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ABSTRACT

Swarm dynamics is the study of collections of agents that interact with one

another without central control. In natural systems, insects, birds, fish and other large

mammals function in larger units to increase the overall fitness of the individuals. Their

behavior is coordinated through local interactions to enhance mate selection, predator

detection, migratory route identification and so forth [3, 7, 23, 28, 35]. Some of the in-

dividuals may possess additional information, like food sources. Those individuals with

additional information may act as leaders and affect the movement of the whole group.

In artificial systems, swarms of automated devices can augment human activities such

as search and rescue, and environmental monitoring by covering large areas with mul-

tiple nodes [2, 8, 26, 27, 34]. Sometimes we would like to inject additional information

into the system without telling every device. Then the informed one functions as a

leader. We would like to build a model to simulate the behavior of swarms with covert

leaders. Then based on the model, we would like to know the stability of the system,

the collective decision of the swarms when there is knowledge confliction, and the way

to find the covert leaders when we observe a group of individuals in motion.

In Chapter 1, we extend the covert leadership model in large swarms. A leader is

a member of the swarm that acts upon information in addition to what is provided by

local interactions. A covert leader is a leader that is treated no differently than others

in the swarm, so leaders and followers participate equally in whatever interaction model

is used [32]. We focus our efforts on the behaviors driven by the three-zone swarming

model and present a new nonlinear model in which leaders will respond more strongly

to additional information when the swarm is less dense. Similarly, leaders in dense

regions behave more like followers.
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In Chapter 2, we perform linear stability analysis on the model. The result is

the same as the leaderless model, which says that the growth or decay of perturbations

in an infinite, uniform swarm depends on the strength of attraction relative to repulsion

and orientation. It tells us that we could inject additional information into the system

without changing the stability criteria. We verify our analysis with simulation. We also

compare our model with more popular linear leadership models. The leaders in our

model are embedded in the swarms instead of accumulating into the front in contrast

to the linear model. We apply this model to wireless robotic applications, in which

densities are calculated utilizing positions of neighboring robots. The result on the

QualNet platform is consistent with our ideal simulation results.

In Chapter 3, we explore problems where two classes of covert leaders with

different information try to influence the same swarm. The swarms will choose the

average direction if the information differential is small. The swarms will randomly

choose a direction of the leaders’ if the information differential is large. We validate

our modeling and analysis using realistic wireless protocols and channel models on the

QualNet network simulator. We also perform two case studies which are simplified

forms of our model to find the bifurcation point analytically.

In Chapter 4, we try to solve the problem: whether or not it is possible to

distinguish between followers and leaders when we observe a group of individuals in

motion. We explore the interplay between swarm dynamics, covert leadership and

theoretical information transfer. Depending upon the leadership model, leaders can use

their external information either all the time or in response to local conditions [10, 37].

We use theoretical information transfer as a means of analyzing swarm interactions.

We find that covert leaders can be distinguished from followers in a swarm because

they receive less transfer entropy than followers.

Finally, in Chapter 5, we would like to find a method to detect who are the

leaders and who are the followers. Inspired by the PageRank method which is used by

Google to rank the importance of web pages, we apply a modified PageRank method

to the swarms. We test this method on the Couzin model so that we could control

xii



the weight of the external information that the leaders respond to. We find that the

method works well when the leaders respond to the external information relatively

strongly which means the weight of the external information that the leaders respond

to should be above O(10−2). To our nonlinear model, the weight is changing with time

and below O(10−2). This method can not detect the leaders in our model. From this

point of view, the leaders in our model really are covert.

xiii



Chapter 1

THREE-ZONE MODELS OF SWARMS WITH LEADERS

1.1 Collective Animal Behavior Background

Living in groups is a widespread phenomena in the world of animals, such as

schools of fish, flocks of birds and herds of sheep. Being a member of a group could

gain benefits in many ways [36]. Weimerskirch et al. [43] provide empirical evidence

showing that the great white pelicans trained to fly in ‘V’ formation save a significant

amount of energy measured through the heart rates, especially for the followers, which

enables the pelicans to increase their foraging or migratory range. Animals can also

conserve heat and water by huddling together, due to the reduced surface area and the

increased temperature or humidity of the surrounding air [16]. Access to information is

another key benefit of being near to others. The ocean skater could initiate avoidance

behavior before an approaching predator can be seen due to the interactions between

individuals, in the form of increased bodily encounters and/or visual stimulation by

adjacent individuals [38]. This type of information transfer is based on cues. Informa-

tion could also be transferred through other signals. For example, many species of ants

deposit pheromones when they return to the nest after finding a food souce. Other

ants will follow the trail and find the food when they encounter those trails [44].

Often when animals aggregate together, density patterns emerge. A large wilde-

beest herd, viewed from the above, migrates in a common direction of motion, and ex-

hibits a wavelike broad front [9]. Fish schools also come in many different shapes and

sizes: stationary swarms; predator avoiding vacuoles and flash expansions; hourglasses

and vortices; highly aligned cruising parabolas, herds, and balls [36]. The formation

of the group level pattern is said to be self-organized because it is not encoded in

1



the individual level rules [36]. Finding the simplest explanation for complex collective

phenomena becomes one of the principal aims of self-organization theory [9].

Mathematical modeling is a good way to solve the mystery of collective behavior.

Niwa presents a model that could predict group size distribution and the results hold for

various data from pelagic fishes and mammalian herbivores in the wild [24]. Later, he

shows another work describing the dynamics of groups of individuals on a constrained

lattice [25]. It extends the non-spatial model introduced in [24], but the limitation of

this work is that it does not describe how the interactions between individuals produce

the group dynamics. Self-propelled particle (SPP) models give a possible way to solve

such kinds of problem. The concept of SPP was first introduced in 1995 by Vicsek et

al [39], and has been used by many investigators [20, 4, 11, 14, 19, 31, 39, 42]. The

particles in the SPP model move in one-, two-, or three-dimensions. Each particle has

a local interaction zone within which it responds to other particles. The exact form of

the interactions varies between models, but in general, it contains attraction, and/or

alignment, and/or repulsion.

1.2 Introduction to Swarms with Leadership

This thesis mainly focuses on modeling and analyzing large swarms with lead-

ership. In natural systems, animals that forage or travel in groups, make movement

decisions that depend on social interactions among group members. However, in many

cases, a small number of individuals have pertinent information, such as knowledge

about the location of a food source or a migration route [10]. Here we just consider the

case that the information is transferred by local interactions or cues but not signals.

Then those individuals possessing the additional information will act as covert leaders.

A leader is an individual guided by additional information that ordinary individuals,

followers, do not possess. A covert leader is a leader who acts on additional informa-

tion but is treated like all the other individuals in the swarm [32]. More precisely,

all swarm influences must be functions of the sum of the covert leaders and followers

taken together because it is not possible to distinguish one from the other. There are
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represented by a velocity function. The dynamics of the swarm is described by a system

of coupled partial differential equations capturing necessary conservation principles and

the local interactions (i.e. behavior) between neighboring members of the swarm.

1.3 The Covert Leader Model

Animals do not need long-range information to coordinate group behavior, a

fact which is often stressed by proponents of self-organization theory. They also state

that localizing information input may provide significant adaptive benefits to an in-

dividual within a group, allowing sensitive response not only to predators but also to

environmental obstacles [9]. When developing our continuum model, we assume that

the individuals in a swarm make decisions based only on the positions and velocities of

nearby individuals rather than using information about every member of the swarm.

We use the same Gaussians kernels (and moments of Gaussians) used by Miller et. al.

that give the desired effects of repulsion, orientation, and attraction [20].

Hσ1 =
1

8πσ4
1

�x exp(−|�x|2
4σ2

1

) (repulsion) (1.1a)

Gσ2 =
1

4πσ2
2

exp(−|�x|2
4σ2

2

) (orientation) (1.1b)

Kσ3 = − 1

64πσ6
3

�x|�x|2 exp(−|�x|2
4σ2

3

) (attraction) (1.1c)

The parameters σ1, σ2, σ3 are the sizes of the zones. These zones will overlap be-

cause they are continuous with infinite support. However, they decay exponentially so

that there are distinct zones where one kernel dominates the interaction over the other

two. The kernels are normalized to preserve density or density gradients and therefore

make the swarming model self-consistent. Specifically, if we apply test functions,

φ(�x) =�a · �x+ b, (1.2a)

ψ(�x) =b, (1.2b)
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The desired velocity of the followers is made through local interactions (repul-

sion, orientation, attraction):

�vfd =Hσ1 ∗ (ρf + ρl) +
Gσ2 ∗ (ρf�vf + ρl�vl)

Gσ2 ∗ (ρf + ρl)
+ caKσ3 ∗ (ρf + ρl) (1.4c)

Where Hσ1 ∗ (ρf + ρl) represents repulsion,
Gσ2 ∗ (ρf�vf + ρl�vl)

Gσ2 ∗ (ρf + ρl)
represents orientation,

and Kσ3 ∗ (ρf + ρl) represents attraction.

Covert leaders respond to a combination of social cues, similar to leaderless

swarming, and a preferred velocity vector known to the covert leader but not the

followers. Gordon et al. showed that the contact rates increase when density was low

and decrease when density was high [13]. Here we present a new nonlinear model in

which a leader will respond more strongly to additional information when the swarm

is less dense, meaning there are fewer individuals with which to interact. Conversely,

leaders in denser regions behave more like followers. The relative importance of social

cues to the known preferred velocity depends exponentially on the local density. The

parameter ρ is a density over which the influence of the known velocity will decay by

a factor of 1/e. Decreasing ρ makes leaders more sensitive to density changes.

�vld =[1− e−
Gσ2∗(ρf+ρl)

ρ ][Hσ1 ∗ (ρf + ρl) +
Gσ2 ∗ (ρf�vf + ρl�vl)

Gσ2 ∗ (ρf + ρl)

+ caKσ3 ∗ (ρf + ρl)] + e−
Gσ2∗(ρf+ρl)

ρ �g (1.4d)

where �g represents the external information. Once the desired velocity has been deter-

mined, the velocity changes toward �vld and �vfd by a linear control process:

∂�vf
∂t

+(�vf · �)�vf = κ(�vfd − �vf ) (1.4e)

∂�vl
∂t

+(�vl · �)�vl = κ(�vld − �vl) (1.4f)

The meaning of the parameters or variables in the model are shown in Table 1.1.

Using this concise mathematical approach, one can search for stable structures

in large swarms and determine how they depend upon size and influence of each of

the zones. Earlier results [20] explain the emergence of specific axisymmetric and non-

axisymmetric structures in swarms without leaders. In addition, we could explain how

6



Table 1.1: Continuum Swarm Model Variables and parameters

t Time
�x Position

ρf (�x, t) Follower density
ρl(�x, t) Leader density
�vf (�x, t) Follower velocity
�vl(�x, t) Leader velocity
�vfd(�x, t) Followers’ desired direction
�vld(�x, t) Leaders’ desired direction

κ Turning/acceleration rate
ca Attraction/repulsion ratio

�g
Additional information (direction)

known only to leaders

smaller compact structures are preferred over larger structures given certain parameter

combinations.

These results also apply to traditional leadership models in which leaders’ be-

haviors are a linear combination of swarm interaction terms and additional information.

However, in these regimes, leaders are influenced by additional information independent

of nearby individuals. For the models we present here, since the response is slightly

nonlinear, new stability criteria and new structures emerge as a function of swarming

parameters. We will discuss the new stability criteria and new structure in Chapter 2.
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Chapter 2

LINEAR STABILITY OF THE MODEL

2.1 Linear stability analysis

The environment may affect the behavior of the swarm. Radakov used an arti-

ficial stimulus to frighten only a small part of a school of silverside fish. He observed

that the fish nearest to the stimulus change their directions away from the stimulus

immediately and then this behavior propagates to the whole group [30]. In this exper-

iment, the small disturbance has been amplified by the swarm. But we would like to

know whether the disturbance would damp out under special conditions.

We want to predict the group’s behavior without simulating all possible environ-

mental factors. Linear stability analysis gives us a way to analyze a dynamic system.

We firstly linearize the system around a steady state. And then we can examine the

response of the system to see whether the perturbation will damp out or be amplified.

This result will indicate the general behavior of the group.

For our system, an infinite swarm with uniform density moves in the direction

dictated by the leaders: �g = �v0 is an equilibrium solution. We want to understand

the effect of a small disturbance in the densities and velocities in our system. So we

linearize the equations, add plane waves which have terms proportional to ei(
�ξ�x−ωt) and

analyze the dispersion relation ω(�ξ). When the imaginary part of ω is positive, the

perturbation will grow, and when the imaginary part of ω is negative, the perturbation

will damp out. Our analysis is done in 2D.

2.1.1 Linearization

At steady state, all the agents regardless of whether they are leaders or followers

should have the same velocity. We use �v0 to represent the velocity of the swarm. This
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value should be equal to the external information denoted by �g. Then the desired

velocity of the leader �vld and the desired velocity of the follower �vfd should also be

equal to the current velocity so that the velocity of the individuals will not change.

Mathematically we could represent the relationship among the desired velocity, current

velocity and external information at steady state as follows:

�v0f = �v0l = �v0fd = �v0ld = �g = �v0

where �v0f and �v0l represent the current velocity of the leaders and the followers.

We use ρ0f to represent the density of the followers, and ρ0l to represent the

density of the leaders at steady state. At steady state, we assume that the swarms are

uniformly distributed and have the following density:

ρ0f + ρ0l = 1

We add a small perturbation to the density ρ0f , ρ
0
l and velocity �v0l , �v

0
f with O(ε), where

ε is a small number.

