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ABSTRACT

Hidden target detection and classification is an important task for many security and

military applications. Long wave infrared (8-14 µm) cameras, otherwise known as thermal

cameras, can be used towards hidden target detection and classification but are less studied

in the Computer Vision literature due to their high cost and low resolution. Thermal im-

agery is able to reveal targets such as camouflaged or shallowly buried targets that would

be hidden to optical band sensors. For this dissertation, I studied some of the problems in

designing a computer vision system that uses the thermal modality along with other modal-

ities to detect and classify hidden targets. Specifically, this dissertation seeks to address (1)

calibration of multiple cameras both within the thermal modality and across modalities, (2)

detection of hidden targets in the scene by identifying anomalous regions and known targets,

and (3) classification of the hidden targets. I propose novel approaches towards solutions

of these issues and argue for the efficacy of these approaches. Particularly, for calibration I

used a ceramic backing and preprocessing technique for enhancing the contrast and its du-

ration, and show that heating a printed calibration board is indeed viable for calibration in

contrast to previous work. For detection, a dynamically updating Gaussian mixture model

and sensor fusion was used to identify anomalous regions, while neural networks were used

for fusing multimodal sensors and detecting known objects. Finally, for classification I de-

veloped novel thermal-based features such as water permeation and heating/cooling patterns

to classify the materials. I developed the CHAracteristic Model of Permeation (CHAMP)

for modeling both the rate and shape of water permeation, and use the heat equation for ex-

tracting physical material parameters for a heat feature. In each case, my results show that

thermal is a useful modality for detection and classification of objects, and can be combined

with other modalities to increase performance.

xvi



Chapter 1

INTRODUCTION

Humans use vision for gaining knowledge and interacting with the external world.

Many computer vision algorithms try to mimic processes within humans to model the exter-

nal world. Stereo vision [75] and structure-from-x [44] techniques are based on how humans

observe geometry with their eyes. However, human vision is actually severely limited in the

electromagnetic spectrum. Humans can only observe a small slice of the spectrum between

390-700nm [80]. Other wavelengths can contain important information about the external

world, but cannot be detected without the aid of a sensor. Most current research focuses on

the visible spectrum, but in this thesis I study the long-wave infrared spectrum of 8-14µm,

otherwise known as thermal infrared. A history of thermal imaging is discussed in [7].

Thermal cameras can be used in a wide variety of applications. They were originally

developed for military use, but have been extended to be used for building inspection [21],

law enforcement [13, 42], pedestrian detection [54, 61, 82], medical imaging [16], astronomy

[6], meteorology [37], and bank robbery detection [112] to name just a few. Thermal cameras

have the advantage over color cameras for some applications because of their invariance to

lighting changes, ability to work without any light, relative invariance to color changes, and

the direct observation of thermal information.

Examples of phenomenon visible with a thermal camera and possible applications are

shown in Figure 1.1, Figure 1.2, and Figure 1.3. In Figure 1.1, different material bricks and

structure damage can be easily seen in the thermal imagery. In Figure 1.2, different material

fruit can be seen after heating up, and objects inside an envelope are also visible. Figure 1.3

shows a dual stereo system that can be used to reconstruct both a reflecting surface and a

reflective surface.
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Figure 1.1: Color and thermal images of bricks. The thermal imagery shows that at least
two different brick materials were used. Upon close inspection, the smooth brick appears
brighter (hotter) than the rough bricks, and chipped corners of bricks appear brighter. a)
Image correspondences. b) Aligned images via a homography with alpha blending.

Thermal imaging cameras can be divided into two groups: cooled and uncooled.

Cooled detectors operate at around 100K and keep the sensor clear of their own thermal

radiation with active cooling. They typically perform better with motion or quickly changing

temperatures than uncooled and also have a greater thermal sensitivity. However, they are

typically much more expensive and energy-intensive than uncooled detectors. The thermal

cameras used in this dissertation are uncooled cameras. Uncooled cameras use a sensor

operating at ambient temperature and measure changes in current or voltage when heated

by infrared radiation. They are cheaper than cooled sensors but tend to have slightly lower

image quality. The sensors are built using mainly pyroelectric and ferrorelectric materials,

with the lenses made from Germanium (Ge), Chalcogenide glass, Zinc Selenide (ZnSe) and
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Figure 1.2: Thermal imagery of a scene containing plastic, styrofoam, real fruit, and an
envelope containing batteries. Everything was left at room temperature for one day. a)
Unheated b) Heated for 30 seconds with a heat lamp placed 0.6m away. The brightest 3 fruit
are styrofoam, the darkest fruit is organic.

Zinc Sulfide (ZnS). [58] discusses the components of an uncooled thermal imaging system

in more detail, while [53] discusses cooled sensors as well.

One of the reasons thermal imagery is less used in the computer vision literature is

the high price and low resolution of current thermal cameras. Table 1.1 shows a comparison

of prices and resolution. Typically, uncooled thermal cameras do not go above 640x480

resolution, and those cameras cost on the order of $20,000.00. However, recently FLIR has

released an accessory that can connect to a smart phone which combines color (640x480)

and thermal (80x60) information that can allow an artifical thermal resolution of 640x480

for under $350.00 [1]. With cheaper accessories, there is a greater possibility for mobile

thermal applications.

1.1 Motivation

The application for the work in this thesis is hidden target detection, specifically

improvised explosive device (IED) detection. An IED is a bomb made in an improvised

manner from homemade or commercially sourced explosives. They were extensively used

against US-led forces in the Middle East, and were the cause of over 40% of the casualties
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Figure 1.3: A four camera system with stereo thermal and stereo color cameras can be used
to reconstruct both a reflecting surface and a reflective surface. Texture can be added in one
modality to the reflecting surface that is invisible to the other modality. E.g. a thermal hand
print can be added in thermal, or scribbles with marker can be added in color.

Brand ID Resolution Price
FLIR FLIR E4 80x60 $995.00
FLIR FLIR E5 120x90 $1495.00
FLIR FLIR E40BX - E40bx 160x120 $3995.00

FLUKE FLK-TI200 60HZ 200x150 $6299.00
FLUKE FLK-TI400 60HZ 320x240 $8495.00
Xenics Gobi 640 GigE 640x480 $13115.00
FLIR 55903-5122-T620 640x480 $20950.00

Table 1.1: Comparison of uncooled thermal camera resolution and prices. Information in
this table courtesty of [5] as of 12-29-1015

.

in the Afghanistan and Iraq wars from 2007-2013 [2]. IEDs were also heavily used in the

Vietnam War, in Northern Ireland by the IRA, and more recently by Maoists in India [130].
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The IED contains five main components: an activator, a fuse, a container, an explo-

sive, and a power source. These various components can be detected more easily by certain

modalities. For example, non-linear radar is adept to finding electronic components that

can be used to detonate the IED, such as a cell phone [69, 32]. Thermal is adept at finding

temperature gradients such as in the power supply or recent disturbances of earth (shown

in Chapter 4 and Chapter 5). And ultra-wideband linear radar can see the explosive charge,

even when it is buried up to 0.30 meters [83]. These technologies can be used to detect the

target at a high standoff distance to keep any human personal safe.

The goal of this dissertation is to develop algorithms necessary for detection and

classification of hidden targets using thermal imagery. This includes calibration of thermal

cameras for their intrinsic parameters, calibration of thermal cameras for their extrinsic pa-

rameters between both color and thermal modalities, the fusion of modalities for detection

of hidden targets, and the use of thermal imagery for material classification. The work in this

dissertation is general enough to be applicable to other domains for detection and classifica-

tion, and not necessarily IED detection, such as material classification.

1.2 Outline

Chapter 2 describes a technique for calibrating thermal cameras. The method allows

for a printed calibration board to be used with standard toolboxes for calibration of stereo

cameras in both color and thermal modalities. The performance is evaluated on both indoor

and outdoor trials using both artificial and natural heating sources, respectively. Chapter

3 describes how to align multiple modalities in a dynamic scene. The alignment system

was tested on data collected on the SIRE vehicle at both the Army Research Lab (ARL)

and in Yuma, Arizona. Chapter 4 details the detection of anomalous pixels in the scene

using Gaussian Mixture Models (GMMs). This system was tested at ARL in an indoor sand

environment and an outdoor environment with targets buried underground and hidden in

vegetation. Chapter 5 discusses detection of known targets using multiple modalities and

neural networks. Chapter 6 discusses material classification using the thermal modality. I

develop new features for thermal imagery based on water permeation and the heating/cooling
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cycle. Chapter 7 compares color-based stereo against thermal-based stereo for reconstruction

of objects. Chapter 8 shows how to extend the thermal heating feature to curved objects in

uncontrolled locations in the scene. Chapter 9 concludes the dissertation and discusses future

work.
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Chapter 2

THERMAL CALIBRATION

2.1 Introduction

Camera calibration is the process of determining the camera parameters which map

3D scene points onto a 2D image plane. For stereo or multi-camera systems, the translation

and rotation between each camera is also calculated. These parameters are important for

many computer vision algorithms such as 3D metric reconstruction, feature matching, and

localization, which are useful in military, entertainment, medical, and industrial domains.

Thermal or long wave infrared (LWIR) cameras can be complementary or even advantageous

when compared to standard color cameras in certain applications. Thermal cameras can see

a scene with no light, are invariant to lighting changes, and are robust to foggy conditions

[10]. They are also useful for thermal analysis [129] and even for detecting hidden targets

[8, 93].

With standard color cameras, the calibration process has effective methods of accu-

rately determining the camera parameters. The most popular method applies the algorithm

described in [133]. This requires reliably detecting corner points in a sequence of images,

which is made easy by printing a chessboard calibration pattern with high contrast between

the white and black squares. However, in thermal imagery the chessboard pattern is not vis-

ible due to a uniform temperature profile as shown in Figure 2.1. One abandoned approach

uses a printed chessboard heated by a flood lamp which results in blurry, hard to detect

corners that are only visible for a short period of time.

The purpose of this chapter is to discuss a method for increasing the contrast between

the squares of the chessboard pattern while not requiring a custom calibration object to be

built. This also will allow standard off-the-shelf calibration toolboxes to be more reliably
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Figure 2.1: Comparison between color and thermal images of an unheated calibration board.
The calibration board is not visible in thermal.

used. To achieve this I used a heat lamp to heat the calibration board. However, for this

method to work a few problems needed to be overcome:

• Retaining heat long enough to record calibration images

• Correcting for non-uniform heating

• Enhancing/sharpening corners

I use a ceramic backing to retain heat longer. To correct non-uniform heating, I

developed an iterative pre-processing technique combined with top-hat filtering. Finally, to

enhance contrast between the squares, I use gamma correction.

The chapter is organized as follows. Section 2.2 gives related works and previous

methods to calibrate thermal cameras. Section 2.3 details the setup and method for calibra-

tion. Section 2.4 explains the experiments and results, including how the calibration method

performs in real calibration video sequences and how long it remains effective at successfully

calibrating after cooling. I performed tests in both an indoor and outdoor setting.

2.2 Related Works

Standard calibration patterns have uniform temperature in thermal imagery. To get

around this problem, a few techniques have been proposed which generally use heated, novel

calibration boards made of varying materials. [118] creates a calibration board by cutting

out a “mask” of squares to expose the background temperature. [46] mills a chessboard
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Figure 2.2: The setup includes a printed paper calibration pattern, a glazed finish ceramic
tile backing to keep the pattern flat and retain heat, and a 250W heat lamp.

pattern into a printed circuit board with a high emissivity base material and low emissivity

copper squares. [129] uses a wire net that is heated with a heat gun. [38] uses a set of

resistors mounted in the center of each square. [60, 128, 28] use a grid of lightbulbs. [131]

uses circular thermostatic heaters in a cross-shape pattern. The drawback to many of these

methods is that the calibration board needs to be custom made and can be time consuming

or expensive to make.

One method that does not require any changes to the standard chess calibration board

simply heats it with a flood lamp, as in [20, 81]. However, this method was argued against by

[118], which shows that the corners were not sharp enough to reliably detect. The contrast

between the squares also decreased quickly – 30 seconds after heating the corners were

hard to detect. I propose improvements to the heat-based method that makes it viable for

calibration. The improvements allow calibration to be performed on a single sheet of printed

paper instead of a custom made calibration object made of varying materials, and works with

off-the-shelf calibration toolboxes.
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2.3 Method

2.3.1 Physical Setup

The setup can be seen in Figure 2.2. A printed calibration board is taped to the glazed

finish ceramic tile backing in order to keep the pattern flat. Ceramic is chosen because of it

is inexpensive (often can be found as a free sample) and has a low thermal moment, which

causes it to heat and cool slowly. I study this relationship between heating length, cooling

time, and calibration quality in Section 2.4. The calibration pattern is then heated using a

250W heat lamp, which can reach temperatures up to 550◦C, although at 2 feet away the

calibration pattern reached 55◦C. Next, pre-processing is applied to a video sequence of

calibration images. Finally, corners are detected and calibrated using [133]’s method which

is implemented in many off the shelf toolboxes.

Figure 2.3: Comparison of heating effects; note that white pixels denote high temperature.
a) Unheated calibration board. The intensity is mostly constant. b) Heated calibration board.
The squares are much more visible, but uneven heating makes corner detection difficult. c)
Output of the proposed method. Off-the-shelf toolboxes can now easily detect corners. d)
Zoom in on b). A ”white” square actually has a lower intensity than a ”black” square. e)
Zoom in on c). The light square is now much brighter than the dark square. f) The previous
method’s ”best quality calibration image that could be produced using the heated chessboard
method.” [118]
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2.3.2 Correction of Non-Uniform Heating

The processing can be summarized as: Mask out the calibration pattern→ Iteratively

fit a model to the image intensity and subtract the model from the image→ Top hat filtering

→ Gamma correction. Each of these is described below.

