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ABSTRACT 

 

Cross-frames are bridge structural members that provide lateral-load resistance 

and stability during construction, reduce buckling length of the compression flanges of 

steel girders, and to contribute to distribution of traffic loads among girders at in-

service bridges. It is hypothesized that cross-frames, play positive role in load 

distribution among the girders, and by extension contribute in increasing bridge 

system capacity. Furthermore, understanding the mechanisms behind the load sharing 

among bridge components at design and inelastic load levels could help with better 

understanding system-level behavior of bridges,  In the light of the nationwide high 

inventory of structurally deficient bridges, the application of system-level analysis 

would allow for better identification and prioritization of the most critical structures 

and allow for a more efficient use of the limited financial resources available for 

infrastructure investments. Therefore, to goal of this study was to investigate the role 

that cross-frame play in bridge stress distribution at in-service bridge. Prior research 

showed that for highway steel I-girder bridges, bridge skew, cross-frame type, and 

cross-frame placement can significantly affect bridge response in terms of stress 

distribution. Cross-fame designs (K-frame vs. X-frame), cross-frame layouts (inline 

vs. staggered) and bridge five skews (0°, 25°, 46°, 55° and 63°) were selected as 

parameters of interest. Additionally, FE models without the cross-frames (No-frame 

models) were added to each bridge skew. Combining all parameters of interest total of 

25 bridge FE modes were built and analyzed.  
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Stress distributions of main bridge components (girders, deck and cross-frames 

were extracted) from the models and evaluated using “holistic” level approach. The 

“holistic” level approach refers to comprehensive assessment of all FEA stress 

distribution data, not only peak values. The results showed that by using “holistic” 

evaluation of stress distribution data, we were able to identify and quantify best 

performing cross-frame configuration. However, results also indicate that removing 

cross-frames from bridges did not substantially affected stress distributions throughout 

the bridge. This finding was further strengthen by Tensor decomposition analysis of 

stress distribution data. This method found that removing cross-frames from the bridge 

models did not affect substantially stress distributions at design load levels. Although, 

removing cross-frames from the bridge models did affect stress distribution at first 

yield and system yield load level, it did not affect overall system capacity of the 

bridge. 
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                                            INTRODUCTION 

 

 

 

  Current State of Practice 1.1

Cross-frames are bridge structural members that are intended to provide 

lateral-load resistance and stability during construction, reduce the buckling length of 

the compression flanges of steel girders, and contribute to distribution of traffic loads 

among girders for in-service bridges in current practice. Because cross-frames have 

significant detailing demands, they are very expensive to fabricate and install, 

especially at highly skewed bridges. All this motivates bridge engineers to search for 

the optimal cross-frame design in terms of size, spacing, and connectivity that will 

make cross-frames efficient, inexpensive, and reliable.  

Furthermore, based on the experimental testing conducted by Jorgenson at el. 

(1972) Burdette and Goodpasture (1973), Miller et al. (1992), Bakht and Jaeger (1992) 

Aktan et al. (1994) and McConnell et al. (2014a), it is known that bridges have system 

capacity much greater than predicted by the current design code. Simplistically stated, 

this occurs in part because the load redistribution between the members comprising 

the bridge is not explicitly considered in design codes; rather design codes are based 

on designing each member individually.  Cross-frames provide transverse load paths 
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enabling this redistribution, and thus may be able to be optimized to lead to increasing 

system capacity of bridges. Bridge system capacity is a measure of the capacity of the 

bridge when load redistribution between members is considered, in contrast to the 

present design philosophy where the capacity is limited by the most heavily stressed 

member.  

With the development of computing powers in the late 20
th

 and early 21
st
 

century, engineers and researchers started numerically analyzing detailed three 

dimensional models of the bridge structures. Three dimensional models are 

advantageous compared to one dimensional models (“line” models), because they can 

capture the response of bridge structure as a system, therefore enabling predictions of 

bridges’ system capacity. Detailed 3D numerical models allowed for in depth 

investigation of how the load is distributed among the bridge components. Using 

advanced mathematical modeling in terms of finite element analysis (FEA), 

researchers were able to investigate the role that load transferring components (such as 

cross-frames) might play in the bridge system capacity (e.g., Chen et all. 1986). 

However, typically, engineers and researchers, when analyzing FEA data, implement a 

“discrete” approach for data assessment, which means that they tend to evaluate only 

peak values in the data. While “discrete” analysis is deemed sufficient when analyzing 

certain bridge behaviors, it might not be sufficient to capture the mechanisms leading 

to the observed stress distribution in steel I-girder bridges. This study suggests that to 

better understand the stress distribution in steel I-girder bridges, a comprehensive 

“holistic” data assessment of all FEA stress distribution data is needed. 
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 Goal of the Study 1.2

The main goal of the study is to evaluate the role that cross-frames play in 

stress distributions for steel I-girder bridges in general, and at skewed bridges in 

particular, using a “holistic” assessment of FEA data. The holistic approach to stress 

data assessment refers to comprehensive and thorough analysis of the stress 

distribution as opposed to selective evaluation of peak values at specific locations. 

This approach includes identifying and designing a proper set of measurements 

capable of comprehensive and thorough exploration of the role that cross-frames play 

in stress distribution. An additional goal of the study is to identify optimal cross-frame 

configurations (in terms of cross-frame type and cross-frame layout) that could 

efficiently distribute stresses in bridges at different skews and under different load 

levels. 

 Significance of the Study  1.3

The results of this research could lead to fundamental changes in the manner in 

which cross frames are analyzed, designed and, most importantly, deployed, especially 

for skewed steel I-girder bridges. A possible unique and distinguishing result of this 

study is to see if the quantity of cross-frames may be eliminated for certain bridge 

configurations. Furthermore, this study introduces completely new approach (holistic 

analysis) in evaluating FEA data, which be used in other engineering disciplines that 

employ FEA.   

Finally, quantifying how much cross-frames assist in distributing stresses in 

steel I-girder bridges could help with:  
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a) Suggesting the best performing cross-frame configurations that could 

maximize live load distribution in steel I girder bridges.  

b) Identifying the optimal number of cross-frames in the bridge to 

efficiently distribute live load. This could lead to decreasing the number 

of cross-frames needed in the bridge, and consequently a reduction in 

construction costs due to eliminating labor intensive and expensive cross-

frame installations. 

c) Identifying the optimal size of the cross-frames needed to efficiently 

distribute live load. Optimizing the size of the cross-frame could reduce 

potential issues related with distortion induced fatigue associated with 

oversized and improperly detailed cross-frames.    

 Research Plan 1.4

To achieve the objectives of this study following research plan was developed:  

 Validate and calibrate a FE model of a representative highway 

steel I-girder bridge.  

 Create and conduct a FEA parametric study.  

 Design and implement “holistic” evaluation of FEA stress 

distribution data.  

 Authenticate “holistic” evaluation of FEA data results using 

multiway analysis.  

Each of these aspects of the research plan are detailed on in the following subsections.  
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 Validation and Calibration of Finite Element Model  1.4.1

McConnell at al. (2015) instrumented and destructively tested a full scale steel 

I-girder bridge, labeled “7R”. McConnell at al. (2015) also built finite element model 

of the bridge. Radovic and McConnell (2014) modified and improved this FE model 

making it more suitable for the “holistic” type analysis.  The field data was used to 

validate and calibrate this improved finite element model. This improved finite 

element model was then used as a template for building other bridge models with 

varying bridge design parameters.   

 Parametric Finite Element Analysis  1.4.2

To investigate the influence of cross-frames on stress distribution, 25 finite 

element parametric models were built and analyzed. The structural elements of these 

models have the same geometry and cross-sectional properties, but the bridges have 

varying skews, cross-frame types and cross-frame layouts. A total of five bridge skews 

(0°, 25°, 46°, 55°, and 63°), two cross-frame types (K-frame and X-frame) and two 

cross-frame layouts (inline and staggered) were incorporated in the parametric study. 

Additionally, at each skew, bridge models without cross-frames were also analyzed. 

Different cross-frame types and different cross-frame layouts serve to identify the best 

performing cross-frame combination in distributing stresses at different skews.   

 Design Numerical Instruments for “Holistic” Evaluation of Stress 1.4.3

Distribution Data    

 Four specially designed numerical instruments (metrics) were developed to 

comprehensively evaluate stress distribution data. These “holistic” metrics were 
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designed with the intent of revealing the trends in the data that would otherwise 

remain undetected if traditional approach to data evaluation was conducted.  

 Authenticate “holistic” evaluation of FEA data  1.4.4

A special case of tensor decomposition method called Tucker decomposition 

was used to validate the “holistic” evaluation results. The differences in stress 

distributions among bridge structural elements when employing or eliminating cross-

frames were analyzed at different load levels for different cross-frame layouts and 

configurations.  

 Dissertation Organization 1.5

Chapter 1: Introduction 

This is the introductory chapter which identifies the problem that needs to be 

addressed, outlines study objectives, and the research plan. 

Chapter 2: Background and Literature Review  

The second chapter provides background on bridge system capacity and the 

different bridge design philosophies. The reader is introduced with bridge engineering 

terminology, different cross-frame designs and layouts. Furthermore, the current state 

of evaluating the output from finite element analysis in bridge engineering is also 

discussed. The background section is followed by a literature review that gives a 

historical overview of cross-frames in current and prior bridge design manuals and 

examines the role of cross-frames in bridge system capacity. Furthermore, the 
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literature review also covers the role of cross-frames play in distortion induced fatigue 

at straight and skewed bridges and the effects that removing cross-frame from the 

bridge could have on stresses associated with this phenomenon. The main goal of this 

chapter is to familiarize readers with the previous work in this field and to introduce 

readers with the dissertation’s main topics and terminology. 

Chapter 3: Finite Element Analysis Validation and Calibration  

 The third chapter details the validation and calibration procedure of finite 

element (FE) modeling of the “7R” bridge. Additionally, this chapter covers in detail 

all steps that are necessary to build accurate and well performing finite element 

models, including accurately and efficiently reproducing cross-frame stresses. The 

first section in the Chapter 3 provides readers with information on how the element 

mesh was built and boundary conditions and composite action were modeled. It also 

covers material properties modeling and load modeling. This section is followed with 

discussing the validation of the modeling techniques by comparing to theoretical 

solutions and calibration of specific input parameters to field results. Additionally, this 

chapter makes recommendations for what type of FE modeling should be used for 

parametric FEA models such as those that are built and analyzed in Chapter 4.   

Chapter 4: “Holistic” Evaluation of Stress Distribution Data 

This chapters introduces reader the parametric study’s design as well as the 

associated motivation and research hypothesis relative to the background presented in 

Chapter 2. This chapter also introduces “holistic” metrics for assessment of stress 

distribution data. It compares and contrast the difference between “discrete” and 

“holistic” data assessment approaches. This is followed by the results of the 
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parametric models using these approaches and discussion of the main findings. The 

chapter ends with the summary of the findings and its implications on the current 

bridge engineering practice.  

Chapter 5: Tensor decomposition of Finite Element Analysis Data  

This chapter introduces readers to the basic operations and mathematical 

background of the tensor decomposition algorithms. This is followed by the review of 

the applications of the tensor decomposition in engineering and other fields. It also 

explains the benefit of multiway data analysis of the finite element data. This chapter 

ends with presenting the results of multiway analysis of the FEA data obtained from 

Chapter 4 FE parametric models.  

Chapter 6: Conclusion & Recommendations 

This is the concluding chapter of the dissertation. It summarizes the problem 

that this dissertation addressed and the associated findings. It also suggests possible 

applications and limitations of the findings. Additionally, it lists recommendations for 

future research in this area.  
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BACKGROUND & LITERATURE REVIEW 

 

The main purpose of the background section is to familiarize reader with three 

main concepts:  

a) how different design philosophies quantify bridge capacity;  

b) the current state of practice in evaluating finite element analysis data in 

the bridge engineering; and 

c) the roles that cross-frames play in stress distribution of steel I-girder 

bridges in general and at highly skewed steel I-girder bridges in 

particular. 

 Bridge Design Philosophies – Line Girder Design vs. System Level Design  2.1

In current bridge engineering practice, structural elements such as girders, decks, 

cross-frames and diaphragms are designed to resist externally applied loads. While 

they are analyzed and designed as individual components, in reality they act as a 

system of interconnected and dependent elements. The contention stated in this 

  Chapter 2
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dissertation is that bridges should not be perceived as a simple sum of individual 

components, but as complex collection of interactions of individual components.  

Furthermore, beside the fact that in current code all bridge elements are 

analyzed independently, line girder analysis is commonly used to determine the force 

effects within the girder. Line girder analysis simplifies the three dimensional bridge 

structure to one dimension (line) configurations and essentially treats system capacity 

as the lowest component capacity. This simplification, severely underestimates the 

system redundancy and ductility that exists in the real three-dimension structure. The 

reason why line girder design philosophy underestimates the 3D structure’s 

redundancy is because it does not account for the abundance of redundant load paths, 

provided by bridge decks and cross-frames, and the ductility of the members that 

allows for loads exceeding the capacity of a single member to be redistributed to lower 

stressed members through these load paths. These factors can significantly increase 

capacity of the bridge, well above values predicted by a single member. Furthermore, 

out-of-plane deformations present at more complex geometries such as found at 

skewed bridges (bridges where girders are not perpendicular to the bridge supports) 

are also not accounted for in line girder analysis, further undermining the accuracy of 

the line girder analysis assessment. 

 However, in the current AASHTO LRFD Bridge Design Specifications (2015) 

the bridge capacity is measured by evaluating capacity of individual members. 

According to this document the factored resistance of a structural member (ϕRn)has 

to be larger than a factored load (γiQi) applied on the structure (Equation 2.1). In 

order to address resistance and load uncertainties, resistance of the structural member 

(Rn) is reduced by resistance factor ϕ (≤1.00), while load effects (Qi) are magnified 
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by load factors γi (generally ≥1.00).  The product of nominal resistance of a structural 

member, Rn, and resistance factor,  ϕ,  is the girder capacity and by extension bridge 

capacity (2.2).  

                                           ϕRn ≥ ∑γiQi                                                   (2.1) 

The design philosophy behind this approach can be called single element 

capacity (SEC), and this design philosophy assumes that an entire system has reached 

its load capacity once one of its members has reached its capacity. This approach may 

produce inefficient bridge designs and could also underestimate the load ratings of 

existing bridges. 

Alternatively, a system level capacity (SLC) approach assumes that a system 

has reached its capacity only after all members of the system have reached theirs or all 

load redistribution paths have been exhausted. The SLC measures how much loading 

the whole system can bear before it structurally fails. This design philosophy relies on 

the assumption that the bridge is a system with sufficiently ductile elements, that is, 

system of elements that are able to maintain load-carrying capacity even after yielding 

(Nowak A., Collins K. (2012)). Therefore, it is not a coincidence that field testing has 

shown that bridges’ system capacity is much greater than predicted by the design code 

(Jorgenson et al. (1972), Burdette and Goodpasture, (1973), Miller et al. (1992), Bakht 

and Jaeger. (1992) and Aktan et al. (1994), McConnell et al. (2015)).  

 If an SLC approach is assumed and a bridge is considered to be a system of 

inter-depended load carrying elements, then the load carrying capacity of the bridge 

can be described as a function of the capacities of all load carrying components in the 

bridge. However, it would not be correct to assume that the load carrying capacity of 

the bridge system is a simple sum of the load carrying capacity of its load carrying 
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members. In order for that to be true, the bridge would have to have a very efficient 

load transferring mechanism. This mechanism should be able to transfer the load 

among primary load carrying members in the bridge. In highway bridges the load 

transferring members are bridge decks and cross-frames. However, it was found that 

load transferring members can fail before all bridge main load carrying members 

reached their capacity, reducing the theoretical bridge system capacity (McConnell et 

al., 2015).  

There were attempts in the past to utilize a system capacity approach in bridge 

rating procedures. The importance of quantifying bridge rating in the bridge 

engineering field is enormous. Bridges are rated to ensure they are safe for use by the 

general public and to help determine federal funding for bridge replacement or 

rehabilitation. Bridge load rating is a method that quantifies the safe live-load carrying 

capacity of any bridge structure, expressed as a rating factor (RF), which is a multiple 

of the number of the design vehicles the bridge can safely carry.  The RF can be 

conceptually expressed as 

                                                    RF = 
C−fD∙D

fL∙L∙(1+I)
                                                   (2.2) 

where, fD = factor for dead loads, fL = factor for live load, D = dead load effect, I = 

impact factor, L = live load effect and C = capacity of the bridge.  

In 1993, Galambos, et al. proposed inelastic rating procedures for the highway 

bridges based on system level considerations. The idea behind the study was to define 

the strength limit state in terms of deflection stability or a specified maximum 

permanent deflection. This inelastic rating procedure takes advantage of the system 

strength inherent in multi-girder structures of multi-span bridges by using system level 
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considerations to lower the live load effect. However, this novel idea was soon 

abandoned due to perceptions of being time prohibitive and overly complex, and was 

never implemented in AASHTO bridge rating manuals. 

 Calculating Bridge System Level Capacity 2.2

Although the AASHTO LRFD Bridge Design Specifications (AASHTO LRFD 

for brevity, 2015) currently provides no direct method by which bridge system level 

capacity can be directly calculated, ways to determine it have been suggested. 

McConnell et al., (2015) suggests calculating bridge system level capacity as the sum 

of the moment capacities of all girders in the bridge cross-section. If this method is 

used to calculate bridge system capacity, two assumptions had to be met: 

1) that structural elements are sufficiently ductile; and 

2) that load-transfer mechanisms can redistribute loads from the most heavily 

stressed girders to the remainder of the girders. 

 The first step in this procedure is to calculate the moment capacities of all 

girders in the bridge. If calculations show that the yield moment is the governing 

capacity then the next step in determining this quantity is calculating the live load 

moment (MAD) that causes yielding in the girder’s cross-section. MAD can be 

obtained by Equation 2.3, 

MAD = Sn [Fy −
MD1

Ss
−

MD2

S3n
]                                             (2.3) 

where MD1 is moment due factored permanent loads on the steel cross-section, MD2 is 

moment due factored permanent loads (such as wearing surface and barriers) on the 
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long term composite section; Fy is yielding strength of the steel and Sn, Ss and S3n are 

section moduli of composite section, steel section, and long term composite section.  

Once calculated, MAD can be compared to an applied moment resulting from 

positioning an HS-20 design vehicle on a bridge structure in a way to produce the 

maximum possible bending moment in the girders. If, for example, MAD of one girder 

is calculated to be 10 kip∙ft, then a total live-load capacity of a 4-girder bridge will be 

40 kip∙ft (if we assume all girders have the same geometry). If the maximum applied 

bending moment for this four-girder bridge is 8 kip∙ft, then system capacity of the 

bridge can be expressed as the ratio of these two moments (40/8=5). Theoretically, 

this ratio 
ΣMAD

Ma
  (where Ma is maximum applied moment) is the number of HS-20 

vehicles the bridge can hold before reaching its system capacity, given that yielding 

moment (My) governs girder design. 

However, destructive testing of bridges (McConnell et al., 2015) has shown 

that elastic-system capacity can be greater than the sum of girder capacities in skewed 

bridges due to longitudinal and transverse spreading of plasticity. Furthermore, 

Betchel et al. (2011) tested the ultimate bridge capacity of a 1/5th scaled bridge model. 

Using the sum of girder capacities, the authors calculated that bridge ultimate capacity 

was equivalent to twenty HS-20 design trucks. According to the authors’ calculations, 

plastification of all girders should have happened/occurred at that load level. However, 

results showed that when the scaled bridge specimen were destructively tested in the 

lab, it failed at the load equivalent to 22 HS-20 design trucks. However, failure mode 

of the structures was due to concrete cracking, not due to steel girders yielding. The 

authors noted that only two out of four girders yielded and none of the girders were 

plastified at this load level.   
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 In conjunction with Bechtel’s findings, McConnell et al. (2015) conducted 

destructive testing of a full scale four-girder steel highway bridge. Using AASHTO 

LRFD equations to determine moment capacity, the authors calculated that full bottom 

flange cross-sectional yielding of   one girder should have happened at a load 

magnitude that corresponds to fifteen HS-20 design trucks. However, during 

destructive testing of the bridge, yielding was not observed at any location even after 

load equivalent to 17 HS-20 trucks was applied. 

Bridge system capacity can also be numerically evaluated, using the Modified 

Riks Method (Riks method in further text). This is an arc-length method used for 

assessing nonlinear post-buckling behavior of structures, developed by Edward Riks 

(1979), and used in the finite element analysis applications. The Riks method applies 

progressively larger magnitudes of load, while simultaneously searching for a 

combination of forces and displacements (and thus other associated structural response 

metrics such as stress) that satisfy equilibrium at each magnitude of loading. The Riks 

method is ideally suited to analyzing behavior after a peak loading is reached. This 

method can obtain solutions for cases involving complex unstable responses such as 

buckling and collapse (Abaqus Documentation, 2013). Algorithms for this method 

exist in commercial FEA software, such as Abaqus 6.11, which was used in this 

dissertation. A number of studies have successfully used modified Riks method in 

assessment of the bridge system level capacity (Ross (2007), Betchel et al. (2011), and 

McConnell et al. (2015).  
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 State of Practice in Interpreting Finite Element Analysis (FEA) Data in 2.3

Bridge Engineering   

Finite element analysis (FEA) is commonly used to predict behavior of various 

structures and their assembled members. For example, FEA can be used to determine 

maximum strength or displacements of a structural member under a variety of loading 

conditions or to investigate distribution of stress among various members. As a 

research tool, FEA is routinely used to investigate complex structures such as bridges 

or buildings.   

FEA discretizes structural parts into geometric shapes (elements) bounded at 

their corners with nodes, while assigning material properties to each element. The grid 

lines seen in the left of Figure 2.1 denote element boundaries for an I-shaped member. 

The response of these elements to input loading is calculated via a system of partial 

differential equations, each element containing multiple unknown quantities calculated 

by the FEA method (Bathe, 1982).  

 

Figure 2.1 Element mesh of the finite element model (FEM) of a steel bridge I-girder 

(on the left) where rectangles represent discretized geometrical shapes (elements) that 

can be numerically modeled with a system of partial differential equations. Stress 

contours (on the right) show the spatial variation of stress magnitudes due to imposed 

loads. 
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Because the solution for the set of differential equations is based on numerical 

approximations, a more detailed set (i.e., a finer FEA mesh with a larger number of 

elements) will theoretically yield more accurate solutions, up to a point where the 

influence of mesh size converges to a common solution.  

The number of elements in a typical model could vary anywhere from 

hundreds to millions. As a result of a typical FEA, displacements, stresses, and strains 

in multiple directions are computed for each element. Furthermore, one FEA may 

realistically contain anywhere from one to hundreds of loading conditions, producing 

a unique data set for each loading. Thus, the potential output from these analyses is 

immense. For perspective, Figure 2.2 shows a subset of potential FEA data, showing 

one type of output (von Mises stresses) for the elements in one structural part (bottom 

flange) of one highway bridge component (one girder) that was subjected to 60 load 

increments.   

In current practice, only a small fraction of this available data is quantitatively 

analyzed. For example, it is often the case that only the extreme values in the data set 

(such as minimum/maximum stresses or maximum displacements) at a particular 

region of interest are analyzed. A possible exception to this statement are contour plots 

allowing visualization of the spatial distribution of the magnitudes of a specific output 

variable that can be produced by some FEA post-processing software (as seen in 

Figure 2.1 on the right).  
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Figure 2.2 FEA output of bottom flange element stresses from bridge girder, subjected 

to 60 load increments. Each line represents a single bottom flange element and each 

point on the line represents the stress value measured at increasing load increments   

 

While this type approach might be sufficient in some research applications, it 

is a premise of this dissertation that this approach limits the ability for fully 

understanding stress distributions in bridges. This is because when thoroughly 

assessing the cumulative contribution of the bridge components to the bridge stress 

distribution, one has to quantify stresses in all elements that represent these 

components. The problem arises in the fact that each bridge component, such as 

girders or cross-frames, might consist of thousands of elements (depending of the 

mesh density), and consequently thousands of stress data points. This raises a question 

of how to analyze the cumulative effect of that many outputs. The traditional approach 

would assume that the bridge component (girder, cross-frame) reached its capacity if 
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one of the elements on the bridge component finite element mesh exceeded some pre-

defined value. It is not hard to conclude that this type of approach results in a very 

limited view of the results. 

 Cross-frames in Steel I-girder Bridges  2.4

This section reviews prior findings on different roles that cross-frames play in 

steel bridges frames in general and role that cross-frames play in stress distribution in 

highly skewed bridges in particular. It also reviews studies that investigated the effect 

of skew on bridge behavior. The section is divided into five subsections: overview of 

cross-frames in steel bridges; cross-frame design in current practice; the role of cross-

frames at skewed bridges; cross-frames effect on distortion induced fatigue; and role 

of cross-frames in bridge system capacity.   

 Overview 2.4.1

Cross-frames are bridge structural members that are intended to provide 

lateral-load resistance and stability during construction, reduce the buckling length of 

the compression flanges of steel girders, and contribute to distribution of traffic loads 

among girders. This latter role is perhaps the most uncertain. The magnitude of this 

role in load distribution depends on the stiffness of the cross-frames relative to the 

stiffness of the girders. Research showed that cross-frames actively distribute the load 

only when a load is directly placed above cross-frame location (Degenkolb, 1977). 

“Remote” cross-frames (cross-frames not in the proximity of the load) do not 

participate in load distribution actions. Furthermore, for more uniform transverse 

distribution of the live load, several closely spaced cross-frames have to be present. 
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“The diaphragms spacing should be as close as girder spacing…” in order to achieve 

significant lateral load transfer (Degenkolb, 1977).   

In most cases, cross-frames are made of single or double angle steel profiles. 

Typical cross-frame configurations consist of diagonals, top chords, and /or bottom 

chords as well as gussets plates used for member connections (Figure 2.3).  

    

Figure 2.3The figure on the left shows a typical X-frame type consisting of diagonals 

and bottom chord. The figure on the right shows a typical K-frame type with 

diagonals, bottom chord and top chord. Girders in both figures are denoted with black 

color, while connection plates and cross-frame members are represented with gray 

color.  

The most commonly used cross-frame types are X-frame and K-frame (Figure 

2.3). Depending upon placement of cross-frames with respect to girder lines, a cross-

frame layout can be inline or staggered, the former referring to cross-frames placed in 

the same transverse plane and the latter to cross-fames being longitudinally offset 

from each other, usually at constant distances (Figure 2.4). 

 

Diagonals 

Bottom 

Chords 

Top Chord 
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Figure 2.4Inline cross-frame layout (left) and staggered cross-frame layout (right). 

Note that cross-frames on the left side have top chords incorporated in their design 

configuration, while cross-frames on the right are without the top chord members.  

 Cross-frames in Steel I-girder Bridges – Past and Current Design 2.4.2

Guidelines 

In one of the first comprehensive bridge engineering books ( Bridge 

Engineering, 1917), J.A.L. Waddell called for bracing of top and bottom flange of 

girders using lateral braces. Starting in 1949, the AASHTO Standard Specifications, 

specified maximum limits of 25ft for cross-frame spacing. Later, this maximum 

spacing was investigated by experimental research (DeCatro and Kostem (1975), 

Zellin et al. (1975), Degenkolb (1977), and Kostem (1984)), but resulted in no 

conclusive explanation of why this limit was set. Eventually, the 25ft maximum 

spacing requirement was removed from the AASHTO Specifications (2012) and 

replaced with a requirement that maximum cross-frame spacing should be based on 

rational analysis. This new requirement also resulted in the reduction of fatigue prone 

attachment details associated with cross-frame to girder connection by potentially 

allowing fewer cross-frames.  
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Article 6.7.4 of AASHTO LRFD Bridge Design Specifications (2015) 

specifies that the general role for diaphragms or cross-frames in steel girder 

superstructures is to: 

 

1. Transfer of lateral wind load from the bottom of the girders to the deck and 

from the deck to the bearings. 

2. Stability of the top flange in compression prior to curing of the deck 

3. Stability of the bottom flange for all loads when it is in compression. 

4. Consideration of any flange lateral bending effects. 

5. Distribution of vertical dead and live loads applied to the structure. 

 Article 6.7.4 AASHTO LRFD Bridge Design Specifications (2015) also 

specifies some general cross-frame design requirements pertaining to steel I-girder 

highway bridges: 

 

1.  Intermediate diaphragms or cross-frames should be provided at nearly uniform 

spacing in most cases for efficiency of structural design, constructability and to 

allow simplified methods of analysis for calculating flange lateral bending 

stresses. Closer spacing may be necessary adjacent to interior piers, in the 

vicinity of skewed supports and for some cases near mid-span. 
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2. Cross-frames should be as deep as practical, but the minimum should be at 

least one-half of beam depth for rolled beams and three-fourths the depth for 

plate girders.  

3. Where supports are not skewed, intermediate diaphragms and cross-frames 

should be placed in contiguous lines normal to girders.  

4. Where supports are skewed more than 20º, diaphragms or cross-frames should 

be placed in contiguous lines normal to girders or in staggered patterns. 

 Cross-frames in Steel I-girder Bridges –Effects of Bridge Skew and Cross-2.4.3

Frame Configuration 

Skewed bridges are often built due to geometric restrictions, such as obstacles, 

complex intersections, rough terrain or space limitations (Menassa et al., 2007). In 

1916, design recommendation was made to avoid building skewed bridges because of 

lack of understanding of their complex behavior and load distribution (Fu & Wang, 

2014). However, an infrastructure boom in the early 1960’s led to significant changes 

in construction practices. The old infrastructure was being replaced with the new, 

right-of-way became more difficult and expensive to acquire, and bridges were being 

constrained by less available space, resulting in a large number of skewed bridges 

being built.  

A number of studies investigated the relationship between cross-frames and 

bridge skew. For example, (Ozgur (2011) and Radovic & McConnell (2013)) showed 

that as the bridge skew increases, the lateral-bending stresses in girders, is increasing. 

McConnell et al. (2016) tested two steel I-girder bridges with moderate (32°) and high 

(62°) skew. The study found that the cross-frame forces at the bridge with high skew 
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was three times larger than cross-frame forces in the moderately skewed bridge. 

Similarly, Bishara & Elmir (1990) found that the higher the skew angle, the higher the 

maximum forces are induced in cross-frame members.  

Krupicka &Poellot (1993) reported that unwanted transverse stiffness in bridge 

girders, if often located near skewed supports. They attributed this unwanted 

“nuisance” stiffness to the presence of cross-frames in the proximity of skewed 

supports. In order to facilitate larger load transfer between girders, designers can 

increase the size of the cross-frames, in some cases causing the cross-frame stiffness 

to approach that of the girders. However, increasing the size of the cross-frames 

increases the nuisance stiffness at girders’ bottom flanges. The problem is that this 

stiffness is not typically accounted for during design. To mitigate this problem, White 

et al. (2012) recommended that the first intermediate cross-frames from the end 

support of a skewed bridge should be placed far from the support. Moving cross-

frames away from the supports, especially in skewed bridges, should minimize the 

effects of excessive transverse stiffness that cross-frames cause. 

Cross-frame layout on peak stresses in bridge girders was also investigated by 

McConnell et al. (2014). This study showed that cross-frame layout influences bottom 

flange stresses, especially if a staggered cross-frame layout is used. The staggered 

cross-frame layout was shown to reduce cross-frame forces at the expense of increased 

lateral bending stresses in the bottom flange. Furthermore, Wang at al. (2011) and 

Schafer (2012) also found that staggered cross-frame layouts reduces cross-frame 

forces at skewed bridges.  

Wang and Helwig (2008) evaluated the strength and stiffness requirements for 

the two cross-frame layouts of perpendicular to the girders versus parallel to the skew, 
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in moderately skewed bridges (45°). They found that the stiffness and strength 

requirements of the cross-frames placed parallel to the skew were more affected by the 

skew than the stiffness and strength requirements of the cross-frames placed 

perpendicular to the skew.  

 Cross-frames in Steel I-girder Bridges – Effects on Distortion Induced 2.4.4

Fatigue  

Distortion induced fatigue in steel bridges is caused by out-of-plane girder 

deflections, possibly resulting in cracking of girder connections due to improper 

detailing. This type of fatigue crack often occurs in the web near flanges at a location 

of welded transverse stiffener that also serves as a connection plate for the cross-

frame. This type of fatigue cracking is commonly known as a “web-gap cracking”, 

which refers specifically to fatigue cracks induced by out-of-plane distortion in 

regions of girders’ web gaps. The cause of this problem originated from construction 

practices recommending not to weld transverse web stiffeners to a tension flange. 

Distortion induced fatigue is amplified by the presence of the cross-frames, because 

cross-frames provide additional out-of-plane load paths. The majority of steel girder 

highway bridges that were built in late 1960’s initially did not demonstrate any 

problems, but by late 1990’s, a survey of state transportation officials showed that 

“distortion-induced fatigue cracking is the most frequently encountered type of fatigue 

distress observed by various state transportation agencies” (Bowman et al.  (2012)).  

Furthermore, a number of studies investigated distortion induced fatigue 

cracking and found that cracking occurs at the web in the vicinity of the connection 

plate of cross-frames and girders (Keating et al. (1997), Stallings et al. (1997), Barth 

& Bowman (2001), Connor & Fisher (2006), McDonald & Frank 
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(2009)).Furthermore, researchers investigated the role of cross-frame layout, cross-

frame types, and cross-frame member on the development of fatigue cracks.  

Two different cross-frame layouts (staggered versus inline) were investigated 

by Wang et al. (2011) and Hartman et al. (2010). Wang et al. (2011) showed that 

staggering cross-frames will lower cross-frame forces, thus reducing the risk of fatigue 

problems. Hartman et al. (2010) found that staggering cross-frames can change the 

location of the maximum web gap stress, however the difference in the magnitude of 

the maximum web gap stress was very small (1%). Similarly, Hassel et al. (2013) 

investigated the effect that bridges with different skews, cross-frame layout and cross-

frames of different sizes have on web gap stresses. The study found that the staggered 

cross-frame layout was least prone to distortion induced fatigue. Additionally, if the 

size of cross-frame members and the size of the connection stiffeners is increased, 

greater web gap stresses are induced.  

 Cross-frames in Steel I-girder Bridges – Effects on Bridge Capacity 2.4.5

A recent study (McConnell et al., 2014) found the bridge skew, cross-frame 

layout, and cross-frame design affect vertical and lateral peak bending stresses in steel 

I-girder bridges. Another study (McConnell et al, 2015) suggested that bridge system 

capacity of bridges with large skews can be limited because the load transferring paths 

(provided by cross-frames and deck) are not sufficient to allow all bridge girders’ 

cross-sections to yield. In other words, cross-frames may yield before girders, 

inhibiting load transferring paths in the system.  

Furthermore, it has been shown that bridge skew also affects bridge system 

ultimate capacity and bridge overall behavior. Helba (1995) found that as skew of the 

bridge increases, the system level capacity of the bridge increases. Similarly, Bechtel 
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et al. (2011) investigated ultimate capacity of skewed, simple-span bridges by 

evaluating six bridge FE models having skews ranging from zero to seventy-five 

degrees (0°, 10°, 25°, 45°, 60°, 75°) while girder length, width and cross-frame 

spacing (25ft) remaining constant. The study showed that the magnitude of load 

needed to cause yielding in each girder increases with increasing skew angle. At 60° 

bridge skew, system capacity of the bridge was 19% larger than that of the model 0°. 

The authors concluded that large bridge skews have a beneficial effect on the system 

capacity of the bridges, because skewed arrangement caused major differences in the 

magnitude of the moments in adjacent girder cross-sections in the same transverse 

plane. 

A few studies investigated what effect of removing cross-frames from the 

bridge will have on the peak stresses in the bridge. Azizinamini et al. (1995) showed 

that the maximum bottom flanges strain in the straight steel I- girder bridge was not 

affected significantly (less than 16%) by removing cross-frames. Similarly, Tedesco et 

al. (1995) investigated bridge behavior under live load, with and without the cross-

frames. The study used validated FE models for the comparison. The results showed 

that removing the cross-frames from the bridge, had a “modest” effect on the overall 

bridge response. Specifically, if cross-frames were removed, the flexural stress and 

vertical deflection for “the most highly stressed girders” increased by only 8% and 

9%, respectively. Stalling et al. (1997) found moderate increase (15%) in peak bottom 

flange stresses once the diaphragms were removed from the multi girder steel bridge. 

Keating & Crozier (1992) found that peak bottom flange stresses were 25% higher 

when cross-frames were removed from the bridge. Furthermore, Keating et al., (1997) 

found that up to 50 percent of the diaphragms can be removed from the bridge 
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“without altering the load distribution characteristics of the bridge.” The study was 

motivated by fatigue damage observed from out-of-plane web bending (distortion) at 

cross-frame attachments where a web gap existed.  

 Literature Review Summary 2.5

The foregoing literature review has showed that while the effect of skew, 

different cross-frame designs and placements have been investigated in straight and 

skewed bridges, no comprehensive research has investigated the role that cross-frames 

play in stress distribution under service loads or system level capacity loads. 

Furthermore, current bridge design specifications (AASHTO, 2015) assume that cross-

frames contribute to the stress distribution in steel I-girder bridges, although some 

studies indicated that contribution is minimal, especially at skewed bridges (Keating, 

et al. (1992), Stallings, et al. (1999) and Moore, et al. (1990)) 

The literature reviews also showed that a link exists between bridge skew, 

cross-frame forces and system capacity, yet the mechanism behind mutual inter-

correlation between such parameters is not clearly understood or quantified. There are 

two main issues when analyzing the effectiveness of the cross-frames designs when 

considering bridge system capacity. First issue is quantifying the degree of cross-

frames yielding. The question is what would be the proper metric to evaluate cross-

frame yielding. The second issue is quantifying the effect of cross-frame designs on 

the bridge system capacity, and the effect of cross-frame designs on the stress 

distribution on other bridge components (girders, deck and etc). Finally, the literature 

review also shows that there are no prior studies that approached investigating the role 

of cross-frames in the bridge stress distribution from a holistic perspective. In general, 
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studies used discrete approach in analyzing data, i.e., analyzing only a limited number 

of data points. 

