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ABSTRACT

Numerous efforts have been devoted to securing computer systems in the past

decade, which has rendered many previously popular attacks ineffective. In response

to the arms race, cybercriminals are constantly seeking for new attack vectors. In this

dissertation, we investigate several newly emerging attack vectors in cybercrime.

Our research first focuses on embedded malware inside Adobe PDF (Portable

Document Format) documents. Due to its widespread use and Javascript support, PDF

has become the primary vehicle for delivering embedded exploits since 2008. Unfortu-

nately, existing defenses are limited in effectiveness, prone to evasion, or computation-

ally expensive to be employed as on-line protection systems. To this end, we propose a

context-aware approach for detection and confinement of malicious Javascript in PDF

documents. Based on more than twenty thousand benign and malicious samples, our

experimental evaluation shows that our defense system can achieve very high detection

accuracy with minor overhead.

We further conduct the first comprehensive study on domain shadowing, a new

strategy adopted by miscreants to build their attack infrastructures. We design a novel

domain shadowing detector called Woodpecker, which characterizes shadowed domains

based on a set of 17 novel features. By applying Woodpecker to the daily feeds of

VirusTotal collected in two months, we can detect thousands of new domain shadowing

campaigns. Our study highlights domain shadowing as an increasingly rampant threat

since 2014.

Moreover, we discover a new security threat caused by dangling records in DNS.

In a dangling DNS record (Dare), the resources pointed to by the DNS record are

invalid, but the record itself has not yet been purged from DNS. Our work reveals that

Dare can be easily manipulated by adversaries for domain hijacking. In particular,
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we identify three attack vectors that an adversary can harness to exploit Dares. In

a large-scale measurement study, we uncover 467 exploitable Dares in 277 Alexa top

10,000 domains and 52 edu zones, showing that Dare is a real, prevalent threat.

Finally, we present a novel defense called pSweeper to robustly protect against

use-after-free (UaF) exploits with low overhead and pinpoint the root-causes of UaF

vulnerabilities with one safe crash. The success of pSweeper lies in its two unique and

innovative techniques: concurrent pointer sweeping (CPS) and object origin tracking

(OOT). Unlike previous works that rely on pointer propagation tracking to find dan-

gling pointers, CPS iteratively sweeps all live pointers in a concurrent thread to find

dangling ones. OOT can help to pinpoint the root-causes by informing developers of

how a dangling pointer is caused. We implement a prototype of pSweeper and validate

its efficacy in real scenarios.
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Chapter 1

INTRODUCTION

Computers have been indispensable tools in a modern society for more than

half of century. Nowadays most computer systems are connected to the Internet,

from mobile devices to high-end servers. Thus, protecting computer systems against

malicious attacks is no longer an optional extra. For instance, it is reported that

cybercrimes cost more than $400 billion to the global economy [159]. Over the last

decade, numerous efforts have been devoted to securing computer systems against

malware [181, 87, 89], phishing [219], spam [173], and software vulnerabilities [59,

151, 69, 90, 91, 177, 216]. These systems have greatly limited the effectiveness of

traditional attack vectors like maliciously registered domains [114, 65, 74]. In response

to this arms race, cybercriminals are constantly searching for new attack vectors. For

example, one of the recently emerging threat, domain shadowing, can render existing

domain reputation and blacklisting systems ineffective. To better protect end users,

we need to design novel defenses against these newly emerging threats.

1.1 Problem Statements

In this dissertation, we aim to study several newly emerging attack vectors in

cybercrimes. Specifically, we work on the following four problems.

(1) Malicious PDF document detection. Malware authors are constantly

seeking new ways to compromise computer systems. Recently, they have embarked to

take advantage of popular forms of data exchange, focusing their attention on malcode-

bearing PDF documents [35]. This is clearly supported by the fact that the number

of discovered PDF vulnerabilities has quadrupled in the last five years [55] with many

attack cases having been reported [35, 187]. Despite the increasing number of successful
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PDF infections and their impact on end users, thus far, only a few methods for detection

of malicious PDF have been proposed as response to this emerging threat.

(2) Spawning malicious subdomains under legitimate domains. Do-

main names have been exploited by miscreants for illicit online activities for decades.

In the past, miscreants mostly registered new domains for their attacks. However, the

domains registered for malicious purposes can be easily deterred by existing reputa-

tion and proactive blacklisting systems. As a response to the arms race, miscreants

have recently adopted a new strategy, called domain shadowing, to build their attack

infrastructures. Specifically, instead of registering new domains, miscreants are begin-

ning to compromise legitimate domains and spawn malicious subdomains under them.

This has rendered almost all existing countermeasures ineffective and fragile, because

subdomains inherit the trust of their apex domains (i.e., foo.com) and attackers can

virtually spawn an infinite number of shadowed domains.

(3) Security threats caused by dangling DNS records. As one of the

most critical components of the Internet, the Domain Name System (DNS) provides

not only vital naming services but also fundamental trust anchors for accessing Internet

services. Therefore, it has always been an attractive target to attackers [71, 125, 128].

In order to ensure the authenticity and integrity of DNS systems, tremendous efforts

have been devoted to protecting both client and server mechanisms [84, 91, 177, 216].

In particular, a suite of security mechanisms like DNSSEC [69] have been deployed to

secure the communication channels between DNS servers and clients. However, little

attention has been paid to authenticating the integrity of the links between DNS servers

and those resources to which DNS records point.

(4) Use-after-free vulnerabilities in software. Applications in C/C++

are notoriously prone to memory corruptions. With significant research efforts devoted

to this area of study, the security threats posed by previously popular vulnerabilities,

such as stack and heap overflows, are not as serious as before. Instead, we have seen the

meteoric rise of attacks exploiting use-after-free (UaF) vulnerabilities in recent years,

which root in pointers pointing to freed memory (i.e., dangling pointers). Although
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various approaches have been proposed to harden software against UaF, none of them

can achieve robustness and efficiency at the same time.

1.2 Contributions

The overall contributions of this dissertation lie in four different aspects to

address the problems mentioned above, which are summarized as follows.

(1) Detecting and confining malicious Javascript in PDF. we introduce a

context-aware approach to detect and confine malicious Javascript in PDF through

static document instrumentation and runtime behavior monitoring. Our main contri-

butions are:

• We propose static document instrumentation to achieve context-aware monitor-

ing.

• We define five novel static features for characterizing the obfuscation techniques

frequently used in malicious PDF.

• We conduct a series of experiments using a corpus of 18,623 benign and 7,370 ma-

licious PDF documents. No false positive and few (25 out of 942) false negatives

are generated during the evaluation.

(2) Automated detection of shadowed domains. We conduct the first com-

prehensive study of domain shadowing in the wild, and we present a novel defense

system, called Woodpecker, to automatically detect shadowed domains. Our main

contributions are:

• We identify and compose 17 features characterizing the usage, hosting, activity,

and name patterns of subdomains.

• Five classifiers (Support Vector Machine, RandomForest, Logistic Regression,

Naive Bayes, and Neural Network) are trained using these features. We achieve

a 98.5% detection rate with an approximately 0.1% false positive rate under a

10-fold cross-validation when using RandomForest.

• We reveal that shadowed domains are involved in both exploit kits and phishing

attacks.
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• We observe that several domain shadowing cases exploit the wildcard DNS records,

instead of algorithmically generating subdomain names.

(3) Unveiling and investigating a new threat in DNS. We unveil and investigate

a largely overlooked threat in DNS: a dangling DNS record (Dare), which could be easily

exploited for domain hijacking due to the lack of authenticity checking of the resolved

resources. An adversary can exploit Dares to send arbitrary contents to users visiting

the affected domains. Specifically, we make three contributions.

• We scrutinize the DNS specifications, during which four types of security-sensitive

Dares are identified, including Dare-A, Dare-CN, Dare-MX, and Dare-NS. We

present three attack vectors that an adversary can harness to hijack IP addresses

and domain names in Dares.

• We then conduct a large-scale measurement to assess the magnitude of Dares in

the wild. In total, 791 confirmed and 5,982 potential Dares are successfully found

in our measurement study.

• We finally propose three defense mechanisms that DNS servers and third-party

services can adopt to mitigate unsafe Dares.

(4) Practical and robust defense against UaF exploits. We design a novel de-

fense system, called pSweeper, which effectively protects against UaF exploits, imposes

low overhead for deployment in production environments, and pinpoints the root-causes

of UaF vulnerabilities for easier and faster fixing. pSweeper follows the protection prin-

ciple that potential UaF exploits can be disrupted by proactively neutralizing dangling

pointers. Specifically, we make two contributions.

• We propose two unique and innovative techniques, concurrent pointer sweeping

(CPS) and object origin tracking (OOT) to accomplish our design goals.

• We comprehensively evaluate the prototype of pSweeper with real-world vulner-

abilities and various performance benchmarks.
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1.3 Dissertation Organization

The rest of this dissertation is structured as follows. In Chapter 2, we discuss

related work. In Chapter 3, we propose a context-aware malicious PDF detector. In

Chapter 4, we propose Woodpecker to detect shadowed domains. Chapter 5 presents

our study of dangling DNS records. In Chapter 6, we describe a novel defense against

use-after-free vulnerabilities in software. Finally, we conclude the dissertation in Chap-

ter 7.
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Chapter 2

RELATED WORK

This chapter reviews related work in malicious document detection, DNS secu-

rity, and use-after-free defense.

2.1 Malicious Document Detection

Existing research on malicious PDF detection has taken two directions, static

methods which build statistical models from document content and classify unknown

samples using machine learning, and dynamic methods which execute suspicious Javascript

in some constrained environments.

Early static methods are based on n-gram analysis to detect universal malicious

files [144, 190]. In 2011, Laskov et al. [137] presented PJScan, the first static method

dedicated to the detection of malicious PDF. Using a patched SpiderMonkey, PJScan

extracts lexical tokens of Javascript and trains an OCSVM (One Class Support Vector

Machine) classifier to identify malicious PDF. Instead of analyzing Javascript, Malware

Slayer [155] inspects the content of malicious PDF and counts the frequency of PDF

keywords. Then, a set of keywords with high frequency are selected and fed into various

machine learning algorithms for detection. PDFRate [194] extracts more structural

features from PDF and thus builds a more accurate classifier. It can also detect targeted

attacks. Srndic et al. [199] proposed a structural-path based method. They modeled

a document as a set of structural paths and detected malicious PDF using Decision

Tree and SVM (Support Vector Machine). Wepawet [41] uses JSAND [87], which

leverages statistical and lexical features of Javascript, to detect malicious PDF. In

general, static methods have been proven to be simple, fast, and effective. However,

they are susceptible to mimicry attacks [154]. Our method differs from these fully static
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methods in that, besides static features, we also use runtime behaviors of malicious

Javascript for detection.

Compared with static detection, dynamic approaches are more robust against

mimicry attacks. Tzermias et al. [210] proposed MDScan, which extracts Javascript

from documents and executes it in instrumented SpiderMonkey and Nemu [180]. How-

ever, such a method suffers several limitations. First, it requires reliable Javascript

extraction, which can be subverted by syntax obfuscations. Attackers can hide shell-

code at some weird places in a document, e.g., in the title, and reference it in forms

like “this.info.title”. In this case, the extracted Javascript will fail to execute in

emulated environments. Moreover, it is required to emulate PDF-specific Javascript

objects, both documented [47] and undocumented like printSeps(). Finally, the pro-

posed defense cannot be readily deployed on a user’s system.

Meanwhile, malicious Javascript detection on the Web is a well-studied topic

and many methods have been proposed [87, 89, 222, 227]. However, these methods are

specially designed for detecting malicious Javascript on the Web and they are mainly

based on the analysis of Javascript code itself. Differently, our approach monitors

suspicious system-level behaviors in the context of Javascript execution.

Similar to our approach, CWSandbox [220] and PEB heuristics [181] also de-

tect suspicious runtime behaviors of document readers. However, CWSandbox [220]

is used primarily for detecting traditional malware, and it can be easily evaded by

event-triggering or environment-sensitive malicious Javascript. Polychronakis et al.

[181] proposed to execute shellcode in a CPU emulator and detect suspicious memory

accesses using four heuristics. Egele et al. [105] presented a similar method which

identifies potential shellcode at runtime and tests it in libemu [25]. Compared with

these methods, we use different and more robust runtime features, which characterize

the essential operations required in the infection process. Moreover, we neither identify

shellcode, which can be evaded by using English Shellcode [158], nor emulate CPU,

which is heavyweight. Snow et al. [195] proposed to monitor system call sequences of

document readers. However, their method is context-free.
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2.2 DNS Security

In past decades, significant research efforts have been devoted to studying the

security of DNS. In the following, we provide an overview of previous works.

Cache Poisoning Attacks. Adversaries could exploit the flaws in a DNS server to

inject incorrect entries, which will direct users to a different server controlled by adver-

saries. Since Bellovin [71] revealed this vulnerability in the 1990s, several mitigations

[69, 90, 91, 177, 216] have been proposed. Adversaries can also tamper with DNS re-

solvers using spoofed DNS responses (i.e., off-path DNS poisoning [116, 115, 117, 128]).

Instead of injecting entries to benign DNS servers or resolvers, more malicious resolu-

tion authorities have recently been deployed by adversaries [92, 135]. While having the

same negative impact, our work is different from cache poisoning because we neither

tamper with DNS resolutions nor set up malicious DNS services.

DNS Inconsistency and Misconfiguration. DNS is organized in a hierarchical tree

structure, and it does not require strong consistency among nodes. Therefore, data

changes in upper-level servers cannot override the cached copies in recursive resolvers.

The outdated data will continue to serve users before reaching its TTL limit. The weak

cache consistency could yield vulnerabilities like ghost domain names [125], i.e., the

domains that have been deleted from TLD servers but still resolvable. Some approaches

have been proposed to address this problem. For example, DNScup [84] proactively

pushes changes in authoritative servers to recursive resolvers. However, in our study

we reveal that inconsistency between DNS records and the connected resources is also

prevalent and could pose serious security threats.

Pappas et al. [175] diagnosed three types of misconfigurations and found that

these misconfigurations are widespread and degrade the reliability and performance of

DNS. By contrast, our work uncovers a new type of DNS misconfiguration and studies

its potential security threats. Although the issue of Dares has received some attention

in two non-academic blogs [14, 20], our work is the first large-scale systematic study on

this problem, in terms of DNS record types and the magnitude of Dares in high-value

domains. We also identify two more vulnerable third-party services, one of which (i.e.,
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Azure Cloud Service) cannot even be protected using domain ownership verification.

Security about domain ecosystem. The security issues in the domain ecosystem,

including registrars and registries, have been studied for a long time. In particular,

researchers investigated how domains are recruited and used by attackers for a spectrum

of cybercrime businesses, like spam [63], exploit kit [109], blackhat SEO [102] and

dedicated hosts [146]. Previous studies also show that adversaries actively register

domain names similar to reputable ones (called typosquatting) in hopes of harvesting

traffic from careless users [58, 202, 131]. When a domain is not serving its owner’s

website, the owner could leave it to a parking service that places ads there and share

the revenue when the ads are viewed or clicked. However, the business practices of

some parking services are problematic, as shown in previous studies [61, 215]. A recent

study measures the security on the basis of individual TLD and demonstrates that

the scale of free services on a TLD could impact its reputation [134]. Our study is

complementary to these existing works in understanding the security issues in domain

ecosystem.

2.3 Malicious Domain Detection

Detecting malicious domains. A wealth of research has been conducted on de-

tecting malicious domains. Similar to our work, there are the approaches examining

DNS data [65, 74, 66, 223, 67]. Shadowed domains exhibit different properties from

the targets of previous studies. A new approach is needed and we show Woodpecker is

capable of achieving the detection goal with a combination of deviation and correlation

analysis. A recent work by Hao et al. [114] aimed to detect malicious domains at their

registration time. Given that shadowed domains and their parent apex domains share

the same registration information, such an approach is ineffective to detect shadowed

domains. Plohmann et al. [179] and Lever et al. [142] conducted large-scale studies

on malicious domains by running the collected samples in a sandbox environment.

Botfinder [203] and Jackstraws [122] aim to detect C&C domains in botnets based on
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the similar communication patterns of bot clients. By contrast, our approach does not

assume the possession of any file samples (malware and web page).

Many works have focused on understanding and identifying malicious domain

names. Jiang et al. [125] found that a malicious domain name could remain resolvable

even long after it has been deleted from the upper level DNS servers or after its TTL

has expired. Hao et al. [114] studied the domain registration behavior of spammers and

found that spammers commonly re-register expired domains. Furthermore, Lever et al.

[141] characterized the malicious re-registration of expired domains and demonstrated

that the residual trust abuse is the root cause of many security issues. The Dares we

studied in this dissertation can also be categorized as the residual trust abuse. The most

salient difference is that Dares could be caused by not only the expired domains, but

also a large number of subdomains, including those of the most well-known websites.

Detecting malicious web content and URLs. Detecting a malicious web page

is another active research line in finding traces of cyber-criminal activities. Most of

the prior works leverage web content and execution traces of a runtime visit for detec-

tion. Features regarding web content are deemed effective in detecting web spam [173],

phishing sites [219], URL spam [204] and general malicious pages [81]. Malicious sites

usually hide themselves behind web redirections but their redirection pattern is dif-

ferent from legitimate cases, which reveals themselves out [140, 218, 201]. Invernizzi

et al. [121] showed that a query result returned from search engines can be used to

guide the process of finding malicious sites. To trap more visitors, vulnerable sites are

frequently compromised and turned into redirectors through code injection. Such a

strategy introduces unusual changes to the legitimate sites, and can be detected by dif-

fering web content [77], HTTP traffic [62], and JS libraries [145]. The URLs associated

with malicious web content might exhibit distinctive features, and previous works show

machine-learning based approaches are effective to address this problem [152, 106, 153].

Obtaining web content or URLs usually requires active web crawling, which is time-

consuming and ineffective when cloaking is performed by malicious servers. By con-

trast, our solution is lightweight and robust against cloaking.
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2.4 Memory Safety in Software

Dangling pointer detection. Tools like Valgrind [168] and AddressSanitizer

[188] track the (de)allocation status of each memory location. As long as a freed

memory block is not reallocated, these tools can detect all dangling pointers. However,

they can miss those pointing to a reallocated memory, which is common in UaF exploits.

Another set of approaches extend each pointer with a unique identifier and check the

validity on every pointer dereference [70, 166, 221, 224]. Unfortunately, software-only

explicit pointer checks can slow applications by an order of magnitude. Recently,

Nagarakatte et al. [163, 164] proposed a hardware-assisted approach that can provide

full memory safety at low overheads. Undangle [80] detects dangling pointers by using

dynamic taint analysis to track pointer propagations at runtime. It can serve as an

in-house testing tool but not a runtime defense system.

Safe memory allocators. Cling [59] is a safe memory allocator that avoids

memory reuse among objects of different types. It can thwart many, but not all, UaF

exploits. DieHard [72] and DieHarder [171] are based on the idea of “infinite” heaps.

Unfortunately, an infinite-heap is idealized but infeasible, and thus it can only provide

probabilistic memory safety. Exterminator [172] extends DieHard to automatically fix

dangling pointers by delaying object frees. Dhurjati et al. [97] used a new virtual page

for each memory allocation and relied on page protection to detect dangling pointer

accesses. By contrast, pSweeper proactively neutralizes all dangling pointers.

Garbage collection (GC). GC [16, 76] not only heads off exploits but pre-

vents program crashes due to UaF vulnerabilities. However, most GC algorithms can

consume more memory because they defer free until there is insufficient memory or

applications explicitly ask. By contrast, pSweeper can free memory after a round of

pointer sweeping. Moreover, stop-the-world GC can cause unpredictable interference to

application performance. Finally, although pSweeper can only probabilistically mask

program crashes, it guarantees to pinpoint the root-causes of UaF vulnerabilities when

programs crash.

Safe C languages. Fail-safe C [174] implements a completely memory-safe
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compiler that is fully compatible with ANSI C. It uses garbage collection to protect

against dangling pointers. There are also safe C dialects, such as Cyclone [110, 126]

and CCured [86, 167]. Although they attempt to keep compatible with C/C++ spec-

ifications, non-trivial efforts are still needed to retrofit legacy programs.

Parallelizing security checks. Concurrent security checks as in pSweeper

have also been adopted in several previous works. Speck [169] decouples security

checks from applications and executes them in parallel on multiple cores. Unlike Speck,

pSweeper does not use speculative execution. Cruiser [228] and Kruiser [206] use con-

current threads to detect buffer overflows in user applications and kernels, respectively.

ShadowReplica [124] accelerates dynamic data flow tracking by running analysis on

spare cores. However, pSweeper tackles a different problem and faces unique chal-

lenges.
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Chapter 3

DETECTING MALICIOUS JAVASCRIPT IN PDF THROUGH
DOCUMENT INSTRUMENTATION

3.1 Introduction

Malware authors are constantly seeking for new ways to compromise computer

systems. Recently, they have embarked to take advantage of popular forms of data

exchange, focusing their attention on malcode-bearing PDF documents [35]. The PDF

standard has several unique advantages when used as an attack vector: (1) it has

replaced Microsoft Word as the most dominant document format; (2) it has been widely

considered to be safe; (3) it is easy to craft a malicious PDF; and more importantly,

(4) it supports Javascript. All of these features have made PDF one of the most

attractive exploitation vehicles. This is clearly supported by the fact that the number

of discovered PDF vulnerabilities has quadrupled in the last five years [55] with many

attack cases having been reported [35] [187]. The most striking observation comes

from Microsoft malware protection center, showing that the exploitation of old PDF

vulnerabilities is on the rise [35].

Despite the increasing number of successful PDF infections and their impact on

end users, thus far, only a few methods for detection of malicious PDF have been pro-

posed as response to this emerging threat. Unfortunately, it appears that traditional

signature and behavior based detection methods, which are favored by the majority of

modern anti-virus software, cannot handle malicious PDF well. Recently, researchers

exploit the structural differences between benign and malicious documents to detect

malicious PDF [194] [199] [155] [137]. These methods have been proven to be simple,

fast, and accurate. However, when attackers are aware of these static features, they

can evade easily [154]. Another recent work extracts and tests malicious Javascript in
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Table 3.1: Existing Methods to Detect and Confine Malicious PDF.

Method Difficult to Evade End-Host Deployment Need Emulation Low Overhead
Signature No Yes No Yes

Structural [199] [194] [155] No Yes No Yes
Extract-and-Emulate [210] Neutral No Yes No

Lexical Analysis of Javascript [137] Neutral Yes No Yes
Adobe Sandboxing [51] Neutral Yes No Yes

CWSandbox [220] Neutral No Neutral No

Our Method Yes Yes No Yes

an emulated interpreter [210]. Although it is more robust against evasion, attackers

can still exploit syntax obfuscations to subvert Javascript extraction. Also it is very

costly to emulate all PDF-specific Javascript objects. In 2009, Adobe announced the

Protected Mode, a sandboxing mechanism that runs PDF reader in a confined en-

vironment. Although it raises the bar, Adobe Sandbox has its own drawbacks. An

obvious one is that there exist vulnerabilities in the sandbox itself. Actually hackers

have already discovered different ways to escape Adobe Sandbox [150] [217].

The detection of malicious PDF exhibits two distinct challenges. First, users

tend to open multiple PDFs simutaneously. However, the runtime behaviors of a PDF

reader can vary as different documents are opened, and both benign and malicious

PDFs are processed by one single thread in the PDF reader. These can inevitably

affect detection accuracy due to the interference among multiple open documents.

Second, although it is straightforward to locate traditional malware once detected, it

is non-trivial to pinpoint these malicious PDF documents since all open documents

could be malicious.

In this dissertation, we introduce a context-aware approach to detect and confine

malicious Javascript in PDF through static document instrumentation and runtime be-

havior monitoring. Our method is motivated by the fact that some essential operations

of Javascript in malicious PDF rarely occur in benign documents. Our context-aware

approach can efficaciously overcome the aforementioned two challenges. On one hand,

context-aware approach can make detection features, like suspicious memory consump-

tion, more effective in detection. On the other hand, the context information explicitly
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indicates which open documents are malicious.

There are different ways to achieve context-aware monitoring. One intuitive

choice is to extract Javascript from documents [210, 87]. Alternatively, Javascript in-

terpreters can be instrumented [89]. But these methods are neither robust nor easy to

implement in practice. Instead, we choose to perform static document instrumentation.

This method, to the best of our knowledge, has never been explored before for PDF

malware detection and confinement. For each PDF Javascript snippet, we include a

prologue and epilogue to inform our runtime detector for the entry to and exit from

Javascript context. The advantage of using static document instrumentation over the

other two alternatives lies in three aspects. First and most important, it is immune to

code and syntax obfuscations. Second, it does not need to emulate Javascript inter-

preters, resulting in much less development effort and minor computational overhead.

Last but not least, it provides good portability and can be easily deployed at end hosts.

When an instrumented document is loaded, our runtime detector monitors the

behaviors of a PDF reader process and identifies potential infection attempts from

Javascript. The infection attempt manifests itself through a sequence of suspicious

actions, such as exploiting to compromise systems, retrieving malware and executing

it. By monitoring these suspicious behaviors as evidence of infection, we compute a

weighted sum to detect malicious PDF.

Our system also defines five novel static features for detection. These features

characterize the obfuscation techniques frequently used in malicious PDF. The combi-

nation of static and runtime features will be more effective and robust than existing

methods, which are either fully static [199, 194, 155] or fully dynamic [210, 220]. A

more thorough comparison between our method and others is presented in Table 3.1.

For any new intrusion detection mechanism, we need to perform a security

analysis—a task that in many cases is even more important than its detection perfor-

mance. In principle, it is required that the defense system remains robust and secure

even when its internal operation is exposed to attackers. To this end, we conduct a

security analysis of our approach showing that our system is still effective in detection
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and robust against evasion attacks even in the presence of a sophisticated adversar-

ial environment. In particular, a list of potential advanced attacks are discussed and

mitigations for their impact are presented.

To validate the efficacy of our system, we conduct a series of experiments using

a corpus of 18623 benign and 7370 malicious PDF documents. The experimental

results show that our static and runtime features achieve very promising detection

performance. No false positive and few (25 out of 942) false negatives are generated

during the evaluation. It takes only 0.04 seconds on average to instrument a malicious

sample and about 5.5 seconds to process a very large (20 MB) document. The slowdown

caused by our runtime detector is 0.093 seconds for a single Javascript. Even when as

many as 20 separate scripts are instrumented, the slowdown does not exceed 2 seconds.

Overall, our system provides an effective defense against malicious PDF in practice.

3.2 System Design

3.2.1 Architecture

Our system consists of two major components, front-end and back-end, working

in two phases. In Phase-I, the front-end component statically parses the document,

analyzes the structure, and finally instruments the PDF objects containing Javascript.

Then, in Phase-II when an instrumented document is opened, the back-end component

detects suspicious behaviors of a PDF reader process in context of Javascript execution

and confines malicious attempts. Figure 3.1 shows the architecture of our system.

Static Analysis and Instrumentation: For suspicious PDF, the front-end first

parses the document structure and then decompresses the objects and streams. A set of

static features are extracted in this process. When a document has been decompressed,

the front-end will instrument it and add context monitoring code for Javascript. In some

cases, if the document is encrypted using an owner’s password, i.e., a mode of PDF

in which the document is readable but non-modifiable, we need to remove the owner’s

password. With the help of PDF password recovery tools like [15], this can be done

easily and very fast.
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Figure 3.1: System Architecture

Runtime Detection: The back-end component works in two steps, runtime mon-

itoring and runtime detection. When an instrumented PDF is loaded, the context

monitoring code inside will cooperate with our runtime monitor, which tries to collect

evidence of potential infection attempts. When Javascript executes to the end or a crit-

ical operation occurs, the runtime detector will compute a malscore. If the malscore

exceeds a predefined threshold, the document will be classified as malicious.

3.2.2 Static Features

Several recent works have proposed to detect malicious PDF by statically ana-

lyzing document content [194] [199] [155]. Static methods are simple, and they have

promising performance in detecting existing malicious documents. In this work, we

define five novel static features to aid runtime detection by leveraging the obfuscation

techniques used in malicious PDF. Although static features are vulnerable to evasion,
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their usefulness for detection lies in two aspects: (1) if malicious documents use obfus-

cations, our system can detect them with higher confidence; and (2) if not, then the

unobfuscated documents can be processed more easily and accurately by our front-end

component. In the following, we detail the static features used in our system.