ρf = ρ0f + ερ1f + · · · ρl = ρ0l + ερ1l + · · ·
�vf = �v0f + ε�v1f + · · · �vl = �v0l + ε�v1l + · · ·
�vfd = �v0fd + ε�v1fd + · · · �vld = �v0ld + ε�v1ld + · · ·

9



Then we linearize the PDEs by expanding about ε and collecting terms of O(ε).

�v1fd =Hσ1 ∗ (ρ1f + ρ1l ) +Gσ2 ∗ (ρ0f�v1f + ρ0l�v
1
l ) + caKσ3 ∗ (ρ1f + ρ1l ) (2.1a)

�v1ld =(1− e−
1
ρ )(Hσ1 ∗ (ρ1f + ρ1l ) +Gσ2 ∗ (ρ0f�v1f + ρ0l�v

1
l )

+ caKσ3 ∗ (ρ1f + ρ1l )) (2.1b)

∂�v1f
∂t

+(�v0 · �)�v1f = κ(�v1fd − �v1f ) (2.1c)

∂�v1l
∂t

+(�v0 · �)�v1l = κ(�v1ld − �v1l ) (2.1d)

∂ρ1f
∂t

+� ρ1f · �v0 + ρ0f (� · �v1f ) = 0 (2.1e)

∂ρ1l
∂t

+� ρ1l · �v0 + ρ0l (� · �v1l ) = 0 (2.1f)

The first four equations can be reduced to two by plugging in the expressions

for �v1fd and �v1ld given by (2.1a) and (2.1b) into (2.1c) and (2.1d),

∂�v1f
∂t

+ (�v0 · �)�v1f =κ(Hσ1 ∗ (ρ1f + ρ1l ) +Gσ2 ∗ (ρ0f�v1f + ρ0l�v
1
l )

+ caKσ3 ∗ (ρ1f + ρ1l )− �v1f ) (2.2a)

∂�v1l
∂t

+ (�v0 · �)�v1l =κ((1− e−
1
ρ )(Hσ1 ∗ (ρ1f + ρ1l ) +Gσ2 ∗ (ρ0f�v1f + ρ0l�v

1
l )

+ caKσ3 ∗ (ρ1f + ρ1l ))− �v1l ) (2.2b)

∂ρ1f
∂t

+�ρ1f · �v0+ρ0f (� · �v1f ) = 0 (2.2c)

∂ρ1l
∂t

+�ρ1l · �v0+ρ0l (� · �v1l ) = 0 (2.2d)

Our analysis of the plane waves will take place in Fourier space.

f̂(ξ) =

∫ ∞

−∞
f(x)eiξ·xdx
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The transformed equations for (2.2) are:

(v̂1f )t − i(�v0 · ξ)v̂1f =κ((Ĥσ1 + caK̂σ3)(ρ̂
1
f + ρ̂1l ) + Ĝσ2(ρ

0
f v̂

1
f + ρ0l v̂

1
l )− v̂1l ) (2.3a)

(v̂1l )t − i(�v0 · ξ)v̂1l =κ((1− e−
1
ρ )((Ĥσ1 + caK̂σ3)(ρ̂

1
f + ρ̂1l ) + Ĝσ2(ρ

0
f v̂

1
f + ρ0l v̂

1
l ))− v̂1l )

(2.3b)

∂ρ̂1f
∂t

− iρ̂1f (ξ · �v0)− iρ0f (ξ · v̂1f ) = 0 (2.3c)

∂ρ̂1l
∂t

− iρ̂1l (ξ · �v0)− iρ0l (ξ · v̂1l ) = 0 (2.3d)

The transformed kernels are:

Ĥσ1 = i�ξ exp(−σ2
1|�ξ|2) (2.4a)

Ĝσ2 = exp(−σ2
2|�ξ|2) (2.4b)

K̂σ3 =
1

2
i(−2 + σ2

3|�ξ|2)�ξ exp(−σ2
3|�ξ|2) (2.4c)

We substitute plane waves (or their Fourier transforms) into the linearized equations.

ρ1f = Aei(xξ0−ωt) ρ̂1f = 4πAδ(ξ − ξ0)e
−iωt

ρ1l = Bei(xξ0−ωt) ρ̂1l = 4πBδ(ξ − ξ0)e
−iωt

�v1f = �Cei(xξ0−ωt) v̂1f = 4π �Cδ(ξ − ξ0)e
−iωt

�v1l = �Dei(xξ0−ωt) v̂1l = 4π �Dδ(ξ − ξ0)e
−iωt

Since the velocities are vector-valued, the coefficients C and D are vectors.

�C =

⎡⎣ C1

C2

⎤⎦

�D =

⎡⎣ D1

D2

⎤⎦
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Simplifying,

Aω + A(�ξ0 · �v0)+ρ0f (�ξ0 · �C) = 0 (2.5a)

Bω +B(�ξ0 · �v0)+ρ0l (�ξ0 · �D) = 0 (2.5b)

− �Ciω − �Ci(�ξ0 · �v0) = κ((Ĥσ1 + caK̂σ3)(A+B) + Ĝσ2( �Cρ
0
f + �Dρ0l )− �C) (2.5c)

− �Diω − �Di(�ξ0 · �v0) = κ((1− e−
1
ρ )((Ĥσ1 + caK̂σ3)(A+B) + Ĝσ2( �Cρ

0
f + �Dρ0l ))− �D)

(2.5d)

Separating (2.5c) and (2.5d) each into two equations and breaking the vectors into

components, Ĥσ1 and K̂σ3 are both vector quantities represented by

Ĥσ1 =

⎛⎝ Ĥ1

Ĥ2

⎞⎠ K̂σ3 =

⎛⎝ K̂1

K̂2

⎞⎠

and

ξ̂0 =

⎛⎝ ξ1

ξ2

⎞⎠ v̂0 =

⎛⎝ v1

v2

⎞⎠
Now we have a set of 6 equations and 6 unknowns (A,B,C1, C2, D1, D2). For

this system, we could write it into a matrix form.

A(ω + �ξ0 · �v0) + C1(ρ
0
fξ1) + C2(ρ

0
fξ2) = 0 (2.6a)

B(ω + �ξ0 · �v0) +D1(ρ
0
l ξ1) +D2(ρ

0
l ξ2) = 0 (2.6b)

A(κ(Ĥ1 + caK̂1)) + B(κ(Ĥ1 + caK̂1))+

C1(iω + i(�ξ0 · �v0)− κ+ κρ0fĜσ2) +D1(κρ
0
l Ĝσ2) = 0 (2.6c)

A(κ(Ĥ2 + caK̂2)) + B(κ(Ĥ2 + caK̂2))+

C2(iω + i(�ξ0 · �v0)− κ+ κρ0fĜσ2) +D2(κρ
0
l Ĝσ2) = 0 (2.6d)

Aκ((1− e−
1
ρ )(Ĥ1 + caK̂1)) + Bκ((1− e−

1
ρ )(Ĥ1 + caK̂1))+

C1(1− e−
1
ρ )κρ0fĜσ2 +D1(iω + i(�ξ0 · �v0)− κ+ (1− e−

1
ρ )κρ0l Ĝσ2) = 0 (2.6e)

Aκ((1− e−
1
ρ )(Ĥ2 + caK̂2)) + Bκ((1− e−

1
ρ )(Ĥ2 + caK̂2))+

C2(1− e−
1
ρ )κρ0fĜσ2 +D2(iω + i(�ξ0 · �v0)− κ+ (1− e−

1
ρ )κρ0l Ĝσ2) = 0 (2.6f)
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M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A

B

C1

C2

D1

D2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

The matrix M is:

M =
(
M1 M2 M3

)
where

M1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω + �ξ0 · �v0 0

0 ω + �ξ0 · �v0
κ(Ĥ1 + caK̂1) κ(Ĥ1 + caK̂1)

κ(Ĥ2 + caK̂2) κ(Ĥ2 + caK̂2)

κ(1− e−
1
ρ )(Ĥ1 + caK̂1) κ(1− e−

1
ρ )(Ĥ1 + caK̂1)

κ(1− e−
1
ρ )(Ĥ2 + caK̂2) κ(1− e−

1
ρ )(Ĥ2 + caK̂2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
6×2

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ0fξ1 ρ0fξ2

0 0

iω+i(�ξ0·�v0)
−κ+κρ0f

ˆGσ2

0

0
iω+i(�ξ0·�v0)
−κ+κρ0f

ˆGσ2

(1− e−
1
ρ )κρ0fĜσ2 0

0 (1− e−
1
ρ )κρ0fĜσ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
6×2
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M3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

ρ0l ξ1 ρ0l ξ2

κρ0l Ĝσ2 0

0 κρ0l Ĝσ2

iω+i(�ξ0·�v0)−κ

+(1−e
− 1

ρ )κρ0l
ˆGσ2

0

0
iω+i(�ξ0·�v0)−κ

+(1−e
− 1

ρ )κρ0l
ˆGσ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
6×2

2.1.2 Analysis

Our goal is to analyze the dispersion coefficient ω(ξ). We want to determine

if its imaginary part is positive or negative. A negative imaginary part would imply

stability. A positive imaginary part would indicate that the perturbation grows, hence

unstable. For example:

e−iωt = e−i(a+bi)t = e−iatebt︸ ︷︷ ︸
grows with time if b > 0

If we want the plane waves to be non-trivial, A,B,C1, C2, D1, D2 should not be

all zero. So we are looking for non-trivial solutions to the system, i.e. solutions in

the nullspace of this matrix M . We set the determinant of M to be zero (non-zero

determinant would imply no non-trivial solutions). The determinant of M is:

det(M) =

e−
2
ρ (ω + �ξ0 · �v0)(κ− i(ω + �ξ0 · �v0))2(−Ĝσ2ρ

0
l κ+ e

1
ρ (κ(−1 + Ĝσ2) + i(ω + �ξ0 · �v0)))

(e
1
ρ (−Ĥ1κξ1 − Ĥ2κξ2 − caκ(K̂1ξ1 + K̂2ξ2)− κξ1v1 + Ĝσ2κξ1v1 − κξ2v2 + iξ21v

2
1

+ Ĝσ2κξ2v2 + 2iξ1ξ2v1v2 + iξ22v
2
2 − κω + Ĝσ2κω + 2iξ1v1ω + 2iξ2v2ω + iω2)

+ κρ0l ((Ĥ1 + caK̂1)ξ1 + (Ĥ2 + caK̂2)ξ2 − Ĝσ2ξ1v1 − Ĝσ2ξ2v2 − Ĝσ2ω)) (2.7)

At least one of these factors must be equal to zero.

Setting the first factor of (2.7) to be zero, then we could get:

ω = −�ξ0 · �v0
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The imaginary part of ω is equal to zero, so the disturbance neither decays nor grows.

Seting the second factor of (2.7) equal to zero,

ω = −�ξ0 · �v0 − iκ,

the imaginary part is always less than zero, so it’s always stable.

The third factor of (2.7) gives us:

−Ĝσ2ρ
0
l κ+ e

1
ρ (κ(−1 + Ĝσ2) + i(ω + �ξ0 · �v0)) = 0,

which means:

ω = −�ξ0 · �v0 − iκ(1− Ĝσ2 + Ĝσ2e
− 1

ρρ0l ))

Recall that Ĝσ2 = e−σ2
2 |�ξ|2(2.4b), therefore

0 ≤ Ĝσ2 ≤ 1 (2.8)

When the imaginary part of ω is less than 0, the swarm will be stable. i.e.

−(1 + Ĝσ2(−1 + ρ0l e
− 1

ρ )) < 0

which means

ρ0l > e
1
ρ (1− 1

Ĝσ2

), (2.9)

With the help of (2.8), the right hand side of (2.9) is always less than 0. We know

that the density of the followers ρ0l is always greater than zero. So the inequality (2.9)

always holds. That means the system is always stable.

Seting the fourth term of (2.7) to be zero:

e
1
ρ (−Ĥ1κξ1 − Ĥ2κξ2 − caκ(K̂1ξ1 + K̂2ξ2)− κξ1v1 + Ĝσ2κξ1v1 − κξ2v2 + iξ21v

2
1

+ Ĝσ2κξ2v2 + 2iξ1ξ2v1v2 + iξ22v
2
2 − κω + Ĝσ2κω + 2iξ1v1ω + 2iξ2v2ω + iω2)+

κρ0l ((Ĥ1 + caK̂1)ξ1 + (Ĥ2 + caK̂2)ξ2 − Ĝσ2ξ1v1 − Ĝσ2ξ2v2 − Ĝσ2ω) = 0 (2.10)
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Using the quadratic formula, we could get the roots of (2.10):

ω =− (�ξ0 · �v0)−
1

2
iκ(1 + Ĝσ2(−1 + ρ0l e

− 1
ρ ))±

ie−
1
ρ

√
k

2

√√√√√ κĜσ2

2
(ρ0l )

2 + e
2
ρ ((−1 + Ĝσ2)

2κ+ 4i((Ĥ1 + caK̂1)ξ1 + (Ĥ2 + caK̂2)ξ2))

−2e
1
ρρ0l (−Ĝσ2κ+ Ĝσ2

2
κ+ i2((Ĥ1 + caK̂1)ξ1 + (Ĥ2 + caK̂2)ξ2))

(2.11)

Substituting the values of Ĥσ1 , K̂σ3 and Ĝσ2 into (2.11), then

(Ĥ1 + caK̂1)ξ1 + (Ĥ2 + caK̂2)ξ2 = i|�ξ0|2[e−σ2
1 |�ξ0|2 + ca

1

2
(−2 + σ2

3|�ξ0|2)e−σ2
3 |�ξ0|2 ]

Ĝσ2 = e−σ2
2 |�ξ0|2

So

ω = −(�ξ0 · �v0)−
1

2
iκ(1 + e−σ2

2 |�ξ0|2(−1 + e−
1
ρρ0l ))±

ie−
1
ρ

√
k

2

√√√√√√√√
κe−2σ2

2 |�ξ0|2(ρ0l )
2 + e

2
ρ ((−1 + e−σ2

2 |�ξ0|2)2κ− 4|�ξ0|2[e−σ2
1 |�ξ0|2

+ca
1
2
(−2 + σ2

3|�ξ0|2)e−σ2
3 |�ξ0|2 ])− 2e

1
ρρ0l (e

−2σ2
2 |�ξ0|2κ− 2|�ξ0|2[e−σ2

1 |�ξ0|2

+ca
1
2
(−2 + σ2

3|�ξ0|2)e−σ2
3 |�ξ0|2 ]− e−σ2

2 |�ξ0|2κ)

If the imaginary part of ω is positive then the system will be unstable. If the value

under the square root is negative, then the imaginary part of ω is negative. So here we

just consider the value under the square root is positive. When the follow inequality

holds, the system will be unstable.

