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The impact of sea ice melt on
the evolution of surface pCO2

in a polar ocean basin
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Hongmei Lin3, Zhangxian Ouyang4, Weijun Cai4,
Liqi Chen1 and Di Qi1*

1Polar and Marine Research Institute, College of Harbor and Coastal Engineering, Jimei University,
Xiamen, China, 2Marine Science College, Nanjing University of Information Science & Technology,
Nanjing, China, 3Key Laboratory of Global Change and Marine-Atmospheric Chemistry of Ministry of
Natural Resources (MNR), Third Institute of Oceanography, Xiamen, China, 4School of Marine Science
and Policy, University of Delaware, Newark, DE, United States
The strong CO2 sink in Arctic Ocean plays a significant role in the global carbon

budget. As a high-latitude oceanic ecosystem, the features of sea surface pCO2 and

air-sea CO2 flux are significantly influenced by sea ice melt; however, our

understanding of pCO2 evolution during sea ice melt remains limited. In this

study, we investigate the dynamics of pCO2 during the progression of sea ice

melt in the western Arctic Ocean based on data from two cruises conducted in

2010 and 2012. Our findings reveal substantial spatiotemporal variability in surface

pCO2 on the Chukchi Sea shelf and Canada Basin, with a boundary along the shelf

breaks at depths of 250-500 m isobaths. On the Chukchi Sea shelf, strong

biological consumption dominates pCO2 variability. Moreover, in Canada Basin,

the pCO2 dynamics are modulated by various processes. During the active sea ice

melt stage before sea ice concentration decreases to 15%, biological production

through photosynthetic processes and dilution of icemelt water lead to a reduction

in DIC concentration and subsequent decline in pCO2. Further, these effects are

counteracted by the air-sea CO2 exchange at the sea surface which tends to

increase seawater DIC and subsequently elevate surface pCO2. Compared to the

pCO2 reduction resulting from biological production and dilution effects, the

contribution of air-sea CO2 exchange is significantly lower. The combined effects

of these factors have a significant impact on reducing pCO2 during this stage.

Conversely, during the post sea ice melt stage, an increase in pCO2 resulting from

high temperatures and air-sea CO2 exchange outweighs its decrease caused by

biological production. Their combined effects result in a prevailing increase in sea

surface pCO2.We argue that enhanced air-sea CO2 uptake under high wind speeds

also contributes to the high sea surface pCO2 observed in 2012, during both active

sea ice melt stage and post sea ice melt stage. The present study reports, for the

first time, the carbonate dynamics and pCO2 controlling processes during the

active sea ice melt stage. These findings have implications for accurate estimation

of air-sea CO2 fluxes and improved modeling simulations within the Arctic Ocean.
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Highlights
Fron
• The decrease in DIC resulting from biological production

and dilution of ice melt water tends to reduce pCO2 during

the active sea ice melt stage in Canada Basin, although it is

counteracted by CO2 uptake at the air-sea interface.

• The increase in pCO2 resulting from high temperatures and

air-sea CO2 exchange outweighs its decrease caused by

biological production, leading to elevated sea surface

pCO2 during the post sea ice melt stage in Canada Basin.

• The enhanced air-sea CO2 uptake under high wind speeds

also contributes to the high sea surface pCO2 observed in

2012, during both active sea ice melt stage and post sea ice

melt stage.
1 Introduction

Since the beginning of the first industrial revolution,

anthropogenic activities have resulted in substantial carbon

emissions into the atmosphere. Consequently, atmospheric

carbon dioxide (CO2) levels have continuous risen from 280

ppm in 1850 to 417 ppm in 2022. However, this increase

accounts for only 49% of total carbon emissions, and 29% of

emitted CO2 has been absorbed by surface ocean (Friedlingstein

et al., 2022). Due to the high solubility of CO2 in low-temperature

waters, the Arctic Ocean and its adjacent marginal seas serve as a

significant CO2 sink (Anderson and Kaltin, 2016; Yasunaka et al.,

2018). Observations and model simulations have indicated that the

Arctic Ocean absorbs 58-180 Tg C per year, accounting for 2%-7%

of the global oceanic carbon sink (Manizza et al., 2013; Yasunaka

et al., 2016; Mortenson et al., 2020). In recent decades, rapid and

diverse changes, for example the increased seawater temperature,

ice sheet melt, and an extended ice-free period, have occurred in

Arctic ecosystems (Screen and Simmonds, 2010; Shepherd et al.,

2012; Jeong et al., 2018). These changes exert a significant influence

on sea surface pCO2 and air-sea CO2 fluxes. For instance, in the

context of global warming, the Chukchi Sea has transitioned from

being perennially covered by ice to becoming seasonally ice-free

during the past two decades, and the summer CO2 uptake has

significantly increased by l.4 ± 0.6 Tg C per decade (Ouyang

et al., 2022).

Different from observations made in low/middle latitudinal

marginal seas and open oceans, the features of sea surface pCO2

and air-sea CO2 flux in Arctic Ocean are significantly influenced

by the presence of sea ice (Bates et al., 2011; Qi et al., 2020).