Ratio of PDF Objects on Javascript Chain: In PDF, a labelled object is

called an indirect object, which can be referred to by other objects [46]. Sometimes,

there are several indirect objects between the root and the one containing real data.

These PDF objects form a reference chain. In the sample PDF as shown in Figure 3.2,

there are ten indirect objects. We extract every chain containing at least one Javascript

object on the path. We call it a Javascript chain. This feature computes the ratio of

the objects involved in Javascript chains to the total objects in a document. Normally,

malicious documents contain few data and many of them have only one blank page.

Thus, in malicious documents, the ratio should be relatively high.

PDF Header Obfuscation: The PDF specifications require only that the

header appears somewhere within the first 1,024 bytes of the file [46]. Benign docu-

ments rarely have incentives to obfuscate PDF header, but malicious documents are

more willing to do so. Actually a recent work has proposed to manipulate the file

type identifiers to evade anti-virus software [123]. Another trick attackers can use is to

specify an invalid version number in header. Our system checks if PDF header appears

at the very beginning of a document and if the header format is valid.

The following three features are checked for objects on Javascript chains only.

Hexadecimal Code in Keyword: PDF standard allows any character except

NULL to be represented by its 2-digit hexadecimal code, preceded by one or more

number signs (#). Many malicious documents use this trick to hide keywords. For

example, in object (4 0) in Figure 3.2, /JavaScript is encoded as /JavaScr##69pt.

Count of Empty Objects: Object (6 0) in Figure 3.2 shows a Javascript

chain from a malicious PDF. In this document, the Javascript chain ends with an
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empty object. Actually, the real malicious Javascript is embedded in another chain.

Our system counts the number of empty objects in a document.

Levels of Encoding: Encoding in PDF is used primarily for compression.

Normally benign documents use only one level of encoding since multi-encoding brings

little improvement. However, malicious documents tend to use multiple levels to evade

anti-virus software.

Our system records the maximal encoding levels used on Javascript chains.

Maximum, rather than average, is used for two reasons: on the one hand, maximum

is more effective; on the other hand, average is susceptible to mimicry attacks. For

example, attackers can deliberately insert many Javascript chains with one level of

encoding. In this case, the average drops close to one.

3.2.3 Document Instrumentation

Due to its wide-spread adoption, simplicity, and strong expressiveness, Javascript

is employed by the vast majority of malicious PDFs in the wild. Therefore, identifying

and confining malicious Javascript in PDFs can effectively mitigate the risk they cur-

rently pose to Internet users. Motivated by the fact that malicious Javascript behaves

significantly different from the benign one in system-level, we propose a context-aware

detection and confinement approach. The core idea is to confine operations that are

deemed suspicious based on the context of Javascript execution.

In order to implement the context-aware approach, one of the challenges is to

identify when Javascript starts to execute and when it finishes. A simlpe solution is to

extract Javascript from documents and execute it in an emulated environment. How-

ever, the extract-and-emulate method cannot guarantee reliable Javascript extraction,

as demonstrated by an example shellcode in object (4 0) in Figure 3.2. Moreover, it

can be very computationally expensive to emulate PDF-specific objects. An alternative

option is to instrument a Javascript interpreter. For example, a snippet of monitor-

ing code can be inserted at the entry and exit points of the Javascript interpreter.

Although easy to implement, we do not choose this approach for two reasons. First,
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interpreter instrumentation is insecure and can be easily bypassed. Second, interpreter

instrumentation has poor portability.

To overcome the aforementioned limitations, we propose to leverage static doc-

ument instrumentation, which requires neither Javascript extraction nor environment

emulation. Using our approach, a snippet of context monitoring code is inserted into

the document statically. Every time Javascript gets executed and finishes execution,

the context monitoring code takes control and informs our runtime detector.

The first step of our method is to reconstruct all Javascript chains in a document.

We use a similar technique described in previous works [137] [154] [210] to locate

Javascript. Specifically, we scan the document for keywords /JS and /JavaScript that

indicate a string or stream containing Javascript [46]. Next, we recursively backtrack

to find the ancestors on a chain and forward search for the descendants. At the end of

this process, we can extract a collection of Javascript chains. We only instrument the

chains associated with some triggering actions, such as /OpenAction and /AA. Figure

3.2 illustrates the execution steps of the aforementioned algorithm. This algorithm is

quite robust since it is immune to Javascript code obfuscation, and according to [46],

the keyword /JavaScript should be plain text.

Javascript in PDF can be invoked either singly or sequentially (through /Next

and /Names). The instrumentation process for single Javascript is shown in Figure

3.3. We first store the original code in a string which is passed as argument to eval()

and then we prepend and append our context monitoring code to it. This process

is quite simple and does not require sophisticated code analysis. The only operation

we perform is to scan the code and add ’\\’ for ′ and ′′ in the original Javascript

code. When Javascript snippets are triggered, the context monitoring code, rather

than the original script, gets executed first and it informs the runtime detector of the

entrance and exit of Javascript context. During this process, the context monitoring

code has to be able to communicate with the runtime detector. PDF provides three

possible channels for communication: shared file, HTTP, and SOAP (Simple Object

Access Protocol). Shared file is inefficient and insecure. The Net.HTTP method can
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Figure 3.2: A Synthetic Sample of Malicious PDF. The start point can be object (2
0), (4 0), or (5 0). Any object can be selected as the start point, and here we assume
(2 0) as the start point.

be invoked only outside of a document [47], i.e., cannot work in our context monitor-

ing code. We select SOAP for our implementation to avoid the pitfalls of the other

communication options. To achieve that, a tiny SOAP server is built into the detec-

tor enabling the communication with the context monitoring code synchronously. A

randomly generated key is used to protect the SOAP communications. The key has

two parts, Detector ID and Instrumentation Key. Detector ID is generated when our

system is installed. In case that an already instrumented document is downloaded,

this field can be used to filter out communications from the invalid context monitoring

code. The second field is randomly generated when instrumenting a document and it

uniquely identifies an instrumented document. We also maintain a mapping between

instrumented document and key. When instrumenting a file, we first ensure that no
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duplicate instrumentation is carried out on a single document. We further discuss the

security of the key in Section 3.3.

Figure 3.3: An Example to Illustrate Instrumentation

For sequentially invoked scripts, the process is a little different. We can simply

insert the context monitoring code for each separate Javascript listed in /Names dic-

tionary or /Next field. However, this can incur intolerably high overhead. A better

choice is to parse the chain and enclose all scripts invoked sequentially using one single

context monitoring code, which is taken in our system.

Finally, attackers can also dynamically add Javascript using the methods listed

in Table 3.4 and delay the execution of Javascript using setTimeOut(). The two cases

are specially handled in Section 3.3.

3.2.4 Runtime Features

When an instrumented PDF is opened, our stand-alone detector starts to moni-

tor suspicious behaviors of the PDF reader and collect evidence of infection. We detect

those essential operations that compromise target systems.

To improve the chance of successful exploits given various modern security en-

hancements, heap spraying has become the preferred weapon in hackers’ arsenal. When

heap is sprayed, a vulnerability like CVE-2008-2992 can be triggered to transfer the con-

trol to shellcode, which will execute the dropped malware, carry out drive-by-download,
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or establish a reverse bind shell. All of these operations should rarely occur in benign

Javascript. Thus, any occurrence of these operations in the context of Javascript ex-

ecution can be considered as suspicious. This is referred to as JS-context monitoring.

In addition, we note that unlike browsers which normally work in multi-thread, PDF

readers process documents in single-thread. That is, during the execution of Javascript,

no other PDF objects in the same or another document will be processed. This fact

simplifies our method and we do not need to consider the potential false positives

caused by concurrency.

JS-context monitoring can effectively detect malicious documents that exploit

the vulnerabilities in Javascript interpreters. However, attackers can also exploit

other vulnerabilities like CVE-2010-3654 in Flash and CVE-2010-2883 in CoolType.dll.

Javascript in such malicious documents is normally responsible for heap spraying and

malformed data crafting. In such cases, probably the JS-context monitoring can detect

only one suspicious operation, i.e., heap spraying, which is insufficient for accurate de-

tection. To complement JS-context monitoring, we also monitor the runtime behaviors

after Javascript finishes (out-JS-context).

Table 3.2 lists the runtime behaviors we monitor in the two contexts above.

Each monitored behavior is defined as one runtime feature in our system. Essentially,

these behaviors are modeled as sequences of system calls. While using system calls

to detect anomaly is not new [195] [108] [133], our method differs in two aspects.

First, most previous works focus on detecting the behavior deviations from expected

execution. But we detect the infection attempts of malicious code. Second, although

there exist works on modeling the behaviors of malware [133], our method relies on the

context-aware monitoring which has not been explored in previous works. Below, we

continue to explain the details of each monitored behavior.

Table 3.2: Runtime Behaviors Monitored in Two Contexts.

Context Runtime Behaviors
Out-JS-Context Process Creation and DLL Injection

JS-Context Memory Consumption, Network Access, Mapped Memory Search, Malware Dropping, Process Creation, and DLL Injection
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Malware Dropping: A common practice of malicious PDF is to drop some

malware to a user’s file system. To monitor the malware dropping, we hook the

APIs NtCreateFile(), URLDownloadToFile*(), and URLDownloadToCacheFile*()

on Windows.

Suspicious Memory Consumption: In heap spraying, malicious code fills

the heap with a NOP sled appended with shellcode. Subsequently, it attempts to divert

the control flow to any address covered by the NOP sled that leads to the shellcode

execution. In an effort to increase the probability of hitting a NOP, malicious code

attempts to write a large area of memory, usually more than 100 MB [196].

Suspicious memory consumption can be very promising in detecting the presence

of heap spraying, especially if monitored in JS-context. The context-free monitoring

can cause many false positives, e.g., in a case that many documents are opened si-

multaneously. However, the context-aware monitoring in our method can effectively

eliminate most noise. We check the PROCESS MEMORY COUNTERS EX structure [56] at

the entry/exit of JS context and when other in-JS sensitive APIs are captured.

Suspicious Network Access: Unlike on the Web, Javascript in PDF rarely

connects to the Internet and its primary function is to dynamically render a document,

which rarely relies on network communications. Actually, the number of Javascript

methods provided in PDF for network access is limited and most of them can be used

only in restricted conditions. For example, app.mailmsg() and app.launchURL() es-

tablish network connections using third-party applications (email clients and browsers),

which are not monitored by our runtime detector. And, the Net.HTTP object cannot

be invoked by Javascript embedded in a document. Thus, any network connection

generated in JS-context should be considered as suspicious. In our system, we hook

all connect and listen. Note that we white-list the communications between the

runtime detector and the context monitoring code.

Mapped Memory Search: Besides drive-by-download, attackers can also em-

bed malware in a document. Such a technique is called Egg-hunt. In [185], a malicious
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sample using egg-hunt is analyzed. One challenge of egg-hunt is that attackers cannot

know where malware is loaded in memory and they have to search the whole address

space. However, some memory in the address space is unallocated, and dereferencing

it can lead to segmentation fault. In order to prevent access violations, attackers have

to employ some techniques to safely search the virtual address space. Several effective

techniques, for both Linux and Windows, are described in [192]. In our implemen-

tation, NtAccessCheckAndAuditAlarm(), IsBadReadPtr(), NtDisplayString(), and

NtAddAtom() are monitored.

Process Creation: The final step of an attack lies in execution of the dropped

malware. Attackers can create a new process to execute the malware. In JS-context,

this behavior can be a strong sign of infection attempt; while in out-JS-context, it

can cause false positives. We observe that Windows error report programs and tools

distributed with PDF readers, which obviously are benign, are usually invoked. So,

we add them to a white-list. In implementation, we monitor NtCreateProcess(),

NtCreateProcessEx(), and NtCreateUserProcess().

DLL Injection: In the wild, usually attackers prefer to execute malware via

DLL injection. This behavior should never occur in JS-context and rarely occur outside

of JS-context. Thus, we monitor DLL injection in both JS-context and out-JS-context.

In implementation, we monitor CreateRemoteThread().

3.2.5 Runtime Detection and Confinement

Detection. The workflow of runtime detection and lightweight confinement is

shown in Figure 3.4. The runtime detector works in three steps. Initially, all sensitive

operations are ignored until at least one in-JS operation is captured from an unknown

PDF. Although it may cause false negatives to discard out-JS operations at this step, we

believe it is worthwhile for achieving a lower false positive rate and higher performance.

Next, the detector starts to continuously record all sensitive operations. The core logic
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of the runtime detector is a weighted sum, as shown in Equation 3.1.

malscore = w1

7∑
i=1

Fi + w2

13∑
i=8

Fi. (3.1)

The first part represents the static and out-JS features. The second part denotes

the in-JS features. The features are numbered from 1 to 13, and the runtime features

are numbered in the order they appear in Table 3.2. All these features are normalized

to binary values. Instead of assigning a weight for each feature, we set a weight for

each “part” in the equation. We also define a threshold and if the malscore exceeds it,

the document is tagged as malicious. The feature normalization, weight and threshold

setting are based on the statistical results of a large corpus of benign and malicious

samples. We provide a detailed description in Section 3.4.3.

In real world, users usually open many PDFs simultaneously, which must be

correctly handled by the runtime detector. For each unknown open PDF which has

carried out at least one in-JS operation, we maintain a separate malscore and a set

of related operations. In-JS operations affect the corresponding malscore only, while

out-JS operations contribute to every active malscore. Finally, in order to handle the

case that multiple malicious PDFs work together to attack stealthily, we maintain a

list of executables downloaded in JS context. When an in-JS operation invokes an

executable in the list, we intentionally prepend a malware dropping operation for this

PDF and append a malware execution operation for another PDF that downloads the

file. Malscore is volatile, implying that it no longer exists when a PDF reader is closed.

However, the maintained list of executables is persistently stored. When an alert is

raised, we report the malscore, associated features, and the detected malicious PDFs

to users.

Confinement. In Figure 3.4, the operations enclosed in solid border are con-

fined. Our lightweight confinement, as well as runtime monitoring, is based on Windows

API hooking. There are various ways to implement API hooking, e.g., modifying the
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Figure 3.4: Workflow of Runtime Detection & Lightweight Confinement.

system service dispatch table (SSDT) or the interrupt descriptor table (IDT). Our pro-

totype adopts the import address table (IAT) hooking since it is simple, effective, and

efficient. Although attackers could leverage GetProcAddress() or call kernel routines

directly to bypass IAT hooking, it is quite uncommon [220]. In the future, we will use

advanced kernel mode hooks to make it more difficult to evade.

An essential step of IAT hooking is to inject our hook DLL. There are two

popular implanting techniques on Windows, i.e., remote thread injection and AppInit

registry modification [43]. Our prototype adopts the latter approach. As AppInit

modification can affect the whole system, which is undesirable, we utilize a similar

technique introduced in [28]. The basic idea is to develop a trampoline DLL, which

further loads the IAT hook DLL if the host process is a PDF reader and otherwise

does nothing. In this way, our confinement affects PDF readers only and thus incurs

negligible overhead to the whole system.

Moreover, since API hooks execute in a PDF reader process, we need a channel

for communications between API hooks and our stand-alone runtime detector. In our

prototype, TCP socket is used. When the hook DLL is injected, its first job is to set

up a TCP connection to the runtime detector. At runtime, it sends the captured API,

API parameters, and memory usage (for suspicious memory consumption in §3.2.4) to

the runtime detector.
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Table 3.3 shows the pre-defined confinement rules executed by the runtime de-

tector and Hook DLL. The rules are quite straightforward. The only issue that deserves

attention is, in order to confine the created process, we use an existing sandbox tool,

Sandboxie [36]. Currently, we just handle three sensitive operations. However, we can

easily extend existing confinement rules.

Table 3.3: Confinement Rules

Operation
Rules

Execute In Hook DLL Execute In Runtime Detector

Malware Dropping Before alert, call original API.
Before alert, maintain the list of downloaded executables;
When alert, isolate.

Process Creation
Before alert, reject the call since it Before alert, run target program in Sandboxie [36];

will be invoked by runtime detector. When alert, terminate and isolate the program.
DLL Injection Always reject. Isolate the injected DLL.

3.2.6 De-instrumentation

In reality, it is common to open a document many times. In order to improve

performance and scalability, we can monitor new documents only. We adopt an intu-

itive and simple approach, document de-instrumentation, to achieve this goal. When

a document is identified as benign, our system removes the context monitoring code

from it, i.e., de-instrumenting it. De-instrumentation is done in background after the

PDF reader is closed. To facilitate de-instrumentation, our static instrumentation com-

ponent will generate and export the corresponding de-instrumentation specifications

when instrumenting a document. De-instrumentation significantly improves scalability

while no security hole is introduced. Note that de-instrumenting at-once is a simple

heuristic. A configurable parameter and randomization can be introduced to set the

number of opens before de-instrumentation.

3.3 Security Analysis

For any intrusion detection system, it is a must to enforce its own integrity and

security. In this section, we first describe the threat model. Then, we present a list of

potential advanced attacks and our countermeasures.
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3.3.1 Threat Model

In our analysis, we assume an advanced attacker who can access our code and

test it for unlimited times. Moreover, the attacker can embed some arbitrarily large

shellcode in the document. The shellcode is able to: (1) identify the heap, stack, and

code areas in memory; (2) scan the whole virtual address space; and (3) modify any

memory content.

Meanwhile, we also assume that attackers can neither (1) understand the mean-

ing of data in memory if there is no identifiable signature nor (2) manipulate our

static instrumentation code since the instrumentation component gets executed before

malicious code.

3.3.2 Potential Advanced Attacks and Countermeasures

Mimicry Attack: An obvious attack is the mimicry attack, targeting the

messaging mechanism between the context monitoring code and the runtime detector.

Attackers try to steal the key used in communications and send a fake message to the

runtime monitor, mimicking the epilogue of the context monitoring code. Then, the

shellcode can do anything without monitoring. An alternative approach is to search

for our episode code and execute it before carrying out malicious operations. We argue

that

our random key, context monitoring code randomization and duplication, and

zero tolerance to fake message can effectively defeat such a mimicry attack.

Attackers can use either signature-based [94] or test-based [111] methods to

search for keys in memory. In many cases, the key is stored at some fixed addresses

or somewhere near an identifiable string, e.g., “auth-password” or “MyPwd”. Such a

signature remains intact once software is released, and hence attackers can easily locate

the key in memory. Our system avoids generating signatures through: (1) executing

the context monitoring code using eval(); (2) generating the key randomly during
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static instrumentation; (3) randomizing the structure of the context monitoring code;

and (4) creating copies of fake context monitoring code.

It is much easier to defeat the test-based cracking. We enforce that whenever a

fake message is received, we tag the active document as malicious. Note that attackers

cannot launch DoS attacks by pretending to be another PDF. As mentioned before,

PDF readers work in single-thread and only one document is active at any time. From

the key in the prologue, we can identify the active document, which is responsible for

the fake message.

Runtime Patching Attack: Attackers can also carry out the runtime patching

attack. There are two separate scripts in the document, so we instrument each of them

independently. When the shellcode in the first script gets executed, it can locate the

second script in memory and patch out the context monitoring code. Then, the second

script can execute without monitoring. A variant attack is to distribute malicious

Javascript in two separate documents.

To avoid the runtime patching attack, we ensure to take control at the begin-

ning of each script. We apply encryption to enforce such control retaining. During

instrumentation, an encryption scheme is randomly selected to encrypt the original

script, and the decryption method is embedded in the prologue of the context moni-

toring code. In this way, malicious Javascript cannot get executed without our context

monitoring code.

Moreover, several obfuscation methods are used to make it impossible for at-

tackers to eliminate the context monitoring code but still keep the decryption code.

Staged Attack: An advanced attacker can split the exploit into multiple stages.

Let us consider the simplest two-stage attack, as shown in Figure 3.5. In step 3, the

Stage 2 code can be installed using Javascript methods listed in Table 3.4.

To defeat this kind of attack, we analyze the Javascript code and search for

the methods in Table 3.4 during static instrumentation. Then, we instrument the

dynamically added scripts that are stored in the parameters of these methods. A more
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1) Instrument the target PDF.
2) Context monitoring code informs the enter
of Javascript.
3) The Stage 1 shellcode setups Stage 2 code
at runtime.
4) Context monitoring code informs the leave
of Javascript.
5) Stage 2 shellcode is triggered by some event
later.

Figure 3.5: Two-stage Attack

Table 3.4: Methods provided in PDF to add scripts at runtime.

Method Trigger Event
Doc.addScript() Open the document
Doc.setAction() Close/Save/Print the document

Doc.setPageAction() Open/Close a page
Field.setAction() Operate on a form field

Bookmark.setAction() Click the bookmark

robust solution we are working on is to hook these methods in Javascript interpreters

and instrument dynamically inserted scripts on-the-fly. Since we only need to hook

five methods, the development efforts and runtime overheads should be minor.

Delayed Execution: Another evasion approach is to delay the execution of

Javascript. This can be achieved through app.setTimeOut() and app.setInterval()

[47]. Our countermeasure is similar to the one for staged attack and we intentionally

instrument the two Javascript methods above.

3.4 Evaluation

To validate the efficacy of our proposed approach, we implement a prototype

on Windows. The front-end component is implemented in Python 2.7. The runtime

monitor and detector in the back-end component are implemented in C and Java,

respectively. And, the tiny SOAP server in the runtime monitor is built using the Web

service framework JAX-WS. Based on a large corpus of real data, we first evaluate
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the effectiveness of our detection model and then examine the runtime overhead of our

prototype.

3.4.1 Data Collection

We collected more than twenty thousand benign and malicious samples for this

study. Table 3.5 summarizes the dataset used in our evaluation. The benign documents

are from four trusted sources: (1) we collected thousands of documents from two

users’ file systems; (2) we downloaded hundreds of official forms and reports from large

organizations like governments and well-known companies; (3) we collected a set of

non-malicious PDF files from Contagiodump [54]; and (4) we randomly crawled over

ten thousand of documents using Google and tested them using anti-virus software.

The malicious samples are from Contagiodump and those containing no Javascript are

excluded.

Table 3.5: Dataset Used for Evaluation

Category # of Samples # with Javascript Size
Known Benign 18623 994 11.84 GB

Known Malicious 7370 7370 172 MB

Total 25993 8364 12.01 GB

3.4.2 Feature Validation

Before measuring detection accuracy, we first validate the capability of our de-

tection features to distinguish between benign and malicious documents. Here we

present the statistical results of the features used in our system.

Static Features: We scanned all benign documents and found 994 samples

containing Javascript. The following evaluation mainly relies on these 994 samples.

The first static feature we validate is the ratio of PDF objects on Javascript

chains. Figure 3.6 shows the cumulative distribution function of the ratio in benign

and malicious documents. As we can see, about 95% of malicious documents have a
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Figure 3.6: Ratio of PDF Objects on Javascript Chain in Malicious and Benign Doc-
uments

Figure 3.7: Memory Consumption of Malicious and Benign Javascripts

ratio over 0.2. We even found 64 samples with a ratio of 1. This is reasonable since

malicious documents usually contain only one blank page. By contrast, the ratio in

benign documents presents a quite different pattern. From the dotted line in Figure

3.6, we can clearly see that about 90% of benign documents have a ratio smaller than

0.2 and almost no document has a ratio over 0.6. The results indicate that this feature

can effectively distinguish between benign and malicious documents.

The statistical results of the other static features in malicious documents are
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Figure 3.8: Memory Consumption of PDF Reader When Opening Many Documents

shown in Table 3.6. For boolean features, “False” is denoted as 0 and “True” as 1.

We found that while empty objects can be found in malicious samples, no benign

documents contain empty object. This complies with our intuition that people rarely

have incentive to include these junk objects in documents and normally they tend

to use automatic tools like this.addscript() and [53] to insert Javascript. These

tools rarely generate empty objects. Unlike previous two features, more malicious

samples use header obfuscation and hex code. As a comparison, we only found three

benign documents with header obfuscation and no benign document contains hex code.

We believe this is because usually PDF documents are created from other formats

like Microsoft Word and LaTeX using automatic conversion tools. Such tools do not

obfuscate document header or structure. Finally, only about 1% of malicious samples

use multiple levels of encoding, and surprisingly about 3% of them do not use any

encoding. In benign documents, we found that all of them use either zero or one level

of encoding. Overall, these five features complement with the first feature and enable

us to more accurately distinguish between benign and malicious documents.

Memory Consumption: We randomly sampled 30 documents from each of

two categories, “Known Benign” and “Known Malicious”, respectively. All of the
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Table 3.6: Statistics of Static Features of Malicious Documents.

XXXXXXXXXXFeature
Value

0/False 1/True 2 3 6

Header Obfuscation 6792 578 - - -
Hex Code 6827 543 - - -

Empty Objects 7357 5 4 3 1
Encoding Level 233 7065 40 31 0

30 selected benign documents contain Javascript. Then, we measured the memory

consumption of the sampled 60 documents in JS-context and the results are shown

in Figure 3.7. As we can see, one malicious sample can consume more than 1700

MB memory. On average, malicious samples consume about 336.4 MB memory while

benign documents consume merely 7.1 MB. Moreover, the minimal memory consumed

by malicious samples is 103 MB but the maximum by benign samples is only 21 MB.

These results indicate that our context-aware monitoring of memory consumption could

be an effective feature to differentiate between benign and malicious documents.

Context-aware v.s. Context-free. However, only if the monitoring is conducted

in JS-context, will memory consumption be an effective feature. The context-free

monitoring could be inaccurate. In order to demonstrate the deficiency of the context-

free monitoring, we measure the memory consumption of a PDF reader when different

number of documents are opened at the same time. Note that opening many documents

simultaneously is a common practice in daily life. In our evaluation, we used Adobe

Acrobat 9.0 and four documents with various size from our reference list, including

[187] [199] [47] [46]. For each document, we made 20 copies and recorded the memory

consumption of Acrobat when different number of copies were opened simultaneously.

The results are shown in Figure 3.8. In most cases, the memory consumption increases

linearly with the inceasing number of opened documents and it can grow up to 1600

MB. An exception is [187]. When the 15th copy is opened, the memory consumption

drops to a lower level and then increases linearly again. We tested many times and this

effect appeared in every test. Our speculation is that this specific document triggers
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some memory optimization mechanisms in Acrobat. From these results, we can see that

it is almost impossible to set an appropriate threshold in the context-free monitoring.

A high value could miss a large fraction of malicious documents while a low value may

generate many false positives. Besides, as shown in Figure 3.8, the memory increase of

[46] is also very large. Thus, in the context-free monitoring, the memory increase of a

PDF reader is not a good feature either. By contrast, our context-aware monitoring is

much more effective and accurate.

3.4.3 Detection Accuracy

We evaluate the detection accuracy of our prototype, in terms of false positive

rate and false negative rate. We tested the malicious samples in VMware Workstation

hosting Win XP SP1 with Adobe Acrobat 8.0/9.0 installed. We first describe the

parameter configuration of our detector and then present the detection results.

1) Parameter Configuration

First, we normalize non-binary features, including F1, F4, F5, and F8. The

normalization rules are listed in Table 3.7. According to Figures 3.6 and 3.7, we set

F1 as 1 when the ratio ≥ 0.2 and F9 as 1 when the memory consumption ≥ 100 MB.

Similarly, the values of F5 and F6 are set according to Table 3.6. In this way, all 13

features can be represented in binary values.

To set the weights and threshold, we need to meet the criterion that a document

is tagged as malicious iff at least one JS-context feature and any other features have

positive values. The basic idea is that if no suspicious behavior is detected in JS-

context, the document contains no malicious Javascript and thus it is out of the scope

of our detection. According to the criterion, we set w1 as 1, w2 as 9, and the threshold

as 10, respectively.

2) Detection Results

We measured the false positive and false negative rates of the tuned detector

over all benign documents with Javascript (994) and one thousand randomly selected
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Table 3.7: Parameter Configurations in Our System.

Parameter Value
F1 If ratio ≥ 0.2, F1 = 1; else F1 = 0;
F4 If # of empty objects ≥ 1, F4 = 1; else F4 = 0;
F5 If encoding level ≥ 2, F5 = 1; else F5 = 0;
F8 If mem consumption ≥ 100 MB, F8 = 1; else F8 = 0;

w1 1
w2 9

Threshold 10

Table 3.8: Detection Results

Category Detected Malicious Detected Benign Noise Total
Benign Samples 0 994 0 994

Malicious Samples 917 25 58 1000

malicious samples. The malicious samples cover vulnerabilities in Javascript inter-

preter, Flash, U3D (Universal 3D), TIFF and JBIG2 image, etc. The detection results

are shown in Table 3.8.