− 1

2
κ(1 + e−σ2

2 |�ξ0|2(−1 + e−
1
ρρ0l ))±

e−
1
ρ

√
k

2

√√√√√√√√
κe−2σ2

2 |�ξ0|2(ρ0l )
2 + e

2
ρ ((−1 + e−σ2

2 |�ξ0|2)2κ− 4|�ξ0|2[e−σ2
1 |�ξ0|2

+ca
1
2
(−2 + σ2

3|�ξ0|2)e−σ2
3 |�ξ0|2 ])− 2e

1
ρρ0l (e

−2σ2
2 |�ξ0|2κ− 2|�ξ0|2[e−σ2

1 |�ξ0|2

+ca
1
2
(−2 + σ2

3|�ξ0|2)e−σ2
3 |�ξ0|2 ]− e−σ2

2 |�ξ0|2κ)

> 0 (2.12)
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For the ‘-’ choice of ‘±’ in (2.12), the left hand side of (2.12) is always less than 0,

which means it is always stable. So we explore the alternative ’+’ choice,

− 1

2
κ(1 + e−σ2

2 |�ξ0|2(−1 + e−
1
ρρl))+

e−
1
ρ

√
k

2

√√√√√√√√
κe−2σ2

2 |�ξ0|2(ρ0l )
2 + e

2
ρ ((−1 + e−σ2

2 |�ξ0|2)2κ− 4|�ξ0|2[e−σ2
1 |�ξ0|2

+ca
1
2
(−2 + σ2

3|�ξ0|2)e−σ2
3 |�ξ0|2 ])− 2e

1
ρρ0l (e

−2σ2
2 |�ξ0|2κ− 2|�ξ0|2[e−σ2

1 |�ξ0|2

+ca
1
2
(−2 + σ2

3|�ξ0|2)e−σ2
3 |�ξ0|2 ]− e−σ2

2 |�ξ0|2κ)

> 0

Simplifying the inequality, we get

4κe
1
ρ |�ξ0|2[e−σ2

1 |�ξ0|2 + ca
1

2
(−2 + σ2

3|�ξ0|2)e−σ2
3 |�ξ0|2 ](e

1
ρ − ρ0l ) < 0 (2.13)

Since e
1
ρ > 1, e

1
ρ − ρ0l > 0. The only concern in (2.13) is:

e−σ2
1 |�ξ0|2 + ca

1

2
(−2 + σ2

3|�ξ0|2)e−σ2
3 |�ξ0|2 < 0

This is the same inequality as for the leaderless swarm model mentioned in [20]. The

results in [20] tell us that disturbances to the uniform state will die out if 0 < ca ≤ 1,

and if ca > 1, infinite swarms are unstable to small wavenumber disturbances.

2.1.3 Conclusion

Our analysis shows that the stability properties are the same as for leaderless

swarms. The stability properties depend on the relative strength of the attraction com-

pared with the repulsion and the orientation. If 0 < ca ≤ 1, a plane wave perturbation

with any wavenumber will not grow. If ca > 1, plane wave perturbation with small

wave numbers will grow exponentially. Conversely, plane wave perturbation with large

wave numbers will damp out.

2.2 Verification

We would like to verify our analysis result through simulation. We discretize

the continuous model into N individuals interacting with one another. The discretized
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method which systematically transforms convolutions into summations can be found in

[20]. The resulting discretized desired velocity for each individual can be represented

by the following equations:

�vfd,i =
N∑
j=1

Hσ1(�xi − �xj) +

∑N
j=1Gσ2(�xi − �xj)�v(�xj)∑N

j=1Gσ2(�xi − �xj)
+ ca

N∑
j=1

Kσ3(�xi − �xj) (2.14a)

�vld,i =(1− exp(−
∑N

j=1Gσ2(�xi − �xj)

ρ
))(

N∑
j=1

Hσ1(�xi − �xj) +

∑N
j=1Gσ2(�xi − �xj)�v(�xj)∑N

j=1Gσ2(�xi − �xj)

+ ca

N∑
j=1

Kσ3(�xi − �xj)) + exp(−
∑N

j=1Gσ2(�xi − �xj)

ρ
)�gi (2.14b)

Once the desired velocity has been computed, the velocity for each individual could be

updated.

All calculations were performed using both ideal interactions and the QualNet

simulator with realistic wireless communication, and results from both were found to

be in reasonable agreement, see Figs 2.1(c) and 2.2. The value of the parameters we

used could be found in Table 2.1.

Table 2.1: Parameter values

σ1 3/4
σ2 9/4
σ3 15/4
ρ 24/81π
ca 10
κ 1

To validate our analysis, we performed a series of computational experiments.

We choose ca = 10 in which case a constant density swarm will be unstable. Without

leaders, an initially disordered swarm will collapse into an axisymmetric attractor with

non-constant density moving in a single direction [21]. The final direction of propa-

gation depends upon the initial conditions. One can control the direction of motion

by adding some covert leaders which have a preference for a specific direction �g. One
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transmission scheme, where the notion of time is divided into periods of “steps.” Each

step is further divided into multiple constant time slots, which are assigned to nodes

within a swarm. Therefore, nodes are only allowed to broadcast their position and

velocity information to their neighbors on the assigned time slots. At the end of each

step, nodes update their velocities based on information received during the step. The

QualNet simulations use the default IEEE 802.11b Physical Layer protocol parameters

for wireless communications and the Two-Ray path-loss model without fading.

2.3 Conclusion

Our analysis shows that the stability properties of our model are the same as

for leaderless swarms, and it is consistent with our simulation results both with ideal

communication and simulations with realistic wireless protocols using QualNet. This

indicates that it is possible to inject additional information into a swarm without alter-

ing its dynamical properties including the swarm’s stable configurations. Furthermore,

the nonlinear leadership model allows leaders to embed themselves in the swarm rather

than aggregating in the front.
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Chapter 3

COLLECTIVE DECISIONS

Informed individuals within a group may differ in their preferred direction due to

differences in experience or motivation. Groups of animals often have to make collective

decisions. They may need to move together to a specific resource, for example, a nest

site or food source [10]. We consider a scenario where there are two groups of leaders

possessing different external information, say �g1, �g2. For simplicity, we assume that

there are equal numbers of each type of leader in the swarm, and that �g2, is the reflection

of �g1 about the x-axis. In other words, arg(�g1 + �g2) = 0. We define the information

differential, a measurement of the difference between the two groups of leaders, to be

Δθ = arg(�g1 − �g2). (3.1)

We explore whether swarms arrive at consensus or splinter, even though informed

individuals do not explicitly know whether there are any other informed individuals.

3.1 Experiments

To understand the motion of the group, we define the average velocity of the

group to be

�v =
1

N

N∑
j=1

�vj, (3.2)

where N is the total number of individuals and �vi is the velocity of the ith individual.

We can define the direction of the group to be θ = arg(�v). In our experiments, we

vary the information differential Δθ from 0 to π. Other parameter values such as

zone size are as listed in Table 2.1. For each value Δθ between 0 and π in 10 even

increments, we conducted 50 experiments and measured the group direction after the
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Figure 3.9: two individuals with different type of external information

equal to 0, i.e the desired velocity is equal to the current velocity. From (1.4d), we

know that

�vld =(1− e−
Gσ2∗(ρf+ρl)

ρ )(Hσ1 ∗ (ρf + ρl) +
Gσ2 ∗ (ρf�vf + ρl�vl)

Gσ2 ∗ (ρf + ρl)

+ caKσ3 ∗ (ρf + ρl)) + e−
Gσ2∗(ρf+ρl)

ρ �g

So for leader 1, which is below the x-axis, containing external information �g1, the

velocity could be expressed as follows:

�vld1 =(1− e−
Gσ2∗(ρf+ρl)

ρ )(Hσ1 ∗ (ρf + ρl) +
Gσ2 ∗ (ρf�vf + ρl�vl)

Gσ2 ∗ (ρf + ρl)

+ caKσ3 ∗ (ρf + ρl)) + e−
Gσ2∗(ρf+ρl)

ρ �g1 (3.3)

Suppose the velocity for both individuals at steady state is �v0, then

�vld1 = �vf = �vl = �v0.
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Plug it into (3.3), then we get:

�v0 =(1− e−
Gσ2∗(ρf+ρl)

ρ )(Hσ1 ∗ (ρf + ρl) +
Gσ2 ∗ (ρf�v0 + ρl�v0)

Gσ2 ∗ (ρf + ρl)
+ caKσ3 ∗ (ρf + ρl))

+ e−
Gσ2∗(ρf+ρl)

ρ �g1

=(1− e−
Gσ2∗(ρf+ρl)

ρ )(Hσ1 ∗ (ρf + ρl) + �v0 + caKσ3 ∗ (ρf + ρl)) + e−
Gσ2∗(ρf+ρl)

ρ �g1

=(1− e−
Gσ2∗(ρf+ρl)

ρ )(Hσ1 ∗ (ρf + ρl) + caKσ3 ∗ (ρf + ρl)) + e−
Gσ2∗(ρf+ρl)

ρ �g1

+ (1− e−
Gσ2∗(ρf+ρl)

ρ )�v0

⇒ (1− 1 + e−
Gσ2∗(ρf+ρl)

ρ )�v0 =(1− e−
Gσ2∗(ρf+ρl)

ρ )(Hσ1 ∗ (ρf + ρl) + caKσ3 ∗ (ρf + ρl))

+ e−
Gσ2∗(ρf+ρl)

ρ �g1

⇒ e−
Gσ2∗(ρf+ρl)

ρ (�v0 − �g1) =(1− e−
Gσ2∗(ρf+ρl)

ρ )(Hσ1 ∗ (ρf + ρl) + caKσ3 ∗ (ρf + ρl))

⇒ �v0 − �g1 =(e
Gσ2∗(ρf+ρl)

ρ − 1)(Hσ1 ∗ (ρf + ρl) + caKσ3 ∗ (ρf + ρl))

Finally we get:

�g1 = �v0−(e
Gσ2∗(ρf+ρl)

ρ − 1)(Hσ1 ∗ (ρf + ρl) + caKσ3 ∗ (ρf + ρl)) (3.4)

Similarly, for leader 2, which is above the x-axis, containing external information �g2,

we get:

�g2 = �v0−(e
Gσ2∗(ρf+ρl)

ρ − 1)(Hσ1 ∗ (ρf + ρl) + caKσ3 ∗ (ρf + ρl)) (3.5)

The right hand side of (3.4) and (3.5) are exactly the same, but we need to note that

the leaders’ positions are different, i.e in the convolution or the integration∫
H(x− y)ρ(y)dy

∫
K(x− y)ρ(y)dy
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x are different. So the equations (3.4) and (3.5) could hold together. The discretized

form for the leaders’ desired velocity could be represented as:

�vld,i =(1− exp(−
∑N

j=1Gσ2(�xi − �xj)

ρ
))(

N∑
j=1

Hσ1(�xi − �xj) +

∑N
j=1Gσ2(�xi − �xj)�v(�xj)∑N

j=1Gσ2(�xi − �xj)

+ ca

N∑
j=1

Kσ3(�xi − �xj)) + exp(−
∑N

j=1Gσ2(�xi − �xj)

ρ
)�gi

If there is a stationary configuration, then for leader 1, i.e i = 1, N = 2:

�v0 =(1− exp(−
∑N

j=1Gσ2(�xi − �xj)

ρ
))(

N∑
j=1

Hσ1(�xi − �xj)

�v0 + ca

N∑
j=1

Kσ3(�xi − �xj)) + exp(−
∑N

j=1Gσ2(�xi − �xj)

ρ
)�g1

=(1− exp(−
∑N

j=1Gσ2(�xi − �xj)

ρ
))(

N∑
j=1

Hσ1(�xi − �xj) + ca

N∑
j=1

Kσ3(�xi − �xj))

+ (1− exp(−Gσ2(�x1 − �x1) +Gσ2(�x1 − �x2)

ρ
))�v0 + exp(−

∑N
j=1Gσ2(�xi − �xj)

ρ
)�g1

⇒

(1− 1 + exp(−
∑N

j=1Gσ2(�xi − �xj)

ρ
))�v0

=(1− exp(−
∑N

j=1Gσ2(�xi − �xj)

ρ
))(

N∑
j=1

Hσ1(�xi − �xj) + ca

N∑
j=1

Kσ3(�xi − �xj))

+ exp(−
∑N

j=1Gσ2(�xi − �xj)

ρ
)�g1

⇒

exp(−
∑N

j=1Gσ2(�xi − �xj)

ρ
)(�v0 − �g1)

=(1− exp(−
∑N

j=1Gσ2(�xi − �xj)

ρ
))(

N∑
j=1

Hσ1(�xi − �xj) + ca

N∑
j=1

Kσ3(�xi − �xj))

⇒

�v0 − �g1 = (exp(

∑N
j=1Gσ2(�xi − �xj)

ρ
)− 1)(

N∑
j=1

Hσ1(�xi − �xj) + ca

N∑
j=1

Kσ3(�xi − �xj))
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Finally, we get:

�g1 =�v0 − (exp(

∑N
j=1Gσ2(�xi − �xj)

ρ
)− 1)(

N∑
j=1

Hσ1(�xi − �xj) + ca

N∑
j=1

Kσ3(�xi − �xj))

=�v0 − (exp(
Gσ2(�x1 − �x1) +Gσ2(�x1 − �x2)

ρ
)− 1)

× (Hσ1(�x1 − �x1) +Hσ1(�x1 − �x2) + ca(Kσ3(�x1 − �x1) +Kσ3(�x1 − �x2)))

H and K are odd functions, so Hσ1(�x1 − �x1) = Kσ3(�x1 − �x1) = 0. So we get:

�g1 =�v0 − (exp(
Gσ2(�x1 − �x1) +Gσ2(�x1 − �x2)

ρ
)− 1)(Hσ1(�x1 − �x2) + caKσ3(�x1 − �x2))

(3.6)

Similarly, for �g2, we get:

�g2 =�v0 − (exp(
Gσ2(�x2 − �x1) +Gσ2(�x2 − �x2)

ρ
)− 1)(Hσ1(�x2 − �x1) + caKσ3(�x2 − �x1))

(3.7)

We could find that (3.6) and (3.7) is the discretized form of (3.4) and (3.5).

