A MATHEMATICAL THEORY OF THE VERTICAL DISTRIBUTION OF TEMPERATURE AND SALINITY IN WATER UNDER THE ACTION OF RADIATION, CONDUCTION, EVAPORATION, AND MIXING DUE TO THE RESULTING CONVECTION

Derivation of a General Theory, and Hlustrative Numerical Applications to a Tank, a Lake, and a Region of the North Pacific Ocean

4 By
GEORGE FRANCIS McEWEN

Bulemin of tee Scripps Institution of Oceanography La Jolila, California
Tect rical Serifs, Volume 2, No. 6, pp. 197-306, 11 figures in text

UNIVERSITY OF CALIFORNIA PRESS
BERKELEY, CALIFORNIA

The SCRIPPS INSTITUTION OF OCEANOGRAPHY, LA JOLIA. CALIFORNIA, announces the beginning of a new series of its Bulletin-the Technical Series. The following numbers have been issued. Other numbers are in preparation.

Earlier papers from the Institution have appeared as Bulletins of the Scripps Institution for Biological Research, and as contributions to the series, University of California Publications in Zoology.

BULLETIN OF THE SCRIPPS INSTITUTION OF OCEANOGRAPHY, TECENICAL SERIES.-Edited by T. Wayland Vavginan, F. B. Sumner, and G. F. McEmen.

VoLUME 1. $1927-$

1. Effect of Tidal Changes on Physical, Chemical, and Biological Conditions in the Sea Water of the San Diego Region, by Erik G. Moberg and Winfred Emory Allen. March, 1927
2. Quantitative Studies on Inshore Marine Diatoms and Dinoflagellates of Southern California in 1921, by Winired Emory Allen.
3. Idem, 1922.

Nos. 2 and 3 in one cover. March, 1927
4. Surfiace Catches of Marine Diatoms and Dinoflagellates made by U.S.S. 'Pioneer'" in Alaskan Waters in 1923, by Winfred Emory Allen. March, 1927
5. Studies on Marine Diatoms and Dinollagellates Caught with the Kofoid Bucket in 1923, by Henry P. Dorman. March, 1927
6. Notes on Cestodes and Trematodes of Marine Fishes of Southern California, by George F. Sleggs. March, 1927
7. Quantitative Studies on Marine Diatoms and Dinoflagellates at Four Inshore Stations on the Coast of California in 1923, by Henry P. Dorman.
8. Pelagic Fish Eggs of La Jolla, California, by P. S. Barnhart. Nos. 7 and 8 in one cover. March, 1927
9. Marine Phytoplankton in the Region of La Jolla, California, during the Summer of 1924, by George F. Sleggs. March, 1927

10. Recent Foraminifera from Off the West Coast of America, by Joseph
A. Cushman. September, 1927 90
11. Surface Catehes of Marine Diatoms and Dinoflagellates off the Coast
of Oregon by U.S.S. "Guide" in 1924, by Ralph Lewis. November,
1927
12. Catches of Marine Diatoms and Dinoflagellates Taken by Boat in Southern California Waters in 1926, by Winfred Emory Allen. January, 1928
13. Quantitative Studies on Inshore Marine Diatoms and Dinoflagellates Collected in Southern California in 1924, by Winfred Emory Allen. November, 1928

Y, LA JOLLA, its Bulletin-the Ot^{2} numbers Bulletins of the ons to the series,

EANOGRAPHY, TAUGHAN, F. B.

A MATHEMATICAL THEORY OF THE VERTICAL
gical ConF Erik G. 25 ofiagellates sn.
by U.S.S.
ory Allen.
.25
.25
the Kofoid
.25
hern Cali-
s at Four Henry P.

It.
a, sduxing
by Joseph
the Coast Vovember,
m Pacific nd Ralph Boat in ry Allen. n of Two - Mareh, lagellates ry Allen.

DISTRIBUTION OF TEMPERATURE AND SALINITY IN WATER UNDER THE ACTION OF RADIATION, CONDUCTION, EVAPORATION, AND MIXING DUE TO THE RESULTING CONVECTION

DERIVATION OF A GENERAL THEORY, AND ILLUSTRATIVE NUMERICAL APPLICATIONS TO A TANK, A LAKE, AND A REGION OF THE NORTH PACIFIC OCEAN

BY
george francis mcewen

Bulletin of the Scripps Institution of Oceanography

 of the University of California La Jolla, CaliforniaTechnical Series, Volume 2, No. 6, pp. 197-306, 11 figures in text Issued September 27, 1929

University of California Press

Berkeley, California

Cambridge University Press

London, England

CONTENTS

PAGE
INTRODUCTION: QUALITATIVE STATEMENT OF THE PROBLEM 199
FUNDAMENTAL ASSUMPTIONS AND BASIC DEDUCTIONS FROM THEM 201
Precise Formulation of Fundamental Assumptions 201
Definition of Symbols. 202
Mathematical. Formulation and Deduction of Basic Equations 203
SIMPLIFIED EXPRESSION OF BASIC EQUATIONS IN TERMS OF CERTAIN INTEGRALS. 211
Transformation of Basic Equations 211
Interpretation of Certan Integrals and Modified Notation 214
Expression of Basic Equations in the New Notation 215
APPLICATION OF THE THEORY OF TEMPERATURE DISTRIBU- TION TO THE DISTRIBUTION OF OTHER PROPERTIES OF THE WATER 216
General Equations Derived for the Distribution of Any Property 216
Special Equations Derived for the Distriburion of Salinity 217
Expression in New Notation of Equations Derived for Properties Other than Temperature 218
USEFUL TRANSFORMATIONS AND COMBINATIONS OF THE FOUR BASIC EQUATIONS; A COMPUTATION OF RATES OF UPWELL ING AND RATES OF EVAPORATION FROM THE SEA 219
Derivation of a Single Temperature Equation from the Pair of Equations (41) and (42) by Eliminating (u) 219
Derivation of a Single Salinity Equation from the Pair of Equa- trons (58) and (59) by Eliminating (S) 220
Methods of Computing the Rate of Evaporation from the Sea. 221
GENERAL EXPLANATION OF METHODS OF COMPUTING THE PHYSICAL CONSTANTS OF THE EQUATIONS FROM NUMERICAL DATA 223
Methods of Applying the Approximate Simplified Equation 223
Methods of Applying the Exact Equation 230
Methods of Correcting for Effect of Radiation Absorbed by the Bottom in Shallow Water 232
METHODS OF SOLVING THE EQUATIONS IN ORDER TO PREDICT THE TEMPERATURE AND SALINITY FROM GIVEN INITIAL CONDITIONS 234
page
ILLUSTRATIVE COMPUTATION OF THE PHYSICAL CONSTANTS OF THE APPROXIMATE SIMPLIFIED EQUATION. 237
Numerical Applications to Serial Temperatures of Lake Mendota, Madison, Wisconsin. 237
Numerical Applications to Serial Temperatures of Water in a Tank about Six Feet Square and Five Feet Deep. 246
Numerical Applications to Serial Temperatures and Salinities of the Pactfic Ocean in the Coronado Island Region, near San Diego, California. Computation of Upwelling Velocity. 252
SUPPLEMENTARY EXAMINATION OF RESULTS AND SUGGES- TIONS RELATIVE TO FURTHER APPLICATIONS OF THE THEORY 259
LITERATURE CITED. 305
APPENDIX. TABULATIONS OF FUNCTIONS NEEDED IN NUMER- ICAL APPLICATIONS OF THE EQUATIONS.
The Frequency Function $\mathrm{F}_{\mathrm{I}}(x)$ is Assumed to be $e^{-x^{2}}$ 263
General Statement and Table 1 of the Integral $\int_{\infty}^{\infty} \frac{e^{-x^{2}}}{x} d x$. 263
Table 2. $\quad \int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x$, Tabulated with Respect to $\left(\sigma_{y}-\sigma_{o}\right) \ldots$ 268
Table 3. $P_{o}(z)=\int_{.001}^{z}\left[\int_{z}^{\infty} \frac{e^{-x^{2}}}{x}\right] d z$ 279
Table 4. $\int_{a_{1}}^{\infty} \frac{e^{-x^{2}}}{x(x-z)} d x$. 282
Table 5. $\int_{a_{i}}^{\infty}-\frac{x^{-z^{2}}}{(x-z)} d x$. 284
Table 6. $\frac{1}{b_{1}-H} \log _{e}\left(\frac{b_{1}}{H}\right)=\frac{2.3026}{b_{1}-H} \log _{10}\left(\frac{b_{1}}{H}\right)$ 286
Table 7. $\frac{e^{-x^{2}}}{x}$ 288
Table 8. $f(y)=1-e^{-a} \cos (a)$ 291
Table 9. Parameters of Exponential Equation Tabulated withRespect to Slope of Graph on Certain Kinds of SemlogarithmicPaper292
Table 10. Computation of ($\theta_{0}-v$) and the Ratio $\frac{10^{5}}{B}$ for Salt Water from the Surface Temperature and Serial Values of $10^{5}\left(\sigma-\sigma_{o}\right)$ Determined from Observed Serlal Temperatures and Salinities.. 301

A MATHEMATICAL THEORY OF THE VERTICAL DISTRIBLTION OF TEMPERATURE AND SALINITY IN WATER UNDER THE ACTION OF RADIATION, CONDUCTION, EVAPORATION, AND MIXIVG DUE TO THE RESULTING CONVECTION

DERIVATIOX OF A GENERAL THEORY, AND ILLUSTRATIVE NOMERICAL APPLICATIONS TO A TANK, A LAKE, AND A REGION OF THE NORTH PACIFIC OCEAN

BY
GEORGE FRANCIS McEWEN

INTRODUCTION: QUALITATIVE STATEMENT OF THE PROBLEM

A well recognized and important result of oceanic circulation is its effect upon the "normal" distribution of temperature. The term "normal" is used in this paper to denote that distribution of temperature, salinity, or any other physical or chemical property of water which woul prevail in the absence of a general drift or flow of the water as a whole, either vertical or horizontal. Investigations of regions like that of the coast of California where conditions are usually far from nomal (Mcewen, 1912, 1914, 1915) raise the questions: How can the nomal distribution of temperature be determined from observations male on the actual one, disturbed by both horizontal and vertical difit? What is the rate of drift? At what rate does solar radiation penerrate the surface? At what rate is heat lost from the surface? such considerations led to a general investigation of the relation of temperature to the ever-present factors, radiation, evaporation, and the resulting alternating or mixing motion of small water masse:, and the effect of a given drift, horizontal or vertical, upon the normal distribution of any property of the water. In this paper are presented the derivation of a basic theory, and certain numerical applications selected to illustrate this theory. Investigations of freshwater lakes and reservoirs have proved invaluable in attempting to deal with the more complicated phenomena of the ocean, which formed the incentive for ceveloping this theory.

A general qualitative statement of the problem was presented at the stcond annual meeting of the American Geophysical Union (McEwen. 1921), also a more detailed qualitative explanation was presented
at the fourth annual meeting (McEwen, 1924). The following brief general statement will serve to introduce the detailed mathematical treatment presented in this paper.

The distribution of heat, chemical properties, and substances dissolved in the water of reservoirs, lakes, and oceans depends upon external agencies, such as radiation and evaporation, and upon the internal processes of conduction and diffusion. But the phenomena of conduction and diffusion taking place in large bodies of water are of a type very different from those revealed by controlled laboratory experiments. The well-known laws of conduction and diffusion deduced from laboratory experiments cannot be carried over unaltered into the "field" where the corresponding phenomena are of a large-scale type peculiar to nature (McEwen, 1920). In order to deal mathematically with the problem, a set of assumptions underlying thermal phenomena of exposed bodies of water was formulated with the help of field observations, and corresponding mathematical formulae were derived involving the external agencies and internal processes. Briefly the assumptions are: The solar radiation that penetrates the surface decreases in geometrical proportion to the depth and its direct heating effect is limited to a region extending only a few meters below the surface. Heat is transferred from one level to another within the body of water by means of eddy motion or turbulence in a manner agreeing formally with the law of heat conduction in solids. Evaporation, back radiation, and conduction through the air constitute the cooling ageney, which is confined to a very thin surface film and causes a surface loss of heat at a rate uniformly distributed over the area considered. The increase of the specific gravity of any small portion of water at the surface, due
to this cooling agency, causes it to descend. The amount of increase of specific gravity required to cause the descent of any small portion. of the surface film varies throughout the surface. Accordingly if the temperature of small portions of this thin surface film could be measured, large and irregular temperature variations in a horizontal direction would be indicated. Tbe number of small water masses of a given specific gravity descending at any time is less, the greater the specific gravity. The downward velocity of each portion is assumed to vary directly as the difference between its specific gravity and the general average or observed value at that level. There is a continual disturbance of equilibrium resulting in a succession of overturning motions. Each such motion follows a sufficient increase of stress in the system to overcome its rigidity. Only those particles whose specific gravity exceeds the average value at any level will descend below that level.

The settling of particles must result in a compensating upward displacement of lighter, warmer water. Since the average or observed specific gravity increases with the distance below the surface, the

Howing brief nathematical
bstances disepends upon ad upon the : phenomena of water are d laboratory sion deduced ared into the re-scale type thematically I phenomena ield observaed involving mptions are: : geometrical limited to a eat is transar by means lly with the diation, and y, $\quad h$ is loss of heat The increase surface, due : of increase mall portion lingly if the ye measured, :al direction
of a given the specific ned to vary the general disturbance tions. Each tem to overvity exceeds I.
ing upward or observed surface, the
descending particles of varying specific gravity will stop at different levels. They will be distributed vertically according to the combined effect of the average or observed distribution of specific gravity in a vertical direction and the frequency distribution of values of the specific gravity of the particles at the surface before descending.

The mechanism of convective or mixing circulation corresponding to these assumptions also affords a means of dealing with the distribution of other properties of the water, physical and chemical. This accords with the generally accepted idea that heat conduction, diffusion, and viscosity "so called," in large bodies of water, are really due to convection or the interchange of water particles or small portions of water having different properties (Thorade, 1923)...The special theory developed in this paper, of the settling of relatively cool and heavy masses of surface water, applies to a limited part of the body of water extending from the surface down to a depth probably not exceeding about one hundred meters even in very deep water. Below this limited upper part the classical equations of motion, conduction, and diffusion may be adequate if "virtual" values of the constants found from applying the formulae to field observations are substituted for the laboratory values. These virtual values are of a much higher order of magnitude (Ekman, 1906; Taylor, 1915; McEwen, 1919, 1927; Jeffreys, 1920), than the laboratory values.

FUNDAMENTAL ASSUMPTIONS AND BASIC DEDUCTIONS FROM THEM

Precise Formulation of Fundamental Assumptions

In order to develop mathematical laws of the phenomena of the distribution of any property of water, the foregoing general ideas have been used as a basis for the following precisely formulated assumptions:

1. Heat is supplied to the water at each level by the absorption of radiant energy at the rate of (R) units per unit volume of water. That is, $(R) \times(A) \times(\Delta y)$ equals the time rate at which heat is supplied to the element where (A) is the horizontal cross-section area and the small quantity (Δy) is the thickness of the element. The radiant energy (R) depends upon the time (hour of the day or month of the year) and decreases as the depth increases. At depths exceeding a few meters it may be neglected.
2. At the surface small volume elements are cooled by evaporation, back radiation, and conduction through the air, at a rate assumed to be uniform throughout the whole surface area considered, but the actual reduction of the temperature and change of the salinity of any one element, and the corresponding increase in its specific gravity necessary to cause its descent, vary from one element to another.

That is, different elements are cooled for different lengths of time, and accordingly to different temperatures, before descending. Therefore, the greater the reduction of temperature, that is, the colder the elements, the longer will be the time required to produce the change, the less frequent will be their descent, and the greater will be the velocity of descent.
3. Each element descends to a depth where the average specific gravity (the value that is computed from the observed temperature and salinity) is slightly less than that of the descending element. That is, equilibrium is approached but may not be completely attained. Accordingly, all elements having specific gravities greater than the mean at a given level descend through the plane at that level, and therefore displace an equal volume of lighter water upward through the same plane. Therefore the amount of this upward flow is greatest at the top, and decreases as the depth increases.
4. The velocity of descent of each particle at any time is proportional to the difference between its specific gravity and the average specific gravity of the water at that level.
5. The observed temperature at any depth is the mean of the temperatures of all the elements both ascending and descending through the plane at that level. Any measured property of the water, the salinity, the acidity, etc., at a given depth, is likewise the average of the values for all the elements at that depth.
6. The usual Fourier expression $\mu^{2} \frac{\partial^{2} \theta^{*}}{\partial y^{2}}$ for the time rate of change of temperature due to heat conduction is approximately applicable to exposed bodies of water. The coefficient of turbulence μ^{2} corresponds to the coefficient of heat conduction in solids, but a "virtual value" must be used to agree with "field" conditions. Some modification of this simple assumption regarding heat conduction may be necessary in certain cases, but would not alter the theory of the downward diffusion of surface loss of heat, presented in this paper.
7. Supplementary assumptions are introduced as needed in developing and applying the theory.

Defintrion of Symbols

The following list of symbols introduced for reference in deriving fundamental equations is supplemented farther on as needed.
$y=$ distance below the surface.
$\Delta y=$ thickness of an element.
$x=$ horizontal distance from vertical plane through the limited horizontal line Li_{i}.

$$
t=\text { time } .
$$

: of time, 5. Theresolder the e change, ill be the
e specific aperature nt. That attained. than the evel, and through ; greatest e is pro\geqslant average n of the ; through ater, the rerage of
f ch e icable to responds I value" ration of essary in diffusion
n develdamental
$L_{1}=$ the length and L_{2} the breadth of a rectangular volume of water extending from the surface to the bottom (fig. 1).
$u=f_{1}(y, t)$, the average temperature of the relatively warm and light ascending water masses.
$u_{o}=$ surface value of u.
$u_{0}>u$.
$v=f_{2}(x, y, t)$, temperature of the relatively cold and heavy descending elements.

Fig. 1
$\theta=$ mean of the values of u and v at any level, equals the observed temperature at that level.
$g=$ the cross-section area of a single element, equals $L_{1}(\Delta x)$.
$\phi=$ temperature reduction at the surface due to evaporation and back radiation, equals departure from (θ_{o}).
$\sigma=$ specific gravity, at atmospheric pressure. It is therefore a function of temperature and salinity only.
$\psi=$ the increase in specific gravity due to surface cooling, equals departure from (σ_{o}).
$F(\psi)=$ a function of (ψ) to which the frequency of this departure is proportional. $F(R, T)=$ rate of observed temperature change due to radiation (R) and turbulence (T).

Table 1 shows limits of temperature and specific gravity at the surface and their corresponding frequencies.

Mathematical Formulation and Deduction of Bastc Equations

In dealing with the system of fluid elements just described the attempt is made so to explain their invisible, or unobservable, relations as to account for and describe the observed phenomena. Of course consideration of the precise behavior of all the elements of such a system is impracticable if not impossible. However, in accordance with established concepts of statistical mechanics, definite results of value can be obtained by attempting to deduce the gross behavior of the system which is a consequence of the complex interaction of its elements and the external agencies.
if the
ing w
gravit
there

Assume that a water layer at any level $y=m \Delta y$, whose mean or observed specific gravity is σ_{m} will exchange $F\left(\psi_{m}\right) 2 \delta_{m}$ elements having the specific gravity σ_{m} for the same number of descending elements having the specific gravity $\left(\sigma_{o}+\psi_{m}+\delta_{m}\right)=\left(\sigma_{m}+\delta_{m}\right)>\sigma_{m}$. In the development of this theory it was found convenient to give δ_{m} the form $\delta_{m}=C^{2}\left(\frac{\partial \sigma_{m}}{\partial y}\right)$ which will therefore be used from now on. Elements having a specific gravity less than $\left(\sigma_{m}-\delta_{m}\right)=\left[\sigma_{m}-C^{2}\left(\frac{\partial \sigma_{m}}{\partial y}\right)\right]$ do not reach the level $m \Delta y$, and those whose specific gravity exceeds $\left(\sigma_{m}+\delta_{m}\right)=\left[\sigma_{m}+C^{2}\left(\frac{\partial \sigma_{m}}{\partial y}\right)\right]$ sink below this level. θ_{m} is the mean temperature at the level $y=m \Delta y$.

The rate of descent at the level y or m th layer of elements having the specific gravity σ_{i} is $W_{m, i}=G^{2}\left(\sigma_{i}-\sigma_{m}\right)=f_{3}(x, y, t)$ where $\sigma_{i}>\sigma_{m}$.

Let \mathbf{W} be the average upward velocity of the lighter elements at the m th layer or level y, and assume the heating effect due to absorbed radiation and turbulence to be confined to the rising portion of the water having the temperature u. To correct for the error made by this simplifying assumption, divide the terms involving these effects by the ratio of the cross-section occupied by rising elements to the total cross-section. Denote the ratio between these cross-sections by $\rho<1$, then

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\mathbf{w} \frac{\partial u}{\partial y}+\frac{F(R, T)}{\rho} \tag{1}
\end{equation*}
$$

The downward flow of the (i) group of elements at the level $y=m \Delta y$ would be

$$
\left\{\left[2 C^{2} F\left(\psi_{i}\right) \frac{\partial \sigma_{i}}{\partial y}\right] g\right\} W_{m, i}
$$

if these elements filled the columns containing them and all were sinking with the velocity $W_{m, i}$. The derivative, $\frac{\partial \sigma_{i}}{\partial y}=$ gradient of specific gravity at the level where $\sigma=\sigma_{i}$.

But in each group of the columns having the cross-section area

$$
\left\{\left[2 C^{2} F\left(\psi_{i}\right) \frac{\partial \sigma_{i}}{\partial y}\right] g\right\}
$$

there will be at each level an element of specific gravity $\left(\sigma_{i}\right)$ next to one or more elements having a lower specific gravity corresponding to the temperature (u), followed by another element having the specific gravity σ_{i}, etc. As will be shown, the ratio of the downward-moving elements to the total number in a column is $\rho_{i}=\frac{\Delta y}{\left(W_{m, i}\right) \Delta t_{i}}$, where Δt_{i} is the time required to reduce the temperature by the amount ϕ_{i}. Since this is also the ratio of downward-moving elements to the total number of elements in a cross-section of these columns, the downward flow of the (i) group is

$$
\left[2 C^{2} F\left(\psi_{i}\right) \frac{\partial \sigma_{i}}{\partial y}\right] \frac{g\left(W_{m, i}\right) \Delta y}{\left(W_{m, i}\right) \Delta t}
$$

If (K), the rate per unit area at which heat is removed from the surface by evaporation, back radiation, and conduction through the air, is regarded as constant over the area ($L_{1} L_{2}$), it follows that

$$
\begin{equation*}
\frac{\phi_{i} \Delta y}{\Delta t_{i}}=K \text { or } \frac{\Delta y}{\Delta t_{i}}=\frac{K}{\varphi_{i}} \tag{2}
\end{equation*}
$$

Therefore the downward flow of the (i) group is

$$
\frac{2 g C^{2} K}{\phi_{i}} F\left(\psi_{i}\right)\left(\frac{\partial \sigma_{i}}{\partial y}\right)
$$

which does not contain the velocity term $W_{m, i}$.

Fig. 2
In any arbitrary time interval $\left(t_{1}\right)$, not too large because the velocity $W_{m, i}$ is regarded as constant for that time, $\frac{t_{1}}{\Delta t_{i}}$ groups of elements will be cooled by the amount ϕ_{i} and start to descend. The distance through which the first group descends is therefore $\left(W_{m, i}\right) t_{1}$. At a time Δt_{i} later, the second group, cooled by the same amount, starts to descend, at a time $2 \Delta t_{i}$ the third group starts, etc. Therefore during this time interval t_{1}, the second group moves through the distance ($W_{m, i}$) $\left(t_{1}-\Delta t_{i}\right)$, the third through the distance $\left(W_{m, i}\right)\left(t_{1}-2 \Delta t_{i}\right)$, etc. Therefore the vertical distance between any two successive groups is ($W_{m, i}$) Δt_{i}. In a column of height ($W_{m, i}$) Δt_{i} (fig. 2), the heavy descending elements of temperature v_{i}, and specific gravity σ_{i}, fill the space of height Δy. The remaining space ($W_{m, i} \Delta t_{i}-\Delta y$) is filled by lighter rising elements of temperature (u). A column is assumed to have a cross-section area (g) equal to the average area of a descending element having any temperature departure φ_{i}. Therefore the ratio of the downward-moving elements to the total number in any thin horizontal section of the column is

$$
\frac{\Delta y}{\left(W_{m, i}\right) \Delta t_{i}}=\rho_{i}
$$

which was used on page 205. As Δt_{i} increases, the specific gravity increases, and consequently the velocity $W_{m, i}$ and the distance $\left(W_{m, i}\right) \Delta t_{i}$ increases.

Figure 3 has been drawn to aid in visualizing the distribution and relative numbers of the descending and ascending elements. The relative density of the descending elements is greater in proportion to the shading. The distance between the vertical lines $=\Delta x$. The distance $\left(L_{1}\right)$ of figure 1 is measured in a direction perpendicular to the plane of

Fig. 3.-General qualitative illustration of the distribution of ascending and descending water. Cold and heavy water masses indicated by the intensity of shading, ascending masses, unshaded.
the paper in figure 3, and the cross-section area of an element is g or $L_{1} \Delta x$. All elements cooled by the same amount at the surface are collected together in corresponding (i) groups, and in figure 3 each such group is represented as descending as a whole. However, no such regularity is believed to exist actually. There may be a lag between the descent of different elements of each (i) group, and the columns may be interchanged in any manner.

The subscript (i) signifies a group of descending elements whose temperature is reduced by the amount ϕ_{i}, and whose specific gravity is increased by the amount ψ_{i}. The subscript (m) signifies an intermediate level $m \Delta y$ or y, such that the difference between the mean or observed temperature at that level and the surface temperature is ϕ_{m}, and the difference between the mean or observed specific gravity at that level and the surface specific gravity is ψ_{m}.

Since $\sigma_{i}=\sigma_{o}+\psi_{i}$ the expression for downward flow of the (i) group at the level (y) becomes

$$
\frac{2 g C^{2} K}{\phi_{i}} F\left(\psi_{i}\right) \frac{\partial \psi_{i}}{\partial y}
$$

The upward flow in through the same section of the plane is

$$
\left[2 C^{2} F\left(\psi_{i}\right) \frac{\partial \psi_{i}}{\partial y}\right] g\left(\mathbf{W}_{m, i}\right) \frac{W_{m, i} \Delta t_{i}-\Delta y}{W_{m, i} \Delta t_{i}}
$$

Continuity of mass can be satisfied by equating the upward and downward flow in each group of $\left[2 C^{2} F\left(\psi_{i}\right) \frac{\partial \psi_{i}}{\partial y}\right]$ columns thus

$$
\frac{2 g C^{2} K}{\phi_{i}} F\left(\psi_{i}\right) \frac{\partial \psi_{i}}{\partial y}=2 C^{2} F\left(\psi_{i}\right) \frac{\partial \psi_{i}}{\partial y} g\left(\mathbf{W}_{m, i}\right) \frac{\left(W_{m, i}\right) \Delta t_{i}-\Delta y}{W_{m, i} \Delta t_{i}}
$$

This reduces to

$$
\mathbf{W}_{m, i}=\left[\frac{\left(W_{m, i}\right) \Delta t_{i}}{\left(W_{m, i}\right) \Delta t_{i}-\Delta y}\right] \frac{K}{\phi_{i}}=\frac{\Delta y}{\left(W_{m, i}\right) \Delta t_{i}-\Delta y} W_{m, i}
$$

In this equation ($W_{m, i}$) equals the downward velocity of the (v_{i}) elements through a plane at the depth (y), and ($\mathbf{W}_{m, i}$) equals the upward velocity of the (u) elements of the same column through the same plane. In a column of height $W_{m, i} \Delta t_{i}$, the number of (u) elements is $\frac{\left(W_{m, i}\right) \Delta t_{i}-\Delta y}{\Delta y}$ and the number of $\left(v_{i}\right)$ elements is $\frac{\Delta y}{\Delta y}=1$. The number of such columns,

$$
\left[2 C^{2} F\left(\psi_{i}\right) \frac{\partial \psi_{i}}{\partial y}\right]
$$

equals the number of $\left(v_{i}\right)$ elements in the same portion of all the (i) columns. The number of (u) elements in all of the columns of height ($W_{m, i}$) Δt_{i} corresponding to a given value of (i) is

$$
2 C^{2} F\left(\psi_{i}\right) \frac{\partial \psi_{i}}{\partial y}\left(\frac{W_{m, i} \Delta t_{i}-\Delta y}{\Delta y}\right)
$$

In order to concentrate attention on the problem of weighted averages, suppose the frequency to be the same for each column. That is, for the moment suppose

$$
\left[2 C^{2} F\left(\psi_{i}\right) \frac{\partial \psi_{i}}{\partial y}\right]
$$

to be independent of (i) or the amount of temperature reduction, and denote this constant frequency by (N).
Then $\frac{W_{m, i} \Delta t_{i}-\Delta y}{\Delta y} N$ equals the number of (u) elements in the (i) group at the depth (y).
$\frac{\Delta y}{\Delta y} N$ equals the number of $\left(v_{i}\right)$ elements in the (i) group at the depth (y).

Consider a layer of small thickness (λ), then at the surface where $y=0$, the weighted average of the $\left(u_{o}\right)$ and $\left(v_{i}\right)$ temperatures is
he (i) group

3 is
upward and
us
\underline{y}
n, i
y of the $\left(v_{i}\right)$ equals the through the (u) elements
of all the (i) zas of height
of weighted ach column.
:duction, and the (i) group group at the surface where ures is

$$
\begin{equation*}
\frac{N \sum_{i=0}^{i=n+r} \frac{\left[\left(W_{o, i}\right) \Delta t_{i}-\Delta y\right] \lambda}{\Delta y\left(W_{o, i}\right) \Delta t_{i}} u_{o}+N \sum_{i=0}^{i=n+r} \frac{\Delta y \lambda}{\left(W_{o, i}\right)\left(\Delta t_{i}\right) \Delta y} v_{i}}{N \sum_{i=0}^{i=n+r} \frac{\lambda\left(W_{o, i}\right)\left(\Delta t_{i}\right)}{\left(W_{o, i}\right)\left(\Delta t_{i}\right) \Delta y} \bar{y}}=\theta_{0} \tag{3}
\end{equation*}
$$

where (N) equals the number of columns for a given value of (i), and is for the moment assumed to be independent of the value of (i). Accordingly since the total number of parts of a column between horizontal planes, separated by the distance $W_{o, i} \Delta t_{i}$ within a depth interval λ is $\frac{\lambda}{\bar{W}_{o, i} \Delta t_{i}}$ there would be $(n+r) N$ columns of $\left(\frac{\lambda}{\Delta y}\right)$ elements in each part at all depths. At the surface there are $(n+r)$ values of $\left(v_{i}\right)$, and (N) columns for each of these. But at the depth $y=m \Delta y$ there are only $[(n+r)-m]$ different values of $\left(v_{i}\right)$. In the remaining $(m N)$ columns all of the elements have the temperature (u), which is independent of the position in a given horizontal plane. Therefore at the depth (y) the mean or observed temperature would have the value

$$
\begin{equation*}
\frac{N \sum_{i=m}^{i=n+r} \frac{W_{m, i} \Delta t_{i}-\Delta y}{\Delta y} \frac{\lambda}{W_{m, i} \Delta t_{i}} u+N \sum_{i=m}^{i=n+r} \frac{\lambda v_{i}}{W_{m, i} \Delta t_{i}}+N \sum_{i=0}^{i=m} \frac{\lambda}{\Delta y} u}{N \sum_{i=0}^{i=n+r} \frac{\lambda}{\Delta y}}=\theta_{m} \tag{4}
\end{equation*}
$$

If (u) and (v_{i}) are omitted from the numerator of equation (4) the result equals the denominator, as it should.