It can be seen that no benign sample is misclassified as malicious, achieving

zero false positive. There is only one sample with suspicious behavior in JS-context.

However, since there is no other feature with positive value, this sample is still classified

as benign. Afterwards, we checked the sample and confirmed that the script uses

SOAP for network access. The rest 993 samples are tagged as benign simply because

no suspicious JS-context behavior is monitored, although some samples have positive

values in other features. Even though Javascript methods like SOAP and ADBC can

generate network accesses, we are reluctant to white list them since we cannot decide

the maliciousness of the target server.

During the test, 58 (∼6%) of the malicious samples did nothing when opened.

Inspecting those samples, we found that these samples exploited either CVE-2009-1492

[52] or CVE-2013-0640 [50] which do not work on Adobe Acrobat 8.0/9.0. As these

samples failed to exploit, we excluded them when computing false negative rate. For
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Table 3.9: Comparison With Existing Methods

Method False Positive True Positive
N-grams [190] 31% 84%
PJScan [137] 16% 85%

PDFRate [194] 2% 99%
Structural [199] 0.05% 99%
MDScan [210] N/A 89%
Wepawet [41] N/A 68% [210]

Ours 0 97%

the rest 942 samples, we successfully detected 917, with a detection rate of 97.3%.

We examined the 25 undetected samples and we found two reasons that cause the

misses. First, although malicious Javascripts in these samples spray the heap, the PDF

reader process crashes when the scripts attempt to hijack the control flow. Second,

the 25 undetected samples use no obfuscation and thus no static feature contributes to

detection. Actually there are more than 25 samples that crash the PDF reader process,

but the others are detected by our system via suspicious memory consumption and

static features. Although false negatives are unavoidable when malicious PDF fails to

exploit, it does not violate our primary goal, i.e., protecting users from damages of

malicious PDF.

Table 3.9 compares our method with previous countermeasures in terms of false

positive rate and true positive rate. It is clear that our method is comparable with the

best fully static methods [194] [199]. Since the malicious samples in our dataset are not

the most recent (the latest was captured in Feb. 2013), we cannot fully demonstrate

the superiority of our system over the fully static methods. Thus, we further compare

our system with other methods by analyzing possible advanced attacks.

• Our approach v.s. Structural methods : The mimicry attacks proposed in [154]

can effectively bypass these structural methods [194] [199] [155] [137]. However,

our approach is immune to the proposed attacks in that we detect the malicious

attempts from Javascript rather than how malicious Javascript is stored in PDF.
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• Our approach v.s. Anti-virus Software: There are a whole bunch of tricks avail-

able in the wild to evade anti-virus software [123] [48] [49]. Attackers can easily

generate variants using these tricks to defeat anti-virus software. Compared with

anti-virus software, our method can effectively detect new variants and zero-day

malicious PDF in time because we use the inconcealable system-level behaviors

of malicious PDF for detection.

• Our approach v.s. Dynamic Analysis Tools : Attackers can subvert existing dy-

namic analysis tools like CWSandbox [220] using event-triggering and environment-

sensitive malcode. Our method does not suffer this limitation since we detect as

real users operate on malicious documents.

Based on the analysis of potential advanced attacks, we can see that our method

is more robust than existing defense against malicious PDF.

3.4.4 System Performance

To measure the runtime overhead of our method, we run our prototype on 32-bit

Windows 7. We performed the tests on a laptop with a 2.53 GHz Intel Core 2 Duo

CPU processor and 2 GB of RAM. The performance of each component in our system

is presented below.

1) Static Analysis and Instrumentation

Overall, it took about 297.7 seconds to process all 7370 malicious samples,

i.e., 0.04 seconds on average for each sample. We also measured the overhead when

processing the files with various sizes. We randomly selected three benign and malicious

documents, respectively. The sizes of these documents are shown in Table 3.10. One

of the malicious samples contains two scripts and the rest of five documents contain

only one script.

The execution time of each step in static analysis and instrumentation is shown

in Table 3.10. We can see that the overhead is minor for both large and small doc-

uments. In particular, it took only about 5.5 seconds to process a 20 MB document.
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Table 3.10: Execution Time (in seconds) of Static Analysis & Instrumentation.

PDF Size Parse & Decompress Feature Extraction Instrumentation Total
2 KB 0.0005 0.0255 0.0183 0.0444
9 KB 0.0008 0.0867 0.0138 0.1014
24 KB 0.0007 0.0726 0.0247 0.0981
325 KB 0.0569 0.0210 0.0236 0.1016
7.0 MB 0.8954 0.4023 0.0773 1.3750
19.7 MB 3.2219 2.0015 0.2761 5.4995

Considering that it could take 20 seconds to download the document (in case of 1

MB/s), the additional delay of 5.5 seconds for processing it is acceptable.

Whereas most of the execution time is spent on feature extraction and instru-

mentation for small documents, the dominant overhead comes from parsing and decom-

pressing as document size increases, which accounts for over 95% of the total execution

time. Besides, for instrumentation, the overhead depends on the number of scripts.

That is why it took more time to instrument the 2 KB file than the 9 KB file in

Table 3.10. The overhead increase is approximately linear. This is because during

feature extraction, we have tagged the PDF objects containing Javascript code and

our instrumentation component only needs to locate and instrument them.

In summary, the evaluation results indicate that the component of static analysis

and instrumentation incurs minor overhead and can be used for end-host protection.

We also profiled memory overhead. Table 3.11 presents the memory usage during

static process. The memory overhead is a little bit high. However, since the front-end

component works off-line and the RAM on modern systems can easily accomodate

such a memory demand, the overhead is acceptable. Actually, for most documents, the

memory overhead of our system is comparable with PDF readers like Adobe Acrobat.

In the future work, we will optimize our program and use memory more efficiently.

2) Runtime Detector

The runtime detector with a tiny SOAP server requires about 19 MB mem-

ory. Although the detector maintains the state (i.e., all features) for each unknown
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Table 3.11: Memory Overhead of Static Analysis & Instrumentation.

PDF Size # of Python Objects Memory Consumption
2 KB 74095 5.26 MB
9 KB 74085 5.26 MB
24 KB 74112 5.28 MB
325 KB 74616 5.63 MB
7.0 MB 366845 42.86 MB
19.7 MB 1081771 130.6 MB

open document, we found that the memory usage increases a little as the number of

monitored documents increases. Thus, the overhead of our runtime detector is also

minor.

We further evaluated the efficiency of our context monitoring code. We manually

crafted a set of documents containing various copies of Javascript. The Javascript is

from a randomly selected malicious sample. In total, we got 20 documents with 1 to

20 separate scripts in each document. For each crafted document, we measured the

total execution time of Javascript before and after instrumentation. When one script is

instrumented, the additional execution time incurred by our context monitoring code

is about 0.093 seconds. Since most malicious documents in the wild contain only one

script, this overhead represents the common case. Note that, although both benign and

malicious documents can contain many scripts, in most cases these scripts are invoked

sequentially via /Names and /Next. Thus, only one piece of the context monitoring

code is inserted. Basically, the overhead grows linearly as the number of instrumented

scripts increases. However, when there are 20 scripts, the overall overhead is still below

2 seconds. Benign documents may contain many singly invoked scripts, but in most

cases these scripts are associated with some actions that probably are not triggered

simultaneously. Therefore, when the overall overhead is distributed among each script,

the performance degradation is still minor. In summary, our context monitoring code

is efficient enough for online protection.
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3.5 Conclusion

In this dissertation, we develop an effective and efficient hybrid approach—

leveraging five novel static features and the context-aware behavior monitoring—for

detection and confinement of malicious Javascript in PDF. The static features are

designed to detect the obfuscation techniques that are widely used by malicious PDF

but usually disregarded by benign documents. We also observe that the indispensable

operations for malicious Javascript to compromise target systems rarely occur in JS-

context. Based on this observation, we present the static document instrumentation

method to facilitate context-aware monitoring of potential infection attempts from

malicious Javascript. The intrusive nature of instrumentation method endows our

system with immunity to Javascript code and PDF syntax obfuscations. To validate the

efficacy of our proposed approach, we conducted a security analysis given an advanced

attacker, showing that our method is much more robust than existing defense. The

experimental evaluation based on over twenty thousand benign and malicious samples

shows that our system can achieve very high detection accuracy with minor overhead.
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Chapter 4

TOWARDS AUTOMATED DETECTION OF SHADOWED DOMAINS

4.1 Introduction

The domain name system (DNS) serves as one of the most fundamental Internet

components and provides critical naming services for mapping domain names to IP

addresses. Unfortunately, it has also been constantly abused by miscreants for illicit

online activities. For instance, botnets exploit algorithmically generated domains to

circumvent the take-down efforts of authorities [223, 67, 179], and scammers set up

phishing websites on domains resembling well-known legitimate ones [118, 202]. In the

past, Internet miscreants mostly register new domains to launch attacks. To mitigate

the threats, tremendous efforts [74, 66, 121, 204, 113] have been devoted in the last

decade to craft real-time blacklists. All of these render it ineffective and inefficient

to register new domains for attacks. As a response to the arm race, miscreants have

moved forward to more sophisticated and stealthy strategies.

In fact, there is a newly emerging class of attacks adopted by cybercriminals to

build their infrastructure for illicit online activities, domain shadowing, where instead

of registering new domains, miscreants infiltrate the registrant accounts of legitimate

domains and spawn subdomains under them for malicious purposes. Domain shadow-

ing is becoming increasingly popular due to its superior ability to evade detection. The

shadowed domains naturally inherit the trust of legitimate parent zone and miscreants

can even set up authentic HTTPS connections with Let’s Encrypt [156]. Even worse,

miscreants can virtually create an infinite number of subdomains under a bunch of

hijacked legitimate domains and rapidly rotate among them at no cost. This makes

it quite challenging to keep blacklists up-to-date and gather useful information for
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meaningful analysis. While domain shadowing has been reported in public outlets, like

blogs.cisco.com, most previous studies only elaborate sporadic cases collected in a

short time through manual analysis. It is still unclear how serious the threat is and

how to address this domain shadowing problem in a larger scale.

In this dissertation, we present a novel detector to automatically detect shad-

owed domains and conduct the first comprehensive study of domain shadowing in the

wild. This requires addressing several unique challenges however. By design, shad-

owed domains do not present suspicious registration information and thus all detectors

leveraging these data [106, 114, 113] can be easily bypassed. Blindly blacklisting all

sibling subdomains of shadowed domains is also infeasible in practice since it can cause

large amount of collateral damage. Last but not least, most suspicious DNS patterns

identified in previous studies do not work well in domain shadowing. For instance,

Kopis [66] analyzes the collective features of all visitors to a domain. However, our

study has seen many shadowed domains being visited only once, rendering the collec-

tive features insignificant. Such collective features can be applied to malicious apex

domains because the domain registration cost can become non-affordable if an apex is

used only a few times.

To bootstrap the design of our detector, we collect a set of 26,132 confirmed

shadowed domains under 4,862 distinct zones through manually searching and review-

ing technical reports by security professionals. Comparing them with legitimate sub-

domains, we find that the shadowed ones can be characterized and distinguished from

two dimensions. On one hand, shadowed domains usually exhibit deviant behaviors

and are more isolated from those known-good subdomains under the same parent zone.

For instance, most legitimate domains are hosted on reputable servers which usually

strictly restrict illicit contents. Due to the nature of their criminal activity and their

demand to evade detection and possible take-down, shadowed domains have to host on

cheap and cybercriminal-friendly servers. This deviation serves as a prominent indica-

tor of potential shadowed domains. On the other hand, miscreants tend to exploit a

bunch of shadowed domains under different parent zones in the same campaign. This
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can greatly increase the resilience and stealthiness of their infrastructure. However,

such correlation also presents suspicious synchronous characteristics. For instance,

shadowed domains in the same campaign usually appear and disappear at the same

time.

Based on these observations, we develop a novel system, Woodpecker, to auto-

matically detect shadowed domains through inspecting the deviation of subdomains

to their parent zones and correlation of shadowed domains among different zones. In

particular, we compose 17 features modeling the usage, hosting, activity, and name

patterns of subdomains, based on the passive DNS data. Five classifiers (Support Vec-

tor Machine, RandomForest, Logistic Regression, Naive Bayes and Neural Network)

are then trained using these features. We achieve 98.5% detection rate with about

0.1% false positive rate with a 10-fold cross validation when using RandomForest.

Woodpecker is envisioned to be deployed in several scenarios, e.g., domain reg-

istrars and upper DNS hierarchy as a complement to Kopis [66], generating more

accurate indicators about the ongoing cyber-crimes. In this dissertation, we demon-

strate a use case where Woodpecker is deployed on an open security service VirusTotal

[214]. Specifically, we run our trained classifier over a large scale dataset built using

all subdomains submitted to VirusTotal [214] during Feb∼April, 2017 as seeds. The

dataset contains 22,481,892 unique subdomains under 2,573,196 parent zones. These

domains are hosted on 4,809,728 IP addresses.

Our findings. Applying Woodpecker to the daily feeds of VirusTotal, we obtain

287,780 reports, of which 127,561 are confirmed as shadowed domains with a set of

heuristics (most of the remaining ones are about malicious apex domains). Our mea-

surement of the characteristics of these shadowed domains indicate that they exhibit

quite different properties from conventional malicious domains and thus existing sys-

tems can hardly detect the shadowed domains. Our manual assessment of the security

measures of domain registrars show that their current practices cannot effectively pro-

tect the users. We also observe two interesting cases in our results. First, currently

exposed shadowed domains as in the technical blogs are exclusively involved in exploit
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kits. However, our detection results show that shadowed domains are also widely ex-

ploited in phishing attacks. Another interesting finding is that miscreants also exploit

the wildcard DNS records to spawn the shadowed domains.

4.2 Background

We give a brief overview of domain system in the beginning of this section. Then,

we describe the schema regarding domain shadowing attack and use one real-world case

identified by our detection system to walk through the attack flow.

4.2.1 Basics of Domain Name

Domain name structure. Domain name is presented in the structure of hierarchical

tree (e.g. a.example.com), with each level (e.g. example.com) associated with a

DNS zone. For one DNS zone, there is a single manager who oversees the changes

of domains within its territory and provides authoritative name-to-address resolution

service through DNS server. Top of the domain hierarchy is the root zone, which is

usually represented as a dot. So far, the root zone is managed by ICANN and there

are 13 root servers operated by 12 organizations. Below the root level is the top-level

domain (TLD), a label after the rightmost dot in the domain name. The commonly

used TLDs divide into 3 groups, including generic TLDs (gTLDs) like .com, country-

code TLDs (ccTLDs) like .uk, and sponsored TLDs (sTLDs) like .jobs. Next to TLD

is the second-level domain (2LD) (e.g. .example.com), which can be directly registered

from registrars (like GoDaddy) if not occupied yet, in most cases. One exception

occurs when both ccTLD and gTLD appear in the domain name, like .co.uk, and the

registrants have to go for 3rd-level domain(3LD), like example.co.uk. In this work,

we use effective TLDs (eTLDs) or public suffix to refer to the TLDs directly operated

by registrars (like .com and .co.uk), and apex domains (or apex in short) to refer to

the domains that can be obtained under eTLDs. The registrant owning apex domain is

allowed to create subdomains, like 3LDs and 4LDs, without asking permission from the
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registrar. In the meantime, the registrant takes responsibility of managing the domain

resolution, by either running her own DNS server or using other public DNS servers.

DNS record. When a registrant requests a domain name from a registrar, the re-

quest is also forwarded to a registry (e.g., Verisign), which controls the domain space

under the eTLD and publishes DNS record (or resource records, (RR)) in the zone file.

Similarly, a subdomain creation request also results in changes in the zone file, except

that the request can be handled by the owner herself. A RR is a tuple consisting

of 5 fields, <name, TTL, class, type, data>, where name is a fully qualified domain

name (FQDN), TTL specifies the lifetime in seconds of a cached RR, class is rarely

used and is almost always "IN", type indicates the format of a record, and data is the

record-specific data, e.g., an IP address of a domain.

Subdomain management. Domain owners can create and manage the subdomains

under their apex domains through web GUI or API provided by domain registrars.

There are three types of DNS RRs associated with subdomains creation. An A record

maps a domain name to an IPv4 address, e.g., foo.example.com A 1.1.1.1. A

CNAME record specifies the alias of a canonical domain, e.g., foo.example.com CNAME

bar.another.com. An AAAA record maps a domain name to an IPv6 address, e.g.,

foo.example.com AAAA 0:0:0:0:0:0:0:1. Figure 4.1 shows the web interface of Go-

Daddy for subdomain creation. Assume the apex is foo.com and Host field is filled

with shadowed, a new subdomain shadowed.foo.com will be created after the sub-

mission of request, which updates the zone file shortly. The domain owner could fill

Host with * to create a wildcard record. As a result, any request to the non-existent

subdomain (not specified by A or CNAME record) will be captured and resolved to the

corresponding IP.

4.2.2 Domain Shadowing

Web host is a critical asset in the cyber-criminal infrastructure. To prevent the

hosts from being easily discovered, like exposing their physical existence from IP, they

abuse DNS services and hide the hosts behind the ever-changing domain names. Many

47



Figure 4.1: Adding a subdomain in domain registrar GoDaddy. Assume the apex
domain is foo.com. The added subdomain is shadowed.foo.com

attackers choose to buy domain names from registrars. Since malicious domains are

ephemeral, usually revoked shortly after being detected, they prefer to register many

domains with each at low price and short expiration duration. This strategy however

leaves the malicious domains more distinguishable from the legitimate domains, when

examined by domain reputation systems [113, 74, 152, 106, 153].

Recently, attackers are beginning to compromise the domain system to evade

existing detection systems while confining the cost of getting domains. Discovered

by Cisco Talos in 2015 [120], Angler, an exploit kit with widespread usage by the

underground actors, evolved its infrastructure and used the subdomains under the

legitimate domains as redirectors to cover the exploit servers. In particular, the bad

actors harvested a large amount of credentials of domain owners (e.g., through phishing

email or brute-force guessing) and logged into their accounts to create subdomains.

This technique is called domain shadowing and such subdomains are called shadowed

domains.

Domain shadowing is quite effective for the several reasons below. Firstly, many

registrants use weak passwords and they never check the domain configuration after

creation [95]. In addition, the changes are not submitted to registries’ zone file, setting

aside the monitoring system of registries. Secondly, there is usually little restrictions

over subdomain creation. As long as a domain consists of less than 127 levels and

the name length is less than 253 ASCII characters, the domain name is valid. This

leaves a virtually infinite space for adversary to rotate domains and evade blacklists.

Thirdly, the malicious subdomains inherit the reputation of legitimate apex domains.

As information from Whois record poses high impact on the domain score outputted
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by many systems [113] and subdomains share the same values as their apex domains,

the shadowed domains can easily slip through these systems.

In addition to compromising registrants’ credentials, vulnerabilities in registrars

and DNS servers could also lead to domain shadowing. For instance, it has been re-

ported that several reputable registrars were breached and massive domain credentials

were leaked, including Name.com [101], punto.pe [178] and Hover [207]. As a result,

malicious subdomains were able to be created under a large volume of apex domains

at the same time. The zone files hosted by the authoritative DNS servers were targets

of domain hackers, who manipulate the RR data to change or add domains [129].

Scope. Specifically, our threat model assumes that attackers have gained adminis-

trative control of legitimate 2LD and attempt to spawn new subdomains for illicit

purposes. In particular, we do not detect modifications and deletions of existing sub-

domains because they either cause denial of service which is out of our scope or can be

easily spotted by domain owners. Moreover, our study focuses on domain shadowing

that lurks in legitimate 2LD. While subdomains under malicious 2LD might also be

classified as shadowed, we rely on existing tools like PREDATOR [113] to filter out the

malicious 2LD. Finally, we address domain shadowing campaigns exploiting legitimate

2LD in bulk and do not handle targeted attacks on a single 2LD.

In this work, we aim to detect shadowed domains created by domain hackers

in bulk. While the existing research revealed that such technique was mainly used by

exploit kit (see the description of our ground-truth data in Table 4.2), we consider

all attacks leveraging this technique, like phishing, into our study. Changing and

deleting subdomains without owners’ consent, which could achieve the same goal or

cause service interruption, are not considered in this dissertation, given that they are

more likely to be observed and used less frequently. While subdomains could be created

under malicious apex domains, they are not the focus of our study, and existing tools

gauging domain reputation like PREDATOR [113] could be leveraged here. Targeted

attacks like APT (Advanced Persistent Threat) try to operate on a small number

of domains, including subdomains under legitimate apex domains. Detecting targeted
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Malicious Ads Compromised Websites Infected Ransomware

aaa.app-garden.com
add.app-gardenuniversity.net
art.appgarden.co
fix.app-gardenuniversity.com
free.appgardenuniversity.com
info.appgardenuniversity.net
may.app-gardenuniversity.org
set.appgardenuniversity.info
fast.app-garden.info
red.app-garden.co
v60198.hosted-by-vdsina.ru

aaa.         109.234.36.165
www.             54.236.178.191; 34.192.129.244; ... 
appgarden15        72.5.194.131
appgarden12        66.150.98.243
appgarden9          66.151.15.203
appgarden1          66.150.98.241

…

…
appgarden10       66.150.105.165

app-garden.com

109.234.36.165

Figure 4.2: Shadowed domains used in a campaign of EITest Rig EK in April, 2017.
app-garden.com is a legitimate apex domain.

attack automatically is still a paramount challenge for security community [103], due to

its nominal signal overwhelmed by huge amount of data. We do not expect individual

subdomains in these cases can be effectively detected by our system and leave the

research as a future direction.

4.2.3 Real-world Example

Here we demonstrate how domain shadowing powers attackers’ operations using

a real-world case recently discovered by our system (illustrated in Figure 4.2). We found

the shadowed domains showed up in the passive DNS data (our dataset is described in

Section 4.3.2) and later documented in a security website [157] . One such domain is

aaa.app-garden.com, created under a legitimate 2LD app-garden.com and redirect-

ing users’ traffic from compromised doorway sites to Rig Exploit Kit (EK) [198], within

a malware distribution campaign called EITest. In particular, the doorway sites served

malicious advertisements created by attackers and the JavaScript code redirected the

visitor to a sequence of compromised sites, till arriving at aaa.app-garden.com, which

kept Rig EK’s drive-by-download code. If the malicious code executed successfully in

user’s browser, a ransomeware will be downloaded and encrypted victim’s files.
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By inspecting the data relevant to the shadowed domains, we discovered sev-

eral unique features about such attack. The shadowed domain aaa.app-garden.com

pointed to an IP address that is quite different from the apex app-garden.com and

other sibling subdomains, like www.app-garden.com. More specifically, the shadowed

domain was associated with an IP in Russia while all other subdomains were linked to

IPs in US. Looking into the domains linked to the 109.234.36.165 (in total 10 from

our data), we found 9 of them share the similar apex names as app-garden.com (e.g.,

app-garden.co). Notably, all 9 apex domains were registered by Cook Consulting,

Inc, with one in April 2011, six in May 2014 and two in March 2017 1. We specu-

late that the domain hacker obtained the login credential and injected subdomain into

many apex domains under victim’s account. Also interesting is that meaningful single

word, like info and free, were used to construct the malicious subdomains. As such,

detectors looking for random domain names, like DGA detector [223, 67], would be

evaded at high chance.

4.3 Automatic Detection of Shadowed Domains

In response to the emerging threat of domain shadowing, in this section we

present our design of an automated detection system, Woodpecker. We first overview

its workflow and deployment scenarios. Then, we describe the dataset used for training

and testing. Finally, we elaborate on the features we use to distinguish shadowed and

legitimate domains.

4.3.1 Overview

We could follow conventional approaches, like content or URL analysis, to de-

tect shadowed domains. However, after our initial exploration, we found that these

1 The app-garden.com was registered through domain proxy and the registrant infor-
mation is not available through Whois query. However, the domain was registered at
the same time as one of the domains.
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Figure 4.3: Workflow of Woodpecker.

approaches are not suitable. Many shadowed domains are used as redirectors. Find-

ing the gateways, e.g., compromised sites, is a non-trivial task. Even if we are able

to find the shadowed domains and download the content, we may still fail to classify

them correctly when they only serve seemingly benign redirection code. Compared

to domains owned by attackers, the registration information of a shadowed domain

is identical to that of the benign apex domain, which undermines the effectiveness of

many approaches based on domain registration.

Users’ visits to shadowed domains would be observed by DNS servers and further

collected by a passive DNS (PDNS) database. Erasing the traces from DNS servers

and PDNS is considerably more difficult than compromising websites and domain ac-

counts. As such, we decide to analyze the DNS data to solve our problem. Though

the information underlying the DNS data is much more scarce than web content, it

is still sufficient to distinguish shadowed and legitimate domains, due to two key in-

sights. First, shadowed domains serve a different purpose from the legitimate parent

domains and sibling subdomains: for instance, they could be associated with IPs far

from their parents’ and siblings’, leading to prominent deviation. Second, to make

malicious infrastructures resilient to take-down efforts, attackers prefer to play domain

fluxing and rotate shadowed domains. In the meantime, the IPs covered by them are

limited, leading to abnormal correlation, especially when they are under apex domains

whose owners have no business relations.

Our detection system, Woodpecker, is driven by those two insights and runs a
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novel deviation and correlation analysis on the PDNS data. It takes three steps to

detect shadowed domains. Given a set of subdomains S observed at a certain vantage

point (e.g., enterprise proxy and scanning service), we first build the profiles for each

apex of S using the data retrieved from the PDNS source. Assume an apex D is

represented by a set of tuples:

D = { si | si :=< namei, rrtype, rdata, tf , tl, count > }

where namei is the FQND under D, rrtype and rdata represent the type (e.g., A

record) and data (e.g., IP) fields within the answers returned by DNS servers , tf and

tl denote the time when an individual rdata is first and last seen, and count is the

number of DNS queries that receive the rdata in response.

In the second step, Woodpecker aggregates these profiles and characterizes the

subdomains using a set of 17 significant features from the dimensions of deviation and

correlation. In addition to the data from PDNS, we also query a public repository of

web crawl data to measure the connectivity of domains (only extracting web links).

Finally, a machine-learning classifier is trained over a labeled dataset and is further

applied to large unlabeled datasets to detect shadowed domains. Figure 6.2 depicts

the workflow of Woodpecker.

Deployment. Woodpecker is a lightweight detector against shadowed domains, which

only requires passive DNS and publicly crawled data. We envision Woodpecker to be

deployed in several scenarios. It can help domain registrars like GoDaddy to detect

domains whose subdomains are added in an unexpected way, and hence allows them to

notify domain owners promptly. The operators of DNS servers can deploy our system

to trace and mitigate Internet threats. The administrators of organizational networks

can use the output of our system to amend their blocked lists (i.e., whether to block a

subdomain or an apex domain). Finally, it can be deployed by public scanning services,

like VirusTotal [214], to analyze submitted URLs/domains and provide more accurate

labels. When these services are used as blacklists and a site is blocked, knowing the

label is essential for the owner to diagnose the root cause [75].

53



Dataset Category # of Domains # of Apex
Farsight 360

# of Domains # of IP # of Domains # of IP
Dshadowed Shadowed 26,132 4,862 21,958 1,188 7,121 965
Dunknown Unlabeled siblings of Dshadowed - - 34,586 27,630 8,573 10,609

Dpop Legitimate popular - 8,719 8,965,818 3,596,441 1,081,112 645,763
Dnonpop Legitimate unpopular - 2,500 713,154 349,874 80,920 61,507

Dvt Daily feeds from VirusTotal - 2,573,196 - - 22,481,892 4,809,728

Table 4.1: Training and test datasets. Columns 3∼4 include all domains we manually
collected and thus some cells like those of Dunknown do not have data. Columns 5∼8
present the number of domains obtained from two PDNS, Farsight and 360, respec-
tively.