During cold seasons, despite the elevated pCO2 values beneath the

sea ice, the air-sea CO2 exchange is impeded by ice, resulting in

relatively low CO2 fluxes (Schuster et al., 2013; Cross et al., 2014;

DeGrandpre et al., 2020). In contrast to observations in cold

seasons, the water column stratification ensues during warm

seasons when sea ice melts and freshwater input occurs. This
tiers in Marine Science 02
leads to a decrease in pCO2 values and consequently enhances the

CO2 sink at the sea surface (Riedel et al., 2008). Moreover, the

mixing of ice melt water featured low pCO2 values, CaCO3

dissolution, and photosynthesis during algal blooms would

further decrease pCO2 values and facilitate CO2 dissolving into

seawater (Fransson et al., 2009; Geilfus et al., 2012). However, this

pCO2 drawdown would be counteracted by the increased sea

surface temperature and the strong CO2 sink at the sea surface

(Burgers et al., 2017; Islam et al., 2017; Pipko et al., 2017). In the

seawater carbonate system, a frequent occurrence of high pCO2 is

observed in accordance with elevated SST values due to its

decreased solubility at high temperatures (Wanninkhof et al.,

2022). Additionally, the air-sea CO2 exchange at the sea surface

tends to increase seawater DIC in the Arctic Ocean, subsequently

elevating seawater pCO2 (Yang et al., 2023). Moreover, changes in

wind fields, such as high wind speeds (>10 m/s) and upwelling-

favorable wind, tend to upward transport the nutrient enriched

water to subsurface. This nutrient supply significantly increases

the net primary production (NPP), which consumes DIC and

decreases the sea surface pCO2 (Xu et al., 2023).

As previously mentioned, the spatiotemporal variability of

hydrographic features and carbonate parameters during sea ice

melt is influenced by various processes; however, their

contributions to the dynamics of sea surface pCO2 remain

unclear. Previous studies have reported the pCO2 dynamics

during sea ice melt through model simulations and field

measurements (e.g., Nomura et al., 2010; Fransson et al., 2017;

DeGrandpre et al., 2020), but limited attention has been devoted to

its changes prior to the melting process (DeGrandpre et al., 2020).

The Arctic Ocean serves as a conduit for water exchange

between the Pacific and Atlantic oceans, and its biogeochemical

cycling is influenced by lateral inputs of nutrients from sources like

nutrient-rich inflows through the Barents Sea (North Atlantic) and

Chukchi Sea (North Pacific) (Schuster et al., 2013). Characterized

by intricate interactions and feedbacks among sea ice, ocean, and

atmosphere, the Arctic Ocean plays a crucial role in the global

climate system, (Bates et al., 2011). In the context of global

warming, there has been a significant decline in seasonal sea ice

extent in the Arctic Ocean over the past four decades, accompanied

by a more recent year-round decrease in sea ice extent, area, and

volume (Polyakov et al., 2020). For instance, arctic sea ice extent has

decreased at a rate of 13.1% per decade in September and 2.6% per

decade in March; furthermore, the annual mean thickness of sea ice

in the central Arctic Ocean reduced from 3.59 m to 1.25 m between

1975 and 2012 (Lindsay and Schweiger, 2015; Garcia-Soto et al.,

2021). The reduction of sea ice content would hinder dense water

formation while slowing down deep water circulation processes,

leading to diminished CO2 sequestration capacity (Semiletov

et al., 2004).

In this study, we investigated the pCO2 dynamics during two

cruises in the western Arctic Ocean using underway measurements

downloaded from an online database. Firstly, we identified the

dominant processes governing the variations in pCO2 and

subsequently used a 1-D dynamic model to simulate pCO2 values
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in the western Arctic Ocean during sea ice melt. Finally, we

quantified changes in pCO2 between different stages of sea ice

melt and elucidated their underlying controlling mechanisms.
2 Data and methods

2.1 Study area

The Arctic Ocean is a distinct basin surrounded by vast

continental land masses. Based on hydrographic, topographic, and

ocean circulation characteristics, the Arctic Ocean can be classified

into various sub-regions such as the Norwegian Sea, Barents Sea,

East Siberian Sea, Chukchi Sea, Beaufort Sea and the Canada Basin

(Yasunaka et al., 2018). In this study, we divided the western Arctic

Ocean into three sub-regions, as (1) the nutrient-rich Chukchi Sea

shelf with a latitude range of 65-75°N; (2) the oligotrophic Canada

Basin separated from the Chukchi Shelf along the shelf breaks at

depths of 250-500 m isobaths; and (3) the Beaufort Sea separated

from both the Chukchi Sea and Canada Basin by boundaries defined

as longitude 152°W and latitude 72°N (Figure 1). Considering the

different sea ice concentration (SIC) values presented in Table 1, we

further divided the Canada Basin into two sub-regions, i.e. a sea ice

covered zone (>77°N) and a rapid sea ice melt zone (<77°N). In

Canada Basin, the water column can be categorized into five

primary water masses, namely Pacific Winter Water (PWW),

Alaska Coastal Water (ACW), Chukchi Summer Water (CSW),

Early-Season Melt Water (ESMW), and Late-Season Melt Water

(LSMW). During the warm seasons, ESMW and LSMW exert

significant influence on the characteristics of surface water,

confirming the impact of sea ice melt water (Qi et al., 2022a).
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2.2 Data source