Since the frequency $2 C^{2} F\left(\psi_{i}\right) \frac{\partial \psi_{i}}{\partial y}$ does not have the constant value (N) but varies with respect to (i) we must write $\theta_{m}=\left(\theta-\phi_{m}\right)=$

$$
\begin{equation*}
\frac{\sum_{i=m}^{i=n+r} \frac{W_{m, i} \Delta t_{i}-\Delta y}{\Delta y\left(W_{m, i}\right) \Delta t_{i}} F\left(\psi_{i} \frac{\partial \psi_{i}}{\partial y} u_{m}+\sum_{i=m} \frac{F\left(\psi_{i}\right) \frac{\partial \psi_{i}}{\partial y}}{W_{m, i} \Delta t_{i}} v_{i}+\sum_{i=0}^{i=m} \frac{F\left(\psi_{i}\right)}{\Delta y} \frac{\partial \psi_{i}}{\partial y} u_{m}\right.}{\sum_{i=0}^{i=n+r} \frac{F\left(\psi_{i}\right)}{\Delta y} \frac{\partial \psi_{i}}{\partial y}} \tag{5}
\end{equation*}
$$

Equation (5) can readily be transformed into the following, making use of equation (2).

$$
\begin{align*}
& \sum_{i=m}^{i=n+r} u_{m} \frac{\left(W_{m, i}\right) \Delta t_{i}-\Delta y}{\Delta y\left(W_{m, i}\right) \Delta t_{i}} F\left(\sigma_{i}-\sigma_{o}\right) \frac{\partial \sigma_{i}}{\partial y} \tag{6}\\
& +\sum_{i=m}^{i=n+r} \frac{v_{i} F\left(\sigma_{i}-\sigma_{o}\right)}{\left(W_{m, i}\right) \Delta t_{i}} \frac{\partial \sigma_{i}}{\partial y}+\sum_{i=0}^{i=m} u_{m} \frac{F\left(\sigma_{i}-\sigma_{o}\right)}{\Delta y} \frac{\partial \sigma_{i}}{\partial y} \\
& \theta_{m}=工 \quad \sum_{i=0}^{i=n+r} \frac{F\left(\sigma_{i}-\sigma_{o}\right)}{\Delta y} \frac{\partial \sigma_{i}}{\partial y}
\end{align*}
$$

$$
\begin{align*}
& \sum_{i=m}^{i=n+r}\left[u_{m} \frac{\left(W_{m, i}\right) \Delta t_{i}-\Delta y}{\left(W_{m, i}\right) \Delta t_{i}} F\left(\sigma_{i}-\sigma_{o}\right) \frac{\partial \sigma_{i}}{\partial y}+\frac{v_{i} F\left(\sigma_{i}-\sigma_{o}\right) \Delta y}{\left(W_{m, i}\right) \Delta t_{i}} \frac{\partial \sigma_{i}}{\partial y}\right] \\
& +\sum_{\substack{i=0 \\
i=n+r}}^{i=m} u_{m} F\left(\sigma_{i}-\sigma_{c}\right) \frac{\partial \sigma_{i}}{\partial y} \tag{7}\\
& \theta_{m}=\frac{\sum_{i=0}^{i=n+r}}{\sum_{i=0}^{i=n} F\left(\sigma_{i}-\sigma_{o}\right) \frac{\partial \sigma_{i}}{\partial y}} \\
& \sum_{i=m}^{i=n+r}\left(\left[1-\frac{K}{\left(W_{m, i}\right)\left(\theta_{o}-v_{i}\right)}\right] u_{m}+\left[\frac{K}{\left(W_{m, i}\right)\left(\theta_{o}-v_{i}\right)}\right] v_{i}\right) F\left(\sigma_{i}-\sigma_{o}\right) \frac{\partial \sigma_{i}}{\partial y} \\
& +\sum_{\substack{i=0 \\
i=n+r}}^{i=m} u_{m} F\left(\sigma_{i}-\sigma_{o}\right) \frac{\partial \sigma_{i}}{\partial y} \tag{8}\\
& \theta_{m}= \\
& \sum_{i=0}^{i=n+r} F\left(\sigma_{i}-\sigma_{o}\right) \frac{\partial \sigma_{i}}{\partial y}
\end{align*}
$$

Summing the expression on page 208 the downward flow is

$$
\sum_{i=m}^{i=n+r} \frac{2 g C^{2} K}{\phi_{i}} F\left(\psi_{i}\right) \frac{\partial \psi_{i}}{\partial y}=2 g C^{2} \sum_{i=m}^{i=n+r} F\left(\sigma_{i}-\sigma_{a}\right) \frac{\Delta y}{\Delta t} \frac{\partial \sigma_{i}}{\partial y}
$$

The upward flow is

$$
\begin{equation*}
\mathbf{W}_{m} 2 C^{2} g \sum_{i=m}^{i=n+r} \frac{\left[\left(W_{m, i}\right)\left(\Delta t_{i}\right)-\Delta y\right]}{\left(W_{m, i}\right) \Delta t_{i}} F\left(\sigma_{i}-\sigma_{o}\right) \frac{\partial \sigma_{i}}{\partial y}+\sum_{i=0}^{i=m} F\left(\sigma_{i}-\sigma_{o}\right) \frac{\partial \sigma_{i}}{\partial y} \tag{9}
\end{equation*}
$$

Therefore, after equating the upward and downward flow we obtain

$$
\begin{equation*}
\mathbf{W}_{m}=\frac{\sum_{i=m}^{i=n+r} F\left(\sigma_{i}-\sigma_{o}\right) \frac{\Delta y}{\Delta t_{i}} \frac{\partial \sigma_{i}}{\partial y}}{\sum_{i=m}^{i=n+r}\left[1-\frac{\Delta y}{\left(W_{m, i}\right) \Delta t_{i}}\right] F\left(\sigma_{i}-\sigma_{o}\right) \frac{\partial \sigma_{i}}{\partial y}+\sum_{i=0}^{i=m} F\left(\sigma_{i}-\sigma_{o}\right) \frac{\partial \sigma_{i}}{\partial y}} \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{W}_{m}=\frac{K \sum_{i=m}^{i=n+r} \frac{F\left(\sigma_{i}-\sigma_{o}\right)}{\left(\theta_{o}-v_{i}\right)} \frac{\partial \sigma_{i}}{\partial y}}{\sum_{i=m}^{i=n+r}\left[1-\frac{K}{\left(W_{m, i}\right)\left(\theta_{o}-v_{i}\right)}\right] F\left(\sigma_{i}-\sigma_{o}\right) \frac{\partial \sigma_{i}}{\partial y}+\sum_{i=0}^{i=m} F\left(\sigma_{i}-\sigma_{o}\right) \frac{\partial \sigma_{i}}{\partial y}} \tag{11}
\end{equation*}
$$

If in the numerator of equation (8) the coefficients of $\left(u_{m}\right)$ are retained but (u_{m}) itself is omitted and the $\left(v_{i}\right)$ term is omitted, the result must be the ratio referrec to on page 205 , since (ρ) equals the ratio of the number of ascending elements at a given level to the total number of elements. The result is

$$
\begin{equation*}
-\sigma_{c} \frac{\partial \sigma_{i}}{n} \tag{9}
\end{equation*}
$$

re obtain

SIMPLIFIED EXPRESSION OF BASIC EQUATIONS In terms of certain integrals

Transformation of Basic Equattons
For greater corvenience, and clearness, the following notation is introduced:

$$
z=h\left(\sigma-\sigma_{o}\right), F\left(\sigma-\sigma_{o}\right)=F_{1}\left[h\left(\sigma-\sigma_{o}\right)\right]=F_{1}(z), B=\frac{\theta_{o}-\theta}{\sigma-\sigma_{o}} .
$$

In these expressions $(\theta),(\sigma)$, and (z) correspond to the depth $y=m \Delta y$, $\left(\theta^{\prime}\right),\left(\sigma^{\prime}\right)$, and $\left(z^{\prime}\right)=(x)$ will be used for other depths, and are regarded as variables when integrating, therefore $W=G^{2}\left(\sigma_{i}-\sigma_{m}\right)=G^{2}\left(\sigma^{\prime}-\sigma\right)$.

There will be a depth such that the observed temperature equals the reduced temperature (v) of any surface element. In fresh water the temperature reduction corresponding to the increment $\left(\sigma-\sigma_{o}\right)$ of specific gravity of a surface element equals the difference between the surface temperature and the temperature at the depth where the specific gravity equals (σ). Therefore $\frac{1}{B}=\frac{\sigma-\sigma_{o}}{\theta_{o}-\theta}$ can be computed directly from the observed temperatures. But in sea water, after computing the densities (σ) and the differences $\left(\sigma-\sigma_{o}\right)$ from the given temperatures and salinities, the ratio $\frac{\sigma-\sigma_{o}}{\theta_{o}-\theta}$ cannot be used unchanged for $\left(\frac{1}{B}\right)$ as in the case of fresh water. This is because the lowering of the temperature of an element at the surface below θ_{o} is accompanied by a corresponding increase in salinity as a result of evaporation. These corresponding changes in temperature and salinity will not in general agree with the changes observed in a vertical direction at the depth of the given density difference. As shown on page 221 the relation between the corresponding differences in temperature and salinity at the surface is

$$
\begin{equation*}
\left(S-S_{o}\right)=\lambda \frac{S_{o}}{L}\left(\theta_{o}-v\right) \tag{77}
\end{equation*}
$$

where (λ) is somewhat less than 1. Assuming the values 1, 33.75, and 600 for (λ) , $\left(S_{o}\right)$, and (L), respectively, the relation is

$$
\left(S-S_{o}\right)=.056\left(\theta_{a}-v\right)
$$

An explanation of methods of computing $\left(\frac{1}{B}\right)$ for sea water accompanies table 10, pages 301 to 305.
Introducing the value of

$$
W=G^{2}\left(\sigma_{i}-\sigma_{m}\right)=G^{2}\left(\sigma^{\prime}-\sigma\right)=G^{2}\left(\frac{z^{\prime}}{h}-\frac{z}{h}\right)=\frac{G^{2}}{h}\left(z^{\prime}-z\right)=\frac{G^{2}}{h}(x-z),
$$

and substituting for (v) the observed temperature (θ^{\prime}) at the corresponding depth, the equations for $(\theta),(\mathbf{W})$, and (ρ) become, respectively

$$
\begin{equation*}
u=\frac{u \int_{z}^{z_{1}}\left[1-\frac{K}{\frac{G^{2}}{h}(x-z)\left(\theta_{o}-\theta^{\prime}\right)}\right] \frac{F_{1}(x) d x}{h}+\frac{K}{h} \int_{z}^{z_{1}} \frac{\theta^{\prime} F(x) d x}{\frac{G^{2}}{h}(x-z)\left(\theta_{0}-\theta^{\prime}\right)}+\frac{u}{h} \int_{z_{0}}^{z} F_{1}(x) d x}{\frac{1}{h} \int_{z_{0}}^{z_{1}} F_{1}(x) d x} \tag{16}
\end{equation*}
$$

[Yol. 2 $y=m \Delta y$, regarded ' $-\sigma$). re equals vater the) of speween the the speI directly mputing peratures $\left.\frac{1}{B}\right)$ as in iperature sponding sponding with the he given the corface is
3.75 , and
ompanies
: -2),
he correpectively

1929] McEwen: Distribution of Temperature and Salinity

$$
\begin{align*}
\mathbf{W} & =\frac{\frac{K}{h} \int_{z}^{z 1} \frac{F(x)}{\left(\theta_{0}-\theta^{\prime}\right)} d x}{\frac{1}{h} \int_{z}^{z_{1}}\left[1-\frac{K}{\frac{G^{2}}{h}(x-z)\left(\theta_{0}-\theta^{\prime}\right)}\right] F_{1}(x) d x+\frac{1}{h} \int_{z_{0}}^{z} F_{1}(x) d x} \tag{17}\\
\rho & =\frac{\frac{1}{h} \int_{z}^{21}\left[1-\frac{K}{\frac{G^{2}}{h}(x-z)\left(\theta_{0}-\theta^{\prime}\right)}\right] F_{1}(x) d x+\frac{1}{h} \int_{z_{0}}^{z} F_{1}(x) d x}{\frac{1}{h} \int_{z_{0}}^{21} F_{1}(x) d x}
\end{align*}
$$

Since

$$
\begin{gather*}
\left(\theta_{0}-\theta^{\prime}\right)=B\left(\sigma-\sigma_{o}\right)=\frac{B}{h}\left(x-z_{0}\right)=\frac{B}{h} x \tag{19}\\
\theta=\frac{u \int_{z_{0}}^{z_{1}} F_{1}(x) d x+\frac{K h^{2}}{G^{2}} \int^{\frac{1}{2}} \frac{\left(\theta^{\prime}-u\right) F_{1}(x) d x}{(x-z) B x}}{\int_{z_{0}}^{z_{1}} F_{1}(x) d x} \tag{20}\\
W K \int_{z^{2}}^{z_{1}} \frac{F_{1}(x)}{B x} d x \tag{21}\\
\int_{z_{0}}^{z_{1}} F(x) d x-\frac{K h^{2}}{G^{2}} \int_{z}^{z_{1}} \frac{F_{1}(x) d x}{(x-z) B x} \tag{22}\\
\rho=\frac{\int_{z_{0}}^{z_{1}} F_{1}(x) d x-\frac{K h^{2}}{G^{2}} \int_{z}^{z_{1}} \frac{F_{1}(x) d x}{(x-z) B x}}{\int_{z_{0}}^{z_{1}} F_{1}(x) d x} .
\end{gather*}
$$

and

$$
\begin{equation*}
\theta=u-\frac{K h^{2}}{G^{2}} \frac{\int_{2}^{z_{1}} \frac{\left(u-\theta^{\prime}\right) F_{1}(x) d x}{(x-z) B x}}{\int_{z_{0}}^{z_{1}} F_{1}(x) d x} \tag{23}
\end{equation*}
$$

From equation (1) page 205

$$
\begin{align*}
\frac{\partial u}{\partial t} & =\left\{\frac{h K \int_{z}^{z_{1}} \frac{F_{1}(x)}{B x} d x}{\int_{z_{0}}^{z_{1}} F_{1}(x) d x-\frac{K h^{2}}{G^{2}} \int_{z}^{z_{1}} \frac{F_{1}(x) d x}{(x-z) B x}}\right\} \tag{24}\\
\frac{1}{\rho} & =\frac{1}{1-\frac{\frac{K h^{2}}{G^{2}} \int_{z}^{z_{1}} \frac{F_{1}(x) d x}{(x-z) B x}}{\int_{1}^{z_{1}} F_{1}(x) d x}} \tag{25}
\end{align*}
$$

Since

$$
\begin{align*}
\theta^{\prime}= & \theta_{o}-\frac{B x}{h} \tag{26}\\
& \frac{u-\theta^{\prime}}{B x}=\frac{u-\theta_{o}+\frac{B x}{h}}{B x}=\frac{u-\theta_{o}}{B x}+\frac{1}{h} \tag{27}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\theta=u-\frac{K h^{2}}{G^{2}}\left[\frac{1}{\int_{z_{\theta}}^{z_{1}} F_{1}(x) d x}\right] \int_{z}^{z_{1}} \frac{F_{1}(x)}{(x-z)}\left[\frac{u-\theta_{o}}{B x}+\frac{1}{h}\right] d x \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta=u-\frac{K h^{2}}{G^{2}}\left\{\frac{\left(u-\theta_{o}\right) \int_{z}^{z_{1}} \frac{F_{1}(x) d x}{(x-z) B x}}{\int_{z_{o}}^{z_{1}} F_{1}(x) d x}+\frac{1}{h} \frac{\int_{z}^{z_{1}} \frac{F_{1}(x)}{x-z} d x}{\int_{z_{o}}^{z_{1}} F_{1}(x) d x}\right\} \tag{29}
\end{equation*}
$$

Interpretation of Certain Integrals and Modified Notatron

Assume that the least value of (z) capable of causing a downward displacement of a small water mass from the surface has the value (H). Then the expression for sums should begin with this value H instead of $z_{o}=0$. Accordingly, the lower limits of the integrals should be increased by this amount, and denoting any of the integrals by $\int_{z}^{z_{1}} f(x) d x$, the following modified values should be used

$$
\begin{equation*}
f(x-H) \underset{(z+H)}{H+} \underset{f}{f}(x) d x \tag{30}
\end{equation*}
$$

or the closer approximation

$$
\begin{equation*}
f(x+H) H+f(x+2 H) \underset{(z+2 H)}{H}+\int^{z} f(x) d x \tag{31}
\end{equation*}
$$

For brevity the following notation is ntroduced:

$$
\begin{align*}
& \int_{z}^{z_{1}} \frac{F_{1}(x)}{B x} d x=\left\{H \frac{F_{1}(z+H)}{B(z+H)}+\int_{(z+H)}^{z_{1}} \frac{F_{1}(x)}{B x} d x\right\}=P_{1}(z) \tag{32}\\
& \int_{z_{0}}^{z_{1}} F_{1}(x) d x=H F_{1}(H)+f_{H}^{z_{1}} F_{1}(x) d x=A_{1} \tag{33}\\
& \int_{z}^{z_{1}} \frac{F_{1}(x) d x}{B x(x-z)}=\frac{F_{1}(z+H)}{B(z+H)}+\int_{(z+H)}^{z_{1}} \frac{F_{1}(x) d x}{B x(x-z)}=P_{2}(z) \tag{34}\\
& \int_{z}^{z_{1}} \frac{F_{1}(x)}{(x-z)} d x=F_{1}(z+H)+\int_{(z+H)}^{z_{1}} \frac{F_{1}(x)}{(x-z)} d x=P_{3}(z) \tag{35}\\
& \int_{z}^{z_{1}} \frac{F_{1}(x)}{x} d x=H \frac{F_{1}(z+H)}{z+H}+\int_{(z+H)}^{z_{1}} \frac{F_{1}(x)}{x} d x=P_{4}(z) \tag{36}\\
& \left\{\begin{array}{l}
A_{2}=h K, \\
\left\{\begin{array}{l}
A_{2} \\
A_{1}
\end{array}=A_{i},\right. \\
A_{3}=\frac{h^{2} K,}{G^{2}} \quad \frac{A_{3}}{A_{1}}=A_{3}
\end{array}\right\} \tag{37}
\end{align*}
$$

Expression of Bastc Eqtations in the New Notamon

Making use of the new notation the temperature equations take the following form, more convenient in numerical applications.

$$
\begin{align*}
& \theta=u-A_{3}\left\{\left(u-\theta_{0}\right) \frac{P_{2}(z)}{A_{1}}+\frac{P_{3}(z)}{h_{1}}\right\} \tag{38}\\
& \theta=u-A_{5}\left\{\left(u-\theta_{0}\right) P_{2}(z)+\frac{P_{3}(z)}{h}\right\} \tag{39}\\
& \theta=u\left[1-A_{5} P_{2}(z)\right]-\frac{A_{5}}{h} P_{3}(z)+A_{5} \theta_{0} P_{2}(z) \tag{40}\\
& u=\frac{\theta-A_{5} \theta_{0} P_{2}(z)+\frac{A_{5}}{h} P_{3}(z)}{1-A_{5} P_{2}(z)} \tag{41}\\
& \frac{\partial u}{\partial t}=A_{4} \frac{P_{1}(z)}{1-A_{5} P_{2}(z)} \frac{\partial u}{\partial y}+\frac{F(R, T)}{\rho} \tag{42}\\
& \frac{1}{\rho}=\frac{1}{1-A_{5} P_{2}(z)}, A_{5} P_{2}(z)=(1-\rho) \tag{43}
\end{align*}
$$

Another form for the relation of (u) to (θ) will now be derived. Denote the ratio

$$
\frac{\left(\theta-\theta^{\prime}\right)}{(x-z)} \text { by } \frac{B^{\prime}}{h}
$$

Then

$$
\frac{u-\theta^{\prime}}{x-z}=\frac{B_{1}}{h}+\frac{u-\theta}{x-z}
$$

and equation (23) for θ becomes

$$
\begin{align*}
& \theta=u-A_{5}\left\{\frac{1}{h} \int_{z}^{z_{1}} \frac{B_{1} F_{1}(x)}{B x} d x+(u-\theta) \int_{z}^{z_{1}} \frac{F_{1}(x)}{(x-z) B x} d x\right\} \tag{44}\\
& \theta=u-\frac{A_{5}}{h} \int_{z}^{z_{1}} B^{\prime} \frac{F_{1}(x)}{x} d x-A_{5}(u-\theta) \int_{z}^{z_{1}} \frac{F_{1}(x)}{(x-z) B x} d x \tag{45}
\end{align*}
$$

where $B^{\prime}=\frac{B_{1}}{B}$
Substituting a mean value (\mathbf{B}^{\prime}) for the approximately constant quantity (B^{\prime}), and using the new notation for the integrals, equation (44) reduces to the approximate forms

$$
\begin{equation*}
\theta=u-\frac{A_{5} \mathbf{B}^{\prime}}{h} P_{4}(z)-A_{5}(u-\theta) P_{2}(z) \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
(u-\theta)=\frac{\frac{A_{5} \mathbf{B}^{\prime}}{h} P_{4}(z)}{1-A_{5} P(z)} \tag{47}
\end{equation*}
$$

APPLICATION OF THE THEORY OF TEMPERATURE DISTRIBUTION TO THE DISTRIBUTION OF OTHER PROPERTIES OF THE WATER

General Equations Derived for the Distribution of Any Properity
Consider the distribution of any property, of which the observed value is (S), and the value corresponding to the ascending elements is (\mathbf{S}). The quantity S^{\prime} is regarded as a variable corresponding to (x), the variable value of (z) at the depth in question. The number of elements descending from the surface and departing from the surface value by the amount $\left(S^{\prime}-S_{o}\right)$ is assumed to be proportional to $F_{1}(x)$. This implies that $\left(S^{\prime}-S_{o}\right)$ is the same for all elements for which $\left(\sigma^{\prime}-\sigma_{o}\right)$ or x is the same. Thus in equation (23), replacing (θ) by (S), and (u) by (\mathbf{S}) results in the equation

$$
\begin{equation*}
S=\mathbf{S}-\frac{K h^{2}}{G^{2}} \frac{\int_{z}^{z_{1}} \frac{\left(\mathbf{S}-S^{\prime}\right) F_{1}(x)}{(x-z) B x} d x}{\int_{z_{0}}^{z_{1}} F_{1}(x) d x} \tag{48}
\end{equation*}
$$

Similarly equation (24) becomes

$$
\begin{equation*}
\frac{\partial \mathbf{S}}{\partial t}=\left\{\frac{h K \int_{z}^{z_{1}} \frac{F_{1}(x)}{B x} d x}{\int_{z_{0}}^{z_{1}} F_{1}(x) d x-\frac{K h^{2}}{G^{2}} \int_{z}^{z_{1}} \frac{F_{1}(x) d x}{(x-z) B x}}\right\} \frac{\partial \mathbf{S}}{\partial y}+\frac{F(T)}{\rho} \tag{49}
\end{equation*}
$$

Since (L) is a large number, about 600 , a close approximation is

$$
\begin{equation*}
S_{o}+\Delta S_{o}=\left[1+\frac{\lambda\left(\theta_{o}-v\right)}{L}\right] S_{o}=\left(1+\frac{\lambda B x}{h L}\right) S_{o} \tag{54}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\frac{\Delta S_{o}}{\Delta t}=\left(\frac{\lambda B x}{h L \Delta t}\right) S_{o} \tag{55}
\end{equation*}
$$

But the $\left(S_{o}+\Delta S_{o}\right)$ is the value of $\left(S^{\prime}\right)$ in equation (48) which therefore reduces to

$$
\begin{equation*}
S=\mathbf{S}-\frac{K h^{2}}{G^{2}} \frac{\int_{z}^{z_{1}} \frac{\left[\mathbf{S}-S_{o}\left(1+\frac{\lambda B x}{L h}\right)\right] F_{1}(x) d x}{(x-z) B x}}{\int_{z_{0}}^{z_{1}} F_{1}(x) d x} \tag{56}
\end{equation*}
$$

Expression in New Notation of Equations Derived for Properties
Other than Temperature
For convenience these equations are expressed in the modified notation explained on pages 214 and 216. Equations (48), (49), and (56) are respectively (57), (58), and (59) in the new notation.

$$
\begin{gather*}
S=\mathbf{S}-A_{5} \mathbf{S} P_{2}(z)+A_{5} \int_{z}^{\infty} S^{\prime} \frac{F_{1}(x)}{B x(x-z)} d x \tag{57}\\
\frac{\partial \mathbf{S}}{\partial t}=A_{4}\left[\frac{Y_{1}(z)}{\rho}\right] \frac{\partial \mathbf{S}}{\partial y}+\frac{F(T)}{\rho} \tag{58}\\
S=\mathbf{S}-A_{5}\left\{\left(\mathbf{S}-S_{o}\right) P_{2}(z)-\frac{\lambda S_{o}}{L h} P_{3}(z)\right\} \tag{59}
\end{gather*}
$$

Because (S^{\prime}) of the general equation (57) varies with (x), the integral expression was kept in the last term, but numerical applications would be facilitated by using a series of values of (z) with corresponding values of $\left(S^{\prime}\right)$ and the function $P_{2}(z)$. The special equation (59) derived for salinity is free from this complication.

USEFUL TRANSFORMATIONS AND COMBINATIONS OF THE FOUR BASIC EQUATIONS; COMPUTATION OF RATES OF UPWELLING AND RATES OF EVAPORATION FROM THE SEA
Derivation of a Single Temperature Equation from the Pair of Equations (41) and (42) by Eliminating (u)

The expression

$$
\begin{equation*}
u=\frac{\theta}{\rho}-\left(\frac{1-\rho}{\rho}\right) \theta_{0}+\frac{A_{5}}{h} \frac{P_{3}(z)}{\rho} \tag{60}
\end{equation*}
$$

is easily derived from equations (41) and (43), and for convenience will be used here instead of its equivalent (41). To facilitate the derivation of the fundamental equations the vertical current or "upwelling" was neglected. Now for the sake of generality this effect is included, accordingly with the aid of equation (43), equation (42) becomes

$$
\begin{equation*}
\frac{\partial u}{\partial t}=A_{4} \frac{P_{1}(z)}{\rho} \frac{\partial u}{\partial y}+W \frac{\partial u}{\partial y}+\frac{F(R, T)}{\rho} \tag{61}
\end{equation*}
$$

where (W) equals the upwelling velocity. At the surface, equation (60) reduces to

$$
\begin{equation*}
\left(u_{o}-\theta_{o}\right)=\frac{A_{5}}{h} \frac{P_{3}\left(z_{o}\right)}{\rho_{o}} \tag{62}
\end{equation*}
$$

The partial differentiation of equation (60) with respect to (y) and (t) gives

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{1}{\rho}\left\{\frac{\partial}{\partial t}\left(\theta-\theta_{o}\right)-\left[\frac{\theta-\theta_{o}}{\rho}+\frac{A_{5} P_{3}(z)}{h \rho}\right] \frac{\partial \rho}{\partial t}+\frac{\rho \partial \theta_{o}}{\partial t}+\frac{A_{5} \partial P_{3}(z)}{h}\right\} \tag{63}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\frac{1}{\rho}\left\{\frac{\partial \theta}{\partial y}-\left[\frac{\theta-\theta_{o}}{\rho}+\frac{A_{5} P_{3}(z)}{h \rho}\right] \frac{\partial \rho}{\partial y}+\frac{A_{5} \partial P_{3}(z)}{h \partial y}\right\} \tag{64}
\end{equation*}
$$

Substituting the above values of $\frac{\partial u}{\partial t}$ and $\frac{\partial u}{\partial y}$ in equation (61) gives

$$
\begin{gather*}
\frac{\partial \theta}{\partial t}-\left\{A_{4} P_{1}(z) \frac{\partial \theta}{\partial y}+W \frac{\partial \theta}{\partial y}+F(R, T)\right\} \\
=A_{5}\left\{P_{2}(z)\left[\frac{\partial \theta}{\partial t}-W \frac{\partial \theta}{\partial y}-F(R, T)+\frac{\partial \theta_{o}}{\partial t}\right]+\left(\theta_{a}-\theta\right)\left[\frac{\partial P_{2}(z)}{\partial t}\right.\right. \\
\left.\left.-\frac{1}{h} \frac{\partial P_{3}(z)}{\partial t}\right]-\left[\frac{A_{4} P_{1}(z)}{1-A_{5} P_{2}(z)}+W\right] \frac{\partial P_{2}(z)}{\partial y}+\frac{1}{h} \frac{\partial P_{3}(z)}{\partial y}\right\}+A_{5}^{2}\left\{-P_{2}(z)^{2} \frac{\partial \theta_{o}}{\partial t}\right. \\
-\frac{P_{3}(z)}{h} \frac{\partial P_{2}(z)}{\partial t}+\frac{P_{2}(z)}{h} \frac{\partial P_{3}(z)}{\partial t}+\left[\frac{A_{4} P_{3}(z)}{h\left[1-A_{5} P_{2}(z)\right]} \frac{\partial P_{2}(z)}{\partial y}\right] \\
\times\left[P_{1}(z)+\frac{W}{A_{4}}\left[1-A_{5} P_{2}(z)\right]\right\} \tag{65}
\end{gather*}
$$

In dealing with mean annual values or other cases in which the derivative with respect to time can be neglected, equation (65) reduces to

$$
\begin{align*}
& -\left\{A_{4} P_{1}(z) \frac{\partial \theta}{\partial y}+W \frac{\partial \theta}{\partial y}+F(R, T)\right\}=A_{5}\left\{P_{2}(z)\left[-W \frac{\partial \theta}{\partial y}-F(R, T)\right]\right. \\
& \left.-\left[\frac{A_{4} P_{1}(z)}{1-A_{5} P_{2}(z)}+W\right] \frac{\partial P_{2}(z)}{\partial y}+\frac{1}{h} \frac{\partial P_{3}(z)}{\partial y}\right\} \tag{66}\\
& +A_{5}^{2}\left\{\left[\frac{A_{4} P_{3}(z)}{h\left[1-A_{5} P_{2}(z)\right]} \frac{\partial P_{2}(z)}{\partial y}\right]\left[P_{1}(z)+\frac{W}{A_{4}}\left[1-A_{5} P_{2}(z)\right]\right]\right\}
\end{align*}
$$