Source Campaign # Indicators
blogs.cisco.com Angler [120, 64] 16,580
blog.talosintelligence.com Neutrino [205], Angler [197, 208], Sundown [82] 9,536
heimdalsecurity.com Angler [107] 5
blog.malwarebytes.com Neutrino [193], Angler [57, 211] 9
proofpoint.com Angler [189] 2

Total 26,132

Table 4.2: Sources of confirmed domain shadowing.

4.3.2 Dataset

To bootstrap our study, we collected domains from different sources and queried

the PDNS data to build profiles. Below we describe how these data were collected and

summarize them in Table 4.1.

Shadowed domains. Obtaining a list of shadowed domains requires a lot of manual

effort. While there are many public blacklists documenting malicious domains, we

have not found any such list for shadowed domains specifically. Hence, we rely on

web search2 (using keywords like ”domain shadowing” and ”shadowed domain”) to

find all relevant articles. After manually reviewing that information, the indicators

(i.e., malicious domains/IPs/hashes) in the articles are downloaded. The subdomains

hosted under known malicious apex domains and directly under third-party hosting

services are removed for dataset sanitization. Overall, we managed to collect 26,132

known shadowed domains under 4,862 apex domains, as listed in Table 4.13. Table 4.2

summarizes this dataset, and we name it Dshadowed. While all shadowed domains in

2 Searching Google and otx.alienvault.com, a platform sharing threat intelligence.

3 We rely on a list documenting the public suffix in domain names to extract the
apex [162].
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Dshadowed are used for exploit kits, we are able to discover other types of usage, like

phishing, from the testing dataset (elaborated in §4.5.1).

Legitimate domains. We collected legitimate domains as another source to train

the classifier. The data comes from two channels. First, we chose domains that are

consistently ranked among the top 20,000 from 2014 to 2017 by Alexa [160], and we

obtained 8,719 2LDs in total. These popular domains usually have many subdomains

that cover a broad spectrum of services, including web, mail, and file downloading.

Solely relying on popular domains can introduce bias to our system, so we also obtained

non-popular legitimate domains from a one-week DNS trace collected from a campus

network. The DNS trace was anonymized and desensitized for our usage. We scanned

these domains using VirusTotal and excluded all of the malicious ones (alarmed by

at least one participating blacklist). Further, we randomly sampled 2,500 2LDs that

were ranked below 500,000 by Alexa in 2017. The two datasets are denoted as Dpop

and Dnonpop. The volume of subdomains found from our legitimate datasets is not very

extensive due to the rate limit placed by the PDNS provider, as described later.

VT daily feeds. We evaluated the trained model based on the data downloaded from

VT, as a showcase to demonstrate that Woodpecker can be readily integrated into secu-

rity services. In particular, we queried for a live feed of reports on all URLs submitted

to VT during February∼April 2017 on a daily basis. For each submitted subdomain

si, we queried VT to obtain the domain report and IP report to include additional

information for later result validation. All subdomains without IP and apex infor-

mation were filtered out, in order to reduce unnecessary queries submitted to PDNS.

We further excluded subdomains one level under web hosting services and dynamic

DNS based on the category field from the VT domain report (e.g., ”web hosting” and

”dynamic DNS”). This dataset is denoted as Dvt, which contains 22,481,892 unique

subdomains under 2,573,196 apex domains.

Passive DNS data. We queried the PDNS data of two security companies, Farsight

Security [100] and 360 Security [176], to obtain aggregated DNS statistics for apex
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## From 360

{"rrname": "eu.account.amazon.com", "rrtype": "A",

"rdata": "52.94.216.25;", "count": 31188,

"time_first": 1477960509, "time_last": 1494290720}

## From Farsight

{"rrname":"aws.amazon.com.","rrtype":"A",

"rdata":["54.240.255.207"], "count":63,

"time_first":1302981660,"time_last":1318508315}

Figure 4.4: Two sample records for subdomains under Amazon.com from 360 and Far-
sight (field explanation is covered in Section 4.3.1).

domains in all datasets (we used a wildcard query, like *.example.com, to retrieve the

data associated with all subdomains of example.com), except DV T . We did not query

Farsight for DV T due to its daily rate limit. Our account granted by 360 does not have

such restrictions and we queried 360 for all apex domains in DV T . Figure 4.4 shows

two sample records from 360 and Farsight.

The columns 6∼8 in Table 4.1 present the obtained data. As shown, different

PDNS databases have varying coverage. The evaluation of the impact of different

PDNS sources is presented in §4.4.3. For Dshadowed, their siblings under the same apex

domains might be added by attackers but missed by security companies. It is desirable

to determine whether Woodpecker can detect new shadowed domains among them. As

such, we constructed another dataset Dunknown, which includes all unlabeled siblings

of Dshadowed.

4.3.3 Features of Domain Shadowing

Woodpecker inspects the PDNS data collected from the global sensor array to

detect shadowed domains. Prior to our work, there have been several approaches using

PDNS data to detect malicious domains in general, like Notos [65], Exposure [74], and

Kopis [66]. However, these systems are not good choices for finding shadowed domains,

due to their different features (e.g., ephemeral and readable names) and appearance in

many different attack vectors (not only those used by botnet).
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By examining the ground-truth set Dshadowed, we found a set of features unique

to shadowed domains, which are essentially divided into two dimensions.

- Deviation from legitimate domains under the same apex. How subdomains

are created and used differs greatly between legitimate site owners and domain hackers.

To name a few, legitimate subdomains tend to be hosted close to the apex, while shad-

owed domains are hosted by bullet-proof servers with much fewer restrictions whose IP

is far from the apex. A site owner usually creates subdomains gradually while shadowed

domains are added in bulk around the same time. The homepage of the apex domain

(or www subdomain) usually contains a link to legitimate subdomains while shadowed

domains are isolated, since the registrar and apex website run different systems and

compromising them at the same time is much more difficult.

- Correlation among shadowed domains under a different apex. Inspecting

a single apex is not always effective. On the other hand, shadowed domains under a

different apex might be correlated, when an attacker compromises multiple domain ac-

counts and uses all injected subdomains for the same campaign. For instance, shadowed

domains under a different apex might be visited around the same time and point to

the same IP address, which rarely happens for legitimate subdomains under a different

apex.

In the end, we discovered 17 key features for the detection purpose, under four

categories: usage, hosting, activity, and name, as listed in Table 4.3. All features

related to deviation can be defined as D(si,Sapex(si)), where Sapex(si) represents all

known-good domains under the same apex of si. Labeling all known-good domains

is impractical when processing massive amounts of data. Instead, we simply consider

the apex domain and www subdomain as known-good. Site owners usually create www

subdomains for serving web content after the domain is purchased, so they are rarely

taken by attackers. The correlation features are extracted from subdomains hosted

together, i.e., sharing the same IP. We choose IP to model correlation since legitimate

websites tend to avoid sharing the IP with attackers. Below we elaborate the details
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Category Feature ID Feature Name Dimension Novel

Subdomain
Usage

F1 Days between 1st non-www and apex domain D
√

F2 Ratio of popular subdomains under the same apex domain D
√

F3 Ratio of popular subdomains co-hosted on the same IP C
√

F4 Web connectivity of a subdomains D
√

F5 Web connectivity of subdomains under the same apex domains D
√

F6 Web connectivity of subdomains co-hosted on the same IP C
√

Subdomain
Hosting

F7 Deviation of a subdomain’s hosting IPs D
√

F8 Average IP deviation of subdomains co-hosted on the same IP C
√

F9 Correlation ratio in terms of co-hosting subdomain number C [74]
F10 Correlation ratio in terms of co-hosting apex number C [74]

Subdomain
Activity

F11 Distribution of first seen date C
√

F12 Distribution of resolution counts among subdomains on the same IP C
√

F13 Reciprocal median of resolution counts among subdomains on the same IP C
√

F14 Distribution of active days among subdomains on the same IP C
√

F15 Reciprocal median of active days among subdomains on the same IP C
√

Subdomain
Name

F16 Diversity of domain levels C
√

F17 Subdomain name length C [67, 113]

Table 4.3: Features used in our approach to detect shadowed domains. Feature dimen-
sions D and C denote Deviation and Correlation, respectively. Although some features
use the same data source as previous work, e.g., resolution counts as in [141, 60], we
model them in different ways.

of each feature.

4.3.3.1 Subdomain Usage

This category characterizes how subdomains are visited, their popularity and

web connectivity.

Days between first non-www and apex domain. We check when the first non-

www subdomain was created under the apex. We found that many compromised apex

domains only run websites, whose only legitimate subdomain is a www domain. There-

fore, a new subdomain created suddenly should be considered suspicious. Assume

Date(d) is the date when a domain d is first seen. We compute this feature as

F1 = 1
log(Date(s)−Date(apex(s))+1)

, where s is the first non-www subdomain under its apex

and apex(s) denotes its apex. If there are no subdomains or all subdomains are created

on the same day as their apex, this feature is set to 1.

Ratio of popular subdomains. Miscreants usually generate names of their shadowed

domains algorithmically. We observe that the names tend to avoid being overlapped

with popular subdomain names, as changing the existing subdomain is not among the

attacker’s goals. Based on this observation, we define two features, the ratio of popular
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www mail remote blog webmail
server ns1 ns2 smtp secure
vpn m shop ftp mail2
test portal ns ww1 host

support dev web bbs ww42
mx email cloud 1 mail1
2 forum owa www2 gw

admin store mx1 cdn api
exchange app gov 2tty vps
govyty hgfgdf news 1rer lkjkui

Table 4.4: List of top 50 popular subdomain names.

subdomains under the upper apex and on an IP4. Specifically, given a suspicious subdo-

main s, we compute F2 = |{POP (di)}|
|{di|2LD(di)==2LD(s)}| and F3 = minj=1..n{ |{POP (di)}|

|{di|IP (di)==IPj(s)}|},

where IPj is the jth IP of s. For POP (di), we only consider subdomains with only one

more level than their apex. For example, www.foo.com is a popular subdomain under

foo.com while

www.a.foo.com is not. We examined the Forward DNS names collected by Project

Sonar [99] and selected the top 50 names for popular subdomains, as listed in Table

4.4.

Web connectivity. Shadowed domains are irrelevant to the services provided by

their apex, sibling and hosting servers. As a result, they are not connected to the

homepage or other subdomains through web links, while connections between legit-

imate subdomains and apex are more likely established. Furthermore, a shadowed

domain is hardly accessible to web crawlers that aim to index web pages, and cloaking

is frequently performed.

Here we use the data collected by public web crawlers, including Internet Archive

[68] and CommonCrawl [85], to measure the connectivity5. For each subdomain s, we

issue a query to Internet Archive and CommonCrawl. If any page under s is found to

be indexed, this feature, denoted as F4 = WEB(s), is set to 1. Otherwise, it is set to 0.

4 We issue additional PDNS queries to obtain subdomains not shown in the collected
datasets for an uncovered IP.

5 We did not query search engines like Google, because queries are blocked when
sending too many.
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Additionally, we compute F5 =
∑

WEB(di)
|{di|2LD(di)==2LD(s)}| and F6 = minj=1..n{

∑
WEB(di)

|{di|IP (di)==IPj(s)}|},

or the ratio of reachable subdomains under the same apex and same IP. Although ac-

curately assessing connectivity is impossible, we observe that these two crawlers have

good coverage of the legitimate domains and hence provide a solid approximation.

4.3.3.2 Subdomain Hosting

Deviation of hosting IP. Shadowed domains are usually hosted on IP addresses

distant from their apex domain and other known-good subdomains. By contrast,

legitimate subdomains tend to be hosted within one region, e.g., within the same

autonomous system (AS). Given an apex domain A = {< fi, li, ipi >}i=1..n and its

subdomains S = {< fi, li, ipi >}i=1..m, where fi and li denote the first and last seen

date of ipi, the deviation (F7) is computed as,

Dev(A, S) = maxj=1..m{mini=1..n{ψ(Ai, Sj)|A(fi) < S(fj)}} (4.1)

where ψ(Ai, Sj) is a function that computes the deviation score between two IP records.

It is defined as,

ψ(Ai, Sj) =
∑

C∈{IP,ASN,CC}

wk(C[Ai] 6= C[Sj]) (4.2)

where wk is the weighted penalty for the binary difference between Ai and Sj in IP,

AS number (ASN), and country code (CC). We empirically set the weights to 0.3, 0.2,

and 0.5. For example, if Ai and Sj share the same IP, the deviation score is 0 (ASN

and CC are identical, too). Otherwise, if Ai and Sj share the same ASN but not the

same IP, the deviation score will be 0.3. If all of these attributes are different, the

deviation score reaches 1.0. Additionally, we compute the average deviation (F8) of

all subdomains hosted on the same IP.
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Correlation ratio. In order to characterize the co-hosting properties of subdomains,

we define two features. First, given a subdomain s = {IPj}j=1..n, we compute how

many subdomains are co-hosted with s, specifically F9 = minj=1..n{ 1
log(|{di|IPj(di)==IPj(s)}|+1)

}.

This feature alone cannot distinguish shadowed and legitimate subdomains, as we

found that some IPs are hosting tens of thousands of legitimate subdomains, prob-

ably used by CDN. To address this issue, we count the distinct apex whose sub-

domains are hosted together with s. The reason behind using this feature is that

most site owners prefer to have a dedicated host with a dedicated IP after we fil-

ter out the domains that belong to shared hosting and dynamic DNS. We compute

F10 = minj=1..n{ 1
log(|{2LD(di)|IPj(di)==IPj(s)}|+1)

} for this feature.

Take the case described in §4.2.3 as an example to explain how the feature

values are computed. There are 11 subdomains from 11 distinct 2LDs co-hosted with

aaa.app-garden.com. Therefore, the two feature values are ( 1
log 12

, 1
log 12

). By contrast,

legitimate subdomains under app-garden.com, like appgarden15.app-garden.com, do

not co-host with any other subdomains, and their feature values are ( 1
log 2

, 1
log 2

).

4.3.3.3 Subdomain Activity

To evade blacklists, miscreants tend to create many shadowed domains under

different hijacked apex domains, using and discarding them simultaneously, which re-

sults in strong but abnormal correlation. However, the legitimate subdomains are more

independent from one another. In this study, we measure the correlation from three

aspects: first seen date, resolution count, and active days.

Our goal here is to determine how consistent these features are across different

subdomains. To this end, we convert each feature into a frequency histogram and

compare it to a crafted histogram when all subdomains share the same value, and

then use Jeffrey divergence [45] to measure their difference. Specifically, given a set

of values V , we first count the weighted frequency of each value, resulting in a set
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W = {< wi,
wi

|V | >}i=1..n. We then derive a new set W ′ by setting < wi, 1 > if wi has

the largest frequency wi

|V | ; otherwise < wi, 0 >. Finally, Jeffrey divergence is computed

over W and W ′.

Distribution of first seen date. Given a subdomain s, we compute the Jeffrey di-

vergence of the first seen date (in the format of MM-DD-YYYY) among all subdomains

hosted together with s. This feature is denoted as F11.

Resolution count. The visits to shadowed domains tend to be more uniform, as

they are rotated in regular intervals. The visits to legitimate domains are much more

diverse, and certain subdomains like www usually receive substantially more visits. Also,

legitimate domains tend to receive more visits than malicious ones. To model this

property, we define two features, Jeffrey divergence (F12) and the reciprocal of median

(F13) of resolution count.

When computing this feature, we aggregate all the resolution counts associated

with the observed IPs for a domain name. Therefore, even if the mapping between an

IP address and a domain name is not one-to-one, e.g., when IP-fluxing is played by

attackers, the resolution count is not diluted. On the other hand, when an IP is shared

across different domain names, e.g., when domain-fluxing is abused, this feature is

not affected either, because resolution counts are separated between individual domain

names, regardless of their IPs.

Note that while a malicious apex domain is oftentimes mapped to multiple IPs

(IP-fluxing), the attackers we studied here usually use subdomains in a thrown-away

manner because it costs them nothing to create. More specifically, we observe that a

shadowed domain is normally used only for a very short period of time (most of them

less than five resolutions) and mapped to one IP.

Active days. The feature above may raise alarm when legitimate subdomains are

rarely visited. As a complementary method, we also compute the active days of subdo-

mains, or how long a subdomain and IP pair is witnessed. This works particularly well
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when an attacker frequently changes the hosting IP. By contrast, IPs for legitimate do-

mains are more stable, resulting in longer active days. Similar to the resolution count,

we use two features, Jeffrey divergence (F14) and the reciprocal of median (F15) of

active days.

4.3.3.4 Subdomain Name

Similar to DGA domains [223, 67, 179], many shadowed domains are algorith-

mically generated, instead of being manually named. We model the name similarity

of all co-hosted subdomains under two numerical features. Note that the randomness

of characters (e.g., entropy of words) within one domain name is not considered by us,

because we found many shadowed domain do have meaningful label, like info.

Diversity of domain name levels. Shadowed domains belonging to the same cam-

paign are usually generated using the same template, and thus their domain levels

are the same. However, legitimate domains hosted on the same IP have less uniform

domain levels. Similar to the above features, we compute the Jeffrey divergence (F16)

for all of the subdomains hosted together.

Subdomain name length. For this feature, we remove the substring matching the

apex from each subdomain and compare the remaining length. When subdomains in

the same group have different levels, we pad them to the maximum level by adding

empty strings. Assume the prefix of subdomain is N = {< ni >i=1..m}, where ni is

the ith level, we compute the Jeffrey divergence for each level of name, denoted as

Jeffrey(Ni), and then take the mean value, as F17 =
∑m

i=1 Jeffrey(Ni)

m
.

4.4 Evaluation

In this section, we present the evaluation results of Woodpecker on labeled

datasets described in §4.3.2. We first compare the overall performance of five different
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classifiers on three ground-truth datasets. Then, we analyze the importance of each

feature. Finally, we evaluate Woodpecker on two testing sets, Dunknown and Dvt.

4.4.1 Training and Testing Classifiers

We first test the effectiveness of our detector over the ground-truth datasets,

Dshadowed, Dpop, and Dnonpop through the standard 10-fold cross-validation. We parti-

tion the data based on the apex domains to ensure that for each round of testing, we

have subdomains to test from the apex domains unseen in the training phase. Specif-

ically, subdomains in 9
10

of the randomly selected apex domains fill the training set,

and those in the remaining 1
10

apex domains fill the testing set.

We use the scikit-learn machine-learning library to prototype our classifiers

[186]. We compare five mostly used machine-learning classification algorithms, includ-

ing RandomForest, SVM with a linear kernel, Gaussian Naive Bayes, L2-regularized

Logistic Regression, and Neutral Network. Figure 6.12 illustrates the receiver operat-

ing characteristic (ROC) curves of these classifiers, when using Farsight and 360 PDNS

to build domain profiles. The x-axis shows the false-positive rate (FPR), which is de-

fined as NFP

NFP+NTN
, and the y-axis shows the true-positive rate (TPR), which is defined

as NTP

NTP+NFN
. We observe that all classifiers can achieve promising accuracy on both

PDNS data sources. To reach a 90% detection rate, the maximum FPR is always less

than 3% for all classifiers, suggesting that Woodpecker can effectively detect shadowed

domains.

Evidently, RandomForest outperforms the other classifiers in all cases. This is

mainly because domain shadowing detection is a non-linear classification task. Thus,

RandomForest and Neutral Network consistently outperform Logistic Regression and

linear SVM. Meanwhile, our dataset is not very clean, e.g., shadowed domains being

falsely labeled as benign for training. RandomForest can handle noisy datasets very

well [78]. Moreover, some features that Woodpecker extracts could be inaccurate, e.g.,

the resolution count and active days. These features depend on the vantage points
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Neutral Network (AUC = 0.99) 

RandomForest (       AUC = 0.99)
L2 LogisticRegression (AUC = 0.98) 

Linear SVM (    AUC = 0.96) 
Gaussian Naive Bayes           ( AUC = 0.98)
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(a) Farsight datasets.
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(b) 360 datasets.

Figure 4.5: Performance comparison of classifiers under 10-fold cross-validation. The
number of trees used in RandomForest is 100. All other classifiers use the default
configuration in scikit-learn.

where DNS queries are monitored. RandomForest is more robust to those errors [78].

Finally, RandomForest can effectively handle imbalanced training datasets [78].

Next, we draw more details on the false positives and negatives. We focus on the

best performing classifier RandomForest only and use it for all follow-up experiments.

Due to the space limit, we only present the results on Farsight data (results on 360 have

a similar distribution) in the rest of evaluations. In total, Woodpecker misclassifies 222

shadowed domains as legitimate (false negatives) and six legitimate ones as shadowed

(false positives). We manually inspect these instances to understand the cause of the

misclassification. First, about one third of these shadowed domains have snapshots

in Archive.org. Nevertheless, most of these snapshots were captured several years

ago. By contrast, most of the legitimate subdomains in our dataset have much fresher

snapshots. For example, the last snapshot of extranet.melia.com dated back to

2008, but the subdomain was used for an attack in 2015. We speculate that these

subdomains have been abandoned by domain owners (i.e., no longer serving any web

content) but were later revived by attackers for illicit purposes. One approach to

address this inaccuracy is to set an expiration date for snapshots. Second, the majority

of the missed shadowed domains co-host either with siblings only or with a few other

subdomains, which lessens the effectiveness of our correlation analysis. On the other

hand, the features of all six false positives resemble shadowed domains. For instance,
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Rank Feature Score rank Feature Score
1 F10 0.26188 10 F8* 0.03374
2 F2* 0.13213 11 F12* 0.03183
3 F7* 0.11509 12 F16* 0.03128
4 F17 0.06493 13 F3* 0.02852
5 F5* 0.0623 14 F15 0.02395
6 F9 0.05221 15 F13* 0.02309
7 F1* 0.04496 16 F6* 0.01491
8 F14 0.04424 17 F4* 0.00036
9 F11* 0.03451

Table 4.5: Importance of features. Features marked with an asterisk (*) are novel.

they are all hosted in countries different from their apex domains, and all subdomains

on the same IP are visited only a few times.

4.4.2 Feature Analysis

We assess the importance of our features through a standard metric in the

RandomForest model, namely mean decrease impurity (MDI) [79], which is defined as,

MDI(Xm) =
1

NT

∑
T

∑
t∈T :(st)=Xm

p(t)∆f(st, t) (4.3)

where Xm is a feature, NT is the number of trees, p(t) is the proportion of samples

reaching node t (Nt/N), v(st) is the variable used in split st, and f(st, t) is an impurity

decrease measure (Gini index in our case). Table 4.5 shows the score of each feature

with the novel ones marked with an asterisk. As we can see, three of the top five

features are novel, suggesting that using known features is not sufficient to capture

shadowed domains.

We further evaluate the impact of different groups of features. Figure 4.6 com-

pares the performance of Woodpecker when deviation-only and correlation-only fea-

tures are used. Interestingly, Woodpecker can still achieve a 95% TPR with less than

0.1% FPR when only features in deviation dimension are used. As such, the operators

behind Woodpecker can choose to trade a little accuracy for higher efficiency, since

computing correlation features are more resource-consuming.

In addition, we assess the performance of features under each of the four cat-

egories. The results are shown in Figure 4.7. Except for the feature of subdomain
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Figure 4.6: ROC of RandomForest on Farsight data when all, deviation-only (F1, F2,
F4, F5, F7) and correlation-only (all others) features are used.
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Figure 4.7: ROC of RandomForest on Farsight data when features in a single category
are used.

name, all other feature categories produce a reasonable performance. The feature of

subdomain name does not perform well because many legitimate services like cloud

platforms and content delivery network (CDN) also have seemingly algorithmically

generated domain names.

In summary, according to our analysis, it is almost impossible for attackers

to evade Woodpecker by manipulating a few features. Instead, they would need to

manipulate many features in both deviation and correlation dimensions, and the cost

is non-negligible. Take the feature of hosting IP deviation as an example. We observe

that most compromised apex domains use their registrars’ hosting services. GoDaddy

is particularly popular as it is also the largest domain registrar. In order to confuse

this feature, attackers can either change the IP of an apex domain, which will be

discovered by site owners immediately, or host their shadowed domains on GoDaddy
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(b) Deviation-only fea-
tures.
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(c) Correlation-only fea-
tures.

Figure 4.8: Performance of Woodpecker using RandomForest trained and tested on
different PDNS sources. FS stands for Farsight.

as well. However, unlike less reputable and bullet-proof hosting services, GoDaddy is

a poor choice for attackers, due to its much more stringent policies and actions against

malicious content.

4.4.3 Generality of Trained Models

The training and testing stages of our last experiments are carried out on an

identical dataset. We want to confirm whether Woodpecker can be trained on one

dataset and then applied to another dataset, and how its performance is impacted.

To this end, we evaluate two configurations, i.e., training the model on Farsight and

testing on 360, and vice versa. We exclude all subdomains in Farsight that overlap

with the 360 dataset, and thus the training and testing datasets have no overlap.

Figure 4.8 illustrates the results when different dimensions of features are used.

We find that both configurations cannot produce comparable results to our prior set-

tings when all features are used, which might indicate that Woodpecker needs to be

re-trained when being deployed on different vantage points. We further examine the

performance when deviation-only features are used. Interestingly, the result of the

model trained on Farsight is significantly improved, while the result of the model on

360 remains almost the same. Moreover, the performance of both models decreases

significantly when correlation-only features are used. The plausible reason behind this
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is the uneven coverage of PDNS sources, which greatly impacts the correlation analysis.

For instance, given an IP address, Farsight may observe tens of subdomains hosted on

the IP, while 360 might observe only one or two. Hence, a model trained on Farsight

could derive totally different feature weights compared to 360.

In summary, when deviation-only features are used, Woodpecker can be mi-

grated among different vantage points without re-training. A model trained on a

PDNS source would yield better results when tested on the same source.

4.4.4 Evaluation on Dunknown

We now evaluate Woodpecker onDunknown to examine whether we can accurately

distinguish legitimate and unknown shadowed subdomains under known hijacked apex

domains.

Among the 34,586 unknown subdomains in Dunknown (Table 4.1), Woodpecker

reports 10,905 shadowed domains. Since this dataset is unlabeled, we have to validate

the result through manual investigation. We use a set of rules, after confirming their

validity with an analyst from a security company. In particular, we consider a subdo-

main as a true positive (1) if it has been deleted from the authoritative DNS servers,

(2) if it is hosted together with those in Dshadowed, (3) if its name follows the same

pattern as known shadowed ones, (4) if it is reported by other security companies, and

(5) if it is not running any legitimate business. After these steps, we confirm 10,866

as true positives and 39 as false detections. The false detection rate is thus 0.35%,

which is consistent with our results on Dshadowed. Measuring FNR is very challenging,

given there are still over 20K subdomains remaining. Here we randomly sample 50

apex domains in Dshadowed and examine all the subdomains. In the end, we do not find

any new shadowed domains missed by Woodpecker.

4.4.5 Evaluation on Dvt

Finally, we apply Woodpecker to a large unlabeled dataset, Dvt built from the

daily feeds of VT, consisting of more than 20M subdomains that are recorded by 360.
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This dataset is more representative in that it covers many types of malicious domains,

either shadowed or non-shadowed. Many legitimate subdomains are also contained in

this dataset. As demonstrated in §4.4.3, Woodpecker achieves its best performance

when it is trained and tested using data from the same PDNS source. Therefore, we

use Woodpecker with RandomForest that is trained on 360 data for this evaluation. In

total, Woodpecker reports 287,780 shadowed domains (1.28% of the total subdomains)

under 23,495 apex domains.

Given these results, we first sanitize them by removing subdomains under ma-

licious apex domains, since our main goal is to detect malicious subdomains created

under legitimate apex domains. Then, we verify whether the remaining subdomains

are indeed shadowed. Such a validation process is very time-consuming and challeng-

ing. The best way is to report all of them to domain owners and registrars and wait

for their responses. However, previous studies [143] have shown that most are unre-

sponsive. Even finding all of the recipients is impossible in short term. So, we take

a best-effort approach instead and categorize these domains based on clustering and

manual analysis. In the end, they can be labeled into five categories.

Expired apex domains. First, we examine the Whois of all apex domains and find

that 1,782 out of the 23,495 apex domains have already expired, which account for

45,093 of the reported subdomains. We exclude all subdomains under these expired

apex domains, because there is no sufficient information left to us to determine the

legitimacy of the apex. This rule may remove some true positives: We check the apex

in Dshadowed and find that about 18% have expired. As a future improvement, we could

run Woodpecker more promptly when the data is downloaded from our vantage point.