We hypothesize that in order to accurately understand overall system behavior, 

comprehensive stress evaluation of bridge components is needed under both service 

level loads and under system level capacity loads. Such an approach should 

incorporate comparing and evaluating overall stress distributions throughout the 

bridge. For that reason, a new investigative method, termed a “holistic” approach to 

data analysis, such as comprehensively analyzing stress distribution of bridge 

components obtained from the bridge finite element analysis (FEA) data, is proposed 

in Chapter 4 Section 4.3.2 of this dissertation.  
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FINITE ELEMENT MODELING, VALIDATION, AND CALIBRATION 

 

Finite element analysis (FEA) is based on a discretization of structural parts 

into geometric shapes (elements) that are bounded by vertices (nodes). The response 

of these elements to an input loading is calculated via a system of partial differential 

equations, with each element containing multiple unknown quantities that are 

calculated by the FEA method (Bathe, 1982). These quantities, representing the 

response of the system, need to be validated to make sure that the model follows 

governing theoretical assumptions.  

Sometimes approximating complex physical objects, such as bridge structures, 

can be challenging due to uncertainty of the physical parameters that constitute the 

object, such as material strength, degree of composite action between concrete deck 

and steel girders, boundary conditions, etc. All these uncertainties can lead to 

approximation errors in the results. To reduce these errors, the model can be tuned by 

varying some of the parameters in question. This procedure is called model 

calibration. The purpose of the calibration procedure is to better approximate the input 

for unknown parameters in the FEA model.  

A three-dimensional finite element model of “Bridge 7R”, described in this 

chapter, was built and analyzed. The location of a neutral axis and system level 

capacity of the bridge were two metrics that were used to validate the FE model. A 

 Chapter 3



35 

 

calibration of FE model was conducted by determining two unknown parameters: a) 

the compressive strength of concrete; and b) the level of composite action between 

steel girders and concrete deck.  This chapter is divided into four sections: FE 

modeling methodology, FE model validation, FE model calibration, and FE parameter 

selection.  

3.1 FE Modeling Methodology 

This section details the procedure used for building a three-dimensional finite 

element model of “Bridge 7R”.  This section is divided into thirteen sub-sections: 

bridge geometry, element mesh, checking mesh quality, element selection, material 

modeling, cross-frame modeling, end diaphragm modeling, deck modeling, composite 

action modeling, boundary conditions, load modeling, Riks analysis, and processing 

and output. 

3.1.1 Bridge 7R 

3.1.1.1 Bridge Description 

All finite element models presented in the following sections of this 

dissertation are based on a representative highway bridge, labeled “7R”. This bridge is 

selected on the basis of extensive prior evaluation of this structure’s behavior, 

including in-service and destructive testing and a corresponding FEA (McConnell, 

2015). Bridge “7R” consists of three independent simply spans and is a 63° skewed 

steel I-girder structure, with the span of interest being 105.3ft long (Figure 3.1). The 

bridge has 4 plate girders spaced 8ft on center. All four plate girders were fabricated 

from A7 steel (with nominal yielding strength of 33ksi) and had a web depth of 60in. 
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and a web thickness of 3/8in.  Other geometry varied between girders and along the 

length of the girders as described below.    

 

Figure 3.1 Front view and dimension of the Bridge 7R (top), cross-section view of 

Bridge 7R (bottom). 

Top flange dimensions are 20 x 1in. for the exterior girders and 18 x 7 8⁄ in. for 

the interior girders. Bottom flange dimension for the exterior girders are 20 x 1 ¼ in, 

while bottom flange dimensions for the interior girders are 20 x 1in. To add to the 

girder flexural strength, full-width cover plates are welded to the bottom flanges of the 

girders. The exterior girders have cover plates welded at 32.25ft on each side of the 

girder centerline. The interior girders have cover plates welded at 32.75ft on each side 

of the girder centerline. The effective dimensions of the bottom flanges at mid-span 

(including cover plates that exist in this location) are 20 x 3
1/8 

in. for the exterior 

girders /and 20 x 2
1/2

in for the interior girders. The webs of the interior girders were 
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stiffened with double-sided transverse stiffeners spaced every 4ft. The webs on the 

exterior girders were stiffened with the single-sided transverse stiffeners on the 

interior face and single-sided longitudinal stiffeners on the exterior face of the exterior 

girders. A composite 8 in.-thick concrete deck with a 2in. haunch is connected to the 

girder by shear connectors. A photograph of Bridge 7R while it was in service can be 

seen at the Figure. 3.2. 

 

Figure 3.2 Bridge 7R photographs taken during in-service field-testing. Photograph on 

the top the shows the view of the bridge from the side, while photograph on the 

bottom shows the bridge cross-frames and girders as viewed from below. 
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The transverse stiffeners also serve as connection plates for the cross-frames. 

The transverses stiffeners are 5in wide and 0.375in thick. The longitudinal stiffeners 

are located at the mid-height of the web along the full length of the exterior girders. 

All girders have bearing stiffeners at the bridge supports, which are 0.75in thick and 

8in wide.  

Additionally, end diaphragms, steel I-sections of equal depth to the girders, 

connects the girders at each end of the member. The steel diaphragm consists of a 1in 

thick and 7.5in wide bottom flange, 60in high and 0.375in thick web, and 7.5in wide 

and 0.375in thick top flange. Lateral bracing consisted of K-frames that were spaced at 

20ft along the length of the girders, with variable spacings between the cross-frames 

and the diaphragms, as shown in Figure 3.1. All cross-frames are composed of 4x3½ 

x3⁄8in angles and connected to gusset plates by four bolts at the end of each member; 

the gusset plates are connected to transverse stiffeners welded to the girders’ web.   

3.1.1.2 Instrumentation and Data Collection 

Multiple locations on the bridge were strategically selected and instrumented 

with strain gauges to capture the bridge system response to increasing load 

(McConnell, et al. 2015). The strain data were collected during 17 load increments, 

with each load increment being equivalent of the magnitude of load of one HS-20 

vehicle. Figure 3.3 shows the locations where data was collected from 16 gauges 

located near mid-spans of Girder 2 (G2-A) and Girder 3 (G3-A) and bottom and top 

chord of cross-frame CF3.   

The gauges that instrumented the girder cross-sections were placed in the 

following positions: 
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a. Two gauges were placed on the top face of the bottom flange, two 

inches from each edge (BF1 and BF2).  

b. Two gauges were placed on opposing sides of the web at a distance of 

25in from the top face of the bottom flange (W1 and W2). 

c. Two gauges were placed on the bottom face of the top flange, two 

inches from each edge (TF1 and TF2).  

The two gauges that instrumented the cross-frame’s bottom chord were placed 

at the quarter point along the length of the cross-frame (CF3 BA1-A and CF3 BA2-A) 

and one of these was placed in the center of the cross-section of the concentric leg and 

the other was placed in the center of the cross-section of the eccentric leg of the angle 

member. The two gauges that instrumented cross-frame’s top chord (CF3 TA1-A and 

CF3 TA2-A) were placed in the same positions on the cross-section but were placed at 

the mid-point along the length of the cross-frame.   



40 

 

 

Figure 3.3 Location and labeling of the girders and cross-frame strain gauges used for 

the experimental data collection.  

 

Placing gauges on the bottom flange, web, and top flange made calculation of 

the neutral axis theoretically possible, assuming longitudinal bending without warping 

is taking place. Under this same assumption, placing gauges on the opposite sides of 

each girder element provided data redundancy in case of any gauge malfunction and 

allowed for lateral bending to be assessed.  
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3.1.2 Building Finite Element Mesh  

  Building the finite element mesh started with importing a previously 

created 3D Auto-Cad drawing into the Femap interface. Femap is commercial finite 

element software that was used for building the finite element mesh. Once imported 

into the Femap interface, the model consisted of lines with geometric coordinates that 

represent the geometry of Bridge 7R. Based on the line geometry, surfaces are created 

for each bridge structural component such as webs; top and bottom flanges; haunches; 

deck; connection plates; cross-frames; longitudinal and transverse stiffeners; bearing 

stiffeners and end diaphragms. Surfaces are special modeling features that can be used 

to manipulate the size of the element meshes, element properties, and element 

orientations.  

Additionally, in order to achieve a uniform element mesh distribution 

throughout the bridge model, surfaces were carefully designed to capture any 

intersection between different bridge components. Modeling bridge geometry with 

surfaces ensures that whole bridge model has conforming finite element mesh (Figure 

3.4).  In a conforming finite element mesh each element shares its boundary nodes 

with is neighboring element (Figure 3.4 left). On the other hand, non-conforming 

meshes have boundary nodes that are not aligned with neighboring elements (Figure 

3.4 right). A general rule of thumb for good FE modeling is that, if possible, the model 

should have conforming element meshes. This is especially true if the elements are 

expected to experience large deformations. Once the whole bridge is modeled by 

surfaces (Figure 3.5), all surfaces are assigned the same element size to ensure 

conforming element meshes throughout the bridge model. Additionally, discretizing 
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the surfaces allowed creation and testing of different mesh sizes fairly easily for the 

entire bridge model. 

 

 

Figure 3.4  Conforming (left) and non-conforming (right) element mesh between 

cross-frames and connection plates.   

Figure 3.5 Modeling using surfaces. Top left figure shows detailed surface modeling 

of the connection between the cross-frame and the vertical stiffener. Bottom right 

figure shows detailed surface modeling of the bracing point between end diaphragm 

and the girder’s web.    

A six different element meshes were evaluated. Large meshes with element 

sizes of 4, 6 and 8in did not produce conforming meshes throughout the bridge and 

they were not further considered in the analysis. Small meshes with element sizes of 2, 

1, 0.5in produced conforming meshes throughout the model and they were further 

evaluated. Due to computational intensive analysis that was planned for this study, it 
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was important to find the best combination between model’s accuracy and the model’s 

size. A mesh with a 2in element size produced a model with over 150,000 elements, a 

mesh with a 1in element size produced a model with 600,000 elements and a mesh 

with a 0.5in element size produced a model with 2,400,000 elements. The difference 

in peak bottom flange stresses between the model with 150,000 elements and the 

model with 600,000 elements was only 1%. With such small difference in bottom 

flange stresses, it was concluded that the mesh with the element size of 2in was 

acceptable. The model with the size of 2,400,000 elements was not further considered 

because it was deemed that this model would produce an output file of such size that 

file post-processing would be unmanageable with the computing power available at 

the time.  

Additional consideration was given to the size of the deck elements. It seemed 

that the size of the deck mesh was too dense relative to the objective of this study. 

After much of consideration, it was decided that the size of the deck elements could be 

increased, without compromising the mesh conformity between other elements.  

Therefore, the elements of the deck mesh were increased to 12in. This significantly 

reduced the size of the FE model from over 150,000 elements to 114,000 elements, 

while not affecting the peak stresses at the bottom flange at the mid-point of the 

bridge, where stresses were being compared in this mesh sensitivity study.  

3.1.3 Checking Mesh Quality and Connectivity 

Once all surfaces are meshed to create elements, element quality was tested 

using a built-in function in FEMAP. The element quality check consists of comparing 

element geometry in the model to the geometry of “ideally shaped” elements. The 

“ideally shaped” element refers to a set of parameters that when met, give the most 
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accurate results. Specifically, the element’s aspect ratio, taper, skew, warping and 

Jacobian were checked against default values provided by Femap “element quality 

check” function. If the elements did not pass this test, a group with distorted elements 

was created. The distorted elements were re-checked and re-evaluated to make sure 

that their geometry will not interfere with further analysis. Some of the distorted 

elements were deleted because it was determined that their geometry would negatively 

contribute to model results (more detailed explanation about this procedure was given 

in the Section 3.1.6 Cross-frame Modeling).  

Following element quality check, the coinciding node check was conducted for 

the whole model. The coincident node check is a function available in the Femap 

which evaluates if elements that form bordering surfaces share the same nodes. For 

example, web elements and bottom and top flange elements should share the nodes 

where these two surfaces meet in order for the physical connectivity of the elements to 

be mathematically represented. Applying a small search radius to this function (this 

value can be defined by the user and in this case a 0.3in search radius was used), the 

program searches for the nodes within this radius of all other nodes. Nodes within the 

prescribed radius of one another can then be merged at the user’s discretion.  Using 

this function ensured that model does not have any unconnected regions or “floating” 

elements, as this would cause a numerical singularity problem during the analysis.   

3.1.4 Elements Selection 

Two types of elements were used: shell and beam. The girder flanges and 

webs, stiffeners, deck, haunch, and connection plates were modeled using 4-node, 

reduced integration shell elements, labeled as type S4R in Abaqus (Figure 3.6). End 

diaphragms were modeled using beam elements (B31). The reason for the end 
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diaphragm being modeled as beam elements is further explained in detail the Section 

3.1.7). B31 is computationally efficient, one-dimensional line element that can be used 

for modeling of three-dimensional structures. B31 elements have 3 translational and 3 

rotational degrees of freedom at each node. The shell elements also have 3 

translational and 3 rotational degrees of freedom at each node.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 S4 Shell element orientation (left) and B31 beam element orientation (right) 

in Abaqus  

3.1.5 Material Modeling  

Once the elements passed the element quality check, concrete and steel 

material properties were created. Material properties and cross-sectional properties of 

the elements are then assigned to the element properties. For example, the web 

element property was assigned a steel material with a thickness of 0.375in, the 

concrete deck property was assigned a concrete material with a thickness of 8in, etc. 

Concrete and steel are the materials that are modeled for the purpose of this 

study. The concrete was modeled as isotropic linear elastic material. Figure 3.7 shows 

the input for this material in the units of pounds and inches. 
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Figure 3.7 Example of the Abaqus command for modeling of concrete with 

compressive strength of f’c=4,500psi. Concrete was modeled as isotropic elastic 

material. Concrete cracking or plasticity features were not included in this model.  

The steel was modeled as elastic-plastic isotropic material. Abaqus requires 

plastic material input to be expressed in terms of true stress and logarithmic plastic 

strain. True stress (𝜎𝑇) is defined as the ratio of the external load to the instantaneous 

cross-sectional area of the loaded element and can be related to engineering stresses by 

(3.1),  

              𝜎𝑇 = 𝜎𝐸(1 + 𝜖𝐸)                                      (3.1) 

where 𝜎𝐸 is engineering stress and 𝜖𝐸 is engineering strain. Engineering strain (𝜖𝐸) is 

related to logarithmic plastic strain (𝜖𝑙𝑛) by (3.2), 

 

            𝜖𝑙𝑛 = ln(1 + 𝜖𝐸) −
𝜎𝑇

𝐸𝑠
                                                           (3.2) 

where 𝐸𝑠 is modulus of elasticity of steel. For small deformation, the difference 

between engineering and true stress is negligible. However, as strains exceed the 

elastic limit, the change in cross-sectional area increases, resulting in true stresses that 

can be significantly higher that engineering stresses. 
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The plastic properties of steel were adopted from McConnell et al. (2015), with 

a steel yield strength of 36,045psi and strain hardening.  The yield strength represents 

a 36ksi yield stress in terms of engineering stress, which equals a 10% increase over 

the minimum specified yield strength of the material to account for typical material 

over-strength. The plastic region of the analysis was assumed to have a strain 

hardening behavior, represented by a variable slope of the stress-strain curve as 

reflected by the stress-strain data points used to define the constitutive relationship 

shown in Figure 3.8 and Table 3.1. The first number in the Figure 3.8 is the value of 

the true stress, while the second number represents the corresponding logarithmic 

plastic strain.  

 

Table 3.1 Plastic Material Properties used for Girders, Connection Plates and 

Stiffeners  

 
True Stress (psi) 

 

Logarithmic Plastic Strain 

 

36045 0 

36611 0.0111 

69020 0.1716 

85463 0.3335 

 

 

Figure 3.8 Abaqus command that models steel material as isotropic elastic-plastic 

material 
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3.1.6 Cross-frame Modeling  

Because the role of cross-frames in stress distribution throughout skewed steel 

I-girder bridges is one of the main objectives of this study, detailed consideration was 

given to cross-frame modeling. An initial obstacle was that the structural drawings and 

documents for Bridge 7R were not detailed with respect to finer details of the cross-

frame geometry. Therefore, photos from Ross (2007) were used to quantify these 

details (Figure 3.10a). The cross-frame length from the image was compared to the 

known length from the plans in order to obtain an approximate dimensions of cross-

frame members. Furthermore, width to length ratios of commonly used gusset plates 

in bridge design were analyzed to approximate dimension of the connection plates.  

Figure 3.9 shows the evolution of refining the cross-frame meshes of Bridge 

7R. Figure 3.9 (a) shows the image that was used to approximate the cross-frame 

connection plate dimensions and lengths of the top, bottom, and diagonal chords with 

greater precision than available in the structural drawings. Figure 3.9 (b) shows the 

scaled drawing that was used for cross-frame modeling.  Figure 3.9 (c) shows a 

rendered view of a cross-frame mesh using beam elements, which was determined to 

be of insufficient accuracy in preliminary work by the author. Note that the dashed 

black lines show the location of the beam elements. Figure 3.9 (d) shows the cross-

frame modeled with shell elements in a prior parametric study by the author (Radovic 

& McConnell (2014)).   

Figure 3.9 (e) represents a very detailed shell element mesh before the element 

quality check was performed. This more detailed cross-frame model that appropriately 

represented the physical geometry of the cross-frame had distorted elements within the 

tapered connection plate that connected the transverse stiffener and bottom chord of 



49 

 

the cross-frame. Because of the shape of the tapered end of the connection plate and 

because the element mesh size was kept constant for all bridge components (2in), 

elements of the tapered connection plate were severely distorted and could not pass the 

element quality check. In general, elements with distorted shapes tend to develop 

“phantom” stresses or unrealistic distortions. Furthermore, distorted elements in the 

models could cause convergence issues during the analysis.  

Therefore, it was decided to remove the elements from the tapered connection 

plate from the model. Figure 3.9 (e) contains arrows pointing to the location of these 

distorted elements. It was recognized that removing these elements would reduce the 

stiffness of the cross-frame. However, considering the total size of the cross-frame 

compared to the total size of the removed elements, the difference in the cross-frame 

stiffness was considered to be negligible. The final cross-frame mesh used for FE 

model validation and calibration is shown in Figure 3.9(f).  
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Figure 3.9  “Evolution” of cross-frame element mesh modeling 

 

3.1.7 End Diaphragm Modeling 

The girders of Bridge 7R are laterally supported at the supports by a steel 

diaphragm (Figure 3.10). Initially, the end diaphragm was modeled using shell 

elements. However, due to the skew of the bridge and mesh size being 2in, the 
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element mesh of the top and bottom flange diaphragm became severely distorted 

(Figure 3.10). As explained in Section 3.1.6 it was very important that the model had 

an element mesh with a minimum number of distorted elements. To remedy this issue, 

it was decided to model end diaphragms with beam elements, while preserving 

diaphragm stiffness properties.  

 

 

 

 

 

 

 

 

 

Figure 3.10 Prior shell modeling of the end diaphragms. Top figure highlights the non-

conforming and distorted mesh at the location where top and bottom flange of 

diaphragm connect to the top and bottom flange of the girder.  

 The beam elements were defined by an orientation vector perpendicular to the 

length of the element to define the orientation of the cross-section. The result of the 

end diaphragm modeling can be seen in Figure 3.11, where the figure on the left 

shows the model of the end diaphragm (where beam elements are shown as a line in 

non-rendered view) and the figure on the right shows the realistic rendering of the 

same end diaphragm. 
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Figure 3.11 Using beam elements to model end diaphragm. 

In order to confirm that modeling the end diaphragm as shell or beam elements 

did not significantly affect stresses throughout the bridge, bottom flange stresses at the 

girder’s mid-point were compared. Results showed that there was a minimal 

difference between stresses obtained from the two alternative models. The graph on 

the left of Figure 3.12 shows the difference in bottom flange stresses at ten elements 

evaluated along the width of the bottom flange. The graph on the right of Figure 3.12 

shows the percent difference between the beam and shell models, with an average 

percent difference of only 0.3%. 

 

    
 

Figure 3.12 Difference in bottom flange stresses in models with end diaphragm 

modeled with beam elements and end diaphragm modeled with shell elements is 

shown to be negligible.  
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3.1.8 Deck Modeling  

The bridge deck was modeled as shell elements with a thickness of 8 in and 

concrete material properties described in Section 3.1.5. Additionally, the 

reinforcement in the deck was modeled with the rebar layer command which is used to 

define layers of bi-axial reinforcement in shell elements in Abaqus. The rebar layer 

command defines the rebar cross-sectional area, rebar spacing, cover from the top or 

bottom of a shell element, rebar material, and rebar orientation (Figure 3.13). The 

concrete deck of Bridge 7R had four reinforcing layers, two in the longitudinal 

direction and two in the transverse direction.   

 

Figure 3.13 Deck reinforcement was modeled using rebar layer command in Abaqus 

11.3.  

3.1.9 Modeling Composite Action  

Composite action between the concrete deck and steel girders was modeled 

using tie constraint. The tie constraint is a built-in constraint function in Abaqus 11.3 

that constrains translations and rotations of the surfaces that are connected by the ties. 

There are two types of surface configurations that are available in Abaqus, node based 

surfaces and element based surfaces. An element based surface refers to a set of 

elements that are located on the rigid body, while a node based surface refers to a set 

of nodes that are located on the rigid body. In order to tie two surfaces together one 
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surface is designated to be the slave surface and the other to be the master surface. 

Abaqus 11.3 then forms constraints between the slave nodes on the slave surface and 

the master nodes on the master surface. The motions (translations and rotations) of the 

master surface nodes govern the motions of the slave surface nodes (Figure 3.15). 

 
Figure 3.14 Tie constraint modeled between two shell surfaces (master and slave) in 

Abaqus 11.3 (Dessault Systems, 2014) 

The constraint created for each slave node is determined by the tie coefficients.  

According to Abaqus (2014) “these coefficients are used to interpolate quantities from 

the master nodes to the tie point. Abaqus 11.3 can use one of two approaches to 

generate the coefficients: the “surface-to-surface” approach or the “node-to-surface” 

approach.” The “surface-to-surface “approach refers to a constraint configuration that 

involves only one slave node, making it inappropriate for the present application. In 

contrast, the “node-to-surface” approach sets “the coefficients equal to the 

interpolation functions at the point where the slave node projects onto the master 

surface” (Abaqus 11.3 Documentation, 2014). For example, nodes 202, 203, 302, and 

303 are used to constrain node a; nodes 204 and 304 are used to constrain node b; and 

node 402 is used to constrain node c (Abaqus 11.3 Documentation, 2014). 
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Figure 3.15 Schematic representation of how Abaqus determines which master nodes 

affect slave node motion (Dessault Systems, 2014) 

 There are multiple advantages of using tie constraint to model composite 

action. For example, previous studies (Ross 2007, Radovic & McConnell 2014, 

McConnell, at el. 2015) used rigid links to connect pairs of nodes on bridge 

components and to constrain nodes movement in all 6 degrees of freedom. These rigid 

links were used to connect the top flange elements nodes to the corresponding nodes 

of the haunch and deck elements. In order to mimic full composite action using this 

technique, top flange and haunch nodes as well as haunch nodes and deck nodes need 

to be in the same vertical plane, within small tolerances. While adjustments, namely 

creating an extremely dense mesh for the haunch, have been previously implemented 

to make this modeling possible, it proved to be very time inefficient and 

computationally expensive to implement this technique for the all models, especially 

in the parametric study.  

By using tie constraint, there is no need for very dense element meshes, 

making modeling and computation very efficient. Furthermore, for calibration 

purposes, the level of composite action between the deck and girders can be controlled 
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by relaxing or stiffening the tie connection by selecting how many nodes are used in 

the connection. For example, a stiffer connection requires more nodes to be paired 

between surfaces, while a more flexible connection requires fewer nodes to be paired.  

3.1.10 Boundary Condition Modeling  

  Bridge 7R is simply supported bridge with supports placed 1ft from the end 

of the girders. Each girder’s bottom flange cross-section has 10 elements and 11 nodes 

making a total of 88 boundary nodes among the 2 ends of each of the 4 girders. 

Constraints in the vertical direction at these boundary nodes will first be discussed.  

McConnell, et al. (2015) noted that due to the skew of the bridge alignment, the 

torsional loads within the bridge were significant enough to cause uplift at the acute 

corners of the bridge. Therefore, for this analysis the supports needed to be modeled in 

a way to allow uplift but restrain the nodes from moving downward. To solve this 

problem, a nonlinear spring with infinite compression stiffness and no tensile stiffness 

was used in the vertical direction at the location of the bearing. In Abaqus this type of 

spring action can be modeled with an element type called gap elements (Figure 3.16). 

Gap elements are generally used to model contact between two nodes when the 

contact direction is fixed in space. In the present models, 2in. long gap elements with 

initial separation distance d=0 connect each of the boundary nodes and a node placed 

2in. below each boundary node that is constrained in the vertical direction (y-

direction).  

 

 



57 

 

 

Figure 3.16 Abaqus gap command, with initial separation distance =0. The command 

also lists the element set (“ELSET”) to which this function is applied. 

 

In addition, in order to model the supports at one end of the bridge as pinned, 

the central node of the boundary nodes on each girder’s bottom flange cross-section 

was constrained longitudinally (x-direction) and laterally (z-direction) (Figure 3.17).  

In order to model the supports at the opposite end of the bridge as a roller, the central 

node of the boundary nodes on each girder’s bottom flange cross-section was 

constrained only laterally (z-direction). These central nodes are constrained in the 

lateral direction to avoid instability problems in the analysis and to more accurately 

simulate the physical boundary conditions. Only the central nodes, versus the entire 

bottom flange cross-section are constrained in the longitudinal and transverse 

directions in order to avoid the effect of constraining minor axis rotation if the entire 

line of nodes is constrained. Otherwise, unrealistically large lateral bending strains 

would occur at this location. Thus, in summary, this modeling approach yielded a total 

of 88 boundary nodes that were constrained from moving downward in the vertical (y) 

direction via gap elements, 8 of these boundary nodes were also constrained in the 

lateral direction (z) and 4 of these nodes were also constrained in longitudinal 

direction (x). 
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Figure 3.17 Modeling boundary conditions with gap elements. Figures on the top 

show a “pinned” support (full and wire frame view) and figures on the bottom show a 

“roller” supports (also full and wire frame view). The central node which determines 

the type of the support is located at the midpoint of the girder’s bottom flange width. 

The longitudinal direction was labeled as 1, vertical direction was labeled as 2 and 

lateral direction was labeled as 3.   

 Load Modeling  3.1.11

The location of the load in the FE model of Bridge 7R replicated the field 

study conducted by McConnell, et al. (2015) (Figure 3.18). This testing reproduced 

the equivalent of an AASHTO HS20 design truck, with back, middle and front axle 

loads of 32,000lb, 32,000lb and 8,000lb respectively, spaced at 14ft. During the field 
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testing, to avoid puncture-type failure of the concrete deck, each pair of loads serving 

as the wheel loads for each of the three axles were positioned over a 8ft x 4ft steel 

plate. 

  

 
Figure 3.18 Loading used during destructive testing of the bridge 7R.  Light ovals 

represent locations of the back and mid axle loading jacks, while dark ovals represent 

the location of the front axle loading jacks (adapted from Michaud (2011)).  

 

To accurately model the experimental loading two load modeling approaches 

were considered (McConnell, at al. 2015). The first approach assumed that the loading 

jacks applied concentrated load relatively directly to the structure. Therefore, the load 

was modeled as six loads centered about the node closest to the center of the hydraulic 

jacks used during the field test. Each load consisted of dividing the concentrated load 

at that location over a 3-node by 3-node square.  

As an opposite extreme, the second approach assumed that the loading jacks 

distributed load to the deck through the entirety of the steel plates. Therefore, the 

experimental load was modeled using a loading area equivalent to the full area of the 

4ft by 8ft load plates located underneath the loading jacks (Figure 3.19).  

(typ.) (typ.) 

(typ.) (typ.) 
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 Figure 3.19 Experimental loading was simulated in FE models as distributed nodal 

load shown as dark (corresponding to back and mid axle) and light (corresponding to 

front axle) areas.  

Each node that was located under back and mid axle steel plates (dark areas 

with light outline in Figure 3.19) were loaded with force of 640lb, resulting in each 

axle area having a total load of 32,000lb (each mesh had 50 nodes x 640lb per node = 

32,000lb). The nodes located under the front axle (light area in Figure 3.19) were 

loaded with force of 160lb, resulting in total load of 8,000lb (50 nodes x 160lb = 

8,000lb).  Since negligible results were observed between these two modeling 

approaches (McConnell et al. 2015), the distributed load approach was used in further 

analysis, as this was considered the easier approach to implement in Abaqus 11.3.      

3.1.12 Riks Analysis  

For many applications in bridge engineering, a linear static analysis is a 

sufficient analysis. However, in cases where material nonlinearity and geometric 

nonlinearity might be a matter of concern (such as in cases of ultimate loadings), a 

non-linear analysis must be performed. The non-linear analysis method used in this 

work is the Modified Riks Method.  
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The Modified Riks Method (i.e., Riks method) is a built-in function in Abaqus 

11.3 that can be used for load cases where the loading is proportional to a single scalar 

parameter. The basic function of this method is that it applies progressively larger 

magnitudes of load, while searching for a combination of forces and displacements 

(and thus other associated structural response metrics such as stress) that satisfy 

equilibrium at each magnitude of loading. Furthermore, the Riks method is ideally 

suited to analyzing the behavior after a peak loading has been reached. In this study, 

the scalar parameter is the HS-20 load. HS-20 specifies a specific weight and 

geometry of a truck used in bridge design (AASHTO, 2015). The load is expressed in 

terms of load-proportionality factors (a multiple of the input load), 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃0 + 𝜆 (𝑃𝑟𝑒𝑓)                                                 (3.3) 

where Po is dead load , λ is load proportionality factor (LPF) and 𝑃𝑟𝑒𝑓 is the reference 

load factor, which in this case is the magnitude of load equivalent to an HS-20 truck.  

Because each LPF is a multiple of the input load and the input load is a HS-20 vehicle, 

the results of the Riks method are expressed in terms of the number of these design 

vehicles. For example, if the Riks analysis shows that model reached fifteen LFPs that 

means that the load on the bridge model was equal to fifteen co-located HS-20 trucks 

at that loading increment.  

The first step of the present analyses was to apply the dead load of the structure 

consisting of the self-weight of its members via density and gravitational constant 

inputs. The second step is to define parameters for the static Riks analysis, after which 

the Riks algorithm solves for load and displacement simultaneously.  Since both loads 

and displacements are unknown another parameter needs to be introduced in the 



62 

 

process in order to obtain the solution. That parameter is the arc length of the static 

equilibrium path in scaled load-displacement space.  

Abaqus 11.3 uses eight inputs for the Riks function (Figure 3.20, Table 3.2). 

and an automatic time stepping procedure (increments of the arc) to try to find the 

solution. This means that the Abaqus will try to optimize the solution process by 

choosing the largest time increment (i.e., arc length) for which equilibrium can be 

achieved with minimum iterations. If a solution that satisfies equilibrium within 

acceptable tolerances with a reasonable number of iterations cannot be found, Abaqus 

will reduce the time step and again try to find the solution satisfying equilibrium. The 

procedure will be repeated until the time increment is reached for which solution can 

be found.   The maximum arc length (also called time increment) allowed in the 

models analyzed in this work is 1.25. This is the value that is suggested by Abaqus 

Documentation Manual (Abaqus, 2014). A minimum arc length is also specified (in 

the example in Figure 3.21 this value is 10-6).  If a satisfactory solution cannot be 

obtained at this time increment, the analysis will terminate. The model also accounts 

for geometric non-linearity, specified by activating the NLGEOM option 

(“NLGEOM=Yes”). 

Table 3.2  Riks method Abaqus 11.3 parameter inputs descriptions and values 

 

Command Description value

Initial time increment 0.005

Time period of the step 0

Minimum time increment allowed 0.0000001

Maximum time increment allowed 1.25

Maximum value of LPF 100

Node set label of the node where max deflection is evaluated "riks"

Magnitude of the node’s deflection 2

 Direction  of the node’s deflection -50
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Figure 3.20 Riks command in Abaqus 11.3 requires 8 inputs  

There are four parameters that have the purpose of governing the end of the 

analysis process: minimum time increment, maximum value of LPF, deflection of the 

target node, and maximum number of increments. If any of these parameters limits are 

reached, the analysis will be concluded.  

3.1.13 Model Creation, Processing and Output 

After the element mesh was built, element properties were assigned, and 

boundary conditions and loads were applied, the model was exported from the 

FEMAP program in the form of an Abaqus 11.3 input file (.inp). Then this file was 

imported into Abaqus 11.3 user interface CAE. The Abaqus 11.3 CAE platform was 

used to model composite action between the steel girders and concrete deck using tie 

constraint.  

Because of the size of the model, the processing could not be efficiently 

executed on local computing machines. Therefore, the file was exported from Abaqus 

11.3 and uploaded on the University of Delaware High Performance Computing 

Center’s cluster (UD HPC). At this location, the processing took place. After the 

model processing was completed, the output database file (.odb) was downloaded 

from the cluster to the local computing machine where the data were extracted 
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manually into spreadsheets for further analysis. The extraction procedure is outlined as 

follows:  

1.  Visual inspection of every model with Abaqus post-processing CAE platform 

was conducted to make sure that models’ deflections and stresses were 

reasonable. 

2. Elements that form bridge components of interest, such as girder or deck, are 

grouped together manually, using CAE display commands, into a new element 

set. 

3. At desired load magnitude (selected using Step/Frame function) data were 

exported using visualization module queries, which is a specialized user 

interface function that allows probing values from element sets created in the 

prior step.  

4. Once the element set of interest is selected using visualization module queries, 

stresses, strains or deflections of all elements in the group are exported into 

external application such as Excel spreadsheets for data analysis.  

Further processing consists of finding peak values for each element set at each 

load level of interest, creating histograms of each set at each load level of interest, 

plotting stress curves etc. This procedure was repeated for every parametric model. 

The data were organized in spreadsheets with each column representing all element 

stresses extracted from one element set from one parametric model under one loading 

condition. 

3.2 FE Model Validation  

Validation is a procedure that establishes whether the results obtained from an 

experiment meet the requirements of the scientific research method or established 
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theoretical expectations. In this case, validation consists of comparing theoretical 

values with results obtained from the FEA models. Two parameters were used to test 

the validity of the FEA models: a) neutral axis location and b) applied load needed to 

cause the full cross-sectional yielding of the bottom flange of the girder (APL).  

3.2.1 Calculating Neutral Axis 

The first metric used to validate the FE model is comparing the location of the 

neutral axis of the girder obtained from the FE model with the theoretical location of 

the neutral axis of the composite girder. To determine the location of the neutral axis 

for the FE models, the following procedure was used. Pairs of bottom flange strains at 

gauge locations G2-BF1-A and G2 BF2-A, web strains at gauge locations were G2-

W1-A and G2-W2-A and top flange strains at gauge locations G2-TF1-A and G2-

TF2-A were extracted from the FEA models and averaged. Since preliminary FEA and 

field data results showed that these data points are not collinear, therefore, the most 

accurate way to compute NA is to use linear least square method. The result of linear 

least square method is aa regression line that fits the best these three data points. The 

intercept of the regression lines is the location of NA.  

The regression line equation is obtained by following procedure  

Y= mX +b                                                              (3.4) 

where 

m =
𝑁∙∑𝑥𝑦−∑𝑥∙∑𝑦

𝑁∑𝑥2−(∑𝑥)2
      and b = 

∑𝑦−𝑚∑𝑥

𝑁
                                           (3.5) 

and where x values correspond to the average strains measured at gauge locations, y 

values correspond to distances of the gauge locations measured from the bottom face 

of the bottom flange, and N corresponds to the number of points in the dataset.  
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For example, if 
                        𝑥1 = 216.41, 𝑥2 = 77.08, 𝑥3 = −89.0;  

                          𝑦1 = 2.5,   𝑦2 = 27.5,   𝑦3 = 62.5; 

 then: 

            ∑𝑥 = 216.41 + 77.08 + (−89) = 204.48 

  ∑ 𝑦 = 2.5 + 27.5 + 62.5 = 92.5  

   ∑𝑥𝑦 = 216.41 ∙ 2.5 + 77.08 ∙ 27.5 + (−89 ∙ 62.5) = −2901.78 

              ∑𝑥2 = 216.412 + 77.082 + (−89)2 = 60,695 

             m = 
 3∙(−2901.78)−204.48∙92.5

3∙60,695−204.482  = -0.1969 

             b =  
92.5−(−0.1969) ∙204.48

3
 = 44.255  

Therefore, the final form of the regression equation is Y= -0.1969X + 44.255 

with correlation coefficient of R
2
=0.99. Because the location of the neutral axis on the 

girder’s cross-section is where the strain is zero (X=0), the intercept b gives the 

location of the neutral axis. This, the neutral axis is calculated to be at 44.255in from 

the bottom face of the bottom flange. 

Once the neutral axis from the FE model (e.g., 44.255in) was computed using 

the procedure outlined above, it was compared with the neutral axis computed by the 

conventional theoretical calculations for composite girders.  An example of this for the 

same conditions used in the example in the previous paragraph (an interior girder with 

concrete compressive strength of 4 psi) is shown in Table 3.3.  
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Table 3.3 Example of calculating the location of the neutral axis using parallel 

axis theorem for Girder 2 

 

 
 

 

 

 

 

*concrete effective width based on f’c=4ksi 

Finally, the percent error between the theoretical and FEA results was 

computed.  

% error = (1 −
44.255

46.49
) ∙ 100 = 4.8% 

3.2.2 Calculating Applied Load Needed to Cause the Full Cross-sectional 

Yielding of the Bottom Flange (APL) 

Applied loads needed to cause full cross-sectional yielding of the bottom 

flange of one girder (APL) is the second parameter used to validate FE models. APL 

can be expressed in terms of bending moment (e.g., units of kip-ft). However, for the 

practical purposes in this dissertation, APL was expressed in terms of number of 

AASHTO HS-20 vehicles. This conversion allows direct comparison between the 

APL results obtained from the FE models in terms of LPFs and theoretically.  