Due to the size and position of the heat lamp, the center of the calibration object is

heated more than the sides, as can be seen in Figure 2.4. Although off-the-shelf calibra-

tion toolboxes can find some corners, the corner detection is unreliable and inaccurate, as

discussed in [118]. Moreover, with non-uniform lighting, standard contrast enhancement

techniques fail. By correcting the non-uniform heating, there is an increase to the usefulness

of standard contrast enhancement and reliability of obtaining more points.

To correct the non-uniform heating, the calibration pattern is masked out from the

rest of the scene. Conveniently, the heated calibration pattern is much warmer than the rest

of the scene. This assumption is used to automatically threshold out the calibration pattern

using Otsu’s method [78].

Next, a model is fit to the intensity data that remains after the masking. Let Imask =

chess pattern data + parametric heat model + noise. The goal is to model the non-

uniform heat and noise, and subtract it out leaving only the chess pattern data. I chose to use

a quadratic polynomial to model the intensity. That is

p h m(x, y) = p00 + p10 ∗ x + p01 ∗ y + p20 ∗ x2 + p11 ∗ x ∗ y + p02 ∗ y2, (2.1)

where p00, p10, p01, p20, p11, p02 are the 6 parameters of the model. The fit is calculated us-

ing the Levenberg-Marquardt algorithm [67]. Next the model is subtracted from the image

I ′(x, y) = Imask(x, y) − p h m(x, y). To account for noise, this process of fitting and sub-

tracting is repeated until the change is under a threshold, I ′n − I ′n−1 < α.

Finally, after this iterative fitting process, top hat filtering is performed. Top hat

filtering is a morphological operation usually performed to remove non-uniform illumination
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and is defined as

Ihat = I − (I ◦ S), (2.2)

where ◦ is the morphological opening operator with structuring element S.

2.3.3 Contrast Enhancement

Standard contrast enhancement is performed via normalization and gamma correc-

tion. First, the intensity values are normalized to [0, 1]. Then the image is gamma corrected.

This can be seen in Equation 2.3.

Igamma =

(
I −min(I)

max(I)−min(I)

)γ
. (2.3)

The intensity values are then mapped again to [0, 1].

Figure 2.4: Heating correction. a) A surface plot of the intensity values after heating but
before correction. The white/black squares lie along a surface and only slightly perturb the
surface. b) Surface plot after correction. The ”white” squares rise up while the ”black”
squares stay close to 0. Note that white and black are inverted from color imagery because
the black squares absorb and emit more thermal energy.

2.4 Experiments and Results

2.4.1 Indoor Experiments and Results

In all of the experiments I used two Xenics Gobi 640 GigE uncooled long wave

infrared cameras, which each have a resolution of 640x480 and a 50mK sensitivity. I also

used two Point Grey Flea 2G 5MP color cameras, which used a resolution of 1600x1200. All
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four cameras were synchronized with software triggers and placed on a baseline of 0.25m

focused at 1m away. I performed multiple experiments: algorithm variations, calibration

quality over time, calibration quality for multiple materials, and cross modality experiments.

2.4.2 Algorithm Variation Experiment

The first experiment was to compare different pre-processing variations for enhancing

the thermal calibration results.

Algorithm % Pairs #PtsPerPair RMS (px)
Proposed (Quad iter fit, top hat, gamma=.8) 31.40 54 0.48

Quad non-iter fit, top hat, gamma=.8 12.94 48 0.45
No fit, top hat, gamma=.8 1.18 54 N/A

Quad iter fit, no hat, gamma=.8 3.53 20 17.01
Quad iter fit, bot hat, gamma=.8 29.40 54 0.44

Quad iter fit, top and bot hat, gamma=.8 3.53 20 13.10
Cubic iter fit, top hat, gamma=.8 30.80 54 0.45

Quartic iter fit, top hat, gamma=.8 24.70 54 0.41
Quad iter fit, top hat, no gamma 16.46 54 0.47
Quad iter fit, top hat, gamma=.5 29.40 54 0.45

Quad iter fit, top hat, gamma=1.15 6.40 54 0.46
Color imagery, no processing 50.56 54 0.38

Table 2.1: Comparison of variations of our pre-processing method averaged over 3 trials of
61, 46, and 63 pairs of images. % pairs measures the number of pairs with detected corners
divided by the total number of pairs. The actual number of corners is 54. Note the RMS
error is similar for most methods, and any value under 1 is typically acceptable.

I placed the calibration board under a heat lamp for 1 hour before recording a cal-

ibration video where the board was rotated to different orientations. This experiment was

repeated 3 times with trial 1 having 61 images per camera, trial 2 having 46 images, and trial

3 having 63 images. I averaged the results which are presented in Table 2.1. The quality of

the reconstruction was measured by the percentage of image pairs with detected corners, the

number of corners per image, and the root-mean-square (RMS) reprojection error. I tested

a few variations of the method: shape fitting with and without iteration, higher order poly-

nomial fitting, using bottom hat vs top hat, and different gamma values. The structuring

element for the morphological operations was a disk of radius 15 pixels.
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Figure 2.5: Example thermal calibration images after processing.

From Table 2.1 I noticed that when the number of detected pairs reached a certain

threshold, the RMS error was similar between all methods. A more useful metric seemed

to be the percentage of pairs of images with detected points. Typically, at least 6 different

orientations are needed to give a robust, reliable calibration. In all of the trials, the proposed

method gave more than double what is needed for a reliable calibration. Example thermal

calibration images after processing are shown in Figure 2.5. A visual comparison of the

quality of the proposed method versus the previous best heating method is shown in Figure

2.3.

I observed that the order of the fitted polynomial does affect the results, but only

marginally so compared to other parts of the pipeline. Top hat filtering was necessary but not

sufficient to acheive reliable calibration. The gamma value chosen for contrast enhancement

was very important to the final results.

2.4.3 Calibration Quality Over Time Experiment

The second experiment I performed was to measure how well the calibration board

retains heat to enhance contrast between the squares. To do this I performed four different

trials where the calibration board was heated for 5, 10, 20, and 30 minutes and then was
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placed in a static, flat angle facing the camera. The camera recorded 14 minutes of video

where the calibration board was cooling over time. The number of points detected over time

are plotted in Figure 2.6. The number of detected points was measured in increments of 15

seconds. Note that curves were fit to the raw data for visualization purposes.

300 corner points is the cutoff for reliable calibration because it corresponds to about

6 image pairs where all corner points were detected. In the worse case of heating the cal-

ibration board for 5 minutes, the corner detection was reliable for over 5 minutes. This

is significantly longer than the time calibration was reliable in other works (30 seconds in

[118]). Note that the proposed method relies on the assumption that the calibration pattern is

much hotter than the rest of the scene from being heated. Thus, if other objects in the scene

are of similar temperature or if the pattern cools off too much our method will fail. However,

in the data I recorded for this experiment, even if humans or computers were in the scene, the

calibration board was significantly warmer than the rest of the scene for at least 5 minutes.

2.4.4 Material Type Experiment

For the third experiment I performed a similar process to the previous section (Cali-

bration Quality Over Time), but using different material types as the backing to the calibra-

tion pattern. The printed calibration pattern was taped to wood, cardboard, and aluminum

backings. The pattern was heated for 10, 20, and 30 minutes respectively, and then was

placed at a static, flat angle facing the camera. The camera recorded 14 minutes of video

where the calibration board was cooling over time. The number of points detected over time

are plotted in Figure 2.7. The number of detected points was measured in increments of 15

seconds. Note that curves were fit to the raw data for visualization purposes.

From our observations, cardboard was only able to hold the heat on the order of

seconds, not minutes which makes it inappropriate for the calibration task. The aluminum

took the longest to heat up as the aluminum had more mass, thermal capicity, and is the

most reflective. As a result, it can hold heat for a long time, but also requires a significantly

longer time to heat up than other materials. Wood retained heat for about 3 minutes before it
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Figure 2.6: Detected points over time in increments of 15 seconds. The calibration pattern
was in a static, flat pose facing the camera for 14 minutes. The calibration results would
become unreliable under 300 detected points.

became unusable for calibration. The ceramic sample had the best tradeoff between heating

up time and heat storage length.

2.4.5 Cross Modality Experiments

In this experiment, a color camera is calibrated with a thermal camera. The color

images were resized to match the resolution of the thermal camera (640x480). The same

dataset as the first experiment (Algorithm Variation Experiment) was used. There are three

trials with trial 1 having 61 images per camera, trial 2 having 46 images, and trial 3 having

63 images. Table 2.2 shows the results.
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Figure 2.7: Detected points over time in increments of 15 seconds over various material
types.

In general across all vairations, the percentage of pairs with detected points was

higher with cross modality than with thermal-only. This is most likely due to the color

calibration pattern being very sharp with low noise levels as compared to the processed ther-

mal image, as shown in Figure 2.8. All of the other trends are similar to that in the algorithm

variation experiment.

2.4.6 Outdoor Experiments and Results

We performed an experiment outside using the sun as the heat source. The weather

outside was a mix of clouds and sun, windy, and a temperature of 65◦ F. The ceramic backed

calibration board was placed facing the sun for 15 minutes before calibration. Then the
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Figure 2.8: Example of cross modality calibration with detected and reprojected points.

Algorithm % Pairs #PtsPerPair RMS (px)
Proposed (Quad iter fit, top hat, gamma=.8) 44.26 54 0.39

Quad non-iter fit, top hat, gamma=.8 24.60 54 0.40
No fit, top hat, gamma=.8 6.56 54 0.40

Quad iter fit, no hat, gamma=.8 0 0 N/A
Quad iter fit, bot hat, gamma=.8 31.14 54 0.41

Quad iter fit, top and bot hat, gamma=.8 19.67 54 0.42
Cubic iter fit, top hat, gamma=.8 40.98 54 0.39

Quartic iter fit, top hat, gamma=.8 45.9 54 0.38
Quad iter fit, top hat, no gamma 0 0 N/A
Quad iter fit, top hat, gamma=.5 29.40 54 0.45

Quad iter fit, top hat, gamma=1.15 9.84 54 0.48
Color imagery, no processing 50.56 54 0.38

Table 2.2: Comparison of variations of our pre-processing method on cross-modality image
pairs of color and thermal. The results are averaged over 3 trials of 61, 46, and 63 pairs of
images. % pairs measures the number of pairs with detected corners divided by the total
number of pairs. The actual number of corners is 54. Note the RMS error is similar for most
methods, and any value under 1 is typically acceptable.

board was recorded in different orientations and positions. This entire process was repeated

3 times with trial 1 having 56 images per camera, trial 2 having 64 images, and trial 3 having

62 images. The quality of the reconstruction was measured by the percentage of image pairs

with detected corners, the number of corners per image, and the root-mean-square (RMS)

reprojection error. These results are presented in Table 2.3. Qualitative results are shown in
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Figure 2.9.

Figure 2.9: Qualitative results of outdoor calibration using the sun as the heat source and the
proposed preprocessing algorithm.

The iterative shape fitting precedure does not affect the results for these outdoor ex-

periments. This is because masking out the checkerboard using Otsu’s method fails since the

calibration board is not significantly hotter than the environment. The entire image is used to

fit the polynomial, and since Otsu’s method failed, that means most of the image falls within

a single intensity distribution. The resulting model has minimal affect on the curvature of the

intensity, and did not affect the calibration in any of our tests. The most important operation

in the outdoor experiments was the tophat filtering.
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Algorithm % Pairs #PtsPerPair RMS (px)
Proposed (Quad iter fit, top hat, gamma=.8) 62.5 54 0.46

Quad non-iter fit, top hat, gamma=.8 62.5 54 0.46
No fit, top hat, gamma=.8 62.5 54 0.46

Quad iter fit, no hat, gamma=.8 0 0 N/A
Quad iter fit, bot hat, gamma=.8 33.9 54 0.49

Quad iter fit, top and bot hat, gamma=.8 66.0 54 0.49
Cubic iter fit, top hat, gamma=.8 62.5 54 0.46

Quartic iter fit, top hat, gamma=.8 62.5 54 0.46
Quad iter fit, top hat, no gamma 16.5 54 0.47
Quad iter fit, top hat, gamma=.5 0 0 N/A

Quad iter fit, top hat, gamma=1.15 0 0 N/A
Color imagery, no processing 50.56 54 0.38

Table 2.3: Comparison of variations of our pre-processing method performed outside with
the sun as the heat source. Values are averaged over 3 trials of 56, 64, and 62 pairs of images.
% pairs measures the number of pairs with detected corners divided by the total number of
pairs. The actual number of corners is 54. Note the RMS error is similar for most methods,
and any value under 1 is typically acceptable.

2.5 Conclusion

In this chapter, I described a physical setup and preprocessing technique to make

calibration reliable for thermal cameras using off-the-shelf toolboxes. By taping a printed

calibration board to a glazed finish ceramic tile backing, I was able to retain heat to reliably

detect corner points for 10-20 minutes – much longer than other works reported [118]. The

pre-processing technique involved masking out the calibration pattern using Otsu’s method,

iteratively fitting and then subtracting a quadratic polynomial surface from the intensity, ap-

plying top hat filtering, and performing gamma correction to the image. I experimented with

different variations of these pre-processing steps to come to our final technique. In three

different trials, we were able to successfully and reliably calibrate the thermal cameras using

our method. I also experimented with calibration quality over time, cross-modal calibra-

tion, outdoor calibration using the sun, and calibration with different material backings. The

results demonstate that cross-modality calibration is easier than thermal-only stereo calibra-

tion. Calibration outdoors using the sun can mostly uniformly heat the calibration board,
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which makes the iterative fitting unecessary. Finally, a ceramic backing was the most effec-

tive at balancing heating time with heat retention.
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Chapter 3

ALIGNMENT OF MODALITIES

Detection of buried or hidden threats is an important military application. Buried or

hidden improvised explosive devices (IEDs) can be detected by ground penetrating radar and

thermal. The Synchronous Impulse Reconstruction (SIRE) [84] forward-looking radar can

detect concealed in-road threats buried up to 0.3m in typical dirt road conditions. However,

the Synthetic Aperture Radar (SAR) imagery is noisy and can contain many false positives

due to brush, puddles, lightposts, or other objects. Multi-modal sensors, such as color and

infrared cameras, can augment the SAR imagery to reduce false positives and help the user

identify targets quickly, even in the dark at night. I have available 2 Point Grey Flea 2Gs and

2 Xenics Gobi 640 GigE long wave infrared cameras available, as well as SAR imagery from

the SIRE system. All of this information introduces a problem with the amount of diverse

information (SAR, color, and infrared imagery), which could overwhelm a user in a chaotic

military setting. A solution to this problem is using Augmented Reality (AR) to combine all

of the information streams into one image stream.