Lead fraud [138, 147]. Second, we observe that 341 of the in-use apex domains

covering 86,886 reported subdomains are involved in lead fraud, a type of online scam

that solicits user’s personal information. They are identified by scanning domain names

using a set of keywords attributed to known lead-fraud campaigns, like rewards. One

such example is oiyzz.exclusiverewards.6053.ws. Manual sampling over these do-

mains (and apex) shows most of them are indeed carrying out lead fraud. We check
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the features of these domains and find that they show similar patterns to domain shad-

owing. For instance, their subdomains are hosted in different ASes and sometimes in

different countries from their apex domains.

Deleted subdomains. After expired and lead fraud domains are excluded, we further

run DNS probing over the remaining 155,801 subdomains to see whether they are

resolvable. It turns out that 29,565 had already been deleted. We consider these

domains very suspicious as their injected DNS records might be purified by domain

owners, especially when in most cases their siblings are still resolvable.

Heuristics based pruning. We further validate the remaining resolvable domains

using three heuristics. First, we construct the prefix patterns based on known-shadowed

domains, which are rarely used by legitimate subdomains, like add. and see.. Second,

we search for the subdomains alarmed by at least one vendor in VT but whose apex

domains have no alarms. Third, we cluster all subdomains based on their IP addresses.

If one subdomain in a cluster has been confirmed in previous steps, we consider all

others to be confirmed as well. In this way, we successfully identify 97,996 additional

shadowed domains.

Manual review. Finally, we manually review the remaining 28,240 subdomains. In

order to make this task tractable, we cluster these subdomains based on their apex

domains and analyze the top 100 large clusters and 200 other random apex domains.

We observe that 98 apex domains (covering 14,090 subdomains) are quite suspicious in

that we cannot find any information about the hosting sites from Google search results.

Meanwhile, many of them have been reported by security companies. Among them,

41 are potential DGA (Domain Generation Algorithm) domains, which we speculate

are registered by attackers. In the remaining set, 868 subdomains come from eight

dynamic DNS and three CDN services like dyn-dns.org and Limelight CDN, and

they are labeled as false positives. In addition, 358 are falsely alarmed as they run

the apex owner’s legitimate business, e.g., live.bilibili.com, totaling 1,226 false

positives. We are unable to confirm the remaining 12,924 subdomains due to their
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sheer volume.

Summary. In total, 127,561 shadowed domains are confirmed under 21,228 apex

domains, hosted on 4,158 IP addresses. Compared to Dshadowed, only 254 subdomains

under 216 apex domains are overlapped. Note that our validation and sanitization of

the data is best-effort: True shadowed domains could be eliminated, and legitimate

subdomains might be included. We would like to emphasize two lessons learned during

this validation process. First, dynamic DNS and CDN services are the main sources of

false positives reported by Woodpecker. Therefore, to improve accuracy, we have built

whitelists for dynamic DNS and CDN services [184, 98]. Second, subdomains under

malicious apex domains could exhibit similar features to shadowed domains and trigger

alarms. To distinguish them, blacklists focusing on apex domains like VirusTotal and

other domain reputation systems [113] can be leveraged. The whitelists and blacklists

can be incorporated into Woodpecker to further improve its accuracy.

4.5 Measurement and Discoveries

Woodpecker identifies in total 127,561 shadowed domains from various sources,

which significantly surpasses the community’s knowledge about this attack vector (only

26,132 shadowed domains were reported before our study). This sheer amount of data

offers us a good opportunity to gain a deeper understanding of this issue. We conduct a

comprehensive measurement study on the collected data and report our findings below.

We first count the number of compromised apex domains, and show the trend

in Figure 4.9. When there are many shadowed domains under an apex domain, we use

the year of its first observed shadowed domain. The earliest case that we observed hap-

pened in 2014. Since then, the number of affected apex domains increases substantially

every year. Because our dataset only contains data before May 2017, we observe fewer

shadowed domains in 2017. This result indicates that domain shadowing is becoming

increasingly rampant and deserves more attention from the security community. Next,

we conduct in-depth analysis from three aspects.
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Figure 4.9: Trend of domain shadowing.

Figure 4.10: Top 10 registrars in terms of distinct apex domains with shadowed do-
mains.

Affected registrars. In total, the shadowed domains trace back to 117 registrars.

Figure 4.10 shows the top 10 registrars in terms of distinct apex domains. We can see

that GoDaddy accounts for more than 70% of compromised apex domains while the

percentage for other registrars is much lower. Considering that GoDaddy shares about

32% of the domain market, which is much greater than the second largest one (6%),

this result does show that domain shadowing is a serious issue for GoDaddy, but this

does not necessarily indicate that it is the most vulnerable registrar. There are also

small registrars gaining high rankings in our result. The registrant buying domains

under them should check their account settings more cautiously.

To assess how these registrars protect their users, we manually examine the
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Figure 4.11: Distribution of IPs in the top 10 countries.

security measures of the top 5 registrars. Table 4.6 shows their password requirements

for registrants, whether they enforce two-factor authentication (2FA), and how they

notify owners about modifications. We observe that 2FA is either not provided or

disabled by default. This situation is alarming and disappointing, as the best account

defense does not play a role here. Also, no registrars notify users when the DNS records

are modified in the default settings.

Registrar Password Length 2FA Notification of Modifications
GoDaddy >9 chars with 1 capital, 1 lower and 1 digit SMS No
123-reg >9 chars with 1 capital, 1 digit and 1 special No No
Tucows† - - -
XinNet 8-16 with 1 digit Yes No
eNom 6-20 with 1 number and 1 special SMS No

Table 4.6: Security policy of the top 5 registrars in our detection. †Tucows is the owner
of eNom and Hover etc. and provides services under them.

Hosting IP. In total, 4,158 IP addresses associated with shadowed domains spreading

in 91 countries are discovered. Figure 4.11 illustrates the top 10 countries and their

percentages. As shown, most of these IPs are located in the United States (US) and

Russia (RU). We further find that the IPs in US and RU are widely spread as they

belong to 161 and 137 ASes, respectively. This indicates that domain shadowing is used

for many different campaigns or by different attackers. We check these IP addresses

in VirusTotal and find that 1,499 IPs were not alarmed. Therefore, malware-evidence
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Figure 4.12: CDF of the active days of shadowed domains.

or blacklist-based features used in Notos [65] and Kopis [66] will not work well for our

settings.

Shadowed domains. Finally, we analyze the characteristics of shadowed domains and

their apex. Basically, the number of shadowed domains under an apex is quite random,

from one up to 2,989 with the average number at six. Most shadowed domains have

a short lifetime and are mostly (85%) resolved for less than five times per IP. Figure

4.12 shows the CDF of the active days of shadowed domains. Among them, 85% are

observed for only one day. This indicates that miscreants rotate shadowed domains

quickly, in a similar fashion as fast-flux networks [119].

Previous work [74] uses the TTL value to identify malicious domains. We do not

use it for our problem, since it is usually not distinctive on the ground-truth set. We

verify this design choice on the entire set by sending DNS queries for 10,000 randomly

sampled resolvable shadowed domains. The result confirms our prior observation that

the value is either the same as their apex or within the normal range of other legitimate

domains.

By cross-checking with VT, we find that 126,384 shadowed domains were sub-

mitted to VirusTotal but only 14,134 subdomains were alarmed. In other words, secu-

rity companies have not yet devised and deployed an effective solution, and we believe

that Woodpecker can provide great value in tackling domain shadowing.
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4.5.1 Case Studies

There are two new findings uncovered in our measurement study. First, in

addition to serving exploit kits, shadowed domains are also used for other attack vectors

like phishing. Second, wildcard DNS records are also leveraged to create shadowed

domains.

Phishing. All currently reported shadowed domains like those in Table 4.2 are exclu-

sively involved in exploit kits. However, Woodpecker identifies many phishing attempts

that exploit shadowed domains. One ongoing campaign is paypal.com.webapps.random-

characters.

5degreesfalmouth.co.uk. We consider the apex domain as legitimate because we

find that its Facebook account is actively maintained6 and it is advertised on reputable

websites7. There are many similar cases like verifychase.com-u.mescacompany.com

and apple.com.random-characters.yclscholarship.org.

However, we did not see a phishing site impersonating compromised apex do-

mains. We assume this is probably because most compromised apex domains are not

popular enough, and only a limited number of victims can be targeted.

Wildcard DNS records. While an arbitrary number of subdomains can be spawned

by inserting many A and CNAME records, the simplest way to create many records is

to exploit wildcard DNS records. One prominent advantage of using wildcard records

is that attackers do not need to use templates or algorithms to generate subdomain

names. However, it is at the cost that the prone to be spotted by domain owners.

Woodpecker identifies many shadowed domains spawned by wildcard records8, like

bookstore.hyon.com.cn and blackhole.yilaiyin.com. We determine these cases

to be true domain shadowing by incorporating several pieces of evidence. First, most

of these apex domains are proven to be legitimate based on the information collected

6 https://www.facebook.com/5DegreesWest/

7 https://www.falmouth.co.uk/eatanddrink/5-degrees-west/

8 Wildcard record is identified if the record *.apex.com can be resolved.

76



through Google search. Second, all wildcard records under these apex domains point

to IP 180.178.59.74, and several other domains hosted on the IP have at least one

alarm in VirusTotal. Our detected subdomains have no alarms because they were never

submitted to VirusTotal. Finally, VirusTotal reports that two malware samples com-

municated with this IP. We observe that all of these apex domains are registered from

the same registrar, XinNet. Considering that there have been several data breaches

against this registrar [129, 200] in the past, we speculate that these apex domains are

probably victims in these incidents.

4.6 Discussion

Woodpecker is designed to detect subdomains created in bulk by attackers. The

malicious subdomains falling out of this category might be missed, like modification

of existing subdomains or the subdomains created under malicious apex domains, as

elaborated in §4.2.2.

An attacker who knows the features used by Woodpecker could change her strat-

egy for evasion. To hinder the effectiveness of our correlation features, the attacker can

choose to cut off the connections between the shadowed domains, like spreading them

to larger pool of IPs. However, this change would increase the attacker’s operational

cost. Alternatively, the servers linked to the shadowed domains can be co-hosted with

other benign servers on the same set of IPs in order to confuse our detector. So far,

we find such co-hosting rarely happened, since many shadowed domains are related

to the core components of malicious infrastructures, like exploit servers, which are

preferably hosted by bullet-proof providers [109]. In addition, placing the services on

reputable hosting providers increases their risk of being captured. To evade our devi-

ation analysis, the attacker can learn how the legitimate services on the apex domains

are managed and then configure the shadowed domains to resemble her target. For

instance, increasing the observed days until reaching the same level of the apex domain

is likely effective against Woodpecker. However, such changes are more noticeable to

site owners. To summarize, evading Woodpecker requires meticulous adjustment from
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the side of adversary, while the side-effects are inevitable (e.g., raising operational costs

and awareness from site owners).

When the subdomains under malicious apex domains exhibit similar features to

shadowed domains, they may be detected by Woodpecker as well. We believe capturing

such instances is also meaningful, especially for security companies. Meanwhile, tools

focusing on malicious apex domains, like PREDATOR [113], can be used here for better

triaging.

To some extent, the effectiveness of Woodpecker depends on the training data.

While some previous works rely on data not directly accessible to the public [65, 74,

66], we want to highlight that all of our data is obtained from sources open to re-

searchers and practitioners. Thus, deploying our approach is considerably easier. So

far, Woodpecker runs in a batch mode, i.e., when PDNS data from a large amount

of domains and IPs are available. For real-time detection, Woodpecker can be config-

ured to load all existing domain/IP profiles into memory and run the trained model

whenever there is an update.

4.7 Conclusion

In this dissertation, we present the first study on domain shadowing, an emerging

strategy adopted by miscreants to build their attack infrastructures. Our study stems

from a set of manually confirmed shadowed domains. We find that domain shadowing

can be uniquely characterized by analyzing the deviation of subdomains from their

apex domains and the correlation among subdomains under different apex domains.

Based on these observations, a set of novel features are identified and used to build our

domain shadowing detector, Woodpecker. Our evaluation on labeled datasets show that

among five popular machine-learning algorithms, Random Forest works best, achieving

a 98.5% detection rate with an approximately 0.1% false positive rate. By applying

Woodpecker to the daily feeds of VirusTotal collected in two months, we can detect

thousands of new domain shadowing campaigns. Our results are quite alarming and

indicate that domain shadowing has become increasingly rampant since 2014. We also
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reveal for the first time that domain shadowing is not only involved in exploit kits but

also in phishing attacks. Another prominent finding is that some miscreants do not

use algorithmically generated subdomains but exploit wildcard DNS records.
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Chapter 5

ALL YOUR DNS RECORDS POINT TO US: UNDERSTANDING THE
SECURITY THREATS OF DANGLING DNS RECORDS

5.1 Introduction

As one of the most critical components of the Internet, the Domain Name System

(DNS) provides not only vital naming services but also fundamental trust anchors

for accessing Internet services. Therefore, it has always been an attractive target to

attackers [71], [125], [128]. In order to ensure the authenticity and integrity of DNS

systems, tremendous efforts have been devoted to protecting both client and server

mechanisms [84], [91], [177], [216]. In particular, a suite of security mechanisms like

DNSSEC [69] have been deployed to secure the communication channels between DNS

servers and clients. However, little attention has been paid to authenticating the links

between DNS servers and those resources to which DNS records point.

New Threat. In this dissertation, we investigate a largely overlooked threat in

DNS: a dangling DNS record (Dare), which could be easily exploited for domain hijack-

ing due to the lack of authenticity checking of the resolved resources. A DNS record,

represented in a tuple <name, TTL, class, type, data>, is essentially a pointer,

where the data field points to the machine that hosts the resources for the name field.

Similar to pointers in a program, a DNS record can also become dangling. When a

service accessed by the name field discontinues, the domain owner will release the ma-

chine to which the data field points and should also purge the related DNS records.

Unfortunately, in practice, domain owners often forget to do the cleaning, thus result-

ing in dangling DNS records. Conventional wisdom holds that Dare is by and large

safe. To better understand this threat, we conduct the first comprehensive study on
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exploitable Dares (unsafe Dares) in the wild. In particular, our work reveals that Dare

is a real, prevalent threat.

We initiate our study by scrutinizing the DNS specifications, during which four

types of security-sensitive Dares are identified, including Dare-A, Dare-CN, Dare-MX,

and Dare-NS. To exploit unsafe Dares, an adversary needs to gain control of the re-

sources in the data fields of DNS records. There are two types of resources in Dares:

IP addresses and domain names. We present three attack vectors that an adversary

can harness to hijack these resources. (1) In the first attack vector, we observe that

cloud platforms have become a popular choice for modern websites. In clouds, physical

resources, especially the public IP address pool, are shared among all customers. Un-

fortunately, in practice, many domain administrators mistakenly trust these ephemeral

and publicly allocable resources, potentially generating all types of Dares. In a sense,

this attack vector is probability-based since the IP allocation in clouds is generally

random. (2) Modern websites extensively use third-party services. To integrate a

third-party service into a website, a domain owner needs to add an A or CNAME record

in the authoritative DNS (aDNS) servers and claim the ownership of the (sub)domain

on the owner’s third-party service account. Any service account that successfully claims

ownership of a (sub)domain can control the content of that (sub)domain. Surprisingly,

most third-party services do not verify such a claim, implying that an adversary can

potentially claim and control any (sub)domain that has been abandoned by its original

owner. The second attack vector is thus to hunt for the Dares linked to abandoned

third-party services. (3) Since a domain can expire [141], the third attack vector is

simply to search for the expired domains in the data fields of DNS records.

Large-scale measurement study. Given the three attack vectors, we then

assess the magnitude of the unsafe Dares in the wild. We conduct a large-scale mea-

surement on four datasets, one containing the apex domains in the Alexa top 1 million

spanning seven years and the other three containing the subdomains in the Alexa top

10,000, 2,700 edu, and 1,700 gov zones, respectively. For the first attack vector, we

develop a simple tool called IPScouter to automatically milk IP addresses in the clouds,
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especially the two largest clouds, Amazon EC2 [2] and Microsoft Azure [30]. Due to

its probabilistic nature, IPScouter cannot enumerate the whole IP address space. We

therefore assess the magnitude of potential dares by filtering all live IP addresses. For

the second attack vector, nine of the most popular third-party services are measured.

For the third attack vector, we crosscheck the WHOIS data and the domain registrars

to identify these expired domains.

In total, 791 confirmed and 5,982 potential Dares are successfully found in our

measurement study. Especially, Dares exist in all four datasets, indicating a widespread

threat. Even more worrisome, Dares can be found in 335 high-valued zones, including

those in edu, gov, and Alexa top 10,000. By exploiting these Dares, an adversary can

significantly enhance many forms of fraud activities (e.g., spamming, spear phishing,

and cookie hijacking). With the emergence of automated and free Certificate Author-

ities (CA) like Let’s Encrypt [24], adversaries can even have the hacked subdomains

signed and set up a “genuine” HTTPS website.

Mitigations. We posit that the fundamental cause of unsafe Dares is the lack

of authenticity checking of the ephemeral resources to which DNS records point. We

thus propose three mechanisms that DNS servers and third-party services can adopt

to mitigate unsafe Dares. (1) We first design a mechanism that allows aDNS servers

to authenticate these machines to which A records point. (2) In the case of third-party

services, we propose breaking the resolution chain of the dangling CNAME records by

adopting a safer isolated name space for each user of a service. (3) Finally, we advocate

that aDNS servers should periodically check the expiration of domains to which DNS

records point.

5.2 DNS Overview

The structure of DNS is organized as a hierarchical tree, which is shown in

Figure 5.1. The second- and sometimes third-level domains are registered by enter-

prises or end-users for connecting their local computing resources to the Internet. Any

enterprise/user can own a domain name if it has not yet been registered by another
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Figure 5.1: The hierarchy of DNS.

user. The further levels of domains are usually called subdomains, typically used to

designate a particular host, like web and mail servers.

The conversion between a domain name and an IP address is called DNS res-

olution. Figure 5.2 illustrates the workflow of DNS resolution when a client visits

www.foo.com for the first time. The stub resolver on the client queries a recursive

DNS (rDNS) server that can be either local or remote, i.e., outside the local network

(¶). In the case of a cache miss, rDNS will initiate queries recursively to the root

server, the .com Top Level Domain (TLD) server, and the authoritative DNS (aDNS)

server of foo.com (· ∼ »). Finally, the authoritative server of foo.com will respond

with the corresponding IP address of www.foo.com (¼ ∼ ½). Once the client obtains

the IP address, it can connect to the website hosting server (¾ ∼ ¿).

Figure 5.3 shows sample records on the .com TLD server and the aDNS server

for the example described in Figure 5.2. Each line of the DNS data represents a resource

record (RR), which is a five-tuple data structure <name, TTL, class, type, data>.

The fields <name, class, type> serve as the key to data, and TTL is the time-to-live
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Figure 5.2: The workflow of DNS resolution for www.foo.com.

in seconds that determines the lifetime of cached DNS records.

;; sample portion of .com zone file.

foo.com. NS ns1.foo.com.
foo.com. NS ns2.foo.com.

ns1.foo.com. A 1.1.1.1
ns2.foo.com. A 2.2.2.2

;; sample records from ns1.foo.com

bar.exmaple.com. CNAME www.foo.com.
www.foo.com. A 3.3.3.3

Figure 5.3: Sample portion of a TLD zone file and DNS records on a resolver. For
brevity, the TTL and class fields are omitted.

5.3 Dangling DNS Records

Our work is inspired by the use-after-free vulnerabilities that exploit the dan-

gling pointers in software. The data field of a DNS record is essentially a pointer, as

exemplified in Figure 5.4. In this example, the data field, 1.2.3.4, points to the ma-

chine that hosts the content of www.foo.com. Later, when the subdomain is no longer
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www.foo.com   A   1.2.3.4 1.2.3.4

Figure 5.4: An example of a dangling A record.

needed, the domain owner will release the IP address. The corresponding DNS record

becomes dangling if the domain owner forgets to remove it from the authoritative DNS

server. In general, we define a dangling DNS record as:

Dangling DNS Record (Dare). A DNS record r:=<name, TTL, class,

type, data> is dangling if the resource to which the data field points is released.

Currently, there are more than 40 types of DNS RRs. After scrutinizing the

semantics of each type of DNS RR, we identify four security-sensitive records if they

become dangling. These records are listed in Table 5.1. Obviously, not all Dares are

vulnerable to be exploited. For example, given a Dare-A in Figure 5.4, if an adversary

cannot easily obtain the IP 1.2.3.4, this Dare-A is safe. Here we further define unsafe

Dares.

Unsafe Dare. A Dare is unsafe if the abandoned resource could be manipulated

by a third party other than the one who controls the name field.

In the following, we first review some key details of the DNS records in Table

5.1 and then present three approaches that attackers can harness to exploit the unsafe

Dares.

5.3.1 Security Sensitive Dares

Dare-A. An A record maps a domain name to an IPv4 address. All requests

to the name field of an A record will be directed to and handled by the host at the
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Dare RR Description

Dare-A† A Returns an IPv4 address
Dare-CN‡ CNAME Alias of a name to another
Dare-MX MX Maps to a list of message transfer agents
Dare-NS NS Delegate to an authoritative name server

Table 5.1: Types of security-sensitive dangling DNS records. †Our work currently
covers IPv4 only. ‡DNAME is semantically similar to CNAME, so we do not consider
DNAME separately.

IP address. Thus, the domain name will be compromised if the IP address could be

acquired by a third party other than the original domain name owner.

Dare-CN. A CNAME record specifies that a domain name is an alias for another

domain name, the “canonical” domain name. For instance, www.foo.com in Figure 5.3

is the canonical domain name of its alias, bar.example.com. A request to the alias

will be resolved to its canonical domain name, which is further resolved to an A record.

Note that exploiting Dare-CN has almost the same effect as exploiting Dare-A.

Dare-MX. An MX record specifies the mail server responsible for accepting

emails on behalf of the domain. In the case of multiple MX records, users can set a

priority to each one and the server with the lowest value (i.e., highest priority) will

be used first. In the following example, an email client will contact a.mail.com and

b.mail.com first (usually in a round-robin manner); if both fail to respond, c.mail.com

will then be contacted. Note that an MX record is not necessary to receive emails. When

no MX is used, the A record of the domain (e.g., foo.com) will be treated as an implicit

MX [21]. If a Dare-MX could be exploited, an adversary may be able to send and receive

emails in this vulnerable domain.

foo.com. 60 MX 10 a.mail.com.

foo.com. 60 MX 10 b.mail.com.

foo.com. 60 MX 20 c.mail.com.

Dare-NS. An NS record delegates a domain to an aDNS server for answering

queries about names under that domain. There also exists an A record to provide the

IP address for the aDNS server, which is dubbed as a glue record. Normally, there

are multiple NS records serving a single domain, and the resolvers need to choose one
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aDNS server for further querying. The aDNS server selection [226] can be (1) hitting

the first server, (2) randomly selecting one, or (3) sorting the records based on a local-

defined rule like RTTs. To force DNS resolvers to use a Dare-NS, attackers can leverage

several techniques like Denial-of-Service attacks and NS pinning [115]. If a Dare-NS

could be exploited, adversaries will set up a malicious aDNS and direct visitors to

any IP address. Due to the transitive trust in DNS [183], the impact of Dare-NS is

amplified to all those domains that directly or indirectly depend on it.

5.3.2 IP in Cloud

Every Dare in Table 5.1 is finally resolved to an IP address and thus adversaries

can directly obtain the IP address to exploit unsafe Dares. For instance, if adversaries

can obtain 1.2.3.4 in Figure 5.4, all subsequent requests to www.foo.com will then be

handled by adversaries. Whether an IP address is obtainable highly depends on how

a domain is hosted.

Figure 5.5 illustrates the three typical paradigms of modern domain hosting.

In the first case, a domain is hosted on a dedicated machine with an IP allocated

from the address blocks owned by the domain owner. Many large organizations like

universities adopt this paradigm for most of their domains. However, the majority

cannot afford dedicated hosting, and they usually host their domains using third-party

services like GoDaddy [18]. In the normal configuration of these third-party services,

many domains are hosted on a single server sharing the same IP address. A user only

owns and controls the allocated storage space on the server. In both paradigms, a

Dare-A is generally safe because adversaries cannot easily obtain the IP address to

which the Dare-A points.

However, nowadays, more and more domains are migrated to the clouds. In

particular, a customer can potentially obtain any public IP address from a shared IP

address pool. Although the IP allocation should be random, a malicious customer

can obtain the desired IP address by repeatedly allocating and releasing IP addresses.
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Figure 5.5: Three paradigms of modern domain hosting.

Therefore, we focus on the security threat of Dare-A in the context of cloud environ-

ments, especially the two most popular cloud platforms, Amazon EC2 [2] and Microsoft

Azure [30].

    www.foo.com    CNAME   ec2-{ip}.compute-1.amazonaws.com

aDNS (ns.foo.com)

  ec2-{ip}.compute-1.amazonaws.com    A     1.1.1.1

DNS server 

of the Cloud

(a)

    www.foo.com    A   1.1.1.1

aDNS (ns.foo.com) (b)

Figure 5.6: aDNS setups for a domain hosted in the cloud.

Amazon EC2. In Amazon EC2, users can rent virtual machines (instances)

and run their own applications. By default, when an instance is initiated, it will

be assigned a public IP address; when the instance is terminated, it will release the

assigned IP address. EC2 also provides Elastic IP, a persistent public IP address

allocated to a user’s account. An Elastic IP is held by a user until she releases it. Once
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an Elastic IP is released, it will be recycled by EC2 and becomes re-allocable to other

users immediately. Each instance that receives a public IP address is also given an

external hostname in the form of ec2-{ip}.compute-1.amazonaws.com. Moreover,

EC2 currently provides two types of platforms: EC2-Classic and EC2-VPC [3]. While

they differ in many aspects, the major difference that matters to us is that a separate

public IP address pool is used for each type of platform. According to Amazon [44],

all EC2 accounts created after December 4, 2013 can only use EC2-VPC, while EC2-

Classic is merely available for accounts that have used it before on a region-by-region

basis.

Once a public IP address in the cloud is obtained, a user can point its domain

resource (e.g., a web server) to the IP address using either CNAME or A record, as

illustrated in Figure 5.6. Once adversaries successfully obtain the IP address of a

Dare-A, they are able to impersonate the domain resource at their will, regardless of

which EC2 platform the domain resource resides in and which kind of DNS record it

uses for pointing.

Microsoft Azure. Similar to EC2, the public IP addresses on Azure also

fall into two categories: dynamic and reserved. A dynamic IP is allocated and then

released when its associated resource, such as a virtual machine, is initiated and then

terminated, respectively. To prevent its IP address from changing, a user can explicitly

reserve an IP address, i.e., a static IP address. Our measurement shows that both types

of public IP addresses are allocated from the same IP address pool, and any one of

them becomes re-allocable immediately after being released. Furthermore, a dynamic

IP can be converted to a reserved IP under a user’s demand. Finally, to point a domain

resource to a public IP address on Azure, the same simple technique (i.e., using either

CNAME or A record) is applied.
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Dares IP in Cloud Abandoned Services Expired Domains
Dare-A

√ √

Dare-CN
√ √ √

Dare-MX
√ √ √

Dare-NS
√ √

Table 5.2: Summary of the attack vectors to which each type of Dare is vulnerable.

5.3.3 Abandoned Third-party Services

Modern websites extensively use third-party services. For instance, they may

use Mailgun [29] for email delivery and Shopify [38] for building online retail point-

of-sale systems and stores. These services usually provide users a subdomain where

the corresponding service is hosted. For example, when a user, Alice, subscribes the

service from Shopify, she will be assigned a subdomain name, alice.myshopify.com,

and thus her online store is accessible via this subdomain. However, in most cases,

people prefer to have their stores under their own domains. To this end, each third-

party service allows users to point their (sub)domains to the resource provided by the

service using A or CNAME records. In the example of Shopify, Alice can set up her aDNS

as follows:

shop.Alice.com A 23.227.38.32

(or) shop.Alice.com CNAME alice.myshopify.com

In addition, Shopify’s DNS server resolves all users’ subdomains to a dedicated

domain:

*.myshopify.com CNAME shops.shopify.com

Since all custom domains of Shopify point to the same IP address (23.227.38.32)

or the same domain (shops.shopify.com), Alice also needs to claim ownership of

shop.Alice.com on her Shopify account. In this way, Alice’s store can be accessed

through shop.Alice.com.

