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ABSTRACT 
The human genome contains a large number of protein 
polymorphisms due to individual genome variation. How many of 
these polymorphisms lead to altered protein-protein interaction is 
unknown. We have developed a method to address this question. 
The intersection of the SKEMPI database (of affinity constants 
among interacting proteins) and CAPRI 4.0 docking benchmark 
was docked using HADDOCK, leading to a training set of 166 
mutant pairs. A random forest classifier that uses the differences 
in resulting docking scores between the 166 mutant pairs and their 
wild-types was used, to distinguish between variants that have 
either completely or partially lost binding ability. 50% of non-
binders were correctly predicted with a false discovery rate of 
only 2%. The model was tested on a set of 15 HIV-1 - human, as 
well as 7 human - human glioblastoma-related, mutant proteins 
pairs: 50% of combined non-binders were correctly predicted with 
a false discovery rate of 10%. The model was also used to identify 
10 protein-protein interactions between human proteins and their 
HIV-1 partners that are likely to be abolished by rare non-
synonymous single-nucleotide polymorphisms (nsSNPs). These 
nsSNPs may represent novel and potentially therapeutically-
valuable targets for anti-viral therapy by disruption of viral 
binding. 
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1. INTRODUCTION  
Proteins in human populations display a wide array of sequence 
polymorphisms. However, these sequence changes do not always 
affect the biological activity of specific proteins. In fact, it 
remains difficult to determine a priori whether changes in protein 
sequence will affect a protein’s activity such as protein-protein 
interactions (PPIs). Although a number of tools have been 
developed to predict the functional effect of SNPs [1], these tools 
mainly focus on protein stability, rather than protein interaction. 
Estimates of the proportion of total nsSNPs involved in disease 
via altered PPI ranges from 4% [2] to 10% [3]. Here we describe a 
novel tool that predicts whether a change in amino acid sequence 
leads to loss of protein-protein interaction (PPI). We developed 
this model using the SKEMPI database of kinetic mutants (with 
experimentally-determined kD) [4], and tested it using a set of 
relatively well characterized HIV-1 – human protein interactions, 
as well as a second set of human - human interactions known to 
play a role in glioblastoma. 
 
HIV-1 was chosen because it provides one of the clearest 
examples of the effect of a single SNP on disease. Interestingly, 
certain individuals are completely resistant to HIV- 1. These 
individuals possess a truncated version of the HIV-1 surface 
receptor CCR5, which is found on the surface of CD4+ T- helper 
cells and macrophages. This non-functional CCR5∆32 variant 
prevents HIV-1 entry [5]. Of particular interest is that resistance 
to HIV can be engineered by transplanting stem cells containing 
CCR5∆32 into patients [6]. This raises the possibility that there 
are other loss of binding variants in the human population that 
confer HIV resistance. Indeed, HIV interacts with around 1000 
human proteins, including the alternative receptor CXCR4, that 
have been shown to have one or more sequence variants. HIV-1 is 
also one of the best studied human viruses from a structural 
perspective. For instance, the Subramanian group has used cryo- 
electron microscopy to produce structures of HIV-1 proteins in 
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multimeric form [7], investigated the strain-specificity of such 
complexes [8] and probed the dynamics of HIV – human protein 
complexes under a variety of environmental and cellular 
conditions [9]. The glioblastoma test set was chosen because 
many forms of cancer are cause by altered PPIs, and kinetic 
interaction data is available for glioblastoma in particular. 
 
The relative lack of computational tools to predict altered 
interactions is due in part to the range of interactions in which 
proteins can be involved (long-term vs. transient, in complex or 
binary), and also ways in which these interactions can be altered 
(modulated by post-translational modification / cofactor binding, 
increased or decreased in affinity by mutation). However, recent 
surveys indicate that the physical distribution of disease-nsSNPs 
is unique. Disease-nsSNPs often cluster together at the protein 
surface [10]. Such clusters of disease-nsSNPs tend to be found at 
protein interaction interfaces [11][12] and to be involved in the 
same disease; neither is true for non-disease-causing nsSNPs. 
These studies suggest that a model of altered interaction based on 
direct physical changes at the interface could explain the 
mechanism of many disease-nsSNPs. 
 
It is unlikely, however, that such a model would succeed by using 
only static structures of proteins. As revealed by the instrumental 
evolutionary trace (ET) method of Lichtarge, interfaces are highly 
modular: families of related proteins often contain an ancestral 
core of interface residues about which additional functional 
clusters have arisen over the course of evolution [13]. In fact, the 
majority of observed contacts (pairs of residues within binding 
distance, typically 6Å) in co-crystal complexes present in the 
Protein Data Bank do not actually contribute to binding. Studies 
(e.g. [2]) also suggest that the majority of nsSNPs, even those 
present at interaction interfaces, are not likely to affect interaction. 
Flexible protein-protein docking tools such as HADDOCK are 
therefore necessary to more accurately capture the key residues 
responsible for binding kinetics, within the broader interface.  
 
Although docking tools do not always produce accurate results, 
ongoing community benchmarking efforts such as Critical 
Assessment of Predicted Interactions (CAPRI), currently in its 4th 
iteration [14], are accelerating algorithm development e.g. through 
the development of advanced rescoring methods. Therefore, 
docking tools are likely to become increasingly relevant to 
predictive models of altered binding. CAPRI 4.0 consists of 144 
structurally well-defined protein pairs (known crystal structure of 
proteins in both bound and unbound forms) of various functions 
encompassing most known binding modes. The recently-released 
SKEMPI database is also likely to hone the predictive capabilities 
of docking tools [4]. SKEMPI provides by far the largest 
publically-available resource to date of kinetic information for 
protein mutants, with over 3,000 mutants across 169 protein pairs 
[4]. Free energy of binding (∆G) values are provided for all 
mutant-containing protein pairs, as well as all wild-type pairs. 
This allows mutant pairs to be sub-divided into classes, e.g. 
“binders” (unaffected or mildly weakened) vs. “non-binders” 
(severely weakened). Comparison of docking-derived energy and 
other physical features to experimentally-determined values is 
likely to improve the accuracy of docking tools in the near future.  
 
