TRANSITION METAL CATALYZED REACTIONS OF ELECTROPHILIC INTERMEDIATES TO FORM C-C BONDS AND SET STEREOGENIC CENTERS

by

Srimoyee Dasgupta

A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry and Biochemistry

Fall 2015

© 2015 Srimoyee Dasgupta All Rights Reserved ProQuest Number: 10014751

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10014751

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

TRANSITION METAL CATALYZED REACTIONS OF ELECTROPHILIC INTERMEDIATES TO FORM C-C BONDS AND SET STEREOGENIC CENTERS

by

Srimoyee Dasgupta

Approved:

Murray V. Johnston, Ph.D. Chair of the Department of Chemistry and Biochemistry

Approved:

George H. Watson, Ph.D. Dean of the College of Arts and Sciences

Approved:

Ann Ardis, Ph.D. Interim Vice Provost for Graduate and Professional Education

	I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
Signed:	Mary P. Watson, Ph.D. Professor in charge of dissertation
	I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
Signed:	John Koh, Ph.D. Member of dissertation committee
	I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
Signed:	Joel Rosenthal, Ph.D. Member of dissertation committee
	I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
Signed:	Xinqiao Jia, Ph.D. Member of dissertation committee

ACKNOWLEDGMENTS

The journey of the last five and a half years has been one of the most rewarding yet challenging experiences in my life. My foremost gratitude goes to my advisor, Mary P. Watson, for her amazing training. I am very grateful to her for having given me the opportunity to work with her inspite of not having a background in organic chemistry. Under her efficient guidance, I thoroughly enjoyed organic chemistry and am very satisfied to have accomplished such beautiful work picking up new skills and utilizing my former ones. Under her supervision and mentorship, I not only grew as an independent scientist but also as an individual. I thank her from the bottom of my heart for being such a wonderful mentor.

I am also very grateful to my dissertation committee members for their consideration at all times. My heartfelt thanks go to the departmental staff and help for their constant support and help, without which our scientific research would undoubtedly see a dead end.

I also take this opportunity to thank all my lab mates for being such a wonderful team. My colleagues, Danielle, Qi, Jixin, Hari have taught me a lot and without their help, I couldnot have successfully finished my projects. I am also grateful to Tom and Clarissa, my undergraduates for their amazing contribution. Danielle, Qi and Jixin...thanks for being such great friends too. Kelsey, Corey, Jennie, Songnan, Tatsiana, Drew and all...it was a pleasure working with all of you. We really make a beautiful team, lead by Mary. I really am going to miss this second home!

iv

I also thank my friends, especially my room mates, Aditi and Sudha, who have seen me through most of graduate school. Finally, I express my love and gratitude to my parents and my brother for having constant faith in me. I could not have accomplished this without your unconditional love and support. I may have been absent from your lives for the past seven years, but I am a reflection of your values and morals and I only wish to make you all proud every day!

Lastly, I express my deepest gratitude and love to my husband, Saikat for being with me like a pillar of support every second of this journey. I may have solved problems in chemistry, but you solve every problem in my life with a smile. Thank you for being there always!

TABLE OF CONTENTS

LIST	OF TA	ABLES	.viii
LIST	OF FI	GURES	ix
LIST	OF SC	CHEMES	X
ABS	FRAC	Γ	xii
Chan	er		
Chup			
1	NIC	KEL CATALYZED CYCLIZATION OF <i>N</i> -BENZOYLAMINALS	
	FOR	R ISOINDOLINONE SYNTHESIS	1
	1.1	Introduction	1
	1.2	Results and Discussion	3
	1.3	Role of DPPF Ligand in Ni (II) Catalyst Reduction to Ni (0)	10
	1.4	Summary	14
	1.5	Experimental Procedures	14
\mathbf{r}	ENA	NTIOSEI ECTIVE COPPER(I) CATALYZED ALKVNVI ATION	
2		$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
	TET	Y A SUBSTITUTED STEPEOCENTERS	27
	11.1	KASUDSTITUTED STEREOCENTERS	27
	2.1	Introduction	27
	2.2	Results and Discussion	
	2.3	Mechanistic Studies	45
	2.4	Tetrasubstituted Stereocenters on Chromene Ketals	56
	2.5	Summary	58
	2.6	Experimental Procedures	58
		-	
3	ENA	ANTIOSELECTIVE, COPPER(I)-CATALYZED ALKYNYLATION	
	OF I	MINIUM IONS TO SET α , α -DIARYL, TETRASUBSTITUTED	
	STE	REOCENTERS	100
	31	Introduction	100
	32	Results and Discussions	105
	33	Proposed Mechanism and Investigation of Catalyst Aggregation	113
	34	Summarv	120
	3.5	Experimental Procedure	120
		r · · · · · · · · · · · · · · · · · · ·	

REFE	RENCES	
Apper	ndix	
А	NMR AND HPLC SPECTRA	147
В	PERMISSION LETTERS	

LIST OF TABLES

Table 1-1: Preliminary Experiments	
Table 2-1: Optimization of Alkynylation of Ketal 2-47 ^a	
Table 2-2: Optimization of Alkynylation of Ketal 2-47 ^a	
Table 2-3: Role of Base in Imparting Enantioselectivity	51
Table 2-4: Reactivity of Copper Ph-PyBox Complexes	
Table 3-1: Optimization of Alkynylation of Isoquinolines	

LIST OF FIGURES

Figure 1.1:	Biologically Active Isoindolinones	.1
Figure 1.2:	Variable Temperature ³¹ P NMR	11
Figure 1.3:	Crystal Structure of Ni(I) (DPPF) Cl	13
Figure 2.1:	Biological Activity of Cyclic Ethers with Tetrasubstituted Stereocenters	28
Figure 2.2:	Molecular diagram of 2-67 with ellipsoids at 30% probability. H-atoms omitted for clarity. (CCDC 973167)	.44
Figure 2.3:	Possible Active Catalyst Structures	.53
Figure 2.4:	Crystal Structure of Cu ₂ (Ph-PyBox) ₃ (PF ₆) ₂ ·H ₂ O. Molecular diagram of Figure 2.5 with ellipsoids at 30% probability. H-atoms omitted for clarity.	55
Figure 2.5:	Positive Nonlinear Effect	56
Figure 3.1:	Bioactive α- Tetrasubstituted Amines1	01
Figure 3.2:	X-ray crystal structure of Cu ₂ (Ph-PyBox) ₂ I ₂ 1	16
Figure 3.3:	Non Linear Effects at 0.1 M 1	17
Figure 3.4:	Comparative NLE at Different Concentrations 1	19

LIST OF SCHEMES

Scheme 1.1:	Pror Art in Isoindolinone Synthesis	2
Scheme 1.2:	Our Route for Isoindolinone Synthesis	3
Scheme 1.3:	Route A for Synthesis of Aminal Starting Material	4
Scheme 1.4:	Route B for Synthesis of Aminal Starting Material	4
Scheme 1.5:	Scope of Cyclization: Benzoyl Substitution	6
Scheme 1.6:	Scope of Cyclization: C ₃ Substitution	7
Scheme 1.7:	Meta Substitution on the Benzoyl Fragment	8
Scheme 1.8:	Potential Mechanisms for Isoindolinone Formation	9
Scheme 1.9:	Intra-molecular Kinetic Isotope Effect	9
Scheme 1.10:	Ni(II) as an Efficient Catalyst with Ligand DPPF	. 10
Scheme 2.1:	Prior Art in Enantioselective Addition to Oxocarbenium Ions	29
Scheme 2.2:	Representative Routes to α -Tetrasubstituted Cyclic Ethers	. 32
Scheme 2.3:	Enantioselective Alkynylation of Ketals to Set Diaryl-Substituted Quaternary Stereocenters	33
Scheme 2.4:	Synthesis of Ketal Substrates	34
Scheme 2.5:	Synthesis of PyBox Ligands	38
Scheme 2.6:	Scope of the Ketal Substrates	.40
Scheme 2.7:	Scope of the Alkyne Substituents	42
Scheme 2.8:	Scope of Alkyl Substituted Isochroman Ketals	43
Scheme 2.9:	Elaboration of Products	45

Scheme 2.10:	Challenging Substrates	46
Scheme 2.11:	Epimerization Studies	47
Scheme 2.12:	Proposed Disproportionation	48
Scheme 2.13:	Proposed Mechanism	49
Scheme 2.14:	Role of Base in Imparting Enantioselectivity	51
Scheme 2.15:	Synthesis of Copper Ph-PyBox Complexes	54
Scheme 2.16:	Alkynylation of 2-methoxy-2-methylchroman	57
Scheme 3.1:	Examples of Alkynylation of Acyclic Ketoimines to form Tetrasubstituted Stereocenters	101
Scheme 3.2:	Enantioselective Construction of Quaternary Stereocenters on Cyclic Ketimines.	102
Scheme 3.3:	Watson's Enantioselective Cu-Catalyzed Alkynylation of Oxocarbeni Ions	um 103
Scheme 3.4:	Enantioselective Cu-Catalyzed Alkynylation to Form Isoquinolines w Tetrasubstituted Stereocenters	ith 105
Scheme 3.5:	Synthesis of Isoquinoline Substrates	106
Scheme 3.6:	Scope of the Isoquinoline	109
Scheme 3.7:	Scope of the 1-Aryl Substituent	110
Scheme 3.8:	Scope of the Alkyne	111
Scheme 3.9:	Elaboration of Products	113
Scheme 3.10:	Proposed Mechanism	114
Scheme 3.11:	Reactivity of Other Ligands	115
Scheme 3.12:	Synthesis and Reactivity of Cu ₂ (Ph-PyBox) ₂ (I) ₂	116

ABSTRACT

(1) The first project I have worked on is titled Nickel Catalyzed Cyclization of *N*-Benzoylaminals for Isoindolinone Synthesis. My studies demonstrated the functional group tolerance and contributed strongly to our mechanistic understanding of this cyclization reaction. These results were published in *Organic Letters* in 2011.¹

(2) The second project I have worked on is titled Enantioselective, Copper(I)-Catalyzed Alkynylation of Oxocarbenium Ions to Set α , α -diaryl Tetrasubstituted Stereocenters. In summary, I have developed the first example of an enantioselective addition of alkynes to a cyclic oxocarbenium ion to set tetrasubstituted stereocenters. The success of this reaction relied on identification of a Cu/PyBox catalyst, along with CHCl₃ as solvent, BF₃·OEt₂ as Lewis acid, and MTBD as base. Under the optimized conditions, a variety of ketals and alkynes underwent the reaction in good to excellent yields and enantioselectivites. These results have been published in *Angewandte Chemie International Edition*, ASAPs.²

(3) The third project I have worked on is titled Enantioselective, Copper(I)-Catalyzed Alkynylation of Iminium Ions to Set α , α -diaryl, Tetrasubstituted Stereocenters. Here I have demonstrated the first example of enantioselective addition of alkynes to cyclic iminium ions to set diaryl tetrasubstituted stereocenters. These results are ready to be published in the fall of 2015.

Chapter 1

NICKEL CATALYZED CYCLIZATION OF *N*-BENZOYLAMINALS FOR ISOINDOLINONE SYNTHESIS

1.1 Introduction

Isoindolinones are important nitrogen heterocycle scaffolds that include

a number of biologically active compounds and natural products. ³⁻⁷

Despite this biological relevance, known methods for synthesis of isoindolinones have shortcomings. For example, Klumpp's method of cyclization of iminium ions under stoichiometric Bronsted acid or Campbell's chemistry of trapping iminium ions with aryl lithium nucleophiles, as shown below (Scheme 1.1), require harsh conditions like corrosive acids, high temperatures or strongly basic reagents. Also specific substitution patterns in substrates has often restricted the synthetic route and scope of the products that can be prepared via these methods.^{8,9}

Scheme 1.1: Pror Art in Isoindolinone Synthesis

My colleague , Danielle Shacklady McAtee discovered a nickel-catalyzed cyclization of *N*-benzoyl aminals, **1-10** to enable access to 3-aryl substituted isoindolinones, **1-12** in our laboratory. This Ni-catalyzed process involves aromatic C–H functionalization of the benzoyl group and offers a convergent 3-step approach for preparing isoindolinones from benzoyl chlorides, primary amines and aldehydes. These conditions are mild and suggested broad functional group tolerance may be possible, allowing broader scope than previous methods. As described below, my investigation of the scope of benzoyl groups revealed reasonable functional group tolerance may tolerance and is consistent with a metal-mediated electrophilic aromatic substitution reaction.

1.2 Results and Discussion

Synthesis of Aminal Substrates

The aminal starting materials were made via two different routes. The first route involved a condensation reaction between an aldehyde and an amine to form an imine, which was used in the next step without further purification. To a solution of the imine, MeOH and Et₃N, acid chloride was then added to access the resulting aminals which had to be purified via silica gel chromatography. The substrates made via this route are **1-16**, **1-17** and **1-18** as shown in scheme 1.3.

Alternatively, secondary amide **1-21** can be formed first and then condensed with an oxocarbenium ion, generated in situ by addition of TMSOTf to acetal **1-23**. The substrates made via this route are **1-25** and **1-26** (Scheme 1.4).¹⁰

Scheme 1.4: Route B for Synthesis of Aminal Starting Material

1-26

Scope of Cyclization : Benzoyl Substitution

Under the optimized reaction conditions, substrates containing both electronrich and electron-neutral benzoyl groups underwent the reaction in good yields (1-29 -33, Scheme 1.5). A number of functional groups are tolerated, including aryl bromides, ethers and amines. Highly electron-poor substituents on the benzoyl fragment (1-34 – 36) prevent cyclization. This observation along with other mechanistic work by my colleague, Danielle, later on helps us hypothesize that the mechanism for this reaction proceeds via an electrophilic aromatic substitution to generate the benzoyl carbocation that undergoes rearomatization followed by reductive elimination to give product. Danielle also demonstrated great scope in the C_3 substitution of the aminal moiety. A select scope of hers is shown in Scheme 1.6.

Scheme 1.5: Scope of Cyclization: Benzoyl Substitution

Scheme 1.6: Scope of Cyclization: C₃ Substitution

For substrates with meta-substituted benzoyl groups, regioisomeric products were observed. For example, cyclization of aminal **1-42** resulted in a 46:32 ratio of isoindolinones **1-43** and **1-44** (Scheme 1.7). This observation proved critical in our mechanistic understanding of this reaction. Although both regioisomers are observed when a nickel catalyst is used, substrate **1-42** also underwent cyclization in the presence of Lewis acid alone. This result is in sharp contrast to the cyclizations of the

other aminals discussed above, which produced only trace isoindolinone in the absence of a nickel catalyst. Although regioisomer **1-43** may form via a Lewis acid-mediated pathway even in the presence of a Ni catalyst, product **1-44** clearly requires the nickel catalyst. This difference in regioselectivity clearly indicates that the nickel catalyst affects the C–C bond-forming step.

My colleague, Danielle Schacklady McAtee had conducted a few mechanistic experiments to further understand the nickel catalyzed cyclization pathway. The first pathway is via a C-H activation leading to metallacycle **1-46**, followed by reductive elimination to yield product. Path B is an electrophilic aromatic substitution reaction furnishing the benzoyl carbocation **1-47** followed by rearomatization and reductive elimination to give product. The last possible mechanism, Path C is a nickel insertion pathway to provide a nickel allyl intermediate , followed by isomerization and β –hydride elimination to access product. Lack of an intramolecular kinetic isotope

effect (Scheme 1.9) lead us to hypothesize that path A, C – H activation is not the operable mechanism.

Scheme 1.8: Potential Mechanisms for Isoindolinone Formation

Scheme 1.9: Intra-molecular Kinetic Isotope Effect

It was difficult to differentiate between pathway B and C. The electronic character of the benzoyl fragment affects both iminium formation and subsequent cyclization. Although we could not exclude either possibility we favor path B, due to

the fact that I had observed, electron-withdrawing groups on the benzoyl ring inhibit cyclization. Further, in path B, cyclization of the benzoyl ring may be favored over cyclization of the benzyl ring due to the conformational constraints imposed by the amide.

1.3 Role of DPPF Ligand in Ni (II) Catalyst Reduction to Ni (0)

During the course of these studies, we discovered that a Ni (II) pre-catalyst can be used in place of Ni(COD)₂ (Scheme 1.10). As discussed above, we hypothesize that the cyclization reaction proceeds via a Ni(0) catalyst. This then begs the question of how NiCl₂.DPPF, presumably formed in situ from dppf and NiCl₂.DME, is reduced to a (DPPF)Ni(0) catalyst under our reaction conditions.

Scheme 1.10: Ni(II) as an Efficient Catalyst with Ligand DPPF

One possibility would be ligand acting as a reductant as shown by Buchwald and group whose palladium catalyzed C-O bond forming reaction proposed Pd(OAc)₂ being reduced to Pd(0) by phosphine ligand which in turn got oxidized to phosphine oxide.¹¹ To investigate that, we conducted a few variable tempaerature ³¹PNMR and ¹H NMR studies on our system. On heating NiCl₂.DME and DPPF at 100 °C in solvent, *d*-toluene, although the ³¹P signal for DPPF disappears, no new ³¹P signal appears. This suggests that either no phosphine oxide was formed or the phosphine oxide formed precipitated from the reaction and hence was not observed. Given these results, we hypothesize that possibly it was the iron centre from the ferrocenyl moiety in the DPPF ligand donating electrons to nickel(II). Further supporting that hyposthesis was the fact that ligands like BINAP and tri-ortho tolylphosphine, which do not have an iron centre, failed to cyclize with Ni(II) catalyst but worked with Ni(0) complexes only (Table 1.1, entries 3-7).

Figure 1.2: Variable Temperature ³¹P NMR

Few precedents in literature also exist showing that this redox-active ligand DDPF can confer its electro-activity to its complexes.^{12,13} To test this theory further in our system we planned to make corresponding Ni(I)DPPF and Ni(0)DPPF complexes and study their electrochemistry which will prove if a Ni(II) \rightarrow Ni(I) \rightarrow Ni(0) reduction is possible via the iron centre in DPPF or not. In progress to this plan, I had isolated a Ni(I) crystal structure of Ni(I)DPPF (Figure 1.3). Further investigation of this system is required to further validate our hypothesis.

- 1 1	4 4	D 1	••	•		•	
Tabla	1 1 .	Dro	1100	11001717	1 371	norimo	nta
I ADJE	1 - 1	PIE		IIIAI V	C .X	Dernne	THIS.
I GOIC	1 I.	1 1 0		indian y			1100
				-1			

	MeO R ²	10 mol 12 mol ^o MgBr ₂ ·OEt PhMe (0.3 M	% Metal % Ligand 		} ³ 2
	1 - 27			1 - 28	
Entry	[Ni]	Ligand (mol%)	Additives (mol%)	Product	Amide yield(%) ^a
				yield (%) ^a	
1	Ni(COD) ₂	DPPF (12)		67	17
2	NiCl ₂ ·DME	DPPF (12)		64	22
3 ^b	Ni(COD) ₂	BINAP (12)		56	36
4 ^b	$NiCl_2 \cdot DME$	BINAP (12)		3	Significant
5 ^b	NiCl ₂ ·DME	BINAP (12)	Ferrocene (20)	15	80
6	NiCl ₂ ·DME	P(o-Tol) ₃ (22)		9	38
7	NiCl ₂ ·DME	P(o-Tol) ₃ (22)	Ferrocene (20)	17	28

10	NiCl ₂ ·DPPF	BINAP (10)	38	21	
9	NiCl ₂ ·DPPF	DPPF (10)	62	31	
8	NiCl ₂ ·DPPF		28	21	

^a Conditions: Yield determined by NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. ^b Performed by Danielle McAtee.

Figure 1.3: Crystal Structure of Ni(I) (DPPF) Cl

1.4 Summary

In summary, I examined the scope of benzoyl fragments that can be used in this novel, nickel-catalyzed cyclization. My studies demonstrated the functional group tolerance and contributed strongly to our mechanistic understanding of this cyclization reaction. These results were published in *Organic Letters* in 2011.¹

1.5 Experimental Procedures

General Information

Aminal cyclizations were set up in a N_2 -atmosphere glovebox in oven-dried 1dram vials sealed with Teflon-lined caps; all other reactions were performed in ovendried round-bottomed flasks unless otherwise noted. Flasks were fitted with rubber septa, and reactions were conducted under a positive pressure of N_2 . Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed on silica gel 60 (40-63 μ m, 60Å). Thin layer chromatography (TLC) was performed on glass plates coated with silica gel 60 with F254 indicator. Commercial reagents were purchased from Sigma Aldrich, Acros, Fisher, Strem, or Cambridge Isotopes Laboratories and used as received with the following exceptions: toluene, CH₂Cl₂, and Et₂O were dried by passing through drying columns.¹ Toluene was then degassed by sparging with N₂ and stored over activated

4Å MS in a N₂-atmosphere glovebox. MeCN, Et₃N, and (*i*-Pr)₂NEt were distilled from CaH₂. MeOH was distilled from CaH₂ and magnesium. BaO₂ was dried at 100 °C under high vacuum overnight and stored in a N2-atmosphere glovebox. TMSOTf was distilled before use. t-Butyllithium was titrated following the procedure of Suffert.² CDCl₃ was stored over oven-dried potassium carbonate. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on 400 or 600 MHz spectrometers. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.28; (CD₃)₂CO = δ 2.08). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent $(CDCl_3 =$ δ 77.07) Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), integration. For ¹³C NMR, multiplicities were distinguished using an ATP pulse sequence; typical methylene and quaternary carbons appear 'up' (u); methine and methyl carbons appear 'down' (dn). Infrared (IR) spectra were obtained using FTIR spectrophotometers with material loaded onto a NaCl plate. The mass spectral data were obtained at the University of Delaware spectrometry facility.

Preparation of Aminal Substrates:

Synthesis of *N*-benzyl-*N*-(methoxy(p-tolyl)methyl)-4-methylbenzamide (1-16)

In a round-bottomed flask equipped with a nitrogen inlet and an oil bubbler to monitor gas flow, a solution of 4methylbenzoic acid (500 mg, 3.67 mmol, 1.0 equiv), CH₂Cl₂

(3.0 mL), and DMF (50 μ L, 0.65 mmol, 0.12 equiv) was cooled to 0 °C. Oxalyl chloride (631 μ L, 7.34 mol, 2.0 equiv) was then added dropwise via syringe, and the immediate evolution of gas was observed by increased flow through the bubbler. The reaction mixture was stirred at 0 °C until gas flow slowed and was then stirred at room temperature for 1 hour. The reaction mixture was concentrated using a rotary evaporator. Residual oxalyl chloride was removed by repeatedly diluting the resulting residue with dry CH₂Cl₂ and subsequently concentrating the mixture (3.0 mL x 5). The crude acid chloride generated was used in the subsequent step without further purification.

The crude acid chloride (567 mg, 3.67 mmol, 1.2 equiv) was dissolved in CH₃CN (2.0 mL) and added to a solution of *N*-(4-methylbenzylidene)-1-phenylmethanamine^{Error! Bookmark not defined.} (639 mg, 3.05 mmol, 1.0 equiv) in CH₃CN 2.0 mL). The reaction mixture was stirred for 20 minutes, before a solution of methanol (193 μ L, 4.77 mmol, 1.3 equiv), triethylamine (716 μ L, 5.14 mmol, 1.4 equiv) and CH₃CN (1.0 mL) was added. A precipitate immediately formed. Upon completion of the addition, the mixture was filtered through a Celite plug, which was then rinsed with Et₂O (5.0 mL x 4). The filtrate was concentrated, and the resulting oil

was purified by silica gel chromatography (10–20% EtOAc/hexanes) to give aminal **1-16** (988 mg, 75%) as an amorphous yellow solid (mp: 80–88 °C): ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 6.94 (m, 13H), 5.94 (s, 1H), 4.69 (br s, 1H), 4.28 (d, J = 13.5 Hz, 1H), 3.18 (s, 3H), 2.39 (s, 3H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 139.9, 138.7, 138.2, 134.6, 133.6, 129.3, 129.1, 128.9, 127.9, 127.0, 126.6, 126.5, 90.5, 55.5, 45.1, 21.4, 21.2; FTIR (thin film) 3031.0, 2927.3, 2826.3, 1643.9, 1612.3, 1512.4, 1495.4, 1434.6, 1403.6, 1338.7, 1318.1, 1207.6, 1179.3, 1129.2, 1087.2, 1073.5, 1021.4, 957.8, 885.8, 826.2, 781.8, 754.5, 725.2, 699.1, 604.8, 567.2, 528.2 cm⁻¹; HRMS (ESI+) [M + Na]⁺ calculated for C₂₄H₂₅NO₂Na : 382.1778, found: 382.1777.

Synthesis of *N*-benzyl-4-methoxy-*N*-(methoxy(p-tolyl)methyl)benzamide (1-17)

In a round-bottomed flask equipped with a nitrogen inlet and an oil bubbler to monitor gas flow, a solution of 4methoxybenzoic acid (500 mg, 3.28 mmol, 1.0 equiv),

 CH_2Cl_2 (3.0 mL), and DMF (50 µL, 0.645 mmol, 0.19 equiv) was cooled to 0 °C. Oxalyl chloride (310 µL, 3.61 mmol, 1.1 equiv) was then added dropwise via syringe, and the immediate evolution of gas was observed by increased flow through the bubbler. The reaction mixture was stirred at 0 °C until gas flow slowed and was then stirred at room temperature for 1 hour. The reaction mixture was concentrated using a rotary evaporator. Residual oxalyl chloride was removed by repeatedly diluting the resulting residue with dry CH_2Cl_2 and subsequently concentrating the mixture (3.0 mL x 5). The crude acid chloride generated was used in the subsequent step without further purification.

The acid chloride (560 mg, 3.28 mmol, 1.2 equiv) was dissolved in CH₃CN (2.0 mL) and added to a solution of N-(4-methylbenzylidene)-1-phenylmethanamine (572 mg, 2.73 mmol, 1.0 equiv) in CH₃CN (2.0 mL). The reaction mixture was stirred for 20 minutes, before a solution of methanol (144 μ L, 3.56 mmol, 1.3 equiv), triethylamine (534 µL, 3.83 mmol, 1.4 equiv) and CH₃CN (1.0 mL) was added. A precipitate immediately formed. Upon completion of the addition, the mixture was filtered through a Celite plug, which was then rinsed with Et_2O (5.0 mL x 4). The filtrate was concentrated, and the resulting oil was purified by silica gel chromatography (10-20% EtOAc/hexanes) to give aminal 1-17 (718 mg, 70%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 6.73 (m, 13H), 6.04 (s, 1H), 4.63 (d, J = 12.0 Hz, 1H), 4.32 (d, J = 13.5 Hz, 1H), 3.84 (s, 3H), 3.23 (s, 3H), 2.38 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 173.3, 160.8, 138.7, 138.2, 134.7, 129.2, 128.9, 128.7, 127.9, 126.6, 126.5, 124.4, 113.9, 90.8, 55.6, 55.4, 45.1, 21.2; FTIR (thin film) 3031.0, 2927.3, 2826.3, 1643.9, 1612.26, 1512.4, 1495.4, 1434.6, 1403.6, 1338.7, 1318.1, 1207.6, 1179.3, 1129.2, 1087.2, 1073.5, 1021.4, 957.8, 885.8, 826.2, 781.8, 754.5, 725.2, 699.1, 604.8, 567.2, 528.2 cm⁻¹; HRMS (ESI+) $[M + Na]^+$ calculated for C₂₄H₂₅NO₂Na: 398.1727, found: 398.1725.

Synthesis of *N*-benzyl-4-bromo-*N*-(methoxy(p-tolyl)methyl)benzamide (1-18)

In a round-bottomed flask equipped with a nitrogen inlet and an oil bubbler to monitor gas flow, a solution of 4bromobenzoic acid (500 mg, 2.47 mmol, 1.0 equiv), CH₂Cl₂

(3.0 mL), and DMF (50 μ L, 0.65 mmol, 0.2 equiv) was cooled to 0 °C. Oxalyl chloride (238 μ L, 2.73 mol, 1.1 equiv) was then added dropwise via syringe, and the immediate evolution of gas was observed by increased flow through the bubbler. The reaction mixture was stirred at 0 °C until gas flow slowed and was then stirred at room temperature for 1 hour. The reaction mixture was concentrated using a rotary evaporator. Residual oxalyl chloride was removed by repeatedly diluting the resulting residue with dry CH₂Cl₂ and subsequently concentrating the mixture (3.0 mL x 5). The crude acid chloride generated was used in the subsequent step without further purification.

Crude acid chloride (655 mg, 2.96 mmol, 1.2 equiv) was dissolved in CH₃CN (2.0 mL) and added to a solution of *N*-(4-methylbenzylidene)-1-phenylmethanamine (431 mg, 2.06 mmol, 1.0 equiv) in CH₃CN (2.0 mL). The reaction mixture was stirred for 20 minutes, before a solution of methanol (110 μ L, 2.68 mmol, 1.3 equiv), triethylamine (402 μ L, 2.88 mmol, 1.4 equiv) and CH₃CN (1.0 mL) was added. A precipitate immediately formed. Upon completion of the addition, the mixture was filtered through a Celite plug, which was then rinsed with Et₂O (5.0 mL x 4). The filtrate was concentrated, and the resulting oil was purified by silica gel chromatography (10–20% EtOAc/hexanes) to give aminal **1-18** (612 mg, 70%) as an

amorphous white solid (mp: 80–85 °C): ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.03 (m, 12H), 6.66 (s, 1H), 5.84 (s, 1H), 4.69 (br s, 1H), 4.26 (d, J = 13.0 Hz, 1H), 3.17 (s, 3H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.1, 138.4, 138.3, 135.4, 134.2, 131.9, 129.3, 129.0, 128.6, 128.0, 126.8, 126.4, 124.0, 90.6, 55.6, 45.2, 21.2; FTIR (thin film) 3031.4, 2930.5, 2826.6, 1643.9, 1590.3, 1513.3, 1493.1, 1435.9, 1405.3, 1339.4, 1318.5, 1206.8, 1179.1, 1127.6, 1087.7, 1072.1, 1012.8, 957.7, 886.5, 832.2, 780.3, 739.6, 698.3, 613.4, 565.3, 508.0; HRMS (ESI+) [M + Na]⁺ calculated for C₂₃H₂₂N₁O₂ Br₁Na: 446.0726, found: 446.0725.

Synthesis of *N*-benzyl-4-(dimethylamino)-*N*-(methoxy(p-tolyl)methyl)benzamide (1-25)¹⁰

In a round-bottomed flask equipped with a nitrogen inlet and an oil bubbler to monitor gas flow, a solution of 4-(dimethylamino)benzoic acid (500 mg, 3.02 mmol, 1.0

equiv) and CH_2Cl_2 (3.0 mL) was cooled to 0 °C. Oxalyl chloride (285 µL, 3.33 mmol, 1.2 equiv) was then added dropwise via syringe, and the immediate evolution of gas was observed by increased flow through the bubbler. The reaction mixture was stirred at 0 °C until gas flow slowed and was then stirred at room temperature for 1 hour. The resulting solution of acid chloride was used in the subsequent step without purification.

After the oil bubbler was removed, the solution of acid chloride generated was cooled to 0 °C. A solution of benzyl amine (827 μ L, 7.56 mmol, 2.5 equiv) and CH₂Cl₂ (2.0 mL) was added dropwise via syringe. A precipitate immediately formed.

The reaction mixture was then stirred at 0 °C for 30 minutes and was then stirred at room temperature for 1 hour. H_2O (20 mL) was added. The mixture was extracted with EtOAc (30 mL). The organic layer was washed with saturated NaCl (10 mL), dried (MgSO₄), filtered and concentrated to give *N*-benzyl-4-(dimethylamino)benzamide (676 mg, 88%) as a pale yellow solid.

A colorless solution of *p*-Tolualdehyde acetal (523 mg, 3.15 mmol, 1.6 equiv) and CH₂Cl₂ (4 mL) was cooled to 0 °C. TMSOTf (570 µ(, 3.15 mmol, 1.6 equiv) was then added dropwise via syringe. The solution turned pink. After stirring at 0 °C for 10 min, a solution of N-benzyl-4-(dimethylamino)benzamide (500 mg, 1.97 mmol, 1.0 equiv), (i-Pr)₂NEt (520 µE, 3.15 mmol, 1.6 equiv) and CH₂Cl₂ (2 mL) was added dropwise via syringe. The solution immediately turned yellow. The mixture was then stirred for 2 hours at room temperature. The mixture was filtered through a silica gel plug, which was then rinsed with Et_2O (5 mL x 4). The filtrate was concentrated, and the resulting oil was purified by silica gel chromatography (10–20% EtOAc/hexanes) to give aminal **1-25** (703 mg, 92%) as a white solid (mp: 115–125 °C): ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.14 (m, 11H), 6.68 (d, J = 8.7 Hz, 2H), 6.23 (s, 1H), 4.58 (d, J = 15.0 Hz, 1H), 4.37 (d, J = 14.9 Hz, 1H), 3.26 (s, 3H), 3.01 (s, 6H), 2.37 (s, 3H); ^{13}C NMR (101 MHz, CDCl₃) δ 174.1, 151.5, 139.0, 138.0, 135.1, 129.1, 128.8, 128.6, 127.9, 126.6, 126.5, 123.1, 111.3, 90.6, 55.6, 45.4, 40.4, 21.2; FTIR (thin film) 3031.6, 2926.7, 2823.8, 2353.2, 2318.4, 1636.3, 1608.4, 1524.3, 1495.2, 1434.5, 1395.2, 1361.4, 1317.4, 1226.8, 1195.0, 1178.3, 1127.6, 1072.4, 945.3, 886.3, 822.8,

21

785.9, 764.9, 735.4, 700.1, 620.1, 598.9, 568.5, 538.2, 508.4 cm⁻¹; HRMS (ESI+) [M + Na]⁺ calculated for $C_{25}H_{28}N_2O_2Na$; 411.2048, found: 411.2046.

Synthesis of *N*-benzyl-4-(dimethylamino)-*N*-(methoxy(phenyl)methyl)benzamide (1-26)¹⁰

A colorless solution of 1-(dimethoxymethyl)-benzene (479 μ L, 3.15 mmol, 1.6 equiv) and CH₂Cl₂ (4 mL) was cooled to 0 °C. TMSOTf (570 μ L, 3.15 mmol, 1.6 equiv) was then added

dropwise via syringe. The solution turned pink. After stirring at 0 °C for 10 min, a solution of N-benzyl-4-(dimethylamino)benzamide (500 mg, 1.97 mmol, 1.0 equiv), (i-Pr)₂NEt (520 µL, 3.15 mmol, 1.6 equiv) and CH₂Cl₂ (2 mL) was added dropwise via syringe. The solution immediately turned yellow. The mixture was then stirred for 2 hours at room temperature. The mixture was filtered through a silica gel plug, which was then rinsed with Et_2O (5 mL x 4). The filtrate was concentrated, and the resulting oil was purified by silica gel chromatography (10-20% EtOAc/hexanes) to give aminal 1-26 (604 mg, 82%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.11 (m, 12H), 6.69 (d, J = 8.6 Hz, 2H), 6.32 (s, 1H), 4.57 (d, J = 15.0 Hz, 1H), 4.43 (d, J = 15.0 Hz, 1H), 3.30 (s, 3H), 3.01 (s, 6H); 13 C NMR (101 MHz, CDCl₃) δ 174.0, 151.6, 138.9, 138.1, 129.1, 128.5, 128.4, 128.2, 127.9, 126.7, 126.5, 123.0, 111.3, 55.6, 45.4, 40.2, 31.0; FTIR (thin film) 2929.6, 1633.4, 1607.7, 1524.7, 1494.2, 1453.1, 1433.7, 1393.2, 1361.8, 1314.7, 1194.0, 1173.3, 1127.3, 1087.9, 1069.9, 1029.8, 945.2, 824.5, 755.9, 712.6, 698.8, 666.3, 591.2, 518.1 cm⁻¹; HRMS (ESI+) [M $+ Na^{+}_{1}$ calculated for C₂₄H₂₆N₂O₂Na: 397.1892, found: 397.1883.

Preparation of Isoindolinones

General Procedure A (MgBr₂·OEt₂). In a N₂-atmosphere glovebox, Ni(cod)₂ (3.8 mg, 0.0138 mmol, 10 mol %) was weighed into a 1-dram vial equipped with a magnetic stir bar. Dppf (8.9 mg, 0.0166 mmol, 12 mol %), aminal 1-27 (0.138 mmol, 1.0 equiv), MgBr₂·OEt₂ (78.6 mg, 0.304 mmol, 2.2 equiv), and then PhMe (500 μ L, 0.28 M) were added. The vial was capped with a Teflon-lined cap and heated in an aluminum heating block at 95 °C. After cooling to room temperature, the crude material was directly purified by silica gel chromatography (10–20% EtOAc/hexanes) to furnish isoindolinone 1-28.

2-benzyl-3-*p***-tolylisoindolin-1-one** (1-28). Prepared via General Procedure A (MgBr₂·OEt₂) with a reaction time of 24 hours. Crude material was purified by silica gel chromatography to give 1-28 (run 1: 30 mg, 67%; run 2: 33 mg, 73%): ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.93 (m, 1H), 7.53 – 7.43 (m, 2H), 7.36 – 7.26 (m, 3H), 7.26 – 7.10 (m, 5H), 6.98 (d, *J* = 8.0 Hz, 2H), 5.42 (d, *J* = 14.8 Hz, 1H), 5.23 (s, 1H), 3.74 (d, *J* = 14.9 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 146.6, 138.6, 137.2, 133.7, 131.9, 131.4, 129.8, 128.7, 128.5, 128.3, 127.8, 127.6, 123.7, 123.1, 63.3, 43.7, 21.2; FTIR (thin film) 3031.1, 2921.2, 1694.6, 1637.8, 1400.1 cm⁻¹; HRMS (ESI+) [M + H]⁺ calculated for C₂₂H₂₀NO: 314.1545, found: 314.1551.
2-benzyl-5-methyl-3-p-tolylisoindolin-1-one (1-29): Prepared via General Procedure

A $(MgBr_2 \cdot OEt_2)$ with a reaction time of 24 hours. Crude material was purified by silica gel chromatography to give **1-29** as a white crystalline solid (run 1: 32.2 mg, 68%; run 2: 33.1 mg, 70%, mp: 156–162 °C): ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 7.8 Hz, 1H), 7.40 – 7.12 (m, 8H), 7.04 – 6.82 (m, 3H), 5.40 (d, J = 14.9 Hz, 1H), 5.18 (s, 1H), 3.72 (d, J = 14.9 Hz, 1H), 2.39 (s, 3H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.6, 146.9, 142.5, 138.5, 137.3, 133.9, 129.8, 129.3, 128.9, 128.7, 128.5, 127.8, 127.5, 123.6, 123.5, 63.1, 43.7, 21.9, 21.3; FTIR (thin film) 3028.5, 2920.9, 1693.5, 1620.3, 1512.9, 1494.2, 1453.9, 1434.9, 1397.9, 1356.9, 1284.1, 1209.8, 1181.0, 1144.1, 1123.6, 1074.8, 1028.9, 829.9, 756.7, 736.4, 703.7, 677.5, 609.6, 518.8 cm⁻¹; HRMS (ESI+) [M + H]⁺ calculated for C₂₃H₂₂NO: 328.1696, found: 328.1695.