Later, when Alice does not want to use Shopify anymore, she can stop the ser-

vice and purge the above DNS records. However, if she forgets to do the cleaning,

shop.Alice.com will continue to be resolved to shops.shopify.com since most ser-

vices use a wildcard to resolve user-specific subdomains (as Shopify does). Now, if an
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adversary, Malice, knows that shop.Alice.com points to Shopify, he can claim own-

ership of it. If Shopify does not verify the claim, which is a common practice in most

services, Malice can now control the subdomain, shop.Alice.com.

The case of email service is similar to this process. The only difference is that

a user adds MX records, instead of CNAME records, for receiving emails.

A verification of domain ownership can prevent the above attacks. However, in

some cases, verification is too costly, if not infeasible. For example, the Azure cloud

service employs a user-specified subdomain naming scheme. To achieve the domain

ownership verification, the cloud has to remember all subdomain names previously

used by each user, and the induced cost is prohibitively high considering the large

scale of Azure’s user group.

In summary, for this attack to succeed, it requires that:

• the vulnerable domain can be resolved to a common target (e.g., IP address or

domain name) and the third-party service does not verify the ownership of the

vulnerable domain; or

• the vulnerable domain resolves to a custom target that can be obtained by any

user when it is available.

5.3.4 Expired Domains

The data fields of CNAME, MX, and NS records may point to expired domains.

An adversary may re-register and abuse the expired domains. Our attack differs from

previous works [141], [161], [170] in that they mainly exploit the residual trust of the

expired domains, while ours abuses the trust of the unexpired (sub)domains pointing

to the expired domains. Such stale records are pervasively neglected by domain ad-

ministrators because (1) there could be secondary records as a means of failover (e.g.,

multiple MX and NS records); and (2) the services linking to the expired domains are

no longer used and no one cares about updating them.

91



Collect Domains Search for Dares

Alexa
Top 1M
domains

Alexa Top 
10K

.edu in 
Top 1M

.gov in 
Top 1M

Brute-Force

Scan for 

Subdomains   Dig for

  DNS Data

IP Reachability

Expired Domain

Abandoned Services

IPScouter

Threat

Analysis

Figure 5.7: Methodology overview.

5.3.5 Summary

Overall, we have shown that several types of Dares can be exploited in multiple

ways. Table 5.2 summarizes the attack vectors to which each type of Dare is vulnerable.

5.4 Measurement Methodology

To assess the magnitude of the Dares problem, we conduct a large-scale mea-

surement study. The overview of our measurement methodology is shown in Figure

5.7. We attempt to answer the following two questions: (1) How prevalent is each type

of Dares in the wild? and (2) what are the security implications of Dares?

5.4.1 Domain Collection

In order to comprehensively detect Dares, it is ideal to collect the DNS data for

all apex domains and their subdomains. However, it is impractical to scan all domains.

Since only popular ones could pose a serious threat, we build our dataset as listed in

Table 5.3. We first obtain a list of apex domains. Here we choose a snapshot of Alexa’s

top 1 million domain list for each year from 2010 to 2016. These top domains are

particularly attractive because a popular domain provides higher value if an adversary

can control it. This set of domains is denoted as D. Note that our dataset D in essence

is different from the expired domains studied in [141]. In the case of expired domains,

the DNS records in all resolvers were purged, resulting in no Dares.

It is also non-trivial to obtain the complete subdomains of an apex domain.

Since the majority of apex domains disallow a DNS zone transfer (i.e., a DNS query
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Dataset Data Space
D Unexpired apex domains in Alexa top 1M during 2010 ∼ 2016
St Subdomains of top 10,000 general
Se Subdomains of top 2,700 .edu
Sg Subdomains of top 1,700 .gov

Table 5.3: Evaluation set of domains.

of type AXFR), we decide to use brute-force scanning to construct our subdomain

list. However, it is impractical to scan all top 1 million domains. To make this search

manageable, we constrain our search space to the first 10,000 domains, 2,700 .edu

domains, and 1,700 .gov domains in the top 1 million domain list. We first issue

a DNS zone transfer query to each of these domains, and we successfully collect the

zone data for 320 domains. Based on the results of zone transfers, we then construct

a word list of size 20,000 for brute-force scanning. The zone transfer results also

show that the wildcard records (e.g., *.foo.com) are widely used in practice. In

our brute-force scanning, we carefully eliminate the non-existent subdomains. In this

process, we send DNS queries to about 288 million valid subdomains and about 570

thousand subdomains are successfully obtained. This subdomain dataset is denoted as

S = St ∪ Se ∪ Sg.

5.4.2 DNS Data Retrieval

Then we use the DNS tool dig to retrieve the DNS records of every domain

in D and S. We only collect the DNS records whose types are listed in Table 5.1.

For these types of DNS records except A record, we recursively issue DNS queries for

the hostname in the data field until a query reaches (or fails to reach) an A record.

Therefore, for each domain d in D ∪ S, we obtain a DNS resolving chain RCd =

{rtype0(d, data0), . . . , rtypei(datai−1, datai)}. This dataset is denoted as DREC =⋃
RCd.

5.4.3 Searching for Dares

After the completion of DNS data collection, we then automatically search for

the four types of Dares using Algorithm 1. Given the resolving chain of a domain, we
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recursively check the data field of every DNS record in the chain, as shown in Lines 7,

9, 12, 15 and 19 of Algorithm 1. The Dare type is determined by the type of the first

DNS record of the chain. We next describe how we implement these checks in detail.

Algorithm 1 Search for Dares.
Input: DREC, ALLOCIP
Output: Dares (DARES) and potential Dares (PDARES)

1: procedure DAREFINDER(DREC, ALLOCIP)
2: for RC ∈ DREC do
3: daretype← RC.rtype0

4: for rec ∈ RC do
5: hostname, rtype, data← unpack(rec)
6: if rtype == “A” then
7: if data ∈ ALLOCIP then
8: DARES← [daretype, rec, data]
9: else if likely dareA(data) then
10: PDARES← [daretype, rec, data]

11: if rtype ∈ [“CN”, “MX”] then
12: if domain expired(data) then
13: DARES← [daretype, rec, data]
14: break
15: if abandoned service(data) then
16: DARES← [daretype, rec, data]
17: break
18: if rtype == “NS” then
19: if domain expired(data) then
20: DARES← [daretype, rec, data]
21: break

5.4.3.1 Checking A Records (Lines 7 and 9)

Both EC2 and Azure publish their public IP ranges [6], [31]. However, we still

cannot know if a given IP is allocable at a specific time. Almost all cloud platforms

including EC2 and Azure assign IP addresses randomly and disallow users to specify

an IP to allocate. It is a challenging task to obtain a desired IP. We study this issue

from the following two aspects:

• We quantify whether and how practical an attacker can overcome the random IP

assignment to obtain a desired IP by scouting the IP pools.

• We then assess the potential magnitude of Dares in the wild.

Scouting IP Pools. We implement a simple tool, IPScouter, to milk the IP

addresses from EC2 and Azure. Since EC2 uses two separate address pools for EC2-

Classic and EC2-VPC, we set up two IPScouters, one for each address pool. The
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IPScouter-VPC randomly requests the IPs from all currently available regions [34].

The IPScouter-Classic requests the IPs from us-east-1 as our account can support

EC2-Classic only in this region. In both setups, only Elastic IPs are allocated via the

boto’s [8] API allocate address. Also, the IPScouter-Azure requests the IPs from the

regions returned by ServiceManagementService.list locations() [7]. The static IP

addresses are reserved by using create reserved ip address(). No virtual machine

or service is launched in this process.

The obtained IP addresses are immediately released after being logged into

ALLOCIP, the input to Algorithm 1. Finally, since all clouds throttle query API requests

on a per-account basis, our IPScouters employ the exponential-backoff-linear-recovery

strategy to control their request rates.

Potential Dares in the Wild. Our IPScouter is probabilistic by nature and

many factors could affect the completeness of the milked IPs. We may not find all

desired IPs in our study. For example, a cloud platform may reserve a portion of IP

ranges for some time. Therefore, we scan all IPs in DREC to assess the potential number

of exploitable Dares in the wild. Our basic assumption is that if an IP in a cloud is

not alive, it has probably been released. In both EC2 and Azure, an in-use IP costs

nothing, but users should pay for an unused one. Thus, we believe this assumption is

valid in general. Given a set of A records R = {r1, r2, · · · , rn}, with ri = <namei, IPi>

and i ∈ [1, n], we check if they are potential Dares based on the following steps (Line

9 in Algorithm 1):

Step 1. If IPi is not in the cloud, remove ri.

Step 2. We remove all records that are very unlikely to be dangling based on

their name fields. For instance, a record may point to a specific service built atop an

existing IaaS infrastructure like load balancing. These records are usually managed by

the cloud DNS servers. If the DNS resolution is successful, it indicates that the IP is

not released.

Step 3. We scan the remaining records using ZMap [104]. To reduce the
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scanning traffic, we prioritize the ports using a set of heuristics. For instance, the

ports for HTTP and HTTPS are ranked first by default. If the name field starts with

ns, it is probably a DNS server, and thus we scan port 53 first using both TCP and

UDP. Note that we conduct a second scanning for all non-alive IP addresses after one

month to ensure they are not transient failures.

Step 4. At this step, all remaining records are probably Dares since they are

associated with these not-in-use IP addresses. We further check archive.org to gain

more confidence on whether an archived webpage for namei can be found (see §5.5.2).

5.4.3.2 Checking Abandoned Services (Line 15)

We first identify a list of popular third-party services. To this end, we cluster all

CNAME and MX records based on their data fields and then manually check all email and

top 200 non-email services in terms of the cluster size. A service is selected for further

checking if it (1) satisfies one of the two requirements in §5.3.3 (i.e., the domains using

the service are vulnerable to security-sensitive Dares) and (2) provides free or free-trial

accounts, which allow us for further checking. As listed in Table 5.4, only one email

and eight non-email services meet the two pre-conditions and are chosen for further

checking. The majority of those non-selected services do not provide free accounts

to individuals, preventing them from being further checked. For non-email services,

only several, such as Google [19] and Aliyun [1], enforce ownership verification. By

contrast, we find only one email service that does not enforce ownership verification.

This is probably because most email service providers try to prevent their services from

being abused in spamming and phishing. A common practice of verification requires

domain owners to include a random CNAME or TXT record into their aDNS’s records.

Since we assume that adversaries cannot control a domain’s aDNS, such verification

will be able to foil all attack attempts.

Then, to automatically find unclaimed domains, we build an automated tool by

leveraging Selenium [37], a tool that automates web browsing. Note that we can easily

single out unclaimed domains in Azure by simply finding these CNAME records whose
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Type Service List
CN Azure cloud service (cloudapp.net), Shopify, Github, Wordpress, Heroku, Tumblr, Statuspage, Unbounce
MX Mailgun

Table 5.4: Evaluated third-party services.

data fields fail to be resolved to A records. There is no need to use the automated tool

because the domains in the name fields of these CNAME records should be unclaimed in

the Azure cloud service.

5.4.3.3 Checking Expired Domains (Lines 12 and 19)

It is straightforward to check whether a domain has expired. We first screen out

the expired domains based on the WHOIS responses. For an expired domain, the response

from WHOIS should be null. Since WHOIS is not always reliable, we then crosscheck with

the popular Internet domain registrars such as GoDaddy to verify the expiration of a

domain if we can re-register the domain.

5.4.4 Limitations

While our work is able to find exploitable Dares in the wild, we cannot know

whether and how many websites have already been exploited. For example, an expired

domain may have already been registered by an attacker. Moreover, our study currently

covers only two cloud platforms and nine third-party services. However, the Dare

problem should be universal across many cloud platforms and third-party services.

5.5 Measurement Results

In this section, we demonstrate that the problem of Dares is widespread and

underplayed, even in those well managed zones like edu and gov. We first describe the

general characteristics of Dares found in our measurement study and then analyze the

measurement results with respect to the three attack vectors.
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Figure 5.8: Number of confirmed Dares for each dataset.

5.5.1 Characterization of Dares

Figure 5.8 presents the number of Dares found in the four datasets listed in Table

5.3. In this figure, we only count the IP addresses that are successfully obtained by

our IPScouters (i.e., confirmed Dares). The remaining potential Dares are presented

in Figure 5.9. For dataset S, multiple Dares in the same domain zone are counted

separately. In total, we find 791 Dares and 5,982 potential Dares in the wild. As we

can see, Dares exist in all four datasets, indicating a widespread problem.

It is evident that the total number of Dare-A and Dare-CN accounts for the

majority of confirmed and potential Dares in the wild. This is because A and CNAME

records are the most frequently used in practice. For apex domains, more than 90%

delegate their aDNSes to third-party services like GoDaddy [112]. When the hosting

resources are released after a website is closed, its aDNS is usually still alive and

all DNS records will unlikely be deleted as the domain itself is still unexpired. The

A and CNAME records for subdomains commonly link to new resources supported by

the domains or external services, which often have a relatively short lifetime and can

sometimes be migrated away. Due to the high churn rate of these subdomains, it poses

a tedious burden for domain owners to manually keep their aDNS servers updated and

consistent. Therefore, in practice, these stale DNS records are usually not purged,

resulting in Dares. Note that the number of Dare-CNs in dataset D is relatively small

because it is normally not recommended to keep CNAME records at apex domains.

Dare-MX is mainly caused by abandoned services, and only dataset D has in-

stances that can be exploited by the other two vectors. After examining these special
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Figure 5.9: Number of potential Dares.

instances, we find that domains in D tend to use multiple MX records pointing to differ-

ent domains. For example, the DNS records of domain customizedgirl.com include

customizedgirl.com@ns-1057.awsdns-04.org.:

customizedgirl.com. 60 MX 10 bridalpartytees.com.

customizedgirl.com. 60 MX 10 customizedgirl.com.

customizedgirl.com. 60 MX 10 shoplattitude.com.

Here three MX records point to three different domains with the same priority.

We find that the third one, shoplattitude.com, has expired. We speculate that this

is a typo, which should actually be shoplatitude.com. Since each of the three records

is used in a round-robin fashion by resolvers, it is difficult for domain owners to quickly

be aware of the failed record. By contrast, all MX records in a better-managed domain
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like those in dataset S usually point to different mail servers of the same domain.

Finally, only four instances of Dare-NS are found in our measurement, all of

which are in dataset D. All instances share the same pattern of misconfiguration, with

one example shown below.

bedshed.com.au@ns1.partnerconsole.net:

bedshed.com.au. 3600 NS ns2.r2design.com.au.

bedshed.com.au. 3600 NS ns1.r2design.com.au.

Using dig utility with +trace option, we find that the actual aDNS in .com.au

TLD is ns1.partnerconsole.net, but the NS records are not updated and still point

to the expired domains. The smidgen of Dare-NS in the wild is probably because the NS

records are more critical, and a misconfiguration can be easily spotted. Moreover, the

majority of domains have migrated aDNS to third-party services [112], which usually

have well-managed servers. Unfortunately, this migration also becomes a common

cause of Dare-A that can be exploited through the IP in cloud (see §5.5.2).

Dare top 10K (St) edu (Se) gov (Sg)
Dare-A 40 1 0
Dare-CN 260 50 5
Dare-MX 5 1 1

Total 277† 52 6 335

Table 5.5: Statistics of distinct apex domains in S with confirmed Dares. † Some
domains overlap across the above three lines (e.g., a domain has both Dare-A and
Dare-CN).

For dataset S, Table 5.5 shows the number of distinct apex domains for each

type of Dare. In total, we identify Dares for 277 distinct domains in Alexa’s top 10,000,

52 in edu zone and 6 in gov zone. In particular, the domains in St cover many types

of websites as shown in Figure 5.10. Our results demonstrate that Dares indeed exist

in almost all types of websites and thus can incur serious damages.

5.5.2 IP in Cloud

We now analyze the measurement results of the first attack vector in two cloud

platforms: Amazon EC-2 and Microsoft Azure.
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Figure 5.10: Categories of websites that have Dares.

Performance of IPScouters. Figure 5.11 shows the number of distinct IP

addresses obtained by IPScouters over time. IPScouter-Classic and IPScouter-Azure

last for 14 days and IPScouter-VPC lasts for 26 days. For EC2-VPC and Azure, the

number increases linearly, with about 5,000 and 2,200 new IP addresses obtained daily,

respectively. However, the number on EC2-Classic only rapidly increases in the first few

days and then stops growing over time. The speed of IPScouters is mainly constrained

by three factors: the request rate limit of the clouds, the randomness of IP allocation,

and the density of IP address space. For the first constraint, we find that a five-second

delay between two API calls (IP allocation or release) works fine with EC2, but at least

a ten-second delay should be used in Azure. Under this configuration, IPScouters send

about 7,900 and 4,300 IP allocation requests per day to EC2 and Azure, respectively.

Although it seems that IP allocation is not truly random, it is very unlikely for

a cloud to re-use the recently released IP addresses. That is why on both EC2-VPC

and Azure the number of daily obtained new IP addresses remains about half of the

number of allocation requests sent to the clouds. This speed is fast enough to feasibly

milk a large number of IP addresses in each cloud.

The significant speed decrease on EC2-Classic is probably due to the crowded
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Figure 5.11: Number of IP addresses milked on clouds over time.

IP address space. For instance, for all those domains that use EC2 in our datasets,

about 69% are hosted on EC2-Classic. By contrast, both EC2-VPC and Azure have

larger address space but fewer users. Note that, although the IP address spaces of EC2

and Azure include millions of IP addresses [6], [31], we speculate that only a portion

of IP address space is available at any time.

We deploy only one IPScouter for each cloud platform, while adversaries may

deploy IPScouter farms to significantly speed up the IP milking. Finally, the IP allo-

cation in clouds is a complicated issue that deserves in-deep study, and we leave this

exploration as our future work. In this work, our goal will be to demonstrate that the

Dare problem is a real and serious threat.

Confirmed and Potential Dares. In our measurement, all confirmed Dares

are from EC2, with about 93% from EC2-Classic. Considering that IPScouter-Classic

milks IP addresses from only one region, more potential Dares would have been con-

firmed if we extended our search to other EC2 regions. Meanwhile, as shown in Figure

5.9, the number of potential Dares on EC2 is significantly larger than that on Azure.

This is because Azure is a relatively new platform and has a much smaller market

share than EC2. For instance, we find that among all domains that use clouds in our
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Figure 5.12: Number of Dares on each third-party service.

datasets, Azure hosts just one tenth. Thus, more time is required to milk desired IPs of

Azure. However, this does not reduce the generality of a potential attack; the problem

is universal. As the clouds become more crowded, the threat will be more serious and

widespread.

By further crosschecking with archive.org, we successfully find snapshots for

about 52.6% potential Dares. Thus, these domains can be claimed as true Dares with

higher confidence.

We only identify a few potential Dares in edu and gov zones. Domains in these

zones are mostly deployed using the paradigm of Figure 5.5(a), where no cloud IP is

used. Besides, the majority of domains in gov zones use Rackspace [33], instead of

EC2/Azure.

Patterns of Dares. As shown in Figures 5.8(a) and 5.9, this attack vector can

effectively exploit both apex domains and subdomains. We attempt to infer how the

Dares are introduced by manually searching and checking relevant information of all

confirmed Dares and 100 randomly sampled potential Dares.

While many vulnerable apex domains are toy websites with low value, more than

half of those identified belong to startups for which we can find company information
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on CrunchBase [9], Twitter, and Github. One of the examples is described in §5.6.1.

These startups are either closed, re-branded, or acquired by other companies. In all

cases we examined, although the domain owners have released the hosting resources in

a cloud, they continue to renew their domains. Such vulnerable apex domains provide

valuable and attractive properties for attackers to conduct phishing and scamming.

For those vulnerable subdomains, we uncover two main causes of Dares. First,

Dares are introduced due to website re-construction. One such example is support.mediafire.com.

Previously, the “Get Support” on its homepage was linked to www.support.

mediafire.com/help. However, it now points to the link of www.mediafire.com/help,

and the host in the cloud for support.mediafire.com has been released. Clearly, the

domain owner forgot to update their DNS servers with this change. In another ex-

ample, autotrader.co.uk stopped the self-managed aDNS (ns4.autotrader.co.uk)

and delegated the aDNS resolution to verisigndns. After this delegation, although

they correctly updated the NS records, they forgot to delete the glue records. The

second cause is simply that certain services have been discontinued. For instance,

books.panerabread.com previously collaborated with Amazon to sell books. This

service now seems to be closed. Again, the hosting resources are released, but its
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aDNS is not updated.

Cost analysis. During our study, IPScouters cost about $0.07 on EC2 and

$0.005 on Azure per day. Such a low cost makes it feasible to conduct long-term IP

milking. Once a desired IP is obtained, to hold it with a cheapest virtual machine, it

costs $0.0115 and $0.023 per hour or $100.74 and $201.48 annually on EC2 and Azure,

respectively. By contrast, the same expense would afford adversaries only several min-

imally effective typosquatting domains.

5.5.3 Abandoned Third-party Services

Figure 5.12 presents the number of Dares found on each third-party service,

showing that Dares can be found on every service platform. Most Dares on Mailgun

are in dataset D because email services are commonly hosted under apex domains.

Instead, non-email services usually serve as the sub-functions of an apex domain and

thus reside in the subdomains. We find that this Dare problem is quite worrisome as

Dares can even be found in famous domains like Yahoo.net and mit.edu.

Patterns of Dares. While most Dares occur because the third-party services

are abandoned, we find an interesting pattern in one of the services, Wordpress, as

shown in the following example.

www2.opensky.com@ns-1448.awsdns-53.org.:

www2.opensky.com. CNAME blog.opensky.com.

blog.opensky.com. CNAME openskymerchants.wordpress.com.

The website of blog.opensky.com is still in use and its original webpage can be

reached. The domain owner intends to direct www2.opensky.com to blog.opensky.com

using CNAME. Unfortunately, this configuration fails to function properly and accessing

www2.opensky.com will reach an error page on Wordpress. The problem lies in the fact

that only blog.opensky.com is claimed on Wordpress, which dispatches web requests

according to the initial domain name. Since www2.opensky.com is not claimed, Word-

press will direct all requests to the error page. An attacker can thus claim the subdo-

main, and all subsequent requests will then be redirected to the landing page under the
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attacker’s control, although the CNAME tries to redirect to blog.opensky.com. While

we only observe such cases on Wordpress, services like Github, Cloudapp, Shopify,

and Herokuapp may also be vulnerable to this misconfiguration. The other three

services, including Tumblr, Statuspage, and Unbounce, do not suffer this problem be-

cause a subdomain can be claimed if and only if it points to a specific domain like

domains.tumblr.com.

Cost analysis. All of these services provide free or free-trial accounts. Thus,

it costs adversaries virtually nothing to register many free accounts.

5.5.4 Expired Domains

Patterns of Dares. As our results show, many subdomains in even well-

managed zones like edu and Alexa’s top domains point to expired domains using

CNAME. A further examination reveals three patterns into which these expired do-

mains fall, as listed in Table 5.6. First, more than one-third of expired domains look

quite similar to their alias subdomains. For instance, module.rabobank.nl points to

rabobank-hoi.nl and rps.berkeley.edu points to rpsberkeley.org. Second, as

found in [141, 170], a significant portion of subdomains point to expired external ser-

vices. One example is 21vcdn.com. The subdomain, js.jiayuan.com, points to the

service that has stopped working since 2010. Third, we find several cases of typos. For

instance, b.ns.trnty.edu points to awsnds-18.net. The domain owner obviously

intends to use a CNAME record to redirect their previous aDNS to the one provided

by Amazon AWS. This attempt fails because of a typo. The domain currently uses

NS records to point to Amazon AWS directly, but the mistyped CNAME record still

exists. The remaining 33% of expired domains basically comprise random characters.

Existing defense against abusive domain registration. We have re-

registered all the expired examples listed in the dissertation (i.e., eight expired do-

mains). After about three months, our re-registered domains are still alive and we

received warning from only one domain owner. This indicates that the majority of

expired domains are indeed vulnerable to be abused. Domain registrars and owners
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Pattern Examples %
Similar module.rabobank.nl → rabobank-hoi.nl

39%
to alias rps.berkeley.edu → rpsberkeley.org

Expired external js.jiayuan.com → 21vcdn.com
21%

services shopping.segye.com → ticketdamoa.com

Typo
b.ns.trnty.edu → awsnds-18.net

7%
customizedgirl.com → shoplattitude.com

Table 5.6: Patterns of expired domains.

may adopt existing defense mechanisms to protect against the registration of abusive

domains. First, they can disapprove those domains in malicious domain lists. How-

ever, we find that none of our identified expired domains are included in these lists.

Second, they can disallow domain names that are very similar to well-known ones to

be arbitrarily registered. In our datasets, we identify that this can prevent about 46%

of expired domains from being exploited. Unfortunately, still about 54% of expired do-

mains are irrelevant to vulnerable subdomains. It is difficult for registrars to determine

whether such an expired domain is associated with Dares, rendering these misconducts

hard to be thwarted. Therefore, more effective defense is needed to prevent abusive

domain registration.

Cost analysis. These expired domains are also quite cheap to own. Figure

5.13 shows the prices to re-register these domains for one year. It costs less than $12

for most domains. Given the significant value of these vulnerable subdomains, this

cost is negligible.

5.5.5 Exploiting Dares

We now determine the exploitable window of Dares. For those caused by released

IP addresses in clouds and abandoned third-party services, we estimate their occurrence

time by checking with archive.org. For expired domains, we can find their expiration

date. Our results show that all Dares have a large exploitable window, ranging from

three months to seven years, with over 90% being vulnerable for more than one year.
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5.5.6 Ethical Considerations

During the process of this study, we did not conduct any adversarial activities

against the scrutinized domains or the visitors to the Dares we successfully identified.

We also checked with our institution’s IRB and confirmed that we do not need to obtain

its approval. All examples presented in this dissertation have either been corrected or

defensively exploited by us. We have sent notifications to all affected domains, and

have received responses from roughly half of them. Almost all apex domains did not

reply. Although most subdomains have acknowledged our reports, only two thirds of

them have taken action for remedy. Our experience is similar to the observations by

Li et. al. [143].

5.6 Threat Analysis

Domain names serve as the trusted base in many security paradigms. For ex-

ample, human users and many malicious domain detectors tend to assume an apex

domain with a clean history as trusted. A user also trusts all subdomains of an apex

domain with good reputation by nature. Unfortunately, our work demonstrates that

such trust could be abused by adversaries to mount a number of much more powerful

attacks. In this section, we describe and discuss four types of threats that could be

significantly exacerbated by exploiting Dares.

5.6.1 Scamming, Phishing, and More

The common modus operandi that adversaries adopt in scamming, phishing,

and many other forms of malicious activities includes typosquatting [131], doppel-

ganger domains [13], and homograph attacks [118]. However, these approaches are

limited in effectiveness, and vigilant users can easily spot them. Moreover, many au-

tomatic systems like EXPOSURE [74] and Notos [65] have been proposed to detect

these malicious domains.

Dares can significantly enhance the effectiveness of these malicious attacks in two

major ways. First, instead of registering new domains, adversaries directly abuse either
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subdomains or apex domains usually with a clean history and an excellent reputation.

The abused domains have unchanged registration information and can even reside on

the same IP addresses. Second, at an affordable cost, adversaries can target a large

number of victims in a short time by leveraging services like Google AdWords. We

next illustrate three case studies.

Case 1: Suspended domains getting revived. GeoIQ.com [17] is a web-

based location analysis platform offering data sharing, risk mitigation, and real-time

analysis services. The A record retrieved from its aDNS is shown below. We can see

that this domain was hosted on EC2.

geoiq.com@ns-1496.awsdns-59.org.:

geoiq.com. 1800 A 23.21.108.12

In July 2012, GeoIQ.com was acquired by another company and archive.org

shows that the last snapshot of this domain was captured on August 1, 2015. This

implies that the domain owners released the hosting resources in EC2 around August

2015, which was later successfully obtained by our IPScouter. However, the WHOIS

data shows that the domain still gets renewed annually.