In the FE models, full cross-sectional yielding of the bottom flange of the 

girder refers to the case in which all shell elements constituting a girder’s bottom 

flange cross-section equaled or exceeded the yield stress (36,045psi for these models). 

  height(in) width (in) YI (in) A (in
2
) 

BF  2.5 20.00 1.3 50 

Web  60 0.375 32.5 23 

TF  0.875 18.00 62.9 16 

Haunch  1.375 2.38* 64.1 3 

Deck  8 12.69* 68.8 102 

∑Ai=  193.06 in² 
 

193 
 

NA=  46.49         in   
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To help detect bottom flange yielding, stress contours intervals ([−∞ to 0], [0 to 

36,045] and [36,045 to +∞]) were set during visual post-processing. This resulted in 

clear visual distinction between yielded and un-yielded bottom flange elements 

(Figure 3.21), with elements equaling or exceeding yielding limit in tension being 

lightly colored, while the gray colored were elements in tension that did not exceed 

yielding limit. Since Bridge 7R is simply supported beam, it is expected that its 

bottom flange yield in tension. The dark colored elements were elements that were in 

compression. The example in Figure 3.21 shows full cross-section yielding of the 

bottom flange of Girder 3; in contrast, Girder 2 bottom flange shown here is not 

considered fully yielded because not all elements that constitute bottom flange cross-

section are yielded. The visual inspection of all girders was conducted for each load 

increment. Once the full yielding of the bottom flange is observed, the location of the 

first yield and load increment at which yielding occurred were recorded. 

This load increment (LPF) is then compared to the number of HS-20 trucks 

obtained by theoretical calculations. To theoretically obtain the number of HS-20 

vehicles needed to fully yield cross section of the bottom flange, the following steps 

are followed. The theoretical location where bottom flange yielding should first occur 

is obtained from the beam bending equations (i.e., the location of the largest bending 

moment on the beam). Then, the maximum applied moment due to an HS-20 truck at 

this location was calculated. The location of the HS-20 truck on the girder of interest 

was based on the location of the load in the FE model then transversely shifting the 

load perpendicular to the girder of interest (Figure 3.21). 
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Figure 3.21 Visual representation of bottom flange yielding at FE models.  

Figure 3.22 shows the location of the load in the FE model (dark and light 

rectangles). The centroid of the outmost dark rectangular area, corresponding to the 

back-axle load, is positioned over Girder 2 and it is located 44ft away from the closest 

end of the Girder 2. However, relative to the end of Girder 1, the transverse projection 

of this load (represented by black arrows in Figure 3.22) is only 28ft away from the 

edge of Girder 1. This load position is used for calculating the applied moment on 

Girder 1. 

 

Girder 2 

Girder 3 
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Figure 3.22 Location of the loads used to calculate theoretical APL. The dark and light 

rectangles on the bridge deck represent distributed loads applied in FE models. 

Moment diagrams on the right top and bottom left corners show the maximum 

moments at Girder 1 and Girder 4 due to transversely shifted point load equivalents of 

these distributed loads. 

 

The exact location of first yield in each girder and corresponding moment can 

be calculated based on these load locations. Once the applied moment in each girder 

due to one HS-20 vehicle was determined in this way, calculation of APL (MAD) was 

obtained by (3.8)  

𝝈𝒚 =
𝑴𝑫𝟏

𝑺𝑵𝑪
+

𝑴𝑫𝟐

𝑺𝑳𝑻
+

𝑴𝑨𝑫

𝑺𝑺𝑻
                                                        (3.6) 

 

where, MD1 is dead load moment due to loads prior to curing of the concrete 

deck, MD2 is dead load moment due to components placed after curing of the concrete 
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deck, σy is the yield strength of the steel and SNC, SST, and SLT and are non-composite 

steel, short term composite, and long term composite section moduli respectively.  

During the experimental testing, concrete parapets were removed from the 

bridge; therefore, MD2 is equal to zero, which makes SLT irrelevant for the present 

calculations. MD1, SNC and SST were calculated from bridge geometry and cross-

sectional properties. MD1 was calculated based on the dead load of steel girder, deck, 

haunch and cross-frames. The dead load of the girder was equal to steel area 

(67.5in
2
/144in

2
/ft

2
=0.47ft

2
) multiplied by steel density (500lb/ft

3
), which equals to 

girder dead load of 0.234k/ft. The dead load of the concrete deck was calculated by 

multiplying cross-sectional deck area (18.6ft
2
) by concrete density (150lb/ft

3
) which 

equals to 2.8k/ft. It is assumed that concrete deck load is equally shared by all four 

girders therefore, concrete deck load per girder equals to 0.7k/ft. The haunch dead 

load was calculated by multiplying cross-sectional area of the haunch (0.313ft
2
) by 

concrete density (150lb/ft
3
), which equals to 0.047k/ft. The weight of the cross-frames 

was assumed 0.11k/ft. The total dead load on the bridge per girder was calculated to 

be wd=0.234+0.7+0.047+0.11=1.09k/ft. 

Since the FE model showed that first full yield of the bottom flange occurred 

in the exterior girder, the AASHTO (2015) load distribution factor equations for 

exterior girders were used. Two equations are applicable to calculating load 

distribution factors for exterior girders with one lane loaded, i.e., the present scenario 

(the lever rule and a special case applicable to bridges with cross-frames and 

diaphragms (AASHTO Equation C4.6.2.2.2d-1). AASHTO also specifies that when 

two or more design lanes are loaded, a correction factor is applied to the interior DF in 

order to calculate the percent of wheel loads distributed to exterior girders. However, 
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because the FEA models had only one lane loaded, this GDF calculation was not 

considered.  

Since GDF obtained by the special case equation was larger than the GDF 

obtain by lever rule, the former results were used because AASHTO stipulates that 

“distribution of live load to the exterior girder is not to be less than that computed 

from the special analysis.”  

 

R=
𝑁𝐿

𝑁𝑏
 +

𝑋ext∙∑ ∙e𝑁𝐿

∑ ∙𝑋2𝑁𝑏
                                       (3.7) 

where, R is the number of lanes distributed to the girder of interest, NL is a number of 

loaded lanes under consideration, Nb  is number of girders, Xext is horizontal distance 

from the center of gravity of the pattern of girders to the exterior girder (ft), e is 

eccentricity of a design truck or design lane load from the center of gravity of the 

pattern of girders (ft),  and X is the horizontal distance from the center of gravity of 

the pattern of girders to the each girder (ft). The eccentricity of a design truck or 

design lane load from the center of gravity of the pattern of girders (ft) was calculated 

based on positioning one line of truck wheels 2ft from the curb per the field test, 

which was based on AASHTO specifications for truck placement. The curb is 2ft 

inside the centerline of the exterior girder (Figure 3.18). Thus, the first line of wheels 

is 4ft inside the exterior girder and the center of design truck is another 3ft from the 

first line of wheels. This means that the center of the truck axis was 7ft from the 

centerline of the exterior girder. The location of the center of gravity of the pattern 

girders was 12ft from the exterior girder.  Subtracting these two quantities results in 

e= 12-7 = 5ft. 



73 

 

 

For Bridge 7R, 

NL = 1;  Xext =12; ∑ ∙ e𝑁𝐿 = 5  

 ∑ 𝑋2𝑁𝑏 =122+42+ (-12)2 + (-4)2=320; 

 Nb=4; and R =
1

4
 + 

 12∙5

320
 = 0.44. 

Additionally, this theoretical load distribution factor (0.55) was reduced by the 

skew correction factor (SCF) given in the Table 4.6.2.2e-1 of the AASHTO Bridge 

Design Manual (2015).  

                                      SCF = 1- c1 (tan θ)
1.5 

                                                                                                          

                                                         3.8b 

                                                         3.8c 

 

where, Kg is longitudinal stiffness parameter (1,466,300), n is modular ratio (7.56 for 

f’c=4,000psi), I is moment of inertia of non-composite girder (60,043in
4
), A is area of 

steel girder (80in
2
), eg is distance between centers of gravity of steel girder and 

concrete deck (43.5in), S is girder spacing (8ft), L is length of the girder (105.3ft), ts is 

slab thickness (8in), θ is  skew angle (63º, but if bigger than 60°, input is 60°).  

 

                             c1= 0.25∙ (
1,466,300

12∙105.3∙83)
0.25

∙ (
8

105.3
)
0.5

 

                             c1=0.0845 

                            SCF= 1-0.0845 ∙ (tan(60°))1.5 

                            SCF = 0.767  

5.00.25

31 25.0 
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                                         GDF= SCF ∙ R = 0.767 ∙0.44= 0.348 

This procedure was repeated for four concrete strength values of 4ksi, 4.5ksi, 6ksi and 

9ksi, yielding four GDFs respectively: 0.348, 0.343, 0.339 and 0.338.  

 In the final step, MAD is divided by the maximum applied moment due to HS-

20 truck (MA) at the cross-section where first yield occurred and the load distribution 

factors for that cross-section (computed in the previous step). For example, in the 

“4ksi” FE model, first yield occurred at Girder 1 bottom flange, 19.2ft from the girder 

support, which occurs just prior to the cover-plated region of the beam beginning at 

20.4ft from the girder support ((length of the bridge – length of the cover 

plate)/2=(105.3-2·32.25)/2=24.4ft ). Theoretically, it is expected that first yield will 

occur in the section without the cover-plate because the girder section with the cover 

plate had higher yielding capacity. Maximum applied moment (MA) and MD1 of this 

cross-section were used to compute theoretical MAD. Maximum applied live load (𝑀𝐴) 

moment due to HS-20 vehicle at bottom flange cross-section was 939.6kip-ft. The 

dead load moment at this cross-section was calculated to be MD1= 943kip-ft. The 

section moduli of the cross section without cover plate was SNC =1,674in
3 

and SST 

=2,083in
3
, assuming a modular ratio of 7.56, which corresponds to a concrete 

compressive strength of 4.0ksi. 

MAD =2,083 ∙
(36−

943∙12
1,674

)

12
  = 5,075kips-ft 

To calculate the theoretical number of HS 20 trucks needed to cause bottom 

flange yielding MAD was divided with applied maximum live load moment, MA 

computed at the location of the bottom flange yielding and multiplied by distribution 

factor (DF). 
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# HS-20 =   
𝑀𝐴𝐷

𝑀𝐴∙ 𝐷𝐹
  =  

5,075

939.6∙ 0.348
= 15.52 

The resulting quantity is the number of HS-20 trucks theoretically needed to 

yield girder’s bottom flange. This number is then compared to the value obtained from 

the FE models in terms of load proportionality factors (LPF).  

# HS-20 =   
𝑀𝐴𝐷

𝑀𝐴∙ 𝐷𝐹
  =  

5,075

939.6∙ 0.338
= 15.98 

The resulting quantity is the number of HS-20 trucks theoretically needed to 

yield girder’s bottom flange. This number is then compared to the value obtained from 

the FE models in terms of load proportionality factors (LPF).  

3.2.3 FE Validation Results –Neutral Axis 

Four FE models with varying values of concrete compressive strengths (4ksi, 

4.5ksi, 6ksi and 9ksi) were built and locations of their neutral axes were computed at 

four load increments (4LPFs, 8LPFs, 12LPFs and 16LPFs). Once neutral axis 

locations for all four FE models at four load increments were computed they were 

compared to the theoretical neutral axis locations. The difference between the FE and 

theoretical values was assessed by calculating percent difference. Both individual and 

average percent differences at the four load increments were assessed (4LPF, 8LPF, 

12LPF and 16LPF).  

Evaluating data from the four load increments assessed whether the model 

behaved properly during low and high magnitudes of load. Theoretically, it is 

expected that the neutral axis location should stay the same between all four load 

increments, because the field test results showed that girder stresses were still in the 

elastic range. Evaluating four different concrete compressive strength values ensured 
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that modeling (particularly composite action modeling) is not influenced by concrete 

compressive strength.  

The results show that all models behave as theoretically predicted. The average 

percent error for all models at all load increments was 4.95%. Considering the 

complexity of the model (the number of components and component interactions, 

unconventional boundary conditions, material and geometrically non-linear Riks 

analysis) such a small percent error is considered acceptable. It is worth noting that 

acceptable levels of error in comparable FE models found in the available literature is 

around 10%. Therefore, these models fall well under this conventional limit, 

indicating good validity of the FE models for this metric. There was also good 

consistency between the results of the different models. The smallest average percent 

error (4.58%) was obtained for the model with concrete compressive strength of 

4.5ksi, while the largest average percent error (5.20%) was obtained for the model 

with concrete compressive strength of 9ksi (Figure 3.23). The results also show low 

difference in percent error between load levels, as the largest average difference 

(1.26%) was found between “4ksi” models (5.29%) and “9ksi” models (4.03%).  Such 

as small percent difference, indicate good and reliable model performance regardless 

of the load. Furthermore, Figure 3.23 indicates results obtained at load level of 16LPF 

consistently show the lowest percent error (4.1%) regardless of the concrete strength, 

compared to average percent errors computed at  4LPF, 8LPF and 12LPF (5.3%, 5.9% 

and 5.2%, respectively). 
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Figure 3.23Percent error and average percent error (dotted square) for FE models and 

theoretical neutral axis location 

3.2.4 Validation Results – Applied Load Needed to Cause Full Cross-sectional 

Yielding of the Bottom Flange (APL) 

APLs in terms of LPFs were extracted from four FEA models with different 

concrete compressive strengths and then compared with theoretically computed APLs. 

The results show that theoretical and FEA results are in reasonable agreement. The 

FEA APL results were 14.79LPFs, 14.81LPFs, 14.84LPFs and 14.89LPFs for the 

“4ksi”, “4.5ksi”, “6ksi” and “9ksi” FE models respectively, while theoretical APL 

results were calculated to be 15.52LPFs,  15.75LPFs, 15.93LPFs and 15.98LPFs for 

the “4ksi”, “4.5ksi”, “6ksi” and “9ksi” models respectively. The results (Figure 3.24) 

show that as the compressive strength of the concrete is increasing both theoretical 

APL and FEA APL are increasing. The reason theoretical values are increasing with 

increasing concrete strength is that GDF skew correction factor used in calculations of 

APL is inversely proportional to the increase in compressive strength of concrete, i.e. 
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higher concrete strength would yield lower GDFs. Considering that GDF is used as 

denominator to calculate theoretical APL, lower GDF would yield larger APL. It is 

interesting to note that smallest percent error (4.7%) was found at 4ksi model. 

 

 

Figure 3.24 Comparison of APL from FE and theoretical calculations using FEA 

distribution factors. Columns refer to APL quantified by number of HS-20 trucks 

(LPF) while squares represent computed percent error between FEA and theoretical 

APLs. 

 

Considering that load distribution could considerably affect the theoretical APL results 

was compared AASHTO GDFs with FEA GDFs. To compute FEA distribution factors 

(for live and dead load) following procedure was applied:  

 

a. Find the girder section were first yield occurred.  

b. Average strains of all elements composing maximally loaded bottom flange 

cross-section of each girder. 

c. Divide average strain at maximum loaded section of each girder by the sum of 

the average strains in the maximum loaded sections of all girders, LDF 
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= 
𝜀𝑚𝑎𝑥

∑ 𝜀𝑚𝑎𝑥𝑁 , where N is number of girders and 𝜀𝑚𝑎𝑥 is the average strain in the 

maximum loaded section in the girder of interest. 

The result showed (Table 3.4) that the average percent difference between 

AASHTO GDFs and FEA GDFs is 8.6%, and the “4.0ksi” model had lowest percent 

error (4.5%) while the “4.5ksi” model had the largest percent error (10.2%).  

 

Table 3.4 FEA vs. theoretical comparison (APLs and GDFs) 

 

  4 ksi 4.5 ksi 6 ksi 9 ksi 

APL FEA (LPF) 14.79 14.81 14.84 14.89 

APL Theoretical 15.52 15.75 15.93 15.98 

Percent error (%) 4.7% 6.0% 6.9% 6.8% 

GDF  FEA 0.365 0.382 0.376 0.374 

GDF AASHTO  0.348 0.343 0.339 0.338 

Percent error (%) 4.7% 10.2% 9.8% 9.6% 

 

Thus, the difference between the approximate AASHTO GDFs and the FEA 

GDFs were a clear source of error in the APL validation presented above.  Therefore, 

it was decided to use FEA GDFs to calculate theoretical APLs. Replacing AASHTO 

GDFs with FEA GDFs gave significantly better results. For example, for “4ksi” 

model, percent error was calculated to be only 0.05%. 

 

# HS-20 =   
𝑀𝐴𝐷

𝑀𝐴∙ 𝐷𝐹𝐹𝐸𝐴 
  =  

5,075

939.6∙0.365 
= 14.8 

           % error =1 −
APL FEA

APL Modified Theoretical 
=1-

14.79

14.8
=0.0005 or 0.05% 
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This procedure was repeated for all four models and results show (Figure 3.25) 

that average error between models was very small (2%). The modified theoretical APL 

results were calculated to be 14.8LPFs, 14.18 LPFs, 14.5 LPFs and 14.7 LPFs for the 

“4ksi”, “4.5ksi”, “6ksi” and “9ksi” models, respectively.  

 
 

Figure 3.25 Comparison of APL from FE and theoretical calculations using FEA 

distribution factors. Columns refer to APL quantified by number of HS-20 trucks 

(LPF) while squares represent computed percent error between FEA and theoretical 

APLs. 

 The largest error (4%) was recorded for the “4.5ksi” model while the smallest 

error was recorded at “4ksi” model (0.05%). Both metrics (NA and APL) showed that 

our FEA models replicate well theoretical expectation. The average % error for NA 

metrics was 4.9%, while the average percent error for APL metrics (modified) was 

2.0%.  These results indicate that our FEA model is a valid mathematical 

representation of Bridge “7R” structure. 
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3.3 FE Model Calibration 

Calibration refers to a process that scales the measurements from the 

instrument to a reference measurement in order to improve its accuracy. The FE model 

needs calibration due to the uncertainty of certain system parameters. For example, 

Bridge 7R had been in the service for more than 40 years before it was 

decommissioned and destructively tested. At the time of the testing, the compressive 

strength of the concrete deck was unknown. In order to ensure that the FE model 

accurately captured the behavior of the actual bridge, multiple values of concrete 

compressive strengths (f’c) were varied in the FE models. It was hypothesized that 

compressive strength of the concrete was in the range between 4ksi and 9ksi. 

Therefore, four FE models with concrete compressive strengths of 4ksi, 4.5ksi, 6ksi 

and 9ksi were built for the calibration purposes. 

 Additionally, due to the age of the bridge, the condition of the composite 

interaction between bridge deck and girders was also unknown, and it was 

hypothesized that this parameter could also affect the accuracy of the FEA models. 

Therefore, it was decided that composite action between girders and bridge deck 

should be calibrated as well. Consequently, knowing that the degree of composite 

action between deck and girders can be simulated by varying the spacing of tie 

constraints connecting the deck and girders, this was a second parameter that was 

varied. This resulted in building FE models with four different spacings of tie 

constraints (2in, 4in, 8in and 16in tie spacing). All possible combinations of these two 

varied parameters (concrete compressive strength and tie spacings) were combined to 

produce a total of 16 FE models for model calibration.  
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3.3.1 FE Model Calibration Results-Concrete Compressive Strength  

The experimental data obtained from the destructive testing of Bridge 7R was 

compared with the data obtained from the FE models with variable concrete stiffness 

(4ksi, 4.5ksi, 6ksi, and 9ksi) at four tie spacings (2in, 4in, 8in and 16in). More 

specifically, bottom flange strains measured during field testing at two bottom flange 

locations (G2-A and G3-A in Figure 3.4) were compared with bottom flange strains 

extracted from FE models at the same locations. Furthermore, cross-frame strains 

measured at the cross-frame connecting Girder 2 and Girder 3 (CF3 in Figure 3.4) 

were compared with cross-frame strains extracted from FE models at the same 

location.  

The qualitative and quantitative comparison between FE models and field data 

were conducted. Qualitative comparison consisted of visual inspecting strain curves 

during 17 load increments, while quantitative comparison consisted of numerical 

evaluation of the slope of the strain curves.  

3.3.1.1 Concrete Compressive Strength- Bottom Flange Results 

The visual inspection (Figure 3.26) of the field data bottom flange strain curves 

shows a non-linear behavior between the 5th and 13th load increment. Considering 

that the girders and cross-frames were still in the elastic range, this was an unexpected 

result. One of the explanations for this behavior (McConnell, et al. 2015) was that 

there was a significant loss of composite action between the concrete deck and steel 

girders. This may have led to global and local losses of stiffness and decreased 

flexural capacity of the girder at the point of the load application. This partial loss of 

composite action could not be experimentally measured or accurately quantified. 

However, linear behavior in field strain measurements were observed during first four 



83 

 

and last four increments. Therefore, the slopes of the of the strain curves for the first 

four load increments and last four increments were used for quantifying the difference 

between field data and FE data for the bottom flange data. Visual inspection of the 

bottom flange strain curves for all 17 load increments (Figure 3.26 a. and b.) showed 

that there is a marginal effect of the different concrete compressive strengths on 

bottom flange strains at both of gauge locations. The difference between models is 

visible only at high load levels (above 13 LPFs) and with only the 6ksi model 

differing significantly from the other three models. Bottom flange results (Table 3.5) 

show relatively good matching between FEA and experimental results. Average 

overall percent error for both gauges was only 8.36%.  The largest average percent 

error (12.1%) was found at the “4ksi” model at gauge location G2-BF-A, while the 

smallest average percent error (4.6%) was found at the same gauge location at the 

“6ksi” model.  

Table 3.5 Slopes of strain curves for bottom flange field data and FEA data for load 

increments 1-4 and 14-17. Average percent error is computed by averaging absolute 

values of percent errors computed for both load increment ranges. 

 

Model 
Load 

Increment 
G2 -BF-A G3-BF-A % error average % error 

Field 
1-4 0.022 0.0353 

G2 -BF-A G3-BF-A G2 -BF-A G3-BF-A 
14-17 0.0211 0.0399 

“4ksi” 
1-4 0.0201 0.0369 9.5% 4.3% 

12.1% 8.8% 
14-17 0.0184 0.0352 14.7% 13.4% 

“4.5ksi” 
1-4 0.0200 0.0374 10.0% 5.6% 

11.1% 7.6% 
14-17 0.0188 0.0364 12.2% 9.6% 

“6ksi” 
1-4 0.0208 0.0388 5.8% 9.0% 

4.6% 5.8% 
14-17 0.0204 0.0389 3.4% 2.6% 

“9ksi” 
1-4 0.0205 0.0376 7.3% 6.1% 

8.9% 8.0% 
14-17 0.0191    0.0363 10.5% 9.9% 
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a)  

 
b) 

 

Figure 3.26 Comparison between field data and FE models for bottom flange gauge 

location a) G2-BF-A; b) G3-BF-A. 

3.3.1.2 Concrete Compressive Strength-Cross-frames Result 

A visual inspection of the cross-frame field data (Figure 3.27) showed that 

linear strain behavior was only detected during the first four load increments. 

Therefore, for the cross-frame data, slopes of strain curves during first four load 

increments were used for the quantitative comparison. Visual inspection of the strain 

curves at gauge location CF3-BA2-A (Figure 3.27a) shows that post yielding behavior 
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(strain values > 1243µɛ) are better matched with FE models that have larger concrete 

compressive strengths (“9ksi” and “6ksi”) compared to models that have lower 

concrete compressive strength (“4ksi” and “4.5ksi”). Furthermore, it seems that all 

four models were able to replicate the significant softening action observed in the field 

data after 13
h
 load increment. Results (Table 3.6) show that the FEA cross-frame data 

match very well with experimental data. The overall average percent error for all 

models at both gauges was 9.9%.  The smallest percent error (1.06%) was found at 

gauge CF3-BA-2-A in the “6ksi” model, while the largest percent error (28.72%) was 

found at gauge CF3-TA1-A in the “4ksi” model. The percent errors are significantly 

less for the CF3-BA gauge location compared to the CF3-TA gauge location, across 

all models. For example, average percent error for CF3-BA gauge location is 3.5%, 

while the average percent error for CF3-TA is 25.3%.  

Table 3.6 Slopes of strain curves for cross-frame field and FEA data for load 

increments 1-3. 

 

Model CF3-BA2-A CF3-TA1-A CF3-BA2-A CF3-TA1-A 

Field 0.0094 0.0954 % error % error 

“4ksi” 0.0087 0.0680 7.45% 28.72% 

“4.5ksi” 0.0091 0.0698 3.19% 26.83% 

“6ksi” 0.0095 0.0718 1.06% 24.74% 

“9ksi” 0.0104 0.0755 10.64% 20.86% 
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Figure 3.27 Comparison between field and FE data for cross-frame gauge location (a) 

CF3-BA2-A and (b) CF3-TA1-A. The dashed vertical line in (a) represents the 

theoretical yielding point for 36ksi steel (1243µɛ). 

3.3.2 FE model calibration Results –Tie Spacing Results 

Beside concrete compressive strength, the other parameter calibrated is the 

composite action between the concrete deck and steel girders. The composite action 

between the deck and steel girders is achieved in the field by the shear studs. The 

composite action in FE models is achieved using tie constraint (see Section 3.1.9). 
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Therefore, by changing the number of tie constraints (i.e., spacing between tie 

constraints), relaxing or stiffening of the composite action could be achieved. For this 

purpose, four different tie spacings were considered. The location of the tie constraints 

is related to the location of the nodes on the top flange elements, therefore tie spacing 

was limited to increments of 2in because this is the element size of the top flange and 

haunch while deck element size is 12x12in.  

Specifically, a model that had tie constraints placed every node was the “1-

node” model; the model that had tie constraints placed every two nodes is labeled the 

“2-node” model; the model that had tie constraints placed every 4 nodes was labeled 

the “4-node” model; and finally, the model that had tie constraints placed every 8 

nodes was labeled the “8-node” model. Considering that the width of the top flange 

elements was kept constant at 2in (meaning the nodes were located 2” apart), the “2-

node” model had a tie constraint every 4in, the “4-node” model had a tie constraint 

every 8in, and the “8-node” model had a tie constraint every 16in. Additionally, each 

tie-spacing model (“1-node”, “2-node”, “4-node” and “8-node”) had four different 

concrete compressive strengths (4ksi, 4.5ksi, 6ksi, and 9ksi). This yielded a total of 16 

FE models that were built and compared with the experimental data (Figures 3.28 to 

3.31). The qualitative and quantitative comparison was conducted between FEA 

results and field data. Qualitative analysis consisted of visual inspecting strain curves 

during 17 load increments, while quantitative analysis consisted of numerical 

evaluation of the slope of the strain curves.  
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3.3.2.1 Tie Spacing -Bottom Flange Results 

The visual inspection (Figure 3.28) of the bottom flange results showed good 

matching between FEA data and experimental results regardless of the tie spacing. 

However, it seems “4 ksi” models with “2-node” and “4-node” tie spacing replicate 

bottom flange field data especially well (blue dotted lines in Figure 3.28a and c).   

Quantitative analysis of the bottom flange slope data (Table 3.7) showed that 

FEA data is matching very well with experimental data. The overall average percent 

error among all models is only 9%. The results show that the lowest absolute percent 

error was calculated for the “4.5ksi 2-node” model at the gauge location G3-BF-A for 

the slope during the first four load increments. The slope of this model during first 

four load increments was the same as the slope measured during field experiment 

(0.0353). For the contrast purpose, the largest absolute percent error (34%) was 

calculated for the “4 ksi 4-node” model at the same gauge location.  

Furthermore, the results also show that the smallest average percent error 

(calculated by averaging errors obtained at two load increments, 1-4 and 14-17) was 

4.4% at G3-BFA in the 4-node spacing model (“6ksi 4-node”) while, the largest  

percent error (19.9 %) at G3-BF-A was found at “4ksi 4-node””model.   

3.3.2.2 Tie Spacing -Cross-frames Results 

The visual inspection of the cross-frame data (Figure 3.29 and 3.30) shows that 

experimental data and FE strains match well up to the point when the cross-frame’s 

bottom chord reached its yielding point (1243µɛ for 36ksi steel). This point is marked 

in Figures 3.30-3.31(a) and (b) with a dashed vertical line. After reaching the yielding 

point, the FE models’ response to the increasing load became highly non-linear and 
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more influenced by tie spacing (Figure 3.30a and 3.30b; Figure 3.31a and 3.31b). 

Results show that less composite FE models (such as”8-node” models) show 

significantly larger bottom chord strains than more composite models (such as “1-

node”, “2-node” and “4-node” spacing models). While all FE models show this same 

general pattern, this behavior is less prominent for the “9ksi” models as the response 

to the post- yielding behavior is less prominent. Furthermore, most FE models 

accurately captured the softening action of the cross-frame top chord that was present 

in the field data after 16
th

 load increment (LPF=16).   

The quantitative analysis of the cross-frame data (Table 3.8) showed good 

matching between FEA and experimental data in some cases. The average percent 

error for all models was 16.8%.  The lowest percent error was calculated for the 

“4.5ksi 8-node” model at gauge location CF3-BA2-A. The slope calculated for this 

model was identical to the slope calculated for the field data (0.094). The largest 

percent error (51. 7%) was calculated for the “6ksi 4-node” model at gauge location 

CF3-TA1-A. The lowest average percent error 0.1%) was calculated for ““4.5ksi 8-

node”” model (Table 3.9), while the ““6ksi 4-node”” model show the largest overall 

average percent error (33.1%).  Average percent error for cross-frames was calculated 

by averaging percent errors at bottom chord and top chord gauges. Both qualitative 

and quantitative analysis showed that there is not one definite FE model that perfectly 

fits the experimental data. However, the calibration procedure proved that both 

compressive concrete strength and composite action can substantially affect the 

behavior of the bridge structure. The results also show that cross-frames strains are 

more sensitive to change in parameters than bottom flange strains.  
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3.4 FE Model Parameter Selection  

The validation results indicate that the FEA model developed is an accurate 

mathematical representation of Bridge 7R. Both metrics used to validate the model 

(NA and APL) were matched well with the theoretical data (4.1% and 2.0 % error 

respectively). The calibration results showed that there is not a single model that 

consistently had lowest errors at bottom flange and cross-frame locations. Therefore, it 

was decided to average computed errors for all bottom flange and cross-frame gauges 

and all models at four concrete strengths. For example, Table 3.9 shows three columns 

labeled “girder average”, “cross-frame average” and “concrete strength average”. The 

first two columns contain average values of all girder and cross-frame errors per 

model, respectively. The last column (“concrete strength average”) contains average 

values of all errors per respective concrete strength. The results show that the lowest 

concrete strength average error was for 4.5ksi models (11.8%), while the highest was 

at 4ksi models (15.4%). Thus, it was decided to use 4.5ksi as concrete compressive 

strength parameter in further studies. This value is representative of values used in 

current bridge designs and seems reasonable approximation of real concrete strength 

of Bridge 7R.  

To determine what spacing should be used for modeling composite action, 

beside the accuracy of the model, modeling effort was also taken into consideration. It 

is worth noting that “1-node” models were significantly less time consuming to build 

than any other models. To determine the best performing model, total percent errors 

(girders and cross-frames) where averaged based on node spacing. For example, all 

“1-node spacing“ percent errors (regardless of the concrete strength) were averaged 

together. The results show (Figure 3.39) that “8-node” spacing has the lowest overall 
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percent error (6.8%), while “4-node” spacing has the highest overall percent error 

(18.1%). However, while the results indicate that 8-node spacing models would give 

the best overall result compared to Bridge 7R field data, it is questionable if 8-node 

spacing would accurately model full composite action between girder and deck. A 

preliminary study that modeled one girder with 8-node (16in) tie spacing between the 

girders and deck showed significant deviation from theoretical mid-span deflections. 

This result indicated that fully composite behavior was not able to be modeled with 8-

node tie spacing. Furthermore, substantially more effort is needed to 8-node spacing 

models, vs. 1-node spacing models. This is especially true knowing that the total 

percent error difference between 1-node spacing models (14.1%) and (6.8%) is only 

7.3%. For this reason, it was decided to use “1-node”spacing for modeling composite 

action between concrete deck and steel girders in the parametric study.      

 

 

 

 

 

 

 

 

 

 

  



 

  

 

9
2
 

Figure 3.28 Comparison of bottom flange strains between field and FE data with different tie element spacings: (a) gauge 

location G2-BF-A “4.0 ksi” models, (b) gauge location G2- BF-A “4.5 ksi” models, (c) gauge location G3- BF-A “4.0 ksi” 

models and (d) gauge location G3-BF-A “4.5ksi” models. 
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Figure 3.29 Comparison of bottom flange strains between field and FE data with different tie element spacings:  (a) gauge 

location G2-BF-A “6.0 ksi” models, (b) gauge location G2- BF-A “9.0 ksi” models, (c) gauge location G3- BF-A “6.0 ksi” 

models and (d) gauge location G3-BF-A “9.0 ksi” models. 

(c) 
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Figure 3.30 Comparison of cross-frame strain between field and FE data with different tie element spacings: (a) gauge 

location CF3-BF2-A “4.0 ksi” models, (b) gauge location CF3-BF2-A “4.5 ksi “models, (c) gauge location CF3- TA1-A 

“4.0 ksi” models and (d) gauge location CF3-TA1-A “4.5 ksi” models. The red dashed line represents the location of the 

yield strain (1243µɛ) 
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Figure 3.27 Comparison of cross-frame strain between field and FE data with different tie element spacings: (a) gauge 

location CF3-BF2-A “6.0 ksi” models, (b) gauge location CF3-BF2-A “9.0 ksi “models, (c) gauge location CF3- TA1-A 

“6.0 ksi” models and (d) gauge location CF3-TA1-A “9.0 ksi” models. The vertical dashed line in a) and b) represents the 

location of the yield strain (1243µɛ) 
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 Table 3.7 Slope comparison between FE and field testing data measured at bottom 

flange gauges  

 

Model 
Load 

Increment 
G2 -BF-A 

G3-BF-

A  
% error average % error  

Field 
1-4 0.022 0.0353 G2 -BF-

A 

G3-BF-

A  

G2 -BF-

A 

G3-BF-

A  14-17 0.0211 0.0399 

  

“4ksi 1-node” 
1-4 0.0201 0.0369 9.5% 4.3% 

12.1% 8.8% 
14-17 0.0184 0.0352 14.7% 13.4% 

 “4ksi 2-node” 
1-4 0.0289 0.053 23.9% 33.4% 

15.2% 19.8% 
14-17 0.0198 0.0376 6.6% 6.1% 

“4ksi 4-node” 
1-4 0.0288 0.0537 23.6% 34.3% 

15.9% 19.9% 
14-17 0.0195 0.0378 8.2% 5.6% 

“4ksi 8-node” 
1-4 0.0209 0.0359 5.3% 1.7% 

6.7% 8.5% 
14-17 0.0195 0.0346 8.2% 15.3% 

  

“4.5ksi 1-node” 
1-4 0.02 0.0374 10.0% 5.6% 

11.1% 7.6% 
14-17 0.0188 0.0364 12.2% 9.6% 

“4.5ksi 2-node” 
1-4 0.0185 0.0353 18.9% 0.0% 

17.1% 5.3% 
14-17 0.0183 0.0361 15.3% 10.5% 

“4.5ksi 4-node” 
1-4 0.019 0.0361 15.8% 2.2% 

13.7% 4.5% 
14-17 0.0189 0.0374 11.6% 6.7% 

“4.5ksi 8-node” 
1-4 0.0198 0.0343 11.1% 2.9% 

7.5% 6.9% 
14-17 0.0203 0.036 3.9% 10.8% 

  

“6ksi 1-node” 
1-4 0.0208 0.0388 5.8% 9.0% 

4.6% 5.8% 
14-17 0.0204 0.0389 3.4% 2.6% 

“6ksi 2-node” 
1-4 0.0194 0.0358 13.4% 1.4% 

11.4% 5.1% 
14-17 0.0193 0.0367 9.3% 8.7% 

“6ksi 4-node” 
1-4 0.0192 0.0362 14.6% 2.5% 

12.2% 4.3% 
14-17 0.0192 0.0376 9.9% 6.1% 

“6ksi 8-node” 
1-4 0.02 0.0362 10.0% 2.5% 

6.2% 6.2% 
14-17 0.0206 0.0363 2.4% 9.9% 

  

“9ksi 1-node” 
1-4 0.0205 0.0376 7.3% 6.1% 

8.9% 8.0% 
14-17 0.0191 0.0363 10.5% 9.9% 

“9ksi 2-node” 
1-4 0.0207 0.037 6.3% 4.6% 

7.8% 8.0% 
14-17 0.0193 0.0358 9.3% 11.5% 

“9ksi 4-node” 
1-4 0.0206 0.0375 6.8% 5.9% 

9.2% 8.5% 
14-17 0.0189 0.0359 11.6% 11.1% 

“9ksi 8-node” 
1-4 0.0215 0.0363 2.3% 2.8% 

4.7% 9.5% 
14-17 0.0197 0.0343 7.1% 16.3% 
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   Table 3.8 Slope comparison between FE and field testing data measured at cross-frame  

gauges  

 

 

 

 

 

 

 

 

 

 

 

 

Model 

CF3-BA2-

A 
CF3-TA1-A % error % error 

Field 0.0094 0.0954 CF3-BA2-A CF3-TA1-A 

     

“4ksi 1-node” 0.0087 0.0680 8.05% 40.29% 

“4ksi 2-node” 0.0128 0.0964 26.56% 1.04% 

“4ksi 4- node” 0.0127 0.0878 25.98% 8.66% 

“4ksi 8-node” 0.0076 0.09 23.68% 6.00% 

     

“4.5ksi 1-node” 0.0091 0.0698 3.30% 36.68% 

“4.5ksi 2-node” 0.0107 0.0882 12.15% 8.16% 

“4.5ksi 4- node” 0.0104 0.0659 9.62% 44.76% 

“4.5ksi 8-node” 0.0094 0.0953 0.00% 0.10% 

     

“6ksi 1-node” 0.0095 0.0718 1.05% 32.87% 

“6ksi 2-node” 0.0111 0.0747 15.32% 27.71% 

“6ksi 4- node” 0.011 0.0629 14.55% 51.67% 

“6ksi 8-node” 0.0099 0.099 5.05% 3.64% 

     

“9ksi 1-node” 0.0104 0.0755 9.62% 26.36% 

“9ksi 2-node” 0.01 0.0722 6.00% 32.13% 

“9ksi 4- node” 0.01 0.0678 6.00% 40.71% 

“9ksi 8-node” 0.009 0.1014 4.44% 5.92% 
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Table 3.9 Average error for girders and cross-frames.  

