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The computational capabilities of molecular dynamics (MD) simulations have 

greatly advanced in recent years, allowing for the modeling of ever more complex 

systems. In the field of membrane simulation, this has facilitated studies of both large, 

heterogeneous systems and dynamics on millisecond time scales. Concurrently, 

innovations in experimental technique have allowed for probing dynamics on length 

and time scales approaching those in simulation. As these efforts continue to progress, 

future extensions will allow for direct comparison between experiment and simulation, 

enabling further refinement to both. 

Membranes are quasi-2D viscous fluids which require accurate modeling of 

hydrodynamic transport to fully capture their dynamics. Relevant hydrodynamic 

theory predicts long-range coupling among proteins diffusing laterally in the 

membrane. In MD simulation, these long-distance interactions lead to self-interaction 

through the periodic image lattice and other finite size effects which may only be 

reduced by increasing the system size. Consequently, accurate modeling of bulk 

hydrodynamic transport using traditional MD (i.e. with explicit solvent particles) is 

not feasible. Calculating pairwise forces between the solvent particles demands an 

overwhelming majority of the available computational resources at the requisite 

system sizes. This predicament constitutes an unmet scientific need as novel 

algorithms and software implementations are required for accurate and efficient 

modeling of hydrodynamic interactions at scale. 

ABSTRACT 
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We have met that need by supplementing an implicit-solvent lipid model called 

Dry Martini with an efficient mesoscopic hydrodynamics model called multi-particle 

collision (MPC) dynamics. Our hybrid model, called STRD Martini, is implemented 

in the popular open-source MD software package GROMACS v5.0.1, opening the 

way to further studies of membrane dynamics with proper accounting for 

hydrodynamic interactions. The selection of MPC dynamics for the mesoscopic 

solvent model was motivated by its particle-based nature, which cleanly interfaces 

with existing GROMACS code. As such, GROMACS may treat MPC particles just as 

any other particle for the purposes of integration, parallelization, trajectory writing, 

analysis, and force calculation (when desired). When combined with domain 

decomposition, STRD Martini scales to thousands of processors, providing accurate 

hydrodynamics while running at least an order of magnitude faster than equivalent 

explicit-solvent simulations. 

The theory for membrane hydrodynamics in periodic geometries, called 

periodic Saffman-Delbrück theory, requires three parameters, two of which may be 

measured independently and a third which is a true fit parameter of the model. The 

independent parameters characterize the membrane surface viscosity and coefficient of 

friction between membrane leaflets. These parameters are not commonly calculated 

from simulation and remain uncharacterized for most popular membrane force fields. 

Following the blueprint of an earlier work, we further develop a protocol for 

conducting nonequilibrium shearing simulations to measure these parameters and 

apply the protocol to both coarse-grain and all-atom membranes.
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INTRODUCTION 

1.1 Introduction to Lipid Membranes 

The study of biology and soft matter is replete with examples of complex 

molecular systems exhibiting interesting physics. One fascinating example are plasma 

membranes; the semi-permeable, self-assembling fluid sheets which enclose cells and 

yet allow them to interact with their environment [3]. The plasma membrane hosts 

thousands of different proteins, the molecular machinery responsible for cellular 

activity. About one-third of the proteins in the human proteome are integral membrane 

proteins [4], and well over half of pharmaceutical drugs target these proteins or the 

membrane itself to trigger or disrupt important cellular functions [5]. The organization 

and dynamic behavior of these proteins, and hence their response to treatment, is 

governed by the physical environment provided by the plasma membrane. In addition, 

viral infection requires crossing the membrane via the process of endocytosis; 

following replication, viral exit requires passing back through the membrane via 

exocytosis [3]. Hence, a nuanced understanding of the structure and dynamics of cell 

membranes and the transport of proteins embedded within them is of great interest to 

medical science independent of the interesting questions they pose for soft matter 

physicists. 

Plasma membranes are composed of amphipathic molecules called lipids, 

which join one or more hydrophobic fatty acid tails with hydrophilic, polar heads [6]. 

In the presence of water, this difference in hydrophobicity causes these molecules to 
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spontaneously form double sheets with the heads on the exterior and the tails shielded 

within. Each sheet of the membrane is called a leaflet; together they form the 

phospholipid bilayer. These membranes are roughly 4 nm thick but extend over 

micrometer length scales. The lipids in each leaflet are free to move about, creating a 

two-dimensional viscous fluid. Momentum transport in the membrane is closely 

coupled to hydrodynamic flows in the surrounding water, creating a hybrid system 

which exhibits characteristics of both two- and three-dimensional hydrodynamics at 

different length scales [7]. 

Over sufficiently long length scales, membranes can be accurately modeled as 

continuous elastic sheets with elastic moduli describing the energetic penalty to stretch 

or to bend them [8]. The required bending energy is low enough for thermal 

fluctuations to spontaneously excite undulations of the membrane surface. Cells (and 

invading virions) are able to exploit this flexibility to remodel the membrane in a 

variety of ways, creating pits or folds in the surface or budding off a region of the 

membrane and its contents entirely. The plasma membrane is also connected at 

various points to an internal fiber network called the cytoskeleton, which provides 

rigidity and structure to the cell. In addition to the plasma membrane, cells use other 

lipid membranes to provide internal structure and to compartmentalize important 

cellular functions into organelles [3]. 

Many different proteins associate with membranes. Some only attach to their 

membrane on a temporary basis, while others are permanently anchored. The latter are 

called integral membrane proteins and are “transmembrane,” i.e., they span both 

leaflets and often include domains located inside (intracellular) and outside the 

membrane (extracellular). These proteins serve a variety of important cellular 
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functions; including proteins which induce or facilitate membrane curvature, channels 

that allow ions or other small molecules to pass through the membrane, and receptors 

which react to the presence of particular molecules outside the cell. Over half of all 

FDA-approved drugs target these transmembrane proteins, with the most common 

class being a group of receptors coupled to intracellular “G-proteins” [9]. 

There are also a wide variety of different lipids found in the membranes of 

living cells — ca. 800 different combinations of acyl chain, backbone, and headgroup 

chemistry [10], but about one-third by mole of the lipid component in eukaryotic 

membranes is cholesterol. Depending on their mutual interactions, these complex 

mixtures of lipids and proteins might form localized regions of distinct composition in 

the cell membrane. The notion that these domains may serve a functional role as 

platforms for signaling is known as the “Raft Hypothesis” [11].  When divorced from 

the complex, nonequilibrium environment of the cell, model membrane mixtures can 

form coexisting fluid phases, called “liquid ordered” and “liquid disordered” [12]. 

Both are fluid, but they differ in composition, and as a result, in the extent to which 

the acyl chains order. Such model systems have long served as stand-ins for real cell 

membranes in both experiment and simulation. 

1.2 Lipid Types 

Four lipids are frequently referenced throughout this document using their 

abbreviated names: DPPC, DOPC, POPC, and PSM. Full chemical names for these 

lipids are given in Table 1.1 and their chemical structures are illustrated in Fig. 1.1. 

The first three differ only in their tails; they share the same phosphatidylcholine (PC) 

headgroups connected to the glycerol backbone. Their tails are all either palmitoyl or 

oleyl, with the latter containing a single unsaturation about halfway along the acyl 
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chain and two additional carbons. DP- has two palmitoyl, DO- has two oleyl, and PO- 

has one of each. As is often the case in chemistry, this minor difference has a profound 

impact on their collective dynamics. The unsaturation causes a “kink” in its chain, 

which causes oleyl tails to be more disordered, leading higher membrane viscosity, 

slower diffusion, and lower melting temperature. In contrast, the orderly palmitoyl 

tails tend to line up more readily, leading to higher melting temperature. 

Table 1.1: Lipids referenced throughout this document (melting temperatures given 

by DPPC [13], DOPC [14], POPC [15], PSM [16], CHOL [17]). 

Abbreviation Full Chemical Name 
Melting 

Temperature 

DPPC 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine 314 K 

DOPC 1,2-Dioleoyl-sn-glycero-3-phosphocholine 256 K 

POPC 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 271 K 

PSM Palmitoyl sphingomyelin 314 K 

CHOL Cholesterol 422 K 
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Figure 1.1: Chemical structures of lipids referenced throughout this document 

(Images created using the ChemSketch v14.01 [18]). 

1.3 The Case for Simulation 

Experimental methods to observe the spatiotemporal dynamics of membrane 

proteins and lipids have advanced significantly over the last decade, and especially in 

the last few years. In live cells, single particle tracking (SPT) [19]–[21] and 
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fluorescence correlation spectroscopy (FCS) with subdiffraction detection volumes 

(achieved by stimulated emission depletion (STED) microscopy) [22] have revealed 

the plasma membrane to be heterogeneous on tens of nanometers, with 

correspondingly heterogeneous dynamics. Taken together, these results suggest a 

hierarchical membrane organization, with the cytoskeleton influencing transport above 

80 nm length scales [23], and lipid-protein interactions operating below this length 

scale [24].  

In model systems, mixtures that are comparatively simple are also 

heterogeneous. Neutron scattering reveals nanoscale liquid-ordered domains in 

vesicles comprised of a mixture of 3 or 4 components (including cholesterol) [25]. In a 

ternary mixture that supports liquid-ordered/liquid-disordered (Lo/Ld) coexistence 

nanoscale heterogeneities in composition and dynamics are observed by STED-FCS 

[26], provided the mixture is deposited on a glass support, which pins a fraction of 

lipids facing the support. In similar mixtures of a uniform Lo phase, heterogeneities 

are observed on yet smaller length scales and time scales by molecular dynamics 

simulations [27], [28] and interferometric scattering (iSCAT) based SPT [29]. 

While these experimental results point to essential aspects of spatiotemporal 

organization — the role of the cytoskeleton in partitioning the membrane, the 

existence of nanoscale compositional heterogeneity — they are mostly silent on the 

details of the underlying mechanism. For example, how does actin create a barrier to 

diffusion? By a simple steric mechanism [21], or by modifying the membrane 

viscosity in the neighborhood of actin binding proteins [30], or in some other way? 

How do nanoscale heterogeneities in composition modify local protein diffusion when 

observed (i.e., averaged) over the longer length and time scales relevant to signaling? 
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Answers to these questions will come from computational modeling 

approaches. Based on the above discussion, an appropriate modeling approach must 

fulfill certain criteria: (i) It must resolve protein-protein and lipid-protein interactions 

with reasonable chemical specificity, (ii) It must span length scales from individual 

lipids to the 100 nm length scale of the cortical cytoskeleton mesh, (iii) It must 

accurately resolve dynamics. In order to achieve this last point, a modeling approach 

must account properly for the hydrodynamics of the solvent adjacent to the membrane. 

This is clear from continuum arguments originally proposed by Saffman and Delbrück 

[7], and later extended by Hughes, Palinthorpe, and White [31].  

1.4 Research Objectives 

As computational capabilities have grown in recent decades, the scope of 

accessible molecular dynamics (MD) simulations has expanded from studies of hard 

spheres [32] and simple fluids [33] to virus capsids [34], coarse-grained virions [35], 

and millisecond simulations of single domain proteins [36]. Early simulations 

involving lipid bilayers were chiefly concerned with demonstrating self-assembly and 

obtaining sensible thermodynamic properties such as the thickness, area per lipid, 

NMR observables, and bending modulus of single component membranes [37]–[39]. 

Contemporary simulations have achieved sufficient complexity to study phase 

separation in multi-component mixtures [28], [40], [41] and the dynamic properties of 

relatively large membranes [42], [43].  

For MD simulations with periodic boundary conditions, the long-range nature 

of hydrodynamic interactions in membranes leads to coupling between periodic 

images, resulting in significant hydrodynamic finite-size effects. An important 

consequence is the deviation in observed diffusion rates of lipids and transmembrane 
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proteins when compared to predictions from Saffman-Delbrück (SD) theory [7], [31], 

[44]–[46]. In order to perform quantitative, predictive simulations of dynamics in 

complex membranes, it is necessary to operate in a regime that minimizes finite-size 

effects due to hydrodynamic interactions, which requires unconventionally large 

systems [44]. For lateral diffusion, simulated systems should be at least an order of 

magnitude larger than the Saffman-Delbrück length in all three dimensions. 

Since all-atom force fields have SD lengths comparable to experiment (i.e., ≥

100 nm), simulating sufficiently large all-atom systems for any appreciable length of 

time is infeasible for the foreseeable future. In contrast, coarse-grained force fields are 

tractable due to their softer lipid-lipid interactions, which result in lower membrane 

surface viscosity. For instance, membranes of Martini DPPC have a SD length of 

roughly 8.6 nm, which implies sufficiently large systems are 100-200 nm. Even so, a 

100 nm cubic Martini system has roughly 8.5 million interaction sites, 95% of which 

are water. The majority of the computational effort is devoted to resolving interactions 

within the solvent. A more efficient treatment would be to replace the coarse-grained 

water particles with a mesoscopic hydrodynamics model coupled to the Martini lipids.  

The first goal of my research was to produce a proof-of-concept 

implementation of this idea using a modified GROMACS v5.01 [47]. To forgo 

reparametrizing the lipid model, an implicit-solvent variation of Martini called Dry 

Martini [48] was used. The hydrodynamic momentum transport of the solvent was 

introduced through a mesoscopic hydrodynamics model called stochastic rotation 

dynamics (SRD), the resulting combination being called “stochastic thermostatted 

rotation dynamics” (STRD) Martini. 
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Once the code was finished, significant effort was required to optimize its 

communication protocol for efficient parallelization. This was an iterative process, 

featuring several promising protocols which were implemented and promptly 

discarded as better protocols were designed. The final communication code achieves a 

dramatic performance improvement relative to the originally published code, along 

with a crucial correction to the integrator. Taken together, the improvements allowed 

STRD Martini to perform 200 nm coarse-grained membrane simulations with scalable 

performance approaching the efficiency of Dry Martini, while including solvent 

hydrodynamics. 

Recent work has provided a theoretical description for computing lateral 

diffusion in periodic membranes called periodic Saffman-Delbrück (PSD) theory [44], 

[46]. Diffusion in the membrane simulations has been successfully shown to follow 

this theory [45], but it lacks predictive power due to a dependence on two membrane 

parameters which are not readily available in the literature. A third goal of my 

research was to develop a method to independently calculate these parameters from 

non-equilibrium simulations and compare them with values fitted to the PSD theory. If 

the shear viscosity of a membrane is known, the theory is reduced to only one free 

parameter: the effective hydrodynamic radius of the diffusing object. When applied to 

lipid diffusion, this may provide an avenue for understanding the length scale where 

molecular and continuum hydrodynamics for lipids intersect. 

1.5 Dissertation Outline 

The next three chapters provide an overview of the background material 

relevant to this work. Principles of molecular dynamics simulations are discussed in 

Chapter 2, including algorithms for integration, temperature, and pressure control. A 
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discussion of the force fields used throughout this work is also included. Chapter 3 

develops the theory for low Reynolds number hydrodynamics, finishing with a 

description of membrane hydrodynamics and its application to a periodic system. This 

is followed by a discussion of the MPC algorithm in Chapter 4 along with a brief 

survey of other mesoscopic simulation models. 

The final three chapters present results for the STRD Martini membrane 

simulation model and membrane viscosity measurements from nonequilibrium 

shearing simulations. Chapter 5 discusses the GROMACS implementation of STRD 

Martini, giving rationales for the coupling method and parameter selection before 

showing the results of validation testing. It ends with an application of STRD Martini 

that demonstrates an important hydrodynamic finite size effect on lateral diffusion in 

the membrane. Significant effort went into optimizing the communication code to 

make the performance of STRD Martini competitive with Dry Martini. This work is 

detailed in Chapter 6, along with results from a series of performance benchmarks. 

Chapter 7 presents membrane surface viscosity results along with the theory required 

to calculate them. 
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MOLECULAR DYNAMICS SIMULATION 

2.1 Principles of Molecular Dynamics 

Molecular dynamics (MD) simulations study the dynamics of many-particle 

molecular systems by numerically integrating the classical laws of motion [49]. MD 

particles may represent whole molecules, atoms, or groups of atoms, depending on the 

level of chemical specificity required by the system under consideration. Typical lipid 

membrane simulations either involve atoms (all-atom simulations) or groups of atoms 

(coarse-grained simulations, in the parlance of the field). The positions and velocities 

of each particle are represented with continuous variables, while time is discretized 

into regular intervals of duration Δ𝑡 called timesteps. At each timestep, the force 

acting on each particle is calculated through its interactions with other particles, 

parameterized by a force field. The equations of motion are integrated for each 

particle with these forces to produce new positions and velocities for the next 

timestep. This procedure is repeated many times to gradually generate trajectories for 

each particle in the simulation (see Fig 2.1). 

There are many well-known algorithms for numerical integration of ordinary 

differential equations using finite differences, including the Euler, Runge-Kutta, 

Verlet, and leapfrog methods [50]. MD programs call code responsible for integrating 

the equations of motion integrators. Careful algorithmic considerations are necessary 

to minimize integration error and produce physical trajectories. Not every algorithm 

for numerical integration is suitable for MD. Some produce trajectories which do not 
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conserve energy. Others require multiple force computations per timestep, which is 

overwhelmingly the most computationally laborious part of any MD program. Other 

popular integrators do not conserve energy, modelling the dynamics of particles 

coupled to a heat bath via random impulses and dissipative forces. 

 

Figure 2.1: The central loop of an MD simulation. Forces are computed based on the 

particle configuration and the equations of motion are integrated using 

these forces, producing and new configuration. Millions to billions of 

these iterations are required to produce nano- to microsecond trajectories. 

Interactions between particles are divided between intramolecular and 

intermolecular. Intramolecular interactions are responsible for maintaining realistic 

molecular structure and providing rotational and vibrational internal degrees of 

freedom. Intermolecular interactions include electrostatic and van der Waals 

interactions. Atoms within molecules have partial charges which reflect their average 
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electronic structure in the molecule, but no further attempt is made to model electronic 

degrees of freedom. In the most widely used MD models, the intermolecular 

interactions are assumed to be pairwise-additive. Particle definitions and their 

interactions are defined using a set of parameterized potential energy functions, 

collectively called the “force field” of the model. Popular force fields have been 

developed at various levels of granularity, include those which include every atom in 

the system [51]–[53], those which use coarse-grain interaction sites [48], [54], and 

those in between [55]. 

As a practical matter, tractable MD simulations of meaningful duration are 

limited to ≤ 108 particles, often much fewer on modest computing resources. Despite 

steady and impressive growth in simulation scale over time [34], [35], [42], [43], these 

still represent fairly small systems (108 atoms comprise a 100 nm cube of water). 

Consequently, our MD simulations cannot properly model bulk systems unless 

periodic boundary conditions (PBC) are employed (see Fig 2.2). Using PBC 

eliminates boundary effects from unphysical surfaces at the edges of the simulation 

box in exchange for finite size effects imparted through self-interactions with periodic 

images. In many contexts, this can be ameliorated through the use of larger simulation 

sizes. However, since periodic boundary conditions break rotational symmetry, total 

angular momentum is not generally conserved in MD simulations. 

Rigorous integration results in MD trajectories which sample configurations 

from the microcanonical (NVE) ensemble. Simulation of other ensembles is possible 

through temperature coupling (NVT) [56]–[60] or pressure coupling (NPT) [57], [61]–

[65]. These coupling methods are particularly useful for relaxing systems to a state of 

equilibrium prior to longer “production” simulations. Careful consideration should be 
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applied when selecting a coupling algorithm to ensure the equilibrium fluctuations 

generate the correct ensemble and produce a trajectory which satisfies ergodicity [60], 

[66], [67]. 

When used properly, MD simulations can be used as a “computational 

microscope” [68] to calculate quantitative dynamics of complex biological systems 

and to understand their qualitative molecular behavior on length and time scales that 

are inaccessible to experiment. Popular MD software packages include GROMACS 

[47], NAMD [69], CHARMM [70], LAMMPS [71], and others [72], [73]. This work 

was performed exclusively in the context of GROMACS v5.0.1. 

 

Figure 2.2: Periodic boundary conditions illustrated in two dimensions with an 

exaggerated membrane undulation. The central cell (in color) contains 

the real system which interactions with an infinite lattice of periodic 

images (greyscale). Particles which exit one side of the periodic box 

emerge on the opposite side. 



 15 

2.2 Integrators 

At the heart of every molecular dynamics simulation is a simple numerical 

integration of Newton’s third law (with 𝑓 = �⃗� 𝑚⁄ ) 

𝑑2

𝑑𝑡2
𝑟 = 𝑓 (2. 1) 

for each particle given the set of initial positions 𝑟(0) and velocities �⃗�(0). Forces are 

assumed to depend only on the instantaneous particle positions 𝑓 = 𝑓(𝑟1, 𝑟2, 𝑟3, … ). 

Many techniques have been developed for solving this type of initial value problem 

based on finite differences [50], [74]. Since the most computationally expensive part 

of any MD code is the calculation of forces, we are limited to integrators which only 

require a single force computation per step. This restriction rules out the popular 

Runge-Kutta method along with various iterative predictor-corrector methods [74] 

(e.g. Gear [75]). 

The simplest integrator involving a single force evaluation is the Euler method, 

invented in 1768 based on the forward difference in position 

𝑟𝑛+1 = 𝑟𝑛 + Δ𝑡 �⃗�𝑛 +
Δ𝑡2

2
𝑓𝑛 (2. 2) 

�⃗�𝑛+1 = �⃗�𝑛 + Δ𝑡 𝑓𝑛 (2. 3) 

with the subscripts denoting the timestep. The forward difference is analogous to a 

Taylor expansion of 𝑟(𝑡) in time. Despite its simplicity, this method is not used in 

molecular dynamics due to a serious problem: it does not conserve energy, which can 

be inferred from the fact that it breaks time-reversal symmetry. 

In order to conserve energy, integrators used in MD programs must be 

symplectic. That is, they must transform the generalized coordinates (�⃗�, �⃗�) of the 

system’s Hamiltonian in a manner that conserves phase-space volume. GROMACS 
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implements two equivalent integrators which fulfill this requirement, leap frog [76] 

and velocity Verlet [77]. To obtain them, we can add together the Taylor series for the 

forward and backward finite differences 

𝑟𝑛+1 = 𝑟𝑛 + Δ𝑡
𝑑

𝑑𝑥
𝑟𝑛 +

Δ𝑡2

2

𝑑2

𝑑𝑥2
𝑟𝑛 +

Δ𝑡3

6

𝑑3

𝑑𝑥3
𝑟𝑛 + 𝑂(Δ𝑡4) (2. 4) 

𝑟𝑛−1 = 𝑟𝑛 − Δ𝑡
𝑑

𝑑𝑥
𝑟𝑛 +

Δ𝑡2

2

𝑑2

𝑑𝑥2
𝑟𝑛 −

Δ𝑡3

6

𝑑3

𝑑𝑥3
𝑟𝑛 + 𝑂(Δ𝑡4) (2. 5) 

𝑟𝑛+1 + 𝑟𝑛−1 = 2𝑟𝑛 + Δ𝑡2
𝑑2

𝑑𝑥2
𝑟𝑛 (2. 6) 

Solving for 𝑟𝑛+1 gives the Verlet [78] integrator 

𝑟𝑛+1 = 2𝑟𝑛 − 𝑟𝑛−1 + Δ𝑡2𝑓𝑛 (2. 7) 

�⃗�𝑛 =
𝑟𝑛+1 − 𝑟𝑛−1

2Δ𝑡
(2. 8) 

This form is inconvenient for MD code because it requires storing three sets of 

positions in order to compute the velocity at each step. Though this computation is 

optional for integration, velocities are needed to compute important scalar quantities 

such as kinetic energy, temperature, and pressure. 

Another problem is the loss of precision from force term due to the Δ𝑡2 factor, 

which may be small compared to the position terms. It is desirable to reformulate the 

Verlet integrator to be linear in Δ𝑡. This can be accomplished by solving for the 

velocities between timesteps, called the off-step or midpoint velocities. This yields the 

leapfrog integrator [76] 

�⃗�𝑛+1/2 = �⃗�𝑛−1/2 + Δ𝑡 𝑓𝑛 (2. 9) 

𝑟𝑛+1 = 𝑟𝑛 + Δ𝑡 �⃗�
𝑛+

1
2

(2. 10) 

Which can be shown to equal the Verlet integrator if we define 
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�⃗�
𝑛−

1
2

=
𝑟𝑛 − 𝑟𝑛−1

Δ𝑡
(2. 11) 

This integrator is fast, easy to implement, accurate to third-order, time-reversible, and 

memory-efficient. It is the default integrator of GROMACS. However, it does not 

supply simultaneous values for 𝑟𝑛 and �⃗�𝑛, with important consequences for the 

mesoscopic hydrodynamics model implemented in this work. Fortunately, there is an 

equivalent, synchronized form of leapfrog implemented by GROMACS which yields 

𝑟𝑛 and �⃗�𝑛 called the velocity Verlet integrator [77] 

�⃗�𝑛+1/2 = �⃗�𝑛 +
Δ𝑡

2
 𝑓𝑛 (2. 12) 

𝑟𝑛+1 = 𝑟𝑛 + Δ𝑡 �⃗�
𝑛+

1
2

(2. 13) 

�⃗�𝑛+1 = �⃗�
𝑛+

1
2

+
Δ𝑡

2
 𝑓𝑛+1 (2. 14) 

Since these two integrators are equivalent, they will produce the same trajectory given 

the same initial conditions. 

Choosing an appropriate timestep is essential for stable integration. Though we 

seek the longest feasible timesteps for computational efficiency, stable integration 

requires the timestep to be smaller than the period of oscillation for the fastest degree 

of motion in the simulation. This imposes a maximum timestep duration of about 2 fs 

for all-atom simulations and 20 fs for coarse-grain simulations like the Martini models 

[48], [54] used in this work. 

2.3 Temperature and Pressure Control 

Accurate integration produces particle trajectories that conserve energy. These 

MD simulations sample particle configurations from the microcanonical (NVE) 
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ensemble. This is not always desirable. In some situations, we might rather simulate 

systems at constant temperature 𝑇0 or constant pressure 𝑃0. For example, one might be 

interested in non-equilibrium simulations where driving forces or deformations are 

applied, and work done on the system must be dissipated as heat, or in situations 

where dissipative forces are important. One might also be interested in fluctuation-

dependent properties sampled from the canonical ensemble. On a practical basis, 

enforcing a prescribed temperature over long simulations is often necessary to combat 

the slow energy drift from accumulated numerical noise in the integration. Allowing 

pressure and temperature to change is also useful for relaxing the initial configuration 

of a system to its equilibrium state. This section will discuss the various temperature 

and pressure coupling schemes used throughout the rest of this work. 

2.3.1 Temperature 

The algorithm used for temperature control is called the thermostat. There are 

many ways to control temperature in a simulation. One can add or remove kinetic 

energy by rescaling particle velocities, adjust the equations of motion to include 

dissipation or coupling to a heat bath, or simply draw new velocities from a Maxwell-

Boltzmann distribution at random. 

The instantaneous temperature of system with 𝑁𝑑𝑓 degrees of freedom is 

related to the kinetic energy of the constituent particles (indexed by 𝛼) with 

1

2
𝑁𝑑𝑓𝑘𝐵𝑇 =

1

2
∑ 𝑚𝛼 𝑣𝛼

2 (2. 15) 

𝑇 =
1

𝑁𝑑𝑓𝑘𝐵
∑ 𝑚𝛼 𝑣𝛼

2 (2. 16) 
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Since different parts of a simulation may be coupled to independent heat baths, 𝑁𝑑𝑓 is 

equal to three times the number of particles in the subsystem under consideration less 

the number of constraints among those particles. 

The most straightforward way to adjust the temperature of a group is to rescale 

all velocities by a global scaling factor 𝜆(𝑇) 

𝑇′ =
1

𝑁𝑑𝑓𝑘𝐵
∑ 𝑚𝛼 (𝜆𝑣𝛼)2 (2. 17) 

The scaling factor required for a prescribed temperature 𝑇0 may be found by dividing 

this expression by the instantaneous temperature 

𝑇0

𝑇
= (

1

𝑁𝑑𝑓𝑘𝐵
∑ 𝑚𝛼 (𝜆𝑣𝛼)2) (

1

𝑁𝑑𝑓𝑘𝐵
∑ 𝑚𝛼 𝑣𝛼

2)

−1

(2. 18) 

𝑇0

𝑇
= 𝜆2 (∑ 𝑚𝛼 𝑣𝛼

2) (∑ 𝑚𝛼 𝑣𝛼
2)

−1

(2. 19) 

𝜆 = √𝑇0 𝑇⁄ (2. 20) 

The prescribed temperature is then maintained by periodically recalculating the 

instantaneous temperature and rescaling all particle. This does not have to be done 

after every timestep, as the average temperature drift per step is small. This approach 

is perfectly valid in the thermodynamic limit but suffers from an important drawback 

when used for finite systems: it does not admit fluctuations in the kinetic energy. We 

may improve upon this by coupling the system to an external heat bath and allowing 

the prescribed temperature to gradually change. 

The well-known Berendsen thermostat [57] implements this coupling with a 

first-order differential equation using a relaxation time 𝜏𝑇 

𝑑𝑇

𝑑𝑡
=

𝑇0 − 𝑇

𝜏𝑇

(2. 21) 
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It can be recast into a velocity rescaling factor applied every timestep given by  

𝜆 = √1 +
∆𝑡

𝜏𝑇
(

𝑇0

𝑇
− 1) (2. 22) 

Since the equation is first-order, the solution is non-oscillatory and any deviation from 

the prescribed temperature decay exponentially with time. Both properties make this 

thermostat ideally suited to initial equilibration (i.e. relaxation). Unfortunately, the 

exponential decay excessively dampens thermal fluctuations; the resulting dynamics 

do not sample from the canonical ensemble. 

The Bussi-Donadio-Parrinello thermostat [60] (colloquially referred to as 

“Bussi” or “v-rescale” in GROMACS) is a modified Berendsen thermostat with 

thermodynamically correct kinetic energy fluctuations introduced through a Wiener 

noise term 𝑑𝑊 in the coupling equation 

𝑑𝑇 =
(𝑇0 − 𝑇)

𝜏𝑇
𝑑𝑡 + 2√

𝑇0𝑇

𝑁𝑑𝑓𝜏𝑇
𝑑𝑊 (2. 23) 

Just like Berendsen, this equation is first order in time, decaying exponentially to the 

prescribed temperature when the system is far from equilibrium. One satisfying 

property of this thermostat is that it has a conserved quantity analogous to total energy, 

which is useful when error checking new code. This is the thermostat we use when 

running STRD Martini simulations. 