2-benzyl-5-methoxy-3-p-tolylisoindolin-1-one (1-30): Prepared via General Procedure A $(MgBr_2 \cdot OEt_2)$ with a reaction time of 24 hours. Crude material was purified by silica gel chromatography to give 1-30 as a white crystalline solid (run 1: 36.2 mg, 73%; run 2: 36.7 mg, 74%, mp: 165–170 °C): ¹H NMR (400 MHz, CDCl₃) δ

7.86 (d, J = 8.4 Hz, 1H), 7.34 – 7.25 (m, 3H), 7.22 – 7.16 (m, 4H), 7.01 – 6.96 (m, 3H), 6.59 (d, J = 2.2 Hz, 1H), 5.38 (d, J = 14.9 Hz, 1H), 5.16 (s, 1H), 3.76 (s, 3H), 3.70 (d, J = 14.9 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 163.0, 148.8, 138.5, 137.4, 133.8, 129.8, 128.7, 128.4, 127.8, 127.5, 125.0, 124.0, 115.0,

107.8, 63.1, 55.6, 43.7, 21.3; FTIR (thin film) 2358.5, 1690.5, 1610.7, 1512.1, 1489.4, 1455.3, 1436.8, 1395.8, 1358.9, 1338.4, 1285.0, 1248.9, 1218.8, 1180.5, 1146.3, 1103.7, 1027.9, 971.8, 846.7, 762.9 cm⁻¹; HRMS (ESI+) $[M + H]^+$ calculated for $C_{23}H_{22}NO_2$: 344.1645, found: 344.1642.

2-benzyl-5-(bromo)-3-phenylisoindolin-1-one (1-31): Prepared via General

Br

Procedure A $(MgBr_2 \cdot OEt_2)$ with a reaction time of 24 hours. Crude material was purified by silica gel chromatography to give **1-31** as a white crystalline solid (run 1: 37.5 mg, 66%; run 2: 39.2

^{Me} mg, 69%, mp: 172–178 °C): ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.1 Hz, 1H), 7.68 – 7.56 (m, 1H), 7.42 – 7.12 (m, 8H), 6.97 (d, J = 8.0 Hz, 2H), 5.39 (d, J = 14.8 Hz, 1H), 5.19 (s, 1H), 3.71 (d, J = 14.8 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.6, 148.2, 139.0, 136.8, 132.8, 131.9, 130.4, 130.0, 128.8, 128.42, 128.36, 127.7, 126.6, 126.5, 125.2, 62.9, 43.8, 21.3; FTIR (thin film) 2948.7, 2923.5, 2855.9, 1695.9, 1607.3, 1512.8, 1494.3, 1454.4, 1417.5, 1395.1, 1314.6, 1162.7, 1112.8, 1076.2, 1054.0, 972.4, 902.4, 816.4, 754.9, 702.7, 678.9, 508.0 cm⁻¹; HRMS (ESI+) [M + H]⁺ calculated for C₂₂H₁₉N₁O₁Br₁: 392.0645, found: 392.0639.

2-benzyl-5-(dimethylamino)-3-p-tolylisoindolin-1-one (1-32): Prepared via General

Procedure A (MgBr₂·OEt₂) with a reaction time of 36 hours.
Crude material was purified by silica gel chromatography to give
1-32 as a yellow crystalline solid (run 1: 31.3 mg, 61%; run 2:

32.3 mg, 63%, mp: 173–183 °C): ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.6 Hz,

1H), 7.34 – 7.23 (m, 3H), 7.19 (dd, J = 10.4, 4.5 Hz, 4H), 7.00 (d, J = 8.0 Hz, 2H), 6.76 (dd, J = 8.6, 2.3 Hz, 1H), 6.30 (d, J = 2.0 Hz, 1H), 5.37 (d, J = 15.0 Hz, 1H), 5.13 (s, 1H), 3.67 (d, J = 15.0 Hz, 1H), 2.95 (s, 6H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.1, 153.2, 148.9, 138.3, 137.7, 134.7, 129.7, 128.6, 128.4, 127.9, 127.3, 124.6, 119.1, 112.0, 105.1, 63.2, 43.7, 40.5, 21.3; FTIR (thin film) 3026.7, 2918.4, 1683.5, 1613.7, 1512.3, 1433.5, 1393.5, 1361.4, 1289.7, 1226.7, 1181.5, 1097.1, 820.0, 760.5, 703.1 cm⁻¹; HRMS (ESI+) [M + H]⁺ calculated for C₂₄H₂₅N₂O: 357.1961, found: 357.1694.

2-benzyl-5-(dimethylamino)-3-phenylisoindolin-1-one (1-33): Prepared via General

Me₂N

Procedure A (MgBr₂·OEt₂) with a reaction time of 36 hours. Crude material was purified by silica gel chromatography to give **1-33** as a yellow crystalline solid (run 1: 31.7 mg, 64%; run 2: 32.7

mg, 66%, mp: 170–180 °C): ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.6 Hz, 1H), 7.43 – 7.06 (m, 9H), 6.76 (dd, J = 8.6, 2.3 Hz, 2H), 6.30 (d, J = 1.9 Hz, 1H), 5.38 (d, J = 15.0 Hz, 1H), 5.15 (s,1H), 3.68 (d, J = 15.0 Hz, 1H), 2.95 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 153.1, 148.8, 137.9, 137.7, 133.8, 129.0, 128.6, 128.4, 127.9, 127.3, 124.8, 119.1, 112.0, 105.3, 63.5, 43.5, 40.6; FTIR (thin film) 2920.3, 2854.9, 1681.9, 1613.3, 1513.7, 1494.9, 1453.9, 1393.2, 1362.1, 1290.2, 1226.9, 1182.5, 1133.7, 1097.7, 1072.7, 1028.4, 828.6, 761.2, 732.9, 704.6, 605.0, 523.0 cm⁻¹; HRMS (ESI+) [M + H]⁺ calculated for C₂₃H₂₃N₂O: 343.1805, found: 343.1801.

Chapter 2

ENANTIOSELECTIVE, COPPER(I)-CATALYZED ALKYNYLATION OF OXOCARBENIUM IONS TO SET α , α -DIARYL TETRASUBSTITUTED STEREOCENTERS

2.1 Introduction

Substituted benzopyrans comprise of a number of important molecular targets like the antibacterial natural product aposphaerin A, dopamine D4 receptor agonist U-101387, HIV-1 reverse transcriptase inhibitor Efavirenz and vitamin E (Figure 2.1).¹⁴⁻¹⁷

We envisioned that enantioselective addition to a cyclic oxocarbenium ion might prove to be an efficient alternative strategy to set α -diaryl, tetrasubstituted stereocenters on oxygen heterocycles. By tethering one aryl group to the oxygen, the otherwise similar aryl substituents are differentiated by freedom of rotation and by their relationship to the oxygen substituents (alkyl vs. lone pair). These factors make the geometry of the oxocarbenium ion similar to that of a trisubstituted olefin, which has been used in other enantioselective transformations.^{18,19} Here, however, the oxocarbenium ion reacts as an electrophile in contrast to its alkene analogue.

Figure 2.1: Biological Activity of Cyclic Ethers with Tetrasubstituted Stereocenters

2-3 efavirenz (HIV-1 reverse transcriptase inhibitor)

However, controlling enantioselectivity in such additions represents a long-

2-4

vitamin E (a-tocopherol)

standing challenge in asymmetric catalysis. Few enantioselective methods are known and the majority rely on organo- or Lewis acid catalysts.²⁰⁻³¹ Braun reported a single example of allylation of dihydropyranyl acetal catalyzed by a chiral titanium (IV) (Scheme 2.1,1).²⁰ The Jacobsen group has developed enantioselective additions of silvl ketene acetals to 1-chloroisochromans using a chiral thiourea catalyst (Scheme 2.1,2).²¹ The Schaus group has shown the use of tartaramide catalyst for the enantioselective addition of vinyl and electron-rich aryl boronic esters to chromene acetals (Scheme 2.1,3).²² More recently, Rueping and Lou and Liu has demonstrated

the enantioselective addition of enamines to oxocarbenium ions using organocatalyst (Scheme 2.1, 4).²⁴ Terada has also shown Bronsted acid catalyzed enantioselective

addition of hydrides to chromene acetals (Scheme 2.1, 5).²⁸ Our group has also shown alkynylation of isochroman and chromene acetals using a chiral Cu/bis(oxazoline) catalyst to set *tertiary* stereogenic centers. These reports represent the first examples of an enantioselective addition of an organometallic nucleophile to a prochiral cyclic oxocarbenium ion (Scheme 2.1, B). ^{32,33}

Notably, this method and all other reported intermolecular, enantioselective additions to cyclic oxocarbenium ions result in tertiary stereocenters; none of these methods enables formation of a tetrasubstituted stereogenic center. Instead the common strategy for asymmetric synthesis of these molecules is to first set the stereocenter, and then do a cyclization.^{17,34,35} An example of such an approach is enantioselective additions to ketone substrates, which generally require significant differences in the electronic or steric character of their substituents to achieve high ee's.^{17,36-43} In particular, enantioselective additions to diaryl ketones are rare, and none allow addition of an acetylide to our knowledge.⁴⁴⁻⁴⁶ However, Carreira's route of asymmetric autocatalytic zinc acetylide addition to ketones enables an effecient synthesis of a key precursor to efavirenz (Scheme 2.2,A).¹⁷ Lalic and group also demonstrated that exo-selective cyclizations of allenols provide an efficient approach to the synthesis of THFs, THPs and chromans containing a tetra-substituted stereocenter (Scheme 2.2,B)³⁴. Only a single method exists for the formation of tetrasubstituted stereocenters via enantioselective addition to oxocarbenium ions; Jacobsen's thiourea-catalyzed [5+2] cycloaddition of pyrilium ions enables formation of α -dialkyl tetrasubstituted stereocenters on 8-oxabicylcooctanes (Scheme 2.2, C).^{31,47}

We envisioned that transition metal catalysis may also enable the formation of diaryl-substituted quaternary stereocenters via enantioselective alkynylation of the cyclic ketals. However, in contrast to setting a tertiary stereocenter, wherein the electrophilic carbon is substituted by two very different groups (H vs Ar), enantioselective formation of a diaryl, tetrasubstituted stereocenter requires that the catalyst differentiates between two sterically and electronically similar aryl substituents (Scheme 2.3, **2-26**).

Scheme 2.2: Representative Routes to α -Tetrasubstituted Cyclic Ethers

A) Carreira's Route to Efavirenz F_3 С οн NH_2 F₃C , I F₃C 0.18 equiv (S)-2 CI С ЮH но NH₂ 0.3 equiv (1R,2S)-X 0.24 equiv Et₂Zn, nHexLi (S)-2 Ph Me THF/Tol, 40 °C, 12h (X) 67%, 99.5% ee efavirenz 2-19 2-20

B) Lalics Route to Tetrasubstituted Chromans

The only difference the two similar aryl groups enjoy is the freedom of rotation exhibited by the α –substituted phenyl group and by their relationship to the oxygen substituents (alkyl vs. lone pair) (Scheme 2.3). In addition, the steric hindrance of an additional substituent at the α –carbon to the oxocarbenium may create additional challenge by sterically hindering nucleophilic addition at that electrophilic carbon center. Tackling these challenges, we have identified a Cu/Py-Box catalyst capable of enantioselective alkynylation of isochroman ketals to give cyclic ethers with fully substituted α –stereocenters (Scheme 2.3)

Scheme 2.3: Enantioselective Alkynylation of Ketals to Set Diaryl-Substituted Quaternary Stereocenters

2.2 Results and Discussion

Synthesis of Ketal Substrates

The ketal substrates were synthesized by addition of aryl lithium reagents to isochromanones to generate hemiketals (Scheme 2.4, **2-31**). These hemiketals are observed as a mixture of both ring open and cyclic forms. Subsequent treatment with catalytic TsOH in MeOH delivers ketals (**2-27**). As these compounds decompose under acidic conditions, they require the use of deactivated silica gel for purification. I have deactivated silica gel by treating it with 1% Et_3N in hexanes on the columns. These ketals are stable and can be stored at room temperature Substrates synthesized via this route are shown in Scheme 2.4.

Optimization of Alkynylation of Ketals

The reaction of isochroman ketal **2-47** and phenylacetylene **2-62** were selected as the model reaction for optimization of the alkynylation. Under conditions very similar to those used in the formation of tertiary stereocenters, no reactivity was observed (Table 2.1, entry 1). However, changing the Lewis acid to $BF_3 \cdot Et_2O$ effectively gave a yield of 60% in the absence of chiral ligands (Table 2.1, entry 2). When bis-(oxazoline) (Box) ligands were screened, ligand **2-58**, BnBox, gave racemic product but ligand **2-59**, IndBox, gave 13% yield of product **2-48** in 20% ee at -20 °C in solvent Ether, using Copper Iodide and Huning's base (Table 2.1, entries 3-4). Changing the solvent to chloroform increased the yield to 88% but in 15% ee only (Table 2.1, entry 5). Having identified chloroform as a promising solvent, other copper sources and bases were screened. We soon found copper (tetrakis acetonitrile) hexaflorophosphate with Huning's base gave an yield of 83% and ee of 37% with ligand **2**- **59** and an yield of 24% and an ee of 27% with ligand **2-60**, Ph-Pybox. (Table 2.2, entries 1-2). The base MTBD gave even greater enantioselectivity of 84% (Table 2.2, entry 3). A slightly higher ee of 87% was observed when copper(I) thiophenolate was used in place of copper (tetrakis acetonitrile) hexa-florophosphate (Table 2.2, entry 4).

───Ph (2-62)								
ĺ		-	10 mol % [M] 12 mol % L (1.55 equiv) <i>i</i> -Pr ₂ NEt (2.0 equiv) BF ₃ ·OEt ₂			Ph		
	Ph ON	le						
	2-47		solvent (0.3M) , T °C, 24 h			2-48		
	entry	[M]	L*	solvent	Т	yield	ee	
						(%) ^b	(%)¢	
	1 ^d	CuI	-	Et ₂ 0	r.t.	0	-	
	2	CuI	-	Et ₂ O	r.t.	60	-	
	3	CuI	2-58	Et ₂ O	-20	68	0	
	4	CuI	2-59	Et ₂ O	-20	13	20	
	5	CuI	2-59	CHCl ₃	-20	88	15	

Table 2-1: Optimization of Alkynylation of Ketal 2-47^a

^aConditions: Ketal **2-47** (0.08 mmol, 1.0 equiv), [M] (0.008 mmol, 10 mol%), L*(0.01 mmol, 12 mol%), alkyne **2-62** (0.096 mmol, 1.2 equiv), BF₃.Et₂O (0.16 mmol, 2.0 equiv), *i*-Pr₂NEt (0.12 mmol, 1.5 equiv), solvent (0.3M), T °C. ^bDetermined by 1H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. ^cDetermined by chiral HPLC analysis. ^d1.2 equiv of TMSOTf replaced BF₃·Et₂O.

Table 2-2: Optimization of Alkynylation of Ketal 2-47^a

^aConditions: Ketal **2-47**(0.08 mmol, 1.0 equiv), [M] (0.008 mmol, 10 mol%), L*(0.01 mmol, 12 mol%), alkyne **2-62** (0.096 mmol, 1.2 equiv), BF₃·Et₂O (0.16 mmol, 2.0

equiv), base (0.12 mmol, 1.5 equiv), CHCl₃ (0.3M), -20 °C, 24 h, unless otherwise noted. MTBD = 7-Methyl-1,5,7-triazabicyclo(4.4.0)dec-5-ene, ^bDetermined by 1H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. ^cDetermined by chiral HPLC analysis. ^d1.55 equiv of base in place of 1.5 equiv. 0.15M CHCl₃ in place of 0.3M. ^e 4 °C temperature in place of -20 °C.

Scheme 2.5: Synthesis of PyBox Ligands

In an effort to further increase the enantioselectivity and obtain synthetically useful yields, a variety of other substituted pyridine bis-(oxazoline) ligands were synthesized (Scheme 2.5) and examined in the alkynylation conditions, but none showed better enantioselctivity than 2-60 (Table 2.2, entries 6 - 11). Notably *t*BuBox (2-56) provides the same sense of enantioinduction as PhPyBox (2-60), suggesting

that the effect of the ligand substituents is likely largely due to steric repulsion, instead of an attractive interaction with the phenyl groups. Having identified PhPyBox as the optimal ligand, we achieved a synthetically useful yield of 87% with 78% ee of the alkynylated product by increasing the reaction temperature to 4 °C (Table 2.2, entry 5).

Substrate Scope

Scope of the Ketal

Under these optimized conditions (Table 2.2, entry 5), a wide variety of isochroman ketals reacted with aryl alkynes in high yields and enantioselectivities (Scheme 2.6). With respect to the 1-aryl substituent (Ar), substrates with electron donating groups on all para, meta and ortho positions show reactivity (**2-62 - 64**). However poor enantioselectivity is observed in the case of the ortho tolyl substituent probably due to steric crowding (**2-64**). A range of other functional groups also demonstrated great yields and enantioselectivities including electron withdrawing meta methoxy (**2-65**), thiol (**2-66**), amino (**2-67**), vinyl (**2-68**), trifluoromethyl (**2-69**), acetal (**2-71**) and heterocycle (**2-74**). Both 1 and 2 subtituted napthyl isochroman acetals worked well too (**2-72, 2-73**). Methyl substitutions on the 6 and 7 position of the benzo-pyran ring also showed great reactivity and selectivity (**2-75, 2-76**).

Scheme 2.6: Scope of the Ketal Substrates

Substrate Scope of the Alkynes

Good yields and high enantioselectivities were observed using a wide range of aryl acetylenes (Scheme 2.7). Electron-donating groups at both meta and ortho positions worked well (2-77, 2-85). Electron-withdrawing groups at both meta and para positions were very well tolerated including methoxy (2-78), trifloromethyl (2-80), cyano (2-81), ester (2-82) and halides (2-79, 2-83, 2-84). With respect to alkyl-substituted alkynes, 1-octyne gave low yield and modest enantioselectivity (2-86). However, addition of propargyl phthalimide resulted in 80% yield of product 2-87 in 93% ee. High enantioselectivity was also observed in the addition of cyclopropylacetylene (2-88). Silyl acetylenes also underwent addition. The addition of (trimethylsilyl)acetylene resulted in modest yield (40% by ¹H NMR), but relatively high enantioselectivity (82% ee, not shown). (Dimethylphenylsilyl)acetylene showed greater reactivity, giving 53% yield and 80% ee of silyl-protected acetylene 2-89. Electron donating groups like para position amino and methyl substituents on phenyl acetylene also reacted with very low enantioselectivities for our system.

Scheme 2.7: Scope of the Alkyne Substituents

Reactivity of Alkyl Substituted Isochroman Ketals

1-Alkylisochroman ketals are poor substrates under these conditions; 1-Methyl ketal (2-90) was used as a model substrate. However, under the optimized conditions for the enantioselective transformation, no desired product was observed. I was

successfully able to make ketal **2-90** by careful addition of methyl lithium to isochromanone and subsequent ketal formation. Initial screening of the ketal **2-90** have shown alkynylation in a very low 19% yield (**2-91**) under the conditions shown below in the absence of any chiral ligands (Scheme 2.8). I hypothesize that the non-planar alkyl substituent may impose more steric hindrance in the approach of a nucleophile than the phenyl substituent which may lie planar in conjugation with the oxocarbenium ion. Alkyl substituted oxocarbeniums are also prone to elimination leading to less formation of desired product. Although I did not observe the elimination product (**2-92**), this type of enol ether may polymerize in the presence of BF₃·Et₂O.⁴⁸

Scheme 2.8: Scope of Alkyl Substituted Isochroman Ketals

Determination of Stereochemistry

The absolute configuration of **2-72** was determined by X-ray crystallography.⁴⁹ The configurations of other products were assigned by analogy. X-ray quality crystals were obtained from slow evaporation of **2-72** in diethyl ether. The crystal structure demonstrated that the absolute configuration is *S* (Figure 2.2).

Figure 2.2 : Molecular diagram of 2-67 with ellipsoids at 30% probability. H-atoms omitted for clarity. (CCDC 973167)

Elaboration of Products

The alkyne products can be easily elaborated. I was successfully able to reduce alkyne **2-65** to give both vinyl- and alkyl-substituted isochromans **2-93** and **2-94**, respectively, in good yields and high enantiopurities (Scheme 2.9). Oxidation to diketone **2-90** was also accomplished in 67% yield and perfect stereochemical fidelity.⁵⁰ However, I was unable to further oxidize the diketone to the carboxylic acid. As noted above, *m*-methoxyphenyl-substituted isochroman products are formed in the highest enantioselectivities. I was able to functionalize the *m*-methoxyphenyl-substituted isochroman via cross coupling. For example, it can be converted to a *m*-

methyl group without loss in ee (2-95).⁵¹ Finally, deprotection of silyl acetylene 2-89 was accomplished in quantitative yield and perfect stereochemical fidelity to deliver terminal alkyne 2-97.

2.3 Mechanistic Studies

Challenging Substrates

Aryl acetylenes with electron-rich *p*-substituents, such as *p*-(dimethylamino) (2-98), *p*-methoxy (2-99) and *p*-methyl (2-100) and 4-methoxy substituent on the

isochroman ketal (**2-101**) led to low or irreproducible enantioselectivities (Scheme 2.10). I hypothesize that these electron-rich isochroman products may undergo epimerization via a Lewis acid-induced ionization of the benzylic C–O bond, leading to a trityl-like cation (**2-103**) (Scheme 2.10).

Scheme 2.10: Challenging Substrates

Role of BF3 Et2O

We were intrigued by the requirement for two equivalents of Lewis acid, which were essential both for yield and enantioselectivity. We noticed that phthalimide-substituted alkyne (2-87) epimerizes under 2.0 equivalents of $BF_3 \cdot Et_2O$ in CHCl₃ (Scheme 2.11). However it retains its enantiopurity if it is added into another reaction after 24 hours. This result suggests that $BF_3 \cdot Et_2O$ is probably consumed during the course of the reaction and hence it failed to epimerize **2-87**. After these systematic epimerization experiments and NMR study, I hypothesize that BF₃ undergoes disproportionation with BF₃OMe⁻ to form BF₄⁻ and BF₂OMe in the process of generating the oxocarbenium ion (Scheme 2.12). The formation of BF₄⁻ was observed by ¹⁹F NMR and by Electrospray Negative Mode Mass Spectrometry in the reaction of ketal **2-47** with BF₃ (2.0 equiv). Similar disproportionation of anionic BF₃OR⁻ species with neutral BF₃ has been reported in the literature.⁵² The oxocarbenium ion (**2-104**) was quantitatively formed in reaction of ketal **2-47** with 2.0 equivalents of BF₃·Et₂O and was observed by ¹H, ¹³C and mass spectrometry. Howeevr only 55% of oxocarbenium (**2-104**) was observed with 1.0 equivalent of BF₃·Et₂O and ketal **2-47**, suggesting that two equivalents of Lewis acid are required for complete ionization of the ketal.

Scheme 2.11: Epimerization Studies

Scheme 2.12: Proposed Disproportionation

These experiments explain why electron-rich products are formed in low or variable enantioselectivities. Although BF₂OMe is not Lewis acidic enough to epimerize the majority of our products, it is likely acidic enough to ionize the most electron-rich compounds. The consumption of two equivalents of BF₃ for complete ionization of the ketal also explains why our reaction requires two equivalents of Lewis acid for high reactivity.

Proposed Mechanism

My working mechanistic hypothesis is shown in Scheme 2.13. The reaction likely proceeds via initial formation of copper acetylide (2-107), which then attacks the oxocarbenium ion intermediate (2-104) generated from ketal (2-47) in the presence of two equivalents of Lewis acid, $BF_3 \cdot Et_2O$. We are also intrigued by several observations made during our optimization studies: (1) why are two equivalents of BF_3 required? (2) why does base affect the enantioselectivity? (3) what is the origin for enantioselectivity? Further investigation is needed to fully answer these questions, but our preliminary experiments are described below.

Role of Base in Imparting Enantioselectivity

As shown in Table 2.3, base has a significant influence on the enantioselectivity, despite its absence from our proposed C-C bond-forming step. We envision three possibilities to explain this: (1) base prevents epimerization of the products, (2) base coordinates oxocarbenium ion (2-104) and (3) base ligates Cu. To begin to answer these questions, I studied the reaction of oxocarbenium ion 2-104 with various species likely present under the catalytic reaction conditions. As discussed above, addition of two equivalents of BF₃·Et₂O to ketal 2-47 results in quantitative formation of oxocarbenium (2-104), as observed by ¹H and ¹³C NMR spectroscopy. I observed that on adding stoichiometric Copper acetylide and Ph-PyBox ligand to a solution of oxocarbenium (2-104) in CHCl₃, the desired product is formed in 70% yield (NMR) and 54% ee (Table 2.3, entry 1). However, on adding one quivalent of

base along with the copper acetylide and Ph-PyBox ligand, the enantioselctivity of the product increases to 69% (Table 2.3, entry 2). I then conducted another experiment wherein I added excess base, MTBD to see if the enantioselectivity increases further. However, five equivalents of MTBD completely shuts down the reaction leading to unidentified by-products (Table 2.3, entry 3). Notably the ee's of the stoichiometric reactions do not match that of the catalytic reaction (78% ee). I also observed that when MTBD (1.0 equiv) is added to the reaction of ketal (2-47) and $BF_3 \cdot Et_2O$ (2.0 equiv), oxocarbenium ion (2-104) is not observed (Scheme 2.14). By ¹³C NMR, the product formed here has no signal at 201.29 ppm, corresponding to the oxocarbenium ion (2-104), but a peak at 66 ppm, corresponding to an aminal is seen suggesting MTBD coordinates to the oxocarbenium (2-104). By ¹H NMR, the protons of the ketal, MTBD are also shifted and do not correspond to free ketal, oxocarbenium species or free MTBD respectively. The proton NMR peaks observed here do not match that of MTBD coordinated to free BF₃·Et₂O either. (In a separate experiment, between MTBD and BF₃·Et₂O, I have observed that MTBD coordinates to my Lewis acid by ¹H and ¹⁹F NMR.) I also observe the BF_4^- counter anion here (Scheme 2.14) at a chemical shift different than that of the oxocarbenium species (2-104). These experiments indicate that MTBD can coordinate to the oxocarbenium ion during the course of the reaction. Given that excess base shuts down the alkynylation, it seems likely that the alkynylation proceeds through the oxocarbenium ion. An aminal species may form reversibly in a reservoir off the catalytic cycle. From these experiments, we cannot assertively conclude the role of base in imparting enantioselectivity. However,

I have determined a potentially important equilibrium occurring under the reaction conditions. Further experiments need to be conducted to conclusively figure out its role in affecting enantioselectivity.

Table 2-3: Role of Base in Imparting Enantioselectivity

Scheme 2.14: Role of Base in Imparting Enantioselectivity

Active Catalyst Elucidation of Copper Ph-PyBox Complex

We are currently investigating how the copper/Ph-PyBox catalyst imparts enantioselectivity in this reaction. The enantiodetermining step is likely the C–C bond formation (Scheme 2.13). To understand this step, we must determine the structure of copper acetylide (**2-107**). Although Ph-PyBox ligands often enforce a square planar geometry on a M–X fragment, four-coordinated square planar copper(I) complexes are improbable due to steric crowding, and a structure like **2-109** is likely not the active complex in this case (Figure 2.3). We considered that Ph-PyBox may act instead as a bidentate ligand, with either the pyridine or one oxazoline arm dissociating, but models for these types of coordination geometries resulted in much lower enantioselectivities (Figure 2.3, **2-110**: 4% ee; **2-111**: 28% ee).^{53,54}

Another possibility is a dimeric (or other higher order) copper/Ph-PyBox catalyst. Dinuclear copper catalysts have been proposed to proceed via dicopper acetylide intermediates in related reactions.⁵⁵⁻⁵⁹ Cu₂(Ph-PyBox)₂(X)₂ complexes have been previously reported, ^{55,60,61} and I synthesized Cu₂(Ph-PyBox)₂(PF₆)₂ (2-112) and Cu(Ph-PyBox)₂PF₆ (2-113) complexes in 48% and 22% yields respectively (Scheme 2.15). On testing these complexes under our reaction conditions, I observed Cu₂(Ph- $Ph-PyBox_2(PF_6)_2$ (2-112) gave our usual enantioselectivity, but only when 20 mol % more Ph-PyBox ligand was added (Table 2.4, entry 2). Complex Cu(Ph-PyBox)₂PF₆ (2-113) however gave the yield and enantioselectivity we usually observe insitu under our normal reaction conditions (Table 2.4. entry 3). Attempts to crystallize complex $Cu(Ph-PvBox)_2PF_6$ (2-113) repeatedly gave the higher order complex of $Cu_2(Ph-PvBox)_2PF_6$ $PyBox_{3}(PF_{6})_{2}$ ·H₂O (Figure 2.4). There is no crystal structure reported in literature for complex $Cu(Ph-PyBox)_2PF_6$ (2-113) but it is mentioned that attempts to crystallize it always resulted in Cu₂(Ph-PyBox)₂(PF₆)₂ (2-112).^{60,61} This suggests that in solution there could be an aggregate of various higher order copper Ph-PyBox complex.

Consistent with the presence of higher order copper/Ph-PyBox species, a positive nonlinear correlation is observed between the ee of Ph-PyBox and ee of product (Fig. 2.5).⁶² Although this data does not exclude the possibility that these higher order copper species may exist in an off-cycle reservoir, we currently favor a dicopper acetylide intermediate, given their importance in other copper acetylide chemistry. Due to the multiple possible catalyst structures, we cannot yet propose a detailed rationale for the observed stereochemistry. However, we hypothesize that the role of the phenyl substituents on (*R*)-Ph-PyBox is largely steric in nature, because (*R*)-*t*-Bu-PyBox results in the same major enantiomer (Table 2.2).

Figure 2.3 : Possible Active Catalyst Structures

Scheme 2.15: Synthesis of Copper Ph-PyBox Complexes

Table 2-4: Reactivity of Copper Ph-PyBox Complexes

Figure 2.4 : Crystal Structure of Cu₂(Ph-PyBox)₃(PF₆)₂·H₂O. Molecular diagram of Figure 2.5 with ellipsoids at 30% probability. H-atoms omitted for clarity.

2.4 Tetrasubstituted Stereocenters on Chromene Ketals

Alkynylation of 2-methoxy-2-methylchroman

I have also investigated alkynylation of chroman ketals. The preparation of ketal **2-114** was achieved in quantitative yield by cyclization of 4-(2-hydroxyphenyl) butan-2-one under catalytic amount of acid in methanol. After subjecting ketal 2-114 to phenyl acetylene with various copper and zinc salts and Lewis acids like TMSOTf and BF₃.Et₂O, alkynylation was observed to give the desired product in low yields (Scheme 2.16). Investigation of other bases, solvents and varying parameters like temperature and equivalents of reagents, did not improve the yield. A variety of commercially available chiral ligands have also been tested under the current conditions, but no enantioselectivity was observed. We hypothesize three factors leading to less reactivity here: a). the oxocarbenium generated is not very stabilized here making it difficult to form b). there could be prominent steric hindrance at the oxocarbenium due to the methyl group and c). this oxocarbenium ion can undergo elimination reactions. To overcome these challenges, we modified the design of our substrate and continued working on more stable chromene ketals like 2-111 (Scheme 2.16).

Scheme 2.16: Alkynylation of 2-methoxy-2-methylchroman

ZnBr₂, 18%

2.5 Summary

In summary, I have developed the first example of an enantioselective addition of alkynes to a cyclic oxocarbenium ion to set α , α – *diaryl* tetrasubstituted stereocenters. The success of this reaction relied on identification of a Cu/Ph-PyBox catalyst, along with CHCl₃ as solvent, BF₃·OEt₂ as Lewis acid, and MTBD as base. Under the optimized conditions, a variety of ketals and alkynes underwent the reaction in good to excellent yields and enantioselectivites. We have recently published this work in *Angewandte Chemie Internationl Edition*, ASAP.

2.6 Experimental Procedures

General Information

Reactions were performed either in a N₂-atmosphere glovebox in oven-dried 1dram vials with Teflon-lined caps or in oven-dried round-bottomed flasks unless otherwise noted. Flasks were fitted with rubber septa, and reactions were conducted under a positive pressure of N₂. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed on silica gel 60 (40-63µm, 60Å). Thin layer chromatography (TLC) was performed on glass plates coated with silica gel 60 with F254 indicator. Commercial reagents were purchased from Sigma Aldrich, Acros, Fisher, Strem, or Cambridge Isotopes Laboratories and used as received with the following exceptions: tetrahydrofuran, CH₂Cl₂, and Et₂O were dried by passing through drying columns.⁶³ MeOH was

distilled from CaH₂. CHCl₃, MTBD, and BF₃·OEt₂ were purchased in sure-seal bottles, immediately transferred to a N₂-atmosphere glovebox upon receipt, and used as such. CDCl₃ was stored over oven-dried potassium carbonate. Alkynes were degassed before use by either freeze-pump-thaw cycles or sparging with N₂. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on 400 MHz spectrometers. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃ = δ 77.07). Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), integration. Infrared (IR) spectra were obtained using FTIR spectrophotometers with material loaded onto a NaCl plate. The mass spectral data were obtained at the University of Delaware spectrometry facility. Optical rotations were measured using a 2.5 mL cell with a 0.1 dm path length. Isochromanone,⁶⁴ 6-methylisochromanone,⁶⁵ and 7-methylisochromanone⁶⁶ were prepared as described in the literature. 3and methyl 3-ethynylbenzoate⁶⁷ were prepared as (Cyano)phenylacetylene⁶⁶ described in the literature.

General Procedure 1: Preparation of 1-Methoxy-1-phenylisochroman (2-48).
A solution of isochroman-1-one (2.29 g, 15.5 mmol, 1.0 equiv) and THF (30 mL) was cooled to -78 °C. PhLi (2.0 M in dibutyl ether, 9.3 mL, 18.6 mmol, 1.2 equiv) was added dropwise, and the reaction was stirred at -78 °C for 5 h. H₂O (40 mL) was then added, and the mixture was warmed to room temperature. CH₂Cl₂ (40 mL) was added. The aqueous layer was separated and extracted with CH₂Cl₂ (30 mL x 2). The combined organic layers were washed with sat. NaCl (30 mL), dried (Na₂SO₄), filtered and concentrated. The resulting pale yellow oil was purified by silica gel chromatography (20% EtOAc/hexanes) to give hemiketal 2-31 as an oil, which was directly used in the next step.

MeOH (20 mL) and *p*-TsOH (147.4 mg, 0.78 mmol, 0.05 equiv) were added to hemiketal **2-31**. The mixture was then stirred at room temperature for 12 h. K₂CO₃ (1.06 g, 7.7 mmol, 0.5 equiv) was added, and the mixture was concentrated. CH₂Cl₂ (40 mL) was added to the resulting solid, and the mixture was filtered through a short bed of Celite. The filtrate was then concentrated. The crude material was then purified by silica gel chromatography (5% Et₂O/hexanes with 2% Et₃N) to give compound **2-48** (3.01g, 81%) as a white solid (mp 55–59 °C): ¹H NMR (400 MHz, C₆D₆) δ 7.71 (d, *J* = 7.1 Hz, 2H), 7.37 – 7.35 (m, 1H), 7.20 – 7.18 (m, 2H), 7.09 – 7.06 (m, 1H), 6.96 – 6.88 (m, 2H), 6.84 – 6.82 (m, 1H), 3.96 (dt, *J* = 11.01, 3.48 Hz, 1H), 3.78 – 3.73 (m, 1H), 3.26 (s, 3H), 2.86 – 2.77 (m, 1H), 2.27 (dt, *J* = 16.11, 3.11 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 137.5, 133.3, 128.5, 128.3, 128.1, 127.9, 127.5, 127.1, 126.6, 100.7, 59.6, 50.3, 28.6; FTIR (NaCl, thin film) 1489, 1448, 1205, 1120, 1052, 1007, 764, 703 cm⁻¹; LRMS (EI+) [M+] calculated for C₁₆H₁₆O₂: 240.1, found: 240.1.

1-Methoxy-1-(p-tolyl)isochroman (2-32). Prepared via General Procedure 1 on a 1.4-mmol scale. The crude product was purified by silica gel chromatography (5% Et₂O/hexanes with 2% Et₃N) to give compound 2-32 (0.166 g, 47%) as a white solid (mp 81-84

1-Methoxy-1-(m-tolyl)isochroman (2-33). Prepared via General

°C): ¹H NMR (400 MHz, C₆D₆) δ 7.67 (d, J = 8.1 Hz, 2H), 7.46 – 7.37 (m, 1H), 7.03 $(d, J = 7.9 \text{ Hz}, 2\text{H}), 6.99 - 6.90 \text{ (m, 2H)}, 6.89 - 6.81 \text{ (m, 1H)}, 4.03 - 3.97 \text{ (m, 2H)}, 4.03 - 3.97 \text{ ($ 3.82 - 3.77 (m, 1H), 3.31 (s, 3H), 2.89 - 2.81 (m, 1H), 2.33 - 2.28 (m, Hz, 1H), 2.09 (s, 3H); ¹³C NMR (101 MHz, C₆D₆) δ 140.1, 138.7, 137.5, 133.9, 129.14, 129.05 128.6, 127.8, 127.5, 126.5, 101.2, 59.6, 50.0, 28.9, 21.1; FTIR (NaCl, thin film) 2937, 2361, 1518, 1480, 1452, 1179, 1052, 1009 cm⁻¹; LRMS (EI+) [M+] calculated for C₁₇H₁₈O₂: 254.1, found: 254.1.

Procedure 1 on a 2.0-mmol scale. The crude product was purified оМе by silica gel chromatography (5% Et₂O/hexanes with 2% Et₃N) to give compound 2-33 (0.337 g, 66%) as colorless oil: ¹H NMR (400 MHz, C₆D₆) δ 7.65 (s, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.47 – 7.42 (m, 1H), 7.15 (d, J = 4.1 Hz, 1H), 6.95 - 6.93 (m, 3H), 6.88 - 6.83 (m, 1H), 4.05 - 3.95 (m, 1H), 3.84 - 3.77 (m, 1H), 3.31 (s, 3H), 2.92 – 2.81 (m, 1H), 2.33 – 2.25 (m, 1H), 2.11 (s, 3H); ¹³C NMR (101 MHz, C₆D₆) δ 142.5, 138.2, 137.6, 133.5, 128.7, 128.5, 128.3, 128.2, 127.6, 127.1, 126.2, 124.6, 100.9, 59.2, 49.7, 28.5, 21.2; FTIR (NaCl, thin film) 2937, 1268, 1229,

1169, 1120 1084, 1053 cm⁻¹; LRMS (EI+) [M+] calculated for $C_{17}H_{18}O_2$: 254.1, found: 254.1.

1-Methoxy-1-(*o***-tolyl)isochroman (2-34).** Prepared via General Procedure 1 on a 2.0-mmol scale. The crude product was purified by silica gel chromatography (5% Et₂O/hexanes with 2% Et₃N) to give compound **2-34** (0.292 g, 57%) as colorless oil: ¹H NMR (400 MHz, C₆D₆) δ 7.73 (dd, J = 7.7, 1.5 Hz, 1H), 7.18 (s, 1H), 7.14 – 7.08 (m, 2H) 7.04 (d, J = 7.2 Hz, 1H), 7.02 – 6.92 (m, 1H), 6.90 – 6.83 (m, 2H), 3.99 – 3.90 (m, 1H), 3.74 – 3.67 (m, 1H), 3.30 (s, 3H), 2.90 – 2.79 (m, 1H), 2.33 (s, 3H), 2.31 – 2.24 (m, 1H); ¹³C NMR (101 MHz, C(O)(CD₃)₂) δ 140.2, 138.4, 138.0, 134.7, 133.1, 128.93, 128.91, 128.7, 128.3, 128.2, 126.8, 125.8, 102.1, 60.1, 50.3, 28.4, 21.5; FTIR (NaCl, thin film) 2937, 1486, 1453, 1287, 1202 1119, 1068 cm⁻¹; LRMS (EI+) [M+] calculated for C₁₇H₁₈O₂: 254.1, found: 254.1.