 

Model 
Girder 
Average  

Cross-
frame 
Average  

Concrete 
Strength 
Average 

Model 
Girder 
Average  

Cross-
frame 
Average  

Concrete 
Strength 
Average 

                

“4ksi 1-
node” 

10.5% 24.2% 

15.4% 

“6ksi 
1-

node” 
5.2% 17.0% 

13.0% 

 “4ksi 
2-

node” 
17.5% 13.8% 

“6ksi 
2-

node” 
8.3% 21.5% 

“4ksi 4-
node” 

17.9% 17.3% 
“6ksi 

4-
node” 

8.3% 33.1% 

“4ksi 8-
node” 

7.6% 14.8% 
“6ksi 

8-
node” 

6.2% 4.3% 

                

“4.5ksi 
1-

node” 
9.4% 20.0% 

11.8% 

“9ksi 
1-

node” 
8.5% 18.0% 

12.2% 

“4.5ksi 
2-

node” 
11.2% 10.2% 

“9ksi 
2-

node” 
7.9% 19.1% 

“4.5ksi 
4-

node” 
9.1% 27.2% 

“9ksi 
4-

node” 
8.9% 23.4% 

“4.5ksi 
8-

node” 
7.2% 0.1% 

“9ksi 
8-

node” 
7.1% 5.2% 
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    Figure 3.33 Node spacing overall percent error. 
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EVALUATION OF FEA PARAMETRIC STUDY DATA USING 

“DISCRETE” AND “HOLISTIC” METRICS 

 

This chapter investigates the influence of cross-frames on the stress distributions 

in steel I-girder bridges through a parametric study. Additionally, this chapter introduces 

new methods that can be used to evaluate finite element analysis data. Furthermore, it 

investigates disadvantages and deficiencies in currently employed evaluation methods of 

FEA, especially when evaluating data obtained under post-elastic loads. The chapter ends 

by summarizing the main finding and makes recommendations for future research.  

 Parametric Study Design  4.1

 Overview  4.1.1

From the literature review, it is implied that bridge skew, cross-frame design, and 

cross-frame layout affect load distribution in the bridge. To quantify these affects, a 

parametric study was designed for this purpose. Therefore, bridge skews, cross-frame 

design, and cross-frame layout are parameters that were varied in order to investigate 

stress distributions. Five bridge skews (0°, 25°, 46°, 55° and 63°), two cross-fame designs 

(K-frame vs. X-frame configurations) and two cross-frame layouts (inline vs. staggered) 

were modeled and analyzed for this parametric study. Additionally, FE models without 

cross-frames (no-frame models) were added at each bridge skew, for a total of 25 models 

(Table 4.1). Data were analyzed under three load levels: design load, yield of one girder, 

and system yield load.  

 Chapter 4
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 Table 4.1 Conceptual summary of FE parametric models. 

SKEW 
K-FRAME 

INLINE 
K-FRAME 

STAG 
X-FRAME 

INLINE 
X-FRAME 

STAG 
NO FRAME 

0° x x x x x 

25° x x x x x 

46° x x x x x 

55° x x x x x 

63° x x x x x 

 

 Load Levels 4.1.2

 All data were extracted under three loading levels:  

a) design load,  

b) first yield load, and 

c) system yield load.  

Design load refers to a load equivalent of the one HS-20 truck on the bridge. This 

load level was selected as a reference load because many bridge practitioners are familiar 

with this load level and because this is the load level on which most existing assumptions 

about bridge behavior are predicated. First yield load refers to a magnitude of load that 

causes the entire cross-section of bottom flange of one girder to yield. This load level 

represents an onset of post elastic behavior of the bridge. System yield refers to a 

magnitude of load that causes entire cross-sections of bottom flanges of all girders to 

yield. This load level was selected as a measure of system capacity of the bridge. The 

girders have compact cross-sections and theoretically they should be able to develop full 

plastic stress distribution. However, preliminary results for the skewed bridges showed 

that full plasticity of all girders could not be achieved even if the Riks analysis deflection 

limit was set to be unrealistically high mgnitude (200in). It is worth noting that some 
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highway agencies (such as the California Transportation Agency, CalTrans) stipulate that 

for a section to be classified as compact it must also be tangent ( 0° skew) (Caltrans, 

2014, Section 6.4.2.1). Conservatism in this stipulation is founded in the uncertainty of 

the behavior of skewed bridges. Therefore, it was decided to use yielding moment as 

measure of the girders theoretical capacity instead of plastic moment.  

  FEA Modeling 4.1.3

 The FE models employed element types and sizes, material properties, 

boundary conditions, and simulation of composite action identical to the modeling 

described in detail in Chapter 3. However, a change was made to location of the applied 

load and magnitude of nodal loads. For the all parametric models, load was modeled as 

HS-20 truck load via nodal loads applied to deck element nodes. A total of 6 nodal loads 

were created with 2 nodal loads having the magnitude of 4,000lb and 4 nodal loads 

having the magnitude of 16,000lb (Figure 4.1). The longitudinal distance between nodal 

loads is 14ft, while the transverse distance between nodal loads is 6ft. To make the 

location of the nodal load uniform across the all parametric model, it was decided to 

place geometric center of the HS20 truck at the geometric center of the bridge. Once the 

geometric centers were aligned, the locations of the wheel loads and corresponding nodal 

loads were determined. The load magnitude and load parameters were then entered in 

Abaqus’ Riks analysis function. 
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Figure 4.1 Nodal loads representing HS20 truck wheels were centered over geometric 

center of the bridge shown at different bridge skews (63°and 0°).  

 Data Organization 4.1.4

The main idea behind the parametric study was to investigate influence of cross-

frame design and layout on stress distributions in the bridge’s main structural components 

of the girders and deck. Therefore, two element groups (girders and deck) are created in 

each FE model. Stress data were then organized in such a way that the girder group 

contained girder elements stresses from all girders, while deck element group contains 

stresses from all elements in the deck. The size of the data set being analyzed consisted of 

1372,264 elements x 3 loading conditions, which totals to 411,792 data points per model.  

 

 Data Output Types 4.1.5

The data output refers to different types of data extracted and computed from the 

FEA. At each of the three load conditions following data types were obtained either 
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directly from the model results (items a-c in the list below) or from synthesis of the stress 

results (items d and e in the list below): 

a) The locations of the first yield and system yield along the girders’ longitudinal length.  

b) The number of HS-20 trucks needed to cause first yield and system yield; this represents first 

yield and system yield capacities of the bridge. 

c) Longitudinal (s11) stresses at design, first yield, and system yield load levels. 

d) Bottom flange major axis and lateral bending stresses at design, first yield and system yield load 

levels (for detail procedure how these stresses are computed see Sections 4.3.1.1 and 4.3.1.2).  

e) Stress histograms of each element group at design, first yield, and system yield load levels. 

 Parametric Models 4.1.6

 Girder and Deck Characteristics  4.1.6.1

Each FE model used in parametric studies has following geometric specifications 

(Figure 4.2): 

a. four steel plate I-girders spaced 8ft on center,  

b. girder length of 105.3ft,  

c. bottom flange dimensions of 20in x 1.25in,  

d. top flange dimension of 20in x 1in,  

e. web dimensions of 60in x 0.5in,  

f. haunch thickness of 2in,  

g. deck thickness 8in.  
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Figure 4.2 Geometry and cross-sectional properties of parametric models  

 

Girder lengths, depths, spacings and deck thickness were the same as Bridge 7R. 

However, small adjustments were made to make the models more realistic relative to 

current design practices and to make them easier to build in FEA software. For example, 

web thickness was increased from 0.375in to 0.5in. The 0.5in thickness was chosen based 

on a recommendation listed in AASHTO /NSBA guidelines (2012) that 0.5in minimum 

web thickness is preferred even if smaller thickness would satisfy the strength and 

slenderness. The thicker web made longitudinal stiffeners unnecessary and they were thus 

excluded from the parametric models. Furthermore, to simplify modeling procedures, all 

girders’ bottom flanges were modeled to have same width and thickness (20in x 1.25in) 

and all girders’ top flanges were modeled to have same width and thickness (20in x 1in). 

These are dimensions of exterior girders’ top and bottom flanges of Bridge 7R (without 

coverplates). 

All FE models have concrete compressive strength f’c=4,500psi and steel strength 

of 36,000ksi. Interior girders have (5in x 0.5in) double-sided transverse stiffeners spaced 

every 4ft (same as Bridge 7R), while exterior girders have transverse stiffeners spaced 4ft 

only on the interior side of the web. Transverse stiffeners are connected to the top and 

bottom flanges and along the full web depth. Over the supports, each girder is stiffened 

with full depth bearing stiffeners (5in x 1.5in) connected to top and bottom flange. End 

diaphragms are modeled with beam elements as described in Section 3.1.7.  A 

preliminary study was conducted to evaluate the effect of end diaphragm stiffness on 

24 in 

336 in 

96 in 

62.5 in 72.5 in 
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bridge first yield and system capacities. The end diaphragm axial, bending and torsional 

stiffness were reduced to match the axial, bending and torsional stiffness of intermediate 

diaphragms. The results showed that this stiffness reduction of the end diaphragms did 

not change the first yield or system yield capacity of the bridge.  

 Bridge Skews 4.1.6.2

For the purpose of this study, five different bridge skews were analyzed (0°, 25°, 

46°, 55° and 63°). To create parametric models with different skew, Bridge “7R” (63° 

skew) was used as a base model for all other designs (Figure 4.3e).  

 

 

 

 

 

 

Figure 4.3 Girder layouts for different bridge skews in FE models. Cross-frames are not 

shown in the figures. 

The most efficient and practical way to create multiple bridge skews based of 

Bridge “7R” was to use existing transverse stiffeners as connection plates for cross-

a) 0° b) 25° 

c) 46° d) 55° 

e) 63° 
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frames. The transverse stiffeners in Bridge “7R” were spaced every 4ft, and moving 

girders 4ft longitudinally with respect to their initial position, would yield a bridge skew 

of 55° (Figure 4.3d). Accordingly, moving girders 8ft longitudinally with respect to their 

initial position, would yield a bridge skew of 46° (Figure 4.3c) and so on. Building FE 

models using this approach allowed identical cross-frame spacing to be used in all FE 

models, and reduce extra variability between parametric models (Figure 4.3).  

 Cross-frame Designs 4.1.6.3

 Two cross-frame designs were considered for this study: K-frame and X 

frame. K-frame configurations (Figure 4.4) consist of a bottom chord, two diagonals, and 

a top chord. The bottom chord consisted of two discrete steel angle members (L4x4x0.5) 

with an unbraced length of 32in. These bottom chord steel angles are connected to one 

another and the diagonals by a 36x24x0.5in steel gusset plate. The diagonals are made of 

L4x3.5x0.5steel angles with an unbraced length of 43in. The top chord consists of 

L4x4x0.5 steel angle with an unbraced length of 65in. The top chord and each diagonal 

are connected to each other and the girder with 20x12x0.5in steel gusset plates.  

 

Figure 4.4 Schematic view of K-frame element mesh in parametric models  

  

The total steel volume of steel in the K-frame configuration is 1212in
3
. The 

equivalent axial stiffness of the K-frame configuration is 4,300,518 kip-in/rad. The 

equivalent axial stiffness was computed using equations proposed by Helwig & Yura 

(2012), which for K-frames is: 
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𝛽𝑏 =
2𝐸𝑆2ℎ𝑏

2

8𝐿𝑐
3

𝐴𝑐
+

𝑆3

𝐴ℎ

  

(4.1) 

 

where, S is cross-frame width (88in), hb is cross-frame depth (58in), Lc is length of the 

diagonal members (43in), E is Young’s modulus (29,000,000psi), Ac is cross-sectional 

area of a diagonal member (3.75in²) and Ah is a cross-sectional area of horizontal 

member (3.75in²). 

X-frame configurations (Figure 4.5) also consist of a bottom chord, a top chord 

and two diagonals of the same cross-section dimensions as the K-frame configurations. 

Specifically, the bottom chord consists of L4x4x0.5 steel angle with an unbraced length 

of 68in. The top chord consists of L4x4x0.5 with unbraced length of 68in. The diagonals 

are L4x3.5x0.5 steel angles with unbraced lengths of 80in. In the middle, where diagonal 

lines intersect each other, the element meshes of the concentric legs of the diagonals were 

connected using multi point constraint (MPC) elements. This constraint replicates the 

connection through a small gusset plate that is commonly found at this location in X-

frame designs, which provides lateral support to out-of-plane bending. The bottom chord, 

top chord and diagonals are connected to transverse stiffeners with 20x12x0.5in gusset 

plates. 

 

Figure 4.5 Schematic view of X-frame element mesh in parametric models 

The total steel volume of the X-frame configuration is 1169 in
3
. The equivalent 

axial stiffness of the X-frame configuration was also calculated using Helwig & Yura 

(2012) equations to be 5,533,254 k-in/rad. 



 

 110 

 

𝛽𝑏 =
𝐴𝑐𝐸𝑆2ℎ𝑏

2

𝐿𝑐
3   

(4.2) 

In the equation (4.2), S is cross-frame width (88in), hb is cross-frame depth (58in), 

Lc is length of the diagonal members (80in), E is Young’s modulus (29,000,000psi) and 

Ac is cross-sectional area of diagonal member (3.75in²). 

 Cross-frame Layouts 4.1.6.4

Two cross-frame layouts were considered for this study: inline and staggered. The 

inline cross-fame layout consisted of cross-frames in the same transverse line (Figure 

4.6). The staggered cross-frame layout is created by offsetting the cross-frames 4ft from 

each other, where transverse stiffeners are located on the girder (Figure 4.6). Bridge 7R 

had a total of 12 individual cross-frames spaced 20ft apart. Because the aim of this study 

is to investigate response of the cross-frames as a system, it was necessary to keep the 

number of cross-frames and their spacing as similar as possible. 

 

 

 

 

 

 

 

 

 

Figure 4.6 Cross-frame layout modeling. On the left is inline layout, on the right is 

staggered layout. To model staggered layout cross-fames were moved one vertical 

stiffener (red color) away from the nearest cross-frame.  

Furthermore, because the cross-frames were considered to be a system whose 

influence on stress distribution was to be compared from model to model, it was 
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prioritized to keep the cross-frame relative positions as identical as possible across skews. 

For example, when 55° skew models were created from 63° skew models the all distances 

between cross-frames and cross-frame locations in respect to 63° skew models, were kept 

the same while girders 1, 2,  and 3 were moved 4 feet longitudinally. Accordingly, 45° 

skew models were created based on 55°, by keeping the same cross-frame distances and 

locations, but moving girders 1,2, and 3, four more feet in longitudinal direction. This 

procedure was repeated for 25° and 0° skews. This procedure required small adjustments 

to be made for the 0° and 25° models in the spacings of the cross-frames closest to the 

supports, where cross-frame demands should be minimal and thus the influence of 

variations here would be minimized. In the following subsections, the cross-frame layout 

of each model is described in detail. 

4.1.6.4.1 0° Models 

In practice, staggered cross-frame placements are not used for straight (0° skew) 

bridges. However, for the comparison purposes these models were built (as shown in 

Figure 4.7) and analyzed. This resulted in exceptionally large unbraced lengths between 

girder 1 and 2 on the left end (50ft) and girder 3 and 4 on the right end of the models 

(30ft) given the intent to keep the cross-frame spacing and relative positions as similar as 

possible across the models. In practice, at least 2 extra cross-frames (seen as dashed lines 

in Figure 4.7) would be expected for uniformity. Furthermore, the spacing between cross-

frames X3 and X4 is 12ft instead of the 20ft spacing that is used at all other cross-frame 

in the 0° skew models.  
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Figure 4.7 Cross-frame layout for 0° bridges. Gray dashed lines in bottom figure are 

showing the locations of cross-frames that would be expected in practice.  

4.1.6.4.2 25° Models 

The cross-frame layouts for the 25° models is shown in Figure 4.8. In practice, it 

would be expected that the 25° inline layout would have at least two extra cross-frames, 

while the staggered layout would have had one extra cross-frame (shown as dashed lines 

in Figure 4.8). In order to maintain the same total number and spacings at mid-span in all 

models, there are large unbraced lengths between girder 1 and girder 2 at the top left 

corner (38ft) and between girder 3 and 4 at the bottom right corner (36ft) that would also 

not likely be seen in practice. An additional difference between the 25° models and base 

model (63°) was in the spacing between cross-frames X3 and X4 (16ft instead of 20ft). 
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Figure 4.8 Cross-frame layout at 25° bridges. Gray dashed lines in both figures are 

showing the locations of cross-frames that would be expected in practice.     

4.1.6.4.3 46° Models  

The cross-frame layouts for the 46° models is shown in Figure 4.9. In practice, it 

would be expected that both the inline and staggered cross-frame layouts would have had 

at least one extra cross-frame (shown as dashed lines in Figure 4.9). There are also long 

unbraced lengths between girders 1 and 2 at the top left corner (28ft) and between girders 

3 and 4 at the bottom right corner (28ft).  There is no difference between the 46° models 

and base models (63°) in terms of spacing between cross-frames (cross-frame spacing is 

20ft).  



 

 114 

  

 

Figure 4.9 Cross-frame layout at 46° bridges. Gray dashed lines in both figures are 

showing the locations of cross-frames that would be expected in practice.  

4.1.6.4.4 55° Models  

The cross-frame layouts for the 55° models is shown in Figure 4.10. In practice, 

one extra cross-frame would be expected in the inline layout (location of the expected 

cross-frame is shown as dashed line in Figure 4.10). There is also a longer unbraced 

length between girders 3 and 4 at the bottom right corners for the inline models (26ft). 

There is no difference between the 55° models and base models (63°) in terms of spacing 

between cross-frames (all cross-frame spacings are 20ft). 

 

 

Figure 4.10 Cross-frame layout at 55° bridges. Gray dashed line in the top figure shows 

the location of cross-frame that would be expected in practice.  

4.1.6.4.5 63° Models  

The 63° models did not have any deviation from the cross-frame layouts typically 

found in practice (Figure 4.11). The spacing between each cross-frame is 20ft. The 
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maximum unbrace girder length at this skew was under recommended maximum spacing 

of 25ft.  

 

 

 
 

Figure 4.11 Cross-frame layout at 63° bridges.  

 

 AASTHO LRDF (2015) Strength  4.2

AASTHO LRDF Bridge Design Specifications (2015) were used to determine the 

theoretically expected flexural resistance of all models. To determine nominal flexural 

resistance, the first step is to determine if the section is compact or non-compact. If 

section is compact, it is expected to develop its full plastic moment capacity; if the 

section is non-compact it can’t develop full plastic moment capacity. According to 

Article 6.10.6.2.2 (AASHTO, 2015), for a section to be considered compact it must 

satisfy three requirements: 

a)    minimum yield strength (Fy) of the flanges has to be <70ksi 

b)  D/tw  ≤ 150                                                                                                                                     

                                                                                                                          (4.3)                                                                                                                                  
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c)  
2Dcp

tw
≤ 3.76√

𝐸

𝐹yc
                                                                                                             

                                                                                                                          (4.4)                                                                                                    

where D is the depth of web, tw is thickness of the web, Dcp is the depth of the web in 

compression at the plastic moment, and Fy is the steel yield strength, with Fyc specifically 

referring to the yield strength of compression flange.  

When parametric model girder’s cross-section was tested, it was found out that,   

a) 36ksi<70ksi. OK. 

b) 60/0.5=120 < 150. OK. 

c) 
2 ∙  0

0.5
≤ 3.76√

29000

36
→  0 < 107. OK (the location of PNA was calculated 

to be in the deck, therefore Dcp=0). 

The results showed that the section does satisfy all slenderness requirements in 

addition to ductility requirement Dp<0.42Dt (where Dp is distance from the top of the 

concrete deck to the neutral axis of the composite section at the plastic moment, and Dt is 

total depth of composite section)  Dp=9.06in, while Dt=71.25in; 0.42 ∙ 

71.5=30.03>>9.06).  Therefore, theoretically this section could be classified as compact 

section. However, as mentioned in section 4.1.2, preliminary FEA results for the skewed 

bridges showed that full cross-sectional plasticity could not be reached and that some 

other metrics should be used to assess models system capacity. Therefore, it was decided 

to use yield moment as a reliable discrete metric for comparing theoretical vs. FEA 

models results.   

Yielding moment capacity (My) was calculated first by solving for MADusing 

AASHTO (2015) Equation D6.2.2-1 (4.5) and then calculating My using equation 

D6.2.2-2 (4.6) 
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                                                        (4.5) 

 

My=MD1+MD2+MAD                                                                                        ( 4.6 ) 

where MD1 is moment due to factored (1.25) permanent loads applied to the non-

composite section (1.25∙1,340=1,675k∙ft). MD2 is moment due to factored (1.25 for 

barrier and parapet and 1.5 for wearing surface) permanent loads applied to the composite 

section. MD2 =0 k∙ft, because there were no barrier or walkways in the models and there 

was also no wearing surface in the models. MAD is additional non-factored live load 

moment necessary to cause yielding in either steel flange, Fy is the yield strength of the 

steel (36ksi) and SNC (1,739in
3
), SST (2,222in

3
) and SLT (2,058in

3
 ) are steel section, short 

term and  long term and moduli respectively.              

 MAD  =    (Fy  - MD1/SNC)∙ SST = (36  - (1,675∙12)/(1,739) )∙2,222 =54,309/12=4,525 k∙ft  

My=1,675k∙ft +0+4,525 k∙ft = 6,200 k∙ft. 

For perspective on how the design capacity compared to the anticipated loading 

for these structures, the expected ultimate moment applied to the structure was also 

calculated.  One step of this process is to calculate girder distribution factors (GDF) using 

AASHTO LRDF equations from Table 4.6.2.2.2b-1 and Table 4.6.2.2e-1.   

 

 

 (4.7) 

where S is girder spacing, L is length of the girder, Kg is a longitudinal stiffness 

parameter, θ is skew angle and c1 is a skew correction factor. Once we calculated GDFs, 

we computed in-service ultimate moment demand (Mu) based on the governing 

AASHTO limit state in the absence of wind (Strength I) 

Mu=1.25 MD1 +1.5 MD2 + 1.75 (MLL∙GDF)                                       (4.8) 
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where MLL is live load moment (1603 k∙ft) and the other terms are as previously defined. 

Impact factor was not used in this calculation because the load on the FEA models was 

static. Ultimate moment capacity for 0° was calculated to be  

 Mu=(1.25 ∙ 1,340) +(1.5 ∙ 0) + 1.75 (1,603∙0.47)      =      2,995 k∙ft                            

The procedure is repeated for every skew models and results are presented in Table 4.2. 

The results show that all models are designed to satisfy Strength I requirements. 

Table 4.2  AASHTO LRDF nominal moment capacity and ultimate moment demand of 

parametric models  

 

  0° 25° 46° 55° 63° 

Capacity: Yield moment (My)    

(k-ft) 
6,750 6,750 6,750 6,750 6,750 

Demand: Ultimate moment 

(Mu) (k-ft) 
2,955 2,977 2,864 2,685 2,525 

Capacity/Demand 2.10 2.08 2.16 2.31 2.46 

Distribution factor* 0.47 0.46 0.42 0.36 0.30 

*values for one loaded lane given the assumed loading of the parametric models and a 

clear width of the bridge of 24ft 

 

 Evaluation Methods 4.3

Two FEA data evaluation procedures were compared in this dissertation, 

“discrete” and “holistic”. “Discrete” evaluation method is the method that is currently 

being implemented in analysis of FEA data. “Holistic” evaluation method is the method 

that has been proposed in this dissertation. Following subsections describe in detail both 

methods.  

 Discrete Evaluation Method 4.3.1

“Discrete” evaluation of FEA data refers to identifying and extracting discrete 

values of interest in the dataset. These values could be maximum or minimum stresses, 
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deflections, or temperature in the entire model or a specific location, natural frequencies, 

etc.   

Three discrete metrics were used in this dissertation: 

a) Peak stresses at three load levels (design, first yield and system yield). 

b) The number of HS-20 trucks needed to cause yielding of the cross-section 

of the bottom flange of one girder in the bridge (i.e., at the first yield load 

level).   

c) The number of HS-20 trucks needed to cause yielding of the cross-section 

of the  

bottom flanges of all girders in the bridge (i.e., at the system yield load 

level).  

 Discrete Metric 1- Peak Stresses  4.3.1.1

Every steel I-girder bridge has two major load resisting components, deck and 

girders. Considering that simply supported bridges are analyzed in this study, it is 

expected that maximum longitudinal stresses in girders are going to be tensile stresses at 

the bottom flange, and that maximum longitudinal stresses at the deck are going to be 

compressive stresses. Therefore, maximum tensile stresses were extracted from models 

bottom flange elements and maximum compressive stresses are extracted from the deck 

elements at three load levels (design, first yield and system yield) at each model. 

 Discrete Metric 2- The number of HS-20 trucks needed to cause yielding of 4.3.1.2

the cross-section of the bottom flange of one girder in the bridge 

In the FE models, full cross-sectional yielding of the bottom flange of the girder 

refers to the case in which all shell elements constituting a girder’s bottom flange cross-

section equaled or exceeded the yield stress (36,045psi for these models). To help detect 
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bottom flange yielding, stress contours intervals ([−∞ to 0], [0 to 36,045] and [36,045 to 

+∞]) were set during visual post-processing. This results in clear visual distinction 

between yielded and un-yielded bottom flange elements. Then the model’s bottom flange 

was visually inspected at each load increments for full cross-sectional yielding. Once the 

bottom flange full cross-sectional yielding of one girder occurred, the load increment 

(LPF) was recorded. This number represents the number of HS-20 trucks needed to cause 

yielding of the cross-section of the bottom flange of one girder in the bridge. 

 Discrete Metric 3 - The number of HS-20 trucks needed to cause yielding of 4.3.1.3

the cross-section of the bottom flanges of all girders in the bridge (i.e., at 

the system yield load level).   

The model’s bottom flange was visually inspected at each load increments for full 

cross-sectional yielding of each girder. Once the bottom flange full cross-sectional 

yielding of each girder occurred, the load increment (LPF) was recorded. This number 

represents the number of HS-20 trucks needed to cause yielding of the cross-section of 

the bottom flange of all girders in the bridge (system yield level). 

 Holistic Evaluation Method 4.3.2

The “holistic” evaluation of FEA consists of comprehensive assessment of all 

data in the dataset. The data can be expressed in terms of stresses, deflections, 

temperature, etc. In this work, stress data was evaluated using “holistic” methods. 

Specifically, holistic metrics used in this dissertation are:  

1. Percent of bridge component that yielded  

2. Total lateral bending energy (TLBE) 

3. Performance Index (PI) 

4. Chi-square distance (CsD) between stress histograms of FE models at same skew 
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All three metrics were computed for all FE models at three load levels (design, 

first yield and system yield).  The following sub-sections explain in detail these metrics. 

 Holistic Metric 1 - Percent of Girder That Yielded 4.3.2.1

This “holistic” metric evaluated girders at first yield and system yield load levels. 

No deck elements yielded in tension or compression, therefore this metrics was not 

computed for the deck. To compute this metrics, total number of girder elements that 

were yielded, i.e, have stresses larger or equal to 36,045 were counted and then divided 

by total number of girder elements. Since all girder elements are of the same size, this 

metrics also can be used to assess total percent area of steel girders that yielded.  

Intuitively we would expect the girders yielding start at the mid-span of the most heavily 

loaded girder, which is followed by spread of plasticity towards the supports, 

transversely, and through the web. However, the relative spread of plasticity in the 

longitudinal, transverse, and vertical directions is unknown, as well as how bridge skew 

or cross-frame designs could affect the magnitude and direction of the spread of 

plasticity.  Although there is no theoretically explicit way to compute or anticipate the 

percent of girder yielding at post-elastic load levels, this metric allows the difference in 

yielding behavior among different cross-frame configurations and at different skews to be 

quantified and contrasted. 

 Holistic Metric 2 - Total Lateral Bending Energy (TLBE) 4.3.2.2

It is known that skewed bridges’ response to the applied load is more complex 

that the tangent bridges’ response. For example, skewed bridges are exposed to greater 

amounts of lateral bending and torsion in addition to vertical bending.  From the 

discussion above, it is also known that skewed bridges have larger system yield capacity 

than tangent bridges. It is hypothesized that part of the reason why skewed bridges have 

larger system yield capacity than tangent bridges might be related to differences in the 
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relative magnitudes of vertical bending, lateral bending, and torsion. These resulting 

differences in strain energy may cause lower longitudinal strains in some bottom flange 

fibers of skewed bridges, indirectly increasing their system yield capacity. If this 

hypothesis is correct, the tangent bridges should have lower lateral bending strain energy 

than skewed bridges. 

 Quantifying lateral bending strain energy starts with computing lateral bending 

stresses along the length of the girder. Computing lateral bending stresses along the 

length of the girder’s bottom flange effectively creates lateral bending stress curve for 

that girder (Figure 4.12). If the area under the lateral bending stress curve is integrated, 

the resulting quantity is lateral bending strain energy. To compute bottom flange lateral 

bending stresses, longitudinal stresses along opposing edges of each girder (ft1 and ft2) 

were extracted at each element. Taking the average of longitudinal stresses along 

opposing edges of each girder, vertical bending stress (fb) was obtained. 

 

 
Figure 4.12 Lateral bending curves for No-frame models at design load level at 0°. The 

reoccurring intervals (small waves spaced every 48in) seen at 0° skew model correspond 

to the location of transverse stiffeners. 

Subtracting vertical bending stress (fb) from the larger value of longitudinal 

bending stresses, the lateral bending stress (fl) was obtained. This procedure was repeated 
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along the length of each girder at every element, and results were plotted to obtain lateral 

bending stress curve. Once the lateral bending curve (g(fl)) is obtained, the area under the 

stress curve is integrated to get energy used for lateral bending of the bottom flange. 

Finally, lateral bending energy expenditure (LBE) that were obtained per each girder 

were summed to get the total lateral bending energy expenditure (TLBE) per bridge. This 

procedure is summarized in equations 4.10 -4.12. 

𝑓𝑏 + 𝑓𝑙 = 𝑓𝑡1                                                         (4.10) 

𝑓𝑏 − 𝑓𝑙 = 𝑓𝑡2                                                          (4.11) 

𝑇𝐿𝐵𝐸 = ∑∫𝑔(𝑓𝑙)𝑑𝑙

𝑙

0

𝑛

    

(4.12) 

 

where 𝑓𝑡1 and 𝑓𝑡2are longitudinal stresses at the opposing edges of the girder, 𝑓𝑏  vertical 

bending stress, 𝑓𝑙is lateral bending stress, g(𝑓𝑙) is lateral bending stress curve, 𝑙 is length 

of the girder and n is number of girders in the bridge.  TLBE is computed for each model 

at all three load levels.  

 Holistic Metric 3 - Performance Index (PI)  4.3.2.3

 

The Performance Index (PI) is a third “holistic” metric designed for post-elastic 

FEA data evaluation. PI is the ratio of the applied load and the percent of girders yielding 

at that load. For example, if load causing system yield at 0° for K-Inline model was 14.9 

HS-20 trucks, and at this load level model had 8.5% of bottom flange yielded, then 

 𝑃𝐼 =
# HS-20 trucks

% of bottom flange yielded 
=

14.9

0.085 
= 175.2 ≈ 175.  

This metric is intended to evaluate bridge models in terms of effectiveness of 

cross-frame designs in resisting post elastic loads (first yield and system yield load 

levels). The rationale of this metric is that more efficient cross-frame designs are more 

efficient in transferring live load, leading to the bridge being able to resist more load with 
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comparatively less girder yielding. Additionally, this metrics could be used to compare 

the influence of skew and conveniently take into account different load magnitude at first 

yield and system yield load levels among models. This metric is intuitive and easy to 

interpret; the model with the largest PI value is the best performing model according to 

this metric.    

Furthermore, to get a clearer perspective of the relationship between models, the 

PI of all models were “normalized” (divided) by the largest PI value among all models 

and multiplied by 100. For example, at system yield load level, K –Inline model at 63° 

skew has PI of 306, this value is divided by the largest PI of all models (922 for the K-

frame Staggered model at 0° skew) and multiplied by 100 (
306

922
∙ 100 = 33). This means 

the K-frame Inline model at 63° performs 100/33 = 3 times worse than K-frame 

Staggered model at 0° according to this metric. PI was computed for all bridges at first 

yield and system yield load level.  

 Holistic Metric 4 - Chi-square Distance (CsD) 4.3.2.4

 

Stress histograms are graphical representations of the frequency of different stress 

magnitudes organized in pre-defined stress ranges (Figure 4.13). Stress histograms are 

used for the visual evaluation of stress distributions. However, they can be also used to 

numerically quantify the difference between two distributions if the bin ranges are kept 

constant. One of the mathematical tools used to compare the difference between 

histograms is called Chi-square Distance.  
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Figure 4.13 Bottom flange stress histograms of FE models at system yield load level.   
 

The Chi-square Distance is a commonly used metric to compare similarities 

between two or more histograms in the image-processing field (Ahonen et al., 2006, 

Belongie et al., 2002). This measure is a robust tool and it is not overly sensitive to the 

presence of the outliers in the data. The name of the this method is derived from 

Pearson's Chi-squared test statistic  

X²(x,y) = Σ ( (xi-yi)2 / xi)  for comparing discrete probability distributions (i.e, 

histograms). The distance d, which quantifies the difference between the models, is 

obtained by 

 

                                               (4.13) 

𝑑 =
1

2
∑

(𝑥𝑖 − 𝑦𝑖)
2

(𝑥𝑖 + 𝑦𝑖)

𝑛

𝑖=1
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where n is number of bins in the histogram, xi is the number of elements in i bin of first 

histogram and yi is the number of elements in i bin in second histogram. For example, 

let’s say that the bottom flange of a K-frame model at 45 ° skew and first yield load level 

has 720 elements that are in the range of 1000 to 2000 psi ( i=53; bin size in this work is 

fixed at 1000 psi). Alternatively, the bottom flange of No-frame model at 45 ° skew and 

first yield load level has 825 elements that are in the range of 1000 to 2000 psi (i=53). 

Then x53 =720, y53 =825 and d53 = 
(720−825)2

(720+825)
= 7.13. This procedure is repeated for all 

bins, and then individual distances are summed and divided by 2.  

One of advantages of Chi-square Distance measure lays in the fact that is intuitive 

and easy to interpret. For example, a large Chi-square Distance between the models 

corresponds to stress distributions that differ significantly, and conversely, a smaller Chi-

square Distance between the models corresponds to stress distributions that are more 

alike. This metric was used to compare the deck and girder stresses in all models. 

 Results of Evaluation of Stress Distribution Data 4.4

This section presents the results of the discrete and holistic evaluation of FEA 

data. The results are discussed with a primary focus on understanding differences (or 

similarities) between: 

a) Skewed and tangent (0° skew) bridges; 

b) Inline and staggered cross-frame layouts; and 

c) No-frame models and cross-frame models; and  
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 Discrete Evaluation Results  4.4.1

 Discrete Metric 1- Peak Stresses 4.4.1.1

4.4.1.1.1 Discrete Metric 1 – Peak Stresses in Girders 

Maximum tensile stresses in girders were recorded at the bottom flange. 

Therefore, maximum bottom flange tensile stresses at girders are extracted from all FEA 

models at three load levels: design, first yield, and system yield load. The results are 

presented in Tables 4.4 through 4.6 and Figures 4.14 through 4.16, for the design, first 

yield, and system yield load levels, respectively. 

Design Load Level 

 Results 

 

The results show (Table 4.3 and Figure 4.14) that at design load level, skewed 

bridges generally have higher peak bottom flange stresses than tangent bridges. The only 

exceptions to this are at 63º skew.  On average, skewed bridges have 5.7% higher peak 

bottom flange stresses (
13,114+13,025+12,748+12,293

4
 = 12,795psi) than bridges with 0º skew 

(12,064psi). Additionally, in all cases the models with staggered cross-frame layouts have 

higher peak stresses than their counterparts with inline cross-frame layouts.  On average, 

bridges with staggered cross-fame layouts have 13.3% higher peak bottom flange stresses 

(
13,303+14,141

2
=13,722psi), than bridges with inline cross-fame layouts (

11,639+12,156

2
= 

11,897psi), with K-frame Inline models have the lowest stresses of all cross-frame 

designs at 0 to 46° skew. However, on average, the results show that cross-frame models 

have higher peak bottom flange stresses than No-frame models (12,810psi vs. 12,006psi 

respectively) for skewed bridges and the No-frame model has higher peak bottom flange 

stress than most of the peak bottom flange stress of cross-frame models (the X-frame 

Staggered model being the exception). 
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 Discussion 

This study found that maximum bottom flange stresses at skewed bridges are 

higher than maximum bottom flange stresses at straight bridges. This result is somewhat 

surprising, because Marx et al. (1995) reported that skewed bridges have smaller peak 

moments when compared to non-skewed bridges, and consequently should have smaller 

peak bottom flange stresses. The possible reason why there is a difference between the 

results of Marx’s (1995) study and this study might be because the bridge models in these 

studies have different load locations, different width to length ratios, deck to girder 

stiffness ratios and different cross-frame stiffness. One must have these variables in mind 

when comparing results from this study to the results found in published literature.  For 

example, the centroid of the load in the current study is located at the centroid of the 

bridge while the load location in Marx’s study was governed by the maximum moment 

that could be produced at each skew.   

Furthermore, this study found that staggered cross-frame layouts yield higher 

bottom flange stresses than inline cross-frame layouts. This result agrees with the trend 

Radovic & McConnell (2014) reported, that on average bridges with staggered cross-

frame layouts have 2.8% larger peak bottom flange stresses than bridges with inline 

cross-frame layouts. 

 

Table 4.3 Maximum bottom flange stresses at design load level (psi) 

SKEW 
K-FRAME 

INLINE 
K-FRAME 

STAG 
X-FRAME 

INLINE 
X-FRAME 

STAG 
NO 

FRAME 
Average  

0° 11,270 12,134 11,643 12,643 12,632      12,064  

25° 12,006 14,128 12,619 14,607 12,212      13,114  

46° 11,669 13,875 12,336 14,449 12,794      13,025  

55° 11,668 13,766 12,188 14,583 11,537      12,748  

63° 11,582 12,614 11,992 14,425 10,853      12,293  

Average 11,639 13,303 12,156 14,141 12,006 
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Figure 4.14 Maximum bottom flange tensile stresses at design load level  

Finally, this study found that removing cross-frames from the bridge would 

increase peak bottom flange stresses at straight bridges. This result aligns with line 

Tadesco’s, et al. (1995) study that found that removing cross-frames from the tangent (0 º 

skew) bridge would increase bottom flange stresses by 8%. Although, a more detailed 

look at the data shows that in skewed bridges cross-frame designs result in an average of  

9.1% larger peak bottom flange stresses than No-frame bridges (13,032psi vs. 11,849psi 

respectively), reversing the trend found for tangent bridges. 