We present a model that employs protein docking to predict 
complexes of a subset of mutant pairs in the SKEMPI database. 
The physical and energy scores from docking are used to train a 
machine-learning algorithm to differentiate between a class of 
binders and a class of non-binders, as described above. Because of 

its superior performance in recent rounds of the community wide 
Critical Assessment of Predicted Interactions competition 
(CAPRI) [15], especially when interface information is available, 
the HADDOCK docking tool [16] is used.  
 
The proposed model also continues the development of “double 
delta” or “∆∆”energy scores (Figure 1, see Methods for details). 
Moal and Fernández-Recio (2013) used statistical pairwise amino 
acid potentials to predict ∆∆G of SKEMPI mutants [17], while 
Demerdash and Mitchell (2013) [18] developed a hybrid model 
containing energetic and non-energetic terms in order to re-rank 
docking results and select “native” poses from thousands of 
decoys. In comparison to these methods, the proposed model uses 
more extensive structural information, since it is based on entire 
docked complexes. SKEMPI mutant pairs as well as SKEMPI 
wild-type pairs are docked, ∆ scores for energetic effects across 
the entire interface or complex are calculated in each case, and 
then ∆ scores are compared to generate ∆∆ scores. The use of ∆∆ 
scores allows the proposed model to make predictions for a range 
of protein pairs (enzyme-inhibitor, ligand-receptor, or virus-host), 
especially when normalized as a proportion of the wild-type. Use 
of the entire complex allows for effects such as the strain imposed 
on bonds and angles underlying mutated residues to be measured, 
which is not possible for pairwise potentials. Future users would 
need only to submit a pair of wild-type proteins (with contact 
information), and one or more mutant-containing pairs of proteins 
to the HADDOCK webserver [19]. 
 
2. METHODS 
2.1 Docking 
39 wild-type systems (i.e. protein pairs) from CAPRI 4.0 and their 
496 associated mutants located within the interaction interface 
from SKEMPI were submitted to the HADDOCK webserver for 
docking, although only a fraction of these (12 pairs and 166 
associated mutants) passed quality control measures described 
below, and were ultimately used in the training set (See section 
2.2). Surface contacts were used as ambiguous interaction 
restraints (AIRs). Contacts and interface residues were derived 
from the bound structures (co-crystal complexes) in the CAPRI 
4.0 benchmark using CAPRI definitions (all residues ≤ 6.0 and 
10.0 Å, respectively, from the opposite chain) (Janin, 2010). 
Surface residues were calculated in NACCESS [20] using a 
threshold of > 50% solvent accessibility of either the main or side 
chain in the unbound structure. The mutant proteins for docking 
were created in Chimera 1.8.1 [21] using the Dunbrack rotamer 
library [22] (no optimization of the global protein structure was 
performed). All hetero-atoms (non-protein atoms such as water or 
crystallization factors), and additional chains were removed prior 
to docking.  
 
The performance of the classifier depends on the quality of 
docking results, and therefore stringent quality-control measures 
were taken. Wild-type protein pairs and all associated mutants 
were discarded if the wild-type could not successfully be docked. 
All wild-type results were compared to their co-crystal complexes 
to ensure their poses were biologically acceptable. The fraction of 
native contacts (fnc), the ligand RMSD (l-RMSD), and interface 
RMSD (i-RMSD) were calculated and star ratings were given 
according to standard CAPRI protocol [23]. Pairs with less than 
one star were discarded, along with associated mutants. Finally, 
all scores were averaged over the top 10 poses from the highest-
ranking HADDOCK cluster, a common refinement step for 
docking algorithms [24] that has been reported to improve the 
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quality of docking results [25][26]. 
 
2.2 Training 
Mutants with kD < 1/10 wild-type were labelled as “binders”, 
while those with kD > 1000x wild-type were labelled as “non-
binders”. These cut-offs were determined by observing natural 
peaks in the distribution of kD-fold for the initial 496 mutants in 
the SKEMPI / CAPRI 4.0 overlap (not shown). Mutants with kD 
between 10- and 1000-fold were also discarded, along with 
associated wild-type pairs. The final training set consisted of 12 
wild-type protein pairs and 166 associated mutants (87 binders, 79 
non-binders). Binders and non-binders were analyzed based on 
physicochemical class (hydrophobic, aromatic, etc.) as well as 
size change (Figure 2).  
 
Initially, 21 features were calculated from the HADDOCK 
docking runs (Figure 3). Except for the conservation score, an 
external metric and common tool for predicting loss of binding, 
all scores were ∆∆ energy or ∆∆ physical scores. ∆∆ scores are 
based on ∆ scores, which themselves are used by docking 
programs to score poses (change in energy / physical parameter 
upon binding). ∆∆ scores are the difference (mutant – wild-type) 
in ∆ scores, comparing the “quality” of binding in the mutant, 
with reference to its original wild-type complex (Figure 1, right). 
All ∆∆ scores except for two residue-residue contact potentials 
(see paragraph below) were normalized as a proportion of the 
wild-type ∆ score. Physical ∆∆ scores included differences in the 
buried surface area (BSA) and conformational rearrangement 
during binding. Energetic ∆∆ scores included differences in 
electrostatic, Van der Waals, or covalent bond energies at various 
sites in the complex, such as the interface, internal regions (core), 
entire complex, or entire complex plus water solvent (Figure 3). 
 