1-Methoxy-1-(3-methoxyphenyl)isochroman (2-35). Prepared via General Procedure 1 on a 11.5-mmol scale. The crude

product was purified by silica gel chromatography (10% Et₂O/hexanes with 2% Et₃N) to give compound **2-35** (1.9 g, 61%) as a white solid (mp 70–73 °C): ¹H NMR (400 MHz, C₆D₆) δ 7.55 – 7.42 (m, 2H), 7.36 (d, 1H), 7.14 (d, J = 7.9 Hz, 1H), 7.02 – 6.88 (m, 2H), 6.89 – 6.82 (m, 1H), 6.74 – 6.72 (m, 1H), 4.01 – 3.94 (m, 1H), 3.80 – 3.76 (m, 1H), 3.30 (s, 3H), 3.29 (s, 3H), 2.93 – 2.71 (m, 1H), 2.30 – 2.25 (m, 1H); ¹³C NMR (101 MHz, C₆D₆) δ 160.4, 144.6, 138.3, 133.9, 129.3, 128.9, 128.6, 127.5, 126.6, 120.2, 113.7, 113.6, 101.1, 59.6, 54.7, 50.1, 28.8; FTIR

(NaCl, thin film) 2937, 2830, 1599, 1486, 1452, 1268, 1072, 1051 cm⁻¹; LRMS (EI+) [M+] calculated for C₁₇H₁₈O₃: 270.1, found: 270.1.

I-Methoxy-1-(3-(methylthio)phenyl)isochroman(2-36).MeSPrepared via General Procedure 1 on a 1.7-mmol scale. The
crude product was purified by silica gel chromatography (10%Et2O/hexanes with 2% Et3N) to give compound 2-30 (0.326 g, 68%) as a white solid
(mp 73–76 °C): ¹H NMR (400 MHz, C₆D₆) δ 7.86 (s, 1H), 7.49 – 7.44 (m, 1H), 7.42 –
7.37 (m, 1H), 7.09 – 7.01 (m, 2H), 6.97 – 6.87 (m, 2H), 6.82 (d, J = 7.3 Hz, 1H), 3.94
– 3.91 (m, 1H), 3.76 – 3.72 (m, 1H), 3.25 (s, 3H), 2.85 – 2.71 (m, 1H), 2.28 – 2.22 (m,
1H), 1.97 (s, 3H); ¹³C NMR (101 MHz, C₆D₆) δ 143.7, 139.4, 138.1, 133.9, 128.90,
128.87, 128.7, 127.6, 126.7, 126.2, 125.9, 124.5, 101.0, 59.7, 50.1, 28.8, 15.4; FTIR
(NaCl, thin film) 2937, 2827, 1589, 1453, 1259, 1205, 1106 cm⁻¹; LRMS (EI+) [M+]
calculated for C₁₇H₁₈O₂S: 286.1, found: 286.1.

3-(1-Methoxyisochroman-1-yl)*N,N***-dimethylaniline (2-37).** Prepared via General Procedure 1 on a 2.7-mmol scale. The

crude product was purified by silica gel chromatography (10% Et₂O/hexanes with 2% Et₃N) to give compound **2-37** (0.541 g, 71%) as a white solid (mp 89–93 °C): ¹H NMR (400 MHz, C₆D₆) δ 7.64 – 7.57 (m, 1H), 7.31 – 7.30 (m, 1H), 7.25 (d, *J* = 5.05 Hz, 2H), 6.99 – 6.92 (m, 2H), 6.90 – 6.84 (m, 1H), 6.57 (m, 1H), 4.08 – 4.02 (m, 1H), 3.88 – 3.83 (m, 1H), 3.38 (s, 3H), 2.95 – 2.87 (m, 1H), 2.52 (s, 6H), 2.35 – 2.29 (m, 1H); ¹³C NMR (101 MHz, C₆D₆) δ 151.1, 143.5, 138.9, 133.9,

129.0, 128.7, 128.6, 127.5, 126.5, 116.5, 112.6, 112.2, 101.6, 59.6, 50.2, 40.3, 28.9; FTIR (NaCl, thin film) 3418, 2880, 2807, 1660, 1599, 1573, 1496, 1435 cm⁻¹; LRMS (EI+) [M+] calculated for C₁₈H₂₁NO₂: 283.2, found: 283.2.

1-Methoxy-1-(3-vinylphenyl)isochroman (2-38). Prepared via General Procedure 1 on a 2.0-mmol scale. The crude product was purified by silica gel chromatography (5% Et₂O/hexanes with 2%

Et₃N) to give compound **2-38** (0.224 g, 42%) as a white solid (mp 44–48 °C): ¹H NMR (400 MHz, C₆D₆) δ 7.92 (s, 1H), 7.61 (dt, J = 7.9, 1.3 Hz, 1H), 7.39 (dd, J = 7.36, 1.10 Hz, 1H), 7.20 - 7.11 (m, 2H), 6.96 - 6.89 (m, 2H), 6.84 - 6.82 (m, 1H), 6.60 (dd, J = 17.47, 6.68 Hz, 1H), 5.95 (dt, J = 10.89, 3.44 Hz, 1H), 5.63 (dd, J = 17.58, 0.68 Hz, 1H), 5.04 (dd, J = 10.86, 0.55 Hz, 1H), 3.79 - 3.74 (m, 1H), 3.26 (s, 3H), 2.86 - 2.78 (m, 1H), 2.27 (dt, J = 16.27, 3.13 Hz, 1H); ¹³C NMR (101 MHz, C₆D₆) δ 142.9, 137.9, 137.7, 137.1, 133.6, 128.6, 128.32, 128.29 127.6, 127.2, 127.1, 126.3, 125.6, 113.6, 100.8, 59.25, 49.69, 28.5; FTIR (NaCl, thin film) 2938, 2884, 1665, 1489, 1453, 1286, 1167, 1093 cm⁻¹; LRMS (EI+) [M+] calculated for C₁₈H₁₈O₂: 266.1, found: 266.1.

1-Methoxy-1-(3-(trifluoromethyl)phenyl)isochroman (2-39).

Prepared General Procedure 1 on a 2.0-mmol scale. The crude

product was purified by silica gel chromatography (5%

Et₂O/hexanes with 2% Et₃N) to give compound **2-39** (0.341 g, 55%) as a white solid (mp 56–60 °C): ¹H NMR (400 MHz, C₆D₆) δ 8.20 (s, 1H), 7.66 (d, *J* = 7.9 Hz, 1H),

7.28 (d, J = 7.8 Hz, 1H), 7.23 – 7.21 (m, 1H), 7.00 – 6.82 (m, 3H), 6.78 (d, J = 7.1 Hz, 1H), 3.87 – 3.81 (m, 1H), 3.69 – 3.64 (m, 1H), 3.12 (s, 3H), 2.75 – 2.66 (m, 1H), 2.21 – 2.16 (m, 1H); ¹³C NMR (101 MHz, C₆D₆) δ 143.9, 136.9, 133.6, 130.7, 130.5 (q, J_{C} . F = 32.9 Hz), 128.6, 128.4, 128.3, 127.0, 126.4, 124.7 (q, $J_{C-F} = 272.5$ Hz), 124.6 (q, $J_{C-F} = 3.7$ Hz), 124.1 (q, $J_{C-F} = 3.9$ Hz), 100.2, 59.4, 49.6, 28.3; FTIR (NaCl, thin film) 2940, 1489, 1439, 1332, 1200, 1197, 1165 cm⁻¹; LRMS (EI+) [M+] calculated for C₁₇H₁₅O₂F₃: 308.1, found: 308.1.

1-(3,5-Dimethoxyphenyl)-1-methoxyisochroman(2-40).Prepared via General Procedure 1 on a 2.9-mmol scale. Thecrude product was purified by silica gel chromatography (10%)

Et₂O/hexanes with 2% Et₃N) to give compound 2-40 (0.358 g,

42%) as a white solid (mp 115–118 °C): ¹H NMR (400 MHz, C₆D₆) δ 7.58 – 7.56 (m, 1H), 7.14 (d, *J* = 2.3 Hz, 2H), 6.98 – 6.92 (m, 2H), 6.86 – 6.84 (m, 1H), 6.53 (t, *J* = 2.3 Hz, 1H), 4.00 – 3.96 (m, 1H), 3.83 – 3.78 (m, 1H), 3.33 (s, 3H), 3.31 (s, 6H), 2.88 – 2.81 (m, 1H), 2.31 – 2.25 (m, 1H); ¹³C NMR (101 MHz, C₆D₆) δ 161.5, 145.3, 138.3, 133.9, 128.8, 128.6, 127.6, 126.6, 106.2, 101.3, 100.3, 59.6, 54.8, 50.2, 28.8; FTIR (NaCl, thin film) 2938, 2834, 1596, 1457, 1425, 1321, 1293, 1204 cm⁻¹; LRMS (EI+) [M+] calculated for C₁₈H₂₀O₄: 300.1, found: 300.1.

1-(Benzo[d][1,3]dioxol-5-yl)-1-methoxyisochroman (2-41).

Prepared via General Procedure 1 on a 2.1-mmol scale. The crude product was purified by silica gel chromatography (5% Et₂O/hexanes with 2% Et₃N) to give compound **2-41** (0.204 g, 35%) as a white solid (mp 82–86 °C): ¹H NMR (400 MHz, C₆D₆) δ 7.41 – 7.38 (m, 1H), 7.36 (d, *J* = 1.8 Hz, 1H), 7.15 – 7.10 (m, 1H), 7.00 – 6.94 (m, 2H), 6.84 – 6.82 (m, 1H), 6.66 (d, *J* = 8.1 Hz, 1H), 5.27 (d, *J* = 1.28 Hz, 1H), 5.25 (d, *J* = 1.28 Hz, 1H), 3.95 – 3.89 (m, 1H), 3.76 – 3.71 (m, 1H), 3.26 (s, 3H), 2.79 – 2.71 (m, 1H), 2.28 – 2.22 (m, 1H); ¹³C NMR (101 MHz, C₆D₆) δ 148.4, 147.8, 138.5, 137.2, 133.9, 128.9, 128.6, 127.5, 126.6, 121.2, 108.6, 107.9, 101.1, 101.0, 59.7, 49.9, 28.8; FTIR (NaCl, thin film) 2938, 2834, 1596, 1457, 1425, 1204, 1153 cm⁻¹; LRMS (EI+) [M+] calculated for C₁₇H₁₆O₄: 284.1, found: 284.1.

1-Methoxy-1-(naphthalen-1-yl)isochroman (2-42). Prepared via General Procedure 1 on a 2.0-mmol scale. The crude product was purified by silica gel chromatography (5% Et₂O/hexanes with 2% Et₃N) to give compound **2-42** (0.369 g, 63%) as a white solid (mp

91–94 °C): ¹H NMR (400 MHz, C₆D₆) δ 9.00 (d, J = 8.64, 1.3 Hz, 1H), 7.70 (dd, J = 7.3, 1.3 Hz, 1H), 7.65 – 7.58 (m, 2H), 7.36 – 7.27 (m, 2H), 7.26 – 7.18 (m, 2H), 6.97 – 6.95 (m, 1H), 6.89 (d, J = 7.1, 1.4 Hz, 1H), 6.85 – 6.81 (m, 1H), 3.99 – 3.95 (m, 1H), 3.76 – 3.71 (m, 1H), 3.36 (s, 3H), 2.89 – 2.77 (m, 1H), 2.52 – 2.46 (m, 1H); ¹³C NMR (101 MHz, C(O)(CD₃)₂) δ 138.5, 137.7, 135.8, 134.5, 132.2, 130.2, 129.4, 129.2, 128.5, 128.4, 128.0, 126.9, 126.8, 126.1, 126.0, 125.2, 103.0, 60.5, 50.6, 28.5; FTIR (NaCl, thin film) 3050, 2938, 2885, 2829, 1408, 1452, 1241, 1174 cm⁻¹; LRMS (EI+) [M+] calculated for C₂₀H₁₈O₂: 290.1, found: 290.1.

1-Methoxy-1-(naphthalen-2-yl)isochroman (2-43). Prepared via General Procedure 1 on a 2.0-mmol scale. The crude product was purified by silica gel chromatography (5% Et₂O/hexanes with 2% Et₃N) to give compound 2-43 (0.362 g, 62%) as a white

solid (mp 113–116 °C): ¹H NMR (400 MHz, C_6D_6) δ 8.22 (s, 1H), 7.91 (dd, J = 8.7, 1.7 Hz, 1H), 7.66 (d, J = 8.8 Hz, 2H), 7.63 – 7.57 (m, 1H), 7.47 – 7.45 (m, 1H), 7.28 – 7.19 (m, 2H), 7.01 – 6.90 (m, 2H), 6.87 (d, J = 7.2 Hz, 1H), 4.05 – 3.99 (m, 1H), 3.85 - 3.80 (m, 1H), 3.34 (s, 3H), 2.93 - 2.82 (m, 1H), 2.37 - 2.31 (m, 1H); ¹³C NMR (101 MHz, C₆D₆) δ 140.1, 137.9, 133.8, 133.31, 133.28, 128.8, 128.5, 128.3, 128.0, 127.6, 127.3, 126.6, 126.3, 126.0, 125.9, 125.6, 101.0, 59.4, 49.8, 28.5; FTIR (NaCl, thin film) 3058, 2937, 2884, 2828, 1489, 1452, 1177 cm⁻¹; LRMS (EI+) [M+] calculated for C₂₀H₁₈O₂: 290.1, found: 290.1.

1-(Benzo[b]thiophen-6-yl)-1-methoxyisochroman (2-44).

Prepared via General Procedure 1 on a 1.7-mmol scale. The crude product was purified by silica gel chromatography (10% Et₂O/hexanes with 2% Et₃N) to give compound 2-44 (0.314 g, 63%) as a white solid (mp 82–86 °C): ¹H NMR (400 MHz, C₆D₆) δ 8.37 (s, 1H), 7.89 – 7.87 (m, 1H), 7.69 (d, J = 8.26 Hz, 1H), 7.51 (d, J = 8.26 Hz, 1H), 7.08 - 7.01 (m, 4H), 6.97 (d, J = 7.34 H), 7.08 - 7.01 (m, 4H), 7.08 - 7.01Hz, 1H), 4.12 - 4.08 (m, 1H), 3.92 - 3.89 (m, 1H), 3.39 (s, 3H), 2.91 - 2.92 (m, 1H), 2.44 - 2.41 (m, 1H); ¹³C NMR (101 MHz, C₆D₆) δ 140.8, 140.2, 140.0, 138.9, 134.4, 129.6, 129.2, 128.1, 127.6, 127.2, 124.9, 124.3, 124.1, 122.3, 101.9, 60.3, 50.6, 29.4;

FTIR (NaCl, thin film) 3629, 2186, 1198, 1071, 1052, 1009, 967, 825 cm⁻¹; LRMS (EI+) [M+] calculated for C₁₈H₁₆O₂S: 296.1, found: 296.1.

1-Methoxy-1-(3-methoxyphenyl)-6-methylisochroman (245). Prepared via General Procedure 1 on a 1.7-mmol scale.
The crude product was purified by silica gel chromatography

(5% Et₂O/hexanes with 2% Et₃N) to give compound **2-45** (0.189 g, 39%) as colorless oil: ¹H NMR (400 MHz, C₆D₆) δ 7.65 – 7.64 (m, 1H), 7.51 (d, *J* = 8.25 Hz, 2H), 7.25 (s, 1H), 6.89 – 6.85 (m, 2H), 6.77 (s, 1H), 4.17 – 4.10 (m, 1H), 3.97 – 3.92 (m, 1H), 3.45 (s, 3H), 3.42 (s, 3H), 2.99 – 2.91 (m, 1H), 2.45 – 2.40 (m, 1H), 2.15 (s, 3H); ¹³C NMR (101 MHz, C₆D₆) δ 160.4, 144.9, 136.9, 135.6, 133.8, 129.3, 129.1, 128.9, 127.5, 120.8, 113.7, 113.6, 101.3, 59.7, 54.7, 50.2, 28.9, 20.9; FTIR (NaCl, thin film) 2938, 1601, 1484, 1430, 1287, 1237, 1134 cm⁻¹; LRMS (EI+) [M+] calculated for C₁₈H₂₀O₃: 284.1, found: 284.1.

1-Methoxy-1-(3-methoxyphenyl)-7-methylisochroman (2-46). Prepared via General Procedure 1 on a 2.2-mmol scale.

The crude product was purified by silica gel chromatography

(10% Et₂O/hexanes with 2% Et₃N) to give compound **2-46** (0.392 g, 62%) as colorless oil: ¹H NMR (400 MHz, C₆D₆) δ 7.53 – 7.52 (m, 1H), 7.39 (d, *J* = 7.9 Hz, 1H), 7.33 (s, 1H), 7.16 – 7.13 (m, 1H), 6.81 (d, *J* = 0.49 Hz, 2H), 6.72 – 6.69 (m, 1H), 3.98 (dt, *J* = 10.82, 3.61 Hz, 1H), 3.83 – 3.78 (m, 1H), 3.32 (s, 3H), 3.29 (s, 3H), 2.88 – 2.80 (m,

1H), 2.31 (dt, J = 16.08, 6.0, 2.95 Hz, 1H), 1.93 (s, 3H); ¹³C NMR (101 MHz, C₆D₆) δ 160.0, 148.4, 144.4, 137.8, 135.6, 130.6, 128.9, 128.2, 128.19, 119.8, 113.5, 113.1, 100.9, 59.5, 54.4, 49.8, 28.2, 20.8; FTIR (NaCl, thin film) 2938, 1600, 1484, 1431, 1287, 1268, 1072, 1051 cm⁻¹; LRMS (EI+) [M+] calculated for C₁₈H₂₀O₃: 284.1, found: 284.1.

Enantioselective Alkynylation of Ketals

Racemic products were obtained using catalytic CuSPh, MTBD and $BF_3 \cdot OEt_2$ in CHCl₃ at room temperature.

General Procedure 2: Enantioselective Alkynylation

In a N₂-atmosphere glovebox, CuSPh (3.45 mg, 0.02 mmol, 10 mol %) was weighed into a 2-dram vial. 2,6-Bis((*R*)-4-phenyl-4,5-dihydrooxazol-2-yl)pyridine (Ph-PyBox, **2-56**, 8.87 mg, 0.024 mmol, 12 mol %) and CHCl₃ (1.33 mL, 0.15 M) were added. The vial was capped with a septum-lined piercable cap. The mixture was stirred for 30 min at room temperature. Then alkyne (0.24 mmol, 1.2 equiv), MTBD (1-methyl-2,3,4,6,7,8-hexahydro-1*H*-pyrimido[1,2-*a*]pyrimidine, 45 μ L, 0.31 mmol, 1.55 equiv), and ketal **2** (0.2 mmol, 1.0 equiv) were added. The vial was again sealed with a septum-lined piercable cap, removed from the glovebox, and cooled to 0 °C. After 10 min, BF₃·OEt₂ (51 μ L, 0.40 mmol, 2.0 equiv) was added via syringe, and the mixture was stirred for 48 h at 4 °C. The reaction mixture was then diluted with Et₂O (2 mL) and filtered through a plug of silica gel, which was then washed with more Et_2O (10 mL). The filtrate was concentrated and purified by silica gel chromatography.

(*S*)-1-phenyl-1-(phenylethynyl)isochroman (2-48). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (0–1% CH₂Cl₂/PhMe) to give compound 2-48 (run 1: 56.5 mg, 91%; run 2: 57.6 mg, 93%) as colorless oil. The enantiomeric excess was determined to be 78% (run 1: 79% ee; run 2: 77% ee) by chiral HPLC analysis (CHIRALPAK IB 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); t_R (major) = 7.65 min, t_R (minor) = 6.11 min. [α]_D²⁴ = 28.25° (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.05 – 7.68 (m, 2H), 7.54 – 7.52 (m, 2H), 7.40 – 7.32 (m, 6H), 7.24-7.18 (m, 2H), 7.14 (dt, *J* = 6.43, 1.87 Hz, 1H), 7.05 (d, *J* = 7.79 Hz, 1H), 4.46 (dt, *J* = 11.16, 3.56 Hz, 1H), 4.23 – 4.18 (m, 1H), 3.30 – 3.20 (m, 1H), 2.85 (dt, *J* = 16.38, 2.92 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 139.2, 133.0, 131.9, 128.9, 128.6, 128.40, 128.35, 128.32, 128.27, 127.9, 127.1, 126.4, 122.7, 90.4, 88.7, 77.8, 61.9, 28.7; FTIR (NaCl, thin film) 3060, 3024, 2929, 2869, 1598, 1489, 1448, 1280, 1088, 1061, 752, 693 cm⁻¹ ¹; HRMS (EI+) [M+] calculated for C₂₃H₁₈O₃: 310.1358, found: 310.1361.

(*S*)-1-(phenylethynyl)-1-(*p*-tolyl)isochroman (2-62). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (0–1% CH₂Cl₂/PhMe) to give compound 2-

62 (run 1: 47.9 mg, 67%; run 2: 45.3 mg, 64%) as colorless oil. The enantiomeric

excess was determined to be 70% (run 1: 71% ee; run 2: 69% ee) by chiral HPLC analysis (CHIRALPAK IB 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 7.31 min, $t_{\rm R}$ (minor) = 6.17 min. [α]_D²⁴ = 26.25° (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.46 (m, 4H), 7.36 – 7.29 (m, 3H), 7.23 – 7.10 (m, 5H), 7.05 (d, J = 7.7 Hz, 1H), 4.47 – 4.37 (m, 1H), 4.21 – 4.13 (m, 1H), 3.29 – 3.17 (m, 1H), 2.88 – 2.79 (m, 1H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 139.3, 138.1, 133.1, 131.9, 128.95, 128.87, 128.6, 128.4, 128.3, 127.9, 127.1, 126.4, 122.8, 90.6, 88.4, 77.6, 61.9, 28.7, 21.3; FTIR (NaCl, thin film) 3024, 2927, 1598, 1510, 1489, 1280, 1180 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₄H₂₀O; 324.1514, found: 324.1540.

(S)-1-(phenylethynyl)-1-(*m*-tolyl)isochroman (2-63).

Me Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (3–5% Et₂O/hexanes) to give

compound **2-63** (run 1: 61.2 mg, 94%; run 2: 60.8 mg, 94%) as colorless oil. The enantiomeric excess was determined to be 87% (run 1: 86% ee; run 2: 88% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 7.00 min, $t_{\rm R}$ (minor) = 6.11 min. [α]_D²⁴ = -27.9° (c 2.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, J = 6.7, 3.1 Hz, 2H), 7.42 – 7.37 (m, 1H), 7.25 (d, J = 4.0 Hz, 2H), 7.21 – 7.14 (m, 2H), 7.14 – 7.02 (m, 5H), 6.98 (dd, J = 7.7, 1.4 Hz, 1H), 4.37 (td, J = 11.2, 3.5 Hz, 1H), 4.12 – 4.09 (m, 1H), 3.24 – 3.09 (m, 1H), 2.76 (dd, J = 16.4, 3.0 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 139.3, 137.9, 132.9, 131.9, 129.1, 128.9, 128.6, 128.5, 128.4, 128.3, 128.1, 127.0, 126.4, 125.1,

122.8, 90.5, 88.6, 77.8, 62.0, 28.7, 21.7; FTIR (NaCl, thin film) 3022, 2923, 2867, 1605, 1489, 1462, 1427 cm⁻¹; HRMS (EI+) [M+] calculated for $C_{24}H_{20}O$; 324.1514, found: 324.1501.

(*R*)-1-(phenylethynyl)-1-(*o*-tolyl)isochroman (2-64). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (0-4% CH₂Cl₂/PhMe) to give compound 2-64 Me Ph (run 1: 50.8 mg, 71%; run 2: 45.0 mg, 63%) as colorless oil. The enantiomeric excess was determined to be 36% (run 1: 35% ee; run 2: 36% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 8.23 min, $t_{\rm R}({\rm minor}) = 5.77 {\rm min.} [\alpha]_{\rm D}^{24} = -16.1^{\circ} (c 1.8, {\rm CHCl}_3); {}^{1}{\rm H} {\rm NMR} (400 {\rm MHz}, {\rm CDCl}_3) \delta$ 8.19 - 8.14 (m, 1H), 7.55 - 7.48 (m, 2H), 7.37 - 7.30 (m, 3H), 7.28 (d, J = 4.8 Hz, 2H), 7.24 - 7.12 (m, 3H), 7.10 (dd, J = 7.2, 1.7 Hz, 1H), 6.95 (d, J = 7.8 Hz, 1H), 4.63-4.52 (m, 1H), 4.27 - 4.19 (m, 1H), 3.33 - 3.18 (m, 1H), 2.86 (d, J = 16.3 Hz, 1H), 2.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.1, 139.0, 137.7, 132.9, 132.6, 131.8, 129.5, 128.64, 128.58, 128.56, 128.4, 127.2, 126.9, 126.6, 125.3, 122.9, 90.6, 90.5, 78.9, 61.9, 28.1, 20.6; FTIR (NaCl, thin film) 3061, 3020, 2964, 2930, 2870, 2360, 1599, 1489 cm⁻¹; HRMS (EI+) [M+] calculated for $C_{24}H_{20}O$; 324.1514, found: 324.1539.

(S)-1-(3-methoxyphenyl)-1-(phenylethynyl)isochroman (2-

65). Prepared via General Procedure 2. Crude material was

purified by silica gel chromatography (PhMe) to give compound **2-65** (run 1: 61.4 mg, 90%; run 2: 54.8 mg, 81%) as colorless oil. The enantiomeric excess was determined to be 96% (run 1: 96% ee; run 2: 95% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); t_R (major) = 9.37 min, t_R (minor) = 7.66 min. [α]_D²⁴ = -44.1° (c 2.2, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.52 – 7.47 (m, 2H), 7.32 – 7.30 (m, 3H), 7.28 (d, *J* = 7.9 Hz, 1H), 7.25 (d, *J* = 1.7 Hz, 1H), 7.25 – 7.14 (m, 3H), 7.12 (t, *J* = 7.4 Hz, 1H), 7.07 (d, *J* = 7.8 Hz, 1H), 6.86 – 6.85 (m, 1H), 4.43 – 4.39 (m, 1H), 4.19 – 4.16 (m, 1H), 3.80 (s, 3H), 3.25 – 3.19 (m, 1H), 2.84 – 2.82 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 145.4, 138.9, 132.9, 131.9, 129.3, 128.9, 128.6, 128.4, 128.3, 127.1, 126.5, 122.7, 120.4, 114.0, 113.5, 90.37, 88.5, 77.7, 61.9, 55.4, 28.7; FTIR (NaCl, thin film) 2935, 2361, 2339, 1599, 1488, 1451, 1289, 1083 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₄H₂₀O₂; 340.1463, found: 340.1451.

(S)-1-(3-(methylthio)phenyl)-1-

(m, 1H), 7.04 (d, J = 7.7 Hz, 1H), 4.49 – 4.39 (m, 1H), 4.23 – 4.15 (m, 1H), 3.30 – 3.18 (m, 1H), 2.89 – 2.78 (m, 1H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 138.8, 138.4, 132.9, 131.8, 128.9, 128.7, 128.6 128.3, 128.25, 127.1, 126.4, 126.3, 126.0, 124.8, 122.6, 90.1, 88.8, 77.7, 62.0, 28.6, 15.9; FTIR (NaCl, thin film) 2921, 2868, 2220, 1589, 1489, 1442, 1263 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₄H₂₀OS; 356.1235, found: 356.1240.

(S)-N,N-dimethyl-3-(1-(*m*-

tolylethynyl)isochroman-1-yl)aniline (2-67).

e Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (0–5%

acetone/petroleum ether) to give compound **2-67** (run 1: 66.0 mg, 90%; run 2: 63.1 mg, 86%) as red oil. The enantiomeric excess was determined to be 93% (run 1: 93% ee; run 2: 93% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 9.59 min, $t_{\rm R}$ (minor) = 8.31 min. [α]_D²⁴ = -54.8° (c 1.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 9.8 Hz, 2H), 7.25 - 7.17 (m, 5H), 7.17 - 7.10 (m, 3H), 6.92 (d, J = 7.6 Hz, 1H), 6.72 (dd, J = 8.2, 2.6 Hz, 1H), 4.46 - 4.40 (m, 1H), 4.22 - 4.17 (m, 1H), 3.29 - 3.16 (m, 1H), 2.96 (s, 6H), 2.84 (d, J = 4.1 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.5, 144.6, 139.3, 137.9, 132.9, 132.4, 129.4, 129.0, 128.9, 128.8, 128.4, 128.2, 126.9, 126.3, 122.7, 116.5, 113.0, 112.5, 90.51, 88.45, 78.1, 61.9, 40.8, 28.7, 21.3; FTIR (NaCl, thin film)

3024, 2925, 2804, 1602, 1579, 1499, 1435, 1352 cm⁻¹; HRMS (;I+) [M+] calculated for C₂₆H₁₅NO; 367.1936, found: 367.1939.

Ph

Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (5–15% CH_2Cl_2 /hexanes) to give compound **2-68** (51.1 mg, 76%) as colorless oil. The

(S)-1-(phenylethynyl)-1-(3-vinylphenyl)isochroman

enantiomeric excess was determined to be 87% by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 7.14 min, $t_{\rm R}$ (minor) = 5.99 min. [α]_D²⁴ = -71.6° (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.58 – 7.50 (m, 3H), 7.43 (d, J = 2.5 Hz, 1H), 7.37 – 7.30 (m, 4H), 7.25 – 7.17 (m, 2H), 7.13 (td, J = 7.2, 6.5, 2.1 Hz, 1H), 7.08 (d, J = 1.9 Hz, 1H), 6.74 (dd, J = 17.6, 10.9 Hz, 1H), 5.76 (dd, J = 17.5, 1.0 Hz, 1H), 5.28 (d, J = 2.8, 1H), 4.46 (td, J = 11.2, 3.6 Hz, 1H), 4.26 – 4.20 (m, 1H), 3.33 – 3.18 (m, 1H), 2.85 (dt, J = 16.4, 3.0 Hz, 1H); ¹³C NMR (101 MHz, C(O)(CD₃)₂) δ 144.7, 139.3, 137.4, 136.9, 133.1, 131.5, 128.9, 128.8, 128.6, 128.3, 127.9, 127.3, 126.9, 126.3, 125.7, 125.6, 122.5, 113.6, 90.5, 88.4, 77.5, 61.5, 28.2; FTIR (NaCl, thin film) 2361, 2340, 1653, 1489, 1083, 989, 911 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₅H₂₀O; 336.1514, found: 336.1513.

(S)-1-(phenylethynyl)-1-(3-

(2-68).

(trifluoromethyl)phenyl)isochroman (2-69). Prepared via

General Procedure 2. Crude material was purified by silica gel chromatography (3% Et₂O/hexanes) to give compound **2-69** (run 1: 46.0 mg, 61%; run 2: 41.6 mg, 55%) as colorless oil. The enantiomeric excess was determined to be 79% (run 1: 78% ee; run 2: 79% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 1% *i*-PrOH/hexane, λ =254 nm); t_R (major) = 7.88 min, t_R (minor) = 5.89 min. [α]_D²⁴ = – 44.3° (c 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 7.7 Hz, 1H), 7.56 – 7.45 (m, 3H), 7.39 – 7.30 (m, 3H), 7.24 – 7.17 (m, 2H), 7.17 – 7.09 (m, 1H), 6.97 (d, *J* = 7.8 Hz, 1H), 4.54 – 4.42 (m, 1H), 4.28 – 4.17 (m, 1H), 3.35 – 3.23 (m, 1H), 2.85 (d, *J* = 4.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 138.4, 132.9, 131.9, 131.4, 130.6 (q, *J*_{C-F} = 31.9 Hz), 129.2, 128.9, 128.8, 128.4, 128.2, 127.4, 126.7, 125.3 (q, *J*_{C-F} = 3.7 Hz), 124.7 (q, *J*_{C-F} = 3.8 Hz), 124.2 (q, *J*_{C-F} = 271.9 Hz), 122.3, 89.5, 89.4, 77.5, 62.2, 28.5; FTIR (NaCl, thin film) 2931, 1599, 1490, 1443, 1330, 1261, 1166 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₄H₁₇OF₃; 378.1232, found: 378.1206.

(S)-1-(3,5-dimethoxyphenyl)-1-

(phenylethynyl)isochroman (2-70). Prepared via General Ph Procedure 2. Crude material was purified by silica gel chromatography (5–10% Et₂O/hexanes) to give compound

2-70 (run 1: 66.7 mg, 90%; run 2: 64.1 mg, 87%) as colorless oil. The enantiomeric excess was determined to be 95% (run 1: 94% ee; run 2: 95% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% EtOAc/hexane, λ =254 nm); $t_{\rm R}$ (major) =

48.72 min, $t_{\rm R}({\rm minor}) = 42.67$ min. $[\alpha]_{\rm D}^{24} = 11.5^{\circ}$ (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.38 (m, 2H), 7.22 – 7.20 (m, 3H), 7.09 – 7.08 (m, 1H), 7.06 (d, J =7.7 Hz, 1H), 7.03 - 7.02 (m, 2H), 6.75 (d, J = 2.0 Hz, 2H), 6.33 (d, J = 1.9, 1H), 4.3 (dt, J = 11.5, 3.7 Hz, 1H), 4.09 - 4.06 (m, 1H), 3.67 (s, 6H), 3.13 - 3.08 (m, 1H), 2.73 (s, 600 H), 3.13 - 3.08 (m, 100 H), 3.13 + 3.08 (m, 100 H), 3.13 + 3.08 (m,(d, J = 16.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 146.2, 138.7, 132.8, 131.8, 129.1, 128.8, 128.5, 128.3, 128.2, 127.1, 126.4, 122.7, 106.4, 99.9, 90.4, 88.3, 61.9, 55.4, 28.5; FTIR (NaCl, thin film) 3327, 2962, 1991, 1653, 1597, 1490, 1457, 1426 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₅H₂₂O₃; 370.1569, found: 370.1570.

(S)-1-(benzo[d][1,3]dioxol-5-yl)-1-

(phenvlethvnvl)isochroman (2-71). Prepared via General Procedure 2. Crude material was purified by silica gel Ph chromatography (3–8% Et₂O/hexanes) to give compound **2-71** (run 1: 68.4 mg, 83%; run 2: 56.4 mg, 73%) as colorless oil. The enantiomeric excess was determined to be 85% (run 1: 86% ee; run 2: 84% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 20.00 min, $t_{\rm R}$ (minor) = 18.47 min. $[\alpha]_D^{24} = -27.1^\circ$ (c 2.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.47 (m, 2H), 7.32 (dd, J = 5.1, 1.9 Hz, 3H), 7.25 – 7.21 (m, 1H), 7.21 – 7.10 (m, 3H), 7.08 – 7.03 (m, 2H), 6.79 (d, J = 8.1 Hz, 1H), 5.95 (s, 2H), 4.47 – 4.34 (m, 1H), 4.21 – 4.12 (m, 1H), 3.27 - 3.14 (m, 1H), 2.87 - 2.76 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.64, 147.60, 139.2, 137.9, 132.9, 131.9, 128.9, 128.6, 128.4 127.2, 126.5, 122.6, 121.7, 108.7, 107.6, 101.3, 90.4, 88.6, 77.6, 61.9, 29.8, 28.6; FTIR (NaCl, thin film) 3061, 3021, 2896, 2360, 2339, 1504, 1486, cm⁻¹; HRMS (EI+) [M+] calculated for $C_{24}H_{18}O_3$; 354.1256, found: 354.1238.

(S)-1-((3-methoxyphenyl)ethynyl)-1-(naphthalen-1-yl)isochroman (2-72). Prepared via General Procedure
2. Crude material was purified by silica gel chromatography (0–6% Et₂O/hexanes) to give compound

2-72 (run 1: 55.7 mg, 71%; run 2: 53.8 mg, 69%) as a white solid (mp 180–185 °C). The enantiomeric excess was determined to be 95% (run 1: 95% ee; run 2: 95% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 10.87 min, $t_{\rm R}$ (minor) = 8.57 min. [α]_D²⁴ = -61.2° (c 1.6, CHCl₃); ¹ H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 8.7 Hz, 1H), 8.15 (d, *J* = 7.3 Hz, 1H), 7.96 – 7.80 (m, 2H), 7.56 – 7.33 (m, 3H), 7.33 – 7.18 (m, 3H), 7.18 – 7.00 (m, 4H), 6.91 (dd, *J* = 8.4, 1.8 Hz, 1H), 4.65 – 4.58 (m, 1H), 4.24 – 4.19 (m, 1H), 3.82 (s, 3H), 3.46 – 3.32 (m, 1H), 3.07 – 3.01 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 139.3, 137.4, 134.9, 132.4, 130.6, 130.2, 129.4, 129.1, 128.7, 128.1, 127.5, 127.3, 126.8, 126.6, 125.7, 125.5, 124.5, 124.4, 123.8, 116.6, 115.2, 90.6, 90.5, 79.0, 61.9, 55.4, 28.2; FTIR (NaCl, thin film) 2930, 1599, 1489, 1289, 1207, 1159, 1085, 1046 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₈H₂₂O₂; 390.1620, found: 390.1608.

X-ray quality crystals were obtained from slow evaporation of 2-72 in diethyl ether. The crystal structure demonstrated that the absolute configuration is S (Figure 2.3).

2-yl)isochroman (2-73). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (3–7% Et₂O/hexanes) to give

(S)-1-((3-methoxyphenyl)ethynyl)-1-(naphthalen-

compound **2-73** (run 1: 57.2 mg, 73%; run 2: 63.3 mg, 81%) as colorless oil. The enantiomeric excess was determined to be 83% (run 1: 82% ee; run 2: 84% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 11.01 min, $t_{\rm R}$ (minor) = 9.23 min. [α]_D²⁴ = -67.5° (c 2.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.98 – 7.91 (m, 1H), 7.91 – 7.83 (m, 2H), 7.65 (dd,

J = 8.6, 1.9 Hz, 1H), 7.58 – 7.49 (m, 2H), 7.35 – 7.26 (m, 3H), 7.21 (dt, J = 7.6, 1.2 Hz, 1H), 7.19 – 7.10 (m, 3H), 6.96 (dd, J = 8.3, 1.7 Hz, 1H), 4.54 (m, 1H), 4.30 – 4.25 (m, 1H), 3.86 (s, 3H), 3.41 – 3.27 (m, 1H), 2.95 (dd, J = 13.5, 2.67 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 140.9, 138.9, 133.2, 133.1, 132.8, 129.5, 128.9, 128.6, 128.5, 128.3, 127.6, 127.2, 126.9, 126.49, 126.45, 126.2, 125.8, 124.5, 123.7, 116.7, 115.3, 90.1, 88.8, 77.9, 62.0, 55.4, 28.7; FTIR (NaCl, thin film) 3059, 2963, 2933, 2870, 2833, 1597, 1575, 1489 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₈H₂₂O₂; 390.1620, found: 390.1622.

(*S*)-1-(benzo[*b*]thiophen-6-yl)-1-(phenylethynyl)isochroman (2-74). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (0–4% CH₂Cl₂/PhMe) to give compound 2-74 (run 1: 55.4 mg, 76%; run 2: 48.2 mg, 66%) as colorless oil. The enantiomeric excess was determined to be 87% (run 1: 87% ee; run 2: 86% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 8.86 min, $t_{\rm R}$ (minor) = 7.86 min. [α]_D²⁴ = -47.5° (c 1.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.80 (d, *J* = 8.4 Hz, 1H), 7.60 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.58 – 7.52 (m, 2H), 7.47 (d, *J* = 5.4 Hz, 1H), 7.38 – 7.32 (m, 4H), 7.25 – 7.18 (m, 2H), 7.16 – 7.10 (m, 1H), 7.07 (d, *J* = 7.7 Hz, 1H), 4.54 – 4.42 (m, 1H), 4.27 – 4.17 (m, 1H), 3.35 – 3.22 (m, 1H), 2.93 – 2.81 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 140.2, 139.6, 139.5, 139.2, 133.0, 131.9, 128.9, 128.7, 128.5, 128.4, 127.4, 127.2, 126.5, 124.5, 123.7, 123.5, 122.7, 121.9, 90.4, 88.9, 78.0, 62.1, 28.7; FTIR (NaCl, thin film) 2928, 1598, 1489, 1450, 1390, 1280, 1201 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₅H₁₈OS; 366.1078, found: 366.1064.