Now we take a further look into the discretized model. Remember, the functions

of H, G, K are in the following form:

Hσ1 =
1

8πσ4
1

�x exp(−|�x|2
4σ2

1

) (repulsion)

Gσ2 =
1

4πσ2
2

exp(−|�x|2
4σ2

2

) (orientation)

Kσ3 = − 1

64πσ6
3

�x|�x|2 exp(−|�x|2
4σ2

3

) (attraction)

H and K are odd functions, and G is an even function, so

Hσ1(�x1 − �x2) = −Hσ1(�x2 − �x1) (3.8a)

Kσ3(�x1 − �x2) = −Kσ3(�x2 − �x1) (3.8b)

Gσ2(�x1 − �x2) = Gσ2(�x2 − �x1) (3.8c)

Gσ2(�x1 − �x1) = Gσ2(�x2 − �x2) (3.8d)
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From (3.6) and (3.7), using the relationship (3.8), we could get:

�g1 − �g2 = −2(exp(
Gσ2(�x1 − �x1) +Gσ2(�x1 − �x2)

ρ
)− 1)(Hσ1(�x1 − �x2) + caKσ3(�x1 − �x2))

(3.9)

If the initial positions of the two individuals are symmetric with respect to the x-

axis, and the external information is also symmetric with respect to the x-axis, then the

interactions between these two individuals could be described by Figure 3.10. We could

suppose that the stable configuration should satisfy the following three conditions:

1. The direction of the velocity should be horizontal.

2. x1 = x2.

3. y1 = −y2.

where �x1 = (x1, y1), �x2 = (x2, y2), �g1 = (g1,x, g1,y), and �g2 = (g2,x, g2,y).

Figure 3.10: The relationship between local interactions and external information at
steady state.
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We combine (3.9) with the three conditions that the stationary configuration

should meet, we get the following equations:

g1,x − g2,x =− 2(exp(

1
4πσ2

2
exp(− (x1−x1)2+(y1−y1)2

4σ2
2

) + 1
4πσ2

2
exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

ρ
)− 1)

× (
1

8πσ4
1

(x1 − x2) exp(−
(x1 − x2)

2 + (y1 − y2)
2

4σ2
1

)

− ca
1

64πσ6
3

(x1 − x2)((x1 − x2)
2 + (y1 − y2)

2) exp(−(x1 − x2)
2 + (y1 − y2)

2

4σ2
3

))

= 0 (Since x1 = x2) (3.10)

g1,y − g2,y =− 2(exp(

1
4πσ2

2
exp(− (x1−x1)2+(y1−y1)2

4σ2
2

) + 1
4πσ2

2
exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

ρ
)− 1)

× (
1

8πσ4
1

(y1 − y2) exp(−
(x1 − x2)

2 + (y1 − y2)
2

4σ2
1

)

− ca
1

64πσ6
3

(y1 − y2)((x1 − x2)
2 + (y1 − y2)

2) exp(−(x1 − x2)
2 + (y1 − y2)

2

4σ2
3

))

=− 2(exp(

1
4πσ2

2
+ 1

4πσ2
2
exp(− y21

σ2
2
)

ρ
)− 1)

× (
1

8πσ4
1

2y1 exp(−
y21
σ2
1

)− ca
1

64πσ6
3

2y1(4y
2
1) exp(−

y21
σ2
3

))

=− (exp(

1
4πσ2

2
+ 1

4πσ2
2
exp(− y21

σ2
2
)

ρ
)− 1)

× (
1

2πσ4
1

y1 exp(−
y21
σ2
1

)− ca
1

4πσ6
3

y31 exp(−
y21
σ2
3

)) (3.11)

Equation (3.10) holds naturally, since external information are symmetric with respect

to x-axis, meaning that they have the same x coordinate. So we only need to solve

(3.11).

We aim to look for a numerical solution for (3.11). Remember, the value of the

parameters in equation (3.11) are listed in Table 3.1:

We want to solve for y1 which is the y-coordinate of the first individual that is

below the x-axis. That means we want to find a negative solution. The left hand side of

(3.11) (we will call the function on the left hand side as fleft) represents the difference
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Table 3.1: Parameter values

σ1
3
4

σ2
9
4

σ3
15
4

ρ 6
4π(9/4)2

ca 10

between the two types of external information. �g1 is the external information given to

leader 1, which has a negative y-direction. In reverse, �g2 has a positive y-direction. So

fleft is also negative. In order to make this equation hold true, the value of the right

hand side of (3.11) (we will call the function on the right hand side as fright) should

be negative.

One way to solve the equation (3.11) is to find the intersections of the two

graphs: the graph of fleft, which is a horizontal line, and the graph of fright, which is

a function of y1. The solution of equation (3.11) is the x-coordinate of the intersection

where y1 and fright are both negative. We plot a graph for fright by plugging the

parameters’ value into fright.

�10 �8 �6 �4 �2
y_1

�0.001

0.001

0.002

0.003

f_right

�2.0 �1.5 �1.0 �0.5
y_1

0.01

0.02

0.03

0.04

0.05

0.06

f_right

Figure 3.11: Graph of fright in (−10, 0). Details of the graph of fright in (−2, 0) are
shown on the right

If we want to find the solution of (3.11), or we want to find at least one intersec-

tion in the third quadrant, the graph of fleft should not be below the local minimum
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of fright. Using the function FindMinimum in Mathematica, we found the local min-

imum is (−4.46588,−0.00114294). That means the maximum difference between the

external information’s y-coordinate is 0.00114294. In our experiment, we suppose that

the external information has unit length, so if a stationary configuration exists, the

information differential is less than

2 arcsin
0.00114294

2
= 0.00114294

So the angle between the external information and the x-axis should be in the interval

(−0.000571469, 0.000571469)

From the result above, we find that the swarm is sensitive to the external infor-

mation. We aim to find the reason. We calculate the weight for external information

and the weight for local interaction respectively. The coefficient before the external

information for individual 1 is

exp(−
∑N

j=1Gσ2(�xi − �xj)

ρ
) = exp(−

1
4πσ2

2
+ 1

4πσ2
2
exp(− y21

σ2
2
)

ρ
)

For y1 in (−10, 0), we could plot its graph as follows:

�10 �8 �6 �4 �2
y_1

0.74

0.76

0.78

0.80

0.82

0.84

weight_g

Figure 3.12: Weight for external information when y1 is in (-10,0)

We find that the weight is in the range of (0.71, 0.85). The coefficient before the

local interaction for individual 1 is:

1− exp(−
∑N

j=1Gσ2(�xi − �xj)

ρ
) = 1− exp(−

1
4πσ2

2
+ 1

4πσ2
2
exp(− y21

σ2
2
)

ρ
)
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The weight is in the range of (0.15, 0.29). From the results, we know that the weight

of the local interaction is less than the weight of the external information. But the

difference is not that much large. So next, we check the value of the local interaction

and compare it with the external information. At the stationary configuration, both

of the individuals have the same x-coordinate, so the interaction in the x-direction is

equal to 0. Since the y-component of the velocity is equal to 0, the interaction in the

y direction for individual 1 can be expressed as follows:

N∑
j=1

Hσ1(yi − yj) + ca

N∑
j=1

Kσ3(yi − yj) =
1

2πσ4
1

y1 exp(−
y21
σ2
1

)− ca
1

4πσ6
3

y31 exp(−
y21
σ2
3

)

Plot the graph when y1 is in (−10, 0):

�10 �8 �6 �4 �2
y_1

�0.015

�0.010

�0.005

0.005

local_interaction

�2.0 �1.5 �1.0 �0.5
y_1

�0.15

�0.10

�0.05

local_interaction

Figure 3.13: Interaction for individual 1 when y1 is in (-10,0). Detailed plot of inter-

action for individual 1 when y1 is in (-2,0) is shown on the right.

The interaction is in the range of (−0.15, 0.006), which is really small compared

to a unit vector, the external information in our experiments. So the swarm is sensitive

to the external information.

In order to verify our analysis, we choose a pair of the external information in

the range where the stationary configuration exists. If we assume the x-coordinate of

the stationary position is 0, then we could solve (3.11) to get the corresponding y-

coordinate. For example, the stationary position is �x1 = (0,−3) and �x2 = (0, 3), with

respect to the external information arg(�g1) = −0.00043816 and arg(�g2) = 0.00043816.

From (3.6) and (3.7), we could get the velocity is equal to
�g1 + �g2

2
≈ (1, 0).
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But since the system is so sensitive to the external information, a little difference

of the external information will make a huge change of the stationary configuration.

Due to the error of the computer, if we choose the external information as above, the

simulation can not get the stationary configuration as we assume. In this experiment,

we set the external information as arg(�g1) = −0.00043816 that means g1 is below the x-

axis and the angle between g1 and x-axis is 0.00043816 in radian measure and similarly

arg(�g2) = 0.00043816. We set the initial position as (x1, y1) = (−3, 0), (x2, y2) = (3, 0)

and the initial velocity as (vx1, vy1) = (1, 0), (vx2, vy2) = (1, 0). We choose the time step

as 0.1 and the end time as 1000. We find the the result of our simulation as follows:

Table 3.2: Velocity and position for two individual system

leader 1 leader 2
velx 9.99999904e− 01 9.99999904e− 01
vely 4.13011923e− 04 −4.13011923e− 04
x 9.99999904e+ 02 9.99999904e+ 02
y −2.25282934e+ 00 2.25282934e+ 00

We find that y-coordinate is not equal to 3 or -3 as we expect it to be. Since

the velocity in y-direction is not equal to 0, we know it is not in the steady state.

3.2.2 Case study II: Extension for two individuals system

This time we assume that there are two individuals, each with a big mass to

represent a group of agents. In our experiments, there are 100 individuals, 50 indi-

viduals above the x-axis, and 50 individuals below the x-axis. We use the following

equations to represent the density:

ρ(x) =
2∑

i=1

m× δ(x− xi) (3.12)
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where m = 50. Similar to (3.6) and (3.7), we could get the discretized model as follows:

�g1 =�v0 − (exp(
m×Gσ2(�x1 − �x1) +m×Gσ2(�x1 − �x2)

ρ
)− 1)

(m×Hσ1(�x1 − �x2) + ca ×m×Kσ3(�x1 − �x2)) (3.13)

�g2 =�v0 − (exp(
m×Gσ2(�x2 − �x1) +m×Gσ2(�x2 − �x2)

ρ
)− 1)

(m×Hσ1(�x2 − �x1) + ca ×m×Kσ3(�x2 − �x1)) (3.14)

(3.13)-(3.14):

�g1 − �g2 =− 2(exp(
m×Gσ2(�x1 − �x1) +m×Gσ2(�x1 − �x2)

ρ
)− 1)

(m×Hσ1(�x1 − �x2) + ca ×m×Kσ3(�x1 − �x2)) (3.15)

Plug in Hσ1, Gσ2, Kσ3, then we get:

g1,x − g2,x

=− 2m(exp(
m× 1

4πσ2
2
exp(− (x1−x1)2+(y1−y1)2

4σ2
2

) +m× 1
4πσ2

2
exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

ρ
)− 1)

× (
1

8πσ4
1

(x1 − x2) exp(−
(x1 − x2)

2 + (y1 − y2)
2

4σ2
1

)

− ca
1

64πσ6
3

(x1 − x2)((x1 − x2)
2 + (y1 − y2)

2) exp(−(x1 − x2)
2 + (y1 − y2)

2

4σ2
3

))

=0 (3.16)
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g1,y − g2,y

=− 2m(exp(
m× 1

4πσ2
2
exp(− (x1−x1)2+(y1−y1)2

4σ2
2

) +m× 1
4πσ2

2
exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

ρ
)− 1)

× (
1

8πσ4
1

(y1 − y2) exp(−
(x1 − x2)

2 + (y1 − y2)
2

4σ2
1

)

− ca
1

64πσ6
3

(y1 − y2)((x1 − x2)
2 + (y1 − y2)

2) exp(−(x1 − x2)
2 + (y1 − y2)

2

4σ2
3

))

=− 2m(exp(m

1
4πσ2

2
+ 1

4πσ2
2
exp(− y21

σ2
2
)

ρ
)− 1)

× (
1

8πσ4
1

2y1 exp(−
y21
σ2
1

)− ca
1

64πσ6
3

2y1(4y
2
1) exp(−

y21
σ2
3

))

=−m(exp(m

1
4πσ2

2
+ 1

4πσ2
2
exp(− y21

σ2
2
)

ρ
)− 1)(

1

2πσ4
1

y1 exp(−
y21
σ2
1

)− ca
1

4πσ6
3

y31 exp(−
y21
σ2
3

))

(3.17)

(3.16) holds naturally. For (3.17), if we know the external information, then

we could solve for y1, which is the y coordinate of the first individual in the steady

state. In our experiment, we choose the mass of each individual as m = 50. We use θ

to represent the angle between the external information and the x-axis. We choose θ

every π/18 in range (0, π/2). The external information is defined as �g1 = (cos θ,− sin θ)

and �g2 = (cos θ, sin θ). Then we could get the y-equilibrium position listed in Table

3.3.