 

First Yield Load Level 

 Results 

The results show (Table 4.4 and Figure 4.15) that at first yield load level, skewed 

bridges consistently have (5.2% higher on average) higher peak bottom flange stresses 

(38,223psi) than tangent (0º skew) bridges (36,231psi). Additionally, bridges with 

staggered cross-fame layouts on average have 2.8% higher peak bottom flange stresses 

(38,480psi) than bridges with their counterparts with inline cross-frame layouts 

(37,430psi). Furthermore, the results show that No-frame models generally have lower 

(1.5% on average) peak bottom flange stresses than cross-frame models (37,357psi vs. 
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37,942psi respectively). The exception of this rule was found at X-frame Inline models, 

where peak bottom flange stresses at 0°, 55° and  63° skew, were smaller than 

corresponding peak bottom flange stresses at No-frame models (as well as all other 

models). However, the average difference in peak stresses between these models was 

only 0.3% (37,068psi vs. 37,173psi respectively). 

 

Table 4.4  Maximum bottom flange stresses at first yield load level (psi) 

SKEW 
K-FRAME 

INLINE 
K-FRAME 

STAG 
X-FRAME 

INLINE 
X-FRAME 

STAG 
NO FRAME Average  

0°          36,156           36,350           36,083           36,442           36,123           36,231  

25°          37,732           38,825           37,790           38,008           37,703           38,012  

46°          37,620           38,935           37,737           39,228           37,564           38,217  

55°          37,769           39,275           37,591           39,005           37,665           38,261  

63°          38,022           38,932           37,531           39,803           37,731           38,404  

Average           37,460           38,463           37,346           38,497           37,357  
   

 

Figure 4.15 Maximum bottom flange tensile stresses at first yield load level 

System Yield Load Level  

 Results 
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The results show (Table 4.5 and Figure 4.16) that skewed bridge have 6.6%  

higher peak stresses than tangent ( 0° skew) bridges (36,580psi vs 39,178psi, 

respectively). Furthermore, staggered cross-frame layouts consistently have higher peak 

stresses than inline cross-frame layouts (1.6% higher on average, or 38,972psi vs. 

38,366psi), while cross-frame models have on average 0.1% higher peak stresses than 

No-frame models (38,669psi vs 38,617psi). Although, inline cross-frame layouts on 

average have 0.7% lower peak bottom flange stresses (39,366psi) when compared to No-

frame models (38,617psi), while staggered cross-frames  on average have 0.9 higher peak 

bottom flange stresses (38,972psi) than No-frame models. 

 Discussion 

Steel in the FEA models was modeled with elasto-plastic properties, with true 

yielding strength of 36,045psi and strain hardening between true stresses of 36,611psi 

and 85,463psi. The results show that majority of peak bottom flange stresses are in the 

strain hardening region. Only two models (K-frame Inline and X-frame Inline at 0° skew) 

have peak stresses that are on the yielding plateau (36,511psi and 36,251psi, 

respectively).  Furthermore, the results also show that peak stresses between first yield 

and system yield load levels have similar magnitudes, even if the load magnitudes were 

significantly higher at system yield than the load magnitudes at first yield load level.  The 

average overall peak bottom flange stresses of all models at system yield was 38,658psi 

while the average overall peak bottom flange stress at first yield was 37,825psi. The 

average overall load at first yield load level and system yield load level was 13.3 HS-20 

and 16.1 HS-20 trucks, respectively. This means while, on average, the load on the bridge 

was increased 17.5%, peak girder stress, on average, was increased by only 2.2%. On 

more particular level, the largest percent difference in load magnitudes between first 

yield and system yield was recorded at No-frame 63º skew model, where the load at 

system yield was 29% larger than load at first yield load level, while the peak girder 
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stress was only 4% larger. These results indicate that using maximum tensile stress, as a 

metric to compare bridge designs in the post-elastic range is not adequate, because the 

differentiation between the models becomes trivial or non-existent. These results also 

show that there is a need for better measuring tool of bridge performance at post-elastic 

load levels. 

 

Table 4.5 Maximum bottom flange stresses at system yield load level (psi). 

SKEW 
K-FRAME 

INLINE 
K-FRAME 

STAG 
X-FRAME 

INLINE 
X-FRAME 

STAG 
NO FRAME Average  

0°          36,511           36,673           36,251           36,684           36,780       36,580  

25°          38,618           39,442           38,268           39,671           38,982       38,996  

46°          38,770           39,405           38,773           39,228           38,806       38,996  

55°          39,092           39,680           39,125           39,528           39,196       39,324  

63°          39,251           39,622           38,996           39,784           39,322       39,395  

Average           38,448           38,964           38,283           38,979           38,617  
  

 

Figure 4.16 Maximum bottom flange tensile stresses at system yield load level 

4.4.1.1.2 Discrete Metric 1 – Peak Stresses in Deck 

The maximum deck compressive stresses are extracted from all FEA models at 

three load levels: design, first yield, and system yield load (Tables 4.4 through 4.6 and 
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Figures 4.14 through 4.16, for the design, first yield, and system yield load levels, 

respectively). Furthermore, trends in relative magnitudes between different groups of 

models for peak deck stress results were contrasted to corresponding trends in peak girder 

stresses results in order to detect similarities or differences in behavior between these two 

bridge components.  

Design Load Level  

 Results 

The results show that the in at design load level, deck longitudinal (s11) stresses 

are very low. The average peak stress across all models was only 331psi with a standard 

deviation of 31psi in the peak stress values. Considering that the model was based on an 

assumed concrete compressive strength of 4,500psi, average stress demand was only 7% 

of the theoretical deck capacity. Furthermore, results show that peak average stress for 

inline models (333psi) is 1.7% higher than peak average stress for staggered models 

(327psi). This result is also contrary to girder results where staggered cross-frame layouts 

have larger peak average stresses than inline cross-frame layouts, although the percent 

difference is much less for deck stresses than girder stresses.  

The results also show that the No-frame models on average have 2.2% higher 

peak stresses than cross-frame models (337psi vs. 330psi respectively). However, X-

frame models and No-frame models have approximately the same stresses at 46° skew 

while K-frame models and No-frame models have approximately the same stresses as one 

another at all other skew levels.   

This result is contrary to girder results, where both cross-frame designs on average have 

larger peak stresses than No-frame models. Furthermore, the largest overall peak stress 

was recorded at X-frame Inline 63° skew model (384psi). It is interesting to note that in 

general K-frame models have larger peak stresses than X-frame models at every skew 

except 63°.  
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 Discussion 

On average, skewed bridges have higher deck compressive stresses (332psi) than 

straight (0º skew) bridges (328psi), but the difference is very low (1%). This result occurs 

because the minimum deck stresses occur in the 46º models, with increasing deck stress 

as the skew deviates from 46º. The question is what is so specific about 46º skew? The 

explanation to this phenomenon might be related to Kar, et al. (2012) findings, who 

investigated the effects of bridge skews on deck transverse moments. The study found 

that transverse moments increased as skew increased to 30°, remained the same when 

further increased to 45° and then decreased when further increased to 60°. A similar 

pattern was detected for torsional moment, where there is negligible torsional moment for 

skews up to 30°, then an abrupt increase at 45°, and then a decrease to 20% of the 

moment at 45° when the skew is increased to 60°. This finding would indicate that bridge 

deck, rather than cross-frames may play significant roles in stress distribution.  

A related study has shown (Fu & Wang, 2014) that bridge decks in straight 

bridges mostly bend along their longitudinal axis with negligible bending along 

transverse axis and small twisting moment due to biaxial curvature. The load from the 

deck is transferred to the supports directly by longitudinal bending action. However, very 

different behavior is detected in decks of skewed bridges. Load transfer from a deck of a 

skewed bridge becomes more complicated because there is uncertainty in which direction 

and by what action (uniaxial or biaxial bending) load will be transferred to the supports. 

With increase in skew angle, the stresses in the bridge deck and reactions at the supports 

could vary significantly from straight deck. 

Furthermore, at skewed bridges the load is distributed between supports through a 

strip of area connecting obtuse corners of the bridge (Kar, et al. 2012). According to this 

hypothesis, the bending occurs mainly along the line connecting obtuse corners, and load 

is distributed to supports “in proportion to the rigidity of the various possible paths.” 

(Kar, et al. (2012)). Also, the greater the skew is, the narrower the load transfer strip is 
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(Rajagopalan, 2006). Rajagopalan (2006) states that “the width of this primarily bending 

strip is a function of the skew angle and the ratio between the skew span and the width of 

the deck (aspect ratio). The areas on either side of the strip do not transfer the load to the 

supports directly but transfer the load only to the strip as cantilever. Hence the skew slab 

is subject to twisting moments and this twisting moment is not small and hence cannot be 

neglected.”  

Table 4.6  Maximum deck longitudinal compressive stresses at design load level (psi) 

SKEW 
K-FRAME 

INLINE 
K-FRAME 

STAG 
X-FRAME 

INLINE 
X-FRAME 

STAG 
NO 

FRAME 
Average  

0° 349 349 297 299 344 328 

25° 350 350 293 292 346 326 

46° 349 348 292 289 289 313 

55° 357 349 295 289 350 328 

63° 363 359 384 347 357 362 

Average  353 351 312 303 337   

 

Figure 4.17 Maximum deck longitudinal compressive stresses at design load level 
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First Yield Load Level 

 Results 

The results show (Table 4.7 and Figure 4.18) that at first yield load, the average of 

peak compressive deck stresses (1,111psi) is 3.3 times higher than at design load level 

(331psi), but still significantly lower than concrete’s compressive strength of 4,500psi. 

Comparing the results at different skews shows that minimum deck stress occurs at 46° 

skew, as was the case at the design load level and consequently tangent (0° skew) bridges 

have on average 2.6% higher peak compressive stresses than skewed bridges (1,135psi 

vs. 1,105psi respectively). Finally, the results show that on average staggered cross-frame 

layouts have 7.7% higher stresses than inline cross-frame layouts (1,162psi vs. 1,079psi, 

respectively). The results also show that on average cross-frame models have 4.3% 

higher peak stresses than No-frame models (1,121psi vs. 1,073psi respectively), but more 

specifically K-frame models have greater stresses than No-frame models while K-frame 

models have lower stresses than No-frame models.  

 Discussion 

While average results show that cross-frame models have higher peak stresses 

that No-frame models, more detailed analysis shows, that X-frame models in general 

have lower peak stresses than No-frame models, while K-frame models have higher peak 

stresses than No-frame models regardless of the skew. Exception to this rule was found at 

46° skew where both X-frame layouts (staggered and inline) had higher peak stresses 

than No-frame model. This trend of different relative magnitudes between X-frame, K-

frame, and No-frame models at 46° skews compared to other skews is consistent to the 

anomaly in these trends that were observed at 46° skew for the design load level results. 

However, K-frame and No-frame models generally had more similar magnitudes of stress 
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as one another at the design load level, while K-frame models generally have greater 

stress than No-frame models at the first yield load level.  

Table 4.7 Maximum deck longitudinal compressive stresses at first yield load level (psi) 

SKEW 
K-FRAME 

INLINE 
K-FRAME 

STAG 
X-FRAME 

INLINE 
X-FRAME 

STAG 
NO 

FRAME 
Average  

0°         1,193          1,318             987          1,073          1,104          1,135  

25°         1,175          1,241             965             891          1,115          1,077  

46°         1,151          1,284             930          1,070             860          1,059  

55°         1,180          1,310             898          1,025          1,128          1,108  

63°         1,229          1,293          1,081          1,118          1,156          1,175  

Average          1,185          1,289             972          1,035          1,073    

 

 
       Figure 4.18 Maximum deck longitudinal compressive stresses at first yield load level 

System Yield Load Level 

 Results 

The results show (Table 4.8 and Figure 4.19) that at system yield load level, the 

average of peak compressive deck stresses (1,322psi) is 16.0% higher than at first yield 

load level (1,111psi). Considering that the average load at system yield load level is 

17.5% higher than the average load at first yield load level, it seems that deck peak 

stresses aligned well with the loading conditions. Furthermore, the results show that the 

minimum deck stresses again occurred at 46° skew.  On average, skewed bridges have 
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4.2% larger stresses than tangent (0° skew) bridges (1,333psi vs. 1,277psi, respectively), 

which is contrary to first yield load deck stress results but aligned with design load deck 

stress results. The results also show that on average inline cross-frame layouts have 5.6% 

larger stresses than staggered cross-frame layouts (1,339psi vs. 1,264psi, respectively), 

but staggered layouts result in greater stresses than inline layouts for 0 and 25° skew. 

Furthermore, No-frame models on average have 7.3% larger stresses than cross-frame 

models (1,404psi vs. 1,301psi, respectively), with K-frame models generally having 

higher stresses than X-frame models (the exception being at 63° skew).   

 Discussion 

The system yield load level results agree with the results at other load levels with 

respect to the influence of skew on peak longitudinal deck stresses and with K-frame 

models generally resulting in higher stresses than X-frame models. K-frame or No-frame 

models generally result in the highest deck stresses, with the specific configuration that 

produces the maximum varying based on load level (K-frame and No-frame generally the 

same at design load, K-frame being maximum at first yield load, and No-frame being 

maximum at system yield load) and with exceptions occurring at 46° skew. There was no 

consistent trend between load levels with respect to the influence of staggered versus 

inline cross-frames. 

Table 4.8 Maximum deck longitudinal compressive stresses at system yield load level 

(psi) 

SKEW 
K-FRAME 

INLINE 
K-FRAME 

STAG 
X-FRAME 

INLINE 
X-FRAME 

STAG 
NO FRAME Average  

0°         1,372          1,382          1,103          1,110          1,420          1,277  

25°         1,354          1,381          1,075          1,110          1,461          1,276  

46°         1,385          1,383          1,099          1,070          1,108          1,209  

55°         1,465          1,407          1,131          1,104          1,478          1,317  

63°         1,520          1,472          1,882          1,221          1,554          1,530  

Average          1,419          1,405          1,258          1,123          1,404    
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Figure 4.19 Maximum deck longitudinal compressive stresses at system yield load level  

 Discrete Metric 2 - First Yield Capacity 4.4.1.2

 Results 

The second metric used for “discrete” assessment of FEA data is the number of 

HS-20 trucks needed to cause cross-sectional yielding of the bottom flange of one girder 

in the bridge. This metric is designed to measure the load corresponding to the onset of 

post-elastic behavior of the bridge. The “first yield” capacity could be seen as transitional 

point between elastic and post elastic range, therefore it is important to observe the bridge 

behavior at this stage. The results show (Table 4.9 and Figure 4.20)  that there is 

significant first yield capacity in steel I-girder bridges, as the average overall load that 

will cause cross-sectional yielding of the bottom flange of one girder in the bridge was 

calculated to be equivalent to 13.3 HS-20 trucks.    

On average, skewed bridges have 5.7% larger capacity than tangent (0º skew) 

bridges (13.4 HS-20 trucks vs. 12.7 HS-20 trucks, respectively), and in general, as the 

bridge skew increases the first yield capacity of the bridge increases as well. However, an 

exception of this rule was found at 25º skew staggered models having the minimum 
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capacities for these cross-frame configurations and the first yield capacity for inline 

model was not increased between 0° and 25° skew. These results indicate that the 

correlation between bridge skew and bridge capacity is non-linear. The best-fit line was 

obtained by polynomial regression equation in form of  

y = 0.0016x
2
 - 0.0655x + 12.689                                                     (4.14)  

where, y represents bridge first yield capacity and x represents bridge skew. The 

correlation coefficient was very high (R
2
=0.98 or 98%) indicating strong, but non-linear 

association between bridge skew and bridge first yield capacity.  

Furthermore, the cross-frame models consistently had higher first yield capacity 

than No-frame models (on average, 11% higher, or 13.5 HS-20 trucks versus 12.1 HS-20 

trucks, respectively). Additionally, the results also show that staggered models generally 

have higher first yield capacity than inline models (on average, 8% higher, or 13.0 HS-20 

trucks vs. 14.1 HS-20 trucks respectively). There was no consistent relationship regarding 

whether K=frames or X-frames resulted in higher first yield capacity.   

Table 4.9 Number of HS-20 trucks needed to cause cross-sectional yielding of the bottom 

flange at one girder (First yield)  

 

SKEW 
K-FRAME 

INLINE 
K-FRAME 

STAG 
X-FRAME 

INLINE 
X-FRAME 

STAG 
NO FRAME Average 

0° 12.3 13.7 12.5 13.5 11.3 12.7 

25° 12.5 13.0 12.5 11.2 11.4 12.1 

46° 12.5 13.9 12.6 14.8 11.4 13.0 

55° 13.1 15 12.7 14.6 12.6 13.6 

63° 14.7 15.5 14.8 16.1 13.7 15.0 

Average 13.0 14.2 13.0 14.0 12.1   
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Figure 4.20 Bridge capacity in terms of number of trucks needed to cause complete cross-

sectional yielding of bottom flange of one girder. The dotted line represents the line of 

best fit. 

 Discussion 

Theoretical first yield capacities were calculated for all skews and compared to 

average first yield capacities obtained from FEA models at each skew (Table 4.10). For 

example, to calculate the theoretical number of HS-20 trucks needed to cause bottom 

flange yielding of one girder (MAD) was divided by the product of the applied maximum 

live load moment due to one HS-20 vehicle (MA) and the AASHTO distribution factor 

(GDF). For example, theoretical first yield capacity for 0º skew models was calculated to 

be    

 # HS-20 = MAD /(MA ∙ DF)  =  
4,525

1604 ∙ 0.47
 = 6.0. 

The results show that theoretically calculated first yield capacities are 

significantly lower than the FEA computed first yield capacities at each skew. The largest 

percent difference (53%) was found at 0° skew, while the smallest percent difference 

(37%) was found at 63° skew.  

y = 0.0016x2 - 0.0655x + 12.689 
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Table 4.10 Comparison between theoretical and FEA first yield capacities at each skew 

Skew 
Theoretical # HS-20 

trucks 

FEA# HS-20 

trucks 

% difference 

between theoretical 

and FEA 

0° 6.0 12.7 53% 

25° 6.1 12.1 49% 

46° 6.7 13.0 48% 

55° 7.8 13.6 42% 

63° 9.4 15.0 37% 

 Discrete Metric 3 -System Yield Capacity  4.4.1.3

The third metric used for “discrete” assessment of FEA data is the number of HS-

20 trucks needed to cause the cross-sectional yielding of the bottom flange of all girders 

in the bridge. This metrics is designed to measure system capacity of the bridge.  

 Results 

The results (Figure 4.16 and Table 4.11) show significant system yield capacity of 

steel I-girder bridges. The overall average load that will cause cross-sectional yielding of 

the bottom flange of all girders in the bridge was calculated to be equivalent to 16.1 HS-

20 trucks. The general trend, similar to first yield results for the staggered models, is that 

the minimum capacity occurs at 25º skew. On average, skewed bridges have 8.5% larger 

capacity than tangent (0º skew) bridges (15.0 HS-20 trucks vs. 16.4 HS-20 trucks, 

respectively). Similarly, to first yield results, the correlation between bridge skew and 

bridge capacity is also non-linear. The best fit was obtained by polynomial regression 

equation in form of  

y = 0.0022x
2 

- 0.0858x + 15.104                                                    (4.15)  

where, y represents bridge system yield capacity and x represents bridge skew. The 

correlation coefficient was very high (R
2
=95%) indicating strong, but also non-linear, 

association between bridge skew and bridge system yield capacity.  
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The No-frame models generally have higher system yield capacity than cross-

frame models (3.6% higher on average, or 16.6 HS-20 trucks vs. 16.0 HS-20 trucks, 

respectively). Additionally, the results also show inline models generally have higher 

system yield capacity than staggered models for skews of 46º and above, resulting in the 

inline models having 4% greater capacity on average (16.3 HS-20 trucks vs. 15.7 HS-20 

trucks, respectively).  Furthermore, the K-frame models have more system capacity than 

X-frame models in the skewed and tangent inline models.    

Table 4.11 Number of HS-20 trucks needed to cause cross-sectional yielding of the 

bottom flange at all bridge girders (system yield) 

 

SKEW 
K-FRAME 

INLINE 
K-FRAME 

STAG 
X-FRAME 

INLINE 
X-FRAME 

STAG 
NO 

FRAME 
Average 

0° 14.9 14.8 14.8 14.9 15.5 15.0 

25° 14.7 14.8 14.2 14.6 15.4 14.7 

46° 15.9 15.2 15.7 14.8 15.5 15.4 

55° 17.1 16.2 17.1 15.9 17.0 16.7 

63° 19.3 18.0 19.1 17.6 19.4 18.7 

Average 16.38 15.8 16.18 15.56 16.56   

 

 
 

Figure 4.21 Bridge capacity in terms of number of trucks needed to cause complete cross-

sectional yielding of bottom flanges of all girders in the bridge. 
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The results shown are in general very surprising especially considering that, 

intuitively, it would not be expected that No-frame models should have larger system 

capacities than cross-frame models. For example, when system capacities between No-

frame model and cross-frame models where compared at each skew it was found that 

only four (K-frame and X-frame Inline models at 46º and 55° skew) out of 20 cross-frame 

models have larger capacities than the No-frame models. That means that in 80% of the 

cases No-frame models have larger system capacities than cross-frame models. 

This was a surprising result because traditional line of thinking is that, in bridges 

with high skews, cross-frames tend to act not just as load transferring members, but also 

as primary load carrying members assisting girders and deck. This assumption would 

imply that No-frame models would have substantially smaller overall system capacity 

when compared to cross-frame models, which is not the case according to results 

presented.  

In an effort to better understand this behavior, the stress distribution and 

deflection patterns between No-frame and K-frame Inline models at 0º skew where 

compared (Figure 4.22). Figure 4.22 shows that stress and deflection profiles for these 

two models look very similar to each other. The graphics on the left show models’ 

deflection patterns, while the graphics on the right show typical stress distribution pattern 

of the bottom flanges. It seems that presence or absence of the cross-fame did not 

significantly affect the visual yielding pattern of the girders bottom flanges. 
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Figure 4.22 Bottom flange lateral deflection (left) and stress distribution (right) of K-

frame (top) and No-frame (bottom) models for 0° skew at system load level. White areas 

are elements that are yielded in tension (true stress>36045psi), while black areas 

represent stresses that are not yielded yet.  

 Furthermore, 46° skew X-frame Staggered model showed the same first yield and 

system yield capacity. This was very unusual finding because theoretically it would be 

expected that it would need additional load on the bridge to cause other girders to yield 

after yielding of the first girder took place. However, it seems that system yield at this 

bridge model experienced abrupt instantaneous yielding of all four girders at the same 

load step.  The left of Figure 4.233a shows the state of bottom flange yielding of bridge 

X-frame Staggered at 46° skew at load of 13.8 HS-20 trucks. While there is significant 

amount of yielding in 3 out of 4 girders, the yielding of the whole bottom flange cross-

section did not occur at single girder at this load level. However, at the next load 

increment (load equivalent of 14.8 HS-20 trucks shown in Figure 4.23b), bottom flange 

cross-sections of all four girders were completely yielded.  
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Figure 4.23 The spread of bottom flange yielding at a) X-frame Staggered at 46° skew 

under 13.8 HS-20 trucks; b) X-frame Staggered at 46° skew under 14.8 HS-20 trucks 

(first yield and system yield simultaneously); c) X-frame Inline at 46° skew under 11.6 

HS-20 trucks; d) X-frame Inline at 46° skew under 12.6 HS-20 trucks (first yield) and f) 

X-frame Inline at 46° skew under 15.7 HS-20 trucks (system yield). 

To contrast this, Figures 4.23c through f show the gradual spread of bottom flange 

yielding that occurred in the 46° skew X-frame Inline model.  Figure 4.23c shows the 

yielding one load increment before first yield, while Figure 4.23d shows the spread of 

bottom flange yielding at first yield load level (12.7 HS-20 trucks). Figure 4.23e shows 

the spread of bottom flange yielding one load increment before system yield, while 

Figure 4.23f shows the spread of bottom flange yielding at system yield load level (15.7 

HS-20 trucks). This result graphically shows how the different cross-frame’s layout can 

affect the spread of bottom flange yielding. 

 

 

a) 

e) 

b) 

c) d) 

f) 
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 Discussion 

The theoretical values for system yield capacities in terms of HS-20 trucks were 

computed and compared to FEA results. To calculate the theoretical system yield 

capacity of the bridge the first yield capacities of all girders in the bridge were summed, 

 System capacity= ∑ 𝑀𝑦𝑖                                                            
𝑘
1  ( 4.15) 

Where i is an integer from 1 to k, k is number of girders in the bridge and 𝑀𝑦𝑖 is first 

yield capacity of each girder. Considering that each girder had the same cross-section 

amd material properties and thus each girder would have same first yield capacity, which 

means that system capacity in terms of number of HS-20 vehicles is calculated as   

# HS-20 = 4∙ MAD /MA   =  
4∙4,525

1604
 =11.3 

where MAD  is the moment that cause bottom flange yielding and MA maximum applied 

moment on the bridge.  As an approximate way to consider the skew effect, maximum 

applied load was multiplied by skew correction factor SCF = 1- c1 (tan θ)
1.5

  (AASHTO 

LRDF equations from Table 4.6.2.2e-1), where c1 is bridge stiffness parameter (0.08985) 

and θ is bridge skew.  (Another way of considering this effect, that was not explored, 

includes revising MA for each girder based on the longitudinal position of the truck 

relative to each girder.)  The results show that the largest percent error (25%) was 

calculated at 0° skew, while the lowest percent error (19%) was calculated at 46° skew.    

Table 4.12 Comparison between theoretical and FEA system yield capacities at each 

skew 

Skew 
Theoretical # HS-20 

trucks  

FEA# HS-20 

trucks 

% difference between 

theoretical and FEA 

0° 11.3 15.0 25% 

25° 11.6 14.7 21% 

46° 12.5 15.4 19% 

55° 13.3 16.7 20% 

63° 15.0 18.7 20% 
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 Holistic Evaluation Results  4.4.2

 Holistic Metric 1 - Percent of Girders That Yielded 4.4.2.1

The percent of bridge component that yielded is the first metric used for “holistic” 

evaluation of FEA data. This metric was only computed for first yield and system yield 

load levels, because during design load level no element reached or exceeded the true 

yielding stress of 36,045 psi. 

First Yield Load Level 

 Results 

 The results show (Table 4.14 and Figure 4.22) that on average there is no 

difference in percent yielding between tangent bridges (0° skew) and skewed bridges 

(1.1% and 1.1%, respectively). Bridges with staggered cross-frame layouts generally 

have higher percent girder yielded than bridges with inline cross-frame layouts (58.1% 

higher on average, 1.7% vs. 0.7%, respectively). There was no consistent relationship 

between whether the K-frame or X-frame models produced the highest percentage of 

girder yielding. The results also show that on average cross-frame models have 41.3% 

higher percent girder yielded than No-frame models (1.2% vs. 0.7%, respectively), with 

only the X-Frame Inline models giving lower percentages of girder yielding in some 

cases.   

 Discussion 

The results show that there was no difference in percent yielding between tangent 

bridges and skewed bridges. This was somewhat unexpected result because the average 

first yield load for straight bridges (0° skew) was 12.7 HS-20 trucks, while the average 

load for skewed bridges was 13.4 HS-20 trucks. This means that while the average load 

between two bridge skews increased 5.7%, the average percent of yielded girder was not 
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increased at all. What is more interesting is the average percent of girder yielding actually 

slightly decreased from 0° skew bridges (1.1%) to 25° skew bridges (1.0%), which 

matches with discrete metrics where 25° skew bridges had the lowest average first yield 

capacity and lowest system yield capacities.  Closer examination of the results shows that 

the main culprit for the drop in percent yielding at 25° skew was the bridges with X-

frame Staggered cross-frame design. The results show that at X-fame Staggered 0° skew 

bridge percent of girder yielding is 1.6%, while at 25° skew the percent of girder yielding 

is dropped to 0.7%. There is also the large drop in first yield capacity for this model 

between 0° and 25° skew (13.5 vs 11.2 HS-20 trucks respectively). 

Table 4.12 Percent of girder yielded at first yield load level 

Skew 
K-Frame 
Inline 

K-Frame 
Stagg 

X-Frame 
Inline 

X-Frame 
Stagg 

No-frame 
Average 

0° 0.9% 1.4% 0.8% 1.6% 0.9% 1.1% 

25° 0.9% 1.4% 1.0% 0.7% 0.8% 1.0% 

46° 0.5% 1.7% 0.6% 3.3% 0.5% 1.3% 

55° 0.7% 1.8% 0.2% 1.9% 0.7% 1.1% 

63° 0.9% 1.5% 0.6% 1.9% 0.7% 1.1% 

Average 0.8% 1.6% 0.7% 1.9% 0.7%   

 

 

Figure 4.24 Percent of girder yielded at first yield load level 
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To further investigate this phenomenon, stress contours of X-frame Staggered 

models at four skews were plotted (Figure 4.25a to 4.25d) and analyzed. The results show 

that three out of four girders at bridges with 0°, 46° and 55° skew have some of the 

bottom flange yielding before reaching first yield capacity threshold (Figure 4.25a, c and 

d). However, at 25° bridge, only two girders showed some bottom flange yielding before 

first yield capacity threshold is reached (Figure 4.25b).  

Figure 4.25 Bottom flange stress contours at first yield load level of X-frame staggered 

models at four different bridge skews (0°, 25°, 46° and 55°). Red are yielded elements, 

gray are elements in tension and black are elements in compression.  

System Yield Load Level 

 Results 

The results show (Table 4.15 and Figure 4.24) that skewed bridges have higher 

percent girder yielding that tangent (0° skewed) bridges (on average 58.1% higher, or 

4.5% and 1.9%, respectively). Furthermore, bridges with inline cross-frame layouts 

generally have higher percent of girder yielding than bridges with staggered cross-frame 

layouts, with the exception at 25° skew bridges. This contributes to inline cross-frame 

layouts having 23.0% higher percent of girder yielding than bridges with staggered cross-

frame layouts on average (4.1% vs. 3.3%, respectively). X-frame models generally have 

larger percent girder yielding than K-frame models (on average 5.2% higher, 3.9% vs. 

a) 0

° 
b) 

25° 

c) 

46° 

d) 

55° 
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3.7%, respectively), the exception being the 63° staggered models. The results also show 

that No-frame models on average have 23.9% higher percent yielding than cross-frame 

models (4.7% vs. 3.8%, respectively), but there is not consistent trend contributing to this 

result.  

Table 4.13 Percent of girder yielded at system yield load level 

Skew 
K-Frame 

Inline 
K-Frame 

Stagg 
X-Frame 

Inline 
X-Frame 

Stagg 
No-

frame 
Average 

0° 1.7% 1.6% 2.0% 1.8% 2.2% 1.9% 

25° 2.9% 3.4% 3.0% 3.9% 5.2% 3.7% 

46° 4.4% 3.2% 4.8% 3.3% 4.4% 4.0% 

55° 5.4% 3.4% 5.5% 3.9% 5.0% 4.7% 

63° 6.3% 4.2% 6.3% 4.0% 6.6% 5.5% 

Average 4.1% 3.2% 4.3% 3.4% 4.7%   

 

Discussion 

Results also show (Figure 4.25) that percent of girder yielding and system yield 

capacity are moderately correlated (R
2
 =0.62), meaning that as the load on the bridge is 

increased the percent of girder yielding is increased as well. However, this moderate 

correlation also indicate that some other factors also contribute to percent of girder 

yielding.   
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Figure 4.26 Percent of girder yielded at system yield load level 

                        

Figure 4.27 Scatter plot between percent yielding and system capacity of the bridge 

 Holistic Metric 2 - Total Lateral Bending Energy (TLBE) 4.4.2.2

The TLBE results for the three load levels are detailed below.  Common trends at 

all three load levels are that the TLBE increases with increasing skew and that in general 

no-frame models have the lowest TLBE, followed by inline models, then staggered 

models.   
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Design Load Level 

 Results 

The results show (Table 4.14 and Figure 4.28) that on average skewed bridges 

have 80% larger TLBE than tangent bridges (8.13·105in·lb vs. 4.17·106in·lb, 

respectively). Furthermore, bridges with staggered cross-frame layouts have on average 

27% larger TLBE than bridges with inline cross-frame layouts (3.91·106in·lb vs. 

2.84·106in·lb, respectively). Results also show that bridges with cross-frames have on 

average 29% larger TLBE than bridges without cross-frames (3.71·106in·lb vs. 

2.65·106in·lb, respectively). 

 Discussion  

The results indicate that the hypothesis that skewed bridges have larger TLBE 

than tangent bridges is correct. What is more interesting is that bridges without cross-

frames in general have lower TLBE than bridges with cross-frames, with the exception 

found at tangent inline bridges. It seems that presence of both bridge skew and cross-

frames increase TLBE in the bridges. On a more particular level, X-frame Staggered 

bridge at 63° skew is the model with the largest TLBE (7.82·106in·lb). This is not an 

unexpected result, considering that it is known from the literature that staggered cross-

frames tend to increase lateral bending stresses. Furthermore, the reason why on average 

X-frame Staggered models have 5% larger TLBE than K-frame Staggered models might 

lay in the fact that X-frame models have 30% higher axial stiffness than K-frame models.  

 

Table 4.14 Total lateral bending energy expenditure (in·lb) at design load level  

 

 

 

 

 

 

Design  0° 25° 46° 55° 63° Average 

K-Frame Inline 3.08E+05 1.58E+06 3.20E+06 4.44E+06 5.79E+06 3.07E+06 

K-Frame Stagg 1.47E+06 2.53E+06 4.18E+06 5.94E+06 6.84E+06 4.19E+06 

X-Frame Inline 2.78E+05 1.66E+06 3.25E+06 4.75E+06 5.92E+06 3.17E+06 

X-Frame Stagg 1.61E+06 2.19E+06 4.30E+06 6.12E+06 7.82E+06 4.41E+06 

No-frame 3.96E+05 1.39E+06 2.73E+06 3.89E+06 4.83E+06 2.65E+06 

Average 8.13E+05 1.87E+06 3.53E+06 5.03E+06 6.24E+06   
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Figure 4.28 Total lateral bending energy expenditure (in·lb) at design load level 

First Yield Load Level 

 Results 

The results show (Table 4.15 and Figure 4.29) that on average skewed bridges 

have 59% larger total lateral energy expenditure than tangent bridges TLBE 

(6.24·106in·lb vs. 1.51·106in·lb, respectively). Furthermore, bridges with staggered 

cross-frame layouts have on average 45% larger TLBE than bridges with inline cross-

frame layouts (1.07·106in·lb vs. 9.37·106in·lb, respectively). Results also show that 

bridges with cross-frames have on average 40% larger TLBE than bridges without cross-

frames (1.45·107in·lb vs. 8.65·106in·lb, respectively). 

 Discussion 

The results indicate that bridge behavior in terms of TLBE is generally the same 

at design and at first yield load level. Skewed bridges have larger TLBE than tangent 

bridges, staggered layouts have larger TLBE than inline layouts. Furthermore, bridges 

without cross-frames have consistently the lowest TLBE regardless of the skew. Even 

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

9.00E+06

K-Frame Inline K-Frame Stagg X-Frame Inline X-Frame Stagg No-frame

La
te

ra
l B

en
d

in
g 

En
er

gy
 (

in
·lb

) 

0° 25° 46° 55° 63°



 

 155 

 

tangent bridges with inline cross-frame layouts bridges higher TLBE than No-frame 

bridges. On a more particular level, X-frame Staggered model at 63° skew is still model 

with the largest TLBE (3.20·107in·lb) among all other models. 

Table 4.15 Total lateral bending energy expenditure (in·lb) at first yield load leve    

 
Figure 4.29 Total lateral bending energy expenditure (in·lb) at first yield load level 

System Yield Load Level 

 Results 

The results show (Table 4.16 and Figure 4.30) that on average skewed bridges 

have 61% larger total lateral energy expenditure than tangent bridges TLBE 

(1.65·10
7
in·lb vs. 6.40·10

6
in·lb, respectively). Furthermore, bridges with staggered cross-

frame layouts have on average 40% larger TLBE than bridges with inline cross-frame 
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Design  0° 25° 46° 55° 63° Average 

K-Frame Inline 2.56E+06 5.70E+06 1.00E+07 1.39E+07 1.98E+07 1.04E+07 

K-Frame Stagg 1.18E+07 1.41E+07 1.90E+07 2.47E+07 2.59E+07 1.91E+07 

X-Frame Inline 2.02E+06 5.87E+06 9.96E+06 1.45E+07 1.88E+07 1.02E+07 

X-Frame Stagg 1.30E+07 9.40E+06 1.23E+07 2.53E+07 3.20E+07 1.84E+07 

No-frame 1.89E+06 4.69E+06 8.16E+06 1.24E+07 1.61E+07 8.65E+06 

Average 6.24E+06 7.95E+06 1.19E+07 1.81E+07 2.25E+07   
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layouts (1.74·10
6
in·lb vs. 1.04·10

6
in·lb, respectively). Results also show that bridges with 

cross-frames have on average 27% larger TLBE than bridges without cross-frames 

(1.53·10
7
in·lb vs. 1.11·10

7
in·lb, respectively). 

 Discussion  

The results indicate that models at system yield load level exhibit the same global 

behavior as they did at first yield load level (with respect to qualitative comparisons of 

skew vs. tangent, inline vs. staggered, and cross-frame vs. No-frame TLBE). X-frame 

Staggered model at 63° skew still had the largest TLBE (3.33·107in·lb) among all 

models.  

Table 4.16 Total lateral bending energy expenditure (in·lb) at system yield load level 

 

 
Figure 4.30 Total lateral bending energy expenditure (in·lb) at system yield load level 
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Average 6.40E+06 9.88E+06 1.20E+07 1.96E+07 2.44E+07   
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 Holistic Metric 3 - Performance Index 4.4.2.3

The Performance Index (PI) is the third “holistic” metric designed for FEA data 

evaluation. PI is defined as the ratio of the bridge capacity expressed in terms of number 

of HS-20 trucks (at different load levels) to the percent of girder yielding at that load 

level. This metric is intended to evaluate bridge models in terms of effectiveness in 

distributing stresses at post-elastic load levels. As described in Section 4.3.2.2, the bridge 

with the best performance has a score of 100%. The rest of the bridges are ranked as a 

percentage of the best performing bridge. It is important to note that, according to this 

metrics larger the PI indicates that more effective the bridge is in distributing stresses 

without causing first or system yield.  