(S)-1-(3-methoxyphenyl)-6-methyl-1-

(phenylethynyl)isochroman (2-75). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (4–7% CH₂Cl₂/PhMe) to give compound 2-

75 (56.7 mg, 80%) as colorless oil. The enantiomeric excess was determined to be 93% by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); *t*_R(major) = 9.55 min, *t*_R(minor) = 7.46 min. [α]_D²⁴ = -41° (c 2.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, *J* = 6.7, 3.0 Hz, 2H), 7.34 – 7.28 (m, 4H), 7.26 – 7.21 (m, 2H), 6.97 (s, 1H), 6.97 – 6.92 (m, 2H), 6.86 – 6.83 (m, 1H), 4.48 – 4.35 (m, 1H), 4.23 – 4.12 (m, 1H), 3.81 (s, 3H), 3.26 – 3.12 (m, 1H), 2.85 – 2.73 (m, 1H), 2.32 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 145.5, 136.8, 136.1, 132.8, 131.9, 129.4, 129.2, 128.6, 128.3, 128.2, 127.4, 122.8, 120.4, 113.9, 113.4, 90.5, 88.3, 77.7, 62.0, 55.4, 28.6, 21.2; FTIR (NaCl, thin film) 2932, 2360, 1599, 1489, 1290, 1082, 1052 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₅H₂₂O₂; 354.1620, found: 354.1607.

(S)-1-(3-methoxyphenyl)-7-methyl-1-

(phenylethynyl)isochroman (2-76). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (4–7% CH₂Cl₂/PhMe) to give compound 2-

76 (run 1: 46.9 mg, 66%; run 2: 45.1 mg, 64%) as colorless oil. The enantiomeric excess was determined to be 89% (run 1: 88% ee; run 2: 89% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); *t*_R(major) = 8.94 min, *t*_R(minor) = 7.24 min. [α]_D²⁴ = -65.1° (c 1.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, *J* = 6.7, 3.0 Hz, 2H), 7.33 (dd, *J* = 4.6, 2.1 Hz, 3H), 7.31 – 7.27 (m, 2H), 7.24 – 7.23 (m, 1H), 7.07 (d, *J* = 7.8 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 6.91 – 6.86 (m, 2H), 4.48 – 4.34 (m, 1H), 4.22 – 4.12 (m, 1H), 3.82 (s, 3H), 3.26 – 3.12 (m, 1H), 2.85 – 2.74 (m, 1H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 145.5, 138.6, 135.9, 131.9, 129.9, 129.2, 128.7, 128.64, 128.61, 128.3, 128.2, 122.8, 120.4, 114.0, 113.4, 90.5, 88.3, 77.7, 62.1, 55.4, 28.3, 21.3; FTIR (NaCl, thin film) 2959, 2931, 2220, 1599, 1586, 1502, 1486, 1433 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₅H₂₂O₂; 354.1620, found: 354.1617.

(S)-1-(3-methoxyphenyl)-1-(*m*-tolylethynyl)isochroman (2-77). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (1–4% $CH_2Cl_2/PhMe$) to give compound 2-77 (run 1: 47.4 mg, 67%; run 2: 52.5 mg, 74%) as colorless oil. The enantiomeric excess was determined to be 93% (run 1: 93% ee; run 2: 92% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 8.84 min, $t_{\rm R}$ (minor) = 7.34 min. [α]_D²⁴ = -56.0° (c 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 3H), 7.25 (d, *J* = 1.6 Hz, 1H), 7.24 – 7.19 (m, 2H), 7.19 – 7.16 (m, 2H), 7.16 – 7.09 (m, 2H), 7.06 (d, *J* = 7.5 Hz, 1H), 6.89 – 6.84 (m, 1H), 4.48 – 4.37 (m, 1H), 4.24 – 4.13 (m, 1H), 3.80 (s, 3H), 3.31 – 3.15 (m, 1H), 2.88 – 2.77 (m, 1H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 145.4, 139.1, 138.0, 132.9, 132.5, 129.5, 129.2, 128.9, 128.88, 128.3, 128.2, 127.1, 126.4, 122.5, 120.4, 113.9, 113.5, 89.9, 88.7, 77.7, 61.9, 55.4, 28.6, 21.3; FTIR (NaCl, thin film) 2933, 2869, 2833, 1600, 1585, 1485, 1290, 1083 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₅H₂₂O₂; 354.1620, found: 354.1592.

(S)-1-(3-methoxyphenyl)-1-((3-

methoxyphenyl)ethynyl)isochroman (2-78). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (3–7% Et₂O/hexanes) to give compound **2-78** (run 1: 66.1 mg, 89%; run 2: 63.7 mg,

86%) as colorless oil. The enantiomeric excess was determined to be 96% (run 1: 96% ee; run 2: 96% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 12.4 min, $t_{\rm R}$ (minor) = 9.37 min. [α]_D²⁴ = -40.7° (c 1.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 7.8 Hz, 1H), 7.31 - 7.27 (m, 3H), 7.26 - 7.23 (m, 1H), 7.23 - 7.17 (m, 2H), 7.17 - 7.13 (m, 1H), 7.13 -

7.09 (m, 1H), 7.06 (dd, J = 2.6, 1.4 Hz, 1H), 6.94 – 6.88 (m, 2H), 4.50 – 4.40 (m, 1H), 4.26 – 4.17 (m, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 3.31 – 3.21 (m, 1H), 2.92 – 2.82 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 159.3, 145.3, 138.9, 132.9, 129.4, 129.3, 128.9, 128.3, 127.2, 126.5, 124.5, 123.7, 120.4, 116.6, 115.3, 113.9, 113.5, 90.2, 88.4, 77.7, 61.9, 55.4, 55.37, 28.6; FTIR (NaCl, thin film) 2935, 1599, 1485, 1428, 1319, 1289, 1263, 1207 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₅H₂₂O₃; 370.1569, found: 370.1565.

(S)-1-((3-chlorophenyl)ethynyl)-1-(3-

methoxyphenyl)isochroman (2-79). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (3–6% Et₂O/hexanes) to give compound 2-79 (run 1: 66.4 mg, 93%; run 2: 68.4 mg,

95%) as colorless oil. The enantiomeric excess was determined to be 96% (run 1: 96% ee; run 2: 96% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); t_R (major) = 8.45 min, t_R (minor) = 7.39 min. [α]_D²⁴ = -45.0° (c 3.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 1.4 Hz, 1H), 7.41 (d, J = 6.7 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.30 (t, 1H), 7.27 (d, J = 5.8 Hz, 1H), 7.25 – 7.24 (m, 2H), 7.22 – 7.14 (m, 3H), 7.10 (d, J = 7.6 Hz, 1H), 6.94 – 6.88 (m, 1H), 4.43 (dt, J = 11.1, 3.6 Hz, 1H), 4.24 – 4.19 (m, 1H), 3.84 (s, 3H), 3.32 – 3.20 (m, 1H), 2.87 (dt, J = 16.5, 3.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 145.1, 138.6, 134.2, 132.9, 131.7, 130.0, 129.6, 129.3, 128.94, 128.90, 128.2, 127.3, 126.5, 124.4, 120.3,

114.0, 113.5, 91.63, 87.02, 77.7, 62.0, 55.4, 28.6; FTIR (NaCl, thin film) 3064, 2935, 2871, 2834, 1593, 1562, 1485 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₄H₁₉O₂Cl; 374.1074, found: 374.1070.

(S)-1-(3-methoxyphenyl)-1-((3-

(trifluoromethyl)phenyl)ethynyl)isochroman (2-80). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (3–6% Et₂O/hexanes) to give compound **2-80** (run 1: 75.4 mg,

96%; run 2: 66.8 mg, 85%) as colorless oil. The enantiomeric excess was determined to be 97% (run 1: 97% ee; run 2: 97% ee) by chiral HPLC analysis (CHIRALPAK IB, 1.0 mL/min, 1% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 10.13 min, $t_{\rm R}$ (minor) = 9.06 min. [α]_D²⁴ = -43.3° (c 2.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.71 (d, *J* = 7.7 Hz, 1H), 7.62 (d, *J* = 7.7 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.31 – 7.27 (m, 2H), 7.24 – 7.17 (m, 3H), 7.12 (d, *J* = 7.7 Hz, 1H), 6.92 (dt, *J* = 8.2, 2.4, 1.1 Hz, 1H), 4.44 (td, *J* = 11.1, 3.6 Hz, 1H), 4.26 – 4.21 (m, 1H), 3.84 (s, 3H), 3.33 – 3.20 (m, 1H), 2.89 (dt, *J* = 16.5, 3.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 144.9, 138.4, 134.9, 132.9, 130.9 (q, *J*_{C-F} = 32.7 Hz), 129.3, 128.9, 128.8, 128.6 (q, *J*_{C-F} = 3.8 Hz), 128.2, 127.3, 126.5, 125.1 (q, *J*_{C-F} = 3.7 Hz), 123.7 (q, *J*_{C-F} = 272.0 Hz), 123.5, 120.2, 113.9, 113.4, 91.9, 86.7, 77.6, 61.9, 55.3, 28.5; FTIR (NaCl, thin film) 3072, 2936, 2872, 2835, 1601, 1586, 1486, 1451 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₅H₁₉O₂F₃; 408.1337, found: 408.1318.

(S)-3-((1-(3-methoxyphenyl)isochroman-1-

yl)ethynyl)benzonitrile (2-81). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (5–10% Et₂O/hexanes) to give compound

2-81 (run 1: 61.9 mg, 85%; run 2: 65.1 mg, 89%) as

colorless oil. The enantiomeric excess was determined to be 97% (run 1: 97% ee; run 2: 97% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); t_R (major) = 23.14 min, t_R (minor) = 16.66 min. $[\alpha]_D^{24} = -$ 28.2° (c 2.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.76 (d, J = 7.7 Hz, 1H), 7.66 (d, J = 7.98 Hz, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.38 – 7.34 (m, 1H), 7.33 – 7.27 (m, 3H), 7.24 – 7.19 (m, 2H), 7.13 (d, J = 7.9 Hz, 1H), 6.96 – 6.93 (m, 1H), 4.43 (dt, J = 10.6, 3.6 Hz, 1H), 4.28 – 4.23 (m, 1H), 3.85 (s, 3H), 3.35 – 3.20 (m, 1H), 2.90 (dt, J = 16.6, 3.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 144.8, 138.2, 135.9, 135.2, 132.9, 131.8, 129.4, 129.3, 129.0, 128.2, 127.4, 126.6, 124.2, 120.2, 118.1, 114.0, 113.4, 112.9, 92.9, 85.9, 77.6, 62.1, 55.4, 28.5; FTIR (NaCl, thin film) 2935, 2360, 2232, 1653, 1599, 1488, 1290, 1084 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₅H₁₉NO₂; 365.1416, found: 365.1427.

(S)-methyl 3-((1-(3-methoxyphenyl)isochroman-1yl)ethynyl)benzoate (2-82). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (5–15% Et₂O/hexanes) to give compound **2-82** (run 1: 75.6 mg, 95%; run 2: 78.2 mg, 98%) as colorless oil. The enantiomeric excess was determined to be 96% (run 1: 95% ee; run 2: 96% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); t_R (major) = 14.31 min, t_R (minor) = 11.38 min. [α]_D²⁴ = -46.0° (c 3.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 8.00 (d, J = 9.1 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.40 (t, J = 7.8 Hz, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.25 – 7.23 (m, 2H), 7.21 – 7.18 (m, 2H), 7.16 – 7.12 (m, 1H), 7.08 (d, J = 7.6 Hz, 1H), 6.87 (dd, J = 7.8, 1.0 Hz, 1H), 4.42 (td, J = 11.1, 3.6 Hz, 1H), 4.22 – 4.17 (m, 1H), 3.92 (s, 3H), 3.80 (s, 3H), 3.27 – 3.19 (m, 1H), 2.84 (d, J = 16.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 159.5, 145.1, 138.6, 136.0, 133.0, 132.9, 130.4, 129.6, 129.3, 128.9, 128.5, 128.2, 127.2, 126.5, 123.1, 120.3, 113.9, 113.5, 91.3, 87.4, 77.7, 62.0, 55.3, 52.4, 28.6; FTIR (NaCl, thin film) 2951, 2835, 1725, 1600, 1485, 1437, 1296, 1105 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₆H₂₂O₄; 398.1518, found: 398.1525.

(S)-1-((4-chlorophenyl)ethynyl)-1-(3-

methoxyphenyl)isochroman (2-83). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (3–5% Et₂O/hexanes) to give compound 2-83 (run 1: 65.3 mg, 87%; run 2: 68.4 mg,

91%) as colorless oil. The enantiomeric excess was determined to be 96% (run 1: 96% ee; run 2: 96% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 9.51 min, $t_{\rm R}$ (minor) = 8.13 min. $[\alpha]_{\rm D}^{24} = -$

39.5° (c 2.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.7 Hz, 3H), 7.23 – 7.19 (m, 2H), 7.19 – 7.13 (m, 2H), 7.11 (dd, J = 6.8, 1.9 Hz, 1H), 7.05 (d, J = 7.7 Hz, 1H), 6.87 – 6.85 (m, 1H), 4.38 (td, J = 11.0, 3.6 Hz, 1H), 4.19 – 4.14 (m, 1H), 3.79 (s, 3H), 3.27 – 3.15 (m, 1H), 2.83 (dt, J = 16.5, 3.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 145.2, 138.7, 134.7, 133.2, 132.9, 129.3, 128.9, 128.7, 128.3, 127.3, 126.5, 121.2, 120.3, 114.0, 113.5, 91.4, 87.3, 77.7, 62.0, 55.4, 28.6; FTIR (NaCl, thin film) 2934, 1601, 1586, 1489, 1451, 1290, 1269, 1084 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₄H₁₉O₂Cl; 374.1074, found: 374.1071.

(S)-1-((4-fluorophenyl)ethynyl)-1-(3-

methoxyphenyl)isochroman (2-84). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (1% CH₂Cl₂/PhMe) to give compound **2-84** (54.6 mg, 76%) as colorless oil. The

enantiomeric excess was determined to be 95% by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 9.41 min, $t_{\rm R}$ (minor) = 8.14 min. [α]_D²⁴ = -17.3° (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.49 - 7.46 (m, 2H), 7.31 - 7.27 (m, 1H), 7.25 - 7.21 (m, 3H), 7.19 - 7.18 (m, 1H), 7.16 - 7.11 (m, 1H), 7.07 (d, *J* = 7.2 Hz, 1H), 7.04 - 6.99 (m, 2H), 6.89 - 6.86 (m, 1H), 4.40 (dt, *J* = 11.3, 3.7 Hz, 1H), 4.21 - 4.16 (m, 1H), 3.80 (s, 3H), 3.27 - 3.18 (m, 1H), 2.84 (dt, *J* = 16.4, 3.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 162.7 (d, *J*_{C-F} = 254.0 Hz), 159.4, 145.2, 138.7, 133.8 (d, *J*_{C-F} = 8.4 Hz), 132.9, 129.2, 128.9, 128.2,

127.1, 126.4, 120.3, 118.7 (d, $J_{C-F} = 3.7 \text{ Hz}$), 115.6 (d, $J_{C-F} = 21.8 \text{ Hz}$), 113.9, 113.4, 90.0, 87.3, 77.6, 61.9, 52.3, 28.5; FTIR (NaCl, thin film) 1489, 1448, 1205, 1120, 1053, 1007, 764, 703 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₄H₁₉O₂F; 358.1369, found: 358.1393.

(S)-1-(3-methoxyphenyl)-1-(o-tolylethynyl)isochroman

(2-85). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (1% CH₂Cl₂/PhMe) to give compound 2-85 (run 1: 53.4 mg,

75%; run 2: 45.7 mg, 65%) as a white solid (mp 86–92 °C). The enantiomeric excess was determined to be 74% (run 1: 73% ee; run 2: 74% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); t_R (major) = 7.65 min, t_R (minor) = 6.85 min. [α]_D²⁴ = 74.3° (c 0.01, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.5 Hz, 1H), 7.29 – 7.28 (m, 2H), 7.25 – 7.19 (m, 3H), 7.18 – 7.10 (m, 4H), 7.08 – 7.06 (m, 1H), 6.88 – 6.85 (m, 1H), 4.48 – 4.42 (m, 1H), 4.23 – 4.18 (m, 1H), 3.8 (s, 3H), 3.29 – 3.20 (m, 1H), 2.85 – 2.79 (m, 1H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 145.3, 140.4, 139.1, 132.8, 132.1, 129.4, 129.2, 128.8, 128.5, 128.2, 126.9, 126.3, 125.5, 122.5, 120.4, 113.8, 113.5, 94.2, 87.8, 77.9, 61.9, 55.3, 28.6, 20.9; FTIR (NaCl, thin film) 1600, 1485, 1289, 1083, 1051, 759, 741, 696 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₅H₂₂O₂; 354.1620, found: 354.1611.

(S)-1-(oct-1-yn-1-yl)-1-phenylisochroman (2-86). Prepared

via General Procedure 2. Crude material was purified by silica gel chromatography (0-5% Et₂O/hexanes) to give compound 2-

86 (22 mg, 35%) as colorless oil. The enantiomeric excess was determined to be 66% by chiral HPLC analysis (CHIRALPAK IA 0.2 mL/min, 0.1% *i*-PrOH/hexane, λ =220 nm); $t_{\rm R}$ (major) = 27.64 min, $t_{\rm R}$ (minor) = 23.50 min. [α]_D²⁴ = 31.9° (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, J = 1.7, 8.3 Hz, 2H), 7.34 – 7.28 (m, 3H), 7.18 – 7.12 (m, 2H), 7.10 – 7.06 (m, 1H), 6.93 (d, J = 7.8 Hz, 1H), 4.34 (ddd, J = 3.7, 11.0, 11.3 Hz, 1H), 4.13 – 4.08 (m, 1H), 3.22 – 3.14 (m, 1H), 2.79 (dt, J = 3.1, 13.1 Hz, 1H), 2.32 (t, J = 7.2 Hz, 2H), 1.61 – 1.53 (m, 2H), 1.44 – 1.37 (m, 2H), 1.30 – 1.26 (m, 4H), 0.88 (t, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CD₃OD) δ 144.1, 139.8, 132.4, 128.4, 127.73, 127.68, 127.54, 127.51, 126.5, 125.7, 89.6, 81.1, 77.5, 61.2, 31.0, 28.2, 28.14, 28.11, 22.3, 18.0, 12.9; FTIR (NaCl, thin film) 3902, 3530, 2100, 2089, 1489, 1279, 1643, 1059, 568, 461, 440 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₃H₂₆O; 319.2062, found: 319.2069.

()

yl)isoindoline-1,3-dione (2-87). Prepared via General Procedure 2. Crude material was purified by silica gel

(S)-2-(3-(1-phenylisochroman-1-yl)prop-2-yn-1-

chromatography (5–15% Et_2O /hexanes) to give

compound **2-87** (run 1: 59.1 mg, 75%; run 2: 66.9 mg, 85%) as a white solid (mp 126–129 °C). The enantiomeric excess was determined to be 93% (run 1: 93% ee; run

2: 92% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.8 mL/min, 3% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 26.38 min, $t_{\rm R}$ (minor) = 23.75 min. $[\alpha]_{\rm D}^{24} = -$ 46.3° (c 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 5.5, 3.1 Hz, 2H), 7.73 (dd, J = 5.5, 3.1 Hz, 2H), 7.60 – 7.54 (m, 2H), 7.35 – 7.27 (m, 3H), 7.18 – 7.10 (m, 2H), 7.08 – 7.04 (m, 1H), 6.90 (d, J = 7.8 Hz, 1H), 4.60 (s, 2H), 4.40 – 4.29 (m, 1H), 4.17 – 4.05 (m, 1H), 3.25 – 3.11 (m, 1H), 2.82 – 2.72 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 143.3, 138.8, 134.3, 132.9, 132.1, 128.9, 128.3, 128.26, 128.23, 127.8, 127.1, 126.4, 123.6, 84.2, 82.3, 77.3, 61.9, 28.5, 27.7; FTIR (NaCl, thin film) 2926, 1772, 1719, 1449, 1421, 1392, 1117 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₆H₁₉NO₃; 393.1365, found: 393.1343.

(S)-1-(cyclopropylethynyl)-1-(3-

methoxyphenyl)isochroman (2-88). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (5–10% Et₂O/hexanes) to give compound **2**-

88 (16.0 mg, 26%) as colorless oil. The enantiomeric excess was determined to be 93% by chiral HPLC analysis (CHIRALPAK IA, 0.4 mL/min, 1% *i*-PrOH/hexane, λ =210 nm); $t_{\rm R}$ (major) = 20.72 min, $t_{\rm R}$ (minor) = 24.97 min. [α]_D²⁴ = 70.0° (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, *J* = 7.9 Hz, 1H), 7.18 – 7.06 (m, 5H), 6.95 (d, J = 7.6 Hz, 1H), 6.83 – 6.81 (m, 1H), 4.29 (ddd, *J* = 3.6, 3.7, 11.2 Hz, 1H), 4.10 – 4.05 (m, 1H), 3.78 (s, 3H), 3.19 – 3.10 (m, 1H), 2.78 (dt, *J* = 3.2, 16.4 Hz, 1H), 1.38 – 1.32 (m, 1H), 0.82 – 0.74 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 159.2,

145.7, 139.4, 132.7, 128.9, 128.7, 128.1, 126.8, 126.2, 120.3, 113.8, 113.2, 92.4, 77.2, 76.4, 61.5, 55.2, 28.5, 8.6, 8.5, -0.2; FTIR (NaCl, thin film) 3456, 2962, 2260, 1985, 1644, 1426, 568, 461, 423 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₁H₂₀O₂; 305.1542, found: 305.1549.

(R)-dimethyl(phenyl)((1-phenylisochroman-1-

vl)ethvnvl)silane (2-89). Prepared via General Procedure 2.

Crude material was purified by silica gel chromatography (2– 10% Et₂O/hexanes) to give compound **2-89** (run 1: 38.4 mg, 52%; run 2: 40.0 mg, 54%) as colorless oil. The enantiomeric excess was determined to be 81% (run 1: 80% ee; run 2: 81% ee) by chiral HPLC analysis (CHIRACEL ODH, 0.2 mL/min, 0.5% *i*-PrOH/hexane, λ =220 nm); $t_{\rm R}$ (major) = 27.29min, $t_{\rm R}$ (minor) = 25.67 min. [α]_D²⁴ = 80.0° (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.63 (m, 4H), 7.40 – 7.33 (m, 6H), 7.24 – 7.17 (m, 2H), 7.15 – 7.11 (m, 1H), 7.01 (d, *J* = 7.7 Hz, 1H), 4.41 (ddd, *J* = 3.5, 10.9, 11.4 Hz, 1H), 4.21 – 4.16 (m, 1H), 3.28 – 3.20 (m, 1H), 2.83 (dt, *J* = 2.7, 16.5 Hz, 1H), 0.5 (s, 3H), 0.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 138.9, 136.9, 133.8, 132.9, 129.5, 128.8, 128.4, 128.24, 128.17, 127.9, 127.8, 127.0, 126.3, 108.1, 91.4, 77.7, 61.9, 28.5, -0.7, -0.8; FTIR (NaCl, thin film) 3491, 3021, 2896, 2360, 2339, 1642, 1486, 538, 429 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₅H₂₄OSi; 368.1596, found: 368.1583.

Elaboration of Alkyne Products

(*R*,*Z*)-1-(3-methoxyphenyl)-1-styrylisochroman (2-93).

Alkyne **2-65** was prepared via General Procedure 2 on a 0.20-mmol scale. To a solution of alkyne **2-65** (68.1 mg,

0.20 mmol, 1.0 equiv) and EtOH (5 mL), Lindlar's catalyst (5%, 3.4 mg, 0.01 mmol Pd, 5 mol % Pd) and quinoline (5.25 μ L, 0.04 mmol, 0.20 equiv) were added. The reaction mixture was evacuated and backfilled with H₂ thrice following which it was stirred under H_2 (1 atm) for 3 days. After consumption of alkyne 2-65 as determined by TLC analysis, the mixture was filtered through a short pad of Celite, which was then washed with Et_2O (15 mL). The filtrate was concentrated, and the crude material was purified by silica gel chromatography (PhMe) to give compound 2-93 (46.0 mg, 67%) as colorless oil. The enantiomeric excess was determined to be 94% by chiral HPLC analysis (CHIRALPAK IB, 1.0 mL/min, 0.5% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}({\rm major}) = 10.70 \text{ min}, t_{\rm R}({\rm minor}) = 8.82 \text{ min}. [\alpha]_{\rm D}^{24} = -11.6^{\circ}$ (c 1.8, CHCl₃); ¹ H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.22 (d, J = 8.2 Hz, 1H), 7.19 – 7.12 (m, 4H), 7.12 - 7.08 (m, 2H), 7.08 - 7.04 (m, 2H), 7.01 - 6.94 (m, 1H), 6.83 - 6.78(m, 1H), 6.71 (d, J = 12.8 Hz, 1H), 6.08 (d, J = 12.7 Hz, 1H), 3.84 - 3.78 (m, 1H), 3.76 (s, 3H), 3.56 – 3.49 (m, 1H), 3.07 – 2.97 (m, 1H), 2.75 – 2.65 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 147.9, 141.3, 136.7, 134.9, 133.5, 131.5, 129.9, 129.2, 128.8, 128.1, 127.3, 126.9, 126.5, 126.3, 120.8, 114.2, 112.8, 82.3, 60.6, 55.3, 28.7; FTIR (NaCl, thin film) 1599, 1483, 1289, 1247, 1042, 779, 756, 696 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₄H₂₂O₂; 342.1620, found: 342.1619.

(*R*)-1-(3-methoxyphenyl)-1-phenethylisochroman (2-94). Alkyne 2-60 was prepared via General Procedure 2 on a 0.20-mmol scale. To a solution of alkyne 2-65 (25.0 mg,

0.07 mmol, 1.0 equiv) and MeOH (5 mL), 10% Pd/C (2.5 mg, 0.01 mmol Pd, 10.0 mol % Pd) was added. The reaction mixture was evacuated and backfilled with H₂ thrice following which it was stirred under H_2 (1 atm) for 12 h. After consumption of alkyne **2-60** as determined by TLC analysis, the mixture was filtered through a short pad of Celite, which was then washed with Et₂O (15 mL). The filtrate was concentrated, and the crude material was purified by silica gel chromatography (5% Et₂O/hexanes) to give compound 2-94 (15.7 mg, 62%) as colorless oil. The enantiomeric excess was determined to be 95% by chiral HPLC analysis (CHIRALPAK IB, 0.4 mL/min, 1% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 15.53 min, $t_{\rm R}({\rm minor}) = 14.26$ min. $[\alpha]_{\rm D}^{24} = 60.6^{\circ}$ (c 0.6, CHCl₃); ¹ H NMR (400 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.25 – 7.17 (m, 5H), 7.17 – 7.12 (m, 3H), 6.99 – 6.93 (m, 2H), 6.80 - 6.75 (m, 1H), 3.99 - 3.91 (m, 1H), 3.77 (s, 3H), 3.74 - 3.66 (m, 1H),3.19 - 3.08 (m, 1H), 2.87 - 2.76 (m, 1H), 2.69 - 2.61 (m, 1H), 2.60 - 2.49 (m, 1H), 2.43 – 2.31 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 147.9, 142.8, 137.7, 135.0, 129.5, 129.0, 128.5, 128.4, 127.5, 126.8, 125.8, 125.7, 119.9, 113.6, 112.3, 81.2, 60.2, 55.3, 45.1, 30.9, 29.2; FTIR (NaCl, thin film) 1489, 1448, 1205, 1120, 1053, 1007, 764. 703 cm⁻¹; HRMS (EI+) [M+] calculated for $C_{24}H_{24}O_2$; 344.1776, found: 344.1798.

(*R*)-1-phenethyl-1-(*m*-tolyl)isochroman (2-95). This procedure was adapted from the literature.⁵¹ In a N₂- atmosphere glovebox, alkane 2-94 (10.0 mg, 0.03 mmol, 1.0

equiv), Ni(acac)₂ (0.4 mg, 0.0015 mmol, 5 mol %), PCy₃ (0.78 mg, 0.003 mmol, 10 mol %) and mesitylene (0.2 mL, 0.13 M) were added combined in a 1-dram vial. The vial was sealed with a Teflon-lined cap equipped with a valve for addition of later reagents. The vial was removed from the glovebox. After 5 min, MeMgBr (0.10 mL, 0.30 mmol, 10 equiv) was added via syringe, and the mixture was stirred for 5 h at 110 °C. The reaction mixture was then cooled to room temperature, diluted with Et₂O (2 mL) and filtered through a plug of silica gel, which was then washed with Et₂O (10 mL). The filtrate was concentrated. The crude material was purified by silica gel chromatography (5% Et₂O/hexanes) to give compound 2-95 (5.0 mg, 55%) as colorless oil. The enantiomeric excess was determined to be 95% by chiral HPLC analysis (CHIRACEL ODH, 0.2 mL/min, 1% *i*-PrOH/hexane, λ =210 nm); t_R(major) = 27.68 min, $t_{\rm R}$ (minor) = 23.53 min. ¹ H NMR (400 MHz, CDCl₃) δ 7.28 – 7.25 (m, 3H), 7.23 - 7.18 (m, 4H), 7.16 - 7.11 (m, 5H), 7.05 (d, J = 7.2 Hz, 1H), 3.96 - 3.91 (m, 1H), 3.69 (ddd, J = 3.8, 3.7, 11.2 Hz, 1H), 3.17 - 3.09 (m, 1H), 2.86 - 2.78 (m, 1H), 2.69 – 2.64 (m, 1H), 2.60 – 2.52 (m, 1H), 2.42 – 2.34 (m, 2H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) & 145.9, 142.8, 137.8, 137.6, 134.9, 129.3, 128.4, 128.3, 127.9, 127.84, 127.77, 127.5, 126.5, 125.7, 125.6, 124.6, 81.1, 60.0, 45.0, 30.8, 29.1, 21.7; FTIR (NaCl, thin film) 1644, 1489, 1448, 1205, 1120, 1053, 1007, 764, 703 cm⁻¹: HRMS (EI+) [M+] calculated for C₂₄H₂₄O; 328.1827, found: 328.1844.

(*R*)-1-(1-(3-methoxyphenyl)isochroman-1-yl)-2phenvlethane-1.2-dione (2-96). This procedure was adapted

from the literature.⁵⁰ Alkyne **2-65** was prepared via General

Procedure 2 on a 0.20-mmol scale. A solution of KMnO₄ (55.8 mg, 0.35 mmol, 3.0 equiv), NaHCO₃ (11.9 mg, 0.14 mmol, 1.2 equiv), tetrabutylammonium bromide (20 mg, 0.062 mmol, 0.52 equiv), and H_{2O} (1.0 mL) was added to a solution of alkyne 2-65 (40.0 mg, 0.12 mmol, 1.0 equiv) and CH₂Cl₂ (1.0 mL, 0.12 M). The reaction mixture was stirred at room temperature for 48 h. Excess KMnO₄ was destroyed by adding HCl (1 M, 1 mL) and Na₂SO₃ (20 mg) until the red color disappeared. The mixture was then washed with sat. NaHCO₃ and extracted with CH₂Cl₂ (5 mL). The organic layers were dried (MgSO₄) and filtered through a short pad of Celite, which was then washed with CH₂Cl₂ (10 mL). The filtrate was concentrated, and the crude material was purified by silica gel chromatography (3% CH₂Cl₂/toluene) to give compound 2-96 (29.1 mg, 67%) as yellow oil. The enantiomeric excess was determined to be 96% by chiral HPLC analysis (CHIRALPAK IA, 0.4 mL/min, 2% i-PrOH/hexane, $\lambda = 254$ nm); $t_{\rm R}$ (major) = 28.48 min, $t_{\rm R}$ (minor) = 26.17 min. $[\alpha]_{\rm D}^{24}$ = 35.0° (c 1.0, CHCl₃); ¹ H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.4 Hz, 2H), 7.60 – 7.55 (m, 2H), 7.42 – 7.38 (m, 2H), 7.34 – 7.28 (m, 3H), 7.20 – 7.18 (m, 1H), 7.01 – $6.98 \text{ (m, 2H)}, 6.90 \text{ (dd, } J = 2.0, 2.1 \text{ Hz}, 1\text{H}), 3.89 - 3.84 \text{ (m, 1H)}, 3.79 \text{ (s, 3H)}, 3.7 - 3.84 \text{ (m, 1H)}, 3.7 + 3.84 \text{ (m, 1H)}, 3.84 \text{ (m, 1H)}, 3.7 + 3.84 \text{ (m, 1H)}, 3.84 \text{$ 3.6 (m, 1H), 2.92 - 2.83 (m, 1H), 2.58 (d, J = 16.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) & 205.4, 195.5, 159.5, 142.9, 134.9, 134.3, 132.8, 130.9, 129.5, 129.31, 129.30, 128.7, 128.2, 128.1, 126.2, 121.3, 115.1, 113.7, 87.1, 60.1, 55.3, 28.2; FTIR

(NaCl, thin film) 3445, 2900, 1720, 1680, 1662, 1429, 1205, 1132, 1053, 1022, 778, 720 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₄H₂₀O₄; 372.1393, found: 372.1385.

(*R*)-1-ethynyl-1-phenylisochroman (2-97). Alkyne 2-89 was prepared via General Procedure 2 on a 0.20-mmol scale. To a solution of alkyne 2-89 (37.0 mg, 0.10 mmol, 1.0 equiv) and THF (2

mL, 0.05 M), tetrabutyl-ammonium fluoride (0.1 mL, 1 M, 1.0 equiv) was added. The reaction mixture was stirred at 0 °C for 12 h. After consumption of alkyne 2-89 as determined by TLC analysis, the mixture was filtered through a short pad of silica gel, which was then washed with CH₂Cl₂ (15 mL). The filtrate was concentrated, and the crude material was purified by silica gel chromatography (0-10% Et₂O/hexanes) to give compound 2-97 (24.0 mg, quantitative) as colorless oil. The enantiomeric excess was determined to be 80% by chiral HPLC analysis (CHIRALPAK IA, 0.2 mL/min, 0.1% *i*-PrOH/hexane, λ =210 nm); $t_{\rm R}$ (major) = 35.74 min, $t_{\rm R}$ (minor) = 33.52 min. ¹ H NMR (400 MHz, CDCl₃) δ 7.61 – 7.59 (m, 2H), 7.36 – 7.31 (m, 3H), 7.21 – 7.16 (m, 2H), 7.12 - 7.08 (m, 1H), 6.95 (d, J = 7.9 Hz, 1H), 4.36 (ddd, J = 3.4, 11.2, 11.3 Hz, 1H), 4.18 - 4.13 (m, 1H), 3.25 - 3.17 (m, 1H), 2.88 (s, 1H), 2.80 (dt, J = 2.8, 16.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 139.2, 132.9, 128.9, 128.0, 127.92, 127.89, 127.5, 126.9, 126.2, 84.7, 77.7, 77.0, 61.4, 28.1; FTIR (NaCl, thin film) 3270, 3100, 3061, 2930, 1599, 1489, 1205, 1120, 1053, 703 cm⁻¹; HRMS (EI+) [M+] calculated for C₁₇H₁₄O; 235.1123, found: 235.1123.

Nonlinear Effect Experiment

In a N₂-atmosphere glovebox, CuSPh (1.4 mg, 0.0083 mmol, 10 mol %) was weighed into a 1-dram vial. A mixture of the enantiomers of 2,6-bis(4-phenyl-4,5dihydrooxazol-2-yl)pyridine (Ph-PyBox, **2-56**, total = 3.7 mg, 0.010 mmol, 12 mol %) and CHCl₃ (0.56 mL, 0.15 M) were added. The vial was capped with a septum-lined piercable cap. The mixture was stirred for 30 min at room temperature. Then phenylacetylene (11 μ L, 0.10 mmol, 1.2 equiv), MTBD (1-methyl-2,3,4,6,7,8hexahydro-1*H*-pyrimido[1,2-*a*]pyrimidine, 18.5 μ L, 0.13 mmol, 1.55 equiv), and ketal **2-47** (20.0 mg, 0.080 mmol, 1.0 equiv) were added. The vial was again sealed with a septum-lined piercable cap, removed from the glovebox, and cooled to 0 °C. After 10 min, BF₃·OEt₂ (21 μ L, 0.16 mmol, 2.0 equiv) was added via syringe, and the mixture was stirred for 24 h at 4 °C.

entry	mol % (<i>R</i>)-Ph-PyBox	mol % (<i>S</i>)-Ph-PyBox	ee of catalyst	ee of product
1	6	6	0	0
2	7	5	17	62
3	8	4	33	69
4	9	3	50	74
5	10	2	67	77
6	11	1	84	79
7	12	0	100	80

The reaction mixture was diluted with Et_2O (2 mL) and filtered through a plug of silica gel, which was then washed with more Et_2O (10 mL). Analytical samples of product were then prepared via preparatory TLC (50% CH₂Cl₂/PhMe) and analyzed by HPLC using a chiral stationary phase.

Chapter 3

ENANTIOSELECTIVE, COPPER(I)-CATALYZED ALKYNYLATION OF IMINIUM IONS TO SET α , α -DIARYL, TETRASUBSTITUTED STEREOCENTERS

3.1 Introduction

Alkyl amines represent prominent scaffolds in biologically active molecules. The importance of α -chiral cyclic amines in pharmaceuticals, natural products, and other bioactive molecules makes them relevant targets for synthesis. In particular, α -tetrasubstituted amines are known to show bio-activity against a range of diseases, including breast cancer, seizures, thrombosis and HIV (Fig.3.1).⁶⁸⁻⁷⁰ A variety of synthetic routes are known to access α -trisubstituted amines. However there are extremely limited methods available to deliver highly enantioenriched amines with tetrasubstituted α -stereocenters.

A powerful approach for these compounds would be enantioselective addition to a ketoimine or iminium ion. Several carbon nucleophiles have been delivered via this strategy. The state-of-the-art in alkynylations of acyclic ketoimines utilizes ketoimines with trifluoromethyl and/or ester substituents (Scheme 3-1,A).⁷¹⁻⁷³ Enantioselective alkynylations of α -aryl- α -alkyl ketoimines have also been reported (Scheme 3-1,B).⁷⁴

B. Alkynylation of acyclic ketoimines (Shibasaki)

Although enantioselective reduction of α,α -diaryl ketimines have been accomplished,⁷⁵ currently enantioselective additions of cation nucleophiles to α,α -diaryl ketoimines require cyclic substrates, with one aryl group constrained in a ring. With this strategy, cyanation and arylation have been accomplished in high ee's (Scheme 3.2, A and B).⁷⁶⁻⁷⁸

Scheme 3.2: Enantioselective Construction of Quaternary Stereocenters on Cyclic Ketimines

Also, Maruoka has shown that a Cu(Ph-PyBox)/Brønsted acid catalyst system enables alkynylation of alkyl-substituted isoquinolinium ions (Scheme 3.2 C).^{79,80}. However this method is limited to alkyl-substituted isoquinolines and requires a chiral bronsted acid cocatalyst along with the chiral ligand, Ph-PyBox to form the tetrasubstituted alkynylated products in high enantiomeric excess

Scheme 3.3: Watson's Enantioselective Cu-Catalyzed Alkynylation of Oxocarbenium Ions

All methods mentioned above are limited to substrates with electronically and/or sterically different substituents on the electrophilic carbon as mentioned above.⁸¹ Schreiber and group are the only ones who have shown one example of alkynylation of 1-phenyl substituted dihydroisoquinoliniums but without any stereoselection.⁸² Hence, no methods exist for enantioselective alkynylation of α , α diaryl ketoimines or iminium ions with either cyclic or acyclic substrates to our knowledge. Our group has demonstrated highly enantioselective, copper-catalyzed additions of alkynes to cyclic oxocarbenium ions, which are formed in situ from readily available, racemic acetals. In addition to α -trisubstituted products (Scheme 3.3 A-B)^{32,33} in our group, I found a Cu/Ph-PyBox catalyst that enables high enantioselectivities in the formation of α -tetrasubstituted products (See Chapter 2).⁸³ Notably, the stereocenters formed are decorated with two arvl substituents, a highly challenging motif, and the catalyst must differentiate between these similar groups to provide high enantioselectivities. Excited by the potential generality of this catalyst, I have now developed analogous reactions of ketoiminium ions to form enantioenriched isoquinolines with diaryl, tetrasubstituted α -stereocenters (Scheme 3.4).