Table 3.3: y coordinate for the equilibrium state

θ y θ y
0 −1.903586 π/18 −1.903588

2π/18 −1.903591 3π/18 −1.903593
4π/18 −1.903595 5π/18 −1.903597
6π/18 −1.903598 7π/18 −1.903599
8π/18 −1.903600 π/2 −1.903600

The velocity is equal to the half of the sum of the external information.

39



In order to determine whether the equilibrium is stable or not, we perform

the linear stability analysis to see whether the eigenvalue of the linearized matrix is

negative or not. If the eigenvalue is negative, then the system is stable. If the eigenvalue

is positive, then the system is unstable.

For the two individuals system, we use �xi = (xi, yi) to represent the position and

�vi = (vix, viy) to represent the velocity with i = 1, 2, representing the two individuals

respectively. The system could be represented as follows, which is a concise form of

(1.4). The first two represent the change of the position, and the last two represent

the change of the velocity:

dxi
dt

= vix := fix (3.18a)

dyi
dt

= viy := fiy (3.18b)

dvix
dt

= κ(vdix − vix) := gix (3.18c)

dviy
dt

= κ(vdiy − viy) := giy (3.18d)

We use �x∗i , �v
∗
i (i = 1, 2) to represent the position and velocity of individual i at the

steady state, �x1i , �v
1
i (i = 1, 2) to represent a small disturbance to the position and

velocity. We want to find how the disturbance will evolve: whether the disturbance

will decay or blow up. The right hand side of (3.18) can be seen as functions of �vj and

�xj (j = 1, 2). Then there are 8 variables: x1, x2, y1, y2, v1x, v2x, v1y, v2y in our system

and we have �xj = �x∗j + �x1j , �vj = �v∗j + �v1j . So :

d(�x∗i + �x1i )

dt
=
d�x∗i
dt

+
d�x1i
dt

= �v∗i +
d�x1i
dt

�fi(�x
∗
j + �x1j , �v

∗
j + �v1j ) =

�fi(�x
∗
j , �v

∗
j ) +

�f ′
i(�x

∗
j , �v

∗
j )

⎛⎝ �x1j

�v1j

⎞⎠+ · · ·

From (3.18a) and (3.18b), we know that �v∗i = �fi(�x
∗
j , �v

∗
j ). So

d�x1i
dt

= �f ′
i(�x

∗
j , �v

∗
j )

⎛⎝ �x1j

�v1j

⎞⎠ (3.19)

40



Similarly,

d(�v∗i + �v1i )

dt
=
d�v∗i
dt

+
d�v1i
dt

= 0 +
d�v1i
dt

�gi(�x
∗
j + �x1j , �v

∗
j + �v1j ) = �gi(�x

∗
j , �v

∗
j ) + �g′i(�x

∗
j , �v

∗
j )

⎛⎝ �x1j

�v1j

⎞⎠+ · · ·

From (3.18c) and (3.18d), we know that �gi(�x
∗
j , �v

∗
j ) = �0. So we could get

d�v1i
dt

= �g′i(�x
∗
j , �v

∗
j )

⎛⎝ �x1j

�v1j

⎞⎠ (3.20)

So far we have two equations (3.19) and (3.20) to describe the evolution of the

disturbance. In order to find whether the disturbance will decay or not, we calculate

the Jacobian matrix for �f and �g to get a linearized system as follows:

d

dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

y1

y2

v1x

v2x

v1y

v2y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1x
∂x1

∂f1x
∂x2

∂f1x
∂y1

∂f1x
∂y2

∂f1x
∂v1x

∂f1x
∂v2x

∂f1x
∂v1y

∂f1x
∂v2y

∂f2x
∂x1

∂f2x
∂x2

∂f2x
∂y1

∂f2x
∂y2

∂f2x
∂v1x

∂f2x
∂v2x

∂f2x
∂v1y

∂f2x
∂v2y

∂f1y
∂x1

∂f1y
∂x2

∂f1y
∂y1

∂f1y
∂y2

∂f1y
∂v1x

∂f1y
∂v2x

∂f1y
∂v1y

∂f1y
∂v2y

∂f2y
∂x1

∂f2y
∂x2

∂f2y
∂y1

∂f2y
∂y2

∂f2y
∂v1x

∂f2y
∂v2x

∂f2y
∂v1y

∂f2y
∂v2y

∂g1x
∂x1

∂g1x
∂x2

∂g1x
∂y1

∂g1x
∂y2

∂g1x
∂v1x

∂g1x
∂v2x

∂g1x
∂v1y

∂g1x
∂v2y

∂g2x
∂x1

∂g2x
∂x2

∂g2x
∂y1

∂g2x
∂y2

∂g2x
∂v1x

∂g2x
∂v2x

∂g2x
∂v1y

∂g2x
∂v2y

∂g1y
∂x1

∂g1y
∂x2

∂g1y
∂y1

∂g1y
∂y2

∂g1y
∂v1x

∂g1y
∂v2x

∂g1y
∂v1y

∂g1y
∂v2y

∂g2y
∂x1

∂g2y
∂x2

∂g2y
∂y1

∂g2y
∂y2

∂g2y
∂v1x

∂g2y
∂v2x

∂g2y
∂v1y

∂g2y
∂v2y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

y1

y2

v1x

v2x

v1y

v2y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here we use a simplified notation, x1, instead of x11, similarly for y-coordinate and

velocity. Plug in the expressions for �f , then we get the value for the first four rows of

M:

M(1 : 4, :) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
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Next we consider the lower part of M. The discretized form for the leaders’ desired

velocity is:

�vld,i =(1− exp(−
∑N

j=1m×Gσ2(�xi − �xj)

ρ
))(

N∑
j=1

m×Hσ1(�xi − �xj)

+

∑N
j=1m×Gσ2(�xi − �xj)�v(�xj)∑N

j=1m×Gσ2(�xi − �xj)
+ ca

N∑
j=1

m×Kσ3(�xi − �xj))

+ exp(−
∑N

j=1m×Gσ2(�xi − �xj)

ρ
)�gi

=(1− exp(−
m 1

4πσ2
2
exp(− |�xi−�x1|2

4σ2
2

) +m 1
4πσ2

2
exp(− |�xi−�x2|2

4σ2
2

)

ρ
))

(m
1

8πσ4
1

(�xi − �x1) exp(−
|�xi − �x1|2

4σ2
1

) +m
1

8πσ4
1

(�xi − �x2) exp(−
|�xi − �x2|2

4σ2
1

)

+
m 1

4πσ2
2
exp(− |�xi−�x1|2

4σ2
2

)�v1 +m 1
4πσ2

2
exp(− |�xi−�x2|2

4σ2
2

)�v2

m 1
4πσ2

2
exp(− |�xi−�x1|2

4σ2
2

) +m 1
4πσ2

2
exp(− |�xi−�x2|2

4σ2
2

)

− cam
1

64πσ6
3

(�xi − �x1)|�xi − �x1|2 exp(−
|�xi − �x1|2

4σ2
3

)

− cam
1

64πσ6
3

(�xi − �x2)|�xi − �x2|2 exp(−
|�xi − �x2|2

4σ2
3

))

+ exp(−
m 1

4πσ2
2
exp(− |�xi−�x1|2

4σ2
2

) +m 1
4πσ2

2
exp(− |�xi−�x2|2

4σ2
2

)

ρ
)�gi

So for the first leader:

vd,1x =(1− exp(−
m 1

4πσ2
2
+m 1

4πσ2
2
exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

ρ
))

(m
1

8πσ4
1

(x1 − x2) exp(−
(x1 − x2)

2 + (y1 − y2)
2

4σ2
1

)

+
v1x + exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)v2x

1 + exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

− cam
1

64πσ6
3

(x1 − x2)((x1 − x2)
2 + (y1 − y2)

2) exp(−(x1 − x2)
2 + (y1 − y2)

2

4σ2
3

))

+ exp(−
m 1

4πσ2
2
+m 1

4πσ2
2
exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

ρ
)g1x (3.21)
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vd,1y =(1− exp(−
m 1

4πσ2
2
+m 1

4πσ2
2
exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

ρ
))

(m
1

8πσ4
1

(y1 − y2) exp(−
(x1 − x2)

2 + (y1 − y2)
2

4σ2
1

)

+
v1y + exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)v2y

1 + exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

− cam
1

64πσ6
3

(y1 − y2)((x1 − x2)
2 + (y1 − y2)

2) exp(−(x1 − x2)
2 + (y1 − y2)

2

4σ2
3

))

+ exp(−
m 1

4πσ2
2
+m 1

4πσ2
2
exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

ρ
)g1y (3.22)

And for the second leader vd,2:

vd,2x =(1− exp(−
m 1

4πσ2
2
+m 1

4πσ2
2
exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

ρ
))

(m
1

8πσ4
1

(x2 − x1) exp(−
(x1 − x2)

2 + (y1 − y2)
2

4σ2
1

)

+
v2x + exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)v1x

1 + exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

− cam
1

64πσ6
3

(x2 − x1)((x1 − x2)
2 + (y1 − y2)

2) exp(−(x1 − x2)
2 + (y1 − y2)

2

4σ2
3

))

+ exp(−
m 1

4πσ2
2
+m 1

4πσ2
2
exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

ρ
)g2x (3.23)

vd,2y =(1− exp(−
m 1

4πσ2
2
+m 1

4πσ2
2
exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

ρ
))

(m
1

8πσ4
1

(y2 − y1) exp(−
(x1 − x2)

2 + (y1 − y2)
2

4σ2
1

)

+
v2y + exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)v1y

1 + exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

− cam
1

64πσ6
3

(y2 − y1)((x1 − x2)
2 + (y1 − y2)

2) exp(−(x1 − x2)
2 + (y1 − y2)

2

4σ2
3

))

+ exp(−
m 1

4πσ2
2
+m 1

4πσ2
2
exp(− (x1−x2)2+(y1−y2)2

4σ2
2

)

ρ
)g2y (3.24)
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Plug (3.21), (3.22), (3.23), (3.24) into (3.18c) and (3.18d), then we could calcu-

late the partial derivatives of the acceleration functions, which are the right hand side

of (3.18c) and (3.18d). Then we get an expression for every element in M. Plug the

steady state Table 3.3 into M, then we could find the eigenvalue of M. For example,

when θ = π/2, we could find at the steady state, y1 = −1.9036004037099705, and

velocity equals half of the sum of the external information. Then we could get the

eigenvalues of M as follows: All the eigenvalues except the last two are negative. The

Table 3.4: The eigenvalues of M for θ = π/2

−0.328321 + 1.18305i −0.328321− 1.18305i −0.656639 −4.09105× 10−6

−4.09105× 10−6 −3.2729× 10−6 1.88593× 10−12 1.32137× 10−19

last two are positive, but they are almost zero. This phenomena could be explained as

the parallel translation along the velocity of the steady state. We could calculate the

eigenvectors corresponding to each of the above eigenvalues to explain this phenomena.

For eigenvalue 1.88593× 10−12, the eigenvector is:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.704172

0.704172

−0.0643544

−0.0643544

1.32802× 10−12

1.32802× 10−12

−1.21376× 10−13

−1.21371× 10−13

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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For eigenvalue 1.32137× 10−19, the eigenvector is:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.707107

−0.707107

0

0

9.49497× 10−20

−9.49497× 10−20

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The solution of the system

d�s

dt
=M�s is in the form

�s =
8∑

i=1

ci�rie
λit (3.25)

where ci is any constant, λi is the eigenvalue of M , and �ri is the corresponding eigen-

vector of λi. Recall that in our problem:

�s =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

y1

y2

v1x

v2x

v1y

v2y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The last two eigenvectors works like a translation. It represents a uniform shift in x

and y direction. So when m = 50, θ = π/2, the swarm is always stable.

Now we change m to see whether there is any unstable case. For m=18,

19, 20, 25, 30, 35, 40, 45, 50, we could always find the steady state for each θ in

(0,
π

18
,
2π

18
,
3π

18
,
4π

18
,
5π

18
,
6π

18
,
7π

18
,
8π

18
,
9π

18
), and the eigenvalues are always negative, so
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Chapter 4

INFORMATION TRANSFER IN SWARMS WITH LEADERS

4.1 Introduction

Swarm dynamics is the study of collections of agents that interact with one

another without central control. In Chapter 1, we developed a model to describe a

swarm with covert leaders. Based on this model, we could determine how the covert

leaders affect the motion of the whole group. In this chapter, we consider an inverse

problem: Observing a swarm in motion, is it possible to distinguish between followers

and leaders? If so, how do we differentiate the leaders from the followers?

Based on our model proposed in Chapter 1, the only difference between the

leaders and the followers is that the leaders will respond to the external information.

From the simulation performed in Chapter 2, we know that information will spread

out through the whole swarm, since we just tell the leaders to go to the right, but

eventually the whole swarm went right. We wonder whether the information transfer

to the leaders is different from the one to the followers.

