While they were similar, there were some unexpected and statistically sig-

nificant differences (Table E.1). This may be due to the simplifying assumption we

made that the formative bonds had the same intrinsic hyperelasticity parameters as

the sliding or permanent bonds (Table 5.1). We made this assumption in order to use

the minimum number of variables to model the tendon response. It is unclear if full

independence of bond parameters would provide a benefit over the current modeling

framework. Nonetheless, it is likely that including interaction terms between bonds or

addition of more bonds and parameters, as a spectrum [15,167], could be beneficial for

accurate modeling of tissue’s inelastic behaviors.

5.4.4 Sources of error

The percent-error (%err) of the models were quite small, but both of the models

had relatively large errors in the toe-regions and the beginning of the relaxation phase

(Fig. 5.4). Here, our continuum modeling scheme is intended to study the macro-

scale inelastic behaviors, and it does not account for the microstrucutre. Smoother

fits could be achieved with more elaborate constitutive relations and microstructural

considerations, such as fiber-recruitment for intrinsic hyperelasticity [17, 180, 215] or
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normalized energy and stress for sliding and damage [151, 202, 231], and by adding

derivatives of the stress response to the cost-function. For the relaxation phase, despite

some deviations at the beginning, this phase was well fit by using a generalized nth-

order kinetics for formative bonds (Fig. 5.4B,F). The error in the relaxation phase

may be related to fluid flow dependent viscoelasticity [36,176], which was not included

in this study. We expect this to be a small effect for tail tendon; however, it can

be added by using a biphasic mixture with RIE as the solid phase [93, 245]. The

poroelastic parameters are the subject of the next chapter, where we use osmotic

loading, and finite element modeling to evalue the hydraulic permeability and other

poroelastic parameters of tendon. A further limitation is that we assumed the kinetics

rate of bond breakage and reformation is not dependent on the level of strain; however,

adding strain-dependence to kinetics parameters might be necessary for modeling more

complicated loading scenarios such as incremental stress-relaxation [10,99].

5.4.5 Conclusion and future direction

In conclusion, we applied the theoretical framework of reactive inelasticity (RIE)

to model viscoelasticity, plastic deformation, and damage to determine tendon’s inelas-

tic mechanical response. This study is novel in that (1) it investigated tendon inelastic

effects without a prior assumption about the softening mechanism and compared the

two modeling approaches for inelasticity, (2) it demonstrated numerical values for in-

elasticity effects on tendon mechanical response, and (3) it provides a path forward

to relate the molecular structure of tendon to its mechanical response. We applied

the models to the experimental data, and validated the model by comparing the pre-

dictions to an independent set of experimental data. Both models were successful in

fitting and predicting the experimental data, although the plastic model had slightly

better fits during the unloading phase, and the damage model had better predictions

of the independent validation data set. However, the results largely indicate that

deformation-driven experiments can be equally described with both plastic deforma-

tion and damage perspectives. Thus, distinguishing plastic deformation and damage
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mechanisms will require further experimental studies using different loading protocols.
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Chapter 6

EVALUATION OF TENDON HYDRAULIC PERMEABILITY USING
OSMOTIC LOADING AND BIPHASIC FINITE ELEMENT

MODELING

6.1 Introduction

Tendon’s viscoelastic behaviors and mechanisms are important to mechanical

function and mechanobiology [119, 203]. Fluid flow, as an example, is a mechanism

of viscoelasticity that is likely to have an important role in maintaining healthy and

injured tendons homeostatic balance by transporting nutrition from synovial fluid to

tenocytes [59,72]. In general, tendon viscoelasticity can be attributed to both intrinsic

mechanisms in the solid matrix and to fluid-flow-dependent poroelastic mechanisms.

Solid matrix viscoelasticity for tensile loading along the tendon longitudinal axis (fiber

direction), is typically analyzed using phenomenological models, such as quasi-linear

viscoelasticity (QLV) [69,167,188,240] and recently using structurally-inspired reactive

mixture models [182,185]. Fluid-flow-dependent viscoelastity for tensile loading in the

fiber direction has been analyzed using poroelasticity for tendon and other fibrous

tissues [93, 124, 211, 245], although success in multiple loading modalities has been

limited. The effect of these mechanisms are overlapping and difficult to distinguish,

moreover tendon is highly anisotropic and these fiber-aligned studies do not provide

tendon transverse viscoelastic properties .

When loaded in longitudinal tension, tendon has a large Poisson’s ratio (ν > 2)

that exceeds the limit of incompressibility for isotropic material (ν = 0.5) [131, 176],

which indicates that tendon is anisotropic and it experiences volume-loss, inducing fluid

exudation. Recent high-frequency AFM Nano-indentation of tendon reveals that there
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are two distinct peaks in the phase shift of tendon’s response indicating a geometry-

independent and a geometry-dependent behavior, which may correspond to solid matrix

and poroelastic viscoelasticity, respectively [36,152]. Therefore, transverse poroelastic-

ity is an important contributor to tendon material behavior.

Despite decades of studies on the mechanical response of tendon, transverse

mechanical properties are not well understood. Only a few studies on tendon (and

ligament) in compression report transverse elastic and poroelastic properties [21, 84,

157,187,236]. In particular, the transverse modulus and hydraulic permeability that are

required to evaluate the fluid flow contribution to viscoelasticity are mostly unavailable

for tendons. As an example, for transverse hydraulic permeability although some

studies report tendon permeability by modeling tendon as a biphasic mixture, the

values in these studies vary by several orders of magnitude 10−6 to 10−1mm4(N s)−1

[152, 245]. This is likely due to the complexity of the interacting inelastic mechanical

behaviors and the need for a careful treatment of the experimental procedure to isolate

the poroelastic behavior.

Hence, the objective of this study was to quantify the transverse poroelastic

material parameters of tendon through transverse osmotic loading experiments and

mixture finite element modeling. We osmotically loaded tail tendons in the transverse

direction, both in compression and tension, which isolated the fluid-flow mechanisms.

The induced transverse strain over time was measured and was fitted to a finite element

model by using a novel multi-start optimization method. This is a robust method to

explore the search space to identify the model parameters. We report tendons trans-

verse solid matrix elastic parameters, and transverse permeability in both transverse

tension and compression. Further, using these results, we predict hydraulic permeabil-

ity of tendon during uniaxial loading and the spatial distribution of fluid flow during

transverse osmotic loading.
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6.2 Material and Methods

6.2.1 Sample preparation and grouping

Tail tendon fascicles were harvested from mature Long-Evans female rats (aged

4 to 8 month). A 60 mm long portion of the proximal tail was dissected by means of

a surgical scalpel, and individual fascicles were pulled from the distal end of the cut

portion [183, 216]. The fascicle was immediately cut transversely to obtain matched

pairs with the same length (30 mm). The proximal and distal halves were randomly

assigned to osmotic loading or fresh-frozen water content groups. For osmotic loading

we used SPEG (polyethylene glycol PEG 20 kDa and 0.9% tris-buffered saline) at

concentrations of c = 1%, 8% (as the reference control), and 15% SPEG (n = 5 per

group). SPEG is a polymeric based solution that maintains hydration and mechanics

of rat tail tendon fascicles close to physiological level at 8% concentration [183].

6.2.2 Loading protocol

For the osmotic loading groups, each sample was first gripped in a custom-

made microtensile testing machine (Fig. 6.1A), with approximately 10 mm grip-to-grip

clearance [120,214] while bathed in 8% SPEG. The sample, was preloaded to maximum

of ∼0.01 N to remove slack, and immediately preconditioned between 0% and 2% strain

for 5 cycles at 1%.s−1 rate.

Following preconditioning, the sample was held at the zero-deformation for 16

min (Equilibration phase, Fig. 6.1A). After this phase, the buffer bath was removed

by means of an electric pipette and the solution was changed either to 1%, 8% or

15% SPEG, and the sample was held in position for 16 min (Osmotic loading phase,

Fig. 6.1A). The transverse image of the fascicle was recorded during the test using a

CCD camera (Fig. 6.1B). Additionally, the axial force was monitored throughout the

test. Note that the axial force remained at the preload-level during both Equilibration

and Osmotic loading phases (Fig. 6.2).
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Figure 6.1. Methods for osmotic loading experiments and finite element model-
ing: (A) The samples were equilibrated in 8% SPEG for 16 minutes, followed by the osmotic
loading by exchanging the buffer solution with 1%, 8% (control), or 15% SPEG. After osmotic
loading the samples were weighed to get wet mass (Wwet), dehydrated and weighed again to
get the dry mass (Wdry). (B) The transverse width (a = (aleft + aright)/2) was measured
over time in solution (scale = 1 mm). (C) Finite element analysis included a quarter ellipse
with a pressure boundary condition.

6.2.3 Water content measurements

The water content of osmotically loaded samples and their matched fresh-frozen

halves from the same fascicle were measured to determine the effect of osmotic solution

on the water content. Each sample was first placed in a capped micro-tube on an

electronic scale (0.1 mg precision) to measure the wet weight, transferred to the oven for

dehydration (at least for 20 hr in 43◦C), and the dry weight was measured (Fig. 6.1A).

For the osmotic groups, after the loading phase, while the sample was gripped, a scalpel

blade was used to cut the samples at the gripped ends and the remaining sample was

used for the water content measurement. The fresh-frozen sample’s wet weight was

measured immediately after dissection. The water content (ϕw) was calculated as [183]:
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ϕw =
Wwet −Wdry

Wwet

. (6.1)

Where, Wwet is the wet weight and Wdry is the weight after dehydration (Fig. 6.1A).

We calculated the change to ϕw (∆ϕw) by subtracting the water content of osmotic

group from their paired fresh-frozen sample.

6.2.4 transverse strain and image analysis

The transverse width of the sample a was calculated by averaging sample’s width

at two locations, as a = (aleft+aright)/2 (Fig. 6.1B). The marked widths were measured

using a custom written segmentation code. One sample from the 15% SPEG group

was excluded due to what appeared to be accidental movement of the CCD camera

during imaging. The transverse strain along x-axis (εt) was calculated as

εt =
a

a0

− 1 (6.2)

Where, a0 is the average width of the sample during the Equilibration phase (see

supplementary Fig. F.1). Additionally, we calculated the volumetric strain based on

the equilibrium transverse strain, calculated by averaging the last five minutes of the

transverse strain during the Osmotic loading phase (see Results Fig. 6.4B) and the

assumption of transverse isotropy of tendon as

εvol = 2εt (6.3)

6.2.5 Statistical analysis of water content and comparison to volumetric

strain

To check if the samples in the three groups had the same initial condition, we

conducted an ANOVA between the fresh-frozen group’s water content (p < 0.05). To

test if the osmotic loading had an effect on the water content we performed a separate

ANOVA between the water content of the samples after osmotic loading (p < 0.05).
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Figure 6.2. Representative axial force during the three phases of the protocol for
each of the SPEG solutions. There was no change to axial force during Equilibration or
Osmotic loading phases.

As a post-hoc test, we compared the pairs of fresh-frozen and osmotic loading water

contents using paired two-tailed t-test (p < 0.05). To test if the change to water

content and the change to volume are the same, we conducted single-group t-tests

on εvol (p < 0.05), and performed paired t-tests between εvol and εvol for each group

(p < 0.05).

6.2.6 Biphasic finite element model

To evaluate the biphasic properties of tendon we developed a finite element

(FE) model using FEBio (v2.8 febio.org [132]) and applied it to the Osmotic loading

phase. According to the high aspect-ratio of fascicle the plane-strain condition was

imposed. A symmetric elliptical quarter-cylinder was meshed using hexahedral ele-

ments (Fig. 6.1C), where the ellipse parameters were: semi-major axis a/2 = 0.14
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mm based on the average of the current study’s samples (a = 0.28 ± 0.05 mm),

and eccentricity e = 0.8 based on previous measurements of rat tail tendon fascicle

(e = 0.79± 0.14 [183]).

To model osmotic loading, we imposed a pressure boundary condition (Fig. 6.1C).