Derivation of a Single Salinity Equation from the Pair of Equations (58) and (59) by Eliminating (S)
Solving equation (59) for (\mathbf{S}) and using equation (43) we obtain

$$
\begin{equation*}
\mathbf{S}=\frac{S}{\rho}+\left(1-\frac{1}{\rho}\right) S_{o}-\left(\frac{A_{5}}{h}\right) \frac{\lambda S_{o}}{L} \frac{P_{3}(z)}{\rho} \tag{67}
\end{equation*}
$$

which becomes

$$
\begin{equation*}
\left(S_{o}-\mathbf{S}_{o}\right)=\frac{A_{5}}{h} \frac{\lambda S_{o}}{L} \frac{P_{0}\left(z_{o}\right)}{\rho_{o}} \tag{68}
\end{equation*}
$$

for the surface.
Differentiating equation (67) partially with respect to (t) and (y) we get
$\frac{\partial S}{\partial t}=\frac{1}{\rho}\left\{\frac{\partial}{\partial t}\left(S-S_{o}\right)-\left[\frac{S-S_{o}}{\rho}-\frac{A_{5}}{h} \frac{\lambda S_{o}}{L} \frac{P_{3}(z)}{\rho}\right] \frac{\partial \rho}{\partial t}+\frac{\rho \partial S_{o}}{\partial t}-\frac{A_{5}}{h} \frac{\lambda S_{o}}{L} \frac{\partial P_{3}(z)}{\partial t}\right\}(69)$
and

$$
\begin{equation*}
\frac{\partial \mathbf{S}}{\partial y}=\frac{1}{\rho}\left\{\frac{\partial S}{\partial y}-\left[\frac{S-S_{o}}{\rho}-\frac{A_{5}}{h} \frac{\lambda S_{o}}{L} \frac{P_{3}(z)}{\rho}\right] \frac{\partial \rho}{\partial y}-\frac{A_{5}}{h} \cdot \frac{\lambda S_{o}}{L} \frac{\partial P_{3}(z)}{\partial y}\right\} \tag{70}
\end{equation*}
$$

Introducing the upwelling velocity in equation (58) gives

$$
\begin{equation*}
\frac{\partial \mathbf{S}}{\partial t}=A_{4} \frac{P_{1}(z)}{\rho} \frac{\partial \mathbf{S}}{\partial y}+W \frac{\partial \mathbf{S}}{\partial y}+\frac{F(T)}{\rho} \tag{71}
\end{equation*}
$$

Substituting the values of $\frac{\partial S}{\partial t}$ and $\frac{\partial S}{\partial y}$ in equation (71) we obtain

$$
\begin{gather*}
\frac{\partial S}{\partial t}-\left\{A_{4} P_{1}(z) \frac{\partial S}{\partial y}+W \frac{\partial S}{\partial y}+F(T)\right\} \tag{72}\\
=A_{5}\left\{P_{2}(z)\left[\frac{\partial S}{\partial t}-W \frac{W \partial S}{\partial y}-F(T)+\frac{\partial S_{o}}{\partial t}\right]\right. \\
+\left(S_{o}-S\right)\left[\frac{\partial P_{2}(z)}{\partial t}+\frac{\lambda S_{o}}{L h} \frac{\partial P_{3}(z)}{\partial t}\right] \\
\left.-\left[\frac{A_{4} P_{1}(z)}{1-A_{5} P_{2}(z)}+W\right] \frac{\partial P_{2}(z)}{\partial y}-\frac{\lambda S_{o}}{L h} \frac{\partial P_{3}(z)}{\partial y}\right\} \\
+A_{5}^{2}\left\{-P_{2}(z) \frac{\partial S_{o}}{\partial t}+\frac{\lambda S_{o}}{L h} P_{3}(z) \frac{\partial P_{2}(z)}{\partial t}-\frac{\lambda S_{o}}{L h} P_{2}(z) \frac{\partial P_{3}(z)}{\partial t}\right. \\
-\left[P_{1}(z)+\frac{W}{A_{4}}\left(1-A_{5} P_{2}(z)\right)\right]
\end{gather*}
$$

Also dividing equation (68) by equation (62) gives

Therefore

$$
\begin{equation*}
\frac{S_{o}-\mathbf{S}_{o}}{u_{o}-\theta_{o}}=\frac{\lambda S_{o}}{L} \tag{77}
\end{equation*}
$$

$$
\begin{equation*}
\lambda=\frac{L}{S_{o}}\left(\frac{\Delta \mathbf{S}_{o}}{\Delta \theta_{o}}\right) \tag{78}
\end{equation*}
$$

But $\Delta \mathbf{S}_{o}$ and $\Delta \theta_{o}$ are simply the surface changes of sea water exposed to the meteorological conditions prevailing over the sea surface and having the temperature of the sea surface. Accordingly the ratio of these increments obtained from pan observations should approximate to the values corresponding to the sea surface if the pan temperature equals the sea surface temperature and the change of pan temperature due to the heating effect of solar radiation is subtracted from the observed change in pan temperature to obtain $\left(\Delta \theta_{o}\right)$. The relatively large diurnal variation of pan temperatures could be eliminated by using a multiple of twenty-four hours for the time interval. Neglecting the effect of differences in back radiation from the two surfaces and convection through the air, differences in rate of evaporation will not effect the ratio $\left(\frac{\Delta \mathbf{S}_{o}}{\Delta \Theta_{o}}\right)$ since the numerator and denominator will be changed in the same proportion. In general (Richardson and Montgomery, 1929) evaporation is the main cooling factor. Accordingly, if the change in pan temperature due to the heating effect of solar radiation is eliminated, and the resultant temperature change is substituted for $\Delta \theta_{0}$, and the salinity change is substituted for $\Delta \mathbf{S}_{o}$, the value of (λ) can be estimated approximately by substitution in equation (78). The rate of available solar radiation given by the simplified equation (84) affords a means of making this correction. Also, the correction would not be required for night observations.

If observations of wet- and dry-bulb temperatures in the air are available, the value of (λ) can be found without pan observations as follows. Denote by (R^{\prime}) the ratio of heat loss by conduction through the air to that lost by evaporation. Denoting by (B) the back radiation from the sea surface, we have

$$
\begin{equation*}
E=\frac{(K-B)-R^{\prime} \lambda K}{L}=\frac{K\left(1-\lambda R^{\prime}\right)-B}{L} \tag{79}
\end{equation*}
$$

and

$$
\begin{equation*}
E=\frac{K-B}{L\left(1+R^{\prime}\right)} \tag{80}
\end{equation*}
$$

since (K) is the total rate of heat loss from the surface due to evaporation, back radiation, and convection (see page 206). Equating these two values of (E) and solving for λ results in the following equation
[VOL. 2

- exposed face and ratio of roximate ıperature ıperature from the relatively nated by reglecting faces and 1 will not will be ad A. at:dingly, if radiation lbstituted tlue of (λ) (78). The ation (84) ion would
he air are vations as in through s radiation

1929]
McEwen: Distribution of Temperature and Salinity

$$
\begin{equation*}
\lambda=\frac{K-B}{K\left(1+R^{\prime}\right)}=\frac{1-\frac{B}{K}}{1+R^{\prime}} \tag{81}
\end{equation*}
$$

But R^{\prime} is, by definition, the "Bowen ratio" which can readily be computed from the surface water temperature, the wet-bulb air temperature, and the dry-bulb air temperature by Bowen's theoretical formula based on thermodynamics and the kinetic theory of gases (Bowen, 1926).

His formula is-

$$
\begin{equation*}
R^{\prime}=.46\left(\frac{\theta_{w}-\theta_{a}}{P_{w}-P_{a}}\right)\left(\frac{P}{760}\right) \tag{82}
\end{equation*}
$$

where
$\theta_{w}=$ surface water temperature
$\theta_{a}=$ air temperature
$P_{w}=$ partial pressure of water vapor at the temperature θ_{w}
$P_{a}=$ partial pressure of water vapor at the temperature θ_{a}
The back radiation can be estimated from Stefan's formula, (Cummings and Richardson, 1927) assuming the water to radiate as a black body. According to Richardson and Montgomery (1929) this result should be multiplied by a factor approximating .90 which gives

$$
\begin{equation*}
B=.90 \times 49.5 \times 10^{-10} \theta_{o}{ }^{4} \tag{83}
\end{equation*}
$$

gram cal. per sq. cm. per hour where (θ_{o}) is the absolute surface temperature. The value of (K) can be estimated by means of the simplified approximate formula as explained on pages 224 and 229. Moreover, since the only observations that this method requires are serial temperatures and salinities, and wet- and dry-bulb temperatures of the air, only the usual oceanographic apparatus is necessary. Actual field tests should be made to determine what accuracy can be obtained by this method.

GENERAL EXPLANATION OF METHODS OF COMPUTING THE PHYSICAL CONSTANTS OF THE EQUATIONS FROM NUMERICAL DATA

Method of Applying the Approximate Simplified Equation

Besides deriving basic equations and reducing them to forms more convenient for use, various auxiliary mathematical problems must be solved in order to carry on further theoretical studies and make numerical applications. The simplified approximate form of the temperature equation remaining, after neglecting the second member of (65), has been exclusively used in preliminary investigations, involves the most essential factors in the theory, and apparently must be employed as the first step in the application of the exact equations of temperature and other properties of the water. The second member of equation (65) is multiplied by the factor $\left(A_{5}\right)$ and may be regarded as a correction
whose magnitude varies with the difference between the temperature (u) of the rising elements and the observed temperature (θ), or mean of the temperature, of the rising and sinking elements. This correction is evidently a maximum at the surface and decreases to zero at the depth where the downward diffusion of cold surface elements becomes zero. Since $\left(A_{5}\right)$ varies inversely as the velocity of descent for a given difference between the specific gravity of the descending elements at any level and the average specific gravity at that level, the higher this velocity, the smaller will be $\left(A_{5}\right)$ and, accordingly, the smaller will be the correction. Apparently in practical applications we are justified in neglecting this correction entirely except for depths small relative to the depth within which this particular phenomenon is significant. Accordingly consider first the special approximate equation

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=\frac{A_{2}}{A_{1}} P_{1}(z) \frac{\partial \theta}{\partial y}+W_{1} f(y) \frac{\partial \theta}{\partial y}+F(R, T) \tag{84}
\end{equation*}
$$

where the upwelling velocity (W) equals the constant $\left(W_{1}\right)$ multiplied by the depth function $f(y)$.

Numerical applications require a suitable specific form of the solar radiation-turbulence function $F(R, T)$. This expression may be regarded as the sum of two others, the first is the rate at which a thin layer absorbs heat directly from the penetrating solar radiation; the second is the rate at which heat flows into and out of this layer because of turbulence. In depths exceeding a few meters, the direct solar radiation effect can be neglected and in general for an appropriate value of the constant (C) the difference $(\theta-C$) has been found to approximate closely to a simple exponential function of the depth (y) for depths exceeding five meters. Therefore, the usual expression $\left(\mu^{2} \frac{\partial^{2} \theta}{\partial y^{2}}\right)$ for the time rate of temperature change due to heat flow becomes $\mu^{2} C_{1} a^{2} e^{-a y}$ where

$$
\begin{equation*}
(\theta-C)=C_{1} e^{-a y} \tag{85}
\end{equation*}
$$

$\left(C_{1}\right)$ and (a) are positive constants determined empirically, and (μ^{2}) is the coefficient of turbulence, which corresponds to the coefficient of heat conduction in solids or undisturbed fluids.

The usual exponential law of absorption of radiation having a definite wave length is assumed to hold approximately for the sun's radiant energy. Accordingly the rate of temperature change at depth (y) due to direct absorption of solar radiation may be expressed by the equation

$$
\begin{equation*}
R=R_{o} a \frac{e^{-a y}}{1-e^{-a y_{1}}} \tag{86}
\end{equation*}
$$

srature mean ecti at the comes given nts at ar this vill be stified lative icant.

Where (R_{o}) is the rate at which solar radiation penetrates the surface, less the rate at which it is absorbed by the bottom, (a) is the absorption coefficient of total solar radiation, and (y_{1}) is the depth of the bottom. This form for (R) is convenient since the total rate of absorption of solar radiation within the layer from surface to bottom is given by the integral,

$$
\begin{equation*}
\int_{0}^{y_{1}} R d y=R_{o} \int_{0}^{y_{1}} \frac{a e^{-a y} d y}{1-e^{-a y_{1}}}=R_{o} \tag{87}
\end{equation*}
$$

The rate at which solar radiation penetrates the surface is evidently

$$
R_{o}+\frac{R_{o} e^{-a y_{1}}}{1-e^{-a y_{1}}}=\frac{R_{o}}{1-e^{-a y_{1}}}
$$

Except for shallow bodies of water where y is less than about five meters the denominator is practically equal to unity and R_{o} is the rate at which solar radiation penetrates the surface. Also, the intensity of the radiation at any depth is $R_{o} e^{-a y}$. Thus in general $F(R, T)$ is the sum of two exponential functions of the depth y. Consider now the case in which only one of these-the expression for turbulence-is significant, then

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=\frac{A_{2}^{\prime}}{A_{1}} P_{1}(z) \frac{\partial \theta}{\partial y}+W_{1} f(y) \frac{\partial \theta}{\partial y}+\left(\mu^{2} C_{1} a^{2}\right) e^{-a y} \tag{88}
\end{equation*}
$$

where, according to Ekman's theory of upwelling in the sea (McEwen, 1918, page 402) we may use

$$
\begin{equation*}
f(y)=1-e^{-a y} \cos a y \tag{89}
\end{equation*}
$$

as a reasonable approximation. The constant (a) depends upon the velocity of the wind producing the current. Although it appears to be impracticable to obtain a general solution of the differential equation (88), the derivatives can be evaluated from suitable observations by well-known graphical or numerical processes, and in the following explanation it is assumed that such computations have been made.

The procedure for numerical application to a body of water of moderate depth and having no upwelling will now be explained. Suppose for example, that the depth is 23 meters, that of Lake Mendota. First determine the constants in equation (85) as follows:

$$
\begin{aligned}
& \theta_{29}-\theta_{19}=C_{1}\left[e^{-20 a}-e^{-19 a}\right] \\
&=\Delta \theta_{19}=C_{1} e^{-19 a}\left(e^{-a}-1\right) \\
& \theta_{19}-\theta_{15}=C_{1}\left[e^{-19 a}-e^{-18 a}\right]=\Delta \theta_{18}=C_{1} e^{-18 a}\left(e^{-a}-1\right) \\
& \theta_{19}-\theta_{17}=C_{1}\left[e^{-18 a}-e^{-17 a}\right]=\Delta \theta_{17}=C_{1} e^{-17 a}\left(e^{-a}-1\right) \\
& \theta_{17}-\theta_{16}=C_{1}\left[e^{-17 a}-e^{-16 a}\right]=\Delta \theta_{16}=C_{1} e^{-16 a}\left(e^{-a}-1\right) \\
& C+C_{1} e^{-19 a}=\theta_{19} \\
& C+C_{1} e^{-18 a}=\theta_{18} \\
& C+C_{1} e^{-17 a}=\theta_{17} \\
& C+C_{1} e^{-16 a}=\theta_{16}
\end{aligned}
$$

Therefore

$$
\theta_{i}=C+\frac{\Delta \theta_{i}}{e^{-a}-1}
$$

and values of θ_{i} plotted as ordinates on squared paper against values of $\Delta \theta_{i}$ as abscissae should fall on a straight line whose intercept on the vertical axis is the value of (C). From the slope relation we get

$$
e^{-a}=1+\frac{1}{\text { slope }}
$$

but a more accurate method is to plot $(\theta-C)$ as ordinates against (y) on semilogarithmic paper, and determine (a) from the slope of this line. Also C_{1} is the intercept of this line on the vertical axis. In the interval from the bottom or near the bottom, to say 12 meters within which the term $\frac{A_{2}}{A_{1}} P_{1}(z) \frac{\partial \theta}{\partial y}$ is small and may be neglected in a first approximation, we may write

$$
\begin{equation*}
\sum_{12}^{21} \frac{\partial \theta}{\partial t}=\mu^{2} C_{1} a^{2} \sum_{12}^{21} e^{-a y} \tag{90}
\end{equation*}
$$

thus determining $\left(\mu^{2} C_{1} a^{2}\right)$ and μ^{2}. Through the point $y=0$ and the value of ($\mu^{2} C_{1} a^{2}$) draw a straight line on the same logarithmic paper parallel to the graph of $(\theta-C)$. The agreement of this line with the points found by plotting $\frac{\partial \theta}{\partial t}$ against (y) for $12<y<21$ indicates the accuracy with which equation (88) fits the data in that interval. In case the graph of $(\theta-C)$ changes slope at a value of (y) between o and (12), another straight line should be fitted to this upper portion using, if necessary, a different value of (C). This simply means that the turbulence coefficient varies with the depth, and the part of the second graph drawn through the point $\left[o, \mu^{2} C_{1} a^{2}\right]$ should be replaced by another having this new slope and cutting the original line at the point corresponding to the value of (y) at which a marked change of slope occurs. Thus we can estimate approximately the value of $F(R, T)$ at all depths except at and newr the surface where a more complicated function might be required owing to the combined action of radiation, turbulence, and surface disturbances. Next compute $\left[\frac{\partial \theta}{\partial t}-F(R, T)\right]$ which is the value of $\frac{A_{2}}{A_{1}} P_{1}(z) \frac{\partial \theta}{\partial y}=h K P_{1}(z) \frac{\partial \theta}{\partial y}\left(\frac{1}{A_{1}}\right)$ due to the downward diffusion of surface heat losses. Experience has shown that the frequency function $F_{1}(x)$ may be assumed to equal $e^{-x^{2}}$, which is that of the normal law of error (see page 265). Therefore dividing the above expression by $\frac{\partial \theta}{\partial y}$, results in the equation

For values of (z) corresponding to depths exceeding 1 or 2 meters the small quantity (H) may be neglected and the first member becomes

$$
K^{h} \frac{\int_{z}^{\infty} \frac{e^{-x^{2}}}{B x} d x}{.885}
$$

Since (B) is approximately constant and the value of this expression can be computed from the second member of equation (91), tind by trial with the aid of table 2, a value of (h) that results in a series of values approximately proportional to the computed values, then (K) can be found by division of separate values or oi sume. The rate of incoming radiation less the rate of absorption of radiation by the bottom is evidently

$$
\begin{equation*}
R_{o}=K+\int_{0}^{y / 2} \frac{\partial \theta}{\partial t} d y \tag{92}
\end{equation*}
$$

Another expression is

$$
\begin{align*}
& R_{o}=\int_{0}^{y_{1}}\left\{\frac{\partial \theta}{\partial t}-\frac{A_{2}}{\Lambda_{1}} P_{1}(z) \frac{\partial \theta}{\partial y}\right\} d y \\
= & \int_{0}^{y_{1}}\left(\mu^{2} C_{1} a^{2}\right) e^{-a y} d y=\mu^{2} C: \alpha\left(1-e^{-a z}\right)
\end{align*}
$$

where $\left(y_{1}\right)$ is the depth of the water,

$$
\begin{equation*}
\int_{0}^{y_{1}} h \mathbb{P}_{1}(z) \frac{\partial \theta}{\partial y} d y=-.885 \tag{94}
\end{equation*}
$$

since

$$
\begin{equation*}
1.13 \int_{0}^{y_{1}} h P_{1}(z) \frac{\partial \theta}{\delta y} d y \text { must equal }-1 \tag{94}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\frac{A_{2}}{A_{1}}=1.13 h K \tag{95}
\end{equation*}
$$

Having obtained the physical constants compute $\frac{\partial \theta}{\partial t}$ and compare with the observed values in order to test the validity of the mathematical formulation. Obtain a closer approximation by using $\left[\frac{\partial \theta}{\partial t}-\frac{A_{0}}{A_{1}} P_{1}(z) \frac{\partial \theta}{\partial y}\right]$ instead of $\left(\frac{\partial \theta}{\partial t}\right)$ in equation (90) and summing with the interval 1 or 2 to 21. Then recompute the quantities $(h),(K)$, and $\left(R_{o}\right)$.

Otherwise fit a straight line to the points found by plotting $\left(\frac{\partial \theta}{\partial t}\right)$ on semilogarithmic paper against (y) for the depths (12) to (20), and determine the intercept $\left(\mu^{2} C_{a} a^{2}\right)$ for $y=o$. Then find ($\mu^{2} C_{1} a^{2}$) where (a) has the value obtained by plotting ($\theta-C$) and draw a line through this point for $y=0$, having the slope corresponding to the new value of (a).

Experience has indicated that the downward diffusion of surface cooling in the ocean is practically limited to a depth of 100 meters. A depth unit of 10 meters has been found convenient for such ocean investigations. Denote the upwelling velocity (W) by

$$
\begin{equation*}
W=W_{1} f(y) \tag{96}
\end{equation*}
$$

Compute the constants $\left(C_{1}\right),(C)$ and (a) by the method already described. For values of (y) between (5) and (10), the term $\frac{A_{2}}{A_{1}} P_{1}(z) \frac{\partial \theta}{\partial y}$ may be neglected in a first approximation, therefore

$$
\begin{gather*}
\sum_{y=5}^{y=10} \frac{\partial \theta}{\partial t}-W_{1} \sum_{y=5}^{y=10} f(y) \frac{\partial \theta}{\partial y}=T \sum_{y=0}^{y=10} \frac{a e^{-a y}}{1-e^{-10 a}} \tag{97}\\
\frac{T a}{1-e^{-10 a}}=\mu^{2} C_{1} a^{2} \tag{98}
\end{gather*}
$$

Assume a value of (W_{1}) and compute the corresponding value of (T). The expression

$$
\begin{equation*}
T \frac{a e^{-a y}}{1-e^{-10 a}}=\mu^{\mu^{2} \theta} \frac{\partial^{2} \theta}{\partial y^{2}} \tag{99}
\end{equation*}
$$

is the rate of temperature change at the level (y) due to turbulence. Assume the same law to hold for $(y)=\frac{1}{2}, 3,2$, and 1. Draw a straight line on semilogarithmic paper (where the abscissa is (y)) through the point $y=0$ and $T \frac{a}{1-e^{-10 a}}$ parallel to the graph of $(\theta-C)$ on the same paper. Then plot the values of $\left[\frac{\partial \theta}{\partial t}-W, f(y) \frac{\partial \theta}{\partial y}\right]$ as ordinates against (y) as abscissae for $y=5,6,7,8,9$, and 10 . These points should fall on the same line and their departure from this line will indicate an appro-
priate revision of the assumed value of (W_{1}). Having thus determined the best estimate of $\left(W_{1}\right)$, read off the values of $T a \frac{e^{-a y}}{1-e^{-10 a}}$ from the graph and subtract them from $\left[\frac{\partial \theta}{\partial t}-W_{1} f(y) \frac{\partial \theta}{\partial y}\right]$, for $y=0,1,2$, etc. These differences are due to the downward diffusion of surface cooling and should equal $\frac{h K}{A_{1}} P_{1}(z) \frac{\partial \theta}{\partial y}$.

Plot these differences as ordinates on semilogarithmic paper against depths as abscissae. According to experience the points will fall approximately on a straight line. Draw this line, then find by trial a value of h such that the values of the expression $h\left[\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x \frac{\partial \theta}{\partial y}\right]$, plotted as ordinates on the same paper against (y) as abscissae, determine a line parallel to the first. Having thus found the value of (h), closer approximations to the other constants may be found. Also the available solar radiation penetrating the surface may be computed from the equation

$$
\begin{equation*}
R_{o}=\int_{0}^{10} \frac{\partial \theta}{\partial t} d y+W_{1} \int_{0}^{10} f(y) \frac{\partial \theta}{\partial y} d y+K \tag{100}
\end{equation*}
$$

The value of $F(R, T)$ can now be expressed by the equation

$$
\begin{equation*}
F(R, T)=\left[R_{o} \frac{a_{o} e^{-a_{o} y}}{1,-e^{-10 o_{0}}}\right]+\left[\mu^{2} \frac{\partial^{2} \theta}{\partial y^{2}}\right] \tag{101}
\end{equation*}
$$

which provides an estimate of the absorption coefficient a_{0}.
Also in the trial computations, as well as in computations of corrections to preliminary values, equation (88) may be divided by $e^{-a y}$ after computing (a). Then from assumed or trial values of (W_{1}) and (h) we can compute ($\mu^{2} C_{1} a^{2}$) and (K) by plotting on squared paper the equation

$$
\begin{equation*}
\left[\frac{\frac{\partial \theta}{\partial t}-W_{1} f(y) \frac{\partial \theta}{\partial y}}{e^{-a y}}\right]=K\left[\frac{h P_{1}(z)}{e^{-a y}} \frac{\partial \theta}{\partial y}+\mu^{2} C_{1} a^{2}\right] \tag{102}
\end{equation*}
$$

where the first member is an ordinate, and the coefficient of (K) is an abscissa.

Methods of Applying the Exact Equation

After estimating the constants of equation (88) compute (H) from the equation

$$
\begin{equation*}
\left.\left.\int_{H}^{z}\left\{\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x\right\} d z+H \int_{H}^{z} \frac{e^{-x^{2}}}{x} d x=-\frac{1}{2}\left\{h P_{1}(z) \frac{\partial \theta}{\partial y}\right]+h P_{0}(z) \frac{\partial \theta^{-}}{\partial y}\right]\right\} \tag{103}
\end{equation*}
$$

where (z) corresponds to the depth 1. If (z) corresponds to the depth (2), the second member is

$$
\left.\left.\left.-1 / 2\left(h P_{1}(z) \frac{\partial \theta}{\partial y}\right]+2 h P_{1}(z) \frac{\partial \theta}{\partial y}\right]+h P_{1}(z) \frac{\partial \theta}{\partial y}\right]\right)
$$

or

$$
\left.\left.-1 / 3\left(h P_{1}(z) \frac{\partial \theta}{\partial y}\right]+4\left[h P_{1}(z) \frac{\partial \theta}{\partial y}\right]+h P_{1}(z) \frac{\partial \theta}{\partial y}\right]\right)
$$

If $(H)>0.001$ the first integral above,

$$
\int_{H}^{z}\left\{\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x\right\} d z
$$

is equivalent to

$$
\int_{.001}^{z}\left[\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x\right] d z-\int_{.001}^{H}\left[\int_{H}^{\infty} \frac{e^{-x^{2}}}{x} d x\right] d H
$$

therefore the first member of equation (103) can be evaluated by means of tables 1 and 3 .

From equation (60) we get the approximate equations

$$
\begin{align*}
& u=\theta+A_{5} r\left[1+A_{5} r\right]\left[\frac{P_{3}(z)}{h r}-\left(\theta_{o}-\theta\right)\right] \tag{104}\\
& u=\theta+A_{5} P_{3}(z)\left[1+A_{5} r\right]\left[\frac{1}{h}-\left(\theta_{o}-\theta\right) \frac{r}{P_{3}(z)}\right] \tag{105}
\end{align*}
$$

where $(r)=P_{2}(z)$, and third and higher powers of $\left(A_{5} r\right)$ are neglected. The first is more convenient for smaller values of (y) and the second for larger values. Neglecting $\left(A_{5} r\right)$ in the squared brackets and differentiating equation (104) with respect to (t), then with respect to (y), gives

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\left\{\frac{\partial \theta}{\partial t}+A_{5} \frac{\partial}{\partial t}\left[r\left(\frac{P_{3}(z)}{h r}-\left(\theta_{0}-\theta\right)\right)\right]\right\} \tag{106}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\left\{\frac{\partial \theta}{\partial y}+A_{5} \frac{\partial}{\partial y}\left[r\left(\frac{P_{3}(z)}{h r}-\left(\theta_{0}-\theta\right)\right)\right]\right\} \tag{107}
\end{equation*}
$$

Substitute these derivatives in equation (61) thus obtaining

$$
\begin{gathered}
\frac{\partial \theta}{\partial t}=-\left[A_{4} P_{1}(z)+W\right] \frac{\partial \theta}{\partial y}-A^{\prime} e^{-a y} \\
=-A_{5}\left\{\frac{\partial}{\partial t}\left[r\left(\frac{P_{3}(z)}{h r}-\left(\theta_{o}-\theta\right)\right)\right]-\left(A_{4} P_{1}(z)+W\right) \frac{\partial}{\partial y}\left[r\left(\frac{P_{3}(z)}{h r}-\left(\theta_{0}-\theta\right)\right)\right]\right. \\
\left.-r A^{\prime} e^{-a y}-r A_{4} P_{1}(z) \frac{\partial \theta}{\partial y}\right\}
\end{gathered}
$$

which is appropriate for small values of (y). Neglecting $\left(A_{5^{r}}\right)$ in the squared brackets, the derivatives of equation (105) are

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\left\{\frac{\partial \theta}{\partial t}+A_{5}-\frac{\partial}{\partial t}\left[P_{3}(z)\left(\frac{1}{h}-\left(\theta_{o}-\theta\right) \frac{r}{P_{3}(z)}\right)\right]\right\} \tag{109}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\left\{\frac{\partial \theta}{\partial y}+A_{5} \frac{\partial}{\partial y}\left[P_{3}(z)\left(\frac{1}{h}-\left(\theta_{o}-\theta\right) \frac{r}{P_{3}(z)}\right)\right]\right\} \tag{110}
\end{equation*}
$$

Substituting these values in equation (61) gives

$$
\begin{gather*}
\frac{\partial \theta}{\partial t}-\left(A_{4} P_{1}(z)+W \frac{\partial \theta}{\partial y}-A^{\prime} e^{-a y}\right)=-A_{5}\left\{\frac{\partial}{\partial t}\left[P_{3}(z)\left(\frac{1}{h}-\left(\theta_{0}-\theta\right) \frac{r}{P_{3}(z)}\right)\right]\right. \\
-\left(A_{4} P_{1}(z)+W\right) \frac{\partial}{\partial y}\left[P_{3}(z)\left(\frac{1}{h}-\left(\theta_{0}-\theta\right) \frac{r}{P_{3}(z)}\right)\right]-r A^{\prime} e^{-a y} \tag{111}\\
\left.-r A_{4} P_{1}(z) \frac{\partial \theta}{\partial y}\right\}
\end{gather*}
$$

which is adapted to large values of (y). Compute the coefficient of $\left(A_{5}\right)$ in equations (108) and (111) using tabulations of the functions on pages 263 to 291 , then solve for A. At the surface, equation (60) becomes
$u_{o}=\theta_{o}+\frac{A_{5} P_{3}\left(z_{o}\right)}{h \rho_{o}}=\theta_{o}+A_{5} \phi_{o}$ where ϕ_{o} is known approximately.
Compute $\frac{\partial \phi}{\partial t}$ and $\frac{\partial \phi}{\partial y}$
Then:

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}-\left[A_{4} \frac{P_{1}(z)}{\rho}+W\right] \frac{\partial \theta}{\partial y}-\frac{A^{\prime}}{\rho} e^{-a y}=-A_{5}\left\{\frac{\partial \phi}{\partial t}-\left[A_{4} \frac{P_{1}(z)}{\rho}+W\right] \frac{\partial \phi}{\partial y}\right\} \tag{113}
\end{equation*}
$$

from which a closer approximation to the constants can be found. Thus all values are found that are needed to substitute in equation (72) in order to compute (λ).

An alternative procedure can be based upon

$$
\begin{equation*}
u=\theta+\frac{A_{5}}{h} P_{5}(z)\left[1+A_{5} r\right] \tag{114}
\end{equation*}
$$

derived from equation (45) where

$$
\begin{equation*}
P_{5}(z)=\int_{z}^{z_{1}} B^{\prime} \frac{e^{-x^{2}}}{x} d x \tag{115}
\end{equation*}
$$

and $B^{\prime}=\frac{B_{1}}{B}$ (see page 216). The result is

$$
\begin{gather*}
\left\{\frac{\partial \theta}{\partial t}-\left[A_{4} P_{1}(z)+W\right] \frac{\partial \theta}{\partial y}-A^{\prime} e^{-a y}\right\}+\frac{W}{h} \frac{\partial P_{5}(z)}{\partial y}+r A^{\prime} e^{-a y} \tag{116}\\
=-A_{5}\left\{\left[\frac{\partial P_{5}(z)}{h \partial t}-\frac{A_{4} P_{1}(z)+W}{h} \frac{\partial P_{5}(z)}{\partial y}-r A^{\prime} e^{-a y}\right]-A_{4} P_{1}(z) r \frac{\partial \theta}{\partial y}\right\} \\
-A_{5}^{2}\left\{\frac{\partial\left[r P_{5}(z)\right]}{h \partial t}-\frac{A_{4} P_{1}(z)+W}{h} \frac{\partial\left[r P_{5}(z)\right]}{\partial y}\right\}
\end{gather*}
$$

In the first approximation to the value of $\left(A_{5}\right)$ the $\left(A_{5}^{2}\right)$ term can be neglected. Values of (u) corresponding to (θ) can now be computed by means of equation (60), and the derivatives of these values of (u) can be computed and substituted in equation (61). Thus closer approximations to the quantities first found can be computed.