3.1 Background

Any two images of the same planar surface in space are related by a homography [44].

Typically, image correspondences need to be found to solve for the transformation that re-

lates two images. With a single modality, this can be achieved with typical feature detection

and matching across images. However, the problem is more difficult when aligning multiple

modalities. [63] uses “a Bayesian framework for generating inter-subject large deformation

transformations between multi-modal image sets of the brain”. [102] models intensity cor-

respondences across modalities using a joint density function that was tested o multi-modal

brain scan images, satellite images, and the Yale Face database for variable illuminations.
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[23] uses gradient orientations for multi-modal image registration. [114] uses tracking tech-

niques to find correspondences across time between thermal and color imagery. However,

many of these types of approaches rely on the assumption that these modalities have some

commonality such as similar gradients or edges. With regards to synthetic aperture (SAR)

imagery obtained from radar mounted on a vehicle, there is no such commonality.

Presented in this section is two methods for SAR, thermal, and color imagery align-

ment. The first method is designed to work on a dynamic scene with a moving sensor plat-

form, but requires additional hardware communication. The second method assumes a static

planar scene and sensor platform, and uses simple homography calculations to align the

modalities.

Figure 3.1: Two soil types with buried targets and corresponding LWIR imagery. a) gravel-
clay-soil mixture, with a target buried 1 foot deep. b) Packed red-clay-silt soil with various
buried targets under 1m.
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3.2 Dynamic Scene Alignment and Augmented Reality with SIRE radar

SIRE has been combined with a pan/tilt/zoom camera, a Global Positioning System

(GPS), and an Inertial Measurement Unit (IMU), to test its capabilities of concealed target

detection in a realistic environment. The thermal modality was not added to SIRE, but the

same techniques will apply. As the vehicle moves forward, the system generates SAR im-

agery as well as displaying a live video stream. This information can be extremely useful to

a soldier in the field; however, the information is displayed separately and can be confusing

to interpret (see Figure 3.2).

Figure 3.2: Video stream from camera and SAR imagery [77]. Mapping the location of
targets in the SAR imagery to the ground in the video stream can be difficult in real time
while under pressure.

Augmented Reality (AR) is a way to combine these data streams into one, easy to

understand display; AR is a live view of the world that is augmented with additional infor-

mation – in this case, SAR imagery. There are many modules that make up the total AR

system. The system requires communications to the camera to send commands to pan, tilt,

or zoom, and to receive a live video stream. It also requires the location and orientation of

the camera in UTM coordinates, which is given by the GPS/IMU and a manually measured

offset between the camera and GPS. Finally, it requires the SAR imagery and location in

UTM coordinates of each pixel. An overview of the entire system can be seen in Figure 3.3.
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Figure 3.3: Block diagram for entire AR system [77]. The AR system requires the location
and orientation of the camera relative to the truck from the GPS + IMU, requires the SAR
imagery with the UTM coordinates of each pixel, and requires a live video stream from the
Pan/Tilt/Zoom camera.

3.2.1 SIRE and SAR Imagery

The SIRE system has two modes of operation – forward looking mode and side look-

ing mode. For the purposes of this project, only the forward looking mode is considered,

which covers a down-range swath between 8m and 32m. More information about the SIRE

hardware and image formation process can be found in work [84, 76], but for the purposes

of my project the SAR image is output from a black box. It is important to note that all

pixels in the resulting SAR image are referenced in the UTM coordinate system (easting and

northing), and the entire image has an estimated altitude.

3.2.2 GPS and IMU

To know the location and orientation of the camera in the UTM coordinate system,

the system was connected to a GPS and IMU combination from Novatel Incorporated. The

GPS is comprised of two modules – a base station and rover. The base station is positioned at
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a known location in UTM coordinates and sends corrections via radio to the rover to achieve

position accuracy within 2 cm. The rover, however, is attached to the vehicle near the camera,

and the distance between the rover and camera is measured manually. The IMU is attached

to the vehicle and is aligned with the axes of the cameras home position (i.e. facing the

direction of travel of the vehicle). Reading data is performed at 20 Hz (the maximum rate)

over a serial port.

3.2.3 Pan/Tilt/Zoom Camera

The pan/tilt/zoom camera by RVision Incorporated is mounted on the vehicle, facing

forward with the direction of travel, and aligned with the axes of the IMU. Commands are

sent and received over a serial port, while the video is sent over USB. The video is also sent

at 20 Hz to coincide, while commands are sent asynchronously.

3.2.4 Augmented Reality Transformation Computation

Augmented Reality is achieved by mapping pixels in the SAR image to pixels in the

video stream. This mapping can be computed by taking the UTM coordinate for each SAR

image pixel and running it through a transformation. Using the pinhole camera model [31],

the following equation can be derived:

y = Cx (3.1)

where x is the 3x1 vector containing the UTM coordinates of the SAR image pixel, y is

a 3x1 vector containing the corresponding image coordinates (with the third value being a

scale factor), and C is the following 3x3 camera matrix for the pinhole camera model:

C =


αx γ u0

0 αy v0

0 0 1

 (3.2)
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where αx = λ ∗ f and αy = f . This formulation of the transformation from world to image

coordinates assumes the optical center of the camera is at center of the world coordinate

system, which is usually not the case. Therefore, to move the camera to the center of the

coordinate system, two translation and rotation matrices need to be calculated. First, the

GPS and IMU data can be used to transform into a coordinate system centered on the GPS

rover antennae and aligned with the IMU axes. Next, using manual measurements and the

pan/tilt values from the camera, the coordinate system can finally be transformed into camera

coordinates.

The entire formulation for transforming SAR image pixels to video image pixels is

given by the following equation:

y = CRcam[Rgps(x−Tgps)−Tcam] (3.3)

where Rcam and Rgps are 3x3 rotation matrices for the pan/tilt and IMU rotations, respec-

tively; Tcam and Tgps are 3x1 translation vectors from the GPS to optical center and from

UTM (0, 0, 0) to the GPS, respectively.

3.2.5 Combining Traditional Offline Camera Calibration with Dynamically Changing

Parameters

Camera calibration is the process of finding the intrinsic parameters of the matrix,

which, as described in equation 3.2, transforms points in 3D to the 2D image plane. Tra-

ditional calibration methods [115, 133] achieve high accuracy; however, these methods are

offline and require the sensor parameters remain unchanged. Auto-calibration can handle dy-

namically changing intrinsic parameters, and is performed online with sequence of images

instead of a calibration board [30, 73, 43], but these methods can be less robust and require

computing resources while online. Since real time performance is desirable, I decided to

calibrate the camera with the traditional offline method with a calibration board.

The software CalLab and CalDe from the Robotics and Mechatronics Center of the

German Aerospace Center was used. The methods the software uses are described in other
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papers[108, 123, 109, 110]. Essentially, given a calibration checkerboard pattern on a board

with known distances between the corners, I can create correspondences between estimated

2D corner points and 3D. Using a least squares minimization, the parameters of the camera

are estimated. Since this parameter calculation is done by the software, only pictures of

the calibration board must be taken and fed into the program. To calibrate, 15 images of

the board were taken at varying rotations on varying axes, and used the software to get a

reprojection error of less than 1 pixel. However, the intrinsic parameters change as a function

of zoom so this method cannot be directly used, as it only gives the parameters at a specific

zoom. To overcome this problem, the camera was calibrated at increments of 10% zoom.

That is, the calibration process is performed 11 times, and the resulting intrinsic parameters

are stored. When the augmented reality transformation is calculated, the intrinsic parameters

are linearly interpolated between the two nearest zoom values.

3.3 Static Scene Alignment

With a static scene, the alignment problem is much easier. Only one transformation

needs to be calculated and can be applied to subsequent images. Thus, the alignment can be

calculated offline using manual correspondences. The modalities – color, thermal, linear, and

nonlinear SAR imagery – were transformed onto the color imagery using Matlab’s control

point selection tool as shown in Figure 3.4. 15 correspondences were used in the alignment

of each modality.

3.4 Experiments

3.4.1 Dynamic Alignment Experiments

The AR system was implemented in MATLAB [3]. This includes both the communi-

cations to the various hardware devices, and the Graphical User Interface (GUI). The (GUI)

allows the user to pan/tilt/zoom the camera, change the transparency level of the displayed

radar image, change the color map by changing the decibel (dB) range, and go into auto de-

tect mode. In auto detect mode, the program automatically detects regions of high intensity

values (which can be changed through the dB range bars), and draws a white X at the most
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Figure 3.4: Matlab’s control point selection tool with nonlinear SAR and color imagery. The
peak intensity in the SAR imagery corresponds to the antennae of the device in the color
imagery.

intense peak. Real data was collected which includes a SAR image with UTM coordinates

for each pixel, GPS coordinates for the vehicle, IMU orientation of the vehicle, pan/tilt/zoom

for the camera, the manual measurements from the GPS to the camera, and finally, a video

recording. In this data, there are 5 targets that have high intensity values in the SAR image.

To test the accuracy of the system, the ground truth location of these targets was measured.

The AR system transforms the ground truth locations to image coordinates, and displays the

results as gray triangles.

3.4.1.1 Qualitative Results

Below are figures which show the AR and GUI under various conditions. Figure 3.5

shows the results of transforming the 3D ground truth locations of the targets, and Figure

3.6 shows the same but with the transparency of the SAR image set to 0. Figure 3.7 shows

the AR program still works under a change in pan, tilt, and zoom from the camera. Finally,

Figure 3.8 shows the auto detect mode. Notice that by changing the dB range, the program

can detect rocks that are on the side of the road.

3.4.1.2 Quantitative Results

6 video (720x480 resolution) and corresponding GPS/IMU data sets were recorded.

Each test a different part of the Augmented Reality pipeline. In the first video, the vehicle is
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Figure 3.5: AR GUI with ground truth. The transparency of the SAR image is set high so
that only the ground truth transformation is displayed. The gray triangles lie on top of the 5
targets in the image.

driven forward and the camera’s pan, tilt, and zoom is not changed. This case tests the GPS

with minimal changes in the IMU. In the second video, the vehicle was sharply turned in an

S-shaped pattern; this tests the IMU and the GPS. The third through fifth videos change the

camera’s pan, tilt, and zoom, respectively, but the vehicle remains still. The final video tests

everything together; the vehicle moves while the camera quickly pans, tilts, and zooms.

To quantify the errors involved with the system, the 3D ground truth of three targets

was surveyed, and the center of each target in each 2D video frame was clicked manually.

The errors are measured in two ways. First, the error was measured in 2D by calculating

the Euclidean distance between the clicked 2D point and the transformed and projected 3D

ground truth point. Secondly, the residue in 3D was measured, which is made more compli-

cated since a 2D point relates to a line in 3D, and not a single point as shown in equation

3.4.

30



Figure 3.6: AR GUI with ground truth and SAR image. The transparency of the SAR image
is set low so that the user can clearly see where the targets in red are.

T−1y = x

y =
[
u, v, s

]
(3.4)

where y is the image coordinates with an unknown scale factor, s is the unknown scale

factor, and T−1 is the inverse of the transformation described in equation 3.3. To remedy

this problem, the Euclidean distance is minimized between the 3D ground truth point and

the line. This distance is reported residue in Table 6.2.

Video Num Frames 2D Avg Error 2D Std Deviation 3D Avg Residue 3D Std Deviation
IMU Straight 203 5.6598 2.9904 0.221 0.1216
IMU Turning 155 9.293 6.8921 0.2831 0.1508
Camera Pan 35 23.3271 14.2387 0.5014 0.2512
Camera Tilt 37 15.2676 6.459 0.3465 0.1311

Camera Zoom 62 41.8876 53.4842 0.2978 0.1336
Everything 155 48.0767 56.5175 0.5218 0.2242

Table 3.1: Results of 6 videos. 2D Error is measured in pixels, while the 3D residue is
measured in meters.
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Figure 3.7: AR GUI with pan, tilt, and zoom. The camera is panned, tilted, and zoomed, and
the ground truth gray triangles still lie on top of the targets

Figure 3.8: AR GUI with auto detect mode enabled. Auto detect mode detects the regions
of highest intensity in the SAR image, and warns the user as the vehicle approaches them.
Note the dB range was changed to include lower intensity objects, and thus a few rocks were
detected on the side of the road.
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Figure 3.9: Comparison of 2D error while zoomed out and while zoomed in. Notice that a
10 pixel error becomes a 50 pixel error when zoomed in, even though the 3D residue remains
the same.