In this study, the in situ temperature, salinity, dissolved

inorganic carbon (DIC), total alkalinity (TA), air and seawater

pCO2 values in the western Arctic Ocean were obtained from the

Climate Variability and Predictability Experiment (CLIVAR)

database (https://www.ncei.noaa.gov/access/ocean-carbon-

acidification-data-system/oceans/RepeatSections/) (Figure 1). The

data were collected during the 4th and 5th Chinese National Arctic

Research Expedition (CHINARE) in 2010 and 2012, respectively.

Detailed sampling and analysis methods for these two cruises can be

found in Ouyang et al. (2020). Wind speed was obtained from JRA-

55 reanalysis dataset (http://search.diasjp.net/en/dataset/JRA55),

which has a spatial resolution of 0.5625° latitude/longitude and a

temporal resolution of 3 hours (Japan Meteorological Agency/

Japan, 2013). Near-surface winds were utilized to calculate the

high wind frequency (HWF), representing the percentage of time

when wind speed exceeds 10 m/s (Xu et al., 2023).
2.3 Air-sea CO2 flux estimation

The net air-sea CO2 flux (FCO2, mmol C m-2 d-1) is calculated

as (see Equation 1):

FCO2 = k� a� (pCO2s − pCO2a)� (1 − SIC) (1)

where k represents the gas transfer velocity (m d-1), a denotes

the solubility of CO2 (mol kg-1 atm-1; Weiss, 1974); pCO2s and

pCO2a represent the partial pressure of CO2 in seawater and

atmosphere, respectively, and their difference (defined as DpCO2)

determines the direction of CO2 transfer; SIC is the sea ice

concentration with values ranging from 0 to 1. Please note that
A B

FIGURE 1

Maps showing the location of sampling stations (red squares) and underway measurements (blue dotes) in the western Arctic Ocean during 2010
(A) and 2012 (B). Also shown are the boundary of different sub-regions following Ouyang et al. (2022): (1) Chukchi Sea shelf with latitude of 65-75°N,
as shown by the yellow line; (2) Canada Basin, separated from the Chukchi Shelf along the 250-500 m isobaths; (3) the Beaufort Sea, separated from
the Chukchi Sea and Canada Basin along 152°W and 72°N, respectively. Considering the different sea ice concentrations during warm seasons, we
further divided the Canada Basin into two sub-regions with a latitude of 80°N, i.e. the sea ice covered zone and the rapid sea ice melt zone (Ouyang
et al., 2022).
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the SIC data utilized in this study were obtained from the NSIDC

(Nation Snow and Ice Data Center) database (https://nsidc.org/

data/nsidc-0079/versions/3).

The gas transfer velocity was calculated following Wanninkhof

(2014), as (see Equation 2):

k = 0:251� U10
2 � (Sc=660)−0:5 (2)

where U10 represents wind speed at 10 m height. Sc corresponds

to Schmidt number for CO2, which was determined using equations

in Wanninkhof (2014).
2.4 Modeling the pCO2 values with a 1-D
dynamic approach

In this study, a mass balance model was used to simulate the

pCO2 dynamics during sea ice melt. For each simulation step (Dt, 1
day in this study), sea surface pCO2 was calculated from TA and

DIC at the corresponding step. A change in DIC inventory for a

time step, Dt, in the surface mixed layer (defined as DDICt) is

calculated as follows (see Equation 3):

DDICt = (FCO2t + NCPt)� Dt=(MLD� r) + DDIC(diluted)t (3)

where FCO2t, NCPt, and DDIC(diluted)t indicate the changes in

DIC inventory (mmol kg-1) induced by air-sea CO2 flux (mmol C

m-2 d-1), net community production (NCP, mmol C m-2 d-1), and

melt water dilution (DDIC(diluted)t, mmol kg-1) at simulation time

step t, respectively. MLD (m) and r (set as 1.021×103 kg m-3) are the

mixed layer depth and density of surface seawater.