Information theory has proven to be a useful framework for the analysis of

complex self-organized systems [18]. Mikhail et al. states that the four properties of the

self-organization: no external control, an increase in order, robustness and interaction

could be interpreted in terms of information dynamics [29]. We could use the principles

in information theory to solve the problem in self-organization. He also gave two

examples of the application of the information theory in self-organization systems:

self-organizing traffic and ant trails. Wang et al. measure information storage and

transfer in swarms [41]. The results show us the dynamics within the swarm where

we can not tell the process through visualization. Wang et al. also quantify and trace
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information cascades in swarms using the quantities Active Information Storage (AIS)

and Transfer Entropy (TE) [40, 22]. This work discovers how an individual’s position

is related to its information processing role and provides the first information-theoretic

evidence that the information cascades occur in waves rippling through the swarm. Due

to the powerful tools in information theory and the successful application in swarm,

we would like to use theoretical information transfer as a means of analyzing swarm

interactions to explore whether or not it is possible to distinguish between followers

and leaders based on observations of the swarm.

4.2 Introduction to Information Theory

The measurement used to quantify the information should satisfy the following

properties:

1. Measure the information locally both in space and time.

2. Figure out the direction of the information transfer so that we could figure out
whether the information is transferred from the leaders to the followers or from
the followers to the leaders.

3. Be able to separate the information exchanged from input signal or from the
history.

Local transfer entropy possesses such kind of property, so we choose it as our measure-

ment. Local transfer entropy is firstly introduced by Lizier et al.[18]. It is derived from

transfer entropy. Transfer entropy is also used to quantify the information transfer.

It contains inherent directionality as well as explicitly distinguishes information that

is actually exchanged from that due to the response to a common input signal or his-

tory. But transfer entropy is an average of a sum which is not unified with the specific

instances at each specific time. So we discard it.

In order to state local transfer entropy clearly, we will firstly introduce Shannon

entropy which is the fundamental quantity of information theory. Then we will give

the definition of conditional entropy, relative entropy and mutual information which

will be used in the derivation of the local transfer entropy.

51



The fundamental quantity in information theory is the Shannon entropy, which

is a measure of uncertainty of a random variable, and a measure of the amount of

information required on average to describe the random variable. The precise definition

is as follows:

Definition 1. Let X be a discrete random variable with alphabet X and probability

mass function p(x) = Pr{X = x}, x ∈ X . Information content of a particular event x

is:

M(x) = − log p(x)

Then the Shannon entropy H(X) is defined by

H(X) = −
∑
x∈X

p(x) log p(x)

The log is to the base 2 and entropy is expressed in bits.

The following example shows how the entropy represents the uncertainty of a

random variable. Let

X =

⎧⎨⎩ 1 with probability p,

0 with probability 1− p.

Then

H(X) = −p log p− (1− p) log(1− p) := H(p)

The graph of the function H(p) is shown as Figure 4.1. We find that when p = 0

or p = 1, H(p) = 0, meaning that the uncertainty is zero. This is compatible with

our common sense. Since when p = 0 or p = 1, the variable is not random, there is

no uncertainty. When p =
1

2
, H(p) is the largest, meaning that when p =

1

2
, this

experiment has the largest uncertainty.

Now we will show that the entropy could also represent the average amount of

information to describe the random variable. For any information, we could use a short

notation to represent the frequent outcomes, and a relatively long notation to represent
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Figure 4.1: H(p) versus p

the less frequent ones. In this way, we construct a code to represent any information

we want to tell others.

For example, let X be a random variable with the following distribution and

code assignment:

Pr(X = 1) =
1

2
, codeword C(1) = 0

Pr(X = 2) =
1

4
, codeword C(2) = 10

Pr(X = 3) =
1

8
, codeword C(3) = 110

Pr(X = 4) =
1

8
, codeword C(4) = 111

We find that X = 1 is the most frequent outcome since the probability of it is

equal to a half, then we use a code, 0, which has length 1 to represent it. In contrast,

X = 4 is the least frequent outcome, so we use a code, 111, which has length 3 to

represent it. Then the expected length to describe this random variable will be

1

2
∗ 1 + 1

4
∗ 2 + 1

8
∗ 3 + 1

8
∗ 3 =

7

4

which is relatively short.
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In the following, we will show that the expected description length must be

greater than or equal to the entropy. First, we give the definition of an instantaneous

code.

Definition 2. A code is called a prefix code or an instantaneous code if no code word

is a prefix of any other codeword.

Here, the prefix could be understood in the following way: In the last example,

no code is a prefix of any other codeword. If we just see the code, for example 0, the

outcome must represent 1. But if the codeword for 2 is 01 rather than 10, then the

code 0 will be a prefix for the code 01. We need to take a look at the second digit

to see whether it represents the outcome 1 or the outcome 2. In this case, we need

to take 2 digits into consideration to determine the outcome rather than 1 digit. So

for outcome 1, it is a waste of time. But if we coded it just like the example we have

shown here, we could determine the outcome instantaneously. That is why it is called

instantaneous code.

For an instantaneous code, we have the following properties which will help us

to prove that the expected length of codeword is equal to or greater than the Shannon

entropy.

Theorem 4.2.1. (Kraft inequality): For any instantaneous code (prefix code) over an

alphabet of size D, the codeword lengths l1, l2,..., lm must satisfy the inequality∑
i

D−li ≤ 1.

Conversely, given a set of codeword lengths that satisfy this inequality, there exists an

instantaneous code with these word lengths.

In this theorem, suppose we use binary data to code the outcome, then D = 2.

The codeword length could be different for each outcome, for example, if we use 11

to represent one outcome, then the length of it will be equal to 2, since there are two

digits 1 and 1. The proof for this theorem could be found in [12]. Then if we would
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like to find the prefix code with the minimum expected length, we need to solve a

mathematical problem:

Minimize

L =
∑

pili

over all integers l1, l2, ... , lm satisfying∑
D−li ≤ 1.

We want to know the smallest value of L which is the expected length of the

code. First, we just seek a weak solution, where li does not have to be an integer, and

we enforce equality in the constraint. We use the method of Lagrange multipliers to

find the minima. Study the Lagrange function defined as:

J =
∑

pili + λ(
∑

D−li − 1) (4.1)

In order to find the stationary point, we differentiate (4.1) with respect to li and λ:

∂J

∂li
= pi − λD−li logeD (4.2)

∂J

∂λ
=
∑

D−li − 1 (4.3)

Setting the derivative equal to 0, we obtain:

D−li =
pi

λ logeD
(4.4)∑

D−li = 1 (4.5)

Since
∑
pi = 1, sum (4.4) over i, we find λ = 1/ logeD and hence

pi = D−li (4.6)

So

li = − logD pi (4.7)
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Then the expected codeword length

L =
∑

pili = −
∑

pi logD pi = HD(X) (4.8)

But since the li must be integers, we may not always obtain a minimum. We could

choose some codeword length around the point li to get a relatively shorter descriptive

length. The following theorem demonstrates that li = − logD pi is a global minimum:

Theorem 4.2.2. The expected length L of any instantaneous D-ary code for a random

variable X is greater than or equal to the entropy HD(X), i.e.,

L ≥ HD(X) (4.9)

with equality iff D−li = pi.

The proof of this theorem could be found in [12]. So far, we find that the

entropy is the average length of the shortest description of the random variable. This

is the reason why we use the entropy to quantify the information exchanged between

individuals.

There are some important quantities in information theory which are derived

from the Shannon entropy. We will use them to derive the quantity which we use to

measure the information transfer in swarm.

The first one is the conditional entropy. During the information transfer, some

other individuals may also transfer information, or the information is transferred under

some special conditions. We want to eliminate the effect from all the other factors, so

we introduce conditional entropy. The conditional entropy of a random variable given

another is defined as the expected value of the entropies of the conditional distribu-

tions, averaged over the conditioning random variable. Mathematically, if the random
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variable X and Y follow the joint probability p(x, y), i.e. (X, Y ) ∼ p(x, y), then the

conditional entropy H(Y |X) is defined as

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

= −Ep(x,y) log p(Y |X)

where Ep(x,y) represents the expected value when the distribution of (X, Y ) follows

p(x, y).

The relative entropy is a measure of the distance between two distributions.

Suppose p(x) and q(x) are two probability mass functions, then the relative entropy or

Kullback Leibler distance between these two functions is defined as

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
(4.10)

= Ep log
p(X)

q(X)

It is a non-symmetric measure of the difference between two probability distributions

P and Q. That means P and Q is not interchangeable. This quantity measures

the number of extra bits to describe the information which actually follows the P

distribution but we suppose it follows the Q distribution. To understand this quantity,

from (4.7), we know that for distribution P , the optimized code length for event i is

− log pi, and for distribution Q, the optimized code length for event i is − log qi.The

samples are chosen from P , so it follows the distribution {pi}. And we coded it based

on Q, so for event i, the code length is − log qi. Hence, the average code length would

be −∑ pi log qi. But the true average code length is −∑ pi log pi. So the extra bits
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(if we choose base 2) would be

(−
∑

pi log qi)− (−
∑

pi log pi)

=
∑

pi log
pi
qi

=D(p||q)

The mutual information is a measure of the amount of information that one

random variable contains about another random variable. It measures the reduction

of the uncertainty of one random variable when we know another random variable.

Mathematically, consider two random variables X and Y with a joint probability mass

function p(x, y) and marginal probability mass functions p(x) and p(y). The mutual

information I(X;Y ) is the relative entropy between the joint distribution and the

product distribution p(x)p(y), i.e.,

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

= D(p(x, y)||p(x)p(y))

= Ep(x,y) log
p(X, Y )

p(X)p(Y )

We can rewrite the definition of mutual information I(X;Y ) as

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x,y

p(x, y) log
p(x|y)
p(x)

= −
∑
x,y

p(x, y) log p(x) +
∑
x,y

p(x, y) log p(x|y)

= −
∑
x

p(x) log p(x)−
(
−
∑
x,y

p(x, y) log p(x|y)
)

= H(X)−H(X|Y ) (4.11)
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Thus the mutual information I(X;Y ) is the reduction in the uncertainty of X due to

the knowledge of Y . By symmetry, we can also write the relationship in this way:

I(X;Y ) = H(Y )−H(Y |X) (4.12)

We could also explain the mutual information in this way: We calculate the un-

certainty of the two system as though they are independent, but the actual relationship

between these variables are p(x, y). Then the uncertainty of the two systems could be

expressed as :

H2 = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x)q(y)

The actual uncertainty of these two systems is:

H1 = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)

So the reduction in the uncertainty of the two systems due to the dependency of these

two systems is:

H2 −H1 = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x)q(y)− (−
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y))

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)q(y)

which is the mutual information I(X, Y ).

The conditional mutual information of random variables X and Y given Z is

defined by

I(X;Y |Z) = H(X|Z)−H(X|Y, Z) (4.13)

= Ep(x,y,z) log
p(X, Y |Z)

p(X|Z)p(Y |Z)
The entropy rate is the rate of growth. In detail, suppose we have a sequence of

n random variables, and the entropy rate will measure how the entropy of the sequence

grows as n gets larger and larger. Mathematically, the entropy rate of a stochastic

process {Xi|Xi ∈ X} is defined by

H(X ) = lim
n→∞

1

n
H(X1, X2, ..., Xn) (4.14)
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when the limit exists. Here

H(X1, X2, ..., Xn) = −
∑

x1∈X1

∑
x2∈X2

· · ·
∑

xn∈Xn

p(x1, x2, · · · , xn) log p(x1, x2, · · · , xn)

(4.15)

A related quantity for entropy rate is:

H ′(X ) = lim
n→∞

H(Xn|Xn−1, Xn−2, ..., X1) (4.16)

From the formula, we know that H(X ) and H ′(X ) represent different entropy

rate. H(X ) is an average. It represents the contribution from one random variable to

the total uncertainty in a system contains n random variables. H ′(X ) is the conditional

entropy of the last random variable given the past. A theorem states that for stationary

processes both the limits exist and are equal. Formally, we have:

Theorem 4.2.3. For a stationary stochastic process, the limits in (4.14) and (4.16)

exist and are equal, i.e.,

H(X ) = H ′(X ).

The proof could be found in Cover’s book[12].

4.3 Transfer Entropy

After knowing the fundamental quantities in information theory, we could begin

to derive the quantity we may use in quantifying information transfer. Mutual infor-

mation has been used as a measure for information transfer in many complex systems

[18]. However, mutual information contains no inherent directionality. In order to

demonstrate this property, we introduce chain rule firstly.

Theorem 4.3.1. (Chain Rule)

H(X, Y ) = H(X) +H(Y |X) (4.17)
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Proof.

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x)p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x)−
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

= −
∑
x∈X

p(x) log p(x)−
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

= H(X) +H(Y |X)

Now we could find

I(X;Y ) = H(Y )−H(Y |X) (from (4.12))

= H(Y )− (H(X, Y )−H(X)) (from (4.17))

= H(X) +H(Y )−H(X, Y )

Therefore, I(X;Y ) is symmetric under the exchange of X and Y .

Introducing a time lag in either one of the variables in mutual information can

give a directional sense. For example, if we introduce a time lag in Y , then we consider

I(Xi, Yi+τ ). From (4.12), we know that:

I(Xi, Yi+τ ) = H(Yi+τ )−H(Yi+τ |Xi) (4.18)

Based on the meaning of the mutual information, it represents the reduction of the

uncertainty of Y at time i + τ due to the knowledge of X at time i. Or we could say

it is the number of bits that could be predicted for Y at time i+ τ by measuring X at

time i. Similarly, I(Yi, Xi+τ ) is the average number of bits of X at time t+ τ that can

be predicted by measuring Y at time t. Xu, et at [15] describe I(Xi, Yi+τ ) as the rate

of information transmission from variable X to variable Y at a delay of τ .
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But time-lagged mutual information still does not explicitly distinguish the

shared information from the exchanged information. For example, if there is a third

source Z, then the change of Y is due to Z, but not X. There should be no information

transfer between X and Y . But since they share the same information, X will give Y

a good prediction, then the time-lagged mutual information will still not be equal to

zero. To address these inadequacies, Schreiber introduced transfer entropy [33].