Domain Name: GEOIQ.COM

Registrar: GODADDY.COM, LLC

Updated Date: 21-sep-2015

Creation Date: 20-sep-2005

Expiration Date: 20-sep-2016

With a simple Google search, we can find their accounts on many platforms,

including Github, Twitter, and Youtube. Adversaries could impersonate the domain

and launch social engineering attacks more effectively.

Case 2: Inherited trust from apex domains. mediafire.com, ranked 169

in Alexa at the time of our study, is a file hosting, file synchronization and cloud storage

service provider. One of their subdomains, support.mediafire.com, was hosted on

EC2 but later was no longer used. The hosting service on EC2 was released and then

successfully obtained by our IPScouters.

support.mediafire.com@ns-1179.awsdns-19.org.:
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support.mediafire.com. 86400 A 23.21.94.181

The subdomain support is a common practice used by many domains to pro-

vide supporting services to users. There are also many other similar cases like jobs,

payment, or shop. If an adversary hosted malicious contents or carried out spear

phishing under such subdomains, even the most vigilant users would fall victim to the

attacks.

Case 3: Harvesting through Google Adwords. Travelocity

.com, ranked 1,810 in Alexa at the time of our study, is one of the largest online travel

agencies. We find that one of its subdomains points to an expired domain using CNAME

record.

can.travelocity.com@pdns1.ultradns.net.:

can.travelocity.com. CNAME travelocitycancontest.com.

To demonstrate how fast an adversary can spread the attacks and at what cost,

we register this expired domain and direct visitors to our subdomain using Google

AdWords. To minimize the inconvenience that our study might have caused, we redi-

rect all visitors to the homepage of Travelocity after recording the MD5 of source IP

addresses. Since our interaction with the users is limited to logging the hashed IP

addresses, we believe there are no ethical implications in this experiment. We run the

campaign for two days, and 141 distinct IP addresses are recorded at the cost of $1.38.

Adversaries could set up a fake login page or steal cookies directly. In either case,

thousands of accounts could be compromised.

5.6.2 Active Cookie Stealing

Adversaries have multiple ways to steal and hijack cookies. One simple approach

requires the traffic between users and websites to be unencrypted and adversaries to

be able to monitor the traffic. This strong requirement limits the scale and feasibility

of this approach for cookie stealing. For instance, almost all top websites have adopted

at least partial HTTPS [191] and sensitive cookies are usually transmitted in HTTPS

only (using the Secure flag). Alternatively, if HTTP cookies do not have the HttpOnly
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flag set, adversaries can obtain them through other means like XSS attacks. As this

flag is being deployed on more websites, XSS attacks will become ineffective in cookie

hijacking. By exploiting Dares, however, adversaries can actively steal cookies from

world-wide users, regardless of the HttpOnly and Secure flags. This likely results in

not only privacy leakage but also fully compromised accounts.

Implications. Whenever possible, cookies with sensitive account information

should be scoped to trusted subdomains only. It is also unsafe to rely on the Secure

flag to prevent cookie stealing. The Secure flag is known to lack integrity [229], but

it was generally assumed to be secure against stealing. However, this assumption will

be challenged by Dares.

5.6.3 Email Fraud

Email is still one of the favorite attack vectors in online fraud. The malicious

emails are usually sent with authentic addresses that are not under the adversaries’

control. Since adversaries cannot receive and further confirm reply emails from victims,

the email attacks are open-looped. However, by exploiting a Dare, an adversary will

instead be able to not only send but also receive emails. In particular, some popular

existing anti-spam mechanisms including Sender Policy Framework (SPF) and Do-

mainKeys Identified Mail (DKIM) can be bypassed. Enhanced with these capabilities,

adversaries could conduct many forms of online fraud more effectively and efficiently,

from spamming, spear phishing to even abusing exclusive online membership such as

Amazon Prime membership.

5.6.4 Forged SSL Certificate

Modern websites commonly provide critical online services over mandatory HTTPS

connections, and they allow sensitive cookies to be transmitted only over encrypted

connections using the Secure flag. For example, the following is a cookie with Secure

flag set by travelocity.com:

Set-Cookie: JSESSION=d1b8eb43-xxx; Domain=.travelocity.com; Path=/; Secure; HttpOnly
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To steal these secure cookies, an adversary has to set up an HTTPS website on

the vulnerable subdomain and get it signed by a Certificate Authority (CA). To ensure

the authenticity of a certificate, CA usually requires subscribers to prove the ownership

of a (sub)domain. This typically involves verification via specific email addresses under

the apex domain or those in the WHOIS database. Adversaries in our threat model can

hardly complete this verification.

However, the emerging new Certificate Authority, such as Let’s Encrypt [24],

tends to leverage the automated and free validation to simplify the process of issuing

certificates. Let’s Encrypt provides two ways for subscribers to prove the control

of a domain, one of which involves provisioning an HTTP resource under the domain

being signed. Unfortunately, when adversaries exploit a Dare through a cloud IP or

an expired domain, they have the full access to the hosting resource of the domain and

thus can pass the challenge of Let’s Encrypt. Using this principle, we successfully

have a subdomain can.travelocity.com [40] authentically signed.1

Implications. It is insufficient to use merely one single challenge for ownership

verification. Considering that both aDNS (in the case of Dare-NS) and domain hosting

resources could be compromised, it would seem more reliable to seek confirmation from

specific emails, e.g., those in the WHOIS database.

5.7 Mitigations

Almost all previous efforts, such as the Domain Name System Security Exten-

sions (DNSSEC), attempt to protect the integrity and authenticity of DNS records

returned to clients. Little attention has been paid to authenticating the resources to

which DNS records point. Domain owners are commonly assumed to keep their aDNS

servers updated and consistent. Unfortunately, our work has demonstrated that this

assumption rarely holds in practice, and the resulted problem, Dare, is a serious and

1 The site can.travelocity.com is associated with a dangling DNS record and is not cur-
rently being used by the domain owner. We temporarily signed the subdomain and directed
it to www.travelocity.com, and thus there is no break caused by our experiment.
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Figure 5.14: Authenticating Ephemeral IPs.

widespread threat. In this section, we propose and discuss the mechanisms that can

mitigate Dares with minor manual efforts. In particular, we focus on the DNS data

fields exploited by our three attack vectors. The key principle of these mechanisms is

that all resources should be considered ephemeral.

Authenticating Ephemeral IP addresses. We propose a mechanism that

allows aDNS servers to automatically authenticate IP addresses whenever an A record

is added or updated. Figure 5.14 shows the workflow of the mechanism. Both aDNS

and the corresponding server whose IP address is added/updated have one daemon.

When the A record is added or updated, the aDNS communicates with the server and

issues a key to it. Then, aDNS periodically checks the validation of the key. While the

architecture is simple, a set of problems need to be resolved in practice, e.g., how to

protect the key on the server and how much overhead is induced on aDNS. We leave

the implementation and evaluation of this mechanism as our future work.

Breaking resolution chain through the aDNS of third-party services.

In the case of data fields pointing to external services, we recommend that services

like Shopify should deprecate A records and adopt an isolated name space in CNAME for

each user. In our observations, all the external services except Shopify and Tumblr

have deprecated A records. To protect the stale CNAME records, we define an isolated

name space for each user. Since every user already has a unique account number, the

services can generate CNAME records using the format of {user-specified-name }.
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useraccount.service.com. Multiple domains managed under the same account are

assigned unique names like:

@aDNS of Shopify

store-1.alice.myshopify.com CNAME shops.shopify.com

store-2.alice.myshopify.com CNAME shops.shopify.com

Once the domain of store-1 becomes unclaimed, the record of

store-1.alice.myshopify.com should be deleted from the aDNS of Shopify, and thus

the dangling domain cannot be resolved.

Checking for expired domains. In existing DNS systems, only the records

with expired domains in name fields will be purged from DNS servers, and those with

expired domains in data fields (e.g., pointed to by a CNAME) are generally neglected.

We have shown that these stale records could be exploited as a major source of Dares.

We advocate that aDNS servers should periodically check the expiration of domains

in data fields. Since this checking is triggered only when the expiration date is ap-

proaching, its frequency is very low and the overall overhead is trivial. Complementary

to periodic checking, Alembic [141] can be used to locate potential changes in domain

ownership. We are also considering to extend Alembic using the patterns listed in

Table 5.6.

5.8 Conclusion

This work studies the problem of dangling DNS records (Dares), which has been

largely overlooked, and demonstrates that Dare is a serious and widespread security

threat. In order to exploit these unsafe Dares, we have presented three attack vectors,

IP in cloud, abandoned third-party services, and expired domains, for domain hijack-

ing. Then we have conducted a large-scale measurement on four datasets containing

representative domains to quantify the magnitude of the unsafe Dares in the wild. We

have found hundreds of unsafe Dares on even those well-managed zones like edu and

Alexa top 10,000 websites. This is very worrisome because Dares can notably enhance

many forms of online fraud activities, such as spamming and cookie stealing. The
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underlying cause of Dares is the lack of authenticity checking for resources pointed to

by DNS records. To this end, we have proposed three defense mechanisms that can

effectively mitigate Dares with minor human effort.
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Chapter 6

PRACTICAL AND ROBUST DEFENSE AGAINST USE-AFTER-FREE
EXPLOITS VIA CONCURRENT POINTER SWEEPING

6.1 Introduction

Memory corruption vulnerabilities have plagued software written in low-level

languages like C/C++ for decades. On one hand, effective defenses against previously

popular attacks, such as stack and heap overflows [72, 83, 88, 96, 132, 151, 165, 171,

182, 228], have been developed and deployed in commodity systems, thwarting the

exploitation of such memory corruption bugs in system software (e.g., browsers or

operating systems). On the other hand, recent years have seen the meteoric rise of

memory corruption attacks exploiting use-after-free (UaF) vulnerabilities that root

in pointers pointing to deallocated memory (i.e., dangling pointers). Actually, UaF

vulnerability has become the largest and severest ongoing exploit vector in numerous

popular applications [139].

Different approaches have been proposed to harden the memory safety of soft-

ware against UaF vulnerabilities. Most of the existing solutions attempt to address

UaF exploits by making an explicit [163, 166, 168, 188, 221] or implicit [97] safety check

on every pointer dereference. An alternative approach is to reshape memory allocators

to avoid unsafe memory reuse [59, 72, 171]. Conservative garbage collection [16, 76]

heads off UaF exploits through automatic memory management. Moreover, the Silicon

Secured Memory (SSM), recently shipped in Sparc M7 processors, implements tagged

memory as a hardware UaF defense [12]. Recent works [80, 139, 225] track pointer

propagation and nullify dangling pointers at object free.

Unfortunately, these solutions still have two main shortcomings. First, robust-

ness and efficiency cannot be achieved at the same time. UaF exploits are guaranteed
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to be defeated but usually with unacceptable or unpredictable overhead [16, 97, 139,

166, 221, 225]. Systems like Cling and SSM incur trivial overhead but provide only

partial [59] or probabilistic [12, 72, 171] memory safety. Second, software developers

usually cannot obtain sufficient information about the exploited UaF vulnerabilities

during production runs, making it difficult to debug and craft patches.

This paper presents a novel defense system, pSweeper, which effectively pro-

tects against UaF exploits, imposes low overhead for deployment in production envi-

ronments, and pinpoints the root-causes of UaF vulnerabilities for easier and faster

fixing. pSweeper follows a similar protection principle to DANGNULL, DangSan, and

FreeSentry [139, 212, 225]. In particular, dangling pointers are proactively neutral-

ized to disrupt potential UaF exploits. However, pSweeper proposes two unique and

innovative techniques, concurrent pointer sweeping (CPS) and object origin tracking

(OOT) to overcome the above shortcomings.

In order to find and neutralize dangling pointers, all existing works [139, 212,

225] require to synchronously keep track of pointer propagation. This design can incur

undue overhead, e.g., 80% in DANGNULL [139]. pSweeper instead explores a very

different design, concurrent pointer sweeping (CPS), which exploits the increas-

ingly available multi-cores on a computing platform. The core idea is to iteratively

sweep all live pointers in concurrent threads to neutralize dangling ones. The main

challenges of implementing CPS are two-fold. First, we must identify and efficiently

handle entangled races among pSweeper and application threads. Ideally, we must

avoid heavyweight synchronization mechanisms like locks. Meanwhile, we should place

heavy workload on pSweeper threads and instrument as few code as possible to appli-

cation threads. To address this challenge, we leverage hardware features and devise

lock-free algorithms that avoid stalling application threads. Second, CPS must scale

to massive object (de)allocations and large volume of live pointers. In particular, we

must prevent dangling pointers propagating to those swept ones in application threads

so that every round of sweeping guarantees to terminate within certain time bounds.

To this end, we devise a simple and efficient mechanism to prevent dangling pointer
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propagation.

One desirable but not yet explored feature that pointer neutralization can

provide is object origin tracking (OOT). When software crashes due to dan-

gling pointer dereference, OOT can inform us of how a dangling pointer is caused,

i.e., where the pointed object is allocated and freed. This information can greatly

help programmers pinpoint the root-causes of UaF vulnerabilities. pSweeper achieves

OOT by encoding origin information into neutralized dangling pointers. Compared to

other user site diagnostic tools that require record-and-replay [209] or multiple failures

[130, 148, 149], pSweeper can pinpoint root-causes of UaF vulnerabilities in one safe

crash. In particular, it achieves this at a trivial cost.

Finally, we implement a prototype of pSweeper and demonstrate its effective-

ness using real-world UaF vulnerabilities. Our evaluation results on SPEC CPU2006

benchmarks show that the induced overhead is quite low (9.3%). We demonstrate that

pSweeper scales quite well on multi-thread applications using PARSEC benchmarks.

We further conduct two case studies with Lighttpd web server and Firefox browser.

6.2 Background and Threat Model

Dangling Pointer. A pointer variable p is dangling iff an object O with address range

∀ m, size : [m, m+size-1] has been freed and p∈[m, m+size-1].

In practice, UaF exploits commonly reuse freed memory and fill it with specially

crafted contents which are then accessed through dangling pointers. Therefore, it is

insufficient to check whether a pointer points to freed memory. Instead, it is impera-

tive to enforce that dangling pointers never point to memory that can be arbitrarily

manipulated by attackers.

Threat Model. This paper focuses on UaF vulnerabilities rooted in dangling

pointers that can point to any memory region, including heap, stack, code and data.

An attacker can crash applications but cannot cause any other consequences. Spatial

attacks that exploit out-of-bound writes like buffer overflows, and temporal attacks

that exploit uninitialized reads, are out of our scope. Therefore, similar to related
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works [139, 212, 225], we do not protect our system from these vulnerabilities and our

proposed defense should be used along with orthogonal protectors. We also assume

applications do not have concurrency bugs. Finally, we do not deal with undefined

behaviors, such as delete objects created using new[].

6.3 Overview

6.3.1 High-Level Approach of pSweeper

pSweeper aims to robustly protect against UaF exploits with low overhead and

pinpoint the root-causes of UaF vulnerabilities being exploited in the wild. To ac-

complish these, we propose Concurrent Pointer Sweeping (CPS) and Object Origin

Tracking (OOT) in pSweeper. The basic approach of pSweeper follows a similar pro-

tection principle to pointer nullification in DANGNULL [139], FreeSentry [225] and

DangSan [212]. In particular, when an object is freed, all dangling pointers are neu-

tralized to disrupt UaF exploits. However, pSweeper differs significantly in two key

design aspects:

1. How to find dangling pointers; and

2. What value is used to neutralize dangling pointers.

Finding Dangling Pointers. All previous approaches [139, 212, 225] syn-

chronously track the pointers that are still pointing to freed objects. This design

inevitably incurs undue overhead because it requires range-based queries for pointers.

pSweeper proposes CPS, a totally different design. Our core idea is to iteratively

sweep all live pointers at runtime in concurrent threads to neutralize the dangling

pointers. To avoid missing dangling pointers due to memory reuse, CPS delays object

frees to the end of every round of sweeping. The main challenge lies in guaranteeing

high efficiency and scalability in face of entangled races among CPS and application

threads. Ideally, CPS should instrument few code to applications and avoid stalling

their threads (i.e., lock-free).
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Choosing Value for Pointer Neutralization. Previous works [139, 212, 225]

simply set dangling pointers to NULL or kernel space. This guarantees that applications

crash safely when dangling pointers are accessed.

pSweeper instead specially crafts the values to neutralize dangling pointers. Our

key insight is that the crucial information to pinpoint root-causes of UaF vulnerabilities

is how a dangling pointer is caused, i.e., how the pointed object is allocated and freed.

Therefore, besides enforcing safe crash upon dangling pointer dereference, pSweeper

also encodes object origin information into dangling pointers to achieve OOT. Com-

pared with other tools that provide a similar feature to OOT [172, 188], pSweeper is

more robust and efficient.

Enforced Protection Protocol. Building upon CPS and OOT, pSweeper

will enforce the runtime protection protocol as follows. Given a dangling pointer p:

• If p is accessed before being neutralized, applications continue to execute correctly

similar to garbage collection [127].

• If p is accessed after being neutralized, applications abort safely with object

origin information dumped.

6.3.2 An Illustration Example

Figure 6.1 illustrates pSweeper with an example in time line. All malloc(),

free(), and assignment instructions are executed in application threads. Ri and ∆Ri

denote the start and end of the ith sweeping round of pSweeper threads, respectively.

Assume the application executes three malloc() and one pointer assignment

before ∆Ri−1. From these instructions, pSweeper identifies four live pointers, p, r, q,

and s at runtime.

During the interval of sweeping rounds, i.e., between ∆Ri−1 and Ri, an appli-

cation thread invokes free(q). However, this free request will be hooked by pSweeper

and delayed to the end of ith sweeping round. During the ith sweeping round, pSweeper

checks all four pointers to find and neutralize the dangling one q. At ∆Ri, the delayed
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Figure 6.1: Illustration of pSweeper in time line.

free(q) gets executed. If two other memory blocks (p and s) are freed during the ith

round, they will be delayed to ∆Ri+1.

While the overall approach sounds simple, it is non-trivial to efficiently handle

the entangled races among pSweeper and application threads. For instance, during the

ith sweeping round, assume pSweeper has checked p and r but has not neutralized q. It

is possible that an application thread propagates the dangling pointer to a swept one,

e.g., executing r = q. pSweeper must efficiently handle such cases.

6.3.3 Architecture of pSweeper

To implement CPS and OOT, pSweeper combines compile-time instrumentation

and a runtime library, as shown in Figure 6.2. There are three components in pSweeper:

Pointer address identification. pSweeper first statically identifies where

pointers will be located at runtime (§6.4.2). It achieves this by analyzing the types

of local/global variables. For pointers in dynamically allocated objects, we adopt the

same strategy as previous works [139, 212, 225]. Specifically, we rely on the types of

operands in store instructions. Code is instrumented into applications to bookmark

all live pointers.

Concurrent pointer sweeping thread. At runtime, dedicated pSweeper

threads iteratively sweep all live pointers and neutralize the dangling ones. The asyn-

chronous nature of CPS requires object frees to be deferred (§6.4.3). Otherwise, when

a memory block is freed, it may get reused in applications before CPS threads can neu-

tralize all dangling pointers. The scalability of CPS is guaranteed with two techniques.

First, we implement memory allocation status (MAS) table (§6.4.1), a data structure
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Figure 6.2: The architecture of pSweeper.

similar to shadow memory [168]. With the help of MAS table, CPS threads can decide

if a pointer is dangling with one single memory read. Second, we devise a simple and

efficient mechanism to prevent dangling pointer propagation (§6.4.4.2) so that dangling

pointers are guaranteed to be neutralized in one single round of sweeping.

Object origin tracking (OOT). Finally, pSweeper encodes object origin in-

formation into dangling pointers so that once they are dereferenced, pSweeper can

inform developers how corresponding objects are allocated and freed (§6.4.5).

6.4 System Design

In this section, we detail the design of pSweeper. Due to the asynchronous

design, we need to efficiently handle the entangled races between application and

pSweeper threads. In particular, we aim to address these races with lock-free algo-

rithms, which can highly correlate with the memory model of multicore processors.

Our current design builds upon a memory model that: (1) loads are not reordered

with other loads; (2) stores are not reordered with other stores; and (3) loads may be

reordered with older stores to different locations but not with older stores to the same

location. This memory model is applied on x86 [22], AMD64, and SPARC1.

1 The default mode of SPARC is Total Store Order (TSO).
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6.4.1 Memory Allocation Status Table

Since several components of pSweeper rely on efficient check of memory allo-

cation status, we first present the design of MAS table. MAS table is built on the

fact that pSweeper only needs to know if a memory address is allocated or freed, and

it does not need to know where the object boundaries are. Therefore, similar to the

design philosophy in previous works [136, 151, 165, 213, 212], we can simply maintain

the memory allocation status in a shadow heap. Upon allocation, all corresponding

bytes in shadow heap are set to one and reset to zero upon free. As a result, pSweeper

can achieve the check with one single memory read.

However, this naive implementation is still inefficient. First, it incurs high

overhead to set and reset shadow heap. Second, it doubles memory consumption.

To optimize, we leverage the observation that pragmatic memory allocators usually

enforce object size and alignment. For example, the base and size of small and large

objects (based on a predefined size threshold) are usually aligned to multiples of the

pointer and page size, respectively. Therefore, MAS table only requires 1-byte for every

page or 8-byte on x64 (4-byte on x86).

6.4.2 Locating Live Pointers

Pointers can be on stack, data, and heap segments. Dangling pointers on all

three regions can be exploited.

6.4.2.1 Pointers on Data Segment

Pointers can reside in data segments, including global and static variables2. These

pointers can generally be identified at compile time. For each global pointer variable,

we instrument a store instruction to log its address to a buffer denoted as globalptr.

globalptr is library-specific, i.e., every library as well as the executable has a dedicated

2 We use “global variables” for short in the remainder of the paper.
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call func1(*p){ free(p); } 
call func2(i){}
                                          OOT(&p)

pSweeper

Figure 6.3: Race conditions of pointers on stack.

buffer. pSweeper instruments a .init and .fini section to every executable and

library so that globalptr is (de)allocated upon (un)loading.

6.4.2.2 Pointers on Stack

pSweeper handles the pointers in function parameters and local variables in a similar

way as global variables. However, due to the asynchronous design of pSweeper, pointers

on stack need to be handled specially. Consider the dangling pointer p in Figure

6.3. Before pSweeper neutralizes p, function func1 returns and func2 is subsequently

invoked. Previously storing pointer p, the stack slot now contains a non-pointer variable

i. If i by chance has a value equal to the address of a freed memory slot, pSweeper can

falsely neutralize it and thus corrupt application data.

To efficiently handle this race, pSweeper relocates all pointers on stack to a

dedicated stack denoted as stackptr. In this way, every variable in stackptr is of

pointer type. Thus, pSweeper can safely sweep and neutralize them. However, pointers

in complex data types like struct and class cannot be easily moved to stackptr

without losing compatibility. We therefore simply allocate all such variables on the

heap.

6.4.2.3 Pointers on Heap

Similar to previous works [139, 225, 212], we also rely on the types of operands in

store instructions to track pointer addresses at runtime. The main difference lies in

what task is performed at each pointer store instruction. All previous systems require
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Algorithm 2 Compile-time store instruction instrumentation for pointer address iden-
tification.

1: function Bookmark Heap Pointer( )
2: for each storeinst do
3: if onDataOrStack(storeinst.dest) then
4: continue
5: Instrument Bookmark Ptr() after storeinst.

Algorithm 3 Bookmark live pointer addresses.

PtrList: live pointer list

1: function Bookmark Ptr( &ptr )
2: if notOnHeap(&ptr) then
3: return
4: if duplicatePtr(&ptr) then
5: return
6: PLM [&ptr] = 1 . Set pointer mark table.
7: if objFreed(&ptr) then
8: PLM [&ptr] = 0
9: return

10: appendToList(&ptr,PtrList)

to synchronously track i) in which object a pointer is located; and ii) which object

a pointer is pointing to. This inevitably incurs high overhead due to the expensive

range-based searches. In contrast, pSweeper simply bookmarks the addresses of live

pointers. This, however, is still non-trivial to implement efficiently.

An assignment operation LHS=RHS is usually transformed to a compiler interme-

diate representation (IR) store <ty> <val>, <ty>* <ptr>, where val is the value

in RHS and ptr is the memory address of LHS. If the type <ty> of val is a pointer, LHS

is a pointer. However, its address should not be naively bookmarked for three consid-

erations. First, we must ensure the pointer is not on data or stack segments. Second,

we should ignore duplicate bookmarks for the same pointer. Finally, the pointer might

be in a freed object. Algorithm 2 and 3 show how pSweeper bookmarks live pointers.

Excluding global/local pointers. We exclude global/local pointers in two

steps. First, we identify store instructions for non-heap pointers at compile time and

do not instrument them (Algorithm 2). Second, at runtime, we check if the address of
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a pointer is indeed in range of heap (Line 2 Algorithm 3).

Skipping duplicate bookmarks. To achieve this efficiently, we maintain a

pointer location mark (PLM) table, a shadow heap similar to MAS table. However,

we do not need to compress PLM because the incurred overhead is quite low. For every

pointer ptr on heap, its corresponding slot PLM[&ptr], is set to one. All other bytes

in PLM are 0. Thus, duplicatePtr() can be achieved with a single memory read.

Validity of pointer address. We next check if the object where the pointer

is contained has been freed (Line 7 Algorithm 3). This can be efficiently achieved using

MAS table. Note that, there is a potential race that the object where ptr is contained

gets freed and reused by another application thread after the check but before Line 10

Algorithm 3. We discuss this race further in §6.4.4.1.

Live pointer list. We simply use a double-linked list (PtrList) to maintain

all live pointers. As a result, appendToList() is quite efficient. Further, in order to

avoid races among application threads which can concurrently operate on PtrList, we

use a separate list for each thread.

Removing stale pointers. Here we have described how to bookmark live

pointers. When an object is freed, all pointers contained in it should be removed from

PtrList. This is achieved in CPS (§6.4.4.1).

6.4.3 Deferred Free

pSweeper requires object frees to be deferred to the end of a sweeping round. To

this end, pSweeper maintains live objects in a double-linked list (ObjList) and adds

metadata freeflag for each object (Figure 6.4). In the hooked malloc(), pSweeper

first sets freeflag to zero (Line 5 Algorithm 4) and then appends the new object to

ObjList (Line 6 Algorithm 4). When free() is invoked in applications, we simply

set freeflag as in Algorithm 5. Similar to PtrList, each application thread uses

a thread-local list to maintain objects and nodes in ObjList are removed by CPS

(§6.4.4.1).

126



1 struct LiveObjNode{

2 obj_addr; // object address

3 freeflag; // Section §6.4.3
4 scanflag; // Section §6.4.4.1
5 slotid; // Section §6.4.5
6 struct LiveObjNode *prev , *next;

7 };

Figure 6.4: Metadata of live objects.

Algorithm 4 Hooked malloc().

1: function malloc( size )
2: obj ← real malloc(size)
3: setMASTable(obj)
4: obj.scanflag ← 0
5: obj.freeflag ← 0
6: appendToObjList(obj,ObjList)
7: mfence . Memory barrier

6.4.4 Concurrent Pointer Sweeping (CPS)

CPS is consisted of two components, dedicated CPS threads and dangling

pointer propagation instrumentation. Dedicated CPS threads (§6.4.4.1) are the core of

CPS and they iteratively sweep live pointers to find and neutralize dangling ones. One

challenge here is that application threads can propagate dangling pointers to the point-

ers that have been neutralized by CPS threads. We devise a simple and efficient mech-

anism (§6.4.4.2) to prevent dangling pointer propagation in application threads. Next,

we describe each component in details. We first assume one CPS thread is spawned

for a multi-threaded application and extend to multiple CPS threads in §6.4.4.3.

6.4.4.1 CPS Threads

Algorithm 6 presents the pseudocode of CPS thread whose body is an infinite loop

(Line 2) implementing iterative sweeping. CPS takes a list of live objects and pointers

as input. In every round of sweeping, CPS threads execute in three steps.

• Step 1 (Lines 4 ∼ 9)
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Algorithm 5 Deferred free() invoked in applications.

1: function free( obj )
2: assertDoubleFree(obj) . Abort upon double free.
3: clearMASTable(obj)
4: obj.freeflag ← 1

This step traverses live object list and if an object’s freeflag is set, another field of

metadata scanflag is set. scanflag is initialized as 0 in malloc() (Line 4 Algorithm

4). fillWithSlotIndex() will be described in §6.4.5. This step is required to guarantee

that an object whose freeflag is set during pointer sweeping is not prematurely freed.