During the model simulation, we assumed that the dilution of

ice melt water will change the concentrations of DIC and TA in the

seawater at a same rate, which has been previously proposed and

utilized by Qi et al. (2022b). In Arctic Ocean, the TA and DIC values

in surface water were set as 1959 mmol kg-1 and 1880 mmol kg-1,

respectively, which were much higher than that in the ice melt water

end-member (TA=400 mmol kg-1, DIC=450 mmol kg-1) (Yang et al.,

2023). The mixing of ice melt water have negligible influence on the
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TA/DIC ratio in surface water, which is close to 1:1. Therefore, any

changes in DIC induced by dilution (defined as DDIC(diluted)t) can

be quantified as follows (see Equation 4):

DDIC(diluted)t = (TAt+1 − TAt)=TAt � DICt (4)

where (TAt+1-TAt)/TAt is the changing rate in TA during sea

ice melt. And DIC at time step t+1 is iteratively calculated as follows

(see Equation 5):

DICt+1 = DICt + DDICt (5)

Due to the dilution caused by ice melt water, TA in the seawater

decreased continuously from its initial values at a SIC of 95% to low

values at a SIC of 0% during the sea ice melt. Subsequently, TA

remained constant during the ice free period. With the new DIC

and TA for the next simulation step, a new pCO2 is calculated, and

this simulation process repeats until the last day.
3 Results

3.1 Distributions of sea surface
temperature, salinity and pCO2 in the
western Arctic Ocean

The surface distributions of temperature (SST), salinity (SSS), and

pCO2 during both cruises are shown in Figure 2, which exhibited

significant spatial variability. In 2010, SST ranged from -2.0 to 8.0 °C,

exhibiting a latitudinal decreasing trend (Figure 2A). The Chukchi

Sea exhibited the highest SST values, followed by the rapid sea ice

melt zone and the sea ice covered zone in Canada Basin. This

distribution pattern aligns with previous studies conducted by Sun

et al. (2017) and Yang et al. (2023), which can be attributed to

reduced solar radiation at higher latitudes and the influence of warm

Pacific surface water on the Chukchi Sea shelf (Zheng et al., 2021).

SSS displayed their highest values on the Chukchi Sea shelf, ranging

from 29 to 32.5, while relatively lower values were observed in

Canada Basin, ranging from 25.5 to 29 (Figure 2B). As mentioned
TABLE 1 Summary of sea ice concentration (SIC), high wind frequency (HWF) and wind speed in different sub-regions.

Sub-regions Date Voyage SIC HWF Wind Speed
(m s-1)

Chukchi Sea 20100720 Forward 0.063 0.081 5.81

20100829 Return 0.018 0 5.09

20120718 Forward 0.130 0.019 5.83

20120907 Return 0.019 0.168 7.44

Sea ice covered zone in Canada Basin 20100730-20100826 Forward and return 0.694 0 3.30

20120904 Forward and return 0.288 0.042 6.47

Sea ice melt zone in Canada Basin 20100724 Forward 0.524 0.114 5.11

20100826 Return 0.092 0.021 4.89

20120906 Return 0 0.194 7.23
Note HWF is high wind frequency (wind speed >10 m s-1).
Please note that these average values were obtained from model simulation following methods described in Xu et al. (2023).
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earlier, high salinity on the Chukchi Sea shelf reflects the influence of

Pacific Source Water, whereas low salinity surface water in Canada

Basin is likely diluted by ice melt water (Geilfus et al., 2012). The sea

surface pCO2 during this cruise exhibited a range of 100-350 matm
(Figure 2C). Low pCO2 values were observed on the Chukchi Sea

shelf, whereas high values were observed in Canada Basin. On the

Chukchi Sea shelf, the low pCO2 values can be attributed to the high

biological production sustained by nutrient-rich Bering Strait

through flow (Tu et al., 2021; Zheng et al., 2021). In Canada Basin,

sea ice exerts a significant influence on regulating the dynamics of sea

surface pCO2 during both sea ice formation and melt processes. The

evolution of sea surface pCO2 during the sea ice melt will be further

quantified in the subsequent discussion.

In 2012, SST, SSS, and pCO2 ranged -1-7.5 °C, 25.0-32.0, and 180-360

matm, respectively (Figures 2D–F). Due to the influence of Pacific Water,

theChukchi Sea shelf exhibited significantly higher SST and SSS compared

to the Canada Basin, which is consistent with the observations made in

2010. In contrast to the observations in Canada Basin, the sea surface

pCO2 on the Chukchi Sea shelf was observed to be at its lowest level.
3.2 Distributions of SIC, HWF and wind
speed in the western Arctic Ocean

As shown in Table 1, the surface water in the northernmost sea

ice covered zone was predominantly encompassed by sea ice with
Frontiers in Marine Science 05
SIC values ranging from 0.29 to 0.69 throughout the sampling

period. In the rapid sea ice melt zone, distinct SIC values were

recorded during these three voyages, ranging from 0 to 0.524. On

the Chukchi Sea shelf, there was a minor influence of sea ice melt as

evidenced by low SIC values ranging from 0.02 to 0.13. The highest

HWF and wind speed were observed during the cruise in 2012.
4 Discussion

4.1 Controlling processes to the dynamics
of sea surface pCO2 in Canada Basin

4.1.1 Temperature effect
During both cruises, the variability of SST ranged from -1.6 °C

to 4.0 °C, which could significantly impact the distribution patterns

of surface pCO2. To assess the influence of temperature on pCO2

variability, we plotted the relationship between lnpCO2 and SST

(Figure 3A). In 2010, a positive correlation was observed with an

equation of lnpCO2 = 0.0394×SST+5.7704 (R2 = 0.38, p<0.05).