Since the transition probability will capture the dynamics of the system, Schreiber

consider the transition probability instead of static probability. Consider a system that

may be approximated by a stationary Markov process of order k, that means the state

of the system at time n+ 1 just depends on the last k states, but not the earlier ones.

Mathematically, suppose we use in+1 to represent the state of the system at time n+1,

then

p(in+1|in, ..., in−k+1) = p(in+1|in, ..., in−k+1, in−k)

Here we will use the shorthand notation i
(k)
n = (in, ..., in−k+1) for words of length k.

Since it is a stationary stochastic process, based on the Theorem 4.2.3, we know

that the entropy rate is:

H(X ) = H ′(X ) = lim
n→∞

H(Xn|Xn−1, Xn−2, ..., X1)

Then based on the property of stationary Markov process:

lim
n→∞

H(Xn+1|Xn, Xn−1, ..., X1) = lim
n→∞

H(Xn+1|Xn, Xn−1, ..., Xn−k+1)

= H(Xn+1|Xn, Xn−1, ..., Xn−k+1)

= −
∑

p(xn+1, x
(k)
n ) log p(xn+1|x(k)n )

Just as the way we introduce mutual information, we introduce transfer entropy.

Suppose there are two processes (X, Y ), we measure the deviation from independence.

The only difference is we generalize entropy rate rather than shannon entropy. If the

system Y has no influence on X, then

p(xn+1|x(k)n ) = p(xn+1|x(k)n , y(l)n )
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The incorrectness of this independent assumption can again be quantified by the rela-

tive entropy (4.10) by which we define the transfer entropy :

TY→X =
∑

p(xn+1, x
(k)
n , y(l)n ) log

p(xn+1|x(k)n , y
(l)
n )

p(xn+1|x(k)n )
(4.19)

Actually, the transfer entropy can be viewed as a conditional mutual information

(4.13). From the formula (4.19), we know that the transfer entropy is the average

information contained in the source Y about the next state of the destination X that

was not contained in the past of the destination. Here suppose we use X ′ to represent

the next state of the destination X. Then mathematically, we could also write the

transfer entropy as follows:

TY→X = I(Y ;X ′|X) = H(X ′|X)−H(X ′|X, Y ) (4.20)

4.4 Local Transfer Entropy

Transfer entropy represents the information of one source system contained

about another destination system regardless of the information already contained in

the destination system. It is an average quantity but not the information transferred

at each time step. However, sometimes we would like to know the information transfer

at each time step between the specific individuals. Lizier et al. [18] derived a local

transfer entropy which can quantify the information transfer both in space and time.

From (4.19), we know that the transfer entropy is summed over all possible state

transition tuples un = (xn+1, x
(k)
n , y

(l)
n ), weighted by the probability of observing each

such tuple. This probability p(un) could be calculated from the ratio of the count of

such observations c(un), to the total number of observations N . Mathematically, we

could write p(un) = c(un)/N . For c(un), we could write it as a sum: c(un) =
∑c(un)

a=1 1.
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Then plug the formula p(un) = (
∑c(un)

a=1 1)/N into (4.19):

TY→X =
∑
un

(
1

N

c(un)∑
a=1

1) log
p(xn+1|x(k)n , y

(l)
n )

p(xn+1|x(k)n )

=
1

N

∑
un

c(un)∑
a=1

log
p(xn+1|x(k)n , y

(l)
n )

p(xn+1|x(k)n )

=
1

N

N∑
t=1

log
p(xn+1|x(k)n , y

(l)
n )

p(xn+1|x(k)n )

If we define the local transfer entropy as

tY→X(n+ 1, k, l) = log
p(xn+1|x(k)n , y

(l)
n )

p(xn+1|x(k)n )

Then this measure is local in that it is defined at each time n for each destination

element X in the system and each causal information source Y of the destination.

Now we could find that the transfer entropy metric is a global average of a local

transfer entropy at each observation:

TY→X = 〈tY→X(n+ 1, k, l)〉 ;

tY→X(n+ 1, k, l) = log
p(xn+1|x(k)n , y

(l)
n )

p(xn+1|x(k)n )

Here we condition on the past k states of the destination X to eliminate the

information contained in the history of the destination individual. But if the system

is not a Markov process of order k, then the self-influence transmitted prior to this

k steps will not be eliminated. So Lizer et al.[18] suggest that taking the asymptote

k → ∞ is most correct for agents displaying non-Markovian dynamics. As such, they

formalize the local transfer entropy as:

tY→X(n+ 1, k, l) = lim
k→∞

log
p(xn+1|x(k)n , y

(l)
n )

p(xn+1|x(k)n )

In order to eliminate other influences, like a second source Z, we could condition

the probability on this source. Mathematically, we could write I(Y ;X ′|X,Z)), to

eliminate their influence from being mistaken as that of the source Y . For Elementary
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Cellular Automata (ECAs), we may condition on the cells in the destination cell’s

neighborhood to eliminate the influence from those influences. Suppose the destination

variable is represented by xi,n+1, which means the state of ith cell at time n+ 1. And

we want to calculate the information transfer from the source variable xi−j,n, which

means the state of the i−jth cell at time n. Then we use the following sets to represent

all the influences from the neighbors and the past of the destination cell:

vri,j,n = {xi+q,n|∀q : −r ≤ q ≤ +r, q �= −j, 0},

where r is the range of causal information contributors (i.e. the cell range for CAs).

We then can derive the information transferred exactly from the source variable:

tc(i, j, n+ 1) = lim
k→∞

log
p(xi,n+1|x(k)i,n , xi−j,n, v

r
i,j,n)

p(xi,n+1|x(k)i,n , v
r
i,j,n)

For other information contributor W, we could also condition on W to eliminate

the effect from W:

tY→X|W (n+ 1, k) = lim
k→∞

log2
p(xn+1|x(k)n , wn, yn)

p(xn+1|x(k)n , wn)
(4.21)

4.5 Transfer Entropy for Swarms

We would like to apply this measurement (4.21) to swarms. So we need to

determine the variables for x, y, w. Let j be a particle that is within another particle

i’s zones of interaction, so i and j form a causal pair. Our aim is to find what influence

does j have on i. That means j is the source individual, and i is the destination

individual. And we would like to know the amount of information transferred from j

to i.

We note that if two pairs of particles have the exact same relative positions and

velocities, but have different absolute positions and headings, then the information

transfer between these two pairs should be the same. As such, we will focus our

measurements on the relative positions and relative velocities. And for the destination

variables, we will consider the change of the velocity. Suppose we use �vni to represent the
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velocity of particle i at time n. Then the destination variable will be xn+1 = �vn+1
i −�vni .

If we just consider the past 1 state, this means we use k = 1, then the past state

of the destination is the change in velocity of i at time step n, x
(k)
n = �vni − �vn−1

i . If

we use �sni to represent particle i’s position at time n, then we see that the source

variable is the relative positions and velocities between the particles at time step n:

yn = {�sni − �snj , �v
n
i − �vnj }. We also condition the transfer on the speed of i at n, since

the absolute velocity of the particle may have some indirect influence on the change in

state (for example by influencing how often the source and destination have recently

interacted). So far we define all the variables in (4.21):

yn = {�sni − �snj , �v
n
i − �vnj }

wn = |�vni |

x(k)n = �vni − �vn−1
i

xn+1 = �vn+1
i − �vni

After determining the variables, we need to figure out a way to calculate the

probability distribution function(PDF). Since the swarms are always in motion, a pair

of particles, i and j may transfer information at one time step when they are close

enough, but may also move outside the interaction zones at next step, then there

will be no information transfer between this two individuals. Therefore, counting the

observations for each possible tuple to calculate the probability distribution function

through a single pair may not give us a good representation of the whole group. Help-

fully, in swarm models, we treat the individuals the same. They will respond to the

local interactions in the same way. So we can accumulate observations for the proba-

bility distribution functions from every transient causal interaction. That is, we count

the observations from every transient casual pair. When one particle j is within the

interaction zones to have a causal effect over another particle i , their interaction is

counted for the probability distribution functions, but when j is outside in the interac-

tion zones of i , no observation is recorded. Then the probability distribution functions

will be applied to any pair if they form a causal relationship at one time step.
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And for our problem since the leaders and followers are known to react dif-

ferently given their neighboring conditions, and thus the PDF needs to capture the

reactions of the individuals within the swarm accordingly. Therefore, we separate the

observations by the role of the destination individual, and estimate separate PDFs for

those destination individuals that are followers and those that are leaders. Then use

the local CTE we could find the information transfer between each individuals.

4.6 Results

We characterize overall transfer as the average over all causally connected pairs

Y → XF , where F denotes followers, at each time step:

T (n+ 1, k)F = 〈tY→XF (n+ 1, k)〉Y→XF

and similarly for the leaders:

T (n+ 1, k)L = 〈tY→XL(n+ 1, k)〉Y→XL

Then we compare this two values along the time to see whether there is any difference

between the leaders and the followers.

We put 100 individuals on a 10× 10 lattice, each with a random initial velocity

with speed equal to 1. We choose 15% as the leaders and give the leaders external

information as �g = (1, 0), that means we want them to go to the right. Driven by the

local interaction, the group reorganizes in very short time and then moves to the right

as a coherent disk. We calculate the average local transfer entropy both for leaders

and followers at each time step. Then we plot the results in Figure 4.2.

We find that though it can be difficult if not impossible to identify leaders

through visual inspection, information theory provides an appropriate lens through

which this segregation may be possible. (In certain models under certain circum-

stances, leaders may aggregate at the front, but this is not generally the case.) Using

the information theoretic approach, we discard all apriori knowledge of individual in-

teractions and instead use the local CTE in the swarm to see if covert leaders transmit
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or receive more information than followers. While it is apriori intuitive that a leader

ought to share more information with the swarm, we find that the inverse is the best

way to distinguish covert leaders. A covert leader in a swarm is notable because it

receives less information than followers on average. In Fig. 4.2, we can see the average

CTE received by the covert leaders is markedly lower than the CTE received by the

followers as the swarm organizes itself into a coherent disk.

4.7 Conclusion

Information theory provides us a way to distinguish leaders from followers. We

find that the leaders will receive less information than the followers. But the disad-

vantage of this work is that it separates the leaders and followers firstly and then find

that there is a difference between these two kinds of individuals. Next we would like to

treat the group homogeneously to see whether we could differentiate the leaders from

the followers with the help of local conditional transfer entropy.
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Figure 4.2: The transfer entropy received by followers and leaders over time along with
the swarm configuration at key times during self-organization. Leaders are displayed
in red, but have the same interaction influence others no differently from the followers.
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Chapter 5

USING THE PAGERANK METHOD TO FIND LEADERS IN A
SWARM

In the previous chapter, we separated the individuals of a swarm based on the

different roles of the receivers to calculate the PDF for the leaders and the followers, and

then calculated the local transfer entropy (TE). We found that the leaders will receive

less local transfer entropy than the followers. This is compatible with our common

sense, since if a person already knows where he needs to go, then he will accept less

information than someone who does not know where to go.

This result tells us that the local transfer entropy could catch the difference

between the leaders and the followers. In this chapter, we still use transfer entropy

as a tool to find the leaders. But this time we do not separate the swarm based on

the roles of the receivers, since we do not know who are the leaders and who are the

followers.

After treating the agents the same, we could calculate the local transfer entropy

sent from or received by one individual at each time step. We record the local transfer

entropy for each pair of individuals at each time step. For each pair X and Y , there are

two links between them: from X to Y and from Y to X. If we use the local transfer

entropy to label the strength of the link, then some of the links are stronger and some

of the links are weaker. Given a TE threshold for these links, when the local transfer

entropy, for example, from X to Y , is smaller than the TE threshold, we delete the

link from X to Y , then we build a network for the swarm. Inspired by the scale of

the Internet, and Google’s use of the PageRank method [5] to rank the importance of

the web pages, we propose to use the PageRank method to identify the leaders. The

underlying assumption for the PageRank method is that more important pages receive
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node only has one vote. But some nodes may be more important than others. The

important node should have a higher vote weight. By integrating these two factors

together, we get a way to evaluate the importance of a node. We use xi to represent

the score of page i. The larger the score, the higher the rank. Suppose there are n

outgoing links from node i to i1,..., in. Then each of the destination nodes will get a

score of
xi
n
. The score of one node is the sum of the scores of all of the incoming links

. To see this, we use Figure 5.1 as an example. We use xi (i = 1, 2, 3, 4.) to represent

the scores of these four nodes. For node 1, it receives two links from node 2 and node

3 respectively. Node 2 contains only one outgoing link. So node 2 will give its entire

vote to node 1. Node 3 contains two outgoing links. So node 3 will give half of its vote

to node 1 and half of its vote to node 4. The weight of the vote is equal to the score of

node 3. So in total node 1 gets x2 +
1

2
x3, which should be equal to the score of node

1. So we obtain the following equation:

x1 = x2 +
1

2
x3

Similarly, we obtain the following three equations for nodes 2, 3 and 4, respectively.

x2 =
1

3
x1 +

1

2
x4

x3 =
1

3
x1 +

1

2
x4

x4 =
1

3
x1 +

1

2
x3

We can write the system of equations in matrix form.⎛⎜⎜⎜⎜⎜⎜⎝
0 1 1

2
0

1
3

0 0 1
2

1
3

0 0 1
2

1
3

0 1
2

0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎟⎟⎟⎟⎠
Let A represent the coefficient matrix, and �x represent the unknown vector. Then we

need to solve:

A�x = �x (5.1)
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This means we need to find the eigenvector of A corresponding to the eigenvalue 1.

Given that matrix A is a column Markov matrix where the sum of each column is equal

to 1, there must be an eigenvalue of A equal to 1.