Scheme 3.4: Enantioselective Cu-Catalyzed Alkynylation to Form Isoquinolines with Tetrasubstituted Stereocenters

3.2 **Results and Discussions**

Synthesis of Isoquinoline Substrates

The isoquinoline substrates were synthesized in two steps from acid chlorides and amines. After amide formation, a Bischler-Napieralski reaction enables formation of isoquinoline **3-26** (Scheme 3.5). Because these cyclic imines are basic, it is safer to use deactivated silica gel for their purification. I have deactivated silica gel with 1% Et_3N on my columns. These ketimines are stable and can be stored at room temperature. Substrates synthesized via this route are shown in Scheme 3.5.

Scheme 3.5: Synthesis of Isoquinoline Substrates

Optimization for Alkynylation of Ketimines

Isoquinoline **3-26** and phenylacetylene **2-62** were selected as model substrates for optimization of the alkynylation. Isoquinoline **3-26** was acylated in situ to generate an iminium ion (See Scheme 3.4, above). The solution of isoquinolinium ion was then transferred to a second vial containing the copper catalyst, alkyne, base and additional solvent. In the absence of ligands, CuI with Hunings base at room temperature gave an yield of 81% in solvent DCM (Table 3.1, entry 1). Use of other metal sources like Copper (tetrakis-acetonitrile) hexa-fluorophosphate and Copper thiophenolate showed lower reactivity (Table 3.1, entry 2,3). On investigating chiral ligands, Ph-PyBox (L1)

gave an initial enantioselectivity of 37% at room temperature (Table 3.1, entry 4). On decreasing the temperature to 4 °C, ligands

\sim	(i) CICO ₂ Me (1.0 equiv)		
	(ii) 10 mol % Cul, 12 mol % Ligand		
Υ Ϋ́	HCCPh (1.2 equiv)	Ph	
Ph	ⁱ Pr ₂ NEt (1.5 equiv)		
3-26	0.15M CH ₂ Cl _{2,} T °C, 24 h	3-32 Ph	

Table 3-1: Optimization of Alkynylation of Isoquinolines

Entry	[Cu]	Ligand	T (°C)	Yield (%)	ee (%)
1	CuI	-	R.T.	81	-
2	Cu(MeCN) ₄ PF ₆	-	R.T.	65	-
3	CuSPh	-	R.T.	50	-
4	CuI	L1	R.T.	85	37
5	CuI	L1	4	65	53
6	CuI	L2	4	89	20
7^{b}	CuI	L1	4	72	19
8 ^c	CuI	L1	4	60	0
9 ^d	CuI	L1	4	80	89
10 ^d	CuI	L1	-20	77	92
11 ^{d,e}	CuI	L1	4	81	91
12 ^f	CuI	L1	-20	64	83

^aConditions: Ketimine **3-26**(0.1 mmol, 1.0 equiv), [M] (0.01 mmol, 10 mol%), L*(0.012 mmol, 12 mol%), alkyne **2-62** (0.12 mmol, 1.2 equiv), Methylchloroformate (0.1 mmol, 1.0 equiv), base (0.15 mmol, 1.5 equiv), CH₂Cl₂ (0.15M), 24 h, unless otherwise noted, Yield determined by ¹H NMR analysis of crude mixture with internal standard 1,3,5-trimethoxybenzene, ee determined by standard HPLC analysis; ^bEt₃N used as base; ^c MTBD used as base, MTBD = 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene; ^d CHCl₃ as solvent; ^e 0.1M concentration; ^fEthyl chloroformate used instead of methyl chloroformate in CHCl₃.

L1 and *i*-propyl-PyBox (L2) gave yields of 65% and 89% and ee's of 53% and 20% respectively (Table 3.1, entries 5 and 6). Because ligand L1 showed better enantioselectivity, I pursued optimization of the other reaction parameters using the CuI/PhPyBox catalyst system. Other bases (Et₃N and MTBD) did not prove to be superior over Hunings base (Table 3.1, entries 7 and 8) and the formation of racemic . However changing solvent to CHCl₃ from DCM, increased both yield and enantioselectivity to 80 and 89% respectively (Table 3.1, entry 9). Having identified CHCl₃ as a promising solvent, I increased the enantioselectivity to 91% with a minute lowering in reactivity to 77% at a decreased temperature of -20 °C (Table 3.1, entry 10). Further we noticed that on diluting our solvent from 0.15M to 0.1M at 4 °C, we get favorable results of 81% yield and 91% enantioselctivity (Table 3.1, entry 11). I also tested other acylating agents and saw that ethylchloroformate showed poorer reactivity and selectivity compared to methyl chloroformate (Table 3.1, entry 12).

Substrate Scope

Scope on the Ketimine

Under these optimized conditions (Table 3.1, entry 11), a wide variety of isoquinolines reacted with phenyl acetylene in high yields and enantioselectivities (Scheme 3.6 and 3.7). With respect to substitution of the isoquinoline, substrates with electron-donating and electron-withdrawing groups on the 7 position of the isoquinoline show great reactivity and selectivity (Scheme 3.6, **3-34 - 35**). However poor reactivity is observed in the case of electron-donating substituents at the 6

position (3-38). This is probably due to the iminium ion being stabilized by the para position electron-donating methoxy group leading to lower reactivity. However high ee is obtained in this case with diluting the solvent to 0.05M. Halides are also well tolerated at the 6 position (3-36 - 3-37). I also observed that the acylating agent, benzylchloroformate works great in our system in place of methylchloroformate (3-45).

Scheme 3.6: Scope of the Isoquinoline

My colleague Jixin Liu and an undergraduate REU student Clarissa Schoffler also demonstrated broad scope in the 1-aryl substituent of the isoquinoline (Scheme 3.7). We observed high yields and ee's for electron-donating and electronwithdrawing groups at both meta and para positions (Scheme 3.7, **3-39** and **3-42**). An acetal-substituted aryl group has shown modest reactivity and selectivity (**3-43**). Notably, alkynylation of aromatic isoquinolinium ions is also possible using our conditions (**3-44**).

Scope of the Alkyne

Good yields and high enantioselectivities were observed using a wide range of aryl acetylenes with isoquinoline **3-23** (Scheme 3.8). Electron-donating groups at both meta and para positions of the arene worked great (**3-45**, **3-46**). The enantio-selectivity with an ortho tolyl group was however poor, likely indicating steric intolerance (**3-47**).

Scheme 3.8: Scope of the Alkyne

Electron-withdrawing groups at both meta and para positions were well tolerated like methoxy (3-49), ester (3-50),cyano (3-51), and halide (3-48). With

respect to alkyl-substituted alkynes, my colleague, Jixin Liu observed that addition of 1-octyne gave modest yield and enantioselectivity (**3-54**). Low enantioselectivity was also observed in the addition of cyclopentylacetylene (**3-55**). Silyl acetylenes also underwent addition. (Dimethylphenylsilyl)acetylene showed modest reactivity and selectivity giving 53% yield and 52% ee of silyl-protected acetylene **3-52**. Triphenylsilyl protected acetylenes however worked great in our system giving (**3-53**) in 76% yield and 98% ee.

Elaboration of Products

The alkyne products can be easily elaborated. Jixin Liu demonstrated that reduction of alkyne **3-33** gives alkyl-substituted isoquinoline **3-56** in quantitative yield and high enantiopurity (Scheme 3.9). I showed that oxidation of product **3-33** to diketone **3-57** was accomplished in 75% yield and perfect stereochemical fidelity.⁵⁰ I was unable to further oxidize the diketone to the carboxylic acid however, probably due to steric crowding at the α -sterocenter of the isoquinoline. Finally, I was also able to show that the deprotection of silyl acetylene **3-53** was accomplished in 45% yield and perfect stereochemical fidelity to deliver terminal alkyne **3-58**.

3.3 Proposed Mechanism and Investigation of Catalyst Aggregation

My working mechanistic hypothesis is shown in Scheme 3.10. The reaction likely proceeds via initial formation of copper acetylide (**3-60**), which then attacks the iminium ion intermediate (**3-59**) generated from ketimine (**3-23**) in the presence of methyl chloroformate.

We are currently investigating how the copper/Ph-PyBox catalyst imparts enantioselectivity in this reaction. The enantiodetermining step is likely the C-C bond formation (Scheme 3.10). To understand this step, we must determine the structure of copper acetylide **3-60**. In our tetrasubstituted oxocarbenium project (Chapter 2), we observed a positive nonlinear effect exhibited by our catalyst system suggesting dimeric (or other higher order) copper/Ph-PyBox catalyst species. Also, dinuclear copper catalysts have been proposed to proceed via dicopper acetylide intermediates in related reactions.⁵⁵⁻⁵⁹ In this current system too, we hypothesize that we may have a dimeric copper/Ph-PyBox active catalyst. The possibility of a four-coordinate square planar copper(I) complex is improbable due to steric crowding, and likely not the active complex in this case too (Figure 2.4). As for the oxocarbenium ion case, we considered that Ph-PyBox may act instead as a bidentate ligand, with either the pyridine or one oxazoline arm dissociating, but our model ligands for these types of coordination geometries resulted in racemic products (Scheme 3.11).^{53,54} Cu₂(Ph- $PyBox_2(X)_2$ complexes have been previously reported, ^{55,60,61} and I synthesized Cu₂(Ph-PyBox)₂(I)₂ (**3-61**) in 49% yield (Scheme 3.12). I have also obtained a crystal

structure of this complex as a metal cluster (Figure 3.2). Ignoring any Cu-Cu interaction, each Cu atom in the complex is in a tetrahedral coordination environment except for the four Cu atoms in the anion which are trigonal planar. On testing this complex as a catalyst under our reaction conditions, isoquinoline **3-33** was formed in 83% yield (NMR) and 93% ee which is what we usually observe insitu under our normal reaction conditions (Scheme 3.11).

Scheme 3.11: Reactivity of Other Ligands

Scheme 3.12: Synthesis and Reactivity of Cu₂(Ph-PyBox)₂(I)₂

Figure 3.2 : X-ray crystal structure of Cu₂(Ph-PyBox)₂I₂

 $Cu_2(PyBox)_2IX$ (3-61)

Figure 3.2 : Molecular diagram of 3-61 with ellipsoids at 30% probability. H-atoms omitted for clarity.

Figure 3.3: Non Linear Effects at 0.1 M

Consistent with the presence of higher order copper/Ph-PyBox species, a positive nonlinear correlation is observed between the ee of catalyst and ee of product (Fig. 3.3).⁶² Although this data does not exclude the possibility that these higher order copper species may exist in an off-cycle reservoir, we currently favor a dicopper acetylide intermediate, given their importance in other copper acetylide chemistry.⁵⁵⁻⁵⁹

As discussed in our optimization, we observed that decreasing the reaction concentration increases enantioselctivity in our system. This result suggests a change in the active catalyst under different concentrations. Hence I conducted Non Linear Effect experiments under different concentrations and observed a positive deviation from linearity in all cases (Figure 3.4). The highest ee's are observed under the most dilute conditions (0.025 M). These experiments indicate that there is an aggregation of catalyst in our system and each catalyst has same selectivity under various concentrations, but the concentrations of the catalysts change. Due to the complex nature of this system, we cannot propose a stereochemical model yet, but we favor a dimeric copper/PhPyBox acetylide like active catalyst in our system based on our experimental observations and previous precedents in the literature.

Figure 3.4: Comparative NLE at Different Concentrations

3.4 Summary

In summary, I have developed the first example of an enantioselective addition of alkynes to iminium ions to form α , α -diaryl tetrasubstituted stereocenters. We have demonstrated a diverse substrate scope. Under the optimized conditions, a variety of isoquinolines and alkynes underwent the reaction in good to excellent yields and enantioselectivites. We also have preliminary results on copper/Ph-PyBox dimeric catalyst in our reaction system. I am now preparing a manuscript describing this work and plan to submit it in the fall of 2015.

3.5 Experimental Procedure

General Information

Reactions were performed either in a N₂-atmosphere glovebox in oven-dried 1-dram vials with Teflon-lined caps or in oven-dried round-bottomed flasks unless otherwise noted. Flasks were fitted with rubber septa, and reactions were conducted under a positive pressure of N₂. Stainless steel syringes or cannulae were used to transfer air-and moisture-sensitive liquids. Flash chromatography was performed on silica gel 60 (40-63µm, 60Å). Thin layer chromatography (TLC) was performed on glass plates coated with silica gel 60 with F254 indicator. Commercial reagents were purchased from Sigma Aldrich, Acros, Fisher, Strem, or Cambridge Isotopes Laboratories and used as received with the following exceptions: tetrahydrofuran, CH₂Cl₂, and Et₂O were dried by passing through drying columns.⁸⁴ MeOH, *i*-Pr₂NEt was distilled from CaH₂. CHCl₃ and Methylchloroformate were purchased in sure-seal bottles. CHCl₃

and *i*-Pr₂NEt were stored in a N₂-atmosphere glovebox and used as such. CDCl₃ was stored over oven-dried potassium carbonate. Alkynes were degassed before use by either freeze-pump-thaw cycles or sparging with N₂. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on 400 MHz spectrometers. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃ = δ 77.07). Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), integration. Infrared (IR) spectra were obtained using FTIR spectrophotometers with material loaded onto a NaCl plate. The mass spectral data were obtained at the University of Delaware spectrometry facility. Optical rotations were measured using a 2.5 mL cell with a 0.1 dm path length. 3-(Cyano)phenylacetylene⁸⁵ and methyl 3-ethynylbenzoate⁸⁶ were prepared as described in the literature 32 .

Preparation of Ketimine Substrates

A solution of 2-phenylethanamine (4.2 g, 39.1 mmol, 1.1 equiv), triethylamine (5.4 mL, 46.2 mmol, 1.3 equiv), and CH_2Cl_2 (20 mL, 0.3 M) was cooled to 0 °C. Freshly distilled benzoyl chloride (3.46 mL, 35.6 mmol, 1.0 equiv) was slowly added. A precipitate immediately formed. The reaction mixture was warmed to room temperature and then further stirred for 1 h. H₂0 (20 mL) was added. The mixture was extracted with EtOAc (30 mL). The organic layer was washed with sat. NaCl (10 mL), dried (MgSO₄), filtered and concentrated to give amide **3-25** (5.74 g, 86%). The spectral data for **3-25** matches that reported in the literature.⁸⁷

A stirred mixture of amide **3-25** (1.778 g, 7.9 mmol, 1.0 equiv), 2-chloropyridine (0.90 mL, 9.5 mmol, 1.2 equiv), and CH₂Cl₂ (40 mL, 0.2 M) was cooled to -78 °C. Trifluoromethanesulfonic anhydride (1.46 mL, 8.7 mmol, 1.1 equiv) was added via syringe over 1 min. After 5 min, the reaction mixture was placed in an ice-water bath and warmed to 0 °C which was then allowed to warm up to room temperature. Upon consumption of amide **3-25** as determined by TLC, aq. NaOH (1 M, 10 mL) and then H₂O (20 mL) were added. The mixture was extracted with EtOAc (30 mL). The organic layer was washed with sat. NaCl (10 mL), dried (MgSO₄), filtered and concentrated. The crude material was purified by silica gel chromatography (10–15 % EtOAc/hexanes with 1% Et₃N) to give amine **3-26** (1.1 g, 65%) as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.56 (m, 2H), 7.48 – 7.33 (m, 4H), 7.31 – 7.20 (m, 3H), 3.92 – 3.79 (m, 2H), 2.89 – 2.75 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 139.0, 138.9, 130.7, 129.3, 128.8, 128.8, 128.2, 127.9, 127.4, 126.6, 47.7, 26.3; FTIR

(NaCl, thin film) 2938, 1608, 1565, 1445, 1351, 1304, 1286, 1189, 1020, 745, 501, cm⁻¹; HRMS (EI+) [M+] calculated for C₁₅H₁₃N; 208.1126, found: 208.1120.

7-Methyl-1-phenyl-3,4-dihydroisoquinoline (3-27). Prepared via General Procedure 1 on a 4.2 mmol scale. The amide *N*-(4-methylphenethyl)benzamide was obtained as a white solid. ¹H NMR

(400 MHz, CDCl₃) δ 7.72 – 7.67 (m, 2H), 7.52 – 7.45 (m, 1H), 7.41 (ddt, *J* = 8.3, 6.7, 1.4 Hz, 2H), 7.14 (s, 4H), 6.11 (s, 1H), 3.71 (td, *J* = 6.9, 5.8 Hz, 2H), 2.90 (t, *J* = 6.8 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 136.2, 135.8, 134.7, 131.4, 129.4, 128.7, 128.6, 126.8, 41.2, 35.3, 21.1; Compound **3-27** was purified by silica gel chromatography (10–15% EtOAc/hexanes) and obtained as a yellow oil (0.678 g, 72%); ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.57 (m, 2H), 7.48 – 7.40 (m, 3H), 7.23 – 7.18 (m, 1H), 7.16 (d, *J* = 7.7 Hz, 1H), 7.10 – 7.05 (m, 1H), 3.86 – 3.80 (m, 2H), 2.76 (dd, *J* = 8.5, 6.1 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 139.2, 136.2, 135.8, 131.3, 129.2, 128.8, 128.7, 128.4, 128.1, 127.2, 47.9, 25.9, 21.2; FTIR (NaCl, thin film) 1557, 1410, 1220, 1189, 1079, 541, 422 cm⁻¹; HRMS (EI+) [M+] calculated for C₁₆H₁₅N; 222.1256, found: 222.1279.

7-Methoxy-1-phenyl-3,4-dihydroisoquinoline (3-28). Prepared via General Procedure 1 on a 2.17 mmol scale. Crude material was purified by silica gel chromatography (10–15% EtOAc/hexanes) to

give compound **3-28** (0.372 g, 52%) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 2H), 7.46 – 7.40 (m, 3H), 7.19 (d, *J* = 8.3 Hz, 1H), 6.95 (dd, *J* = 8.2, 2.7 Hz, 1H), 6.82 (d, *J* = 2.6 Hz, 1H), 3.85 – 3.81 (m, 2H), 3.73 (s, 3H), 2.77 – 2.71 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 168.8, 158.4, 138.2, 130.5, 129.5, 129.1, 128.5, 128.2, 127.9, 116.6, 113.8, 54.4, 47.0, 24.7; FTIR (NaCl, thin film) 1506, 1457, 1248, 1109, 551, 425 cm⁻¹; HRMS (EI+) [M+] calculated for C₁₆H₁₅NO; 238.1232, found: 238.1231

6-Fluoro-1-phenyl-3,4-dihydroisoquinoline (3-29). Prepared via General Procedure 1 on a 4.7 mmol scale. Crude material was purified by silica gel chromatography (10-15% EtOAc/hexanes) to give compound **3-29** (0.703 g, 67%) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.56 (m, 2H), 7.49 - 7.39 (m, 3H), 7.32 - 7.27 (m, 1H), 7.00 (dd, J = 8.8, 2.6 Hz, 1H), 6.94 (td, J = 8.6, 2.6 Hz, 1H), 3.89 – 3.82 (m, 2H), 2.88 – 2.78 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 163.7 (d, J = 250.0 Hz), 141.9 (d, J = 8.8 Hz), 138.8, 130.17 (d, J = 8.6 Hz), 129.4, 128.7, 128.2, 125.3 (d, J = 3.1 Hz), 114.5 (d, J = 21.7Hz), 113.34 (d, J = 21.5 Hz), 47.3, 26.55; FTIR (NaCl, thin film) 1636, 1558, 1456, 1228, 1100, 545, 413 cm⁻¹; HRMS (EI+) [M+] calculated for C₁₅H₁₂FN; 225.0965,

found: 225.0965

(400 MHz, CDCl₃) δ 7.73 – 7.65 (m, 2H), 7.53 – 7.47 (m, 1H), 7.46 – 7.35 (m, 3H), 7.27 - 7.14 (m, 3H), 6.11 (s, 1H), 3.71 (td, J = 7.0, 6.0 Hz, 2H), 2.92 (t, J = 6.9 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.5, 141.3, 134.5, 131.9, 131.6, 130.3, 129.8, 128.7, 127.5, 126.8, 122.7, 40.9, 35.4. Compound **3-30** was purified by silica gel chromatography (10–15% EtOAc/hexanes) and obtained as a yellow oil (0.678 g, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.53 (m, 2H), 7.47 – 7.36 (m, 4H), 7.25 (s, 1H), 7.14 (d, *J* = 8.2 Hz, 1H), 3.89 – 3.80 (m, 2H), 2.79 (dd, *J* = 8.5, 6.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 66.5, 140.9, 138.5, 130.5, 129.8, 129.6, 129.4, 128.7, 128.3, 127.6, 124.8, 47.4, 26.1; FTIR (NaCl, thin film) 3438, 2920, 2850, 1958, 1701, 1557, 1446, 1319 cm⁻¹.

Enantioselective Alkynylation of Isoquinolines

Racemic products were obtained using catalytic CuI, *i*-Pr₂NEt and CH₃COOCl in CHCl₃ at room temperature.

General Procedure 2: Enantioselective Alkynylation

In a N₂-atmosphere glovebox, isoquinoline 3-26 (0.30 mmol, 1.0 equiv) and CHCl₃ (1.5 mL) were combined in a 1-dram vial. This vial (vial A) was sealed with a septum-lined piercable cap and removed from the glovebox. Methyl chloroformate (23 µL, 0.30 mmol, 1.0 equiv) was then added dropwise. The reaction mixture was stirred for 1 h at room temperature and then cooled to 0 °C. In a N₂-atmosphere glovebox, CuI (5.7 mg, 0.03 mmol, 10 mol %), 2,6-bis((R)-4-phenyl-4,5-dihydrooxazol-2yl)pyridine (Ph-PyBox, L1, 13.3 mg, 0.024 mmol, 12 mol %) and CHCl₃ (1.0 mL) were combined in a 2-dram vial (vial B). Vial B was capped with a septum-lined piercable cap, and the mixture was stirred for 30 min at room temperature inside the glove box. After 30 min, alkyne (0.36 mmol, 1.2 equiv) and *i*-Pr₂NEt (79 µL, 0.45 mmol, 1.5 equiv) were added to vial B. Vial B was again capped, removed from the glovebox, and cooled to 0 °C. After 10 min, the cooled mixture from vial A was transferred slowly via syringe to vial B. Vial A was rinsed with CHCl₃ (0.5 mL), which was then added to vial B. The mixture was then stirred for 48 h at 4 °C. The reaction mixture was diluted with Et₂O (2 mL) and filtered through a plug of silica gel, which was then washed with more Et₂O (10 mL). The filtrate was concentrated and purified by silica gel chromatography.

Crude material was purified by since get chromatography (10% CH₂Cl₂/PhMe) to give compound **3-33** (run 1: 86.9 mg, 79%; run 2: 45.0 mg, 74%) as colorless oil. The enantiomeric excess was determined to be 91% (run 1: 91% ee; run 2: 90% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.5 mL/min, 1% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 23.36 min, $t_{\rm R}$ (minor) = 21.83 min. [α]_D²⁴ = 20.0° (c 10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.64 (m, 2H), 7.55 (ddd, J = 5.5, 3.0, 1.6 Hz, 2H), 7.40 – 7.30 (m, 5H), 7.27 – 7.21 (m, 2H), 7.16 (dddd, J = 12.6, 10.9, 7.2, 3.6 Hz, 3H), 4.43 (dt, J = 12.8, 4.4 Hz, 1H), 3.80 (ddd, J = 13.1, 10.4, 3.2 Hz, 1H), 3.58 (s, 3H), 3.28 (ddd, J = 15.0, 10.3, 4.3 Hz, 1H), 3.05 (ddd, J = 15.9, 4.7, 3.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 56.4, 146.8, 140.5, 132.9, 131.9, 129.7, 128.4, 128.3, 128.3, 128.1, 126.9, 126.7, 126.6, 125.9, 123.0, 90.5, 85.7, 62.5, 52.4, 42.1, 30.0; FTIR (NaCl, thin film) 3716, 2852, 1723, 1640, 1580, 1441, 1298, 425

 $cm^{-1};\ HRMS$ (EI+) [M+] calculated for $C_{25}H_{21}NO_2;\ 368.1651,$

found: 368.1627.

(S)-Methyl 7-methyl-1-phenyl-1-(phenylethynyl)-3,4 dihydroisoquinoline-2(1H)-carboxylate (3-34). Prepared via

General Procedure 2. Crude material was purified by silica gel chromatography (15–30% CH₂Cl₂/PhMe) to give compound **3-34** (run 1: 92.6 mg, 81%; run 2: 101.7 mg, 89%) as colorless oil. The enantiomeric excess was determined to be 91% (run 1: 90% ee; run 2: 91% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.5 mL/min, 1% *i*-

PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 22.60 min, $t_{\rm R}$ (minor) = 19.15 min. [α] $_{\rm D}^{24}$ = 9.0° (c 10.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.68 (m, 2H), 7.61 – 7.53 (m, 2H), 7.42 – 7.32 (m, 5H), 7.29 – 7.22 (m, 1H), 7.10 (d, J = 7.8 Hz, 1H), 7.05 (d, J = 1.8 Hz, 1H), 6.99 (dd, J = 7.8, 1.8 Hz, 1H), 4.44 (dt, J = 12.8, 4.4 Hz, 1H), 3.77 (ddd, J = 13.1, 10.5, 3.1 Hz, 1H), 3.59 (s, 3H), 3.25 (ddd, J = 15.1, 10.4, 4.2 Hz, 1H), 3.01 (dt, J = 15.8, 3.8 Hz, 1H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.4, 146.9, 140.1, 136.4, 131.9, 130.1, 129.9, 128.4, 128.3, 128.2, 128.1, 127.7, 126.7, 125.9, 123.1, 90.7, 85.6, 62.5, 52.4, 42.3, 29.7, 21.3; FTIR (NaCl, thin film) 3071, 2592, 1571, 1474, 1357, 1250, 1029, 830 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₆H₂₃NO₂; 382.1807, found: 382.1790.

(S)-Methyl 7-methoxy-1-phenyl-1-(phenylethynyl)-3,4-

dihydroisoquinoline-2(1*H***)-carboxylate (3-35).** Prepared via General Procedure 2. Crude material was purified by silica gel

chromatography (15–30% CH₂Cl₂/PhMe) to give compound **3-35** (run 1: 99.5 mg, 84%; run 2: 90.0 mg, 76%) as colorless oil. The enantiomeric excess was determined to be 96% (run 1: 95% ee; run 2: 96% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.4 mL/min, 0.5% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 66.88 min, $t_{\rm R}$ (minor) = 55.96 min. [α]_D²⁴ = 15.0° (c 10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 2H), 7.49 (dq, *J* = 4.9, 1.7 Hz, 2H), 7.36 – 7.29 (m, 3H), 7.28 (d, *J* = 1.6 Hz, 1H), 7.26 (s, 1H), 7.21 – 7.16 (m, 1H), 7.06 (d, *J* = 8.2 Hz, 1H), 6.74 – 6.66 (m, 2H), 4.37 (dt, *J* = 12.8, 4.4 Hz, 1H), 3.69 (ddd, *J* = 13.0, 10.4, 3.1 Hz, 1H), 3.64 (s, 3H), 3.52 (s,

3H), 3.16 (ddd, J = 15.1, 10.5, 4.2 Hz, 1H), 2.93 (dt, J = 15.7, 4.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 158.1, 156.4, 146.7, 141.4, 131.9, 129.2, 128.3, 128.2, 128.1, 126.7, 125.7, 125.3, 122.9, 114.7, 112.9, 90.4, 85.6, 62.5, 55.2, 52.4, 42.4, 29.2; FTIR (NaCl, thin film) 3142, 2947, 2592, 1540, 1385, 1327, 1105, 1079, 842 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₆H₂₃NO₃; 398.1756, found: 398.1736.

film) 3142, 2592, 2020, 1570, 1489, 1383, 1327, 1160, 830 cm⁻¹; HRMS (EI+) [M+] calculated for $C_{25}H_{20}FNO_2$; 386.1556, found: 386.1536.

Br (*S*)-Methyl 6-bluoro-1-phenyl-1-(phenylethynyl)-3,4dihydroisoquinoline-2(1*H*)-carboxylate (3-37). Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (10–15% CH₂Cl₂/PhMe) to give compound 3-37 (run 1: 103 mg, 92%) as white solid. The enantiomeric excess was determined to be 92%ee by chiral HPLC analysis (CHIRALPAK AS-H, 3.0 mL/min, 10% MeOH(0.1%DEA)/CO2, λ =254 nm); *t*_R(major) = 4.94 min, *t*_R(minor) = 4.82 min.¹H NMR (400 MHz, CDCl₃) δ δ 7.60 – 7.55 (m, 2H), 7.49 – 7.45 (m, 2H), 7.35 – 7.26 (m, 6H), 7.23 – 7.17 (m, 2H), 7.01 (d, *J* = 8.7 Hz, 1H), 4.34 (dt, *J* = 12.9, 4.5 Hz, 1H), 3.73 – 3.67 (m, 1H), 3.52 (s, 3H), 3.24 – 3.16 (m, 1H), 3.00 – 2.93 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 156.2, 146.2, 139.6, 135.1, 131.8, 131.5, 130.9, 130.1, 128.5, 128.3, 128.2, 126.9, 125.8, 122.7, 120.5, 89.8, 86.2, 62.2, 52.5, 41.8, 29.8; FTIR (NaCl, thin film) 3853, 3736, 1747, 1699, 1653, 1441, 1362, 1213 cm⁻¹.

chromatography (15–30% CH₂Cl₂/PhMe) to give compound **3-38** (45.0 mg, 38%) as colorless oil. The enantiomeric excess was determined to be 92% by chiral HPLC analysis (CHIRACEL ODH, 0.2 mL/min, 1% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 75.03 min, $t_{\rm R}({\rm minor}) = 69.61$ min. $[\alpha]_{\rm D}^{24} = 7.0^{\circ}$ (c 10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.60 (m, 2H), 7.55 – 7.48 (m, 2H), 7.38 – 7.26 (m, 5H), 7.25 – 7.18 (m, 1H), 7.11 – 7.04 (m, 1H), 6.71 – 6.64 (m, 2H), 4.35 (dt, J = 12.8, 4.6 Hz, 1H), 3.84 – 3.76 (m, 1H) 3.78 (s, 3H), 3.55 (s, 3H), 3.21 (ddd, J = 14.9, 10.1, 4.3 Hz, 1H), 2.99 (ddd, J = 15.9, 4.8, 3.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 157.9, 156.4, 146.9, 134.4, 132.7, 131.8, 130.9, 128.3, 128.2, 128.0, 126.6, 125.8, 123.1, 113.5, 112.4, 90.6, 85.6, 62.0, 55.2, 52.4, 42.1, 30.3; FTIR (NaCl, thin film) 3072, 2290, 1570, 1474, 1383, 1186, 830, 724, 523 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₆H₂₃NO₃; 398.1756, found: 398.1732.

(S)-Methyl 1-phenyl-1-(p-tolylethynyl)-3,4-

dihydroisoquinoline-2(1H)-carboxylate (3-45). Prepared via

General Procedure 2. Crude material was purified by silica gel chromatography (15–30% CH₂Cl₂/PhMe) to give compound **3-45** (107 mg, 94%; run 2: 95.2 mg, 83%) as colorless oil. The enantiomeric excess was determined to be 91% (run 1: 91% ee; run 2: 90 % ee) by chiral HPLC analysis (CHIRALPAK IA, 0.7 mL/min, 2% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 13.34 min, $t_{\rm R}$ (minor) = 11.77 min. [α]_D²⁴ = -6.9° (c 10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.50 (m, 2H), 7.28 (d, *J* = 7.9 Hz, 2H), 7.17 (t, *J* = 7.7 Hz, 2H), 7.10 – 7.05 (m, 2H), 7.04 – 7.00 (m, 3H), 7.00 – 6.95 (m, 2H), 4.27 (dt, *J* = 12.8, 4.4 Hz, 1H), 3.64 (ddd, *J* = 13.0, 10.4, 3.1 Hz, 1H), 3.42 (s, 3H), 3.12 (ddd, *J* = 15.2, 10.4, 4.3 Hz, 1H), 2.89 (dt, *J* = 15.8, 3.9 Hz, 1H), 2.25 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 146.9, 140.6,
138.4, 132.9, 131.8, 129.7, 129.0, 128.3, 128.0, 126.9, 126.7, 126.5, 125.9, 119.9, 89.8, 85.9, 62.5, 52.3, 42.1, 30.0, 21.5; FTIR (NaCl, thin film) 3852, 2359, 1644, 1508, 1489, 1439, 1213, 1179, 517, 415 cm⁻¹; HRMS (EI+) [M+] calculated for $C_{26}H_{23}NO_2$; 382.1807, found: 382.1791.

(S)-Methyl 1-phenyl-1-(*m*-tolylethynyl)-3,4dihvdroisoquinoline-2(1*H*)-carboxylate (3-46). Prepared via

General Procedure 2. Crude material was purified by silica gel chromatography (15–30% CH₂Cl₂/PhMe) to give compound **3-46** (run 1: 89.3 mg, 78%; run 2: 93.7 mg, 82%) as colorless oil. The enantiomeric excess was determined to be 91% (run 1: 90% ee; run 2: 91% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.2 mL/min, 0.8% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 55.49 min, $t_{\rm R}$ (minor) = 51.05 min. [α]_D²⁴ = 1.9° (c 10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 2H), 7.24 – 7.15 (m, 4H), 7.12 – 7.05 (m, 3H), 7.05 – 7.00 (m, 2H), 7.01 – 6.94 (m, 2H), 4.27 (dt, *J* = 12.8, 4.5 Hz, 1H), 3.64 (ddd, *J* = 13.2, 10.4, 3.1 Hz, 1H), 3.42 (s, 3H), 3.12 (ddd, *J* = 15.1, 10.4, 4.3 Hz, 1H), 2.89 (ddd, *J* = 15.8, 4.6, 3.0 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.4, 146.9, 140.5, 137.9, 132.9, 132.4, 129.7, 129.2, 128.9, 128.3, 128.2, 128.1, 126.9, 126.7, 126.6, 125.9, 122.8, 90.1, 85.9, 62.5, 52.4, 42.1, 30.0, 21.3; FTIR (NaCl, thin film) 3442, 2870, 1646, 1488, 1280, 1178, 561, 404 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₆H₂₃NO₂; 382.1807, found: 382.1797.

(S)-Methyl 1-phenyl-1-(o-tolylethynyl)-3,4-dihydroisoquinoline-

2(1*H*)-carboxylate (3-47). Prepared via General Procedure 2. Crude

Me⁻¹ material was purified by silica gel chromatography (10–15% CH₂Cl₂/PhMe) to give compound **3-47** (90.0 mg, 93%) as colorless oil. The enantiomeric excess was determined to be 5% by chiral HPLC analysis (CHIRALPAK IB, 0.2 mL/min, 0.8% *i*-PrOH/hexane, λ =254 nm); *t*_R(major) = 46.57 min, *t*_R(minor) = 40.19 min. [α]_D²⁴ = 40.0° (c 10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.63 (m, 2H), 7.48 (dd, *J* = 7.4, 1.3 Hz, 1H), 7.31 (dd, *J* = 8.4, 6.9 Hz, 2H), 7.25 – 7.19 (m, 4H), 7.19 – 7.07 (m, 4H), 4.40 (dt, *J* = 12.8, 4.5 Hz, 1H), 3.79 (ddd, *J* = 13.0, 10.3, 3.2 Hz, 1H), 3.55 (s, 3H), 3.26 (ddd, *J* = 15.0, 10.2, 4.2 Hz, 1H), 3.09 – 2.98 (m, 1H), 2.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.4, 146.8, 140.5, 140.5, 132.9, 132.1, 129.7, 129.4, 128.3, 128.3, 128.0, 126.8, 126.7, 126.5, 125.9, 125.5, 122.8, 94.4, 84.6, 62.6, 52.4, 42.1, 30.0, 20.8; FTIR (NaCl, thin film) 3853, 2088, 1644, 1489, 1438, 1287, 1124, 532, 454 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₆H₂₃NO₂; 382.1807, found: 382.1809

(S)-Methyl

dihydroisoquinoline-2(1*H*)-carboxylate (3-48). Prepared via

1-((4-chlorophenyl)ethynyl)-1-phenyl-3,4-

General Procedure 2. Crude material was purified by silica gel chromatography (10–15% CH₂Cl₂/PhMe) to give compound **3-48** (run 1: 100.0 mg, 83%; run 2: 90.1 mg, 75%) as colorless oil. The enantiomeric excess was determined to be 95% (run 1: 94% ee; run 2: 96% ee) by chiral HPLC analysis (CHIRALPAK IA, 0.3 mL/min, 1% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 41.53 min, $t_{\rm R}$ (minor) = 36.08 min. $[\alpha]_D^{24} = 28.0^{\circ}$ (c 10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.58 (m, 2H), 7.47 – 7.39 (m, 2H), 7.33 – 7.27 (m, 4H), 7.24 – 7.18 (m, 1H), 7.13 (dtd, J = 16.4, 7.4, 2.0 Hz, 4H), 4.37 (dt, J = 12.8, 4.5 Hz, 1H), 3.76 (ddd, J = 13.1, 10.3, 3.2 Hz, 1H), 3.54 (s, 3H), 3.23 (ddd, J = 14.9, 10.2, 4.3 Hz, 1H), 3.01 (ddd, J = 15.8, 4.7, 3.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 156.6, 146.6, 140.2, 134.3, 133.1, 132.9, 129.6, 128.6, 128.4, 128.1, 126.9, 126.8, 126.7, 125.9, 121.5, 91.5, 84.6, 62.4, 52.4, 42.1, 29.9; FTIR (NaCl, thin film) 3581, 2282, 1678, 1565, 1485, 1358, 1213, 581, 425 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₅H₂₀ClNO₂; 402.1261, found: 402.1259

. (S)-Methyl 1-((3-methoxyphenyl)ethynyl)-1-phenyl-3,4dihydroisoquinoline-2(1*H*)-carboxylate (3-49). Prepared via

General Procedure 2. Crude material was purified by silica gel

chromatography (15–30% CH₂Cl₂/PhMe) to give compound **3-49** (run 1: 97.4 mg, 82%; run 2: 98.6 mg, 83%) as colorless oil. The enantiomeric excess was determined to be 95% (run 1: 95% ee; run 2: 95% ee) by chiral HPLC analysis (CHIRACEL ODH, 0.4 mL/min, 1% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 63.87 min, $t_{\rm R}$ (minor) = 49.86 min. [α]_D²⁴ = 8.0° (c 10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dt, J = 6.7, 1.1 Hz, 2H), 7.36 – 7.30 (m, 2H), 7.28 – 7.19 (m, 3H), 7.19 – 7.09 (m, 4H), 7.05 (dd, J = 2.6, 1.4 Hz, 1H), 6.92 (ddd, J = 8.5, 2.6, 1.0 Hz, 1H), 4.42 (dt, J = 12.8, 4.5 Hz, 1H), 3.84 (s, 3H), 3.79 (ddd, J = 13.1, 10.4, 3.3 Hz, 1H), 3.57 (s, 3H), 3.27 (ddd, J = 15.1, 10.4, 4.3 Hz, 1H), 3.04 (dt, J = 16.0, 3.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 156.4, 146.8, 140.4, 132.9, 129.7, 129.3, 128.3, 128.1, 126.9, 126.7,

126.6, 125.89, 124.5, 124.0, 116.7, 114.9, 90.3, 85.6, 62.4, 55.4, 52.4, 42.1, 30.0; FTIR (NaCl, thin film) 3431, 2930, 2870, 1652, 1599, 1489, 1270, 1110, 464 cm⁻¹; HRMS (EI+) [M+] calculated for $C_{26}H_{23}NO_3$; 398.1756, found: 398.1750

(S)-Methyl 1-((3-(methoxycarbonyl)phenyl)ethynyl)-1phenyl-3,4-dihydroisoquinoline-2(1*H*)-carboxylate (3-50). Prepared via General Procedure 2. Crude material was

purified by silica gel chromatography (20–60% CH₂Cl₂/PhMe) to give compound **3-50** (run 1: 116.6 mg, 92%; run 2: 107.0 mg, 84%) as white solid. The enantiomeric excess was determined to be 90% (run 1: 90% ee; run 2: 90% ee) by chiral HPLC analysis (CHIRALPAK IB, 0.2 mL/min, 2% *i*-PrOH/hexane, λ =254 nm); t_R (major) = 63.37 min, t_R (minor) = 58.29 min. [α]_D²⁴ = 28.9° (c 10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (t, *J* = 1.6 Hz, 1H), 7.99 (dt, *J* = 7.9, 1.5 Hz, 1H), 7.70 – 7.59 (m, 3H), 7.40 (t, *J* = 7.8 Hz, 1H), 7.30 (dd, *J* = 8.5, 6.9 Hz, 2H), 7.24 – 7.05 (m, 5H), 4.37 (dt, *J* = 12.8, 4.5 Hz, 1H), 3.93 (s, 3H), 3.77 (ddd, *J* = 12.9, 10.1, 3.2 Hz, 1H), 3.55 (s, 3H), 3.23 (ddd, *J* = 14.9, 10.2, 4.2 Hz, 1H), 3.01 (ddd, *J* = 15.9, 4.8, 3.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 156.3, 146.5, 140.2, 136.1, 133.0, 132.9, 130.3, 129.7, 129.3, 128.43, 128.4, 128.1, 126.9, 126.8, 126.6, 125.9, 123.5, 91.4, 84.7, 62.4, 52.5, 52.4, 42.1, 29.9; FTIR (NaCl, thin film) 3020, 2964, 2870, 1700, 1660, 1547, 1220, 1110, 528, 425 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₇H₂₃NO₄; 425.1627, found: 425.1641

(S)-Methyl 1-((3-cyanophenyl)ethynyl)-1-phenyl-3,4dihvdroisoquinoline-2(1*H*)-carboxylate (3-51). Prepared via

General Procedure 2. Crude material was purified by silica gel chromatography (20–60% CH₂Cl₂/PhMe) to give compound **3-51** (run 1: 110.5 mg, 94%; run 2: 106.1 mg, 90%) as white solid. The enantiomeric excess was determined to be 95% (run 1: 95% ee; run 2: 94% ee) by chiral HPLC analysis (CHIRACEL ODH, 0.4 mL/min, 1% *i*-PrOH/hexane, λ =254 nm); $t_{\rm R}$ (major) = 63.87 min, $t_{\rm R}$ (minor) = 49.86 min. [α]_D²⁴ = 30.0° (c 10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 1.7 Hz, 1H), 7.72 (dt, *J* = 7.9, 1.5 Hz, 1H), 7.65 – 7.58 (m, 2H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.33 (dd, *J* = 8.5, 6.9 Hz, 2H), 7.27 – 7.21 (m, 1H), 7.21 – 7.09 (m, 4H), 4.35 (dt, *J* = 12.8, 4.6 Hz, 1H), 3.81 (ddd, *J* = 13.0, 9.9, 3.3 Hz, 1H), 3.58 (s, 3H), 3.25 (ddd, *J* = 14.6, 9.9, 4.2 Hz, 1H), 3.04 (ddd, *J* = 15.9, 5.2, 3.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 146.1, 139.8, 135.9, 135.2, 133.1, 131.6, 129.5, 129.2, 128.4, 128.2, 127.1, 126.9, 126.9, 125.8, 124.6, 118.1, 112.8, 93.2, 83.4, 62.3, 52.5, 42.2, 29.9; FTIR (NaCl, thin film) 3446, 2964, 1635, 1558, 1437, 1362, 1215, 526, 442 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₆H₂₀N₂O₂; 393.1603, found: 393.1586.