Methods of Correcting for Effect of Radiation Absorbed by the Bottom in Shallow Water

If the water is less than four or five meters deep, an appreciable amount of solar heat may be directly absorbed by the bottom. Accordingly, the water will be heated directly by solar radiation which it absorbs and will be heated indirectly because of contact with the heated bottom. Thus a thin layer of the water in contact with the bottom becomes heated and these lighter elements tend to rise. Assume that different elements become heated by different amounts before rising and proceed as was done with the settling of the cold heavy surface elements.

The following additional notation will be used in deriving the correction formula.

$$
\begin{aligned}
& \int_{0}^{y_{b}} R d y=M_{1}=\text { rate at which heat is absorbed by the water of } \\
& \text { depth } y_{b} . \\
& \int_{y_{b}}^{\infty} R d y=M_{2}=\text { rate at which the heat is absorbed by the bottom. } \\
& R_{o}=M_{1}+M_{2}=\text { rate at which solar energy penetrates the surface. }
\end{aligned}
$$

m can aputed of (u) ser ap-
eciable lecordhich it th the ith the Assume before heavy
ater of jottom. surface.

$$
\begin{gathered}
z=h\left(\sigma-\sigma_{o}\right), z^{\prime}=h^{\prime}\left(\sigma_{b}-\sigma\right), z^{\prime}=h^{\prime}\left(\sigma_{b}-\sigma_{o}\right) \\
B=\frac{\theta_{o}-\theta}{\sigma-\sigma_{o}}, B^{\prime}=\frac{\theta-\theta_{b}}{\sigma_{b}-\sigma}
\end{gathered}
$$

Neglect as before the difference between the observed temperature and that of the elements that are rising, (conditions are reversed here).

Then the approximate simplified form of the correction to the rate of temperature change becomes

$$
\begin{equation*}
-h^{\prime} K^{\prime}\left[\frac{\int_{z^{\prime}}^{\infty} \frac{F_{1}\left(z^{\prime}\right)}{B^{\prime} z^{\prime}} d z^{\prime}}{\int_{z_{j}^{\prime}}^{\infty} F_{1}\left(z^{\prime}\right) d z^{\prime}}\right] \frac{\partial \theta}{\partial y}=-h^{\prime} K^{\prime} \frac{P_{1}\left(z^{\prime}\right)}{A_{1}} \frac{\partial \theta}{\partial y} \tag{116}
\end{equation*}
$$

where $P_{1}\left(z^{\prime}\right)$ is found by substituting $\left(z^{\prime}\right)$ and $\left(B^{\prime}\right)$ for (x) and (B) in equation (32) and the limits of the integral are $\left(z^{\prime}+H\right)$ and ∞. The limits for the integral in $\left(A_{1}\right)$ are (H) and ∞ (see equation 33). The temperature equation corresponding to no upwelling, but including the effect of bottom heating, is therefore

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=\left[h K \frac{P_{1}(z)}{A_{1}}-h^{\prime} K^{\prime} \frac{P_{1}\left(z^{\prime}\right)}{A_{1}}\right] \frac{\partial \theta}{\partial y}+A^{\prime} e^{-a y} \tag{118}
\end{equation*}
$$

Also

$$
\begin{equation*}
R_{o}=K+\int_{o}^{y_{b}} \frac{\partial \theta}{\partial t} d y+M_{2}-K^{\prime} \tag{119}
\end{equation*}
$$

therefore

$$
\begin{equation*}
M_{1}=K+\int_{o}^{\cdot y_{b}} \frac{\partial \theta}{\partial t} d y-K^{\prime} \tag{120}
\end{equation*}
$$

In applying equation (118) to shallow water consider first the upper half in which $P_{1}\left(z^{\prime}\right)$ can be neglected. Compute (a) by plotting ($\theta-C$) against the depth (y) on semilogarithmic paper. Denote A^{\prime} by $M_{1} \frac{a}{1-e^{-a u_{b}}}$ and divide the equation by $\frac{a e^{-a u}}{1-e^{-a y_{b}}}$ thus obtaining

$$
\begin{equation*}
\left[\frac{\frac{\partial \theta}{\partial t}}{\frac{a e^{-a y}}{1-e^{-a y_{b}}}}\right]=\left[\frac{h \frac{P_{1}(z)}{A_{1}} \frac{\partial \theta}{\partial y}}{\frac{a e^{-a y}}{1-e^{-a y_{b}}}}\right] K+M_{1} \tag{121}
\end{equation*}
$$

Plot on squared paper, values of the first member as ordinates against values of the coefficient of (K) as abscissae, thus obtaining (K) and M_{1}. Using the value of (K) thus found, write

$$
\begin{equation*}
\left[\frac{\frac{\partial \theta}{\partial t}}{\frac{a e^{-a y}}{1-e^{-a y_{b}}}}-K\left(\frac{\frac{h P_{1}(z)}{A_{1}} \frac{\partial \theta}{\partial y}}{\frac{a e^{-a y}}{1-e^{-a y_{b}}}}\right)\right]=-K^{\prime}\left[\frac{\frac{h^{\prime} P_{1}\left(z^{\prime}\right)}{A_{1}} \frac{\partial \theta}{\partial y}}{\frac{a e^{-a y}}{1-e^{-a y_{b}}}}\right]+M_{1} \tag{122}
\end{equation*}
$$

and plot on squared paper to obtain (K) and another estimate of M_{1}.

Methods of Solving the Equations in Order to Predict the Temperature and Salintty from Given Inttial Conditions

In addition to methods of computing the physical constants in the equations of temperature, salinity, and other properties of the water, there is the problem of predicting the values of these quantities from given initial conditions. A general solution of these partial differential equations would provide the answer to this problem, but such a solution has not been obtained. There may indeed be no general solution of equations of this type, but various numerical and graphical methods are available for approximating as closely as desired to the particular solution for any given initial conditions. The following brief statement of numerical methods of solving the equations of temperature distribution in a fresh-water lake is presented to illustrate how the problem of prediction may be attacked. The same methods can be extended to the more complicated problem involving other properties of the water.

Consider the pair of equations

$$
\begin{align*}
& \theta=u-\left(\frac{A_{3}}{A_{1}}\right) \int_{z}^{\infty} \frac{\left(u-\theta^{\prime}\right) e^{-x^{2}}}{(x-z) B x} d x \tag{123}\\
& \frac{\partial u}{\partial t}=K\left(\frac{h}{A_{1}}\right) \frac{\int_{z}^{\infty} \frac{e^{-x^{2}}}{B x} d x}{\rho} \frac{\partial u}{\partial y}+\frac{F(R, T)}{\rho}
\end{align*}
$$

where

$$
\begin{equation*}
\rho=1-\frac{A_{3}}{A_{1}} \int_{z}^{\infty} \frac{e^{-x^{2}}}{(x-z) B x} d x \tag{125}
\end{equation*}
$$

against and M_{1}.
\boldsymbol{I}_{1} (122) \geqslant of M_{1}. ferential solution ution of methods articular atement e di probien xtended of the

In terms of the notation defined on page 215 these reduce to

$$
\begin{align*}
& \theta=\rho u+\left[\theta_{0} P_{2}(z)-\frac{P_{3}(z)}{h}\right] A_{3} \tag{126}\\
& u=\theta+\left[\left(\theta-\theta_{0}\right) P_{2}(z)+\frac{P_{3}(z)}{h}\right] \frac{A_{5}}{\rho} \text { and } \tag{127}\\
& \frac{\partial u}{\partial t}=K\left(\frac{h}{A_{1}}\right) \frac{P_{1}(z)}{\rho} \frac{\partial u}{\partial y}+\frac{F(R . T)}{\rho} \tag{128}
\end{align*}
$$

where

$$
\begin{equation*}
\rho=1-A_{5} P_{2}(z) \tag{129}
\end{equation*}
$$

Assuming $A_{5} P_{2}(z)$ to be small (see p. 223) equation (127) can be expanded into the rapidly converging series,
$u=\theta+\left[\left(\theta-\theta_{0}\right) P_{2}(z)+\frac{P_{3}(z)}{h}\right] A_{3}+\left[\left(\theta-\theta_{2}\right) P_{2}(z)+\frac{P_{3}(z)}{h}\right]\left[A_{5} P_{2}(z)\right] A_{5}$

$$
\begin{equation*}
+\ldots \tag{130}
\end{equation*}
$$

At the surface equations (126), (127), and (130) are respectively

$$
\begin{align*}
& \theta_{o}=u_{0}-\frac{P_{3}\left(z_{o}\right)}{h \rho_{o}} A_{5} \tag{131}\\
& u_{o}=\theta_{o}+\frac{P_{3}\left(z_{o}\right)}{h \rho_{o}} A_{0} \tag{132}
\end{align*}
$$

and

$$
\begin{equation*}
u_{0}=\theta_{0}+\frac{P_{3}\left(z_{0}\right)}{h} A_{3}+\frac{P_{3}\left(z_{0}\right)}{h}\left(A_{5} P_{0}\left(z_{n}\right)\right) A_{5}+\ldots . \tag{133}
\end{equation*}
$$

To solve the pair of simultaneous equations (127) and (128) substitute the initial vahes of (8) in (127) for each lepth. Compute $\frac{\partial u}{\partial y}$ by numerical or graphical differentiation and substitute in equation (128). Then $\frac{\partial u}{\partial t} \Delta t=\Delta u$, the approximate increment of (u) at each depth corresponding to the time increment (Δt). Substitute $(u+\Delta u)$ in equation (126) to determine the value of $(\theta+\Delta \theta)$. Substitute $(\theta+\Delta \theta)$ in equation (127), compute the derivative $\frac{\partial u+\perp u)}{\partial y}$, substitute in (128), and compute the next increment $\Delta u=\frac{\partial(u+\Delta u)}{\partial t} \Delta t$ cte. Continuing this step-by-step method results in the approximate temperature at each depth and at the ent of each of a succession of time intervals. The same schedule of computations is described symbolically as follows, where the subscript to the left of a letter is numerically equal to the number of time interyals, and the superscript denotes the order of the approximation.
${ }{ }^{u} u=\varphi_{1}\left({ }_{o} \theta\right)$, compute $\frac{\partial_{o} u}{\partial y}$ by numerical differentiation,

$$
\begin{aligned}
& { }_{1} u^{\prime}-{ }_{o} u^{\prime}=\frac{\partial_{o} u}{\partial t} \Delta t=\varphi_{2}\left({ }_{o} \theta, \frac{\partial_{o} u}{\partial y}\right) \Delta t, \text { compute }{ }_{1} u^{\prime} \text { and } \frac{\partial_{1} u^{\prime}}{\partial y}, \\
& { }_{1} \theta^{\prime}=\varphi_{3}\left({ }_{1} u^{\prime},{ }_{o} \theta\right),{ }_{2} u^{\prime}-{ }_{1} u^{\prime}=\frac{\partial_{1} u^{\prime}}{\partial t} \Delta t=\varphi_{2}\left({ }_{1} \theta^{\prime}, \frac{\partial_{1} u^{\prime}}{\partial y}\right) \Delta t, \\
& { }_{2} \theta^{\prime}=\varphi_{3}\left({ }_{2} u^{\prime},{ }_{1} \theta^{\prime}\right), \text { compute } \frac{\partial_{2} u^{\prime}}{\partial y} \text { by numerical differentiation. } \\
& { }_{3} u^{\prime}-{ }_{2} u^{\prime}=\frac{\partial_{2} u^{\prime}}{\partial t} \Delta t=\varphi_{3}\left({ }_{2} \theta^{\prime}, \frac{\partial_{2} u^{\prime}}{\partial y}\right) \Delta t, \text { etc. }
\end{aligned}
$$

The following modification of the above method expressed in the same notation will result in a closer approximation. First find the value of (u) and its derivatives at a time $\left(\frac{1}{2} \Delta t\right)$ later than the initial time. Then compute the temperatures at the time (Δt) later by means of the time derivative at a time $\left(\frac{1}{2} \Delta t\right)$ later, since this derivative is a closer approximation to the slope of the chord from zero time to the time (Δt) later. This procedure is expressed symbolically as follows: * $u=\varphi_{1}\left({ }_{0} \theta\right)$, compute $\frac{\partial_{o} u}{\partial y}$ by numerical differentiation, ${ }_{3} u^{\prime}-{ }_{o} u=\frac{1}{2} \frac{\partial_{o} u}{\partial t} \Delta t=\varphi_{2}\left({ }_{o} \theta, \frac{\partial_{o} u}{\partial y}\right) \frac{\Delta t}{2}$, compute ${ }_{\frac{1}{1}} u^{\prime}$ and $\frac{\partial_{\frac{1}{}} u^{\prime}}{\partial y}$.

$$
\begin{gathered}
{ }_{1} \theta^{\prime}=\varphi_{3}\left({ }_{1} u^{\prime},{ }_{o} \theta\right)_{5} u u^{\prime}-{ }_{o} u \frac{\partial_{1} u^{\prime}}{\partial t} \Delta t=\varphi_{2}\left({ }_{3} \theta^{\prime}, \frac{\partial_{3} u^{\prime}}{\partial y}\right) \Delta t \\
\vdots \quad{ }_{1} \theta^{\prime}=\varphi_{3}\left({ }_{1} u^{\prime},{ }_{3} \theta^{\prime}\right) \\
{ }_{11} u^{\prime}-{ }_{1} u^{\prime}=\frac{\partial u^{\prime}}{\partial t} \Delta t=\varphi_{2}\left({ }_{1} \theta^{\prime}, \frac{\partial_{1} u^{\prime}}{\partial y}\right) \Delta t \\
{ }_{11} \theta^{\prime}=\varphi_{3}\left({ }_{12} u^{\prime},{ }_{1} \theta^{\prime}\right),{ }_{2} u^{\prime}-{ }_{1} u^{\prime}=\frac{\partial_{11} u^{\prime}}{\partial t} \Delta t=\varphi_{2}\left({ }_{1 \frac{1}{2}} \theta^{\prime}, \frac{\partial u}{\partial y}\right) \Delta t, \\
{ }_{2} \theta^{\prime}=\varphi_{3}\left({ }_{2} u^{\prime},{ }_{14} \theta^{\prime}\right) \text { etc. }
\end{gathered}
$$

Thus after estimating the derivatives corresponding to the time $\frac{\Delta t}{2}$ and thereby computing (u), its derivatives, and (θ) for the time (Δt), find the derivatives corresponding to the time (Δt). This time derivative is then used to determine (u), its derivatives, and (θ) for the time $\left(\frac{3}{2} \Delta t\right)$. Then advance from (Δt) to $(2 \Delta t)$. Next advance from $\left(\frac{3}{2} \Delta t\right)$
to $\left(\frac{5}{2} \Delta t\right)$, and so on. Except for computations made for the first interval, $\left(\frac{\Delta t}{2}\right)$ the interval (Δt) is used throughout.

Again using the first two terms of the expansion in a Taylor's series, and the average value of $F(R, T)=Q$ for the time interval (Δt), the increment equation expressed in the same notation is

$$
{ }_{t+\Delta t} u={ }_{t} u+\left(\frac{\partial_{t} u}{\partial t}\right) \Delta t+\frac{1}{2}\left(\frac{\partial^{2} u}{\partial t^{2}}\right)(\Delta t)^{2}
$$

Differentiating equation (128) with respect to (t) and with respect to (y) we get

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=\left(K \frac{h}{A_{1}}\right)^{2}\left(\frac{P_{1}(z)}{\rho}\right)\left[\frac{P_{1}(z)}{\rho} \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial u}{\partial y} \frac{\partial}{\partial y}\left(\frac{P_{1}(z)}{\rho}\right)\right] \\
+\left(K \frac{h}{A_{1}}\right)^{\frac{P_{1}(z)}{\rho}} \frac{\partial}{\partial y}\left(\frac{Q}{\rho}\right)+\left(K \frac{h}{A_{1}}\right) \frac{\partial u}{\partial y} \frac{\partial}{\partial t}\left(\frac{P_{1}(z)}{\rho}\right)+\frac{\partial}{\partial t}\left(\frac{Q}{\rho}\right)= \\
\varphi_{4}\left[\theta, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial t}, \frac{\partial u}{\partial y}, \frac{\partial^{2} u}{\partial y^{2}}\right]
\end{gathered}
$$

Thus the increments of (u) corresponding to (Δt) may be computed to a closer approximation as follows:

$$
{ }_{1} u^{\prime}-{ }_{o} u^{\prime}=\varphi_{2}\left({ }_{o} \theta, \frac{\partial_{o} u}{\partial y} \Delta t\right)+\frac{1}{2} \varphi_{4}\left({ }_{o} \theta, \frac{\partial_{o} \theta}{\partial y}, \frac{\partial_{o} \theta}{\partial t}, \frac{\partial_{o} u}{\partial y}, \frac{\partial^{2} u}{\partial y^{2}}\right)(\Delta t)^{2}
$$

Probably the previous method is most practicable, even though in some cases it may be necessary to compute $\frac{\partial_{\frac{1}{2}} u}{\partial y}$ from values of $\frac{{ }_{3}}{} u$ given by the more accurate equation,

$$
{ }_{1} u^{\prime}-{ }_{o} u=\varphi_{2}\left({ }_{o} \theta, \frac{\partial_{o} u}{\partial y}\right) \frac{\Delta t}{2}+\frac{1}{2} \varphi_{4}\left({ }_{o} \theta, \frac{\partial_{o} \theta}{\partial y}, \frac{\partial_{o} \theta}{\partial t}, \frac{\partial_{o} u}{\partial y}, \frac{\partial_{o}^{2} u}{\partial y^{2}}\right)\left(\frac{\Delta t}{2}\right)^{2}
$$

in order to obtain the requisite accuracy for the starting point corresponding to $\left(\frac{\Delta t}{2}\right)$.

ILLUSTRATIVE COMPUTATION OF THE PHYSICAL CONSTANTS OF THE APPROXIMATE SIMPLIFIED EQUATION

Numerical Applications to Serial Temperatures of Lake Mendota, in Madison, Wisconsin
The primary purpose of this paper is to present the development of the theory here set forth, methods of applying it, and tables to facilitate the computation. In order to illustrate some of these methods and to show how the theory works out in practice, details are presented
of the computations for three very different cases selected from the large number that were computed along with the development of the theory.

Fig. 4.-Relation to depth of weekly averages of serial temperatures of Lake Mendota, in Madison, Wisconsin.

Fig. 5.-Relation to depth of weekly averages of serial temperatures of Lake Mendota, in Madison, Wisconsin.

Under the direction of Dr. E. A. Birge, thorough and comprehensive investigations of Lake Mendota, in Madison, Wisconsin, have been carried out since 1895. These investigations included temperature
[VoL. 2

```
rom
```

it of we
a of Lake
observations at each meter from the surface to twenty-three meters at the bottom. I am indebted to Doctor Birge for the use of a table of weekly means of these temperatures for the interval 1895 to 1915. On the average, each temperature is the mean of about eighty observations. The variation of these means with respect to depth and time is remarkably regular, and the data are especially adapted to theoretical studies. The relation of temperature to depth is shown graphically by figures 4 and 5 for the interval May 24 to September 15. The numbers 20, 21, etc., designate weeks May 24-31, June 1-9, etc.

The computations carried out as explained on pages 223 to 229 are. presented in table 2 and figure 6. The derivatives, columns 5 and 6 , have the values that would result from differentiating a second degree parabola fitted to five consecutive values of the temperature. They were computed by the convenient method of moments explained by Von Sanden (1923, pp. 114-120) which reduces in this case to the process illustrated by the following examples. Find the time derivative $\left(\frac{\partial \theta}{\partial t}\right)$ at the surface for week 20 , using one month as the unit of time.
First arrange the five temperatures in their time order with the temperature for week (20) at the middle thus- $12^{\circ}, 13 \div 3,14.8,16^{\circ} 8,19.0$. Then multiply the first temperature by (-1), the second by (-2), the fourth by $(+2)$, and the last by $(+1)$. The sum (14) divided by (8) equals the derivative corresponding to a time unit of one week or the interval from each temperature to the next. The derivative corresponding to one month as a unit equals $14 \div 2=7.00$. Similarly the derivative $\frac{\partial \theta}{\partial y}$ for the same week at the depth (2) meters is found by arranging the temperatures in the order of depth beginning with the surface thus$14.8,14.5,14^{\circ} .4,14^{\circ} .2,14^{\circ} .1$. Use the same multiplier as before and obtain the products $-14^{\circ} 8-29^{\circ} 0-0^{\circ}+28^{\circ} 4+14.1=-1.3$. The sum (-1.3) divided by (8) equals the derivative (-.162) corresponding to a depth unit of one meter. The value of (C) was found to be 9.8 by the method explained on page 225. Plotting the differences ($\theta-9.9$) as ordinates on semilogarithmic paper against depths (y) as abscissae determined the points according to which the straight line V, figure 6 was drawn. From the slope of this line the value of (a) was found to be (.098), according to page 226 and pages 292 to 300 . The value of ($\mu^{2} C_{1} a^{2}$) was found to be $34.70 \div 2.064=16.8$ from equation (90), page (226). Corresponding to the change in slope of line V at the abscissa ($y=10$) the part of line VI between $(y=0)$ and $(y=10)$ has been redrawn as explained on page (226).

Table 2
Computations of the constants in the approximate simplified equation from Lake Mendota serial temperatures for the week May 24 to 31 , using one month as the time unit and one meter as the depth unit

${ }^{1}$ (a) has the value .062 for $y<10$, and the value .098 for $y>10$.
${ }^{2}\left(\mu^{2} C_{1} a^{2}\right)$ has the value 12 for $y<10$, and the value 16.8 for $y>10$.

Table 2 (Continued)

1 Lake
(9)
;) - (8)
-5.00-4.10
-2.35
-1.15
-1.20
-1.40
-1.65
-1.50
-1.25
-1.00
-0.60
-0.45
-0.15
+0.10
............
........
14)
$\underline{K}_{(13)}$
.......
1.75
2.132.41
1.74
1.60
1.21
0.91
1.01
0.91
0.66
0.56
0.36
0.25
0.20
0.21
0.19
0.14
0.13
0.11

	(15)	(16)	(17)	(18)	(19)	(20)
y	$(14)+(8)$ equals computed value of (5)	$\begin{array}{r} (4) \div(2) \\ \text { equals }-\frac{1}{B} \end{array}$	$\begin{gathered} 10^{6} \times[\text { means } \\ \text { of }(16)] \end{gathered}$	$\begin{gathered} 2000 \\ \times(4)=z \end{gathered}$	$\int_{2}^{\infty} \frac{e^{-x 2}}{x} d x$	$\Delta(19)$
0	(.000145)	139.0	. 000		
1 000133	141.5	. 080	2.2402	4013
2		. 000150	141.5	. 120	1.8389	2821
3		. 000133	137.5	. 160	1.5568	2162
4	7.75	. 000142	139.5	. 200	1.3406	0848
5	6.87	. 000137	138.5	. 220	1.2558	2286
6	5.89	. 000140	139.0	. 280	1.0272	2298
7	5.72	. 000138	139.0	. 360	0.7974	1305
8	5.66	. 000140	136.5	. 420	. 6669	1096
9	5.40	. 000133	134.0	. 480	. 5573	. 0934
10	5.29	. 000135	134.5	. 540	. 4639	. 0984
11	4.99	. 000134	133.0	. 620	. 3655	. 0421
12	4.39	. 000132	130.5	. 660	. 3234	. 0376
13	3.99	. 000129	130.0	. 700	. 2858	. 0479
14	3.74	. 000131	130.0	. 760	. 2379	. 0283
15	3.54	. 000129	128.0	. 800	. 2096	. 0245
16	3. 29	. 000127	126.0	. 840	. 1851	. 0221
17	3.05	. 000125	125.0	. 880	. 1630	. 0107
18	2.80	. 000125	124.5	. 900	. 1523	. 0092
19	2.49	. 000124	-123.5	. 920	. 1431	. 0177
20	2.31	. 000123	122.5	. 960	. 1254	. 0079
21	2.06	. 000122	121.5	. 980	1175	. 0080
22	1.87	. 000121	121.0	1.000	. 1095	. 0068
23	1.69	000121	121.0	1.020	. 1027	. 1027
	(21)	(22)	(23)	(24)	(25)	(26)
y	(20) $\frac{h}{10^{6}}(17)$	$\begin{gathered} \Sigma(21) \text { from } \\ \text { bottom } \\ =h P_{1}(z) \end{gathered}$	(22) $\frac{\partial \theta}{\partial y}$	$\begin{gathered} (9) \div(23) \\ =1.13 K \end{gathered}$	$(24)+(8)$ equals computed value of $\frac{\partial \theta}{\partial t}$	$\begin{gathered} 1.13 K(23) \\ =\text { more } \\ \text { accurate } \\ \text { value of } \\ (14) \end{gathered}$
0			(-. 3574)	(14.0)	-1.66	-13.66
1	. 1136	. 6146	$-.1283$	31.9	-6.4	-4.91
2	. 0800	. 5010	-. 0811	41.3	7.6	-3.10
3	. 0595	. 4210	$-.0581$	44.7	7.8	-2.22
4	. 0236	. 3615	-. 0451	52.1	7.8	-1.73
5	. 0639	. 3379	-. 0550	32.8	6.9	-2.10
6	. 0641	. 2740	$-.0616$	23.6	5.9	-2.36
7	. 0363	. 2099	$-.0525$	21.9	5.8	-2.01
8	. 0299	. 1736	-. 0444	27.0	5.7	-1.70
9	. 0250	. 1437	$-.0395$	35.4	5.5	-1.51
10	. 0264	1187	-. 0296	55.8	5.4	-1.13
11	. 01120	. 0923	$-.0220$	68.2	5.1	-0.84
12	. 00982	0811	$-.0172$	72.7	4.7	-0.66
13	. 01243	. 0713	$-.0143$	69.9	4.4	-0.55
14	. 00735	. 0589	$-.0118$	50.9	4.0	-0.45
15	. 000627	. 0515	$-.0103$	43.7	3.7	-0.39
16	. 00556	.045?	$-.0085$	17.7	3.3	-0.33
17	. 00268	. 0397	$-.0060$...	3.1	-0.23
18	. 00230	. 0370	$-.0046$	\ldots	2.8	-0.18
19	.00438	. 0347	$-.0048$	2.5	-0.18
20	. 00193	. 0303	$-.0042$...	2.3	-0.16
21	. 00194	. 0284	-. 0032	2.1	-0.12
22	. 00165	. 0265	$-.0030$	1.9	-0.11
23	02482	. 0248	-. 0025	1.7	-0.10

${ }^{1}$ (a) has the value .062 for $y \overline{<} 10$, and the value .098 for $y>10$.
${ }^{2}\left(\mu^{2} C_{1} a^{2}\right)$ has the value 12 for $y \overline{\overline{<}} 10$, and the value 16.8 for $y>10$.

The entries in column 11 can be read directly from table 2 for any trial value of (h). Approximate values of $(1.13 K$) can be found by multiplying the entries of column 12 by the average value of (B) which in this case is 7700. A comparison of the computed values of $\left(\frac{\partial \theta}{\partial t}\right)$ entered in column 15 with the observed ones tests the validity of the equation.

Fig. 6.-Analysis of time rates of change of temperature in Lake Mendota, at different depths, during week number 20, May 24-31.

1. Effect of solar radiation and turbulence.
II. Effect of downward diffusion of surface cooling.
IV. Sum of curves I and II equals the theoretical rate of temperature change.
$\sqrt{-}$ Observed rate of temperature change.
V. Graph of difference between the observed temperature and the constant $9: 8$.
VI. Graph parallel to V drawn to compute the effect of solar radiation and turbulence, represented by I.

After making the preliminary computations indicated by the first ffteen columns according to pages 223 to 228 a closer approximation may be found by taking into account the variation of (B) with the depth and using table 1. According to equation (94), page 227, one-half the first and last terms plus the remaining terms of column 23 have the value -.885 . The value of the first term was thus found to be (-.3574). The ratios entered in column 24 are independent and more
accurate estimates of $(1.13 K)$. The mean of these ratios equals (43.1) and the ratio of the mean of column 9 to the mean of column 23 equals (38.3) which is a better estimate. Accordingly, the value of K equals $\frac{38.3}{1.13}=33.9$. Curve IV of figure 6 was plotted from the computed values of $\frac{\partial \theta}{\partial t}$ entered in column 25 and agrees well with the observed values \square except at the surface where the actual conditions depart most from the conditions justifying the use of the approximate equation (84).