Since during Equilibration phase, the tendon was bathed in 8% SPEG, the effective

boundary pressure (p̄) was calculated relative to 8% SPEG using the phenomenological

virial expansion of the osmotic pressure [29]

p̄1,15% = b1(c1,15% − c8%) + b2(c2
1,15% − c2

8%) , (6.4)

where b1 = 1.283× 10−4 MPa and b2 = 8.532× 10−6 MPa, which results in -63 kPa for

1% SPEG (tension osmotic loading) and 146 kPa for 15% SPEG (compression osmotic

loading).

The solid matrix was modeled using a Holmes-Mow material constitutive rela-

tion (modulus E, Poisson’s ratio ν, nonlinearity factor β) [88] as

Ψ(I1, I2, J) = C0 (exp [Q(I1, I2, J)]− 1) , where (6.5)

C0 =
λ+ 2µ

4β
, and Q = β

2µ− λ
λ+ 2µ

(I1 − 3) + β
λ

λ+ 2µ
(I2 − 3) + lnJ2 . (6.6)

Here, Ψ is the energy density function, I1, I2 are the first and second invariants of the

right Cauchy strain tensor, J is the Jacobian of the deformation, and λ and µ are the

Lamé parameters. Permeability was modeled with deformation dependency as [88]:

k(J) = k0

(
J − ϕs0
1− ϕs0

)α
exp

[
1

2
M(J2 − 1)

]
. (6.7)

Where, ϕs0 is the reference solid volume fraction (ϕs0 = 1 − ϕw0; set to ϕs0 = 0.6);

k0 is the reference permeability with the dimensions of mm4(N s)−1; α and M are

non-dimensional positive parameters controlling the deformation dependence of k. In

summary, the fitted model parameters were: E, ν, β, k0, α, and M . We will refer to
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E, ν, and β as solid matrix parameters and to k0, α, and M as permeability parameters.

6.2.7 Model parameter identification

To identify the model parameters, we used a constrained multivariable nonlinear

optimization method (fmincon, Matlab). To minimize the chance of converging to a

local minima, we used multiple initial conditions from a wide range search space,

where the initial Holmes-Mow model parameters were sampled from 0 ≤ E ≤ 1 MPa,

0 ≤ ν < 0.5, 0 ≤ β ≤ 5, and the hydraulic permeability parameters were chosen

between 10−5 ≤ k0 ≤ 10−2 mm4(N s)−1, 0 ≤ α ≤ 5 and 0 ≤ M ≤ 5. For the initial

conditions, the search space was sampled by two-hundred values per variable using a

Latin Hypercube method (lhsdesign, Matlab), and we ran the optimizations for each

of the tension and compression osmotic loading cases, separately. As cost function

(res), we used the root-mean square error (RMSE) of the transverse strain (along x-

axis Fig. 6.1), which was calculated using the transverse strain of the FE model and

the mean transverse strain of the experiments. Only fits that met the criterion of

RMSE of less than 50% of the standard deviation of experimental transverse strain

were accepted.

To visualize the initial parameters used for curve-fitting and the accepted fits

we used parallel coordinate plotting, which is a compact way to illustrate a high-

dimensional data [102, 182]. Further, for identifying an overall response, we used the

median of the accepted parameters from the optimizations that met the curve-fitting

criterion.

6.2.8 Statistical analysis of fitted mechanical parameters

For inspecting the solution space all the permutations of the pairs of fit param-

eters were plotted and a linear correlation analysis was performed (p < 0.05). Par-

ticularly, we observed that E and ν were not independent, hence, we calculated bulk
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modulus K for matched pairs of fitted E and ν, separately for tension and compression

osmotic loading as

K =
E

3(1− 2ν)
. (6.8)

We compared K from tensile and compression osmotic loading tests using a unpaired

two-tailed t-test (p < 0.05). Similarly, to test if the parameters from compression

and tension osmotic loading groups were different, for each of the fit parameters the

probability distribution was calculated and a two-sided Wilcoxon rank sum test was

performed between them (p < 0.05).

6.2.9 Prediction of hydraulic permeability during axial loading

It was of further interest to predict the tendon hydraulic permeability during

uniaxial tensile loading. Due to tendon’s high Poisson’s ratio in axial loading (νzx and

νzy) [131, 176], a negative volumetric strain is expected during axial loading (J < 1).

To predict the hydraulic permeability of tendon during axial loading, we used the

range of deformation of 0.8 ≤ J ≤ 1 that represents a deformation with volume loss.

By assuming νzx = νzy = 2 this range of J corresponds to approximately 0 ≤ εz ≤

6.7%, which is calculated using the following relation for infinitesimal deformation

εz = εvol/(1 − 2νzx). For rat tail tendon, εz = 6.7% is a mid-to-high range axial

deformation [120]. The curves were generated using the median parameters of the fit

parameters from tension and compression osmotic loading groups, separately.

6.2.10 Distribution of fluid flow and deformation

We used the median response to calculate fluid flux along the boundary of

tendon over the course of osmotic loading. Fluid flux is calculate according to Darcy’s

law

w = k.∇p . (6.9)

Where, w is the fluid flux relative to solid matrix, k is the hydraulic permeability, and

∇p is the interstitial fluid pressure gradient [14]. The fluid flux was visualized for each
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element on the curved outer boundary of the finite element mesh.

6.3 Results

6.3.1 Effect of osmotic loading on water content and tissue strain

The 1% SPEG put the tissue under transverse tensile loading and 15% caused a

transverse compressive loading. All of our samples had the same initial water content,

as shown by analysis of variance on fresh-frozen water content across different groups

(Fig. 6.3A). Further, analysis of variance indicated that the osmotic loading affected

the water content (p < 0.05) (Fig. 6.3A,B). When comparing the fresh-frozen groups

to their paired osmotic loading groups, we see that the 8% SPEG control did not alter

the water content, where the 1% SPEG (tension osmotic loading) showed a trending

increase ϕw by 9.9%±8.6% (p = 0.062) (Fig. 6.3A,B). Surprisingly, for the 15% SPEG

(compression osmotic loading) ∆ϕw was not different between the fresh-frozen and its

osmotic loading paired group (∆ϕw = −4.9%± 6.3%, p = 0.156) (Fig. 6.3A,B).

To check if osmotic loading alters the water content at a similar amount com-

pared to volumetric strain, we first conducted single-group t-test εvol, and compared the

changes to the water content to the paired volumetric strain. As expected, the volume

did not change for 8% SPEG control group (εvol = 2.0%±3.1%, p = 0.215) (Fig. 6.3B).

For the 1% SPEG and 15% SPEG εvol was non-zero (p < 0.05), where for 1% SPEG

εvol = 13.1%± 5.1%, and for 15% SPEG εvol = −7.1%± 1.0% (Fig. 6.3B). The change

to water content and volumetric strain were not statistically different between the two

measurements (p > 0.05) (Fig. 6.3B).

6.3.2 Optimization results and fit parameters

The overall response for 1% and 15% SPEG solutions were calculated by using

the median of the fitted parameters, where for both of the solutions these model resulted

in extremely good fits (Fig. 6.4). The resulting fit parameters were visualized using

a parallel coordinate plot (PCP) (Fig. 6.5) and the summary of the fit parameters is

provided shown in Table 6.1.
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Figure 6.3. Change to water content and volumetric strain due to osmotic loading
(A) Water content ϕw of control (8%), 1% and 15% SPEG groups, for fresh-frozen and osmotic
loading groups. The control was not different than its fresh-frozen pair, confirming that 8%
SPEG maintains tissue’s fresh-frozen hydration. When comparing the osmotic group to the
matched fresh-frozen samples, the 1% SPEG group’s water content showed a trending increase
(∆ϕw = 9.9± 8.6, p = 0.062), and the 15% SPEG did not show a difference (B) The change
to water content ∆ϕw and volumetric strain εvol of control (8%), 1% and 15% SPEG groups.
For εvol, the control volumetric strain was 2.0%± 3.1% and not different from zero, for both
of 1% SPEG and 15% SPEG εvol was non-zero (p < 0.05). For 1% SPEG εvol = 13.1%±5.1%,
and for 15% SPEG εvol = −7.1%±1.0%. Comparison between ∆ϕw and εvol did not result in
statistical significance for either of the solutions. Error lines are mean ± standard deviation.
+ p = 0.062, ∗ p < 0.05

Out of 200 initial points for the optimization, 163 of tension group fits and 36

of the compression group fits met the optimization criterion (defined in Section 6.2.7)

(Fig. 6.5). It is evident that after optimization, the initial residual values (res) are

reduced, and “trends” in the solution parameters are evident. Particularly, we observe

that the Young’s modulus (E) and Poisson’s (ν) appear to have lower values for the

tension osmotic loading, where the other parameters were visually not different between

the osmotic loading groups. This indicated a tension-compression nonlinearity, which

motivated further investigation to formally compare the fit parameters (described in

the following).

To check for tension-compression nonlinearity, we compared the accepted fit

parameters from the tension and compression osmotic loading group fits (the diagonal

elements of the Fig. 6.6, and summarized in Table 6.1). Notably, for the tensile loading

group the modulus had a median of 0.570 MPa, and for the compression group, the
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Figure 6.4. Experimental transverse strain and the model fits for 1% SPEG (tension
osmotic loading; top orange), and 15% SPEG (compression osmotic loading; bottom green).
For each case the resulting overall fit (using median parameters) is overlaid (dashed lines)
on top of the mean experimental response. The shaded areas indicate mean ± standard
deviation of the experimental transverse strain.

median was 0.740 MPa, which was larger in compression compared to tension (p <

0.05). Similarly, the median Poisson’s ratio for the tensile loading was 0.247, which

was lower than that of the compression loading group’s median 0.433 (p < 0.05). The

reference hydraulic permeability (k0) for 1% SPEG was 2.057× 10−5 mm4(N s)−1, and

it was 2.013 × 10−5 mm4(N s)−1 for 15% SPEG (Table 6.1). These values were not

different between the groups. The rest of the parameters were similar, except for small

differences in M and α (Fig. 6.6 diagonal and Table 6.1).

A careful inspection of these parameters indicated that correlations exist be-

tween some parameters (Fig. 6.6). In particular, there was a correlation between mod-

ulus and Poisson’s ratio for both of the osmotic loading groups (Fig. 6.6). Further,

for the tension osmotic loading (1% SPEG), M and α were correlated, and for the

compression osmotic loading (15% SPEG) E was correlated with β, k0, and M ; ν was

correlated with β; k0 had correlation with parameters M and α (Fig. 6.6).

One important observation was that the Young’s modulus, and Poisson’s ratio
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Figure 6.5. Parallel coordinate plot of the fit parameters. (A) The initial conditions
as inputs to the optimization procedure and, (B) the resulting fitted parameters for samples
meeting the optimization criterion. In each plot, the left most coordinate indicates the
concentration of the solution, followed by six model parameters, and the right-most coordinate
indicates the corresponding residual value of the cost function. The median of fit parameters
are plotted for 1% SPEG (cross sign) and 15% SPEG (open circle). k0 is in mm4(N s)−1.
Parameters are defined in Section 6.2.6

were linearly correlated (Fig. 6.6 and Fig. 6.7A). This is an indication of these pa-

rameters’ effects not being independent of one another. In other words, identifying

independent values for E and ν only from the osmotic experiments is not possible.

However, based on the correlation of the E and ν we calculated the bulk modulus K

(Eq. (6.8)). This resulted in K = 0.376± 0.022 MPa and K = 1.843± 0.031 MPa for

the tension and compression tests, respectively. Interestingly, these values were almost

five-folds different (p < 0.05), indicating a clear tension-compression nonlinearity in
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the transverse direction (Fig. 6.7)

6.3.3 Tendon permeability during tensile tests

We evaluated the transverse hydraulic permeability as a function of J , by using

the fitted permeability parameters (Table 6.1 and Equation (6.7), for the range of 0.8 <

J < 1, which approximately corresponds to the range of volumetric strain of −20% <

εvol < 0 (Fig. 6.8). Our results indicated that under tensile loading in tendon (J < 1),

the transverse permeability decreases with decreasing J . Based on this deformation

regime, k decreased almost one order of magnitude from ∼10−5 mm4(N s)−1 at J = 1

to ∼10−6mm4(N s)−1 at J = 0.8 (Fig. 6.8).