Theorem 5.1.1. Let A be an n× n column Markov matrix, then A must has 1 as its

eigenvalue.

Proof. First, we note that A and AT have the same eigenvalues. A short proof of this

is as follows. Let λ represent the eigenvalue, and I represent the identity matrix. Then

det(A− λI)

= det(A− λI)T

=det(AT − (λI)T )

= det(AT − λI)

So A and AT have the same eigenvalue.

Since A is a column Markov Matrix, the column sun is equal to 1. So the row

sum of AT is equal to one. Suppose we use e to represent the n-dimensional column

vector with all components equal to 1. Then we find that

AT e = e

So 1 is an eigenvalue of AT . Therefore, we arrive at the conclusion that 1 is an

eigenvalue of A.

Thus, we can always solve this linear system. For our sample problem, the

eigenvector of A corresponding to eigenvalue 1 is:⎛⎜⎜⎜⎜⎜⎜⎝
0.6547

0.4364

0.4364

0.4364

⎞⎟⎟⎟⎟⎟⎟⎠
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From the result we know that node 1 is the most important page, and all the others

are equally important.

However, sometimes the dimension of the eigenspace corresponding to eigen-

value 1 may not equal 1. As a result, the eigenvector will not be unique. The linear

combination of two eigenvectors corresponding to the same eigenvalue will still be an

eigenvector of the matrix, so there will be infinitely many solutions to our system. This

means there are infinite ways to rank the pages. And another important consideration

is whether the eigenvector has all positive or all negative components. If some of the

components are negative and some of the components are positive, then we can not

rank the pages based on this eigenvector. That is because we cannot expect the page

to become less important when it receives one more link from some other page.

There are some nice properties for the positive matrix (Definition 3), which

guarantees that the dimension of the eigenspace corresponding to eigenvalue 1 is equal

to 1, and the components of the eigenvector are all positive or all negative.

Definition 3. A matrix A is positive if all the entries Aij > 0.

Theorem 5.1.2. If matrix A is positive and is a column Markov matrix, then the

dimension of the eigenspace corresponding to eigenvalue 1 is equal to 1 and the entries

of the eigenvector are all positive or all negative.

The proof for Theorem 5.1.2 can be found in [6].

A modification to the matrix A can make it to be a positive column Markov

matrix. Then the solution exists and is unique. Let M represent the modified matrix

which is defined in the following way:

M = (1−m)A+mS (5.2)

where m (0 < m < 1) is a damping factor, and S is an n × n matrix with all entries

equal to
1

n
. The meaning of this formula is that one person may stop clicking the link

on one page, but restart surfing in the Internet at a random page with a probability

m. Or if we think of it in the context of voting, then it means that everybody will
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send an additional
m

n
vote to all the others. If the vote is sent from node i with score

xi, then by combining with the score, the vote is equal to
m

n
xi. Usually, m is chosen

be 0.15. For the example given in Figure 5.1, we find that

M =(1− 0.15)

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 1

2
0

1
3

0 0 1
2

1
3

0 0 1
2

1
3

0 1
2

0

⎞⎟⎟⎟⎟⎟⎟⎠+ 0.15

⎛⎜⎜⎜⎜⎜⎜⎝
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
0.0375 0.8875 0.4625 0.0375

0.3208 0.0375 0.0375 0.4625

0.3208 0.0375 0.0375 0.4625

0.3208 0.0375 0.4625 0.0375

⎞⎟⎟⎟⎟⎟⎟⎠
Now M is a positive column Markov matrix, and possesses the property stated

in Theorem 5.1.2. We find that the eigenspace corresponding to eigenvalue 1 has

dimension 1. The eigenvector is ⎛⎜⎜⎜⎜⎜⎜⎝
0.6397

0.4438

0.4438

0.4438

⎞⎟⎟⎟⎟⎟⎟⎠
Still node 1 is the most important one.

5.2 PageRank Applied to Swarms

In Chapter 2, from the simulation we saw that there is information transfer

between individuals, since we just tell the leaders to go to the right, and the whole

swarm went right eventually. In Chapter 4, we used Local Transfer Entropy to quantify

this information. The information transferred between two individuals works like a

link between two individuals, and this link is a directional link from the sender to

the receiver. If we rank the transfer entropy between each pair in the swarm, we can
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choose the top pairs using a TE threshold, and different individuals may have different

incoming and outgoing links. Based on these links, we could apply the PageRank

method.

5.3 Method

Based on the three-zone model introduced in Chapter 1, we could get the velocity

and position for each individual at each time step. In Chapter 4, we find that the

transfer entropy will damp to zero when the swarm gets to a steady state. If the

external information evolves with time, then the swarm will reorganize and evolve

with time. Using this procedure, we can measure TE and the underlying network as a

function of time.

When we calculate the transfer entropy, we need the probability distribution

function(PDF). In Chapter 4, we treat the individuals differently based on the roles of

the receiver. This time we treat them the same when we calculate PDF. In Chapter 4,

we divide the value of the variables which we are interested in into several bins, and

then calculate the PDF based on these bins. This time, we simplify our calculation.

We just consider whether the velocity is changing or not by setting a threshold for

the acceleration. In our problem, it will be the difference of the velocity between two

adjacent time steps. If the acceleration for individual i is less than the threshold at

time step n, then we label 0 for i at time n. If the acceleration for individual i is

greater than the threshold, then we label 1 for i at time n.

xn =

⎧⎪⎨⎪⎩1 if �vn+1 − �vn ≥ TE threshold

0 if �vn+1 − �vn < TE threshold

Thus, each individual in the swarm could be labelled by a series of number consist of

0 and 1. The process could be found in Figure 5.2. The transfer entropy is calculated

based on these 0 s and 1s using the formula (4.21). Here we just consider the transfer

entropy between each pair. During the calculation, we neglect the existence of other

individuals. That means we do not condition on the status of other individuals. Since
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normalize each column to make the column sum of A equal to 1, so that A is a Column

Markov Matrix. Adding unnecessary links into our network will make the difference

between the followers and leaders more vagueness. For example, if we choose all the

local transfer entropy to make matrix A, then after normalization, A is a Matrix with

all entries equal to each other. There is no difference between the followers and the

leaders. As a result, we cannot figure out who are the leaders and who are the followers.

After we get the Column Markov Matrix A, we could apply the modified PageRank

method. This suggest the following algorithm for determining leaders in a swarm:

1. Record the velocity for each individual at each time step.

2. Create binary data based on the acceleration of each individual. The length of
the series for each individual is equal to the total number of time steps.

3. Calculate the PDF between each pair and using the formula (5.3) to calculate the
local transfer entropy. We need to calculate the local transfer entropy tnji from i
to j. We also need to calculate the local transfer entropy tnij from j to i.

4. Sum over the local transfer entropy tnij along the time to get the total transfer
entropy Tij.

5. Choose suitable k, and based on the selected Tij to make the Column Markov
Matrix A.

6. Find the eigenspace of A corresponding to eigenvalue 1. If the eigenspace corre-
sponding eigenvalue 1 is not 1 dimension. Add a damping factor m, to make A
to be a positive column Markov Matrix M using the formula (5.2).

7. Calculate the eigenvector v1 of M corresponding the eigenvalue 1.

8. Normalize v1 to make the sum of all the entries in v1 is equal to 1.

9. Based on the entries of v1 to find the leader.(Details are listed in section 5.4.1)

5.4 Experiments

The difference between the Couzin model and our model is that in the Couzin

model the desired velocity of the leader is a linear combination of the local interaction

and the external information, which means the coefficient ahead of the external infor-

mation is a constant. In our model, we introduce a nonlinear term so that the leader
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will respond to the external information based on the local density. First, we perform

the experiment on Couzin model so that we could control the weight that the leader

respond to the external information to see how the weight affects the result.

5.4.1 Couzin Model

In Couzin model, the desired velocity of the leader is defined by the following

equation(2.15):

�vld =(1− α)[Hσ1 ∗ (ρf + ρl) +
Gσ2 ∗ (ρf�vf + ρl�vl)

Gσ2 ∗ (ρf + ρl)
+ caKσ3 ∗ (ρf + ρl)] + α�g (5.4)

Usually, α is chosen to be 0.5. So we perform the simulation with α = 0.5. Other

parameters are the same as those in the simulation performed in Chapter 2. We place

100 individuals on a 10×10 lattice with 15% random selected leaders. The initial speed

is 1 but the direction is randomly chosen. Then we use the model (2.15) to perform the

simulation. The simulation last 3200 time steps. We change the external information

�g every 800 steps from (0, 1) to (

√
2

2
,

√
2

2
), (1, 0), (−

√
2

2
,

√
2

2
).

The movement at key time step is shown in Figure 5.3. The red arrows represent

the randomly chosen leaders. We will use it to test our PageRank algorithm to see

whether or not it could find the leaders.

Following the steps stated in section 5.3, we find that the eigenspace correspond-

ing to eigenvalue 1 of matrix A has dimension 1, so we did not add any damping factor.

We plot the normalized eigenvector �v1 in increasing order and mark the position of the

leaders with ’*’ and dashed lines. We define the value of the element v1i in �v1 as the

score of the individual i.

From Figure 5.4 , we note that most of the leaders have a relatively small score.

Examining the smallest entries in the eigenvector, we obtain Figure 5.5. From Figure

5.5, we find that 13 out of 15 leaders are located before the jump in value. We could

use this jump to estimate the amount of leaders and locate the leaders. So here is our

proposition:
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Experiment 1 2 3 4 5 6 7 8
Nest 15 12 14 13 14 14 18 14
Nfind 14 12 13 13 14 14 13 13
Nfind

Nest

92.86% 93.33% 100% 92.86% 100% 100% 100% 72.22%

Nfind

Ntrue

86.67% 93.33% 80% 86.67% 86.67% 93.33% 93.33% 86.67%

Experiment 9 10 11 12 13 14 Average
Nest 15 13 19 11 14 17 14.5
Nfind 14 12 14 11 13 13 13.07
Nfind

Nest

93.33% 92.31% 73.68% 100% 92.86% 76.47% 91.42%

Nfind

Ntrue

93.33% 80% 93.33% 73.33% 86.67% 86.67% 87.14%

Table 5.1: Results of PageRank method for finding leaders. 14 experiments are per-
formed with the same parameters except the initial orientation and leaders are ran-
domly chosen.

identify leaders. 91.42% of these possible leaders are true leaders. Additionally, these

true leaders compose 87.14% of the whole leader group.

5.4.2 The Weight of the External Information

In our model, the leaders respond to the external information differently based

on the local density. So, we would like to know how the algorithm works with different

weight of external information. Here we perform some experiments with different α

in model (5.4). We choose α from 0.1 to 0.45 incrementing by 0.05 each time. We

find that the algorithm also works well. Results are shown in Table 5.2. Decreasing

α to the level of 10−2, the results are shown in Table 5.3. From the result, we find

that when α = 0.01, we could only find less than half of the leaders. We would like to

know whether this phenomena is special or a general case. So, we decrease α to the

level of 10−3. When α = 0.009, the graph for the sorted and normalized eigenvector in

shown in the Figure 5.6. We find that half of the leaders have a relatively high score.

When α = 0.001, the result is shown in Figure 5.7. The leaders are almost scattered
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of the transfer entropy, like ranking the values and then choosing the smallest one to

be the leaders or using some cluster methods, so we try other methods. We build a

network based on the value of the transfer entropy. Inspired by the network, we apply

the PageRank method, which is used by Google to rank the importance of web pages,

to locate the leaders in the swarm. We make a small change to this method. In Google

search engine, the pages with large scores are ranked higher. But in our algorithm, we

choose the ones with lower scores as our leaders. This method could effectively find

the leaders if the leaders respond to the external information strongly enough. More

exactly, in linear model or Couzin model, the weight before the external information

should be greater than O(10−2). We test the method in our nonlinear model. Since the

weight is changing along the time due to the change of the local density, we record the

weight before the external information along the time for the leaders. We find that the

weight is lower than O(10−2). So the PageRank method could not find the leaders in

our model. Performing the algorithm on our model also shows the same result. From

this point of view, we can say that our nonlinear model is really covert.

So far, in this thesis, we introduce a new nonlinear model for large swarms

based on the three-zone interactions. Compared with the linear model, the leaders

in our model are embedded in the swarm instead of accumulating into the front of

the group. We perform stability analysis on the nonlinear model, and find that the

stability criteria is as the same as the leaderless model. It tells us that we could

inject external information into the system without changing the stability criteria. We

verify our analysis result both on ideal platform and QualNet. We also perform several

experiments with two group of leaders possessing different external information. The

simulation results tell us that the group will follow the average direction when the

information differential is small, and the group will randomly choose a direction of

the two options if the information differential is large. In order to know when the

bifurcation happens, we perform two case studies, which is a simplified form of our

nonlinear model. Then we consider a reverse problem: When we observe a group of

individuals in motion, is it possible to distinguish the leaders from the followers? If so,
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how do we find the leaders in the swarm. We find that the leaders receive less transfer

entropy than the followers. So we could find the difference between the leaders and

the followers. Then based on the transfer entropy, we could build a network among

all the individuals in the group. We apply the PageRank Method to find the leaders

embedded in the swarms. This method could effectively find the leaders if the leaders

respond to the external information strong enough. For our model, since the weight

before the external information is so small that the leaders are difficult to locate. From

this point of view, the leader in our model is really covert.

There are still some open questions that could be done in future. We may

apply the PageRank Method to real world data, such as the birds or fish, to see

whether we could figure out who are the leaders and who are the followers. We could

continue in searching different methods to see whether we could find the leaders in

the simulation results performed from our model. There are many connectivity-based

ranking algorithms besides PageRank, like HITS [17] and OPIC [1]. We could test

those methods on our model to see the output.
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