The radiation penetrating the surface is

$$
R_{\mathrm{o}}=\int_{0}^{23} \frac{\partial \theta}{\partial t} d y+K=113.1+33.9=147.0
$$

Substituting in equation (85) the values of (C) and (a) already found gave (8.0) as the value of $\left(C_{1}\right)$. Also this value agrees with the ordinate of line V for $y=0$. Therefore, (μ^{2}), the coefficient of turbulence below the depth (10) equals

$$
\mu^{2}=\frac{\mu^{2} C_{1} a^{2}}{C_{1} a^{2}}=\frac{16.81}{8.0(.098)^{2}}=219 .
$$

The rate of loss of heat and rate at which solar radiation penetrates the surface expressed in depth of evaporation are respectively

$$
\frac{K}{6}=\frac{33.9}{6}=5.65 \frac{\mathrm{~cm} .}{\text { month }}
$$

and

$$
\frac{R_{o}}{6}=\frac{147.0}{6}=24.5 \frac{\mathrm{~cm} .}{\mathrm{month}}
$$

where the latent heat of vaporization of water is assumed to be 600 .
The results of applying the same method of computation to the series of weeks May 24-31 to September 9-14, or weeks 20 to 34, are presented in table 3. From May when stratification is least to September when stratification is especially developed, the turbulence μ^{2} decreases, as would be expected. The estimated evaporation increases during the same interval according to results usually found by direct pan observations. A rough check on the theoretical evaporation rates is afforded by table $3 A$, which presents evaporation rates estimated for Lakes Michigan and Huron by Freeman, (1926, p. 145) and Horton and Grunsky, (1927, p. 342) using various methods involving pan observations, meteorological observations, and difference between inflow and outflow. According to Horton, (1927, p. 185) the mean monthly evaporation from May to October estimated from the diffe ence between outflow and inflow of Lakes Michigan and Huron equals $\frac{14.96}{6} \times 2.54$
Table 3
Summary of results of computations applied to'Lake Mendota serial temperatures observed between May and September

Time	Week Number	a	h	K	$\int_{0}^{23} \frac{\partial \theta}{\partial t} d y=N_{1}$	$K+N_{1}=R_{1}$	1.13 K	μ^{2}	Theoretical evaporation in cm. per month uncorrected for convection and back radiation $\frac{K}{6}$	$\frac{R_{1}}{6}$ Evaporating power in cm . per month of theoretical penetrating radiation
May 24-31..	20	. 098	2000	34.73	113.11	147.0	38.3	219	5.65	24.5
June 1-8...	21	. 148	1250	27.3	101.24	128.5	30.9	84	4.55	21.4
June 9-15.	22	. 185	900	25.5	83.42	108.9	28.8	27.6	4.25	18.1
June 16-23.	23	. 221	800	48.5	64.96	113.5	54.9	15.2	8.10	18.9
June 24-30...	24	. 221	200	17.4	53.70	71.1	19.6	11.1	2.9	11.9
July 1-8......	25	. 244	200	20.5	46.43	66.9	23.1	9.2	3.4	11.1
July 9-15...	26	. 250	300	32.0	39.2	71.2	36.1	11.4	5.3	11.9
July 16-23..........	27	. 255	400	34.2	25.81	60.0	38.6	9.5	5.7	10.0
July 24-31...........	28	. 257	700	41.5	13.60	55.1	46.95	7.9	6.9	9.2
Aug. 1-8................	29	. 279	700	53.8	6.89	60.7	60.8	4.5	9.0	10.1
Aug. 9-15............	30	. 287	700	82.5	5.24	87.7	93.1	5.6	13.8	14.6
Aug. 16-23..	31	. 272	700	52.0	-1.63	50.4	58.8	6.4	8.7	8.4
Aug. 24-31.............	32	. 279	2000	95.0	9.89	85.1	107.5	6.2	15.8	14.2
Sept. 1-8............	33	. 296	3000	92.2	-15.04	77.2	104.1	5.5	15.4	12.8
Sept. 9-15.	34	. 250	3100	73.2	-24.51	48.7	82.8	4.1	12.2	8.1

Table 3-A
Summary of estimates of rate of evaporation in cm. per month from Lakes Michigan and Huron for comparison with theoretical values for

Lake Mendota taken from table 3

Month	Michigan-Huron		Lake Mendota				
	Freemancmmo.	Grunsky cm. mo.	McEwen Theoretical values for				
			First week cm. mo.	Second week cm . mo.	Third week cm . mo.	Fourth week cm . mo.	Mean cm. mo.
Jan...	7.62	. 40					
Feb...	6.35	. 36					
March.....	4.57	. 63		\cdots			
April...	2.54	1.78					
May.....	. 76	4.90	5.65				5.65
June......	1.02	9.50	4.5	4.2	$8.1{ }^{\text { }}$	2.9	4.90
July.....	4.06	12.50	3.4	5.3	5.7	6.9	5.30
August....	7.63	. 11.80	9.0	13.8	8.7	15.8	11.80
Sept...........	9.40	6.80	15.4	12.2			13.80
Oct.........	9.15	3.38					
Nov...........	8.64	1.02					
Dec.	8.14	. 53					
Year. May to Sept.	$\begin{array}{r} 69.8 \\ 22.9 \end{array}$	53.5 45.5					
							41.45

$=6.34 \frac{\mathrm{~cm}}{\mathrm{~m}}$. From relations of evaporation rates to air temperature, humidity, wind, and surface-water temperature he obtained the value $9.65 \frac{\mathrm{~cm} .}{\mathrm{mo}}$. which he regards as a better estimate, while according to Freeman, (average of values May to October, table 3A) the rate is $5.34 \frac{\mathrm{~cm}}{\mathrm{mo}}$. The average of the theoretical values for Lake Mendota for the same period is $8.3 \frac{\mathrm{~cm}}{\mathrm{mo}}$. which is reduced to $7.0 \frac{\mathrm{~cm} \text {. by assuming an }}{\mathrm{mo}}$. average value of 20 per cent for the Bowen ratio (see pages 220-223) and agrees well with the values found by other methods for Lakes Michigan and Huron.

After reading a manuscript by Richardson (1929) while this paper was in press I requested him to estimate the monthly rate of evaporation from Lake Mendota, using the method explained in his manuscript. According to this method, he uses the solar radiation incident upon the exterior of the earth's atmosphere per month reduced to its value at the earth's surface, back radiation from the water surface, sensible heat, an average value of .22 for R^{1}, the Bowen Ratio (see pages 220 to 223), and 584 for (L) the latent heat of evaporation. His results are tabulated in the first line of the following table and mine are entered in the second line after correcting the last column of table 3A by using the same values of (R) and (L) in order to make the results comparable. The correction factor is $\mathbf{8 4 2}$.

THEORETICAL EVAPORATION CM PER MONTH FROM LAKE MENDOTA

May	June	July	August	September	Mean
-1.98	7.63	9.87	10.40	10.60	7.30 (Richardson)
4.76	4.13	4.46	9.93	11.60	6.98 (McEwen)

NUMERICAL APPLICATIONS TO SERIAL TEMPERATURES OF WATER IN A TANK ABOUT SIX FEET SQUARE AND FIVE FEET DEEP

During the summer of 1922, a rectangular concrete tank at the Scripps Institution, having for one side a part of the sea wall, was made water tight by coating the inside with a special kind of black paint. The tank is about six feet square and five feet deep. Its top is at the general level of the ground near the sea wall. Equipment was provided for accurately measuring any small change of water level and for measuring the volume of water supplied; thus two independent methods were available for measuring the evaporation loss. By means of a hand pump and a small suction pipe which could be beld at any desired level, water was pumped from that level through a small reservoir in which the bulb of a thermometer was inserted. Water entered the suction pipe between two horizontal disks about one-third of a centimeter apart, thus insuring a flow precisely from the desired level. An intensive series of observations of water temperatures at different levels in the tank was made during the week August 7° to 15,1922 , at hourly intervals during the day. These were accompanied by measurements of the rate of evaporation, and wet- and dry-bulb air temperatures. These data are well suited to testing the theory presented in this paper by a relatively small and shallow body of water in which an appreciable amount of heat is absorbed by the bottom of the container. The relation of temperature to depth below the surface of the water in the tank is shown for certain times of the day by figure 7 , based upon the intensive observations made from August 7 to 15.
$y \quad$ VoL. 2
le $t_{\text {L_ }}$ paper z of evaporai manuscript. ent upon the its value at ensible heat, 220 to 223), re tabulated n the second ig the same arable. The

I

Mean

'Richardson) McEwen)

OF WATER T DEEP
ank at the , was made lack paint. p is the is pro. ided el and for at methods s of a hand siredslevel, r in which he suction centimeter n intènsive rels in the y intervals of the rate "hese data by a relale amount elation of le tank is : intensive

Table 4

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
y	θ	$\left(\theta_{0}-\theta_{u}\right)$	σ	$\left(\sigma-\sigma_{o}\right)$	$\frac{\partial \theta}{\partial t}$	$\frac{\partial \theta}{\partial y}$	$\frac{a e^{-a y}}{1-e^{-17 a}}$	$\begin{gathered} (5) \div(7) \\ =Y \end{gathered}$	(6) $\div(7)$	$h P_{1}(z) B$	$\frac{(10)}{A_{1} B}$
0	26.74	0	. 99661	0	. 54	$-.214$. 2347	2.302	-. 912		
1	26.53	. 21	. 99666	. 00005	. 56	$-.244$. 1865	3.002	-1.308	3457.9	1.016
2	26.27	. 47	. 99674	. 00013	. 51	$-.275$. 1482	3.44	-1.856	2048.2	. 602
3	25.99	. 75	. 99681	. 00020	. 39	-. 225	. 1177	3.315	-1.913	1438.6	. 423
4	25.77	. 97	. 99687	. 00026	. 29	-. 194	. 0935	3.102	-2.075	1091.6	. 321
5	25.60	1.14	. 90692	. 00031	. 23	$-.152$. 0743	3.097	-2.046	875.9	. 257
6	25.48	1.26	. 99695	. 00034	. 18	-. 106	. 0590	3.051	-1.797	761.2	. 224
7	25.40	1.34	. 99697	. 00036	. 19	$-.075$. 0469	4.052	-1.600	699	. 205
8	25.33	1.41	. 99698	. 00037	. 18	-. 068	. 0373	4.83	-1.823	611	. 197
9	25.27	1.47	. 99700	. 00039	. 15	-. 056	. 0296	5.07	-1.892	581	. 180
10	25.23	1.51	. 997016	. 00040	. 13	-. 044	. 0235	5.53	-1.873	558	. 171
11	25.18	1.56	. 997029	. 00041	. 13	-. 033	. 0187	6.95	-1.765	535	. 164
12	25.16	1.58	. 997034	. 00042	. 13	-. 026	. 0149	8.72	-1.745	511	. 157
13	25.14	1.60	. 99704	. 00043	. 12	$-.017$. 0118	10.17	-1.441	487	. 150
14	25.12	1.62	. 997045	. 00044	. 13	-. 012	. 0094	13.83	-1.277	487	. 143
15	25.11	1.63	. 997047	. 00044	. 12	-. 012	. 0074	16.22	-1.622	487	. 143
16	25.10	1.64	. 99705	. 00044	. 13	-. 012	. 0059	22.03	-2.033	487	. 143
17	25.10	1.64	. 99705	. 00044	. 13	-. 012	. 0047	27.68	-2.552	487	. 143

raphy
［Vol． 2

路等等等

㑒䍐高菜缶

テiTi i

1929］McEwen：Distribution of Temperature and Salinity
Table 5
Summary of results of computations applied to tank temperature observations at the Scripps Institution during August, 1922, for the period

1	2	3	4	5		6	7	8	9
Time	h	Estimated by fitting straight line K	h^{1}	$\int_{0}^{17} \frac{\partial \theta}{\partial t} d y$ N_{1}	K^{1}	a	$\frac{a e^{-17 a}}{1-e^{-17 a}}$	$\begin{aligned} & M_{2} \\ = & M_{1}(7) \end{aligned}$	$\begin{gathered} R_{o} \\ \begin{array}{c} \text { Penetrating } \\ \text { radiation } \end{array} \\ N_{1}+K+M_{2}-K^{1} \end{gathered}$
10 A. m.	1500	2.4	25,000	3.22	. 31	. 19	. 0078	. 0351	5.34
Noon.	1500	2.1	25,000	3.91	. 46	. 23	. 0047	. 0240	5.67
2 p. м.	1500	1.8	25,000	3.53	. 24	. 29	. 0022	0106	5.10
4 р. м..	1500	2.67	25,000	0	. 026	. 30	. 0018	. 0056	2.65
6 P. M...	500	1.5	25,000	-1.84	0	. 23	. 0047	0	-. 34

Computations of the constants in the approximate simplified equation (118) were made for several periods of the day. In order to illustrate the method, the computations for the noon hour are summarized in table 4 and figure 8. The general method explained on pages 223 to 234 was followed in making these computations. Line V in figure 8 was

Fig. 8.-Analysis of time rates of change of temperatures in the tank of water at the Scripps Institution during the noon hour.
I. Effect of solar radiation and turbulence.
II. Effect of downward diffusion of surface cooling.
III. Effect of upward diffusion of heat absorbed at the bottom.
IV. Sum of curves I, II, and III equals the theoretical rate of temperature change.
$[1$ Observed rate of temperature change.
V. Graph of difference between the observed temperature and the constant 25.05 .
VI. Graph parallel to V drawn to compute the effect of solar radiation and turbulence represented by I.
determined by plotting the values of ($\theta^{\circ}-25^{\circ} 05$) on semilogarithmic paper against depths as abscissae. The corresponding value of (a) equals (0.23) from which column 7 of table 4 was computed. The value of (h) was found by trial to be 1500 and $\frac{1}{A_{1} B}=1.13 \times .00026=.000294$. Neglecting the bottom effect on the upper layers, the variable parts, column 8 and column 12 of equation (121) were plotted on cross-section paper.

The values $K=2.1$ and $M_{1}=5.1$ were estimated from this graph. Then column 16 was computed from column 15 and table 2 , using the value $h^{1}=25000$ found by trial. The variable parts, columns 14 and 18 of equation (122), were then plotted on cross-section paper and the values $K^{1}=0.46$ and $M_{1}=5.1$ computed. The corresponding value of $\left(M_{2}\right)$ was found to be (.024) from the expression $\frac{M_{1} a e^{-a y_{b}}}{1-e^{-a y_{b}}}$. Line VI of figure 8 was drawn parallel to line V through the ordinate $\frac{M_{1} a}{1-e^{-a y_{b}}}$ $=5.1 \times .2347=1.19$ corresponding to zero depth. The ordinates of line VI are equal to the product of 5.1 by the entries in column 7 of table 4.

In figure 8 the effect of solar radiation and turbulence is represented by line I, plotted from the product of 5.1 by the entries in column 7. The cooling effect of surface evaporation, convection through the air, and back radiation, is represented by line II, plotted from column 20 and the heating effect of radiation absorbed by the bottom is represented by line III, plotted from column 19. The sum of these three effects is represented by line IV which is therefore a graph of the theoretical values of $\frac{\partial \theta}{\partial t}$. The points \square represent the observed values and agree well with the theoretical curve.

The results of similar computations for several hours of the day, as well as theoretical and observed evaporation rates, are summarized in table 5 . The values of $\frac{K}{6}$ entered in column 12 would be the theoretical evaporation rates if the whole surface cooling effect were due to evaporation. They were first corrected for convection through the air by means of values of the Bowen ratio R1, (Bowen, 1926) and entered in column 14. The back radiation estimated from the surface-water temperature was found according to equation (83) to be about 6 per cent, accordingly, column 14 multiplied by 94 per cent gives the theoretical evaporation rates entered in column 15 which are seen to agree well with the directly observed values in column 16. The average of the five theoretical values is .272 which is only 6 per cent greater inan .254 , the average of the observed values.

Numerical Applications to Serial Temperatures and Salinities of the Pacific Ocean in the Coronado Island Region, near San Diego, Calffornia. Computation of Upwelling Veloctty
Observations taken at irregular intervals in the deep-water region a few miles west of the Coronado Islands (Michael and McEwen, 1915, 1916) have been used as a basis for obtaining monthly averages of temperature and salinity. Owing to the variation in conditions from one year to another and the unequal distribution of the observations
within a year, these averages based upon an eight-year period can hardly be expected to give more than a rough idea of the typical seasonal cycle. However, since these observations have been used before (McEwen, 1918) as a basis for theoretical estimates of turbulence and rates of upwelling, they were selected to illustrate the new theory

Fig. 9.-Relation to depth of monthly averages of serial ocean temperatures near San Diego.

Fig. 10.-Relation to depth of monthly averages of serial ocean salinities near San Diego.
in order that results might be compared with the older, less fundamental treatment. During the past ten years many observations have been made in a region about thirty miles north of the Coronado Island region. These observations were quite regularly distributed throughout the period from spring to autumn and were made frequently enough to indicate the monthly change during each year. The interpretation of these observations and an extensive accumulation of suitable lake and reservoir observations will be undertaken later with the aid of available dynamical methods.

The monthly averages of temperature and salinity in the Coronado Island region used as a basis for the following computations are shown in figures 9 and 10. The computations for the month of July, made in accordance with the explanation on pages 223 to 229 , are presented in table 6 and figure 11. The entries in columns 3 and 4 are proportional to densities and differences in density and were computed from the temperature and salinity according to Knudsen, (1901).

The values of $\frac{10^{5}}{B}$ entered in column 5 were computed with the aid of table 10, as explained on pages 301 to 304 . The following computation for the depth (5) illustrates the process. In table 10 , part 1 , under $\theta_{o}=19^{\circ}$ are entered the values of $10^{5}\left(\sigma-\sigma_{o}\right)$ corresponding to temperature reductions $\left(\theta_{o}-v\right)=0,1,2$, etc. entered at the left and right. Correct these values of $10^{5}\left(\sigma-\sigma_{o}\right)$ to correspond to $\theta_{o}=19^{\circ} 7$ of table 6 by adding the increments entered in table 10 , part 3 under $\Delta \theta_{0}=0.7$. Assume $D=4$, which corresponds to $\lambda=.95$, and find the corresponding corrections to $10^{5}\left(\sigma-\sigma_{o}\right)$ in table 10, part 3, under the value (4). Thus the corrected values of $10^{5}\left(\sigma-\sigma_{o}\right)$ are $0,25.1+.7+4.0=29.8,48.7+1.4$ $-8.0=58.1$, etc. Also in table 10 , part 1 , under $\theta_{o}=19^{\circ}$ are entered the values of $\left(\frac{10^{5}}{B}\right)$ corresponding to temperature reductions $\left(\theta_{o}-v\right)=0,1$, 2 , etc., entered at the left and right. These values of $\left(\frac{10^{5}}{B}\right)$ are corrected to the temperature $\theta_{o}=19.7$ and $D=4$ by means of part 2 , of table 10 . The corrected values are $25.5+0.7+4.0=30.2,25.1+0.7+4.0=29.8$, $24.3+0.7+4.0=29.0$, etc. This correction is nearly a constant, (4.7) for all values of $\left(\theta_{o}-v\right)$. After plotting these corrected values of $\left(\frac{10^{5}}{B}\right)$ against the corrected values of $10^{5}\left(\sigma-\sigma_{o}\right)$, read off from the graph the values of $\left(\frac{10^{5}}{B}\right)$ corresponding to the values of $10^{5}\left(\sigma-\sigma_{o}\right)$ entered in column 4 of table 6 , thus obtaining column 5 . Corresponding values of ($\sigma_{o}-v$) can be obtained in the same way and are $0,1.25,3.7,5.3$, etc. As a check, any entry in column 4 divided by the corresponding value of ($\sigma_{o}-v$) should equal $\left(\frac{10^{5}}{B}\right)$. The results may also be checked with the aid of the formula of page 301 which in this case becomes

$$
10^{5}\left(\sigma-\sigma_{o}\right)=f\left(\theta_{o}-v\right)+4\left(\theta_{o}-v\right)
$$

Line V of figure 11 was plotted as explained on pages 224 and 226. The values found for the constants in equation (85) are $C=9.5, C_{1}=4.2$, $a=.202$ (for $y>6$), and $a=.359$ (for $y<6$). hown ade in ed in tional n the
he aid tation under aperaright. able 6 , $=0.7$. mding Thus $7+1.4$ ed the $=0,1$, recter ble 10. $=29.8$, , (4.7) $\left(\frac{10^{5}}{B}\right)$ ph the red in values i.3, etc. 5 value rith the
nd 226. $\gamma_{1}=4.2$,

Table 6
Computation of the constants in the simplified approximate equation including the upwelling velocity, from July data on temperature and salinity in the Coronado Island region

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
y	θ	S ($(\sigma-1) 10^{5} 10$	$10^{5}\left(\sigma-\sigma_{a}\right)$	$\frac{10^{5}}{B}$	$(\theta-C)$	$\frac{\partial \theta}{\partial t}$	$\frac{\partial \theta}{\partial y}$
0	19.7	33.75	2390.7	0	30.2	10.2	1.61	$-.306$
1	18.2	. 72	2426.7	36.0	29.6	8.7	2.31	-3.49
2	15.0	65	2495.0	104.3	28.2	5.5	. 974	-2.41
3	13.0	65	2536.4	145.7	27.7	3.5	. 804	-1.45
4	11.8	65	2559.4	168.7	27.2	2.3	1.10	-. 98
5	11.0	70	2577.8	187.1	26.8	1.5	. 804	-. 51
\bigcirc	10.7	77	2588.6	197.9	26.6	1.2	. 526	-. 36
7	10.5	. 82	2596.0	205.3	26.4	1.0	. 414	-. 27
8	10.3	. 85	2601.7	211.0	26.3	0.8	. 392	-. 16
-9	10.2	. 90	2607.3	216.6	26.2	0.7	. 326	-. 13
10	10.0	. 94	2614.2	223.5	26.1	0.5	. 260	-. 11
	(9)		(10)	(11)	(11)			(12)
y	$a=\frac{a e^{-a y}}{1-e^{-10 \alpha}}$		$\begin{gathered} f(y) \frac{\partial \theta}{\partial y} \\ \text { for } \\ D=7.5 \end{gathered}$	$\frac{T a e^{-a y}}{\frac{1-e^{-10 a}}{\text { from }}} \begin{aligned} & \text { graph } \end{aligned}$	$\begin{gathered} \text { Should }=(11) \\ T(9)=15.46 \times(9) \\ \text { for } a=.206 T(9) \\ =24.63(9) \text { for } a=.36 \end{gathered}$			1.5 (10)
0	. 370		0	9.1	9.12			0
1	. 258		-1.39	6.3		35	-2.082
2	. 180		-1.71	14.4		4	44	-2.563
3	. 126		-1.32	- 3.1			10	-1.980
4	. 088		-0.98	- 2.15		\cdots	17	-1.470
5	. 061		-0.51	1 1.50			50	-. 765
6	. 043	. 069		361.05.		061 1	06	-. 540
7	\cdots	. 056	-0.36 -0.27	7 . 85		863		-. 405
8		. 045	-0.16	6 - 70		701	-. 240
9		. 037	-0.13	- . 57				-. 195
10 030	-0.11	$1{ }^{\text {a }}$	465		\ldots	-. 165
	. (13)	(14)	(15)	(16)		(17)	(18)	(19)
y	$\frac{\partial \theta}{\partial t}-(12)$	$-(13)$	$h \int_{z}^{\infty} \frac{e^{-x 2}}{x}$.	$\frac{\partial \theta}{\partial y}(1.5)$		$029 \frac{\partial \theta}{\partial y}(15)$	3.8(17)	$\begin{gathered} \left(11^{\prime}\right) \\ +(18) \\ +(12) \end{gathered}$
0	1.61	-7.51						
1	4.39 3.54 3.	-1.96 $-\quad .90$	469.2 261.3	-1633.0 -630.0		-.482 -.140	-1.83 -.54	2.44 1.34
3	2.78	-. 32	197	-286.0		-. 083	-. 32	. 80
4	2.57	. 40	171	-168.0		-. 049	-. 19	. 51
5	1.57	. 07	153	- 78.0		-. 023	-. 09	- . 65
	1.07	. 01	143	- 51.5		-. 015	-. 06	. 56
7	. 82	-. 043	137	- 37.0		-. 011	-. 04	42
8	63	-. 071	133	- 21.3		-. 006	-. 02	. 44
9	. 52	-. 052	2 128	- 16.6		-. 005	-. 02	. 35
10	. 42	-. 045	- 124	- 13.6		-. 004	-. 02	. 28

The coefficients in equation (47) are

$$
\begin{array}{r}
\sum_{y=5}^{y=10} \frac{\partial \theta}{\partial t}=2.722, \sum_{y=5}^{y=10} f(y) \frac{\partial \theta}{\partial y}=-1.54, \\
\sum_{y=10}^{y=5} \frac{a e^{-a y}}{1-e^{-10 a}}=.3258, \text { and } \frac{a}{1-e^{-10 a}}=.2329
\end{array}
$$

for $a=.202$. Equation (47) therefore becomes $T=8.36+4.73 W_{1}$.

Fig. 11.-Analysis of time rate of change of temperatures in the Pacific Ocean near San Diego during July.
I. Effect of solar radiation and turbulence.
II. Effect of downward diffusion of surface cooling.
III. Effect of upwelling.
IV. Sum of curves I, II, and III equals the theoretical rate of temperature change.
I. Observed rate of temperature change.
V. Graph of difference between observed temperature and the constant $9 \circ 5$.
VI. Graph parallel to V drawn to compute the effect of solar radiation and turbulence represented by I.

Substituting in equation (88) the value of $\mu^{2} C_{1} a^{2}$ from equation (98) results in

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=\frac{A_{2}}{A_{1}} P_{1}(z) \frac{\partial \theta}{\partial y}+W_{1} f(y) \frac{\partial \theta}{\partial y}+\frac{T a}{1-e^{-a u_{1}}} e^{-a y} \tag{134}
\end{equation*}
$$

where, in this case $y_{1}=10$.
Substituting the expression $\left(a_{1}+a_{2} W_{1}\right)$ for (T) where the coefficients a_{1} and a_{2} are known from equation (97) we have

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=\frac{h K_{1}}{A_{1}} P_{1}(z) \frac{\partial \theta}{\partial y}+W_{1} f(y) \frac{\partial \theta}{\partial y}+\frac{\left(a_{1}+a_{2} W_{1}\right)}{1-e^{-a y_{1}}} a T e^{-a y} \tag{135}
\end{equation*}
$$

which takes the form

$$
\begin{equation*}
\left\}_{1}=\{ \}_{2} W_{1}+\frac{K}{A_{1}}\left[\frac{1}{\mathbf{B}} h \int_{2}^{\infty} \frac{e^{-x^{2}}}{x} d x\right] \frac{\partial \theta}{\partial y}\right. \tag{136}
\end{equation*}
$$

where the last term can be neglected for values of (y) greater than about (5), the coefficients $\left\}_{1}\right.$ and $\left\}_{2}\right.$ are known, and $\left(\frac{1}{\mathbf{B}}\right)$ is a mean value for $\left(\frac{1}{B}\right)$. Thus a trial value (1.5) was found for $\left(W_{1}\right)$ using .00029 for $\left(\frac{1}{\mathrm{~B}}\right)$.

The corresponding value of (T) is 15.46 , and line VI of figure 11 is accordingly drawn through the point $y=0,15.46 \times .2329=3.60$ parallel to the lower part of line V. Since the slope of line V changes at the depth (6) the slope of line VI changes there also. The entries in column 11 of table 6 were read off from this graph. The entries of column 11' were computed for $y \overline{>} 6$ as indicated in the table using the value 15.46 for (T). The value 24.63 of (T) for $y=6$ was found from the fact that at the depth (6), $15.46 \times .0686=1.06=24.63 \times .043$, referring to column 9 . The computed entries in column 11^{\prime} should equal those in column 11 read off from the graph. Using the value $h=200$ found by trial, the entries in column 15 were computed from column 4 with the aid of table 2. The corresponding value of $\frac{K}{A_{1}}$ in equation (153) was found to be (3.8) from which the entries in column 18 were computed.

In figure 11 curve I representing the effect of conduction was plotted from column 11^{\prime}, curve II representing the surface loss of heat was plotted from column 18, curve III representing the effect of upwelling was plotted from column 12, and curve IV the theoretical value of $\frac{\partial \theta}{\partial t}$ represents the sum of the curves I, II, and III; the numerical values are entered in column 19. The points representing the observed values of $\frac{\partial \theta}{\partial t}$ agree well with the theoretical curve.

The result of similar computations for each of the five months from May to September are summarized in table 7. The coefficient of turbulence (μ^{2}) is less between the surface and depth (6) dekameters than between 6 and 10 dekameters. This accords with what would be expected from the relatively greater stratification in the upper levels. The rates of solar radiation at the surface measured by a pyranometer in the same general region have been reduced to evaporating power in cm . per month and entered for comparison. They are seen to be of the same order as the theoretical ones estimated from ocean temperatures.

The mean annual rate of evaporation from the sea at the latitude of San Diego has been estimated to be 7.5 cm . per month (Schmidt, 1915, p. 121) and 9.2 cm . per month (Wüst, 1920, p. 83). These values
are consistent with the theoretical rates for summer months, entered in the last column of table 7. Their average (13.2) should exceed the mean annual value.

The average upwelling velocity (W_{1}) was found to be 1.5 dekameters per month. Earlier estimates (McEwen, 1919) from the same data,

Table 7
Summary of the results of applying the simplified approximate equation including the upwelling velocity to data on temperature and salinity in the Coronado Island region

but obtained by a less fundamental treatment that involved wind velocities, were about twice as large. As stated before, these observations are not so well suited to the application of such methods as later, more continuous and regularly distributed ones, and the results are probably only rough approximations.
hs, entered exceed the
dekameters same data, ion including !.

Radiation $\left(N_{1}+N_{2}+K\right)$ $=R$ o
24.5
26.4
22.3
37.2
28.5

Evaporating wwer of total is of heat from 1e surface $=$
$\frac{10 \mathrm{~K}}{6}$
18,0
\because
5.8
21.6
13.0

Theoretical evaporation issuming the Bowen ratio to be .22
14.8
18.9
4.8
17.7
10.7
volved wind ese observaiods as later, \geqslant results are

SUPPLEMENTARY EXAMINATION OF RESTLTS AND SUGGESTIONS RELATIVE TO FURTHER APPLICATION: OF THE THEORY

A theory of vertical gradients of temperature and concentration of dissolved substances has been formulated, using as a basis the sinking of small relatively heavy surface masses of water and a compensating ascent of lighter masses. The increase of density at the surface caused by evaporation, conduction, and convection through the air, and back radiation, suggested the idea of deducing the behavior of a mechanism involving a vertical interchange of water masses having different properties. The mathematical theory of such a mechanism of the downward diffusion of surface cooling led to a pair of simultaneous differential equations expressing causal relations between turbulence, rate of surface cooling, rate at which solar radiation penetrates the surface, vertical distribution of temperature and salinity, and the rate of vertical flow of the water.

These equations express the result of a statistical study of a multitude of small (not molecular) units or individual masses and apply to the gross or resultant behavior of the system in which the behavior of a single element is unknown. This basic idea is familiar to all students of statistical mechanics which is proving so essential in modern theoretical physics and chemistry.

Methods have been worked out for applying these equations to numerical data, but their general solution has not been attempted. Four integrals appearing in these equations and depending upon the vertical variation of specific gravity have been tabulated to facilitate the application of these equations.

- Numerical results have been obtained by applying the theory to serial temperatures of Lake Mendota, Wisconsin, to serial temperatures in a tank of water, and to serial temperatures and salinities in the Pacific Ocean near San Diego, California. From such observations the theory provided a means of estimating the rate of penetration of solar radiation through the water surface, the rate of surface cooling, and, therefore, an estimate of evaporation, and the rate of vertical flow of the water. The upwelling velocity during summer in the Pacific near San Diego was thus estimated to be about fifteen meters per month, and the rate of penetration of solar radiation thus found was in good agreement with results obtained by independent methods.

By applying the same mechanism of downward diffusion to the distribution of salinity, and combining the resulting equations with those pertaining to temperature, a method has been worked out for estimating separately the surface cooling due to evaporation and other
causes. This method of determining the rate of evaporation from the ocean solely by means of serial observations of temperature and salinity down to the hundred-meter level, while theoretically possible, has not yet been applied. A more practicable method is presented which involves much less computation but requires wet- and dry-bulb temperatures of the air as well as serial observations of the water in order to estimate the "Bowen ratio," or ratio of loss of heat by conduction and convection through the air to that lost by evaporation. This simpler method should yield reasonably accurate results. A simpler approximate method is also presented of deducing ocean evaporation from the rate of surface cooling, computed from serial observations, and supplementary observations on an evaporating pan containing sea water.

Numerical or graphical integration of the equations after the various physical magnitudes have been found as indicated above should reproduce the subsequent changes in temperatures and salinities from their initial values. Details of how such computations may be made are presented.

Applying the theory to numerous observations representative of widely different conditions has produced results consistent with other investigations. In addition to yielding numerical results, as accurate as are usually found in "field" problems where the complexity of the phenomena precludes great precision, an accuracy approaching that of the physical laboratory resulted from the small-scale tank experiment.

The amount of labor involved in making the computations may at first appear unreasonably great, but the phenomena are complex. The formulation of the theory is worth while if, as already indicated, it agrees reasonably well with facts. And the work of facilitating its application can doubtless be carried much farther than has been done. Moreover, as information accumulates about the values of the different physical constants, the trial and error process of computing will be shortened.

In addicion to applying the theory to available data, as was done in the illustrative examples, and thus determining the various physical constants under widely different conditions, other problems whose solution requires a treatment of the general type presented in this paper are outlined below.