Ultimately, 4 features were retained for the model. These were: 
“Conservation” or “Cons”, “∆∆Bond”, “∆∆G”, and “∆∆BSA”. 
Cons is an external metric that was found to increase the 
performance of the other 3 features, when combined in the model 
(its standalone performance is also compared to that of the 
model). This score approximates the disruptiveness of a mutation, 
and is defined as the inverse of the value from the 2008 Le and 
Gascuel amino-acid replacement matrix [27]. This replacement 
matrix estimates the probability of a substitution using the 
equation P(t) = eQt , where t is time, e is the natural log, and Q is 
mutation rate observed in seed sequences for Pfam families. 
Inverses were used because this matrix gives higher scores for 
more common substitutions, rather than rarer and more disruptive 
ones. For multiple and compound mutants (>1 mutation in one or 
both proteins, respectively), scores for individual mutations were 
summed. No difference in calculation was performed for multiple 
and compound mutants. ∆∆Bond is the difference in mutant and 
wild-type ∆ Bond, where ∆Bond is the difference in docked and 
non-docked covalent bond energies. ∆∆G is the difference in 
mutant and wild-type ∆G. ∆∆BSA is the difference in mutant and 
wild-type buried surface area, or BSA. Because by definition the 
BSA for undocked protein pairs is 0, ∆BSA (the difference in 
docked and non-docked BSA) is equivalent to BSA and the two 
terms are used interchangeably in the present study. It is important 
to note that scoring functions for docking tools have been 
optimized for directing docking, rather than producing realistic 
energy values. Therefore, although HADDOCK is among the few 
docking tools with a realistic force field, the “energy” scores used 
in the present work should be interpreted as parameters of docking 
rather than physical values. For example, ∆G possesses an 

entropic component, which is typically evaluated using normal 
mode analysis (e.g. by molecular dynamics software). Because  
 
this is a computationally very costly analysis, docking tools 
generally use the number of rotatable bonds as an approximation 
of entropy [28]. 
 
As a second external metric commonly used to predict loss of 
binding, residue-residue (pairwise) contact potentials were 
calculated. These were calculated by combining ∆∆ HADDOCK 
Van der Waals and electrostatic scores at the level of individual 
contact residues (Figure 3, green bars), rather than for the whole 
interface. Finally, a combined external model (CEM) was created 
using both external metrics (conservation and pairwise contact 
potentials). 
 
Weka is a flexible, Java-based environment for machine learning 
algorithm development [29]. In the current version (3.7), Weka 
supports a number of feature-refinement protocols, including 
CfsSubsetEval, which minimizes redundancy among features, and 
BestFirst, which maximizes the informativeness (predictive value) 
of features. 4 features, present at least 80% of the time during 
tenfold cross-validation, using the CfsSubsetEval Attribute 
Evaluator with the BestFirst Search Method in Weka 3.7, were 
kept in the final model. Random forests, formalized by Breiman 
(2001) [30], are a family of ensemble classification methods that 
are particularly suitable when a number of distinct combinations 
of features and threshold values may be predictive of the same 
class. Random forests were found to outperform other popular 
classifiers, including artificial neural networks (ANNs), Bayesian 
networks (BNs), and Support Vector Machines (SVMs), although 
overall performance was comparable for BNs. The model 
presented in this study consists of a random forest classifier 
(N=100) created in Weka 3.7 using a core of the 4 most 
informative features (Figure 3, blue bars). This classifier was 
trained according to the class labels of “binding” and “non-
binding”, defined as above, and tested in tenfold cross-validation. 
The following pseudo code summarizes the procedure used to 
create the model. 
 
for wild-type protein pair in SKEMPI / CAPRI 4.0 overlap:  

calculate surface contacts from co-crystal structure 
redock in HADDOCK using unbound wild-type structures 
compare docking result to co-crystal structure 
if docking fails: 

discard protein pair and associated mutants 
if docking result < 1 star: 

discard protein pair and associated mutants 
extract ∆ scores from docking files (scorebound

wt - scoreunbound
wt)  

average ∆ scores from top 10 decoys of top cluster 
for mutant protein pair: 

if kD < 10*wild-type kD:  
label as binder 

if kD > 1000*wild-type kD:  
 label as non-binder 

if binder or non-binder: 
create mutant unbound structure(s) in Chimera v1.6 
dock in HADDOCK using same parameters as for wt 
extract ∆ scores (score boundmut - scoreunboundmut) 
average ∆ scores from top 10 decoys of top cluster 
calculate ∆∆ scores (∆ scoremut - ∆ scorewt) 

load ∆∆ scores (features) into Weka v3.7 
refine non-redundant, highly-informative set of features  
train RandomForest classifier using mutant class labels
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Figure 1. Procedure to distinguish binding from non-binding protein mutants. The experimental design is illustrated by 
Subtilisin BPN and its inhibitor in Streptomyces (PDB 1SUP and 3SSI, respectively; co-crystal complex: PDB 2SIC). One 
mutant (M73D) of the inhibitor (green spheres) was classified as a non-binder using the conservation score and contact 
energy. However, docking scores revealed significant residual binding, potentially explaining why the mutant has not 
completely lost binding, and also correctly predicts the mutant as a binder.
 
2.3 External test sets 
In addition to tenfold cross-validation, the classifier was tested 
on a set of 15 mutant-containing HIV-1-human protein pairs (10 
binders, 5 non-binders): 6 Capsid – Cyclophilin A mutants from 
SKEMPI [4], 3 Vpr – TFIIB mutants [31], and 7 integrase – 
LEDGF mutants [32]. For the HIV-1 test set, mutations were 
approximately evenly distributed among HIV-1 and human 
proteins. Finally, the classifier was tested on a set of 7 human 
mutant-containing protein pairs thought to play a role in the 
development of glioblastoma by losing interaction [33]. The 
glioblastoma set was used because, unlike the majority of the 
HIV-1 set, quantitative information (∆∆G) on loss of binding 
affinity was available. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2.4 Case study – predicting HIV-1 interaction – 
abolishing human nsSNPs 
In order to demonstrate the utility of the classifier for  
addressing one of primary biological questions for which it was 
designed, predicting the effect of genetic variants on PPIs, a 
case study involving the known nsSNPs of biochemically well- 
characterized human-HIV-1 PPIs was conducted. These were 
PPIs for which the exact or approximate interaction interface 
had been experimentally determined. While 131 such 
interactions could be found in the literature, only around 20% of 
these had crystal structures in the Protein Data Bank 
encompassing the entire interface on both sides of the 
interaction (i.e. for both proteins). AIRs were calculated as 
during training, using NACCESS to predict surface residues. 
Predictions were made for a total of 58 nsSNPs (those contained 
by the crystal structures) involving 18 PPIs (18 human proteins 
and their 9 HIV-1 protein partners) by docking using the 
HADDOCK webserver and extracting scores as described 
above. Mutants were constructed using Chimera 1.8.1 as above, 
incorporating the rare forms of all nsSNPs that could be 
incorporated into the pdb structure. Originally, 23 PPIs were 
identified, but 5 could not be docked (CCR5-gp120, CCR2-
gp120, PKR-Tat, SMUG1-Vpr, and p53-Nef). In order to 
ascertain which nsSNPs were most likely, from a biological 
perspective, to affect interaction, proximity to the interaction 
interface was calculated as any atom within 10.0 Å of an 
experimentally-determined interacting residue. 20 of the 58 
nsSNPs were proximal to interfaces.  
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3. RESULTS  
3.1 Docking  
7 of the 39 overlapping SKEMPI / CAPRI 4.0 pairs could not be 
docked and were discarded. Exactly half of the remaining docked 
wild-type pairs (16) received at least a one-star rating (6 one-star, 
10 two-star - not shown) and were retained. Three wild-type 
docked pairs received a one-star rating but were omitted because 
the interaction partners were rotated or 180 degree around the 
interface, compared to the co-crystal complex. A further 4 wild-
types pairs were discarded because associated mutants contained 
no binders or non-binders. The final training set of docking results 
consisted of 12 wild-type pairs and their associated 166 mutant-
containing pairs (87 binders, 79 non-binders) (Table 1).  
 