6.3.4 Distribution of fluid flow and deformation

The main mode of transportation of nutrition and cellular-waste in tendon is

through fluid flow. Evaluation of the transverse poroelastic parameters of tendon en-

ables finite element simulation of this transport phenomena. Therefore, we simulated

the spatial and temporal distribution of fluid flow at the boundary during osmotic

loading for both tension (1% SPEG) and compression (15% SPEG). The fluid flow was

inwards for the tension osmotic loading, which was in the opposite direction to the de-

formation of tissue (Fig. 6.9 and supplementary Fig. G.1). Conversely, for compression

Table 6.1. The overall median poroelastic parameters and the range of the re-
sulted fit parameters

Solid Matrix Parameters Permeability Parameters
E (MPa) ν β k0 (mm4(N s)−1) M α

Tension (1% SPEG)

Median 0.570
∗

0.247
∗

4.993 2.057×10−5 2.391
∗

2.179
∗

Min 0.243 0.102 1.086 1.167×10−5 0.425 0.356
Max 0.831 0.405 9.313 7.779×10−4 4.447 4.508

Compression (15% SPEG)

Median 0.740
∗

0.433
∗

5.109 2.013×10−5 2.591
∗

2.776
∗

Min 0.257 0.413 0.882 1.384×10−5 1.272 0.736
Max 0.953 0.476 8.375 2.549×10−5 3.530 4.405

∗ the tension and compression medians are different (p < 0.05).
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Figure 6.6. Correlation matrix for tension osmotic loading (lower triangular
matrix), and compression osmotic loading (upper triangular matrix), and frequency
distribution of the fit parameters (main diagonal of the matrix). The median of fit parameters
are also marked for tension osmotic loading (cross sign) and compression osmotic loading
(open circle)

osmotic loading fluid left the boundary in the opposite direction to displacement of the

boundary (Fig. 6.9 and Supplementary Fig. G.1).
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Figure 6.7. Correlation between modulus (E) and (ν) indicates bulk modulus from
tension osmotic loading is almost five folds smaller compared to the bulk modulus from the
compression osmotic loading case that indicates a tension-compression nonlinearity.* p < 0.05
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Figure 6.8. Predicted deformation-dependent tendon hydraulic permeability
shows that tendon’s hydraulic permeability is at 10−4 − 10−5 mm4(N s)−1 at the unloaded
configuration (J = 1) and it decreases by a decrease in volume. Such decrease is expected
during axial tensile loading of tendon.

6.4 Discussion

We used a combination of osmotic loading and biphasic FE modeling to eval-

uate the poroelastic properties of tendon in the transverse direction. Importantly, we

calculated the reference permeability (k0) of tendon that is in the order of 10−4 to 10−5

mm4(N s)−1 (10−16 to 10−17 m4(N s)−1) (Fig. 6.5 and Table 6.1) and showed that ten-

don has tension-compression nonlinearity in the transverse direction by approximately
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Figure 6.9. Spatial and temporal distribution of fluid flow (black arrows on the
curved edge) and displacement on the boundary over time (15 sec until 15 min)
for both tension (top) and compression (bottom). For both of the solutions, the deformed
(solid) and undeformed (dashed) boundaries are shown. The deformation is scaled five-times
for easier visual detection. The simulations show influx of fluid in tension osmotic loading
and exudation of water in the compression osmotic loading. The fluid moves in the opposite
direction of the deformation. In both of the solutions flow is highest along the minor axis
(y-axis).

five-folds higher bulk modulus in compression compared to tension (Fig. 6.7).

One important contribution of this study is reporting of a narrow range for the

transverse hydraulic permeability of tendon. When comparing this range to that of

the other hydrated fibrous tissues, such as articular cartilage, intervertebral disc, and

ligament, which are usually in the range of 10−4 to 10−2 mm4(N s)−1 [13, 41, 84, 98],

we see that the hydraulic permeability for tendon is small. This is likely due a denser

collagenous network in tendons. In addition, it is possible that the use of phosphate

buffered saline (PBS) in the previous experiments may have overestimated actual k0

at physiological hydration. PBS increases water content and interfibrillar spacing of

tissue [78,194], hence, it is likely to alter tendon’s hydraulic permeability as well.

Interestingly, we observed tension-compression nonlinearity in the transverse

direction. Tendon’s fibrous structure directly impacts its mechanical response. It is

well-known that tendons are orders of magnitude stiffer in axial tension compared to

axial compression, which is by definition a tension-compression nonlinearity in the axial

direction [21, 94]. Our results indicate tendon has tension-compression nonlinearity in

the transverse direction as well. This is supported based on two observations. First,
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the transverse strain was larger for tension osmotic loading (1% SPEG), despite its

smaller relative pressure compared to the pressure in compression osmotic loading

(15% SPEG). Second, and more prominently, the modeling parameter identification

showed a smaller bulk modulus K from tension tests compared to compression ones

(Fig. 6.7). While the structural source is not known, it maybe due to the contribution

of the transverse stiffness of fibrils that may push against each other in compression and

other more complex micro-scale structures such as helical fibril structures [107,184].

Axial loading engages the fibrous matrix and thus the relative contributions of

fluid flow and solid matrix viscoelasticity can not be distinguished in the axial stress

response. In this study we focused on fluid-flow viscoelasticity mechanisms and elimi-

nated the effect of axial fibrils by uniformly loading the tissue in the transverse direction

by osmotic pressure. This mode of loading does not engage the axial fibrils. This was

verified by the lack of change to the axial force during osmotic loading (Fig. 6.2). Fur-

ther theoretical argument can be made to support this observation. Since tendons have

a large axial-to-transverse Poisson’s ratio (i.e., νzx and νzx > 2 Fig. 6.1C) [131, 176],

one can use an estimation based on transverse isotropic symmetry that the transverse

Poisson’s ratio can be estimated as νxz = νzxEx/Ez, where Ez (axial modulus) is ex-

tremely large compared to Ex (transverse modulus). Hence, transverse loading will not

induce a significant axial response. This may not be the case for tissue with non-axial

fibrous component, and for those cases osmotic loading in transverse direction should

induce an axial force response [55].

In this study, we used SPEG buffer (polyethylene glycol plus physiological saline)

at different concentrations as a means to osmotically load the tendon samples in trans-

verse tension and compression, which changes the water content of tissue and causes

volumetric strain. SPEG is the suitable choice of buffer solution for osmotically loading

tendon, because unlike buffers based on small solutes such as NaCl and sucrose, it can

control water content without infusion of solutes into tissue, and more importantly, it

does not alter mechanical behavior over long-term exposure [130,183,194,197,210,221].

As a new observation on the effect of SPEG buffer on tissue, we recorded the temporal
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response of the transverse and volumetric strain in response to osmotic loading, and

made comparisons between change to water content and volumetric strain (Fig. 6.4,

and Fig. 6.3B). A change to water content of tissue often affects its fibrous structure

and geometry [78,194]. Here, despite the significant volumetric strain in 1 % and 15%

SPEG (Fig. 6.3B), surprisingly, the effects of osmotic loading on water content were

variable (Fig. 6.3). This was unexpected based on prior observations [183]. However, it

should be noted that water content was a secondary measurement and it was performed

after the osmotic loading protocol and gripping (Fig. 6.1). The experiment was not

specifically designed for measurement of water content, which may have contributed

to the unexpected finding of weak and no difference in 1% and 15% SPEG.

Simulation of the temporal fluid flow from the boundary of tendon (Fig. 6.9

and supplementary Fig. G.1) showed that exudation and influx of fluid is not uniform

spatially or temporally. The direction along minor axis of the elliptical cross-section

had a higher fluid transfer in both tension and compression compared to the direc-

tion along the major axis (Fig. 6.9). The non-uniformity of the fluid flow is directly

correlated with the geometry, and for a tendon with a higher eccentricity, the effects

would be more prominent [187]. Since tendons have a poor vascular structure, infusion

of nutrition through fluid transportation plays a crucial role in supplying the cellu-

lar component of tendon [72], therefore, the spatial non-uniformity of fluid transport

would be an important aspect in understanding adaptation of tissue to injury, and for

tissue engineering [79,119,203].

It is worthwhile to point out that only by using a multi-start approach for

the optimization we could identify that there is a correlation between modulus and

Poisson’s ratio, where there are many combinations of these parameters that can be

used as a solution. We used this observation to calculate and report the bulk modulus as

the material property, which was the identifiable solid structure parameter from these

experiments. However, this could easily have been overlooked if an optimization with

a single judicial or random initial guess, or a global optimization techniques such as

genetic and particle swarm algorithms were used. Hence, we recommend a multi-start

92



approach for model parameter optimization and careful inspection of the fit results for

valid and thorough optimization.

This study has some limitations. We evaluated transverse permeability of ten-

don, but the axial permeability was not studied. During axial loading of tendon, the

axial flow should be minimal due to the mostly parallel structure of tendon with a high

aspect ratio. Further, we only studied tendon by keeping it at axial unloaded refer-

ence configuration. It is likely that imposing an axial tension would alter the results.

Lastly, we used rat tail tendon fascicles, which despite their acceptance in the field of

tendon mechanics as a useful model system, are not load-bearing and have a relatively

simple structure. It is likely that for studying more complex load-bearing tendons,

further considerations need to be made such as the role of axial permeability and the

possibility of off-axis deformations.

In conclusion, we calculated tendon’s poroelastic properties in the transverse di-

rection, including deformation-dependent transverse hydraulic permeability and bulk

modulus, by osmotic loading and biphasic mixture modeling. We used transverse os-

motic loading that minimizes the effect of axial fibers on the mechanical response. This

study is significant in providing a reliable method to calculate hydraulic permeability

and providing transverse poroelastic mechanics of tendon in both transverse tension

and compression.
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Chapter 7

HELICAL FIBRILLAR MICROSTRUCTURE OF TENDON USING
SERIAL BLOCK-FACE SEM AND A MECHANICAL MODEL FOR

INTERFIBRILLAR LOAD TRANSFER

These findings are accepted for publication in Babak N. Safa, John M. Peloquin, Jes-

sica R. Natriello, Jeffrey L. Caplan, Dawn M. Elliott. ‘Helical Fibrillar Microstructure of

Tendon using Serial Block-Face Scanning Electron Microscopy and a Model for Interfibril-

lar Load Transfer,’ Journal of the Royal Society Interface (2019) (http://dx.doi.org/10.

1098/rsif.2019.0547)

7.1 Introduction

Tendon’s hierarchical structure allows for load transfer between its fibrillar ele-

ments across multiple length scales [110,162,195], which results in remarkable capabil-

ities to withstand stress and endure repetitive loading [203]. The microscale structure

and function are particularly important, because this is the scale where the cells and

their surrounding collagen fibrils interface, and these mechanical interactions can have

important physiological and pathological contributions. In particular, there is evidence

of microscale sliding and shear load transfer that is highly likely to represent sliding

between fibrils at small strains (less than 2%); and at larger strains this microscale slid-

ing is nonrecoverable indicating tissue damage [120, 195, 216] (Fig. 7.1). However, the

underlying mechanisms of load transfer between tendon fibrils are still unknown. Ten-

don fibrils are collagenous structures (diameter ∼ 100 nm) that are the building blocks

of tendon microstructure [109]. The fibrils are responsible for supporting external

mechanical loading. Interfibrillar matrix molecules such as glycosaminoglycan chains

(GAG) have been postulated to be responsible for load transfer between fibrils [2,172];
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however, removal of a wide range of interfibrillar matrix components, including GAG,

does not affect the mechanical response [217], or has minimal consequences [61]. It is

not likely that the load transfer in tendon is solely, or majorly, mediated via interfib-

rillar matrix. Thus, the microscale architecture of the collagen fibrous network itself is

likely to have a role in mediating load transfer.