1. Determination of "normal" temperatures and salinities, that is, values corresponcing to the latitude and time of year in the absence of a general flow of the water. After computing the constants of the temperature equation (equation 84) proceed to predict the temperatures and salinities as explained on pages 234 to 237 , assuming the velocity W_{1} to be zero, and thus estimate normal values.
2. Determination of the concentration at different depths and times of various chemicals from given external conditions and the physical laws of diffusion independent of organic influences. Comparison of the actual distribution which is determined not only by inorganic conditions and laws, but also by living organisms that may either consume or produce the particular substance in question, should result in information regarding the interrelation between these organisms and their environment.
3. A great deal of attention has been given, especialiy within the past twenty years, to problems of turbulence in the atmosphere. Great progress has resulted in our knowledge of frictional resistance, diffusion, conduction, and the laws of the variation of wind velocity with height. It may be that the theory of this paper will find application to the lower part of the atmosphere overlying relatively warmer sea or land surfaces, and supplement general theories already developed. Thus it may contribute to our knowledge of this zone of contact between the atmosphere and the surface of the earth.

The development of this theory of vertical velocity and the distribution of temperature and salinity in the ocean was suggested during the preparation of an earlier, more empirical paper (McEwen, 1918). Also in developing this more fundamental theory, accompanying studies of the less complicated phenomena in fresh-water lakes and reservoirs proved to be an invaluable aid.

Methods of determining oceanic circulation from forces producing it use as a basis a space distribution of simultaneous observations. For example, in applying the Bjerknes dynamical method, a set of serial observations is required corresponding as nearly as possible to the same time. Similarly the circulation computed from wind velocity according to Ekman's theory occurs simultaneously with the wind which is assumed to continue until a steady condition is reached.

On the other hand, the method derived in this paper for computing circulation from its effect upon the vertical distribution of temperature and other properties of the water requires the repetition at successive time intervals of a vertical series of observations. By means of the Bjerknes dynamical method, circulation is inferred from the space distribution of temperature and salinity. The method of this paper infers changes in the distribution of temperature and salinity due to circulation. Consequently there is a possibility of combining the two methods and thus predicting the successive changes that follow given initial conditions.

According to plans already formulated, oceanographical and meteorological observations in the less disturbed region of the North Pacific high-pressure area will be available for applications of this theory. Such studies should prove helpful in the search for indices of use in investigations of long-range weather forecasting.

I am greatly indebted to my colleague, Dr. N. W. Cummings of the San Bernardino Union Junior College for helpful suggestions in preparing the final draft of the manuscript. It is a pleasure to acknowledge my obligation to Dean B. M. Woods of the University of California for his critical reading of the completed manuscript and for his editorial assistance. I also wish to express my appreciation to Dr. A. F. Gorton, Associate in Meteorology at the Scripps Institution of Oceanography, for assistance in reading the proofs and for final suggestions.

1d meteor th Pacific is theory. of use in
nmings of estions. in 1 acknowlCalifornia s editorial r. Gorton, nography,

APPENDIX

tabulations of Functions needed in numerical applica TIONS OF THE EQUATIONS. (THE FREQUENCY FUNCTION $F_{1}(x)$ IS ASSUMED TO BE $e^{-x^{2}}$.)

$$
\text { General Statement and Table } 1 \text { of the Integral, } \int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x
$$

Tabulated values of certain functions involved in the various equations of temperature and other properties of the water must be available in order to make numerical applications. These are tabulated here in a form and to a degree of accuracy suitable for such applications. A brief statement of the methods used and the precision reached in the computations is given for each table.

With the aid of the equation

$$
\begin{equation*}
\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x=\frac{1}{2} \int_{z^{2}}^{\infty} \frac{e^{-x}}{x} d x \tag{1}
\end{equation*}
$$

formulae and tables of the integral in the second member can be used for computing table 1 of the integral, $\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x$
According to Glaisher (1870, pp. 367-369) the function

$$
\begin{gather*}
E i(x)=\int_{\infty}^{-x} \frac{e^{-u}}{u} d u=.57721+\frac{1}{4} \log _{e} x^{4}+\mathrm{x}+\frac{1}{2} \frac{x^{2}}{1 \cdot 2}+\frac{1}{3} \frac{x^{3}}{[3}+\frac{1}{4} \frac{x^{4}}{\underline{4}}+\ldots \tag{2}\\
E i(x)=e^{x}\left\{\frac{1}{x}+\frac{1}{x^{2}}+\frac{1 \cdot 2}{x^{3}}+\frac{13}{x^{4}}+\frac{14}{x^{5}}+\ldots\right\} \tag{3}
\end{gather*}
$$

Therefore interchanging the limits and substituting $(-z)$ for (x) gives the exponential integral

$$
\begin{align*}
& -E i(-z)=\int_{Z}^{\infty} \frac{e^{-x}}{x} d x=-\log _{e} z+\left[-.5772+Z-\frac{Z^{2}}{2[2}\right. \tag{4}\\
& \left.+\frac{Z^{3}}{3!3}-\frac{Z^{4}}{4!4}+\frac{Z^{5}}{5!5}-\cdots\right]
\end{align*}
$$

and

$$
\begin{equation*}
-E i(-z)=\left[\frac{1}{Z}-\frac{1}{Z^{2}}+\frac{12}{Z^{3}}-\frac{13}{Z^{4}}+\frac{14}{Z^{5}}-\frac{5}{Z^{6}}+\ldots\right] e^{-z} \tag{5}
\end{equation*}
$$

Equation (3) is adapted to small values of (z). Equation (5) is adapted to large values of (z). This function is tabulated (Glaisher, 1870, p. 385) for values of (z) increasing by intervals of 0.1 from 1.0 to 5.0 , and intervals of 1 from 5.0 to 15.0 . On page 380 the function is tabulated for values of (Z) increasing by intervals of .01 from .01 to 1.0 . In a later paper (Miller and Resebrugh, 1903, pp. 80-81) the function

$$
\begin{equation*}
B=\int_{z}^{\infty} \frac{e^{-x}}{x} d x+\log _{e} Z \tag{6}
\end{equation*}
$$

is tabulated for values of (z) increasing by intervals of .001 from .001 to 0.100 and the integral $\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x$ is tabulated for values of (z) increasing by intervals of .001 from 0.100 to 1.000 . For values of (z) between 1.00 and 2.00 the interval is .01 . According to equation (3), (B) can be computed from the series

$$
\begin{equation*}
B=\left[-.5772+Z-\frac{z^{2}}{2 \underline{2} \underline{2}}+\frac{z^{3}}{3 \underline{3}}-\frac{z^{4}}{4 \underline{4}}+\frac{z^{5}}{5[5}-\ldots\right] \tag{7}
\end{equation*}
$$

From equations (1) and (6) we get

$$
\begin{equation*}
\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x=-\log _{e} z+\frac{B}{z} \tag{8}
\end{equation*}
$$

where (B) corresponds to $\left(z^{2}\right)$
and

$$
\begin{equation*}
\int_{z}^{\infty} \frac{e^{-z^{2}}}{x} d x=-\log _{e} z+\left[-.28861+\frac{z^{2}}{2}-\frac{z^{4}}{8}+\frac{z^{6}}{36}-\frac{z^{8}}{192}+\ldots\right] \tag{9}
\end{equation*}
$$

which are suitable for values of (z) not too large. From equations (1) and (5) we get

$$
\begin{equation*}
\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x=\frac{1}{2}\left[+\frac{1}{z^{2}}-\frac{1}{z^{4}}+\frac{\mid 2}{z^{6}}-\frac{\mid 3}{z^{8}}+\frac{\mid 4}{z^{10}}-\frac{\mid 5}{z^{12}}\right] e^{-z^{2}} \tag{10}
\end{equation*}
$$

which is adapted to large values of (z).
Table 1 was first computed by using well-known methods of numerical integration and interpolation in connection with tables of the exponential function (Fowle, 1914, pp. 48-53) and the normal probability integral (Pearson, 1914, pp. 1-11). Later, after having access to tables of the exponential integral, $-E(-z)$, independent computations of table 1 were made which revealed a maximum error of .001
in the previous results. Tables of the exponential function and natural logarithms (Hayashi, 1926) were very useful for making these computations which were carried to four decimal places for this paper.

Pearson's tables of the incomplete gamma function $I(u, \rho)$ and certain of its expansions in series were especially useful for making computations involving the more general frequency function $\frac{e^{-x^{2}}}{x^{a}}$, since it can easily be shown that

$$
\begin{equation*}
\int_{z}^{\infty} \frac{e^{-x^{2}}}{x^{1+a}} d x=\frac{1}{a}\left\{\frac{e^{-x^{2}}}{z^{a}}-\Gamma(\rho+1)[1-I(u, \rho)]\right\} \tag{11}
\end{equation*}
$$

where $\rho=-\frac{a}{z}$ and $u=\frac{z^{2}}{\sqrt{1+\rho}}$. However, experience in numerous applications has shown that the normal frequency function $e^{-x^{2}}$ is a suitable value of $F_{1}(x)$. Accordingly this value was assumed in computing these tables.

Table 1
' z) between 3), (B) can

z	$\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x$	z	$\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x$	z	$\int_{z}^{\infty} \frac{e^{-x_{2}}}{x} d x$	z	$\int_{z}^{\infty} \frac{e^{-x_{2}}}{x} d x$
. 001	6.6191	. 025	3.4005	. 049	2.7297	. 073	2.3320
. 002	5.9255	. 026	3.3640	. 050	2.7087	. 074	2.3183
. 003	5.5204	. 027	3. 3277	. 051	2.6896	. 075	2.3046
. 004	5.2330	. 028	3.2913	. 052	2.6706	. 076	2.2917
. 005	5.0097	. 029	3.2549	. 053	2.6615	. 077	2.2788
. 006	4.8276	. 030	3.2185	. 054	2.6325	. 078	2.2659
. 007	4.6732	. 031	3.1877	. 055	2.6134	. 079	2.2530
. 008	4.5399	. 032	3.1569	. 056	2.5961	. 080	2.2402
. 009	4.4220	. 033	3.1261	. 057	2.5787	081	2.2281
. 010	4.3166	. 034	3.0953	. 058	2.5613	. 082	2.2160
. 011	4.2229	. 035	3.0646	. 059	2.5440	. 083	2.2040
. 012	4.1334	. 036	3.0379	. 060	2.5266	. 084	2.1919
. 013	4.0541	. 037	3.0112	. 061	2.5107	. 085	2.1899
. 014	3.9800	. 038	2.9845	. 062	2.4947	. 086	2.1686
. 015	3.9110	. 039	2.9578	. 063	2.4788	. 087	2.1574
. 016	3.8456	. 040	2.9311	. 064	2.4628	. 088	2.1462
. 017	3.7860	. 041	2.9076	. 065	2.4468	. 089	2.1350
. 018	3.7286	. 042	2.8842	. 066	2.4321	. 090	2.1237
. 019	3.6749	. 043	2.8607	. 067	2.4173	. 091	2.1130
. 020	3.6236	. 044	2.8373	. 068	2.4026	. 092	2.1022
. 021	3.5790	. 045	2.8138	. 069	2.3878	. 093	2.0915
. 022	3.5343	. 046	2.7928	. 070	2.3737	. 094	2.0807
. 023	3.4898	. 047	2.7717	. 071	2.3594	. 095	2.0699
. 024	3.4451	. 048	2.7507	. 072	2.7453	. 096	2.1598

Table 1 (Continued)

	$\int_{0}^{\infty} \frac{e^{-x^{2}}}{x} d x$		$\int_{0}^{\infty} \frac{e^{-x^{2}}}{x} d x$		$\int \frac{e^{-x^{2}}}{x} d x$		$\int^{\infty} \frac{e^{-x^{2}}}{x} d x$
z		z		z		z	
. 097	2.0496	. 145	1.6533	. 193	1.3751	. 61	. 3764
. 098	2.0394	. 146	1.6466	. 194	1.3701	. 62	. 3655
. 099	2.0292	. 147	1.6390	. 195	1.3651	. 63	. 3546
. 100	2.0190	. 148	1.6331	. 196	1.3602	. 64	. 3437
. 101	2.0094	. 149	1.6264	197	1.3553	. 65	. 3327
. 102	1.9999	. 150	1.6197	. 198	1.3504	. 66	. 3234
. 103	1.9903	. 151	1.6134	. 199	1.3455	. 67	. 3140
. 104	1.9807	. 152	1.6071	. 200	1.3406	. 68	. 3046
. 105	1.9711	. 153	1.6008	. 21	1.2983	. 69	. 2952
. 106	1.9618	. 154	1.5945	. 22	1.2558	. 70	. 2858
. 107	1.9527	. 155	1.5882	. 23	1.2135	. 71	. 2776
. 108	1.9434	. 156	1.5819	. 24	1.1710	. 72	. 2695
. 109	1.9342	. 157	1.5756	. 25	1.1287	. 73	. 2613
. 110	1.9249	. 158	1.5694	. 26	1.0948	. 74	. 2531
. 111	1.9161	. 159	1.5631	27	1.0607	. 75	. 2450
. 112	1.9074	. 160	1.5568	. 28	1.0272	. 76	. 2379
. 113	1.8987	. 161	1.5507	. 29	. 9933	. 77	. 2308
. 114	1.8898	. 162	1.5447	. 30	. 9594	. 78	. 2238
. 115	1.8811	. 163	1.5385	. 31	. 9314	. 79	. 2167
. 116	1.8727	. 164	1.5325	. 32	. 9037	. 80	2096
. 117	1.8642	. 165	1.5265	. 33	. 8760	. 81	. 2035
. 118	1. 8558	. 166	1.5208	. 34	. 8483	. 82	. 1974
. 119	1.8473	. 167	1.5150	. 35	. 8207	. 83	. 1913
. 120	1.8389	. 168	1.5092	. 36	. 7974	. 84	. 1851
. 121	1.8309	. 169	1.5035	. 37	. 7742	. 85	. 1790
. 122	1.8227	. 170	1.4978	. 38	. 7510	. 86	. 1737
. 123	1.8146	. 171	1.4922	. 39	. 7277	. 87	. 1683
. 124	1.8065	. 172	1.4866	. 40	. 7045	. 88	. 1630
. 125	1.7983	. 173	1.4810	41	. 6857	. 89	. 1576
. 126	1.7907	. 174	1.4754	. 42	. 6669	. 90	. 1523
. 127	1.7830	. 175	1.4699	. 43	. 6481	. 91	. 1477
. 128	1.7754	. 176	1.4643	. 44	. 6293	. 92	. 1431
. 129	1.7677	. 177	1.4588	. 45	. 6105	. 93	. 1386
. 130	1.7599	. 178	1.4533	. 46	. 5928	. 94	. 1340
. 131	1.7525	. 179	1.4477	. 47	. 5751	. 95	. 1294
. 132	1.7451	. 180	1.4423	. 48	. 5573	. 96	. 1254
. 133	1.7376	. 181	1.4369	. 49	5396	. 97	. 1214
. 134	1.7302	. 182	1.4315	. 50	. 5219	. 98	. 1175
. 135	1.7227	. 183	1.4262	. 51	. 5074	99	. 1135
. 136	1.7156	. 184	1.4208	. 52	. 4929	1.00	. 1095
. 137	1.7085	. 185	1.4155	. 53	. 4784	1.01	. 1061
. 138	1.7013	. 186	1.4103	. 54	. 4639	1.02	. 1027
. 139	1.6943	. 187	1.4052	. 55	. 4494	1.03	. 0993
. 140	1.6872	. 188	1.4001	. 56	4370	1.04	. 0960
. 141	1.6804	. 189	1.3950	. 57	4246	1.05	. 0926
. 142	1.6736	. 190	1.3900	. 58	. 4122	1.06	. 0896
. 143	1.6668	. 191	1.3850	. 59	. 3998	1.07	. 0866
. 144	1.6600	. 192	1.3800	. 60	. 3873	1.08	. 0837

[VOL" 2

Table 1 (Continued

z	$\int_{z}^{\infty} \frac{e^{-x 2}}{x} d x$	z	$\int^{\infty} \frac{e^{-x^{2}}}{x} d x$	2	$\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x$	z	$\int_{2}^{\infty} \frac{e^{-x^{2}}}{x} d x$
1.09	. 0807	1.42	. 0239	1.75	. 0059	2.08	0012
1.10	. 0777	1.43	. 0230	1.76	. 0057	2.09	. 0011
1.11	. 0752	1.44	. 0221	1.77	. 0055	2.10	. 0010
1.12	. 0728	1.45	. 0211	1.78	. 0052	2.11	. 0010
1.13	. 0703	1.46	. 0204	1.79	. 0050	2.12	. 0009
1.14	. 0678	1.47	. 0196	1.80	. 0048	2.13	. 0009
1.15	. 0654	1.48	. 0188	1.81	. 0046	2.14	. 0008
1.16	. 0632	1.49	. 0181	1.82	. 0043	2.15	. 0007
1.17	. 0611	1.50	. 0173	1.83	. 0041	2.16	. 0007
1.18	. 0589	1.51	. 0166	1.84	. 0039	2.17	. 0007
1.19	. 0567	1.52	. 0160	1.85	. 0037	2.18	. 0007
1.20	. 0546	1.53	. 0153	1.86	. 0035	2.19	. 0006
1.21	. 0527	1.54	. 0147	1.87	. 0034	2.20	. 0006
1.22	. 0509	1.55	. 0140	1.88	. 0032	2.21	. 0006
1.23	. 0491	1.56	. 0135	1.89	. 0031	2.22	. 0006
1.24	. 0473	1.57	. 0130	1.90	. 0029	2.23	. 0005
1.25	. 0454	1.58	. 0125	1.91	. 0028	2.24	. 0005
1.26	. 0439	1.59	. 0120	1.92	. 0027	2.25	. 0005
1.27	. 0423	1.60	. 0115	1.93	. 0026	2.26	. 0005
1.28	. 0408	1.61	.0110	1.94	. 0024	2.27	. 0005
1.29	. 0393	1.62	.0106	1.95	. 0023	2.28	. 0004
1.30	. 0377	1.63	. 0101	1.96	. 0022	2.29	. 0004
1.31	. 0364	1.64	. 0097	1.97	. 0021	2.30	. 0004
1.32	. 0351	1.65	. 0092	1.98	. 0020	2.31	. 0004
1.33	. 0338	1.66	. 0088	1.99	. 0019	2.32	. 0004
1.34	. 0325	1.67	. 0085	2.00	. 0018	2.33	. 0003
1.35	. 0312	1.68	. 0081	2.01	. 0017	2.34	. 0003
1.36	. 0301	1.69	. 0078	2.02	. 0016	2.35	. 0003
1.37	. 0290	1.70	. 0074	2.03	. 0015	2.36	. 0003
1.38	. 0280	1.71	. 0071	2.04	. 0015	2.37	. 0003
1.39	. 0269	1.72	. 0068	2.05	. 0014	2.38	. 0002
1.40	. 0258	1.73	. 0065	2.06	. 0013	2.39	. 0002
1.41	. 0249	1.74	. 0062	2.07	. 0012	2.40	. 00025

Table 2
Tabulation of $h \int_{z}^{\infty} \frac{e^{-x z}}{x} d x$ with respect to $\left(\sigma_{y}-\sigma_{o}\right)$, where $z=h\left(\sigma_{y}-\sigma_{o}\right)$
For convenience in preliminary trial computations the function $h \int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x$ has been tabulated with respect to the difference $\left(\sigma_{y}-\sigma_{o}\right)$. The computations were based upon table 1 and the error is about one part in a thousand.

,	100	200	300	400	500	600	700	800
$\left(\sigma_{y}-\sigma_{o}\right)$								
. 00001	661.9	1185	1656	2093	2505	2896	3271	3632
. 00002	592.5	1046	1448.	1816	2158	2480	2786	3077
. 00003	552.0	965	1326	1653	1956	2237	2506	2756
. 00004	523.3	908	1240	1538	1812	2067	2304	2526
. 00005	501.0	863	1173	1449	1700	1931	2145	2345
. 00006	482.8	827	1118	1378	1609	1823	2019	2201
. 00007	467.3	796	1074	1316	1532	1730	1911	2077
. 00008	454.0	769	1033	1263	1465	1650	1817	1970
. 00009	442.2	745	998	1215	1407	1579	1735	1877
. 00010	431.7	724	965	1172	1354	1516	1661	1792
. 00011	422.3	707	938	1135	1307	1459	1595	1717
. 00012	413.3	689	911	1100	1263	1407	1534	1648
. 00013	405.4	673	887	1068	1223	1360	1479	1585
. 00014	398.0	658	865	1038	1186	1315	1428	1526
. 00015	391.1	643	844	1010	1152	1274	1380	1471
. 00016	384.5	631	825	985	1120	1236	1344	1420
. 00017	378.6	619	807	961	1090	1200	1293	1373
. 00018	372.9	607	790	938	1062	1166	1254	1328
. 00019	367.5	597	773	917	1035	1134	1216	128.5
. 00020	362.4	586	758	896	1009 .	1103	1181	1246
. 00021	357.9	577	743	877	985	1074	1148	1208
. 00022	353.4	567	729	858	962	1047	1116	1172
. 00023	349.0	558	716	841	940	1021	1086	1137
. 00024	344.5	550	703	824	919	996	1057	1104
. 00025	340.1	541.9	691.6	807.9	899.6	971.8	1029.6	1072.6
. 00026	336.4	534.3	680.0	792.5	880.4	949.6	1002.5	1045.4
. 00027	332.8	526.6	668.6	777.6	861.9	927.5	977.0	1018.3
. 00028	329.1	519.4	657.8	763.2	844.2	906.4	952.3	991.0
. 00029	325.5	512.4	647.4	749.4	826.9	885.9	929.6	963.9
. 00030	321.9	505.5	637.3	735.9	809.9	865.8	908.8	936.7
. 00031	318.8	499.1	627.7	722.9	794.4	846.7	887.9	909.6
. 00032	315.7	492.7	618.1	710.4	779.0	828.4	867.2	886.6
. 00033	312.6	486.6	609.0	698.4	763.9	810.4	846.4	864.8
. 00034	309.5	480.7	600.1	686.6	749.6	796.4	825.6	843.1
. 00035	306.5	474.8	502.0	675.0	735.0	778.0	804.8	821.5

LVOL 2
$\left.-\sigma_{0}\right)$
e function
e $\left(\sigma_{\nu}-\sigma_{o}\right)$.
about one

30

3632
3077
2756
2526
2345
2201
2077
1970
-77
2
1717
1648
1585
1526
1420
1373
1328
1285
1246
1208
1137
1104

1.6
8.5

1045.4
1018.3
991.0
936.7
909.6
886.6
864.8
843.1
821.5

1929] McEwen: Distribution of Temperature and Salinity

Table 2 (Continued)

h	100	200	300	400	500	600	700	800
$\left(\sigma_{y}-\sigma_{0}\right)$								
. 00036	303.8	469.2	583.6	664.1	721.1	762.0	787.1	801.1
. 00037	301.1	463.7	575.4	653.5	707.7	746.4	769.5	780.7
. 00038	298.4	458.4	567.4	643.1	694.7	731.2	752.3	760.9
. 00039	295.8	453.6	559.6	632.9	682.1	716.4	735.5	741.7
. 00040	293.1	448.2	552.0	623.0	670.0	702.0	719.0	723.0
. 00041	290.8	443.3	544.7	613.4	659.0	688.4	703.4	705.1
. 00042	288.4	438.6	537.5	604.0	648.0	675.0	687.8	687.7
. 00043	286.1	433.9	530.5	594.8	637.2	661.8	672.4	670.7
. 00044	283.7	429.3	523.7	585.8	626.6	648.8	657.2	654.1
. 00045	281.4	424.9	517.0	577.0	616.0	636.0	642.0	638.0
. 00046	279.3	420.5	510.6	568.2	605.2	622.8	625.4	622.1
. 00047	277.2	416.2	504.2	559.8	594.6	610.2	609.6	606.7
. 00048	275.1	412.0	498.0	551.6	584.4	598.0	594.8	591.9
. 00049	273.0	407.9	492.0	543.6	574.6	586.2	581.0	577.7
. 00050	270.9	403.9	486.0	536.0	565.0	575.0	568.0	564.0
. 00051	269.0	400.0	480.2	529.2	556.0	565.0	557.7	551.0
. 00052	267.1	396.1	474.4	522.4	547.7	555.2	547.5	538.6
. 00053	265.1	392.4	468.8	515.6	539.1	545.4	537.3	526.6
. 00054	263.2	388.7	463.4	508.8	530.5	535.6	527.1	515.0
. 00055	261.3	385.1	458.0	502.0	522.0	526.0	517.0	504.0
. 00056	259.6	381.5	452.8	494.9	513.0	516.2	506.7	491.9
. 00057	257.9	378.1	447.8	487.9	504.4	506.6	496.5	480.1
. 00058	256.1	374.7	442.8	481.1	496.0	497.2	486.5	468.5
. 00059	254.4	371.3	437.8	474.5	487.8	488.0	476.7	457.1
. 00060	252.7	368.0	433.0	468.4	480.0	479.0	467.0	446.0
. 00061	251.1	364.7	428.2	461.8	473.0	470.2	457.6	435.0
. 00062	249.5	361.4	423.6	455.6	465.9	461.6	448.2	424.2
. 00063	247.9	358.2	419.0	449.6	458.9	453.2	439.0	413.8
. 00064	246.3	355.1	414.4	443.7	452.0	'445.0	430.0	403.8
. 00065	244.7	352.1	410.0	438.0	445.0	437.0	421.0	394.0
. 00066	243.2	349.1	405.6	432.6	437.6	429.4	412.0	384.9
. 00067	241.7	346.2	401.4	427.2	430.5	421.8	403.2	375.9
. 00068	240.3	343.3	397.2	421.8	423.6	414.4	394.6	367.1
. 00069	238.8	340.5	393.0	416.4	416.9	407.2	386.2	358.5
. 00070	237.4	337.7	389.0	411.0	410.5	400.0	378.0	350.0
. 00071	235.9	334.8	385.2	405.3	404.9	393.0	370.1	341.6
. 00072	234.6	332.0	381.4	399.7	399.3	386.2	362.3	333.4
. 00073	233.2	329.2	377.6	394.3	393.6	379.4	354.7	325.4
. 00074	231.8	326.5	373.8	389.1	387.8	372.6	347.3	317.6
. 00075	230.5	323.9	370.0	384.0	382.0	366.0	340.0	310.0
. 00076	229.2	321.4	366.1	379.3	375.4	358.9	333.0	302.7
. 00077	227.9	318.9	362.3	374.7	369.2	352.1	326.0	295.5
. 00078	226.6	313.4	358.5	370.1	363.2	345.7	319.2	288.5
. 00079	225.3	314.0	354.7	365.5	357.4	339.7	312.6	281.7
. 00080	224.0	311.6	351.0	361.0	352.0	334.0	306.0	275.0
. 00081	222.8	309.1	347.2	356.4	347.5	330.2	299.4	268.6
. 00082	221.6	306.8	343.4	352.0	342.9	326.0	293.0	262.2
00083	220.4	304.4	339.8	347.6	338.3	321.4	286.8	256.0

Table 2 (Continued)

			T	(Con				
, h	100	200	300	400	500	600	700	800
$\left(\sigma_{y}-\sigma_{o}\right)$								
. 00084	219.2	302.1	336.4	343.2	333.7	316.4	280.8	250.0
. 00085	219.0	299.8	333.0	339.0	329.0	311.0	275.0	244.0
. 00086	216.9	297.5	330.0	334.9	324.0	303.6	269.8	238.2
. 00087	215.7	295.2	327.0	330.9	319.2	296.6	264.6	232.6
00088	214.6	293.0	324.0	326.9	314.4	290.0	259.4	227.0
. 00089	213.5	290.7	321.0	322.9	309.6	283.8	254.2	221.4
. 00090	212.4	288.6	318.0	319.0	305.0	278.0	249.0	216.0
. 00091	211.3	286.4	315.0	315.1	300.6	273.3	243.6	210.5
. 00092	210.2	284.3	312.0	311.3	296.2	268.7	238.2	205.2
. 00093	209.1	282.2	309.0	307.5	291.8	264.1	233.0	200.0
. 00094	208.1	280.1	306.0	303.7	287.4	259.5	228.0	194.9
. 00095	207.0	278.1	303.0	300.0	283.0	255.0	223.0	190.0
. 00096	206.0	275.9	299.8	296.2	278.3	250.4	218.2	185.3
. 000097	205.0	273.9	296.8	292.4	273.7	246.0	213.4	180.7
. 00098	203.9	271.9	293.8	288.8	269.3	241.6	208.8	176.3
.00099	202.9	269.9	290.8	285.4	265.1	237.2	204.4	171.9
. 00100	201.9	268.1	288.0	282.0	261.0	233.0	200.0	167.7
. 00101	200.9	266.3	285.3	279.0	257.4	228.9	195.8	163.6
. 00102	200.0	264.6	282.7	276.0	253.8	224.9	191.8	159.7
. 00103	199.0	263.0	280.1	273.0	250.2	220.9	187.8	155.8
. 00104	198.1	261.3	277.5	270.0	246.6	216.9	183.8	151.9
. 00105	197.1	259.7	275.0	267.0	243.0	213.0	180.0	148.2
. 00106	196.2	258.0	272.7	264.0	239.2	209.0	176.3	144.4
. 00107	195.3	256.3	270.3	261.0	235.6	205.2	172.7	140.8
. 00108	194.3	254.6	267.9	258.0	232.0	201.4	169.1	137.2
. 00109	193.4	252.9	265.5	255.0	228.4	197.6	165.5	133.8
. 00110	192.5	251.2	263.0	252.0	225.0	194.0	162.0	130.4
. 00111	191.6	249.5	260.4	248.9	221.7	190.4	158.4	127.1
. 00112	190.7	247.8	257.9	245.9	218.5	187.0	155.0	123.8
. 00113	189.9	246.1	255.5	242.9	215.3	183.6	151.6	120.7
. 00114	189.0	244.4	253.2	239.9	212.1	180.2	148.2	117.6
. 00115	188.1	242.7	251.0	237.0	209.0	177.0	145.0	114.6
. 00116	187.3	241.0	248.7	234.2	205.8	174.0	141.9	111.6
. 00117	186.4	239.3	246.5	231.4	202.8	171.0	138.9	108.8
. 00118	185.6	237.6	244.3	228.6	199.7	168.0	135.9	106.0
. 00119	184.7	235.9	242.1	225.8	196.7	165.0	132.9	103.2
. 00120	183.9	234.2	240.0	223.0	193.8	162.0	130.0	100.5
. 00121	183.1	232.3	237.8	220.0	191.0	158.8	127.1	97.7
. 00122	182.3	230.6	235.6	217.2	188.2	155.8	124.3	95.0
. 00123	181.5	228.1	233.4	214.4	185.5	152.8	121.5	92.5
. 00124	180.7	227.2	231.2	211.6	182.7	149.8	118.7	90.0
. 00125	179.8	225.7	229.0	209.0	180.0	147.0	116.0	87.6
. 00126	179.1	224.3	226.8	206.6	177.2	144.4	113.4	85.4
. 00127	178.3	222.9	224.6	204.2	174.5	141.8	110.8	83.2
. 00128	177.5	221.6	222.4	201.8	171.8	139.2	108.2	81.1
. 00129	176.8	220.2	220.2	199.4	169.1	136.6	105.6	78.9
. 00130	176.0	218.9	218.0	197.0	166.4	134.0	103.0	76.8
00131	175.2	217.5	216.2	194.8	164.0	131.6	100.8	74.