From Table 6.2, there are a few observations. First, when the camera zooms, the

2D pixel error increases, while the 3D residue stays about the same. Suppose, for example,

there was a 10 cm error involved with the transformation. When zoomed out, this error

appears to be only a few pixels, but when zoomed in, the error is magnified, as 10 cm takes

up more space in the image. This phenomenon can be observed in Figure 3.9. This is

also the reason why the ”Everything” and ”Camera Zoom” videos have relatively high pixel

errors – the camera zooms in at a high magnification, causing the pixel error to be more

pronounced. Also, in the videos with camera movement, the error in pixels is not distributed

evenly throughout the video. Rather, there are large errors when the camera suddenly moves,

and relatively small errors otherwise. This is most likely caused by the camera reporting

slightly old values for its pan,tilt, and zoom, and then, a few frames later, becoming up to

date. These two sources of errors are tolerable for the application – single high error frames

will hardly be noticed by a real time operation, and furthermore, relatively higher pixel error

when zoomed in is not a problem since the 3D distances involved are small.
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3.4.2 Static Alignment Experiment

For the static alignment experiments, objects that give off a response in multiple

modalities were placed in a scene at different orientations and locations. The objects used

in this experiment are shown in Figure 3.10. Each object was placed at 9 locations and

5 different orientations for the center location. A Harmonic Real Aperture Radar (RAR)

has been developed at the Army Research Laboratory in Adelphi, MD. The radar utilizes

16 receive antennas spaced 3 inches for a total aperture length of 4 feet. A 16:1 switching

network allows a single harmonic radar receiver to collect data from each of the 16 receive

antennas. A back-projection algorithm [70] is used to form the radar image. The phase

propagation for the image forming is outlined in [34, 33]. These details are outside the scope

of this dissertation, and the imagery was treated as if it came from a “black box” sensor.

This sensor was combined with a Gobi 640 thermal camera (640x480) and a Point Grey

Flea 2G color camera (1600x1200) on a multi-sensor platform. The objects were placed

approximately 12 meters from the sensor platform.

A GUI was created in Matlab for the purposes of testing the alignment. Different

trials can be selected and the weight for alpha blending of each modality can be chosen by

the user. A qualitative analysis is shown below in Figure 3.12.

3.5 Conclusion

In this section, multiple modalities including color, thermal, nonlinear radar, and lin-

ear radar were aligned together. A dynamic scene with the SIRE vehicle was tested qualita-

tively and quantitatively in a parking lot and a realistic setting in the desert. A pan/tilt/zoom

video camera imagery was aligned with radar imagery from SIRE while the truck was mov-

ing and the camera was rotating. The algorithm used differential GPS/IMU data along

with multi-zoom camera calibration to give an accurate alignment in real conditions. The

methodology would allow for a different modality (e.g. thermal) to be used in place of the

pan/tilt/zoom camera without any major changes as long as that sensor could be calibrated.

Also tested was a static scene alignment algorithm using a homography transformation. This
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Figure 3.10: Objects used in static alignment. 1) Small Motorola K7GFV300, Tx + Rx, 460
MHz Cut. 2) VR120, Rx only, 460 MHz. 3) Icom IC-T7H, Tx + Rx, 460 MHz. 4) Mini-
Circuits amplifier ZJL-4HG+, Rx only, Output terminated, Power is supplied via batteries.
5) Mini-Circuits voltage control amplifier, ZFL-2000G+, No power is supplied, output is
terminated, input antenna. 6) Linear radar calibration trihedrals.

was tested on a sensor platform that included color, thermal, nonlinear, and linear radar

imagery.
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Figure 3.11: Multi-sensor platform with harmonic radar, linear radar, thermal, and color
cameras.

Figure 3.12: Representative qualitative results of static multi-modal alignment. a) Color
only. b) Color and thermal. c) Color, thermal, and nonlinear radar. d) Color, thermal,
nonlinear, linear radar. Note in the last row a buried target becomes visible in the thermal
modality.
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Chapter 4

MULTI-MODAL DETECTION OF ANOMALOUS OBJECTS

4.1 Introduction

The ability to detect buried or foliage-concealed explosive devices has become a high

priority research objective in the last decade. A variety of sensors have been studied for de-

tecting such targets [107, 124, 35, 126, 62, 14, 89, 52]. Vehicle based downward looking

ground penetrating radar (GPR) systems are highly promising, but are slow moving with a

low standoff distance. Uncooled long-wave infrared (LWIR) cameras, which sense wave-

lengths of 8-14m and can be thought of as passive temperature sensors, have been inves-

tigated for buried target detection [8, 101, 107]. These works found that shallowly buried

(< 10cm) metal targets can be detected consistently. All objects above absolute zero emit

infrared radiation at their surface, which increases with temperature. The emissivity is a

property of a material which governs the effectiveness of emitting thermal radiation com-

pared to a black body source at the same temperature. The infrared camera passively sees

not only emitted thermal radiation from a source, but also reflected radiation, and transmitted

radiation which travels through an object, as seen in Figure 4.1. Metallic objects possess dif-

ferent thermal properties than the surrounding soil. Soils have high emissivity values, while

metallic objects are more reflective. The surrounding soil will heat or cool depending on

the time of day, and give off a different thermal signature than the undisturbed background

soil. Moreover, recently disturbed earth can be seen on an infrared camera, as the soil on the

surface is a different temperature than the soil underneath during many parts of the day.

[41] tests the efficacy of using thermal imagery to detect buried IEDs and conclude

that infrared improves detectability regardless of the tested soil type (gravel, clay, soil). They

further say that ”a consensus has emerged that two or more complementary technologies will
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most likely be required to improve detectability while reducing false-alarm rates”. Their

results show that the disturbed earth is visible in infrared imagery when the target is buried

at 1 foot deep in the ground.

Figure 4.1: Three ways thermal radiation can travel to the infrared camera. Image courtesy
of Keller M.S.R.

However, LWIR cameras are low resolution (640x480) and very expensive when

compared to visible wavelength color cameras. For above ground targets or above ground

clutter, the visible cameras can offer a higher resolution view of the scene and can classify

objects as anomalous with a larger standoff distance. Visible cameras can also more easily

detect metal targets inside or nearby bushes. Each modality is viewing different information

about the scene that can be hopefully be used together to reduce false positives. This can be

seen in Figure 4.2.

Gaussian mixture models (GMMs) can be used to adaptively estimate the background

of scenes from a camera as in [105]. An infrared camera was mounted on a vehicle in [101]

and a GMM was employed to detect buried targets that caused anomalous heat signatures in

the scene. Their results show that a GMM model as a stand-alone detector works somewhat

well, but has some limitations. The GMM finds all anomalous regions, not just those called

by buried objects. The location, size, and shape of the results are not considered by the

GMM, and high frequency changes in the scene will be reported (e.g. changes in the road

type, channels caused by rain or erosion, brush, etc). They extend this work by including

multiple detectors and classifiers in [8]. A pre-screener extracts possible target locations,
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Figure 4.2: Each modality can see targets that are hidden in different ways. a),b) are LWIR
and visible wavelength imagery of the same outdoor scene, while c),d) are LWIR and visible
imagery of the same scene in a sandpit.

and the GMM is used to measure the amount of local change. The results in that work

show increased detection rates (8̃5%) on par with what a human manually observes in the

imagery. However, the experiments show that infrared alone cannot detect metal objects

nearby bushes, but can detect buried targets. Visible cameras cannot detect buried targets, but

can detect metal objects nearby bushes. Therefore, multimodal fusion is a possible option.

Multimodal fusion has been studied in a variety of fields. A survey of fusion tech-

niques along with considerations needed for fusion is given in [9]. There are many consid-

erations needed for fusion:

• Level of Fusion. Fusion is possible in early stages of the pipeline (e.g. merging pixels
or features), and is possible later in the pipeline (e.g. at the decision level, merging
semantic objects). Fusing earlier cuts the amount of learning and model fitting needed,
since it is only applied once, but decision level fusion is more flexible and allows for
weighting modalities differently based on the current problem.
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• How to Fuse. There are a few typical fusion methods. Rule based fusion includes sta-
tistical methods such as linear weighting (sum and product), MAX, MIN, AND, OR,
and voting schemes. Rules based fusion works best for temporally aligned modalities.
Other types of fusion methods include classification based fusion, such as support
vector machines or Bayesian inferences.

• What to Fuse: Different modalities can contain complementary or contradictory infor-
mation, and have different confidence values for a given context. Moreover, not all
information (e.g. features) is relevant to a final assessment.

The purpose of this chapter is to implement the GMM detector in [101], which was

used for infrared imagery, and fuse information from both LWIR and visible cameras on

data collected from a realistic scene with buried or hidden targets. Fusion is performed at

different stages: pixel, confidence map, and final decision level fusion. The result of each

fusion type is compared against one another, and against the individual modalities in scenes

with both hidden and ”out in the open” metal targets.

4.2 Methods

Often times the distribution of pixel values in a scene can be accurately modeled as

Gaussian. The idea here is to create a set of Gaussian models of the background pixels in

the first frame and then update the background model for successive frames. Multiple Gaus-

sians can model scenes with multiple background colors (e.g. grass, dirt, sky) and can model

multiple modalities, which typically do not have the same pixel intensities for the same back-

ground object. Once the background is modeled, foreground pixels (i.e. anomalous pixels)

are identified and extracted. I also describe different methods for fusing the data between

modalities: the initial images can be fused at a pixel level using a rule-based approach, the

foreground confidence maps can be merged, and the final thresholded foreground pixels can

be merged.

4.2.1 Modeling the Scene with GMMs

Given an image Ii for the ith frame of a sequence, histogram of the pixel intensity

values is created. The goal is to obtain a set of k Gaussians Gi = (µi1, σi1,mi1),

(µi2, σi2,mi2), . . . (µik, σik,mik) that best fits the histogram. Here µik is the mean, σik is the
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standard deviation, andmik is the mass, where mass is defined as the number of pixels within

Mσik of µik.

For the first frame, G1 is computed by optimizing the Gaussian mixture model like-

lihood using the iterative Expectation-Maximization (EM) algorithm as in [71]. This initial

model is further improved by removing components with small mass and clamping the stan-

dard deviations. In the experiments I performed, the image size and expected intensity value

range are constant, so Gaussian components with mass under 3000 are dropped, and stan-

dard deviation values are clamped to 1 and 20 for image intensities ∈ [0, 255]. These values

were obtained through experimentation and will vary for different image sizes and intensity

ranges.

The initial GMM G1 is updated from frame to frame. A new GMM is calculated

for frame 2 and merged with G1 according to the rule described in Algorithm 1 below. The

rule takes each new Gaussian component in the new frame and finds its closest match in the

previous frame. The distance between two Gaussian components be defined as

dpq = (µp − µq)(σp + σq)
−1(µp − µq). (4.1)

This is similar to the Mahalanobis distance [66], which is a generalized metric for distance

of a sample from a model. If the closest match is close enough (d < 1), then the two are

merged based on a learning parameter ρ. A small value of ρ is more conservative and does

not change the original GMM by much. If the closest match is far away (d > 1), then the

component is added to the final merged model. A history of Gaussians are retained up to

n ≥ k Gaussians. This process is continued for all other frames as described in Algorithm 1.
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Algorithm 1 Update Gaussian Mixture Model
function UPDATEGMM(GMM1, GMM2)

for each component gi+1,k in GMM2 do
Find min d from GMM1, call it gi,j
if d < 1 then

µi,j = (1− ρ)µi,j + ρµi+1,k

σi,j = (1− ρ)σi,j + ρσi+1,k

Recalculate mi,j

if mi,j < s then . s is component size threshold
Remove gi,j

end if
else

Find empty slot in GMM1 or the slot with the smallest mass
Add gi+1,k to GMM1 in that slot

end if
end for

end function

4.2.2 Detection of Anomalous Regions

The next step is to take the GMM and determine if there are any anomalous regions

– regions that do not match the background model of the scene. This is performed by com-

puting a foreground confidence map. Let

BGk(x, y) = 1−min(|I(x, y)− µk|,Mσk)/Mσk (4.2)

be the confidence that a pixel is in the background given only the kth Gaussian. Let

BG(x, y) = max(BGk(x, y)) (4.3)

be the confidence that a pixel is in the background given the entire GMM. Finally, let

FG(x, y) = 1−BG(x, y) (4.4)

be the confidence that a pixel is anomalous given the entire GMM. Note that FG ∈ [0, 1].

Next, threshold FG based on a desired confidence level. Since anomalous pixel values do
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not necessarily lie next to each other in the image, I apply a spatial constraint. The spatial

constraint removes anomalous pixels that are not part of a connected component of at least

τ pixels. This gives the final anomalous pixel map.

Figure 4.3: Comparison of Modalities and Pixel Fusion. a) Visible b) LWIR c) ADD d)
MULT.

4.2.3 Fusion of Modalities

As described in [9], sensor fusion can occur at multiple levels and in multiple ways.

The first way fusion is performed is at the pixel level. To achieve this, the IR and color

imagery are aligned. This is accomplished solving for the best 3x3 projective transformation

matrix (9 unknowns) with a set of pixel correspondences using the method described in [36].

Using an automatic method to detect and match pixels such as SIFT [64] did not lead to
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enough correct matches to reliably solve for the transformation matrix. Instead, 15 manually

clicked correspondences are used which led to a correct alignment. Note this transformation

need only be calculated once per camera setup. As long as the cameras remain rigid relative

to each other, the transformation will be the same. Once the images are aligned, the images

are combined with either a simple pixel-wise ADD or MULT operation. Figure 4.3 shows an

example of individual modalities and pixel fusion. Both ADD and MULT are implemented

and compared against one another. An average operation is not considered here because

strong features in one modality can average with background color of the other modality.

The effect is strong features become much weaker features after the fusion. The second

way fusion is performed is at the confidence map level. The pipeline of fitting GMMs is

applied to both the IR and color imagery separately and the confidence maps are merged.