Wanninkhof et al. (2022) suggested an exponential increase in

pCO2 with rising temperature at a rate of 4.13% °C-1. Although the

observed slope was nearly consistent with the theoretical value of

0.0413, the correlation coefficient is only 0.6 (R=0.6). This result

indicates that although temperature is a significant controlling

factor, it cannot fully explain the variability in pCO2 within the
A B

D E F

C

FIGURE 2

Surface distributions of temperature (left panels), salinity (middle panels), and pCO2 (right panels) in the western Arctic Ocean in 2010 (A–C) and
2012 (D–F). In (A, B), SST and SSS observed north of 80° N are sourced from bottle data. In (C), pCO2 were calculated from DIC and TA using the
CO2SYS program (Pierrot et al., 2006), which employed dissociation constants for carbonic acid from Mehrbach et al. (1973), as refitted by Dickson
and Millero (1987), along with the dissociation constant for HSO4

- determined by Dickson (1990). The relationship between total boron and salinity
followed Uppstrom (1967).
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Canada Basin. In 2012, there was also a positive correlation

relationship between lnpCO2 and SST for surface water with an

equation of lnpCO2 = 0.0702x+5.8696 (R2 = 0.26, not shown in the

figure), but this relationship alone cannot fully explain variation

in pCO2.

4.1.2 Dilution of ice melt water
In Canada Basin, it has been suggested that the offshore surface

water is influenced by the dilution of ice melt water and Pacific

Source Seawater (Qi et al., 2020). Using end-member values of

S=33.215 ± 0.012, TA=2242.2 ± 6.9 mmol kg-1, DIC=2159.1 ± 0.3

mmol kg-1 for Pacific Source Seawater and S=0, TA=400 mmol kg-1,

DIC=450 mmol kg-1 for ice melt water (Yang et al., 2023), we

calculated the proportions of ice melt water at different salinities.

During both cruises, the fractions of ice melt water ranged from

12.7% to 27.7%. We further calculated the conservative pCO2 values

at different salinities, and the result suggested a pCO2 value of 368

matm at salinity of 22, and a pCO2 value of 411 matm at salinity of

29. The observed difference in pCO2 (43 matm) can be attributed to
Frontiers in Marine Science 06
the dilution effect. We also examined the relationship between

npCO2 and SSS to investigate the influence of water mass mixing

on the variability of sea surface pCO2 in Canada Basin (Figure 3B).

In this study, npCO2 was normalized to 0 °C following the method

of Wanninkhof et al. (2022). Consequently, no significant

correlation was observed between npCO2 and SSS, indicating that

other processes may exert a stronger impact on the spatial

variability of sea surface pCO2 than mixing during both cruises.

4.1.3 Air-sea CO2 flux
In Canada Basin, there was an average difference of -25 to -80

µatm between pCO2 values in surface water and the overlying

atmosphere (Table 2), indicating a net uptake of CO2 during both

cruises. Using average SIC values and wind speeds summarized in

Table 1, we estimated the air-sea CO2 flux during the sampling

period, and the results are summarized in Table 2. Consequently, the

instantaneous air-sea CO2 fluxes varied from -1.6 to -4.3 mmol C m-2

d-1 (Table 2; negative values indicate a CO2 sink). Our estimated CO2

flux was almost consistent with Yasunaka et al. (2016) of -4 ± 4 mmol
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FIGURE 3

Relationships of lnpCO2 vs. sea surface temperature, SST (lnpCO2-SST, (A) and npCO2 vs. sea surface salinity, SSS (npCO2-SSS, panel b) for surface
water in Canada Basin in 2010 and 2012. In panel a, dashed line indicate the logarithm of air pCO2. In (B), black arrows represent the end-members
of ice melt water and Pacific Source Seawater with end-member values sourced from Qi et al. (2020) and Yang et al. (2023); solid line represent the
hypothetical conservative mixing line between these two end-members.
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C m-2 d-1, Manizza et al. (2019) of -2.5 ± 0.2 mmol C m-2 d-1, Bates

and Mathis (2009) of -1.7~-4.2 mmol C m-2 d-1, and Islam et al.

(2017) of -2.5 ± 2.6 mmol C m-2 d-1 in Arctic Ocean, but was lower

than Ouyang et al. (2022) of -5.0 mmol C m-2 d-1 in Canada Basin,

Sun et al. (2017) of -8.6 ± 1.4 mmol C m-2 d-1 and Burgers et al.

(2017) of -12 mmol C m-2 d-1 in Arctic Ocean.