Serial block-face scanning electron microscopy (SBF-SEM) makes it possible

to visualize the 3D microscale architecture of tissue in great detail, and to reveal

the fibrillar architecture with several mechanical implications [163, 207]. SBF-SEM is

an advanced electron microscopy technique that takes sequential SEM images of the

cross-section of tissue; these images combine to provide a three-dimensional view of the

microstructure [83,207]. Using SBF-SEM with a short scan depth (8.7 µm), our group

showed that there is a small fibril angular dispersion and that the fusion/branch-

ing of small fibrils might be responsible for interfibrillar load transfer [217]. Longer

scan depths (∼ 100 µm) showed that fibril fusion/branching and fibril ends also ex-

ist in tendons [209], and that helical fibril patterns form in microscale during ten-

don development in juvenile tail tendons [107, 206]. The existence of helical fibrils

in collagen microscale and nanoscale was shown using two-dimensional light, atomic

force, electron, and X-ray scattering microscopy in tendons and other collagenous tis-

sues [23, 45, 65, 67, 108, 127, 153, 173]; however, these visualizations do not provide the

details of the 3D fibrillar structure.

Experimental observations and finite element (FE) modeling suggest that helical

structures in tendon may have significant mechanical effects. The rotation and high

Poisson’s ratio observed during tendon’s axial loading have been attributed to such

structures [24, 175, 222]. Furthermore, some FE models have studied the groups of

helical fibrils by combining the fibrils with interfibrillar matrix in a mesh to produce

the nonlinear stress response of fascicles [26,175]. Despite the potential of helical fibril

organization to affect tendon’s microscale mechanics, little is known about individual

groups of helically wrapped fibrils and their mechanical implications. We hypothesized

that helical wrapping can induce frictional load transfer between fibrils, allowing for
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Figure 7.1. Microstructural sliding during micromechanical tensile testing of tail
tendon in reference (REF), end of ramp loading (EL), starting of stress relaxation (SR), and
end of relaxation (ER) (courtesy of Lee and co-workers [120])

mechanical interfibrillar load transfer without an intermediate matrix. This would

imply that friction between helically wrapped fibrils can contribute to load transfer, in

addition to interfibrillar matrix shear and fibril fusion/branching.

The scope of this contribution was to visualize the three-dimensional fibril or-

ganization of rat tail tendon and to study the potential of interfibrillar friction within

helically wrapped groups of fibrils to serve as a mechanism for load transfer. First, we

visualized the microstructure of tendon in three dimensions using SBF-SEM. We found

a complex network, with many helically wrapped fibrils. These observations informed

the second part of this study, in which we used finite element (FE) analysis to test the

hypothesis that frictional contact between helically wrapped fibrils can transfer stress

(load) between fibrils without a need for a mediating matrix. This study elucidates

new aspects of tendon microstructure, providing a detailed image of fibril tortuosity,

fusion/branching, and organization into helical groups. Importantly, our results estab-

lish interfibrillar friction as a new mechanism for interfibrillar load transfer, among the

several proposed load transfer mechanisms, advancing our knowledge about microscale

structure-mechanics relationships.

7.2 Methods

7.2.1 Serial block-face SEM imaging

A tail tendon fascicle from a three-month-old male Sprague-Dawley rat was

dissected as previously described [183], and used for SBF-SEM imaging. To prepare
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for imaging, the fascicle was equilibrated in PBS for 8 hours, consistent with other

studies [183, 195], which may have increased interfibrillar spacing and fibril diameter

[78], but likely did not alter overall structure such as tortuosity, and then soaked

overnight at 4◦C in a solution of 2% glutaraldehyde and 2% paraformaldehyde in 0.1 M

sodium cacodylate buffer. The sample was subsequently stained and resin-embedded,

according to established techniques [207].

The transverse cross-section was scanned in series under 1.78 kV in low-vacuum

pressure with three microseconds dwelling time using an Apreo VolumeScope (Thermo

Fisher Scientific, Waltham MA). After the end of the scanning of each section, a 200

nm layer of the block’s face was removed by means of a mechanical slicer and the

scanning was repeated. Alignment was maintained by keeping the block was fixed

in place throughout the imaging process. The in-plane resolution of the scans was 10

nm/pixel with 432 slices that covers a total volume of (20.27µm×16.74µm×86.20µm),

where the third dimension is measured along the fascicle’s axial direction.

7.2.2 Segmentation and data analysis

The SEM images were smoothed using a Gaussian blur filter and a represen-

tative subset of fibrils were manually segmented through the entire 3D image stack

(Fig. 7.2A). Only fibrils that spanned the entire image stack, as many fibrils did not en-

tirely fit in the scanned volume or some fibrils were otherwise discontinuous, were used

for analysis (n = 42 fibrils). The segmentation was done using Seg3D (seg3d.org).

Since the axial distance between subsequent images was small (200 nm) the fibrils ap-

pear as approximately circular spots that move in-plane allowing for the fibrils to be

inspected and tracked through the image stack (Fig. 7.2A-C).

To confirm that the manually segmented fibrils were a representative selection

of all the fibrils, we segmented all fibrils in each of ten equally spaced 2D sections by

thresholding (ImageJ, imagej.nih.gov). The distribution of fibril diameter was calcu-

lated and compared to that of the manual 3D fibril segmentations by using Wilcoxon

rank sum test (Fig. 7.2D and E). The distributions were similar, and the medians of
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Figure 7.2. Experimental methods for SBF-SEM imaging and analysis (A) Repre-
sentative SEM image and in-plane segmentation (scale bar = 5 µm), (B) SBF-SEM imaging
process showing sequential stacks of images and a schematic fibril label (dotted orange line)
along the tendon length, (C) schematics of fibrils with large (left) and low (right) tortuosity
that shows the cross-sectional area (Ai) of fibrils throughout the scan depth and the incre-
mental distance (si) between the center of the fibrils. By comparing the (D) distribution
and (E) cumulative distribution function (CDF) of the diameter using the averaged 2D au-
tomatic segmentation of all fibrils (blue) and the 3D manual segmentation of a subset of
42 fibrils (red), it is evident that the manually segmented fibrils are a representative of the
full fibril population. (F) For the finite element analysis a model with three full turns is
used (L = 3λ). The boundary condition is that one fibril (blue) is anchored (left), while the
other fibril (red) is pulled in the axial direction (arrow, right) to a deformation of ∆L = Lε.
(G) The mesh used for the finite element simulations shows that the fibrils were initially in
contact throughout the length.

the fibrils were not different (p = 0.927). The manual 3D fibril segmentations were

used for all subsequent analysis.

To determine the variation in fibril diameter along the length, we calculated the

normalized diameter of each fibril in each section in the image stack. The normalized
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diameter for a fibril at section i is defined as

d̄(zi) =
d(zi)

d̃
(7.1)

where zi is the scan depth, d(zi) =
√

4Ai/π is the diameter of the fibril, Ai is the cross-

sectional area of the fibril, and d̃ is the median of d(zi) across all sections (Fig. 7.2C).

To quantify the complexity of the fibrillar network, we calculated the percent tortuosity

for each fibril as

τ =

(∑N−1
i=1 si
l0

− 1

)
× 100 . (7.2)

Here, l0 is the end-to-end distance of the fibrils, and si is the magnitude of the 3D vector

between adjacent fibril slice centroids, and N is the number of sections (Fig. 7.2C).

Half of the segmented fibrils (n = 21) were in helical groups; for these groups, we

calculated the pitch (λ) by diving the total scan depth (86.20 µm) by the average

number of turns. Note that tortuosity is a combination of tortuosity along the helical

axis and of the helical turns themselves. For a high aspect ratio helix, as in this study,

the contribution from the helical turns is small.

7.2.3 Statistics

The variation in diameter of fibrils along the length was tested by calculating,

for each section, the 95% confidence interval of normalized diameter (Eq. (7.1)). To test

the correlation between fibril diameter and tortuosity, we conducted a linear regression

analysis between d̃ and τ for the fibrils in the helical groups and others, separately,

using Pearson’s correlation method. Statistical significance was defined as p < 0.05.

7.2.4 Finite element analysis of helical fibril structures

Helical wrapping of fibrils around each other was a commonly observed feature,

and we hypothesized that this helical wrapping may provide interfibrillar load transfer.

To study this, we developed a three-dimensional finite element (FE) model of a pair of

helical fibrils in contact (Fig. 7.2F and G) using FEBio software (FEBio2.8 febio.org)

99

febio.org


[132]. Based on the SBF-SEM microstructural analysis, the fibril diameter was taken

to be 200 nm (within the range, median [min, max], of segmented fibril diameters 378

[128, 565] nm, see Results), and consistent with previous values for fibril diameter using

TEM measurements of median diameter of 144 nm for non-incubated and 161 nm for

PBS-incubated samples [114]. Additionally, the helix pitch was set at 40 µm (within

the range of measured pitch 38 [22, 86] µm, see Results). The entire model included

three full fibril revolutions (i.e., L = 3λ where L is the total length). The boundary

condition was set as that each fibril had one free-end. In one fibril, the opposite end was

anchored; in the other fibril, it was set to move to create 8% axial strain (Fig. 7.2F).

The value of 8% was selected from experimental data as the maximum tissue strain

that fibrils may experience prior to tissue failure [120].

We used an isotropic compressible neo-Hookean constitutive relation for the

fibrils [22]:

Ψ(I1, J) =
E

4(1 + ν)
(I1 − 3)− E

2(1 + ν)
ln J +

Eν

2(1 + ν)(1− 2ν)
(ln J)2 (7.3)

Where, Ψ is the strain energy, I1 is the first invariant of the right Cauchy-Green strain

tensor, J is the Jacobian of deformation, E is the Young’s modulus, and ν is the

Poisson’s ratio.

To solve the frictional contact problem between the fibrils we employed the

penalty method regularized with an augmented Lagrangian scheme that has been im-

plemented in FEBio [248]. This methods is surface-to-surface method, which is a robust

algorithm to solve frictional contact problem that would require specialized smoothing,

or higher order shape function by using node-to-surface (NTS) method [248]. In the

initial configuration the fibrils were in contact along the entire length. We used a mesh

consisting of 20,160 elements (hexahedral trilinear and linear pentahedral wedge) and

23,478 nodes based on a mesh sensitivity analysis (Fig. 7.2G). To improve the stability

of the contact algorithm we used an auxiliary frictionless external cylindrical sheath
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with a weak modulus (10% of fibril modulus) to prevent separation in the intermedi-

ate steps of the iterative FE solver (Fig. H.1). The auxiliary sheath was effective in

increasing the stability of the model, and did not alter the final solutions. This was

confirmed by using different moduli for the sheath between 0.1% and 1000% of the

fibril modulus; the same mechanical response was produced in each case.

The reaction force at the anchored end of the fixed fibril was divided by the cross

sectional area and used as the measure for load transfer. To assess the sensitivity of the

load transfer, we performed a one-at-a-time parametric sensitivity analysis by varying

the model parameters in a range according to the reported values in the literature for

fibril properties as summarize in Table 7.1 [32, 71, 128, 142, 216, 237, 238, 243]. and for

geometry based on the range in this study. According to the summary of literature

parameter, the initial values for model parameter sensitivity analysis for solid material

was set as E = 1 GPa, ν = 0.2. The friction parameter between fibrils was set as

µ = 0.5, and the helix pitch was set as λ = 40 µm. We studied the following cases

by changing one parameter at a time: E = 0.1 to 10 GPa, ν = 0 to 0.4, µ = 0 to 2,

λ = 20 to 80 µm. Since the experimental data for frictional coefficient of fibril-on-fibril

is not available, we used an estimated range (0 < µ < 2) based on AFM indentation

tests [32]. The maximum value of Poisson’s ratio was set to 0.4, which was a practical

decision to avoid computational singularity due isotropic material incompressibility

limit of ν = 0.5.

To evaluate the spatial distribution of the induced stress and deformation in

the fibrils we plotted axial stress and we also plotted the normalized displacement

(ū) relative to the mid-section of each fibril along the axial direction. We defined

normalized displacement as

ū =
1

λ
(u(z)− u(L/2)) . (7.4)

Here, u(z) is the axial displacement at position z along the fibril length.
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Table 7.1. Collagen fibril mechanical properties: Young’s modulus (E), Poisson’s ratio
(ν), frictional coefficient (µ) in tendon unless otherwise noted

E (GPa) ν µ Method Tissue Reference
0.1-10 0-0.4 0-2 - Rat tail Current study’s range

0.326±0.112 - - Tensile test MEMS Rat patellar [128]
0.6±0.2 - - Tensile test AFM Bovine Achilles [243]
0.3-1.2 - - Atomistic modeling - [71]
1.6±0.4 - - Shear-lag curve fitting Rat tail [216]
1.2-2.2 - - Indentation AFM Bovine Achilles [142]
3.75-11.5 0-0.5 - Indentation AFM Rat tail [238]
- 2.1±0.7 - X-ray diffraction Bovine pericardium [237]
- - ∼ 0.4 Indentation AFM Collagen film [32]

7.3 Results

7.3.1 Microstructure of fibrils and SBF-SEM

To describe the microstructure of tendon, we segmented fibrils from the SBF-

SEM images in three-dimensions. The segmentation indicated that although the fibrils

are mostly axially-aligned, they create a complex network around the cells (Fig. 7.3A).