The same alignment via projective transformation matrix applies to the confidence maps as

well. The maps are combined with a MAX operation. Other operations do not make as much

sense. An average or MULT operation will again cause strong confidence to become much

weaker since FG ∈ [0, 1]. The final way fusion is performed is at the final binary anomalous

region map. The OR operation is considered at the final binary map level for fusion. Fusing

at the confidence map and decision levels is similar. One difference between fusing at the

confidence map level versus at the final binary image level is the spatial constraint. It is

possible the spatial constraint is met only when the confidence maps are fused, and would

not be met in the individual decision level maps. This logic would also apply to any further

constraints added to the pipeline (e.g. shape).

4.3 Experiments and Results

To test the methods and compare the quality of different fusion methods, I collected

two sets of imagery of real scenes. Both sets were collected using a Canon Powershot A1200

4000x2248 resolution visible wavelength camera and a Xenics Gobi 480 640x480 resolution

LWIR camera viewing the same scene on a tripod. Synchronization was not needed since the

scenes were static; single pairs of images were taken at discrete locations . The targets used

were a solid brass sphere of 5cm radius and five aluminum blocks approximately 20x5x5cm.

44



Sandpit Dirt + Bushes
M 3 3
s 3000 3000
n 5 5
k 3 3
τ 100 100

Ambient Temp
(◦F ) 90 85

Targets above
ground hidden in

bushes
0 3

Targets above
ground not hidden 3 1

Targets buried 3 2
Number of Image

Pairs 10 33

Table 4.1: Parameters for two sets of imagery.

The targets were placed both above ground and buried at depths from 1-10cm. The first set of

imagery was collected in a sandpit that contained no bushes or any other clutter. The second

set of imagery was collected in an area with dirt, grass, and bushes. In both cases the objects

were placed overnight. A summary of relevant parameters and conditions are in Table 4.1.

To compare the performance of various fusion techniques, a ROC curve was gener-

ated for each technique by varying the confidence threshold value for the foreground map.

Ground truth was obtained by manually marking regions of the image. To identify buried

targets, an extra image pair was taken with a marker on the spot the target was buried. The

results for all the imagery in a dataset was averaged together for a final ROC curve, which is

shown in Figure 4.4 and Figure 4.5. There are a few things to note in these results. Firstly, the

confidence fused and decision fused methods gave the same curves. Secondly, in the sandpit

dataset the ”IR only” curve is the best curve and even beats the fusion methods. This is most

likely due to the fact that the IR camera can see both buried and above ground targets, while

the visible camera adds nothing but false positives for buried targets. I observed the visible

camera labeling shadows of clumps of dirt as anomalous. This trend is not observed in the

dirt and bushes imagery. I observed the targets near or inside bushes were almost invisible
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Figure 4.4: Comparison of fusion methods with sandpit imagery.

to the IR camera, while easily detectable in the visible wavelength camera. Since the metal

targets were very reflective, they reflected the temperature of the nearby bushes. When ”out

in the open”, the targets were easily detectable in the IR imagery. One other observation

of note was that although the targets near bushes were invisible to the IR in single images, I

noticed the reflections on the aluminum block change from frame to frame. This is a possible

cue for using IR to detect metal targets inside bushes in the future.

Out of all the fusion methods, the pixel fusion using the ADD operation was the

worst. As seen in Figure 4.3, darker features in the original image become lighter when

using the ADD operation, but not the MULT operation. All other fusion methods gave similar

results. If the pixel fusion gives comparable results to the decision level fusion methods, then

pixel fusion would be preferable as less computing time is needed to get the same results.

One technique not considered here is to apply each modality to different parts of the scene,

as buried targets are more likely in the center of a road, while above ground targets are more
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Figure 4.5: Comparison of fusion methods with dirt and bushes imagery.

likely in brush on the sides of the road.

4.4 Conclusion

Gaussian Mixture Models can be used to model the color intensities and can be dy-

namically updated to adapt to changing environments. The pixels that do not fit the model

are anomalous. Both visible wavelength imagery and LWIR imagery can be fused in a mul-

titude of ways. GMMs along with various fusion methods have been applied to scenes with

metal targets both above ground and below ground. Results show that the IR was successful

in detecting the buried target up to 10cm, and the GMM model was able to pull out the target

in almost all cases. However, false positives do remain since the GMM alone only detects

anomalous pixels, but not necessarily disturbed earth or dangerous targets. In the future,

the GMM will be augmented with shape constraints and pre-screeners as in [8], along with

multi-modal fusion techniques. One technique that was not considered here is to apply each
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modality to a different part of the scene. Buried targets are more likely in the road, while

above ground targets are more likely in brush on the side of the road. This lends itself to

applying IR to the center of the road, and applying the visible camera to the sides of the

road.
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Chapter 5

MULTI-MODAL DETECTION OF KNOWN OBJECTS

5.1 Introduction

The detection of electronic devices would help law enforcement agents locate devices

whose emissions exceed those permitted by law, allow security personnel to detect unautho-

rized radio electronics in restricted areas, enable first-responders to pinpoint personal elec-

tronics during emergencies such as immediately after an avalanche or earthquake, or detect

triggering devices on improvised explosive devices [68, 103]. Harmonic radar exploits har-

monically generated returns from electronic targets to aid in their detection. The advantage of

nonlinear radar over traditional radar is its high clutter rejection, as most naturally-occurring

(clutter) materials do not exhibit a nonlinear electromagnetic response under illumination by

radio-frequency (RF) energy [106]. The disadvantage of nonlinear radar is that the power-on-

target required to generate a signal-to-noise ratio (SNR) comparable to linear radar is much

higher than that of linear radar [56].Nevertheless, nonlinear radar is particularly suited to the

detection of man-made electronic devices, typically those containing semiconductors whose

radar cross section is very low owing to their thin geometric profile. The goal of this chapter

is to detect known targets using a combination of nonlinear radar and color.

5.2 Background and Related Works

The literature on object detection is vast, but a short overview is provided below.

Clustering approaches such as Gaussian Mixture Models have been used to detect objects in

a scene [104] by modeling the foreground/background. These methods can be adaptive to

account for dynamic scenery, but heavily rely on color information and cannot distinguish

similarly colored objects. Point feature matching is a class of methods that match correspon-

dences between reference objects and a scene containing the object [27]. These methods
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work well on objects without non-repeating texture patterns and non-uniform color. Cascade

object detector such as the Viola-Jones [119] detector which consists of stages that learn an

ensamble of simple classifiers (weak learners) trained using boosting. These methods work

when the target object does not rotate out of plane.

Neural networks are a class of machine learning architectures that provide high ac-

curacy when learning non-linear functions, and have been shown to give high accuracy for

object detection [12, 24, 90]. Neural networks are comprised of nodes (“neurons”) that ex-

change information that is weighted and transformed by an activation function. Information

is passed until it reaches the output node. Lately, deep neural networks with many layers

between input and output have been shown to acheive state-of-the-art performance on large

scale benchmarks [29].

Figure 5.1: Pipeline for Harmonic Radar and Color Fusion

In this work, neural networks are used for both color-only object detection and for

score-level fusion between the harmonic radar and color-based methods, as shown in Figure

5.1. The harmonic radar image formation process is outside the scope of this paper, but is

discussed in [34, 33]. It can be thought of as a bird-eye view image of intensity values that

represent the signal returned from the scene. For detection using only color images, a feed-

forward artificial neural network is used with a multiscale sliding window. For score fusion,

a generalized regression neural network [18] is used. The contributions in this chapter are
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the collection of a novel dataset containing synchronously obtained harmonic real aperture

radar (RAR) and color imagery, and the comparison of fusion methods on this dataset.

5.3 Methods

5.3.1 Neural Networks for Object Detection

The architecture of the neural network can be seen in Figure 5.2. The input size is

7500 due to the window size of 50x50x3 applied to multiscale images, with image intensity

used as the feature. There is a hidden layer with 10 perceptrons using a hyperbolic tangent

sigmoid transfer function. The output layer has 2 perceptrons since detection is a binary

problem. A softmax function is applied to the output layer to output normalized confidence

scores ∈ [0, 1]. These two functions are defined below:

tansig(x) =
2

1 + 2−2∗x
− 1

softmax(xj) =
ej∑K
k=1 e

k
, j = 1, ..., K. (5.1)

Figure 5.2: Neural network architecture. The input feature length is 7500, there are 10 nodes
in the hidden layer, and 2 in the output layer.

Once the neural network is trained, detection is performed via a multi-scale sliding

window approach. A confidence score for each patch is calculated and non-maximum sup-

pression is performed across scales. To obtain a bounding box, a threshold is used on the

confidence score. Possible threshold values are swept to generate a ROC curve.
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5.3.2 Harmonic Radar Detection

Constant false alarm rate (CFAR) detection is a common method for radar modal-

ities to detect objects in the presense of noise or clutter. The CFAR threshold determines

the power above which any signal that is returned is considered to be a target. CFAR can

be calculated adaptively for dynamic settings to maintain the constant probability of false

alarm, but in these experiments the background scenery is static, and therefore a single

CFAR threshold is used across all data. After the CFAR threshold is applied, blob analy-

sis is performed to remove small blobs that are likely to be noise. Connected components

under a size threshold are removed as positive detections. Possible values are swept for both

the CFAR and the size threshold, and the chosen values maximize Youden’s J index. The J

index is defined as

J = Sensitivity + Specificity − 1

Sensitivity =
TP

TP + FN
(5.2)

Specificity =
TN

TN + FP
.

The J index is a single statistic, J ∈ [0, 1] that captures the performance of a detection or

classification system, with 0 indicating the system performs no better than chance and 1

indicating the system performs perfectly (no false positives or false negatives). I chose the

J index because multiple studies have shown it is a useful index for comparing ROC curves

[74, 11]. The threshold that maximizes J is chosen, which can be thought of geometrically

as the maximum value above the chance line on a ROC curve.

5.3.3 Fusion of Modalities

5.3.3.1 Alignment

In this data, the scene is static, and most targets lie along a plane. Therefore I cal-

culate a homography between the modalities using manually obtained correspondences. To

identify correspondences, the maximum intensity values in the radar imagery correspond to
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the antenna connectors on the electronic targets in the color imagery. See Figure 5.3 for

an example. For a dynamic scene where radar imagery needs to be aligned with color im-

agery, see [97] who use hardware solutions combined with camera calibration techniques to

calculate the transformation. For example alignment results, see Figure 3.12.

Figure 5.3: Example correspondences

5.3.3.2 Score Fusion via Generalized Regression Neural Networks

I perform fusion at the score-level because of scalability of adding more features or

modalities, and because research has found score-level fusion to be “the most effective in

delivering increased accuracy” [111]. A generalized regression neural network (GRNN) is

trained, whose architecture is shown in Figure 5.4. Generalized regression neural networks

can be used to approximate nonlinear functions by using radial basis functions as activation

functions on the perceptrons [121]. In this case, the radial basis function is defined as

radbas(x) = e−x
2

.
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The output is not a label, but rather a combined score between each modality. The scores

from each modality are combined into a single vector per patch, and fed to the GRNN. For

supervised labeling, positive patches are patches that overlap with the ground truth more than

50%.

Figure 5.4: Score fusion neural network architecture. The input size is 2, with 4158 nodes in
the hidden layer, and 1 in the output layer. The high amount of nodes in the hidden layer is
due to the nature of general regression neural networks as seen in [49].

5.4 Experiments and Results

The setup contained two Point Grey Flea 2g cameras using a resolution of 1920x1080.

A Harmonic Real Aperture Radar (RAR) has been developed at the Army Research Labo-

ratory in Adelphi, MD. The radar utilizes 16 receive antennas spaced 3 inches for a total

aperture length of 4 feet. A 16:1 switching network allows a single harmonic radar receiver

to collect data from each of the 16 receive antennas. A back-projection algorithm [70] is used

to form the radar image. The image formation process is outside the scope of this paper, but

is outlined in [34, 33]. There were five different targets used (small radios or amplifiers): 1)

Small Motorola K7GFV300, Tx + Rx, 460 MHz, 2) VR120, Rx only, 460 MHz, 3) Icom

IC-T7H, Tx + Rx, 460 MHz, 4) Mini-Circuits amplifier ZJL-4HG+, Rx only with power is

supplied via batteries, and 5) Mini-Circuits voltage control amplifier, ZFL-2000G+ with no

power is supplied. The physical setup can be seen in Figure 5.6.

For one of the experiments I recorded each target at one of nine different locations,

and at five different orientations at the center location. To obtain more data to train the neural

network, I recorded 50 additional positions and locations per target with both cameras for an

additional 50 captures ∗5 targets ∗2 cameras = 500 images. To train the color intensity-based
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neural network I split these into training and testing sets using 10 fold cross validation. To

train the generalized regression neural network the only usable trials were when both radar

and color imagery exists. However, the training is patch-based and not at the image level, so

there are many examples to train from.

I ran various detector and fusion methods on the data. This includes each modality

individually, weighted mean fusion, and neural network fusion. For weighted mean fusion,

I used α ∗ Sc + (1− α ∗ Sr) where the optimal alpha was determined empirically. I created

receiver operating characteristic (ROC) curves for each detector by varying the confidence

score threshold, as seen in Figure 5.5. The corresponding Youden J-statistics are shown

in Table 5.1. From these results, the nonlinear radar performs the worst. This is caused

by artifacts such as ground bounces or reflections off of nearby walls. These cause real

responses that are almost as strong as the actual target.

Figure 5.5: ROC curves for various detectors

Finally, as a proof of concept, I recorded 10 additional more realistic scenes to show

how color based methods can fail while radar succeeds. Figure 5.7 shows representative

samples.

55



Method J Statistic
Color only 0.9034

Nonlinear Radar 0.6342
Mean Fusion 0.9298

Weighted Mean Fusion 0.9383
GRNN Fusion 0.9420

Table 5.1: Youden J statistic of various detectors.

From these results, harmonic radar is needed to find electronic devices, but it alone

produces too many false positives to be used alone in a general setting. After fusion with

color, no matter the fusion method, there is an increase in performance. The weighted mean

fusion and GRNN produced the best results for score fusion.