First Yield Results 

 Results 

 The results show (Table 4.17 and Figure 4.31) that on average skewed bridges 

perform 28% better than tangent bridges (PI=30 vs. PI= 22, respectively). Models with 

inline cross-frame layouts generally perform better than bridges with staggered cross-

frame layouts (on average 57.7% better, or PI=39 vs. PI=17, respectively), the exception 

being 25° staggered models. The results also show that on average, No-frame bridges 

perform 13.3% better than cross-frame bridges (PI=32 vs. PI=28, respectively), although 

there is no consistent trend contributing to these results.   

 Discussion 

On more particular level, the results show that X-frame Inline bridge at 55° skew 

is by far the best performing bridge (PI=100), while X-frame Staggered bridge at 

46°skew is the worst performing bridge (PI=8). The reason why X-frame Staggered at 

46°skew is the worst performing bridge at first yield load level, lay in the fact that this 
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bridge reached first yield and system yield capacity simultaneously (under the same load 

of 14.8 HS-20 trucks).  

 

Table 4.17 Performance Index for first yield load condition 

Skew 
K-

FRAME 
INLINE 

K-
FRAME 
STAG 

X-
FRAME 
INLINE 

X-
FRAME 
STAG 

NO 
FRAME 

Average 

0° 26 18 29 15 23 22 

25° 25 17 23 28 27 24 

46° 44 15 38 8 42 29 

55° 36 16 100 14 34 40 

63° 29 20 43 16 35 29 

Average 32 17 47 16 32 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31 Performance Index for first yield load level 

System Yield Results 

 Results 

 The results show (Table 4.18 and Figure 4.32) that tangent bridges consistently 

perform better than straight bridges (111.7% better on average, or PI=83 vs. PI= 42, 

respectively). Bridges with staggered cross-frame layouts generally perform better than 
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bridges with inline cross-frame layouts (on average, 16.6% better, or PI=57vs. PI=49, 

respectively).  It was also found that K-frame models generally perform better than X-

frame models, with the exception being the 63° staggered models.  More specifically, K-

frame Staggered bridge at 0° skew is the best performing bridge, while No-frame bridges 

at 25° and 63°skew are the worst performing bridges (PI=32).  The results also show that 

on average, bridges with cross-frames have 22% larger PIs than No-frame bridges (PI=53 

vs. PI=43, respectively). However, No-frame bridges have PIs that are comparable to the 

Inline models at the 46°, 55° and 63°skews. The average PI for No frame models at 46°, 

55° and 63°skews is PI=36, while the average PI for inline cross-frame models at 46°, 55° 

and 63°skews is PI=35. 

 Discussion 

PI results show that there is a significant difference in bridge behavior between 

first yield and system yield load levels. Comparisons between skewed and tangent 

bridges; inline and staggered; and bridges with and without cross-frames show opposite 

trends at first yield vs. system yield load levels. For example, first yield results show that 

skewed bridges perform better than tangent bridges, while at system yield tangent bridges 

perform better than skewed bridges. At first yield bridges with inline cross-frame layouts 

perform better than bridges with staggered cross-frame layout, while at system yield load 

level, staggered cross-frames perform better than inline. At first yield load level, bridges 

without cross-frame perform better than bridges with cross-frame, while at system yield 

load level opposite is true.  

The limitation of PI metric may lie in the fact that even small load increments, at 

post-elastic load levels, could lead to large girder yielding (as seen in Figure 4.23). This 

is one of the reasons a new, more robust holistic evaluation method, such as Chi-square 

Distances is needed, as will be discussed in the next section.  
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Table 4.18 Performance Index for system yield load 

Skew 
K-

FRAME 
INLINE 

K-
FRAME 
STAG 

X-
FRAME 
INLINE 

X-
FRAME 
STAG 

NO 
FRAME 

Average 

0° 95 100 79 92 76 88 

25° 55 48 51 41 32 45 

46° 39 51 35 49 39 43 

55° 34 51 33 44 37 40 

63° 33 47 33 48 32 39 

Average 51 59 46 55 43 
  

 

 

 

 

 

 

 

Figure 4.32 Performance Index for system yield load level  

 Holistic Metric 4 - Chi-square Distances (CsD)  4.4.2.4

Chi-square Distances (CsD) is the third “holistic” evaluation metric that was used 

for assessment of FEA data. First step in data assessment using this instrument was to 

visually inspect the stress histograms of each model. Therefore, all models were plotted, 

visually inspected and compared to each other in order to detect if any anomaly existed 

that could negatively affect the computations (for example presence of extreme number 

of outliers). Additionally, by plotting histograms the information about the models in 

terms of the direction of the response (tension vs. compression) and in terms of 

magnitude of stresses could be obtained. For easier visual comparison between the 

models, their stress distributions are plotted as three-dimensional histogram (Figure 
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4.33). These three-dimensional plots are organized in the following manner, on x axis are 

plotted stress bins (width of the bin =1000psi); on y axis are plotted frequencies; and on z 

axis are plotted models of different cross-frame configurations at different skews. Each 

3D plot has a total of 25 stress distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33 Example of 3D stress histograms for girders, at system yield load level. 

Once visual inspections were conducted and models were validated, CsD were 

computed for stress histograms among the models at design, first yield and system yield 

load level. To interpret CsD data, two important concepts needed to be considered. First 

concept relates to comparison between models based on bridge skew. Note that CsD 

between models at different skews can’t be compared at first yield and system yield load 

level because the applied load level was not the same. Intuitively, if the applied loads are 
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not the same, stress distributions will not be the same, therefore, CsD comparison would 

be inexact.  

The second concept is related to the magnitude of CsD. It is important to note that 

the larger the CsD between two models is, the larger the difference in stress distribution 

is. For example, if it is assumed that all cross-frame configurations transfer the load 

equally efficiently, that would mean that the difference in stress distribution between the 

models should be small and therefore CsD between models should be also small. 

Conversely, if the CsD between two models is very large that indicates that these two 

models have substantially different stress distributions.  

A special look should be given to the relative difference between the cross-frame 

models and No-frame models. If it is assumed that cross-frames play significant role in 

stress redistribution in bridges, then the difference between stress histograms of No-frame 

models and cross-frame models should be substantial. In other words, it would be 

expected to see that at every load level and at every skew, the CsD between cross-frames 

and No-frame models should be larger than the distances between cross-frame models.   

However, preliminary observations showed that the difference between No-frame 

models and cross-frame models is sometimes smaller than the difference between cross-

frame models. For example, Table 4.24 shows the outcome of CsD analysis computed for 

girders at 0º skew at design load level. In the second row (labeled K-Stagg) there were 

three CsD entries that compare bridges with K-Staggered cross-frame layout with bridges 

with other cross-frame layouts. It can be seen see that the difference between X-Inline 

model and K-Staggered model is 1577, the difference between K-Staggered and X-

Staggered is 1363, and the difference between K-Staggered model and No-frame model 

is 330 (the first row of the table also shows that the CsD between K-Staggered and K-

Inline is 255).  
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Table 4.24 Chi-square Distance between models at 0º skew at design load level  

Design  K-INLINE K-STAGG X-INLINE X-STAGG NO-FRAME 

K-INLINE 0 225 1317 1439 555 

K-STAGG  0 1577 1363 330 

X-INLINE   0 236 1768 

X-STAGG    0 1800 

NO-FRAME     0 

 

Thus, it can be seen for example that there is a larger difference in stress 

distribution between K-Staggered and X-Inline models than between K-Staggered and 

No-frame models. Since this occurrence is not intuitively anticipated and represents 

significant deviation of expected results, it is relevant to count the rate at which this 

occurrence happens at each skew and load level. Therefore, in order to count this rate of 

occurrence (RO) and evaluate it at girder’s component level, following method is 

proposed: 

a) Count instances in which No-frame to cross-frame model pairs have smaller 

CsDs than cross-frame to cross-frame model pairs at the same skew/load 

level, then; 

b)  Divide the number of counted instances with the total number of possible 

pairs to obtain Rate of Occurrence (RO). 

Considering that there are six cross-frame pairs CsDs and four No-frame to cross-

frame pairs, there are (6 x 4=) 24 pair comparisons per skew. If occurrence (RO) 

algorithm is applied on data from Table 4.24, it can be seen that there are total of 8 

occurrences where cross-frame CsD pair is larger than cross-frame to No-frame CsD pair. 

For example, K-Stagg/X-Inline CsD =1577 is larger than No-frame/K-Stagg CsD=330, 

and, K-Inline/X-Inline CsD =1317 is larger than No-frame/K-Inline CsD=55, and so on. 
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Since, there are total of 24 cross-frame pairs comparisons per skew, the rate of 

occurrence (RO) is 

𝑅𝑂 =
total # pairs-# of deviations

total # of pairs
=(24-8)/24=0.67 or 67%. 

That means that in only 67% of cases cross-frame models would have stress 

distributions that are more similar among themselves than the stress distribution of No-

frame models. A RO measure is easy to interpret and very intuitive. For example, larger 

RO means that bridges with cross-frames behave as theoretically expected in terms of 

distributing stresses, while smaller RO means that bridges with cross-frames are not 

acting as theoretically expected in terms of distributing stresses. Furthermore, RO allows 

to compare results across the skews and load levels addressing the limitations of CsD 

algorithm. Chi-Square Distances were computed for girders and decks at three load 

levels: design, first yield and system yield. The corresponding data at each load level can 

be found in Appendices A through C, respectively.   

4.4.2.4.1 Chi-square Distances - Girder Results 

The girder results show (Table 4.19) that overall average RO is 58%. This is 

means that on average, in 42% of the cases, cross-frames did not significantly contribute 

to the girder stress distribution. The results also show that the comparison of skewed 

versus tangent bridges is affected by the load level, with RO being higher for tangent 

bridges compared to skewed bridges at the design load level and the opposite trend 

occurring at higher load levels.  On average, skewed bridges have 4.2% larger RO than 

tangent bridges (58% vs. 56%). In other words, in both skewed and tangent bridges, in 

more than 40% of the cases, cross-frames did not contribute to the girder stress 

distribution. Furthermore, the results also show that the lowest average RO was detected 

at design load level (49%), while the largest average RO was detected at system yield 
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load level (73%). Thus, as the load was increasing, the cross-frames are generally getting 

more involved in stress distribution, but this is not a consistent trend.  

Table 4.19 Rate of occurrence (RO) for girders at design, first yield and system yield load 

level. 

   0° 25° 46° 55° 63° Average 

Design 67% 50% 38% 42% 50% 49% 

First Yield 38% 50% 75% 42% 50% 51% 

System Yield 63% 79% 67% 79% 75% 73% 

Average 56% 60% 60% 54% 58%  

 

4.4.2.4.2 Chi-square Distances - Deck Results 

The deck results show (Table 4.20) that overall average RO is 40.0%. This means 

that on average, in 60% of the cases, cross-frames did not affect stress distribution in 

decks. The results also show that skewed bridges on average have 23.3% larger RO than 

tangent bridges (42% vs. 32%, respectively), but this result is largely influenced by 

relatively high RO values at 46° skew and the tangent and skew results are often similar 

to one another. Furthermore, the results also show that the lowest average RO was 

generally detected at first yield load level (34% on average, with only the 46° skew model 

deviating from this trend), while the largest average RO was detected at system yield load 

level (45% on average, again only the 46° skew model deviating from this trend). It is 

interesting to note that consistently the largest RO was found at bridges at 46° skew 

regardless of the load level. These results clearly indicate that cross-frames have very 

limited effect on longitudinal stress distribution in bridge decks.   
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Table 4.20 Rate of occurrence (RO) for deck at design, first yield and system yield load 

level. 

          0° 25° 46° 55° 63° Average 

Design 33% 33% 67% 33% 33% 40% 

First Yield 25% 25% 67% 29% 25% 34% 

System Yield 38% 29% 63% 38% 58% 45% 

Average 32% 29% 65% 33% 39%   

 

 Conclusion 4.5

Bridge stress distributions at design, first yield, and system yield load were 

evaluated using “discrete” and “holistic” metrics. Both metrics gave insights in the bridge 

behavior in elastic and post elastic load ranges. While the “discrete” metrics give 

“snapshots” of behavior of one section of bridge, “holistic” metrics give more 

comprehensive evaluation of all bridge sections.  

 Discrete Metrics Summary 4.5.1

The results show that in general skewed bridges have higher average peak girder 

stresses than tangent bridges regardless of the load level. In contrast, deck results show 

that at design load level, skewed bridges have higher average peak longitudinal stresses 

than tangent bridges, but at first yield and system yield load level, tangent bridges have 

larger peak stresses than skewed bridges.  

The results also show that bridges with inline cross-frame layout have lower peak 

girder stresses than bridges with staggered cross-frame layouts, regardless of the load 

level. When contrasted with deck stresses, results show that bridges with staggered cross-

frame layouts have higher peak than bridges inline cross-frame layouts with at first yield 

load level.  

Results also show that in general, the bridges with inline cross-frame layouts have 

lower peak bottom flange stresses than bridges without cross-frames (No-frame models), 
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while bridges with staggered cross-frame layouts in general have higher peak bottom 

flange stresses than bridges without cross-frames.  Similarly, X-frame models in general 

have lower peak deck stresses than No-frame models, while K-frame models have higher 

peak deck stresses than No-frame models regardless of the skew.  

The results show that steel I-girder bridges have significant first yield and system 

yield capacities. Furthermore, the results show that in general skewed bridges have larger 

load capacities when compared to tangent bridges, except at 25° skew. The results (Table 

4.10) also show that No-frame models on average have larger system yield capacities 

than cross-frame models. This was an unexpected result, as intuitively, it would be 

expected that cross-frame presence would allow more efficient load transfer throughout 

the bridge. Consequently, this efficient load transfer could allow more uniform spread of 

bottom flange yielding, allowing bridges to resist more load before reaching its yielding 

capacity.  

Nevertheless, “discrete” data evaluation confirmed that steel I-girder highway 

bridges have very high system capacity, and that bridge’s capacity to carry load is 

severely underestimated by current design practices. For example, average system 

capacity for all models across all skews and all cross-frame designs is 16.1 HS-20, which 

is more than 16 times the magnitude of current bridge design truck load; it should also be 

noted that bridge live load includes lane load that has not been factored into this 

comparison. Interestingly, results showed that No-frame modes (models with cross-frame 

removed) had larger system level capacity than other cross-frame models at 0°, 25°, and 

63° skews.  

 “Holistic” Metrics Summary 4.5.2

The percent of bridge component that yielded is the first metric used for “holistic” 

evaluation of FEA data. This metric was only computed for the girders under first yield 

and system yield load levels. The results showed that at the first yield load level there 
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was no difference between tangent and skewed bridges in terms of percent of girder that 

yielded. Although, at the system yield load level, skewed bridges had higher percent of 

girders yielded than tangent bridges. This was somewhat expected, because the results 

also showed moderate correlation (R
2
=0.62) between percent of girder yielded and 

applied load. Interestingly, the results also show that bridges with staggered cross-frame 

placement had higher percent of girder yielded under first yield load level, but lower 

under system yield load level. Similarly, bridges without cross-frames on average had 

lower percent of girder yielding at first yield than bridges with cross-frames, while at 

system yield opposite was true. No-frame models have higher percent of girder yielded 

than cross-frame model.  

The Total Lateral Bending Energy Expenditure (TLBE) was a second “holistic” 

metric used for evaluation of finite element analysis data. The results showed that skewed 

bridges have significantly larger TLBE than tangent bridges regardless of the load levels. 

Furthermore, the results showed that bridges with staggered cross-frame layouts have 

also significantly larger TLBE than bridges with inline cross-frame layouts regardless of 

the load level. And finally results showed that in general bridges without cross-frames 

have smaller TLBE than bridges with cross-frames at all three load levels.  

The Performance Index (PI) was a third “holistic” metric used for evaluation of 

finite element analysis data. This metric is specifically designed for post-elastic FEA data 

evaluation, and it is calculated as a ratio of the applied load to the percent of girders 

yielding at that load. The idea behind designing this metric was that the bridge with the 

most efficient load transferring mechanism would be able to resist the highest load with 

the least percent of girder yielding. In other words, yielding would not be able to 

concentrate at one location at the bridge, but stress would be distributed before causing 

element yielding. The PI helps quantify bridge behavior in relative terms such as ratios 

between girder yielding and system capacity, not just in absolute terms.  
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The results showed that first yield load level, skewed bridges on average had 

larger PI than tangent bridges, while at system yield load level, opposite trend was 

detected. Average PI for tangent bridges was higher than average PI for skewed bridges. 

Furthermore, bridges with inline cross-frame layout had higher PI at first yield load level, 

but lower PI at system yield load level when compared to bridges with staggered cross-

frame layout. On more particular level, X-frame Inline bridge at 55° skew and K-frame 

Staggered at 0° skew were the best performing models at first yield load leva and system 

yield load level respectively.  

Although, PI proved to be affected by existence of non-linear relationship 

between the applied load and girder yielding, where even small load increments could 

lead to significant amount of girder yielding. This would also cause tangent bridges, 

while having lower system capacity than skewed bridges, to have higher PI than skewed 

bridges at system yield load level However, it seems that PI could be a good tool to 

evaluate or rank different types of cross-frame designs based on their effectiveness in 

helping distribute stresses.  

Furthermore, results showed that in general, on average bridges without cross-

frames had higher PI at first yield load level, but lower PI at system yield load level when 

compare to bridges with cross-frames. This was one of the most surprising results of this 

dissertation as the initial motivation for this work was to evaluate the best performing 

cross-frame configuration per given skew. Furthermore, even at system yield load level in 

14/20 or in 70% of the cases, No-frame models outperformed or performed equal to 

cross-frames models when it comes to efficacy in distributing stresses in girders.   

The fourth “holistic” metric, Chi-square Distance, showed that the difference in 

stress distributions between models with and without cross-frames is sometimes is so 

small, and that it is more likely than not, that bridges will have similar stress distributions 

regardless of the presence or absence of the cross-frames. For example, at design load 

level, in both skewed and tangent bridges, in more than 40% of the cases, cross-frames 
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presence did affect girder stress distribution. Furthermore, deck results show that overall 

average RO is 40.0%. This means that on average, in 60% of the cases, presence of cross-

frames did not affect stress distribution in decks. Remember that low RO generally 

indicates small contribution of cross-frames in stress distribution level and vice versa.   

One of the main premises underlying this dissertation, states that a role of cross-

frames is to help distribute the live load. The majority of findings in this chapter indicate 

that this premise should be reconsidered. While there are some results (such as shown 

with PI metric) that show that cross-frames do have a role in stress distribution, CsD 

results indicate that role is inconsequential and probably not worth the cost associated 

with cross-frames installation and maintenance. While the role of cross-frames during 

bridge construction phase is invaluable, their usefulness for in-service bridges is 

debatable. The question rises, how beneficial are cross-frames in in-service bridges if 

their role in stress distribution is not as assumed by current bridge design codes? From 

the literature review, it can be seen that cross-frames contribute to distortion induced 

fatigue cracks. From the contractor perspective, it is known that cross-frames are very 

expensive to fabricate and install and from the designer perspective, it is known that they 

are very hard to properly size because their role in the bridge is not concisely defined. 

While “holistic” approach for evaluating stress distribution data revealed many important 

trends that could not be otherwise detected by using “discrete” approach, it seems that 

further inspection of stress distribution could further benefit researchers interested in 

identifying latent trends in complex dataset. This topic will be the focus of Chapter 5.   
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                                      MULTIWAY ANALYSIS 

 

In order to investigate the effect of removing cross-frames on the stress 

distribution of steel I-girder bridges, investigative tools allowing deeper insight into 

bridge system behavior can be used, as such behavior cannot be fully understood using 

traditionally employed data analysis, as presented in Chapter 4 results. The results 

presented in Chapter 4 also showed that analyzing complex data can be very challenging 

if discrete level of analysis is used, especially if discovering the trends across data is the 

one of the goals of the analysis.  

Therefore, the aim of this chapter is to use multiway analysis tools to investigate 

the difference in stress distributions between No-frame models and cross-frame models at 

five bridge skews (0°, 25°, 46°, 55°, and 63°) and under three load levels (design, first 

yield, and system yield). Multiway analysis is a mathematical exploratory tool for 

obtaining information about complex systems. Multiway data analysis describes a special 

set of mathematical methods used to interpret highly inter-correlated, multidimensional, 

and complex data sets. The special case of multiway analysis called tensor decomposition 

was used to analyze the dataset in question.   

The following is the organization of the Chapter 5. The chapter starts with 

identifying the problem statement in Section 5.1. This is followed by a discussion of 

tensor decomposition methods in Section 5.2, beginning with an introduction to basic 

tensor operations in Section 5.2.1. The mathematical basis for tensor decomposition is 

explained by introducing singular value decomposition (SVD) method and principal 

component analysis (PCA) in Section 5.2.2. This is followed by detailed explanation of 

 Chapter 5
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Tucker decomposition method used in this work in Section 5.2.3. Tensor decomposition 

applications and corresponding literature review is covered in Section 5.3, while tensor 

decomposition of finite element analysis data is covered in Section 5.4. Finally, Section 

5.5 offers concluding comments on this work. 

 Problem Statement  5.1

 

The goal of this work is to explore the effect that cross-frame removal in steel I-

girder highway bridges has on stress distributions at different load levels due to different 

cross-frame designs and bridge skews using Tucker tensor decomposition. 

 Tensor Decomposition Methods 5.2

The purpose of this section is to introduce readers to tensor notation, the basic 

structure of tensor operations, and tensor results interpretation. Furthermore, this section 

also covers in detail procedures behind the matrix decomposition methods of singular 

value decomposition (SVD) and principal component analysis (PCA). Mathematically 

speaking, tensor decompositions such as Tucker tensor decomposition can be seen as the 

extension of matrix decompositions on higher dimensional data sets. Therefore, the 

reader should be familiar with SVD and PCA algorithms. Additionally, since SVD and 

PCA algorithms work on two dimensional datasets, they are intuitively easier to 

comprehend when compared to higher dimensional datasets.  

 Basic Tensor Operations 5.2.1

This sub-section introduces the reader to tensor notation, tensor data structure and 

basic tensor operations.  In most of the cases, tensor operations are extension of matrix 

algebra on three or more dimensional datasets. Therefore, the reader should be familiar 

with matrix algebra operations such as matrix multiplication methods, finding 

determinants and ranks of matrices, and calculating eigenvalues and eigenvectors.  
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Detailed explanation and worked out examples of these operations are covered by Gentle 

(1997). 

 Notations and Organization  5.2.1.1

All data can be mathematically presented as set of scalars, vectors, and matrices. 

A scalar is represented as data point, and this data configuration is known as a zero-order 

tensor, tensor being the generic term for a data array. If data are arranged in one-

directional vector form (such as a one-dimensional time series) they are referred to as a 

1st-order tensor; if presented in matrix form having data along two directions (rows and 

columns), then this configuration is called 2nd-order tensor. Data sets having dimensions 

greater than two (Table 5.1) are referred to as higher-order tensors, or n-dimensional 

tensors (N-way arrays). Table 5.1 conveys the scalar, vector, matrix, and tensor hierarchy 

and associated notation while Table 5.2 defines notations commonly used throughout this 

chapter.   

 Table 5.1 Tensor notations 

Number of ways Name Notation 

Zero Scalar x 

One Vector 𝒙 ∈ ℝ𝑰 

Two Matrix 𝑿 ∈ ℝ𝑰×𝑱 

Three 3-way tensor 𝓧 ∈ ℝ𝑰×𝑱×𝑲 

N-way N-way tensor 𝓧 ∈ ℝ𝑰×𝑲×…×𝑵 

 

Table 5.2 Alternative tensor notations and operations  

 

N-way tensor 

alternative notation 
𝓧 ∈ ℝ𝑰𝟏×𝑰𝟐×…×𝑰𝒏 

Tensor represented as a 

sum of element 

products 

 

[𝛸]𝑖×𝑗×𝑘 = ∑∑∑ 𝑔
𝑝𝑞𝑟

𝑎𝑝

𝑅

𝑟=1

∘ 𝑏𝑞

𝑄

𝑞=1

∘ 𝑐𝑟 + 𝑒𝑖𝑗𝑘

𝑃

𝑝=1
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Figure 5.1 Representation of data using tensors. While graphical representation of the 

datasets using tensors can be visualized in three dimensions, mathematically speaking 

there can be unlimited numbers of tensor dimensions. 

Conventional data analysis such as analysis of variance (ANOVA), multiple 

regression analysis, or multiple analysis of covariance (MANCOVA) deals with 

analyzing data in the two-way form, which is the form of two dimensional matrixes. 

However, the addition of a third mode will result in the data being in the form of a data 

cuboid, which is a typical example of a higher-order data set. For example, consider a 

higher order data set that consists of stress values along the length of a structural system 

such as bridge. If we assume that the bridge consists of five girders, we could organize 

the data in such a way that Mode 1 in the data matrix will be represented by five girders 

and Mode 2 will be represented by the distances along the length of the girder. Typically, 

Mode 1 data is organized as the row variable and Mode 2 data is organized as the column 

variable. The data inside the matrix would consist of stresses in each girder at each 

distance along the length of the girder. If behavior under increasing magnitudes of load is 

of interest, then a third mode could consist of load magnitudes (usually the third mode is 

called a “tube” in 3-D array). 

 In models with increasing complexity, additional modes can be added. For 

example, the influence of temperature fluctuations on the bridge member’s stresses, 
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during incremental loading, could serve as a 4th mode in the present example. Depending 

of the complexity of the problem, as many modes as needed can be added.  

 One of the multiway analysis tools used to investigate multi-dimensional datasets 

is tensor decomposition. Tensor decomposition, a data analysis method, was used in 

discovering latent structures in higher-order data sets (Comon, et al. 2008; Acar, et al. 

2008). Higher-order data sets are data sets with more than two dimensions. 

 Tensor Subarrays 5.2.1.2

 

This subsection describes the basic tensor structure and nomenclature. Any tensor 

can be divided into subsets called subarrays which are subsets of rows and/or columns. 

As matrix operations are conducted using rows and columns, consequently tensor 

operations are conducted using subarrays. To explain how tensor subarrays are formed, 

the example of a three-way tensor is considered. In a three-way tensor, if one index is 

kept fixed, it forms subarrays called slices (Figure 5.2); while if two tensor indices are 

kept fixed, then subarrays called fibers are formed (Figure 5.3).  

 

 

 

 

 

 

 

   

 

Figure 5.2 Slices of three-way tensor show how data from the three-dimensional dataset 

can be partitioned to form two dimensional matrices. 
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There are three slices in three-way tensor, horizontal, frontal and lateral (Figure 

5.2). For a three-way tensor of dimensions 𝐼 × 𝐽 × 𝐾, horizontal, frontal and lateral slices 

are denoted by 𝑿𝑖∷, 𝑿:𝑗: and 𝑿∷𝑘 respectively. Horizontal slice is formed when tensor 

index i is kept fixed, then data are organized in two-dimensional subarray (matrix) with 

the size of the array being [k, j]. A frontal slice is formed when tensor index k is kept 

fixed, then data are organized in a matrix form with [i, j] dimensions. A lateral slice is 

formed when tensor index j kept fixed, then data are organized in matrix form [i, k]. In 

three-way tensors, fibers are created when two of the tensor indices are fixed, while the 

remaining index is not (Figure 5.3). 

 

Figure 5.3  Graphical representation of fibers in three-way tensor. The highlighted 

(lighter colored) tubes are selected fibers. Each fiber has a subscripts reference that 

describes where the fiber is in the tensor. Origin of the matrix is at the location where 

arrows intersect. 

 

For a three-way tensor, fibers are analogous to vectors in a matrix. Mode 1, 2, and 

3 fibers are labeled as 𝒙:𝑗𝑘, 𝒙𝑖:𝑘 and 𝒙𝑖𝑗:, respectively, with the variable index 

representing the mode.  For example, assume that we have 3 bridges (labeled B1, B2 and 

x :11 
x 3: 3 x 33: 
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B3 organized in Mode 1), and that maximum thermal stress is measured at 3 locations 

(labeled L1, L2 and L3 organized in Mode 2), during 5-year period (labeled Y1-Y5 

organized in Mode 3). Then Mode 3 𝑥13: fiber consist of thermal stress data from the 

bridge B1 at location L3 during five years period (the fiber data presented in vector form 

is [ B1 L3 Y1, B1 L3 Y2, B1 L3 Y3, B1 L3 Y4 and B1 L3 Y5]).        

 Tensor Unfolding – Matricization 5.2.1.3

Tensor unfolding is a procedure in which tensors are presented in matrix form. 

This is a fairly simple procedure which involves organizing tensor’s modes as rows and 

columns. Figure 5.4 shows a tensor 𝓧 ∈ ℝ𝟐×𝟐×𝟐 with matricizations along the k mode. 

The resulting matrix 𝑿(𝑖),  is shown in Equation 5.1. 

  

 

Figure 5.4 Figure on the right represents a 2x2x2 three-way tensor. Figure on the left 

shows unfolding the tensor along k mode, and becoming 2x4 matrix, shown in Equation 

5.1 

 

 

           𝑿(𝑖) = [
𝑥111 𝑥121 𝑥112 𝑥122

𝑥211 𝑥221 𝑥212 𝑥222
]                                                   (5.1) 

i 

k 
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 Tensor Inner Product 5.2.1.4

The tensor inner product (Equation 5.2) corresponds to a dot product in vector 

space. If two tensors have equal dimensions (number of modes) and size (number of 

entries per mode), then the tensor inner product is the sum of the products of 

corresponding modes. The inner product of two tensors 𝓧 ∈ ℝ𝑰𝟏×𝑰𝟐×…×𝑰𝒏  and 

𝓨 ∈ ℝ𝑰𝟏×𝑰𝟐×…×𝑰𝒏  is defined as 

〈𝒳,𝒴〉 = √∑ …∑ 𝑥𝐼1……𝐼𝑛𝑦𝐼1…𝐼𝑛
𝐼𝑛
𝑖𝑛=1

𝐼1
𝑖1=1                                         (5.2) 

More details on tensor inner products can be found at Kroonenberg (2008). 

 Scalar Multiplication 5.2.1.5

 

For a tensor 𝓧 ∈ ℝ𝐼×𝐽×𝐾 and a scalar 𝜌, scalar multiplication (Equation 5.3) of 

the tensor is simply defined as 

𝜌𝓧 = 𝓨                                                                 (5.3) 

where 𝑦𝑖𝑗𝑘 = 𝜌𝑥𝑖𝑗𝑘. 

 Kronecker Product 5.2.1.6

 

The Kronecker product (Equation 5.4) is another type of matrix product that can 

be used to decompose tensors in matrix form. The Kronecker product of two tensors 

𝑿 ∈ ℝ𝐼×𝐽 and 𝒀 ∈ ℝ𝐾×𝐿 is defined as: 

𝑿 ⊗ 𝒀 = 𝒁                                                             (5.4) 

where 𝒁 ∈ ℝ𝐼𝐾×𝐽𝐿  
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                                    𝑿 ⊗ 𝒀 =

[
 
 
 
𝑥11𝑌 ∙ ∙ 𝑥1𝑗𝑌

∙ ∙
∙ ∙

𝑥𝑖1𝑌 ∙ ∙ 𝑥𝑖𝑗𝑌]
 
 
 

   (5.5) 

For example, let          𝑿 = [
1 2
3 4

] and 𝒀 = [
5 6
7 8

]  then 

𝒁 = 𝑿 ⊗ 𝒀 == [

1 ∙ 5 1 ∙ 6 2 ∙ 5 2 ∙ 6
1 ∙ 7 1 ∙ 8 2 ∙ 7 2 ∙ 8
3 ∙ 5 3 ∙ 6 4 ∙ 5 4 ∙ 6

3 ∙ 7 3 ∙ 8 4 ∙ 7 4 ∙ 8

] = [

5 6 10 12
7 8 14 16
15 18 20 24
21 24 28 32

]   

 

 Khatri-Rao Product 5.2.1.7

 

The Khatri-Rao product (Equation 5.6) is another matrix product frequently used 

to decompose tensors in matrix form. The Khatri-Rao product between two tensors 

𝑿 ∈ ℝ𝐼×𝐽 and 𝒀 ∈ ℝ𝐾×𝐽 is defined as: 

𝑿 ⊙ 𝒀 = 𝒁                                                             (5.6) 

where 𝒁 ∈ ℝ𝐼𝐾×𝐽 

For example, let          𝑿 = [
1 2
3 4

] and 𝒀 = [
5 6
7 8

]  then 

                       𝒁 = 𝑿 ⊙ 𝒀 = [

1 ∙ 5 2 ∙ 6
1 ∙ 7 2 ∙ 8
3 ∙ 5 4 ∙ 6
3 ∙ 7 4 ∙ 8

]=[

5 12
7 16
15 24
21 32

] 

 Matrix rank and Tensor rank  5.2.1.8

 

Matrix rank refers to the maximum number of linearly independent vectors (rows) 

in a matrix. Tensor rank is defined as sum of “rank-1 tensors”. A rank-1 tensor is a tensor 

for which the elements can be defined as  
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xijkl=ai b j ck d l                                                                  (5.7) 

The rank of the tensor is the smallest number of rank-1 tensors “sufficient to fully 

decompose the tensor additively” (Kiers, 2000). 

 Matrix Decompositions  5.2.2

Mathematically speaking a tensor decomposition is simply expressing a higher 

dimensional data structure as a product of a new set of matrices, also known as factor 

matrices. The motivation for this is to present a higher order data set into visually 

simplistic matrix form, revealing valuable information hidden or obscured by the 

complexity of the original dataset.  There are many ways to factor, or decompose, the 

tensor by using different tensor operations. All these methods use different matrix 

products that are equivalent to each other (Bader and el. 2008). Furthermore, many 

concepts and methods used in the matrix decomposition algorithms are used in higher 

order tensor decomposition algorithms too. Therefore, it is beneficial to briefly 

familiarize the reader with matrix decomposition methods before moving to more 

complex tensor decomposition methods.   

There are two main matrix decomposition methods that are going to be reviewed 

in this section. 

a) Singular Value Decomposition (SVD) 

b) Principal Component Analysis (PCA) 

 Singular Value Decomposition (SVD) 5.2.2.1

Singular value decomposition (SVD) is one of the most used matrix 

decomposition methods and can be introduced as a mathematical foundation for all tensor 

decomposition algorithms. The main advantage of SVD is that it is a powerful dimension 

reduction tool. Using SVD, a matrix of any size can be reduced to a desired number of 

dimensions. The resulting new matrix is an approximation of the original matrix, but it 
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still carries a significant amount of the information contained in the original matrix. 

There is a reciprocal trade-off in terms of accuracy and dimension reduction. If the new 

matrix is desired to be a very close approximation of the original matrix, the dimension 

reduction will be very small. Conversely, reducing too many dimensions will render a 

very low level of approximation. The best approach is to have a new data set that will 

produce a fairly accurate approximation of the original data set while keeping a relatively 

small number of dimensions from the original dataset.  

For example, let’s say there are n=100 bridges in a certain region that need to be 

analyzed. And let’s say that condition of R=20 structurally essential components that 

describe each bridge, such as web, bottom flange, and parapet were rated. In this case, R 

represents a unique vector of bridge components. So, data vector space is the matrix of 

the size n x R (or, 100x20). It is more likely that some bridge components contribute 

more to overall condition of the bridge than others. Therefore, we should try to find 5 or 

6 bridge structural components that best describe overall condition of all 100 bridges, 

rather than dealing with all 20 components.  

SVD is illustrated via numerical example (Table 5.3). Let say that there are 7 

bridges with 5 components that describe the condition of the bridges such as: deck rating, 

super-structure rating, sub-structure rating, averaged daily truck (ADT), and average 

daily truck traffic (ADTT).  The goal is to determine if the number of components 

describing the bridge condition can be reduced by reducing the dimension of the matrix 

while still maintaining a high level of accuracy in describing the bridge.  
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Table 5.3 SDV Numerical Example- Bridge Matrix A 

 

To accomplish this goal, the data from the Table 5.1 is written in the form of 

matrix A, which can be decomposed into P, Δ snd 𝑄 matrices using singular value 

decomposition via the following steps (Green, 2014).  

1. From the matrix 𝑨,  such that 𝑨 ∈ ℝ7×5, compute matrix product of matrix 

𝑨 and 𝑨𝑇, i.e., 𝑨𝑨𝑇and 𝑨𝑇𝑨. 

2. Find eigenvalues by solving vector equation, in form of matrix product A 

and A
T
.  𝑨𝑨𝑇x =𝜆x. Find the solution for x and 𝜆 using characteristic 

equation|𝜆𝐼 − 𝑨𝑨𝑇| = 0, where I is identity matrix and solution 𝜆 are 

eigenvalues.  

3. Calculate the square root of the eigenvalues calculated in previous step. 

The larger an eigenvalue is, the larger the contribution is of that component to 

the variation in the dataset. In other words, if this component is removed from 

the dataset, a large amount of information will be lost. Conversely, the smaller 

an eigenvalue is, the smaller the contribution to the dataset; thus, if this 

component is removed from the data set, a small amount of information is 

lost.  The square root of the eigenvalues of the matrix 𝑨𝑨𝑇are the singular 

values (nonzero diagonal entries) in the matrix 𝚫, which are placed in 

descending order along the diagonal of 𝚫.  
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4. Calculate the orthonormal set of eigenvectors for 𝑨𝑇𝑨. The eigenvectors 

are the directions along which a linear transformation occurs. The resultant 

eigenvectors are the columns of the right singular matrix Q.  Transpose Q
T
. 

5. Calculate the left singular matrix 𝑷, from A, 𝚫 and Q, such that 𝑷= A 

Q 𝚫−𝟏. 