3.2 Training 
57 binders (60%) contained a mutation from either a positive, 
polar, or hydrophobic residue to a residue of a different class. 66 
non-binders (83%) contained a mutation from an aromatic residue 
to a residue of a different class, which in 48 cases (60%) was a 
mutation to a hydrophobic residue. Overall, non-binders had a 
greater tendency to contain substitutions with amino acids smaller 
than the originals, as evidenced by a predominantly negative 
distribution of ∆ size (mutant – wild-type) (Figure 2). Often, 
these non-binding mutations consisted of an aromatic or other 
large residue replaced with a smaller residue. Multiple mutations 
were also more common among non-binders (not shown). The 
distribution for binders was centered around 0.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Size shifts are more negative for non-binders than 
for binders, in the training set. Mutations of aromatic to small 
hydrophobic residues, as well as mutations involving multiple 
residues, were common among non-binders (see text for 
details).  
 
 
 
 
 
 
 
 

 
There was some redundancy among the final 12 protein pairs 
(Table 1). Ras and Rac, present in complexes 1LFD and 1E96, 
respectively, are both part of the Ras superfamily of small 
GTPases and share 30% sequence identity. Ras is also present in 
complex 1HE8, but in this case the partner is the activator PI-3 
kinase rather than Ras interacting protein. 
 
Of the 21 original features, 5 appeared to provide optimal 
performance according to both BestFirst exhaustive subset 
sampling in Weka and classifier precision and recall. These 5 
were also the most informative, and appeared to measure distinct 
aspects of binding, including free energy, buried surface area, and 
improper-bond energy. However, the phi-psi angle feature was 
removed because it offered little extra performance when added to 
the other 4. The 4 features used in the final model, as well as 
features used to approximate residue-residue (pairwise) contact 
potentials, are shown in Figure 3. For the 4 final features, the 
difference in distributions for true binders and true non-binders is 
evident, with higher average values and proportionally even 
higher variance for non-binders (Figure 4), despite the presence 
of a number of positive outlier scores among binders (~10% 
binders for all features, excluding BSA). BSA was the only score 
that was higher on average for non-binders than for binders, and 
also the only one for which the p-value was > .05 using a one-
tailed t-test with unequal variance. 
 
The Q-value curve, which shows the # of positive (i.e. non-
binding) predictions made for given false discovery rates, 
indicates significant improvement in predictive performance 
compared to either the pairwise contact potentials or the combined 
model (CEM) of pairwise contact potentials and conservation 
score (Figure 5). The model (solid line) is able to make 34 correct 
non-binder predictions without incurring a false positive, while 
the CEM (dashed line) is able to make only 23 such predictions. 
The model predicts half of true positives with a false discovery 
rate or FDR=2%, while the CEM predicts half of true positives 
with FDR=9% (Figure 5, red arrow). 
 
A confidence threshold of c(nonbinder) > 0.60 was set by visual 
inspection. This corresponds to a FDR of 10% and 73 positive 
predictions (64/79 true positive predictions) (Figure 5, blue 
arrow). This confidence threshold was used during additional 
classification tasks. The same threshold appeared to be optimal for 
binder predictions, as well: c(binder) > 0.60. With this threshold, 
precision, recall, specificity, and F1 score for non-binders were: 
0.89, 0.84, 0.91, and 0.86, respectively. For binders, these scores 
were: 0.89, 0.80, 0.89, and 0.84, respectively. The area under the 
receiver-operator curve was 0.93. The unlabeled set of mutant-
containing protein pairs, those with kDfold between 10 and 1000, 
were largely classified as binders. An example of one of the 
mutants is illustrated in Figure 1 (a M73D substitution in 
subtilisin inhibitor, PDBid 2SIC, chain I). Although this 
substitution is extremely uncommon, and therefore would rank as 
a non-binder using the conservation score alone, it would be 
predicted correctly to be a binder. 
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Table 1. Docking results and training set. Of the 39 wild-type protein pairs that overlap between the CAPRI 4.0 docking 
benchmark and the SKEMPI database, 12 produced biologically-accurate structures when docked and contained at least one 
“binder” or “non-binder” mutant in SKEMPI (kD < 10-fold of wild-type, kD > 1000-fold of wild-type, respectively). The protein 
names, species, and PDB entries for these 12 protein pairs (columns 1-2), as well as the CAPRI docking ratings (“wild-type 
docking”) are shown. The numbers of “binders” and “non-binders” are also shown (“mutant docking”). 