Here we conducted a preliminary estimation of DIC and

subsequently the pCO2 increase during sea ice melt. Assuming an

average CO2 flux of -3.0 mmol C m-2 d-1 during these three voyages

(Table 2), an ice melt period of 80 days during warm seasons (from

DSR=-40 to DSR=40), and an average MLD of 16 m that obtained

using methods described in Xu et al. (2023) (Table 2), it can be inferred

that the air-sea CO2 exchange at the sea surface would result in a rise in

seawater DIC by 15 mmol kg-1. Based on the definition of Revelle factor

(RF), pCO2 variability caused by the air-sea CO2 exchange can be

calculated as: RF×pCO2water×DDICF/DICwater (Harry et al., 1979;

Egleston et al., 2010). The results suggest that, during sea ice melt,

air-sea CO2 exchange at the sea surface would lead to an increase in

seawater pCO2 by 40 matm in Canada Basin.
4.1.4 Sea ice concentration
In Canada Basin, a significant negative relationship is observed

between SIC and sea surface pCO2 (pCO2=-46.14×SIC+343.43,

R2 = 0.47, Figure 4). The surface pCO2 tends to decrease with

increasing SIC, exhibiting lower values in areas where SIC>0.5 and

higher values in open water with an SIC of 0. In Arctic ecosystems,

low SIC would facilitate CO2 dissolution into seawater, leading to
Frontiers in Marine Science 07
increased seawater DIC and surface pCO2. During both cruises, the

observed sea surface pCO2 was measured at 343 matm when SIC=0,

and decreased to 297 matm when SIC=1. The calculated difference

in pCO2 amounts to 46 matm.

4.1.5 Biological consumption
In Arctic Ocean, the higher nutrient supply and subsequent

biological consumption of DIC result in a significant net uptake of

CO2. Previous studies have reported the NCP values in this region,

ranging from 1.88 to 7 mmol C m-2 d-1 (Cai et al., 2010; Islam et al.,

2017; DeGrandpre et al., 2019; Ouyang et al., 2022). Using an NCP

value of 1.88 mmol C m-2 d-1 (Cai et al., 2010), and an ice melt

period of 80 days, it can be inferred that biological consumption

would lead to a decrease in seawater DIC by 9 mmol kg-1 and

subsequently reduce seawater pCO2 by 24 matm.

4.1.6 Wind speed
In the estimation of air-sea CO2 flux, higher wind speeds lead to an

increased gas transfer velocity, thereby resulting in a higher CO2 flux

(see Equation 2). In Arctic Ocean, the intensified CO2 sink under high

wind speeds would elevate seawater DIC concentrations and

subsequently increase pCO2. Here we utilized the HWF obtained

from model simulations to characterize the intensity of wind speeds

(for more details on the model simulation, please refer to Xu et al.

(2023)), and their respective results were presented in Table 1.

Consequently, HWF and wind speeds exhibited notable increases in

2012 than in 2010, which may also contribute to higher pCO2 in 2012.
FIGURE 4

Linear relationship between surface pCO2 and sea ice concentration (SIC) in Canada Basin with data collected during both 2010 and 2012.
TABLE 2 Summary of sea surface temperature (SST), sea surface salinity (SSS), sea surface pCO2, air-sea DpCO2, CO2 flux, and average mixed layer
depth (m) in Canada Basin.

Date Voyage SST
(°C)

SSS pCO2in-situ

(matm)
Air-sea DpCO2 (matm) CO2 flux

(mmol C m-2 d-1)
MLD
(m)

20100724 Forward 0.3 ± 0.9 25.4 ± 1.8 306 ± 41 -71 ± 41 -1.6 ± 1.6 13.2

20100826 Return -0.5 ± 1.2 26.8 ± 1.2 292 ± 35 -80 ± 34 -4.3 ± 1.8 16.2

20120906 Return 0.3 ± 0.1 25.8 ± 0.5 351 ± 19 -25 ± 19 -3.3 ± 2.4 18.8
frontie
Please note that the mixed layer depth (MLD) during both voyages was obtained using methods described in Xu et al. (2023).
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4.2 Modeling the sea surface pCO2 during
sea ice melt

4.2.1 Results from a 1-D dynamic model
To assess changes in sea surface pCO2 during sea ice melt, we

utilized the definition of days since ice retreat (DSR) in our results

description and model simulation. Firstly, the day of ice retreat

(DOR) is defined as the day when SIC falls below 15%. Then, we

calculate the temporal difference between DOR and the day of field

observation (DOF), which represents DSR. A positive or negative

DSR indicates that the corresponding DOR occurred earlier or later

than DOF. The specific values of DSR and SIC during these two

cruises can be found in the Supplementary Material provided by Qi

et al. (2022b).

In the present study, we divided the sampling period during

both cruises into three distinct stages, the pre-retreat stage (DSR<-

40), an active sea ice melt stage (-40<DSR<0), and a post sea ice melt

stage (DSR>0). Consequently, DSR values for pCO2 measurements

in 2010 were predominantly negative (DSR<0), representing an

active sea ice melt stage. Conversely, DSR values in 2012 were

positive (DSR>0), representing a post sea ice melt stage. As shown

in Figure 5, during the active sea ice melt stage in 2010, pCO2

measurements displayed a scattered distribution pattern; however,

they demonstrated an increasing trend during the post sea ice melt

stage in 2012.