From the manually segmented fibrils we quantified the fibril diameter throughout the

scan depth (Eq. (7.1)) and the percent tortuosity (Eq. (7.2)). As expected, the fibrils’

diameter did not vary along the scanned fibril length of 86.20 µm (Fig. 7.3B), which

is consistent with previous findings [209]. Note that the normalized fibril diameter

Eq. (7.1) was not significantly different than one across the scan depth (Fig. 7.3B).

This observation supports the use of a single median diameter value assigned to each

fibril for correlation with the tortuosity. We quantified the % tortuosity (τ) of each

segmented fibril Eq. (7.2), and calculated its correlation with the median diameter of

the fibrils. This showed that for all of the fibrils, τ was small (< 1%) and for the

fibrils in helical groups tortuosity was correlated with diameter (r = −0.59, p < 0.05),

where for the other fibrils it was the same across the diameter sizes (r = 0.12, p =

0.616) (Fig. 7.3C). As a result, the smaller fibrils in helical groups are more likely to

have higher tortuosity, and thus have a more complex structure. For the tortuosity

analysis, one fibril that made a right-angle turn and passed through the cell membrane

(Fig. 7.4C, discussed below) was not included in the correlation. We made several
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Figure 7.3. Three dimensional segmentation and structural complexity of fibrillar
network (A) Lateral view of the three dimensional segmentation along the scan length with
cell nuclei. Although the fibrils are primarily axially oriented, they have a complex three-
dimensional network. (B) the 95% confidence interval (highlighted in pink) of the normalized
diameter (d̄, Eq. (7.1)) contains the unity value throughout the scan depth, which indicates
that the diameter of the fibrils does not change along the scan depth. (C) Percent-tortuosity
(τ , Eq. (7.2)) was calculated as a measure of the complexity of the fibrillar structure for the
fibrils in helical groups (marked with blue squares) and the other fibrils (marked with red
circles) separately. The helical fibril tortuosity was correlated with the diameter, with the
small diameter fibrils being more tortuous, however, tortuosity was uniform for the other
fibrils.

isolated structural observations that have potential mechanical implications: tapered

fibril end (Fig. 7.4A and Supplementary Video 1), fibril fusion/branching (Fig. 7.4B

and Supplementary Video 2), and one fibril that wrapped around the cells (Fig. 7.4C

and Supplementary Video 3). For the tapered fibril end, in the last ∼ 4 µm of the fibril

length (scan depth of 38-42 µm) a reduction in fibril diameter was evident, where the

fibril gradually fades away in the image sequence when approaching from the deeper

scanned layers (Fig. 7.4A). At the fusion/branching site, a small fibril merges with a

larger one, and in the subsequent scanned images the larger resulting fibril branches

into two distinct ones. The fusion/branching site approximately spanned 6 µm, where

at least two fibrils were not distinguishable (Fig. 7.4B). Another interesting feature

was one fibril that made almost a full turn around the cells (Fig. 7.4C). These features
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were interesting but were isolated observations in the dataset.

When looking at the axial view of the fibrils, we observed several helical struc-

tures (Fig. 7.5 and Supplementary Video 4). In particular, many fibrils locally wrapped

around each other, which contained two, three, or more fibrils with both left and right-

handed helical configuration (Fig. 7.5 and Supplementary Video 5). Half (21 out of 42

fibril) of the fibrils that we segmented were in helical groups, although the sampling

was not purely random. Of these helical fibrils, 13 fibrils had a right-handed twist and

8 were left-handed (Fig. 7.5B). These fibrils made an average of 2.2± 0.7 turns around

each other along the scan-length (Fig. 7.5 C), that also corresponds to an average

45± 18 µm helical pitch (λ, the axial length of one full turn as described in Fig. 7.3F).

7.3.2 Finite element simulations of the helical fibrils

We used a finite element model to test our hypothesis that frictional contact

between helically wrapped fibrils can transfer stress (load) between fibrils without a

need for a mediating matrix. The stress transfer was proportional to the fibril’s tensile

modulus (Fig. 7.6A). Further parametric studies indicated that there is no change to

the transferred stress with a change in Poisson’s ratio (ν) (Fig. 7.6B). As expected, the

transferred load increased with an increase of frictional coefficient (µ) (Fig. 7.6C). Our

results show that the load transfer decreased with an increase in pitch (λ) (Fig. 7.6D).

To evaluate the spatial distribution of stress and deformation along the length

of each fibril and its dependence on the friction coefficient, we plotted the axial stress

and axial displacement (ū, Eq. (7.4)) at maximum displacement of the pulled fibril

(Fig. 7.7). The fibril stress was zero with no friction (µ = 0, (Fig. 7.7B) and it in-

creased with higher friction coefficient (Fig. 7.7C and D). The axial stress varied linearly

along the length of the fibril, increasing with distance from the free boundary and the

stress in each fibril was the mirror image of the stress in the other one (Fig. 7.7A-D),

which is in accordance with the static equilibrium condition. Similarly, for the fibril

deformation, in the zero friction case, there was no axial deformation, hence the fib-

rils slid freely (Fig. 7.7E). When friction was increased, the induced deformation also
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Figure 7.4. Three interesting but isolated structural features were observed: (A)
tapered fibril end (B) fibril fusion/branching and (C) a helical fibril that wrapped around
cells (only the nuclei are shown). For each feature, the first row includes the 3D segmentation,
and the second row shows the segmentation mask overlaid on the SEM section image (dashed
red box). In (A) and (B) scale bar = 1 µm, for (C) scale bar = 5 µm.

increased, showing a plateau at the free ends indicating no strain, which confirms the

stress-free boundary condition imposed on the model (Fig. 7.7F and G).

7.4 Discussion

In this study, we visualized the microscale structure of tendon fibrils in three

dimensions using serial block-face scanning electron microscopy (SBF-SEM) and stud-

ied the mechanical implications of helical fibrils as a mechanism for interfibrillar load
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Figure 7.5. Helical fibrils in tendon’s fibrillar structure. Many helical structures
were observed in the axial view of the fibrils that are evident in the figures (A) with and (B)
without the cell nuclei. The helical fibril groups have both right (marked with + ccw arrow)
and left-handed (marked with - cw arrow) twist. (C) Shows three examples of the groups of
twisting fibrils with pitch ranging from 22 µm to 86 µm.

transfer using FE analysis. We found that tendon fibrils are not purely parallel struc-

tures and there are many helical fibrils that wrap around each other and in groups. Our

FE analysis indicated that, in addition to other potential mechanisms of load transfer

(interfibrillar matrix and fusion/branching of smaller fibrils), the helical fibrils can also

mediate load transfer through frictional mechanical contact.
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Figure 7.6. Sensitivity analysis of stress transfer due to friction between helically
grouped fibrils. Base material properties E = 1 GPa, ν = 0.2, µ = 0.5, λ = 40 µm. The
transferred stress (A) increases with fibril modulus E, and (B) is insensitive to Poisson’s ratio
ν, (C) increases with frictional coefficient µ, and (D) decreases with increasing helix pitch λ.

7.4.1 Microstructure of fibrils and SBF-SEM

We observed helical structures that twisted around each other (Fig. 7.5). The

existence of helical fibrils was previously reported [23, 153], and were suggested to be

left-handed [67]; however, our findings showed a similar number of the left-handed and

right-handed helical fibrils (Fig. 7.5B). The formation of the helical structure has been

explained based on a fibripositor model of fibril assembly [106,107] and the helicity of

subfibrillar structures [23]. The helical fibril structures explain the rotation of tendon

in tension [24]. Additionally, they have been used as an explanation for the macro-scale

mechanical behavior of tendon, in particular for the low stiffness at small deformations

and the large tensile Poisson’s ratio [176, 222]. The grouping of fibrils into helices
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Figure 7.7. Finite element simulation of two helically wrapped fibrils. (A) Axial
stress distribution in the fibrils for the undeformed (top) and deformed (bottom) states for
µ = 0.5. The geometrical scale is compacted 10 times in the axial direction for clarity. (B-D)
Stress along the length of the fibrils, and (E-G) normalized displacement (ū, Eq. 4) along the
length of the fibrils for various choices of friction coefficient µ. With no friction (µ = 0) there
was no σ or ū (B, E). As the frictional coefficient increases, the stress and the deformation
increases for µ = 0.5 (C, F) and for µ = 2 (D, G). The model parameters are E = 1 GPa,
ν = 0.2, λ = 40 µm.

can mediate load transfer by inducing frictional contact between fibrils during axial

loading.
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We observed some interesting but isolated features that can have implications

for load transfer and loading on cells. For load transfer, we observed a tapered fibril

end and fusion/branching, which agree with previous findings [209], with the difference

that the tapered end in this study was observed in a “straight” fibril in contrast to

the hairpin shape in the previous study. As previously suggested by Szczesny and

co-workers [217], an instance of fusion/branching, such as the one described above,

could mediate load transfer between fibrils via direct physical connection. A free fibril

end like the tapered end can also mediate load transfer by allowing microscale sliding

and shear stress, which is a well-documented phenomenon in experimental studies

[120,216,222]. Additionally, we observed a fibril that wrapped around the cells, which

indicates that during axial loading, lateral compression can be exerted on the cells

affecting tendon mechanotransduction [119]. Our fibril diameters and distribution of

diameters (Fig. 7.2D and E) were larger than the juvenile tail tendon fibrils [107], and

it was consistent with the other tendon studies in mature rat tail tendon [156], however,

the incubation in PBS, although facilitating the preparation of sample for fixation and

staining by increasing interfibrillar spacing, could have increased the fibril diameter

[78, 195]. Another potential source of error for fibril diameter would be calculation

of diameter based on the circular area assumption used in this study. Due to small

dispersion angled of fibrils, this effect should be minimal, however, for future analysis,

especially when tortuosity is high, methods such as elliptical fitting could provide a

more accurate measurement of fibril diameter [207]. Fibril distribution has recently

been related to circadian control [244], however, our study did not control time of day

or address this potential mechanism.

The fibril structure assessment was subject to some limitations. The SBF-SEM

technique generates large 3D datasets and segmentation is consequently difficult com-

pared to 2D SEM, creating practical limitations in data collection and analysis [209].

Although we consequently chose to do in-depth manual segmentation for only one sam-

ple, we performed several scans of additional fascicles and these scans showed similar

structural features. Additionally, although the helical fibrils were easily observed and
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represented approximately half of the segmented fibrils, based on the current analysis

we may not conclude that in general half of the fibrils in tendon are in helical groups;

related to this, it is possible that scans that cover larger axial length of fibrils would

reveal helices with larger pitch length.

Future work, using 3D automated segmentation will be needed to establish the

frequency of helical fibril and quantify helical pitch across a population. Such auto-

matic segmentation methods could then be implemented in studies involving multiple

animals at various ages, disease states, or in transgenic mouse models. Such applica-

tions would be highly instrumental in determining mechanisms of tendon development

and disease, and in developing and testing tendon therapies. A separate limitation

of the microstructural analysis is that our observations only included a region near

the tenocytes, and other regions further away from the cells might have a different

structure. Furthermore, we only scanned the tail tendon, which is a low-stress tendon;

further investigation is needed to confirm the existence of helical fibril groups in other

tendons.