 
  wild-type docking models docked 

Protein pair from CAPRI 4.0 / 
SKEMPI PDBID_chains 

fnc (prop contacts 
recaptured) 

ligand 
RMSD 

interface 
RMSD stars 

# SKEMPI 
binders 

# SKEMPI 
non-binders  Total 

 RAC1_NCF2 (Homo sapiens) 1E96_A_B 0.5 2.94 0.84 ** 1 0 1 

CHEY_CHEA (Escherichia coli) 1FFW_A_B 0.33 3.04 0.73 ** 4 0 4 

GRB2_VAV (Mus musculus) 1GCQ_B_C 0.12 3.5 1.09 * 3 0 3 

PK3CG_RASH (Homo sapiens) 1HE8_A_B 0.24 3.48 0.94 * 2 0 2 

BLAT_BLIP (Escherichia. coli, 
Streptomyces clavuligerus) 1JTG_A_B 0.12 3.58 0.91 * 4 48 52 
TGFB3_TGFR2 (Homo sapiens) 1KTZ_A_B 0.9 2.2 0.67 ** 2 2 4 
GNDS_RASH (Rattus norvegicus, 
Homo sapiens) 1LFD_A_B 0.53 2.88 0.93 ** 6 0 6 
ACES_FAS2 (Mus musculus, 
Dendroaspis angusticeps) 1MAH_A_F 0.36 2.74 0.84 ** 4 6 10 
SUBT_IOVO (Bacillus licheniformis, 
Meleagris. gallopavo) 1R0R_E_I 0.9 1.18 0.71 ** 47 23 70 

ACTB_PROF1 (Bos taurus) 2BTF_A_P 0.53 2.1 1.1 ** 2 0 2 

UPA_UPAR (Homo sapiens) 2I9B_A_E 0.15 5.27 2.14 * 4 0 4 
SUBT_SSI (Bacillus 
amyloliquefaciens, Streptomyces 
albogriseolus) 2SIC_E_I 0.76 2.62 0.74 ** 8 0 8 

     
  87 79 166 

 

 
Figure 3. Docking-derived and conservation features for predicting loss of binding. In all, 21 features candidate features generated 
during docking were sampled in Weka (and one external amino-acid replacement score based on sequence conservation). The 
features selected for the final model are shown in blue with double-lined edges, while features used to capture residue-residue 
contact potentials are shown in green with bold edges. The conservation feature was also used in the combined external model 
(CEM) (cons + green bars). 
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Figure 4. Boxplots of values for features used in model. Binders and non-binders are shown in tan and blue, respectively, while 
outliers are indicated by red plus signs. 
 
 

 
Figure 5. Combining multiple docking-derived features enhances predictive performance. The number of total positive (i.e. non-
binding) predictions is plotted against the false discovery rate (FDR). The complete set of four features (solid line with crosses) 
shows improved performance over subsets of three (solid grey line) and two (compound line) features, even though the remaining 
features in the subsets have higher predictive performance when used in isolation. Combining features also enhances performance 
over external metrics that do not use full interface information, such as amino-acid replacement scores based on sequence 
conservation, pairwise amino-acid energy potentials (dotted line), or both (CEM - dashed line). The large red arrow indicates half 
of all positive predictions. The small red arrow indicates the FDR corresponding to a confidence threshold of c > 0.60.  
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3.3 Cross-validation 
HADDOCK docking is capable of optimizing backbone and 
side-chain conformations at the interface, and provides various 
physical and energy-based features (Figure 3). The model 
performs particularly well at predicting mutant protein pairs 
with strongly-diminished affinity of interaction (non-binders), 
distinguishing them from less disruptive mutants on the basis of 
characteristic patterns of redistributed binding at the interface. 
Specifically, less favorable changes in energy upon binding in 
mutants compared to their wild-type “parent” protein pairs (+ ∆∆ 
energy scores), as well as the presence of markedly fewer 
outliers, appear to define non-binders (Figure 4).  
 
3.4 Comparison with pairwise potentials 
Pairwise residue contact potentials derived from docking were 
among the most informative on an individual basis, but did not 
combine well with the most informative core features, being 
largely redundant with other features of the model. A model 
combining residue contact potentials with accessible surface 
area (ASA) [34] has been shown to be useful in predicting “hot 
spot” residues – those most essential for binding [35]. Therefore, 
we combined BSA with contact potentials to see if we could 
achieve a similar synergism at the level of the entire interface. 
Although we noted a modest improvement in performance, the 
improvement was less significant than when adding BSA to 
other 3 features of the present model. This may be due to the 
fact that, for the majority of non-binders, hot spot residues have 
been removed. 

The model shows several advantages in performance terms, 
notably its low false discovery rate (FDR), with ~50% non-
binders correctly predicted with an FDR of 2%, compared to an 
FDR of 9% for a combined model (CEM) based on conservation 
scores and pairwise residue contact potentials (Figure 5). 
 
 
 

3.5 External test sets 
For the HIV-1 test set of 5 binders and 10 non-binders, 4 and 7 
predictions were made with c > 0.60, of which 3 and 4 were 
correct, respectively (Table 2, top). The FDR was thus 50% for 
binders, and 20% for non-binders. 
 
For the glioblastoma test set of 7 non-binders, 7 predictions 
were made with c > 0.60, of which 5 were correct. Increasing 
the confidence threshold to 0.80, 5 predictions remained, of 
which all 5 were correct (Table 2, bottom). Because there were 
no binders in this set, no FDR can be given. 
 
Validation on external test sets of HIV-1 and human 
glioblastoma mutants showed results similar to those from 
tenfold cross-validation, in particular for the glioblastoma set, 
for which increasing the confidence threshold modestly 
eliminated all false binders without losing any true binders (not 
shown). This suggests that tightening the confidence threshold is 
an effective means of adjusting the model to eliminate false 
predictions, supporting results from cross-validation (Figure 5). 
There was a relatively higher rate of errors in the HIV-1 dataset, 
with 4 ambiguous predictions, and only 7 of the remaining 11 
correct (64%). It should be noted, however, that the FDR for 
non-binders was fairly modest, at 20%.  