An alternative approach having its own conserved quantity is the Nosé-Hoover 

thermostat [58], [59]. Rather than rescaling the velocities, this thermostat couples 

particle dynamics to an external heat bath through the introduction of a damping term 

in the particle equations of motion 
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𝑑2

𝑑𝑡2
𝑟𝑖 = 𝑓𝑖 −

𝑝𝛾

𝑄
�⃗�𝑖 (2. 24) 

With 𝛾 being a new dimensionless degree of freedom associated with the heat bath 

having momentum 𝑝𝛾. Q is the “mass” of the heat bath, which controls the strength of 

the coupling (large Q corresponds to weak coupling). The momentum of the heat bath 

is evolved in time according to 

𝑑𝑝𝛾

𝑑𝑡
= (𝑇 − 𝑇0) (2. 25) 

We can write a Hamiltonian for this extended system including the heat bath degree of 

freedom and identify a conserved quantity with it. In fact, this thermostat predates v-

rescale; it was the first widely-used thermostat to correctly sample the microcanonical 

ensemble while maintaining a conserved quantity. However, the original Nosé-Hoover 

thermostat has problems with ergodicity; given infinite time, it will not exhaustively 

sample phase space. This may be alleviated by recursively coupling multiple Nosé-

Hoover thermostats together in a chain [66]. This is the thermostat used in this work 

when running simulations with the CHARMM force field. 

The Dry Martini force field uses the stochastic dynamics thermostat based on 

the Langevin equation 

𝑑2

𝑑𝑡2
𝑟𝑖 = 𝑓𝑖 − 𝛾�⃗�𝑖 + √2𝛾𝑘𝐵𝑇 𝜉𝑖(𝑡) (2. 26) 

〈𝜉𝑖(𝑡) ⋅ 𝜉𝑗(𝑡 + 𝜏)〉 = 𝛿(𝜏)𝛿𝑖𝑗 (2. 27) 

Where the damping constant 𝛾 controls the coupling strength and the 𝜉𝑖 force is a delta 

correlated Gaussian process. This thermostat is both a thermostat and an integrator, 

which may be used to mimic the effects of viscous drag and thermal noise of a solvent 

for implicit-solvent models like Dry Martini. A major drawback of the Langevin and 
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other stochastic approaches for hydrodynamics problems is that they scramble the 

velocity correlations responsible for hydrodynamic flows [79]. 

2.3.2 Pressure 

The algorithm used for pressure control is called the barostat. The pressure in 

a simulation may be controlled by coupling the size and shape of the simulation box to 

the instantaneous pressure tensor. When the pressure is greater than the prescribed 

value 𝑃0, the box is allowed to gradually expand. The 3x3 virial pressure tensor 𝑃𝛼𝛽 in 

an MD simulation is defined to be the difference between the energy tensor 𝐸𝛼𝛽 and 

the virial tensor Ξ𝛼𝛽, each defined as a sum over atoms 𝑖, 𝑗 

𝑃𝛼𝛽 =
2

𝑉
(𝐸𝛼𝛽 − Ξ𝛼𝛽) (2. 28) 

𝐸𝛼𝛽 =
1

2
∑ 𝑚𝑖(�⃗�𝑖 ⨂ �⃗�𝑖)

𝑖

(2. 29) 

Ξ𝛼𝛽 = −
1

2
∑ ∑ 𝑟𝑖𝑗 ⨂ �⃗�𝑖𝑗

𝑖<𝑗𝑗

(2. 30) 

Where ⨂ denotes an outer product of two vectors, 𝐶𝛼𝛽 = 𝐴𝛼  ⨂ 𝐵𝛽, and �⃗�𝑖𝑗 gives the 

pairwise force between atoms 𝑖 and 𝑗. 

Hence, we may write the total expression for the pressure as 

𝑃𝛼𝛽 =
1

𝑉
(∑ 𝑚𝑖(�⃗�𝑖 ⨂ �⃗�𝑖)

𝑖

+ ∑ ∑ 𝑟𝑖𝑗 ⨂ �⃗�𝑖𝑗

𝑖<𝑗𝑗

) (2. 31) 

This is just the instantaneous virial stress after a change in sign, i.e., a positive stress is 

expansive while a positive stress is compressive. The scalar pressure is given by 

𝑃 =
1

3
Tr(𝑃𝛼𝛽) (2. 32) 
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Pressure coupling can be performed uniformly in all dimensions using this 

scalar pressure (isotropic coupling), independently for each axis using the full pressure 

tensor (anisotropic coupling) or separately for the lateral (x and y) and normal (z) axes 

using the pressure tensor (semiisotropic coupling). 

In the Berendsen [57] scheme, this is done by rescaling the simulation box and 

all particle coordinates by a scaling matrix 𝜇𝛼𝛽, calculated from a first-order equation 

based on the difference between the instantaneous and prescribed pressure tensor 

𝜇𝛼𝛽 = 𝛿𝛼𝛽 − 𝛽𝛼𝛽

𝛿𝑡

𝜏𝑝

(𝑃0,𝛼𝛽 − 𝑃𝛼𝛽)

3
(2. 33) 

Where 𝛿𝑡 is the time between pressure coupling steps, 𝜏𝑝 is the time constant of the 

relaxation, and 𝛽𝛼𝛽 the isothermal compressibility tensor. Like the Berendsen 

thermostat, this barostat is particularly well suited to equilibration simulations because 

it converges exponentially toward 𝑃0. Other barostats should be used in situations 

where pressure fluctuations are important, such as Parrinello-Rahman [61], [62] or 

Martyna-Tuckerman-Tobias-Klein [63], [64]. Aside from equilibrium CHARMM 

simulations, which used Parrinello-Rahman, Berendsen was the only barostat used in 

this work, as pressure coupling was predominantly used for relaxation purposes, with 

“production” simulations running in the constant volume (NVT) ensemble.  

2.4 Interactions and the Force Field 

MD simulations use classical interactions to calculate forces between atoms. 

These interactions are classified as either bonded (intramolecular) or nonbonded 

(intermolecular), with the bonded interactions describing conformational and 

vibrational degrees of freedom. Since using classical interactions is an approximation, 

their mathematical form often follows from a compromise between physical accuracy 
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and computational efficiency, with the task of reproducing relevant physical properties 

being relegated to the force field parameterization. 

The total potential energy in a GROMACS simulation may be written as the 

sum of six major contributions: 

 
𝑈𝑇𝑂𝑇 = ∑ ∑ 4휀𝑖𝑗 [(

𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝑖<𝑗𝑖

+ ∑ ∑
𝑞𝑖𝑞𝑗

4𝜋휀𝑟𝑟𝑖𝑗
𝑖<𝑗𝑖

+ ∑ 𝐾𝑏,𝑖(𝑙𝑖 − 𝑙0𝑖)
2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝐾𝑎,𝑖(𝜃𝑖 − 𝜃0𝑖)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝐾𝜑,𝑖(1 + cos(𝑛𝜑 − δ0))

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 𝐾𝜔,𝑖(𝜔𝑖 − 𝜔0𝑖)
2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

 

(2.34) 

The first term is the pairwise sum of van der Waals interactions, modeled with 12-6 

Lennard-Jones potentials, and the second term is the pairwise sum of electrostatic 

interactions. The next two terms quantify energetics for vibrational degrees of 

freedom, starting with the energy cost of individual bond stretching in the bonds term 

and bending in the angles term. The fifth dihedral term describes rotations about the 

axis defined by a sequence of four covalently bonded atoms. The last term restrains 

certain planar bonding geometries to preserve molecular structure. For each sum, the 

𝐾𝑥 coefficients give the associated energy, while zero-subscripted quantities are 

equilibrium values. Both are supplied as force field parameters. 

2.4.1 Bonded Interactions 

There are four common types of “bonded” interactions: stretching, bending, 

dihedral, and improper. Some force fields include additional intramolecular 

interactions to impose further restraints on molecular structure. For example, the 
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CHARMM force field includes a virtual harmonic bond between the outer (1-3) atoms 

of a bonded triplet called the Urey-Bradley force. 

 

Figure 2.3: Types of bonded interactions with covalent bonds indicated by dashed 

red lines. Green atoms for dihedral and improper bonds are co-planar. 

Fig. 2.3 illustrates the four bonded interaction terms from equation 2.34. 

Bonds between individual molecules are modeled as harmonic springs having an 

equilibrium length 𝑙0. The angle formed by a bonded triplet is also restrained using a 

harmonic potential about the equilibrium bond angle 𝜃0. The dihedral (also called the 

torsion) is defined as the angle between the planes formed by the 1-2-3 and 2-3-4 

triplets in Fig. 2.3. Impropers are another form of dihedrals, defined in the same 
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manner but used for bond geometries other than torsions, usually to maintain planarity 

of chemical groups. One configuration is depicted in Fig. 2.3 which may be used to 

enforce a specific 3D structure. Other configurations include the plane formed by three 

atoms connected to a central atom (i.e. for one side of a tetrameter) or the plane 

formed by three consecutive atoms in a four-atom chain. The latter may be used to 

enforce planarity for ring structures. 

Due to the inherently quantum nature of their bonded interactions, nonbonded 

interactions are typically omitted among atoms connected over a series of one or two 

covalent bonds (called 1-2 and 1-3 exclusions respectively). Neglecting interactions 

among third-nearest (1-4 exclusion) atoms is uncommon. However, a scaling factor is 

often used to reduce the forces between such atoms. This feature is used by the 

GROMOS and OPLS force fields. 

2.4.2 Nonbonded Interactions 

2.4.2.1 Van der Waals 

The van der Waals (dispersion) and exchange repulsion forces between atoms i 

and j in GROMACS are usually modeled with the well-known 12-6 Lennard-Jones 

interaction, given by 

𝑈𝑖𝑗
𝐿𝐽(𝑟𝑖𝑗) = 4휀𝑖𝑗 [(

𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] (2. 35) 

With the interaction parameters 휀𝑖𝑗 and 𝜎𝑖𝑗 depending on the specific atom types of the 

pair under consideration. These parameters may either be defined on a pairwise basis 

for each pair of M atom types in a 𝑀 × 𝑀 interaction matrix (as in Martini), or 

individually for each atom type (as in CHARMM). In the latter case, a combination 
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rule is required to determine the pairwise parameters from the atomistic parameters 

given atom types i and j. A commonly-used combination rule is 

휀𝑖𝑗 = √휀𝑖휀𝑗 (2. 36) 

𝜎𝑖𝑗 =
1

2
(𝜎𝑗 + 𝜎𝑗) (2. 37) 

The Lennard-Jones potential is illustrated in Fig. 2.4. The attractive part scales 

as 𝑟−6, which has a physical interpretation as the dispersion force arising from the 

correlated motions of electrons in each molecule (sometimes described as coupling 

between instantaneous molecular dipoles). The repulsive part scales as 𝑟−12 for 

computational efficiency, as this is simply the square of the attractive part. 

 

Figure 2.4: The 6-12 Lennard-Jones potential in natural units 𝜎 and 휀. The potential 

is zero at 𝜎 = 0 and the depth of the well is −휀. 
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Since this is a short-range interaction, enormous computational effort may be 

spared by ignoring all interactions involving interparticle distances over a certain 

cutoff length scale 𝑅𝑐. A naive implementation of the short-range force computation 

requires 𝑂(𝑁2) pairwise distance calculations to iterate over all particle pairs. When 

cutoffs are employed, this can be improved to 𝑂(𝑁) through the use of neighbor lists: 

per-atom lists of all other atoms within a certain distance 𝑅𝑛𝑙 ≥ 𝑅𝑐 [78]. When using 

these lists, each atom needs only consider interactions with particles from its neighbor 

list. Since the number of particles in this ~𝑅𝑛𝑙
3 region is independent of the total 

system size, the time required for force evaluation becomes linear. These lists may 

also be constructed in linear time in a two-stage process. First, all particles are binned 

in a spatial cell grid with bins ≥ 𝑅𝑛𝑙. Second, the neighbor list for each particle is 

constructed from among the atoms of the 27 nearest bins (including its own home bin). 

When using a neighbor list cutoff larger than the force cutoff, these lists may be 

calculated infrequently, so long as particles from outside the neighbor list region do 

not diffuse into the force cutoff radius. The required frequency of neighbor list updates 

is thus dependent upon the chosen thickness of the boundary region 𝛿 = 𝑅𝑛𝑙 − 𝑅𝑐. 

2.4.2.2 Electrostatics 

Charged particles (e.g., dissolved ions or atoms with partial charges) have 

pairwise electrostatic interactions given by the well-known Coulomb potential 

𝜙𝑖𝑗(𝑟𝑖𝑗) =
𝑞𝑖𝑞𝑗

4𝜋휀𝑟𝑟𝑖𝑗

(2. 38) 

In contrast with the Lennard-Jones potential, this is a long-ranged interaction. 

Applying a cutoff leads to serious artifacts [80]. Summing over all particles in a 
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periodic system is prohibitively expensive unless an Ewald sum [81] is used, 

decomposing the interaction into short-range and long-range parts according to 

𝜙𝑖𝑗(𝑟𝑖𝑗) = 𝜙𝑖𝑗
𝑆𝑅(𝑟𝑖𝑗) + 𝜙𝑖𝑗

𝐿𝑅(𝑟𝑖𝑗) (2. 39) 

𝜙𝑖𝑗
𝑆𝑅(𝑟𝑖𝑗) = erfc(𝛽𝑟𝑖𝑗)

𝑞𝑖𝑞𝑗

4𝜋휀𝑟𝑟𝑖𝑗

(2. 40) 

𝜙𝑖𝑗
𝐿𝑅(𝑟𝑖𝑗) = erf(𝛽𝑟𝑖𝑗)

𝑞𝑖𝑞𝑗

4𝜋휀𝑟𝑟𝑖𝑗

(2. 41) 

With the parameter 𝛽 controlling the length scale of the decomposition. The sum over 

short-range contributions now rapidly converges. In reciprocal space, the long-range 

contribution is given by 

𝜙𝑖𝑗
𝐿𝑅(𝑘) =

𝑞𝑖𝑞𝑗

4𝜋휀𝑟𝑘2
exp (

−𝑘2

4𝛽
) (2. 42) 

which also rapidly converges. Using this method, we may impose a cutoff in real 

space and compute the long-range contribution in reciprocal space. Using a short 

cutoff in real space yields 𝑂(𝑁2) scaling in reciprocal space. The optimal choice of 

cutoff with this method is to equal the square root of the periodic box size, resulting in 

𝑂(𝑁3/2) scaling [82]. 

This procedure is further improved by computing the reciprocal contribution 

on a discrete grid using a fast Fourier transform, complete in 𝑂(𝑁 log 𝑁) time. This 

method is called the particle mesh Ewald (PME) method [83]. Charges in the system 

are distributed over grid points using an interpolation scheme and the resulting forces 

are interpolated back afterward. This is the standard electrostatics method used in 

GROMACS. A more efficient method based on multipole sums scales with 𝑂(𝑁) 

[84]–[86], but the prefactor is prohibitively large unless large systems are being 
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simulated. Detailed comparisons among these and other methods are available in the 

literature [87], [88]. 

2.5 Force Fields 

The set of all atom types and their interactions in a MD simulation is called the 

chemical “force field”. The selection of these parameters involves an arcane and 

arduous process called “parameterization” which may include quantum mechanics 

calculations and repeated MD simulations to tune the thermodynamic properties. 

There are three common levels of modeling resolution: all atom (AA) models [52], 

[53], [89], which account for every atom in the system; united atom (UA) models [55], 

which combine certain hydrogen and carbon atoms (e.g., the hydrogens on methylene 

bridges and terminal methyl groups); and coarse-grained (CG) models, which combine 

groups of atoms into effective interaction sites [48], [54]. Fig. 2.5 illustrates the 

difference in model resolution between all-atom and coarse-grain force fields for a 

DPPC lipid. 

Treatment of the solvent is an important component of the parameterization. 

Many treatments exist for water molecules, from complex models including many-

body interactions [90] to simple ones which treat each molecule as a single Lennard-

Jones interaction site with extra sites for electrostatics [91]. The design and 

parameterization of these water models for biophysical simulation is a rich field of 

study in its own right [92], [93]. Certain force fields designed for membrane 

simulations are parameterized without including water at all [48], [94]–[96], opting 

instead to incorporate the influence of solvation and hydrophobicity into the lipid-lipid 

interactions. These are called “implicit-solvent” models. Another recent effort has 

been to properly account for polarizability in the solvent (and solute) model. Such 
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efforts have been applied in the context of all-atom [97], [98] and coarse-grain [99] 

force fields. Other work has taken the opposite approach, using additional computation 

effort to incorporate many-body effects [100], [101]. 

 

Figure 2.5: A lipid represented in both all-atom and coarse-grain force fields. 

CHARMM36 [51], [89], [102]–[104] is the latest version of an all-atom force 

field which was originally developed for the CHARMM [70] MD program. The 

CHARMM lipid force field has been supported for many years. In that time, it has 

been through multiple revisions [102], [103] and has seen the introduction of proteins 

[89] and nucleic acids [102]. Excellent reviews are available in the literature 

concerning the meticulous parameterization process [105] and the development of the 

lipid force field [106]. The CHARMM36 force field is fully compatible with the 
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GROMACS simulation code. Proper integration of the vibrational modes requires 1 fs 

timesteps. The fastest of these are the hydrogen bond stretching modes. These are 

often constrained to their equilibrium length when using CHARMM to permit 2 fs 

timesteps. GROMACS implements these constraints in parallel using the LINCS 

constraint algorithm [107], [108]. 

The most popular coarse-grain forcefield is Martini [54], [109], [110], which 

maps groups of 3-4 heavy atoms to chemically distinct coarse-grain interaction sites, 

informally called “beads”. The solvent is modeled with a bath of such beads, each 

representing four water molecules. An excellent review is available by the architects 

of the force field [111]. It consists of nearly two dozen modular “building blocks” 

characterized by their polarity (e.g. polar, nonpolar, apolar, and charged) and 

hydrogen bonding affinity or degree of polarity. A single interaction matrix defines all 

interactions among these building blocks with parameters obtained largely though 

calculations of partitioning free energies for small organic compounds constructed 

from them. All-atom structures are converted to coarse-grain structures by mapping 

the center of mass for a group of atoms to a single bead. Bonded interactions for the 

coarse-grain structure are determined by comparing distribution functions of these 

beads to those of the corresponding centers of mass from all-atom simulations.  

Martini does not use long-range electrostatics. The electrostatic potential is 

shifted to zero between 0 and 12 Å and a relative dielectric constant of 15 is used for 

screening. Interactions between the Martini beads are softer than their all-atom 

counterparts with fewer degrees of freedom. Generally speaking, reducing the friction 

and smoothing out the energy landscape in this way accelerates the pace of the 

simulation, speeding up the kinetics and permitting faster conformational changes. 
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Identifying a global time-rescaling factor to obtain “real” times is often not feasible as 

the speedup factor is not consistent among different degrees of freedom within the 

system [112]. A smoother energy landscape and slower vibrations also means the 

fastest timescale of the system is considerable slower than in an all-atom simulation, 

permitting the use of time steps from 20 to 40 fs. 

Despite its simplicity, the Martini forcefield has been incredibly successful in 

studies of membrane dynamics [113], [114] and has even been extended to model 

proteins [109]. 

Dry Martini [48] is a variant of Martini parameterized for implicit-solvent 

simulations. The interaction levels have been adjusted to ensure that a stable bilayer 

will self-assemble even in the absence of solvent. Other membrane properties such as 

area per lipid, area compressibility, and tail order parameter are in agreement with 

ordinary Martini. One advantage of avoiding a full reparameterization is that many 

lipids, and even some proteins, parameterized for Martini can often be used with Dry 

Martini simply by rescaling interactions. Removal of the solvent necessitates the 

addition of a stochastic term to the integration in order to provide a source of friction 

and thermal noise. This has the side effect of drastically reducing lipid self-diffusion. 

The difference between Martini and Dry Martini for a small membrane is illustrated in 

Fig. 2.6. 
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Figure 2.6: A small membrane in Martini and Dry Martini. Removing the solvent 

greatly reduces the computational burden of force evaluation. 

2.6 Standard GROMACS Parameters for Selected Force Fields 

Default simulation parameters used in this work are given in Tables 2.1 to 2.3. 

Unless otherwise indicated, assume these parameters for their relevant simulations. 

Table 2.1: Standard parameters for Martini membrane simulations in GROMACS. 

Integration Velocity-Verlet with ∆𝑡 = 20 fs 

Center of mass motion removed every timestep, treating 

membrane and solvent separately 

Long range forces calculated every step 

Neighbor Lists Group scheme, recalculated every 10 timesteps; 

Cutoff at 14 Å 

Van der Waals Potential shifted to zero over 9-12 Å. 

Electrostatics Electrostatic potential shifted to zero over 0-12 Å;  

No long-range electrostatics; 

Relative permittivity 휀𝑟 = 15 
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Thermostat Bussi velocity rescaling, treating water and lipids separately; 

𝑇0 = 323 K, 𝜏𝑇 = 1 ps 

Barostat Berendsen, semiisotropic coupling; 

𝑃0 = 1 bar, 𝜏𝑃 = 12 ps 

Compressibility = 3.0 × 10−4 bar−1 

 

Table 2.2: Standard parameters for Dry Martini membrane simulations in 

GROMACS. 

Integration Stochastic dynamics with ∆𝑡 = 20 fs 

Center of mass motion removed every timestep 

Long range forces calculated every step 

Neighbor Lists Group scheme, recalculated every 10 timesteps; 

Cutoff at 14 Å 

Van der Waals Potential shifted to zero over 9-12 Å. 

Electrostatics Electrostatic potential shifted to zero over 0-12 Å;  

No long-range electrostatics; 

Relative permittivity 휀𝑟 = 15 

Thermostat Provided by stochastic dynamics integrator; 

𝜏𝑇 = 4 ps 

Barostat Berendsen, semiisotropic coupling; 

𝑃0 = 0 bar, 𝜏𝑃 = 12 ps 

Compressibility = 3.0 × 10−4 bar−1 (lateral, = 0 for normal) 

 

Table 2.3: Standard parameters for CHARMM36 membrane simulations in 

GROMACS. 

Integration Velocity-Verlet with ∆𝑡 = 2 fs 

Center of mass motion removed every 100 timesteps, treating 

membrane and solvent separately 

Long range forces calculated every step 

Neighbor Lists Verlet scheme, recalculated every 10 timesteps; 

Cutoff at 12 Å 
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Van der Waals Force switched to zero over 8-12 Å 

Electrostatics PME used for long-range electrostatics 

Bonds All hydrogen bonds constrained with LINCS algorithm 

Thermostat Nosé-Hoover, treating water and lipids separately; 

𝑇0 = 323 K, 𝜏𝑇 = 1 ps 

Barostat Parrinello-Rahman, semiisotropic coupling; 

𝑃0 = 1 bar, 𝜏𝑃 = 5 ps 

compressibility = 4.5 × 10−5 bar−1 

 

2.7 Self-Diffusion Calculations 

A brief aside is necessary to explain how lateral self-diffusion coefficients of 

lipids or membrane-associated proteins are calculated from MD simulations. These 

calculations involve a relatively simple analysis of MD trajectories. The diffusion 

coefficient for lateral diffusion may be calculated from the particle positions using the 

mean square displacement 

𝑀𝑆𝐷(𝜏) = 〈[𝑟(𝑡 + 𝜏) − 𝑟(𝑡)]2〉𝑡 (2. 43) 

In two dimensions, this is related to the diffusion coefficient via 

4𝐷 = lim
𝜏→∞

𝑀𝑆𝐷(𝜏)

𝜏
(2. 44) 

In practice, this means that we can compute 𝑀𝑆𝐷(𝜏) from the particle trajectories, 

averaged over all particles and all lag time pairs, and obtain D from a linear fit of 

𝑀𝑆𝐷(𝜏) vs 𝜏. Before doing this, the trajectories must be “unwrapped”, that is, 

periodic boundary hopping must be removed. 

Multiple fits are necessary for error estimation. This may be done by running 

several simulations in parallel or running a single long simulation and breaking the 

trajectory into segments. These are only equivalent if ergodicity holds for the process 

being studied. The fit should only be taken over the linear region of 𝑀𝑆𝐷(𝜏). In some 



 37 

membrane simulations, depending on resolution and lipid composition, a subdiffusive 

regime may be observed at short time scales, which should be omitted when 

computing long-time diffusion constants [115]. 

 

Figure 2.7: Example MSD fits from a single 2 µs membrane simulation broken into 

ten separate 200 ns sub-trajectories with independent fits to each. The 

blue lines indicate the linear fits along with the region of the data over 

which the fits were performed. 
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MEMBRANE HYDRODYNAMICS 

3.1 Introduction 

Under physiological conditions, the plasma membrane is a quasi-2D viscous 

fluid composed mainly of lipids and proteins. The flow fields of this fluid and the 

resultant protein transport are confined to a 2D surface. However, these flows 

exchange momentum with the surrounding solvent, coupling the slow lateral flows of 

lipids in the membrane to much faster flows in the lower viscosity, bulk 3D solvent. 

Hydrodynamic interactions between proteins are mediated by both fluids, leading to 

an interesting interplay at different length scales. This is especially relevant in periodic 

systems (such as MD simulations) where long-distance interactions lead to self-

interaction through the periodic image lattice. 

This chapter will introduce and briefly discuss the hydrodynamic theory 

relevant to membranes and computer simulations of membranes. We start with general 

fluid mechanics and see how certain conservation laws produce the Navier-Stokes 

equation. Then we’ll take a closer look at the limiting case of linear, low Reynolds 

number hydrodynamics that apply over the length scales of proteins and cells. We will 

see how the membrane geometry leads to a hybrid of 2D and 3D hydrodynamics and 

consider the impact of periodic boundary conditions on protein diffusion. 

For additional information, many excellent resources exist on fluid dynamics 

[116], low Reynolds number hydrodynamics [117], [118], and membrane 

hydrodynamics [119], [120]. 

Chapter 3 
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Table 3.1: Symbols used throughout this chapter. 

For a general fluid: 

�⃗⃗� Fluid velocity field 

𝑃 Fluid pressure field 

𝜌 Fluid density field 

𝜎𝛼𝛽 Viscous stress tensor 

𝜂 Fluid viscosity 

 

For membrane hydrodynamics: 

𝜂𝑤 Solvent viscosity 

𝜂𝑚 Membrane surface viscosity 

𝜂𝑚
𝑏  Effective 3D membrane viscosity 

ℎ Membrane thickness 

𝑏 Membrane interleaflet friction 

3.2 Navier-Stokes Hydrodynamics 

Consider a homogenous, isothermal fluid. At time 𝑡, we can define its state 

using three fields: the scalar density 𝜌(𝑟, 𝑡), the scalar pressure 𝑃(𝑟, 𝑡), and the 

velocity vector �⃗⃗�(𝑟, 𝑡). These three quantities completely characterize the state of the 

fluid. We can use them to find equations of motion that describe its state at some later 

time 𝑡′ for a particular set of boundary conditions. To derive those equations, we only 

need to assume that the fluid locally conserves mass and momentum. 

3.2.1 Conservation of Mass 

Demanding that mass be conserved locally at every point in the fluid results in 

a continuity equation. Conservation requires that the change in mass within an 

arbitrary volume is equal to the amount that flows through its surface. Consider an 

arbitrary volume V enclosing a fluid of uniform density 𝜌. The total change in mass 
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within V is given by the total mass flux 𝜌�⃗⃗� flowing through the volume's surface S. 

Defining �̂� to be the normal vector pointing out of the volume, we may write 

𝜕

𝜕𝑡
(∫ 𝜌

 

𝑉

𝑑𝑉) = − ∮ 𝜌�⃗⃗� ∙ �̂�
 

𝑆

𝑑𝐴 (3. 1) 

Apply the divergence theorem to convert the surface integral into a volume integral 

𝜕

𝜕𝑡
(∫ 𝜌

 

𝑉

𝑑𝑉) = − ∫ ∇ ∙ 𝜌�⃗⃗�
 

𝑉

𝑑𝑉 (3. 2) 

∫ (
𝜕𝜌

𝜕𝑡
+ ∇ ∙ 𝜌�⃗⃗�)

 

𝑉

𝑑𝑉 = 0 (3. 3) 

Since this holds over an arbitrary volume, the integrands must be equal to one another. 

This gives us the continuity equation 

𝜕𝜌

𝜕𝑡
= −∇ ∙ (𝜌�⃗⃗�) (3. 4) 

In the special case of an incompressible fluid with uniform, fixed density, the 

continuity equation can be simplified 

∇ ∙ �⃗⃗� = 0 (3. 5) 

3.2.2 Conservation of Momentum 

Let’s now assume that momentum is locally conserved. The momentum of a 

fluid element is given by 𝜌�⃗⃗�. Since this is a vector, the momentum flux through the 

surface bounding this element must be written as a second-rank tensor 𝔽. Local 

conservation of momentum is satisfied by 

𝜕

𝜕𝑡
(𝜌𝑢𝑖) = −𝜕𝑗𝔽𝑖𝑗 (3. 6) 

This equation is sometimes called the Cauchy momentum equation. It resembles the 

equation we found for conservation of mass. The interesting physics are contained 
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within the momentum flux tensor. It can be split into two parts. One part arises from 

advection; fluid with momentum 𝜌𝑢𝑖 being transported along the flow field, which can 

be written 𝜌𝑢𝑖𝑢𝑗 . The remaining part is called the Cauchy stress tensor, denoted Π𝑖𝑗. 

It contains contributions from the surface and volume forces acting on the fluid 

element. 

𝜕

𝜕𝑡
(𝜌𝑢𝑖) = −𝜕𝑗(𝜌𝑢𝑖𝑢𝑗) − 𝜕𝑗Π𝑖𝑗 (3. 7) 

3.2.3 The Stress Tensor 

We can get a better understanding of the Cauchy stress tensor by integrating 

over a volume and applying the divergence theorem 

𝜕

𝜕𝑡
(𝜌𝑢𝑖) = −𝜕𝑗(𝜌𝑢𝑖𝑢𝑗) − 𝜕𝑗Π𝑖𝑗 (3. 8) 

𝜕

𝜕𝑡
∫ 𝜌𝑢𝑖

 

𝑉

𝑑𝑉 = − ∫ 𝜕𝑗(𝜌𝑢𝑖𝑢𝑗)
 

𝑉

𝑑𝑉 − ∫ 𝜕𝑗Π𝑖𝑗

 

𝑉

𝑑𝑉 (3. 9) 

𝜕

𝜕𝑡
∫ 𝜌𝑢𝑖

 

𝑉

𝑑𝑉 = − ∮ (𝜌𝑢𝑖𝑢𝑗) �̂�𝑗

 

𝑆

𝑑𝐴 − ∮ Π𝑖𝑗�̂�𝑗

 

𝑆

𝑑𝐴 (3. 10) 

The first surface integral is from the advective term. It simply integrates the 

momentum carried through the surface. The second surface integral picks out the part 

of Π𝑖𝑗 along the surface. For a viscous fluid, we can decompose the stress tensor into 

two contributions: an isotropic stress from the scalar pressure P and a shear stress 𝜎𝛼𝛽 

from viscosity. 