6. Check the results by multiplying 𝑨 = 𝑷𝚫𝑸𝑇                                                                         

Applying SVD algorithm on matrix  𝑨 ∈ ℝ𝐼×𝐽 , we factorized matrix A into a set 

of matrices P,  𝚫, and 𝑸 such that 

𝑨 = 𝑷𝚫𝑸𝑇                                                                        (5.8) 

where, 

𝑨 ∈ ℝ𝐼×𝐽 is original data matrix with dimensions 𝐼 × 𝐽 ;  

𝑷 ∈ ℝ𝐼×𝐼 is a matrix of eigenvectors of symmetric AA
T 

 of order 𝐼 × 𝐼 ;  

𝑸𝑇 ∈ ℝ𝐽×𝐽 is a matrix of eigenvectors of symmetric A
T 

A of order 𝐽 × 𝐽; 

The columns of P and Q are called the left and right singular vectors of 𝑨; 

𝚫 ∈ ℝ𝐼×𝐽 is a diagonal matrix of nonzero diagonal entries; 

The number of nonzero diagonal entries (also called singular values) in 𝚫 

represents the rank (r) of the matrix A. The rank of the matrix A is also the largest 

number of rows or columns that are linearly independent (r(A) ≤ min (I, J)).  There are 

two important features of the SVD; the first is that the columns of P and 𝑸  are 

orthonormal eigenvectors derived from the matrix A and the second is that the values in 

the diagonal matrix 𝚫 are square roots of eigenvalues of the matrix AA
T
.  𝚫 matrix 

represents the amount of variance retained by the columns in P matrix.   
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Continuing with the previous example, by executing SVD algorithm on the 

dataset A (Table 5.1), dataset A is represented by seven bridges (rows), with each bridge 

having 3 condition ratings  (columns 1-3) and 2 traffic counts ( columns 4-5).  

𝑨 =

[
 
 
 
 
 
 
6 6 6 5.20 0.33
8 8 8 5.70 0.37
9 9 9 5.10 0.31
8 9 8 5.00 0.30
5 7 5 9.37 0.81
5 5 5 9.01 0.88
5 6 5 7.30 0.60]

 
 
 
 
 
 

                                                                  (5.9) 

Transform matrix A into 𝑨𝑇 , matrix products 𝑨𝑨𝑇 and 𝑨𝑇𝑨.                                                 

                                                  𝑨𝑇 = 

[
 
 
 
 

6 8 9 8 5 5 5
6 8 9 9 7 5 6
6 9 9 8 5 5 5

5.2 5.7 5.1 5 9.37 9.01 7.3
0.33 0.37 0.31 0.3 0.81 0.88 0.60]

 
 
 
 

                                           

(5.10) 

Then multiply A and 𝑨𝑇 to get 𝑨𝑨𝑇.                                                                 

 

                                                
                     

[
 
 
 
 
 
 
6 6 6 5.20 0.33
8 8 8 5.70 0.37
9 9 9 5.10 0.31
8 9 8 5.00 0.30
5 7 5 9.37 0.81
5 5 5 9.01 0.88
5 6 5 7.30 0.60]

 
 
 
 
 
 

 𝑥 

[
 
 
 
 

6 8 9 8 5 5 5

6 8 9 9 7 5 6

6 9 9 8 5 5 5

5.2 5.7 5.1 5 9.37 9.01 7.3

0.33 0.37 0.31 0.3 0.81 0.88 0.60]
 
 
 
 

=  

[
 
 
 
 
 
 
135.1 173.8 188.6 176.1 151.0 137.7 134.2

173.8 224.6 245.2 228.6 189.7 171.7 169.8

188.6 245.2 269.1 250.6 201.0 181.2 181.4

176.1 228.6 250.6 234.1 191.1 170.3 170.7

151.0 189.7 201.0 190.1 187.5 170.1 160.9

137.1 171.7 181.2 170.3 170.1 157.0 146.3

134.2 169.8 181.4 170.7 160.9 146.3 139.7]
 
 
 
 
 
 

   

(5.11)   

 

Multiply  𝑨𝑇 and A to get   𝑨𝑇𝑨. 
 

[
 
 
 
 

6 8 9 8 5 5 5
6 8 9 9 7 5 6
6 9 9 8 5 5 5

5.2 5.7 5.1 5 9.37 9.01 7.3
0.33 0.37 0.31 0.3 0.81 0.88 0.60]

 
 
 
 

𝑥

[
 
 
 
 
 
 
6 6 6 5.20 0.33

8 8 8 5.70 0.37

9 9 9 5.10 0.31

8 9 8 5.00 0.30

5 7 5 9.37 0.81

5 5 5 9.01 0.88

5 6 5 7.30 0.60]
 
 
 
 
 
 

=

[
 
 
 
 

320 343 320 291.1 21.6

343 372 343 322.1 24.1

320 343 320 291.1 21.6

291.1 322.1 291.1 332.8 26.8

21.58 24.1 21.6 26.8 2.22]
 
 
 
 

          

(5.12) 

 

In this step calculate eigenvalues of 𝑨𝑨𝑇 .                                          
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𝑒𝑖𝑔𝑒𝑛

[
 
 
 
 
 
 
 

[
 
 
 
 
 
 
135.1 173.8 188.6 176.1 151.0 137.7 134.2
173.8 224.6 245.2 228.6 189.7 171.7 169.8
188.6 245.2 269.1 250.6 201.0 181.2 181.4
176.1 228.6 250.6 234.1 191.1 170.3 170.7
151.0 189.7 201.0 190.1 187.5 170.1 160.9
137.1 171.7 181.2 170.3 170.1 157.0 146.3
134.2 169.8 181.4 170.7 160.9 146.3 139.7]

 
 
 
 
 
 

]
 
 
 
 
 
 
 

      = 

[
 
 
 
 
1295.3

49.76
1.94

0.068
]
 
 
 
 

              (5.13)                             

 

Take a square root of eigenvalues 𝑨𝑨𝑇 =  𝚫. 

 

[
 
 
 
 
 √1295.3

√49.76

√1.94

√0.068
]
 
 
 
 
 

 =    

[
 
 
 
 
35.99

7.05
1.39

0.08
]
 
 
 
 

                                  (5.13) 

  

 

Calculate orthonormal set of eigenvectors for 𝑨𝑇𝑨 =Q. 

                                                

                              Q= eigenvector  

[
 
 
 
 
 

[
 
 
 
 

320 343 320 291.1 21.6
343 372 343 322.1 24.1
320 343 320 291.1 21.6

291.1 322.1 291.1 332.8 26.8
21.58 24.1 21.6 26.8 2.22]

 
 
 
 

]
 
 
 
 
 

  = 

[
 
 
 
 
0.49 0.32 −0.39 0.00 0.71
0.53 0.18 0.82 −0.03 0.00
0.49 0.32 −0.39 0.00 −0.71
0.48 −0.86 −0.11 0.11 0.00
0.04 −0.10 −0.04 −0.99 0.00 ]

 
 
 
 

         

(5.14) 

 

Transpose Q to get Q
T
.  

              

[
 
 
 
 
0.49 0.32 −0.39 0.00 0.71
0.53 0.18 0.82 −0.03 0.00
0.49 0.32 −0.39 0.00 −0.71
0.48 −0.86 −0.11 0.11 0.00
0.04 −0.10 −0.04 −0.99 0.00 ]

 
 
 
 
𝑇

= 

[
 
 
 
 

0.49 0.53 0.49 0.48 0.04
0.32 0.18 0.32 −0.86 −0.1

−0.39 0.82 −0.39 −0.11 −0.04
0 −0.03 0 0.11 −0.99

0.71 0 −0.71 0 0 ]
 
 
 
 

           (5.15) 

 

Inverse 𝜟 to get 𝜟−𝟏. 

 

[
 
 
 
 
35.99

7.05
1.39

0.08
]
 
 
 
 
−1

  =   [

0.027
0.141

0.719
12.5

]                                       (5.16) 

 

 

In final step compute P, A Q 𝚫−𝟏= 𝑷 

 

             A                            Q                                          𝚫−𝟏                                  𝑷 

   

[
 
 
 
 
 
 
6 6 6 5.20 0.33
8 8 8 5.70 0.37
9 9 9 5.10 0.31
8 9 8 5.00 0.30
5 7 5 9.37 0.81
5 5 5 9.01 0.88
5 6 5 7.30 0.60]

 
 
 
 
 
 

   

[
 
 
 
 
0.49 0.32 −0.39 0.00 0.71
0.53 0.18 0.82 −0.03 0.00
0.49 0.32 −0.39 0.00 −0.71
0.48 −0.86 −0.11 0.11 0.00
0.04 −0.10 −0.04 −0.99 0.00 ]

 
 
 
 

 

[
 
 
 
 
0.027

0.141
0.719

12.5
0 ]

 
 
 
 

=  

[
 
 
 
 
 
 
−0.32 −0.64 0.24 0.75
−0.41 −0.23 0.22 0.18
−0.44 −0.43 0.14 −0.27
−0.44 −0.35 −0.42 −0.33
−0.36 0.51 −0.56 0.04
−0.33 0.52 0.59 −0.45
−0.32 0.28 −0.14 0.24 ]
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(5.17) 
                

Multiply matrix P with  𝚫  and Q
T
 matrices to get matrix that should have the 

same entries as matrix A. This operation is conducted to make sure that no errors were 

made during decompositions.   

 

            A                                 𝑷                            𝚫                            Q
T
 

  

[
 
 
 
 
 
 
6 6 6 5.20 0.33
8 8 8 5.70 0.37
9 9 9 5.10 0.31
8 9 8 5.00 0.30
5 7 5 9.37 0.81
5 5 5 9.01 0.88
5 6 5 7.30 0.60]

 
 
 
 
 
 

   =  

[
 
 
 
 
 
 
−0.32 −0.64 0.24 0.75
−0.41 −0.23 0.22 0.18
−0.44 −0.43 0.14 −0.27
−0.44 −0.35 −0.42 −0.33
−0.36 0.51 −0.56 0.04
−0.33 0.52 0.59 −0.45
−0.32 0.28 −0.14 0.24 ]

 
 
 
 
 
 

    

[
 
 
 
 
35.99

7.05
1.39

0.08
]
 
 
 
 

    

[
 
 
 
 

0.49 0.53 0.49 0.48 0.40
0.32 0.18 0.32 −0.86 −0.1

−0.39 0.82 −0.39 −0.11 −0.04
0 −0.03 0 0.11 −0.99

0.71 0 −0.71 0 0 ]
 
 
 
 

      

(5.18) 

 

 

 

Furthermore, to numerically evaluate how much importance each column 

(component) we square each singular value from the diagonal matrix Δ and divide it with 

the sum of the squares of the entries in the diagonal matrix Δ. This number is the measure 

of how much information is contained in the dataset if one or more dimensions (columns 

and rows in P and Q matrices) were removed. For example, summation of all squared 

singular values 35.992+7.052 +1.392+0.082=1346.  It is easy to notice that the first and 

second entry have significantly more importance than any other entry and account for the 

99.8% of the variance in the dataset. (
35.992+7.052

1346
= 0.998). This means that two columns 

and rows could be removed from the diagonal matrix without compromising the original 

dataset, because the new data set is 99.8% similar to the original dataset, but could be 

represented with two less dimensions (components). In this way the data space can be 

effectively reduced from four dimensions to only two. Furthermore, keeping only one 

entry from the diagonal matrix, 96% of the variance contained in original dataset is 

retained (
35.992

1346
= 0.96). 
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To reduced number of dimensions to two (n=2) delete two last columns form the 

matrix P, two lowest entries from the matrix 𝚫 and delete two last rows and two last 

columns from the matrix Q
T
. 

           𝑷                                      𝚫                            Q
T 

 

[
 
 
 
 
 
 
−0.32 −0.64 0.24 0.75
−0.41 −0.23 0.22 0.18
−0.44 −0.43 0.14 −0.27
−0.44 −0.35 −0.42 −0.33
−0.36 0.51 −0.56 0.04
−0.33 0.52 0.59 −0.45
−0.32 0.28 −0.14 0.24 ]

 
 
 
 
 
 

    

[
 
 
 
 
35.99

7.05
1.39

0.08
]
 
 
 
 

    

[
 
 
 
 

0.49 0.53 0.49 0.48 0.40
0.32 0.18 0.32 −0.86 −0.1

−0.39 0.82 −0.39 −0.11 −0.04
0 −0.03 0 0.11 −0.99

0.71 0 −0.71 0 0 ]
 
 
 
 

      (5.19) 

 

and then multiply newly created matrices  𝑷*
, 𝚫*

, Q
T* 

to get new matrix A 
*
 .     

                            
          

 

  𝑷*
                𝚫*

                           Q
T*           =                   

A 
*
                                 

 

[
 
 
 
 
 
 
−0.32 −0.64
−0.41 −0.23
−0.44 −0.43
−0.44 −0.35
−0.36 0.51
−0.33 0.52
−0.32 0.28 ]

 
 
 
 
 
 

    [
35.99

7.05]    [0.49 0.53 0.49 0.48 0.04
0.32 0.18 0.32 −0.86 −0.1

]  =   

[
 
 
 
 
 
 
5.81 6.22 5.81 5.13 0.37
7.81 8.18 7.81 5.58 0.36
8.96 9.20 8.96 5.11 0.28
8.25 8.52 8.25 5.08 0.30
5.37 6.43 5.37 9.53 0.85
4.64 5.64 4.64 8.90 0.80
5.01 5.76 5.01 7.26 0.62]

 
 
 
 
 
 

   (5.20) 

 

 

Newly create matrix A 
*
 retained 99.8% of information of the original matrix A. 

Similarly if further reduction is needed (n=1), then delete three last columns form 

the matrix P, three lowest entries from the matrix 𝚫 and delete there last rows and three 

last columns from the matrix Q
T  

to get 
   

A 
**

. Newly created matrix A **   retained is 

96% similar to the original matrix A.                               
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    𝑷**
                𝚫**

                           Q
T**                                =                                       

A 
**

          

[
 
 
 
 
 
 
−0.32
−0.41
−0.44
−0.44
−0.36

−0.33
−0.32]

 
 
 
 
 
 

    [35.99]    [0.49 0.53 0.49 0.48 0.04]   =

[
 
 
 
 
 
 
5.72 6.19 5.72 5.54 0.42
7.33 7.94 7.33 7.11 0.54
7.94 8.60 7.94 7.70 0.58
7.43 8.05 7.43 7.20 0.54
6.48 7.02 6.48 6.29 0.47
5.87 6.36 5.87 5.69 0.43
5.73 6.21 5.73 5.56 0.42]

 
 
 
 
 
 

  (5.21) 

 

  Principal Component Analysis (PCA) 5.2.2.2

Principal component analysis (PCA) is mathematical tool used to reduce complex 

data sets to lower dimensions in order to uncover a simplified structure underneath. In 

many experimental settings, one or more outcomes are measured in an effort to 

understand some phenomena. However, if the data is inter-correlated, redundant, or 

deceptive, it becomes very hard to observe patterns in the phenomenon. To solve this 

problem, a tool able to “untangle” complex data is needed so it is clearer to understand 

which components in the data set are independent and which are dependent.    

 PCA uses matrix decomposition method by transforming a correlated 

multivariate data set into a set of uncorrelated components that are linear combinations of 

the original variables in the data (Fernandez, 2014). It is important to note that SVD can 

be used to compute PCA. For example, PCA can be computed by using a SVD algorithm 

if columns in the matrix are divided by the Z-score (a measure of standard deviation in 

the data set, described below). However, PCA is usually computed by algorithm that uses 

eigen-decomposition of the covariance matrix, where covariance matrix is a matrix that 

measures variability and spread of the components in the dataset. Eigen-decomposition is 

a mathematical method used to calculate eigen values and eigen vectors.  

The PCA algorithm (adapted from Andersson, 2000) starts with defining a data 

set 𝑨 ∈ 𝑹𝐼×𝐽. This data set can be decomposed using eigenvalues into a score matrix (S), 

loading matrix (L) and residuals (E)  

𝑨 = 𝑺𝑳𝑇 + 𝑬                                                                      (5.22) 

where  𝑨 ∈ 𝑅𝐼×𝐽 is the data set  
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𝑺 ∈ 𝑅𝐼×𝑁 is the score matrix; 

𝑳 ∈ 𝑅𝐽×𝑁 is the loading matrix;  

𝑬 ∈ 𝑅𝐼×𝐽 represents the residuals, or error matrix; 

            𝑳𝑇 is a transpose of the loading matrix L, and; 

            N represents the number of components that contribute to the observed variation 

in the data.    

The PCA algorithm has five steps. 

1. Compute mean and standard deviation of matrix A and then “standardize” matrix 

A using z-score standardization (which is labeled matrix B in Equations 5.26 and 

5.27). Mean and standard deviation of matrix A refers of computing means and 

standard deviation of the matrix columns.  "Z-score standardization" means 

subtracting the sample mean from each observation, then dividing by the sample 

standard deviation. This centers and scales the data about zero. 

2. Compute the covariance matrix, C, of standardized matrix A. 

3. Calculate eigenvectors and eigenvalues of the covariance matrix. The eigenvector 

matrix is the loading matrix, L, and contains coefficients of principal components.  

4. Calculate score matrix S. Matrix S is a simple matrix product of standardized 

matrix A and loading matrix L.  

The data in Table 5.1 is used to provide an example illustrating PCA algorithm. 

A is the dataset in question. 

                     𝐴 =

[
 
 
 
 
 
 
6 6 6 5.20 0.33
8 8 8 5.70 0.37
9 9 9 5.10 0.31
8 9 8 5.00 0.30
5 7 5 9.37 0.81
5 5 5 9.01 0.88
5 6 5 7.30 0.60]

 
 
 
 
 
 

                                                                           (5.23) 
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Find the average and standard deviations of columns in dataset A.  

average (A)= [6.57 7.14 6.57 6.66 0.51]                                                       (5.24) 

stdev(A)= [1.718 1.573 1.718 1.893 0.248]                                              (5.25) 

Standardize entries in dataset A by subtracting column means and dividing it with 

column standard deviation. 

B=z-score(A) =

[
 
 
 
 
 
 
−0.33 −0.72 −0.33 −0.77 −0.74
0.81 0.54 0.83 −0.51 −0.58
1.41 1.18 1.41 −0.82 −0.82
0.83 1.18 0.83 −0.88 −0.86

−0.91 −0.09 −0.91 1.42 1.18
0.91 −1.36 −0.91 1.23 1.47
0.91 −0.72 −0.91 0.33 0.34 ]

 
 
 
 
 
 

                                    (5.26) 

Find covariance matrix C of standardized scores from the dataset. 

C=cov(B)=

[
 
 
 
 
1.0 0.88 1.0 −0.80 −0.81

1.0 0.88 −0.63 −0.68
1.0 −0.80 −0.81

1.0 99
1.0 ]

 
 
 
 

                                      (5.27) 

Find eigenvectors of covariance matrix C. 

L=eigenvectors (C)=

[
 
 
 
 

0.71 −0.07 0.46 0.25 −0.46
0.0 0.17 −0.69 0.55 −0.42

−0.70 −0.07 0.46 0.25 −0.46
−0.00 −0.70 0.01 0.56 0.43
0.0 0.68 0.29 0.49 0.44 ]

 
 
 
 

                               (5.28)    

Find eigenvalues of covariance matrix C. 

 

    eignevalues (C)= 

[
 
 
 
 
4.33

0.543
0.12

0.0039
0 ]

 
 
 
 

                                          (5.29) 

Multiply standardized scores matrix with eigenvector matrix to calculate score matrix S. 

 S= B⋅ 𝑳=

[
 
 
 
 
 
 
−0.33 −0.72 −0.33 −0.77 −0.74
0.81 0.54 0.83 −0.51 −0.58
1.41 1.18 1.41 −0.82 −0.82
0.83 1.18 0.83 −0.88 −0.86

−0.91 −0.09 −0.91 1.42 1.18
0.91 −1.36 −0.91 1.23 1.47
0.91 −0.72 −0.91 0.33 0.34 ]

 
 
 
 
 
 

 

[
 
 
 
 

0.71 −0.07 0.46 0.25 −0.46
0.0 0.17 −0.69 0.55 −0.42

−0.70 −0.07 0.46 0.25 −0.46
−0.00 −0.70 0.01 0.56 0.43
0.0 0.68 0.29 0.49 0.44 ]

 
 
 
 

=

[
 
 
 
 
 
 
−0.0 −0.035 −0.028 −1.37 −0.05
−0.0 −0.78 0.21 0.14 −1.48
0.0 −0.005 0.23 0.48 −2.54
0.0 0.096 −0.31 0.14 −2.04

−0.0 −0.05 −0.41 0.88 2.04
0.0 0.054 0.55 0.22 2.61
0.0 0.023 −0.23 −0.50 1.45 ]

 
 
 
 
 
 

  

(5.30) 
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Once the principal components are computed they are geometrically orthogonal to 

each other, and statistically speaking uncorrelated. This is a very important outcome of 

the PCA, as the scoring matrix allows researchers to reduce the number of variables 

needed to explain the variance in the data, while data orthogonality makes data patterns 

more detectable. The PCA algorithm linearly transforms the original data set into a new 

coordinate system, where the principal component with the highest eigenvalue (highest 

score in the scoring matrix) is the one that has the largest variance and by extension the 

largest influence in the original data set. Therefore, PCA is a good method to highlight 

similarities and difference between the variables in the data set.  

It is important to note that the reduction in dimensionality comes from the user 

not the method itself. The user is one who ultimately chooses how many principal 

components to keep. There are three generally adopted criteria to select the appropriate 

number of principal components. 

a) Ignore all principal components after point where new principal 

components do not considerably increase the total variance explained. The 

total variance is a sum of squared eigenvalues from the matrix C. Total 

variance explained is just a percentage of a total variance.  

b) Only use the principal components up to the pre-determined percentage of 

total variance explained.  

c) Ignore all PCs with a variance explained less than one (Holland, 2008). 

That means all eigenvalues less than one should not be disregarded.  

Sometimes an issue with PCA might be interpretability of the selected principal 

components. The issue rises from the fact that the principal components can be complex 

linear combinations of the real variables from the original data set. To solve this problem 

not only does the score matrix (eigenvalues of the principal components) need to be 
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evaluated but the loading matrix does as well. Loadings are the projections of the 

principal components onto the variables from the original data set. A particularly high 

(positive) or low (negative) loadings for a specific variable indicates strong relationship 

between that principal component and the variable in question. Therefore, it is essential 

to look at both the eigenvalue of the principal component and at the variable that 

contributes the most to the principal components in terms of the absolute value of their 

loadings. The next section will discuss the Tucker tensor decomposition method, in 

which a similar approach is used.   

 Tucker Decompositions Method (Higher Order Decomposition Method) 5.2.3

While PCA is great tool for investigating hidden patterns in the dataset, this 

method shows some deficiencies when analyzing complex multidimensional datasets. For 

example, Singh (2006) showed that using PCA on multiway data set does not allow 

“describing or inferring similarity or general behavior patterns for the sampling sites 

despite information that is present in original data set”. In other words, because the data 

of interest had a three-dimensional structure, analyzing it with two-way methods was 

unable to uncover the trends or extract information otherwise present in the data. 

Furthermore, SVD is shown to be great dimension reduction tool, but has limited strength 

in discovering trends in complex and multidimensional dataset. 

One of the methods available for the analysis of higher order dimensional data 

sets is the Tucker decomposition method (Kolda, 2009). This method was proposed by 

L.R. Tucker in the early sixties, and was recently brought to the scientific prominence by 

work of Bro and el. (1998, 2003a, 2003b). Additionally, tensor decomposition methods 

have been used in pattern recognition, dimension reduction, and data mining. The main 

difference between tensor and matrix decompositions is that tensor decomposition 

methods work on higher order data sets, while matrix decomposition methods work on 

2D data sets. In general, the Tucker decomposition method works on any 
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multidimensional data set, and due to its applicability and interpretability, Tucker3 

decomposition is the most widely used of these methods. Tucker3 decomposition is as 

special case of Tucker decomposition, used for analyzing three-dimensional data formats. 

Additionally, Tucker3 decomposition is easier to conceptualize than higher order 

decompositions. Therefore, it is used to explain the mathematical foundations behind this 

method. The name Tucker3 stems from the fact that the three-dimensional tensor is 

decomposed into three loading matrices and a core tensor, as explained below 

(Adarkawa, 2015).Tucker3 tensor decomposition, mathematically, can be expressed in 

element form as: 

[𝛸]𝑖×𝑗×𝑘 = ∑ ∑ ∑ 𝑔
𝑝𝑞𝑟

𝑎𝑝
𝑅
𝑟=1 ∘ 𝑏𝑞

𝑄

𝑞=1 ∘ 𝑐𝑟 + 𝑒𝑖𝑗𝑘
𝑃
𝑝=1                     (5.31) 

where, g is the core tensor array entry; a, b, and c are the loading matrix element entries; 

e is an entry from the error array; and P, Q, and R are the numbers of components in the 

loading matrices A, B, and C, respectively. 

As seen from the equation 5.13) this is a trilinear decomposition method, which 

decomposes the three-dimensional array into sets of scores (or loadings) that potentially 

describe the data in a more condensed form than the original data array. Figure 5.5 

graphically shows decomposition of three-way array. 

 
 

Figure 5.5 Tucker decomposition model of tensor 𝓧 shows three-way data set {X} 

graphically being decomposed in {G} the core tensor array; [A], [B], and [C] loading 

matrixes and {E} an error array.  
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The core tensor contains the elements that show the level of association between 

loading matrices A, B, and C (Kroonenberg, 2008). The larger the value of the core 

tensor element, the stronger is the association between the vectors from the loading 

matrices. Strong association means that this component strongly contributes to the 

variation in the dataset. Conversely, the lower the value of the core tensor element, the 

weaker the strength of the association between loading matrices. For example, if the core 

element 𝑞1,2,1 ≈ 0, this implies that interaction between vectors Ai,1, Bj,2 and Ck,1 is very 

weak and that this model will lack component uniqueness. The model structure 

uniqueness is a very important concept in the tensor decomposition algorithms. If the 

model structure is not unique, there is a number of solutions that give exact fit of the data. 

Interpreting the model becomes almost impossible. To obtain unique solution for the 

decomposition, model sometimes needs to be constrained. 

Model constraints are used to obtain parameters that do not contradict prior 

knowledge, obtain a unique solution to the model, avoid degeneracy and numerical 

problems, and speed up the algorithms (Bro, 1998).  Model degeneracy refers to the 

inability to find a model with a good fit to the data. There are multiple ways to constrain 

the model. For example, the model can be constrained so it produces a diagonal core 

tensor. A diagonal core tensor is a special type of tensor where only the diagonal entries 

in the tensors are non-zero values, which generally results in faster computations. 

Another way to constrain a model is to have a model with orthonormal projection 

matrices (orthogonality constraint), which allow a unique solution to be obtained.  

Typically, Tucker3 models have orthonormal projection matrices (orthogonality 

constraint). We can also constrain the model by imposing non-negativity on the 

regression vector.   

For example, the following simple numerical example shows how non-negativity 

constraint is imposed on the model (adapted from Bro, 1998). Let say we have an 

arbitrary matrix Z of independent variables and matrix Y of dependent variables.  
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Z=[

73 71 52
87 74 46
72 2 7
80 89 71

],      Y=[

49
67
68
20

]                                                    (5.32) 

The regression vector a of the least square equation 

min𝑎‖𝑦 − 𝑍𝑎‖𝐹
2                                                              (5.33) 

can be found as   a= (Z
T 

Z)
-1 

Z
T
y, which yields a=[1.123 0.917, -2.0685]

T
. Imposing the 

non-negativity constraint on the regression vector a essentially means setting all negative 

elements from that vector equal to zero. Thus, after applying non-negativity constraint on 

the regression vector a, it results in following change  

a=[1.123 0.917, 0]
T
. 

All constrains are imposed on the model in order to reduced computing effort and 

to produce good and reliable fitting model. Tucker models with orthonormal projection 

matrices are known as higher-order singular value decomposition models (Barnathan, 

2010). These models can be estimated using algorithm adopted from Kolda and Bader 

(2009).  This algorithm served as foundation for MatLab N-way toolbox that was used 

for tensor decompositions in this dissertation.   

 Applications of Tensor Decompositions  5.2.4

Tensor-decomposition methods have been extensively used in psychometrics and 

chemometrics analysis for many years (Carol et al., (1989), Harshman, et al. (1970), 

Gealdi, (1970), Bro, et al. 2003). Singh, et al. (2006) has shown that tensor-

decomposition methods better predict cause-effect relationships between soil pollution 

concentration, site location, and depth of pollutant penetration than other statistical 

methods. Kotura, et al. (2012) used tensor decomposition to track anomalies in the 

internet network traffic, in order to recognize spam and detect fraud. Tensor 
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decompositions are also used for data filtering (Ricci et al., 2012), and social media 

platform algorithms (Zheng, et al. (2010)) and in facial recognition programs (Vasilescu 

and Terzopoulos, 2002). Recently, Adarkwa (2015) used tensor decomposition analysis 

to investigate bridge structural deficiency and functional obsolescence on bridge designs 

in the USA. He found that girder & floor-beam bridge designs showed the most variation 

with respect to structural deficiency across all states.  

 Using Tensor Decompositions to Differentiate Stress Distributions among 5.2.5

Bridge Components 

Only the author’s preliminary work has used tensor decomposition to analyze 

stress data in bridge structures. Specifically, Radovic and McConnell (2014) investigated 

ultimate capacity of a steel I-girder highway bridge by building the FE model of the 

structure. The data extracted from the FEA was then organized into element groups 

representing different structural members of the bridge in different locations in the bridge 

structure under increasing loads. For example, cross-frame elements belonging to one 

group were labeled XG1; cross-frame elements belonging to a second group were labeled 

XG2 and so on. Similarly, Girder 1 bottom flange elements are labeled G1BF, Girder 2 

bottom flange elements are labeled G2BF, and so on. The stress data extracted from 

element groups was expressed in terms of stress histograms (Figure 5.6), where the x –

axis is stress bins, the z-axis is different load levels as quantified by load proportionality 

factors (LPFs), and the vertical (y-) axis represents the percent of the total area of the 

given bridge component with stresses in each of the stress bins at each load level. 

Considering that the number of elements in each girder was the same, by counting the 

number of elements in each stress bin and dividing it with total number of girder 

elements gives the percent of girder area that is in that stress bin, hence the x-axis label 

name “% area”.  
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The percent area from the each bin was then structured into a three-dimensional 

tensor such that first (i) mode of the tensor consists of bridge components (bottom flange 

of girders G1 to G4 and cross-frames groups XG1 to XG3) organized in rows, the second 

mode (j) consists of stress ranges (stress histogram bins) organized in columns, and the 

third mode (k) consists of the loading increments, expressed as LPF organized in tubes. 

Tensor decomposition of the resulting three-way array, mathematically expressed as 

𝓧 ∈ ℝ𝑰×𝑱×𝑲 was performed using the N-way Toolbox in Matlab R2014 (Mathworks, 

2014). The results showed that tensor decomposition was able to quantify difference in 

stress distribution among the bridge components at different load levels.    

 For example, in Figure 5.6, seven stress profiles of bridge structural components 

are presented.  Looking at these seven stress profiles, it is very hard to numerically asses 

which stress profiles are alike and which ones are different. Furthermore, by looking at 

the stress profiles it is very hard to detect at what load level the behavior of these 

structural components start to diverge from one another, such as due to the development 

of plastic behavior.  Using Tucker Decomposition, researchers were able to visually and 

numerically differentiate the behavior of bridge structural components and to determine 

at what load levels bridge behavior starts changing. This study proved that multiway 

analysis could be used by researchers when assessing different design options. 
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Figure 5.6  Preliminary results of stress profiles of seven element groups. Longitudinal 

axes consist of 51 stress bins,  transverse axes consists of 17 loading increments (LPFs) 

and  vertical axis represents frequency of occurrence expressed as a percent of the total 

number of elements in the corresponding element group. 

 

 Tensor Decomposition of Finite Element Analysis Data 5.3

In current civil engineering practice, finite element analysis (FEA) is used to 

assess and predict the behavior of various structures in general and steel girder bridges in 

particular. The physical shape of these structures is numerically expressed in terms of 
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geometric shapes (elements) bounded by vertices (nodes). Usually, an external load is 

placed somewhere in the model and the response is calculated via a system of partial 

differential equations. The resulting outcome is typically expressed in terms of quantities 

such as nodal deflections and element stresses. The number of elements in a typical 

bridge model could vary anywhere from hundreds to millions, resulting in extremely 

large dataset. In current practice, only a small fraction of this available data is 

quantitatively analyzed. For example, it is often the case that only the peak (discrete) 

values in the data set, such as maximum deflection, maximum tensile stress in the bottom 

flange or maximum stress in cross-frames are evaluated.  

While this “discrete level approach” to data analysis has been used for years for 

the design and analysis of steel girder highway bridges, supplemental, more “holistic” 

evaluation of the data may provide additional understanding of the behavior of bridges. 

“Holistic” approach to FE data analysis refers to a more comprehensive evaluation of 

bridge response variables (such as deflections or stresses) by analyzing their distributions 

not just peak values. As shown in Chapter 4, a “holistic” approach to FE data analysis 

was used to assess the effect of removing cross-frames from the bridge on the overall 

stress distribution of the bridge. The Chapter 4 results showed that removing cross-

frames from the bridge had a minimal effect on stress distribution throughout the bridge 

as well as no effect on the overall load resisting capacity of the bridge. Furthermore, the 

Chapter 4 results indicate that in order to fully comprehend the latent behavior of the 

bridge, and to understand why this occurrence happened, a more rigorous mathematical 

analysis is needed. Datasets such as these that are large in volume and complexity, inter-

correlated, and multi-dimensional are most comprehensively evaluated and quantified by 

using tensor decomposition analysis in general and Tucker decompositions in particular.  

Therefore, the objective of this section is to investigate the effects of cross-frame 

removal on stress distribution throughout the bridge by implementing tensor 

decomposition method. This section begins with a methodology sub-section that reviews 
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the FE modeling and how stress distribution data are analyzed using “holistic” approach. 

Then the results sub-section discusses evaluating and interpreting tensor decomposition 

outcomes. 

  “Holistic” FFA Evaluation Methodology  5.3.1

This sub-section summarizes the methodology used for assessment of stress 

distributions in steel I-girder highway bridges.  Finite element analysis (FEA) models of 

bridges with different skews and cross-frame configurations were built for this purpose. 

Stress distributions among bridge models were evaluated using Chi-square Distances, a 

novel, “holistic” type metric for evaluating FEA data.  These distances are organized in 

tensor form for further analysis.    

 FEA Models 5.3.1.1

A total of 25 bridge FE models were built for this study. Two cross-frame designs 

(K-frame vs. X-frame configurations) and two cross-frame layouts (inline vs. staggered) 

at five skews (0°, 25°, 46°, 55° and 63°) were modeled and analyzed. To investigate the 

effect that removing cross-frame from the bridge has on bridge stress distribution, 

additional FE models without cross-frames (No-frame) were added at each bridge skew. 

All parametric models were based on a 63° skewed simply supported steel I-girder bridge 

labeled “7R”, as previously described in Chapter 3. Stress data of all girder, cross-frame, 

and deck elements are extracted from the models and evaluated using Chi-square 

Distance metrics (see Section 4.3.2.3). 

 Organizing FEA Data for “Holistic” Evaluation 5.3.1.2

The main idea of the parametric analysis was to investigate the response of the 

bridge as a system by analyzing stress distribution in the two main structural components: 

the girders and deck. Therefore, two element groups are created in each FE model and 

longitudinal stresses were computed and extracted for each element. Stress data were 
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then organized in such a way that girder group contained elements stresses from all 

girders in the bridge, while deck (D) group contained all deck element stresses.  

Furthermore, stress data were extracted under three loading conditions as 

described in detail in Chapter 4:  

a) Design load (HS-20 truck),  

b) First yield load, and 

c) System yield load.  

The design load refers to a load equivalent of the one HS-20 truck on the bridge. 

First yield load refers to a load that causes the full cross-section of the bottom flange of 

one girder to yield, while system yield load refers to a load that causes the entire cross-

sections of the bottom flanges of all girders to yield. Full cross-sectional yield of the 

bottom flange of the girder in the FE model refers to the case in which all shell elements 

constituting a girder’s bottom flange cross-section exceed the yield stress. At each of the 

three load conditions, stress histograms of each element group at design, first yield, and 

system yield load levels were constructed and analyzed (Figure 5.7). Histogram bins for 

girders are organized in increments of 1000psi, while histogram bins for deck are 

organized in increments of 100psi due to the smaller magnitude of these stresses. 
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Figure 5.7 Stress histograms of the girder stresses at a) design load, b) first yield load, c) 

system yield load 

 Data Processing using Chi-Square Distances 5.3.1.3

To numerically assess the difference between stresses histograms of two different 

bridge models at the same skew and load level, the measure known as Chi-square 

Distance was used (this topic is covered in detail in Section 4.3.2.3). It is worth 

remembering that a large distance between the models corresponds to stress distributions 

that differ significantly, and conversely, a smaller distance between the models 

corresponds to stress distributions that are more alike. It is hypothesized that if the cross-

frame design does not play a role in bridge system response, then the stress distribution 
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among the models at the same load level and the same skew should be similar and Chi-

square Distances between the models should be small.  

To evaluate the effect that cross-frames removal has on stress distribution, Chi-

square Distances between No-frame models and corresponding cross-frame models were 

computed and used as data entries to construct a 4D dimensional tensor as explained in 

the following section. To illustrate this point, Table 5.2 shows a typical outcome of Chi-

square distances between girder stress distributions, among the models at design load 

level at 25° skew. Four data points from this analysis (442, 209, 4876 and 4202), from 

the comparisons between each cross-frame design and the no-frame model were used as 

data entries to construct the 4D tensor. The entire dataset used for this analysis can be 

found in Appendix D. 

Table 5.4  Typical outcome of the Chi-square Distance comparison. Note that results are 

symmetric and for the clarity purposes identical data entries (located to the left of the 

diagonal) were replaced with star (*) symbols 
 

Design  

K-

INLINE 

K-

STAGG 

X-

INLINE 

X-

STAGG 

NO-

FRAME 

K-INLINE 0 282 4874 4064 442 

K-STAGG * 0 4537 3598 209 

X-INLINE * * 0 411 4876 

X-STAGG * * * 0 4202 

NO-FRAME * * * * 0 

 Tensor Data Structure 5.3.1.4

 The data structure of the (5 x 4 x 3 x 2) 4D tensor analyzed in this work consists 

of the following: the first dimension consists of five skews (0°, 25°, 46°, 55°, and 63°), 

the second dimension consists of four cross-frame designs (K-Inline, K-Stagg, X-Inline 

and X-Stagg), the third dimension consists of three load conditions (design, first yield 

and system yield), and the fourth dimension consist of two bridge structural components 

(girders (G) and deck (D)).Each value in the tensor represents the Chi-square distance 
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between the no-frame model and corresponding cross-frame model under the given 

conditions. This tensor configuration yields a total of 240 data points. To visualize the 

data, the 4D tensor is displayed in 3D space by combining structural components and 

skews on one axis and design configurations and load levels dimensions together in 

Figure 5.8. Once the data were organized in the tensor structure, it is ready to be 

processed using Tucker tensor decomposition method. 