Although the LEDGF-integrase pair accounted for fewer than 
half of the HIV-1 dataset (7/15 mutants), 3/4 non-predictions (c 
< 0.60 for either class) and 2/4 false predictions were found 
among its mutants. Omitting LEDGF-integrase predictions, the 
FDR for non-binders is 0%. These less accurate results for 
LEDGF-integrase may be due to the class labelling methodology 
or artefacts of the docking methodology, as elaborated in the 
Discussion (section 5.2).  
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Table 2. Non-synonymous SNPs predicted to cause loss of binding between human and HIV-1 proteins. Protein names and PDB 
structures used in docking are provided in columns 1-2 and 4-5. NsSNPs are listed in column 3 (those found at or near interface 
residues in bold, light blue). Amino acid positions are for Uniprot canonical sequences. Proximity to interface is defined as within 
10 angstroms from a literature-reported interacting residue. Non-binding prediction status (Yes(c >= 0.60) or No), as well as 
confidence values for positive cases, is shown in the final column. 

External test set 1 - HIV-1 

Human 
protein 
name 

PDB 
structure mutation 

HIV1 
partner 
name 

PDB 
structure binding type 

Non-binder 
prediction , 
confidence 

LEDGF 2B4J_D D366N Integrase 2B4J_A non-binding N  

LEDGF 
2B4J_D 

D366A Integrase 
2B4J_A 

non-binding N 

LEDGF 
2B4J_D 

V370A Integrase 
2B4J_A 

binding Y, 0.81 

LEDGF 
2B4J_D 

I365A Integrase 
2B4J_A 

non-binding Y, 0.87 

LEDGF 
2B4J_D 

K360A Integrase 
2B4J_A 

non-binding N 

LEDGF 
2B4J_D 

V408A Integrase 
2B4J_A 

binding N 

LEDGF 
2B4J_D 

F406A Integrase 
2B4J_A 

non-binding N 

TFIIB 1RLY_A R53A_T54A Vpr 1M8L_A binding N 

TFIIB 
1RLY_A 

F55A Vpr 
1M8L_A 

binding N 

TFIIB 
1RLY_A 

W52A Vpr 
1M8L_A 

binding N 

CypA 1AK4_A H487R Capsid 1AK4_D non-binding N 

CypA 1AK4_A A488G Capsid 1AK4_D non-binding N 

CypA 1AK4_A G489A Capsid 1AK4_D non-binding Y, 0.95 

CypA 1AK4_A G489V Capsid 1AK4_D non-binding Y, 0.84 

CypA 1AK4_A P490A Capsid 1AK4_D non-binding Y, 0.88 

External test set 2 - glioblastoma 

Human 
protein 
name 

PDB 
structure mutation partner 

name 
PDB 
structure binding type 

Non-binder 
prediction , 
confidence 

p53 1YCS_A P177S 53BP2 1YCS_B non-binding Y, 0.72 

p53 1YCS_A R248H 53BP2 1YCS_B non-binding Y, 0.84 

p53 1YCS_A R248Q 53BP2 1YCS_B non-binding N 

p53 1YCS_A R248W 53BP2 1YCS_B non-binding N 

p53 1YCS_A R273C 53BP2 1YCS_B non-binding Y, 0.83 

HRAS 1NVU_R G12D SOS1 1NVU_S non-binding Y, 0.95 

RHOE 2V55_B D67Y ROCK1 2V55_A non-binding Y, 0.9 
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3.6 Case study – predicting nsSNPs that abolish 
human – HIV-1 PPIs 
Of the 18 human – HIV-1 PPIs in the case study that could 
successfully be docked, 10 were predicted to be non-binders 
when nsSNP rare form variant(s) were included (c > 0.60) 
(Table 3, rightmost column). Of the 18 successfully-docked 
mutants, 10 were predicted to be non-binders, including 8 of the 
10 successfully-docked cases with nsSNPs at the interface and 1 
case of a single-nsSNP mutant at the interface. By contrast, the 8 
predicted binder nsSNPs were primarily external to the interface 
(6/8 cases), although there were 3 cases of single-nsSNP 
mutants for this class. Thus, predicted non-binders generally fell 
within the interface and had multiple mutations, while predicted 
binders generally fell outside the interface and had fewer 
mutations. It must also be noted that the confidence of 
predictions was not particularly high for any of the non-binders, 
ranging between 0.60 (the threshold) and 0.77. The highest 

confidence prediction was for APOBEC3F – Vif. It is interesting 
that this highest prediction was for a member of a family of 
closely-related human proteins, with considerable redundancy in 
function. APOBEC3H nsSNPs were also predicted to abolish 
interaction, although the primary target [36] of HIV-1 Vif, 
APOBEC3G, did not have nsSNPs that prevent this interaction. 
AN evolutionary explanation of this finding is elaborated below, 
in the Discussion (section 4.3). A (relatively) high-confidence 
non-binding prediction (0.73) was also made for Alix-p6. This is 
likely a result of the availability of crystal contacts for this pair, 
and the presence of 7 nsSNPs overall with 2 at the interaction 
interface. The kinases (Lck, Hck, and Fyn) which are hijacked 
by HIV-1 Nef to orchestrate down-regulation of T-cell surface 
MHC I and II surface receptors, as well as the anti-lentiviral 
protein BST-2, all showed loss of interaction upon mutation to 
their nsSNP rare forms, even though the interacting residues 
information was only general (SH3 domain). 

 

Table 3. Non-synonymous SNPs predicted to cause loss of binding between human and HIV-1 proteins. Protein names and PDB ids 
(columns 1-2, 4-5) are shown. NsSNPs are listed in column 3 (those found at or near interface residues in bold, light blue). Amino 
acid positions are for Uniprot canonical sequences. Proximity to interface is defined as within 10 angstroms from a literature-
reported interacting residue. Non-binding prediction status (Yes(c >= 0.60) or No), as well as confidence values for positive cases, is 
shown in the final column.  