Π𝑖𝑗 =  𝑃𝛿𝑖𝑗 − 𝜎𝑖𝑗 (3. 11) 

This new tensor 𝜎𝑖𝑗 is called the viscous stress tensor. If we insert this expression into 

our equation for conservation of momentum, we find 
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𝜕(𝜌𝑢𝑖)

𝜕𝑡
= −𝜕𝑗(𝜌𝑢𝑖𝑢𝑗) − 𝜕𝑗(𝑃𝛿𝑖𝑗 − 𝜎𝑖𝑗) (3. 12) 

𝜕𝜌

𝜕𝑡
𝑢𝑖 + 𝜌

𝜕𝑢𝑖

𝜕𝑡
= −𝑢𝑖𝜕𝑗(𝜌𝑢𝑗) − (𝜌𝑢𝑗)𝜕𝑗𝑢𝑖 − 𝜕𝑗𝑃𝛿𝑖𝑗 + 𝜕𝑗𝜎𝑖𝑗 (3. 13) 

We can use the continuity equation to rewrite the first term on the RHS 

𝜕𝜌

𝜕𝑡
𝑢𝑖 + 𝜌

𝜕𝑢𝑖

𝜕𝑡
= 𝑢𝑖

𝜕𝜌

𝜕𝑡
− (𝜌𝑢𝑗)𝜕𝑗𝑢𝑖 − 𝜕𝑗𝑃 + 𝜕𝑗𝜎𝑖𝑗 (3. 14) 

𝜌
𝜕𝑢𝑖

𝜕𝑡
+ (𝜌𝑢𝑗)𝜕𝑗𝑢𝑖 = −𝜕𝑗𝑃 + 𝜕𝑗𝜎𝑖𝑗 (3. 15) 

In vector notation, this reads 

𝜌 (
𝜕�⃗⃗�

𝜕𝑡
+ (�⃗⃗� ∙ ∇)�⃗⃗�) = −∇𝑃 + ∇ ∙ 𝜎𝑖𝑗 (3. 16) 

To further simplify, we need to make some assumptions about the fluid and 

how its viscous stress tensor is structured. Since viscous forces do not appear in 

quiescent fluids or in those under uniform flow, those forces must depend on velocity 

gradients. Newtonian fluids assume a linear relationship between derivatives of the 

velocity and the resulting shear stress. The modulus is called the viscosity, which in 

general is a rank-4 tensor with 81 components, 𝜎𝑖𝑗 = 𝜂𝑖𝑗𝑘𝑙𝜕𝑘𝑢𝑙 . 

Fortunately, the 81 components of a Newtonian viscous stress tensor are not 

independent. It can be shown that the stress tensor must be symmetric for angular 

momentum to be conserved. This leaves only two possible combinations involving 

first derivatives of the velocity: 𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖 and 𝛿𝑖𝑗𝜕𝑘𝑢𝑘. We can write the viscous 

stress tensor with just two viscosity coefficients 

𝜎𝑖𝑗 = 𝜂 (𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖 −
2

3
𝛿𝑖𝑗𝜕𝑘𝑢𝑘  ) + 𝜂′(𝛿𝑖𝑗𝜕𝑘𝑢𝑘) (3. 17) 

𝜂 is called the dynamic (or shear) viscosity and 𝜂′ is called the second viscosity. The 

extra term multiplying the dynamic viscosity has been added to cleanly separate 
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isotropic contributions into the second viscosity only. This form ensures the stress 

tensor will vanish under uniform flow, �⃗⃗�(𝑟) = 𝑎�̂�, and under uniform rotation,  

�⃗⃗�(𝑟) = Ω⃗⃗⃗ × 𝑟  where  𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖 = 0. 

3.2.4 The Navier-Stokes Equation 

We are now ready to assemble the fluid equations of motion to arrive at the full 

Navier-Stokes equation. We begin by inserting our expression for the viscous stress 

tensor into the Cauchy momentum equation derived earlier 

𝜌 (
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗𝜕𝑗𝑢𝑖) = −𝜕𝑗𝑃 + 𝜕𝑗 [𝜂 (𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖 −

2

3
𝛿𝑖𝑗𝜕𝑘𝑢𝑘 ) + 𝜂′(𝛿𝑖𝑗𝜕𝑘𝑢𝑘)] 

In general, the viscosity coefficients can depend on the spatial coordinates, but we’ll 

assume that they do not (i.e., that the fluid is homogeneous) and to bring them outside 

the derivative. 

𝜌 (
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗𝜕𝑗𝑢𝑖) = −𝜕𝑗𝑃 + 𝜂 (𝜕𝑗𝜕𝑖𝑢𝑗 + 𝜕𝑗𝜕𝑗𝑢𝑖 −

2

3
𝛿𝑖𝑗𝜕𝑗𝜕𝑘𝑢𝑘 ) + 𝜂′(𝛿𝑖𝑗𝜕𝑗𝜕𝑘𝑢𝑘) 

The Kronecker deltas vanish, and we can rewrite the dummy indices over 𝑘 to run 

over 𝑗 instead 

𝜌 (
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗𝜕𝑗𝑢𝑖) = −𝜕𝑗𝑃 + 𝜂 (𝜕𝑗𝜕𝑖𝑢𝑗 + 𝜕𝑗𝜕𝑗𝑢𝑖 −

2

3
𝜕𝑖𝜕𝑗𝑢𝑗) + 𝜂′(𝜕𝑖𝜕𝑗𝑢𝑗) 

𝜌 (
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗𝜕𝑗𝑢𝑖) = −𝜕𝑗𝑃 + 𝜂 𝜕𝑗𝜕𝑖𝑢𝑗 + 𝜂 𝜕𝑗𝜕𝑗𝑢𝑖 −

2

3
𝜂 𝜕𝑖𝜕𝑗𝑢𝑗 + 𝜂′ 𝜕𝑖𝜕𝑗𝑢𝑗 

𝜌 (
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗𝜕𝑗𝑢𝑖) = −𝜕𝑗𝑃 + 𝜂 𝜕𝑗𝜕𝑗𝑢𝑖 + (𝜂′ +

1

3
𝜂)  𝜕𝑖𝜕𝑗𝑢𝑗  

The first and second viscosities in the last term may be combined to form the bulk 

viscosity, 𝛽 = 𝜂′ + 𝜂 3⁄ . We can also add a term for body forces to the RHS. This is 

the Navier-Stokes equation, which may be written in vector notation as 
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𝜌 (
𝜕�⃗⃗�

𝜕𝑡
+ (�⃗⃗� ∙ ∇)�⃗⃗�) = −∇𝑃 + 𝜂∇2�⃗⃗� + 𝛽 ∇(∇ ∙ �⃗⃗�) + 𝑓 (3. 18) 

In this form, it is clear that bulk viscosity is relevant only to compressible 

fluids, since ∇ ∙ �⃗⃗� = 0 for an incompressible fluid. Bulk viscosity can be understood as 

an internal friction that resists flow under uniform compression or expansion. Even in 

compressible fluids, it is only relevant when dealing with rapid changes in volume. 

Thus, for incompressible fluids 

𝜌 (
𝜕�⃗⃗�

𝜕𝑡
+ (�⃗⃗� ∙ ∇)�⃗⃗�) = −∇𝑃 + 𝜂∇2�⃗⃗� + 𝑓 (3. 19) 

Taken together with the continuity equation, this equation provides a general 

theoretical description of Newtonian fluid mechanics. A proof that smooth solutions 

exist for arbitrary boundary conditions is one of the great unsolved problems in 

mathematical physics. The difficulty arises from the nonlinearity of the advective 

term, which leads to turbulent behavior. 

3.3 Low-Reynolds Number Hydrodynamics 

 Fluid dynamics on the length scale of cells, membranes, and proteins take on a 

considerably simpler form [121]. At this scale, the dissipative forces within the fluid 

are much larger than the inertial forces. Intuitively, this means that an object in motion 

will stay in motion only so long as a force is acting on it. When the force stops, the 

object immediately comes to rest. This limit is called the creeping flow or low 

Reynolds number regime and is governed by the Stokes equation 

𝜂∇2�⃗⃗� − ∇𝑃 = −𝑓 (3. 20) 

Not only is this equation linear, which means there is no turbulence, but it also lacks 

explicit time dependence. Flows are instantaneously driven by pressure gradients, 
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body forces, and boundary conditions. Solutions do not depend on the history of the 

fluid and are both unique and reversible (i.e., −�⃗� yields −�⃗⃗�). 

To see why the terms on the left-hand side of the Navier-Stokes equation 

vanish in this limit, we may nondimensionalize it by introducing reduced units for 

distance 𝑟′ = 𝑟/𝐿  and velocity 𝑢′ = 𝑢/𝑣. From these, we can construct additional 

reduced units for time 𝑡′ = 𝑡 (𝐿/𝑣)−1  and pressure 𝑃′ = 𝑃 (𝜂𝑣/𝐿)−1. Note that all 

terms in the Navier-Stokes equation have units of force/volume. Gathering the unit 

scaling factors from each term, we find 

(
𝜌𝑣2

𝐿
) (

𝜕�⃗⃗�′

𝜕𝑡′
+ (�⃗⃗�′ ∙ �⃗⃗�′)�⃗⃗�′) = (

𝜂𝑣

𝐿2
) (−�⃗⃗�′𝑃′ + 𝛻′2

�⃗⃗�′ − 𝑓′) (3. 21) 

Dividing both sides by 𝜂𝑣 𝐿2⁄  gives an expression involving a dimensionless number 

𝑅𝑒 = 𝜌𝑣𝐿 𝜂⁄  called the Reynolds number. 

𝑅𝑒 (
𝜕�⃗⃗�′

𝜕𝑡′
+ (�⃗⃗�′ ∙ �⃗⃗�′)�⃗⃗�′) = −�⃗⃗�′𝑃′ + 𝛻′2

�⃗⃗�′ − 𝑓′ (3. 22) 

𝑅𝑒 ≡
𝜌𝑣𝐿

𝜂
(3. 23) 

The Reynolds number characterizes the ratio of viscous forces to inertial 

forces. The terms on the left-hand side can be neglected for 𝑅𝑒 ≪ 1, leaving only the 

Stokes equation (3.20) on the right. Since 𝜌 𝜂⁄ ≅ 1.25 × 106 s/m2 for a water at 30°C, 

the product 𝑣𝐿 must be much smaller than 8 × 10−7 m2/s to apply low Reynolds 

number hydrodynamics. Thus, the Stokes equation is relevant to both microscopic 

volumes of water moving at appreciable flow rates and slow-moving flows of far more 

viscous macroscopic fluids. The latter case illustrates why the low Reynolds number 

limit is sometimes called the creeping flow limit. 
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Since the Stokes equation is a linear differential equation, we can find the 

velocity field resulting from an arbitrary force distribution with a Green’s function 

𝕋(𝑟) which satisfies 

�⃗⃗�(𝑟) = ∭ 𝕋(𝑟 − 𝑟′) ⋅ 𝑓(𝑟′) 𝑑𝑉′ (3. 24) 

There are several methods for calculating this Green’s function using a point force 

source [122] such that 

𝑓(𝑟) = �⃗� δ(𝑟) (3. 25) 

�⃗⃗�(𝑟) = 𝕋(𝑟) ⋅ �⃗� (3. 26) 

The method suggested by Zapryanov and Tabakova [123] is particularly illuminating 

and relevant to systems with periodic boundary conditions. It begins by eliminating 

the velocity field by taking the divergence of Equation 3.20 

𝜂∇ ∙ ∇2�⃗⃗� − ∇ ∙ ∇𝑃 = − ∇ ∙ (�⃗� δ(𝑟)) (3. 27) 

𝜂∇2(∇ ∙ �⃗⃗�) − ∇2𝑃 = − �⃗� ∙ ∇δ(𝑟) (3. 28) 

∇2𝑃 =  �⃗� ∙ ∇δ(𝑟) (3. 29) 

Recall that ∇ ∙ �⃗⃗� = 0 for an incompressible fluid. We can solve for the pressure in 

reciprocal space by taking a spatial Fourier transform 

𝑘2𝑃(�⃗⃗�) = −𝑖�⃗⃗� ∙ �⃗� (3. 30) 

𝑃(�⃗⃗�) = −
𝑖�⃗⃗� ∙ �⃗�

𝑘2
(3. 31) 

Returning to the Stokes equation, we take the spatial Fourier transform and substitute 

the expression for 𝑃(�⃗⃗�) to find the velocity field in reciprocal space 

𝜂∇2�⃗⃗� − ∇𝑃 = −𝑓 (3. 32) 
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−𝜂𝑘2�⃗⃗�(�⃗⃗�) − 𝑖�⃗⃗� (−
𝑖�⃗⃗� ∙ �⃗�

𝑘2
) = −�⃗� (3. 33) 

�⃗⃗�(�⃗⃗�) =
1

𝜂𝑘2
[�⃗� − �⃗⃗� (

�⃗⃗� ∙ �⃗�

𝑘2
)] (3. 34) 

�⃗⃗�(�⃗⃗�) =
1

𝜂𝑘2
(𝕀 −

�⃗⃗��⃗⃗�

𝑘2
) ∙ �⃗� (3. 35) 

We may then find �⃗⃗�(𝑟) or 𝕋(𝑟) with an inverse transform: 

�⃗⃗�(𝑟) = ∭
𝑑�⃗⃗�

(2𝜋)3
𝑒−𝑖�⃗⃗�⋅𝑟

1

𝜂𝑘2
(𝕀 −

�⃗⃗��⃗⃗�

𝑘2
) ∙ �⃗� (3. 36) 

𝕋∞
3𝐷(𝑟) = ∭

𝑑�⃗⃗�

(2𝜋)3
𝑒−𝑖�⃗⃗�⋅𝑟

1

𝜂𝑘2
(𝕀 −

�⃗⃗��⃗⃗�

𝑘2
) (3. 37) 

This can be expressed in real space by assuming the velocity field vanishes as 𝑟 → ∞ 

to obtain the well-known Oseen tensor [117], [118], [124] 

𝕋∞
3𝐷(𝑟) =

1

8𝜋𝜂𝑟
(𝕀 +

𝑟𝑟

𝑟2
) (3. 38) 

The Oseen tensor is the spatial response function connecting forces acting on a low 

Reynolds number fluid and the flow fields that result from them. The 1 𝑟⁄  dependence 

leads to long-ranged interactions between bodies suspended in the fluid. These long-

range interactions are problematic in molecular dynamics simulations due to necessity 

of using periodic boundary conditions [125]. 

The modified Green’s function applicable to periodic systems is evident from 

Equation 3.37. We need only change the integral to a Fourier series ranging over all 

non-zero box vectors �⃗⃗� = 〈𝑛𝜋 𝐿𝑥⁄ , 𝑚𝜋 𝐿𝑦⁄ , ℓ𝜋 𝐿𝑧⁄ 〉 

𝕋𝑝𝑏𝑐
3𝐷 (𝑟) =

1

𝑉
∑ 𝑒−𝑖�⃗⃗�⋅𝑟

1

𝜂𝑘2
(𝕀 −

�⃗⃗��⃗⃗�

𝑘2
)

�⃗⃗�≠0
(3. 39) 
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This differs from the infinite-system case by cutting off the small wavenumber, and 

hence long wavelength, modes. To understand the consequences of this, consider a 

point force at the origin directed along the z-axis 

𝑓(𝑟) = 𝛿(0)𝐹0�̂� (3. 40) 

The resulting velocity field for the infinite case is 

�⃗⃗�∞(𝑟) =
𝐹0

8𝜋𝜂𝑟
(�̂� + �̂�

𝑟𝑧

𝑟
) (3. 41) 

Note that this equation is radially symmetric about the z-axis. The direction of the 

velocity field is always oriented in the sense of the applied force, that is �⃗⃗�∞ ⋅ �̂� > 0 for 

all 𝑟. Consequently, streamlines for the flow field move in the direction of the applied 

point force and never circulate back around. The uniform field dominates as 𝑟 → ∞ 

and its magnitude decays as 1 𝑟⁄ . Streamlines for this field are plotted in Fig. 3.1. 
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Figure 3.1: Streamlines for the velocity field resulting from a point force at the origin 

of an infinite 3D fluid. The velocity field is radially symmetric about the 

z-axis, but the streamlines never recirculate. Tickmarks are not displayed 

because these streamlines are identical at all length scales (although the 

magnitude does fall off). 

The velocity field resulting from a point force is strikingly different for the 

periodic case (see Fig. 3.2). To satisfy the periodic boundary conditions, the fluid 

recirculates in a toroidal flow pattern with streamlines close to the z-axis resembling 

those in the infinite case. This recirculating vortex pattern appears in the same way for 
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periodic boxes of any size. The way it scales with the periodic box suggests it arises 

from the cutoff length imposed by the size of the periodic box. 

 

Figure 3.2: Streamlines for the velocity field resulting from a point force at the origin 

of a 3D fluid in a periodic box. Tickmarks are not displayed because 

these streamlines are identical at all length scales. 

Should we expect fluid flows in molecular dynamics simulations to follow 

predictions from low Reynolds number hydrodynamics theory? The theoretical flow 



 51 

fields are derived from continuum models operating at length scales much larger than 

individual fluid molecules. Even an infinitesimal fluid parcel is assumed to contain a 

molecular multitude. In contrast, even large molecular dynamics simulations contain 

only a few million molecules. One way to check the applicability of low Reynolds 

number hydrodynamics theory to MD simulation is to add a steady point force to the 

center of the periodic box and check whether the time-averaged, steady-state response 

follows the flow field predicted by the periodic Oseen tensor (Equation 3.39). 

To test this proposition, a 30 nm cubic box containing roughly 167,000 Martini 

water beads was prepared and equilibrated to 1 bar pressure at 323 K using standard 

Martini MD parameters. The point force was crudely represented by a constant force 

applied at every timestep to all particles within a spherical volume at center of the 

simulation box. The position and velocity for each particle were recorded every 10 ps 

for 200 ns (20,000 frames). The average velocity field for each frame was calculated 

on a discretized spatial grid of 25 x 25 x 25 points, with the velocity at each point 

determined by a Gaussian-weighted average of the nearest particle velocities using 

their distance to each grid point �⃗�. The weights were selected according to 

𝑤𝑖 = exp [−
1

2
(

𝑟𝑖 − �⃗�

∆𝑔 4⁄
)

2

] (3. 42) 

with standard deviation equal to the average distance between grid points ∆𝑔 divided 

by 4. A cutoff distance equal to ∆𝑔 was imposed, with no particles contributing to the 

average for each point from beyond the cutoff. The grids for each frame were 

averaged together for all 20,000 frames. 

Streamlines for the resulting velocity fields are depicted in Figs. 3.3 and 3.4, 

demonstrating the necessity of a relatively strong point force to cleanly resolve the 
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flow field. The clean agreement with theory suggests low Reynolds number 

hydrodynamic theory is an adequate description of the fluid dynamics in MD 

simulation. 

 

Figure 3.3: Streamlines for the average flow produced by a 32.0 kJ/(mol-nm) point 

force applied every 20 fs to all particles within a spherical region at the 

center of the simulation box with r = 1.0 nm. The fluid consists of 

Martini water beads. The flow pattern closely matches the theory for low 

Reynolds number fluids. 
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Figure 3.4: Streamlines for the average flow produced by a 2.0 kJ/(mol-nm) point 

force applied every 20 fs to all particles within a spherical region at the 

center of the simulation box with r = 1.0 nm. The fluid consists of 

Martini water beads. Using a weaker point force results in a much nosier 

flow field. 

3.4 Quasi-2D Membrane Hydrodynamics 

Suppose we want to solve for the mobility of a protein embedded in a 

membrane. At physiological temperatures, the membrane can be treated as a 2D 

viscous fluid. This requires solving for the drag force exerted by the fluid as it moves 

through the fluid. If it were a sphere of radius 𝑎 moving in an unbounded 3D fluid at 
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rest far away from the sphere, this problem has a simple, well-known solution 

obtained by solving the Stokes equation [117] 

𝐹 = 6𝜋𝜂𝑎𝑉 

where 𝐹 is the viscous drag force exerted by the fluid when the body moves through it 

with constant velocity 𝑉. However, there is no analogous solution for a disk moving in 

an unbounded 2D fluid. This is the “Stokes paradox”. 

We can see the problem with dimensional analysis. In three dimensions, the 

fluid exerts a force on the sphere, but in two dimensions it exerts a force per unit 

length. The only parameters of the model are the radius and velocity of the disk and 

the viscosity of the fluid. The only combination of these parameters that yields a force 

per unit length is 𝜂𝑉, which does not involve radius. In such a scenario, a disk of 

vanishing size will feel the same force/length as a large one, clearly nonsense. Another 

length scale 𝐿 is needed to resolve the paradox. If we restrict our attention to 2D fluids 

of finite extent, this new length scale arises from the system size (as essentially a 

cutoff length). A 2D Oseen tensor can be written with this approach [118], [126] 

𝕋finite
2𝐷 (𝑟) =

1

4𝜋𝜂
[− ln (

𝑟

𝐿
) 𝕀 +

𝑟𝑟

𝑟2
] (3. 43) 

Notice that it scales with ln(𝑟) rather than 1 𝑟⁄ , diverging as 𝑟 → ∞. In an unbounded 

fluid, this divergence is the source of the Stokes paradox. 

 To see how this comes about, consider how the 2D Oseen tensor differs from 

the 3D case. The derivation in 2D closely follows the 3D case outlined above, arriving 

at an identical expression involving 2D vectors and a 2D Fourier transform. The 

problem arises when we try to integrate this expression 

𝕋∞
2𝐷(𝑟) = ∬

𝑑�⃗⃗�

(2𝜋)2
𝑒−𝑖�⃗⃗�⋅𝑟

1

𝜂𝑘2
(𝕀 −

�⃗⃗��⃗⃗�

𝑘2
) (3. 44) 
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= ∬
𝑘 𝑑𝑘 𝑑𝜃

(2𝜋)2
𝑒−𝑖�⃗⃗�⋅𝑟

1

𝜂𝑘2
(𝕀 −

�⃗⃗��⃗⃗�

𝑘2
) 

=
1

2𝜋𝜂
∫ 𝑑𝑘 𝑒−𝑖�⃗⃗�⋅𝑟

1

𝑘
(𝕀 −

�⃗⃗��⃗⃗�

𝑘2
)

∞

0

 

This differs from the 3D case due to the incomplete cancellation of 1 𝑘⁄ , yielding an 

integral that diverges for small 𝑘. This arises from the 2D Fourier transform being a 

surface integral rather than a volume integral. The divergence can be avoided by 

setting a finite lower limit of the integral, i.e. imposing a cutoff length. 

In the case of the cell membrane, the Stokes paradox is avoided because flows 

in the plane couple to the surrounding bulk solvent in 3D. This was first recognized by  

Saffman and Delbrück (SD) [7], who considered a membrane protein as a cylinder of 

radius 𝑎 spanning an infinite uniform membrane of thickness ℎ and surface viscosity 

𝜂𝑚. Flows in the membrane are coupled to an infinite bulk fluid surrounding the 

membrane with viscosity 𝜂𝑤 through stick boundary conditions (see Fig. 3.5). These 

boundary conditions constrain the lateral velocity fields to be equal at the interface. 

Lateral flows in the membrane remain 2D, but the solvent mediates additional long-

distance interactions which impart some characteristics of 3D hydrodynamics on 

longer length scales. For this reason, SD hydrodynamics are called quasi-2D. 

Solving the Stokes’ equation for this geometry results in a well-known tensor 

𝕋∞
S𝐷(�⃗⃗�) =

1

𝜂𝑚(𝑘2 + 𝑘 𝐿𝑆𝐷⁄ )
(𝕀 −

�⃗⃗��⃗⃗�

𝑘2
) (3. 45) 

Featuring a new length scale called the Saffman-Delbrück length, defined as 

𝐿𝑆𝐷 =
𝜂𝑚

2𝜂𝑤

(3. 46) 

With 𝜂𝑚 being the surface viscosity of the membrane, equal to its effective 3D 

viscosity 𝜂𝑚
𝑏  multiplied by ℎ, and 𝜂𝑤 being the viscosity of the solvent. For typical 
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membranes, this length ranges from 100-1000 nm depending on lipid composition, 

much larger than the radii of typical protein transmembrane domains. Note the 

denominator of equation 3.45 can also be written 𝜂𝑚𝑘2 + 2𝜂𝑤𝑘. 

 

Figure 3.5: Saffman-Delbrück theory models a protein as a cylinder of radius 𝑎 

spanning a uniform membrane of thickness ℎ and viscosity 𝜂𝑚. The 

infinite solvent surrounding the membrane has viscosity 𝜂𝑤 and is 

coupled to the membrane with stick boundary conditions. 

We can gather physical intuition for quasi-2D hydrodynamics by considering 

limiting cases of equation 3.45 (keeping in mind that it is a 2D tensor). First, consider 

the 𝑘 ≪ 𝐿𝑆𝐷
−1 case: the first term in the denominator vanishes and the expression 

scales as (𝜂𝑤𝑘)−1. This is the 2D transform of 1 𝑟⁄ , indicating that long-wavelength 

interactions are mediated by the solvent and have a similar form to the 3D Oseen 

tensor. Second, consider the 𝑘 ≫ 𝐿𝑆𝐷
−1 case: now the second term in the denominator 

vanishes and the response scales as (𝜂𝑚𝑘)−2. The short-wavelength interactions occur 
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through the membrane. Just like the simple 2D fluid, this form diverges as 𝑘 → 0 

when we take the Fourier transform. However, since we are considering the limit of 

𝑘 ≫ 𝐿𝑆𝐷
−1, we may naturally interpret 𝐿𝑆𝐷 as a cutoff length similar to the one 

employed in equation 3.43. Thus, equation 3.45 tells us that quasi-2D membrane 

hydrodynamics behave as a 2D fluid over distances smaller than 𝐿𝑆𝐷 (due to the 

membrane) and as a 3D fluid over distances longer than 𝐿𝑆𝐷 (due to the solvent). 

For proteins with radii 𝑎 ≪ 𝐿𝑆𝐷, Saffman-Delbrück theory allows us to 

calculate a self-diffusion coefficient 

𝐷 =
𝑘𝐵𝑇

4𝜋𝜂𝑚
[ln (

2𝐿𝑆𝐷
𝑎⁄ ) − 𝛾] (3. 47) 

Where 𝛾 is the Euler–Mascheroni constant ~0.57721 and 𝑘𝐵𝑇 is the thermal energy. 

Interestingly, SD theory predicts that lateral protein mobility is only weakly dependent 

on the size of the protein’s transmembrane domain, scaling as ln(1 𝑎⁄ ) rather than the 

1 𝑎⁄  scaling found in bulk diffusion. SD theory has been successfully employed to 

interpret experimental diffusion measurements of both proteins [127] and lipid 

domains [128]. However, others have found 1 𝑎⁄  dependence [129] which may be 

explained by local membrane deformations imposed by the protein [130]. Such 

deformations scale the local membrane viscosity by 1 𝑎⁄ , recovering SD theory. 

3.5 Periodic Membrane Hydrodynamics 

Since its initial publication in 1975 [7], SD theory has been extended to account 

for larger proteins [31], to situations where the membrane is supported above a rigid 

surface [131], [132] or pinned with immobile inclusions [133], and others. Of 

particular interest to MD simulation is the recent work by Camley et al. [44], [46] 

which extend SD theory to systems with periodic boundaries, termed  periodic 
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Saffman-Delbrück (PSD) theory. This theory predicts a significant finite size effect 

on diffusion coefficients calculated from simulation due to the interplay between the 

long-range nature of SD hydrodynamic interactions and the length scale cutoff 

imposed by the boundary conditions. Subsequent simulations investigating this finite 

size effect have supported this theory [45]. 

PSD theory considers a periodic membrane patch of lateral size L surrounded 

by a solvent of depth H (see Fig. 3.6, note that H refers to the distance from the 

solvent-membrane interface to the periodic boundary, not the distance from one 

interface to the next). This theory differs from the infinite case by (1) requiring solvent 

flows to match along the vertical boundaries at 𝑧 = 0 and 𝑧 = 𝐻 and (2) changing the 

Fourier transform which converts 𝕋(�⃗⃗�) to real space into a Fourier series with the 

smallest k vector corresponding to the cutoff length imposed by the box size L. The 

resulting response tensor in reciprocal space is remarkably similar to the infinite case 

(equation 3.45) with the only difference found in the solvent term of the denominator 

𝕋𝑝𝑏𝑐
S𝐷 (�⃗⃗�) =

1

𝜂𝑚𝑘2 + 2𝜂𝑤𝑘 tanh(𝑘𝐻)
(𝕀 −

�⃗⃗��⃗⃗�

𝑘2
) (3. 48) 

An interesting consequence of this difference arises in the limit 𝐻 ≪ 𝐿 , where 

tanh(𝑘𝐻) ≈ 𝑘𝐻 and the denominator becomes 𝑘2(ℎ𝜂𝑚
𝑏 + 2𝐻𝜂𝑤). The system is 

reduced to a 2D fluid with an effective viscosity given by the sum of membrane and 

solvent surface viscosities. 
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Figure 3.6: A simulation snapshot with dimensions of the periodic cell referenced by 

Periodic Saffman-Delbrück theory (solvent particles omitted for clarity).  

Once again, we can gather some physical insight into this tensor by plotting the 

streamlines resulting from a point force (Figs. 3.7-3.9). As in the 3D case, 

recirculating flows emerge when periodic boundaries are used. Unlike the 3D case, the 

infinite-size PSD tensor is expressed as an integral over all 2D wavevectors. In 

practice, this requires numerical integration over a finite range of kx and ky values. 

Properly plotting the �⃗�∞(𝑟) far-field requires sufficient resolution and range for the 

integration. Incomplete integration will cause the appearance of recirculating currents, 

demonstrating how the cutoff of long-wavelength modes in the periodic boundary case 
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causes the formation of recirculating flows, with the cutoff length dictating their 

characteristic size. 

 

Figure 3.7: Streamlines for the 2D velocity field resulting from a point force at the 

center of a 10 nm membrane in a periodic box based on periodic 

Saffman-Delbrück theory. Tickmarks are not displayed because these 

streamlines are identical at all length scales. 
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Figure 3.8: Streamlines for the 2D velocity field resulting from a point force at the 

origin of a membrane in the infinite-size limit of periodic Saffman-

Delbrück theory. The integration has sufficient resolution to model the 

far-field flows. 
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Figure 3.9: Streamlines for the 2D velocity field resulting from a point force at the 

origin of a membrane in the infinite-size limit of periodic Saffman-

Delbrück theory. The integration step has insufficient resolution, leading 

to recirculating flows in the far field. 
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Analytic solutions for protein mobility based on equation 3.48 using no-slip 

boundary conditions are unknown and certainly complicated if they exist. We can find 

an approximate solution by modeling the protein as a fluid region in the membrane 

using the “immersed boundary method” [134], [135]. Applying a Gaussian force 

distribution, we can compute the mobility and use the Einstein relation to find the self-

diffusion coefficient 

𝐷𝑝𝑏𝑐
𝑃𝑆𝐷 =

𝑘𝐵𝑇

2𝐿2
∑

1

𝜂𝑚𝑘2 + 2𝜂𝑤𝑘 tanh(𝑘𝐻)
exp (−

(𝑘𝛽𝑎)2

2
)

𝑘≠0

(3. 49) 

With the parameter 𝛽 = 0.828494 used to approximate results from the Hughes-

Pailthorpe-White [31] (HPW) extension to larger protein radii. The expression for an 

infinite system can be obtained by taking the limit of infinite L and H 

𝐷∞
𝑃𝑆𝐷 =

𝑘𝐵𝑇

2
∬

𝑑�⃗⃗�

(2𝜋)2

1

𝜂𝑚𝑘2 + 2𝜂𝑤𝑘
exp (−

(𝑘𝛽𝑎)2

2
) (3. 50) 

The authors also derive an expression for diffusion of a half-cylinder, i.e. an 

object spanning only one leaflet of the membrane 

𝐷𝑃𝐵𝐶 =
𝑘𝐵𝑇

2𝐿2
∑

𝐴(𝑘)

𝐴(𝑘)2 + 𝐵(𝑘)2

𝑘≠0

exp (−
(𝑘𝛽𝑎)2

2
) (3. 51) 

𝐴(𝑘) = 𝑏 + 𝜂𝑤𝑘 coth(2𝑘𝐻) +
𝜂𝑚

2
𝑘2 

𝐵(𝑘) = 𝑏 + 𝜂𝑤𝑘 csch(2𝐻𝑘) 

Which now includes a second parameter 𝑏 called the interleaflet friction. For two 

leaflets gradually and continuously sliding past one another, this relates the friction 

force on the leaflets to their relative velocity 

𝐹 = 𝑏∆𝑣 (3. 52) 
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The finite-size error predicted from this theory is plotted in Fig. 3.10. 