5.5 Conclusion

Nonlinear radar can be used to detect electronic devices even through obstructions.

However, the radar imagery is noisy and contains artifacts due to ground bounces and cou-

pling between the receiver and transmitter. Different classification schemes performed sim-

ilarly in my tests. When combined with color imagery for detection of small electronic

objects on the surface of the ground, my results show that fusion increases the performance

with automatic detection.
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Figure 5.6: a) Image of hardware setup. Note a pair of thermal cameras appear in the image,
but were not used in this paper for fusion. b) Targets to detect (small radios and amplifiers).
1) Small Motorola K7GFV300, Tx + Rx, 460 MHz, 2) VR120, Rx only, 460 MHz, 3) Icom
IC-T7H, Tx + Rx, 460 MHz, 4) Mini-Circuits amplifier ZJL-4HG+, Rx only with power is
supplied via batteries, and 5) Mini-Circuits voltage control amplifier, ZFL-2000G+ with no
power is supplied.
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Figure 5.7: Realistic scenes to showcase the need for radar technology. The target is
camoflauged or covered up completely, but the radar can still see it. a) The color image.
b) The RAR image. c) The fused image after homography calculation and after threshold-
ing+blob analysis.
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Chapter 6

MATERIAL CLASSIFICATION USING THERMAL AND COLOR IMAGERY

6.1 Introduction

Automatically classifying materials impacts real world applications such as recycling

[45], mineralogy [48], and robotics [51]. Computer vision methods typically use standard

RGB camera imagery and rely on texture and lighting cues to distinguish the different ma-

terials. Appearance based classification is challenging due to the variety of colors and illu-

minations. Objects of different materials that have the same color intensity response can be

almost impossible to distinguish. In this work the electromagnetic spectrum is considered

between 8-14m with a long wave infrared (LWIR) camera, i.e. a thermal camera. I study

thermal properties and how water permeates through different materials.

LWIR cameras detect infrared radiation, which is emitted by all objects above ab-

solute zero according to Plancks black body radiation law [88]. The LWIR camera sees

not only the emitted thermal radiation of a source object, but also reflected and transmitted

thermal radiation. Emissivity is a property of a material which governs the effectiveness of

emitting thermal radiation compared to a black body source at the same temperature. Metals

have very low emissivity and high reflectance, while woods have high emissivity. Thus many

metals appear mirrorlike in the LWIR imagery.

When water comes into contact with an object, the permeation behavior changes

based on the material. For example, in wood the water follows along the grain of the wood

and is jagged in appearance, while in metals the water stays above the surface and hardly

moves if the surface is flat, and in paper materials, the water spreads radially.Permeation be-

havior is used as a cue for classification. A 3D model is constructed of the water permeation

pattern for each class of material. Each frame of a video sequence of the water permeation
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is treated as a 2D slice of a 3D model. This model generalizes features of the permeation

pattern such as rate of permeation and shape characteristics. Another cue used is the thermal

heating and cooling cycle. I show that different materials heat and cool at different rates

when placed under a heating lamp. The materials used for classification are shown in Figure

6.1.

The chapter is organized as follows. Section 6.2 gives previous works for material

classification. Section 6.3 details the proposed method of feature extraction and model learn-

ing. Section 6.4 shows the data collected and discusses the results of the classifier. Section

6.5 concludes the paper and discusses future work.

Figure 6.1: Materials used for classification. a) Cloth: suede, denim, wool, synthetic fur,
cloth, felt, polyester, linen, synthetic leather, real leather. b) Wood: maple, poplar, birch,
oak. c) Paper: corrugated cardboard, paper towel, printing paper. d) Plastic Foams: closed-
cell expanded polystyrene, closed-cell extruded polystyrene. e) Metals: aluminum, steel.
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6.2 Background and Related Works

Many previous works consider material classification with a standard RGB camera.

Color and texture information were extracted in [26]. [39] uses a Bidirectional Reflectance

Distribution Function (BRDF) as a feature for per-pixel classification. [?] uses a Bidirec-

tional Texture Function (BTF). Both use coded light illumination in an LED dome. Light

polarization was used in [19, 125]. BRDF slices were used in [120]. Visible spectral re-

flectance (400-720nm) was used in [50]. In most of these works, the lighting was very

controlled to give cues for the classification. In this work, the lighting is less important

compared to thermal properties for classification.

Thermal imagery has not been heavily studied for material classification. [91] uses

near infrared (NIR) to get a more intrinsic image of the material sample. [85] uses mid

wave infrared for paper and board identification for food packaging. [55] measures thermal

conductivity of materials using tactile feedback; a robot touches the material with a probe.

LWIR can easily detect water damage in buildings and can detect permeation in materials

[127]. To the best of my knowledge, this is the first work to use long wave infrared cameras

to obtain image-based thermal properties for material classification.

6.3 Methods

Figure 6.2: The proposed method consists of two types of features – water permeation and a
heating/cooling cycle. For water permeation, 3D model is extracted called “CHAMP” which
describes the water permeation rate and size. For heating and cooling, a variation of the heat
equation [22] is solved for the constant parameters. Note that the permeation model is a
mesh for display purposes, and the color refers to time (red = start). The FFT image is in a
log-2 scale.
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Figure 6.3: Camera setup for water permeation experiment. All materials were roughly
centered in the image, and a pipette was used to control the amount of water.

An overview of the proposed methods can be seen in Figure 6.2. Water permeation

behavior is extracted by computing a characteristic model of permeation as discussed in

Section 6.3.1, and is further transformed into the FFT of a binned spherical map for com-

parison. I developed two heating/cooling features. The first is extracted by sampling small

patches over time to obtain a temperature curve as discussed in Section 6.3.2.1. The second

is extracted by solving the heat equation for unknown constant parameters in Section 6.3.2.2.

6.3.1 CHAMP - CHAracteristic Model of Permeation

There are a few interesting features that can be obtained for water permeation such

as the rate of permeation of the water into the material and the shape characteristics of the

permeation. These features are generalized by creating a 3D model which I call the CHAMP

(CHAracteristic Model of Permeation). To compute the CHAMP, I first define a 2D indicator

function f for a material as

fi(X, Y ) = Ii(x, y) < τf , (6.1)
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Figure 6.4: Comparison of select few materials from different coarse-grain classes. a)
CHAMP. b) Binned spherical map. c) FFT of binned spherical map.

where τf is a material specific threshold value and i is the ith frame in the video sequence.

The material threshold value can be calculated using Otsu’s method [78], assuming a bimodal

distribution of intensity values. The indicator function gives a value of 1 for points inside or

on the CHAMP, and 0 for points outside the CHAMP. It is possible to use more complicated

methods for calculating the indicator function, such as active contour models [17], but for

most of my data the difference in temperature between the water and background is bimodal

and significant enough that a simple threshold suffices. Moreover, the active contour model

would lose some finer details depending on the snaxel resolution.

Once the indicator function is calculated, the boundary of the model can be quickly

estimated using morphological operations [25, 72] as in

Ωi(X, Y ) = fi(X, Y )− f ′i(X, Y ), (6.2)

where f ′i(X, Y ) is obtained by eroding f using a small structuring element. To create the 3D

model, simply concatenate the boundary Ωi(X, Y ) for each slice i along the Z dimension.

The model can be “capped” by using the indicator function for i = 1 and i = N for an N

frame video sequence, instead of the boundary Ωi(X, Y ) . That is

CHAMP (X, Y, i) =

fi(X, Y ), if i = 1, N.

Ωi(X, Y ), otherwise.
, (6.3)
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The CHAMP can be understood by visualizing each image in a video sequence as a

2D slice along the Z dimension. It implicitly contains the shape of the water permeation as

well as the growth rate (i.e. curvature of the model).

6.3.1.1 Comparing CHAMPs with Binned Spherical Mapping

Once the models are created, a metric to compare the models is needed. A Fast

Fourier Transform (FFT [117]) is computed of a modified binned spherical mapping of the

CHAMP. This is a robust method since it is invariant to rotations and translations between

CHAMPs and is fast to compute.

A spherical coordinate system is a coordinate system where points are represented

by 3 parameters: the radial distance from the origin, the polar angle measured in the zenith

direction, and the azimuth angle orthogonal to the zenith direction. Before performing this

mapping, the CHAMP is centered around its centroid. Next, the Cartesian (X, Y, Z) coordi-

nate system is mapped to (r, θ, φ) in the spherical coordinate system using simple trigono-

metric equations.

These spherical points are binned into a 2D histogram image. The intensity values of

the histogram image are the r values multiplied by cos(φk), the rows are varying θ, and the

columns are varying φ. This is performed by

SPH(x, y) = cos(φk) ∗ avg(rk) (6.4)

{k | θk ± ε = x ∗ binx − π,

φk ± ε = y ∗ biny −
π

4
},

where binx and biny are the desired bin size. Each row corresponds to a slice of the model,

and the values are the distances from the centroid of that slice to the edge of the model.

Next, the FFT is computed of these 2D histogram images and shift the zero-frequency

component to the center. Since the only misalignment of the spherical maps will be in

the horizontal direction, the phase can be ignored by taking only the amplitude of the FFT

64



image. This allows the FFT images to be aligned even if the CHAMPs are misaligned due

to rotations and translations. For display purposes in Figure 6.4, the base-2 log of the FFT

image is shown. These FFT images are compared to each other using correlation, where a

higher value corresponds to a better match. Figure 6.4 shows a comparison of the various

models between a select few of the materials.

6.3.2 Material Heating and Cooling

In this section, I describe two features extracted to represent the heating and cooling

of the materials. The first feature attempted was very simple, while the second one yielded

higher accuracy and is more physically meaningful. These two features are described below.

6.3.2.1 Patched-Based Temperature Curves

The first attempt of feature extraction of heating and cooling is quite simple. For each

image in an infrared video stream, five patches are sampled as shown in Figure 6.5. For each

patch, the mean temperature over the patch is plotted over time to give a temperature curve

that should, ideally, be unique for each material. Patches were chosen over using all pixels

to smooth over noise and to speed up the processing time.

To account for change in room temperature over the course of a day, the starting

temperatures of each curve are aligned when comparing across materials, i.e. for materials x

and y perform T ′xk(t) = Txk(t) + [Tyk(1)− Txk(1)]. Here Txk(t) is the temperature at time t

for material x at patch k. Euclidean distance is used as a metric for comparison.

6.3.2.2 Solving the Heat Equation

The heat equation [22] is a parabolic partial differential equation that describes the

distribution of heat over time. The standard heat equation is augmented to more closely

describe the physical setup by adding a second term as in

dI

dt
= α∇2I + βS(t), (6.5)
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Figure 6.5: Simple heating/cooling feature. A heat lamp was placed at the bottom of each
material and was turned on at t=1m and turned off at t=16m. a) Location of sampled patches
in infrared image for heating/cooling feature extraction. b) Corresponding graph of patch
temperature over time.

where α, β are unknown constants, and S is a function which describes how heat is applied.

In my setup, a heat lamp was the source of heat in the scene, and its temperature changed

over time. To calculate S,the temperature of the heat lamp is sampled over time using an

infrared thermometer, and fit a piecewise polynomial to the sample temperatures. Once S

is known, α, β are calculated by setting up an overconstrained linear system and applying a

Moore-Penrose pseudoinverse [15]. The system is set up as

(
∇2I S(t)

) α

β

 =
(

dI
dt

)
. (6.6)

The resulting parameters are the feature vector for comparison and Euclidean distance

was used as a difference metric.

6.4 Experiments and Results

In my experiments I used a Xenics Gobi 640 GigE uncooled long wave infrared

camera, which has a resolution of 640x480 and has a 50mC sensitivity at 30◦C. The materials

used were broken up into 5 coarse classes: cloth, wood, paper, plastic foams, and metal. Each

coarse class was further broken up into a total of 21 subclasses as shown in Figure 6.1. For

each type of material, 4 samples were imaged; this gives a total of 84 material samples. The
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Method Rank 1 Coarse Rank 2 Coarse Rank 1 Fine Rank 2 Fine Rank 3 Fine
Capped, FFT 79.8 92.8 59.5 70.2 82.1

Uncapped, FFT 77.4 97.7 57.1 73.8 86.9
Capped, SPH 83.3 91.7 63.1 81.0 83.3

Uncapped, SPH 82.1 89.3 61.9 76.2 85.7
Capped, FFTCOS 83.3 92.9 64.3 73.8 82.1

Uncapped, FFTCOS 84.5 92.9 64.3 73.8 83.2
Capped, SPHCOS 82.1 89.3 61.9 79.8 85.7

Uncapped, SPHCOS 80.1 89.3 60.7 76.2 85.6
Heat Equation 100x100, 50 78.6 85.7 42.9 57.1 69.1
Heat Equation 100x100, 25 66.7 76.6 35.7 50.0 61.5
Heat Equation 100x100, 75 69.1 88.1 28.6 40.5 42.9

Heat Equation 50x50, 15 64.3 76.2 33.3 45.2 57.1
Heat Equation 150x150, 85 54.8 83.3 35.7 40.5 45.5

Heating/Cooling Graphs 3x3 57.1 85.7 35.7 52.4 63.1
Heating/Cooling Graphs 9x9 59.5 88.1 35.7 52.4 63.1

Heating/Cooling Graphs 15x15 59.5 83.1 28.6 52.4 59.2
Heating/Cooling Graphs 1st Deriv 3x3 66.7 76.2 28.6 47.6 57.1
Heating/Cooling Graphs 1st Deriv 9x9 69.1 76.2 30.1 47.6 57.1

Heating/Cooling Graphs 1st Deriv 15x15 71.4 76.2 30.1 50.0 57.1
Heating/Cooling Graphs 1st Deriv 25x25 69.1 76.2 28.6 47.6 57.1

Combination 95.3 100.0 71.4 85.7 92.9

Table 6.1: Results using variations on the proposed features given as accuracy over entire
dataset. Rank n means the correct class was in the top n choices. Coarse refers to wood vs
metal vs cloth vs paper vs plastic foams, whereas fine refers to a specific class (e.g. poplar)
against all other 20 classes.