Human 
protein  

PDB 
structure nsSNPs  (@ interface) HIV1 

partner  
PDB 
structure 

Non-binder 
prediction, conf 

CD4 4H8W:C K191E, F227S, R265W Gp120 4H8W:G N 

Lck 4D8K:A G201S Nef 4NEE:C Y, 0.65 

ß-TrCP 1P22:A A543S, P592H Vpu 1VPU:A Y, 0.66 

TRIM5α 4B3N:A 
(SMR) 

G31S, H43Y ,C58Y, G110E, V112F, R136Q, 
G249D, H419Y, C467S, P479L Capsid 1E6J:P N 

Dynamin2 3SNH:A 
(SMR) P263L Nef 4NEE:C N 

SIRT1 4KXQ:A D3E, V484D Tat  1JFW:A 
(SMR) Y, 0.6 

TFIIB 1RLY:A P19S Vpr 1M8L:A N 

APOBEC3G 3V4K:A H186R, R256H, Q275E Vif 4N9F:G N 

APOBEC3F 4IOU:A R48P, Q61L, P97L, A108S, A178T, V231I, Y307C Vif 4N9F:G Y, 0.77 

APOBEC3H 4J4J:A (SMR) R18L, G105R, K121E, K121N, K140E, E178D Vif 4N9F:G Y, 0.63 

APOBEC3B 3VM8:A 
(SMR) K62E, P98L, S109A, T146K, R351H Vif 4N9F:G N 

Hck kinase 1AD5:A A44T, M105L, P502Q Nef 4NEE:C Y, 0.69 

AP1G1 1W63:A V195G, P685H Nef 4NEE:C N 

Erk1 2ZOQ:A E323K Nef 4NEE:C N 

Fyn 1Y57:A 
(SMR) I445F, D506E Nef 4NEE:C Y, 0.65 

Importin-α 1IAL:A 
(SMR) A157V, P165R, G365S, T430P, K453N Vpr 1M8L:A:1-96     Y, 0.60 

Alix 2XS1:A V7M, A309T, V378I, G429S, N550S, K638E, 
S730L P6 2R05:B Y, 0.6 

Alix 2XS1:A V7M, A309T, V378I, G429S, N550S, K638E, 
S730L 

Nucleo 
capsid 

1A1T:A 
(SMR) Y, 0.69 
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4. CONCLUSION 
The model was found to perform optimally when using one 
conservation-based score and three docking-based scores for 
mutation (∆∆G, ∆∆Bond and ∆∆BSA). Many of the non-binder 
mutants used in the training set had aromatic or other large 
residues substituted with smaller residues. This may explain why 
two of the three docking features (∆∆Bond and ∆∆BSA) quantify 
redistributed binding across the interface. The model appears to 
outperform both sequence-conservation and a pairwise-potential – 
based predictive models. Specifically, the model generates 
predictions with a very low false discovery rate, provided the 
confidence threshold is set suitably high (at least c>0.60). This 
low false discovery rate was also found in external validation 
using HIV-1 – human and glioblastoma-related mutants. The 
model was used to discovery ten cases wherein an nsSNP in a 
human protein abolished interaction with an HIV-1 partner 
protein.    
 
5. DISCUSSION 
5.1 Comparison with existing models 
An estimated 10,000 – 25,000 SNPs [37] that code for altered 
versions of 3,200 human proteins [38] (non-synonymous SNPs or 
nsSNPs) are believed to play a role in disease. It has been 
estimated that as much as 10% of these nsSNPs may exert this 
effect by altering protein-protein interactions [3], including with 
viral proteins [5]. 
 
However, existing techniques such as amino-acid conservation 
scores are insufficient for predicting mutations that disrupt 
interaction, particularly in a disease context. A recent structural 
SNPs survey by Das et al. (2014) [39] found that variants at 
interaction interfaces tend to disrupt interactions of greater 
biophysical strength, compared to variants outside the interface. 
However, variants at interaction interfaces do not fall upon more 
highly conserved residues, compared to those outside. Therefore, 
measuring the magnitude of binding energy disruption (∆∆G or 
other ∆∆Escore) seems to be a promising means of improving 
predictive capabilities. 

The SKEMPI database of experimentally-defined kinetic mutants 
has already led to development of more refined pairwise 
potentials. A handful of recent studies have used SKEMPI either 
for training [40] or validation [41][42] of predictive models of 
protein interaction. These studies are encouraging, as they are 
among the first successful attempts to make binding predictions 
based on energy scores that are generalizable across proteins 
pairs. The novel predictive model presented here adds to such 
models, using the full structure of the protein interaction complex, 
in particular the interface, as depicted in Figure 1. The expansion 
of databases like SKEMPI is likely to accelerate the development 
of docking tools, as more compound and synergistic mutations are 
added.  

The performance of HADDOCK depends in part upon the 
accuracy of active interface restraint information. Co-crystal 
complexes are not available for many of the more than 1,000 
HIV-1 - human protein pairs that may be investigated in the 
future. However, considerable overlap exists between human-
human and human-virus interfaces [43]. Therefore, human-human 
interfaces may be used. Interfaces can be obtained from databases 
such as 3DID [44] or iPfam [45]. In fact, a tool based on 3DID 
recently developed by Gonzalez, Liao and Wu (2013) [46] can 
provide a confidence score to rank interacting residues. 

Alternatively, interacting-residues prediction programs such as 
ProMate [47] or the consensus tool CPORT [48] can be used. 
5.2 External test sets 
The results suggest that the non-quantitative terms from literature 
used to assign class labels were ambiguous. The glioblastoma 
mutants all had experimentally-measured + ∆∆G values, and had 
more experimental evidence of binding loss. In addition, the use 
of a monomer of HIV-1 integrase for docking with human 
LEDGF rather than a dimer (the current model was only trained 
on binary complexes) may have produced incorrect poses. Lab 
data indicates that significantly more hinging occurs when the 
monomer, rather than the dimer, is docked (results not shown). 
 
5.3 Case study of nsSNPs that abolish human – 
HIV-1 PPIs 
The case study is valuable because it serves as further evidence 
that the predictive model can be applied to its original and 
primary purpose: predicting the effect of sequence variation on 
essential protein interactions of pathogens (with their host).  
 
Equally importantly, these findings (nsSNPs with interaction-
abolishing effects in 10 human proteins) have potential medical 
relevance, as they consist of mutations that could be cloned into 
T-cells that are then administered into AIDS patients to confer 
lasting immunity, following the overall methodological approach 
of  Hutter et al. in their 2009 experimental therapy [6]. 
 