 

Figure 3.10: Finite-size percent error for diffusion in periodic membranes. The yellow 

box indicates the range of system sizes typically accessible for coarse-

grain simulations. 

The ratio of periodic (equation 3.49) and infinite (equation 3.50) expressions 

for self-diffusion can be used to compute a correction factor which can be applied to 

diffusion calculations from simulation to correct for the finite size effect and compare 

directly compare with experimental results. This requires a priori knowledge of the 

membrane surface viscosity for the lipid and force field used in the simulation, for 

which few results have been reported in the literature. This situation is rectified in 

Chapter 7. 
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MULTI-PARTICLE COLLISION DYNAMICS 

4.1 Introduction 

Multi-particle collision (MPC) dynamics are a class of efficient, particle-based 

mesoscopic hydrodynamic simulation methods [136]–[139]. The fluid flow field is 

modeled with tracer particles which do not have mutual pairwise interactions. Instead, 

the transfer of momentum through collisions between MPC particles is coarse-grained 

into collective collision events, whereby all MPC particles in a local region exchange 

momentum simultaneously, modeling the cumulative outcome of many microscopic 

inter-particle collisions. Collision events are designed to conserve mesoscopic 

hydrodynamic flows through local conservation of both mass and momentum – the 

same conservation laws used to derive the Navier-Stokes equations in Chapter 3. 

Consequently, the mesoscopic flows modeled by the MPC particles reproduce Navier-

Stokes hydrodynamics above a certain length scale. 

Since forces between MPC particles are not needed, this method is inherently 

more efficient than either treating the solvent as an explicit molecular fluid or 

employing dissipative particle dynamics (DPD) [140]. Since MPC is particle-based, 

thermal fluctuations within the fluid arise naturally and the tracer particles cleanly 

interface with existing MD code and analysis tools. Just like other MD particles, MPC 

particles exist in continuous space with discretized time. Approaches confined to a 

discrete spatial lattice [141], [142] or those which rely on the explicit calculation of 

Chapter 4 
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hydrodynamic interaction tensors are considerably more complicated to implement in 

an existing MD program [143], [144]. 

The dynamics of MPC particles are divided into two alternating steps. Between 

collective collisions, MPC particles “stream” along linear trajectories by simply 

integrating their velocities. At fixed intervals in time, called collision steps, collision 

events are performed. Collision events randomize the relative velocity of each MPC 

particle with respect to the local flow velocity. At the collision step, the simulation 

volume is divided into a regular lattice of cubic cells called collision cells. MPC 

particles within each cell participate in collective collisions together. The average 

MPC particle velocity within each cell is regarded as the mesoscopic velocity of that 

cell. The set of all cell velocity vectors forms the MPC fluid flow field, resolved on a 

length scale slightly larger than the cell size. 

In addition to preserving the average velocity of each collision cell, the 

collision step must also conserve mass and momentum within each collision cell to 

reproduce Navier-Stokes hydrodynamics. Aside from these constraints, there is 

considerable freedom in how new velocities are chosen during the collision step. Since 

MPC collisions operate on the cell-relative velocities of MPC particles, we can write 

the general prescription for computing new velocities �⃗�𝑖
′ for particle i in a particular 

collision cell c with 

�̃�𝑖 = �⃗�𝑖 − �⃗⃗�𝑐 (4. 1) 

�⃗�𝑖
′ = �⃗⃗�𝑐 + �̃�𝑖

′ (4. 2) 

where �⃗⃗�𝑐 is mean velocity of all MPC particles within cell c. Tilda accents denote cell-

relative quantities and primes denote post-collision quantities. The transformation 

mapping �̃�𝑖 → �̃�𝑖
′ may depend on both relative positions and velocities of all MPC 
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particles in the cell. The only constraint on this operation is that the new relative 

velocities must sum to zero in order to satisfy conservation of momentum. Its 

particular form is called the collision rule. Two widely used collision rules are MPC-

Andersen (MPC-A) [145] and stochastic rotation dynamics (SRD) [136]. 

4.2 Collision Rule Notation 

The following notation will be used throughout the next two sections, with 

subscript c denoting the cth cell and subscript i denoting the ith particle within a cell. 

Tilda accents denote relative quantities and primes denote post-collision quantities. 

𝑁𝑐 number of particles in cell 

�⃗⃗�𝑐 mean cell velocity 

𝑟𝑐 mean cell position 

�⃗�𝑖 absolute particle velocity 

𝑟𝑖 absolute particle position 

�̃�𝑖 relative particle velocity (relative to �⃗⃗�𝑐) 

�̃�𝑖 relative particle position (relative to 𝑟𝑐) 

�⃗�𝑖
′ new particle velocity (after collision step) 

�̃�𝑖
′ new relative particle velocity (after collision step) 

 

Cell mean vectors are defined 

𝑟𝑐 =
1

𝑁𝑐
∑ 𝑟𝑖

𝑁𝑐

𝑖=1

 �⃗⃗�𝑐 =
1

𝑁𝑐
∑ �⃗�𝑖

𝑁𝑐

𝑖=1

 

Relative particle vectors are defined 

�̃�𝑖 = 𝑟𝑖 − 𝑟𝑐 �̃�𝑖 = �⃗�𝑖 − �⃗⃗�𝑐 
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4.3  Stochastic Rotation Dynamics (SRD) 

4.3.1 Collision Rule 

The stochastic rotation dynamics collision rule chooses new velocities by 

rotating the existing relative velocity vectors �̃�𝑖 by a fixed angle 𝛼 about a randomly 

chosen axis on the unit sphere �̂�𝑐 

�⃗�𝑖
′ = �⃗⃗�𝑐 + 𝑅𝛼,�̂�𝑐

(�̃�𝑖) (4. 3) 

The rotation axis is sampled uniformly from the unit sphere with a different axis 

chosen for each cell. This collision rule conserves energy and momentum. It may be 

expressed without a rotation matrix as 

�⃗�𝑖
′ = �⃗⃗�𝑐 + �̃�𝑖

∥ + �̃�𝑖
⊥ cos(𝛼) + (�̂�𝑐 × �̃�𝑖) sin(𝛼) (4. 4) 

�̃�𝑖
∥ = (�̂�𝑐 ∙ �̃�𝑖)�̂�𝑐 (4. 5) 

�̃�𝑖
⊥ = �̃�𝑖 − �̃�𝑖

∥ (4. 6) 

Axes are chosen independently for each collision cell at every collision step. All 

colliding particles within a cell use the same axis. Since this collision step conserves 

energy exactly, MPC dynamics using the SRD collision rule do not require a 

thermostat. A thermostat can be applied, provided that it does not disrupt the 

mesoscopic flow field – it must only operate on the relative velocities [146]. 

4.3.2 Energy Conservation 

An interesting, well-known property of the SRD collision rule is that it locally 

conserves the kinetic energy of MPC particles. This can be shown by examining the 

change in kinetic energy of the MPC particles within a given cell before and after a 

collision takes place 
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2

𝑚
∆𝐸𝑘𝑖𝑛 = ∑ �⃗�𝑖

′ ⋅ �⃗�𝑖
′ − ∑ �⃗�𝑖 ⋅ �⃗�𝑖 (4. 7) 

= ∑(�⃗⃗�𝑐 + �̃�𝑖
′) ⋅ (�⃗⃗�𝑐 + �̃�𝑖

′) − ∑(�⃗⃗�𝑐 + �̃�𝑖) ⋅ (�⃗⃗�𝑐 + �̃�𝑖) (4. 8) 

= ∑[𝑢𝑐
2 + 2(�⃗⃗�𝑐 ⋅ �̃�𝑖

′) + �̃�𝑖
′2

] − ∑[𝑢𝑐
2 + 2(�⃗⃗�𝑐 ⋅ �̃�𝑖) + �̃�𝑖

2] (4. 9) 

Summing each term independently, we immediately see that the 𝑢𝑐
2 sums cancel and 

the dot product in the cross terms may be brought outside the sum 

= [2�⃗⃗�𝑐 ⋅ ∑ �̃�𝑖
′ + ∑ �̃�𝑖

′2
] − [2�⃗⃗�𝑐 ⋅ ∑ �̃�𝑖 + ∑ �̃�𝑖

2] (4. 10) 

The cross terms vanish because the relative velocities sum to zero (by definition), 

leaving only the sums over relative velocity squared 

2

𝑚
∆𝐸𝑘𝑖𝑛 = ∑ �̃�𝑖

′2
− ∑ �̃�𝑖

2 = 0 (4. 11) 

These sums must also cancel since �̃�𝑖
′ = 𝑅𝛼,�̂�𝑐

(�̃�𝑖) and the length of each vector does 

not change under rotation. Hence, the change in kinetic energy is zero. The reason this 

works for SRD and not necessarily for other collision rules arises from this final step. 

Other MPC collision rules do not conserve energy if they change the length of the 

relative velocity vectors, even though they must still sum to zero. 

4.3.3 Parameters and Transport 

The SRD collision rule features five adjustable collision parameters – four 

general to MPC methods and one particular to SRD. These parameters are listed in 

Table 4.1. Only the collision angle is particular to SRD. Transport properties of SRD 

fluids are controlled by adjusting these simulation parameters. When running MPC 

fluid simulations, collision parameters should be chosen that produce a reasonable set 

of dimensionless hydrodynamic numbers and physical fluid properties [137]. 
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Table 4.1: SRD collision parameters. 

Symbol Description 

𝑚 MPC particle mass 

𝑀 MPC particles per collision cell 

𝑎 Collision cell size 

𝜏𝑐 Collision interval / frequency 

𝛼 SRD rotation angle 

 

The simplicity of the SRD collision step admits analytic solutions for its 

transport properties as a function of the collision parameters. Both streaming and 

collision steps contribute to the shear viscosity [138] 

𝜂𝑆𝑅𝐷 = (
𝑚𝑀

𝑎3
) (𝜐𝑐𝑜𝑙 + 𝜐𝑠𝑡𝑟) (4. 12) 

𝜐𝑐𝑜𝑙 = (
𝑎2 

𝜏𝑐
) (

𝑀 − 1 + 𝑒−𝑀

 18𝑀
) (1 − cos 𝛼) (4. 13) 

𝜐𝑠𝑡𝑟 = (
𝑘𝐵𝑇

2𝑚
𝜏𝑐) (

5𝑀

(𝑀 − 1 + 𝑒−𝑀)(2 − cos 𝛼 − cos 2𝛼)
− 1) (4. 14) 

Note the collision interval dependence: the streaming contribution dominates in the 

large 𝜏𝑐 (infrequent collision) regime, while the collision step contribution dominates 

in the small 𝜏𝑐 (frequent collision) regime. Varying these parameters within practical 

limits, one can access a range of viscosities spanning two orders of magnitude from 

0.1 cP, to 0.7 cP (water at 310 K), to 10 cP (50% glycerol).  

We may also find an expression for the self-diffusion coefficient as a function 

of collision parameters [147]. Interestingly, only the streaming step contributes; it has 

the same expression for all MPC collision rules 

𝐷𝑆𝑅𝐷 = (
𝑘𝐵𝑇

2𝑚
𝜏𝑐) (

3𝑀

(𝑀 − 1 + 𝑒−𝑀)(1 − cos 𝛼)
− 1) (4. 15) 
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4.3.4 Hydrodynamic Cutoff Length 

The cutoff length for SRD hydrodynamics has been identified as the length at 

which the time integral of transverse velocity correlations among SRD particles goes 

from an Oseen-like dependence on wavenumber ∝ (𝜂𝑘2)−1 to an asymptotic constant 

[148]. It can be expressed using the dynamic viscosity 

𝜆𝑐 = 𝜋√2𝜏𝑐𝜐𝑆𝑅𝐷 (4. 16) 

This expression is plotted in Fig. 4.1 as a function of the collision interval using 

typical STRD collision parameters. In the frequent collision regime 𝜐𝑆𝑅𝐷 ∝ 𝜏𝑐
−1, 

leading to a nearly constant cutoff length 𝜆𝑐 ≈ 1.44a. When collisions are infrequent, 

the streaming contribution dominates 𝜐𝑆𝑅𝐷; the cutoff length grows as 𝜏𝑐, scaling with 

the mean free path of the MPC particles. 

 

Figure 4.1: The hydrodynamic cutoff length for an SRD fluid at 310 K in units of 

collision cell size as a function of the collision interval in units of MD 

timestep. The SRD other collision parameters are m = 72 amu, α = 180°, 

a = 2.0 nm, and N = 2.5 nm-3. 
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4.3.5 Momentum-Preserving Thermostat 

Thermostats which operate on SRD particle velocities must be designed not 

disrupt the mesoscopic flow field by only modifying the relative velocities, leaving the 

mean velocity of the cell unchanged. One such thermostat has been developed using a 

Monte-Carlo type procedure to randomly rescale the relative velocities in each cell at 

the end of the SRD collision step [146]. This thermostat does not alter SRD viscosity. 

Within each cell, a scaling factor S is chosen, with equal probability, to be either 

(1 + 휀) or (1 + 휀)−1 where ε is an input parameter less than one. Then a uniform 

random number is chosen 𝑝 ∈ [0,1]. If this number is less than the acceptance 

probability 𝑝𝐴 = min(1, A), the relative velocities of SRD particles in the cell are 

rescaled by S. The parameter A depends on the number of particles in the cell 𝑁𝑐, the 

target temperature 𝑇0, and the relative kinetic energy of SRD particles in the cell 

𝐴 = 𝑆3(𝑁𝑐−1) exp (−
𝑚 (𝑆2 − 1)

2 𝑘𝐵𝑇0
∑(�⃗�𝑖 − �⃗⃗�𝑐)2

𝑁𝑐

𝑖=1

) (4. 17) 

4.4 Andersen Collisions 

MPC-Andersen assigns new relative particle velocities by drawing random 

components �⃗�𝑖,𝑟𝑎𝑛𝑑 from a Gaussian distribution with a variance √𝑘𝐵𝑇 𝑚⁄ . The new 

relative velocities are adjusted to ensure they sum to zero by subtracting their average 

�⃗�𝑖
′ = �⃗⃗�𝑐 + �⃗�𝑖,𝑟𝑎𝑛𝑑 −

1

𝑁𝑐
∑ �⃗�𝑗,𝑟𝑎𝑛𝑑

𝑁𝑐

𝑗=1

(4. 18) 

where 𝑁𝑐 is the number of particles in the collision cell. Since this collision rule 

automatically applies an Andersen thermostat to the fluid, simulations using it will 

sample configurations from the canonical ensemble. Once again, the viscosity has an 

analytic expression based on the simulation parameters from Table 4.1 [149] 
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𝜂𝑀𝑃𝐶𝐴 = (
𝑚𝑀

𝑎3
) (𝜐𝑐𝑜𝑙 + 𝜐𝑠𝑡𝑟) (4. 19) 

𝜐𝑐𝑜𝑙 = (
𝑎2 

12𝜏𝑐
) (

𝑀 − 1 + 𝑒−𝑀

𝑀
) (4. 20) 

𝜐𝑠𝑡𝑟 = (
𝑘𝐵𝑇

2𝑚
𝜏𝑐) (

2𝑀

𝑀 − 1 + 𝑒−𝑀
− 1) (4. 21) 

4.5 Angular Momentum Conservation 

The collision step changes the angular momentum of each cell by Δ�⃗⃗�𝑐, which 

may be expressed in terms of the cell-relative particle coordinates and velocities as 

Δ�⃗⃗�𝑐 = ∑ �̃�𝑗 × 𝑚𝑗�̃�𝑗
′

𝑁𝑐

𝑗=1

− ∑ �̃�𝑗 × 𝑚𝑗�̃�𝑗

𝑁𝑐

𝑗=1

(4. 22) 

= ∑ �̃�𝑗 × 𝑚𝑗(�̃�𝑗
′ − �̃�𝑗)

𝑁𝑐

𝑗=1

(4. 23) 

This leads to change in the angular velocity of the cell Δ�⃗⃗⃗�𝑐 given by 

Δ�⃗⃗⃗�𝑐 =  𝕀𝑐
−1Δ�⃗⃗�𝑐 =  𝕀𝑐

−1 ∑ �̃�𝑗 × 𝑚𝑗(�̃�𝑗
′ − �̃�𝑗)

𝑁𝑐

𝑗=1

(4. 24) 

Using the cell’s moment of inertia tensor 𝕀𝑐 defined using the cell-relative particle 

positions �̃�𝑖 with 

𝕀𝑐,𝑥𝑥 = ∑ 𝑚𝑗(�̃�𝑗,𝑦
2 + �̃�𝑗,𝑧

2)

𝑁𝑐

𝑗=1

𝕀𝑐,𝑥𝑦 = 𝕀𝑐,𝑦𝑥 = − ∑ 𝑚𝑗(�̃�𝑗,𝑥�̃�𝑗,𝑦)

𝑁𝑐

𝑗=1

𝕀𝑐,𝑦𝑦 = ∑ 𝑚𝑗(�̃�𝑗,𝑥
2 + �̃�𝑗,𝑧

2)

𝑁𝑐

𝑗=1

𝕀𝑐,𝑦𝑧 = 𝕀𝑐,𝑧𝑦 = − ∑ 𝑚𝑗(�̃�𝑗,𝑦�̃�𝑗,𝑧)

𝑁𝑐

𝑗=1

𝕀𝑐,𝑧𝑧 = ∑ 𝑚𝑗(�̃�𝑗,𝑥
2 + �̃�𝑗,𝑦

2)

𝑁𝑐

𝑗=1

𝕀𝑐,𝑥𝑧 = 𝕀𝑐,𝑧𝑥 = − ∑ 𝑚𝑗(�̃�𝑗,𝑥�̃�𝑗,𝑧)

𝑁𝑐

𝑗=1
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Thus, the change in particle velocities due to the collision step has a component which 

can be written 

Δ�⃗�𝑖,𝑟𝑜𝑡 = Δ�⃗⃗⃗�𝑐 × �̃�𝑖 (4. 25) 

The equation for the collision step may be rewritten with an extra term to cancel this 

change in angular momentum: 

�⃗�𝑖
′ = �⃗⃗�𝑐 + �̃�𝑖

′ − Δ�⃗⃗⃗�𝑐 × �̃�𝑖 (4. 26) 

This new form of the collision step conserves angular momentum within each 

collision cell. 

4.6 Grid Shifting 

In its original formulation, the SRD algorithm did not respect Galilean 

invariance due to anisotropy introduced by the collision cell grid [150], [151]. As 

nearby particles repeatedly collide with one another, they build up velocity 

correlations that couple to the mesoscopic flow field. This oversight is corrected by 

sampling different groups of MPC particles at each collision step, typically 

implemented with a random shift of the collision cell lattice before each collision 

using a uniform random shift of (− 𝑎 2⁄ , 𝑎 2⁄  ) along each axis. This procedure is 

generally not necessary when the MPC mean free path approaches or exceeds the size 

of the collision cells. 

4.7 Alternative Hydrodynamics Models 

The computational fluid dynamics literature contains a rich spectrum of other 

hydrodynamic solvers operating at various levels of abstraction; from pure continuum 

methods which solve the Navier-Stokes equations with finite differences to fully 

atomistic “explicit-solvent” MD simulations at the most granular level of description. 
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Each level of abstraction, involves tradeoffs between computational efficiency and its 

realm of suitable applications. Mesoscopic techniques bridge the gap between atomic 

or molecular fluid simulation and continuum Navier-Stokes hydrodynamics. Broadly, 

these may be divided into those methods which model underlying dynamics through 

tracer particles (Dissipative Particle Dynamics, Multi-particle Collision Dynamics, 

Lattice-Boltzmann), those which couple to an external momentum field (Fluctuating 

Hydrodynamics, particle-in-mean-field) and those which explicitly calculate forces 

from the hydrodynamic interaction tensors (Brownian and Stokesian dynamics). 

Early mesoscopic fluid simulations used cellular automata to model fluid 

particle dynamics on a lattice. In the lattice gas automata (LGA) method [152], [153], 

tracer particles are constrained to hopping between points on a discrete spatial lattice, 

which interaction occurring through discrete collisions on the lattice sites. Particle 

occupancy on each site is binary in the lattice gas method. This was later extended by 

modeling the site occupancy with particle distributions in the lattice Boltzmann 

method [141], [154]–[156]. This method is efficient, but has difficulty handling 

complex boundary conditions or incorporating proper thermal fluctuations (though the 

latter may be including through additional noise terms [157]). 

Dissipative particle dynamics (DPD) [140], [158], [159] is another popular 

approach which models a fluid with coarse-grained beads subject to conservative, 

dissipative, and random forces. This is similar to a coarse-grained explicit solvent 

coupled to a thermostat with one crucial difference: all three forces are designed to 

conserve momentum. This requires the viscous and random forces to be pair-

correlated among DPD particles. A major drawback to this approach is that it still 



 76 

requires pairwise distance calculations among the constituent particles in order to 

evaluate the forces between them. 

 Forces between solute particles in dilute solution may be directly calculated 

without modeling the flow field using Brownian [160] or Stokesian dynamics [161]. 

Methods from this family model solute dynamics with the Langevin equation, 

explicitly including hydrodynamic interaction forces through the calculation of many-

body diffusion tensors. Calculating the full diffusion tensor is computationally 

prohibitive, as it depends on all particle positions in the system [162]. This often 

motivates the use of a simplified pair-wise approximation called the Rotne-Prager-

Yamakawa (RPY) tensor [163]–[165]. Full evaluation of this interaction tensor still 

scales as O(N2), but is amenable to a decomposition into Laplace potentials which 

may be calculated using the fast multiple method [166]. Brownian dynamics has been 

used to study the self-assembly of coarse-grain membranes modeled with lipids each 

consisting of a single head and tail bead [143]. 

Other methods use a continuum description of the solvent for hydrodynamics. 

For example, the fluctuating hydrodynamics approach [167] couples solute dynamics 

to a continuum hydrodynamic field evolved on a discrete grid using finite element 

methods. This method has been implemented for implicit-solvent coarse-grain models 

in the LAMMPS MD software package [168]. The particle-in-mean-field or MD-SCF 

method takes this approach a step further, representing all interactions in the 

simulation with a self-consistent mean field [169]–[171] and mapping this back to 

molecular dynamics through forces for time evolution. 

Among these, the MPC algorithm was selected for several reasons: (1) Its 

particle-based nature readily admits an implementation in existing MD software; (2) it 



 77 

inherently contains local fluctuations in density and temperature, which are relevant 

on the length scales of interest; (3) it easily supports complicated boundary conditions 

by various coupling methods; and (4) it efficiently scales to thousands of processors 

and millions of solute particles. MPC methods have been successfully applied to study 

a wide variety of soft matter systems, including colloidal suspensions [137], [146], 

polymer solutions [172]–[174], self-propelled solutes (i.e. model sperm cells) [175], 

[176], red blood cells [177], [178], and vesicles [179]. In the literature, colloids are 

often modeled with large spheres (relative to the collision cells) while membranes 

(cells and vesicles) are represented with dynamically triangulated meshes. Coupling 

these systems to MPC fluids may be accomplished through incorporating the solute 

particles in the MPC collision steps [178], adding repulsive forces between MPC 

particles and solutes [180], or explicitly modeling hard-sphere collisions between 

MPC particles and large solute particles (typically colloids) [146]. 
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STRD MARTINI IMPLEMENTATION 

5.1 Introduction 

There has been a growing appreciation in recent years for the importance of 

hydrodynamic interactions in membrane dynamics [45], [119], [143], [181], [182]. At 

the same time, the length and time scales accessible to simulation has begun to 

converge with those accessible to experiment, particular in the study of lateral 

diffusion [29], [183]. However, accurate modeling of hydrodynamic transport using 

traditional molecular dynamics (i.e. with explicit solvent particles) is not feasible due 

to the system sizes (and consequently number of particles) required by the long-range 

nature of hydrodynamic interactions in the low-Reynolds number regime. Calculating 

pairwise forces between the solvent particles demands an overwhelming majority of 

the available computational resources at the requisite system sizes. This predicament 

constitutes an unmet scientific need as novel algorithms and software implementations 

are required for accurate and efficient modeling of hydrodynamic interactions at scale. 

We have met that need by implementing the efficient MPC algorithm in the 

popular open-source MD software package GROMACS v5.0.1 [47], opening the way 

to further studies of membrane dynamics with proper accounting for hydrodynamic 

interactions. Our MPC implementation is not specific to membrane simulation and 

may be adapted to colloids, polymers, or any other molecular system which can be 

modeled in GROMACS. Since our interest is focused upon membrane dynamics, and 

lateral diffusion in particular, our first application for the MPC-GROMACS code is to 

Chapter 5 
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reintroduce hydrodynamic momentum transport to coarse-grain membranes modeled 

with an implicit-solvent force field called Dry Martini [48]. We call this combination 

“Stochastic Thermostatted Rotation Dynamics” (STRD) Martini, in keeping with the 

naming convention set forth by Martini and Dry Martini. 

As discussed in section 4.7, the literature contains a plethora of hydrodynamic 

solvers coupled to colloids, proteins, and continuum membranes. In formulating our 

approach for STRD Martini, we selected Dry Martini as the membrane model because 

it provides chemically-resolved models of individual lipid species parametrized in the 

absence of an explicit solvent. The MPC algorithm was chosen as the mesoscopic 

hydrodynamics model due to its natural interoperability with existing GROMACS 

code: MPC dynamics are based upon particles moving though continuous space in 

discrete timesteps – just like other particles in a GROMACS simulation. As such, 

GROMACS may treat MPC particles just as any other particle for the purposes of 

integration, parallelization, trajectory writing, analysis, and force calculation (when 

desired). When combined with domain decomposition, STRD Martini scales to 

thousands of processors, providing accurate hydrodynamics while running at least an 

order of magnitude faster than equivalent explicit-solvent simulations. 

Using STRD Martini begins with adding a bath of MPC tracer particles to a 

Dry Martini membrane (illustrated in Fig. 5.1). At runtime, their mutual pairwise 

interactions are disabled and replaced with MPC collisions. Collisions are performed 

after an integer number of timesteps with user-supplied collision parameters. MPC 

streaming steps are handled by the GROMACS integrator. This inter-dependence is 

not an impediment to either MD or MPC dynamics, as typical collision intervals are an 

order of magnitude longer than the MD timestep. 
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Figure 5.1: Depiction of Martini membrane and SRD solvent overlaid with 1 nm 

SRD grid to illustrate collision cell size. Radius of SRD particles does 

not reflect their effective size in the repulsive coupling scheme. 

The collision cell grid is selected at the start of the simulation based on the 

requested grid size input parameter. The simulation box must be spanned by an integer 

number of collision cells in order to respect periodic boundary conditions. The number 

of cells selected along each axis is the integer number which most closely matches the 

requested size. Because this is determined independently for each axis (GROMACS 

boxes may be anisotropic) the final collision cells may be slightly anisotropic. This is 

a minor issue which is only relevant in the limit of small simulation sizes where the 

number of collision cells along each axis is small. Once a collision cell grid is 

selected, it does not dynamically resize. If pressure coupling is employed and the 

simulation box changes shape, collision cells deform accordingly. 
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Both SRD and MPC-A collision rules are implemented for STRD Martini. The 

thermostat described in section 4.3.5 and angular momentum constraint from section 

4.5 are also implemented. Two schemes for coupling the MPC fluid to the lipids are 

available: one based on repulsive forces and another which incorporates lipid particles 

into the collision step. In the latter case, users may select which particles interact 

through the collisions by specifying a GROMACS atom group. Despite its name, 

STRD Martini is not specific to the Martini force field. With very little effort, it may 

be adapted to any implicit solvent force field for GROMACS simulations. 

5.2 Standard Simulation Parameters 

MD simulation parameters for STRD Martini are largely inherited from Dry 

Martini (see Table 5.1). This is necessary maintain consistency with the lipid force 

field parameterization. However, there are three major differences between the set of 

parameters used for STRD Martini and Dry Martini. 

First, the velocity-Verlet integrator is used with STRD Martini in place of the 

stochastic integrator used with Dry Martini. Velocity-Verlet is required to conserve 

energy with MPC collisions (see section 5.4). The stochastic integrator was originally 

selected for Dry Martini to provide a source of friction and thermal noise to the 

membrane [48]. Both functions are fulfilled by the MPC fluid in STRD Martini.  

Second, STRD Martini simulations thermalize the membrane through 

interactions with the solvent. No explicit thermostat is applied to the membrane. 

Instead, the MPC fluid temperature is maintained during the MPC collisions by a 

special momentum-conserving thermostat. Temperature coupling for Dry Martini is 

provided by the stochastic integrator. 
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Third, pressure coupling must be handled with care when using STRD Martini. 

Both the collision cell size and the MPC particle density are important parameters for 

controlling MPC fluid properties. As such, STRD simulations should avoid significant 

changes in volume. Fixed volume is encouraged for all simulations after equilibration. 

Semiisotropic pressure coupling may be employed for interfacial systems, provided 

the vertical size of the box is held fixed as the lateral size varies. In this case, coupling 

the box size to surface-tension is required for the cancellation of isotropic pressure 

contributions arising from the kinetic energy of streaming MPC particles. Pressure 

coupling is a lesser concern in very large systems, as NVT and NPT ensembles with 

the same average pressure become equivalent in the thermodynamic limit. 

Table 5.1: Standard MD parameters for STRD Martini simulations in GROMACS. 

Integration Velocity-Verlet with ∆𝑡 = 20 fs 

Center of mass motion removed every timestep, treating 

membrane and solvent separately 

Neighbor Lists Group scheme, recalculated every 10 timesteps; 

Cutoff at 14 Å 

Van der Waals Potential shifted to zero over 9-12 Å. 

Electrostatics Electrostatic potential shifted to zero over 0-12 Å;  

Relative permittivity 휀𝑟 = 15 

Thermostat Collision cell thermostat for the MPC fluid, no thermostat for the 

membrane; 

𝑇0 = 310 K, ϵ = 0.10 

Barostat 

(Production) 

Semiisotropic coupling only, fixed size along Z axis; 

Better to use fixed volume to keep MPC cell size fixed 

Barostat 

(Equilibration) 

Berendsen, semiisotropic coupling, fixed size along Z axis; 

𝑃0 = 1 bar, 𝜏𝑃 = 12 ps 

Compressibility = 3.0 × 10−4 bar−1 (lateral), 0 (normal) 
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Additional parameters controlling the MPC / SRD collision parameters are 

listed in Table 5.2. Collision parameter selection is up to the user, though the mass of 

MPC particles is fixed at 72 amu – equivalent to the mass of Dry Martini beads. 