Method Rank 1 Coarse Rank 2 Coarse Rank 1 Fine Rank 2 Fine Rank 3 Fine
Ours + DCT 98.8 100.0 81.0 91.7 94.0

Ours 95.3 100.0 71.4 85.7 92.9
NIR [91] 92.9 96.4 76.2 88.1 92.9
HSL [87] 83.3 95.3 59.5 85.7 92.9
DCT [26] 92.9 95.2 61.9 80.9 83.3

Gabor [26] 82.1 90.5 61.9 79.8 81.0
Co-occurrence [26] 81.0 81.0 60.0 64.8 67.1

Table 6.2: Results of comparison to other works using the dataset. Rank n means the correct
class was in the top n choices. Coarse refers to wood vs metal vs cloth vs paper vs plastic
foams, whereas fine refers to a specific class (e.g. poplar) against all other 20 classes.

physical setup of the camera and materials is shown in Figure 6.3. The LWIR camera was

0.4m above the materials looking downwards. The boundaries of the image were marked so

that materials can be roughly aligned to the center of each image.

For the water permeation experiment, a pipette was used to drop 0.4mL of water onto

the center of the material. I recorded a ten minute long video at 1fps for each sample. For

each video, the CHAMPs and FFT of binned spherical maps were extracted as described in
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Figure 6.6: Misclassified CHAMPs of materials using only water permeation. When adding
in heating/cooling information, these materials appear different.

Section 6.3.1. For each fine-grain class type, a mean model was created by averaging the FFT

images for all samples. Leave-one-out cross validation was used in this procedure by leaving

one sample out for testing, and three samples to create the mean model. The mean model is

compared against all other material samples. I tested a few variations including: “capping”

the CHAMP, leaving off the caps, using aligned spherical maps without FFT, using the FFT,

and using aligned spherical maps without the cos(φ) term in Eq. 6.4. When uncapped, φ is

restricted to −π
4
toπ

4
to avoid NaN results. These results are reported in Table 6.2.Accuracy

is reported using rank1, rank 2, and rank 3 results, where rank n means if the algorithm’s

choice was in the top n choices it is marked as correct. This is a useful metric to see how

much each feature can narrow down the possible choices.
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For the heating and cooling experiment, 30 minute videos were recorded of the heat-

ing and cooling of each material sample. Each sample was placed in the center of the cam-

era’s view and heated with a heat lamp placed in front and above the material. The heat lamp

was turned on for 15 minutes, and then switched off at the 15 minute mark. This process

was automated using a programmable Arduino microcontroller to ensure precise timing. I

tested a few different sized Laplacian of Gaussian (LoG) filter sizes and sigma values for the

feature described in Section 6.3.2.2. I also tested a few different patch sizes for the feature

described in Section 6.3.2.1. The results are included in Table 6.2.

To combine the features, the top n = 5 choices are taken from the water perme-

ation features. Then, a simple linear combination is used of the normalized distances of the

best water permeation variation and best heating/cooling patch size as in αw∗UncappedFFT

+(1 − αw)∗(HeatEquation [100 100],50). The weighting parameter αw and n chosen were

the ones with the highest average accuracy scores across all categories.

I compare to other material classification works that use color, texture, and near in-

frared. To the best of my knowledge there is no other work on image-based thermal proper-

ties for material classification. [26] gives a comparative study of approaches for classification

of color texture images. I implemented the three features they recommended across all three

color channels – Discrete Cosine Transform (DCT), Gabor Filters, and Co-occurance. [91]

uses NIR for classification due to its relative independence from color imagery. The materi-

als were recorded with the Sony EVI-D70, which is a color video camera with a NIR mode

and a resolution of 640x480.

The infrared results were combined with color results to further improve accuracy.

The way this is performed is similar as described above – a linear combination of the normal-

ized distances of the best infrared features and best color features as in 1− βw∗Combination

+(βw)∗DCT. In the presented experiments, n = 5, αw = 0.14, and βw = 0.25. The smaller

βw is, the less color and texture information is relied on for classification.
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6.4.1 Discussion

When water permeation is taken as a feature alone, the best rank 1 accuracy over the

5 coarse classes is 84.5% when using the FFT of the spherical map multiplied by cos(φ).

This is also the best version of the feature when looking at the best rank 1 accuracy over

all 21 classes at 64.3%. Water permeation may be better utilized when combined with other

features. This is because it is able to narrow down the possible classes very effectively. Using

an uncapped CHAMP with the FFT of the spherical map 97.7% rank 2 accuracy is achieved

for coarse classes; this means the correct material class is almost always in the top 2 choices.

Similarly for fine classes, this variation maximizes the accuracy where the correct class is

in the top 3 choices about 87% of the time. That is why UncappedFFT was chosen for the

combination – it was able to narrow down the possible choices the best. Similarly, using the

heat equation with a LoG filter of size 100x100 and σ = 50 led to the highest results across

the categories. When combined together, the results are improved up to 16%, which implies

these features are complimentary to each other.

When comparing to other works, the proposed method gives the best result across all

categories, although in some cases the gain is only slight. However, when color is added

using the linear combination described above, the results are significantly improved up to

10%. Moreover, weighting parameter βw can be controlled to give more invariance to color

and texture information, depending on the dataset being used.

One drawback of the proposed method is the amount of time it takes to record the

water permeation and heating/cooling videos, which were 10 minute and 30 minute respec-

tively. The length of videos recorded for this project were conservative, and it may be pos-

sible to decrease the video length. Also, the heating/cooling can be sped up by placing the

heating element closer to the material.

6.5 Conclusions and Future Work

In this chapter, I described features that can be extracted from thermal imagery which

give results that not only outperform other color and texture features, but also are compli-

mentary to them, and can be combined to increase performance. I collected a dataset of 21
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different classes with 84 total samples, and recorded thermal video of water permeation and

heating/cooling, as well as color and NIR photographs. I presented CHAMPs, which model

the water permeation, and a method to extract the heat equation constants. Combining these

features together results in higher accuracy than using either one individually.

71



Chapter 7

THERMAL STEREO

7.1 Introduction

The thermal features discussed in Chapter 6 assumed a planar material sample placed

in a standardized location and orientation to the heat source. However, in more realistic

scenarios, the material sample will have a non-planar, possibly curved surface, and can be in

an arbitrary location relative to the heat source. In this case, the thermal features will fail. To

take into account the location and curvature of objects, stereo reconstruction can be applied.

In this chapter, I discuss a comparison between using stereo color cameras and stereo thermal

cameras.

7.2 Background and Related Works

[57] uses stereo infrared cameras and color cameras for pedestrian detection. Stan-

dard block matching with sum of square differences was used for stereo matching. However,

an analysis of the stereo matching phase is not given. [79] estimates dense disparity using

block matching with a 7x7 correlation window on 480x512 images of various types of sur-

faces (grass, concrete, dirt). They observe that if the signal to noise ratio is over 30/1, 90%

disparity accuracy is achieved. However in the middle of the night, the temperature tends

to equalize and compress the dynamic range, thus decreasing the signal to noise ratio. They

conclude that uncooled infrared cameras have too low of a signal to noise ratio for dense

disparity results. [40] deals with the problem of noisy infrared imagery by first transform-

ing the image with phase congruency. The transformed image is less noisy and has a more

distinct and smoother background. They use standard block matching with sum of absolute

differences and show improved results over block matching without the phase congruency

transform.
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More work has been done in cross-modality matching or multi-modal fusion for depth

estimation. [116] Compute depth using a fusion of multiple sensors, including color, ther-

mal, and time of flight sensors. Thermal is used to increase information in textureless regions

when fused with color imagery. [113] Compares various features for cross modality (color

and thermal) matching for indoor scenes humans and found local self-simlarity to outperform

Normalized Cross-Correlation (NCC), and was slightly more robust for human reconstruc-

tion than Histograms of Oriented Gradients (HOG) and Mutual Information (MI).

For evaluating thermal-only stereo, these works did not consider global and semi-

global matching techniques [132]. Only local methods have been used, which perform

poorly in textureless region [86].

7.3 Experiments

7.3.1 Color Vs. Thermal Stereo Comparison

In this section, color-based stereo reconstructions are compared to thermal-based

stereo reconstructions on various material types. The reconstructed objects were spheri-

cal balls which were chosen since they are easy to model, easy to measure their physical

diameter, and have heavy uniform curvature. The spheres are made of seven different ma-

terials: aluminum, stainless steel, polystyrene foam, vinyl, glass, maple, butyl rubber, as

shown in Figure 7.2. The same spheres are shown in thermal after heating in Figure 7.3. The

advertised diameter was 127mm, but calipers were used to find the exact diameter as shown

in Table 7.1 .

Material Diameter
Wood 128.7
Vinyl 122.2

Butyl Rubber 138.7
Aluminum 127.4

Glass 127.4
Polystyrene Foam 121.6

Steel 126.7

Table 7.1: Measured ground truth sphere diameters.
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For sensors, I used a stereo pair of both thermal and color cameras. The thermal cam-

eras used were Gobi 640 GigE long wave infrared (8 µm to 14 µm) uncooled microbolometer

cameras, which have a resolution of 640x480 and a thermal sensitivity of 50mK. The color

cameras used were Point Gray Flea2 FL2G-50S5C Firewire cameras with a resolution of up

to 2448x2048, but for synchronization purposes I used 1280x960. All four cameras were

synchronized with a software trigger.

In addition to the sensors, I used a pico projector and a heat gun to add texture to the

spheres in each modality. The projector was an AAXA ST200 1280x720, 150 lumens LED

projector, and projected a highly textured, randomized pattern onto the sphere. The pattern

was projected with the lights in the room turned off. The heat gun was a Genesis GHG1500A

Dual-Temperature Heat Gun (1500W/750W). The heat gun was applied to the surface for 5

seconds at a high temperature setting from 0.6m away. The setup is shown in Figure 7.1.

For each material type, the sphere was imaged nine times – three standard lighting,

three using the projector, three using the heat gun. A stereo reconstruction was performed in

each modality. For calibration of the thermal cameras, I used the method described in [95], in

which the calibration board is attached to a ceremic backing and heated with a heat lamp. The

resulting calibration is used to perform calibrated rectification. Semi-global block matching

[47] was performed on the rectified images since it is the highest performing algorithm that

is readily available in many languages and toolboxes.

Two spheres were fit to the resulting point clouds. The first sphere is fit using the

known ground truth radius to measure point-wise error. The second sphere is fit without

knowledge of the ground truth radius in order to compare the model radius to the ground

truth. The following equation is minimized to obtain the best fit sphere:

min
c,r
f(x) = [(

∑
x− c)− r]2, (7.1)

where c is the 3D center of the sphere and r is the radius. This equation is minimized using

the simplex search method of Lagarias et al. [59]. Table 7.2 shows the results of varied

materials with and without added texture in each modality. The results are averaged over all
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Figure 7.1: a) Setup for sphere stereo experiments. b) The projected pattern.

relevant samples, and both pixel root mean square error and radius error are shown.

7.3.1.1 Discussion

If the Pixel RMS is considered (the best sensor per material is highlighted in red in

Table 7.2), the visible with a projected texuture performs better on about half of the materials

(wood, styrofoam, steel, aluminum), while the thermal performs better on the other materials

(vinyl, glass, rubber). The materials that thermal performed better were materials where the

projected pattern did not appear as distinct due to the dark colors in the material. On the
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Figure 7.2: Materials used are 1 polystyrene foam, 2 aluminum, 3 vinyl, 4 glass, 5 maple, 6
butyl rubber, 7 stainless steel.

other hand, thermal performs poorly on metallic materials which are mostly reflective in the

long infrared range.

When using the radius estimation percent error, the results are the same for all ma-

terials except aluminum and styrofoam; however, in aluminum the lowest radius estimation

percent error (0.93) has the highest standard deviation (3.24mm), which is unreliable. Thus

the radius error estimation supports the per pixel error across all materials. I also observed

in all of the highlighted cases that most of the error was caused by a relatively few outlier

3D points which were incorrect by 20mm+.

The density of the reconstruction is defined as the number of pixels with estimated

disparity over the total number of possible disparity estimations. In general, high density is

correlated with higher accuracy, but this is algorithm dependent. In these experiments, higher
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Figure 7.3: Materials in thermal after heating for one minute. 1 polystyrene foam, 2 alu-
minum, 3 vinyl, 4 glass, 5 maple, 6 butyl rubber, 7 stainless steel.

density is correlated with higher accuracy. In almost all of the cases, the highest performing

sensor w.r.t pixel-wise acheived the highest density in all except 2 materials; however, within

these two materials (vinyl, rubber), the density is very high and close to the other value.