(*R*)-methyl 1-((dimethyl(phenyl)silyl)ethynyl)-1-phenyl-3,4-dihydroisoquinoline-2(1*H*)-carboxylate (3-52) Prepared via General Procedure 2. Crude material was purified by silica gel chromatography (20–60% CH₂Cl₂/PhMe) to give

compound **3-52** (run 1: 52.1 mg, 53%) as colorless oil. The enantiomeric excess was determined to be 52% ee by chiral HPLC analysis (CHIRALPAK IB, 0.2 mL/min,

0.8% *i*-PrOH/hexane, λ =210 nm); $t_{\rm R}$ (major) = 40.52 min, $t_{\rm R}$ (minor) = 32.85 min. [α]_D²⁴ = 7.0° (c 10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.62 (m, 2H), 7.59 – 7.54 (m, 2H), 7.42 – 7.33 (m, 3H), 7.29 – 7.23 (m, 2H), 7.21 – 7.15 (m, 1H), 7.15 – 7.09 (m, 2H), 7.08 (dd, *J* = 7.3, 2.7 Hz, 1H), 4.34 (dt, *J* = 12.8, 4.5 Hz, 1H), 3.71 (ddd, *J* = 13.1, 10.3, 3.2 Hz, 1H), 3.49 (s, 3H), 3.20 (ddd, *J* = 15.0, 10.3, 4.2 Hz, 1H), 2.98 (ddd, *J* = 15.8, 4.7, 3.2 Hz, 1H), 0.45 (d, *J* = 3.0 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 156.46, 146.50, 140.03, 137.26, 133.79, 132.99, 129.69, 129.38, 128.27, 128.03, 127.85, 126.84, 126.67, 126.59, 125.78, 108.22, 88.08, 62.46, 52.25, 42.05, 29.95, -0.63, -0.67; FTIR (NaCl, thin film) 3641, 3048, 1700, 1558, 1437, 1362, 1215, 819, 526, 442, 80 cm⁻¹; HRMS (EI+) [M+] calculated for C₂₇H₂₇NO₂Si; 426.1831, found: 426.1844.

(*R*)-methyl 1-(2-oxopropanoyl)-1-phenyl-3,4-

 e_{e} **dihydroisoquinoline-2(1***H***)-carboxylate (3-57).** This procedure was adapted from the literature.⁵⁰ Alkyne **3-33** was prepared via

General Procedure 2 on a 0.07-mmol scale. A solution of KMnO₄ (30.8 mg, 0.21 mmol, 3.0 equiv), NaHCO₃ (6.54 mg, 0.84 mmol, 1.2 equiv), tetrabutylammonium bromide (12 mg, 0.035 mmol, 0.52 equiv), and H₂O (1.0 mL) was added to a solution of alkyne **3-33** (23.8 mg, 0.07 mmol, 1.0 equiv) and CH₂Cl₂ (1.0 mL, 0.12 M). The reaction mixture was stirred at room temperature for 48 h. Excess KMnO₄ was destroyed by adding HCl (1 M, 1 mL) and Na₂SO₃ (20 mg) until the red color disappeared. The mixture was then washed with sat. NaHCO₃ and extracted with CH₂Cl₂ (5 mL). The organic layers were dried (MgSO₄) and filtered through a short

pad of Celite, which was then washed with CH₂Cl₂ (10 mL). The filtrate was concentrated, and the crude material was purified by silica gel chromatography (3% CH₂Cl₂/toluene) to give compound **3-57** (19.4 mg, 75%) as yellow oil. The enantiomeric excess was determined to be 92% by chiral HPLC analysis (CHIRALPAK IC, 0.5 mL/min, 3% *i*-PrOH/hexane, λ =210 nm); t_{R} (major) = 17.40 min, t_{R} (minor) = 14.71 min. [α]_D²⁴ = 7.0° (c 10, CHCl₃); ¹ H NMR (400 MHz, CDCl₃) δ 8.14 – 8.08 (m, 1H), 7.59 – 7.52 (m, 1H), 7.45 (dd, *J* = 8.3, 6.9 Hz, 2H), 7.41 – 7.37 (m, 1H), 7.36 – 7.24 (m, 5H), 7.14 – 7.09 (m, 1H), 7.03 – 6.99 (m, 1H), 4.22 (ddd, *J* = 13.2, 5.2, 2.5 Hz, 1H), 3.53 (s, 2H), 3.46 (ddd, *J* = 16.3, 12.3, 5.2 Hz, 1H), 3.19 (td, *J* = 12.7, 3.1 Hz, 1H), 2.88 (dt, *J* = 15.7, 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 192.1, 186.2, 156.3, 142.4, 135.7, 133.2, 132.9, 132.8, 131.1, 129.4, 128.9, 128.4, 128.0, 127.8, 127.8, 127.6, 126.3, 71.7, 53.3, 38.9, 29.1; FTIR (NaCl, thin film) 3445, 2900, 1720, 1680, 1662, 1429, 1205, 1132, 1053, 1022, 778, 720, 523 cm⁻¹.

(R)-methyl 1-ethynyl-1-phenyl-3,4-dihydroisoquinoline2(1H)-carboxylate (3-58). Alkyne 3-53 was prepared via

General Procedure 2 on a 0.20-mmol scale. To a solution of

alkyne **3-53** (30.0 mg, 0.08 mmol, 1.0 equiv) and THF (2 mL, 0.04 M), tetrabutylammonium fluoride (0.1 mL, 1 M, 1.25 equiv) was added. The reaction mixture was stirred at 0 °C for 12 h. After consumption of alkyne **3-53** as determined by TLC analysis, the mixture was filtered through a short pad of silica gel, which was then washed with CH_2Cl_2 (15 mL). The filtrate was concentrated, and the crude material was purified by silica gel chromatography (0–10% Et₂O/hexanes) to give compound **3-58** (10.0 mg, 45%) as colorless oil. The enantiomeric excess was determined to be 97% by chiral HPLC analysis (CHIRALPAK IB, 0.5 mL/min, 3.0% *i*-PrOH/hexane, λ =220 nm); $t_R(major) = 23.67$ min, $t_R(minor) = 19.32$ min. ¹ H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 – 7.53 (m, 2H), 7.28 (d, *J* = 7.5 Hz, 1H), 7.25 (s, 1H), 7.22 – 7.16 (m, 1H), 7.15 – 7.08 (m, 2H), 7.08 – 7.05 (m, 2H), 4.28 (dt, *J* = 12.8, 4.6 Hz, 1H), 3.72 (ddd, *J* = 13.0, 10.0, 3.3 Hz, 1H), 3.53 (s, 3H), 3.18 (ddd, *J* = 14.7, 10.0, 4.2 Hz, 1H), 2.97 (ddd, *J* = 15.8, 5.0, 3.3 Hz, 1H), 2.73 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 145.9, 139.9, 132.9, 129.5, 128.3, 128.1, 126.9, 126.8, 126.7, 125.8, 84.7, 73.9, 61.7, 52.5, 42.1, 29.9; FTIR (NaCl, thin film) 3270, 3100, 1716, 1685, 1442, 1363, 1216, 751 cm⁻¹; HRMS (EI+) [M+] calculated for C₁₉H₁₇NO₂; 292.1311, found: 292.1321.

Non-Linear Experimental Procedure

In a N₂-atmosphere glovebox, isoquinoline **3-26** (0.1 mmol, 1.0 equiv) and CHCl₃ (0.3 mL) were combined in a 1-dram vial. This vial (vial A) was sealed with a septum-lined piercable cap and removed from the glovebox. Methyl chloroformate (7.5 μ L, 0.1 mmol, 1.0 equiv) was then added dropwise. The reaction mixture was stirred for 1 h at room temperature and then cooled to 0 °C. In a N₂-atmosphere glovebox, CuI (1.8 mg, 0.01 mmol, 10 mol %), 2,6-bis((*R*)-4-phenyl-4,5-dihydrooxazol-2-yl)pyridine (Ph-PyBox, L1, total = 4.3 mg, 0.012 mmol, 12 mol %) and CHCl₃ (0.57 mL) were combined in a 2-dram vial (vial B). Vial B was capped

with a septum-lined piercable cap, and the mixture was stirred for 30 min at room temperature inside the glove box. After 30 min, phenyl acetylene (0.12 mmol, 1.2 equiv) and *i*-Pr₂NEt (25 μ L, 0.15 mmol, 1.5 equiv) were added to vial B. Vial B was again capped, removed from the glovebox, and cooled to 0 °C. After 10 min, the cooled mixture from vial A was transferred slowly via syringe to vial B. Vial A was rinsed with CHCl₃ (0.1 mL), which was then added to vial B. The mixture was then stirred for 24 h at 4 °C.

entry	mol % (<i>R</i>)-Ph-PyBox	mol % (<i>S</i>)-Ph-PyBox	ee of catalyst	ee of product
1	6	6	0	0
2	7	5	17	39
3	7.5	4.5	25	46
4	8	4	33	50
5	9	3	50	67
6	9.9	2.1	65	71
7	11	1	84	85
8	12	0	100	91

The reaction mixture was diluted with Et_2O (2 mL) and filtered through a plug of silica gel, which was then washed with more Et_2O (10 mL). Analytical samples of product were then prepared via preparatory TLC (50% CH₂Cl₂/PhMe) and analyzed by HPLC using a chiral stationary phase.

REFERENCES

If you want to number your bibliographic entries, change the style of the items to *Bib Entry* - *numbered*.

(1) Shacklady-McAtee, D. M.; Dasgupta, S.; Watson, M. P. Organic Letters **2011**, *13*, 3490.

(2) Dasgupta, S., Rivas, T., Watson, M.; *Angewandte Chemie International Edition* **2015**, ASAP.

(3) Wood, J. L.; Petsch, D. T.; Stoltz, B. M.; Hawkins, E. M.; Elbaum, D.; Stover, D. R. *Synthesis* **1999**, *1999*, 1529.

(4) Belliotti, T. R.; Brink, W. A.; Kesten, S. R.; Rubin, J. R.; Wustrow, D. J.; Zoski, K. T.; Whetzel, S. Z.; Corbin, A. E.; Pugsley, T. A.; Heffner, T. G.; Wise, L. D. *Bioorganic & Medicinal Chemistry Letters* **1998**, *8*, 1499.

(5) Comins, D. L.; Schilling, S.; Zhang, Y. Organic Letters 2005, 7, 95.

(6) Honma, T.; Hayashi, K.; Aoyama, T.; Hashimoto, N.; Machida, T.; Fukasawa, K.; Iwama, T.; Ikeura, C.; Ikuta, M.; Suzuki-Takahashi, I.; Iwasawa, Y.; Hayama, T.; Nishimura, S.; Morishima, H. *Journal of Medicinal Chemistry* **2001**, *44*, 4615.

(7) Li, E.; Jiang, L.; Guo, L.; Zhang, H.; Che, Y. *Bioorganic & Medicinal Chemistry* **2008**, *16*, 7894.

(8) Campbell, J. B.; Dedinas, R. F.; Trumbower-Walsh, S. *Synlett* **2010**, 2010, 3008.

(9) Klumpp, D. A.; Zhang, Y.; O'Connor, M. J.; Esteves, P. M.; de Almeida, L. S. *Organic Letters* **2007**, *9*, 3085.

(10) Downey, C. W.; Johnson, M. W.; Tracy, K. J. *The Journal of Organic Chemistry* **2008**, *73*, 3299.

(11) Palucki, M.; Wolfe, J. P.; Buchwald, S. L. *Journal of the American Chemical Society* **1996**, *118*, 10333.

(12) Roy, S. B., T.; Lolio,C.; Kubiak, C. P. *Inorganica Cimica Acta* **2011**, *374*, 134.

(13) Zhou, M.; Xu, Y.; Tan, A.-M.; Leung, P.-H.; Mok, K. F.; Koh, L. L.; Hor, T. S. A. *Inorganic Chemistry* **1995**, *34*, 6425.

(14) Trost, B.; Toste, F. *Journal of the American Chemical Society* **1998**, *120*, 9074.

(15) Giridhar, T.; Srinivasulu, G.; Rao, K. S.; Shodhana Laboratories Ltd.: 2011; Vol. A1.

(16) Unterhalt, B.; Heppert, U. Die Pharmazie 2002, 57, 346.

(17) Chinkov, N.; Warm, A.; Carreira, E. M. *Angewandte Chemie International Edition* **2011**, *50*, 2957.

(18) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chemical Reviews 1994, 94, 2483.

(19) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. Journal of the American Chemical Society **1997**, 119, 11224.

(20) Braun, M.; Kotter, W. *Angewandte Chemie International Edition* **2004**, *43*, 514.

(21) Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 7198.

(22) Moquist, P. N.; Kodama, T.; Schaus, S. E. Angew. Chem. Int. Ed. 2010, 49, 7096.

(23) Hsiao, C.-C.; Liao, H.-H.; Sugiono, E.; Atodiresei, I.; Rueping, M. *Chemistry-A European Journal* **2013**, *19*, 9775.

(24) Rueping, M.; Volla, C. M. R.; Atodiresei, I. Organic Letters 2012, 14, 4642.

(25) Meng, Z.; Sun, S.; Yuan, H.; Lou, H.; Liu, L. Angewandte Chemie International Edition 2014, 53, 543.

(26) Benfatti, F.; Benedetto, E.; Cozzi, P. G. *Chemistry - An Asian Journal* **2010**, *5*, 2047.

(27) Terada, M.; Li, F.; Toda, Y. *Angewandte Chemie International Edition* **2014**, *53*, 235.

(28) Terada, M.; Yamanaka, T.; Toda, Y. *Chemistry-A European Journal* **2013**, *19*, 13658.

(29) Cui, Y.; Villafane, L. A.; Clausen, D. J.; Floreancig, P. E. *Tetrahedron* **2013**, *69*, 7618.

(30) Burns, N. Z.; Witten, M. R.; Jacobsen, E. N. *Journal of the American Chemical Society* **2011**, *133*, 14578.

(31) Witten, M. R.; Jacobsen, E. N. *Angewandte Chemie International Edition* **2014**, *53*, 5912.

(32) Maity, P.; Srinivas, H. D.; Watson, M. P. *Journal of the American Chemical Society* **2011**, *133*, 17142.

(33) Srinivas, H. D.; Maity, P.; Yap, G. P. A.; Watson, M. P. *The Journal of Organic Chemistry* **2015**, *80*, 4003.

(34) Cox, N.; Uehling, M. R.; Haelsig, K. T.; Lalic, G. Angewandte Chemie International Edition 2013, 52, 4878.

(35) Trost, B. M.; Toste, F. D. *Journal of the American Chemical Society* **1998**, *120*, 9074.

(36) Riant, O.; Hannedouche, J. *Organic & Biomolecular Chemistry* **2007**, *5*, 873.

(37) Cozzi, P. G. Angewandte Chemie International Edition 2003, 42, 2895.

(38) Thompson, A.; Corley, E.; Huntington, M.; Grabowski, E. J. J. *Tetrahedron Lett.* **1995**, *36*, 8937.

(39) Thompson, A.; Corley, E.; Huntington, M.; Grabowski, E.; Remenar, J.; Collum, D. *Journal of the American Chemical Society* **1998**, *120*, 2028.

(40) Tan, L.; Chen, C.-Y.; Tillyer, R.; Grabowski, E.; Reider, P. Angew. Chem. Int. Ed. **1999**, *38*, 711.

(41) Madduri, A. V. R.; Harutyunyan, S. R.; Minnaard, A. J. Angewandte Chemie International Edition **2012**, *51*, 3164.

(42) Yamasaki, S.; Fujii, K.; Wada, R.; Kanai, M.; Shibasaki, M. *Journal of the American Chemical Society* **2002**, *124*, 6536.

(43) Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. *Journal of the American Chemical Society* **2004**, *126*, 8910.

(44) Schmidt, F.; Stemmler, R. T.; Rudolph, J.; Bolm, C. *Chemical Society Reviews* **2006**, *35*, 454.

(45) Truppo, M. D.; Pollard, D.; Devine, P. Organic Letters 2007, 9, 335.

(46) Goto, M.; Konishi, T.; Kawaguchi, S.; Yamada, M.; Nagata, T.;

Yamano, M. Organic Process Research & Development 2011, 15, 1178.

(47) Zhang, H.; Lin, S.; Jacobsen, E. N. *Journal of the American Chemical Society* **2014**, DOI: 10.1021/ja510113s.

(48) Haidzinskaya, T. K., H.A.;Liu, J.; Watson, M.P. *Org. Lett.* **2015**, *17*, ASAP.

(49) ccdc.

(50) P.Karastatiris, J. A. M., I. K. Spiliopoulos, A. P. Kulkarni, S. A. Jenekhe *Macromolecules* **2004**, 7867.

(51) B. T. Guan, S. K. X., T. Wu, Z.P. Sun, B.Q. Wang, K.Q. Zhao, Z.J. Shi *Chemical Communication* **2008**, 1437.

(52) Mitchell, T. A.; Bode, J. W. J. Am. Chem. Soc. 2009, 131, 18057.

(53) Kanazawa, Y.; Tsuchiya, Y.; Kobayashi, K.; Shiomi, T.; Itoh, J.-i.;

Kikuchi, M.; Yamamoto, Y.; Nishiyama, H. *Chemistry – A European Journal* **2006**, *12*, 63.

(54) Debono, N.; Djakovitch, L.; Pinel, C. *Journal of Organometallic Chemistry* **2006**, *691*, 741.

(55) Nakajima, K.; Shibata, M.; Nishibayashi, Y. *Journal of the American Chemical Society* **2015**, *137*, 2472.

(56) Díez, J.; Gamasa, M. P.; Gimeno, J.; Aguirre, A.; García-Granda, S.; Holubova, J.; Falvello, L. R. *Organometallics* **1999**, *18*, 662.

(57) Ahlquist, M.; Fokin, V. V. Organometallics 2007, 26, 4389.

(58) Mealli, C.; Godinho, S. S. M. C.; Calhorda, M. J. *Organometallics* **2001**, *20*, 1734.

(59) Rodionov, V. O.; Fokin, V. V.; Finn, M. G. *Angewandte Chemie International Edition* **2005**, *44*, 2210.

(60) Díez, J.; Gamasa, M. P.; Panera, M. a. *Inorganic Chemistry* **2006**, *45*, 10043.

(61) Panera, M. a.; Díez, J.; Merino, I.; Rubio, E.; Gamasa, M. P. *Inorganic Chemistry* **2009**, *48*, 11147.

(62) Girard, C.; Kagan, H. *Angewandte Chemie International Edition* **1998**, *37*, 2922.

(63) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518.

(64) N.A. Noureldin, D. Z., D. G. Lee *Journal of the Organic Chemistry* **1997**, *62*, 8767.

(65) Y. H. Zhang, B. F. S., J, Q. Yu Angewandte Chemie International Edition **2009**, 6097.

(66) Y. Wang, B. H., S. Sheng, M. Cai J. Chem. Res. 2007, 728.

(67) G. T. Crisp, P. D. T. **2000**, 407.

(68) Corbett, J. W.; Ko, S. S.; Rodgers, J. D.; Gearhart, L. A.; Magnus, N. A.; Bacheler, L. T.; Diamond, S.; Jeffrey, S.; Klabe, R. M.; Cordova, B. C.; Garber, S.; Logue, K.; Trainor, G. L.; Anderson, P. S.; Erickson-Viitanen, S. K. *Journal of Medicinal Chemistry* **2000**, *43*, 2019.

(69) Renaud, J.; Bischoff, S. F. o.; Buhl, T.; Floersheim, P.; Fournier, B.; Halleux, C.; Kallen, J.; Keller, H.; Schlaeppi, J.-M.; Stark, W. *Journal of Medicinal Chemistry* **2003**, *46*, 2945.

(70) Stilz, H. U.; Jablonka, B.; Just, M.; Knolle, J.; Paulus, E. F.; Zoller, G. *Journal of Medicinal Chemistry* **1996**, *39*, 2118.

(71) Gaochao Huang, J. Y., Xingang Zhang *Chemical Communication* **2011**, *47*, 5587.

(72) Zhang, F.-G.; Ma, H.; Zheng, Y.; Ma, J.-A. *Tetrahedron* **2012**, *68*, 7663.

(73) Huang, G.; Yin, Z.; Zhang, X. *Chemistry – A European Journal* **2013**, *19*, 11992.

(74) Yin, L.; Otsuka, Y.; Takada, H.; Mouri, S.; Yazaki, R.; Kumagai, N.; Shibasaki, M. *Organic Letters* **2013**, *15*, 698.

(75) Nguyen, T. B.; Bousserouel, H.; Wang, Q.; Guéritte, F. Advanced Synthesis & Catalysis **2011**, 353, 257.

(76) Funabashi, K.; Ratni, H.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. **2001**, *123*, 10784.

(77) Nishimura, T.; Noishiki, A.; Chit Tsui, G.; Hayashi, T. *Journal of the American Chemical Society* **2012**, *134*, 5056.

(78) Nishimura, T.; Noishiki, A.; Ebe, Y.; Hayashi, T. Angew. Chem. Int. Ed. 2013, 52, 1777.

(79) Hashimoto, T.; Omote, M.; Maruoka, K. *Angewandte Chemie International Edition* **2011**, *50*, 8952.

(80) Jiang, B.; Si, Y.-G. Angew. Chem. Int. Ed. 2004, 43, 216.

(81) Ahamed, M.; Todd, M. H. Eur. J. Org. Chem. 2010, 2010, 5935. (82)

Taylor, A. M.; Schreiber, S. L. Organic Letters 2006, 8, 143.

(83) Dasgupta, S.; Rivas, T.; Watson, M. P., Angew. Chem. Int. Ed. ASAP (84)

Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.;

Timmers, F. J. Organometallics 1996, 15, 1518.

(85) Wang, Y.; Huang, B.; Sheng, S.; Cai, M. J. Chem. Res. 2007, 2007,

728.

(86) Crisp, G. T.; Turner, P. D. Tetrahedron 2000, 56, 407.

(87) Nadres, E. T.; Daugulis, O. *Journal of the American Chemical Society* **2012**, *134*, 7.

(88) Minor, D. L.; Wyrick, S. D.; Charifson, P. S.; Watts, V. J.; Nichols, D. E.; Mailman, R. B. *Journal of Medicinal Chemistry* **1994**, *37*, 4317.

(89) Sashida, H. T., T. Chem. Pharm. Bull. 1986, 3644.

(90) Shinoda, A. I., T.; Fujita, K. *Journal of the American Chemical Society* **1980**, *102*, 1165.

Appendix A

NMR AND HPLC SPECTRA

	1 Ppm	$\begin{array}{c} 4 \\ -\underbrace{00.1}_{10.1} $	0 U	 Constant Constant 	
		A N			
SF 400. MDW SSB 0 LB CGB 0 PC PC					
HELL CHANNEL NUC1 CHANNEL P1 P11 P11 3.3 P11W 400. SF01 400. SF Processing SF 400.					
АС В В В В В В В В В В В В В					
Date2 Time1NSTRUM FINSTRUM FULFROG TULFROG TDLFROG SCLVENT NS SULVENT NS SWH SWH SWH SWH SWH SWH SWH SWH SWH SW				OMe	
Current Data Far NAME SDG 2-1 EXPNO PROCNO FROCNO F2 - Acquisition					
	5.2.244 22.252 25.255 25.255 25.255 25.255 25.255 25.255 25.255 25.25 25	921.2 3.736 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.	23.962 23.962 23.984 2.3.933 2.6.833 2.6.833 2.6.833 2.6.933 2.6.905 2.6.905	e·318 e·323 e·336 e·336 e·336 e·336 e·324 e·324 e·324 c.1.028 c.1.028 c.1.3286 c.1.32866 c.1.32866 c.1.32866 c.1.32866 c.1.32866 c.1.32866 c.1.32866 c.1.328666	927.7 807.7 807.7

ırameters -101 Ph OMe substrate 1 1 L f1 ======== 1H 15.00 usec 4.90 dB 30822015 W J.1324710 MHz parameters 32768 .1300000 MHz EM 0.30 Hz 1.00

	Current Data Parameters NMME SDG 1-251 Ph-OMe acetal isochromanone pure EXENO 1 PROCNO 1	PR - Acquisition Parameters PR - Acquisition Parameters 1146 - 20120120 1146 - 20120 1146 - 2023 1146 - 2025 1146 - 2025 1146 - 2025 1146 -	BH 23980.81 4 FIDRES 0.355918 Hz 355918 Hz RG 1.3654255 sec 1.3664256 sec RG 20.850 usec 20.850 usec DE 18.00 usec 290.1 K DI 2.0000000 sec 20.300000 sec DI 0.0300000 sec 2011	======================================		FZ - Processing parameters SF 100.6127690 MHz MW SSB 0 1.00 Hz GB 0 1.00 Hz GB 1.00 Hz
--	---	---	---	--	--	---

2-32, 13C NMR

2-33, 1H NMR

2-34, 1H NMR

2-34, 13C NMR

BRUKER Fet Data Parameters E TR_m-methoxy-sdg-bulk NO 2 CNO 2 1	- Acquisition Parameters e_ 20130803 e 23.10 TRUM spect BHD 5 mm CPQNP 1H/ PROG 5936 65536 VENT C6D6 4	23980.814 Hz 0.365918 Hz 1.3664256 sec 20.850 usec 18.00 usec 298.2 K 2.0000000 sec 0.0300000 sec	===== CHANNEL f1 ======= 1	===== CHANNEL f2 ======= PRG[2 waltz16 1H D2 90.00 usec 4.90 dB 2 20.46 dB 2 20.10 dB 3 3.30822015 W 2 0.09195905 W 3W 0.08120718 W 2 400.1316005 MHz	- Processing parameters 32768 100.6127348 MHz EM 0 1.00 Hz 0 1.40
Currer NAME EXPNO	F2 - P Date_ Time INSTRU PROBHD PROBHD PULPRC TD SSOLVEN NS DS	SWH FIDRES AQ PG DW DE TE D1 TD0 TD0	====== NUC1 PL1 PL1W SF01 SF01	===== CPDPRG PCPD2 PL2 PL12 PL13 PL13W PL13W PL13W PL13W SF02	F2 F2 MDW CBB FC FC FC FC

2-35, 13C NMR

2-36, 13C NMR

ta Parameters R_methylamine-sdg-2-260	sition Parameters 20130803 21.03 22.03 22.03 22.03 25.03 65536 65536 65536 65536 1024 1024 1024 1024 1024 1024 1024 1024	HANNEL f1 ====== 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz	HANNEL f2 ===================================	ssing parameters 32768 100.6127350 MHz EM 1.00 Hz 1.40
Current Dat NAME EXPNO PROCNO	F2 - Acqui Date_ Time FROBHD 5 PULPROG TULPROG TULPROG SOLVENT NS SOLVENT NS SOLVENT AC FIDRES AC FIDRES AC FIDRES DE D11 TE D11 TD0	====== CI NUC1 P1 P11W P11W SF01	======= CI CPDPRG[2 NUC2 PLC2 PL12 PL13 PL13W PL13W PL13W PL13W PL13W PL13W	F2 - Proce SI WDW SSB LB CGB PC
16.82 ——				

2-37, 13C NMR

mdd

1H NMR
2-38,

	00.1	<u>1.00</u> <u>3.12</u> <u>3.12</u>	<u>86.0</u>	96 ⁰ 96 ⁰ 96 ¹ 2 <u>7</u> 80 ¹ 96 ⁰ 96 ⁰ 76 ⁰ 76 ⁰ 76 ⁰ 76 ⁰	
	2 1 ppm	4	- 0 - 0	8 7	ດ - ອ
DC O			_		
WDW SSB T P					
F2 - Processin SI SF 40					
FL1W 3 SF01 40					
====== CHANNI NUC1 P1					
D1 1 TD0					
D W G F D D W					
SWH FIDRES AQ RG)
SOLVENT NS DS				0	OMe
INSTRUM PROBHD 5 mm 0 PULPROG					
F2 - Acquisiti Date_ Time					
Current Data P. NAME EXPNO PROCNO					
			3 · 9 ₁ ↓ 3 · 9 ₁ ↓ 5 · 9 ₁ ↓ 5 · 9 ₁ ↓ 5 · 9 ₁ ↓		
ANUK	522 504 507 507 507 502 502 50 50 50 50 50 50 50 50 50 50 50 50 50	€10 €17 €17 €17 €17 €29 €20 €20 €20 €20 €20 €20 €20 €20	833 837 837 837 837 837 833 833 833 833	100 100 100 100 100 100 100 100 100 100	200 200 215 212 212 819 216

)	Parameters SDG-2-291 1	
	Data	
J	urrent AME XPNO ROCNO	

I	Acceltion Davametor	,
e,	ACQUISICION FALAMELEL. - 20130525	0
a H d	LUN Spect SUM Spect AD 5 mm CDOND 1H/	
Ę	ROG JIIII CLENT III/ ROG ZG30	
	65536	
5	ENT C6D6	
	16	
÷	8278.146 Hz	
RI	ES 0.126314 Hz	
	3.9583745 se	0
	000000000000000000000000000000000000000	
	60.400 uSe	0
	0.00 US) 1)
	1 0000000 1 00000000000000000000000000	7
0	1	, ,
ij	==== CHANNEL fl =====	
H	1H	
	15.00 use	0
_	4.90 dB	
Μ	3.30822015 W	
01	400.1324710 MH	N
I.	Processing parameters	
	100 130 130000 1001	1
5	MH MH	a

0.30 Hz 1.00

172

BRUKER	Current Data Parameters NAME SDG-2-291 EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date	====== CHANNEL f1 ======== NUC1 13C P1 9.25 usec PL1 35.18820572 W PL1W 100.6228298 MHz SF01 100.6228298 MHz	Emergence CHANNEL f2 Emergence CPDPRG[2 waltz16 NUC2 90.00 usec PCPD2 90.00 usec PL2 20.46 dB PL13 3.30822015 W PL2W 0.09195905 W PL13W 0.08120718 W PL13W 0.08120718 W	F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM	SSB 0 LB 1.00 Hz GB 0 1.40 PC 1.40
						bbu
						- 0
Cħ•87						- 8
10 00						- 4
69.69 25.25						- 09
						- 8
8/001						- 8
LS.ETT SS.SST LS.SST LO. (21						-
20 221 121-53 125-53 125-30 125-32						- 9
- 128.60 - 133.58 - 133.68 - 137.68 - 137.68						140
20,5417						-160
		OMe				- 18

2-39, 1H NMR

2-40, 1H NMR

RCALER ACATERATER TR_di-methoxy NO 1	Acquisition Parameters 20130810 21.03 RUM 5 mm CPQNP 1H/ ROG 299030 65536 ENT 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 23980.814 Hz 0.365918 Hz 21.00 20000000 sec 18.00 usec 18.00 usec 0.03000000 sec 0.03000000 sec	CHANNEL fl	=== CHANNEL f2 ======== RG[2 waltz16 1H 2 90.00 usec 4.90 dB 20.46 dB 21.00 dB 3.30822015 W 0.09195905 W 0.08120718 W	Processing parameters 32768 100.6127332 MHz EM 0 1.00 Hz 0 1.40
Curre EXPNO	F2 Date Time FNSTI FNCBI FULPI SOLVI NS SOLVI NS FULPI FUR TE D1 TE TD0 T10	==== NUC1 P1 PL1 PL1 SF01	CPDPP CPDPP CPDP PL2 PL12 PL12 PL12U PL12U PL12U PL12U SF02 SF02	日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日
				- mdd
				5 -

81.02	
£8.42	
£9.62 ——	

67.82 -----

00.001	
100 30	\sim
92.IOI	\sim
106 . 20	

6Þ.191 —

6

- 09

- 8

10

120

140

- <mark>1</mark>60

180

2-41, 1H NMR

PL13W 0.08120718 W SF02 400.1316005 MHz F2 - Processing parameters SF 100.6127338 MHz WDW 0 1.00 Hz SSB 0 1.00 Hz GB 0 1.40	- 4		- 8	§	5	= - 5	- 16	- <mark>1</mark>
====== CHANNEL f2 ======= CPDPRG[2 waltz16 NUC2 90.00 usec PL2 91.90 dB PL12 20.46 dB PL13 3.30822015 W PL12W 0.09195905 W PL12W 0.08120718 W SFO2 400.1316005 MHz								
====== CHANNEL f1 ======= NUC1 13C P1 9.25 usec PL1 35.18820572 W PL1W 35.18820572 W SF01 100.6228298 MHz								
F2 - Acquisition Parameters Date_ 20130803 Time 22.06 INSTRUM 220130803 PULPROG 222.06 FROBHD 5 mm CPQNP 1H/ PULPROG 299930 SOLVENT 65536 SOLVENT 1024 D 23980.814 Hz C6D6 SOLVENT 0.365918 Hz SWH 23980.814 Hz C6D6 SOLVENT 0.365918 Hz SWH 23980.814 Hz C6D6 SOLVENT 0.365918 Hz SWH 23980.814 Hz C6D6 SOLVENT 0.365918 Hz SWH 23980.814 Hz SWH 23000000 Sec D1 3650 USEC D1 2.00000000 Sec D1 2.00000000 Sec D1 0.03000000 Sec								OMe
Current Data Parameters NAME RZPNO PROCNO 1	62.82	99.62 ——		£0.101 20.101 06.701 2.801		ST. TAL 28.551 28.551 28.551 27.744		
				2 2 0 2	T 9 6			

179

2-42, 1H NMR

2-42, 13C NMR

2-43, 1H NMR

	Current Data Parameters NAME TR_2-nap EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date_ 20130816 Time 4.28 INSTRUM spect PULPROG 2979930 TD 2979330 TD 2979330 TD 2979330 TD 29799330 TD 29809330 TD 25366 SOLVENT 055366 NS 23980.814 Hz C6D6 NS 1024 1024 1024 1024 1024 1024 1024 1024	====== CHANNEL f1 ======== NUC1 13C P1 9.25 usec PL1 35.18820572 W PL1W 35.18820572 W SF01 100.6228298 MHz	===== CHANNEL f2 f2 ====== CPDPRG[2 waltz16 1H NUC2 90.00 usec 4.90 dB PL12 20.46 dB 21.00 dB PL13 3.30822015 W PL2W PL12W 0.09195905 W PL13W PL12W 0.08120718 W SF02 PL13W 0.08120718 W MHZ	F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW SSB 0 1.00 Hz LB 1.00 Hz	GB 0 PC 1.40
					-	mqq
					-	0
					_	20
					_	40
68.62						09
					_	80
50.101						100
752.83 152.93 156.52 156.52 157.52 157.52					-	120
128.01 128.45 128.45 128.45 128.77						140
123.76 133.76 123.75 123.75					-	09
		,o,			-	0
		88				18

2-44, 1H NMR

Pata Parameters TR_thiophene	uisition Parameters 20130816 3.21 3.21 spect spect 5 mm CPQNP 1H/ 299930 65536 65536 65536 1024 1024 1024 1024 1.3664256 sec 512 0.365918 Hz 1.3664256 sec 1.3664256 sec 20.850 usec 1.3664256 sec 20.850 usec 20.850 usec 20.850 usec 20.0000000 sec 0.03000000 sec	CHANNEL f113C 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz CHANNEL f2 waltz16 0.00 usec 4.90 dB 20.46 dB 21.00 dB 21.00 dB 3.30822015 W 0.09195905 W 0.08120718 W	cessing parameters 32768 100.6126793 MHz 0 1.00 Hz 0 1.40
Current I NAME EXPNO PROCNO	F2 - Acquarts Date Time INSTRUM PULFROG PULFROG FULFROG SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS FIDRES AQ DM DE TE D11 TD0 TD0 TE D11 TD0	======================================	F2 - Pro SF WDW SSB CB CB CB FC

2-45, 1H NMR

AF TR_1-117 SNO 3 2 3 1	- Acquisition Parameters - Acquisition Parameters ac 20130801 ac 23.20 act 25.36 act 20.20 act 20.20 ac	H 23980.814 Hz DRES 0.365918 Hz 1.364556 sec 512 20.850 usec 18.00 18.00 usec 298.2 2.0000000 sec 298.2 0.03000000 sec 1	The second secon	<pre>===== CHANNEL f2 ===================================</pre>	- Processing parameters 32768 100.6127341 MHz EM 30 1.00 Hz 0 1.40
CULTY NAME PROCN	F2 Time Time INSTH PROBH PULPH TD NS NS DS	SWH FIDRI AQ AQ TC DD DD D1 101 TD01	===== NUC1 PL1 PL1 PL1W SF01	==== CPDPH CPDPH PCPD2 PL12 PL13 PL12W PL12W PL12W PL12V SF02 SF02	FZ NDW FC FC FC FC FC