 

 

Figure 5.8 Graphical representation of the data structure of 4D tensor. X-axis represents 

skew, y-axis is Chi square distance, and z-axis is element groups, load level and cross-

frame configuration. 

 Tucker Tensor Decomposition Methodology 5.3.1.5

5.3.1.5.1 Overview 

The biggest advantage of using Tucker tensor decomposition method is its ability 

to compress variation, extract features, explore data, and generate parsimonious models 

(which are able to capture or explain the most variation in the data set with the least 
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number of variables possible), especially from highly correlated data sets (Bro, 1998). 

The biggest disadvantage of using Tucker tensor decomposition method is that it 

sometimes requires complex data interpretation, and somewhat arbitrary (subjective) 

judgement before optimal model parameters are chosen.  Thus, expertise in the subject 

matter is required to make Tucker tensor decomposition analysis valuable.   

Parameters that need to be determined by the analyst are the size of the core 

tensor G (p x q x r x s); core tensor and loading matrix constraints, such as orthogonality 

or non-negativity; and the selection of an optimization algorithm based on the data 

structure and /or software used. Due to these restrictions, the user must be familiar with 

the practical significance of the data set of interest in order to interpret and conduct the 

analysis in meaningful and accurate manner. 

There are two ways to constrain the Tucker decomposition models. First way is to 

constrain the model so it produces diagonal core tensor. Diagonal core tensor is a special 

type of tensor where only diagonal entries in the tensors are non-zero values. And the 

second way to constrain a model is to have a model with orthonormal projection matrices 

(orthogonality constrains). Tucker models with orthonormal projection matrices are 

known as higher-order singular value decomposition models (Barnathan, 2010) and these 

models can be estimated using algorithm adopted from Kolda & Bader (2009). Model fit 

is determined by the loss function and the fitting iterations stop once the difference 

between the original data set and the model is in the range of the loss function. This 

function is defined as: 

min𝒢,𝐴(1),𝐴(2),…,𝐴(𝑁)‖𝒳 − [𝒢;  𝐴(1), … ,  𝐴(𝑁)] ‖                                                (5.17) 

Model constraints and data centering will be discussed in the following two 

sections. Although many data sets require data to be scaled because the data is in 

different quantities, that is not the case with the data presented in this work. Thus, data 

scaling was not conducted in this work.     
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5.3.1.5.2 Data centering (normalization) 

Before conducting tensor decomposition, the tensor data needs to be 

preprocessed. The first step in preprocessing is called data normalization (also known as 

zero centering). This step includes moving the centroid of the data towards the origin. 

This is very important step, because if zero centering is not conducted, the model might 

fail to capture all the factors that contribute to variation in the data set. Bro (1998) 

suggests that if the data is not on a ratio scale, centering must be done. Furthermore, 

according to Bro and Smilde (2003), there are a few more advantages to using data 

centering, such as, removing offsets and constant terms, increasing fit of model to the 

original dataset, and reducing rank representation of the data. 

 The procedure for zero centering is fairly straight forward. All the mean 

values are calculated for each column of data and then all entries from that column are 

subtracted from the mean. This procedure yields zero mean for the data set and it is 

described by   

𝑥𝑖𝑗
𝑐 = 𝑥𝑖𝑗 −

∑ 𝑥𝑖𝑗𝑖

𝐼
                                                           (5.18) 

where 𝑥𝑖𝑗
𝑐 = zero centered data entry for object i and attribute j; 𝑥𝑖𝑗= data entry for 

attribute j of object i; and 𝐼= dimension of mode i. The data in this study was normalized 

by default using the Tucker3 function in N-way toolbox (Matlab, 2014).  Before inputting 

data into the N-way toolbox, the data needs to be organized as a tensor (as described in 

Section 5.3.1.4).  

5.3.1.5.3 Model Constraints  

As discussed above, constraints were applied to speed up algorithms and improve 

the results of these algorithms. In the Matlab’s N-way Toolbox there is a built-in function 

that was used to impose orthogonality constraint on to the data and non-negativity 

constraint onto the core tensor, G.  
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 Tensor Decomposition Analysis Results 5.3.2

 Model Fitting  5.3.2.1

Using the Tucker decomposition method, the 4D tensor was decomposed into four 

loading matrices (A, B, C, D) and a core array (G). Loading matrix A represents bridge 

skews, loading matrix B represents cross-frame designs, loading matrix C represents 

level of applied load, and loading matrix D represents bridge components. Orthogonality 

constraints were imposed on the loading matrices. The non-negativity constraint was 

imposed on the core array, while the dimensions of the core array were selected based on 

two criteria: percentage variance explained and optimal model complexity. Percentage 

variance explained shows how well the decomposed model fits the original data, where 

models with higher percentages of variance explained indicate more accurate models.  

The optimal model complexity is the one that requires the smallest number of 

components but still captures a high percent of the variance in the model (Singh 2006). 

Models with large variance explained, but with larger core array size, will be ultimately 

excluded because they are less interpretable. For example, Figure 5.9 shows that models 

with core arrays size of p x q x r x w > 18 have high values of explained variances, but 

these models also have larger number of components that needs to be interpreted. It is 

also noted that higher variance captured can be the result of the overfitting (making the 

model unreasonably complex, such as having too many components relative to the 

number of observations) and not necessarily an ideal model for a given data set. Once the 

proper model was selected, the loading scores from different factors (skew, cross-frame 

design, level of loading, bridge component) were computed and analyzed.  

The total variance explained versus model complexity was plotted and the model 

with the highest variance explained relative to the minimal complexity was selected as 

the best fitting model. With a total of 54 models tested, the results showed that model 
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[2x2x2x2] was a primary candidate for a best fitting model. This model had high percent 

of variance explained (94.2 %) and relatively low levels of complexity 16. 

The next step is to cross-validate these potential models by split-half analysis. 

Split-half analysis is measure of model reliability. The model is divided in half across one 

of the modes (skew angle in this case). The remaining half of the data set is then tried to 

be fitted with the same decomposition model. If the model retains a similar percent of the 

variance explained that means that model indeed captures latent structure of the dataset.  

When the model was cross-validated by split-half analysis, it was able to maintain a 

similar percent of variance explained (93.7%) compared to the original data (94.2%). 

Therefore, this model was selected for further processing. 

 

Figure 5.9 Percent of variance explained vs level of complexity for 54 Tucker models.  

 

 Interpretation of Data 5.3.2.2

Before interpreting the decomposed data, it is important to understand what the 

data is supposed to represent. Note that one purpose of doing the tensor analysis is to find 

similarities and differences in the responses of bridges with and without cross-frames. It 

is important to remember that all tensor decomposition results (individual and global) 
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describe how stress distributions in models with and without cross frames differ.  For 

example, low Chi-square distances indicate that cross-frames might not be contributing to 

lateral load distribution as intended by the design or that lateral load distribution is 

equivalently achieved in the absence of cross-frames.  

The tensor results were plotted in bi-plots. Bi-plots of loading scores show both, 

how variables are correlated inside its loading matrix, and how they are correlated with 

variables from other loading matrixes. Every bi-plot has two axes, called components 

(Component 1 and Component 2). The value of each component is called loading score. 

Therefore, every variable included in a bi-plot (such as X-frame Inline design or 25° 

skew) will have two loading scores per bi-plot. The higher the loading scores are, the 

higher the contribution to variance of the dataset. Conversely, the lower the loading score 

is, the lower the contribution to the variance in the dataset is.  

To better understand this concept, let assume that there was a difference in stress 

distribution between No-frame models and cross-frame models at different skews and 

different load level. If the resulting bi-plots show variables being clustered near the origin 

of the plot (low absolute values of loadings scores in both components), that would 

indicate that the variables do not contribute to the variance in the dataset. Now let’s 

assume that all models show high variation in stress distributions, but only at system 

yield load level. In this case, the clustering of other variables in all bi-plots would still be 

near the origin of the plot, while system yield variable in a bi-plot related to load 

condition on the bridge would have high score in one or both bi-plots components, 

indicating that load level rather than skew or cross-frame design contributes to the 

variations in the data set. However, when more than one variable has high component 

scores in multiple bi-plots, more complex interpretation of data is required.  
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 Results 5.3.2.3

The goal of the tensor decomposition analysis is to find latent trends in the data 

and/or to find the most influential factor contributing to the trends. It is suggested that 

analyzing the dominant core tensor loadings [G] could help in interpreting complex 

behavior the system is manifesting (Adarkwa, 2015). Additionally, evaluating core tensor 

loading scores together with the analysis of bi-plots could help better understand trends in 

the dataset. If variables have similar scores in both loadings they will form clusters in bi-

plots, revealing the underlying structure of the dataset. Furthermore, the sign convention 

(positive or negative) of the score in core tensor [G] is a product of loading component 

scores. For example, if one loading component score is positive, and another is negative, 

core tensor score will be negative. Conversely, if both component scores are positive or 

negative, core tensor score will be positive.  

The core tensor results are presented in the Table 5.5. The results show that 

[1,1,2,2] core tensor value had by far the largest score (7065). That means that variables 

with high scores at Component 1 at loading matrix A, Component 1 at loading matrix B, 

Component 2 at loading matrix C and Component 2 at loading matrix D correspond with 

the highest score. If the core tensor results are compared with bi-plots from the Figure 

5.10 it can be seen that Figure 5.10a shows loading matrix A (cross-frame configuration) 

in which both X-frame (X-Stagg and X-Inline) models have large negative Component 1 

loadings. Also, from Figure 5.10b (loading matrix B), it can be seen that 25° (and 55° to a 

lesser extent) models have the largest Component 1 scores and these are positive. The 

largest Component 2 scores at loading matrix C (Figure 5.10c) occur for the design load 

level with negative scores and the first yield load level for positive scores. Finally, Figure 

5.10d shows that deck elements have the largest Component 2 loading score at loading 

matrix D and these are positive. Thus, because the bi-plot data from loading matrices A, 

B, and D, clearly shows that the signs contributing to the largest (positive) core tensor 

values are negative, positive, and positive, respectively, the negative value from loading 
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matrix C (corresponding to design load) indicates the design load contributes to the 

largest core tensor value. Thus, from Table 5.5 together with the bi-plots it is concluded 

that the largest core tensor value is associated with deck elements of the X-frame 

configuration at the 25° skew model at the design load level. This core tensor value 

explains 62% of the variance in the dataset, which is calculated by summing the squares 

of the highest core tensor score and then dividing it by the sum of squares of all core 

tensor scores.  

The second largest [G] score (-2855) belongs to the [2,2,2,2] core tensor value. 

Comparing to the bi-plots in the same manner as described in the previous paragraph 

reveals that the loadings from this core tensor value corresponds to deck elements (high 

positive Component 2 score) of both K-frame models (high positive Component 2 score)  

under design load levels (high negative Component 2 score) at 46° skew (high positive 

Component 2 score). The third largest [G] score (-2597) belongs to the [1,2,2,1] core 

tensor value. The loadings from this core tensor value belong to girder elements (high 

positive Component 1 score) of X-frame configuration models (high negative Component 

1 score) under first yield and system yield loads (high positive Component 2 score) at 46° 

skew (high positive Component 2 score). These three core tensor values explain 80.0% of 

the variance in the dataset.  

Table 5.5 Core tensor G scores for the model Tucker [2,2,2,2] in unfolded form 

 

  

D1 D1 D1 D1 D2 D2 D2 D2 

C1 C1 C2 C2 C1 C1 C2 C2 

B1 B2 B1 B2 B1 B2 B1 B2 

A1 -1902 -20 -1035 -2597 -41 1123 7065 -522 

A2 18 1062 2208 -1850 -690 -24 228 -2855 

The two highest core tensor scores were both associated with deck elements at the 

design load. That means that there is a large portion of the variance in the data set can be 

attributed to behavior of the deck at 25°, 46º and 55º skews under design load levels.  

Finding that one of the most important factors that affects the difference in stress 



 

 214 

 

distribution among the models was related to these intermediate skews was somewhat 

unexpected. Theoretically, the dataset could be divided into two main categories tangent 

(0º skew) and skewed bridges. Therefore, it would have been expected that 0° skew 

models would have a high loading in one or both components indicating that bridge skew 

is a defining factor that affects stress distribution between bridges with and without cross-

frames. Furthermore, intuitively it would have been expected that tangent models (0° 

skew) and models with low bridge skew (25°) have more similar distribution to each 

other, while bridges with high skew (46°, 55° and 63°) should have stress distribution 

similar to each other. However, the results show (Figure 5. 11a) that 46° skew models 

have high positive Component 2 loadings, while 55° and 25° skew models have high 

positive Component 1 loadings. Furthermore, 0° skew and 63° skew models have low 

loadings in both components. These results indicate that bridge skew does not influence 

difference in stress distributions between models with or without cross-frames. In other 

words, some other factors such as bridge geometry, girder to deck stiffness and etc. might 

be more influential in terms of stress distribution.  

Note that Chapter 4 results showed that there is a significant difference in deck 

stresses and stress distributions between 46 ° skew models and other models and possible 

theoretical explanations for this were discussed in Section 4.4.1.1.2. The same finding is 

replicated by tensor analysis as can be clearly seen from the dendogram plot in Figure 

5.11 (the reader is referred to Everitt et al. (2011) for an explanation of this plot if 

necessary). The dendogram also clarifies that as the skew increases or decreases 

compared to 46°, the relative magnitude of the change in skew is more important than the 

direction of the change, as indicated by 25° and 55° models being grouped together in the 

dendogram and 0° and 63° models also being grouped together.   
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Figure 5.10   Bi-plots of Tucker3 (2x2x2x2) model 

The results also show that in loading matrix A (cross-frame designs) X-frame 

models have high negative loadings in Component 1, while and K-frame models have 

high positive loadings in Component 1 (Figure 5.10a). Results also show that the K-

frame Inline models loadings are grouped with K-frame Stagg models’ loadings and X-

frame Inline models loadings are grouped with X-frame Stagg models loadings. These 

two groups formed two distinguished clusters (K-frame and X-frame clusters). These 

results suggest that cross-frame design (K- versus X-frames) rather than cross-frame 

layout (staggered versus inline) contributes more to difference in stress distribution 

among the bridge components for the specific cross-frame configurations considered in 

this work. While this might be counterintuitive, bear in mind that X-frames and K-frames 

have different axial stiffness in this work, which might be one of the reasons for this 

result.  

a) 

b) 

c) 

d) 
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The result also show (Figure 5.10c) that first yield and system yield load levels 

have both high positive loadings in Component 2, while design load level has negative 

loading in Component 2. The results indicate that there is significant difference in stress 

distribution between No-frame and cross-frame models between design and yield load 

levels which are theoretically expected. This significant difference is visually replicated 

in the dendogram presented in the Figure 5.12.   

The results also show that girder group has high positive Component 1 loadings, 

while deck has high positive Component 2 loadings (Figure 5.10d). This result indicates 

that stress distributions at deck and girders is independent of each other regardless of the 

cross-frame design, skew or load level. In other words, large difference in stress 

distributions detected at girder models is not translated in similar differences in stress 

distributions at deck models. This finding is counter-intuitive, as theoretically (and for 

design purposes) it would be expected that the longitudinal bending stress in the deck is 

proportional to the longitudinal bending stress in the girders. However, the results 

indicate that this is not the case and that more complex behavior is taking place (such as 

lateral bending of the bottom flange).  

Figure 5.11 Dendogram plot of loading matrix A (on the left) and loading matrix C (on 

the right) of Tuker3 (2x2x2x2) decomposition. 
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 Conclusions 5.4

This chapter investigated the influence of removing cross-frames on the global 

behavior of the bridge as quantified by stress distributions. The comparison was made at 

five different bridge skews (0°, 25°, 46°, 55° and 63); at three different loading levels 

(design, first yield and system yield); and for four different cross-frame configurations 

(X-frame Inline, X-frame Staggered, K-frame Inline, and K-frame Staggered). Chi-square 

Distances between stress histograms of No-frame models and corresponding cross-frame 

models was used as a measure to differentiate the stress distributions among models. The 

data were analyzed using a specific type of multiway analysis called Tucker tensor 

decomposition method. 

It was shown that the tensor decomposition method is able to quantify trends in 

the data detected by some of the discrete and holistic analysis methods presented in 

Chapter 4.  The following conclusions were drawn from this study: 

 

1)    A correlation between the Chapter 4 findings and tensor 

decomposition findings was found regarding skew. For example, RO at 

girders at 46° skew is significantly lower than RO at other skews at the 

design load level and significantly higher than RO at other skews at first 

yield load level. Consequently loading matrices B and C (Figure 5.10) 

show that 46° skew variable and design and first yield load variables have 

high Component 2 scores. Furthermore, discrete metrics that measured 

peak stress in the deck also found deviations at 46 ° skew models. 

Subsequently, loading matrix D shows that the deck variable has high 

positive Component 2 scores. 

2)    Cross-frame design (K-frame vs X-frame) contributes more to the 

difference in stress distribution between no-frame models and cross-frame 
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models than cross-frame layout (staggered vs. inline). This finding is 

based on bi-plot data shown in Figure 5.10a showing K-frame Inline and 

K-frame Staggered have high positive loadings in Component 2 while X-

frame Inline and X-frame Staggered have high negative loadings in  

Component 1.  

3)   The difference in stress distributions at deck are not associated 

with the difference in stress distribution in girders as indicated by the 

highest loadings for these member types being associated with different 

components (i.e., Component 1 for girders and Component 2 for decks). 

This indicate that different stress distribution mechanisms govern at these 

two load carrying systems.    
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                                     CONCLUSIONS & RECOMMENDATIONS 

 Overview 6.1

Cross-frames are bridge structural members that are intended to provide lateral-

load resistance and stability during construction, reduce the buckling length of the 

compression flanges of steel girders, and facilitate distribution of traffic loads among 

girders. The main goal of the study was to quantify how much cross-frame contribute to 

stress distributions in steel I-girder bridges in general and in skewed I-girder bridges in 

particular. For that purpose, a total of 25 finite element models of bridges were built and 

analyzed. Stress distribution data from these models were evaluated using both “discrete” 

and “holistic” methods. The discrete approach to data analysis refers to limited evaluation 

of peak stresses in the dataset, while the holistic approach refers to comprehensive 

evaluation of the complete stress distribution data, not only peak stress values. This study 

suggested that to better understand the stress distribution at steel I-girder bridges, and role 

cross-frames play in it, a holistic approach is needed to analyze the stress data. 

Furthermore, this study found that removing cross-frame from the bridge did not 

substantially affect stress distributions throughout the bridge at both elastic and post-

elastic load levels. The following sections review main findings from the dissertation’s 

three main chapters: a) finite element modeling, validation, and calibration; b) evaluation 

of FEA parametric study data using “discrete” and “holistic” metrics; and c) multiway 

analysis. 

. 

 Chapter 6
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 Finite Element Modeling, Validation, and Calibration 6.1.1

 A finite element model of a steel I-girder bridge labeled “7R” was built and 

evaluated. This bridge had been previously destructively tested, and the data obtained 

from that experiment was used for the finite element model (FEM) validation and 

calibration. The validation results showed that the FE modeling techniques used were 

accurate, with the average FE results being very close to expected theoretical values for 

two metrics that were evaluated (4.1% and 2.0% errors respectively). Furthermore, three 

main advances were made with respect to currently employed FEA modeling techniques: 

a) implementation of uniform and conforming finite element mesh across bridge 

components to enable holistic” evaluation of FEA data and robust computational 

performance even in the presence of material and geometric non-linearity; 

b) using shell elements without offset to model cross-frames;  

c) using tie constraints to control composite action between the concrete deck and 

steel girders. 

 Data Evaluation of FEA Parametric Study Data Using “Discrete” and 6.1.2

“Holistic” Metrics 

A total of 25 FEA models were built and analyzed for the purpose of evaluating 

the role of cross-frames in stress distribution at steel I-girder bridges. Two cross-frame 

designs (K-frame vs. X-frame) and two cross-frame layouts (inline vs. staggered) at five 

skews (0°, 25°, 46°, 55° and 63°) were parameters that were varied in the parametric 

study. Additional FE models without cross-frames (No-frame) were added at each bridge 

skew. Discrete and holistic evaluation of FEA data were conducted.  

Discrete evaluation of FEA data showed that steel I-girder bridges have 

significant system capacity not accounted for by current bridge designs. Average system 

capacity for the steel I-girder bridges analyzed in this work is 16.0 HS-20 trucks. That 

means that current bridge live load capacity is underestimated by factor of 16 for the 

subject bridges, ignoring lane load effects. Interestingly, results showed that No-frame 
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modes (models with cross-frame removed) had larger system level capacity than other 

cross-frame models at 0°, 25° and 63° skews. Furthermore, “discrete” evaluation metrics 

showed that bridge models without cross-frames have the largest average system capacity 

(16.6 HS-20 trucks) of all FEA models. In particular, the “No-frame“ model at 63° skew 

had the largest overall capacity (19.4 HS-20 trucks). 

Four “holistic” metrics (percent of component yielded, Total Lateral Bending 

Energy Expenditure (TLBE), Performance Index (PI) and Chi-squared Distance (CsD)) 

were introduced for FEA data evaluation in order to comprehensively assess stress 

distributions throughout the bridge. TLBE showed that skewed bridges are exposed to 

significantly larger lateral bending actions than tangent (0° skew) bridges regardless of 

the load level. The results also showed that bridges with staggered cross-frame layouts 

have significantly larger TLBE than bridges with inline layouts regardless of the load 

level. And bridges with cross-frames in general have higher TLBE than bridges without 

cross-frames.  

Performance of cross-frame designs was measured by PI (a scaled ratio of the 

applied load to the percent of girder yielding), and the results showed that on average 

bridges without cross-frames had higher PI at first yield load level, but lower PI at system 

yield load level when compared to bridges with cross-frames. However, even at system 

yield load level, in 70% of the cases, No-frame models outperformed or performed equal 

to cross-frames models as quantified by PI. 

Additionally, another holistic metric (Chi-square Distance) showed examples 

where the difference in stress distribution between models with cross-frames and models 

without cross-frames at all bridge skews and all load levels is negligible. For example, 

the Chi-squared Distances showed that differences in stress distributions between models 

with the same cross-frame designs but different layouts can be larger than the difference 

in stress distributions between models with cross-frames and models without cross-

frames. In other words, CsD showed that the difference in stress distributions between K-
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frame and X-frame designs at some skews is larger than the difference in stress 

distributions between K-frame and No-frame models or X-frame and No-frame models. 

Furthermore, at design load level for both skewed and tangent bridges, in only 49% of the 

cases on average, cross-frames presence did affect girder stress distribution. Furthermore, 

deck results show that overall average RO is 40% at the design load. Remember that low 

RO indicates small contribution of cross-frames in stress distribution and vice versa. This 

means that on average, in 60% of the cases, the presence of cross-frames did not affect 

stress distribution in decks. This finding cast doubts on prevailing assumptions in current 

bridge design codes, which state that cross-frames play an important role in stress 

distribution of traffic loads for in-service bridges.  

 Multiway Analysis of FEA Data 6.1.3

Analyzing complex data can be very challenging, especially if one of the goals of 

the analysis is discovering the trends in a multidimensional dataset. One of the methods 

available for achieving this goal is a Tucker decomposition method. The goal of using 

this method was to explore the effect that cross-frame removal in steel I-girder highway 

bridges has on stress distributions at different load levels due to different cross-frame 

designs and bridge skews. Four main findings resulted from this analysis. The first one 

was that tensor decomposition could be a useful data exploration tool in bridge 

engineering. It was also found that intermediate values of bridge skew behave differently 

from tangent or highly skewed bridges, which are more similar to one another, in terms 

of differences in stress distribution with and without cross-frames. The third finding was 

that cross-frame design (K-frame vs X-frame) contributes more to the difference in stress 

distribution between no-frame models and cross-frame models than cross-frame layout 

(staggered vs. inline), although K-frame and X-frame configurations did not have the 

same axial or bending stiffness in this work, which may be a reason for this result. And 

the fourth finding was that difference in stress distributions in deck are not associated 
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with the difference in stress distribution in girders. This indicates that different stress 

distribution mechanisms are associated with these two load carrying systems.    

 Conclusion 6.2

Although discrete analysis is deemed sufficient when analyzing certain bridge 

behaviors, it was shown that this data approach is not sufficient to quantify the role that 

cross-frames play in stress distribution in steel I-girder bridges, especially at post-elastic 

load levels. The results also showed that using holistic evaluations, such as Total Lateral 

Bending Energy Expenditure, Performance Index and Chi-squared Distance, the author 

was able to effectively quantify how the presence of absence of cross-frames affect stress 

distributions throughout the bridge. The results indicate that removing cross-frames from 

bridges did not substantially affect stress distributions throughout the bridge. This finding 

is an important contradiction to current bridge engineering practice which assumes cross-

frames play a significant role in stress distribution in steel I-girders in general and at 

skewed I-girders in particular. Furthermore, using a new multiway data analysis method, 

the author was able to extract information form the data that was not intuitive or clearly 

visible if traditional data analysis tools were used. For example, the results obtained by 

Tucker Decomposition indicate that intermediate values of bridge skew behave 

differently from tangent or highly skewed bridges, which are more similar to one another, 

and that cross-frame design (K-frame vs X-frame) rather than cross-frame layout 

(staggered vs. inline) contributes to the difference in stress distribution between bridges 

with cross-frames and bridges without cross-frames. 

 Recommendations 6.3

There are over 80,000 simply supported steel I-girder bridges in the USA and 

21% of these bridges are skewed (NBI, 2015). Typical configurations of these bridges 

have cross-frames or diaphragms as lateral bracing members. Although one of the 

intended roles of cross-frames is to facilitate distribution of traffic loads among girders, 
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many undesirable results are also associated with cross-frames. For example, fatigue 

cracks due to out-of-plane stresses (see Section 2.4.3), fit-up erection stresses (see 

Section 2.4.4), unwanted load paths and “nuisance” stresses (see Section 2.4.2), as well 

as the increased labor and material costs associated with the installation of cross-frames. 

Sometimes these problems are amplified by the presence of the skew. It is obviously 

desirable to prevent these undesirable consequences. On the other hand, the results from 

this study indicate that cross-frames play a very limited role in stress distribution in steel 

I-girder bridges and no role in bridge system capacity. While cross-frames intended role 

during bridge construction is invaluable, their role during service was insignificant for the 

simple span bridges evaluated in this work.  

The question resulting from these observations is: if cross-frames do not perform 

the role for which they have been designed in service, should current implementation of 

cross-frames be continued? Furthermore, the finding of this study questions the currently 

implemented design practice of placing cross-frames in staggered layouts in skewed 

bridges. The origin of staggered layouts is based on the notion that the cross-frames 

closest to the supports of highly skewed bridges could induce large lateral bending 

stresses in the girders that they brace. Therefore, design recommendations were 

implemented in order to move these cross-frames farther from the end of the girder, 

towards mid-span. To conform to this recommendation and at the same time keep cross-

frame spacing uniform, bridge designers were forced to stagger the cross-frames, 

significantly complicating bridge erection procedures. However, the results from this 

study showed that having large unbraced girder lengths (as long as sufficient bracing to 

prevent buckling of the compression flange is provided, e.g., via a composite concrete 

deck) will not affect overall performance of the bridge in terms of stress distribution or 

system capacity, and therefore there is no need to for complex staggered layouts.   

Furthermore, current AASHTO (2015) and many Departments of Transportations 

specifications do not allow installing parallel to the skew cross-frames for skews larger 
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than 20°. The main reason why AASHTO (2015) does not allow parallel to the skew 

placement is because of “concerns about increased cross-frame flexibility and reduced 

effectiveness in distributing live loads” (Hassel, et al. 2013). Considering that average 

cross-frame stiffness is order of magnitudes larger that required for the lateral bracing 

purposes (Mertz, 2001), that means that only reduced effectiveness in distributing live 

loads should be a concern for parallel to the skew placement. Since the results from this 

study indicate that cross-frames play very limited role in stress distribution (especially at 

highly skewed bridges), the need for these limitations when designing skewed bridges is 

rightly questioned. 

Finally, this study suggests implementing a “3R” approach in the design of cross-

frames for simply supported steel I-girder bridges: 

1) Remove intermediate cross-frames in the bridge structures where lateral-

torsional buckling limits allow such action. 

2) Resize all cross-frames so they only satisfy minimum slenderness 

requirements for bracing members. 

3) Relax all remaining connections between intermediate cross-frames and 

girders.   

 

Implementing these steps could lead to:  

a) minimization of potential fatigue problems caused by out-of-plane 

distortion of the girders through reducing the number and stiffness of cross-frames;  

b) reduction of construction costs in terms of eliminating labor intensive 

installation of cross-frames and their connections; and 

c) avoidance of fit up stresses during erection, for which the structure may 

not be adequately designed. 
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 Future Research 6.4

 Future research should instigate and investigate changes in how cross frames are 

analyzed, designed and, most importantly, deployed, especially for skewed bridges. The 

proposed overall goal of such research is to determine if the current practices regarding 

analysis and proportioning of cross-frames in steel I-girder bridge systems can be revised 

so that the quantity of cross-frames is (a) reduced or (b) eliminated entirely for certain 

bridge configurations. This requires analyzing the short term and long term effects of 

relaxing cross-frame requirements on overall behavior of the bridge. This could be 

accompanied by cost-benefit analyses of short term and long term effects of removing, 

reducing, and/or relaxing the cross-frames in bridges. Expanding the scope of the 

research from simply supported to continuously supported bridges should also be one of 

the objectives of future studies.  

Future research could also explore further advancement of the holistic assessment 

of stress distribution data piloted in this work. This could involve improving the current 

or designing new numerical instruments for assessment of stress distribution data. 
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 APPENDIX A 

Table A.1. Girder Chi-square Distances at design load level 

 

 

Design  
K-

INLINE 
K-

STAGG 
X-

INLINE 
X-

STAGG 
NO-

FRAME 

0° 

K-INLINE 0 122 2570 2366 286 

K-STAGG   0 2403 2055 425 

X-INLINE     0 142 2640 

X-STAGG       0 2547 

NO-FRAME         0 

25° 

K-INLINE 0 390 3499 2837 797 

K-STAGG   0 3516 2556 825 

X-INLINE     0 553 4968 

X-STAGG       0 3734 

NO-FRAME         0 

46° 

K-INLINE 0 543 3402 3752 3610 

K-STAGG   0 3008 2666 3129 

X-INLINE     0 474 177 

X-STAGG       0 508 

NO-FRAME         0 

55° 

K-INLINE 0 877 3679 3832 420 

K-STAGG   0 3082 2463 632 

X-INLINE     0 544 3191 

X-STAGG       0 3363 

NO-FRAME         0 

63° 

K-INLINE 0 445 2385 2140 287 

K-STAGG   0 2590 1530 662 

X-INLINE     0 948 3004 

X-STAGG       0 2616 

NO-FRAME         0 
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Table A.2 Deck Chi-square Distances at design load level 

 

 

Design  
K-

INLINE 
K-

STAGG 
X-

INLINE 
X-

STAGG NO-FRAME 

0° 

K-INLINE 0 3 326 325 59 

K-STAGG   0 284 284 37 

X-INLINE     0 1 153 

X-STAGG       0 153 

NO-FRAME         0 

25° 

K-INLINE 0 4 293 302 42 

K-STAGG   0 246 257 21 

X-INLINE     0 4 158 

X-STAGG       0 168 

NO-FRAME         0 

46° 

K-INLINE 0 1 190 196 242 

K-STAGG   0 170 176 222 

X-INLINE     0 1 20 

X-STAGG       0 14 

NO-FRAME         0 

55° 

K-INLINE 0 1 145 154 6 

K-STAGG   0 140 152 7 

X-INLINE     0 2 115 

X-STAGG       0 119 

NO-FRAME         0 

63° 

K-INLINE 0 0.1 140 90 8 

K-STAGG   0 144 94 7 

X-INLINE     0 18 112 

X-STAGG       0 71 

NO-FRAME         0 
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APPENDIX B  

 

Table B.1 Girder Chi-square Distances at first yield load level 

 

 

Design  K-INLINE K-STAGG X-INLINE X-STAGG 
NO-

FRAME 

0° 

K-INLINE 0 321 1950 1532 1012 

K-STAGG   0 2195 1217 1289 

X-INLINE     0 1239 1383 

X-STAGG       0 1222 

NO-FRAME         0 

25° 

K-INLINE 0 668 3448 4221 1568 

K-STAGG   0 3605 4953 2428 

X-INLINE     0 1491 3930 

X-STAGG       0 3614 

NO-FRAME         0 

46° 

K-INLINE 0 2015 3006 3949 5235 

K-STAGG   0 4572 2694 7285 

X-INLINE     0 3082 1633 

X-STAGG       0 5293 

NO-FRAME         0 

55° 

K-INLINE 0 1869 4193 3680 1059 

K-STAGG   0 6685 2788 3332 

X-INLINE     0 3030 3936 

X-STAGG       0 3195 

NO-FRAME         0 

 

K-INLINE 0 504 2536 1679 756 

K-STAGG   0 3408 1510 1576 

X-INLINE     0 2055 3069 

X-STAGG       0 2077 

NO-FRAME         0 
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Table B.2 Deck Chi-square Distances at first yield load level 

 

 

 

Design  
K-

INLINE 
K-

STAGG 
X-

INLINE 
X-

STAGG 
NO-

FRAME 

0° 

K-INLINE 0 51 255 175 128 

K-STAGG   0 254 195 151 

X-INLINE     0 54 89 

X-STAGG       0 42 

NO-FRAME         0 

25° 

K-INLINE 0 39 312 457 102 

K-STAGG   0 287 451 86 

X-INLINE     0 105 133 

X-STAGG       0 258 

NO-FRAME         0 

46° 

K-INLINE 0 57 320 161 434 

K-STAGG   0 347 198 480 

X-INLINE     0 104 123 

X-STAGG       0 150 

NO-FRAME         0 

55° 

K-INLINE 0 53 309 185 67 

K-STAGG   0 349 238 115 

X-INLINE     0 76 172 

X-STAGG       0 77 

NO-FRAME         0 

63° 

K-INLINE 0 47.7 183 70 36 

K-STAGG   0 198 101 73 

X-INLINE     0 101 121 

X-STAGG       0 27 

NO-FRAME         0 
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APPENDIX C 

 

Table C.1 Girder Chi-square Distances at system yield load level 

 

 

Design  K-INLINE 
K-

STAGG X-INLINE 
X-

STAGG 
NO-

FRAME 

0° 

K-INLINE 0 225 1317 1439 555 

K-STAGG   0 1577 1363 330 

X-INLINE     0 236 1768 

X-STAGG       0 1800 

NO-FRAME         0 

25° 

K-INLINE 0 282 4874 4064 442 

K-STAGG   0 4537 3598 209 

X-INLINE     0 411 4876 

X-STAGG       0 4202 

NO-FRAME         0 

46° 

K-INLINE 0 335 5076 4919 5251 

K-STAGG   0 4538 4172 4526 

X-INLINE     0 230 99 

X-STAGG       0 151 

NO-FRAME         0 

55° 

K-INLINE 0 291 4423 4538 226 

K-STAGG   0 3583 3533 156 

X-INLINE     0 155 4128 

X-STAGG       0 4229 

NO-FRAME         0 

63° 

K-INLINE 0 66 2418 1417 191 

K-STAGG   0 2332 1245 203 

X-INLINE     0 435 2673 

X-STAGG       0 1605 

NO-FRAME         0 
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Table C.2 Deck Chi-square Distances at system yield load level 

 

  

K-
INLINE 

K-
STAGG 

X-
INLINE 

X-
STAGG 

NO-
FRAME 

0° 

K-INLINE 0 18 200 244 87 

K-STAGG   0 155 190 57 

X-INLINE     0 40 164 

X-STAGG       0 153 

NO-FRAME         0 

25° 

K-INLINE 0 21 287 329 86 

K-STAGG   0 222 283 64 

X-INLINE     0 83 205 

X-STAGG       0 218 

NO-FRAME         0 

46° 

K-INLINE 0 22 251 298 321 

K-STAGG   0 195 247 278 

X-INLINE     0 39 115 

X-STAGG       0 84 

NO-FRAME         0 

55° 

K-INLINE 0 55 217 253 59 

K-STAGG   0 165 212 70 

X-INLINE     0 43 162 

X-STAGG       0 167 

NO-FRAME         0 

63° 

K-INLINE 0 31.9 157 138 48 

K-STAGG   0 131 115 51 

X-INLINE     0 31 156 

X-STAGG       0 139 

NO-FRAME         0 

 

 

 

 

 

 

 

 



 

 

 

APPENDIX D 

 Table D.1. Data structure of 4D tensor (5x4x3x4)  

  

  
Design First Yield System Yield 

 
Skew K-INLINE K-STAGG X-INLINE X-STAGG K-INLINE K-STAGG X-INLINE X-STAGG K-INLINE K-STAGG X-INLINE X-STAGG 

BF 

0° 743 411 1083 1026 1369 1608 1688 1803 270 238 300 268 

25° 370 378 343 718 766 1736 1386 1243 88 116 104 106 

46° 516 241 484 226 2122 1963 1426 2583 32 61 54 99 

55° 256 372 201 583 980 2067 1460 2570 64 87 111 132 

63° 112 143 260 534 531 768 1643 2347 73 323 84 146 

WEB 

0° 81 55 374 359 299 698 607 1383 246 563 668 881 

25° 68 36 408 385 190 1906 1599 771 304 622 1167 1358 

46° 504 460 90 47 3108 2711 423 2468 596 837 146 405 

55° 111 58 465 392 202 1587 676 2101 122 319 1089 1205 

63° 19 20 531 257 201 237 695 1777 236 736 862 990 

TF 

0° 11 21 1134 1158 1051 1377 958 635 157 297 2553 2504 

25° 66 83 1929 1961 179 1936 3169 2602 372 514 4775 3926 

46° 2054 1935 0.2 9 6342 6087 947 3096 3921 3628 275 491 

55° 12 18 2184 2002 317 2857 2912 501 110 388 3533 3350 

63° 103 87 1942 1278 964 942 2263 908 333 545 2813 2175 

D 

0° 59 37 153 153 128 151 88 37 87 57 163 152 

25° 31 20 279 280 64 156 149 149 66 65 200 214 

46° 400 357 15 9 556 535 151 240 323 309 104 100 

55° 25 12 155 154 76 181 157 50 66 66 196 203 

63° 4 3 94 41 116 27 200 53 382 357 364 366 

2
3

8
 



 

 

 

 