Parameters should be selected in a systematic way, balancing the requirements for 

achieving desirable characteristic hydrodynamic numbers, transport coefficients (e.g. 

viscosity), hydrodynamic resolution, and performance. 

When using the SRD collision rule, particle density should be chosen such that 

the number of particles per cell is between 3 and 20 [138]. This requirement imposes a 

tradeoff between particle density and collision cell size. Another tradeoff involving the 

particle density comes about from performance considerations. STRD Martini incurs 

two major performance penalties: (1) inter-process communication can become 

significant when short collision intervals are used; and (2) the addition of MPC 

particles adds significant book keeping requirements for GROMACS, especially for 

simulations with large MPC solvent baths. Thus, better performance is available when 

using lower MPC particle density and longer collision intervals. However, both tend to 

lower viscosity and Schmidt number (see section 5.5.3). The collision interval is also 

key to obtaining shorter hydrodynamic cutoff lengths, which depend on both viscosity 

and collision interval. Lowering the cutoff delivers hydrodynamic flows with finer 

spatial resolution. This cutoff can also be lowered by increasing particle density, but 

this requires smaller collision cells in compensation, tying back into requirements for 

the average number of particles per cell. 

A reasonable set of collision parameters that strikes a good balance between 

these considerations is N = 2.5 nm-3, a = 2.0 nm, τc = 200 fs, and α = 180°. At 310 K, 

these yield a viscosity of 0.63 cP, a cutoff length of 2.9 nm, and Schmidt number of 
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1021 while attaining good performance. For the remainder of this document, these will 

be referred to as the standard STRD collision parameters. Starting from this set of 

parameters, minor adjustments can be made, principally by tuning SRD collision angle 

and collision interval. 

Table 5.2: Additional GROMACS input file (mdp) parameters for STRD Martini. 

 

General input parameters for MPC collisions: 

mpc-type Selected collision rule (off | srd | at | at+a). 

mpc-grps Atom groups to include in collision step. 

mpc-freq How often to do collisions (# timesteps). 

mpc-cellsize Desired collision cell size (nm). 

True size at runtime will depend on periodic box size. 

mpc-seed Seed for collision RNG (-1 for random seed). 

 

Additional input parameters for the SRD collision rule: 

srd-angle Collision angle (degrees) 

srd-tcouple Enable collision step thermostat (yes | no) 

srd-tc-str Thermostat strength parameter 𝜖 

srd-tc-ref-t Thermostat reference temperature 𝑇0 (K) 

 

Additional input parameters for collision cell data output: 

mpc-out-freq How often to output cell data (# timesteps) 

mpc-out-samp How often to sample cell data for output averages (# timesteps) 

mpc-out-vel Write cell velocities to binary output file (yes | no) 

mpc-out-num Write cell occupancies to binary output file (yes | no) 
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5.3 MPC-Membrane Coupling Methods 

Since the Dry Martini lipid model has been parameterized in the absence of 

solvent, indirect lipid-lipid interactions mediated by nearby solvent particles are 

incorporated into the lipid-lipid interaction parameters. This parameterization can 

include thermodynamic effects such as hydrophobicity, but not long-ranged 

hydrodynamic interactions. The object of STRD Martini is to restore hydrodynamic 

momentum transport while minimally perturbing the thermodynamic properties of Dry 

Martini membranes. Two methods for coupling the SRD fluid to Dry Martini lipids 

were explored. First, the repulsive coupling method introduces a pairwise force acting 

between MPC particles and lipid headgroups. This force uses a short ranged, purely 

repulsive interaction to effect momentum transfer with the membrane. Second, the 

collisional coupling method allows lipid headgroups to participate in MPC collision 

events, with no other interactions between lipids and MPC particles. 

5.3.1 Repulsive Coupling 

Perhaps the simplest way to interface the SRD fluid with Dry Martini is to 

define a purely repulsive van der Waals interaction between MPC particles and lipid 

beads. A suitable interaction is provided by the repulsive Weeks-Chandler-Anderson 

(WCA) potential [184], sometimes called the truncated Lennard-Jones potential. It is 

simply a Lennard-Jones potential truncated at its global minimum 𝑟min = 21 6⁄ 𝜎 and 

shifted to zero (see Fig. 5.2). 

𝑈𝑊𝐶𝐴
𝑅 (𝑟) = {

 𝑈𝐿𝐽(𝑟) + 휀, 𝑟 < 𝑟min

0, 𝑟 ≥ 𝑟min 
(5. 1) 

This interaction has been previously used in the MPC literature [185], [186] for 

studies of spherical solute particles suspended in a bath of MPC particles. When 
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applying this interaction to interfacial systems, one must be mindful of the normal 

pressure exerted by the solvent. 

 

Figure 5.2: Lennard-Jones and repulsive WCA potentials in natural units. 

For simplicity of implementation, we mimic a WCA potential using a shallow-

well Lennard-Jones potential with σ = 0.80 nm and ε = 0.001 kJ/mol. Note that the 

WCA potential reduces to the LJ potential for 𝑟 < 𝑟min in the limit of small ε. This 

functional form yields an effective MPC particle radius comparable to the size of Dry 

Martini lipid beads (see Fig. 5.3). The choice of parameters involves a delicate trade-

off with the particle density in the interest of minimizing the normal pressure. If the 

MPC particles are too small, they penetrate the membrane and become unphysically 

trapped between the leaflets. When too many congregate inside the membrane, their 
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repulsive interactions drive the lipids apart, ultimately lysing the membrane. However, 

if the MPC particles are too large or too dense, the additional pressure at the interface 

drives the membrane into a gel phase when zero surface tension is enforced. 

 

Figure 5.3: SRD-headgroup interaction compared with two sample van der Waals 

interaction types from the Dry Martini force field. Level 3 is the “semi-

attractive” potential and level 8 is the “repulsive” potential. 

 Membrane perturbations from the SRD fluid depend on the effective size of 

the MPC particles, which may be regarded as the radius of their potential at a half 𝑘𝐵𝑇 

𝑈𝐿𝐽(𝑟𝑒𝑓) =
1

2
𝑘𝐵𝑇 (5. 2) 

This expression depends on both LJ parameters, with larger values of σ required to 

reach the same effective radius when ε is small. The effective size as a function of 

Lennard-Jones parameters is illustrated in Fig. 5.4, with the twelve solid points 
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indicating the subset of parameters considered during the STRD repulsive coupling 

parameterization which did not either crash the simulation, nor drive the membrane 

into the gel phase during 1 µs of zero surface tension equilibration. The same sample 

parameter set is presented in Fig. 5.5 showing the equilibrium area per lipid and 

average density of MPC particles trapped between the leaflets. Numeric values for 

area per lipid and membrane thickness are reported in Table 5.3 for each set of LJ 

parameters. The SRD collision parameters used during this equilibration are largely 

irrelevant, as the equilibrium membrane properties are overwhelmingly determined by 

the selected LJ parameters of the MPC-membrane interaction. 

 

Figure 5.4: Contours show effective MPC radius 𝑟𝑒𝑓𝑓 in nm as a function of 

Lennard-Jones parameters σ and ε. Solid circles indicate parameter sets 

shown in Fig. 5.5. 
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Figure 5.5: Equilibrium size (top) and density of trapped MPC particles (bottom) 

after 1 µs for POPC membranes coupled to high-density (N = 10 nm-3) 

STRD fluid through repulsive forces. Each point represents a set of LJ 

parameters from Fig. 5.4, shaded according to the equilibrium size given 

in the top panel. Standard STRD parameters (σ = 0.80 and ε = 0.001) are 

indicated by a six-point star. 
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Table 5.3: Equilibrium properties of POPC membranes for Dry Martini and STRD 

Martini with repulsive coupling at high SRD particle density (= 10 nm-3). 

Lennard-Jones parameters which result in a gel phase membrane are not 

included. Thickness is measured from phosphate to phosphate bead. 

σ (nm) ε (kJ/mol) APL (Å2) Thickness (nm) 

0.4 0.001 63.092 ± 0.037 4.232 ± 0.026 

0.5 0.001 62.434 ± 0.038 4.228 ± 0.025 

0.6 0.001 59.896 ± 0.039 4.303 ± 0.026 

0.7 0.001 57.748 ± 0.040 4.399 ± 0.028 

0.8 0.001 56.458 ± 0.045 4.465 ± 0.031 

0.4 0.01 62.873 ± 0.035 4.222 ± 0.025 

0.5 0.01 60.063 ± 0.039 4.295 ± 0.027 

0.6 0.01 57.585 ± 0.039 4.406 ± 0.027 

0.7 0.01 55.927 ± 0.050 4.494 ± 0.033 

0.4 0.1 61.804 ± 0.041 4.232 ± 0.027 

0.5 0.1 58.440 ± 0.042 4.362 ± 0.029 

0.6 0.1 56.458 ± 0.046 4.464 ± 0.032 

Dry Martini (Reference) 63.766 ± 0.039 4.210 ± 0.027 

 

From the results reported in Table 5.3 and illustrated in Fig. 5.5, we see that 

only those interaction parameters with the largest effective size prevent MPC particles 

from unphysically infiltrating the membrane and becoming trapped. At the same time, 

such “large” MPC particles contribute an enormous normal pressure, which cause the 

membrane to contract by up to 10%. Using even larger MPC particles forces the 

membrane to gel. It is worth remarking that this effect is rather counterintuitive. When 

one imagines compressing a membrane, it is reasonable to expect lateral expansion 
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rather than contraction with the total volume of the membrane remaining fixed. The 

fact that our membranes contract is a consequence of the barostat enforcing the zero 

surface tension. In an MD simulation, surface tension is determined by a balance of 

normal (z) and lateral (x-y) stresses via 

𝛾𝑏𝑖𝑙𝑎𝑦𝑒𝑟 = 𝐿𝑧 (𝑃𝑧𝑧 −
𝑃𝑥𝑥 + 𝑃𝑦𝑦

2
) (5. 3) 

where 𝐿𝑧 is the size of the simulation box normal to the bilayer and 𝑃𝛼𝛽 is the pressure 

tensor. Thus, to require zero surface tension is to require the lateral pressure to equal 

the normal pressure. When normal pressure is increased, the simulation box must 

contract to induce a commensurate increase in the lateral pressure.  

MPC particles contribute to both the kinetic energy and virial terms of the 

pressure tensor. However, due to the isotropy of the MPC kinetic energy contribution, 

only the virial term contributes to the surface tension. This term is dependent upon 

both the range of the MPC-lipid interaction (as we have seen in Table 5.3) and the 

density of the MPC particles, both of which may be controlled to minimize the normal 

pressure. The parameters selected for the STRD repulsion are those which yield the 

smallest effective size while still preventing MPC particles from becoming trapped 

within the membrane (see Fig. 5.5). To further reduce the pressure and recover 

sensible membrane properties, the MPC density must be decreased. Attaining water-

like viscosity at such low density is challenging; we must use larger collision cells and 

shorter collision intervals. This is explored further in section 5.3.3. 

5.3.2 Collisional Coupling 

An alternative strategy for coupling the MPC fluid to Dry Martini without 

applying spurious normal pressure to the membrane is to simply include some lipid 
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headgroup beads in the collision step. This “direct coupling” or “collisional coupling” 

scheme has been used in the literature to study the dynamics of polymer chains [173], 

[187] and triangulated meshes representing vesicles [177], [178]. Since the solute 

particle masses are not necessarily equal to the MPC particle mass, the mean collision 

cell velocities must be calculated using mass-weighted particle velocities to satisfy 

conservation of momentum within each collision cell 

�⃗⃗�𝑐 =
∑ 𝑚𝑖�⃗�𝑖

∑ 𝑚𝑖

(5. 4) 

When using the collisional coupling method, the total solvent and solute 

masses within a collision cell should be of the same order [188]. If the total solvent 

momentum significantly exceeds that of the solute, fluctuations from the MPC solvent 

become a source of friction for the solute, with the collision step effectively adding a 

noise term (i.e. random force) to the solute equations of motion. Since MPC particles 

in STRD Martini have the same mass as Dry Martini beads, a limiting range is set on 

the acceptable MPC particle density, it should also be of the same order as the lipid 

headgroup density within the interfacial collision cells. Consider a membrane with an 

APL of 0.6 nm-2 coupled to STRD with 2 nm collision cells. This corresponds to an 

average of ~6.7 lipid headgroups per interfacial collision cell. Requiring an equivalent 

6.7 MPC particles per cell corresponds to an average MPC density of 0.84 nm-3. This 

sets an upper limit on acceptable density around N = 2.5 nm-3, which is ~0.5 orders of 

magnitude larger than a state of solvent-solute mass balance. 

Using even larger cells is problematic in two respects (1) it decreases the 

resolution of the mesoscopic flow field, degrading its ability to model hydrodynamic 

interactions among nearby lipids and (2) it introduces additional coupling among the 

dynamics of nearby lipids through their mutual participation in the collision step. For 
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2 nm collision cells, nearest and second-nearest neighbors will often be located in the 

same collision cell. Resolving the dynamics of individual lipids would require ~0.5 

nm collision cells, along with very high SRD particle densities to adequately fill the 

cells (seriously degrading performance) and drastically lower MPC particle mass to 

satisfy the momentum balance requirement. As a compromise, a = 2 nm and N = 2.5 

nm-3 are used as the standard cell size and density in STRD simulations. 

Furthermore, without some form of repulsive interaction, MPC particles can 

freely stream through the membrane. This enhances coupling between the leaflets and 

tightly couples solvent flows on either side. This may be advantageous in the context 

of the Saffman-Delbrück theory, where (1) the bilayer is modeled as a uniform slab 

having no variation in its velocity profile along z and (2) stick boundary conditions are 

assumed, requiring the flow field of the membrane and solvent to exactly match at the 

interface. Problems may arise when modeling other membrane properties, such as the 

interleaflet friction, is required. For longer collision intervals, density waves normal to 

the membrane may pass through it. This may be a problem when the Mach number is 

high enough, corresponding to a compressible fluid, or when parameters are chosen 

which result in a gas-like low Schmidt number. 

 Another important consequence of including lipid headgroups in the collision 

step is a tight coupling of the lipid dynamics to the SRD collision parameters. To 

demonstrate this, lipid self-diffusion coefficients were calculated for five simulations 

of 10 nm POPC membranes with different collision angles. The other collision 

parameters were held fixed at N = 0.75 nm-3, a = 2.0 nm, τc = 100 fs, and α = 180. 

Each simulation was run at fixed volume for 2 μs with a cell thermostat applied to 

MPC colliding particles only and no COM removal with 2 fs timesteps. Diffusion 
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coefficients were found by breaking each trajectory into ten 200 ns segments and 

calculating the MSD for sub-trajectory. The reported uncertainty is the standard error 

of these ten calculations. From the results presented in Fig. 5.6, it is clear that lipid 

diffusion slows as the collision angle is increased. Including lipid headgroup beads in 

MPC collisions increases the membrane surface viscosity through the introduction of 

random noise forces. 

 

Figure 5.6: Self-diffusion of POPC lipids in STRD Martini using collisional coupling 

slows as the collision angle of the collision is increased. This data fits 

well to a linear model with the horizontal axis expressed in either solvent 

viscosity or collision angle. It does not comport with a SD-like model 

given by 𝐴 + 𝐵 log(1/𝜂𝑤). This result reflects the fact that this collision 

angle dependence does not arise from hydrodynamic considerations, as 

expressed by equation 3.47 or 3.49, but through an additional viscous 

friction imparted by the collision step. 
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5.3.3 Equilibrium Comparison 

Under zero surface tension, the area per lipid (APL) of a conventional Dry 

Martini simulation is 63.7 Å2 — this is the target for our STRD Martini simulations. 

As we have seen, coupling MPC particles to the membrane with repulsive interactions 

reduces the area per lipid in a manner dependent upon the MPC particles’ effective 

size. The dependence on particle density is reported in Table 5.4 using the standard 

repulsive interaction parameters σ = 0.80 nm and ε = 0.001 kJ/mol. Other collision 

parameters are a = 1.0 nm, Δt = 20 fsec, τc = 80 fs, and α = 180°. APL is reduced from 

the conventional Dry Martini result to 62.9 Å2 at a density of 1 nm-3, a decrease of 

about 1.3%. This is an acceptable deviation which leaves the bilayer in a fluid state. 

Alternatively, one could perform simulations under constant surface tension of 

approximately 10 dyne/cm (= 100 bar-nm) to enforce the exact Dry Martini APL. 

Higher particle densities significantly perturb the membrane properties when repulsive 

coupling is employed. 

Even closer agreement with the Dry Martini area per lipid is available when 

the collisional coupling method is used, even at the “maximum” density for STRD 

simulations (= 2.5 nm-3). Membrane properties for this coupling scheme are also 

reported in Table 5.4 using collision parameters a = 2.0 nm, Δt = 20 fs, τc = 200 fs, 

and α = 180°. The collisional coupling method also does a better job at reproducing 

the Dry Martini area compressibility modulus. 

Equilibrium area per lipid is the lateral area at which surface tension is zero 

and area compressibility is the first derivative of surface tension with respect to area. 

The bilayer surface tension (computed via equation 5.3) as a function of lateral area is 

shown in Fig. 5.7 for the membranes presented in Table 5.4. Each data point reports 

the average surface tension in a 1 µs simulation performed at fixed volume with the 
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MPC fluid coupled to the cell thermostat at 310 K (NVT). Area compressibilities 

reported in Table 5.4. are obtained from linear fits to this data in the vicinity of zero 

surface tension (i.e. their equilibrium area). 

Thus, we have identified simulation protocol for both coupling methods which 

yield reasonable membrane properties. Nonetheless, the collisional coupling scheme is 

used throughout the remainder of this work because it is thought to more accurately 

model stick boundary conditions, such as those assumed in the Saffman-Delbrück 

theory. This choice should not be regarded as an endorsement of the collisional 

coupling scheme over the repulsive scheme; both constitute valid approaches and both 

are supported in STRD Martini. 

Table 5.4: Equilibrium system size and area compressibility for Dry Martini and 

STRD Martini as a function of the SRD particle density. Data for both 

the collisional coupling (CC) and repulsive coupling (RC) methods are 

shown. Area compressibility is calculated from a linear fit of the data in 

Fig. 5.7 at zero surface tension. 

Simulation APL (Å2) Area Compressibility (mN/m) 

RC, N = 1 63.02 ± 0.10 384 ± 17 

RC, N = 5 59.942 ± 0.042 428 ± 13 

RC, N = 10 56.459 ± 0.082 378 ± 11 

CC, N = 2.5 63.56 ± 0.18 320 ± 33 

Dry Martini 65.084 ± 0.054 333 ± 12 
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Figure 5.7: Surface tension as function of area per lipid (at fixed volume) for STRD 

POPC membrane are shown for three densities using repulsive coupling 

(RC), at standard density using collisional coupling (CC), and for Dry 

Martini without an MPC solvent. 

5.3.4 Alternative Coupling Schemes 

Further work on the STRD project might go toward improving the coupling 

scheme and verifying that the fluid-fluid boundary conditions are being modeled in a 

realistic way. For instance, GROMACS allows for the definition of “virtual sites” on 

molecules – abstract interaction sites which can be used to further “coarse-grain” them 

for specific purposes. For the purposes of coupling to the MPC fluid, each lipid may 

be assigned a single massive virtual site to represent its entire headgroup located at the 

headgroup center of mass. Forces applied to these sites are distributed among their 

underlying constituent particles. The collisional coupling scheme would benefit from 

including such interaction sites for each lipid in the collision step rather than a single 
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headgroup bead from each lipid. Doing so would ensure flows in the solvent are more 

effectively distributed to the lipid center of mass, leading to more reliable stick 

boundary conditions. Coupling to the average lateral motion of lipids rather than noisy 

individual particle motions would also improve the response of the MPC fluid to lipid 

movement. The increased mass (from 72 to 216 or 288 amu depending on the number 

of headgroup particles included) would also improve the solvent-solute momentum 

balance within interfacial collision cells, providing a firmer justification for using the 

“standard” MPC particle density N = 2.5 nm-3, which would correspond to a state of 

balance, while plausibly permitting even higher densities. 

Implementing other coupling schemes from the MPC literature in GROMACS 

may prove a daunting task. A potentially promising scheme would create dynamically 

triangulated meshes for the bilayer surfaces with vertices at the lipid headgroups 

[177], [178]. The faces of this surface could be coupled to the SRD fluid through 

ordinary collisions for during the MPC streaming step. A second degree of coupling is 

then required to translate forces between the Dry Martini lipids and the triangulated 

surface (perhaps using forces acting on the aforementioned virtual sites or simply 

using the collisional coupling method as in [178]). 

This method would allow different boundary conditions on the full slip vs stick 

spectrum to be implemented using different collision types between MPC particles and 

the triangle faces (specular, bounce-back, or some stochastic hybrid as described in the 

literature for fluid-solid boundaries [189]). It would also properly exclude MPC 

particles from entering or traversing the membrane. This method was not implemented 

in this work due to its relative complexity, especially once parallelization is taken into 

account. Nonetheless, it presents an attractive option for future work. 
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5.4 Conservation of Energy 

Theoretically, simulations of only SRD particles should exactly conserve 

energy (see section 4.3.2). However, since all computer calculations suffer from 

numeric artifacts, the total energy in NVE STRD simulations containing only SRD 

particles slowly declines due to rounding errors in the collision step. These rounding 

errors produce a rotation matrix with a determinant slightly lower than unity. Different 

methods for performing the rotation were implemented: a quaternion-based approach, 

rotation matrix multiplication, and the axis-angle calculation given by equation 4.4. 

The quaternion approach was quickly disqualified due to the number of floating point 

multiplications required. The other two rotation methods were evaluated for numerical 

stability by repeatedly applying random rotations to a unit vector. After 100,000 

rotations, the axis-angle rotations shrink the unit vector by 10% while rotation matrix 

rotations shrink it by 36%. Thus, the axis-angle method was selected. 

During the development of STRD, we encountered puzzling violations of 

energy conservation which caused STRD membrane simulations to heat over time. 

Depending on the choice of integration and collision parameters, the rate of heating 

could be enormous or relatively minor (see Fig. 5.8). Heating only occurred when 

SRD particles were coupled to Dry Martini lipids; simulations of only SRD particles 

did not exhibit this problem. We originally attributed it to interplay between the 

repulsive coupling interaction potential and the discontinuities in SRD particle 

trajectories induced by the collision step. We argued that since these SRD particles 

have a position-dependent potential energy, the post-collision velocities may 

preferentially propel SRD particles into positions with higher potential energy. In 

other words, energy conservation was no longer guaranteed since the forces acting on 

SRD particles were not derived from the gradient of a potential. 
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Figure 5.8: Temperature increase per nanosecond over 50,000 SRD collision steps 

for various collision angles. The fit function is 𝐴 exp(𝐵 sin(𝛼 2⁄ )) − 1, 

which was discovered to closely corresponded with the data when plotted 

as a function of sin(𝛼 2⁄ ) on an ad hoc basis. 

Our remedy for this issue was to employ a momentum-preserving cell 

thermostat (outlined in section 4.3.5) to keep the simulation stable. This thermostat 

conserves hydrodynamic flows by only operating on the relative velocities during 

MPC collision steps. For this reason, it can only act upon solvent particles and lipid 

headgroups that are participating in the collisions. Under conditions which violate 

energy conservation, selectively thermostating this part of the system drew energy 

from the membrane, leading to a steady state temperature gap between the SRD fluid 

and the membrane. The magnitude of this temperature gap depends on both the MD 

timestep and the collision parameters (see Fig. 5.9). These parameters can be selected 
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to minimize the gap but doing so restricts MD timesteps to a maximum of 10 fs and 

prohibits frequent collisions with shorter timesteps. 

 

Figure 5.9: Steady state membrane temperature with α = 180° as a function of MPC 

collision frequency and timestep with the SRD thermostat set to 310 K. 

The white contour indicates combinations of these parameters that 

achieve 310 K for the membrane. 

Only later did we realize that our implementation of STRD contained a subtle, 

but serious integration bug; the leapfrog equations of motion were not properly 

modified to include the MPC collision step. The half-step (midpoint) velocities were 

perturbed during collisions based on the on-step position of MPC particles according 

to the following procedure 
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This modification does not impact simulations containing only MPC particles but is 

important for simulations which include particles coupled to MPC when those 

particles also have forces acting on them. This is because applied forces are calculated 

based on the on-step particle positions, while impulse forces imparted by MPC 

collisions are applied during the half-step (i.e. the half-step velocities are modified). 

This inconsistent treatment violates conservation of energy, leading to a substantial 

heating rate in STRD membrane simulations with a magnitude dependent on both 

collision angle and integration timestep. The proper way to incorporate MPC 

collisions is to perform the collisions using on-step velocities. This is done with a 

modified velocity Verlet integrator 
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After this change, STRD simulations no longer heat over time. They do not 

perfectly conserve energy – simulations still gradually cool – but the rate of 

temperature change when using 20 fs timesteps is reduced by three orders of 

magnitude. The cell thermostat is still employed to maintain constant temperature in 
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the solvent without disrupting hydrodynamic flows. As shown in Fig. 5.10, the steady 

state temperature gap between the thermalized SRD fluid (maintained at the prescribed 

temperature) and the membrane (at a colder temperature when using the erroneous 

implementation) is now negligible. Since it is no longer necessary to tune integration 

and collision parameters to minimize the temperature gap, a wider range of accessible 

parameter space is now available. In particular, the erroneous implementation could 

not tolerate timesteps in excess of 10 fs. Thus, in addition to being correct, the ability 

to use a longer timestep – 20 or 30 fs – without driving the simulation far out of 

equilibrium yields a considerable performance improvement. 

 

Figure 5.10: Steady state temperature difference in STRD simulations (Tfluid – 

Tmembrane) as a function of timestep when a thermostat is applied to the 

solvent with correct and incorrect integration procedures. 
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5.5 Validation 

After implementing STRD Martini in GROMACS and ensuring that the 

relevant conservation laws are followed in every collision cell during each SRD 

collision step, a series of simulations were run to assess whether our implementation 

reproduces various theoretical properties of the mesoscopic fluid. These tests are 

necessary to demonstrate the correctness of our implementation and to determine a 

valid range of collision parameters. In the following sections, we examine the 

equilibrium speed distribution of SRD particles under NVE conditions, the average 

temperature and fluctuations of the cell thermostat, two important dimensionless 

hydrodynamic numbers, the shear viscosity for both collision rules, and the effective 

hydrodynamic cutoff length determined through transverse velocity correlations. 

5.5.1 Particle Velocity Distribution 

It has been shown that the equilibrium velocity distribution of SRD particles is 

Maxwellian [136]. To verify that our dynamics are correct, we prepared a 30 nm box 

of SRD particles at moderate density (N = 2.5 nm-3) with a uniform initial velocity of 

327.7 m/s in random directions. This is simply the thermal velocity for 72 amu SRD 

particles at 310 K. This initial state corresponds to a delta velocity distribution. This 

system was simulated for 1000 SRD collisions using the standard SRD collision 

parameters and no thermostat (NVE ensemble). The resulting distribution after just 5 

SRD collisions is shown in Fig. 5.11. 
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Figure 5.11: The microcanonical speed distribution at 310 K for 67500 SRD particles 

in a 30 nm box (N = 2.5 nm-3) after just 5 collisions, starting from a delta 

speed distribution with all particles having v = 327.7 m/s. The Maxwell 

speed distribution for SRD particles at 310 K is shown in red. 

5.5.2 Thermostat Properties 

Two simple tests are required to evaluate our implementation of the cell 

thermostat from section 4.3.5 using a homogenous SRD fluid. First, a 10 ns simulation 

is run with the thermostat using a prescribed temperature of 310 K and a strength 

parameter 휀 = 0.1. The resulting temperature time series is shown in Fig. 5.12. This 

shows that our thermostat achieves the expected average temperature. Second, a well-

known result from thermodynamics is that energy fluctuations for a monatomic gas in 

a canonical (NVE) ensemble are given by 

𝜎𝐸
2 = 〈(𝐸 − 〈𝐸〉)2〉 = 𝑘𝐵𝑇2𝐶𝑣 =

3

2
𝑁(𝑘𝐵𝑇)2 (5. 12) 
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Proper fluctuations are required to model the canonical ensemble, a property 

which many popular themostats do not achieve [60]. We can use this expression as a 

criterion in delineating the range of acceptable strength parameters for our thermostat. 

Fig 5.13 shows the ratio of kinetic energy fluctuations in STRD as a function of the 

strength parameter. From this figure, we see that the cell thermostat has proper energy 

fluctuations over the range 0.03 < 𝜖 < 1.50. Using smaller values results in 

inappropriately small fluctuations while larger values result in fluctuations that are too 

large, ultimately destabilizing the simulation. 

 

Figure 5.12: Temperature time series for two sample STRD simulations with different 

strength parameters for the cell thermostat: 𝜖 = 0.1 (upper) and 𝜖 = 0.01 

(lower). The average temperature differs by only 0.18 K. 
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Figure 5.13: Variance in the kinetic energy for an SRD fluid using the cell thermostat 

at 310 K relative to a reference value calculated with equation 5.12. The 

energy fluctuations become inappropriately small for values of 𝜖 < 0.03. 

Three simulations are run at each thermostat strength, with the error bars 

depicting standard error for each set. 

5.5.3 Schmidt Number 

Whether the dynamics of a fluid resemble a gas or liquid is characterized by 

the dimensionless Schmidt number, defined as the ratio of momentum transport to 

mass transport. For the SRD fluid, this is given by 

Sc ≡
𝜐𝑐𝑜𝑙 + 𝜐𝑠𝑡𝑟

𝐷𝑆𝑅𝐷

(5. 13) 

Gas-like dynamics correspond to a Schmidt number near unity, since momentum 

transport in gases is dominated by particle diffusion. In contrast, liquid momentum 

transport is dominated by collisions between fluid particles, corresponding to large 

Schmidt numbers. Intuitively, the Schmidt number of an MPC fluid is connected to its 
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mean free path. For an SRD fluid, the most crucial parameters for the Schmidt number 

are the collision interval and collision angle (see Fig. 5.14). Typical STRD collision 

parameters yield a Schmidt number ≈ 1000, well in the “liquid-like” regime. 

 

Figure 5.14: Schmidt number for an SRD fluid as a function of collision angle and 

collision interval in units of MD timesteps. White contours highlight 

powers of 10 ranging from 1 to 104 (as indicated on the color bar). 