1929]
McEwen: Distribution of Temperature and Salinity

	Table 2 (Continued)							
	100	200	300	400	500	600	700	800
$\left(\sigma_{y}-\sigma_{o}\right)$								
. 00132	174.5	216.1	214.4	192.6	161.7	129.2	98.6	72.8
. 00133	173.8	214.8	212.6	190.4	159.3	126.8	96.5	70.9
. 00134	173.0	213.4	210.8	188.2	157.0	124.4	94.3	68.9
. 00135	172.3	212.1	209.0	186.0	154.7	122.0	92.2	67.0
. 00136	171.6	210.7	207.2	183.8	152.3	119.8	90.2	65.2
. 00137	170.9	209.4	205.4	181.6	149.9	117.6	88.2	63.4
. 00138	170.1	208.0	203.6	179.4	147.6	115.4	86.2	61.7
. 00139	169.4	206.7	201.8	177.2	145.2	113.2	84.2	59.9
. 00140	168.7	205.4	200.0	175.0	142.9	111.0	82.2	58.2
. 00141	168.0	204.0	198.4	173.0	140.8	109.0	80.3	56.6
. 00142	167.4	202.6	196.8	171.0	138.8	107.0	78.5	55.1
. 00143	166.7	201.3	195.2	169.0	136.7	105.0	76.7	53.6
. 00144	166.0	199.9	193.6	167.0	134.7	103.0	74.9	52.1
. 00145	165.3	198.6	192.0	165.0	132.7	101.0	73.1	50.6
. 00146	164.7	197.2	190.2	163.0	130.6	99.0	71.4	49.2
. 00147	163.9	195.8	188.4	161.0	128.6	97.1	69.7	47.8
. 00148	163.3	194.5	186.6	159.0	126.5	95.2	68.1	46.4
. 00149	162.6	193.1	184.8	157.0	124.5	93.3	66.4	45.0
. 00150	162.0	191.8	183.0	155.0	122.5	91.4	64.8	43.7
. 00151	161.3	190.7	181.4	153.2	120.7	89.7	63.3	42.5
. 00152	160.7	189.6	179.8	151.4	119.0	88.1	61.9	41.3
. 00153	160.1	188.5	178.2	149.6	117.2	86.4	60.4	40.1
. 00154	159.5	187.4	176.6	147.8	115.5	84.8	59.0	38.9
. 00155	158.8	186.3	175.0	146.0	113:8	83.2	57.6	37.8
. 00156	158.2	185.1	173.4	144.2	112.0	81.6	56.2	36.7
. 00157	157.6	184.0	171.8	142.4	110.2	80.0	54.9	35.7
. 00158	156.9	182.9	170.2	140.6	108.4	78.4	53.6	34.6
. 00159	156.3	181.8	168.6	138.8	106.6	76.8	52.3	33.6
. 00160	155.7	180.7	167.0	137.0	104.8	75.3	51.0	32.6
. 00161	155.1	179.6	165.4	135.4	103.2	73.8	49.8	31.7
. 00162	154.5	178.5	163.8	133.8	101.7	72.4	48.6	30.8
. 00163	153.8	177.4	162.2	132.2	100.2	70.9	47.4	29.9
. 00164	153.2	176.3	160.6	130.6	98.7	69.5	46.2	29.0
. 00165	152.6	175.2	159.0	129.0	97.2	68.1	45.0	28.2
. 00166	152.1	174.1	157.6	127.6	95.6	66.8	43.9	27.4
. 00167	151.5	173.0	156.2	126.2	94.1	65.5	42.9	26.6
. 00168	150.9	171.9	154.8	124.8	92.5	64.2	41.8	25.8
. 00169	150.3	170.8	153.4	123.4	91.0	62.9	40.8	25.0
. 00170	149.8	169.7	152.0	122.0	89.5	61.7	39.8	24.2
. 00171	149.2	168.5	150.8	120.4	88.1	60.4	38.8	23.4
. 00172	148.7	167.4	149.6	118.8	86.8	59.2	37.8	22.7
. 00173	148.1	166.3	148.4	117.2	85.4	58.0	36.9	22.0
. 00174	147.5	165.2	147.2	115.6	84.1	56.8	35.9	21.3
. 00175	147.0	164.1	146.0	114.0	82.8	55.6	35.0	20.6
. 00176	146.4	163.1	144.6	112.8	81.4	54.5	34.1	20.0
. 00177	145.9	162.2	143.2	111.6	80.1	53.4	33.2	19.4
. 00178	145.3	161.3	141.8	110.4	78.8	52.3	32.4	18.8
. 00179	144.8	160.4	140.4	109.2	77.5	51.2	31.5	18.2

Table 2 (Contiiued)								
- h	100	200	300	400	500	600	700	800
$\left(\sigma_{y}-\sigma_{o}\right)$								
. 00180	144.2	159.5	139.0	108.0	76.2	50.2	30.7	17.7
. 00181	143.7	158.5	137.8	106.6	75.0	49.2	29.9	17.1
. 00182	143.1	157.6	136.6	105.3	73.9	48.2	29.2	16.6
. 00183	142.6	156.6	135.4	103.9	72.7	47.2	28.4	16.1
. 00184	142.1	155.7	134.2	102.6	71.6	46.2	27.7	15.6
. 00185	141.6	154.8	133.0	101.3	70.5	45.2	27.0	15.1
. 00186	141.0	153.8	131.8	100.0	69.3	44.3	26.3	14.6
. 00187	140.5	152.9	130.6	98.8	68.1	43.4	25.6	14.1
. 00188	140.0	152.0	129.4	97.6	67.0	42.5	25.0	13.7
. 00189	139.5	151.1	128.2	96.4	65.8	41.6	24.3	13.2
. 00190	139.0	150.2	127.0	95.2	64.7	40.8	23.7	12.8
. 00191	138.5	149.2	126.0	94.0	63.7	39.9	23.1	12.4
. 00192	138.0	148.3	125.0	92.9	62.7	39.1	22.5	12.0
. 00193	137.5	147.4	124.0	91.8	61.7	38.3	21.9	11.6
. 00194	137.0	146.5	123.0	90.7	60.7	37.5	21.3	11.2
. 00195	136.5	145.6	122.0	89.6	59.8	36.7	20.7	10.9
. 00196	136.0	144.6	120.8	88.4	58.8	35.9	20.18	10.56
. 00197	135.5	143.7	119.6	87.2	57.8	35.14	19.66	10.22
. 00198	135.0	142.7	118.4	86.1	56.8	34.36	19.14	9.88
. 00199	134.5	141.8	117.2	84.9	55.8	33.58	18.62	9.54
. 00200	134.1	140.9	116.0	83.8	54.8	32.80	18.10	9.20
. 00201	133.7	140.1	115.0	82.8	53.94	32.14	17.64	8.92
. 00202	133.2	139.3	114.0	81.8	53.08	31.48	$17.18{ }^{\circ}$	8.64
. 00203	132.8	138.6	113.0	80.9	52.22	30.82	16.72	8.36
. 00204	132.3	137.8	112.0	79.9	51.36	30.16	16.26	8.08
. 00205	131.9	137.1	111.0	79.0	50.50	29.50	15.80	7.80
. 00206	131.5	136.3	110.0	78.0	49.66	28.88	15.38	7.56
. 00207	131.1	135.6	109.1	77.0	48.82	28.26	14.96	7.32
. 00208	130.6	134.8	108.2	76.0	47.98	27.64	14.54	7.08
. 00209	130.2	134.1	107.3	75.0	47.14	27.02	14.12	6.84
. 00210	129.8	133.4	106.4	74.1	46.30	26.40	13.70	6.60
. 00211	129.4	132.6	105.4	73.1	45.56	25.84	13.34	6.38
. 00212	129.0	131.8	104.4	72.2	44.82	25.28	12.98	6.16
. 00213	128.5	131.1	103.4	71.3	44.08	24.72	12.62	5.94
. 00214	128.1	130.3	102.4	70.4	43.34	24.16	12.26	5.72
. 00215	127.7	129.6	101.5	69.5	42.60	23.60	11.90	5.50
. 00216	127.3	128.8	100.6	68.6	41.86	23.10	11.58	5.32
. 00217	126.9	128.1	99.7	67.7	41.12	22.60	11.26	5.14
. 00218	126.4	127.3	98.8	66.9	40.38	22.10	10.94	4.96
. 00219	126.0	126.6	97.9	66.0	39.64	21.60	1062	4.78
. 00220	125.6	125.9	97.0	65.2	38.90	21.10	10.30	4.60
. 00221	125.2	125.1	96.16	64.34	38.28	20.64	10.04	4.44
. 00222	124.7	124.3	95.32	63.48	37.66	20.18	9.78	4.28
. 00223	124.3	123.6	94.48	62.62	37.04	19.72	9.52	4.12
. 00224	123.8	122.8	93.64	61.76	36.42	19.26	9.26	3.96
. 00225	123.4	122.1	92.80	60.90	35.80	18.80	9.00	3.80
. 00226	123.0	121.4	91.96	60.18	35.18	18.40	8.76	3.66
. 00227	122.6	120.7	91.12	59.46	34.56	18.00	8.52	3.52

1929]
McEwen: Distribution of Temperature and Salinity
Table 2 (Continued)

	100	200	300	400	500	600	700	800
$\left(\sigma_{y}-\sigma_{o}\right)$								
. 00228	122.1	120.0	90.28	58.74	33.94	17.60	8.28	3.38
. 00229	121.7	119.3	89.44	58.02	33.32	17.20	8.04	3.24
. 00230	121.3	118.6	88.60	57.30	32.70	16.80	7.80	3.10
. 00231	120.9	117.8	87.78	56.56	32.16	16.42	7.58	3.00
. 00232	120.5	117.16	86.96	55.82	31.62	16.04	7.36	2.90
. 00233	120.0	116.44	86.14	55.08	31.08	15.66	7.14	2.80
. 00234	119.6	115.7	85.32	54.34	30.54	15.28	6.92	2.70
. 00235	119.2	115.00	84.50	53.60	30.00	14.90	6.70	2.60
. 00236	118.7	114.3	83.76	52.92	29.46	14.58	6.50	2.52
. 00237	118.3	113.6	83.02	52.24	28.92	14.26	6.30	2.44
. 00238	117.8	112.9	82.28	51.56	28.38	13.94	6.10	2.36
. 00239	117.4	112.20	81.54	50.88	27.84	13.62	5.90	2.28
. 00240	117.0	111.5	80.80	50.20	27.30	13.30	5.70	2.20
. 00241	116.6	110.7	80.08	49.56	26.84	13.00	5.54	2.12
. 00242	116.2	110.0	79.36	48.92	26.38	12.70	5.38	2.04
. 00243	115.8	109.3	78.64	48.28	25.92	12.40	5.22	1.96
. 00244	115.3	108.6	77.92	47.64	25.46	12.10	5.06	1.88
. 00245	115.0	107.9	77.20	47.00	25.00	11.80	4.90	1.80
. 00246	114.6	107.2	76.46	46.36	24.56	11.52	4.76	1.72
. 00247	114.2	106.5	75.72	45.72	24.12	11.24	4.62	1.64
. 00248	113.8	105.8	74.98	45.08	23.68	10.96	4.48	1.56
. 00249	113.3	105.1	74.24	44.44	23.24	10.68	4.34	1.48
. 00250	112.9	104.4	73.50	43.80	22.80	10.40	4.20	1.40
. 00251	112.6	103.8	72.8	43.3				
. 00252	112.2	103.2	72.2	42.7				
. 00253	111.9	102.6	71.5	42.2				
. 00254	111.5	102.1	70.9	41.6				
. 00255	111.2	101.5	70.2	41.1				
. 00256	110.9	100.9	69.6	40.5				
. 00257	110.5	100.3	69.0	40.0				
. 00258	110.2	99.7	68.3	39.5				
. 00259	109.8	99.1	67.9	39.0				
. 00260	109.5	98.6	67.1	38.4				
. 00261	109.2	98.0	66.5	37.9				
. 00262	108.8	97.4	65.9	37.4				
. 00263	108.5	96.8	65.2	-36.9				
. 00264	108.1	96.2	64.6	36.4				
. 00265	107.8	95.7	64.0	35.9				
. 00266	107.5	95.0	63.3	35.4	-			
. 00267	107.1	94.4	62.7	34.9				
. 00268	106.8	93.9	62.2	34.4				
. 00269	106.4	93.3	61.6	34.0				
. 00270	106.1	92.8	61.0	33.5				
. 00271	105.8	92.2	60.4	33.1				
. 00272	105.4	91.7	59.8	32.5				
. 00273	105.1	91.1	59.3	32.1				
. 00274	104.7	90.6	58.7	31.7				
. 00275	104.4	90.1	58.1	31.2				

Table 2 (Continued)

	Table 2 (Continued)							800
		200	300	400	500	600	700	
$\left(\sigma_{y}-\sigma_{o}\right)$								
. 00276	104.1	89.6	57.7	30.8				
. 00277	103.7	89.0	57.1	30.4				
. 00278	103.4	88.5	56.6	30.0				
. 00279	103.0	88.0	56.2	29.6				
. 00280	102.7	87.4	55.5	29.2				
. 00281	102.4	86.9	55.0	28.8				
. 00282	102.0	86.4	54.4	28.4				
. 00283	101.7	85.8	53.9	28.0				
. 00284	101.3	85.4	53.4	27.5				
. 00285	101.0	84.9	52.9	27.2				
. 00286	100.7	84.4	52.4	26.8				
. 00287	100.3	83.9	51.9	26.4				
. 00288	100.0	83.4	51.5	26.0				
. 00289	99.6	82.9	51.0	25.6				
. 00290	99.3	82.4	50.5	25.3				
. 00291	99.0	81.9	50.0	25.0				
. 00292	98.6	81.4	49.5	24.6				
. 00293	98.3	80.9	49.0	24.3				
. 00294	97.9	80.4	48.5	24.0				
. 00295	97.6	79.9	48.0	23.7				
. 00296	97.3	79.5	47.6	23.4				
. 00297	96.9	79.0	47.1	23.1				
. 00298	96.6	78.5	46.6	22.8				
. 00299	96.2	78.0	46.2	22.5				
. 00300	95.9	77.5	45.7	22.2				
$h=$		1000	1500		2000	2500		3000
$\left(\sigma_{y}-\sigma_{o}\right)$								
. 00001		4318	5867		7249	8503		9657
. 00002		3624	4828		5863	6773		7581
. 00003		3219	4221		5054	5763		6373
. 00004		2931	3790		4481	5049		5519
. 00005		2709	3457		4039	4497		4859
. 00006		2527	3186		3679	4049		4329
. 00007		2374	2957		3376	3677		3894
. 00008		2240	2759		3115	3351		3512
. 00009		2124	2585		2886	3086		3182
. 00010		2019	2429		2681	2821		2877
. 00011		1925	2291		2511	2609		2628
. 00012		1839	2164		2341	2397		2392
. 00013		1760	2048		2189	2224		2183
. 00014		1688	1947		2053	2051		2000
. 00015		1619	1851		1918	1906		1831
. 00016		1557	1756		1807	1761		1672
. 00017		1499	1667		1696	1643		1522
. 00018		1443	1591		1595	1526		1391

3	3000
3	9657
1	6381
	5519
4859	
	4329
3894	
3512	
3182	
2877	
2628	
2392	
2183	
2000	
1831	
1672	
1522	
1391	

		Table 2 (C	ued)		
h	1000	1500	2000	2500	3000
$\left(\sigma_{0}-\sigma_{\nu}\right)$					
. 00068	304.6	153.9	60.3 55.8	18.5	4.61 3.91
. 00069	295.2	146.2	55.8 51.6	16.6 15.0	3.91 3.30
. 00070	285.8	138.9	51.6	15.0	3.30 2.87
. 00071	277.6	132.1	47.7	14.3	2.87 2.47
. 00072	269.5	125.5	44.1	13.5	2.47
. 00073	261.3	119.2	40.7	12.7	2.11
. 00074	253.1	113.2	37.5	11.8	1.79
. 00075	245.0	107.4	34.6	10.8	1.50
. 00076	237.9	101.8	32.0	9.2	1.25
. 00077	230.8	96.4	29.6	7.79	1.03
. 00078	223.8	91.3	27.3	6.53	0.85
. 00079	216.7	86.5	25.2	5.43	0.71
. 00080	209.6	81.9	23.2	4.50	0.60
. 00081	203.5	77.6	21.3	3.96	
. 00082	197.4	73.5	19.5	3.48	
. 00083	191.3	69.6	17.9	3.04	
. 00084	185.1	65.9	16.4	2.64	
. 00085	179.0	62.4	15.0	2.30	
. 00086	173.7	59.0	13.8	2.06	
. 00087	168.3	55.8	12.6	1.84	
. 00088	163.0	52.7	11.5	1.64	
. 00089	157.6	49.7	10.5	1.46	
. 00090	152.3	47.0	9.6	1.30	
. 00091	147.7	44.4	8.8	1.16	
. 00092	143.1	41.9	8.0	1.04	
. 00093	138.6	39.6	7.3	. 94	
. 00094	134.0	37.3	6.6	. 86	
. 00095	129.4	35.2	6.0	. 80	
. 00096	125.4	33.1	5.4		
. 00097	121.4	31.2	4.9		
. 00098	117.5	29.4	4.4		
. 00099	113.5	27.6	4.0		
. 00100	109.5	26.0	3.6		
. 00101	106.1	24.5	3.3		
. 00102	102.7	23.1	3.0		
. 00103	99.3	21.7	2.7		
. 00104	96.0	20.4	2.4		
. 00105	92.6	19.2	2.2		
. 00106	89.6	18.1	2.0		
. 00107	86.6	17.0	1.9		
. 00108	83.7	15.9	1.7		
. 00109	80.7	14.9	1.5		
. 00110	77.7	14.00	1.40		
. 00111	75.2	13.10	1.26		
. 00112	72.8	12.26	1.14		
. 00113	70.3	11.46	1.02		
. 00114	67.8	10.70	0.90		
. 00115	65.4	10.00	0.80		
. 00116	63.2	9.39	0.70		

1929] McEwen: Distribution of Temperature and Salinity
Table 2 (Coutinued)

		Table	ued)		
/h=	1000	1500	2000	2500	3000
$\left(\sigma_{\nu}-\sigma_{0}\right)$					
:00117	61.1	8.81	0.62		
. 00118	58.9	8.25	0.54		
. 00119	56.7	7.71	0.46		
. 00120	54.6	7.20	0.40		
. 00121	52.7	6.70			
. 00122	50.9	6.22			
. 00123	49.1	5.78			
. 00124	47.3	5.38			
. 00125	45.4	5.00			
. 00126	43.9	4.70			
. 00127	42.3	4.42			
. 00128	40.8	4.14			
. 00129	39.3	3.86			
. 00130	37.7	3.60			
. 00131	36.4	3.32			
. 00132	35.1	3.06			
. 00133	33.8	2.82			
. 00134	32.5	2.60			
. 00135	31.2	2.40			
. 00136	30.1	2.25			
. 00137	29.0	2.11			
. 00138	28.0	1.97			
. 00139	26.9	1.83			
. 00140	25.8	1.70			
. 00141	24.9	1.56			
. 00142	23.9	1.42			
. 00143	23.0	1.30			
. 00144	22.1	1.20			
. 00145	21.1	1.10			
. 00146	20.4	, 1.03			
. 00147	19.6	0.97			
. 00148	18.8	0.91			
. 00149	18.1	0.85			
. 00150	17.3	0.80			
. 00151	17.6	0.77			
. 00152	16.0	0.73			
. 00153	15.3	0.69			
. 00154	14.7	0.65			
. 00155	14.0	0.60			
. 00156	13.5	0.55			
. 00157	13.0	0.49			
. 00158	12.5	0.43			
. 00159	12.0	0.37			
. 00160	11.5	0.30			
. 00161	11.0				
. 00162	10.6				
. 00163	10.1				
. 00164	9.7				
. 00165	9.2				

Table 2 (Continued)

$\left(\sigma_{\nu}-\sigma_{o}\right)$	$h=1000$
.00166	8.8
.00167	8.5
.00168	8.1
.00169	7.8
.00170	7.4
.00171	7.1
.00172	6.8
.00173	6.5
.00174	6.2
.00175	5.9
.00176	5.7
.00177	5.5
.00178	5.2
.00179	5.0
.00180	4.8
.00181	4.6
.00182	4.3
.00183	4.1
.00184	3.9
.00185	3.7
.00186	3.5
.00187	3.4
.00188	3.2
.00189	3.1
.00190	2.9

$\left(\sigma_{y}-\sigma_{o}\right)$	$h=1000$
.00191	2.8
.00192	2.7
.00193	2.6
.00194	2.4
.00195	2.3
.00196	2.2
.00197	2.1
.00198	2.0
.00199	1.9
.00200	1.8
.00201	1.7
.00202	1.6
.00203	1.5
.00204	1.5
.00205	1.4
.00206	1.3
.00207	1.2
.00208	1.2
.00209	1.2
.00210	1.0
.00211	1.0
.00212	0.9
.00213	0.9
.00214	0.8
.00215	0.7

$\left(\sigma_{y}-\sigma_{o}\right)$	$h=1000$
.00216	0.7
.00217	0.7
.00218	0.7
.00219	0.6
.00220	0.6
.00221	0.6
.00222	0.6
.00223	0.5
.00224	0.5
.00225	0.5
.00226	0.5
.00227	0.5
.00228	0.4
.00229	0.4
.00230	0.4
.00231	0.4
.00232	0.4
.00233	0.3
.00234	0.3
.00235	0.3
.00236	0.3
.00237	0.3
.00238	0.2
.00239	0.2
.00240	0.2

$$
\text { Table 3. } P_{0}(z)=\int_{.001}^{z}\left[\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x\right] d z
$$

The double integral $\mathrm{P}_{o}(z)$ is needed for computing (H), (see page 230) and for applying the integral from

$$
\begin{array}{r}
\int_{y^{\prime}}^{y} \frac{\partial \theta}{\partial t} d y=1.13\left\{\frac{B_{1}}{B_{2}} \int_{H}^{(z+H)}\left(\int_{(z+H)}^{\infty} \frac{e^{-x^{2}}}{x} d x\right) d z-\frac{B_{1}^{\prime}}{B_{2}^{\prime}} \int_{H}^{z^{\prime}+H}\left(\int_{z^{\prime}+H}^{\infty} \frac{e^{-x^{2}}}{x} d x\right) d z^{\prime}\right. \tag{12}\\
\left.+H \int_{z^{\prime}+H}^{z+H} \frac{e^{-(z+H)^{2}}}{(z+H)} d(z+H)\right\} K+W_{1} \int_{y^{\prime}}^{y} f(y) \frac{\partial \theta}{\partial y} d y+\mu^{2} C_{1} a\left(e^{-a y^{\prime}}-e^{-a y}\right)
\end{array}
$$

of equation (88), where $\left(B_{1}\right)$ is the mean value of (B) for $x<(z+H)$, and $\left(B_{2}\right)$ is the mean for $x>(z+H)$.

For values of (z) between .001 and 0.200 the value of $P_{o}(z)$ was computed from the expression

$$
\begin{equation*}
P_{o}(z)=\int_{.001}^{z}\left[\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x\right] d z=-z\left(\log _{\epsilon} z-1\right)-.007908+\int_{.001}^{z} \frac{B}{z} d z \tag{13}
\end{equation*}
$$

found by integrating the equation (8) between the limits .001 and (z). For greater values of (z), numerical integration of the tabulated values of $\int_{z}^{\infty} e^{-x^{2}} d x$ provided successive sums to be added to $P(.2)$, thus completing the tabulation.

Tabulation of $P_{o}(z)=\int_{.001}^{z}\left[\int_{z}^{\infty} \frac{e^{-x^{2}}}{x} d x\right] d z$

z	$P_{o}(z)$	z	$P_{o}(z)$	z	$P_{o}(z)$	z	$P_{o}(z)$
.001	.00000	.018	.07750	.035	.1347	.052	.1833
.002	.00623	.019	.08120	.036	.1377	.053	.1860
.003	.01194	.020	.08485	.037	.1408	.054	.1886
.004	.01809	.021	.0884	.038	.1438	.055	.1912
.005	.02243	.022	.0920	.039	.1477	.056	.1939
.006	.02761	.023	.0955	.040	.1497	.057	.1965
.007	.03209	.024	.0990	.041	.1526	.058	.1991
.008	.03670	.025	.1024	.042	.1555	.059	.2017
.009	.04118	.026	.1058	.043	.1584	.060	.2042
.010	.04555	.027	.1091	.044	.1612	.061	.2067
.011	.04981	.028	.1125	.045	.1641	.062	.2092
.012	.05399	.029	.1157	.046	.1669	.063	.2117
.013	.05808	.030	.1189	.047	.1697	.064	.2142
.014	.06210	.031	.1222	.048	.1725	.065	.2166
.015	.06605	.032	.1253	.049	.1752	.066	.2191
.016	.06993	.033	.1285	.050	.1779	.067	.2215
.017	.07374	.034	.1316	.051	.1806	.068	.2239

Table 3 (Continued)

z	$P_{o}(z)$	z	$P_{o}(z)$	z	$P_{o}(z)$	z	$P_{o}(z)$
. 069	. 2263	. 119	. 3314	. 169	. 4150	. 39	. 6487
. 070	. 2287	. 120	. 3332	. 170	. 4165	. 40	. 6559
. 071	. 2311	. 121	. 3351	. 171	. 4181	41	. 6628
. 072	. 2334	. 122	. 3369	. 172	. 4196	. 42	. 6696
. 073	. 2359	. 123	. 3387	. 173	. 4211	. 43	. 6761
. 074	. 2382	. 124	. 3405	. 174	. 4225	. 44	. 6825
. 075	. 2405	. 125	. 3423	. 175	. 4240	. 45	. 6887
. 076	. 2428	126	. 3441	. 176	. 4255	. 46	. 6948
. 077	. 2446	127	. 3459	. 177	. 4269	. 47	7006
. 078	. 2474	. 128	. 3478	. 178	. 4284	. 48	7063
. 079	. 2496	. 129	. 3495	. 179	. 4298	. 49	7117
. 080	. 2518	. 130	. 3513	. 180	. 4313	. 50	7170
. 081	2541	. 131	. 3531	. 181	. 4327	. 51	7222
. 082	. 2563	. 132	. 3528	. 182	. 4342	. 52	7272
. 083	. 2585	. 133	. 3566	. 183	. 4356	. 53	7321
. 084	. 2607	. 134	. 3583	. 184	. 4370	. 54	7368
. 085	. 2629	. 135	. 3600	. 185	. 4385	. 55	7413
. 086	. 2651	. 136	. 3618	. 186	. 4400	. 56	. 7458
. 087	. 2673	. 137	. 3635	. 187	. 4414	. 57	7501
. 088	. 2694	. 138	. 3652	. 188	. 4428	. 58	. 7543
. 089	. 2716	. 139	. 3669	. 189	. 4442	. 59	. 7583
. 090	. 2737	. 140	. 3686	. 190	. 4456	. 60	7623
. 091	2759	. 141	. 3703	. 191	. 4470	. 61	. 7661
. 092	. 2780	. 142	. 3719	. 192	. 4484	. 62	. 7698
. 093	. 2801	. 143	. 3736	. 193	. 4498	. 63	. 7734
. 094	. 2822	. 144	. 3753	. 194	. 4512	. 64	. 7769
. 095	. 2843	. 145	. 3770	. 195	. 4525	. 65	. 7803
. 096	. 2863	. 146	. 3787	. 196	. 4539	. 66	7835
. 097	. 2884	. 147	. 3803	. 197	. 4553	. 67	7867
. 098	. 2904	. 148	. 3820	198	.4566	. 68	. 7898
. 099	. 2925	. 149	. 3836	. 199	.4580	. 69	. 7928
. 100	. 2945	. 150	. 3852	. 200	. 4593	70	. 7957
. 101	. 2965	. 151	. 3868	. 21	. 4725	. 71	. 7985
102	. 2985	. 152	. 3885	. 22	. 4853	. 72	. 8013
. 103	. 3005	. 153	. 3901	23	. 4976	.73	. 8039
. 104	. 3025	. 154	. 3917	24	. 5095	. 74	. 8065
. 105	. 3045	. 155	. 3933	25	. 5210	. 75	. 8090
. 106	. 3065	. 156	. 3949	. 26	. 5322	. 76	. 8114
. 107	. 3085	. 157	. 3965	. 27	. 5429	. 77	. 8138
. 108	. 3104	. 158	. 3981	. 28	. 5534	. 78	. 8160
. 109	. 3124	. 159	. 3996	. 29	. 5635	. 79	. 8182
. 110	. 3143	. 160	. 4012	. 30	. 5732	. 80	. 8204
. 111	. 3162	. 161	. 4028	31	. 5827	. 81	. 8224
. 112	. 3181	. 162	. 4043	. 32	. 5919	. 82	. 8244
. 113	. 3200	163	. 4058	. 33	. 6008	. 83	. 8264
. 114	. 3219	. 164	. 4074	. 34	. $6094{ }^{-}$. 84	. 8283
. 115	. 3238	. 165	. 4089	. 35	. 6177	. 85	. 8301
. 116	. 3257	. 166	. 4104	. 36	. 6258	86	. 8318
. 117	. 3276	. 167	. 4120	. 37	. 6337	. 87	. 8336
. 118	. 3295	. 168	. 4135	. 38	. 6413	. 88	. 8352

2	$P_{0}(z)$	z	$P_{0}(z)$	z	$P_{0}(\boldsymbol{z})$	$\underset{\sim}{z}$	$P_{u}(\boldsymbol{z})$ 8808
. 89	. 8368	1.27	. 8707	1.65	8791	2.03	8808
. 90	. 8384	1.28	. 8711	166	8792	2.04	.8808
. 91	. 8399	1.29	. 8715	1.67	8793	2.05	.8808 .8809
. 92	. 8413	1.30	. 8719	1.68	. 8794	2.06	.8808 .809
. 93	. 8427	1.31	. 8722	1.69	8795	2.07	88809
. 94	. 8441	1.32	. 8726	1.70	. 8795	2.08	8809
. 95	. 8454	1.33	. 8729	1.71	8796	2.09	5809
. 96	. 8467	1.34	. 8733	1.72	. 8797	2.10	8509
. 97	. 8479	1.35	. 8736	1.73	. 8797	2.11	8809
. 98	. 8491	1.36	. 8739	1.74	. 8798	2.12	8809
. 99	. 8503	1.37	. 8742	1.75	8799	2.13	8809
1.00	. 8514	1.38	. 8745	1.76	.8799	2.14	8809
1.01	. 8525	1.39	. 8748	1.77	8800	2.15	8809
1.02	. 8535	1.40	.8750	1.78	. 8800	2.16	8810
1.03	. 8545	1.41	. 8753	1. 79	. 8801	2.17	. 8810
1.04	. 8555	1.42	. 8755	1.80	. 8801	2.18	. 8810
1.05	. 8565	1.43	. 8758	1.81	. 8802	2.19	8810
1.06	. 8574	1.44	. 8760	1.82	. 8802	2.20	. 8810
1.07	. 8582	1.45	. 8762	1.83	. 8803	2.21	. 8810
1.08	. 8591	1.46	. 8764	1.84	. 8803	2.22	. 8810
1.09	. 8599	1.47	. 8766	1.85	. 8803	2.23	.8810
1.10	. 8607	1.48	. 8768	1.86	. 8804	2.24	. 8810
1.11	. 8615	1.49	. 8770	1.87	. 8804	2.25	8810
1.12	. 8622	1.50	. 8772	1.88	. 8805	2.26	8810
1.13	. 8629	1.51	. 8773	1.89	.8805	2.27	8810
1.14	. 8636	1.52	. 8775	1.90	. 8805	2.28	8810
1.15	. 8643	1.53	. 8777	1.91	. 8805	2.29	. 8810
1.16	. 8649	1.54	. 8778	1.92	. 8806	2.30	8810
1.17	. 8655	1.55	. 8780	1.93	. 8806	2.31	8810
1.18	. 8661	1.56	. 8781	1.94	. 8806	2.32	. 8810
1.19	. 8667	1.57	. 8782	1.95	. 8806	2.33	8810
1.20	. 8673	1.58	. 8783	1.96	. 8807	2.34	. 8811
1.21	. 8678	1.59	. 8785	1.97	. 88007	2.35	8811
1.22	. 8683	1.60	. 8786	1.98	. 8807	2.36	8811
1.23	. 8688	1.61	. 8787	1.99	. 8807	2.37	8811
1.24	. 8693	1.62	. 8788	2.00	. 8808	2.38	8811
1.25	. 8698	1.63	. 8789	2.01	. 8808	2.39	881
1.26	8702	1.64	. 8790	2.02	. 8808	2.40	881

[VoL. 2

Table 4. $\int_{a_{1}}^{\infty} \frac{e^{-x^{2}}}{x(x-z)} d x$
The expression $\int_{a_{1}}^{\infty} \frac{e^{-x^{2}}}{x(x-z)} d x$ is tabulated to aid in evaluating the function $P_{2}(z)$ in equation (34).