7.4.2 Finite element simulations of the helical fibrils

Interfibrillar load transfer by friction in a helical contact does not require in-

terfibrillar matrix bonding, but the sum of its contribution over many fibrils and its

relative magnitude in comparison to other load transfer mechanisms, such as chemi-

cal bonding, remains unknown. Here, the estimated magnitude of the transferred fibril

stress (∼ 0.2–4 MPa) was low compared to the ultimate stress of the fibrils’ typically in

the range of 90 MPa [128], which matches the stress of a single fibril’s tensile response

based on our model parameters (see supplementary Fig. I.1). The large variation in

mechanical parameters of fibrils (Table 7.1) and the unknown accumulation among

hundreds of fibrils hinders accurate calculation of the total load transferred in situ by

the interfibrillar friction mechanism. Of particular importance, the fibril-on-fibril fric-

tion coefficient is unavailable. Thus, more experimental measurements of single fibrils

and groups of fibrils are needed for more accurate estimations.
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The variations in fibril stress transfer and displacement observed in the para-

metric FE sensitivity analysis make physical sense (Fig. 7.7). In particular, the depen-

dence of transferred stress with modulus and frictional coefficient are expected based on

Hooke’s law and Coulomb’s friction law, respectively, and they were shown using our FE

model (Fig. 7.6A and C). Note, however, that while this study used the relatively sim-

plified model of friction contact, additional mechanisms, such as hydrodynamic friction,

molecular asperity, and nonlinear dependence of friction coefficient to normal traction

and other nano- and micro-scale tribological effects may be at interplay to induce load

transfer between and within fibrils in the physiological system [20, 57, 208, 234]. The

decrease in reaction force by increasing the pitch of the helix, which is shown in Fig-

ure 7.6D, can be explained by a reduction in lateral compression (normal force) on the

fibrils as the pitch angle decreases and the fibrils become more parallel. The lack of

dependence on Poisson’s ratio was an unexpected observation that might be due to

the high aspect ratio of the fibril’s geometry or due to the isotropy of the constitutive

relation (Fig. 7.6B). Large Poisson’s ratio in tension (ν ∼ 2) have been reported for

individual fibrils [237], which is greater than the isotropic limit of ν = 0.5. To include

Poisson’s ratio’s effect on the interfibrillar load transfer, anisotropy of the isolated fib-

ril material may need to be incorporated. The curves in Figure 7.6 were not smooth,

which is potentially related to the nature of frictional contact that can switch between

slip and stick conditions and cause jitter (imagine moving heavy house furniture on

ceramic), however the trends are clear, and this does not affect the outcome of the

sensitivity analysis.

Interfibrillar friction causes a gradient of axial stress in the fibril. In the simu-

lated cases (Fig. 7.7), the spatial distribution of stress variation and deformation match

the distributions of stress and deformation based on established shear-lag theories as

applied to tendon fibrils [215]. By using frictional contact, we were able to replicate

the linear response in shear lag [215], but did not reach a constant stress plateau,

predicted by shear lag model with an intermediating matrix material. Although a

region of constant stress is likely to appear with a larger number of helical turns in
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the model, it would be extremely difficult to achieve convergence in our FEM contact

model with a longer length. Moreover, our actual scan length was only 86.20 µm and

our current FEM is already extrapolated to a maximum length of 180 µm. Thus, if

we were to model an even longer length, we would have to extrapolate even further,

which we do not think is appropriate. To further put this study in the context of prior

research on theory of wire ropes, it should be mentioned that, unlike helical ropes such

as elevator and bridge cables, which are continuous strands with only a small and local

effect of friction [43, 101]; in tissue, experimental observations demonstrate significant

nonsymmetrical microscale sliding that mediates load transfer. The interfibrillar slid-

ing, requires implementation of friction and contact, hence we used the finite element

method for this problem over the classical wire rope theory [43].

There remains open questions regarding the physical existence and frequency of

free fibril ends in mature tendon [166,209] and our single sample only demonstrated one

free end, however, it is important to note that experimental tensile data suggests there

are “effective” free fibril ends that allow microscale sliding [213]. It is possible that

fibril ends may exist in the form of tapered ends (such as Fig. 7.4A) or as physically

weak links along the fibril length that can act as an “effective end” due to its high

compliance [227]. Further investigations are required to explore these microstructures

and their contribution to interfibrillar sliding and shear load transfer. Regardless of

how the effective fibril ends occur, the experimental evidence of microscale sliding and

shear load transfer supports our FE model based on friction and its inherent boundary

condition assumption for free fibril ends.

In conclusion, we used SBF-SEM to visualize the three-dimensional microscale

tendon structure of the fibrillar network, and used FE analysis to demonstrate that he-

lically arranged fibrils can have the mechanical function of frictional interfibrillar load

transfer. Our results showed novel microstructural configurations of collagen fibrils and

cells in tendon and we showed that interfibrillar friction should be considered as an-

other potential mechanism for interfibrillar load transfer, in addition to the previously

postulated mechanisms of interfibrillar matrix shear and direct load transfer through
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fibril junctions. This study shows that a combined approach of SBF-SEM imaging and

FE modeling is a powerful tool to study structure-mechanics relationships in tendon

microstructure.
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Chapter 8

CONCLUSIONS AND POTENTIAL FUTURE DIRECTIONS

8.1 Conclusions

To comprehensively study and analyze the inelastic mechanical behaviors of ten-

don, a structurally-inspired framework was presented based on the kinetics of molecular

bonds that break and reform in response to mechanical loading (Aim 1 Chapter 4).

This modeling framework addresses viscoelasticity, plastic deformation, and damage

of a fibrous structure based on three types of molecular bonds: formative, perma-

nent, and sliding. These bond types each represent a mechanical behavior; formative

bonds for viscoelasticity, permanent bonds for hyperelastic behavior, and sliding bonds

for plastic deformation. As a general concept, damage was included in the modeling

framework by reducing the number fraction of bonds. Damage is applied to each bond

type separately, and it results in decreasing the ability of material to absorb energy.

All of the aforementioned inelastic behaviors are modeled within the same constitutive

setting and by using similar sets of constitutive equations. This Reactive Inelasticity

is a structurally-inspired continuum mechanics theoretical framework and it uses ob-

servable state variables that are physically observable. Hence, the notion of inelastic

mechanical behavior is well adapted to be applied to experimental data and to study

and analyze mechanical behaviors in a physiological context.

Further, to evaluate tendon’s inelastic mechanical response, the RIE was applied

to the experimental micromechanical tests on tendon (Aim 2 Chapter 5). In this aim,

the inelastic behaviors in tendon were investigated without a prior assumption about

the softening mechanism in tendon to be either damage or plastic deformation. The

models demonstrated excellent ability to fit the complex experiments, including stress-

relaxation and softening phases of mechanical experiments, and provided numerical
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values for inelastic effects on tendon. Despite their overall success in describing the

inelastic mechanical behavior, the plastic model had slightly superior performance at

the unloading phase, and the damage model had better predictions of the independent

validation data set. These results indicate that the deformation-driven experiments

are not suitable for distinguishing plastic deformation and damage.

Although the RIE-based inelasticity modeling provided excellent fits to the ex-

perimental data, still there is a central unanswered question in the viscoelastic mechan-

ical response of tendon. It is not yet known if fluid flow poroelasticity, or solid matrix

viscoelasticity are the mechanisms for tendon’s viscoelastic behaviors. The Chapter 6

(Aim 3) was focused on calculating tendon’s poroelastic parameters, particularly hy-

draulic permeability, by using osmotic loading and biphasic finite element modeling.

Osmotic loading minimizes the effect of axial fibers on the lateral mechanical response,

hence it isolates poroelastic response from solid matrix viscoelasticity. This study also

demonstrated that tendon has tension-compression nonlinearity in the lateral direction.

Although this study did not directly address the question of duality of poroelasticity

and solid matrix as mechanisms of viscoelasticity, it provides a foundation for analysis

of the mechanisms of viscoelasticity when the tissue is submitted to physiological axial

loading.

In Chapter 7 (Aim 4) tendon’s structure-mechanics relations were studied. We

used serial block-face scanning electron microscopy (SBF-SEM) to visualize the mi-

croscale structures of tendon in 3D that showed many interesting structural feature.

Particularly, we reported groups of helical fibrils that can mechanically interact with

each other. We provided a model for load-transfer between helical fibrils, which showed

that the frictional interfibrillar load transfer is possible without a need for intermediat-

ing matrix. Thus, frictional contact should be considered as a potential mechanism for

interfibrillar load transfer, in addition to the previously postulated mechanisms of in-

terfibrillar matrix shear and direct load transfer through fibrillar junctions. This study

demonstrated that three-dimensional microstructural imaging with SBF-SEM and FE

modeling is a powerful tool to study structure-mechanics relationships in tendon.
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This dissertation addressed several aspects of analysis and modeling of inelas-

ticity in tendon, which included theoretical modeling, state-of-the-art experimental

analysis, computational model parameter identification, and three-dimensional elec-

tron microscopy. In the light of the analysis provided in this dissertation, I believe

that the working cycle of theoretical modeling, mechanical experiments, numerical

analysis, and structural imaging is a powerful practice to effectively understand the

complex mechanical behaviors of tissue. However, this work is only a prelude to many

opportunities for the investigations that shall be pursued in the future.

8.2 Future Work

In the following, I provide the potential directions that could be taken to con-

tinue the research on the analysis and modeling of inelasticity in tendon (and in general

fibrous tissue) mechanics. In fact, the opportunities are unlimited, and here, I only

focused on the ones with potential wide range of interest in the field of tendon and

tissue mechanics research. For each direction, when possible, I have provided three

judicial steps, with a short-term (up to one year), medium-term (up to five years), and

long-term (longer than five years) investment period, based on a conventional graduate-

level research program. For some projects which would require more exploratory and

preliminary studies, a distinction between medium- and long-term was not clear, so

they were presented together.

8.2.1 Force-controlled mechanical experiments for studying inelasticity

Deformation-controlled boundary loading is the most common method for load-

ing tissue in mechanical experiments, which in combination with structural imaging

has provided valuable information about mechanisms of mechanical response in ten-

don [120, 216]. However, it appears that the force-controlled mode of loading is less

explored. The results of Aim 2 of this dissertation (Chapter 5) showed that the damage

and plastic deformation behaviors are equally capable of explaining the deformation-

driven mechanical tests. However, a force-controlled test can be utilized to directly
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measure plastic deformation. Several other peculiar mechanical behaviors also arise

during force-controlled tests, such as structural discrete plasticity during creep load-

ing [86]. The author believes that force-controlled tests are highly fruitful for study-

ing inelastic mechanical behaviors of tendon. Hence, an important short-term fu-

ture direction would be to optimize the already available confocal imaging and mi-

cromechanical testing systems for force-controlled testing, and study the effect of such

loading modality on the structural mechanisms of tendon mechanics, similar to the

previous studies [120, 216]. A particularly curious question is that if the sustained-

deformation or sustained-force loading would cause the tissue to undergo permanent

inelastic changes (medium- and long-term), which perhaps would be in terms of ac-

cumulation of nonrecoverable sliding [120] that may be answered in light of force-

controlled micro-mechanical tests.

8.2.2 Using molecular monitoring with inelasticity modeling for under-

standing mechanical behaviors of tissue

The quasi-static and dynamic mechanical properties of tissue are dependent on

the molecular structure and factors affecting it, such as hydration, collagen denat-

uration, and cross-linking. In the light of advancements in the field, we can study

the effect of hydration of collagen molecular configurations [138], and we are capa-

ble of measuring spatial distribution of denatured collagen with the use of collagen

hybridizing peptides (CHP) [249]. Several studies also confirm that cross-linking can

dramatically alter tissue’s mechanical response [47, 204]. However, these techniques

rely on complex procedures that are not suitable to capture the dynamic changes that

can occur during mechanical loading of tissue.