5.5.4 Mach Number 

The compressibility of a fluid is characterized by the dimensionless Mach 

number, defined as the ratio between fluid flow velocity 𝑢 and molecular thermal 

velocity 𝑣𝑡 

Ma ≡ 𝑢 𝑣𝑡⁄ (5. 14) 

For monatomic fluids, thermal velocity given by 
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𝑣𝑡 = √
5𝑘𝐵𝑇

3𝑚
(5. 15) 

where 𝑚 is the MPC particle mass. We may assume incompressibility in the limit 

Ma ≪ 1, or equivalently  𝑢 ≪ 𝑣𝑡. Substituting 310 K and 72 amu gives a thermal 

velocity of 244 m/s for STRD. To satisfy the well-known incompressibility criterion 

Ma < 0.3, we are limited to flows with 𝑢 < 73 m/s. Equilibrium studies are well 

below this limit. For context, the imposed flow fields from section 7.5.1 have a 

maximum of ~10 m/s. The relevant velocity for computing Mach numbers is the mean 

flow velocity for some collective motion larger than individual collision cells. In 

contrast, Fig. 5.15 demonstrates the distribution of instantaneous cell velocities. 
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Figure 5.15: Distribution of instantaneous collision cell velocities of quiescent SRD 

fluids at 310 K at three particle-per-cell densities (M). Higher densities 

are less prone to wild fluctuations. 20 particles per cell is considered the 

upper limit on SRD density, while 3 is considered the lower limit. 

5.5.5 Reynolds Number 

Membrane hydrodynamics are firmly in the low Reynolds number, linearized 

regime. Thus, it is imperative that our MPC fluid is also modeling dynamics from this 

regime. The Reynolds number may be written 

Re ≡
𝜌𝑢𝐿

𝜂
=

𝑢𝐿

𝜈
(5. 16) 

Where 𝜈 is the kinematic viscosity equal to 𝜂 divided by the density 𝜌, 𝑢 is a relevant 

flow velocity and 𝐿 is a relevant length scale. For colloidal systems, 𝐿 might be the 

radius of the colloid particles. For membranes, the size of extracellular protein domain 

or the wavelength of membrane undulations may be relevant. The low Reynolds 



 111 

number condition Re ≪ 1, may also be written 𝑢𝐿 ≪ 𝜈. For typical STRD simulations 

with water-like viscosity this demands 𝑢𝐿 ≪ 2 × 106 nm2/ns, a condition safely 

satisfied in nearly any reasonable application. 200 nm/ns flows over 100 nm length 

scales or some similar combination would be required to realize even 1% of the 

limiting value for low Re. 

5.5.6 Transverse Velocity Correlations 

In reciprocal space, the velocity field of a molecular fluid associated with a 

particular wavevector may be expressed as a sum over particles indexed by 𝛼 

�⃗�(�⃗⃗�, 𝑡) =
1

𝑁
∑ �⃗�𝛼(𝑡) exp(𝑖�⃗⃗� ⋅ 𝑟𝛼)

𝛼

(5. 17) 

If we define �⃗�𝑇(�⃗⃗�) as the transverse velocity (i.e. orthogonal to �⃗⃗�), then we may write 

normalized time correlations for a particular �⃗�𝑇(�⃗⃗�) as 

𝐶𝑣
𝑇(�⃗⃗�, 𝜏) =

〈�⃗�𝑇(�⃗⃗�, 𝑡 + 𝜏) ⋅ �⃗�𝑇(−�⃗⃗�, 𝑡)〉𝑡

〈�⃗�𝑇(�⃗⃗�, 𝑡) ⋅ �⃗�𝑇(−�⃗⃗�, 𝑡)〉𝑡

(5. 18) 

 For a low-Reynolds number fluid governed by the Stokes equation, these 

correlations decay exponentially in 𝜏 with time constant = (𝜈𝑘2)−1. Time integrals of 

𝐶𝑣
𝑇 converge to values that depend only on the wavenumber and the viscosity [148] 

𝑇(�⃗⃗�, 𝜏) = ∫ 𝐶𝑣
𝑇(�⃗⃗�, 𝜏′)

𝜏

0

𝑑𝜏′ =
1

𝜈𝑘2
(1 − exp(−𝜈𝑘2𝑡)) (5. 19) 

With limiting values given by (𝜈𝑘2)−1 as 𝑡 → ∞. Note this is the same dependence as 

the magnitude of the Oseen tensor in reciprocal space 

𝕋∞
3𝐷(�⃗⃗�) =

1

𝜂𝑘2
(𝕀 −

�⃗⃗��⃗⃗�

𝑘2
) (5. 20) 
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 For a continuum fluid, equation 5.19 holds for arbitrary k. This is not the case 

for molecular or mesoscopic models, where it only holds over the length scales that 

support continuum hydrodynamic transport. Huang et al [148] found this length scale 

for MPC fluid to be the hydrodynamic cutoff length discussed in section 4.3.4, 

reproduced here for convenience 

𝜆𝑐 = 𝜋√2𝜏𝑐𝜐𝑆𝑅𝐷 (5. 21) 

We simulated a 60 nm box of 216000 SRD particles (N = 1 nm-3) for 5 ns with 

a 2 fs MD timestep, sampling velocities every 10 fs using collision parameters a = 2.0 

nm, τc = 200 fs, and α = 180°. Wavevector-dependent transverse velocities for each 

frame were computed according to equation 5.17 and used to compute correlation 

time series as defined by equation 5.18. Plateaus for the integrated time series 𝑇(𝑘, 𝜏) 

are plotted in Fig. 5.16. The simulation results are in excellent agreement with the 

theory presented by Huang et al [148], demonstrating low-Reynolds number 

hydrodynamics above the cutoff length scale 𝜆𝑐 and loss of correlation on shorter 

length scales. 



 113 

 

Figure 5.16: Limiting values for integrated time correlation functions 𝑇(𝑘, 𝑡) of the 

transverse velocity are depicted as a function of wave number for a 60 

nm cube of SRD particles (N = 1 nm-3). Over long length scales (small k), 

the data follows a (𝜈𝑘2)−1 relationship, indicating adherence to low 

Reynold number hydrodynamic theory (blue). Below the cutoff length 

scale, 𝑇(𝑘) reaches a plateau equal to half the collision interval (green). 

For the selected collision parameters, the cutoff length scale is 2.77 nm, 

in close agreement with the simulation data. 

5.5.7 Shear Viscosity 

As described in sections 4.3 and 4.4, the shear viscosity of an MPC fluid can 

be expressed analytically for both SRD and MPCA collision rules as a function of 

their collision parameters. This provides an excellent test for validating STRD Martini 

while simultaneously demonstrating its useful viscosity-tuning capabilities. There are 

many ways to calculate viscosity from MD simulations [190], some at equilibrium and 

some in driven systems. Equilibrium methods are based on evaluating time correlation 

functions of either the pressure tensor or particle velocities. 
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Since the STRD Martini fluid does not have a properly defined pressure in 

GROMACS and our velocity correlations have been shown to agree with low-

Reynolds number theory, calculating viscosity from transverse velocity correlations is 

the best approach [191]. This is done by fitting the decays in 𝐶𝑣
𝑇(�⃗⃗�, 𝜏) as a function of 

the lag time 𝜏 (see section 5.5.6) and extracting viscosity from the fit. Wavevectors 

with equal magnitude are averaged over, with the largest wavevectors giving the best 

fit. GROMACS has a built-in tool for computing the viscosity in this manner from 

simulation trajectories called tcaf. 

Viscosity for the SRD collision rule was tested using a 30 nm homogenous box 

of MPC particles (N = 2.5 nm-3) simulated under NVE conditions at different collision 

angles with the other collision parameters held fixed at a = 2.0 nm and τc = 80 fs. The 

positions and velocities were sampled every 2 ps for 5 ns and the resulting trajectory 

was analyzed with tcaf. The results are presented in Fig. 5.17. Excellent agreement 

with theory (equation 4.12), with a slight divergence from theory at high collision 

angles. This whole procedure was repeated with the cell thermostat enabled, and 

comparably excellent agreement was found with theory (not shown). Using the cell 

thermostat does not change SRD shear viscosity. 

Viscosity for the MPC-A collision rule was calculated in an analogous fashion 

using a higher density MPC fluid (N = 7 nm-3). Both the collision cell size and 

collision interval were varied for simulations in the NVT ensemble (recall MPC-A is 

always inherently thermalized) for 5 ns, taking position and velocity samples every 2 

ps. Results are shown in Fig. 5.18. Once more, excellent agreement is found with 

theory (equation 4.19). When the same particle density and equivalent collision 
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parameters are used, MPC-A achieves a viscosity c.a. 75% of what SRD collisions 

achieve at α = 180° and c.a. 150% of what is achieved at 90°. 

 

Figure 5.17: Shear viscosity of an MPC fluid (N = 2.5 nm-3) using the SRD collision 

rule as a function of collision angle for three different collision intervals. 

Theoretical predictions given by equation 4.12. Viscosity of water at 310 

K is shown for reference. The collision cell size was 2.0 nm. Simulation 

values are calculated from of fits to transverse velocity autocorrelation 

decays using the GROMACS tcaf tool. 
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Figure 5.18: Shear viscosity of an MPC fluid (N = 7 nm-3) using the MPC-Andersen 

collision rule as a function of collision interval for three different 

collision cell sizes. Theoretical predictions are given by equation 4.19. 

Simulation values are calculated from of fits to transverse velocity 

autocorrelation decays using the GROMACS tcaf tool. 

5.6 PSD Finite Size Effect on Lipid Diffusion 

With the dynamics of the SRD fluid validated and the assurance we are 

adequately modeling Stokes hydrodynamics, we may return to the problem of 

diffusion in a periodic membrane. To illustrate the importance of hydrodynamic 

interactions for membrane simulations, we sought correspondence with the periodic 

Saffman-Delbrück theory [44] described in section 3.5. Proteins have not yet been 

incorporated into STRD Martini, so we investigated self-diffusion of lipids as the 

periodic box size is varied. Whether lipids can be adequately modeled as cylinders 

spanning a single leaflet is an open question. Regardless, looking for this finite size 

effect is a useful test for STRD Martini. 
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Seven POPC membranes were prepared for both STRD and Dry Martini with a 

fixed vertical size of 25 nm and lateral sizes ranging from 10 to 40 nm. Each system 

was simulated for 2 µs at fixed volume with COM motion removed at every step. All 

used the velocity-Verlet integrator. This affords a direct comparison between similar 

membranes with and without the hydrodynamics modeled by MPC. STRD Martini 

membranes were thermalized by coupling MPC particles to the cell thermostat, while 

Dry Martini simulations used the Bussi v-rescale thermostat. STRD simulations used 

collision coupling, including POPC phosphate beads in the collision step, and the SRD 

collision rule with N = 2.35 nm-3, a = 2.0 nm, α = 180°, and τc = 200 fs, yielding a 

solvent viscosity of 0.593 cP. 

Diffusion coefficients were calculated according to the method described in 

section 2.7. Each simulation trajectory was divided into ten 200 ns subtrajectories. The 

MSD for each subtrajectory was independently calculated using the GROMACS 

g_msd program. Results are reported in Table 5.5 with uncertainties given by the 

standard error of each ten calculations. Fitting these results to the PSD theory was 

accomplished by computing theoretical diffusion coefficients for the simulated system 

sizes with varying surface viscosity and interleaflet friction using equations 3.49 and 

3.51. The “best fit” was found by minimizing the sum over all system sizes of the 

squared residuals. Parameter space was initially scanned logarithmically over ± 2 

orders of magnitude, starting from reasonable initial values, and rapidly narrowed 

down to the values reported in Table 5.6. 

The initially assumed size of the lipids (R = 0.448) is the radius of a circle with 

an area equal to 0.63 – the APL for POPC in STRD Martini. Since this is a rather 

crude model of a lipid, other effective radii were considered: half, double and triple 
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the initial size. One concern arises from the fact that these simulations were performed 

before the integrator bug was fixed. The temperature gap between solvent and 

membrane was small in the STRD simulations (less than 2 K). With the bug in place, 

STRD still passes the validation tests in section 5.5 which suggests it will not have a 

significant influence on the dynamics if it can be kept under control. 

Results for these fits using the half-cylinder model are presented in Fig. 5.19 

and using the membrane-spanning cylinder in Fig. 5.20. Results for Dry Martini are 

presented in Fig. 5.21. Qualitatively, the STRD data differs from the Dry Martini data, 

with self-diffusion reaching a plateau around 25 nm for STRD and continuing to 

increase for Dry Martini. In theory, Dry Martini membranes are subject to 2D 

hydrodynamic theory and their self-diffusion coefficients should diverge at large 

system size due to the Stokes paradox. In simulation, a limit will be reached when the 

underlying assumptions of Stokes hydrodynamics begin to break down (e.g. the lack 

of explicit time dependence). 

Table 5.5: Lateral self-diffusion coefficients for POPC lipids calculated for Dry and 

STRD Martini as a function of lateral system size. 

L 

(nm) 

STRD Martini DPOPC 

(10-7 cm2/s) 

Dry Martini DPOPC 

(10-7 cm2/s) 

10 2.060 ± 0.041 3.069 ± 0.108 

15 2.211 ± 0.063 3.367 ± 0.078 

20 2.350 ± 0.067 3.410 ± 0.100 

25 2.397 ± 0.075 3.591 ± 0.155 

30 2.516 ± 0.083 3.836 ± 0.077 

35 2.471 ± 0.113 3.751 ± 0.136 

40 2.441 ± 0.053 3.871 ± 0.091 
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Table 5.6: Periodic Saffman-Delbrück fit parameters for STRD Martini POPC using 

various effective lipid radii using both the full-cylinder and half-cylinder 

expressions for DPBC. 

 Half Cylinder Full Cylinder 

R (nm) 𝜂𝑚 (10-8 P-cm) b (105 P/cm) 𝜂𝑚 (10-8 P-cm) 

0.224 7.99 8.39 4.84 

0.448 6.23 5.82 3.82 

0.896 4.32 3.27 2.80 

1.344 3.32 2.30 2.21 

 

 

Figure 5.19: Self-diffusion of POPC lipids as the lateral box size is varied for STRD 

Martini. Fits from PSD theory modeling the lipids as half-membrane-

spanning cylinders are shown for four different effective lipid radii. The 

best fit is obtained when using a radius half the size suggested by the 

APL. Clean fits are not possible using larger radii. 
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Figure 5.20: Self-diffusion of POPC lipids as the lateral box size is varied for STRD 

Martini. Fits from PSD theory modeling the lipids as full membrane-

spanning cylinders are shown for four different effective lipid radii. 

Better fits are obtained for smaller effective lipid radii, but none of the 

fits are satisfactory. 

An acceptable fit to the half-cylinder model is available for STRD Martini 

when the effective lipid radius is half the initially assumed radius. Parameters for this 

fit are 𝜂𝑚 = 7.99 × 10−8 P-cm and 𝑏 = 8.39 × 105 P/cm. The best comparison for 

these parameters in the literature comes from a calculation for DPPC using an older 

version of Martini with non-equilibrium molecular dynamics [192]. They found 𝜂𝑚 =

1.2 × 10−8 P-cm and 𝑏 = 2.4 × 105 P/cm. There are several plausible reasons for 

why these parameters ought to be higher in STRD Martini. (1) Experimentally, the 

viscosity of POPC membranes is higher than DPPC membranes due to the unsaturated 

tail of POPC. (2) Interactions between lipids were significantly less attractive in the 
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older version of Martini used in their study. This is even more pronounced for Dry 

Martini, which requires extra attractive interactions due to the removal of the solvent. 

Higher attraction between lipids is expected to increase both the surface viscosity and 

the interleaflet friction. (3) Collisional coupling to the SRD fluid increase the surface 

viscosity through the introduction of noise (as seen in figure 5.6). 

No acceptable fits are available using the full cylinder model for STRD 

Martini or with either model for Dry Martini. Extending the range of system sizes 

would be a useful follow-up on this analysis. During the initial investigation of this 

problem, STRD suffered from an inefficient implementation which prohibited the 

simulation of very large systems.  The code has been greatly improved in the interim, 

rendering this problem a prime candidate for further study. 

 

Figure 5.21: Self-diffusion of POPC lipids as the lateral box size is varied for Dry 

Martini. Note that the diffusion coefficient does not plateau. 
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STRD MARTINI PARALLELIZATION 

6.1 GROMACS Parallelization 

In parallel environments, GROMACS uses domain decomposition (DD) to 

partition the simulation volume into mutually exclusive triclinic regions called 

domains [193]. Each domain is assigned to a single processor, which is responsible for 

integrating the equations of motion for the particles within. Particles are only ‘visible’ 

to the processor they are assigned to; no one process has access to the complete state 

of the system. The domains are arranged in a staggered 3D grid of cells along the x, y, 

and z axes, as depicted in two dimensions by Fig. 6.1. This method of decomposing 

the simulation applies naturally to MD simulations since most of the interactions are 

short-ranged when cutoffs are used (apart from electrostatics, which are efficiently 

treated in parallel with PME). 

Inter-process communication is required to compute forces between particles 

residing within different domains. GROMACS uses the eighth-shell method [194] to 

determine which domain is responsible for resolving these interactions. Using this 

approach, forces between particles in different domains are calculated on the domain 

with the lowest index for each coordinate. For example, interactions between particles 

on domains (3,2,0) and (2,2,1) are computed by the process responsible for domain 

(2,2,0). This requires atom coordinates be communicated “downward” to domains 

with lower indices and the resulting forces communicated back “upward” to their 

original domains. GROMACS accomplishes this with a series of unidirectional 

Chapter 6 
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“pulses” that send data along each coordinate axis in sequence. In some cases, 

multiple pulses are required for one or more axes. Fig. 6.2 demonstrates this procedure 

with red arrows for pulses along x and green arrows for pulses along y. Note that the 

pulses must wrap around the boundaries to respect periodic boundary conditions. In 

this figure, short-range interactions between the particles in domain (1,2) and (2,1) 

will be handled by the process responsible for domain (1,1) after a single pulse along x 

followed by a single pulse along y. Resulting forces are communicated back to the 

particles through a second set return pulses in reverse order. 

 

Figure 6.1: A 2D domain decomposition grid staggered in the y direction. Each 

domain is labeled with an ordered pair of grid indices. Note that the 

domains are generally staggered in the third dimension as well. 
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Figure 6.2: Domain decomposition grid overlaid with arrows demonstrating the flow 

of data in pulsed communication calls. 

GROMACS generates a suggested domain decomposition grid when a 

simulation is initiated. The chosen domains all have the same volume under the 

assumption that the simulation has a roughly uniform density of interaction sites. 

Since the required communication scales with the domain surface area, the optimal 

domain grid is a lattice of cubic domains. As the simulation runs, each process tracks 

how much time it spends idle and the domains may expand or contract to most 

efficiently utilize the available computational resources. Overworked domains 

contract, giving a portion of their workload to their neighbors. This is called dynamic 

load balancing and it results in a more efficient allocation of computational resources 

for inhomogeneous systems or those with inhomogeneous interaction densities, such 
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as simulations with united atom force fields. Particles must be periodically reassigned 

to new domains as they diffuse away from their initially assigned domains. This step is 

called repartitioning. By default, it is a done whenever the neighbor lists are updated. 

GROMACS implements inter-process communication by linking to a Message 

Passing Interface (MPI) library (the specific library depends on the computing 

resource). MPI defines a set of operations for communicating between processes 

including point-to-point and collective operations. Point-to-point operations (such as 

MPI_Send) transfer data between two particular processes. Collective operations 

transfer data to a group of processes from either a single process (such as 

MPI_Broadcast) or among all processing in the group (such as MPI_AllReduce). The 

latter is called all-to-all communication. GROMACS uses point-to-point operations to 

implement the communication pulses required for force computation. Collective 

operations are used when building neighbor lists, calculating global quantities (energy, 

pressure, etc.), and outputting data. However, they must be sparingly if the goal is to 

optimize parallel efficiency. 

6.2 MPC Communication Requirements 

Inter-process communication is required for MPC collisions because some 

collision cells are necessarily split among different domains (Fig. 6.3). The collision 

cell grid cannot be aligned with the domain decomposition grid over multiple collision 

steps due to the random grid offset used for each collision step. In theory, one could 

avoid inter-process communication during the MPC collisions by performing domain 

repartitioning before every collision step with the new domains constrained to the 

boundaries of the collision cells. However, the frequency of collision steps is an 
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important parameter of the hydrodynamic model which should remain independent of 

the frequency of domain repartitioning.  

 

Figure 6.3: The MPC collision cell grid (dashed blue) is shown overlaid with a 3x4 

domain decomposition cell grid (grey) in 2D. 

Since MPC collisions require communication, two important choices need to 

be made. First, one must decide which processor is responsible for which collision 

cells. This must be done in a consistent manner on each processor to ensure there are 

no conflicts or overlapping claims of responsibility over cells. Every cell must be 

assigned to a processor. For optimal performance, this should be done in such a way as 

to minimize collective communication. Second, one must choose what data to 

communicate between which processors. Simple collision rules involve only the mean 
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velocity of the collision cells, but additional information is required for momentum-

preserving thermostats and rules conserving angular momentum. Our communication 

protocol must support the more general case. 

6.3 STRD Communication Protocol 

As development of STRD Martini progressed, the communication protocol 

was iteratively refined. Several approaches were explored before satisfactory parallel 

performance was achieved for large systems (>100 nm). The performance penalty 

associated with STRD Martini has three components: (1) book-keeping overhead 

required by GROMACS to accommodate the MPC tracer particles, (2) the additional 

computation required for the MPC collision step, and (3) communication required 

before and after the collision step. Little can be done to optimize the first two 

components. Book-keeping overhead arises primarily from the need to include the 

new tracer particles in domain repartitioning and the calculation of ‘global’ system 

properties like energy, pressure, and temperature. The upper limit on performance 

achievable by STRD Martini (henceforth referred to as the performance limit) is set 

by this book-keeping overhead. This limit is identified by disabling the collision step 

and its associated communication. Therefore, the performance achieved by STRD 

Martini hinges crucially on the design of the communication protocol. 

6.3.1 Particle Gather and Scatter 

The original communication protocol implemented for STRD Martini was 

designed for simplicity rather than efficiency. The object was to establish a bug-free, 

rudimentary protocol to use while implementing and debugging other portions of the 

STRD Martini code. It later proved to be a useful reference for validating the outcome 
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of collision steps involving more sophisticated communication protocols. This method 

uses collective communication to collect all particle position and velocity data to the 

master node at the start of each collision step, giving the master process a complete 

global snapshot of the simulation state. This is the gather operation. The master 

process is then responsible for identifying all MPC particles, assigning them to 

collision cells, performing the collisions for each cell, and assigning new velocities to 

each MPC particle. Once the collision step is complete, the updated MPC particle 

velocities are communicated back to their original nodes according to the domain 

decomposition. This is the scatter operation. 

Beside the simplicity of its implementation, this protocol has the advantage of 

being authoritative. Only one process is responsible for assigning MPC particles to 

collision cells and updating their velocities. There is no potential for conflict or 

disagreement regarding the outcome of the collision step between different processors 

because they all receive the same output from the master node. More complicated 

schemes must devise rules for assigning responsibility over collision cells to different 

processors and communicating the requisite particle or cell data. Moreover, this 

protocol does not need to coordinate random number generation across multiple 

nodes. 

Both phases of this communication protocol (gather and scatter) require 

collective communication involving large transfers of data to and from the master 

node. In all, nine floating point numbers must be communicated for each particle. The 

required communication bandwidth scales with the number of particles in the 

simulation, which is effectively proportional to the total fluid volume for large STRD 

Martini simulations. Increasing the number of nodes does not decrease the bandwidth 
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required because all particle data must pass through the master node. Furthermore, 

increasing the number of processors will not reduce the time required for MPC 

collisions as they are not parallelized. Together, these impose a rather strict bottleneck 

on the parallel scalability of STRD Martini simulations using this communication 

protocol. 

6.3.2 Partial Cell Sum Reduction 

An early alternative approach significantly improved performance and parallel 

scalability using a very simple communication protocol based on collective MPI 

operations. This approach exploits the fact that basic MPC collisions only require 

communication to determine the mean cell velocity vectors �⃗⃗�𝑐. Once the mean 

velocity vector for a cell is known, the new velocities of any MPC particle within that 

cell can be computed without further information about other MPC particles, even 

those residing on other nodes. Thus, only cell velocity and occupancy sums for each 

cell need to be communicated among processes. The collisions can then be performed 

independently on each process. For cells that are split over multiple domains, partial 

sums are computed on each domain. These partial sums are communicated to other 

domains and corresponding partial sums are added together. This is the reduce 

operation, which handles both the communication and the addition. It can be applied 

to the whole set of MPC collision cells with one call to MPI_AllReduce for the 

velocity sums and another for the occupancy sums. The mean velocity in each cell is 

its velocity sum divided by its occupancy sum. 

This protocol still requires collective communication, but the bandwidth 

required is much lower than the gather and scatter protocol. Only three floating point 

numbers and one integer are required per cell rather than nine floating point numbers 
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per particle. Since the number of particles per cell is typically chosen to be between 3 

and 30, the required bandwidth is at least an order of magnitude smaller with this 

method. Unfortunately, the use of collective communication still imposes a significant 

performance bottleneck when dealing with large systems and high levels of 

parallelization. A local communication protocol based on limited communication 

between neighboring domains is preferred. 

6.3.3 Pulsed Particle Data 

Much better performance is available from communication protocols that are 

based on “pulsed” point-to-point communication, sending and receiving MPC particle 

data only among neighboring domains in a manner similar to the GROMACS force 

computation as described in section 6.1. In such arrangements, the communication 

bandwidth decreases as the number of domains increase since fewer collision cells are 

shared between any two particular domains. A key objective is the elimination of all 

collective communication. The particle data that must be communicated depends on 

the collision rule – just the velocity for simple collisions and the position for those 

which conserve angular momentum. Additional “routing data” identifying the origin 

and destination nodes and particle ID is also communicated. 

Each collision cell is assigned a “home” domain associated with a particular 

process that is responsible for handling the collision step of the cell. The set of all 

collision cells assigned to a domain are called its “local cells”. By convention, the 

range of local cells for each domain is chosen by rounding the domain decomposition 

boundaries to the nearest grid-shifted collision cell along each axis. Since some cells 

are split across the domain decomposition boundaries, some particles from the 

boundary cells must be communicated among their domain decomposition neighbors 
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to reach their home domain. These particles are said to be “orphans” that are 

“adopted” by their home domains. After computing the collisions, the resulting 

velocities of these orphans must be sent back to the domain where they were originally 

adopted from. 

The communication code is inspired by the pulsed communication scheme 

used by GROMACS during force computation. Data is sent to neighboring domains in 

pulses, first along +X and -X, then +Y, -Y, +Z and -Z. In this manner, SRD data can 

be sent or forwarded to any of the 26 surrounding domains. 

The communication procedure is depicted in Fig. 6.4. At the start of a collision 

step, each process assigns its local SRD particles to collision cells and determines the 

home domain of those cells based on the current domain decomposition boundaries 

and randomized collision cell grid shift. Data for the orphaned SRD particles are 

copied to a “dispatch buffer” along with routing instructions specifying in which pulse 

each particle should be sent. At the start of each pulse, the dispatch buffer is read. Any 

particles that need to be sent in that pulse are removed from the dispatch buffer and 

placed in the send buffer. The particles are sent to the recipient domain’s receive 

buffer. Each particle’s routing information is read again. If they belong to the recipient 

domain, they are copied to the “adoption buffer”, where they will be included in the 

local collisions. If they belong elsewhere, they are copied to the dispatch buffer of that 

process and forwarded along. These steps are repeated for each pulse. Once all the 

communication is done, each process performs the collision step for their local 

collision cells and the resulting particle velocities are communicated back to their 

original domains by reversing the process described above. 
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Figure 6.4: Data flowchart for a single pulse in the pulsed particle communication 

protocol. This process is performed once forward and backward along 

each dimension. 

Since only a single pulse is performed in each direction, this implementation 

requires all domain decomposition cells to be larger than individual SRD cells, which 

are typically chosen to be 1-2 nm. This ensures that no SRD particle has a collision 

cell whose home domain is located more than one domain away in any particular 

direction. This restriction also requires dynamic load balancing to be disabled when 

the size of the domains approaches the size of a collision cell because it does not 
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account for staggered domains. Neither of these restrictions are important for STRD 

Martini simulations because the interaction density is relatively homogenous and the 

large number of processes required to reach the size limit (625 processes for a 

50 × 50 nm system using 2 nm collision cells). 

6.3.4 Pulsed Cell Data 

A related scheme based on pulsed point-to-point communication was also 

implemented which sought to reduce the required communication bandwidth by only 

sending and receiving partial sums for collision cell data rather than particle data. This 

is similar to the approach taken by the partial cell sum reduction protocol. Once more, 

each process may perform SRD collisions locally on its own MPC particles using only 

the total velocity and number of MPC particles for each cell. This approach can be 

adapted to other collision rules with the addition of partial sums for mean position, 

momentum of inertia, angular momentum, etc. The requisite partial sums are 

combined with their corresponding partial sums from other domains using the same 

pulsed communication protocol described for the pulsed particle data protocol. After 

the communication step, each node will have a complete set of sums for all collision 

cells containing its local atoms. Certain quantities, such as kinetic energy or angular 

momentum, require position and velocity sums before they can be calculated. Cell 

sums of these quantities must be computed and communicated in a second pass. 

A naïve implementation would require a six separate MPI calls for reduction 

on each sum: both backward and forward in all three dimensions. In order to minimize 

the number of MPI calls used by this approach, the partial sums are packed into 

integer and floating-point buffers which the reduction operates on. The resulting sums 
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are unpacked from the buffers afterward. Sums calculated in the second pass are 

likewise packed and unpacked in this manner. 

This new communication scheme greatly reduces the bandwidth required for 

the SRD collision rule. Only three floating-point numbers (the velocity sum vector) 

and one integer (the cell’s unique ID) are communicated per cell, compared to the 

three floating-point numbers and four integers per particle in the particle-based 

communication scheme. A second round of communication is required when the 

thermostat is enabled or when using a collision rule that conserves angular 

momentum. As a result, the total number of MPI calls is the same for the particle-

based and cell-based local communication schemes. Despite the bandwidth reduction, 

the performance difference between them is negligible in most circumstances.  

The cell-based scheme has one significant drawback: it lacks a reliable method 

for error detection. Communication errors can occur if dynamic load balancing is 

enabled and the domain size approaches the size of the collision cells. In such cases, 

the particle-based communication scheme is able to detect when a particle cannot be 

properly routed to its adoptive home and report the error. The cell-based method has 

no analogous mechanism and will happily continue the simulation, occasionally 

producing subtle errors without alerting the user. Particles for some boundary cells 

may be missing from the cell sums. For this reason, it is disabled by default in favor of 

the particle-based scheme. 

6.4 Importance of the Domain Decomposition 

When domain decomposition is used to partition a system over N processors, 

an initial grid of domains must be selected with 𝑛𝑖 cells in each dimension such that 

the product 𝑛𝑥𝑛𝑦𝑛𝑧 equals N. Since there are multiple ways of choosing this grid for 
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any composite-valued N, selecting an optimal configuration is crucial for maximizing 

performance. The computational workload should be evenly divided among all 

processors to minimize idle processor time. As this workload predominately involves 

the computation of pairwise forces between nearby interaction sites, an optimal grid is 

typically one that evenly divides the number of interaction sites. 

For homogenous systems, this implies domains of equal volume. However, 

parallel performance is also impacted by communication between network nodes, 

which scales with the surface area of the domains. All else being equal, long skinny 

domains will require more communication than square domains of an equal volume. In 

fact, the triclinic geometry which minimizes surface area for a given volume is a cube. 