In order to gain a better understanding of variations in pCO2

during sea ice melt, we extended our simulation time to the early

melt period. Consequently, our modeled results covered the DSR

from -50 days to the maximum DSR recorded during these two
Frontiers in Marine Science 08
cruises (50 days). The initial values and model settings were derived

from Qi et al. (2022b). Briefly, the initial SST, SSS, pCO2, and TA

were averaged from observations beneath the sea ice for the period

2011-2020 when DSR was less than -40. Their respective values

were set at -1.0 °C, 27.1, 330 matm, and 1959 mmol kg-1. During the

sea ice retreat period (-50<DSR<0), we assumed that SST linearly

increased from its initial value to the mean SST over -5<DSR<5.

Simultaneously, ice concentration linearly decreased from 95% to

0%, while SSS and TA decreased gradually from their initial values

to their respective means over -5<DSR<5. The values of SST, SSS,

and TA at DSR=0 were set to -0.7 °C, 26, and 1886 mmol kg-1,

respectively. During the ice free period (DSR>0), SSS and TA

remained constant while allowing SST to increase up to a

maximum value of 1.4 °C at DSR=60. A NCP value of 1.88 mmol

C m-2 d-1 was assigned for the period between -40<DSR<50 to

reflect weak primary production in the study area (Cai et al., 2010),

whereas a value of 0 mmol C m-2 d-1 was used for the period

between -50<DSR<-40. An averaged MLD of 16 m was consistently

applied throughout the simulation (Table 2). Two average wind

speeds, 4 m s-1 recorded during July and August in 2010, and 7 m s-1

observed during July, August, and September in 2012, were

considered for CO2 flux estimation and model simulation.

The evolution of seawater pCO2 during sea ice melt in Canada

Basin was simulated with a wind speed of 4.0 m s-1, and their result

was shown in Figure 5. During the pre-retreat stage, no significant

change was observed in the simulated seawater pCO2. Subsequently,

a decreasing trend in pCO2 was observed during the active sea ice

melt stage. Following this stage, there was a continuous increase in

the simulated seawater pCO2 during the post sea ice melt stage.
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FIGURE 5

Relationships between pCO2 and days since ice retreat (DSR) in Canada Basin during the cruise both in 2010 and 2012 (gray circles). Orange squares
and error bars indicate the average values. During both cruises, DSR values for pCO2 measurements in 2010 were predominantly negative (DSR<0),
representing an active sea ice melt stage. Conversely, DSR values in 2012 were positive (DSR>0), representing a post sea ice melt stage. The
horizontal dashed line is the atmospheric pCO2 of 390 matm, and the vertical dashed line is DSR=0 d. Solid lines are the simulated seawater pCO2

using a 1-D dynamic approach at a wind speed of 4 m s-1 (pink line) and 7 m s-1 (blue line), with initial values and model settings derived from Qi
et al. (2022b).
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When using a higher wind speed of 7.0 m s-1, it was noted that pCO2

exhibited a decreasing trend when DSR<-10 but an increasing trend

when DSR>-10. In comparison to the pCO2 values simulated at a

wind speed of 4.0 m s-1, the modeled pCO2 with a wind speed of

7.0 m s-1 showed significantly higher values; exhibiting a difference

of 11 matm at DSR=0 and reaching up to 25 matm at DSR=50.

4.2.2 Quantifying the controlling processes to
the pCO2 dynamics during sea ice melt

Here, we quantified the controlling processes to pCO2 dynamics

during sea ice melt at two stages, the active sea ice melt stage (from

DSR=-40 to DSR=0) and the post sea ice melt stage (from DSR=0 to

DSR=50), with modeled carbonate parameters at DSR=-40, 0, and 50.

To assess the impact of temperature effects on pCO2 dynamics, we

firstly calculated pCO2 values at different SSTs while keeping DIC and

TA constant for each stage. The difference in pCO2 values represented

changes attributed to temperature effects. For biological production

and air-sea CO2 exchange, we first calculated the variability in DIC

resulting from the biological consumption (referred to as DDICBio)

and air-sea CO2 flux (referred to as DDICFlux) as NCP/(MLD×r) and
FCO2/(MLD×r), respectively. Subsequently, these DIC consumption/

addition values were subtracted/added to the observed DIC data

(referred to as DICobs-Bio and DICobs-Flux), allowing us to calculate

seawater pCO2 with the new DIC concentrations. The difference

between these calculated and observed pCO2 values indicates

changes attributed to biological production and air-sea CO2

exchange. Finally, the DIC changes resulted from the dilution of ice

melt water was estimated as DDIC-DDICBio-DDICFlux to balance the

overall DIC budget. Its impact on pCO2 variability could be

determined using methods described above.

During the sea ice melt, the contributions of different processes

to the dynamics of pCO2 under a wind speed of 4 m s-1 were

summarized in Figures 6A. During the active sea ice melt stage, the

increase in SST of 0.24 °C only resulted in a rise in pCO2 by 4 matm.

Over a time scale of 40 days, biological production and air-sea CO2

exchange led to a decrease and increase in DIC by 5 mmol kg-1 and 5

mmol kg-1, respectively, which would alter seawater pCO2 by -15

matm and 15 matm correspondingly. Furthermore, the dilution

effect caused by ice melt water further reduced seawater pCO2 by

16 matm. Consequently, compared to its reduction resulting from

biological production and dilution effects, the contribution of air-

sea CO2 exchange towards increasing pCO2 was significantly lower.