One alternative direction is to utilize online molecular monitoring techniques

such as Raman spectroscopy with mechanical loading to track the dynamic changes

to the molecular configuration of tissue in response to loading. Some studies have

shown the potential of Raman spectroscopy for visualizing such alterations during

stress-relaxation that can identify changes to molecular interactions and water content
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[56,81,155], however, the implications are not fully explored. For studying the dynamic

changes to the molecular configurations in tendon, a hybrid test system with capability

of doing Raman Spectroscopy and micro-mechanical testing at the same time can be

highly instrumental in achieving this goal. Due to precedence of similar systems, but

with other modality of imaging (e.g., confocal microscopy [216]), it is reasonable to

assume that in short-term, such a system can be designed and built to collect proof-

of-the-concept results with simple mechanical tests, and in mid-term more complex

loading modalities can be utilized and cross-checked with the other molecular assays

published in the literature. This effort would be an addition to the currently existing

technology to track the dynamic of the tissue structure during mechanical loading, and

hence in the long-term, to fully explore the multi-scale mechanics of tissue, imaging

modalities such as confocal microscopy, and second harmonic generation (SHG) can be

combined with Raman spectroscopy to study the molecular state of the tissue in the

context of the higher length scale loading during mechanical stimulation.

8.2.3 Using inelasticity modeling and analysis in clinical studies

This dissertation did not directly focus on a clinical approach for understanding

the tendon tissue and its disease, however, its findings and approaches open several

directions for future clinical studies on tendon. One of the ultimate aims of study-

ing the inelastic behaviors in tissue is to understand damage and failure. Damage

and failure are important aspects of developing clinical conditions of tendon rupture

and tendinopathy. By understanding the mechanisms of inelasticity in tissue, one can

better understand the causes and factors involved in developing the pathological con-

ditions. Specifically, the chronic tendinopathy is developed when a “healthy” regime of

loading is not maintained on the tendon, where excessive loading causes disease, but a

lack of loading also would be harmful to the tissue [38]. This is likely to be affected by

the mechanical characteristics of the cellular environment and matrix mechanics [119].

Hence, based on the approach of inelasticity analysis, the mechanical factors of the
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tissue can be evaluated by studying the tendinopathic human tissue. By using struc-

tural imaging, such as elastography [42], and reactive inelastic mechanical modeling

(Chapter 4) (medium- and long-term) one can study the mechanical properties of the

tissue at different stages of disease, injury and healing. The outcomes of this study

can provide mechanical parameters beyond the traditional values of elastic moduli, and

based on RIE modeling, the onsets of inelasticity and progression of inelasticity can

be measured (Chapter 5) providing a more precise view of the mechanical state of the

tissue and its susceptibility to further injury and its progress in healing.

8.2.4 Generalized framework for model parameter identification and iden-

tifiability of inelastic properties

Due to complex mechanical behaviors of tissue, often mathematical models with

many parameters are used. Hence, to calibrate the parameters that best resemble the

tissue behavior, model parameter identification is used. Model parameter identification,

or parameter identification, is done by manual calibration or systematic optimization.

Due to the highly nonlinear behavior of tissue, manual calibration, although in some

cases practical, is very limited in providing parameters that can be guaranteed to be

repeatable, unique, and accurate, which signifies the role of optimization in parameter

identification. However, the common use of optimization techniques also come with

serious limitations. As an instance, the popular method of nonlinear least squares, the

most common technique for parameter identification in tissue mechanics, are prone

to issues, including local minima and non-uniqueness of the solutions [111]. Several

alternative methods have been used to overcome these difficulties, such as global op-

timization algorithms such as genetic algorithm, particle swarm, simulated annealing,

etc [190, 210, 226]. However, even these techniques and promises of a global minima

can be misleading when adequate considerations for the type of experimental data and

modeling steps are not taking into account [82].

One crucial step to remedy for this issue is to make sure given that the ex-

perimental data and the applied model are compatiblethat. the model parameters of
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interest are identifiable. One simple, yet important, example is that one cannot find

both Young’s modulus and Poisson’s ratio (or equivalently the combination of bulk

modulus and shear modulus ) only from the stress-strain curve of a uniaxial tests [82].

Even the best optimization method would not be able to give a unique solution for

modulus and Poisson’s ratio from only stress-strain response from a uniaxial test, be-

cause there is an infinite combination of them that can be THE solution. This is a

classic example of the problem of identifiability, which needs to be addressed when

conducting model parameter identification such as nonlinear least squares or global

optimization.

In this dissertation, a primary focus was to isolate the mechanisms with over-

lapping effects that is in a sense addressing the problem of identifiability. We provided

remedies by using distinct structurally-based models Chapters 4 and 5 and multi-start

nonlinear least squares optimization Chapters 5 and 6. However, this is only the be-

ginning, and due the complex inelasticity and nonlinearity of tissue response, further

studies need to be done. A possible future direction is, in short-term, to conduct

identifiability studies to investigate the dependence of the material parameters with

standard mechanical tests such as uniaxial and biaxial tension, confined and uncon-

fined compression, and indentation on different tissue systems. This can be achieved by

conducting multi-start optimization of theoretically generated data with known model

parameters of inelastic mechanical models. Further, in medium-term a theoretical basis

is needed to effectively interpret the findings of multi-start optimization experiments

and formalizing the procedure for model parameter identification, especially methods

for analyzing high-dimensional fit results, and efficient sampling of the n-dimensional

search space. In long-term, these efforts should be continued and communicated with

the field, and potentially to be a focus in technical sessions and workshops at national

and international conferences, with the ultimate aim of coming up with consensus

among the field of tissue mechanics for appropriate practices in model parameter iden-

tification.
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8.2.5 Efficient analysis of 3D micro-structure using SBF-SEM for studying

structure-mechanics

In Chapter 7, we used SBF-SEM to visualize the 3D structure of tendon. How-

ever, the procedure for analyzing and segmentation of the SBF-SEM data is time

consuming and difficult. However, the 3D information from the microstructure needs

to be explored in greater detail and yet there are many unanswered questions. Hence,

there is a need for more efficient analysis techniques. A possibility would be to use

the already established Fourier transformation (FT) techniques that are common for

measuring fibrillar alignment in 2D [74, 116] by generalizing it to 3D. In short-term,

the generalized three-dimensional FT can be applied to computationally generated

idealized structures as proof of concept. In medium- and long-term, analysis of real

SBF-SEM data is possible, which would require utilization of filtration of SBF-SEM

images, and use of efficient computational algorithms, likely with cluster computers. A

computationally valid method then can be applied not only to SBF-SEM data, but it

also may be applied to data from higher length-scales, the fiber scale, based on second

harmonic generation (SHG) and multi-photon imaging [87, 179], enabling multiscale

analysis of structure organization of the hierarchical fibrous structure of tissue.

8.3 Summary

In summary, in this dissertation I provided a basis for analysis and modeling

the inelastic behaviors of tendon that include viscoelasticity, damage, and plastic de-

formation. The theoretical framework for analyzing tissue inelasticity was provided

based on kinetics of molecular bonds, and it was used to interpret the mechanisms of

inelasticity in experimental micro-mechanical tests on rat tail tendon. I also focused

on isolating the poroelastic mechanical behavior of tendon from intrinsic viscoelastic-

ity, and in the pursuit of that aim I provided osmotic loading experimental data, and

a finite element model that provided tendon’s poroelastic parameter, particularly the

hydraulic permeability of tendon. The structural mechanisms of mechanical behaviors

of tendon were also investigated by using three-dimensional microstructure of tendon
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that found many helical structures, and I also provided a load-transfer model based

on the contact between the collagen fibrils as a potential mechanism for load transfer.

The most important outcome of this dissertation is that the analysis and modeling of

tendon, and soft tissue in general, is far from being done, however, in the light mod-

ern tools for theoretical, computation and experimental analysis we are well poised

to better advance the fundamental understanding about the mechanical behaviors of

biological tissue.
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Appendix A

STRESS AND RELATIVE DEFORMATION

By using the definition of free energy of the system from Eq. (4.11) the second

Piola-Kirchhoff stress tensor for a bond type in terms of number fraction of bonds (wα)

and relative deformation (represented by relative right Cauchy-Green deformation Cα)

is

S = 2
∂Ψ(Cα)

∂C
=
∑
α

2wα
∂ψ(Cα)

∂C
. (A.1)

Using the chain rule of differentiation and Einstein’s index notation:

∂ψ

∂Cij
=

∂ψ

∂Cα
mn

∂Cα
mn

∂Cij
. (A.2)

Using Eq. (4.2) and noting that the reference deformation gradient tensor (Πα) is fixed

for a specific generation;

∂Cα
mn

∂Cij
=
∂((Πα

pm)−1Cpq(Π
α
qn)−1)

∂Cij

= (Πα
pm)−1δpiδqj(Π

α
qn)−1

= (Πα
im)−1(Πα

jn)−1 .

(A.3)

By substituting this result back

∂ψ

∂Cij
=

∂ψ

∂Cα
mn

(Πα
im)−1(Πα

jn)−1 . (A.4)

Or, in tensor notation

∂ψ(Cα)

∂C
= (Πα)−1ψ(Cα)

∂Cα (Πα)−T . (A.5)
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And, finally we can write

S =
∑
α

2wα(Πα)−1ψ(Cα)

∂Cα (Πα)−T , (A.6)

which provides the full form of the second Piola-Kirchhoff stress for a bond type in a

reactive material, Eq. (4.13).
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Appendix B

PROOF OF THE STRUCTURE TENSOR (M̃
α
) EXPRESSION FOR

SLIDING BONDS

By assuming that the stretch in the fiber direction for the reference configuration

of the α generation is λαs , which has a value that is infinitesimally different from that

of generation (α− 1), and by using Taylor’s approximation one can show

(λαs )2 ≈ (λα−1
s )2 + 2(λα−1

s )∆λαs . (B.1)

Additionally, based on Eq. (4.31) from the corresponding sliding configuration defor-

mation gradients we have:

(λαs )2 = e0
s(Π

α
s )TΠα

s e
0
s

= e0
s

[(
(Πα−1

s )T + (∆Πα
s )T
) (

Πα−1
s + ∆Πα

s

)]
e0
s

≈ e0
s

[
(Πα−1

s )TΠα−1
s + (∆Πα

s )TΠα−1
s + (Πα−1

s )T∆Πα
s

]
e0
s

. (B.2)

By substituting (λα−1
s )2 = e0

s(Π
α−1
s )TΠα−1

s e0
s we get

e0
s

[
(∆Πα

s )TΠα−1
s + (Πα−1

s )T∆Πα
s

]
e0
s = 2(λα−1

s )∆λαs . (B.3)

Therefore, by assuming eα−1
s = e0

s, one can easily show that

∆Πα
s = ∆λαs e

0
s ⊗ e0

s (B.4)

holds. Finally, by taking that ∆λαs = ∂Ξsfs(Ξs)∆Ξs the expression M̃
α

= e0
s ⊗ e0

s

is resulted in terms of Eq. (4.38). This relation indicates that during sliding, the
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dominant fiber direction is preserved and only the reference length changes. This

relation can be enhanced by including the effect of permanent changes to the dominant

fiber direction as seen in some fibrous tissues, such as the intervertebral disc [50], by

using phenomenological relations to correlate e0
s and eα−1

s .
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Appendix C

IMPLICATIONS OF THE SECOND LAW OF THERMODYNAMICS

C.1 Second law of thermodynamics

Any physical process must comply with the second law of thermodynamics, thus

we check for compatibility of reactive inelasticity with the second law of thermodynam-

ics in terms of the Clausius-Duhem inequality. By neglecting the thermal effects, the

local form of Clausius-Duhem inequality reads as [34]

D =
1

2
S : Ċ − Ψ̇(C, wα,Πα, D) ≥ 0 , (C.1)

where D is the instantaneous local dissipation of energy, and for convenience will be

referred to as dissipation. Here, (:) is the double contraction ((A : B)ij = AijBij)

and dot stands for material time derivative. Using the chain rule of differentiation and

Eq. (4.11) we get

(
1

2
S − (1−D)

∑
α

wα
∂ψ(Cα)

∂C

)
: Ċ − (1−D)

∑
α

ẇαψ(Cα)

−(1−D)
∑
α

wα
(
∂ψ(Cα)

∂Πα : Π̇
α
)

+Ḋ
∑
α

wαψ(Cα) ≥ 0 .