For values of $\left(a_{1}\right)$ and (z) greater than about (.15), simple interpolation in table 4 is sufficient. Special methods explained in connection with table 6 are required for smaller values of $\left(a_{1}\right)$ and (z).

[Vor

1929] McEwen: Distribution of Temperature and Salinity

Table 4 (Continued)

$\backslash z$	90	. 95	1.00	1.05	1.10	1.15	1.20	1.25	1.30	1.33
. 95	. 706									
1.00	. 430	602							.	
1.05	293	. 367	. 516							
1.10		247	310	435						
1.15			210	. 264	371					
1.20				176	. 222	. 313				
1.25					147	186	. 262			
1.30						. 123	. 156	220		
1.35							. 103	130	. 184	
1. 40								086	. 108	. 153
1.45									. 071	. 089
1.50										. 058
$\rangle z$	1.35	1. 10	1.43	1.50	1. 55	1.60	1.65	1.70	1.75	1.80
$a_{1} \quad$										
1. 40	153									
1.45	. 089	. 27								
1.50	. 058	. 074	105							
1.53		047	060	085						
1. 60			039	050	072					
1.63				. 032	040	056				
1.70					026	. 032	. 047			
1.73						019	. 026	038		
1.80							. 017	022	. 032	
1.85			-					. 013	. 016	. 023
1.90									. 010	. 013
1.95										. 008
\}	1.80	1.85	1.90	1.9.)	200	20.5	2.10	2.15	2.20	2.25
a_{1}										
1.85	023									
1.90	013	019								
1.95	. 008	011	016							
2.00		. 006	008	012						
2.05			005	006	009					
2.10				. 004	. 005	. 007				
2.15					. 002	. 003	. 00.4			
2.20						. 002	. 002	. 003		
2.25							. 001	. 002	. 003	
2.30								. 001	. 001	. 002
2.35									. 001.	. 001
2.40										
\%	2.25	2.30	2.35	2.40	2.45	2.50	2.55	2.60	2.65	2.70
a_{1}										
2.30	. 002									
2.35	. 001	. 001								

The expression $\int_{a_{1}}^{\infty} \frac{e^{-2}}{x-z} d x$ is tabulated to aid in evaluating the function $P_{3}(z)$ in equation (35). For values of $\left(a_{1}\right)$ and (z) greater than about (.15), simple interpolation in table 5 is sufficient. Special methods explained in connection with table 6 are required for smaller values of $\left(a_{1}\right)$ and (z).

Table 5 (Continued)

z	. 90	. 95	1.00	1.05	1.10	1.15	1.20	1.25	1.30	1.35
a_{1}										
. 95	. 801									
1.00	. 532	. 714						-		
1.05	. 392	. 473	. 636							
1.10		. 344	. 415	. 559						
1.15			. 302	. 367	. 496					
1.20				. 264	. 321	. 434				
1.25					. 229	. 278	. 375			
1.30						. 198	. 240	. 326		
1.35							. 170	. 207	. 282	
1.40								. 146	. 177	. 242
1.45									. 124	. 151
1.50										. 105
$\backslash 2$	1.35	1.40	1.45	1.50	1.55	1.60	1.65	1.70	1.75	1.80
a_{1}										
1.40	. 242									
1.45	. 151	. 208								
1.50	. 105	. 130	. 177							
1.55		. 089	. 108	. 147						
1.60			. 075	. 092	. 127					
1.65				. 063	. 075	. 104				
1.70					. 052	. 064	. 086			
1.75						. 042	. 050	. 071		
1.80				*			. 034	. 043	. 063	
1.85								. 027	. 034	. 049
1.90									. 023	. 030
1.95										. 020
\%	1.80	1.85	1.90	1.95	2.00	2.05	2.10	2.15	2.20	2.25
1.85	. 049									
1.90	. 030	. 041								
1.95	. 020	. 026	. 034							
2.00		. 016	. 018	. 026			-			
2.05			. 012	. 014	. 021					
2.10				. 010	. 013	. 017				
2.15					. 007	. 009	. 012			
2.20						. 007	. 008	. 009		
2.25							. 006	. 007	. 008	
2.30								. 005	. 004	. 003
2.35									. 004	. 003
2.40										. 003

$$
a_{1}=\left\{\begin{array}{cccccccccc}
0 & .05 & .10 & .15 & .20 & .25 & .30 & .35 & .40 & \text { etc. } \\
.05 & .10 & .15 & .20 & .25 & .30 & .35 & .40 & .45 & \text { etc. } \\
.10 & .15 & .20 & .25 & .30 & .35 & .40 & .45 & .50 & \text { etc. } \\
.15 & .20 & .25 & .30 & .35 & .40 & .45 & .50 & .55 & \text { etc. }
\end{array}\right.
$$

If the lower limit $(z+H)$ in $P_{2}(z)$ and $P_{3}(z)$ does not equal (a_{1}), find the smallest value of $\left(a_{1}\right)$ that exceeds this lower limit, and find the difference $a_{1}-(z+H)=k>0$. Then for each of the above integrals

$$
\begin{align*}
& \mathcal{f}_{z+H}^{\infty}=\mathcal{J}_{a_{1}}^{\infty}+\mathcal{X}_{x_{1}}^{x_{2}} \text { where } x_{1}=z+H ; x_{2}=z+H+k=z+b_{1}=a_{1} \\
& \int_{x_{1}}^{x_{2}} \frac{e^{-x^{2}}}{(x-z) x} d x=\left[\int_{x_{1}}^{x_{2}} \frac{e^{-x^{2}}}{x} d x\right]\left(\frac{1}{b_{1}-H} \log _{e} \frac{b_{1}}{H}\right) \tag{14}\\
& \therefore \quad \int_{x_{1}}^{x_{2}} \frac{e^{-x^{2}}}{(x-z)} d x=z \int_{x_{1}}^{x_{2}} \frac{e^{-x^{2}}}{(x-z) x} d x+\int_{x_{1}}^{x_{2}} \frac{e^{-x^{2}}}{x} d x \tag{15}
\end{align*}
$$

approximately.
Because of the values of $\left(a_{1}\right)$ and (z) in the tabulated integrals, the expression $\left(\frac{1}{b_{1}-H} \log _{e} \frac{b_{1}}{H}\right)$ is tabulated only for the values of $b_{1}=H+k$ $=a_{1}-z$ equal to $.05, .10$, and .15. To compute the functions $P_{2}(z)$ and $P_{3}(z)$ by the above method use form (3) and the tabulated (z) nearest to the one desired. After computing $(k),\left(b_{1}\right),\left(x_{1}\right)$ and $\left(x_{2}\right)$ proceed as follows: where the bracketed numbers designating the various quantities correspond to the columns of form (3):

$$
\begin{aligned}
& (6)=\int_{x_{1}}^{\infty} \frac{e^{-x^{2}}}{x} d x,(7)=\int_{x_{2}}^{\infty} \frac{e^{-x^{2}}}{x} d x,(8)=(6)-(7)=\int_{x_{2}}^{x_{2}} \frac{e^{-x^{2}}}{x} d x \\
& (9)=\left(\frac{1}{b_{1}-H} \log _{e} \frac{b_{1}}{H}\right),(10)=(8) \times(9)=\int_{x_{1}}^{x_{2}} \frac{e^{-x^{2}}}{(x-z) x} d x \\
& (17)=\frac{e^{-x_{1}^{2}}}{x_{1}}, \quad P_{2}(z)=\frac{(10)}{B}+\int_{a_{1}}^{\infty} \frac{e^{-x^{2}}}{B^{\prime}(x-z) x} d x+\frac{(17)}{B}=(18) \\
& (13)=z(10), \text { and }(15)=\int_{a_{1}}^{\infty} \frac{e^{-x^{2}}}{(x-z)} \\
& (14)=(13)+(8), \text { and }(14)+(15)=(16)=\int_{z+H}^{\infty} \frac{e^{-x^{2}}}{(x-z)} d x
\end{aligned}
$$

Finally (19) $=e^{-x^{2}}, P_{3}(z)=(16)+(19)=(20)$, and interpolation with respect to (z) can be computed if necessary.

Table 7
$\left.\begin{array}{cccccccc}x & \frac{e^{-x 2}}{x} & & x & \frac{e^{-x^{2}}}{x} & x & \frac{e^{-x^{2}}}{x} & x\end{array}\right] \frac{e^{-x^{2}}}{x}$

[VOL 2

Table 7 (Continued)

x	$\frac{e^{-x^{2}}}{x}$	x	$\frac{e^{-x^{2}}}{x}$	x	$\frac{e^{-x^{2}}}{x}$	x	$\frac{e^{-x^{2}}}{x}$
1.21	.19117	1.38	.10795	1.55	.058352	1.72	.030188
1.22	.18510	1.39	.10422	1.56	.056209	1.73	.028981
1.23	.17907	1.40	.10061	1.57	.054146	1.74	.027768
1.24	.17323	1.41	.097142	1.58	.052161	1.75	.026793
1.25	.16761	1.42	.093796	1.59	.050200	1.80	.021758
1.26	.16217	1.43	.090475	1.60	.048316	1.85	.017682
1.27	.15692	1.44	.087277	1.61	.046503	1.90	.014238
1.28	.15185	1.45	.084201	1.62	.044760	1.95	.011472
1.29	.14681	1.46	.081233	1.63	.043042	2.00	.0091580
1.30	.14194	1.47	.078374	1.64	.041391	2.05	.0073150
1.31	.13724	1.48	.075622	1.65	.039804	2.10	.0057881
1.32	.13271	1.49	.072893	1.66	.038280	2.15	.0045828
1.33	.12820	1.50	.070267	1.67	.036816	2.20	.0035941
1.34	.12385	1.51	.067735	1.68	.035409	2.25	.0028204
1.35	.11966	1.52	.065303	1.69	.034023	2.30	.0021922
1.36	.11562	1.53	.062896	1.70	.032692	2.35	.0017047
1.37	.11172	1.54	.060580	1.71	.031414		

.030188
.028981
.027768
.026793
.021758.
.017682 .014238
.011472
.0091580
0073150
.0057881
. 0045828 .0035941 .0028204 .0021922 .0017047

Table 8. $f(y)=1-t^{-a y} \cos a y$
Relative vertical velocities in an upwelling region are given (McEwen, 1919, pages 402-403) by the expression

$$
\begin{equation*}
f(y)=1-e^{-a y} \cos a y \tag{16}
\end{equation*}
$$

derived from Ekman's theory where $a=\frac{\pi}{D}$ and the coefficient of frictional resistance is proportional to (D), the "depth of frictional resistance." For convenience the function $f(y)$ is tabulated with respect to the depth (y) for appropriate values of (D).

Table 8
Vertical velocity equals $W_{f} f(y)$
Tabulation of $f(y)=1-e^{-a_{y}} \cos a y$
Where $a=\frac{\pi}{D}$ (coefficient of friction is proportional to D)

| $D=$ | 2.5 | 5.0 | 7.5 | 10.0 | 12.5 | 15.0 | 17.5 | 20.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

unit is 10 meters								
$y=0$	0	0	0	0	0	0	0	0
.5	.568	.305	.207	.156	.125	.104	.090	.079
1.0	.912	.568	.399	.305	.247	.207	.178	.156
1.5	1.0	.771	.568	.444	.362	.305	.264	.232
2.0	1.0	.912	.710	.568	.470	.399	.347	.305
2.5	1.0	1.0	.825	.678	.568	.488	.425	.376
3.0	1.0	1.0	.912	.771	.657	.568	.500	.444
3.5	1.0	1.0	.977	.849	.736	.643	.568	.508
4.0	1.0	1.0	1.0	.912	.805	.710	.633	.568
4.5	1.0	1.0	1.0	.962	.857	.771	.692	.626
5.0	1.0	1.0	1.0	1.0	.912	.825	.746	.678
6.0	1.0	1.0	1.0	1.0	.987	.912	.883	.771
7.0	1.0	1.0	1.0	1.0	1.0	.976	.912	.849
8.0	1.0	1.0	1.0	1.0	1.0	1.0	.968	.912
9.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	.962
10.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Table 9. Parameters of Exponentlal Equation Tabulated with Respect to Slope of Graph on Certain Kinds of Semilogarithmic Paper

Certain kinds of "Codex paper" having a uniform horizontal scale and a logarithmic vertical scale are convenient for numerical applications of the equations presented in this paper. In particular it is necessary to compute the coefficient of (y) in the exponential expression ($A e^{-a y}$) from a straight line graph determined by plotted points. In table $9,(b)$ is the unit of length used in plotting the abscissa (y) on the scale of equal parts, that corresponds to the unit of depth. Let $(n b)$ equal the distance between (1) and (10) on the logarithmic scale measured in terms of the unit (b), then ($n b$) corresponds to $\log _{10^{10}}=1$.

Multiply the slope of the line by the factors $\left(-\frac{1}{n \log _{19} e}\right)$ to obtain (a), and the intercept for $y=0$, by $\frac{1}{n}$ to obtain $\log _{10} A$. The value of (A) can also be read off directly from the graph. The slope can be determined by the ratio of the change in ordinate to change in abscissa, or from the measured angle of the line with the horizontal. The value of (a) can be read off from table 9 for several kinds of Codex paper and lengths of the smallest division on the horizontal scale.

The time derivative $\frac{\partial \theta}{\partial t}$ corresponding to the slope of a temperature time curve plotted on paper No. 4117 (with plain ruling) is entered in the last column of table 9 . The ordinate unit is ten times the smallest vertical division, the abscissa unit, one month is thirty times the smallest horizontal division.

[VOL 2
1929] McEwen: Distribution of Temperature and Salinity 295

[Mon

Tabla 9 (Continued) Values of (a) corresponding to the graph of $(\theta-C)=A e^{-a y}$ on several different kinds of "Codex" semilogarithmic paper								Value of $\frac{\partial \theta}{\partial t}$ from graph on Codex paper number 4117 for ordinate, in units of ten times the smallest division against abscissa (t) in units 30 times the smallest division
Semilogarithmi	number equal	3138	3115	3115		4115	4115	
Length of smalle	ision equals......	b	$\frac{b}{5}$	$\frac{b}{10}$	$\frac{b}{5}$	$\frac{b}{10}$	b	
Angle $=A$	Slope $=\tan A$	$\tan A$. $2475 \tan A$					
53.0	1.327	. 128	. 203	. 406	. 255	. 509	. 170	3.28
53.5	1.351	. 130	. 207	. 414	. 259	. 518	. 173	3.34
54.0	1.376	. 132	. 211	. 421	. 264	. 528	. 177	3.40
54.5	1.402	. 135	. 215	. 429	. 269	. 538	. 180	3.47
55.0	1.428	. 137	. 219	. 437	. 274	. 548	. 183	3.53
55.5	1.455	. 140	. 223	. 445	. 279	. 558	. 187	3.60
56.0	1.483	. 143	. 227	. 454	. 285	. 569	. 190	3.67
56.5	1.511	. 145	. 231	. 463	. 290	. 580	. 194	3.74
57.0	1.540	. 148	. 236	. 472	. 296	. 591	. 198	3.81
57.5	1.570	. 151	. 240	. 481	. 301	. 602	. 202	3.88
58.0	1.600	. 154	. 245	. 490	. 307	. 614	. 206	3.96
58.5	1.632	. 157	. 250	. 499	. 313	. 626	. 210	3.44
59.0	1.1664	. 160	. 255	. 509	. 319	. 638	. 213	. 4.12
59.5	1.698	. 163	. 260	. 519	. 326	. 651	. 218	4.20
60.0	1.732	. 167	. 265	. 530	. 332	. 664	. 222	4.28
60.5	1.767	. 170	. 270	. 541	. 339	. 678	. 227	4.37
61.0	1.804	. 173	. 276	. 552	. 346	. 692	. 232	4.46
61.5	1.842	. 177	. 282	. 564	. 353	. 706	. 236	4.55
62.0	1.881	. 181	. 288	. 576	. 361	. 721	. 241	4.65
62.5	1.921	. 185	. 294	. 588	. 369	. 736	. 246	4.75
63.0	1.963	. 189	. 300	: 601	. 377	. 752	. 252	4.85
63.5	2.006	. 193	. 307	. 614	. 385	. 769	. 257	4.96

			H
		\#	
		析	010010010010010010010010010010010

 corrected values of $10^{5}\left(\sigma-\sigma_{o}\right)$. The coefficient $\left(\frac{C_{8}}{76}\right)$ departs less than four per cent from unity within the indicated temperature range and (D) has the value $\left(76 \frac{\lambda S_{o}}{L}\right)$. Next determine the corrected value of $\left(\frac{10^{5}}{B}\right)$ by adding entries read from part 2 of the supplementary tables of the increments of $\left(\frac{10^{5}}{B}\right)$ for the assumed value of (λ) and corresponding values of (D) and $\frac{C_{s}}{76} D$. Plot these corrected values of $\left(\frac{10^{5}}{B}\right)$ against the corrected values of $10^{5}\left(\sigma-\sigma_{o}\right)$ and read off from the graph the values of $\left(\frac{10^{5}}{B}\right)$ corresponding to the values of $10^{5}\left(\sigma-\sigma_{o}\right)$ estimated from the observed serial temperatures and salinities. These results may be checked as explained on page 00 where the coefficient (76) should be multiplied by one-tenth of the entry under $D=10$ in the supplementary table of $\left(\frac{C_{s}}{76}\right) D$.

300000
 フooso oso
000000 $\rightarrow-\operatorname{Hin}-\boldsymbol{H}$

Table 10, Part 1
Tabulation of $10^{5}\left(\sigma-\sigma_{o}\right)$ and $\frac{\sigma}{B}=\frac{\left.\sigma^{(} \sigma-\sigma_{0}\right)}{\theta_{0}}$ with respect to the surface temperature $\theta_{\text {a }}$ and the
$\begin{array}{cc}B & \left.\theta_{0}-v\right)\end{array}$ thin respect to the surface temperature θ_{0} and the difference $\left(\theta_{o}-v\right)$ for constant salinity $=33.70$

sarts less than
ure range and
value of $\left(\frac{10^{5}}{B}\right)$ tables of the enrresnomiding

Table 10, Part 2
Increment of value of $\frac{10^{5}}{B}$ for temperature tabulated with respect to the temperature increment $\left(\Delta \theta_{o}\right)$ and $\left(\theta_{o}-v\right)$

	$=.1$. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9	1.0
$\left(\theta_{0}-v\right)$										
0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9	1.00
1	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9	1.00
2	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9	1.00
3	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 7	. 8	. 93
4	. 1	. 2	. 3	. 3	. 4	. 5	. 6	. 7	-. 8	. 87
5	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9	. 96
6	. 1	. 2	. 3	. 4	. 5	. 6	. 6	. 7	. 8	. 92
7	. 1	. 2	. 3	. 4	. 5	. 5	. 6	. 7	. 8	. 90
8	. 1	. 2	. 3	. 4	. 5	. 6	. 6	. 7	. 8	. 92
9	. 1	. 2	. 3	. 4	. 5	. 5	. 6	. 7	. 8	. 91
10	. 1	. 2	. 3	. 4	. 5	. 6	. 6	. 7	. 8	. 92
11	. 1	. 2	. 3	. 4	. 5	. 5	. 6	. 7	. 8	. 91
12	. 1	. 2	. 3	. 4	. 5	. 6	. 6	. 7	. 8	. 92
13	. 1	. 2	. 3	. 4	. 5	. 5	. 6	. 7	. 8	. 91
14	. 1	. 2	. 3	. 4	. 5	. 5	. 6	. 7	. 8	. 91
15	. 1	. 2	. 3	. 4	. 5	. 5	. 6	. 7	. 8	. 91
16	. 1	. 2	. 3	. 4	. 5	. 5	. 6	. 7	. 8	. 91
17										

Table 10, Part 2 (Continued)
Value of $\left(\frac{C_{8}}{76}\right) D=$ increment of $\frac{10^{5}}{B}$ tabulated with respect to (D) and $\left(\theta_{0}-v\right)$

	$D=1$	2	3	4	5	6	7	8	9	10
$\left(\theta_{0}-v\right)$										
0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
1	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
2	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
3	1.0	2.0	3.1	4.1	5.1	6.1	7.1	8.2	9.2	10.2
4	1.0	2.0	3.0	4.0	5.0	6.1	7.1	8.1	9.1	10.1
5	1.0	2.0	3.1	4.1	5.1	6.1	7.1	8.2	9.2	10.2
6	1.0	2.0	3.1	4.1	5.1	6.1	7.1	8.2	9.2	10.2
7	1.0	2.0	3.1	4.1	5.1	6.1	7.1	8.2	9.2	10.2
8	1.0	2.1	3.1	4.1	5.1	6.2	7.2	8.2	9.3	10.3
9	1.0	2.0	3.1	4.1	5.1	6.1	7.1	8.2	9.2	10.2
10	1.0	2.0	3.1	4.1	5.1	6.1	7.1	8.2	9.2	10.2
11	1.0	2.1	3.1	4.1	5.1	6.2	7.2	8.2	9.3	10.3
12	1.0	2.0	3.1	4.1	5.1	6.1	7.1	8.2	9.2	10.2
13	1.0	2.1	3.1	4.1	5.1	6.2	7.2	8.2	9.3	10.3
14	1.0	2.1	3.1	4.1	5.1	6.2	7.2	8.2	9.3	10.3
15	1.0	2.1	3.1	4.1	5.1	6.2	7.2	8.2	9.3	10.3
16	1.0	2.1	3.1	4.1	5.1	6.2	7.2	8.2	9.3	10.3
17	1.0	2.1	3.1	4.1	5.1	6.2	7.2	8.2	9.3	10.3

Table 10, Part 3

Increment of value of $10^{5}\left(\sigma-\sigma_{o}\right)$ for temperature, tabulated with respect to the temperature increment $\left(\Delta \theta_{0}\right)$ and $\left(\theta_{o}-v\right)$

	$\Delta \theta_{o}=.1$.2	.3	.4	.5	.6	.7	.8	.9	1.0
$\left(\theta_{o}=v\right)$										
0	0	0	0	0	0	0	0	0	0	0
1	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
2	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	2.0
3	.3	.6	.8	1.1	1.4	1.7	2.0	2.2	2.5	2.8
4	.4	.7	1.0	1.4	1.7	2.1	2.5	2.8	3.1	3.5
5	.5	1.0	1.4	1.9	2.4	2.9	3.4	3.8	4.3	4.8
6	.5	1.1	1.6	2.2	2.7	3.3	3.9	4.4	4.9	5.5
7	.6	1.3	1.9	2.5	3.1	3.8	4.4	5.0	5.7	6.3
8	.7	1.5	2.3	3.0	3.7	4.4	5.2	5.9	6.6	7.4
9	.8	1.6	2.5	3.3	4.1	4.9	5.7	6.6	7.4	8.2
10	.9	1.8	2.8	3.7	4.6	5.5	6.4	7.3	8.3	9.2
11	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
12	1.1	2.2	3.3	4.4	5.5	6.6	7.7	8.8	9.9	11.0
13	1.2	2.4	3.5	4.7	5.9	7.1	8.3	9.4	10.6	11.8
14	1.3	2.5	3.8	5.1	6.3	7.6	8.9	10.2	11.4	12.7
15	1.4	2.7	4.1	5.5	6.8	8.2	9.6	11.0	12.3	13.7
16	1.5	2.9	4.4	5.8	7.3	8.7	10.2	11.7	13.1	14.6
17										

Table 10, Part 3 (Continued)
Values of $\left(\theta_{0}-v\right)\left(\frac{C_{s}}{76}\right) D=$ increment of $10^{5}\left(\sigma-\sigma_{0}\right)$ tabulated with respect to (D)

	$D=1$	2	3	4	5	6	7	8	9	10
$\left(\theta_{0}-v\right)$										
0	0	0	0	0	0	0	0	0	0	0
1	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
2	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0
3	3.0	6.0	9.3	12.3	15.3	18.3	21.3	24.6	27.6	30.6
4	4.0	8.0	12.0	16.0	20.0	24.4	28.4	32.4	36.4	40.4
5	5.0	10.0	15.5	20.5	25.5	30.5	35.5	41.0	46.0	51.0
6	6.0	12.0	18.6	24.6	30.6	36.6	42.6	49.2	55.2	61.2
7	7.0	14.0	21.7	28.7	35.7	42.7	49.7	57.4	64.4	71.4
8	8.0	16.8	24.8	32.8	40.8	49.6	57.6	65.6	74.7	82.4
9	9.0	18.0	27.9	36.9	45.9	54.9	63.9	73.8	82.8	91.8
10	10.0	20.0	31.0	41.0	51.0	61.0	71.0	82.0	92.0	102.0
11	11.0	23.1	34.1	45.1	56.1	67.1	79.2	90.4	102.3	113.4
12	12.0	24.0	37.2	49.1	61.1	73.1	85.2	97.5	110.5	122.4
13	13.0	27.3	40.3	53.3	66.4	80.6	93.5	106.6	121.0	133.9
14	14.0	29.4	43.4	57.4	71.4	86.7	100.8	114.6	130.0	144.0
15	15.0	31.5	46.5	61.5	76.5	93.0	108.0	123.0	139.4	154.4
16	16.0	33.6	49.6	65.6	81.6	99.1	115.1	131.0	148.8	164.8
17	17.0	35.7	52.7	69.7	86.7	105.3	122.4	139.2	158.0	175.0

Bowen, I. S.

LITERATURE CITED

1926. The ratio of heat losses by conduction and by evaporation from any Cummings, N. W., and Richardson, Burt. 1927. Evapor,

Ekman, V. W.
解
1905-06. On the influence of the earth's rotation on ocean currents. Arkiv.
1927. Meeresströmatik, Astronomi, och Fysik, 2, 1-53, 1 pl., 10 figs. in text. nischen Mechanik, 5:172-206 echanik, 5:177-206, 10 figs. in text.
1914. Smithsonian

63:xxxvi +3555 .
Freeman, John R.
1926. Regulation of elevation and discharge of the Great Lakes. xxiii +548 pp

110 figs. in text. Published by the Board of Trustees of the Sanitary
Glatsher, T. W. L.
1870. Tables of the numerical values of the sine-integral, cosine-integral, and exponential-integral. Philos. Trans. Roy. Soc. London, 160:367-388,
3 figs. in text. 3 figs. in text.
Hayashi, Kemcem
1926. Sieben-und mehrstellige Tafeln der Kreis-und Hyperbelfunctionen und deren Produkte sowie der Gamma-function (Berlin, Julius Springer), $v+283 \mathrm{pp} ., 1$ fig. in text.
Horton, Robert E., and Grunsky, C. E.
1927. Report of the Engineering Boa of Chicago on the Lake Lard of Review of the Sanitary District Remedial Measures, xvii Lowering Controversy and a Program of Board of Trustees of the S32 pp., 7 figs. in text. Published by the
Jeffreys, Harold. of Chicago.
Knudsen, M
1901. Hydrographische Tabellen (Copenhagen, Gad), $v+63$ pp.

McEwen, G. F.
1912. The distribution of ocean temperatures along the west coast of North America, deduced from Ekman's theory of the upwciling of cold u. Hydrom adjacent ocean depths. Internat. Review ges. Hydrobiol.
.234-286, 21 figs. in text.
principles of atmospheric and oceanic circulat on the basis of general Review, 42:14-23, 13 figs. in text. Circulation. Monthly Weather 1915. Oceanic circulation and Science on the Pacific Coast (he Pacific Coast, in Nature 4 figs. in text.
1916. Summary and.
by the Scripps In of California, 1908-15 of California, 1908-15. Univ. Calif. Publ. Zool., 15:255-356, pls. 1-38.
1919. Ocean temperatures, their relation to solar radiation and oceanic circulation. Semicentennial Publications of the University of California, Miscellaneous Studie:, pp. 334-421, 19 figs. in text.
1920. "Physical Constants" pertaining to the ocean. Science, n.s., 52:62-63.
1922. Suggestions relative to the application of mathematical methods to certain basic problems of dynamical oceanography. Bulletin of the National Research Council, 3, pt. 2, 78-81.
1924. A mathematical theory of the temperature distribution in water due to solar radiation, evaporation, and convection. Ibid., 7, pt. 5:139-140.
1927. Dynamical oceanography and certain elements of hydrodynamics upon which it is based. Bulletin no. 14 (non-technical) of the Scripps Institution of Oceanography of the University of California, pp. 1-20. Michael, E. L.; and McEwen, G. F.
1915. Hydrographic, plankton and dredging records of the Scripps Institution for Biological Research of the University of California, 1901-1912. Univ. Calif. Publ. Zool., 15:1-206, 4 figs., 1 map in text.
1916. Continuation of hydrographic, plankton, and dredging records of the Scripps Institution for Biological Research of the University of California, 1913-1915. Ibid., 15:207-254, 4 figs. in text.
Miller, W. Lash, and Rosebrugh, T. R.
1903. Numerical values of certain functions involving e^{-x}. Proc. and Trans. Roy. Soc. Canada, ser. 2, 9:73-107.
Pearson, K.
1914. Tables for statisticians and biometricians (Cambridge, University Press), lxxxiii +143 pp., 11 figs. in text.
1922. Tables of the incomplete Γ-function computed by the staff of the department of applied statistics, University of London, University College (London, His Majesty's Stationery Office), xxxi+164 pp.
Richardson, Burt, and Montgomery, Carol.
1929. The measurement of insolation by means of a pan. Transactions of the American Geophysical Union Ninth Annual Meeting, April 26 and 27, 1929, in Bulletin of the National Research Council, No. 68, pp. 56-61.

Richardson, Burt.

1929. Evaporation as a function of insolation. Proceedings of the American Society of Civil Engineers, (In press, June, 1929)
Schmidt, Wilhelm.
1930. Strahlung und Verdunstung an freien Wasser Flächen. Ein Beitrage zum Wärmehaushalt des Weltmeers und um Wasserhaushalt der Frde. Ann. Hydr. u. Marit. Meteor., 43:111-124.
Taylor, G. I.
1931. Eddy motion in the atmosphere. Philos. Trans. Roy. Soc. London, 215, ser. A: 1-26, 5 figs. in text.

Thorade, H.

1923. Ungeordnete Bewegung und Mischung im Meere. Die Naturwissenschaften, 1:1001-1006.
Von Sanden, H.
1924. Practical mathematical analysis (London, Methuen and Co.), $x v+194$ pp., 27 figs. in text.
WÜst, G.
1925. Die Verdunstung auf dem Meere. Veröffentlichungen des Instituts für Meereskunde an der Universität Berlin. A. Geographisch-naturwissenschaftliche Reihe, No. 6:1-95, 11 figs. in text.