It is tempting to speculate that the APOBEC3 family of proteins 
has been in an evolutionary arms race with primate lentiviral Vif 
proteins for some time, and that the known nsSNPs have evolved 
as escape mutants for APOBEC3F, and APOBEC3H, but not yet 
APOBEC3G, proteins. It has been found that only a single amino 
acid differs between human and macaque APOBEC3G – the 
latter is not bound by lentiviral Vif [49]. APOBEC3B nsSNPs 
also were not predicted to lose interaction with HIV-1 Vif, but 
the B form is not a major player in HIV-1 infection. 
 
Predictions of non-binding for 2 of the 8 mutants outside the 
interface must be interpreted only tentatively, as the model was 
not trained on mutants outside of interaction interfaces. 
Nevertheless, the finding that the majority of nsSNP-mutants 
predicted to cause loss of binding were mutants within the 
interface, and vice versa, supports the model. 
 
Another important point to acknowledge is methodological in 
nature. NsSNPs were incorporated (for each protein) as a single 
ensemble during the in silico preparation of structural mutants. 
While the findings suggest that interface nsSNPs are the 
predominant causes of binding loss in this experiment, 3 human 
proteins had >1 interface nsSNP. Future studies should follow up 
on the present study with predictions of the effects of individual 
nsSNPs.  
 
5.4 Comparison of Random Forest with other 
machine-learning classifiers 
Bayesian networks (BNs) may be of some value in the 
development of future models. As indicated, the performance for 
BNs was close to that of Random Forests during cross -
validation. By contrast, ANNs and especially SVMs displayed a 
high false-negative (FNR) rate for non-binders. Over 50% of 
actual non-binders were incorrectly classified by SVMs, 
although the FDR was lower than for Random Forests. BNs 



1545-5963 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2520931, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

classified HIV-1, but not glioblastoma, non-binding mutants 
slightly more accurately than did RandomForest. 
 
5.5 Future directions 
5.5.1 Features 
The finding that greater buried surface area (positive ∆∆BSA) was 
characteristic of non-binders, yet is typically associated with 
higher binding affinity in experimental findings [42] also warrants 
deeper investigation (Figure 4). ∆∆BSA also contained the fewest 
outliers of any feature in the model (Figure 4, red plus marks), 
suggesting that binding redistribution is consistently different for 
the two classes (although p=.06). This may be due to the 
prevalence, among non-binders, of mutations converting aromatic 
to hydrophobic or other class of residue. Aromatic residues 
contain bulky side chains whose removal would allow the two 
proteins to come closer together, with an increase in Lennard-
Jones potentials. In agreement with this explanation, non-binding 
mutants generally replaced larger amino acids with smaller amino 
acids, which was not found to be true of binding mutants (Figure 
3). Aromatic residues are also well-known to be over-represented 
among hot spots, contributing substantially to binding affinity 
[50]. Alternatively, the removal of hot spot residues may force the 
docking software to introduce numerous weak compensatory 
interactions e.g. through rotation of hydrophobic side-chains. 
More thorough investigation of these possibilities would clarify 
the findings of the present study. 
More realistic energy (and other) scoring functions could improve 
performance. For example, the type of energy driving interaction 
at the core of the interface, where hot spots predominate [50], is 
often distinct from that found at the periphery of the interface, 
where solvent interactions are involved (“O-ring” theory of 
Bogan and Thorn [51]). Geometric scores for scoring final 
docking poses, such as ZDOCK pairwise shape complementary 
(PSC) [52] might add value to the existing model. Additional 
structural elements such as fold or motif could be included, again 
bringing more structural “context” for energy scores. Recently, a 
docking affinity benchmark was published [53], wherein 
prediction of realistic ∆G was found to be particularly difficult in 
cases involving significant conformational rearrangement. 
Modeling conformational rearrangement also continues to hamper 
the performance of docking tools at the primary task of complex 
prediction [14]. To address this problem, one of the original 21 
features generated for the present model was a score for 
conformational rearrangement: rmsd(∆∆position), where 
∆position is a vector of residue displacements occurring during 
docking, for either the wild-type or mutant. This feature was not 
found to add significant predictive value to the model, therefore, 
more advanced (e.g. geometric) scores are required. The iAlign 
tool developed by Gao and Skolnick [54] scores similarity of 
interfaces between two pairs of proteins, and has been 
recommended for scoring docking predictions [55]. However, this 
tool was not found to add significant value in a pilot study (results 
not shown), perhaps due to the use of a single representative 
structure from each docking, rather than a consensus or averaged 
structure. Global docking tools such as ZDOCK could also be 
used to verify the accuracy of the wild-type docking by 
consensus, in cases where no co-crystal complex is available, so 
that future users of the model can be more assured of ∆∆ scores 
with predictive value. Alternatively, if a known non-binder exists, 
that mutant could be used as a positive control for non-binding 
(although this does not inform about the true wild-type binding 
conformation). A third way to verify docking results is to 

compare them with solved crystal structures of homologous 
complexes. 
5.5.2 Classes of altered binding 
The existing model could be expanded to include other classes of 
altered binding, such as “super-binders” with enhanced affinity. 
A recent study used SKEMPI mutants to train a classifier for 
nsSNPs that affect protein-interactions, using three classes – no 
effect, diminished binding, and enhanced binding [56]. However, 
the classifier did not define a class of “non-binders”, as in the 
present study. There are many other classes of binding that could 
be defined, for instance enthalpy-driven vs. entropy-driven 
binding. Such a classifier could aid in the development of more 
sophisticated free energy (∆G) scoring functions. There is 
preliminary evidence that disease-causing nsSNPs that alter 
protein interactions act through distinct mechanisms [56]. The 
same study also leverages the class of “undefined” (medium 
effect) mutants in SKEMPI to improve predictions for binding 
and non-binding mutants, using a technique known as semi-
supervised learning. The functional insight that future tools such 
as the one in the present study might shed on interaction-altering 
human SNPs would prove invaluable to the current 
understanding of human genetic variation in disease. 
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