2-45, 13C NMR

NEL 11 -1H
15.00 usec
4.90 dB
3.30822015 W 60.400 usec 6.00 usec 298.2 K 1.0000000 sec 8278.146 Hz 0.126314 Hz 3.9583745 sec 32768 400.1300000 MHz EM F2 - Acquisition Parameters Date_ 20131219 - Processing parameters НΖ spect mm CPQNP 1H/ zg30 65536 C6D6 0.30 Data Parameters TR_1-143 20131219 10.50 1.00 16 Ľ CHANNEL fl ഹ 0 0 INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH Current FIDRES AQ NG DW DE TE D1 TD0 NAME EXPNO PROCNO Time PL1 PL1W SF01 NUC1 P1 M

2-46, 1H NMR

	Meo				- 180
ε0.091 ——	 Mo				- 160
00 021 09 SET 82 · LET 09 · SFT 09 · SFT 00 021					-140
b1.cli ts.cli zs.eli 61.821 zz.821					- 150
τ6.00τ ——				_	- 6
					- 8
24.62					- 09
12.82					- 4
LL·0Z					20 - 20 -
Current NAME EXPNO	PROCNO F2 - ACC Date_ Time PROBHD PULPROG TD FULPROG SWH SOLVENT NS SWH FIDRES AQ FIDRES AQ DE TE D1 11 TD TD TD TD TD TD TD TD TD TD TD TD TD	======= NUC1 P1 PL1 PL1W SF01	======================================	F2 - Pro SI SF	
Data Parameters TR_1-143	<pre>[uisition Parameter 20131219 21.08 spect spect 5 mm CPQNP 1H/ 299930 65536 65536 1024 1024 1024 1024 1024 1024 1026 102850 1.3664256 se 1.3664256 se 1.3664256 se 1.3664256 se 1.3664256 se 1.3664256 se 1.3664256 se 1.3664256 se 1.3664256 se 1.3664256 se 0.03000000 se 0.03000000 se</pre>	CHANNEL f1 ====== 13C 9.25 us 0.55 d1 35.18820572 W 100.6228298 MI	CHANNEL f2 ====== waltz16 1H 90.00 u: 4.90 di 2.0.46 di 2.0.46 di 3.30822015 W 0.09195905 W 0.08120718 W 400.1316005 M]	cessing parameter. 32768 100.6127690 Mi	0 EM 0 1.00 H: 0 1.40

23980.814 Hz 0.365918 Hz 1.3664256 sec 20.850 usec 18.00 usec 18.00 usec 0.0300000 sec 1 CHANNEL f2 ======== waltz16 1H 90.00 usec 4.90 dB 20.46 dB 21.00 dB 3.30822015 W 0.09195905 W 0.08120718 W 400.1316005 MHz HANNEL f1 ======= 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz Lsition Parameters
 20131219
 21.08
 spect
 spect
 cop0NP 1H/
 cop030
 65536
 cob6
 1024
 4 ta Parameters TR_1-143 2 1

2-46, 13C NMR

2-48, 1H NMR

zg30 65536 CDC13 16

ω

32768 400.1300098 MHz

	0
	+
XXX	, , ,
	+ (
	ہ د د

	ent Data Parameters 1 SDG-3-93-2 10 1 10 1	Acquisition Parameters RUM 20131221 RUM 20131221 ROG 299030 ENT CPQNP 1H/ ROG 299030 65536 ENT 1024 1024 1024 1024 1024 1024 1024 1024 1026	==== CHANNEL f1 ======== 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz	<pre>==== CHANNEL f2 ===================================</pre>	Processing parameters 32768 100.6127640 MHz 6M	0 1.00 Hz 0 1.40
	Cu <i>rr</i> NAME EXPN PROC	F2 Timee Pate PROBAC PROBAC PROBAC PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	==== NUC1 PL1 PL1 SF01	=== СРD РССР РССР РСС РС РС 112 РС 112 РС 112 РС 202 8502 8502 8502	н Корм Корм Корм	LTB LTB LTB LTB LTB LTB LTB LTB LTB LTB
						mdd
99.82					-	50
					-	- 64
66'T9						- 09
28 . 77		_				
29.88				=		- 28
						100
122.32 126.45 128.27 128.32						120
128.32 128.40 128.60 128.60 123.00 123.00 123.00 123.00						140
08.541						160
	(- 180
	<					

2-48, 13C NMR

2-62, 1H NMR

	udd 0	0	40	60	80	100	120	140	160	180
LB 1.00 Hz GB 0 1.00 Hz	-	-	-	-	_	_	-	-	-	-
F2 - Processing parameters SI 32768 SF 100.6127608 MHz WDW 6										
PCFD2 90.00 usec PL2 4.90 dB PL12 20.46 dB PL13 21.00 dB PL13 3.30822015 W PL12W 0.09195905 W PL13W 0.08120718 W FL13W 0.08120718 W										
======= CHANNEL f2 ======= CPDPRG[2 waltz16 NUC2 1H PCPD2 90.00 usec PL2 PL2 4.90 dB										
====== CHANNEL f1 ======== NUC1 13C P1 9.25 usec PL1 35.18820572 W PL1W 35.18820572 W SF01 100.6228298 MHz										
RG 20.850 usec DW 20.850 usec DE 18.00 usec TE 298.2 K D1 2.0000000 sec D11 0.03000000 sec TD0 1										Me
NS 1024 DS 4 SWH 23980.814 Hz FIDRES 0.365918 Hz AQ 1.3664256 sec										
INSTRUM spect PROBHD 5 mm CPQNP 1H/ PULPROG Z9P930 TD 65536 SOLVENT CDC13										
F2 - Acquisition Parameters Date21.03 Time21.03								IT IT		
EXPNO PROCNO 1		9.82 —		5°T9 —) · LL —	0.08 —	122 122 122 122 122 128 128 128	2128 1358 1358 1358 1388 1388 1388 1388 138		
Current Data Parameters NAME SDG-3-94-1		87 69		83	89	09	72. 43 85. 42. 42. 42. 42. 42.	28 56 76 80 80 72 66		

2-62, 13C NMR

2-63, 1H NMR

194

DM GB 0 1.40 Hz 1.40 Hz 1.40 Hz 1.40	- 20 -	60 4	- - 8	20 100	140	- 160	- 180
F2 - Processing parameters S1 32768 SF 100.6127642 MHz							
======= CHANNEL f2 ===================================							
====== CHANNEL fl ======== NUC1 13C Pl 9.25 usec PL1 0.55 dB PL1W 35.18820572 W PL1W 100.6228298 MHz					_		
FROBHD 5 mm CPQNP 1H/ PULPROG SGPG30 FULPROG CDC13 SOLVENT CDC13 NS CDC13 NS 1024 SUL 23980.814 NS 23980.814 NS 0.365918 RG 0.365918 RG 11.3664256 RG 20.850 NG 18.00 NG 298.1 RG 20.850 NG 298.1 RG 20.0000000 NG 20.0000000 Sec 298.1 NG 20.0000000 Sec 298.1 NG 20.0000000 Sec 20.0000000 Sec 20.0000000 Sec 20.0000000 Sec 20.0000000							Me Contraction of the second s
Current Data Parameters NAME SDG-3-32-1 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date 20130807 Time 2.37	69°TZ	86°T9 ——	79.88 02.06	08°221 25°22 25°22 00'221 00'221 00'221	7.2.621 7.5.621 7.5.621 7.5.621 7.5.621 7.5.621 7.5.621 7.5.621 7.5.621 7.5.621 7.5.621 7.5.621 7.5.621 7.5.621 7.5.621 7.5.62		

2-63, 13C NMR

2-64, 1H NMR

2-65, 13C NMR

2-66, 1H NMR

SMe	,.₽₽I ~	- 128 °C	2727 2757	20.06	29 · <i>LL</i>	G6 • T9		26°ST	EXPNO FROCNO F2 - Acq Date_ INSTRUM FULFROG FULFROG SOLVENT SSLVENT SSLVENT AQ FIDRES AQ FIDRES AQ DW D11 TE D11 TD0 TD0 TD0 TD0 TD0 TD0 TD0 TD0 TD0 TD0	2 uisition Parameters 20131215 20131215 20131215 20131215 spect 5 mm CPQNP 1H/ 299930 65536 65536 65536 1024 1024 202013 1024 1024 1024 1024 1024 1024 1024 1024
									======================================	CHANNEL f1 ======== 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz
									====== CPDFRG[2 NUC2 PCPD2 PL12 PL13 PL13	CHANNEL f2 ========= 1H 90.00 usec 4.90 dB 20.46 dB 20.46 dB 20.46 dB 20.46 dB 0 dB
				-					FLL2W PL12W SF02 F2 - Pro	0.09195905 W 0.09195905 W 0.08120718 W 400.1316005 MHz cessing parameters
									S I S F MDW S S B	32768 100.6127690 MHz EM
- <mark>180</mark>	160	140	120	- 1 0	- 8	- 9	- 4	5-2	bbm ^{GB}	1.00 Hz 0 1.40

2-66, 13C NMR

2-67, 1H NMR

100.6127645 MHz EM 0 1.00 Hz 1.40	PPM CB	- 2	- 4	- 8	- 8	- 9	- 12	- 140	- 16	- 18
Processing parameters 32768	F2 - SI									
W 0.09195905 W W 0.08120718 W 400.1316005 MHz	PL12 PL13 SF02	_						-		
20.46 dB 21.00 dB 3.30822015 W	PL12 PL13 PL2W									
2 90.00 usec	PCPD PCPD									
==== CHANNEL f2 ======== RG[2 waltz16 1H	CPDP NIIC2									
9.23 USEC 9.55 dB 35.18820572 W 100.6228298 MHz	FL PL1 SF01 SF01									
==== CHANNEL f1 ========	==== NUC1				-					
0.03000000 sec 1	D11 TD0								J	
298.2 K 2.00000000 sec	TE D1								Me	
20.850 usec 18.00 usec	DW DM									
ES 0.365918 Hz 1.3664256 sec	FIDR AQ									
1024	N N N N N N									
HD 5 mm CPQNP 1H/ ROG zgpg30 65536	PROB PULP TD									
20130625 21.05 21.05	Date Time TNST	_	_	_	_					
NO 1 Acquisition Parameters	PROC F2	72 <u></u> 77	0₽	τ9 ——	82 <u> </u>			- 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15		
ent Data Parameters SDG-3-12-1 O 3	Curr NAME EXPN	7ð. 05.	LL.	88.	.12 .44 .20	84.2 15.2	5.73 6.31 8.22 8.23 8.23 8.23 8.39 8.39 8.39 8.39 8.39 8.39 8.39 8.3	6,35 5,43 7,94 9,35 9,35 9,35 9,35 9,35 9,35 9,35 9,35		

2-67, 13C NMR

2-68, 1H NMR

SUKER SUKER	Data Parameters SDG-3-18-2-acetoneR 2 1	quisition Parameters 20150117 20.14 spect spect 29955 65536 Acetone 2048	34722.223 Hz 0.529819 Hz 2.529819 Hz 2.050 14.400 usec 19.34 usec 19.34 usec 1.1000002 sec 0.0300000 sec	<pre>= CHANNEL f1 ======== 150.9656784 MHz 13C 10.63 usec 110.0000000 W</pre>	<pre>= CHANNEL f2 ======== 600.3224013 MHz 1H 2 waltz16 70.00 usec 22.0000000 W 0.51885003 W 0.25424001 W</pre>	ocessing parameters 32768 150.9505840 MHz EM 0 1.00 Hz 0 1.40
	Current Da NAME S EXPNO PROCNO	E2 - Acqui Date Time INSTRUM PROBHD 5 PULPROG 5 TD SOLVENT NS NS	SWH AQ DW DF D11 TD0 TD0 TD0	E===== C SF01 NUC1 P1 PLW1	SFO2 SFO2 NUC2 CPDPRG[2 PCPD2 PLW2 PLW13 PLW13	F2 - Proce SI SF WDW SSB SSB C GB FC PC

2-68, 13C NMR

206

2-69, 1H NMR

	rrent Data Parameters ME SDG-3-76-1 PNO 1 OCNO 1	- Acquisition Parameters te	===== CHANNEL fl ========= C1 13C 9.25 usec 1 35.18820572 W 100.6228298 MHz	===== CHANNEL f2 ======== DPRG[2 waltz16 C2 1H PD2 90.00 usec 12 20.46 dB 13 3.30822015 W 12W 0.09195905 W 13W 0.08120718 W 02 400.1316005 MHz	- Processing parameters 32768 100.6127617 MHz B 0	0 1.00 Hz
-	Cui NAN EXE PRC	T T T T T T T T T T T T T T T T T T T	NUU PI1 SPI1 SFI3 SF05	CPI PLU PLU SPL SPL SPL SPL	Ч С С С С С С С С С С С С С С С С С С С	C B B P G L
						udd
₽S.82						8 -
					T	- 4
9.15						- 09
05.77 85.68 84.68 21.021 42.52.21		-				- 8
52.52.4 53.4 53.4 54.						- <mark>9</mark>
LZ:SZI 99:9ZI 25:ZZI 99:9ZI 25:ZZI 91:8ZI 25:ZZI						120
44.021 4.021				<u>-</u>		140
L 130.11 L 131.03 L 131.03 L 131.33 - 135.96 L 138.44 - 4.86 -						- 160
		F ₃ C				180

2-69, 13C NMR

H NMR	
2-70, 1	

$\begin{array}{c} 72.2 \\ 87$	

	Parameters SDG-3-102r
XXX	Data
	Current NAME

	ters RHHZ Seec secc	MHZ WSeC W	ers MHz Hz	
	sition Parame ¹ 20140117 10.46 spect mm PABBO BB/ 55336 65536 65536 65536 65536 65536 3.8993919 3.8993919 3.8993919 3.8993919 59 57 59 59 50 17 398 0000000 1	HANNEL f1 ==== 600.3233018 1H 26.00000000	ssing paramet 65536 600.3200748 EM EM	1.00
EXPNO PROCNO	F2 - Acquis Date_ Time_ INSTRUM PROBHD 5 PULPROG TD SSLVENT NS SSLVENT NS SSWH SSWH SSWH SSWH SSWH TE TD DT TD0	====== CH SFO1 NUC1 P1 PLM1	F2 - Proces SI SF WDW SSB C LB GB O GB	PC

ደ

MeO-

/ OMe

BRUKER	Current Data Parameters NAME SDG-3-102r EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date20140118 Time0.32 INSTRUM Spect PROBHD 5 mm PABBO BB/ PULPROG jmod.acqt0 TD 65536 SOLVENT CDC13 NS 1024 DS 4	SWH34722.223HzFIDRES0.529819HzAQ0.9437184secRG0.9437184secRG14.400usecDW14.400usecDE14.600usecDE145.000000kcCNST11.000000secD15.0000000secD15.0000000secTD00.00689655sec	SF01 150.9656791 MHz NUC1 150.9656791 MHz NUC1 100.63 usec P1 21.26 usec	FLWI 110.0000000 W ====== CHANNEL f2 ======= SFO2 600.3224013 MHz NUC2 1H CPDPRG[2 walt216 PCPD2 70.00 usec PLW2 22.0000000 W PLW12 0.51885003 W	F2 - Processing parameters SI 32768 SF 150.9505840 MHz WDW 5SB 0	The second secon
							- 0
							- 50
							- 4
98°59 ——							- 09
25.88							- 8
86.66							- 0
125.6 126.3 126.3 128.5 128.5 128.5		_					120
138.821 128.821 138.121 138.121 138.281 139.861 139.861							140
τς.09τ		Ĕ				_	160
	~	owe owe					- 180

2-71, 1H NMR

Le contraction de la contracti		59 · L # T	99 821 10 22 10 22 10 10 10 10 10 10 10 10 10 10 10 10 10	LS·LOT		09 · <i>LL</i>	86°T9	29.82		NAME EXPNO FROCNO F2 - Acqu Date_ T1me PULPROG	SDG-3-38-2 6 6 1 1 20130910 20130910 23.14 5 mm CPQNP 1H/ 5536 65536 65536 65536 65536 65536 65536 65536 65536 65536 65536 1024 8 Hz 1024 8 Hz 10365018 Hz 10365018 Hz 10365018 Hz 13664256 sec 13664256 sec 13664256 sec 13664256 sec 13664256 sec 13664256 sec 18.00 usec 18.00 usec 10.03000000 sec
										====== NUC1 P1 PL1 PL1W SF01	CHANNEL f1 ======= 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz
				-						===== CPDPRG[2 NUC2 PCPD2 PL12 PL12 PL13 PL12W PL12W PL13W SF02	CHANNEL f2 ========= waltz16 1H 90.00 usec 4.90 dB 20.46 dB 21.00 dB 3.30822015 W 0.09195905 W 0.08120718 W 400.1316005 MHz
										F2 - Proc SI WDW	essing parameters 32768 100.6127608 MHz EM
- 180	160	- 1 - 40	- 120	F	_ 8	- 8	- 09	- 40 - 20	udd	SSB GB PC	0 1.00 Hz 0 1.40

2-71, 13C NMR

2-72, 1H NMR

2-72, 13C NMR

2-73, 1H NMR

rrent Data Parameters WE SDG-3-35-1 PNO 2 OCNO 1 - Acquisition Parameters te_ 7.53 STRUM 5 mm CPQNP 1H/ LPROG 5536 65536 LVENT CPQNP 1H/ LPROG 65536 65536 1024 H 233980.814 Hz 1024 H 4 1024 1.3664256 sec 0.365918 Hz 1.3664256 sec 1.3664256 sec 1.3664256 sec 1.03000000 sec	0 1 ===== CHANNEL f1 ======== C1 9.25 usec 1 35.18820572 W 01 100.6228298 MHz	DPRG[2 CHANNEL F2 ======= DPRG[2 waltz16 C2 90.00 usec PD2 90.00 usec 12 20.46 dB 13 3.30822015 W 12W 0.09195905 W 13W 0.08120718 W 22 400.1316005 MHz	- Processing parameters 32768 MHz M EM EM B 0 1.00 Hz 0 1.40
CLIEEWSSONSOLUERS	TD PL SFL: SFL: SFC: SFC: SFC: SFC: SFC: SFC: SFC: SFC		
9°.82 ——			- 20
00.55.42			- 6
\$6 <i>`LL</i>			
LL·88 ZI·06 00:SII 02:SII 15:bZI 15:bZI		=	
52 521 95 921 65 921 12 221 56 921 12 221 59 221 50 221 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50			- <mark>1</mark> - 1 - 1
70.521 74.621 74.621 86.821 28.581 28.581 28.581 7			-4
L 133.23)		- <mark>9</mark>
			- 180

2-73, 13C NMR

2-74, 1H NMR

2-74, 13C NMR

2-75, 1H NMR

130 130 131 135 135 131 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 136 130 130 135 135 130 130 135 135 135 130 140 120 100 80 60 100 130 140 120 100 100 100 100	Meo	₽₽°6SI	EZ·6ZI 58.1EI 52.05.1 52.05	25.821 25.000 25.000 25.0000000000	05.00	ε9· <i>LL</i>	66°T9 ——		81.12 <u></u>	PROBI- FXPNC FXPNC FXPNC FXD FXD FXD FXD FXD FXD FXD FXD FXD FXD	Construction Parameters Acquisition Parameters 0.17 UM 5 mm CPONP 1H/ 0G 5 mm CPONP 1H/ 0G 65536 NT 1024 NT 203980.814 Hz 0.365918 Hz 1.3664256 sec 1.3664256 sec 1.3664256 sec 1.3664256 sec 18.00 usec 18.00 usec 20.850 usec 18.00 usec 20.0300000 sec
Image: Construct of the second sec										PUC1 NUC1 P1 PL1 PL1 SF01 SF01	=== CHANNEL f1 ======== 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz
180 160 140 120 100 100 100 120 100 120 100 120										====== CPDPF CPD2 PL2 PL13 PL13 P12M	=== CHANNEL f2 ======== .G[2 waltz16 1H 9000 usec 4.90 dB 20.46 dB 21.00 dB 3.30822015 w
100 100 100 100 100 100 100 120 100 <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>FL120 PL130 SF02 F2 -</td> <td>0.09195905 W 0.08120718 W 400.1316005 MHz Processing parameters</td>					_					FL120 PL130 SF02 F2 -	0.09195905 W 0.08120718 W 400.1316005 MHz Processing parameters
	- - 180		140	120	- 6	8	 8	- 4	3	DDM GB	32768 100.6127621 MHz 0 1.00 Hz

2-75, 13C NMR

Participant Participant Partitipant <th>WDW EM 0 160 1 1 1 1 1 1 1 0 160 120 100 80 60 40 20 Ppm GB 0 1.40 1.40 120 100 80 60 40 20 Ppm GB 0 1.40</th>	WDW EM 0 160 1 1 1 1 1 1 1 0 160 120 100 80 60 40 20 Ppm GB 0 1.40 1.40 120 100 80 60 40 20 Ppm GB 0 1.40
--	---

2-76, 13C NMR

2-77, 1H NMR

0 1.00 Hz 0 1.40		5	- 4	- 99	- 8	- 01	- 1 20	140	- 160	180
Processing parameters 32768 100.6127619 MHz EM	F2 SI WDW									
=== CHANNEL f2 ======== G[2 waltz16 1H 90.00 usec 4.90 dB 20.46 dB 20.46 dB 20.46 dB 20.0519590 W 0.09195905 W 0.08120718 W	==== CPDPR PCPD2 PL12 PL13 PL12W PL12W PL12W PL12W PL12W SF12W							-	_	
=== CHANNEL fl ======== 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz	===== NUC1 PL1 PL1W PL1W SF01									
S 23980.814 Hz 0.365918 Hz 1.3664256 sec 512 20.850 usec 18.00 usec 298.1 K 2.0000000 sec 0.0300000 sec	FIDRE AQ AQ AQ DW TE D1 11 TD0									Meo
20131127 20131127 5.08 5.08 5.08 5.08 5.08 5.08 65536 65536 NT CDC13 NT CDC13	Date Time INSTR PULPR PULPR SOLVE SOLVE NS	-		_	-			/ F ~	-	
nt Data Parameters SDG-3-77-1pure 2 0 1	CULFE NAME EXPNC PROCN	— 28.63		96.23 —	₹L.88 -	79. 01 79. 01	122.5 122.5 122.5 122.5 122.5 128.5	1229.24 1229.46 1222.46 1232.46 132.46 132.46 145.47	S⊅.921 —	

2-77, 13C NMR

rs st) 2 1 meters	2 Н 3 3 Н С 3 2 / 2 Н 3 6 0 / Н 9 / 4 4 2 3 6 0 / Н	114 Hz 118 Hz 556 sec 550 usec 00 usec 000 sec 01 sec	======================================	116 116 117 900 usec 115 W 115 W 115 W 115 W	18 W 05 MHz eters 68 19 MHz	EM 00 Hz 40
ca Paramete 0G-3-23-3(1 sition Para	201308 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	23980.8 0.36592 1.36642 5 5 20.8 20.8 18. 18. 208 208 000000 0.030000	HANNEL fl = 1 1 9. 35.188205 100.62282	HANNEL F2 = 42 waltz = 90. 20. 21. 3.308220 0.091959	0.08120/ 400.13160 ssing param 327 100.61276	л. Т.
urrent Dat AME SI XPNO ROCNO 2 - Acquis	ate_ ime NSTRUM SROBHD 5 ULPROG 0LVENT S S	И П П П С С С С С С С С С С С С С С С С С	====== CF UC1 1 L1 L1W FO1	===== CH PDPRG[2 UC2 CPD2 CPD2 L12 L12 L12 L12W L12W L12W	LLJW FO2 2 - Proces T	O O Cmmrd
ОΖЫЦ Ц(аннаан о z с	ω F 4 K 0 0 H 0 0 H	II Z ц ц ц л	II U Z д д д д д д д	אט די מיש	роном пон
ī9 . 82 ——						- 20
						- 4
55.22 76.13						- 09
0 <i>L</i> · <i>LL</i> ——						- 8
81.06					=	_ 8
113.50 113.60 112.24 116.63 116.63				Ξ		Ŧ
123.69 721 721 721 721 721 721 721 721 721 721				- 		120
42.22.25.24 242.23.25 242.24 242.24 242.24 242.24						140
28:651 9₽:651		1	ñ			- 160
			Meo			- 180
		Meo				-

2-78, 13C NMR

2-79, 1H NMR

0 1.00 Hz 0 1.40	SSB CBB BCB BCB BCB CBB CBB CBB CBB CBB	20 -	- 4	- 09	- 8	- 1 0	- 1 20	- 140	- 1 60	180
100.6127633 MHz EM	S S S S S S S S S S S S S S S S S S S		-							
cessing parameters	F2 - Pro									
0.08120718 W 400.1316005 MHz	PL13W SF02									
3.30822015 W 0.09195905 W	PL2W PL12W									
21.00 dB	РL12 РL13									
4.90 dB	FLFUZ									
waltz16 1H	CPDPRG[2 NUC2									
- CHANNEL f2 ======										
0.550 dB 0.552 dB 35.18820572 WH7 100 6228598 MH7	PL1 PL1W SFO1									
	======================================				=					Ō
0.03000000 sec 1	D11 TD0								Ĩ	
2.00000000 sec	TE D1								ſ	Meo-O
20.850 usec 18.00 usec	D W D D D D									
0.365918 Hz 1.3664256 sec	FIDRES AQ									
4 4 4 72000 01 117	DS DS									
CDC13	SOLVENT									
5 mm CPQNP 1H/ zgpg30 65536	PROBHD PULPROG TD									
23.27 spect	Time INSTRUM									
uisition Parameters 20130806	F2 - Acg Date							- - -		
1	PROCNO	- 28		— 22 — 25	LL — L8 —		125 125 125 125 125 125 125 125	21 21 21 21 21 21 21 21 21 21 21 21 21 2	ST —	
Data Parameters SDG-3-30-2 4	Current NAME EXPNO	95.		20. 35.	₽9. IO.	84.8 84.8	20.29 4.27 20.25 20.25 20.26 20.26 20.26 20.26 20.26 20.27 2	09.60 1.73 2.93 4.16 8.58 8.58 8.58	64.6	

2-79, 13C NMR

2-80, 1H NMR

Current Data Parameters NAME SDG-3-31-2 EXPNO 1	F2 - Acquisition Parameters Date_ 20130807 Time 1.34 INSTRUM 20130807 PULPROG 2130807 PULPROG 25536 SOLVENT CPQNP 1H/ PULPROG 2536536 SOLVENT 0.5536 SOLVENT 1024 D24 D24 SWH 23980.814 D24 SMH 23980.814 D24 D24 SMH 23980.814 D24 D24 D24 D24 D24 D24 D24 D24 D24 D2	====== CHANNEL f1 ======== NUC1 13C P1 9.25 usec PL1 35.18820572 W SF01 100.6228298 MHz	====== CHANNEL f2 ======= CPDPRG[2 waltz16 NUC2 90.00 usec PL2 4.90 dB PL13 20.46 dB PL13 3.30822015 W PL12W 0.091195905 W PL13W 0.08120718 W SF02 400.1316005 MHz	F2 - Processing parameters SI 327690 MHz WDW 55B 0 1100.6127690 MHz WDW 58B 0 1.00 Hz CB 0 1.40
66.49				گ – ا
				- 6
65°99 ——				- 8
25.77 86.78 79.79 79.79 79.75 79.75 79.75 70.75	-			- 8
- 119.63 - 120.22 - 125.34 - 123.24 - 122.02 - 122.02 - 122.12				- 6
51.527.12 152.136 152.136.48 152.127 152.127 152.821 258.5821				120
■ - 158·28 - 158.62 - 158.62 - 158.86 - 158.36 - 158.58				140
130 01 2.001 90100 80100 16300 9600 9600 8000 8000 8000 8000 8000 80	L L D			— – 9
94.94 95.46	MeO			- 8
				1

2-81, 1H NMR

18.00 usec 298.2 K 2.0000000 sec 0.03000000 sec 13C 9.25 usec 9.25 usec 0.55 dB 35.18820572 W 13C 9.25 dB 0.55 dB 13C 9.25 usec 13C 0.55 dB 13C 0.55 dB 11B 11B 11B 11B 11B 11B 11B 1	DE TE TE D11 TD0 P11 TD0 SF01 SF01 PL11 PL11 PL12W PL12W PL12W PL12W PL12W PL12W PL12W PL12W PL12W PL13W PL	40 - 20 - ppr	<mark>8</mark>		- 6	120			Meo NC
5 mm CPQNP 1H/ spect spect 29p930 65536 65536 CDCl3 1024 1024 1024 1024 1024 1024 1024 1026 5536 5536 1026 1026 23980.814 Hz 0.365918 Hz 1.3664256 56c 13.664256 512 20.850 13.607 13.607 2000000 56c 298.2 K 2.0000000 56c 0.00000 56c 0.00000 56c 0.00000 56c 0.00000 56c 0.00000 56c 0.00000 56c 0.00000 56c 0.00000 56c 0.00000 56c 0.00000 56c 0.00000 56c 0.00000 56c 0.00000 56c 0.00000 56c 0.00000 56c 0.000000 56c 0.00000 56c 0.000000 56c 0.00000 55c 0.000000 55c 0.000000 55c 0.00000 55c 0.000000 55c 0.0000000000	Time Instrum PROBHD PULPROG TD SOLVENT NS SOLVENT NS SWH FIDRES AQ RG AQ DM DE DM DE D1 D1 TD0 TD0								Meo
Data Farameters SDG-3-40-2 2 1 nuisition Parameters 20130806	Current NAME EXPNO PROCNO F2 - Acq Date_	64.82	90.23	95. <i>77</i>	86.211 →	20.9114.02 128.02 21.28.12 21.29.02 21.29.02 21.29.02 21.29.02 21.29.02 21.29.02	95.621 56.221 81.221 26.221 21.821 21	J29.50	

2-82, 1H NMR

1.00 Hz 0 1.40	LB GB PC	20 ppr	60 40	80	100	120	140	160	- <mark>1</mark> 80
100.6127649 MHz EM 0	SF WDW SSB			-				-	
ocessing parameters 32768	F2 - Pro SI								
400.1316005 MHz	SF02								
3.30822015 W 0.09195905 W 0.08120718 W	FLZW PL12W PL13W				-				
21.00 dB 21.00 dB 22000015 W	РЦ12 РЦ13 75 25	_							
90.00 usec 4.90 dB	PCPD2 PL2		_			_			
<pre>= CHANNEL f2 ===================================</pre>	======= CPDPRG[2 NUC2								
0.55 dB 35.18820572 W 100.6228298 MHz	PL1 PL1W SF01								
= CHANNEL f1 ===================================	======= NUC1			_					
2.0000000 sec 0.03000000 sec 1	D11 TD0							T	Me0 ₂ C
18.00 usec	м П П П П П							ſ	Meu
0.365918 Hz 1.3664256 sec 512	FIDRES AQ RG								ß
4 23980.814 Hz	DS SWH								< <
CDC13 1024	SOLVENT NS								
5 mm CPQNP 1H/ zgpg30 65536	PROBHD PULPROG TD								
21.07 spect	Time INSTRUM								
quisition Parameters 20130805 21 07	F2 - Aco Date						 		
- 1	PROCNO	- 58	- 25 - 22 - 92	LL	τ6 —		- 15 - 13 - 13 - 13 - 13 - 14 - 14 - 14	9T —	
Data Parameters SDG-3-39-1 2	Current NAME FXPNO	95	68. 88. 10.	59 · 52	.32	96 96 97 96 97 30 97 30 97 30 97 30 97 52 97 520	20.55 20.67 20.67 20.67 20.67 20.67 20.63	24.8 74.6	

2-83, 1H NMR

Processing parameters 32768 100.6127592 MHz EM 0 1.00 Hz 0 1.40	F2 - F S1 - F S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5	3	- 4	8		- 6	120 120	140		-18
=== CHANNEL f2 ===================================	===== CPDPRC CPDPRC PCPD2 PL12 PL13W PL13W PL13W SF02 SF02									
=== CHANNEL f1 ======== 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz	===== NUC1 PL1 PL1 SF01								ō	
<pre>4 23980.814 Hz 23980.814 Hz 0.365918 Hz 1.3664256 sec 512 20.850 usec 18.00 usec 298.1 K 2.0000000 sec 0.0300000 sec </pre>	DS FIDRES SWH AQ AQ RG DW DE D11 TD0 TD0								Ø	Meo
20131122 JM 23.06 23.06 23.06 sect bc cppg30 65536 NT CDC13 NT CDC13	Date_ Time INTRU PROBHI PULPRC NS SOLVEN NS									
nt Data Parameters SDG-3-90-1 2 0 1	Currer NAME EXPNO PROCNO	09.82		— 22·38	89.77 — 82.78 —	 ۲۵. ۲۵ –	L128-103 120-34 120-34 121-12 128-20 128-20 128-12 128-21 128-21 128-21	96'721 91'821 29'721 29'721 29'821 29'821 81'971	67°65I —	

2-83, 13C NMR

	Current Data Parameters NAME SDG-3-113 EXPNO 1 PROCNO 1	F2 - Acquisition Parameters Date20140205 Time 0.56 INSTRUM spect PROBHD 5 mm CPQNP 1H/ PULPROG 5536 SOLVENT 2930 F05536 55536 65536 65536 65536 65536 65536 65536 65536 65536 716 NS 2938 16 DC 200133 NS 0.126314 Hz SWH 0.126314 Hz SWH 0.126314 Hz SWH 0.126314 Hz CDC13 NS 0.126314 Hz SWH 0.126314 Hz SWH 0.126314 Hz CDC13 DW 60.400 USEC DE 6.00 USEC DE 6.00 USEC DE 7.0000000 SeC	TD0 1 000 1	F2 - Processing parameters SI 32768 SF 400.1300100 MHz WDW EM SSB 0 0.30 Hz GB 0 1.00	
8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 7 8 8 9 9 9 9 9 8 9 9 8 8 9 9 8 8 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 1					9 1.00 1.0

2-84, 1H NMR

Current Data Parameters NAME EXPNO 2	FIGCNO 1 F2 - Acquisition Parameters Date20140205 Time 1.56 Time 1.56 INSTRUM spect PROBHD 5 mm CPQNP 1H/ PULPROG 65536 SOLVENT CPQNP 1H/ PULPROG 65536 SOLVENT 1024 NS 1036918 NS 1.3664256 NG 0.365918 NG 1.3664256 NG 1.3664256 NG 1.3664256 NG 1.3664256 NG 1.3664256 NG 20.880.0000 NG 20.880.00000 NG 20.880.0000<	EFFINING CHANNEL F1 ======= NUC1 13C P1 9.25 usec PL1 35.18820572 W SF01 100.6228298 MHz	CFDFRG[2 Maltz16 NUC2 90.00 PL2 90.00 PL12 20.46 dB PL13 3.30822015 W PL12W 0.09195905 W PL13W 0.08120718 W FL13W 0.08120718 W	F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM SSB 0 100.0127	LB 1.00 HZ 1.00 HZ PC 1.40
					E
					- 8
					- 6
62·59					- 0 9
09 · <i>LL</i>	-				- - 8
90.05 20.05 20.05					- 8
96 • STI 45 • STI 57 • STI 69 • STI 71 • STI 72 • S					120
128 88 123 22 233 23 133 23 138 22 138 22 14 14 14 14 14 14 14 14 14 14 14 14 14	ш				- 1 40
[₺`65] [₺`19] 68`£9]			—		160
	Meo				- 18 0

	Current Data Parameters NAME SDG-3-116-2 EXPNO 1 PROCNO 1	F2 - Acquisition Parameters Date	====== CHANNEL f1 ======== NUC1 1 15.00 usec P1 3.30822015 W PL1W 3.30822015 W SFO1 400.1324710 MHz	F2 - Processing parameters SI 32768 SF 400.1300101 MHz WDW EM SSB 0 0.30 Hz GB 0 0.30 Hz GB 0 1.00	
1 2 421 2 808 2 808 3 5 4 5 5 5 5 5 5 5 5 5 5 5 <td></td> <td>$- \int_{0}^{0} \int_$</td> <td></td> <td></td> <td>Co 3.04 1.00 3.04 1.00 3.04 1.00 3.04 1.00 0.01 1.00 0.01 1.00 0.01 0.</td>		$- \int_{0}^{0} \int_$			Co 3.04 1.00 3.04 1.00 3.04 1.00 3.04 1.00 0.01 1.00 0.01 1.00 0.01 0.

|--|

ent Data Paramet SDG-4-34-1s O NO	Acquisition Par 2015C 13 RUM sp HD 5 mm CPQNP	ROG Z 65 ENT CL	8278. 0.126 3.9583 1	00. 6 1.00000	==== CHANNEL f1 15 3.30822 400.1324	Processing para 32 400.1300 0 C	
Curr€ NAME EXPNC PROCN	F2 - Date_ Time INSTF PROBF	PULPF TD SOLVE NS DS	SWH FIDRE AQ RG	UW DE D1 CO	===== NUC1 PL1 PL1 SF01 SF01	F S S F S S F S S M S S F S S S M S S S S S S S S S S S S S S S S) О Ц
2-86, IH NMR 2-86, IH NMR 2. 5. 6. 1. 1. 1. 1. 1. 1. 1. 1			'n-hex				9 8 7 6 5 1 200 4 100 100 100 100 100 100 100 100 100

		rrent Data Parameters IE SDG-4-62-2ndfrac NO 1 DCNO 1	- Acquisition Parameters - 20150806 19.50 TRUM spect DHD 5 mm CPQNP 1H/ PROG 29P930 65536	VENT MeOD 128 128 4 1 23980.814 Hz 0.365918 Hz 1.3664256 sec	20.850 usec 20.850 usec 18.00 usec 298.2 K 2.0000000 sec 0.03000000 sec 1	C1 13C 13C 13C 13C 13C 13C 13C 13C 13C 1		- Processing parameters 32768 100.6127690 MHz EM 100.61270 Hz	1.40
	-	CUL NAM EXP PRO	F2 Tin Tin TINS PUL	SOL NS NS SWH FIDS AQ	RG DW DE D11 TD011	NUC PL1 PL1 SFC	CPD C PLL PLL PLL PLL PLL PLL PLL SFC SFC SFC SFC SFC SFC SFC SFC	L S S M S S D M S S D M S S D M S S S S S S S S S S S S S S S S S S S	D D
	L6.12.								
	10.11 22.22 11.82								5
	28.28 21.00 11.82								8
									4
	-								20
	02.13								60
									2
	60.18								80
	Þ9.68 ——							_	- 6
									100
									110
	152.70 156.45								120
	151.24 152.68 152.24		<i>n</i> -hex						130
NMR	94.021	_							140
2-86 , 13C I									150
								-	