(C.2)
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Thus, to have a physically admissible process in the most general case each of the

following conditions should be separately satisfied [34,146]

S = (1−D)
∑
α

wα2
∂ψ(Cα)

∂C
(C.3a)

D = DR +DD ≥ 0 , (C.3b)

where

DR = −(1−D)
∑
α

(
ẇαψ(Cα) + wα

∂ψ(Cα)

∂Πα : Π̇
α
)
, and (C.4a)

DD = Ḋ
∑
α

wαψ(Cα) . (C.4b)

The first condition results in a new form of Eq. (4.12) where stress is scaled with

damage. The second condition describes the dissipation of energy in a reactive inelastic

process, whereDR is dissipation due to reactive bond breaking/reformations and change

in reference configuration, and DD is the dissipation due to damage.

C.2 Reactive bond compliance with the conditions of the second law

In the following, we investigate the compatibility of different bond types with

the second law of thermodynamics. At a given time, consider a set of bonds from the

same type that are grouped into breaking generations (α ∈ {0, . . . , (N − 1)}) and a

reforming generation (α = N), hence

DR = −(1−D)


(
N−1∑
α=0

ẇαψ(Cα) + wα
∂ψ(Cα)

∂Πα : Π̇
α

)
︸ ︷︷ ︸

breaking generations

+

(
ẇNψ(CN) + wN

∂ψ(CN)

∂ΠN
: Π̇

N
)

︸ ︷︷ ︸
reforming generation

 .

(C.5)
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C.2.1 Formative bonds

According to Eq. (4.26) for all of the breaking bonds we have

ẇαf < 0 , (C.6)

and we know in general that the free energy in a deformed state is considered positive

ψf (C
α) > 0 . (C.7)

Additionally, the reforming bonds reform in an energy free state (Section 4.2.4.1)

ψf (C
N = I) = 0 . (C.8)

For the breaking formative bonds the reference deformation gradient is fixed (Π̇
α

f =

0, α < N) and for their reforming generation (α = N) (Eq. (4.29))

ΠN
f = ΠN−1

f + u(t− tN)∆ΠN
f , and Π̇

N

f = δ(t− tN)∆ΠN
f , (C.9)

where u(t) denotes the unit step function, and δ(t) is the Dirac delta function. Further,

using Eq. (4.27) one can show

wNf Π̇
N

f = δ(t− tN)wNf ∆ΠN
f = 0 . (C.10)

Therefore, for formative bonds

(DR)f = −(1−Df )
N−1∑
α=0

ẇαfψ(Cα) ≥ 0 , (C.11)

which indicates that during breaking and reformation of formative bonds, dissipation

is positive and is due solely to breakage of bonds.
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C.2.2 Permanent bonds

Since for these bonds there is just one generation and there is no breakage and

reformation, we have (ẇ0
p = 0 and Π0

p = I) as a result

(DR)p = 0 . (C.12)

This result denotes that there is no dissipation of energy for permanent bonds due to

a lack of reactive breaking and reformation.

C.2.3 Sliding bonds

For these bonds, the only generations with non-zero dissipation terms are the

last breaking (α = N − 1) and the reforming generations (α = N). Their number

fractions and kinetics rates are (Section 4.2.4.3)

wN−1
s (t) = 1− u(t− tN) , wNs (t) = u(t− tN) , (C.13a)

ẇN−1
s (t) = −δ(t− tN) , ẇNs (t) = δ(t− tN) . (C.13b)

In addition, according to Eqs. (4.31) and (4.40) the corresponding Π̇s for those bonds

during sliding reads as

Π̇
N−1

s (t) = 0 , and Π̇
N

s (t) = δ(t− tN)∆ΠN
s . (C.14)

As a result

(DR)s = δ(t− tN)(1−Ds)

[(
ψ(CN−1

s )− ψ(CN
s )
)
− ∂ψ(CN

s )

∂ΠN
s

: ∆ΠN
s

]
= −2δ(t− tN)(1−Ds)

∂ψ(CN
s )

∂ΠN
s

: ∆ΠN
s ,

(C.15)
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where we used the Taylor series to write ψ(CN
s )−ψ(CN−1

s ) ≈ (∂ψ(CN
s )/∂ΠN

s ) : ∆ΠN
s .

Therefore, half of this dissipation is driven by the process of breakage and reformation,

and the other half is explicitly due to a shift in the reference configuration. The above

relation corresponds to a positive value for dissipation when

−∂ψ(CN
s )

∂ΠN
: ∆ΠN ≥ 0 . (C.16)

For the constitutive relations and deformation used in this paper, we can analytically

verify the above inequality as follows.

C.2.3.1 Exponential fibers

Since the only non-zero component of the deformation and stress is in the fiber

direction, a one dimensional formulation can be used for convenience, where ΠN
s is

represented by λNs . As a result, the dissipation inequality reads as

−∂ψEF (IN4 )

∂ΠN
: ∆ΠN = −∂ψEF (λ/λNs )

∂λNs
∆λNs

= 4C2C3

(
λ

λNs

)3

exp

C3

((
λ

λNs

)2

− 1

)2
(( λ

λNs

)2

− 1

)
∆λNs
λ

(C.17)

where ∆λNs = λNs − λN−1
s . As a result, since λN−1 < λN < λ the above expression has

a positive value.

C.2.3.2 Neo-Hookean

Because of the assumption that F = F̂ (λ), ∆ΠN can be written as F̂ (λNs ) −

F̂ (λN−1
s ) and by using the Taylor’s expansion

∆ΠN =


−1

2
(λN−1

s )−
3
2 0 0

0 −1
2
(λN−1

s )−
3
2 0

0 0 1

∆λNs , (C.18)
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also, one can write

∂ψNH(IN1 )

∂ΠN
= −2C1


(λNs )

3
2

λ
0 0

0 (λNs )
3
2

λ
0

0 0 λ2

(λNs )3

 . (C.19)

Therefore, the inequality up to the first order relative to ∆λNs , reads as

−∂ψNH(Iα1 )

∂ΠN
: ∆ΠN ≈ 2C1

((
λ

λNs

)3

− 1

)
∆λNs
λ
≥ 0 , (C.20)

which is clearly valid when λN−1 < λN < λ.

C.2.3.3 Holmes-Mow

The ∆ΠN is the same as in the Neo-Hookean case, and similarly the inequality

is calculated as

−∂ψHM(Iα1 , I
α
2 , I

α
3 )

∂ΠN
: ∆ΠN ≈ 2α0 exp (A)

(
α1 + α2

λNs
λ

)((
λ

λNs

)3

− 1

)
∆λNs
λ
≥ 0 ,

(C.21)

where

A = α1(Iα1 − 3) + α2(Iα2 − 3) . (C.22)

That also indicates since λN−1 < λN < λ the conditions of the second law are met for

sliding.
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Appendix D

NOTE ON THE NUMERICAL IMPLEMENTATION OF RIE

D.1 Bond kinetics implementation

For calculating the response of reactive bond type to a uniaxial deformation,

the time and stretch, as well as model parameters and other options are fed to the

main function (ReactiveBond.m). For the case with no sliding if deformation is differ-

ent between two consecutive steps, the old generation w_alpha_nd(1:gen-1) and the

newly initiated generation’s number fraction w_alpha_nd(gen) are calculated using

Eq. (4.25) and Eq. (4.10), respectively. For number fraction kinetics, and other deriva-

tive estimations in this implementation, Newton’s quotient (f ′ = (f(x+ h)− f(x)) /h)

was used, that results in

1 Del w alpha nd(1:gen−1) = GAMMA(w alpha nd(1:gen−1),t(i+1)−V(1:gen−1))...

2 ∗delta t( i );

3 w alpha nd(1:gen−1) = w alpha nd(1:gen−1)+Del w alpha nd(1:gen−1);

4 w alpha nd(gen) = 1−sum(w alpha nd(1:gen−1));

where gen stands for the generation index, which is an integer. Here, Del_w_alpha_nd

is the change in number fraction of the breaking bonds, and GAMMA is defined based on

Eq. (4.25), which is implemented as a function of w_alpha_nd(1:gen-1) and the time

past from the breaking point t(i+1)-V(1:gen-1). Note that, for memory considera-

tions w_alpha_nd is a vector array that is updated at each step, and the entire history

of number fractions is not saved. If the full history of kinetics is needed, the option

of kinetics_record=1 should be passed to the function. This is not recommended,

because saving the entire history of bond generations significantly slows down the code.
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For determining the reference configuration, if there is no sliding, the current

configuration is saved for each generation (Pi_alpha(gen)=lam(i)), and for the cases

that have sliding, a function (ReactiveSliding.m) checks for sliding at each step,

and if sliding occurs the reference configuration is calculated according to Eqs. (4.31)

and (4.38). The sliding can be implemented as formative bonds with a fast kinetics

rate; however, one may choose to use a ‘step’ kinetics, which assigns a value of zero to

breaking generations and one to the reforming generation for speed considerations.

D.2 Calculating damage, energy, and stress

Finally, before calculating energy and stress, damage is calculated. When dam-

age is included, similar to sliding, a function is called (ReactiveDamage.m) that checks

for damage, which then is used to update the non-damage number-fraction array and

finally stress is calculated

1 w alpha(1:gen) = (1−D(i+1))∗w alpha nd(1:gen);

2 T rb(i+1) = sum(psi.T(lam(i+1)./Pi alpha(1:gen)).∗w alpha(1:gen))’;

where, psi.T is a structure that passes the analytical expression for stress based on

Eq. (4.21). The energy also can be deposited in a similar way if the output is requested

from ReactiveBond.m; however, they increase the amount of calculations and generally

is not recommended unless there is a need for it.
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Appendix E

FIT PARAMETER RESULTS FOR THE PLASTIC AND DAMAGE
MODELS
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Table E.1. Fit parameter results for the plastic and damage models
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Appendix F

LATERAL STRAIN OF TENDON IN RESPONSE TO OSMOTIC
LOADING

In the following we are showing the raw data for the strain of all the groups 8%

(control), 1%, and 15% SPEG. After exchanging the buffer solution at t = 16 min, the

optical strain results in highly noisy readings that due to distortions because of bath

solutions. In order to account for that we truncated the beginning 75 seconds of the

Osmotic loading phase, and took the t = 16 min + 60 sec as the reference time for the

osmotic loading phase.
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Figure F.1. Raw data for the lateral strain analysis during osmotic loading
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Appendix G

NORMALIZED FLUID FLUX DURING OSMOTIC LOADING

We plotted the spatial distribution of the normalized fluid flux, where the nor-

malization was defined as

f̄w = q

(
fw

max fw

)
. (G.1)

Here, fw is the magnitude of fluid flux over the boundary of tendon and normal to

surface. The parameter q indicates the direction of flow, where q = 1 indicates an

outward flow, and q = −1 indicates an inward flow.

The fluid flow was not uniform along the boundary (Fig. G.1), and its maximum

was along the minor axis (f̄w = 1 at x = 0), at all time steps. With progression of

time, the nonuniformity increases, however, at 15 min the flow very small. This was

true for both of the osmotic loading cases. Note that for osmotic loading of a circular

section the flow would be uniform, and thus f̄w would always be equal to one.
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Figure G.1. The distribution of the normalized fluid flux f̄w (Eq. (G.1)) indicates
that fluid flow is both spatially and temporally non-uniform. In both of the cases
flow is higher along the minor axis of tendon (x = 0).
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Appendix H

THE AUXILIARY SHEATH MESH USED FOR THE HELICAL
FIBRIL’S FEM ANALYSIS

Figure H.1. The auxiliary sheath mesh used for helical fibrils FEM analysis
(A) The axial view of the mesh with surrounding auxiliary sheath mesh (B) 3D view of
the surrounding auxiliary sheath mesh with 25% transparency. The geometrical scale is
compacted 10 times in the axial direction (z-axis) for clarity.

162



Appendix I

STRESS-STRAIN RESPONSE OF A SINGLE HELICAL FIBRIL

Figure I.1. Stress-strain (σ-ε) response of a single helical fibril with the neo-Hookean
parameters of E = 1 GPa, ν = 0.2, where the helical pitch is λ = 40 µm. Showing an
approximately linear response with a maximum stress of ∼ 74 MPa at ε = 0.08 maximum
engineering strain.
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Appendix J

HISTOGRAM OF THE PERCENT TORTUOSITY OF THE FIBRILS

Figure J.1. Histogram of the percent tortuosity (τ) of the fibrils in segmented
helical groups and the ones not in the segmented helical groups.
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