The combined effects of biological production, dilution effects, and

air-sea CO2 exchange have a significant impact on reducing pCO2

during this stage. During the post sea ice melt stage, there was an

observed increase in pCO2 by 45 matm. The increase in SST by 2.1 °

C would elevate pCO2 by 32 matm, while biological production and

air-sea CO2 exchange would lead to a decrease and increase

respectively in seawater pCO2 by 22 matm and 37 matm due to

variability in DIC of -7 mmol kg-1 and 11 mmol kg-1. The influence

of ice melt water is negligible during the post sea ice melt stage.

Consequently, the increase in pCO2 resulting from high

temperatures and air-sea CO2 exchange outweighs its decrease

caused by biological production. The combined effects of

temperature effect, biological production, and air-sea CO2
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exchange result in a prevailing increase in sea surface pCO2

during the post sea ice melt stage.

Compared to the average low wind speed of 4.0 m s-1 recorded

during July and August in 2010, the enhanced CO2 uptake at a high

average wind speed of 7.0 m s-1 observed during July, August, and

September in 2012 would further increase seawater pCO2 by 17

matm during the active sea ice melt stage and by 8 matm during the

post sea ice melt stage, while the contributions of temperature,

biological production, and dilution from ice melt water remain

constant (Figure 6B). During the active sea ice melt stage, although

the presence of sea ice cover hinders air-sea CO2 exchange at the sea

surface, the increased wind speed from 4.0 m s-1 to 7.0 m s-1 and

extremely low pCO2 values (ranging from 320-330 matm) tend to

facilitate CO2 dissolution into seawater and subsequently elevate the

pCO2 by 17 matm. However, this wind-driven enhancement in CO2

sinking is significantly attenuated with a pCO2 increase of 8 matm
during the post sea ice melt stage when pCO2 values are

considerably higher (ranging from 330-370 matm).
A

B

FIGURE 6

Contributions of temperature effect, biological production, air-sea
CO2 flux and the dilution of ice melt water to the changes of sea
surface pCO2 during sea ice melt at a wind speed of 4 m s-1 (A) and
7 m s-1 (B). During the data processing, the modeled carbonate
parameters at DSR=-40, 0, and 50 were selected for quantification.
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4.2.3 Uncertainty analysis
In this study, the initial values utilized in model simulations

were derived from a long-time field observation, which may

differ from the observed values in a specific year. As previously

discussed, we quantified the impact of varying wind speeds on

pCO2 dynamics, ranging from 53 to 77 matm. Regarding the

dilution effect, the mixing of ice melt water contributed to a

pCO2 variability of 18-43 matm. For biological production, a low

NCP of 1.88 mmol C m-2 d-1 and a high NCP of 7 mmol C m-2 d-1

was used in our pCO2 simulation, indicating that biological

processes could contribute to a pCO2 variability of 37-137

matm. Additionally, temperature effects were found to

contribute significantly to a pCO2 variability of 36-350

matm. Therefore, careful selection of wind speeds, NCP values

and the temperature range is crucial for achieving accurate

model simulations.
5 Conclusion

This study presents the dynamics of sea surface pCO2 during

sea ice melt based on field measurements in the western Arctic

Ocean. Compared to the pCO2 reduction resulting from biological

production and dilution effects, the contribution of air-sea CO2

exchange is significantly lower. The combined effects of these

factors have a significant impact on reducing pCO2 during the

active sea ice melt stage. In contrast, during the post sea ice melt

stage, the increase in pCO2 resulting from high temperatures and

air-sea CO2 exchange outweighs its decrease caused by biological

production, dominating the prevailing increase in sea surface pCO2.

Compared to normal situations with a wind speed of 4.0 m s-1,

enhanced CO2 uptake at a high wind speed of 7.0 m s-1 would

further elevate seawater pCO2 during both active and post sea ice

melt stages. The increase in pCO2 with high wind speed was more

pronounced during active sea ice melt stage when seawater pCO2

values were significantly lower. The present study reports, for the

first time, the carbonate dynamics and controlling processes that

govern pCO2 dynamics during the active sea ice melt stage. It

highlights the crucial role of wind speed in regulating the evolution

of surface pCO2 during sea ice melt.

In the Arctic Ocean, Manizza et al. (2019) also observed an

exceptionally low SIC and relatively high levels of pCO2 in the

East Siberian Sea during 2012. Their findings indicated that the

melt of sea ice under elevated seawater temperatures resulted in a

substantial accumulation of freshwater on the sea surface. The

presence of this low-density freshwater led to stratification

within the water column, which hindered primary productivity

of surface phytoplankton and impeded further reduction of

pCO2 through biotic processes, consequently leading to

increased values of sea surface pCO2. Our study argues that

enhanced air-sea CO2 uptake during periods characterized by
Frontiers in Marine Science 10
high wind speeds also contributed to the elevated levels of sea

surface pCO2 observed in 2012.
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