Data Parameters SDG-3-82-1(1st) 2 2 1 1 1 2 1 2 2 2.10 22.10 5 mm CPQNP 1H/	zgpg30 65536 65536 65536 1024 1024 23980.814 Hz 0.365918 Hz 1.3664256 sec 512 20.850 usec 18.00 usec 298.2 K 20.0300000 sec 0.0300000 sec	<pre>:= CHANNEL f1 ========</pre>	<pre>:= CHANNEL f2 ===================================</pre>	ocessing parameters 32768 100.6127624 MHz EM	0 1.00 Hz 0 1.40
Current NAME EXPNO PROCNO F2 - AC Date_ Time INSTRUM	PULPROG TD SOLVENT SSOLVENT SSOLVENT SSO AQ AQ AQ AQ AQ DD TD D1 11 TE D1 11 TD D11	====== NUC1 P1 PL1 PL1W SF01	====== CPDPRG[PCPD2 PL2 PL12 PL13 PL13 PL13W PL13W PL13W PL13W SF02	F2 - Pr SI - SF WDW ssp	р С р р С р С р С р С р С
					udd
64.82			_		- 50
					- 4
₽6·I9 ——					- 09
₽I.₽8 28.32 08.77					- 8
					- 0
153.62 158.53 157.11 157.80 158.52 758.51 758.51					120
42.128.30 42.128.32 42.128.32 42.128.32 42.128.32 42.128.30			 		- 140
Þī.7ðī ——	K	2	_		160
		z			- 18 0

arameter SDG-4-6	CPQNP 14 CPQNP	0.12631 0.12631 11. 60.40 6.0 298.	<pre>[EL f1 == 1 1 15.0 4.9 .3082201 0.132471</pre>	g parame 3276 0.130011 E	0.3
: Data P	d 5 mm	H	== CHANN 3 40	cocessin 40 0	0
Current NAME EXPNO PROCNO	F2 - AC Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS	FIDRES AQ DA DA DA DA DA DA DA DA	====== NUC1 PL1 PL1W SF01 SF01	F2 F SI - SF SB SB	ΠLB ΡC
ΤϷΔ·Ο ΦϷΔ·Ο 6ϷΔ·Ο Δον.Ο	F				1 00.4
29L·0J 08L·0J 16L·0J	г				- N
962 03 T08.0 208.0 208.0 T18.0	F			A.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-0.824 1.349 2.755 2.796	-				4 <u>- 00.1</u> - 8 <u>9.5</u>
182 25 280.4 562.4 502.4 208.9 208.6	-			~	ں
- 6.811 - 6.813 - 6.822 - 6.832					- O
<pre></pre>					0 ^{.96} 0 ^{.96} 1^{.03}
221.72 200.77 200.77 200.77					<u>66'0</u> - α
130 17138 171.73 171.73 1921.73					- の
-7.243 -7.223 -7.223	Me0-				

2-88, 1H NMR

	mdd	50	40	09	80	100	120	140	160	180
PC 0 1.40		-	-	_		-	-	-	-	-
F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW 5SB 0						_		_		
====== CHANNEL f2 ======== CPDPRG[2 waltz16 NUC2 90.00 usec PL2 90.00 usec PL2 20.46 dB PL2 21.00 dB PL12 3.30822015 W PL12W 0.09195905 W PL12W 0.09195905 W PL12W 0.011216005 MHz										
====== CHANNEL f1 ======== NUC1 13C P1 9.25 usec PL1 35.18820572 W PL1W 35.18820572 W SF01 100.6228298 MHz										
PROCNO 1 F2 - Acquisition Parameters Date_ 20150728 Time 16.25 INSTRUM 5 mm CPOND FULPROG 205936 FULPROG 55536 SOLVENT CDC13 NS 23980.814 Hz SNH 23980.814 Hz SN 1.3665918 Hz SNH 23980.814 Hz DS 1.365918 Hz SULERES 1.365918 Hz DS 20.850 usec DS 20.850 usec DE 20.850 usec DI 0.03000000 sec D1 0.03000000 sec D1 0.03000000 sec								\bigtriangleup		MeO
BRUKER Current Data Parameters SDG-4-63	⁷² .8.3 7₽.8 20.20	£2.82		67.23 <u></u>	24.97	5Þ.29	12. 821 12. 821 12. 921 12. 921 12. 921 12. 821 12.	00.021 	₽Z.92.24	
(

2-88, 13C NMR

8278.146 0.126314 3.9583745 298.2 1.00000000 spect zg3(6553(Current Data Parameters NAME SDG-4-47-1 12.21 1 Т 15.00 3.30822015 400.1324710 CDC13 4.90 F2 - Acquisition Parame 20150710 mm CPQNP 1H/ 1 6.00 Processing paramet 60.400 CHANNEL fl ഹ INSTRUM PULPROG SOLVENT PROBHD FIDRES PROCNO Date_ EXPNO Time I PL1W NUC1 SF01 SWH TD0 PL1 ΠD DW DE NS D N AQ RG Ц Ц Р1 N ⊦ Ŀ D1 bpm 88Þ 26Þ Ę • 0 • 0 <u>50.8</u> 3.242 2.847 2.806 E9T \overline{b} 742 782 762 \overline{b} ₽ 2 Þ 201 207 379 ₽ ₽ <u>60. r</u> \overline{b} 288 288 20₽ ო ₽ <mark>80.1</mark> ₽ 517. 800. Þ L 052 L 80.r τττ L 10.1 7 T (L TET L L₽T S L τςτ L 0*L*T. L 202. 202. L L ဖ L 202 L .331 222 L 1.20 1 L 9†E / 2.32 392 26.8 3.97 L 383 L SiPhMe₂ 402 L ω ∠0⊅ SE9 L 889 L *L*₹9 L ດ 229 L 859 L • 999 079 L L •

248

2-93, 1H NMR

<pre>1.3664256 sec 512 usec 512 usec 218.00 usec 298.2 K 2.0000000 sec 0.03000000 sec 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz 9.25 usec 9.25 usec 0.55 dB 33.18820572 W 100.6228298 MHz 114 0 usec 4.90 dB 20.46 dB 20.46 dB 20.46 dB 20.46 dB 100 usec 4.90 dB 20.46 dB 20.46 dB 20.46 dB 20.46 dB 20.46 dB 100 usec 4.90 dB 20.46 dB 20.46 dB 20.46 dB 20.46 dB 20.46 dB 100 usec 4.90 dB 20.65 MHz 0 00812015 W 0 0.09120718 W 0.00812015 MHz 0 1.00 Hz 0 1.00 Hz</pre>	AQ PE PE PE PE PE PE PE PE PE PE	- 6 8	<mark>2</mark>		- <mark>9</mark>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		180 180
<pre>= CHANNEL f1 ======== 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz</pre>	======================================							
5 mm CPQNP 1H/ 21.03 21.03 21.03 21.03 21.03 299930 65536 65536 65536 65536 65536 1024 4 4 23980.814 Hz 0.365918 Hz 1.3664256 sec 512 0.850 usec 18.00 usec 298.2 K 2.0000000 sec 0.03000000 sec	Time Time INSTRUM PROBHD PULPROG TD SOLVENT SOLVENT SWH FIDRES AQ SWH FIDRES AQ DM TE D1 D1 TE D1 TE D1 TD						ا	Meo
Data Parameters SDG-3-81 2 1 quisition Parameters 20131115	Current NAME EXPNO PROCNO F2 - ACC Date	69.82 ——	22 · 33	L2.28	72.021 120.75 720.75 720.75	23 22 1 25 22 1 25 22 2 25	128.22	

2-94, 1H NMR

ata Parameters SDG-3-66 3	<pre>isition Parameters 20131116 20131116 23.39 23.39 23.39 2399030 65536 CDC13 1024 4 Hz 0.365918 Hz 1024 1.3664256 sec 1.3664256 sec 18.00 usec 298.2 K 2.0000000 sec 0.0300000 sec 0.0300000 sec</pre>	CHANNEL f1 ======== 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz	CHANNEL f2 ======== waltz16 1H 90.00 usec 4.90 dB 20.46 dB 21.00 dB 3.30822015 W 0.09195905 W 0.08120718 W 400.1316005 MHz	essing parameters 32768 100.6127587 MHz EM	0 1.00 Hz 0 1.40
Current D NAME EXPNO PROCNO	F2 - Acqu Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH FIDRES AQ RG AQ RG RG DT D1 TE D1 TD0	======================================	====== CPDPRG[2 PCPD2 PL12 PL13 PL13W PL13W PL13W SFO2 SFO2	F2 - Proc SI WDW	DC BB CB
					20 -
91 62. 88'08- 88'13					- 4
02°33. 41°09.					- 09
LI.I8.					- 8
87.211 - 213.28 - 113.28 - 115.28				_	100
-152'80 -152'20 -152'20 -158'20 -158'20 -158'20 -158'20					12(
99'LET 99'LET 6L'ZÞT 88'LÞT 0S'6ST					- 1 4
	Meo				180

rent Data Paramete 3 SDG-4-48 VO 2NO	- Acquisition Paral - 201507 - 14 FRUM speed	3HD 5 mm CPQNP 1. PROG 29 655. /ENT CDC.	8278.1. 38.5	3.95837	6. 298 1.000000	===== CHANNEL f1 == 1 15. 4 . 1 3.308220: 1 400.13247	- Processing param 327 400.13001	0 0	
PR06 PR06 PR06 PR06 PR06 PR06 PR06 PR06	F2 Date Time INS	PROF PULI TD SOLV	NS DS HWS FTD	A C A C D W G	DE TE D1 TD0	==== NUCC PL1 PL1 SF01	F2 - SI SF WDW	1 ppm GB	
5.652 2.622 2.522 2.5238 2.5228 2.52888 2.5288 2.5288 2.52888 2.52888 2.52888 2.52888 2.52888 2.52888 2.52888 2.52888 2.52888 2.52888 2.52888 2.52888 2.52888 2.52888 2.52888 2.52888 2.52888 2.52888 2.54888 2.54888 2.54888 2.54888 2.54888 2.54888 2.54888 2.54888 2.54888 2.54888 2.54888 2.54888 2.54888 2.54888 2.54888 2.54888 2.548888 2.548888 2.548888 2.548888 2.548888 2.548888 2.548888 2.5488888 2.5488888 2.5488888 2.548888 2.54888888 2.54888888 2.54888888 2.5488888888888 2.54888888888888888888888888888888888888								4 3 2 6 7 7 7 7 1 0 0 6	0°1 0°1 0°1 0°1 0°1 0°1 0°1 0°1
226.5 2.2.928 2.2.693 2.2.695 2.2.6								6 5	
2010 2010 2010 2010 2010 2010 2010 2010		-0 £						8	<u>3.0:</u> 4.1 9.0
LT.193 7.293 7		Me						- 6	

2-95, 1H NMR

L - 2 - 303 L - 303 L - 303 L - 323 L - 325 L - 325	641°44 661°44 661°44 882°44	086 ° 9 - 586 ° 9 - 166 ° 9 -	228 E E88.9 888.9 E06.9 606.9	878°87 888°87 798°87 728°87 7248°87	<pre>₺८8・2 - 299・٤ - 1८9・٤ - 669・٤ - 008・٤ - ₺₺8・٤ -</pre>	лд 2926 2.556 2.557	Lurrent D AME XPNO ROCNO	ata Parameter SDG-4-60-1s	01 0
			-	L		ЩЦΙ	2 - Acqu ate	isition Param 2015072	
						- н р	LIME NSTRUM ROBHD	Spec	רי ר
						ч рц Е-	ULPROG		' m m
MeU 0 Ph						го <u>р</u> да	OLVENT	CDC1	
						그 01 또	WH TDRES	8278.14 0.12631	~" -
							QU	3.958374	
							Ъ П I	60.40 6.0	\sim
_							D D D	1.0000000	• •
						ΠΖЦ	====== IUC1	CHANNEL fl == 15.0	
						арара оз	-1 111 101	4.5 3.3082201 400.132471	\sim \sim \sim \sim
						ц () ()	- Proc	essing parame 3276 400.130011	
							IDW SB		i-i c
- 6	- છ	- ب)4	- ო - 60		udd	ថ ម៉ី ក	0 1.0	\sim
			7.0 2.5 7.1	<u>0'0</u>					

2-96, 1H NMR

BRUKER	Current Data Parameters NAME SDG-4-60-1st EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date20150722 Time20150722 INSTRUM spect PROBHD 5 mm CPQNP 1H/ PULPROG 5 mm CPQNP 1H/ PULPROG 299936 S5536 55536 55536 55536 55536 55536 55536 55536 55536 55536 55536 55536 55536 55536 552 8 MH 2 0.3664256 512 0 MF 1.3664256 512 0 MF 2.0000000 552 MF 20 1.3664256 512 0 MF 20 1.3664256 1.366457 0 1.3665736 1.3665756 1.36657576 1.3665756 1.3665756 1.36657576 1.36657576 1.36677777777777777777777777777777777777	====== CHANNEL f1 ======= NUC1 13C P1 9.25 usec PL1 35.18820572 W PL1W 35.18820572 W SFO1 100.6228298 MHz	======= CHANNEL f2 ======== CPDPRG[2 waltz16 NUC2 PL2 90.00 usec PL2 90.00 usec PL2 20.46 dB PL13 3.308210.0 dB PL13 3.30822015 W PL12W 0.08120718 W PL13W 0.08120718 W	F2 - Processing parameters SI 32768 32768 MHz WDW EM SSB 0 1.00 Hz LB 0 1.00 Hz CB 0 1.00 Hz	
CI • 07						20 -
91 80 <u></u>						- 64
22.26 						- 0 9
50° <i>L</i> 8 ——						- 8
0 <i>L</i> .EII -						- 1 0
₩5.121 91.921 91.921 21.821 82.821 82.821 82.821 82.821 62.621				_		120
2129-32 2129-30 2129-30 2129-30 2129-30 2129-32 212						140
98 201J		ę				160
	<					180
5€.205	K	Meo				500
					I	

2-96, 13C NMR

			<u>1'09</u> <u>0'92</u> <u>1'03</u>	1.03 1.00		0.99 1.01 2.11 1.98	
0	ppm PC	2 1 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	- 9	8	ດ - -
0	LB SSB LB		WIT K		•		
3 400.130	ST SF WDW						
ocessing par	F2 - Pro Z						
3.3082 400.132	PL1W SF01						
	Р1 РL1						
= CHANNEL fl	======================================						
0 0 0 0 0 0 1	TDO						
	Ц, Ц,						
60	DW DE						
J. YUX	AQ RG						
0.12	FIDRES						
8278	DS SWH						
U	SOLVENT NS					́н	
9	TD					//	
5 mm CPQNP	PROBHD						o
പ ഗ	Time INSTRUM						
14+3+C+C11 + 4 2015	Date_						
	r P C						
Dala Falane SDG-4-61	CULTENC CULTENC S. S. EXPNO	282.27 282.27 283.27 288.27 288.27 288.28 288.27 288.27 288.27 288.27 28.27 28.27 28.27 2	521.4 221.4 071.4 071.4 721.4 721.4 721.4 721.4 7 591.4 7 591.4	GLT · Þ 	66.4 66.9 66.9 66.9 7 66.9 7 7 60.7 7 60.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C F T · L S S T · L Z L T · L Z L T · L Z L T · L S C T · L S C T · L Z C T · L	292 L 292 · L 585 · L 585 · L 585 · L 309 · L 209 · L 219 · L
Data Parame	7 9 Current	Т 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	52 28 95 95 79 52 52	28 26 26 26 26 26 26 26 26	10 52 52 50 60 61		21 26 26 26 26 26 26 26 26 26 26 26 26 26

2-97, 1H NMR

	Current Data Farameters NAME SDG-4-61-1st EXPNO SDG-4-61-1st FROCNO 1 F2 - Acquisition Parameters Time 16.02 INSTRUM Spect POLPROG 5 mm CPQNP 1H/ PROBHD 5 mm CPQNP 1H/ PULPROG 5536 SOLVENT Acetone NS SOLVENT Acetone NS 23980.814 Hz FIDRES 0.365918 Hz FIDRES 1.3664256 sec	RG 512 DW 20.850 usec DE 18.00 usec D1 2.0000000 sec D11 0.03000000 sec D11 0.03000000 sec TD0 1 E 0.03000000 sec TD0 1 E 0.03000000 sec TD0 1 TD0 1 E 0.03000000 sec P1 9.25 usec P1 0.55 dB P1 0.55 dB P1 100.6228298 MHz	======= CHANNEL f2 ======= CPDPRG[2 waltz16 NUC2 1H PUC2 90.00 usec PL2 4.90 dB PL12 20.46 dB PL13 3.30822015 W PL12W 0.09195905 W PL13W 0.08120718 W SF02 400.1316005 MHz	F2 - Processing parameters S1 32768 SF 100.6127690 MHz WDW EM SSB 0 1.00 Hz GB 0 1.00 Hz PC 1.40	md
					- 6
					20-
EI.82					30-
					- 6
					20
LE.IJ				_	- 09
70.1/					2-2
89.48				<u> </u>	8
					- 6
					1 0
					10
91.921 126.93 125.721 120.63 121 120.75					120
20.821 88.821 88.821 89.821					130
6 <i>L</i> .841					0 14(
	< <u> </u>				- 1 <u>2</u>

257

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.137	5378986	569674	50.046	53.901
2	7.715	5369181	487209	49.954	46.099
Total		10748167	1056884	100.000	100,000

Compound 2-48, 79% ee

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.111	553283	63266	10.679	12,489
2	7.651	4627976	443305	89.321	87,511
Total		5181260	506571	100,000	100.000

Compound 2-62, racemic

Peak#	Ret, Time	Area	Height	Area %	Height %
1	6.130	433114	47552	49.547	52,203
2	7.251	441041	43538	50,453	47.797
Total		874156	91089	100,000	100,000

Compound 2-62, 70% ee

Peak#	Ret, Time	Area	Height	Area %	Height %
1	6.146	203345	22333	14,605	16,301
2	7.290	1188932	114670	85,395	83.699
Total		1392277	137003	100,000	100,000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	6.109	734549	82439	49.974	51,656
2	6.938	735324	77153	50.026	48,344
Total		1469872	159593	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	6.116	273929	31288	6.820	7.788
2	7.001	3742863	370472	93.180	92.212
Total		4016792	401760	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	5.766	180022	19881	50.099	55.931
2	8,216	179309	15665	49.901	44.069
Total		359331	35546	100.000	100.000

Compound 2-64, 36% ee

Peak#	Ret, Time	Area	Height	Area %	Height %
1	5.770	1476938	163918	31.940	38.043
2	8.234	3147216	266952	68.060	61.957
Total		4624154	430870	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	7.642	204098	18224	46.732	49.833
2	9.356	232640	18346	53,268	50.167
Total		436738	36570	100.000	100.000

Detector A Ch1 254nm

Peak#	Ret, Time	Area	Height	Area %	Height %
1	7.663	33147	2962	2.177	2,555
2	9.373	1489278	112965	97.823	97.445
Total		1522425	115927	100.000	100.000

Compound 2-65, 96% ee

Peak#	Ret, Time	Area	Height	Area %	Height %
1	6.891	342545	34370	49.848	53,371
2	8.449	344632	30028	50.152	46.629
Total		687177	64398	100,000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	6.911	480088	49197	2,386	2.951
2	8.470	19637880	1618163	97.614	97.049
Total		20117968	1667360	100,000	100,000

Detector A Ch1 254nm

Peak#	Ret, Time	Area	Height	Area %	Height %
1	8,316	1883685	149057	50.115	52,583
2	9.651	1875060	134411	49.885	47.417
Total		3758745	283468	100.000	100,000

Dete	ctor A	Ch1	254	nm
------	--------	-----	-----	----

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8,310	982377	80440	3.670	4.432
2	9.585	25781805	1734464	96.330	95.568
Total		26764182	1814904	100.000	100.000

Detector A Citi 234lill										
Peak#	Ret, Time	Area	Height	Area %	Height %					
1	5.990	436076	46218	49.985	52,882					
2	7.180	436330	41181	50.015	47.118					
Total		872406	87399	100.000	100.000					

Compound 2-68, 87% ee

Peak#	Ret, Time	Area	Height	Area %	Height %
1	5.991	2102213	239235	6,268	8.734
2	7.139	31434983	2499828	93,732	91,266
Total		33537196	2739063	100.000	100.000

Compound 2-69, racemic

Detector A Ch1 254nm

Peak#	Ret, Time	Area	Height	Area %	Height %
1	6.041	31663	3839	40.854	57.734
2	8,138	45840	2810	59.146	42,266
Total		77503	6649	100.000	100.000

Compound 2-69, 78% ee

Peak#	Ret, Time	Area	Height	Area %	Height %
1	5,885	972108	124497	11.071	17.606
2	7.880	7808197	582626	88.929	82,394
Total		8780305	707123	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	40.371	659200	7700	50,512	48,531
2	46,661	645835	8166	49.488	51.469
Total		1305035	15865	100.000	100,000

Compound 2-70, 94% ee

Peak#	Ret, Time	Area	Height	Area %	Height %
1	42,665	70201	851	3.105	3.468
2	48.716	2191007	23684	96.895	96,532
Total		2261208	24534	100.000	100.000

Compound 2-71, racemic

Detector A Ch1 254nm

Peak#	Ret, Time	Area	Height	Area %	Height %
1	18.066	512349	22414	50,527	52,707
2	19.340	501656	20111	49.473	47.293
Total		1014004	42525	100.000	100.000

Ľ)et	ec	tor A	1	Ch	254	nm
---	-----	----	-------	---	----	-----	----

Peak#	Ret, Time	Area	Height	Area %	Height %
1	18,465	10569569	463160	92,829	92,987
2	20.004	816500	34929	7.171	7.013
Total		11386070	498088	100.000	100.000

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.841	1590100	114877	49.670	57.522
2	11.410	1611207	84833	50,330	42.478
Total		3201307	199710	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	8,570	335567	26116	2,358	3,343
2	10.870	13895866	755017	97.642	96.657
Total		14231433	781134	100.000	100.000

Compound 2-73, racemic

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.179	183064	13270	50.199	53,341
2	11.117	181613	11608	49.801	46.659
Total		364677	24878	100,000	100,000

Compound 2-73, 84% ee

Peak#	Ret, Time	Area	Height	Area %	Height %
1	9.231	479890	37101	7.979	9.414
2	11.005	5534742	357001	92.021	90,586
Total		6014632	394103	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	7.888	334891	29047	50.296	52,111
2	8.837	330952	26694	49.704	47.889
Total		665843	55741	100.000	100.000

Compound 2-74, 86% ee

Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.860	292331	26558	6.801	7.732
2	8.859	4006302	316928	93.199	92,268
Total		4298632	343486	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	7.438	1906845	173117	50.029	53.676
2	9.544	1904620	149402	49.971	46.324
Total		3811465	322519	100,000	100,000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	7.462	129922	12454	3.270	3.986
2	9.549	3843725	300023	96,730	96.014
Total		3973647	312477	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	7.221	32994	2940	50,332	53,264
2	8.939	32559	2580	49.668	46,736
Total		65554	5519	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	7.239	375698	36677	5.731	6.839
2	8.944	6179751	499628	94.269	93,161
Total		6555449	536305	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	7.469	291296	26039	50,255	53,126
2	9.057	288340	22975	49.745	46.874
Total		579636	49014	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	7.335	79489	7760	3.789	4.494
2	8,846	2018315	164903	96.211	95,506
Total		2097804	172664	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	9.254	714401	52403	50,311	54.712
2	12.296	705567	43376	49.689	45.288
Total		1419968	95778	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	9.372	64105	4768	2,195	2.790
2	12,400	2856992	166133	97.805	97.210
Total		2921098	170902	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	7.375	59300	5401	50.067	51,855
2	8,512	59140	5015	49.933	48.145
Total		118440	10416	100.000	100.000

Compound 2-79, 96% ee

Peak#	Ret, Time	Area	Height	Area %	Height %
1	7.392	364431	34802	1.772	2,060
2	8.456	20203612	1654547	98.228	97.940
Total		20568042	1689350	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	9.265	430794	28664	49.401	49.399
2	10.237	441249	29361	50,599	50,601
Total		872043	58025	100.000	100.000

[Peak#	Ret, Time	Area	Height	Area %	Height %
	1	9.055	361014	24922	1.509	1.774
[2	10.125	23556221	1380041	98.491	98,226
[Total		23917235	1404963	100.000	100.000

Detector A	Detector A Ch2 210hin								
Peak#	Ret, Time	Area	Height	Area %	Height %				
1	16.556	12828130	489213	50.034	57.649				
2	23,523	12810664	359387	49.966	42,351				
Total		25638793	848600	100.000	100.000				

Compound 2-81, 97% ee

Detector A	Ch2 210nm	
	C112 21 01111	

Peak#	Ret, Time	Area	Height	Area %	Height %
1	16.660	900275	38223	1,518	2,668
2	23.144	58388856	1394662	98.482	97.332
Total		59289131	1432885	100.000	100.000

Dettector A	Ch2 200mm				
Peak#	Ret, Time	Area	Height	Area %	Height %
1	11.468	482671	26962	49.804	54.175
2	14,593	486463	22807	50,196	45.825
Total		969135	49768	100.000	100.000

Compound 2-82, 96% ee

Detector A	Ch2 280nm				
Peak#	Ret, Time	Area	Height	Area %	Height %
1	11.379	53437	3197	2.227	2.964
2	14,308	2346529	104665	97.773	97.036
Total		2399966	107861	100,000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	8,231	1306392	105599	49.953	51,859
2	9.644	1308855	98027	50.047	48,141
Total		2615247	203626	100,000	100.000

Compound 2-83, 96% ee

Peak#	ŧ	Ret, Time	Area	Height	Area %	Height %
	1	8.133	289616	25743	2.034	2,343
	2	9.512	13947399	1072809	97.966	97.657
Te	otal		14237015	1098552	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	8,137	299054	25083	50.018	51,852
2	9.440	298840	23292	49.982	48,148
Total		597894	48375	100,000	100.000

Compound 2-84, 94% ee

Det.A Ch1 9.405 1000-MeO 750-500-250-8.135 0 0.0 10.0 2.5 5.0 7.5 12.5 15.0 min

Peak#	Ret, Time	Area	Height	Area %	Height %
1	8,135	377572	33785	2,752	3.264
2	9.405	13342353	1001273	97.248	96.736
Total		13719925	1035058	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	6.893	58319	5483	48,364	49.186
2	7.697	62266	5665	51,636	50.814
Total		120585	11148	100.000	100.000

Compound 2-85, 73% ee mAU

Peak#	Ret, Time	Area	Height	Area %	Height %
1	6.848	1907067	190782	13.674	14,763
2	7.651	12039386	1101488	86,326	85.237
Total		13946453	1292269	100,000	100,000

Compound 2-86, racemic

1 Det.A Ch1/220nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.603	4372340	139162	49.990	52.748
2	27.734	4374054	124662	50.010	47.252
Total		8746394	263825	100.000	100.000

1 Det.A Ch1/220nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	23,503	50218036	1440189	83.094	83,358
2	27.641	10216845	287519	16.906	16.642
Total		60434882	1727707	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	23,661	76249	2136	49.571	54,065
2	26,646	77568	1815	50.429	45.935
Total		153818	3951	100.000	100.000

Compound 2-87, 92% ee

Detector A C	Ch2 254nm
--------------	-----------

Peak#	Ret, Time	Area	Height	Area %	Height %
1	23.747	7880	224	3.803	4.649
2	26,377	199328	4601	96.197	95.351
Total		207208	4825	100.000	100.000

Detector A Ch2 210nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.362	6611765	209722	50.167	52.421
2	25.002	6567862	190349	49.833	47.579
Total		13179627	400071	100.000	100.000

Compound 2-88, 93% ee

Detector A Ch2 210nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.722	63985287	1486113	96.660	95.441
2	24.970	2210619	70982	3.340	4.559
Total		66195907	1557096	100.000	100.000

Compound 2-89, racemic

Detector A Ch2 220nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	25.453	7446429	186860	50.308	58.792
2	27.320	7355236	130973	49.692	41.208
Total		14801665	317833	100.000	100.000

Detector A Ch2 220nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	25.678	3436456	106412	90.446	89.960
2	27.294	363014	11876	9.554	10.040
Total		3799470	118288	100.000	100.000

Peak#	Ret, Time	Area	Height	Area %	Height %
1	8.899	2237329	164162	50,086	52,717
2	10.499	2229648	147241	49.914	47.283
Total		4466977	311402	100,000	100.000

Compound 2-93, 94% ee

Peak#	Ret, Time	Area	Height	Area %	Height %
1	8,821	22911107	1384670	97.088	96.620
2	10.701	687089	48442	2.912	3.380
Total		23598196	1433113	100.000	100.000

Detector	A	Ch ₂	21	0nm
Dettector		- 11 C	_	OTHER D

Peak#	Ret, Time	Area	Height	Area %	Height %
1	15,226	80122734	2297499	50,683	49.972
2	16,585	77964558	2300031	49.317	50,028
Total		158087292	4597529	100.000	100.000

Compound 2-94, 95% ee

mAU

Detector A Ch2 210nm

Peak#	Ret, Time	Area	Height	Area %	Height %
1	14,266	934747	38597	2,598	2.746
2	15,528	35040612	1366928	97.402	97.254
Total		35975359	1405526	100.000	100,000

Detector A Ch2 210nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.136	11283422	136984	50.630	53.437
2	27.399	11002501	119362	49.370	46.563
Total		22285923	256346	100.000	100.000

Detector A Ch2 210nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.527	1738649	25224	2.364	2.999
2	27.667	71820543	815994	97.636	97.001
Total		73559192	841218	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	26.153	996623	30942	49.994	51.103
2	28.409	996843	29607	50.006	48.897
Total		1993466	60548	100.000	100.000

Compound 2-96, 96% ee

Peak#	Ret. Time	Area	Height	Area %	Height %
1	26.172	19246	700	1.810	2.229
2	28.478	1044153	30710	98.190	97.771
Total		1063399	31410	100.000	100.000

Detector A Ch2 210nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	33.802	12151686	273500	50.344	51.828
2	36.026	11985637	254204	49.656	48.172
Total		24137323	527704	100.000	100.000

Detector A Ch2 210nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	33.519	2671897	60094	90.205	89.984
2	35.740	290133	6689	9.795	10.016
Total		2962029	66783	100.000	100.000

Compound 3-33, Racemic

1 Det.A Ch1/254nm

Peak#	Ret. Time	Ret. Time Area		Area %	Height %	
1	19.570	3124801	111675	49.924	52.836	
2	20.876	3134307	99689	50.076	47.164	
Total		6259108	211364	100.000	100.000	

Compound 3-33, 91% ee

Peak#	Ret. Time	Area	Height	Area %	Height %
	1 21.835	101631	3110	4.677	5.559
	2 23.366	2071305	52844	95.323	94.441
To	al	2172936	55955	100.000	100.000

Compound 3-34, Racemic

1 Det.A Ch1/254nm

	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	18.818	4893136	157005	49.889	52.851
Γ	2	21.957	4914970	140065	50.111	47.149
	Total		9808106	297070	100.000	100.000

Compound 3-34, 90% ee

Peak# Ret. Time Height Height % Area Area % 95.021 19.146 994312 31749 94.807 1 2 22.604 5.193 4.979 54466 1663 Total 33412 100.000 100.000 1048778

1 Det.A Ch1/254nm

Peak#	Ret. Time	Area	Height	Area %	Height %	
1	57.677	3296021	21613	50.042	51.832	
2	67.373	3290487	20085	49.958	48.168	
Total		6586508	41698	100.000	100.000	

Compound 3-35, 97% ee

Peak#	Ret. Time	Area	Height	Area %	Height %
1	55.959	2836357	18097	98.260	98.071
2	66.881	50231	356	1.740	1.929
Total		2886588	18453	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	35.703	1903348	40511	50.148	52.023
2	38.909	1892136	37360	49.852	47.977
Total		3795484	77871	100.000	100.000

Del.A GH1/254hm										
Peak#	Ret. Time	Area	Height	Area %	Height %					
1	36.176	63970	1380	3.537	3.883					
2	39.452	1744506	34158	96.463	96.117					
Total		1808476	35537	100.000	100.000					

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	4.05	4.28	4.46	0.00	49.77	300.2	38.2	49.771
2	UNKNOWN	4.46	4.61	5.05	0.00	50.23	276.9	38.6	50.229
Total						100.00	577.1	76.8	100.000

Compound 3-37, 92% ee

Index	Name	Start	Time	End	RT Offset	Quantity	Height	Area	Area
		[Min]	[Min]	[Min]	[Min]	[% Area]	[µV]	[µV.Min]	[%]
1	UNKNOWN	4.08	4.31	4.94	0.00	96.20	356.5	46.1	96.196
2	UNKNOWN	4.51	4.64	4.82	0.00	3.80	14.5	1.8	3.804
Total						100.00	371.1	47.9	100.000

1 Det.A Ch1/254nm

Peak#	Ret. Time	Area	Height	Area %	Height %	
1	61.109	2149339	14736	50.569	53.405	
2	66.623	2100968	12857	49.431	46.595	
Total		4250307	27594	100.000	100.000	

Compound 3-38, 92% ee

Peak#	Ret. Time	Area	Height	Area %	Height %
1	69.611	169465	1111	4.178	5.950
2	75.025	3886286	17563	95.822	94.050
Total		4055750	18674	100.000	100.000

Area Peak# Ret. Time Height Height % Area % 11.283 1013323 68314 49.864 52.996 1 12.753 2 1018854 50.136 47.004 60590 Total 2032177 128905 100.000 100.000

Compound 3-45, 90% ee

Peak#	Ret. Time	Area	Height	Area %	Height %
	1 11.769	49513	3237	4.954	5.586
	2 13.337	950003	54708	95.046	94.414
Tot	al	999516	57945	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	56.680	2093844	23516	50.023	51.265
2	63.209	2091890	22355	49.977	48.735
Total		4185734	45872	100.000	100.000

Compound 3-46, 90% ee

1	Det.A (Ch1/254nm				
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	51.052	3825736	48785	95.045	94.942
	2	55.486	199454	2599	4.955	5.058
	Total		4025190	51384	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	40.559	3371815	54908	50.119	54.035
2	47.838	3355859	46707	49.881	45.965
Total		6727675	101615	100.000	100.000

Compound 3-47, 5% ee

Peak#	Ret. Time	Area	Height	Area %	Height %
1	40.192	2000455	32120	52.413	55.900
2	46.565	1816295	25340	47.587	44.100
Total		3816750	57459	100.000	100.000

	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	36.970	3205955	67457	50.127	53.418
ſ	2	42.195	3189727	58823	49.873	46.582
	Total		6395683	126280	100.000	100.000

Compound 3-48, 95% ee

Peak#	Ret. Time	Area	Height	Area %	Height %
1	36.088	113139	2485	2.314	2.861
2	41.530	4775255	84373	97.686	97.139
Total		4888394	86858	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	49.439	1599586	13696	50.048	55.811
2	61.957	1596528	10844	49.952	44.189
Total		3196114	24540	100.000	100.000

Compound 3-49, 95% ee

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	49.861	1450543	12498	97.721	98.015
2	63.871	33826	253	2.279	1.985
Total		1484369	12751	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	57.303	2920351	33544	50.062	50.875
2	62.654	2913065	32390	49.938	49.125
Total		5833416	65934	100.000	100.000

Compound 3-50, 90% ee

Height Peak# Ret. Time Area % Height % Area 94.528 58.291 4858913 54265 94.812 1 2 63.369 5.188 5.472 265882 3141 Total 5124795 57407 100.000 100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	37.591	6441558	77283	49.994	54.363
2	43.722	6443017	64878	50.006	45.637
Total		12884574	142161	100.000	100.000

Compound 3-51, 94% ee

Peak#	Ret. Time	Area	Height	Area %	Height %
1	38.629	78910	900	2.952	3.689
2	44.762	2594290	23492	97.048	96.311
Total		2673200	24392	100.000	100.000

184200

100.000

100.000

10441904

Compound 3-52, 51% ee

Total

Downor A Ch2 210hill							
	Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	32.849	17639462	361873	75.456	77.705	
	2	40.520	5737626	103825	24.544	22.295	
	Total		23377088	465698	100.000	100.000	
	1 2 Total	32.849 40.520	17639462 5737626 23377088	361873 103825 465698	75.456 24.544 100.000	77.7 22.2 100.0	

Compound 3-57, racemic

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.709	126657	6002	50.044	62.661
2	17.397	126436	3576	49.956	37.339
Total		253093	9578	100.000	100.000

Compound 3-57, 92% ee

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.702	26240	1278	4.038	6.809
2	17.401	623612	17498	95.962	93.191
Total		649852	18776	100.000	100.000

Compound 3-58, racemic

	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	19.391	3103713	115294	48.715	50.560
	2	23.884	3267476	112740	51.285	49.440

Compound 3-58, 97% ee

Detector A Ch1 220nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	19.322	20585	816	1.052	1.255
2	23.674	1936717	64203	98.948	98.745
Total		1957302	65019	100.000	100.000

Appendix B

PERMISSION LETTERS

ost Trusted. Most Cited. Most Read.

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.

Copyright © 2015 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. Comments? We would like to hear from you. E-mail us at customercare@copyright.com

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

Sep 29, 2015

This Agreement between SRIMOYEE DASGUPTA ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number	3718300392431
License date	Sep 29, 2015
Licensed Content Publisher	John Wiley and Sons
Licensed Content Publication	Angewandte Chemie International Edition
Licensed Content Title	Enantioselective Copper(I)-Catalyzed Alkynylation of Oxocarbenium Ions to Set Diaryl Tetrasubstituted Stereocenters
Licensed Content Author	Srimoyee Dasgupta, Thomas Rivas, Mary P. Watson
Licensed Content Date	Sep 25, 2015
Pages	1
Type of use	Dissertation/Thesis
Requestor type	Author of this Wiley article
Format	Electronic
Portion	Full article
Will you be translating?	Yes, including English rights
Number of languages	1
Languages	English
Title of your thesis / dissertation	TRANSITION METAL CATALYZED REACTIONS OF ELECTROPHILIC INTERMEDIATES TO FORM C-C BONDS AND SET STEREOGENIC CENTERS
Expected completion date	Oct 2015
Expected size (number of pages)	350
Requestor Location	SRIMOYEE DASGUPTA 334 East Main Street
	NEWARK, DE 19711 United States Attn: SRIMOYEE DASGUPTA
Billing Type	Invoice
Billing Address	SRIMOYEE DASGUPTA 334 East Main Street
	NEWARK, DE 19711 United States Attn: SRIMOYEE DASGUPTA

Total

0.00 USD

Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a"Wiley Company") or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a particular work (collectively "WILEY"). By clicking �accept� in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened your Rightslink account (these are available at any time at http://myaccount.copyright.com).

Terms and Conditions

- The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.
- You are hereby granted a personal, non-exclusive, non-sub licensable (on a standalone basis), non-transferable, worldwide, limited license to reproduce the Wiley Materials for the purpose specified in the licensing process This license, **and any content (PDF or image file) purchased as part of your order**, is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of republication or reuse granted by this licence must be completed within two years of the date of the grant of this licence (although copies prepared before the end date may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any other purpose, beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of this Wiley Material. Any third party content is expressly excluded from this permission.
- For STM Signatory Publishers clearing permission under the terms of the **STM Permissions Guidelines** only, the terms of the license are extended to include subsequent editions and for editions in other languages, provided such editions are for the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts.
- With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may be made based on the Wiley Materials without the prior permission of the respective copyright owner. You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to you hereunder to any other person.

- The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the continuance of this Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto
- NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.
- WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.
- You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any breach of this Agreement by you.
- IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.
- Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not be affected or impaired thereby.

- The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either party's right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed waived or excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent to any other or subsequent breach by such other party.
- This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY's prior written consent.
- Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.
- These terms and conditions together with CCC s Billing and Payment terms and conditions (which are incorporated herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of fraud) supersedes all prior agreements and representations of the parties, oral or written. This Agreement may not be amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal representatives, and authorized assigns.
- In the event of any conflict between your obligations established by these terms and conditions and those established by CCC s Billing and Payment terms and conditions, these terms and conditions shall prevail.
- WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC s Billing and Payment terms and conditions.
- This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing process.
- This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without regards to such state sconflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the State of New York in the United States of America and each party hereby consents and submits to the personal jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. Although most of the fully Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License only, the subscription journals and a few of the Open Access Journals offer a choice of

 $https://s100.copyright.com/App/PrintableLicenseFrame.jsp?publisherID=140 \& publisherName=Wiley \& publication=ANIE \& publicationID=31635 \& rightID=1 \& typeO\dots 363$

Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License

The <u>Creative Commons Attribution License (CC-BY)</u> allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC-BY license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The <u>Creative Commons Attribution Non-Commercial (CC-BY-NC)License</u> permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The <u>Creative Commons Attribution Non-Commercial-NoDerivs License</u> (CC-BY-NC-ND) permits use, distribution and reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no modifications or adaptations are made. (see below)

Use by commercial "for-profit" organisations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from Wiley and will be subject to a fee. Further details can be found on Wiley Online Library

http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated May 2015

Questions? <u>customercare@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.