This is not the case for inhomogeneous systems, where the relationship between 

volume and interaction density (and hence computational cost) breaks down. Dynamic 

load balancing can mitigate this problem by allowing the domains to grow and shrink 

until an equilibrium is established. 

Even this may not be sufficient for particularly inhomogeneous systems, such 

as the membranes simulated in Dry Martini and STRD Martini. In both cases, the 

region enclosing the membrane requires far more computation resources than the 

surrounding vacuum or MPC fluid. Any processing power assigned to the fluid region 

will sit idle during force computation and be squandered, regardless of how much the 

domains expand during dynamic load balancing. User-specified domain grids with 

only a single layer of vertical domains (𝑛𝑧 = 1) are warranted in these cases. For large 

systems, these domains become long and narrow, increasing the communication 

required during the MPC communication. A performance trade-off is likely to occur 

for very large systems, but it has not been identified for systems with z ≤ 100 nm. 
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6.5 Additional Optimizations 

6.5.1 Generating Random Numbers in Parallel 

Performing the collision steps locally permits some serial SRD collision code 

to be parallelized for an additional performance improvement over the original 

implementation. The most substantial benefit comes from generating random numbers 

in parallel. SRD collisions with a thermostat require six random numbers per collision 

cell – three for the randomly chosen axis and three for the cell thermostat. The original 

implementation generated these random numbers for the entire system at the start of 

each collision step. This task requires a significant amount of time for large systems 

since it is proportional to the total number of SRD cells, and hence the simulation 

volume. 

This task has been completely parallelized. Random numbers are now 

generated locally – only for the local collision cells and their colliding particles. The 

new implementation uses GROMACS’ built-in ThreeFry2x64 random number 

generator. This random number generator is stateless and counter-based. It takes two 

seeds and two counters to generate sequences of random numbers. The first seed is 

chosen to be a constant and the second is available as an input parameter. By 

supplying the current timestep and collision cell ID as the counters, it is ensured that 

the same random numbers are generated for each collision independent of the number 

of MPI ranks and the particular domain partitioning of the system. Thus, SRD 

dynamics for a particular seed will not change if the same system is run with a 

different number of processes. 
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6.5.2 Improved Cell Iteration 

Another substantial performance improvement resulted from optimizing the 

method of collision cell iteration. At various points in the code, the collision cells must 

be iterated over in order to do such things as assign random rotation axes, compute 

thermostat rescaling factors, or calculate velocity vectors from velocity and occupancy 

sums. The original implementation would simply iterate over all collision cells, 

skipping all non-local cells with a conditional in the body of the loop. Careful 

performance profiling revealed an inordinate time being spent whenever such iteration 

was employed. A more efficient method of cell iteration was introduced, iterating over 

only the range of cells local to each processor. The cell range is saved during the cell 

assignment step and saved. 

6.6 Performance Benchmarks 

The cumulative results of these optimizations are presented in Figs. 6.5 

through 6.9. Performance benchmarks were run on a 168-node cluster composed of 42 

Intel Xeon E5630 processors networked with InfiniBand interconnects. One fluid 

system and three membrane systems were benchmarked. The fluid system was simply 

a 30 nm cubic box of MPC fluid containing 189000 fluid particles (N = 7 nm-3). The 

membrane systems were all roughly 40 x 40 x 25 nm POPC membranes prepared for 

Martini, Dry Martini, and STRD Martini. The bilayer in each membrane system 

contains 2704 lipids per leaflet. In addition, the STRD Martini system is filled with a 

bath of 100000 MPC fluid particles (N = 2.5 nm-3), while the equivalent Martini 

membrane is solvated with 290448 Martini water beads. All benchmarks presented 

here use a conservative 10 fsec timestep, reflecting a limitation of the original STRD 
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implementation. All other benchmarks could be run with a 20 fsec timestep for an 

additional 2x speedup. 

Fig. 6.5 compares benchmarks for different versions of STRD Martini 

simulating a 30 nm cubic box containing 189000 fluid particles (N = 7 nm-3) and no 

membrane. MPC collisions occur every 20 timesteps using the SRD collision rule. 

Since none of the particles in these simulations have pairwise interactions, there is no 

force calculation required. The primary performance bottleneck for STRD becomes 

the communication required during MPC collision steps. The originally published 

code (labeled “Original”) scales poorly due to the massive communication overhead 

involved, reaching a plateau around 32 processes. The optimized communication code 

(labeled “Optimized”) is over three times faster than the original and has yet to reach a 

performance plateau at 168 processes. The performance limit (labeled “Limit”) 

imposed by GROMACS indicates a set of simulations which include MPC particles 

but disable the collision step entirely. The optimized communication code nearly 

achieves performance limit and scales along with it (see Fig. 6.6). 
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Figure 6.5: Performance benchmarks for a 30 nm cube of STRD fluid. 

 

Figure 6.6: Relative performance for a 30 nm cube of STRD fluid. 
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A broader comparison of performance benchmarks is possible for simulations 

of membrane systems, since equivalently-sized benchmarks can also be run for 

ordinary Martini and Dry Martini. These provide context for interpreting the STRD 

Martini results, setting the upper and lower bounds for expected performance. No 

matter how much effort is devoted to optimizing STRD Martini, its performance will 

never exceed that of Dry Martini. On the other hand, comparisons to ordinary Martini 

are relevant to determine the performance benefit over including hydrodynamic 

transport via an explicit solvent. 

Benchmarks for the aforementioned 40 x 40 x 25 nm POPC membrane 

systems are presented in Figs. 6.7 and 6.8 and summarized in Table 6.1. Using a 168-

node cluster, Dry Martini runs 4.5x faster than ordinary Martini, as a result of 

removing the Martini solvent particles. When 100,000 SRD fluid particles (N = 2.5 

nm-3) are added to the Dry Martini system and SRD collisions are disabled, the 

simulation runs 3.45x faster than ordinary Martini. Once more, this is the maximum 

performance that can be achieved by optimizing the communication code. Even 

though STRD particles do not have pairwise interactions between them, they impose 

additional bookkeeping requirements for GROMACS that result in some degraded 

performance relative to Dry Martini. In particular, GROMACS must consider the 

additional particles during domain decomposition, when integrating the equations of 

motion, and when calculating global quantities of the simulation such as total kinetic 

energy and pressure. With collisions enabled the optimized communication code runs 

3.40x faster than an equivalently sized Martini system. The original communication 

code was only 0.44x faster than ordinary Martini. 
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Table 6.1: Performance summary for a 40 x 40 x 25 nm POPC membranes on a 

168-processor compute cluster. 

Benchmark 

Simulation 

Absolute 

Performance 

(ns/day) 

Relative 

Performance 

(vs Martini) 

Relative 

Performance 

(vs Dry Martini) 

Martini 256.566 1.000 0.181 

Original STRD 368.143 1.435 0.260 

Optimized STRD 1129.370 4.402 0.796 

STRD Limit 1140.336 4.445 0.804 

Dry Martini 1418.289 5.528 1.000 

 

 

Figure 6.7: Performance benchmarks for 40 x 40 x 25 nm POPC membranes. 



 142 

 

Figure 6.8: Relative performance for 40 x 40 x 25 nm POPC membranes. 

As discussed in section 6.4, special care must be taken in choosing the domain 

decomposition grid for STRD and Dry Martini simulations. In both cases, the absence 

of a solvent requiring pairwise force calculation introduces significant inhomogeneity 

in computational cost. This is demonstrated in Fig. 6.9 by varying the number of cells 

in the direction normal to the membrane. All STRD and Dry Martini benchmarks are 

carried out with 𝑛𝑧 = 1 to maximize performance.  
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Figure 6.9: STRD performance as number of domain decomposition cells along the 

direction normal to the membrane is varied. 

Additional benchmarks were run on the Stampede2 supercomputer located at 

the Texas Advanced Computing Center of the University of Texas at Austin. These 

tests involved much larger systems and higher levels of parallelism. 100 x 100 x 100 

nm POPC membranes were prepared for Dry Martini (0.43 million atoms), ordinary 

Martini (8.47 million atoms), and STRD Martini with N = 2.6 nm-3 (3.18 million 

atoms). Each ran on 1024 “Knight’s Landing” (Intel Xeon Phi 7250) cores using the 

same simulation parameters as the smaller performance tests. The results are presented 

in Table 6.2. 

Under these circumstances, ordinary Martini runs at 50 ns/day while Dry 

Martini runs 16.6x faster at 880 ns/day. In comparison, the optimized STRD Martini 

code achieves 383 ns/day, which is 7.6x as fast as ordinary Martini or 44% as fast as 
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Dry Martini despite the addition of 2.75 million SRD fluid particles. The remaining 

performance gap between STRD and Dry Martini is almost entirely due to the 

accounting overhead associated with these particles. Running without collisions 

increases the performance to 393 ns/day, a mere 2.6% increase. The aforementioned 

overhead stems from the additional time required for domain decomposition, 

integration, and global energy communication involving the additional particles. 

Table 6.2: Performance summary for a 100 x 100 x 100 nm POPC membranes on 

the Stampede2 supercomputer. 

Benchmark 

Simulation 

Absolute 

Performance 

(ns/day) 

Relative 

Performance 

(vs Martini) 

Relative 

Performance 

(vs Dry Martini) 

Martini 50.34 1.000 0.057 

Pulsed Cell 380.56 7.560 0.432 

Pulsed Particle 382.85 7.605 0.435 

STRD Limit 392.83 7.804 0.446 

Dry Martini 880.57 17.492 1.000 
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CALCULATION OF MEMBRANE FLUID PARAMETERS FOR THE 

MARTINI AND CHARMM36 FORCE FIELDS 

7.1 Introduction 

Membrane surface shear viscosity 𝜂𝑚 and interleaflet friction 𝑏 have been 

measured experimentally for membranes [195]–[199], but few studies have calculated 

these properties from lipids in simulation [113], [192], [200], [201]. The authors of 

popular membrane force fields parameterize their models using thermodynamic 

quantities such as area per lipid or the solvation free energy of small molecules rather 

than comparatively more difficult-to-measure hydrodynamic properties [52], [54], 

[55], [103], [106]. As a result, these popular force fields obtain reasonable results for 

such properties as tail order parameters and area compressibility, but their fluid 

properties and consequently Saffman-Delbrück lengths for the models are not well-

characterized. 

Both surface shear viscosity (𝜂𝑚) and interleaflet friction (𝑏) are key 

parameters in the periodic Saffman-Delbrück (PSD) theory for lipid diffusion (see 

section 3.5) [44]. Although these two parameters can be determined through fits to 

PSD theory [1], [46], an independent means of calculating them is required for the 

theory to be predictive. The third parameter that enters the PSD theory is the effective 

hydrodynamic radius of a lipid or membrane protein. This is especially problematic 

for lipid diffusion, where the effective hydrodynamic radius of a lipid may be 

Chapter 7 
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significantly larger than its lateral footprint due to correlated motion with its nearest 

neighbors, and for which it is not even clear that a continuum theory makes sense. 

A pair of papers by den Otter and Shkulipa demonstrates a method for 

calculating 𝜂𝑚 and 𝑏 for Martini DPPC using non-equilibrium simulations which 

impose either a lateral or tangential shear on the membrane [192], [200]. This chapter 

utilizes their method to calculate these parameters for different lipids in both the 

Martini coarse-grain force field and the CHARMM36 all-atom force field. Surface 

viscosities for CHARMM36 Ld and Lo mixtures are also reported. Interleaflet friction 

may also be calculated from undulation relaxation rates [120], [201], [202], while 

surface viscosity has been calculated from simulated tether pulling [113]. Neither 

approach has been pursued here, as values calculated from shearing simulations show 

good agreement with equilibrium approaches [192]. 

Before using non-equilibrium simulations to calculate previously unknown 

PSD parameters (𝜂𝑚 and 𝑏) for a membrane system, we must ensure that our method 

matches published results for a well-characterized system. Water is an excellent 

choice, as the viscosity of water in both force fields has been well-established using 

equilibrium methods [203], [204]. Once a set of best practices is established for 

calculating the viscosity of water, we turn to more complex systems, starting with 

Martini DPPC. The results for Martini DPPC will be compared to the values published 

by den Otter and Shkulipa before moving on to all-atom membranes and mixtures. 

7.2 Theory and Methods for Nonequilibrium Calculations 

For convenience, symbols used throughout this section are listed in Table 7.1. 

Each are reintroduced in context when they first appear in the text. 
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Table 7.1: Symbols used in calculations of solvent viscosity, membrane surface 

viscosity, and interleaflet friction. 

𝜎𝛼𝛽 Viscous stress tensor 

𝑃𝛼𝛽 Virial pressure tensor 

𝜂𝑤 Solvent viscosity 

𝜂𝑚 Membrane surface viscosity 

𝜂𝑚
𝑏  Effective 3D membrane viscosity 

ℎ Membrane thickness 

𝐻 Vertical simulation box size 

𝐿 Lateral simulation box size 

휀̇ Deformation strain rate 

�̇�𝑤 Solvent shear rate 

𝑏 Membrane interleaflet friction 

Δ𝑣 Relative velocity between leaflets 

7.2.1 Viscosity of a Homogenous Newtonian Fluid 

Viscosity characterizes the degree to which a fluid resists a steady shearing 

deformation. As discussed in section 3.2.3, the stress exerted between adjacent layers 

of a Newtonian fluid is proportional to the transverse velocity gradient. Thus, one can 

measure the viscosity with a non-equilibrium technique by either (1) applying a 

steady, modest shear stress and measuring the resultant velocity gradient (called the 

“shear rate”), or (2) imposing a steady, modest deformation (called “strain rate”) and 

measuring the resultant shear stress. 

Consider a fluid under constant, steady shear rate 휀̇ with a flow field given by 

�⃗⃗�(𝑟) = 휀̇𝑦�̂� (7. 1) 

𝜕𝑢𝑥

𝜕𝑦
= 휀̇ (7. 2) 
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The Newtonian definition of viscosity (equation 3.17) relates this to the off-diagonal 

element of the shear stress tensor 𝜎 using the shear viscosity 𝜂 

𝜎𝑥𝑦 = 𝜂 (
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
 ) = 𝜂휀̇ (7. 3) 

This stress is equal to the average pressure tensor element 𝑃𝑥𝑦 after a conventional 

sign change (pressure is positive and stress is negative under compression) 

𝜂휀̇ = 𝜎𝑥𝑦 = −〈𝑃𝑥𝑦〉 (7. 4) 

This pressure element may be interpreted as the average force per unit area exerted 

perpendicular to the shearing axis. We can calculate the viscosity by shearing the 

simulated fluid at a constant rate and measuring the mean shear pressure. 

For simplicity, our shear deformation is applied by changing the shape of the 

entire simulation box at a constant rate. A general triclinic box may be defined by the 

lattice vectors �⃗�, �⃗⃗�, and 𝑐 corresponding to its edges. We can achieve a steady, 

volume-preserving shear in the 𝑥𝑦 plane by gradually increasing the 𝑥 coordinate of 

the box vector �⃗⃗� as a function of time and transforming the atomic coordinates in the 

box accordingly, as shown in Fig. 7.1. To prevent the box from becoming unduly 

deformed, we may subtract twice the box width from 𝑏𝑥 when the angle between �⃗⃗� 

and the y-axis reaches 45°. Under periodic boundary conditions, this results in an 

equivalent box which we can continue shearing along 𝑥. Since this procedure does 

work on the system, temperature coupling is required to dissipate the added energy. 

Throughout this chapter, the Bussi [60] thermostat is used for Martini simulations 

while Nosé-Hoover [58], [59] is used for CHARMM36. 
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Figure 7.1: The average velocity field resulting from the deformation of a periodic 

box with lattice vector 𝑏𝑥 = 𝑡𝐿𝑦휀̇. 

This deformation-based shearing approach differs from the method employed 

by den Otter and Shkulipa. They imposed a shear flow using modified boundary 

conditions along the top and bottom of the box called Lees-Edwards boundary 

conditions [205] (see Fig. 7.2). These special boundary conditions slowly translate the 

upper and lower periodic images at constant velocity ±휀̇𝐿 relative to the simulation 

box. This relative velocity is added to particles crossing the periodic boundary, 

generating a transverse velocity gradient which is linear at steady state. A shear flow 

may also be imposed by modifying the Hamiltonian to explicitly include the 

prescribed velocity field [74], [206], [207]. This third approach was attempted, but 

ultimately discarded in favor of the simpler box deformation method. 

Fortunately, the analysis is unaffected so long as a linear transverse velocity 

gradient is achieved. At sufficiently low strain rates, the fluid is expected to be 

Newtonian and we expect the viscosity to be constant. At higher strains rates, shear 
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thinning effects appear, decreasing the viscosity. This becomes evident for the 

membrane simulations but not the solvent simulations. 

 

Figure 7.2: Lees-Edwards boundary conditions exert a shearing force on fluid in the 

simulation box by steadily moving its periodic images at a rate ±휀̇𝐿 and 

adding the difference in velocity to all particles crossing the boundary.  

7.2.2 Surface Shear Viscosity 

Membrane surface viscosity is an effective 2D viscosity resisting lateral shear. 

We can use momentum conservation and dimensional analysis to understand to 

understand the differences between 2D surface viscosity and 3D shear viscosity. The 

total change in momentum within a region must equal the stress through its boundary. 

Since change in momentum has units of force, this means that the stress tensor must 

have units of force per area in 3D and force per length in 2D. It follows that surface 

viscosity must have units of viscosity × length.  Keeping these units in mind, we can 

write an expression for surface viscosity  

𝜎𝑥𝑦 = 𝜂𝑚휀̇ (7. 5) 
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𝜂𝑚 = ℎ𝜂𝑚
𝑏 (7. 6) 

Where 𝜎𝛼𝛽 is the viscous stress tensor and 𝜂𝑚 is the surface viscosity of a membrane 

with thickness ℎ and an effective 3D viscosity 𝜂𝑚
𝑏 . 

Once more, we can calculate this from simulation by imposing a lateral shear 

(see Fig. 7.1) and recording the average value of the pressure tensor. The membrane 

stress is equal to the total stress minus the contribution from the solvent 

𝜂𝑚 =
𝜎𝑥𝑦

𝑇𝑂𝑇 − 𝜎𝑥𝑦
𝑆𝑂𝐿

휀̇
=

⟨𝑃𝑥𝑦⟩𝐻 − 𝜂𝑤휀̇(𝐻 − ℎ)

휀̇
(7. 7) 

Where 𝐻 is the height of the box and 𝜂𝑤 is the viscosity of the solvent. Just as we did 

for the homogenous fluid, we must ensure our surface viscosity results are taken from 

systems near equilibrium. Our first safeguard is to vary the strain rates and look for a 

regime where the surface viscosity does not depend on the strain rate, i.e. the 

Newtonian regime. We can also check for correspondence with equilibrium 

simulations by calculating the total viscosity of the entire system and comparing it 

with the first term on the RHS of equation 7.7. This is possible with either a Green-

Kubo relation [208] 

𝜂𝑇𝑂𝑇 =
𝑉

𝑘𝐵𝑇
∫ ⟨𝑃𝑥𝑦(𝑡0) 𝑃𝑥𝑦(𝑡0 + 𝜏)⟩

𝑡0
 𝑑𝜏

∞

0

(7. 8) 

or an equivalent Einstein relation 

𝜂𝑇𝑂𝑇 =
𝑉

2𝑘𝐵𝑇
 lim
𝜏→∞

 
𝑑

𝑑𝜏
⟨(∫ 𝑃𝑥𝑦(𝑡) 𝑑𝑡

𝑡0+𝜏

𝑡0

)

2

⟩

𝑡0

(7. 9) 

Equation 7.8 converges slowly due to pressure fluctuations which occur in MD 

simulations, and which are large relative to the average pressure due to the small sizes 

of typical MD simulation boxes. So long as enough samples are available, a plot of 

this equation as the upper limit of integration is increased will rise and reach a plateau. 
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At long times, fewer samples are available and this calculation becomes unreliable due 

to statistical error. This restriction is compounded by the fact the 𝜂𝑇𝑂𝑇 calculation 

considers only one element of the pressure tensor, while calculations for homogenous 

fluids may average over all off-diagonal 𝑃𝛼𝛽. Better results are usually available from 

equation 7.9 by performing a linear fit to the time-averaged value of the integral vs the 

lag time 𝜏. 

7.2.3 Interleaflet Friction 

Membrane interleaflet friction may also be calculated from non-equilibrium 

simulations. Recall the definition of interleaflet friction 𝑏 from equation 3.52 

𝐹 = 𝑏∆𝑣 (7. 10) 

Where 𝐹 is the friction force as the leaflets slide past one another and ∆𝑣 is their 

relative velocity. We may calculate 𝑏 from simulation by applying steady traction 

forces to each leaflet and recording the resulting mean relative velocity. In principle, 

this can be achieved through any traction force acting on the leaflets. Assuming stick 

boundary conditions, a parallel shear flow in the solvent with shear rate �̇�𝑤 will exert a 

traction force on each leaflet given by 

𝐹 = 𝜂𝑤�̇�𝑤 (7. 11) 

Adding the traction forces on each leaflet, we may calculate the interleaflet friction 

𝜂𝑤(�̇�𝑢𝑝𝑝𝑒𝑟 + �̇�𝑙𝑜𝑤𝑒𝑟) = 𝑏∆𝑣 (7. 12) 

𝑏 = 𝜂𝑤 (
�̇�𝑢𝑝𝑝𝑒𝑟 + �̇�𝑙𝑜𝑤𝑒𝑟

∆𝑣
) (7. 13) 

The solvent shear rate must be calculated from the simulation trajectory by fitting to 

an average velocity profile along the shearing directions. Relative velocity is easily 

obtained by fitting the difference between leaflets as a function of time, where the 
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leaflet position for each frame is given by its center of mass along the direction of the 

traction forces. 

Shearing the solvent through box deformation imposes a differential force 

throughout each leaflet, complicating the task of computing the force exerted at the 

interface. A different method is preferred. As a simpler alternative to Lees-Edwards 

boundary conditions, Fig. 7.3 depicts a method whereby a constant force is applied to 

all particles near the vertical boundaries. This method creates a nonlinear velocity 

profile in the vicinity of the forcing which rapidly transitions to a linear velocity 

gradient toward the center of the box. A linear fit to this part of the velocity profile 

gives the solvent shear rate �̇�𝑤. 

Obtaining a well-resolved velocity profile requires both spatial and temporal 

averaging. For each frame of the trajectory, a series of evenly-spaced points are 

selected along the box dimension normal to the membrane surface, which we can take 

to be the 𝑧 axis without loss of generality. The mean velocity for each point may be 

calculated through a Gaussian-weighted spatial average of all nearby atoms (positions 

𝑧𝑖) within a certain cutoff. The weights for the jth point located at 𝑧 = 𝑝𝑗 are given by 

𝑤𝑖𝑗 = exp [−
1

2
(

𝑧𝑖 − 𝑝𝑗

𝜎
)

2

] (7. 14) 

with standard deviation 𝜎 controlling the degree of smoothing. The jth point of the 

velocity profile has velocity 𝑢𝑗  given by 

𝑢𝑗 =
∑ 𝑤𝑖𝑗𝑖 𝑣𝑖

∑ 𝑤𝑖𝑗𝑖
⁄ (7. 15) 

Where 𝑣𝑖 are the atom velocities. These profiles are averaged over all frames to obtain 

the final transverse velocity profile 〈𝑢𝑥(𝑧)〉 and the solvent shear rate �̇�𝑤. Fits to the 

profile are performed above and below the membrane separately. 
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Figure 7.3: Diagram of the Martini normal shear protocol. A uniform force ±𝐹 is 

applied to all particles in the shaded regions of thickness 𝑑 near the 

vertical periodic boundaries. Not far from these regions, the x-velocity 

profile becomes a linear function of z with shear rate �̇�𝑤. The resulting 

traction forces on the leaflets are depicted with smaller red arrows. 
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7.3 Results: Solvent Viscosity 

7.3.1 Martini Water 

Before running membrane shearing simulations, the box-deformation protocol 

was tested on a 10 nm water cube containing c.a. 6100 martini water beads. This 

homogenous cube of water particles was equilibrated to 1 bar pressure in the NPT 

ensemble using the parameters from Table 7.2 and sheared in the xy plane at different 

shear rates using the parameters from Table 7.3. The viscosity, calculated using the 

time average of the pressure tensor element 𝑃𝑥𝑦 and equation 7.4, was compared to 

published values of calculated with equilibrium methods. This protocol was carried 

out over a range of strain rates, so that a Newtonian shear regime could be identified 

where the viscosity does not depend on strain rate. 

Table 7.2: Selected simulation parameters for equilibration of Martini water. Other 

parameters use defaults listed in Table 2.1. 

Integration Velocity-Verlet with ∆𝑡 = 20 fs 

Center of mass motion removed every timestep 

Thermostat Bussi velocity rescaling; 

𝑇0 = 323 K, 𝜏𝑇 = 1 ps 

Barostat Berendsen, semiisotropic coupling; 

𝑃0 = 1 bar, 𝜏𝑃 = 12 ps 

compressibility = 3.0 × 10−4 bar−1 

 

This analysis is complicated by the fact that time series of 𝑃𝑥𝑦 feature large 

fluctuations (see Fig. 7.4 for an example featuring a Martini membrane). As a result, 

obtaining a precise average requires significant simulation time, even for a system at 

steady-state. Several 400 ns shearing simulations were carried out to characterize this 
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uncertainty and inform the necessary length of our production simulations. As shown 

in Fig. 7.5, diminishing returns are expected for simulations after 200 ns, where 

statistical uncertainty prohibits calculation of viscosity involving off-diagonal stress 

less than 0.1 bar. In our analysis, this uncertainty is further mitigated by running an 

ensemble of independent shearing simulations starting from identical initial states but 

with randomly assigned initial velocities and different seeds for the thermostat’s 

random number generator. 

Production simulations used three independent replicas at each strain rate for 

420 ns with the first 20 ns discarded to account for the transient response to the 

deformation starting. They were run in the NVT ensemble, with the Bussi velocity 

rescaling thermostat at 323 K and no pressure coupling (fixed volume). Fig. 7.6 

depicts the resulting viscosities as the strain rate is varied. Viscosity is uniform over 

this range, with an inverse-variance weighted average of 0.6920 ± 0.0082, in close 

agreement with the 323 K value reported in the literature (0.69) [203] and our own 

independent calculations using equilibrium methods. 

Table 7.3: Selected simulation parameters for shearing simulations of Martini water. 

Other parameters use defaults listed in Table 2.1. 

Integration Velocity-Verlet with ∆𝑡 = 20 fs 

Center of mass motion removed every timestep 

Thermostat Bussi velocity rescaling; 

𝑇0 = 323 K, 𝜏𝑇 = 1 ps 

Barostat None (fixed volume) 
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Figure 7.4: Example off-diagonal pressure for a relaxed Martini DPPC membrane 

sampled every 100 fs for 1000 ns. The upper panel depicts the raw time 

series in gray along with moving averages with windows of 10 ps (blue) 

and 1 ns (red). A zoomed in view of the 1 ns moving average is shown in 

the lower panel. The autocorrelation of this time series decays by 90% in 

under 1 ps. 
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Figure 7.5: Uncertainty in average off-diagonal pressure 𝑃𝑥𝑦 for Martini coarse-grain 

water as the simulation time is increased. 
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Figure 7.6: Martini water viscosity as a function of strain rate. Each data point is the 

average of three 400 ns trials and the dashed line indicates an inverse-

variance weighted average of the data. Error bars combine the standard 

error computed from each set of three trials with error propagation. 

7.3.2 TIP3P Water 

The CHARMM36 lipid force field was parameterized using a modified version 

of the TIP3P water model. The original TIP3P [91] represents each molecule with a 

single charged van der Waals interaction site for the oxygen atom and two charged 

interaction sites for the hydrogens with no van der Waals interactions. The TIP3P 

hydrogens interact with other molecules solely through electrostatics. The modified 

version [209] used by CHARMM36 adds weak van der Waals interactions to the 

hydrogens. Both versions adequately model thermodynamic properties such as density 

and heat of vaporization, but suffer inaccurate transport coefficients, e.g. self-diffusion 

is too fast [210] and viscosity is too low [204]. 
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Running shearing simulations of TIP3P water serves three purposes: (1) to 

evaluate the efficacy of our shearing protocol for calculating viscosity in the context of 

an all-atom force field, (2) to validate the results of that calculation using published 

values calculated from equilibrium simulations, and (3) to identify the relevant time 

scales and uncertainty in advance of the more extensive series of simulations 

involving all-atom membranes. The TIP3P shear protocol closely resembles the 

protocol used for Martini water in the previous section. 5 nm cubic systems containing 

4074 TIP3P molecules were equilibrated to 1 bar pressure at various temperatures 

ranging from 293 to 323 K using the parameters in Table 7.4. Two systems were 

prepared at each temperature using different treatments of the cutoff for van der Waals 

interactions, one switching the force to zero over 8-10 Å and the other over 8-12 Å. 

Both are required in order to test the sensitivity of the solvent viscosity to the cutoff 

treatment and in anticipation of an issue described in a later section on the surface 

viscosity CHARMM36 DPPC membranes. 

Table 7.4: Selected simulation parameters for equilibration of CHARMM36 water. 

Other parameters use defaults listed in Table 2.3. 

Integration Velocity-Verlet with ∆𝑡 = 2 fs 

Center of mass motion removed every 100 timesteps 

Van der Waals Force switched to zero over 8-10 Å or 8-12 Å 

Thermostat Nosé-Hoover; 

Various 𝑇0, 𝜏𝑇 = 1 ps 

Barostat Berendsen, isotropic coupling; 

𝑃0 = 1 bar, 𝜏𝑃 = 5 ps 

compressibility = 3.0 × 10−5 bar−1 
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Each production series was run over a range of shear rates from 0.2 to 4.0 ns-1 

with five independent replicas used for each datum. Each individual simulation ran at 

fixed volume with a shear deformation imposed in the xy plane using the parameters 

in Table 7.5. Based on the pressure uncertainty vs time curve depicted in Fig 7.7, the 

length of each production simulation was chosen to be 12 ns with the first 2 ns 

discarded. Results for a particular simulation series (323 K with 8-10 Å force 

switching) are presented in Fig. 7.8. In this figure, viscosity is uniform over the whole 

range of strain rates. The inverse-variance weighted average is 0.242 ± 0.013. The full 

data set is presented in Fig. 7.9, showing our data compared with published results 

from equilibrium viscosity calculations [204]. We find excellent agreement over the 

whole temperature range for both cutoff treatments. Viscosity is slightly lower when 

using 8-12 Å cutoffs. 

Table 7.5: Selected simulation parameters for shearing simulations of CHARMM36 

water. Other parameters use defaults listed in Table 2.3. 

Integration Velocity-Verlet with ∆𝑡 = 2 fs 

Center of mass motion removed every 100 timesteps 

Van der Waals Force switched to zero over 8-10 Å or 8-12 Å 

Thermostat Bussi velocity rescaling; 

Various 𝑇0, 𝜏𝑇 = 1 ps 

Barostat None (fixed volume) 
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Figure 7.7: Uncertainty in average off-diagonal pressure 𝑃𝑥𝑦 for TIP3P as the 

averaging window is adjusted. 
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Figure 7.8: Example TIP3P viscosity as a function of shear rate using 8-10 Å force 

switching at 323 K. Each data point is the average of five 10 ns trials. 