7.4 Conclusion

In this chapter, I compared stereo thermal and stereo color reconstructions. I recon-

structed spheres with a known radius and compared the reconstructed points against ideal

sphere points, and I compared the reconstructed radius against the measured radius. I also

used projected light patterns and a heat gun to add texture to each modality respectively. I

found that thermal is competitive with and even outperforms color based reconstructions in

some materials (vinyl, glass, rubber) when using the pixel RMS error as a metric.
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Sensor Material Projector? Heater? GT r Pred r % err Pred r σ RMS (mm) RMS σ Density
Visible wood N N 64.35 67.6657 5.1526 3.6133 7.0051 9.9601 0.80435
Visible wood Y N 64.35 64.4238 0.11468 0.26117 0.78274 2.5245 0.95235

Thermal wood N N 64.35 69.2361 7.593 11.7897 12.9168 9.1761 0.85487
Thermal wood N Y 64.35 63.5329 1.2697 0.73276 2.8354 3.5446 0.91183
Visible vinyl N N 61.1 56.1651 8.0767 0.68092 18.8616 13.5417 0.87342
Visible vinyl Y N 61.1 64.1672 5.02 0.37074 1.3837 2.2512 0.96159

Thermal vinyl N N 61.1 69.1941 13.2473 15.9771 11.8484 11.8501 0.91368
Thermal vinyl N Y 61.1 60.8838 0.3538 0.025835 0.80622 1.1564 0.93312

Visible glass N N 63.7 65.8552 3.3833 5.0303 23.6173 17.2831 0.81172
Visible glass Y N 63.7 72.1337 13.2397 4.6557 17.5617 14.7453 0.65006

Thermal glass N N 63.7 67.756 6.3674 6.6014 16.5256 11.0016 0.85364
Thermal glass N Y 63.7 61.9532 2.7422 2.0967 6.8163 7.2075 0.92477

Visible rubber N N 69.35 64.0468 7.647 1.8262 13.144 11.341 0.75911
Visible rubber Y N 69.35 65.1223 6.0962 1.1989 1.9272 3.7583 0.9479

Thermal rubber N N 69.35 67.7898 2.2498 2.5959 10.0504 9.7062 0.89729
Thermal rubber N Y 69.35 68.7436 0.87438 0.31867 1.7727 2.5442 0.92587

Visible styro N N 60.8 58.5957 3.6256 1.1518 10.5935 9.2631 0.84136
Visible styro Y N 60.8 63.8694 5.0484 0.46937 1.071 2.0229 0.94307

Thermal styro N N 60.8 67.1997 10.5258 14.6867 11.8861 10.0602 0.85152
Thermal styro N Y 60.8 60.0238 1.2767 0.034588 1.8583 2.5724 0.91828
Visible steel N N 63.35 57.6273 9.0335 0.57655 12.9085 11.4058 0.88286
Visible steel Y N 63.35 64.5509 1.8956 1.0508 2.4085 5.7781 0.94145

Thermal steel N N 63.35 61.2164 3.368 0.18211 10.8778 8.1621 0.91767
Thermal steel N Y 63.35 60.7334 4.1304 0.74124 6.6754 7.0092 0.898
Visible alum N N 63.7 58.8309 7.6438 2.3186 13.3053 11.6614 0.84449
Visible alum Y N 63.7 65.0809 2.1679 0.97299 2.6691 6.802 0.92921

Thermal alum N N 63.7 63.1059 0.9327 3.2403 12.4797 10.7564 0.84168
Thermal alum N Y 63.7 59.505 6.5855 1.3503 11.5691 10.1813 0.86647

Table 7.2: Results of sphere reconstruction experiments in each modality using semi-global
block matching [47]. Error statistics are given with both pixel-wise RMS to a sphere model
with ground truth radius and with predicted radius error. Density is the number of pixels
with an estimated disparity over the total number of possible disparity estimations. Error is
averaged over 3 samples for each row in the table. The radius and RMS values are measured
in mm. The red bordered rows correspond to the sensor that had the lowest Pixel RMS (and
in all cases the Pixel RMS σ).
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Chapter 8

MATERIAL CLASSIFICATION ON CONVEX OBJECTS IN ARBITRARY
POSITIONS

In this chapter I describe a method for handling material classification on convex

objects in arbitrary positions using a four camera dual-stereo system. By calibrating the

cameras and heat source together, the material properties can estimated by modeling the

scene using a modified version of the heat equation in Chapter 6. This equation is derived

from the radiosity equation used in computer graphics, and is described below. However,

implementation and testing of this system is still in progress, and the experiment outlined

below is still pending results.

8.1 Background on Radiosity

Radiosity is 3D computer graphics technique for rendering scenes. It is a global

illumination method in that energy comes from not only the light source, but other surfaces.

In fact, light sources are treated no differently from other surfaces, and we can model their

shape. The method is view independent as energy transfer is calculated between all surfaces.

Radiosity calculation is a modeling process and involves modeling the geometry of the scene.

Conveniently, the radiosity method has its basis in thermal radiation heat transfer. I will

summarize the radiosity method below, but for an in depth review of radiosity, see [122, 4].

The heat emitting from a surface i is the radiosity and is made up of the heat reaching

it from other surfaces and the heat it directly generates if it is a heat source. The fraction of

heat that reaches surface i from surface j is form factor and depends on the geometry of the

scene. Let Ai be the area of surface i, Bi be the radiosity, Ei be the generated energy per

area per time for heat sources, let Ri be the fraction of reflected incident heat, and let Fij be

79



the form factor, the fraction of heat which gets to i from j. Then the radiosity (heat emitting

from a surface area) equation is given in the following equation as

BiAi = EiAi +Ri

∫
FijBjdAj (8.1)

To calculate the form factors, the hemisphere method is employed. A unit-hemisphere

is placed around the surface area Ai , and the heat that passes into the hemisphere is the heat

arriving at the surface. For another surface Aj , it is projected onto i’s hemisphere and then

downwards onto the surface of i. This will give a high heat transfer if the projected area is

near the center, and a low if near the edge based on the cosine of the orientation. See Figure

8.1. The two angles are needed to encapsulate both the orientation of j and is position in the

hemisphere of i.

Figure 8.1: Hemisphere method for calculating the form factor in the radiosity equation. r is
the distance between Ai and Aj . Image courtesy of [4]

The form factor is then approximated by integrating over the hemisphere as in

Fij ≈
∫
Aj

cosφicosφj
πr2

dAj. (8.2)

To approximate the integrals, it is assumed that the surfaces i and j are small patches

that are energetically uniform.
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8.2 The Radiosity Technique for Thermal Features

The radiosity technique in computer graphics assumes that Ri is known (along with

the distance and angle between scene structures), but in the case of material classification

case this is an unknown material property. Moreover, the distance and angle between the

surface patches are unknown. To calculate the surface patch geometry, stereo reconstruction

is performed to reconstruct the shape of the objects in the scene. Using the techniques for

calibration earlier in this dissertation (Chapter 2), as well as thermal stereo reconstruction,

everything in the scene can be accounted for except the heat source. The heat source is at an

unknown location and orientation.

To calculate the heat source’s location and orientation, a technique developed in [99]

is used. The idea is to use a multi-modal stereo system consisting of stereo color and stereo

thermal cameras to reconstruct the reflecting surface and the reflected scene. In one modality,

texture is added to the mirror surface that does not appear at all in the other modality (e.g.

temperature from hand transferred to mirror, which is invisible to the color modality). Then,

a ray trace reconstruction technique is used to calculate 3D points in the coordinate system

of the left camera. With this it is possible to reconstruct the scene next to the cameras, behind

the cameras, or even the cameras themselves.

The radiosity equation as stated above for computer graphics encapsulates radiative

heat transfer between objects. However, it does not account of conduction across a single

object. For that, I take into account the heat equation [22]. The heat equation is a parabolic

partial differential equation that describes the distribution of heat over time. The heat equa-

tion is
dI

dt
= α∇2I, (8.3)

where α is an unknown constant material property known as thermal diffusivity. To

approximate the contribution of each method of heat transfer (conduction and radiation), the

two equations are additively combined to give

dI

dt
= α∇2I +

∫
i

EiAi +Ri

∫
Aj

FijBjdAj, (8.4)
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In the experiments outlined in this chapter, the objects imaged are convex, so there is

no radiative exchange between surface patches. Moveover, there is only a single heat source,

which can be appomixated with a single patch. This allows us to reduce the equation to

dI

dt
= α∇2I +Ri(FihBh), (8.5)

where h is the heat source. By renaming the terms, we can get a similar equation to Chapter

6. This new equation is the same as 6.5 except it has the form factor, which includes distance

and angle components. The equation is

dI

dt
= α∇2I + β(FihS(t)), (8.6)

where S(t) is a function that outputs the heat given off by the light source at time t and Fih

is the form factor of the heat source with a patch i as described in equation 8.2. α and β are

material properties for conduction and radiation, respectively. In my setup, a heat lamp was

the source of heat in the scene, and its temperature changed over time. To calculate S(t),the

temperature of the heat lamp is sampled over time using an infrared thermometer, and fit a

piecewise polynomial to the sample temperatures.

Once S is known, α, β are calculated by setting up an overconstrained linear system

and applying a Moore-Penrose pseudoinverse [15]. The system is set up as

(
∇2I FihS(t)

) α

β

 =
(

dI
dt

)
. (8.7)

8.3 Experiments

In this section, the radiosity technique described above was used in a controlled ex-

periment to classify material types. The setup is very similar to the previous chapter for

thermal stereo analysis. The reconstructed objects were spherical balls as in the previous

chapter, because of the easy to obtain ground truth shape. The spheres are made of seven

different materials: aluminum, stainless steel, polystyrene foam, vinyl, glass, maple, butyl

rubber, as shown in Figure 7.2.

82



A stereo pair of both thermal and color cameras were used to reconstruct the scene,

including the location and orientation of the heat lamp using [99] . The thermal cameras

used were Gobi 640 GigE long wave infrared (8 µm to 14 µm) uncooled microbolometer

cameras, which have a resolution of 640x480 and a thermal sensitivity of 50mK. The color

cameras used were Point Gray Flea2 FL2G-50S5C Firewire cameras with a resolution of up

to 2448x2048, but for synchronization purposes I used 1280x960. All four cameras were

synchronized with a software trigger. A 250W heat lamp was used to heat the materials

for 10 minutes. A 20 minute video consisting of 10 minutes of heating and 10 minutes of

cooling was recorded.

The results of classification using the above technique and the experiment described

are still pending and will be released in future work.

8.4 Conclusion

The radiosity technique is a potential solution to handling material classification in

curved surfaces. Thermal energy transfer is calculated between all surfaces and iterated

over. The equations can be used to model radiative heat transfer and when added to the

heat equation for conductive heat transfer, a similar equation is formed to the one described

in Chapter 6, but with the addition of a form factor. This form factor handles the angle

and distance between the surface and the heat source and allows the classification technique

from Chapter 6 to be used on curved objects at arbitrary locations. Experiments have been

performed but the results are still pending.
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Chapter 9

CONCLUSION AND FUTURE WORK

Thermal cameras are a complementary technology to color cameras that can increase

performance and robustness. They allow us to view information that is otherwise invisible

from color cameras, which opens up the opportunity for new features and fusion between

modalities. However, in general thermal cameras are less studied in computer vision ap-

plications than color-based approaches due to their high costs and low resolution. In this

dissertation, I explored calibration, alignment, detection, and classification of hidden targets

with multiple modalities and a focus on the thermal modality.

For thermal calibration, I used a printed calibration board on a ceramic backing with

a simple pre-processing method to expose the checkerboard pattern. I successfully harnessed

the sun as a heat source outside, while using a heat lamp inside. I found this method even

works when different modalities are used for the left and right cameras.

To align modalities when there are no visible correspondences, I used a differential

GPS/IMU along with camera calibration to construct a transformation matrix to project pix-

els in one image to the other. Since the camera I used could pan/tilt/zoom, the intrinsics

and extrinsics change between frames. To solve this problem, I calibrated at multiple zoom

levels and interpolated the corresponding intrinsics.

For detection with multiple modalities of anomalous objects, I used Gaussian Mix-

ture Models (GMMs). GMMs can model typical pixel intensities in the scene. When pixel

intensities lie outside the model, they are flagged as anomalous. The GMMs are updated

between frames to include both new and old information. This allows the GMMs to model

new intensities if they are in the scene enough. I tested various fusion schemes to combine

the color and thermal imagery and found that fusion at the decision level and pixel level gave
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similar results, and that fusion was useful if the scene had targets that could only be seen by

one modality.

For detection of known objects, I used a neural network to fuse the scores between

color and nonlinear radar. Testing was performed on 5 small electronic devices, and I found

that nonlinear radar had artifacts that lowered the performance of automatic detection, but

it was valuable because it can see the targets even through obstructions such as camouflage

or plastic hollow rocks. The fusion results outperformed the individual results no matter the

fusion technique used.

For material classification, two novel thermal features were developed – water per-

meation and heating/cooling. For water permeation, a pipette was used to put a few drops

of water onto a material and the thermal camera could easily detect the water’s spread. A

feature I call the CHAMP (CHAracteristic Model of Permeation) encapsulates information

about the speed and shape of the water’s spread. For heating/cooling, I solved a variation

heat equation for thermal diffusivity and absorptivity. The results show that the water perme-

ation performs better, but fusing the two scores performs even better. Color based techniques

perform better than the individual thermal features, but not than the fused thermal features.

Fusing color and the two thermal features performs the best.

Since the material classification in Chapter 6 relies on planar material samples in

a standarized location and orientation, it will fail when a non-planar sample is used. To

remedy this, stereo reconstruction can be used to calculate the location and orientation of

the sample. How to adjust the heat equation to use the angle and distance information is

discussed in Chapter 8. Stereo cameras would be used to reconstruct the object and obtain

the surface normals and distance from the heat source. In Chapter 7, I compared thermal

stereo against color stereo and found that each performs better on certain material types

when using projection and active heating. Moreover, thermal stereo mostly fails in an indoor

setting at room temperature where all objects have similar temperatures. Only under active

heating does enough texture appear for stereo matching.

Future work is implementing the thermal feature for curved objects and testing in

both indoor and outdoor conditions. After that, the four-camera duel stereo system can be
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put on a moving vehicle with radar. This sensor system would be tested in a more realistic

environment with real targets. Another improvement to the heating feature can be using

convection from e.g. a heat gun to quickly heat an object. This reduces the time needed

to calculate features, but also reduces the modeling potential. Rather, machine learning

techniques, especially deep learning, can be used to automatically pick the best feature from

a sequences of thermal images instead of the current method of hand picking features.
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