• Step 2 (Lines 11 ∼ 18)

This step sweeps all live pointers and checks if a pointer is dangling using MAS table

(Line 15). Dangling pointers are then neutralized with a value containing object origin

information (Line 16). However, this step has a time of check to time of neutralization

race as illustrated in Figure 6.5. To be specific, the value of p can be modified by

application threads after the isDangling() check.

To address this, we observe that if a dangling pointer is modified by application

threads between isDangling() and OOT(), we should preserve the value written by ap-

plication threads and the neutralization by pSweeper can fail safely. On the one hand,

if the new value written by application threads points to a live object, the dangling

pointer is eliminated by application threads and we must preserve the value for correct

execution. On the other hand, if the new value points to a freed object, this propa-

gation will be handled by our mechanism that prevents dangling pointer propagation

(§6.4.4.2). Fortunately, modern processors provide efficient hardware instructions such

as lock cmpxchg that exactly meet our needs.

In addition, CPS threads skip stale pointers, i.e., whose containing objects have

been freed, and remove them from PtrList (Lines 12∼14). To demonstrate that the

race mentioned in §6.4.2.3 does not cause failures in CPS, we consider two cases.

Case 1: Line 7 in Algorithm 3 returns true. In this case, pSweeper always cor-

rectly skips stale pointers. In particular, no live pointer is missed when objFreed()
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App Thread

           if( isDangling(p) )
p = obj2
                           OOT(&p)

pSweeper

Figure 6.5: Time of check to time of neutralization race.

returns true but the memory has been allocated in a different application thread (due

to inconsistency MAS table seen by different cores). This is because the store in-

struction must be executed after the hooked malloc() has returned. Otherwise, there

is a concurrency bug in applications, which violates our assumptions in §6.2. Line 7

Algorithm 4 enforces that objFreed() must return false when the hooked malloc()

returns.

Case 2: Line 7 in Algorithm 3 returns false. The only problem here lies in the

possibility that the object where ptr is contained can get freed and reused before Line

10 Algorithm 3. In this case, the stale pointer will be appended to PtrList. However,

this can happen only if there is a concurrency bug in applications, which violates our

assumptions in §6.2.

• Step 3 (Lines 19 ∼ 25)

CPS threads now traverse object list again to free objects whose scanflag is set

and remove them from the list. In order to avoid locks between insertion by applications

and deletion by CPS, the tail node in ObjList is delayed until more nodes have been

appended.

Avoiding endless sweeping rounds. Since new objects and pointers are

created continuously by application threads, the while-loops in the above three steps

may not terminate if they are not handled specially. To this end, CPS threads enforce

that every round of sweeping terminates at the tail nodes of the lists (Lines 8, 17,

and 25) that are recorded at the beginning of the loops (Lines 3 and 10). For Step

1 and 3, this enforcement is required because only objects that have been checked

against every live pointer can be safely freed. For Step 2, this strategy is correct and
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App Thread

free(p) 
q = p   // q has been swept.
                          OOT(&p)

pSweeper

Figure 6.6: Dangling pointer propagation in application threads.

safe because pSweeper prevents dangling pointer propagation (§6.4.4.2) and thus newly

added pointers can be deemed as already swept.

6.4.4.2 Preventing Dangling Pointer Propagation

As shown in Algorithm 6, CPS threads sweep every live pointer only once in each

round. Unfortunately, dangling pointers can propagate to the swept ones in appli-

cation threads, as illustrated in Figure 6.6. To handle this race, we consider three

ways of pointer propagation: direct assignment (e.g., q = p), function arguments

(e.g., func(p)), and returns (e.g., p = getPtr()). Pointers in function arguments

are handled in the same way as direct assignments because they have been relocated to

stackptr (§6.4.2.2) and we currently use direct assignments to initialize stack pointers.

Figure 6.7 presents how direct assignment and function return are handled.

Every direct assignment q = p is usually compiled to two instructions, one load

of p’s value and one store to q. To handle this case, we instrument two checks after

the store instruction. First, we check whether q is dangling. If so, we nullify it. Then,

we check whether p’s value has been neutralized. If so, we store the new value to q.

We prove correctness of this mechanism as follows:

• Precondition. Since we assume no concurrency bug, no one else except CPS

thread will modify p or q during the code sequence in Figure 6.7.

• Fact. The race is harmful iff q is swept before p.

• Completeness. To prove the completeness of this mechanism, we only need

to prove that, if both checks fail, q must NOT be dangling. We use proof by
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%r1 = load  p 
store %r1, q
%r2 = load q
if ( isDangling(%r2) )
    OOT(&q)
%r3 = load p
if (%r3 != %r1)
    store %r3, q

q = p

Figure 6.7: Prevent dangling pointer propagation. Code snippets with a dark back-
ground are instrumented by pSweeper.

contradiction. Proof: Assume (q is dangling) =⇒ (p has not been neutralized

before %r3=load p) =⇒ (the pointed memory is still freed before %r3=load p)

=⇒ (isDangling(%r2) must return true) =⇒ (q is set to NULL and q is not

dangling). This contradicts the initial assumption.

• Soundness. We need to prove that, if either check succeeds, q must be dangling.

The proof is straightforward based on the two preconditions.

Note that, we must insert asm volatile ("":::"memory") between the

load instructions to prevent reordering by compilers. But, we do not need to insert

memory barriers before %r3=load p because we only need to ensure that this load

happens after the one in isDangling(%r2) but do not care if store instructions have

been globally visible before %r3=load p.

6.4.4.3 More pSweeper Threads

pSweeper currently uses only one thread, which is sufficient in our evaluations. How-

ever, it can be extended to use multiple threads. The live pointers can be partitioned

to segments, with each one being handled by one pSweeper thread during every round
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Figure 6.8: Use of pointer bits by OOT.

of sweeping. In this extension scheme, there is no race among pSweeper threads, and

thus, no synchronization is required, making pSweeper quite scalable.

6.4.5 Object Origin Tracking (OOT)

It is notoriously difficult to analyze and locate bugs triggered in production

runs [130, 148, 149, 209]. In order to facilitate the root-cause diagnosis of UaF vulner-

abilities, pSweeper aims to provide not only where dangling pointers are dereferenced

(which can be obtained in core dumps) but also how objects are allocated and freed, i.e.,

object origin tracking (OOT). Unfortunately, it is non-trivial to link a dangling pointer

access to the corresponding improper memory (de)allocation. Existing approaches like

AddressSanitizer [188] and Exterminator [172] bind origin information with objects.

However, this can cause inaccurate OOT when memory is reused, which is common in

UaF exploits. Therefore, they are primarily suitable for in-house debugging but not

in-production diagnosis.

pSweeper instead encodes object origin information into dangling pointers. Such

information is independent to memory reuse and can be propagated at no extra cost.

Moreover, The most significant two bits are set to 01 as in Figure 6.8 to make sure

that applications crash safely upon dangling pointer dereference. Then, the origin

information can be obtained in signal handlers. However, we must reserve sufficient

least-significant bits to support pointer arithmetics. This makes it difficult to achieve

OOT on 32-bit platforms. As a result, pSweeper currently supports x86-64 only.

OOT records the call stacks of malloc() and free() in a buffer slot which

is assigned an index. The index is encoded into the middle 34 bits during pointer

neutralization, as shown in Figure 6.8. To reduce the memory overhead, the call stack

information is compressed. In order to retrieve the slot index in OOT, pSweeper fills

freed objects with corresponding slot indexes as in Line 7 Algorithm 6. In this way,
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given an in-bounds dangling pointer p to an object, pSweeper can easily construct the

value to neutralize p.

When applications crash due to dangling pointer dereference, pSweeper extracts

OOT information in signal handlers. However, Linux always returns zero, instead of the

tagged pointer in Figure 6.8, as the illegal address in signal handlers. We address this

by first obtaining the faulty instruction, e.g., 4008fe: movl %edx, (%rax), through

EIP/RIP in signal handlers. This instruction informs that register rax contains the

pointer value. Then, we can obtain the encoded origin information by reading that

register.

6.5 Evaluation

We implement a pSweeper prototype for x86-64, on top of LLVM 3.7 compiler

infrastructure [27], and use LLVM’s link-time optimization support (LTO) for the

whole program analysis. The static analysis and instrumentation pass in pSweeper

operates on LLVM intermediate representation (IR). Our current prototype employs

some preliminary optimizations, e.g., inlining operations in Algorithm 3 and Figure 6.7

when instrumenting store instructions to avoid function calls.

We evaluate pSweeper by answering four questions:

• Is pSweeper effective to mitigate real UaF vulnerabilities?

• What is the performance overhead of pSweeper?

• How scalable is pSweeper for multi-threaded applications?

• Can pSweeper efficiently work on complex software?

All experiments are conducted on 64-bit Ubuntu-14.04 with a 2-core 4-thread

Intel i5-4300U at 1.9GHz with 12GB RAM.
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6.5.1 Effectiveness of pSweeper

To evaluate the effectiveness of pSweeper, we apply it to four real-world UaF

vulnerabilities in three applications, as listed in Table 6.1. pSweeper successfully neu-

tralizes the unsafe dangling pointers and pinpoints the root-causes in all four cases.

Due to space limit, we next describe CVE-2016-6309 only in details.

CVE/Bug ID Application Protected
CVE-2016-6309 [11] OpenSSL 1.1.0a 4
CVE-2014-3505 [10] OpenSSL <1.01i 4

Bug 12840 [42] Wireshark 4
Bug 2440 [26] Lighttpd 1.4.32 4

Table 6.1: Real-world UaF vulnerabilities used for evaluation.

CVE-2016-6309 in OpenSSL is caused by memory reallocation in statem.c:548.

OpenSSL initially allocates a buffer of 16KB to receive messages. When a larger

message is received, the buffer is reallocated using CRYPTO clear realloc(), which

essentially allocates a new buffer and frees the old one. Therefore, the underlying

location of the buffer is changed. However, a pointer s→init msg is not updated and

still refers to the old location.

When this vulnerability is exploited, there can be two cases. First, due to

deferred free and asynchronous neutralization, if the dangling is accessed before being

neutralized, the openSSL server can always execute normally. On the other hand, if

it is exploited after neutralization, the openSSL server crashes safely and pSweeper

successfully pinpoints OPENSSL clear realloc() in

BUF MEM grow clean() (buffer.c:109) as root cause.

6.5.2 Performance on SPEC CPU2006

We next evaluate the performance overhead of pSweeper on SPEC CPU2006

benchmarks. Unfortunately, we cannot run benchmarks dealII, omnetpp, and xalancbmk

because our baseline LLVM fails to compile, giving errors like non-constant-expression
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Figure 6.9: pSweeper’s performance on SPEC CPU2006.

cannot be narrowed from type ’XMLInt32’”. Table 6.2 presents the statistical re-

sults of SPEC CPU2006 benchmarks when pSweeper runs at a sweeping rate of one

second.

As can be seen, pSweeper finds similar number of pointers (Column 5 in Ta-

ble 6.2) as DangSan, which is far more than DANGNULL. This demonstrates that

pSweeper has comparative coverage to the state-of-the-art defense systems. We also

find that pSweeper neutralizes fewer pointers (Column 7 in Table 6.2) than DangSan,

although more than DANGNULL. This is because pSweeper concurrently sweeps dan-

gling pointers in a dedicated thread and does not stall applications. As a result,

although a pointer is dangling at free(), it probably has been overwritten by applica-

tions with non-dangling values when pSweeper checks it. In particular, the majority of

dangling pointers identified in DangSan are on stack [212], which become invalid after

function returns. Also, it is possible that the objects containing dangling pointers have

been freed before pSweeper starts to sweep. All of these invalid dangling pointers are

ignored by pSweeper. We emphasize that neutralizing these stale dangling pointers

does not increase the security guarantee and pSweeper provides the same protection

as previous systems.
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Benchmark
# of

Alloca-
tions

# of
Frees

Avg.
Object

Size
(Bytes)

Total #
of

Pointers

Peak #
of

Pointers

# of
Pointers
Neutral-

ized

perlbench (C) 358M† 356M 514 40,490M 971,353 421,352
bzip2 (C) 7,182 4,440 1.6M 2.2M 1,184 0
gcc (C) 28M 28M 26,088 7,170M 438,016 186,451
mcf (C) 1,174 721 1.4M 7,658M 173,625 0
milc (C) 7,686 7,184 11M 2,585M 76,254 0

namd (C++) 2,493 2,038 19,582 2.9M 1,746 0
gobmk (C) 663,879 658,695 1,707 607M 28,841 86

soplex (C++) 312,951 310,613 189,852 836M 76,278 553
povray (C++) 2.4M 2.4M 56 4,679M 128,525 7,428
hmmer (C) 2.4M 2.4M 1,048 3.8M 2,237 0
sjeng (C) 1,174 717 154,809 3 0 0

libquantum (C) 1,348 895 1.1M 186 8 0
h264ref (C) 182,784 181,283 7,735 11M 3,674 961
lbm (C) 1,173 720 367,047 5,949 28 0

astar (C++) 4.8M 4.8M 922 1,235M 34,519 104
sphinx3 (C) 14M 14M 1,136 302M 24,923 762

Table 6.2: Detailed results on SPEC CPU2006 benchmarks. pSweeper runs at 1s
sweeping rate. †M for million.

6.5.2.1 Runtime Overhead

Figure 6.9 presents the performance overhead of pSweeper at different sweeping rates,

i.e., no sleep, 500ms sleep, and 1s sleep between sweeping rounds. The overhead is

normalized over the baseline and all the results are averaged over three consecutive

runs. The average overheads of pSweeper at different sweeping rates are 22.2% (no

sleep), 14.1% (500ms), and 9.3% (1s).

Effect of sweeping rate. Theoretically, faster sweeping rates should not sig-

nificantly affect the performance of applications as pSweeper concurrently runs on

spare cores. However, we find that in the case of no sleep, most of the overhead comes

from the interference of full-speed pSweeper threads. In particular, about 15.7% of the

averaged overhead and 14.2% of gcc in this setting can be attributed to this factor.

In order to isolate the potential sources of interference, we turn the pSweeper thread

to a simple empty loop, i.e., while(1){} and instantly free memory in free() hook.
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It causes similar overhead. Therefore, we derive that this is not due to the factors

like cache interference. Instead, it is caused by inefficient performance isolation among

threads in the Linux kernel, and we are investigating this problem in kernel.

When pSweeper thread runs at a slower speed like 1s, it induces trivial overhead

on almost all benchmarks except perlbench and gcc. perlbench still suffers high over-

head due to the exceptionally large volume of object allocations. Simply intercepting

malloc() with LD PRELOAD can incur about 8% overhead. For gcc, although the inter-

ference from pSweeper thread is minimized, much more time is spent in kernel mode

when allocating memory. This is because all frees are deferred to the end of a sweeping

round. An allocation-intensive application like gcc may not be able to immediately

reuse the freed memory. As a result, memory allocators need more time to allocate a

new object.

Static instrumentation overhead. We now break down the overhead caused

by static code instrumentation. The overhead mainly comes from the hooked malloc()

family of functions, which set up object metadata, maintain live objects and MAS

table. They introduce a bunch of extra memory writes for each allocated object. We

find that they account for about 5.6% of the average overhead. Especially, in the case of

allocation-intensive applications, the accumulated overhead is high, e.g., ∼15% for gcc.

Another important source of overhead comes from recording object origin information.

In particular, we need to track the functions call sequences to malloc()-family of

functions. Although we have made some optimizations, e.g., recording the hash value

of function names instead of strings, the overhead is still about 1.3%. Finally, the

instrumented store instruction, which is the main performance bottleneck in previous

works [139, 225, 212], causes low overhead in pSweeper, about 1.8%.

Dynamic instruction count and data cache overhead. We use hardware

performance counters to measure the dynamic instruction counts and cache misses of

the 32KB L1 data cache. We are only interested in the overhead caused by the instru-

mented code. Thus, we do not spawn the pSweeper thread and disable deferred free.

The results are plotted in Figure 6.10, showing that dynamic instruction counts highly
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Figure 6.10: Dynamic instruction overhead and L1 data cache misses on SPEC
CPU2006.

correlate with the runtime overhead and are the main source of overheads for most

benchmarks. A noticeable negative impact of MAS and PLM tables is the additional

data cache misses, resulting in a large portion of performance overhead.

6.5.2.2 Memory Overhead

Figure 6.11 shows that pSweeper moderately increases memory footprint in terms of

maximum resident set size, with average overheads 44.2% (no sleep), 60.8% (500ms),

and 128% (1s).

Generally, faster sweeping rates result in lower memory overhead. This is be-

cause free requests are deferred shorter, and thus memory can be freed faster. A faster

sweeping rate is especially important to allocation-intensive applications. For instance,

sweeping at 500ms, compared to 1s, reduces the memory overhead of gcc by an or-

der of magnitude. Other sources of memory overhead include MAS table, ObjList,

PtrList and PLM table. We can see that these metadata consumes acceptable amount

of memory. In particular, since several benchmarks allocate a small number of large

objects (Column 4 Table 6.2), the compression strategy used in MAS table can greatly

reduce memory overhead.
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6.5.2.3 Comparison to DangSan

We compare pSweeper with DangSan, a state-of-the-art UaF defense system outper-

forming all existing systems like DANGNULL and Oscar [93]. Since some benchmarks

fail to compile in our evaluation, we compare over intersection of the benchmarks be-

tween pSweeper and DangSan. pSweeper runs at 1s sweeping rate. The geometric

mean of DangSan is a 38% slowdown, while ours is 9.3%. Figure 6.12 compares the

seven benchmarks on which pSweeper obviously outperforms DangSan. There is no

remarkable difference on other benchmarks. In terms of memory overhead, DangSan

imposes an average overhead of 210%, while ours is 128%.

6.5.3 Scalability on Multi-threaded Applications

We use PARSEC 3.0 [73] to evaluate the scalability of pSweeper with respect

to an increasing number of application threads. Again, our baseline LLVM fails to

compile four benchmarks and Figure 6.13 shows the results for nine succeeded ones.

As we can see, pSweeper scales nearly as well as the baseline on all benchmarks.

This is mainly because lock-free algorithms are devised to address almost all races

between pSweeper and application threads. As a result, the incurred overhead does

not increase significantly when systems become more contended. We observe that the
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Figure 6.12: Overhead comparison with DangSan.

runtime of benchmarks does not decrease anymore after the number of application

threads reaches four. This is because our CPU has only two cores providing 4-thread

hyperthreading. The geometric means of overhead over all nine benchmarks range from

7.5% to 12.9% for pSweeper-1s, 8.9% to 14.4% for pSweeper-500ms, and 21.1% to 32.8%

for pSweeper-nosleep. The memory overhead basically does not highly correlate with

the number of application threads and the geometric means of overheads are 1600%

(1s), 840% (500ms), and 49% (no sleep), respectively. The high overhead is mostly

due to swaptions that consumes 144x memory for pSweeper (1s). The reason is that

the memory footprint of baseline swaptions is quite small. As a result, the memory

consumption caused by pSweeper becomes exceptionally large relative to the baseline.

Excluding swaptions that is not evaluated by DangSan, the overheads of pSweeper

become 27% (1s), 22% (500ms), and 18% (no sleep), respectively.

6.5.4 Macro Benchmarks

We now demonstrate that pSweeper works efficiently on modern applications

with two case studies, Lighttpd web server and Firefox browser.

6.5.4.1 Lighttpd

We first conduct experiments on Lighttpd 1.4.40. To generate client requests, we run
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Figure 6.13: Scalability of pSweeper on PARSEC 3.0. The number of threads must be
a power of two for fluidanimate.

the ApacheBench [4] tool on a second desktop. The tool makes 100,000 requests with

128 concurrent connections to transfer a 50-byte file. We use a very small file to

minimize the potential variance caused by network and I/O. The results are averaged

over five runs.

Figure 6.14 shows the throughput of Lighttpd with respect to the different

number of worker processes. We can see that pSweeper scales well on Lighttpd with

overheads in ranges of 3.7%∼13.6% (1s), 4.1%∼15.9% (500ms), and 8%∼22.8% (no

sleep). The memory overheads are about 158.7% (1s), 42.2% (500ms), and 38.7% (no

sleep) in all cases.

6.5.4.2 Mozilla Firefox

We choose Firefox 47.0 as our second case study. Table 6.3 presents the evaluation

results on three popular browser benchmarks, MotionMark [32] assessing a browsers
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Figure 6.14: pSweeper overhead on Lighttpd.

capability to animate complex scenes at a target frame rate, Speedometer [39] measur-

ing simulated user interactions in web applications, and JetStream 1.1 [23] covering a

variety of advanced Javascript workloads. In all three benchmarks, larger scores indi-

cate higher performance. We can see that the induced runtime overhead is quite low,

ranging from 2.3% to 7.7% for pSweeper-1s. The geometric means of memory overhead

are 863%, 374%, and 117%, for pSweeper-1s, -500ms, and -nosleep, respectively.

We further evaluate pSweeper by visiting Alexa Top 50 websites. We encounter

no error during the test of accessing the websites. Table 6.4 lists the page load time

(using app.telemetry [5]) when visiting five popular websites. On average, the page

load time increases by 3.1% , 7.6%, and 18.6% for pSweeper-1s, -500ms, and -nosleep,

respectively.

Benchmarks
MotionMark Speedometer JetStream 1.1

Score Runs /minute Score
Baseline 145.24 48.5 160.63

1s 133.98 (7.7%) 44.4 (6.9%) 156.9 (2.3%)
500ms 130.77 (9.9%) 41.47 (13%) 156.41 (2.6%)
nosleep 107.4 (26%) 36.9 (22.6%) 132.03 (17.8%)

Table 6.3: Overhead of pSweeper(-1s, -500ms, -nosleep) on three browser benchmarks.
The percentage in parentheses is the slowdown.

6.6 Discussion & Limitations

pSweeper metadata protection. pSweeper does not specially protect its

metadata like the MAS and PLM table. However, this does not degrade our security

guarantee. By design, all UaF exploits are disrupted. Thus, attackers can leak and
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Websites Baseline
pSweeper

1s 500ms nosleep
google.com 0.55 0.57 0.59 0.62
youtube.com 1.95 1.99 2.08 2.18
facebook.com 0.64 0.66 0.73 0.83
amazon.com 2.42 2.51 2.52 2.95
yahoo.com 3.51 3.61 3.66 4.12

Table 6.4: Page load time (in seconds) of pSweeper on five popular websites.

tamper with metadata only through non-UaF vulnerabilities. As discussed in §6.2,

orthogonal defenses should be used to protect against these vulnerabilities.

Accessing freed memory due to deferred free. Since pSweeper defers object

free until the end of a sweeping round, applications are able to access the memory

that should have been freed. This design resembles garbage collection. Therefore, we

believe this is not a critical concern in practice.

Energy consumption. Since pSweeper continuously scans for dangling pointers in

a concurrent thread, it will consume more power and energy. As a result, it may not

be suitable for deployment on battery-backed mobile devices. Instead, we envision

pSweeper to be mainly deployed on desktops.

False positives. Basically, false positives can occur in two cases. First, a pointer

may be type-casted to and used as an integer. For instance, a program might depend

on the difference of two pointers p, q. If p or q is neutralized by pSweeper, the value

(p − q) will be changed. Second, applications may intentionally use the values in

dangling pointers.Since these false positives are rare in practice, we believe they will

not seriously affect the practicality of pSweeper. Actually, all existing approaches

[139, 225, 212] suffer the same false positives.

False negatives. pSweeper relies on the types of global/local variables and operands

in store instructions to identify live pointers. However, an integer is type-casted to

a pointer at runtime. Also, pSweeper currently conservatively ignores unions if one of

their fields are non-pointers. In these cases, pSweeper will suffer false negatives if the

missed pointers become dangling.
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Another possible cause of false negatives lies in the fact that pSweeper does not

proactively neutralize dangling pointers in registers. It will induce undue overhead if

pSweeper peeks into and tampers with the registers used by application threads. While

these dangling pointers are theoretically false negatives, they can hardly be exploited in

practice. Therefore, currently we do not tackle them. Instead, we guarantee that they

never propagate to memory (§6.4.4.2). Again, all existing approaches [139, 225, 212]

do no handle dangling pointer in registers.

6.7 Conclusion

This paper presents pSweeper, a system that effectively protects applications

from UaF vulnerabilities at low overhead. The key feature of pSweeper is to iteratively

sweep live pointers to neutralize dangling ones in concurrent threads. To accomplish

this, we devise lock-free algorithms to address the entangled races among pSweeper and

application threads, without using any heavyweight synchronization mechanism that

can stall application threads. We also propose to encode object origin information into

dangling pointers to achieve object origin tracking, which helps to pinpoint the root-

causes of UaF vulnerabilities. We implement a prototype of pSweeper and validate its

effectiveness and efficiency in production environments.
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Algorithm 6 Concurrent Pointer Sweeping (CPS) threads.

ObjList: live object list

PtrList: live pointer list

1: function CPS Thread( )
2: while True do
3: objEnd← getObjectListTail(ObjList)
4: while obj← getNextObj(ObjList) do
5: if obj.freeflag then
6: obj.scanflag ← 1
7: fillWithSlotIndex(obj, obj.slotid)

8: if obj == objEnd then
9: break

10: ptrEnd← getPtrListTail(PtrList)
11: while ptr← getNextPtr(PtrList) do
12: if objFreed(&ptr) then
13: removePtr(&ptr,PtrList)
14: continue
15: if isDangling(ptr) then
16: OOT(&ptr)

17: if ptr == ptrEnd then
18: break
19: while obj← getNextObj(ObjList) do
20: if obj.scanflag then
21: real free(obj)
22: removeObj(ObjList, obj)
23: clearPLMTable(obj)

24: if obj == objEnd then
25: break
26: Sleep(t) . Decide sweeping rate
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Chapter 7

CONCLUSION

In this dissertation, we present solutions to address four newly emerging threats,

malicious PDF documents, dangling DNS records, domain shadowing, and UaF ex-

ploits.

First, we develop a novel malicious PDF detector, which leverages five new static

features and the context-aware behavior monitoring. The static features characterize

the obfuscation techniques that are widely used by malicious PDF. The context-aware

monitoring is based on the observation that the indispensable operations for malicious

Javascript to compromise target systems rarely occur in JS-context. Our extensive eval-

uations on 18,623 benign and 7,370 malicious samples demonstrate that our approach

can accurately detect and confine malicious Javascript in PDF with minor performance

overhead.

Second, we present the first study to understand and detect a newly emerging

threat in domain name system (DNS), called domain shadowing, where miscreants

compromise legitimate domains and spawn malicious subdomains under them. Boot-

strapped with a set of manually confirmed shadowed domains, we identify a set of novel

features that uniquely characterize domain shadowing by analyzing the deviation from

their apex domains and the correlation among different apex domains. Building upon

these features, we train a classifier and apply it to detect shadowed domains on the

daily feeds of VirusTotal, a large open security scanning service. Our study highlights

domain shadowing as an increasingly rampant threat since 2014. Moreover, we reveal

that they are also widely exploited for phishing attacks. Finally, we observe that several

domain shadowing cases exploit the wildcard DNS records, instead of algorithmically

generating subdomain names.
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Third, we unveil a largely overlooked threat in DNS: a dangling DNS record

(Dare), which could be easily exploited for domain hijacking. Specifically, we have

presented three attack vectors, IP in cloud, abandoned third-party services, and expired

domains. We have quantified the magnitude of Dares in the wild through a large-scale

measurement study, during which hundreds of Dares are found on even those well-

managed zones like edu and Alexa top 10,000 websites. To this end, we have proposed

three defense mechanisms that can effectively mitigate Dares with minor human effort.

Finally, we present pSweeper, a defense system that effectively protects appli-

cations from UaF vulnerabilities at low overhead. To accomplish our design goals, we

propose two unique and innovative techniques, concurrent pointer sweeping (CPS) and

object origin tracking (OOT). We have demonstrated the effectiveness of pSweeper

using real-world UaF vulnerabilities. Our evaluation results on SPEC CPU2006 and

PARSEC benchmarks show that the induced overhead is quite low and pSweeper scales

quite well on multi-thread applications. We have further conducted two case studies

with Lighttpd web server and Firefox browser to validate the efficacy of eSweeper.
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