The dashed line indicates the inverse-variance weighted average. Error 

bars combine the standard error computed from each set of five trials 

with error propagation. 
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Figure 7.9: CHARMM36 TIP3P viscosity determined through shearing simulations 

compared to reference equilibrium calculations. Error bars represent the 

uncertainty in the weighted fit at each temperature. 

7.4 Surface Shear Viscosity 

7.4.1 Martini DPPC 

Parameters for the Martini forcefield have changed substantially since the 

initial publication [211] cited by den Otter and Shkulipa and used in their Martini 

shearing simulations [192]. Though the coarse-grain structure of DPPC lipids has not 

changed, newer versions of Martini [54], [109], [110] have revised the interactions 

between its constituent CG beads. Interactions have generally become more attractive 

both among headgroup beads and between the headgroup beads and water, while 

interactions between headgroup and tail beads have become more repulsive (see Table 

7.6). Since the overall attraction between lipids has increased, we should expect 
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greater surface shear viscosities from simulations using newer Martini parameters 

relative to the findings of den Otter and Shkulipa. We calculate surface viscosity for 

DPPC using two versions of Martini: the current version, Martini 2.2, and the original 

version used by den Otter and Shkulipa (henceforth “Martini 2004”). 

Table 7.6: Comparison of Lennard-Jones parameters for the DPPC bead interactions 

in Martini 2004 and Martini 2.2. Solvent beads are highlighted in blue, 

headgroups in purple, and alkane tail beads in tan. 

Interaction σ (2004) ε (2004) σ (2.2) ε (2.2) Change 

W W 0.47 5.0 0.47 5.0 = 

W GL 0.47 3.4 0.47 4.0 More attractive (ε+0.6) 

W C 0.47 1.8 0.47 2.0 ≈ 

W PO4 0.47 5.0 0.47 5.6 More attractive (ε+0.6) 

W NC3 0.47 5.0 0.47 5.6 More attractive (ε+0.6) 

GL GL 0.47 4.2 0.47 4.0 ≈ 

GL C 0.47 2.6 0.47 2.7 ≈ 

GL PO4 0.47 3.4 0.47 4.0 More attractive (ε+0.6) 

GL NC3 0.47 3.4 0.47 4.0 More attractive (ε+0.6) 

C C 0.47 3.4 0.47 3.5 ≈ 

C PO4 0.47 1.8 0.62 2.0 More repulsive (σ+0.15) 

C NC3 0.47 1.8 0.62 2.0 More repulsive (σ+0.15) 

PO4 PO4 0.47 3.4 0.47 5.0 More attractive (ε+0.6) 

PO4 NC3 0.47 3.4 0.47 4.5 More attractive (ε+1.1) 

NC3 NC3 0.47 3.4 0.47 3.5 ≈ 

  

For both versions of Martini, 10 nm membranes consisting of 169 DPPC lipids 

per leaflet were created and solvated with a 4 nm layer of Martini water. To reach a 
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state of zero surface tension, ten replicas with different initial velocities were created 

for both parameter sets and equilibrated over 1 µs using the parameters in Table 7.7. 

The final systems were rescaled to equal the inverse-variance weighted average of the 

box sizes from these equilibration simulations (discarding the first 100 ns of each) and 

run for a further 100 ns in the NVT ensemble to relax disturbances from the velocity 

rescaling.  

Production simulations were 820 ns long with the first 20 ns discarded. They 

were run at constant volume using the parameters from Table 7.8 with a lateral shear 

applied in the 𝑥𝑦 plane. Since the uncertainty in 𝑃𝑥𝑦 from a single simulation plateaus 

around 250 ns (see Fig. 7.10), further reductions were obtained by running three 

replicas for each strain rate with different initial conditions and random seeds. A wide 

range of strain rates were explored. Results from the Newtonian shear regime shown 

in Fig. 7.11. As expected, surface viscosity in Martini 2.2 is higher than Martini 2004, 

likely a consequence of the general increase in attraction between lipid beads. The 

result for Martini 2004 (= 1.457 ± 0.043) compares favorably with the den Otter and 

Shkulipa result [192] (= 1.2) considering the implementation differences between MD 

programs. 

Results for Martini 2.2 over a wider range of shear rates are depicted on a log 

scale in Fig. 7.12, where both the Newtonian plateau and the shear thinning regime are 

evident. The danger of simply extrapolating results from the “linear” shear thinning 

regime is shown in Fig. 7.13. Without knowing how close one is to the plateau, an 

extrapolation can significantly over- or underestimate the equilibrium surface 

viscosity. It is therefore prudent to locate and consider only those strain rates which 

are slow enough to remain in the Newtonian regime. 
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Table 7.7: Selected simulation parameters for equilibration of Martini DPPC. Other 

parameters use defaults listed in Table 2.1. 

Integration Velocity-Verlet with ∆𝑡 = 20 fs 

Center of mass motion removed every timestep, treating 

membrane and solvent separately. 

Thermostat Bussi velocity rescaling, treating water and lipids separately; 

𝑇0 = 323 K, 𝜏𝑇 = 1 ps 

Barostat Berendsen, semiisotropic coupling; 

𝑃0 = 1 bar, 𝜏𝑃 = 12 ps 

compressibility = 3.0 × 10−4 bar−1 

 

 

Figure 7.10: Uncertainty in average off-diagonal pressure 𝑃𝑥𝑦 for a Martini DPPC 

membrane as the simulation time is increased. 
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Table 7.8: Selected simulation parameters for shearing simulations of Martini 

DPPC. Other parameters use defaults listed in Table 2.1. 

Integration Velocity-Verlet with ∆𝑡 = 20 fs 

Center of mass motion removed every timestep, treating 

membrane and solvent separately. 

Thermostat Bussi velocity rescaling, treating water and lipids separately; 

𝑇0 = 323 K, 𝜏𝑇 = 1 ps 

Barostat None (fixed volume) 

 

 

Figure 7.11: Surface viscosity as a function of shear rate for DPPC membranes using 

force field parameters for the 2004 version of Martini cited by den Otter 

and Shkulipa and the more recent Martini v2.2. Dotted lines show the 

result of taking inverse-variance weighted averages for both. Error bars 

combine the standard error computed from each set of three trials with 

error propagation. 



 169 

 

Figure 7.12: Extended range of strain rates demonstrating turnover from Newtonian 

viscosity to shear thinning at higher shear rates for Martini 2.2 DPPC 

(slowest strain rates omitted for clarity due to large uncertainty bars). 
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Figure 7.13: Surface viscosity of Martini DPPC showing only the higher strain rates 

(those covered in Fig. 7.12 but not Fig. 7.11). An extrapolation from this 

linear regime (dotted line) significantly underestimates the equilibrium 

surface viscosity calculated from the low strain regime. 

For additional validation, the total system viscosity (membrane + solvent) was 

calculated from a 1 µs simulation at equilibrium using both the Green-Kubo relation 

from Equation 7.8 (Fig. 7.14) and its equivalent Einstein relation from Equation 7.9 

(Fig. 7.15). Extracting the total viscosity from the Green-Kubo relationship is difficult 

as it requires resolving and identifying the “infinite time” plateau, which itself requires 

precisely resolving long-time correlations. In theory, this plateau extends unbroken to 

infinite lag times. However, the lack of sampling at long times and the accumulated 

noise between distant times in the simulation cause the long-time correlations to 

randomly drift. This leads to a subjective choice over where the plateau is located: 

where it begins and where it ends. This is avoided when using the Einstein relation, 
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which is calculated using much short correlation times. Note that Equation 7.9 takes 

the limit of long correlation times. This limit is relative to the autocorrelation time of 

the pressure time series, which decays by 90% in under 1 ps. The linear fit in Fig. 7.15 

is taken over sufficiently long lag times for the Einstein relation to hold. 

The results are encouraging, with close agreement between the weighted 

average of total viscosity from shearing simulations 2.264 ± 0.042 and the average 

from Einstein relations 2.23 ± 0.21. The uncertainty on the latter figure is obtained by 

breaking the equilibrium 𝑃𝑥𝑦 time series into four equal parts before performing the 

Einstein relation analysis on each. Fig. 7.15 shows the result for one of these four. 

 

Figure 7.14: Sample depiction of total viscosity for Martini DPPC using the Green-

Kubo relation (equation 7.8). The correlation builds until a plateau is 

reached. The plateau is not maintained as lag times increase due to the 

finite length of the simulation and the decrease in the number of samples 

between longer lag times. 
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Figure 7.15: Sample depiction of total viscosity for Martini DPPC using the Green-

Kubo equation recast as an Einstein relation (equation 7.9). The 

expression under the derivative is plotted as a function of time. A linear 

fit to the linear regime gives total viscosity. This occurs for times that are 

long compared to the pressure fluctuations but short compared to the 

length of the simulation. 

7.4.2 CHARMM36 DPPC 

DPPC was chosen as an initial test case for shearing simulation using the 

CHARMM36 force field due to its use in experiments and simulations as a standard 

case. In general, membranes modeled with all-atom force fields are expected to exhibit 

higher surface viscosities than their coarse-grain counterparts due to the additional 

conformational freedom of the all-atom fatty acid tails and stronger interactions 

among their constituent interaction sites. We began our investigation of DPPC by 

creating and equilibrating a 10 x 10 nm membrane patch with 160 lipids per leaflet 

solvated by a 4 nm layer of TIP3P water using the CHARMM-GUI membrane builder 
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[104]. Our initial equilibration simulations ran for 10 ns using the parameters listed in 

Table 7.9. During these simulations, the box size reached a steady lateral size by 2 ns. 

Table 7.9: Selected simulation parameters for equilibration of CHARMM36 DPPC. 

Other parameters use defaults listed in Table 2.3. 

Integration Leapfrog with ∆𝑡 = 2 fs 

Center of mass motion removed every 100 timesteps, treating 

membrane and solvent separately. 

Van der Waals Interaction forces switched off over 8-10 or 8-12 Å. 

Thermostat Nosé-Hoover, treating water and lipids separately; 

𝑇0 = 323 K, 𝜏𝑇 = 1 ps 

Barostat Parrinello-Rahman, semiisotropic coupling; 

𝑃0 = 1 bar, 𝜏𝑃 = 5 ps 

compressibility = 4.5 × 10−5 bar−1 

 

Despite using the standard set of CHARMM36 run parameters, our DPPC 

membranes relaxed to an area per lipid of c.a. 61 Å2 rather than the expected 

experimental value of 63 Å2 [212]. This is concerning as lipid packing density plays 

an influential role in observed diffusion [213] and hence surface viscosity. Fearing a 

bug, we reproduced this discrepancy in four ways: (1) with three different versions of 

GROMACS on the same cluster, (2) with the same version of GROMACS on two 

other clusters, (3) using CHARMM36 topology files from an alternative source, (4) 

and using a different MD program called NAMD with the same settings. The same 

anomalous area per lipid was found in every case. 

Equilibrium area per lipid is quite sensitive to the treatment of nonbounded 

force calculations including the cutoff lengths [104] and the frequency of recalculating 

long-range interactions [214]. Whenever possible, the same simulation parameters and 
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software should be used as were used to parameterize the force field. Discrepancies 

arise among different MD programs due to subtle differences in implementation (e.g., 

the exact form of the force switching). In this case, the “bug” we encountered arose 

from a discrepancy within the CHARMM force field [215]. The lipid force field was 

parameterized with nonbonded forces switching off over the range of 8-12 Å [103] 

while proteins were parameterized using the range 10-12 Å [51]. To ensure 

compatibility with membrane-associated proteins, the CHARMM-GUI membrane 

builder generates run files using the latter parameters. The expected area per lipid with 

these parameters is 60 - 61 Å2 [104], [215], in agreement with our equilibration 

results. Strictly speaking, these parameters are incorrect for membrane simulations. 

A study comparing DPPC area per lipid using different MD programs with 

various force switching ranges (8-10, 8-12, 10-12) found 8-10 Å to be the most 

accurate at 63.6 Å2 [104]. Thus, we are left with three choices for our shearing 

simulations: (1) 8-10, which best agrees with experiment when using GROMACS, but 

was not used during force field parameterization; (2) 10-12, which was used for 

protein parameterization, and therefore is the most widely-used; and (3) 8-12, which 

was used for lipid parameterization and the simulations for the PSD fits from Venable 

et al. [46]. We decided to calculate surface viscosity using 8-10 and 8-12 switching for 

DPPC and only 8-12 switching for all other membranes. 

Equilibrating the membrane to a truly relaxed state is necessary to obtain an 

accurate calculation of the equilibrium surface viscosity. Example results for a poorly-

equilibrated membrane are depicted in Fig. 7.16. This membrane consists of a Lo 

mixture compressed 8% relative to its relaxed lateral size. Its nonzero surface tension 

results in a stress tensor that is not asymptotically zero as the strain rate is decreased. 
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This latent stress contribution becomes dominant as the shear contribution becomes 

smaller, which can be seen by solving equation 7.7 for the pressure and adding a 

constant term 𝑇𝑥𝑦 

⟨𝑃𝑥𝑦⟩ = 𝜂𝑚
𝑏 휀̇

ℎ

𝐻
+ 𝜂𝑤휀̇

(𝐻 − ℎ)

𝐻
+ 𝑇𝑥𝑦 (7. 16) 

If we apply the analysis developed for calculating 𝜂𝑚, assuming 𝑃𝑥𝑦 is proportional to 

the strain rate, this equation results in a divergence as 휀̇ → 0 which is clearly seen in 

Fig. 7.16. This latent stress also manifests at higher strain rates, where the surface 

viscosity is an order of magnitude higher than what is found in a relaxed membrane. 

The divergence at low shear rates allows us to identify poorly-equilibrated systems 

from their surface viscosity plots. 

 

Figure 7.16: Surface viscosity as a function of strain rate for a poorly-equilibrated 

membrane (Lo Mixture with 8-12 Å force switching). 
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Since our shearing simulations run at constant volume, any initial stress cannot 

relax during the simulation. Careful equilibration is required to avoid this scenario. 

After creating and minimizing each membrane, nine replicas are created for each with 

random initial atom velocities and random seeds. The replicas are equilibrated in the 

NPT ensemble for 12 ns using the parameters from Table 7.9. The last 10 ns of each 

are used in Fig. 7.17, and the equilibrium area per lipid is computed from the inverse 

variance weighted average of this data. The membrane is then rescaled to this size and 

equilibrated at constant volume for an additional 10 ns to relax transient disturbances 

resulting from this rescaling. 

 

Figure 7.17: Sample equilibration results for CHARMM36 DPPC showing the 

average area per lipid of nine 10 ns trials for each cutoff treatment. 
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The additional computational cost associated with all-atom simulation requires 

us to use much shorter production simulations. Fortunately, we do not require the 

pressure uncertainty to be as low as coarse-grained membrane simulations due to the 

higher surface viscosity in CHARMM36. According to Fig. 7.18, 20 ns simulations 

are sufficient for an uncertainty < 1.5 bar with rapidly diminishing returns thereafter. 

Our computational resources are much better used on more replicas per strain rate. 

With this in mind, five 25 ns production simulations were run at each strain rate using 

the simulation parameters from Table 7.10. A wide range of shear rates was explored 

for DPPC with results at low shear rate presented in Fig. 7.19 and all shear rates in 

Fig. 7.20. The error bars on these points combine the statistical uncertainty within 

each replicant with the variance of the replicants. 

 

Figure 7.18: Uncertainty in average off-diagonal pressure 𝑃𝑥𝑦 for a CHARMM36 

DPPC membrane as the simulation time is increased. 
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Table 7.10: Selected simulation parameters for shearing simulations of CHARMM36 

DPPC. Other parameters use defaults listed in Table 2.3. 

Integration Leapfrog with ∆𝑡 = 2 fs 

Center of mass motion removed every 100 timesteps, treating 

membrane and solvent separately. 

Van der Waals Interaction forces switched off over 8-10 or 8-12 Å. 

Thermostat Nosé-Hoover, treating water and lipids separately; 

𝑇0 = 323 K, 𝜏𝑇 = 1 ps 

Barostat None (fixed volume) 

 

 

Figure 7.19: Surface viscosity as a function of shear rate for CHARMM36 DPPC 

using two cutoff treatments: standard 8-12 Å force switching and “best 

DPPC area per lipid” 8-10 Å force switching. Both series were 

equilibrated independently to zero surface tension before shearing. 

Dotted lines show the result of taking inverse-variance weighted averages 

for each series. Each data point is the average of five trials at the given 

strain rate. 
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Figure 7.20: Extended range of strain rates demonstrating turnover from Newtonian 

viscosity to shear thinning at higher shear rates for CHARMM36 DPPC 

using 8-10 Å force switching (slowest strain rate omitted for clarity due 

to large uncertainty bars). 

As expected, the cutoff treatment has a significant effect on the surface 

viscosity (~ 50%), even more so than its effect on equilibrium area per lipid. Like our 

Martini calculations, these surface viscosity results were independently corroborated 

with equilibrium calculations. Five 50 ns replicas with random initial atom velocities 

were simulated for both force switching ranges in the NPT ensemble using the 

simulation parameters from Table 7.9. Equilibrium surface viscosity was calculated 

using both the Green-Kubo relation from Equation 7.8 (Fig. 7.14) and its equivalent 

Einstein relation from Equation 7.9 (Fig. 7.15). Results for the average of each five 

trials are reported in Table 7.11, finding good agreement with values calculated from 

the shearing simulations, especially for 8-12 Å force switching. 
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Table 7.11: Total viscosity calculated for CHARMM36 DPPC membranes. Results 

from shearing simulations are presented along with average equilibrium 

calculations for both 8-10 and 8-12 Å force switching.  

Method 
Total Viscosity 

(10-11 Pa-m-s) = (10-8 P*cm) 

Shearing (8-10) 8.27 ± 0.50 

Einstein Relation (8-10) 11.1 ± 2.4 

Shearing (8-12) 12.35 ± 0.50 

Einstein Relation (8-12) 12.2 ± 1.4 

  

 

Figure 7.21: Sample depiction of total viscosity for CHARMM36 DPPC with 8-12 

force switching using the Green-Kubo relation (equation 7.8). The 

correlation builds until a plateau is reached. The plateau is not maintained 

as lag times increase due to the finite length of the simulation and the 

decrease in the number of samples between longer lag times. 
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Figure 7.22: Sample depiction of total viscosity for CHARMM36 DPPC with 8-12 

force switching using the Green-Kubo equation recast as an Einstein 

relation (equation 7.9). The expression under the derivative is plotted as a 

function of time. A linear fit to the linear regime gives total viscosity. 

This occurs for times that are long compared to the pressure fluctuations 

but short compared to the length of the simulation. 

7.4.3 Other CHARMM36 Lipids 

The same equilibration protocol, shearing simulations, and analysis used for 

DPPC were repeated for DOPC and PSM. The hydrocarbon tails of DOPC are two 

carbons longer than DPPC and contain an unsaturated bond in the middle of the chain, 

leading to more disordered tails and a larger area per lipid compared to DPPC. Even 

though it has a higher area per lipid, the surface viscosity of DOPC membranes are 

expected to exceed DPPC on the basis of diffusion experiments. This may be the result 

of enhanced entanglement among the oleyl tails due to kinks from the unsaturation. 

PSM has a sphingosine backbone rather than the glycerol in DPPC and DOPC, which 
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forms extensive PSM-PSM hydrogen bonds at the polar-nonpolar interface[216]. PSM 

is therefore expected to have an even higher surface viscosity. Each membrane was 

simulated above their melting temperature (see Table 7.12). 

Two mixtures were also tested, one in the liquid ordered (Lo) phase (55% 

DPPC, 15% DOPC, 30% cholesterol) and another in the liquid disordered (Ld) phase 

(30% DPPC, 60% DOPC, 10% cholesterol). Based on experimental measurements of 

diffusion, which is slower in Lo, the Lo phase is expected to have higher viscosity 

[198] [29]. This is likely due to the higher concentration of cholesterol in the Lo phase, 

which is known to slow diffusion by ordering the tails [217] and lowering the area per 

lipid. Both mixtures were run at 323 K. 

Equilibration results are presented in Table 7.12. Minor differences from these 

reference values are expected due to implementation-specific details of the different 

MD programs (GROMACS vs CHARMM) and differences in timestep (2 vs 1 fs). 

Agreement with reference values are excellent for DPPC and DOPC, but PSM area 

per lipid is 3.3% too large. Its shear viscosity plot exhibits minor signs of latent stress, 

indicating incomplete equilibration. After an additional 100 ns equilibration, PSM area 

per lipid fell within 1% of the reference value. Curiously, the shear viscosity plot of 

this “well-equilibrated” PSM diverges significantly at low shear rates. Results reported 

for PSM use the original, “poorly-equilibrated” membrane. Although no reference 

sizes are available for the mixtures, we can infer adequate equilibration from the lack 

of divergence in their surface viscosity data (Fig. 7.23). 

Surface viscosity results are reported in Table 7.13. As expected, DOPC has a 

higher surface viscosity than DPPC and PSM has the highest among the single-

component membranes. The Lo mixture has a higher surface viscosity than the Ld (see 
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Fig. 7.23) mixture despite the higher abundance of DPPC which, given the single-

component results, one may naïvely expect to lower viscosity. This instead reflects the 

tail ordering imposed by the additional cholesterol in the Lo mixture. 

Table 7.12: Equilibration summary for CHARMM36 membranes using different 

cutoff treatments compared with values from reference simulations [215] 

and experiments for DPPC [218], DOPC [212], and PSM [219]. 

Reference simulations were carried out using the CHARMM program 

with 8-12 Å force switching and 1 fs timesteps. Errors are reported with 

respect to the reference simulations. References for melting temperatures 

are DPPC [13], DOPC [14], and PSM [16]. 

Lipid 
𝑇𝑚𝑒𝑙𝑡 

(K) 

𝑇𝑠𝑖𝑚 

(K) 

Experiment 

APL (Å2) 

Reference 

APL (Å2) 

Equilibrium 

APL (Å2) 

Error 

% 

DPPC (8-10) 
314 323 63.1 62.9 

63.71 +1.3 

DPPC (8-12) 61.69 -1.9 

DOPC (8-10) 
256 303 67.4 68.9 

69.72 +1.2 

DOPC (8-12) 68.33 -0.8 

PSM (8-10) 
314 323 55.0 55.1 

58.64 +6.4 

PSM (8-12) 56.92 +3.3 
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Table 7.13: Surface viscosity calculations for various CHARMM36 lipids. As 

expected, unsaturated DOPC lipids are more viscous than saturated 

DPPC ones; the liquid order mixture is more viscous than the liquid 

disorder mixture; the polar PSM lipids are the most viscous overall; and 

the cutoff treatment has a significant effect on surface viscosity. 

Membrane 

Composition 

Surface Viscosity 

(10-11 Pa-m-s) = (10-8 P*cm) 

DPPC (8-10) 8.18 ± 0.50 

DPPC (8-12) 12.26 ± 0.50 

DOPC (8-12) 19.68 ± 0.69 

PSM (8-12) 48.8 ± 1.2 

Lo (8-12) 23.83 ± 0.92 

Ld (8-12) 9.39 ± 0.47 
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Figure 7.23: Surface viscosity as a function of shear rate for liquid ordered (Lo) and 

liquid disordered (Ld) lipid mixtures using the CHARMM36 force field. 

Dotted lines show the result of taking inverse-variance weighted averages 

for each series. Each data point is the average of five trials at the given 

strain rate. 

7.5 Interleaflet Friction 

7.5.1 Martini DPPC 

Membranes equilibrated for surface viscosity were reused for interleaflet 

friction simulations. Each was padded with 20 nm of additional water followed by 

another 10 ns equilibration at fixed lateral size with the vertical box dimension 

coupled to a barostat at 1 bar pressure. The force applied to particles near the vertical 

boundaries was varied over several orders of magnitude to identify a regime where 

parallel shear flows appear in the solvent and the traction forces applied to the 

membrane leaflets cause them to smoothly slide past one another. The units of force 



 186 

used in the simulation (and reported below) are kJ/(mol-nm) ≅ 1.6605 pN. The force 

applied to the membrane must be directly proportional to the relative velocity between 

the leaflets ∆𝑣 for Equation 7.13 to hold. With stick boundary conditions, this implies 

a direct relationship between ∆𝑣 and the solvent shear rate. Thus, for our calculation 

of 𝑏 to be accurate, it must be independent of the solvent shear rate we calculate from 

the velocity profile. 

Three replicas with random initial particles velocities were used for each value 

of the boundary force magnitude. 1 nm was used for the thickness 𝑑 of the boundary 

region in all simulations (recall Fig. 7.3). Production simulations ran for 1 µs in the 

NVT ensemble using the parameters from Table 7.14. Each trajectory was analyzed in 

three stages: first, verifying that the membrane does not drift vertically over the course 

of the simulation; second, calculating the relative velocity between leaflets from their 

separation as a function of time; and last, computing the average velocity profile along 

z was from the instantaneous particle velocities. 

Table 7.14: Selected simulation parameters for friction simulations of Martini DPPC. 

Other parameters use defaults listed in Table 2.1. 

Integration Velocity-Verlet with ∆𝑡 = 20 fs 

Center of mass motion removed every 500 timesteps, treating 

membrane and solvent separately. 

Thermostat Bussi velocity rescaling, treating water and lipids separately; 

𝑇0 = 323 K, 𝜏𝑇 = 1 ps 

Barostat None (fixed volume) 

 

Fig. 7.24 shows a typical plot of the vertical leaflet positions as a function of 

time. Since very little deviation and no overall drift is observed, we may regard its 
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vertical position as fixed; we do not need to be concerned about the possibility of the 

membrane contaminating the solvent velocity profile during the time averaging. 

Separation between leaflets and ∆𝑣 fit are shown for simulations with insufficient 

forcing (Fig. 7.25) and sufficient forcing (Fig. 7.26) to generate steady traction forces. 

All simulations with boundary forces too weak to generate sufficient traction on the 

leaflets were discarded at this point. These include all simulations with boundary 

forces less than 0.05 kJ/(mol-nm). Those with values between 0.05 and 0.10 kJ/(mol-

nm) were not discarded, though they generally feature unreliable traction forces 

leading to significantly higher uncertainties in their interleaflet friction calculations. 

A typical velocity profile for a boundary force sufficient to generate a parallel 

shear flow in the solvent is demonstrated in Fig. 7.27. The location of the membrane, 

the linear shear flow in the solvent, and nonlinear solvent flows from forcing are all 

readily identifiable. The periodic boundaries were ignored in the spatial averaging as 

the velocity profile of the boundary region was not used in the analysis.  The spatial 

averaging kernel (shown in the figure) obscures two features of the profile which are 

only seen during longer simulations with a narrower kernel. First, the linear velocity 

profile of the solvent does, despite the smooth appearance in Fig. 7.27, extend all the 

way to the solvent-membrane interface. Second, the average velocity does not 

smoothly vary over each leaflet; they are composed of solid molecules and move, on 

average, as monolithic slabs. Each leaflet actually moves at a fixed velocity ±𝑣𝐿 with 

an abrupt discontinuity at the membrane center equal in magnitude to ∆𝑣 = 2𝑣𝐿. 

Resolving the velocity difference ∆𝑣 in this way is more error-prone than fitting the 

average separation as a function of time. 
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The results of this analysis are shown in Fig. 7.28 for both sets of Martini 

DPPC parameters. The newer version of Martini has a significantly higher interleaflet 

friction (~25%), perhaps owing to the slight increase in attraction among tail beads. 

The result for Martini 2004 is the same order of magnitude as den Otter and Shkulipa 

results but differs almost by a factor of 2 [192]. They report 2.4 × 106 Pa-s/m from 

nonequilibrium simulations driven by Lees-Edwards boundary conditions and 

3.0 × 106 Pa-s/m from equilibrium relaxation of membrane undulations. This is not a 

cause of great concern for application to the periodic Saffman-Delbrück theory, as the 

theory only weakly depends on this parameter [46]. 

 

Figure 7.24: Sample plot of the average leaflet position along z as a function of time. 
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Figure 7.25: Distance between average leaflet positions as a function of time when the 

solvent exerts insufficient traction forces on the leaflets. In this particular 

case, the forcing at the boundaries was not strong enough to generate a 

consistent, steady parallel shear in the solvent.  
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Figure 7.26: Distance between average leaflet positions as a function of time when the 

solvent exerts sufficient traction forces on the leaflets. Leaflets slide past 

one another at a relatively smooth, steady rate. The linear fit (red) gives 

their average relative velocity. 
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Figure 7.27: Average velocity profile for Martini DPPC with a 1.0 kJ/(mol-nm) force 

applied to all particles within 1 nm of the boundary at every timestep. 

The region corresponding to the membrane is highlighted in blue and the 

extent of linear parallel shear flow in the solvent is highlighted in red. 

Fits to these regions are used to determine the solvent shear rates. The 

spatial averaging window used to create the velocity profile is depicted 

on the left. 
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Figure 7.28: Interleaflet friction as a function of shear rate for DPPC membranes 

using force field parameters for the 2004 version of Martini cited by den 

Otter and Shkulipa and the more recent Martini v2.2. Dotted lines show 

the result of taking inverse-variance weighted averages for both. Error 

bars combine the standard error computed from each set of three trials 

with error propagation. 

7.5.2 CHARMM36 DPPC 

Interleaflet friction for the CHARMM36 force field was calculated using the 

same procedure as the Martini force field. The shorter timestep necessitated shorter 

simulations (only 100 ns) and the stronger attraction among CHARMM lipids required 

higher solvent shear rates to generate steady traction forces. A sample velocity profile 

is depicted in Fig. 7.29 and the results for DPPC are shown in Fig. 7.30. The 

application of higher solvent shear rates (relative to Martini) leads to a rate 

dependence which complicates the interpretation of these results. Further work is 

required to characterize the rate-independent regime and extend the analysis to other 
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CHARMM36 lipid types, namely POPC and PSM. This work will be carried out 

during the remainder of the summer before being published together with the 

interleaflet friction results for Martini and the surface viscosity results for both 

CHARMM36 and Martini. 

 

Figure 7.29: Average velocity profile for CHARMM36 DPPC with a 0.5 kJ/(mol-nm) 

force applied to all particles within 1 nm of the boundary at every 

timestep. The region corresponding to the membrane is highlighted in 

blue and the extent of linear parallel shear flow in the solvent is 

highlighted in red. Fits to these regions are used to determine the solvent 

shear rates. The spatial averaging window used to create the velocity 

profile is depicted on the left. 
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Figure 7.30: Interleaflet friction as a function of shear rate for CHARMM36 DPPC. 

Error bars combine the standard error computed from each set of three 

trials with error propagation. The use of higher shear rates leads to rate-

dependent results. More simulations are required to resolve the rate-

independent regime for shear rates ≲ 5 ns-1. 
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PERMISSIONS 

Certain figures and passages throughout the text, mostly found in Chapters 4 and 5, 

are adapted from the journal article “Toward Hydrodynamics with Solvent Free Lipid 

Models: STRD Martini” published by the author in the Biophysical Journal [1].  
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